
Chapter 6
A Precedence Constraint Posting Approach

Amedeo Cesta, Angelo Oddi, Nicola Policella, and Stephen F. Smith

Abstract This chapter summarizes some previous work on a constraint-based
scheduling approach effectively applied to Resource-Constrained Project Schedul-
ing problems. The approach is based on a formulation of the problem as a Constraint
Satisfaction Problem (CSP). In particular the problem is reduced to the one of estab-
lishing sufficient precedence constraints between activities that require the same
resource so as to eliminate all possible resource contention, defining what is called
the Precedence Constraint Posting (PCP) approach. The PCP scheduling approach
has two attractive properties: first it operates in a search space that avoids over-
commitment to specific activity start times, and can be more efficiently searched;
second, the solution generated is a so-called “flexible schedule”, designating a set of
acceptable futures, which provides a basis for efficiently responding to unexpected
disruptions during execution. This chapter summarizes a body of work developed
over the years on PCP-based scheduling to take advantage of such properties. In
particular, the chapter presents an overview on a number of original algorithms
for efficiently finding a solution to a scheduling problem, for generating robust
schedules, and for searching near-optimal makespan solutions.

Keywords Constraint-based reasoning • Generalized precedence relations •
Makespan minimization • Renewable resources • Robust scheduling • Temporal
flexibility

A. Cesta (�) • A. Oddi
Institute of Cognitive Sciences and Technologies, CNR - Italian National Research Council,
Rome, Italy
e-mail: amedeo.cesta@istc.cnr.it; angelo.oddi@istc.cnr.it

N. Policella
European Space Operations Centre, European Space Agency, Darmstadt, Germany
e-mail: nicola.policella@esa.int

S.F. Smith
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: sfs@cmu.edu

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_6

113

mailto:amedeo.cesta@istc.cnr.it
mailto:angelo.oddi@istc.cnr.it
mailto:nicola.policella@esa.int
mailto:sfs@cmu.edu

114 A. Cesta et al.

6.1 Introduction

Constraint-based scheduling models combine rich representational flexibility with
compositional search procedures and heuristics, and this combination can provide
significant leverage in addressing complex scheduling problems. These approaches
start with a formulation of the problem of interest as a Constraint Satisfaction
Problem (CSP), which involves specification of a set of decision variables together
with a set of constraints on their mutual values. Much like the MILP formulations
discussed in Chap. 2 of this handbook, there are different possibilities. One basic
approach is to formulate the problem as one of finding a consistent assignment
of start times for all constituent activities to be scheduled (analogous to the time-
indexed formulations of Chap. 2 of this handbook). This fixed times assignment
formulation, however, has a couple of drawbacks. From a constraint reasoning
perspective, it promotes over-commitment (i.e., the problem constraints likely do
not require commitment to specific start times to ensure feasibility), which results in
a correspondingly larger solution space to search. From an operational perspective,
a fixed-times solution offers no resilience against executional uncertainty, and is
likely to quickly become invalid.

An alternative CSP formulation, which we adopt in this chapter, is to reduce
the problem to one of establishing sufficient precedence constraints between
activities competing for the same resources to eliminate all possible resource
contention, and ensure both time and resource feasibility. This approach, referred
to as Precedence Constraint Posting (PCP), address the over-commitment issue
raised above by instead producing a so-called “flexible schedule” where activity
start times are constrained to occur within an interval that is consistent with the
problem constraints. The original formulation (Smith and Cheng 1993) was shown
to achieve order-of-magnitude speedup in solving time over a corresponding fixed
times assignment procedure in a basic job shop scheduling setting. More recently,
this approach has been generalized to address cumulative resources, has been
effectively applied to the resource constrained project scheduling problem (Cesta
et al. 2002), and has been extended to generate Partial Order Schedules (POSs),
activity networks with the property that any temporal solution to the graph is also
resource-feasible (Policella et al. 2007). The ability to generate POSs provides a
basis for efficiently responding to unexpected disruptions at execution time. It also
provides a conceptual framework for optimizing solution robustness in the absence
of knowledge about the uncertainties in the execution environment (similar in some
ways to the robust scheduling techniques discussed in Chap. 40 in the second
volume of this handbook, and in contrast to the stochastic models of Chap. 37 in
the second volume of this handbook).

In this chapter we summarize this PCP approach to Project Scheduling. We
present a basic set of core solving algorithms for generating a solution in the form
of an activity network N , a directed graph N D .V; E/, where the edges in E are
simple precedence constraints imposed on the set of problem activities V . Via a
polynomial time calculation, such a network N can be always turned into a Partial

6 A Precedence Constraint Posting Approach 115

Order Schedule (POS). We also discuss incorporation of these core algorithms
into extended optimizing search procedures targeted on two different objectives:
improve the robustness of a solution (Policella et al. 2009) and minimize the solution
makespan (e.g., Oddi et al. 2010a).

The chapter is organized as it follows: Sect. 6.2 reviews the state-of-the-art in
Constraint-based Scheduling. After the introduction of the reference scheduling
problem (RCPSP/max, Sect. 6.3) and its CSP representation (Sect. 6.4), the chapter
than continues describing the basic concepts behind PCP (Sect. 6.5). A core PCP
framework is discussed in Sect. 6.6. The last part of the chapter then summarizes the
results along two different directions of work: a first for generating robust schedules
(Sect. 6.7); a second one for the generation of optimal solutions (Sect. 6.8). The final
conclusions are discussed in Sect. 6.9.

6.2 Constraint-Based Scheduling

Constraint Programming (see Rossi et al. 2006) is an approach to solving combina-
torial search problems based on the Constraint Satisfaction Problem (CSP) paradigm
(Kumar 1992; Montanari 1974; Tsang 1993). Constraints are just relations and a
CSP states which relations should hold among the given problem decision variables.
This framework is based on the combination of search techniques and constraint
propagation. Constraint propagation consists of using constraints actively to prune
the search space. Different propagation algorithms have been defined for different
kinds of constraints. Their aim is to reduce the domains of variables involved in
the constraints by removing the values that cannot be part of any feasible solution.
The filtering algorithm is invoked any time a domain of some variable is changed
(either as a result of search decisions or during constraint propagation) to propagate
the consequences of the change over all decision variables. As described by Dechter
and Rossi (2002), “in general, constraint satisfaction tasks, like finding one or all
solutions or the best solution, are computationally intractable, NP-hard”. For
this reason the constraint propagation process cannot be complete, that is, some
infeasible values may still remain in the domains of the variables and thus decisions
are necessary to find a complete feasible valuation of the variables. In general,
constraint propagation is aimed at achieving local consistency among subsets of
variables.

Constraint satisfaction and propagation rules have been successfully used to
model, reason and solve about many classes of problems in such diverse areas
as scheduling, temporal reasoning, resource allocation, network optimization and
graphical interfaces. In particular, CSP approaches have proven to be an effective
way to model and solve complex scheduling problems (see, for instance, Baptiste
et al. 2001; Beck et al. 1998; Cesta et al. 2002; Fox 1990; Sadeh 1991; Smith
1994). The use of variables and constraints provides representational flexibility and
reasoning power. For example, variables can represent the start and the end times of
an activity, and these variables can be constrained in arbitrary ways.

116 A. Cesta et al.

In the remainder of this section we first provide a formal definition of the
Constraint Satisfaction Problem, next a brief description of a generic solver, and
finally an overview of the different ways in which this paradigm has been used to
solve scheduling problems.

6.2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem, CSP, consists of a finite set of decision
variables, each associated with a domain of values, and a set of constraints that
define the relation between the values that the variables can assume. Therefore, a
CSP is defined by the tuple hV; D;Ci where:

• V D fv1; v2; : : : ; vng is a set of n variables;
• D D fD1; D2; : : : ; Dng is the set of corresponding domains of values for any

variable, such that vi 2 Di , i D 1; : : : ; n;
• C D fc1; c2; : : : ; c�g, is a set of � constraints, c�.v1; v2; : : : ; vn/, that are

predicates defined on the Cartesian product of the variable domains, D1 �D2 �
: : : �Dn.

A solution s is a value assignment to each variable vi , from its domain,

.�1; �2; : : : ; �n/ 2 D1 �D2 � : : : �Dn

such that the set of constraints is satisfied.
Constraint processing tasks include not only the satisfaction task, but also

Constraint Optimization Problems (COP). In this case an objective function f .S/

(or cost function) evaluates any single feasible solution S . The goal is to find an
optimal solution S� which minimizes (or maximizes) the objective function f ./.

Finally, we observe an instance of a CSP hV; D;Ci can be represented as a
constraint graph, G D .V; E/. For every variable vi 2 V , there is a corresponding
node in the graph. For every set of variables connected by a constraint cj 2 C, there
is a corresponding hyper-edge. In the particular case of binary constraints (each
constraint involves at most two variables) the hyper-edges become simply edges. A
well known example of binary CSP (extensively used in this chapter) is the Simple
Temporal Problem (STP) introduced by Dechter et al. (1991).

6.2.2 A Generic CSP Solver

A complete CSP solving procedure consists of the following three steps (Algo-
rithm 6.1): (a) current problem P is checked for consistency [CheckConsistency(P)]
by the application of a propagation procedure, if at least one constraint is violated
the algorithm exits with failure. If the problem P is also a solution [IsSolution(P)],

6 A Precedence Constraint Posting Approach 117

Algorithm 6.1: CSP-Solver(P)
if CheckConsistency(P) then

if IsSolution(P) then
S P

return S

else
vi SelectVariable(P)
�i Choose-Value(P; vi)
CSP-Solver(P [f�ig)

end if
else

return ;
end if

then the algorithm exits and returns the generated solution S D P . Otherwise
the problem is still not solved and the following two steps are executed; (b) a
variable vi is selected by a variable ordering heuristic; (c) a value �i is chosen by
a value ordering heuristic and added to P . The solver is recursively called on the
updated problem P [f�ig.

6.2.3 CSP Approaches to Scheduling Problems

Scheduling problems are difficult combinatorial optimization problems and repre-
sent an important application area for constraint directed search. Different constraint
programming approaches have been developed in this direction, for instance, the
reader can refer to Baptiste et al. (2001) for a thorough analysis of different
constraint based techniques for scheduling problems. The work of Constraint
directed Scheduling of the 1980s (see for example Fox 1990; Sadeh 1991; Smith
1994) has developed into Constraint-based Scheduling approaches in the late 1990s
(see Baptiste and Le Pape 1995; Beck et al. 1998; Hentenryck and Michel 2009;
Nuijten and Aarts 1996; Smith and Pyle 2004). These approaches all focus on the
use of constraints as a basis for representing and managing the search for a solution
to the scheduling problem at hand. As mentioned above, the search for a solution
to a CSP can be viewed as modifying the constraint graph G D .V; E/ through
the addition and removal of constraints, where the constraint graph is an evolving
representation of the search state, and a solution is a state in which a single value
remains in the domain of each variable and all constraints are satisfied.

As mentioned at the outset, research in constraint-based scheduling has pursued
two basic formulations of the scheduling problem. One set of approaches (e.g.,
Nuijten and Le Pape 1998; Sadeh 1991; Smith and Pyle 2004) has formulated the
problem as that of finding a consistent assignment of start times for each activity to
be performed. Under this model, decision variables are time points that designate the
start times of various activities and CSP search focuses on determining a consistent

118 A. Cesta et al.

assignment of start time values. The “serial and parallel” methods discussed in
Chap. 1 of this handbook similarly aim to find consistent sets of start times. A
second set of approaches have focused on a problem formulation more akin to
least-commitment frameworks. In this model, which is based on a disjunctive graph
representation (Adams et al. 1988) and is referred to as Precedence Constraint
Posting (Smith and Cheng 1993), solving consists of posting additional precedence
constraints between pairs of activities contending for the same resources to ensure
feasibility with respect to time and capacity constraints. Solutions generated in this
way generally represent a set of feasible schedules (i.e., the sets of activity start
times that remain consistent with posted sequencing constraints), as opposed to a
single assignment of start times.

6.3 The Reference Scheduling Problem: RCPSP/max

We adopt the Resource-Constrained Project Scheduling Problem with minimum
and maximum time lags, RCPSP/max,1 as a reference problem (see Bartusch et al.
1988). The basic entities of interest in this problem are activities. The set of activities
is denoted by V D f1; 2; : : : ng where each activity has a fixed processing time, or
duration, pi and must be scheduled without preemption.

A schedule is an assignment of start times to each activity in V , i.e., a vector
S D .S1; S2; : : : ; Sn/ where Si denotes the start time of activity i . The time at which
activity i has been completely processed is called its completion time and is denoted
by Ci . Since we assume that processing times are deterministic and preemption is
not permitted, completion times are determined by:

Ci D Si C pi .i 2 V / (6.1)

Schedules are subject to two types of constraints, temporal constraints and resource
constraints. In their most general form temporal constraints designate arbitrary
minimum and maximum time lags between the start times of any two activities,

d min
ij � Sj � Si � d max

ij ..i; j / 2 V / (6.2)

where d min
ij and d max

ij are the minimum and maximum time lag of activity j relative
to i . A schedule S D .S1; S2; : : : ; Sn/ is time feasible, if all inequalities given by
the activity precedences/time lags (6.2) and durations (6.1) hold for start times Si .

During their processing, activities require specific resource units from a set
R D f1; 2; : : : ; Kg of resources. Resources are reusable (renewable), i.e., they are
released when no longer required by an activity and are then available for use by
another activity. Each activity i 2 V requires rik units of the resource k 2 R during
its processing time pi . Each resource k 2 R has a limited capacity of Rk units.

1The three field classification of RCPSP/max is PSjtempjCmax.

6 A Precedence Constraint Posting Approach 119

A schedule S is resource feasible if at each time t the demand for each resource
k 2 R does not exceed its capacity Rk , i.e.,

rk.S; t/ D
X

i2V WSi�t<Ci

rik � Rk .k 2 RI t 2 Œ0; T �/ (6.3)

A schedule S is called feasible if it is both time and resource feasible.
The RCPSP/max problem is a complex scheduling problem: in fact not only the

optimization version but also the feasibility problem is NP-hard (see Bartusch
et al. 1988). The reason for this NP-hardness result lies in the presence of
maximum time lags. In fact these imply the presence of deadline constraints, trans-
forming feasibility problems for precedence-constrained scheduling to scheduling
problems with time windows.

6.4 The RCPSP/max as a CSP

As introduced above, we formulate the project scheduling problem as a Constraint
Satisfaction Problem (CSP), in particular we refer to the definition of the problem
proposed in the work Bartusch et al. (1988), such that decision variables are the so-
called Forbidden Sets also known as Minimal Critical Sets (see Laborie and Ghallab
1995 or Chap. 2 of this handbook, we use MCS in the rest of the chapter).

Given a generic resource k, a conflict is a set of activities requiring the resource
k, which can mutually overlap and whose combined resource requirement is in
excess of the resource capacity Rk . A Minimal Critical Set, MCS � V , represents a
resource conflict of minimal size (each subsets is not a resource conflict), which can
be resolved by posting a single precedence constraint between two of the competing
activities in the conflict set. Hence, in CSP terms, a decision variable is defined
for each MCS and the domain of possible vales is the set of all possible feasible
precedence constraints i � j which can be imposed between any pair of activities
in the MCS.

A solution of the scheduling problem is a set of precedence constraints (added to
the original problem described in the previous Sect. 6.3) such that removes all the
MCSs.

A solution takes the form of an activity network NS , a directed graph NS D
.VS ; E/, where VS D V [fsource; sinkg, the set of problem activities V plus
two fictitious activities source and sink, and E is the set of directed edges .i; j /,
representing the set of precedence constraints i � j defined among the activities in
VS . In particular, the set E is partitioned in two subsets, E D Eprob [Epost, where
Eprob is the set of precedence constraints originating from the problem definition
and Epost is the set of precedence constraints posted to resolve resource conflicts.
In general, the directed graph NS.VS; E/ represents a set of temporal solutions
.S1; S2; : : : ; Sn/, that is a set of assignments to the activities’ start-times which are
consistent with the set of constraints E and the set of imposed resource constraints.

120 A. Cesta et al.

We observe as in the new formulation of the problem it becomes a pure
disjunctive temporal problem (Oddi et al. 2010b), such that the original resource
constraints are compiled into a set of MCSs, each MCS can be seen as a disjunctive
temporal clause. A drawback of the previous MCS reduction is the large number of
MCSs obtained for each resource k; if nk is the number activities requiring resource
k, the number of MCSs is

� jnk j
RkC1

�
, hence O.n

RkC1
k /.

The next section proposes a summary of the works (Cesta et al. 1999, 2002)
which describes how to overcame the limitation imposed by the large size set
of MCSs. The proposed approach, targeted to identification of decision variables,
attempts to reconcile two, typically conflicting desiderata: (1) on one hand to always
take the decision centers on the most critical precedence constraint to post and (2) on
the other to minimize the amount of time spent in the analysis that leads to this
decision. For details on the empirical evaluation of the algorithms the author can
refer to the original works (Cesta et al. 1999, 2002).

6.5 Precedence Constraint Posting

The proposed Precedence Constraint Posting (PCP) approach was first introduced
by Smith and Cheng (1993) for problems with binary resources and then extended
to more general problems in subsequent research, aims at synthesizing additional
precedence constraints between pairs of activities for the purpose of pruning all
inconsistent allocations of resources to activities. The general schema of this
approach is provided in Fig. 6.1 and consists of representing, analyzing, and solving
different aspects of the problem in two separate layers. In the former the temporal
aspects of the scheduling problem, e.g., activity durations, constraints between pairs
of activities, due dates, release time, etc., are considered. The second layer, instead,
represents and analyzes the resource aspects of the problem. Let us now explain the
details of the two layers.

temporal
flexible
solution

precedence
constraint

resource

time

resource profile analysis

temporal constraint propagation

Fig. 6.1 Precedence Constraint Posting schema

6 A Precedence Constraint Posting Approach 121

6.5.1 Time Layer

The temporal aspects of the scheduling problems are represented through an STP
(Simple Temporal Problem) network (see Dechter et al. 1991). This is a temporal
graph in which the set of nodes represents a set of temporal variables named time-
points, tp�, while linear temporal constraints, of the form tp� � tp� � d�� , define
the distances among them. Each time point has initially a domain of possible
values equal to Œ0; T � where T is the temporal horizon of the problem. The
problem is represented by associating with each activity a pair of time points
which represent, respectively, the start and the end-time of the activity. Therefore
a temporal constraint may be imposed between a pair of time points that can
“belong” to the same activity or not. In the latter case (when they do not belong
to the same activity) the temporal constraints represent constraints between two
activities of the problem. If alternatively, the two time-points belong to the same
activity, the temporal constraints represent the duration, or processing time, of the
activity. By propagating the temporal constraints it is possible to bound the domains
of each time-point, tp� 2 Œlb�; ub��. In the case of empty domains for one or
more time-points the temporal graph does not admit any solution. In Dechter et al.
(1991) it was proved that it is possible to completely propagate the whole set of
temporal constraints in polynomial time, O.n3/, and, moreover, that a solution can
be obtained by selecting for each time-point its lower bound value, tp� D lb�

(this solution is referred to as the Earliest Start-Time Solution). The temporal layer
then, given the temporal aspects of a scheduling problem, provides, in polynomial
time (using constraint propagation) a set of solutions defined by a temporal graph.
This result is taken as input in the second layer. In fact, at this stage we have a set of
temporal solutions (time feasible) that need to also be proven to be resource feasible.

6.5.2 Resource Layer

This layer takes into account the other aspect of the scheduling problem, namely
the constraints on resources (i.e., capacity). In general, resources can be binary,
multi-capacitive, or consumable (non-renewable). As described above, the input
to this layer in the PCP approach is a temporally flexible solution—a set of
temporal solutions (see also Fig. 6.1). Like in the previous layer it is possible to use
constraint propagation to reduce the search space. Even though there are different
methodologies described in the literature, these propagation procedures are not
sufficient in general (see Laborie 2003; Nuijten and Aarts 1996). In fact they are
not complete, which implies that they are not able to prune all inconsistent temporal
solutions. For this reason a PCP procedure uses a Resource Profile (see Cesta et al.
2002) to analyse resource usage over time and detect MCS decision variables. The
procedure then proceeds to post further constraints to level (or solve) some of the
detected conflicts. These new constraints are propagated in the underlying layer

122 A. Cesta et al.

to check the temporal consistency. Then the time layer provides a new temporally
flexible solution that is analyzed again using the resource profiles. The search stops
when either the temporal graph becomes inconsistent or the resource profiles are
consistent with the resource capacities.

6.6 The Core Constraint-Based Scheduling Framework

The core of the implemented framework is based on the greedy procedure described
in Algorithm 6.2, which is an instance of the procedure described in Sect. 6.2.2.
Within this framework, a solution is generated by progressively detecting time
periods where resource demand is higher than resource capacity (conflicts) and
posting sequencing constraints between competing activities to reduce demand
and eliminate capacity conflicts. As explained above, after the current situation is
initialized with the input problem, S0 P , the procedure builds an estimate of
the required resource profile according to the current temporal precedences in the
network and detects resource conflicts—SELECTCONFLICTSET(S0). If the set of
conflicts F is not empty then new constraints are synthesized, SELECTLEVELING-
CONSTRAINT(F), and posted on the current situation. The search proceeds until
either the STP temporal graph becomes inconsistent or a solution is found.

Using the reference scheduling problem (RCPSP/max) introduced above, we
proceed now to summarize the core components needed to fully specify the
approach. In fact, the introduction of a specific scheduling problem allows us
to set the general framework introduced above. The first issue in the framework
implementation concerns how to identify activities that are in a conflicting situation.
This allows identification of the points in the current solution state that need to be
resolved. The second issue concerns the heuristics (variable and value ordering)
used to respectively select and solve conflicts that have been identified.

6.6.1 Consider Resource Utilization

A first, important issue that needs to be explored is how to compute resource
utilization profiles. In fact, the input temporal graph represents a set of solutions,
possibly infinite, and to consider all the possible combinations is impossible in
practice.

A possible affordable alternative consists of computing bounds on resource
utilization. Examples of bounding procedures can be found in Drabble and Tate
(1994), Cesta and Stella (1997), Laborie (2003), Muscettola (2002). It is worth
noting that consideration of resource bounds as resource profiles implies that all
temporal solutions represented by the temporal graph are also resource feasible.

A different approach to dealing with resources consists of focusing attention
on a specific temporal solution and its resource utilization. In contrast to resource

6 A Precedence Constraint Posting Approach 123

a b

Fig. 6.2 Two different ways to consider the resource utilization. (a) Bounds of the resource
utilization for the set of solutions defined by a temporal graph. (b) Resource utilization of a single
temporal solution

bounding approaches, this process only assures that the final temporal graph
contains at least one resource feasible solution (the one for which the resource
utilization is in fact considered); some of the temporal solutions may not be resource
feasible. Since only a single feasible solution is computed instead of encapsulating
all possible feasible solutions, this approach gains substantial computational effi-
ciency.

Figure 6.2 summarizes the two alternative resource profiles. In the first case
resource bounds are used to consider all the temporal solutions and their associated
resource utilization (Fig. 6.2a). Alternatively, only one temporal solution of the set
is considered in the second case (Fig. 6.2b).

6.6.2 How to Identify Decision Variables

The starting point in identifying the possible conflicts is the computation of
the possible contention peaks. A contention peak is a set of activities whose
simultaneous execution exceeds the resource capacity. A contention peak designates
a conflict of a certain size (corresponding to the number of activities in the peak). In
Algorithm 6.2 the function SELECTCONFLICTSET(S0) collects all maximal peaks2

in the current schedule. Then selects a decision variable (MCS) from the set of
peaks. An alternative selection procedure first ranks the selected peaks, next picks
the more critical one (e.g., one with maximal size), and last selects a decision

2Specifically, we follow a strategy of collecting sets of activities such that none of the sets is a
subset of the others.

124 A. Cesta et al.

Algorithm 6.2: GREEDYPCP(P)
Require: a problem P

Ensure: a solution S (or the empty set otherwise)
S0 P

if Exists an unresolvable conflict in S0 then
S ;

else
F SELECTCONFLICTSET(S0)
if F D ; then

S S0

else
fi � j g SELECTLEVELINGCONSTRAINT(F)
S0 S0 [fi � j g
S GREEDYPCP(S0)

end if
end if
return S

variable from the selected peaks. The selected MCS is solved by imposing on the
conflicting activities a single precedence constraint i � j . Next Sect. 6.6.3 gives
more details about the used selection procedures.

Cesta et al. (1999, 2002) showed that much of the advantage of this type of global
conflict analysis can be retained by using an approximate polynomial procedure for
computing MCSs. In particular, Cesta et al. (1999, 2002) proposed two polynomial
strategies for sampling MCSs from a peak of size jF j. These strategies are based
on the idea of sorting the activities of each peak according to their resource usage
(greatest first), then MCSs are collected by visiting such a list and extracting sub-
sequences of activities corresponding to MCSs. The two methods are named linear
and quadratic according to their complexity (they respectively collect O.jF j/ and
O.jF j2/ elements). An additional and effective strategy is based on the idea of
imposing a lexicographical order on the set of searched MCSs, the reader can refer
to the paper Cesta et al. (2002) to see the detail of the procedure.

6.6.3 Selecting and Solving Conflicts

According to the proposed CSP framework, in all cases where no mandatory
decisions can be deduced from the propagation phase, heuristics and methods used
to respectively select and solve one of the conflicts are introduced by defining
variable and value ordering heuristics for the decision variables. The basic idea
is to repeatedly evaluate the decision variables and select the one with the best
heuristic evaluation. The selection of which variable to assign next is based on the
most constrained first (MCF) principle, and the selection of values follows the least
constraining value (LCV) heuristic. More specifically, the following heuristics are
assumed:

6 A Precedence Constraint Posting Approach 125

Ranking conflicts: for evaluating MCSs we have used the heuristic estimator �./

described by Laborie and Ghallab (1995), where the MCS with highest value of
�.MCS/ is then chosen. A conflict is unsolvable if no pair of activities in the
conflict can be ordered. Basically, �./ will measure how close a given conflict is
to being unsolvable.

Slack-based value selection: to choose an ordering decision among the possible,
the choice which retains the most temporal slack is taken.

It is worth underscoring that the above PCP framework establishes resource
feasibility strictly by sequencing conflicting activities. It remains non-committal on
activity start times. As such, PCP preserves temporal flexibility that follows from
problem constraints. Further, the two heuristic choices adopt a minimal commitment
strategy with respect to preserving temporal slack, and this again favors temporal
flexibility.

6.7 Flexible Solutions, Robustness, and Partial Order
Schedules

As shown in the previous section, the outcome of a Precedence Constraint Posting
solver is a Simple Temporal Problem (STP) network or STN, that not only contains
the temporal constraints belonging to the initial problem, but also the additional
precedences that have been added during the resolution process. In a STN, each
time point is associated with a bounded interval of values which represents the set
of admissible values for that time point; hence, the adjective “temporally flexible”
is often used to refer to these kind of solutions. Therefore the PCP approach tries
to retain the temporal flexibility of the underlying STN to the extent possible
(somehow maximizing the domain size of the time points). In particular, the use
of PCP approaches (and the schedules produced by them) can be justified in two
ways:

• As a means of retaining the flexibility implied by problem constraints (time and
capacity) and avoiding over commitment;

• As a means of establishing conditions for guaranteed executability.

In fact, in most practical scheduling environments, off-line schedules can have
a very limited lifetime and scheduling is really an ongoing process of responding
to unexpected and evolving circumstances. In such environments, insurance of
robust response is generally the first concern. Unfortunately, the lack of guidance
that might be provided by a schedule often leads to myopic, sub-optimal decision-
making.

One way to address this problem is reactively, through schedule repair. To keep
pace with execution, the repair process must be both fast and complete. The response
to a disruption must be fast because of the need to re-start execution of the schedule
as soon as possible. A repair must also be complete in the sense of accounting

126 A. Cesta et al.

for all changes that have occurred, while attempting to avoid the introduction of
new changes. As these two goals can be conflicting, a compromise solution is often
required. Different approaches exist and they tend to favour either timeliness (Smith
1994) or completeness (El Sakkout and Wallace 2000) of the reactive response.

An alternative, proactive approach to managing execution in dynamic environ-
ments is to focus on building schedules that retain flexibility and are able to absorb
some amount of unexpected events without rescheduling. One technique consists
of factoring time and/or resource redundancy into the schedule, taking into account
the types and nature of uncertainty present in the target domain (Davenport et al.
2001; Hiatt et al. 2009). An alternative technique is to construct an explicit set of
contingencies (i.e., a set of complementary solutions) and use the most suitable
with respect to the actual evolution of the environment (Drummond et al. 1994).
Both of these proactive techniques presume an awareness of the possible events
that can occur in the operating environment, and in some cases, these knowledge
requirements can present a barrier to their use.

Research approaches are based on different interpretations of the concept of
a robust solution, e.g., the ability to preserve solution qualities or the ability to
maintain a stable solution. The concept of robustness, on which this work is based,
can be viewed as execution-oriented; a solution to a scheduling problem will be
considered robust if it provides two general features: (1) the ability to absorb
exogenous and/or unforeseen events without loss of consistency, and (2) the ability
to keep the pace with the execution guaranteeing a prompt answer to the various
events.

Figure 6.3a describes the execution of a schedule. This is given to an executor (it
can be either a machine or a human being) that manages the different activities.
If something happens (i.e., an unforeseen event occurs) the executor will give
feedback to a scheduler module asking for a new solution. Then, once a new

Fig. 6.3 Rescheduling actions during the execution. (a) General rescheduling phase.
(b) Rescheduling phase using a flexible solution

6 A Precedence Constraint Posting Approach 127

solution is computed, it is given back to the executor. In Fig. 6.3b, instead, the
execution of a flexible schedule is highlighted. The substantial difference in this
case is that the use of flexible solutions allows the introduction of two separate
rescheduling phases: the first enabling rapid response by immediate means like
temporal constraint propagation over the set of activities, and the second entailing to
more extensive re-computation of the schedule when the first phase cannot offer a
response. In practice, the first phase exploits the flexibility characteristics of the
solution (and for this reason we named this module bounded repair scheduler).
Of course it is possible that an unforeseen event will force the system outside of
the bounds provided by the flexible solution. In this case, it will be necessary to
invoke the second, more complete scheduling phase. This second phase involves re-
computation of the overall flexible schedule, and performs a much more extensive
constraint-based search procedure (global revision module). Note that the use of
flexible schedules makes it possible to bypass this extended computation in many
circumstances in favor of a prompt answer.3

6.7.1 Partial Order Schedules

To take maximum advantage of the opportunity to bypass extended computation
in the event of unexpected events, a stronger form of flexible schedule is required.
Policella et al. (2004) and Policella (2005) further elaborated the idea of exploiting
temporal flexibility by adopting a graph formulation of the scheduling problem and
focusing on generation of the Partial Order Schedules (POSs).

Definition 6.1 (Partial Order Schedule). A Partial Order Schedule POS for a
problem P is an activity network, such that any possible temporal solution is also a
resource-consistent assignment.

Within a POS, each activity retains a set of feasible start times, and these options
provide a basis for responding to unexpected disruptions.

An attractive property of a POS is that reactive response to many external changes
can be accomplished via simple propagation in an underlying temporal network (a
polynomial time calculation); only when an external change exhausts all options
for an activity is it necessary to recompute a new schedule from scratch. In fact the
augmented duration of an activity, as well as a greater release time, can be modeled
as a new temporal constraint to post on the graph. To propagate all the effects of
the new edge over the entire graph it is necessary to achieve the arc-consistency of
the graph (that is, ensure that any activity has a legal allocation with respect to the
temporal constraints of the problem).

Note that, even though the propagation process does not explicitly consider
consistency with respect to the resource constraints, it is guaranteed to obtain a

3Although the reader should also note that these solutions are in general sub-optimal.

128 A. Cesta et al.

Fig. 6.4 An example of Partial Order Schedule (POS)

feasible solution by definition. Therefore a partial order schedule provides a means
to find a new solution and ensures to compute it in a fast way.

The common thread underlying a POS is the characteristic that activities
which require the same resource units are linked via precedence constraints into
precedence chains. Given this structure, each constraint becomes more than just a
simple precedence constraint, but represents a producer-consumer relation, allowing
each activity to be connected with the set of predecessors which supply the
units of resource it requires for execution. In this way, the resulting network of
chains can be interpreted as a flow of resource units through the schedule; each
time an activity completes its execution, it passes its resource unit(s) on to its
successors (a similar formulation is used in Chap. 2 of this handbook). Figure 6.4
shows an example of Partial Order Schedule for a single resource with capacity
five. In particular, activities are represented as rectangles and edges represent the
precedence constraints. The numbers inside the rectangles represent the resource
requirements and the labeling numbers on the directed edges represents the flow
of resource units supplied to a generic activity i from its predecessors in order to
satisfy the imposed resource constraint, independently from the start time values of
the activities. For example, the activity which requires four units of resource receives
two units of resource from each of its two predecessors and supplies one and three
units of resource respectively to its two successors. In general, in a POS solution
each activity has a set of inputs predecessors which supply the units of resource
needed for its execution.

Hence, an activity network NS.VS; EPOS/ is in POS-form if for each resource
k there exists a labeling function fk W EPOS �! Œ0::Rk� representing the flow
of resource units among the activities such that for each activity i the following
constraint holds:

X

j2Pred.i/

fk.j; i/ D
X

j2Succ.i/

fk.i; j / D rik (6.4)

where Pred.i/ D fj 2 V j9.j; i/ 2 EPOS/g and Succ.i/ D fj 2 V j9.i; j / 2
EPOS/g.4 Given an input solution S (represented either as a graph or as a set of

4Pred.source/ D Succ.sink/ D ;.

6 A Precedence Constraint Posting Approach 129

start-time values) a polynomial transformation method, named CHAINING, can be
defined that creates sets of activity chains (Policella et al. 2007). This operation can
be accomplished in three steps:

1. all the previously posted leveling constraints are removed from the input partial
order;

2. the activities are sorted by increasing activity earliest start times;
3. for each resource and for each activity i (according to the increasing order of

start times), one or more predecessors p are chosen, which supplies the units
of resource required by i – a precedence constraint p � i is posted for each
predecessor p. The last step is iterated until all the activities are linked by
precedence chains and the constraints in (6.4) are satisfied.

Before concluding we make a further remark about partial order schedules. Roy
and Sussman (1964) introduced the disjunctive graph representation of the classical
job shop scheduling problem and describe how a solution can be achieved by solving
all the disjunctive constraints and transforming each into a conjunctive one. Also
in our case of RCPSP/max, solution of all disjunctive constraints is required to
achieve a POS. In essence, the disjunctive graph representation has been extended
to the more general case where multi-capacity resources are defined. In this case
“disjunctive” hyper-constraints among activities that use the same resource are
introduced, the so-called MCSs. Based on this representation we can note that a
partial order schedule is obtained once any disjunctive MCS is solved. In this case,
a set of precedence constraints is posted to solve each MCS.

6.8 Extended Optimizing Search

In the previous sections we have presented a basic set of core solving algorithms
for generating a solution in the form of an activity network N . In addition, we have
also shown as such a network can be always turned into a Partial Order Schedule
(POS) via a polynomial time calculation. Now in this section we summarize how
to use these core algorithms into a set of extended optimizing search procedures
targeted on two different objectives: minimize the solution makespan and improve
the robustness of a solution.

A first procedure is described in (Cesta et al. 2002), where an iterated version
of Algorithm 6.2, called the ISES procedure, is proposed. This algorithm is an
iterative method, which at each step utilizes a randomized version of Algorithm 6.2
to produce different solutions. The key idea underlying the described approach is to
heuristically bias random choices in a dynamic fashion, according to how well (or
how poor) the available search heuristics (variable and value ordering) discriminate
among several alternatives.

A generalization of the previous procedure is the so-called Iterative Flattening
Search (IFS, Cesta et al. 2000; Oddi et al. 2010a). The concept of iterative flattening
search is quite general and provides a framework for designing effective procedures

130 A. Cesta et al.

Algorithm 6.3: IFS(S , MaxFail)
Sbest S

counter 0

while counter � MaxFail do
Relax(S)
S PCP(S)
if Cmax.S/ < Cmax.Sbest/ then

Sbest S

counter 0
else

counter counterC 1

end if
end while
return Sbest

for scheduling optimization, this concept is also known in literature as Large
Neighborhood Search (LNS) and was independently developed for solving vehicle
routing problems in Shaw (1998). It iteratively applies two steps: (1) Random
relaxation of the current solution; (2) An incremental solving step to regain solution
feasibility. Algorithm 6.3 introduces the generic IFS procedure. The algorithm
alternates relaxation and flattening steps until a better solution is found or a
maximal number of non-improving iterations is reached. The procedure takes two
parameters as input: (1) an initial solution S ; (2) a positive integer MaxFail, which
specifies the maximum number of consecutive non makespan-improving moves
that the algorithm will tolerate before terminating. After initialization, a solution
is repeatedly modified within the while loop by applying the RELAX procedure,
and a PCP procedure is used as solving step. At each iteration, the RELAX step
reintroduces the possibility of resource contention, and the PCP step is called
again to restore resource feasibility. If a better makespan solution is found, the
new solution is saved in Sbest. If no improvement is found within MaxFail moves,
the algorithm terminates and returns the best solution found. It is worth noting
that Partial Order Schedules in the context of IFS (or LNS) are an effective way
for designing neighborhood structures, examples of neighborhoods for solving
scheduling problems with cumulative renewable resources are given in the papers
Oddi et al. (2010a), in addition, as shown in Laborie and Godard (2007), the concept
can be extended to various types of resources.

The problem of increasing (optimizing) the robustness of generated POSs is
addressed via an iterative (randomized) chaining procedure in Policella et al. (2009).
In particular, the problem is addressed by separating the phase of problem solution,
which may pursue a standard optimization criterion (e.g., minimal makespan),
from a subsequent phase of solution robustification in which a more flexible
set of solutions is obtained and compactly represented through a Partial Order
Schedule. In particular, the paper focuses on specific heuristic algorithms for
synthesis of POSs, starting from a pre-existing schedule and different extensions
of the technique CHAINING algorithm described in Sect. 6.7.1, which progressively

6 A Precedence Constraint Posting Approach 131

introduces temporal flexibility into the representation of the solution. In fact, we can
observe that given the form of the output solution (an activity network), “classical”
objective like the minimization of project makespan, Cmax, co-exists very naturally
with a POS solution and the objective of increasing the solution’s robustness. In fact,
in the best case, the early start time solution which minimizes makespan is executed;
but in the event that unexpected events prevent this possibility, the accompanying
POS provides a feasible, bounded relaxation strategy.

6.9 Conclusions

In this chapter we have summarized a constraint satisfaction problem solving (CSP)
framework for solving project scheduling problems. We have advocated a somewhat
unconventional Precedence Constraint Posting (PCP) approach, which exploits the
expressiveness and computational efficiency of a simple temporal network (STN) to
enforce complex temporal constraints and interdependencies between activities, and
establishes resource feasibility by iteratively sequencing activities that are found to
be competing for the same resources until all potential resource conflicts have been
resolved. One important advantage of a PCP approach is that a generated solution
consists of a set of feasible schedules, as opposed to a single assignment of activity
start times that is the target of many scheduling approaches. In fact, such a flexible
solution can be efficiently transformed into a Partial Order Schedule (POS), which
guarantees resource feasibility over ranges of activity start times that are consistent
with posted constraints. POSs can be enable quick reaction to unforeseen events
during execution via efficient temporal constraint propagation procedures.

We have discussed core technology components for managing complex temporal
constraints and for detecting and responding to potential resource conflicts, which
are necessary ingredients for configuring a PCP-based scheduling procedure.
We have also illustrated their applicability to the resource constrained project
scheduling problem with minimum and maximum lag times (RCPSP/max). Due
to space considerations, we have not focused heavily on the issue of optimization of
project schedules. However, it is important to note that the PCP approach we have
described can be directly embedded as a sub-procedure in various forms of extended
optimizing search (see Cesta et al. 2002; Oddi et al. 2010a; Policella et al. 2009).

Minimization of project makespan, for example, is an objective that co-exists
very naturally with a POS solution—In the best case, the early start time solution
which minimizes makespan is executed; but in the event that unexpected events
prevent this possibility, the accompanying POS provides a feasible, bounded
relaxation strategy. Overall, PCP provides a flexible and efficient framework for
solving complex combinatorial problems like project scheduling.

Acknowledgements Authors would like to thank the anonymous reviewers for detailed comments
to previous drafts of this chapter. Stephen Smith was supported in part by the US Air Force

132 A. Cesta et al.

Research Laboratory under contracts FA8650-12-C-6269 and FA8750-12-C-0068, and the CMU
Robotics Institute. CNR authors were supported by internal funds for basic research.

References

Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling.
Manage Sci 34(3):391–401

Baptiste P, Le Pape C (1995) A theoretical and experimental comparison of constraint propagation
techniques for disjunctive scheduling. In: IJCAI-95. Morgan Kaufmann, San Francisco,
pp 600–606

Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling. Kluwer, Boston
Bartusch M, Mohring RH, Radermacher FJ (1988) Scheduling project networks with resource

constraints and time windows. Ann Oper Res 16(1):201–240
Beck JC, Davenport AJ, Davis ED, Fox MS (1998) The ODO project: towards a unified basis for

constraint-directed scheduling. J Sched 1:89–125
Cesta A, Stella C (1997) A time and resource problem for planning architectures. In: ECP-97.

Lecture notes in computer science, vol 1348. Springer, New York, pp 117–129
Cesta A, Oddi A, Smith SF (1999) An iterative sampling procedure for resource constrained project

scheduling with time windows. In: IJCAI-99. Morgan Kaufmann, San Francisco, pp 1022–1029
Cesta A, Oddi A, Smith SF (2000) Iterative flattening: a scalable method for solving multi-capacity

scheduling problems. In: AAAI-00. AAAI Press, Menlo Park, pp 742–747
Cesta A, Oddi A, Smith SF (2002) A constraint-based method for project scheduling with time

windows. J Heuristics 8(1):109–136
Davenport AJ, Gefflot C, Beck JC (2001) Slack-based techniques for robust schedules. In: ECP-01.

Lecture notes in computer science. Springer, Heidelberg, pp 7–18
Dechter R, Rossi F (2002) Constraint satisfaction. In: Nadel L (ed) Encyclopedia of cognitive

science, Nature Publishing Group, London
Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49(1–3):61–95
Drabble B, Tate A (1994) The use of optimistic and pessimistic resource profiles to inform search

in an activity based planner. In: AIPS-94. AAAI Press, Menlo Park, pp 243–248
Drummond M, Bresina J, Swanson K (1994) Just-in-case scheduling. In: AAAI-94. AAAI Press,

Menlo Park, pp 1098–1104
El Sakkout HH, Wallace MG (2000) Probe backtrack search for minimal perturbation in dynamic

scheduling. Constraints 5(4):359–388
Fox MS (1990) Constraint guided scheduling: a short history of scheduling research at CMU.

Comp Ind 14(1–3):79–88
Hentenryck PV, Michel L (2009) Constraint-based local search. MIT Press, Cambridge
Hiatt LM, Zimmerman TL, Smith SF, Simmons R (2009) Strengthening schedules through

uncertainty analysis agents. In: IJCAI-09. AAAI Press, Menlo Park
Kumar V (1992) Algorithms for constraint-satisfaction problems: a survey. Artif Intell Mag

13(1):32–44
Laborie P (2003) Algorithms for propagating resource constraints in A.I. planning and scheduling:

existing approaches and new results. Artif Intell 143(2):151–188
Laborie P, Ghallab M (1995) Planning with sharable resource constraints. In: IJCAI-95. Morgan

Kaufmann, San Francisco, pp 1643–1651
Laborie P, Godard D (2007) Self-adapting large neighborhood search: application to single-mode

scheduling problems. In: Proceedings MISTA-07, Paris, pp 276–284
Montanari U (1974) Networks of constraints: fundamental properties and applications to picture

processing. Inform Sci 7:95–132
Muscettola N (2002) Computing the envelope for stepwise-constant resource allocations. In:

CP-2002. Lecture notes in computer science, vol 2470. Springer, Heidelberg, pp 139–154

6 A Precedence Constraint Posting Approach 133

Nuijten WPM, Aarts EHL (1996) A computational study of constraint satisfaction for multiple
capacitated job shop scheduling. Eur J Oper Res 90(2):269–284

Nuijten W, Le Pape C (1998) Constraint-based job shop scheduling with ILOG-scheduler.
J Heuristics 3(4):271–286

Oddi A, Cesta A, Policella N, Smith S (2010a) Iterative flattening search for resource constrained
scheduling. J Intell Manuf 21(1):17–30

Oddi A, Rasconi R, Cesta A (2010b) Project scheduling as a disjunctive temporal problem. In:
ECAI 2010. IOS Press, Amsterdam, pp 967–968

Policella N (2005) Scheduling with uncertainty: a proactive approach using partial order schedules.
Ph.D. dissertation, Department of Computer and Systems Science, University of Rome
“La Sapienza”, Rome

Policella N, Smith SF, Cesta A, Oddi A (2004) Generating robust schedules through temporal
flexibility. In: ICAPS’04. AAAI Press, Menlo Park, pp 209–218

Policella N, Cesta A, Oddi A, Smith S (2007) From precedence constraint posting to partial order
schedules: a CSP approach to robust scheduling. AI Commun 20(3):163–180

Policella N, Cesta A, Oddi A, Smith S (2009) Solve-and-robustify. J Sched 12(3):299–314
Rossi F, van Beek P, Walsh T (2006) Handbook of constraint programming. Foundations of

artificial intelligence, Elsevier Science, Amsterdam
Roy B, Sussman B (1964) Les problemes d’ordonnancement avec contraintes disjonctives, note

DS n. 9 bis. SEMA, Paris
Sadeh NM (1991) Look-ahead techniques for micro-opportunistic job shop scheduling. Ph.D.

dissertation, School of Computer Science, Carnegie Mellon University, Pittsburgh
Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing

problems. In: CP98. Lecture notes in computer science, vol 1520. Springer, Berlin, pp 417–431
Smith SF (1994) OPIS: a methodology and architecture for reactive scheduling. In: Fox M, Zweben

M (eds) Intelligent scheduling, Morgan Kaufmann, San Francisco, pp 29–66
Smith SF, Cheng C (1993) Slack-based heuristics for constraint satisfactions scheduling. In: AAAI-

93. AAAI Press, Menlo Park, pp 139–144
Smith TB, Pyle JM (2004) An effective algorithm for project scheduling with arbitrary temporal

constraints. In: AAAI’04. AAAI Press, Menlo Park, pp 544–549
Tsang EPK (1993) Foundations of constraint satisfaction. Academic Press, London/San Diego

	6 A Precedence Constraint Posting Approach
	6.1 Introduction
	6.2 Constraint-Based Scheduling
	6.2.1 Constraint Satisfaction Problem
	6.2.2 A Generic CSP Solver
	6.2.3 CSP Approaches to Scheduling Problems

	6.3 The Reference Scheduling Problem: RCPSP/max
	6.4 The RCPSP/max as a CSP
	6.5 Precedence Constraint Posting
	6.5.1 Time Layer
	6.5.2 Resource Layer

	6.6 The Core Constraint-Based Scheduling Framework
	6.6.1 Consider Resource Utilization
	6.6.2 How to Identify Decision Variables
	6.6.3 Selecting and Solving Conflicts

	6.7 Flexible Solutions, Robustness, and Partial Order Schedules
	6.7.1 Partial Order Schedules

	6.8 Extended Optimizing Search
	6.9 Conclusions
	References

