
Chapter 26
Integrated Column Generation and Lagrangian
Relaxation Approach for the Multi-Skill Project
Scheduling Problem

Carlos Montoya, Odile Bellenguez-Morineau, Eric Pinson, and David Rivreau

Abstract This chapter introduces a procedure to solve the Multi-Skill Project
Scheduling Problem. The problem combines both the classical Resource-
Constrained Project Scheduling Problem and the multi-purpose machine model.
The aim is to find a schedule that minimizes the completion time (makespan)
of a project composed of a set of activities. Precedence relations and resources
constraints are considered. In this problem, resources are staff members that master
several skills. Thus, a given number of workers must be assigned to perform each
skill required by an activity. Practical applications include the construction of
buildings, as well as production and software development planning. We present
an approach that integrates the utilization of Lagrangian relaxation and column
generation for obtaining strong makespan lower bounds. Finally, we present the
corresponding obtained results.

Keywords Column Generation • Lagrangian relaxation • Multi-skilled
personnel • Project scheduling • Project staffing • Resource constraints

26.1 Introduction

In project scheduling, resource capacity, cost, and resource availabilities play an
important role for obtaining a schedule that reaches the goals of a company. Differ-
ent objectives can be considered in project scheduling such as the maximization of
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the net present value, the minimization of the resource costs, or the minimization of
the project duration (makespan). All of these features are addressed by the resource-
constrained project scheduling problems like the RCPSP (Brucker et al. 1999),
which are classical scheduling problems that received major attention in the last
years.

The RCPSP (PS j prec j Cmax) deals with a given number of activities that have
to be scheduled on a set of resources. It also takes into account precedence relations
between activities and limited resource availabilities. The RCPSP considers renew-
able resources, which can be used whenever they are available (e.g., staff members,
machines, and equipment).

The interest in extending the practical applications of the RCPSP encouraged
researchers to work on different extensions that capture several variants and features
related to specific real life situations (Artigues et al. 2008; Hartmann and Briskorn
2010).

We focus on one particular extension of the RCPSP, which can be classified as
a Project Staffing Problem, known as the Multi-Skill Project Scheduling Problem
MSPSP (PSS j prec j Cmax, Bellenguez-Morineau and Néron 2005). It is important
to mention that the main features of this problem are also described in Chaps. 25
and 28. Furthermore, we can outline that the MSPSP mixes both the RCPSP and
the Multi-Purpose Machine model. The aim is to find a schedule that minimizes
the makespan of a project, considering that resources are staff members that
master several skills. Practical applications include the construction of buildings,
production, and software development planning. In addition it is important to notice
that this problem is N P-hard in the strong sense (Artigues et al. 2008).

In this chapter we propose two Lagrangian relaxation models, which are inspired
by a column generation (CG) approach proposed in previous work (Montoya et al.
2013). The proposed approach aims at obtaining strong makespan lower bounds.
This chapter is organized as follows: In Sect. 26.2 we present a literature review
related to the studied problem and to the methods we use to solve it. In Sect. 26.3 we
define the problem and give an overview about column generation and subsequently
we introduce two master problem formulations. In Sect. 26.4 we propose two
Lagrangian relaxation models. In Sect. 26.5, we introduce the procedures used for
initializing the CG procedure and for selecting new columns. In Sect. 26.6 we report
the computational results. Finally, in Sect. 26.7 we conclude on our work and discuss
possible research avenues.

26.2 Literature Review

Before introducing the proposed solution method, we present a literature review
related to the studied problem and to the methods we use to solve it.
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26.2.1 Problem Background

Despite the fact that the notion of skills plays an important role in the field of
personnel assignment (Jiang et al. 2004), it is not often considered in the project
scheduling field. Regarding the Multi-Skill Project Scheduling Problem, we refer to
the work done by Bellenguez-Morineau and Néron (2005), Bellenguez-Morineau
(2008), who developed and implemented different procedures to determine lower
and upper bounds for the makespan. More recently, Montoya et al. (2013) proposed
a branch-and-price approach for the MSPSP. Other works have been done also on
some specific variants for the MSPSP. For example, Cordeau et al. (2010) developed
a construction heuristic and an adaptive large neighborhood search heuristic for the
Technician and Task Scheduling Problem (TTSP) in a large telecommunications
company. The goal in this problem is to assign technicians to tasks with multi-
level skill requirements. Here, as it occurs in the MSPSP, the requirements of the
tasks (activities) are defined by the presence of a set of resources (technicians)
that possess the necessary skills. For solving this last mentioned problem, Fırat
and Hurkens (2012) developed more recently a solution methodology that uses a
flexible matching model as a core engine based on an underlying mixed-integer
programming model.

Additionally, there are other interesting solution methodologies in the literature
of project scheduling with multi-skilled human resources. For example, Heimerl
and Kolisch (2010) proposed a mixed-integer linear program to solve a multi-
project problem where the schedule of each project is fixed. They also considered
multi-skilled human workforce with heterogeneous and static efficiencies. Li and
Womer (2009) developed a hybrid algorithm based on mixed-integer modeling
and constraint programming for solving a project scheduling problem with multi-
skilled personnel, taking into consideration an individual workload capacity for each
worker. Gutjahr et al. (2008) proposed a greedy heuristic and a hybrid solution
methodology using priority-based rules, ant colony optimization, and a genetic
algorithm to solve the so-called “Project Selection, Scheduling and Staffing with
Learning Problem”. More recently, as was introduced in Chap. 25, Correia et al.
(2012) presented a mixed-integer linear programming formulation and several sets
of additional inequalities for a variant of the resource-constrained project scheduling
problem in which resources are flexible i.e., each resource has several skills.

26.2.2 Column Generation Overview and Background

Introduced independently by Dantzig and Wolfe (1960) and Gilmore and Gomory
(1961), column generation (CG) consists in solving alternately a (restricted) master
problem (RMP) and a sub-problem resulting from the decomposition of the original
problem. The main idea underlying this approach is to select, at each iteration of
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an iterative process and by means of an oracle related to the column generation
sub-problem and using duality information originating from the solving of the
current RMP, a candidate variable whose reduced cost is susceptible to improve
the objective function associated with the master problem. The related column is
added to the current RMP, and we iterate until no more candidate can be found.
Notice that such a decomposition is possible due to the exploitation of some specific
structure of the problem formulation whose pricing sub-problem leads to an “easier”
optimization problem such as shortest path or knapsack problems.

So far column generation (CG) had been used to solve specifically the Multi-
Skill Project Scheduling Problem by Montoya et al. (2013). Additionally CG
has been used in combination with other optimization techniques for solving
project scheduling problems. Particularly, Brucker et al. (1999) implemented a
destructive approach for finding tight lower bounds for the RCPSP by using both
constraint propagation techniques and CG. Afterwards, authors extended their
work for solving the Multi-Mode RCPSP (MRCPSP) (Brucker and Knust 2000).
Additionally, Van den Akker et al. (2007) presented a destructive lower bound based
on column generation for certain extensions of the RCPSP. In this approach, authors
used a simulated annealing algorithm for finding a schedule for each resource, which
was enforced by a time-indexed integer programming formulation.

On the other hand, CG has been widely used on the Vehicle Routing Problem
(VRP) and several related extensions (Lübbecke and Desrosiers 2005). Some VRP
problems consider similar features to those of the MSPSP. For example, Dohn et al.
(2009) deal with an assignment problem where a set of teams must be assigned
to a set of tasks, restricted by time-windows. As it occurs in the MSPSP, assigned
resources must start and finish a given activity simultaneously. Authors developed
a branch-and-price procedure and enforce the fulfillment of such a constraint with
a branching scheme that limits the starting time of a given activity. Moreover, for a
particular extension of the VRP, Ioachim et al. (1999) modeled the synchronization
constraint directly in the master problem with the consequence that a large number
of columns with a small variation in the starting times (departure times) of the tasks
(flights) are generated. To handle such a drawback, they introduced a tolerance in
the side constraints to allow asynchronous departure times.

Additionally, column generation has also been used to solve Staff Scheduling
Problems (Bard and Purnomo 2005; Beliën and Demeulemeester 2007; Jaumard
et al. 1998; Mason and Smith 1998; Mehrotra et al. 2000). This type of problems,
as it occurs with the MSPSP, involves the assignment of staff members to perform
a set of activities, but they normally intend to minimize a total assignment cost,
considering also a predefined time horizon.

Finally, CG has also been used to solve shop scheduling problems (Chen and
Powell 1999; Gélinas and Soumis 2005; Van den Akker et al. 2000, 2002). These
problems are related to single machine, flexible and job shop scheduling problems,
sharing also some common features with the MSPSP. For example, Gélinas and
Soumis (2005) deal with precedence constraints for solving the job shop scheduling
problem. They handle these constraints in the master problem and modeled the
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sub-problem as a single machine problem with time constraints. On another side,
Van den Akker et al. (2000) used CG based on a time-indexed formulation for solv-
ing single machine scheduling problems. They used Dantzig-Wolfe decomposition
techniques (Dantzig and Wolfe 1960) to deal with the difficulties related to the size
of a time-indexed formulation, given its capacity to obtain strong lower bounds. This
approach supports the one considered in this chapter, since our work is also based
on a time-indexed perspective.

26.2.3 Combining Lagrangian Relaxation and Column
Generation Background

Typically, column generation is used to solve the LP-relaxation of the master
problem, but it can also be combined with Lagrangian relaxation as we will discuss
in this chapter. According to Wolsey (1998), it is possible to solve the Lagrangian
dual either by means of the subgradient method or by solving the linear relaxation
of the extensive formulation by using a CG approach. Thereafter, the optimal lower
bound of the restricted linear master problem (RMP) and the best Lagrangian dual
will have the same value. Both solution methods for the Lagrangian dual have
advantages and disadvantages, hence some authors have proposed procedures that
try to combine the advantages of both approaches (Barahona and Jensen 1998;
Huisman et al. 2005).

As we will show later on, each Lagrangian multiplier vector is linked with the
dual variables related to the relaxed constraint. Consequently, this implies that the
dual values obtained by solving the RMP can be estimated by the Lagrangian
multipliers used in the related Lagrangian dual problem. Thus, instead of solving
the RMP with the simplex method by using a solver, we can use a subgradient
procedure (Held and Karp 1971) for solving the Lagrangian dual approximately.
The associated Lagrangian multipliers can be used for estimating the values of the
dual variables related to the constraints of the RMP and for pricing out new columns.

Overall, there are different reasons for using this last mentioned approach. The
subgradient method is fast, easy to implement, and does not require a commercial
solver. When solving the RMP with a simplex method, we obtain a basic dual solu-
tion that corresponds to a vertex of the optimal face of the dual polyhedron. Given
that a new column of the RMP may cut that vertex, a dual solution interior (in the
center) of the dual face allows stronger dual cuts (i.e., better primal columns). Bixby
et al. (1992) and Barnhart et al. (1998) obtained from their research that this may
improve the convergence of a column generation algorithm and reduce degeneracy.
Jans and Degraeve (2004) and Huisman et al. (2005) provide computational results
that indicate that Lagrangian multipliers are beneficial. Finally, it is also shown that
during the subgradient phase, possible feasible solutions are generated.
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26.3 Problem Description and Column Generation

As was already mentioned, the Multi-Skill Project Scheduling Problem MSPSP
is a known project scheduling problem, which is mainly composed by three
components: activities, resources, and skills. It considers a set V of n activities.
Within this set, we also define two dummy activities 0 and n C 1 which represent
respectively the beginning and completion of the project. Let Succ.i/ denote the
set of immediate successors of an activity i whose processing time is denoted by
pi . Additionally, a set R of K workers and a set L of L skills are defined for
performing these activities. We denote by ril the number of workers with skill l
required by activity i . We define akl D 1 if worker k masters skill l , 0 otherwise.
Finally, T denotes an upper bound for the total duration of the project or makespan.

After understanding the main features of the MSPSP, we introduce the two master
problem formulations related to the two Lagrangian relaxation models exploited in
this chapter.

26.3.1 Column Generation Master Problem Formulations

The basic idea underlying the considered CG approach relies on a time-indexed
reformulation of the problem. In this mathematical formalization, a column ! (i.e.,
activity work pattern) represents certain processing attributes (a starting time and
set of assigned workers) of an activity i . Hence, a solution to the MSPSP consists in
identifying a single column (a starting time and a set of assigned workers) for each
activity of the project. An activity work pattern! is represented by three parameters:
(i) �!i , which takes the value of 1 if activity i is processed in activity work pattern !,
0 otherwise; (ii) � !

i , which takes the value of t if activity i starts at time t in activity
pattern !, 0 otherwise; (iii) �!kt , which takes the value of 1 if worker k is assigned on
activity work pattern ! at time t , 0 otherwise. We assume that the workers assigned
to ! satisfy the skills requirement of the related activity. Additionally, we denote
the set of all feasible activity work patterns by˝ .

The decision variables governing the target model are defined by: (i) x! , which
takes the value of 1 if activity work pattern ! is selected, 0 otherwise; (ii) Si , which
represents the starting time of an activity i .

Based on the previous description we present two master problem formulations
(MP1 and MP2), that lead to the same sub-problem (SP). Moreover, we can state that
solving the SP aims to exhibit a feasible selection of workers/skills for processing
activity i at time t .

In the next subsections we introduce MP1 and MP2, and later on, we explain the
sub-problem and the solution method applied to solve it.
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26.3.1.1 First Master Problem (MP1)

The first master problem MP1 can be stated as follows:

ZŒMP1�: Min. SnC1 (26.1)

s. t.
X

!2˝
.x! � �!i / D 1 .i 2 V / (26.2)

X

!2˝
.x! � � !

i / D Si .i 2 V / (26.3)

X

!2˝
.x! � �!kt/ � 1 .k 2 RI t D 0; : : : ; T / (26.4)

Si C pi � Sj .i 2 V I j 2 Succ.i// (26.5)

ESi � Si � LSi .i 2 V / (26.6)

x! 2 f0; 1g .! 2 ˝/ (26.7)

The objective is to minimize the makespan (26.1). Constraint set (26.2) ensures
that only a unique activity work pattern can be assigned to any task i . Constraints
(26.3) recover the associated starting times, while constraint set (26.4) ensures that
any operator can carry out at most one activity at a given time. Constraints (26.5)
state the precedence relations connecting the activities in V , and constraint set (26.6)
ensures that the starting time of each activity must be within a predefined time-
window. For this purpose, ESi (resp. LSi ) denotes in this formulation a lower bound
(resp. upper) for the starting date associated with activity i . Such a time-window is
for instance simply induced by the precedence graph using recursively Bellman’s
conditions and a given upper bound (T ) for the makespan.

Thereafter, for applying CG, integrality constraints (26.7) are relaxed. The
(restricted) master problem (RMP1) is then obtained by considering a partial pool of
activity work patterns N̋ ( N̋ � ˝). Assuming that an optimal solution of the RMP1
has been computed with a standard LP solver, let us denote the simplex multipliers
associated with constraints (26.2), (26.3), and (26.4) respectively by .�i ; i 2 V /,
.�i ; i 2 V /, and .�kt; k 2 R; t D 0; : : : ; T /. The reduced cost associated with an
activity work pattern ! related to the processing of activity i at time t can be stated
as follows:

rcit D 0 � �i � .�i � t/ �
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ D rc1it C rc2it (26.8)

with:

rc1it D ��i � .�i � t/ (26.9)
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rc2it D �
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ (26.10)

Hence, if rcit < 0, then the corresponding column (activity work pattern) can be
added to the current pool of columns, iteratively, until no more profitable columns
can be found (Gilmore and Gomory 1961).

26.3.1.2 Second Master Problem (MP2)

This new master problem formulation has a similar structure to the one previously
explained. This new mathematical model relies on an alternative way for integrating
the precedence relations constraints. Hence, let us consider a particular precedence
relation between two activities i and j (j 2 Succ.i/) which must be processed
in the time slot Wij D ESi ; : : : ;LSj C pj . Mapping this time slot, we can extend
the notion of an activity work pattern ! by defining a new parameter 	!ijt0 in the
following way:

If ! corresponds to the execution of i at a starting time t :

• 	!ijt0 D 1 .t 0 D ESi ; : : : ; t C pi � 1);
• 	!ijt0 D 0 .t 0 D t C pi ; : : : ;LSj C pj ).

If ! corresponds to the execution of j at a starting time t :

• 	!
ijt0

D 1 .t 0 D ESi ; : : : ; t � 1);
• 	!

ijt0
D 0 .t 0 D t; : : : ;LSj C pj ).

If ! does not correspond to the execution of neither i nor j :

• 	!ijt0 D 0 .t 0 D ESi ; : : : ;LSj C pj ).

Clearly, two activity work patterns !1 and !2 should be consistent for the
precedence constraint of i and j , if:

.	
!1
ijt0

� x!1/C .	
!2
ijt0

� x!2/ � 1 .t 0 2 Wij/ (26.11)

Additionally, we also consider a coefficient C!
max, related to each activity work

pattern!. Hence, given that S.!/ represents the starting time linked to activity work
pattern !, we define C!

max as follows:

• C!
max D S.!/ if activity work pattern ! is related to the execution of the dummy

activity nC 1, 0 otherwise.

Notice that the proposed mathematical formulations are adapted for most of
regular as well as nonregular optimization criteria.

Let us also recall that ˝ represents the set of all feasible activity work patterns.
The only decision variable governing the target model is x! , which was already
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introduced for MP1. Therefore, the associated mathematical formulation can then
be stated as follows:

ZŒMP2�: Min.
X

!2˝
.C!

max � x!/ (26.12)

s. t.
X

!2˝
.x! � �!i / D 1 .i 2 V / (26.13)

X

!2˝
.x! � �!kt/ � 1 .k 2 RI t D 0; : : : ; T / (26.14)

X

!2˝
.x! � 	!ijt/ � 1 .i 2 V I j 2 Succ.i/I t 2 Wij/ (26.15)

x! 2 f0; 1g .! 2 ˝/ (26.16)

Notice that this formulation has a structure (set packing problem) with a pure 0-1
coefficients constraint matrix. More precisely, we have that constraint set (26.13)
ensures that only a unique activity work pattern can be assigned to any task i .
Constraint set (26.14) ensures that any operator can carry out at most one activity
at a given time. Constraint (26.15) states the precedence relations connecting the
activities in V at given time-point t .

The (restricted) master problem (RMP2) can simply be obtained by relaxing the
binarity constraints relating to decision variables x! and by considering a partial
pool of activity work patterns N̋ ( N̋ � ˝). Thus, after solving the RMP2 the
corresponding simplex multipliers (dual variables) associated to constraints (26.13),
(26.14), (26.15) are denoted respectively by .�i ; i 2 V /, .�kt; k 2 R; t D 0; : : : ; T /,
and .
ijt; i 2 V; j 2 Succ.i/; t 2 Wij/. Subsequently, the reduced cost associated
with an activity work pattern ! related to the processing of activity i at time t can
be stated as follows:

rcit D 0 � �i �
X

i2V

X

j2Succ.i/

X

t 02Wij

.	!ijt0 � 
ijt0/�
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ D rc1it C rc2it

(26.17)

with:

rc1it D ��i �
X

i2V

X

j2Succ.i/

X

t 02Wij

.	!ijt0 � 
ijt0/ (26.18)

rc2it D �
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ (26.19)
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As was already mentioned a column is added to the current pool of columns,
iteratively, until no more profitable columns can be found (Gilmore and Gomory
1961).

Now, before introducing the combined Lagrangian relaxation and column gen-
eration approaches proposed in the present chapter, we give an insight to the
sub-problem (SP) and to the applied solution method.

26.3.1.3 Column Generation Sub-Problem (SP)

Assuming that an optimal solution of RMP1 or RMP2 has been computed, let us
define the quantity ckt, which simply corresponds to the total cost incurred by
worker k when assigned to an activity i in the time slot t; : : : ; t C pi � 1.

ckt D �
tCpi�1X

t 0Dt
�kt0 (26.20)

Subsequently, we consider the decision variables yk D 1, if worker k is assigned
to perform activity i , 0, otherwise, and zkl D 1, if worker k uses skill l to perform
activity i , 0 otherwise. Finding an optimal feasible selection of workers/skills for
processing activity i at time t that minimizes the reduced cost rcit leads to the
following sub-problem SP.i; t/:

ZŒSP.i; t/�: Min. rc2it D
X

k2R
.ckt � yk/ (26.21)

s. t.
X

k2R
zkl D ril .l 2 L / (26.22)

yk D
X

l2L
zkl .k 2 R/ (26.23)

yk 2 f0; 1g; zkl 2 f0; 1g .k 2 RI l 2 L / (26.24)

In this formulation, the objective is to minimize the total assignment cost to
perform activity i at a time t . Constraint set (26.22) guarantees its requirements
fulfillment. Constraint set (26.23) ensures that an assigned worker uses only
one skill. Finally, constraint set (26.24) defines the decision variables as binary.
Moreover, we can state that solving the SP aims to exhibit a feasible selection of
workers/skills for processing activity i at time t .

Once rc2it D �ZŒSP.i; t/� is computed, we get the targeted reduced cost defined
by (26.8) and (26.17) related to the solution of the RMP1 and RMP2 respectively. If
rcit < 0, then the corresponding column is candidate to enter the basis since it leads
to a decrease in the objective function value for the corresponding restricted master
problem (RMP1 or RMP2). Consequently, this activity work pattern can be added to
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Source

0 1

1

1, c0t 

1, ckt

Sink

1

2

l

0

1

2

k

ri0

ril

Fig. 26.1 Graph G.i; t / skills assignment for activity i

the current pool of columns according to the parameters defined for each of the two
proposed master problem formulations in Sects. 26.3.1.1 and 26.3.1.2.

Of course, an enumeration on each activity for each of its potential starting date
(ESi � ti � LSi ) is necessary for exhibiting an activity work pattern with global
minimal reduced cost. We refer to the next section for more details related to the
global solution method.

26.3.1.4 Column Generation Sub-Problem Solution (SP)

Clearly, solving SP.i; t/ is equivalent to find an optimal solution to a min-cost
max-flow problem on a particular network G.i; t/, whose structure is depicted in
Fig. 26.1. This graph simply formalizes the assignment of the skills required for
performing activity i to the workers mastering at least one of these skills, according
to the constraint stating that any worker can use only one skill when performing
a given activity. The values on each arc correspond respectively to its flow upper
bound and the related unit cost. Notice that each arc .l; sink/ with a positive flow
corresponds to a selected worker for the processing of activity i .yk D 1/. This
classical flow problem can be efficiently solved using the algorithm proposed by
Busacker and Gowen (1961) in O..K C L/3/ time complexity.

26.4 Combining Lagrangian Relaxation and Column
Generation

One of the main proposal of this chapter relies on combining CG with Lagrangian
relaxation, leading to a faster way of solving the (restricted) master problem rather
than using an LP solver (Huisman et al. 2005). In the sequel, we present the
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two Lagrangian relaxation models related to the solution of RMP1 and RMP2,
respectively.

26.4.1 RMP1 Based Model for Combining Lagrangian
Relaxation and Column Generation

Before introducing the Lagrangian relaxation model related to RMP1, we include
the next additional surrogate constraint to the (restricted) master problem described
previously:

X

tD0;:::;T

X

k2R

X

!2 N̋
.x! � �!kt/ D

X

i2V

X

l2L
.pi � ril/ (26.25)

Such a constraint establishes that the accumulated time per resource unit assigned
(left term) must be equal to the total amount of time per resource unit required during
the whole project duration (right term). Thereafter, let us associate with constraints
(26.2), (26.3), and (26.4) the respective Lagrangian multipliers (�i ; i 2 V ),
(�i ; i 2 V ) and (�kt; k 2 R; t D 0; : : : ; T ). The corresponding Lagrangian function
can be written as follows:

� .x; t; �; �; �/ D SnC1 C
X

i2V
�i � .1 �

X

!2˝
.x! � �!i //

C
X

i2V
�i � .Si �

X

!2˝
.x! � � !

i //C
X

k2R

X

tD0;:::;T
�kt � .1 �

X

!2˝
.x! � �!kt// (26.26)

� .x; t; �; �; �/ D SnC1 C
X

i2V
.�i � Si /C

X

!2˝
..��!i � �i / � .� !

i � �i /

�
X

k2R

X

tD0;:::;T
.�kt � �!kt// � x! C

X

i2V
�i C

X

k2R

X

tD0;:::;T
�kt (26.27)

For a given distribution (�; �; �) of Lagrangian multipliers, the associated dual
function L.�; �; �/ can be computed solving the following independent Lagrangian
sub-problems:

ZŒLSP1.�/]: Min. SnC1 C
X

i2V
.�i � Si/ (26.28)

s. t. Si C pi � Sj .i 2 V I j 2 Succ.i// (26.29)

ESi � Si � LSi .i 2 V / (26.30)
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and

ZŒLSP2.�; �; �; x/]: Min.
X

!2˝
.C

0 !
max � x!/ (26.31)

s. t.
X

!2˝
.x! � wl!/ D

X

i2V

X

l2L
.pi � ril/ (26.32)

x! 2 f0; 1g .! 2 ˝/ (26.33)

where

C
0 !
max D ��i.!/ � .S.!/ � �i /�

X

k2R

X

tD0;:::;T
.�kt � �!kt/ (26.34)

wl! D
X

l2L
.pi.!/ � ril/ (26.35)

Hence, obviously we have:

ZŒL.�; �; �/� D ZŒLSP1.�; �; �; t/�

CZŒLSP2.�; �; �; x/�C
X

i2V
�i C

X

k2R

X

tD0;:::;T
�kt (26.36)

Subsequently, we use a commercial solver for the solution of the first Lagrangian
sub-problem (LSP1.�/). In addition, it can be noticed that LSP2.�; �; �/, is a
classical 0-1 knapsack problem, which can be quite time consuming when the pool
of patterns N̋ increases. This problem can be solved with a pseudo-polynomial time
complexity of O.qB/, where:

q D Nj ˝ j (26.37)

B D
X

i2V

X

l2L
.pi � ril/ (26.38)

Nevertheless, we can focus on the linear relaxation of LSP2 according to the
activity work pattern generation process (x! � 0; ! 2 N̋ ). First, let us sort the
activity work pattern in N̋ in such a way that:

C
0 !1
max =wl!1 � C

0 !2
max =wl!2 � : : : � C

0 !q
max =wl!q (26.39)

Now, after sorting activity work patterns according to (26.39), let s be the
maximal index such that:

sX

jD0
wl!j �

X

i2V

X

l2L
.pi � ril/ (26.40)
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An optimal solution to LSP2 is given by:

Nx!j D 1 .j D 0; : : : ; s/ (26.41)

Nx!sC1
D .

P
i2V

P
l2L .pi � ril//� wl!j

wl!sC1

(26.42)

Nx!j D 0 .j D s C 2; : : : ; q/ (26.43)

Considering that ZŒL.�; �; �/� defines a lower bound on the RMP1, we can
obtain the best possible lower bound by solving the related Lagrangian dual problem
(LDRMP1):

ZŒLDRMP1� D Max�;�;�L.�; �; �/ (26.44)

In the context of combinatorial optimization one efficient way to solve the
Lagrangian dual problem is to use a subgradient procedure introduced by Held
and Karp (1971), which iteratively updates the Lagrangian multipliers. Nevertheless
other methods like volume (Barahona and Anbil 2000), bundle (Fábián 2000),
and analytic center cutting plane methods (Goffin and Vial 2002) among others
(Bertsekas 1999) can be used for solving the Lagrangian dual problem. We focus
particularly on the description of the subgradient method since it is the most diffused
one. In addition, besides the fact that it was the first one used in the context of
combinatorial optimization, it has, at least, two main advantages: it is easy to code
and has minimal memory requirements.

Thereafter, we use the subgradient procedure for estimating the values of the
Lagrangian multipliers (�; �; �). Hence, after solving LSP1.�/ and LSP2.�; �; �/ we
obtain the starting times vector S and the column assignment vector Nx from the
solution of the respective sub-problem. Consequently, we can define a subgradient
for L.�; �; �/ as follows:

 1i D 1 �
X

!2˝
.x! � �!i / .i 2 V / (26.45)

 2i D Si �
X

!2˝
.x! � � !

i / .i 2 V / (26.46)

'kt D .1 �
X

!2˝
.x! � �!kt// .k 2 RI t D 0; : : : ; T / (26.47)

Now, given an upper bound T for the makespan and a step size sp, we can update
the current Lagrangian multipliers by:

�i D �i C .sp �  1i / .i 2 V / (26.48)

�i D �i C .sp �  2i / .i 2 V / (26.49)

�kt D minf0; �kt C .sp � 'kt/g .k 2 RI t D 0; : : : ; T / (26.50)



26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 579

The step size sp is defined as follows:

sp D vp � .T �L.�; �; �//
Norm

(26.51)

where Norm is given by:

Norm D
X

i2V
. 1i C  2i /

2 C
X

k2R

X

tD0;:::;T
'kt

2 (26.52)

Equation (26.51) represents a known step length rule, which was empirically
justified by Held et al. (1974). Moreover, this rule is less expensive in terms of CPU
times in comparison to other step length rules with proven convergence (Polyak
1967). Notice that in this equation we consider a parameter vp, which is initialized
with a value equal to 2 (vp D 2), as was proposed by Held and Karp (1971).
Additionally it is important to set a limit on the number of iterations, which defines
also the accuracy of the solution.

Overall, the general idea is to update the Lagrangian multipliers during a limited
number of iterations. Thereafter, we use the last updated multipliers as an estimation
of the dual multipliers for pricing out new columns. At the end of each iteration
we update the parameter vp with a systematic geometric revision: vp D gp � vp.
Normally the second parameter gp ranges between 0.87 and 0.9995, depending on
the targeting problem.

Finally, when there are no more columns with a negative reduced cost by using
the Lagrangian multipliers, we perform a fixed number of iterations solving the
RMP1 with the simplex method by using the solver for obtaining the values of the
dual variables for pricing out new columns. Hence, if after the fixed number of
iterations there are still columns with negative reduced costs, we go back to the
Lagrangian procedure, otherwise, we stop.

26.4.2 RMP2 Based Model for Combining Lagrangian
Relaxation and Column Generation

The second Lagrangian model proposed is based on the second (restricted) master
problem formulation (RMP2) proposed in Sect. 26.3.1.2. Now, let us associate
with constraints (26.13), (26.15), and (26.14) the respective Lagrangian multipliers
(�i ; i 2 V ), (
ijt; i 2 V; j 2 Succ.i/; t 2 Wij), and (�kt; k 2 R; t D 0; : : : ; T ). The
corresponding Lagrangian function can be written as follows:

� .x; �; 
; �/ D
X

!2˝
.C!

max � x!/C
X

i2V
�i � .1 �

X

!2˝
.x! � �!i //
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C
X

i2V

X

j2Succ.i/

X

t2Wij


ijt � .1 �
X

!2˝
.x! � 	!ijt//

C
X

k2R

X

tD0;:::;T
�kt � .1 �

X

!2˝
.x! � �!kt// (26.53)

� .x; �; 
; �/ D
X

!2˝
.C!

max � .�!i � �i /�
X

i2V

X

j2Succ.i/

X

t2Wij

.	!ijt � 
ijt/

�
X

k2R

X

tD0;:::;T
.�kt � �!kt// � x! C

X

i2V
�i

C
X

i2V

X

j2Succ.i/

X

t2Wij


ijt C
X

k2R

X

tD0;:::;T
�kt (26.54)

For given values (�; 
; �) of Lagrangian multipliers, the associated dual function
L.�; 
; �/ can be computed solving the following Lagrangian sub-problem:

ZŒLSP.�; 
; �; x/�: Min.
X

!2˝
.C

0 !
max � x!/ (26.55)

s. t. x! � 0 .! 2 ˝/ (26.56)

where

C
0 !
max D C!

max � �!i ��i.!/�
X

i2V

X

j2Succ.i/

X

t2Wij

.	!ijt �
ijt/�
X

k2R

X

tD0;:::;T
.�kt � �!kt/ (26.57)

Hence, obviously we have:

ZŒL.�; 
; �/� D ZŒLSP.�; 
; �/�C
X

i2V
�i

C
X

i2V

X

j2Succ.i/

X

t2Wij


ijt C
X

k2R

X

tD0;:::;T
�kt (26.58)

The Lagrangian sub-problem (LSP.�; 
; �/) can be solved to optimality by
setting Nx! equal to 1 if C

0 !
max < 0, or equal to 0 otherwise.

ZŒL.�; 
; �/� defines a lower bound on the RMP2, given that each feasible
solution for the original problem is also feasible for the Lagrangian function. Hence,
we can obtain the best possible lower bound by solving the Lagrangian dual problem
(LDRMP2):

ZŒLDRMP2� D Max�;
;�L.�; 
; �/ (26.59)
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As was done for the first proposed Lagrangian model (see Sect. 26.4.1) we use
the subgradient procedure for estimating the values of the Lagrangian multipliers
(�; 
; �). Hence, after solving LSP.�; 
; �/ we obtain the column assignment vector
Nx. Consequently, we can define a subgradient for L.�; 
; �/ as follows:

 i D 1�
X

!2˝
.x! � �!i / .i 2 V / (26.60)

#ijt D 1 �
X

!2˝
.x! � 	!ijt/ .i 2 V I j 2 Succ.i/I t 2 Wij/ (26.61)

'kt D 1 �
X

!2˝
.x! � �!kt/ .k 2 RI t D 0; : : : ; T / (26.62)

Now, given an upper bound T for the makespan and a step size sp, we can update
the current Lagrangian multipliers by:

�i D �i C .sp �  i / .i 2 V / (26.63)


ijt D minf0; 
ijt C .sp � #ijt/g .i 2 V I j 2 Succ.i/I t 2 Wij/ (26.64)

�kt D minf0; �kt C .sp � 'kt/g .k 2 RI t D 0; : : : ; T / (26.65)

Thereafter, we remind that the step size sp is defined as follows:

sp D vp � .T � L.�; 
; �//

Norm
(26.66)

where Norm is given by:

Norm D
X

i2V
. i /

2 C
X

i2V

X

j2Succ.i/

X

t2Wij

.#ijt/
2 C

X

k2R

X

tD0;:::;T
.'kt/

2 (26.67)

As was explained in Sect. 26.4.1 we start the subgradient procedure by setting
vp D 2. At the end of each iteration we update the parameter vp with a systematic
geometric revision: vp D gp � vp. Normally the second parameter gp ranges between
0.87 and 0.9995, depending on the targeting problem.

The Lagrangian multipliers are updated during a limited number of iterations.
Hence, we use the last updated multipliers as an estimation of the dual multipliers
for pricing out new columns. Therefore, as was done in Sect. 26.4.1 for solving
RMP1, when there are no more columns with a negative reduced cost by using the
Lagrangian multipliers, we perform a fixed number of iterations solving the RMP2
with the simplex method by using the solver for obtaining the values of the dual
variables for pricing out new columns. Hence, if after the fixed number of iterations
there are still columns with negative reduced costs, we go back to the Lagrangian
procedure, otherwise, we stop.
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26.5 Columns Initialization and Selection

Finally, before reporting the obtained computational experiments, we describe how
the subset of columns N̋ is initialized for the first CG iteration. In addition, we
introduce the procedure developed for selecting the columns that should be included
in the pool of activity work patterns in each CG iteration.

26.5.1 Columns Initialization

For the first CG iteration, we initialize the subset of columns N̋ for solving the
RMP( N̋ ) according to a schedule obtained by the tabu search (TS) developed
by Bellenguez-Morineau (2008). Nevertheless, it is important to state that a
reformulation that includes the utilization of slack variables in the models proposed
in Sects. 26.3.1.1 and 26.3.1.2 allows solving the RMP without having an initial
set of columns N̋ . Thereafter, preliminary results show that initializing the pool
of columns by means of the TS allows us to prove optimality faster and enhance
the possibility of keeping a structure of activity work patterns that could lead to an
integer feasible schedule.

26.5.2 Columns Selection

As pointed out previously, exhibiting an activity pattern with global minimal
reduced cost requires the enumeration of each activity i for each time instant of
its starting domain (ESi � ti � LSi ). To limit the number of sub-problems solved at
each iteration of the CG procedure, we propose filtering procedures ensuring that the
considered pairs .i; t/ may lead to columns with a negative reduced cost (rcit < 0).

First, according to duality properties, simplex multipliers �kt associated with
constraints (26.4) and (26.14) for RMP1 and RMP2, respectively, are less than or
equal to zero. Consequently, we have necessarily from (26.10) and (26.19) that
rc2it � 0. Thus, the column associated with the pair .i; t/ might have a negative
reduced cost only if rc1it < 0. Clearly, the sub-problem SP.i; t/ has to be solved only
if this condition holds.

Then, assuming that lr2it is a lower bound on rc2it, we get rcit � rc1it C lr2it D
lrit. Obviously, only sub-problems SP.i; t/ for which lrit < 0 holds have to be
considered since they potentially may lead to activity work patterns with a negative
reduced cost. For a given pair .i; t/, such a lower bound lr2it can be computed by
summing the

P
l2L ril smallest assignment costs ckt among the workers that master

at least one of the required skills to perform i .
Notice that intensive computational experiments reveal that adding several

patterns to the current pool of columns at each iteration of the CG procedure leads
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to better average CPU times. In most cases, the potential increasing in CPU time is
counterbalanced by a decrease in the number of iterations needed for ensuring the
convergence of the CG process.

26.6 Computational Results

Computational experiments were performed using the solver Gurobi Optimizer
version 4.6. We selected a subset of the available instances for the MSPSP
(Bellenguez-Morineau and Néron 2005) according to their size in terms of number
of activities, skills, and number of workers. In general terms, the computational
results shown in this section correspond to instances which contain between 20
and 62 activities, 2 and 15 skills, and 2 and 19 workers. We report results for 271
instances, which are divided into three groups:

• Group 1: We studied 110 instances from this group, containing between 20 and
51 activities, between 2 and 8 skills, and between 5 and 14 workers.

• Group 2: We included the results for 71 instances which contain between 32 and
62 activities, 9 and 15 skills, and 5 and 19 workers.

• Group 3: We studied 90 instances which contain between 22 and 32 activities, 3
and 12 skills, and 4 and 15 workers.

In Table 26.1 we compare the performance of the different column generation and
Lagrangian relaxation approaches introduced in the previous sections. On one hand,
we evaluated the CG approach based on the RMP1 (see Sect. 26.3.1.1) and using
the simplex method for solving the linear program (LP). For notation purposes, we
refer to this last approach as CG1. In addition, we have also CGLR1, in which the
LP for the related RMP1 is solved with the combined Lagrangian relaxation and
column generation approach proposed in Sect. 26.4.2. On the other hand, we have
CG2 and CGLR2, which correspond to the utilization of RMP2, which is based on
the master problem reformulation introduced in Sect. 26.3.1.1. Hence, in CG2 we
use only the simplex method for solving the LP, while in CGLR2 we combine the
use of Lagrangian relaxation and the simplex method for solving the LP, as it was
proposed in Sect. 26.4.2.

Furthermore, in Table 26.1 we compare the results of the four mentioned
approaches in terms of the average deviation �;

LB� against the best known lower
bounds (LB�) obtained by Bellenguez-Morineau and Néron (2005). Subsequently,
we also compare the average computation times and the average number of
generated columns obtained by each tested model for reaching their respective lower
bound. It is important to mention that, for enforcing the quality of the lower bound
obtained by applying column generation, we calculated a preliminary lower bound
based on the principle of the stable set. This bound was proposed by Mingozzi et al.
(1998) and adapted to the MSPSP by Bellenguez-Morineau and Néron (2005).

After analyzing the obtained results we can see that CG2 and CGLR2 lead
to better lower bounds than CG1 and CGLR1, implying that the solution of
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Table 26.1 Comparison between CG approaches proposed

Group of instances
Group 1 Group 2 Group 3

Average deviation against LB� CG1 �10.80 % �4.96 % �6.17 %

CGLR1 �10.80 % �4.96 % �6.17 %

CG2 �4.31 % �3.20 % �3.30 %

CGLR2 �4.31 % �3.20 % �3.30 %

Average CPU time (sec) CG1 11.37 9.88 5.10

CGLR1 7.07 7.97 3.42

CG2 216.58 119.82 95.98

CGLR2 193.15 99.54 87.37

Average number of generated columns CG1 738.05 1,181.65 1,817.77

CGLR1 1,181.19 1,645.07 2,571.80

CG2 3,498.45 3,841.40 5,814.11

CGLR2 9,336.71 10,370.57 11,458.41

RMP2 indeed enhances a stronger linear relaxation than RMP1. Nevertheless, the
approaches based on the solution of RMP2 required a considerably larger amount
of computation time until obtaining a lower bound. In addition, we can indeed
notice that the utilization of Lagrangian relaxation allowed us to accelerate the
solution of the respective restricted master problems. Moreover, we can see that the
approaches based on the solution of RMP2 generates more columns (i.e., activity
work patterns) per instance than CG1 and CGLR1. Additionally, we can see that the
number of generated columns also increases when using the approach that combines
Lagrangian relaxation and the simplex method for solving the LP.

26.7 Conclusions

The main differences between the proposed approaches relies in the master problem
formulation and the methods used for solving the related LP. Hence, we were able
to conclude that RMP2 allowed us to obtain better linear relaxations than the ones
obtained when using RMP1. Nevertheless, we could argue that the improvement in
the quality of the resulting lower bound after applying the RMP2 based approaches is
not that significant, given the considerable increase in the computation time invested
in the solution of each tested instance. Additionally, we were also able to establish
that the utilization of the simplex method along with the proposed Lagrangian
relaxation models allowed us to decrease the computation time consumed in the
solution of each tested instance. Nevertheless, it is important to mention that there
are some new perspectives that could be considered regarding to the utilization of
column generation for solving the MSPSP. On one hand the generation of certain
additional inequalities (cuts) could lead to a stronger linear relaxation when solving



26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 585

the restricted master problem. In addition, regarding the particular performance of
the RMP2 based approaches it could be interesting to take into account certain
measures for accelerating the convergence, which could lead to a decrease in the
computation times.
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