
Chapter 11
Partially Renewable Resources

Ramon Alvarez-Valdes, Jose Manuel Tamarit, and Fulgencia Villa

Abstract In recent years, in the field of project scheduling the concept of partially
renewable resources has been introduced. Theoretically, it is a generalization of both
renewable and non-renewable resources. From an applied point of view, partially
renewable resources allow us to model a large variety of situations that do not fit
into classical models, but can be found in real problems in timetabling and labor
scheduling. In this chapter we define this type of resource, describe an integer linear
formulation and present some examples of conditions appearing in real problems
which can be modeled using partially renewable resources. Then we introduce some
preprocessing procedures to identify infeasible instances and to reduce the size
of the feasible ones. Some exact, heuristic, and metaheuristic algorithms are also
described and tested.

Keywords GRASP • Makespan minimization • Partially renewable resources •
Project scheduling • Scatter search

11.1 Introduction

The classical RCPSP basically includes two types of resources: renewable
resources, in which the availability of each resource is renewed at each period
of the planning horizon, and non-renewable resources, whose availability are given
at the beginning of the project and which are consumed throughout the processing
of the activities requiring them. However, in the last decade new types of resources
have been proposed to allow the model to include new types of constraints which
appear in industrial problems: allocatable resources (Schwindt and Trautmann

R. Alvarez-Valdes (�) • J.M. Tamarit
Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
e-mail: ramon.alvarez@uv.es; jose.tamarit@uv.es

F. Villa
Department of Applied Statistics and Operations Research, and Quality, Polytechnic University of
Valencia, Valencia, Spain
e-mail: mfuvilju@eio.upv.es

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_11

203

mailto:ramon.alvarez@uv.es
mailto:jose.tamarit@uv.es
mailto:mfuvilju@eio.upv.es

204 R. Alvarez-Valdes et al.

2003, Mellentien et al. 2004), storage or cumulative resources (Neumann et al.
2002, 2005, Chap. 9 of this handbook), spatial resources (de Boer 1998), recycling
resources (Shewchuk and Chang 1995), time-varying resources (Chap. 8 of this
handbook) or continuous resources (Chap. 10 of this handbook).

Another new type of resource is partially renewable resources. The availability
of this resource is associated to a subset of periods of the planning horizon and
the activities requiring the resource only consume it if they are processed in these
periods. Although these resources may seem strange at first glance, they can be
a powerful tool for solving project scheduling problems. On the one hand, from
a theoretical point of view, they include renewable and non-renewable resources
as particular cases. In fact, a renewable resource can be considered as a partially
renewable resource with an associated subset of periods consisting of exactly
one period. Non-renewable resources are partially renewable resources where the
associated subset is the whole planning horizon. On the other hand, partially
renewable resources make it possible to model complicated labor regulations and
timetabling constraints, therefore allowing us to approach many labor scheduling
and timetabling problems as special cases of project scheduling problems. The
RCPSP with partially renewable resources is denoted by RCPSP/� or in the three-
field classification by PSpjprecjCmax.

Partially renewable resources were first introduced by Böttcher et al. (1999),
who proposed an integer linear formulation and developed exact and heuristic
algorithms. Schirmer (2000) studied this new type of resource thoroughly in his
book on project scheduling problems. He presented many examples of special
conditions which can be suitably modeled using partially renewable resources
and made a theoretical study of the problem. He also proposed several families
of heuristic algorithms for solving the problem. More recently, Alvarez-Valdes
et al. (2006, 2008) have developed some preprocessing procedures, as well as
GRASP/Path Relinking and Scatter Search algorithms, which efficiently solve the
test instances published in previous studies.

In this chapter we introduce the concept of partially renewable resources and
review all the existing algorithms. In Sect. 11.2 we define first this type of resource
and describe an integer linear formulation, adapted from Böttcher et al. (1999). Then
we present and discuss some examples of conditions appearing in real problems
which can be modeled using partially renewable resources, and briefly review the
first proposed algorithms. Section 11.3 contains the preprocessing procedures and
Sects. 11.4 and 11.5 describe the GRASP/PR and the Scatter Search algorithms in
more detail. Finally, Sect. 11.6 contains the computational results and Sect. 11.7 the
conclusions.

11.2 Solving Problems with Partially Renewable Resources

The RCPSP/� can be defined as follows: Let n be the number of activities to
schedule. The project consists of n C 2 activities, numbered from 0 to n C 1, where
activities 0 and nC1 represent the beginning and the end of the project, respectively.

11 Partially Renewable Resources 205

Let Pred.i/ be the set of immediate predecessors of activity i . Each activity i has
a processing time of pi and once started cannot be interrupted. Let Rp be the set
of partially renewable resources. Each resource k 2 Rp has a total availability
Rk and an associated set of periods ˘k . An activity i requiring resource k will
consume rik units of it at each period t 2 ˘k in which it is processed. Finally,
let T be the planning horizon in which all the activities must be processed. For
each activity i we obtain its earliest and latest start times, ESi , LSi , by critical path
analysis. We denote by Wi D fESi ; : : : :; LSi g, the set of possible starting times, and
Qit D ft � pi C 1; : : : ; tg.

11.2.1 Formulation of the Problem

The RCPSP/� consists of sequencing the activities so that the precedence and
resource constraints are satisfied and the makespan is minimized.

If we define the variables:

xit D
(

1 if activity i starts at time t

0 otherwise:

the problem can be formulated as follows:

Min.
X

t2WnC1

t xnC1;t (11.1)

s. t.
X
t2Wi

xit D 1 .i D 0; : : : ; n C 1/ (11.2)

X
t2Wj

.t C pj /xjt �
X
t2Wi

t xit .i D 0; : : : ; n C 1; j 2 Pred.i//

(11.3)

nX
iD1

rik

X
t2˘k

X
q2Qit

T
Wi

xiq � Rk .k 2 Rp/ (11.4)

xit 2 f0; 1g .i D 0; : : : ; n C 1; t 2 Wi / (11.5)

The objective function (11.1) to be minimized is the starting time of the last
activity and hence the makespan of the project. According to constraints (11.2),
each activity must start once. Constraints (11.3) are the precedence constraints and
constraints (11.4) are the resource constraints. Note that in this problem there is only
one global constraint for each resource k 2 Rp. An activity i consumes rik units
of a resource k for each period in which it is processed within ˘k . Another special
characteristic of this problem is that all the activities must finish within the planning

206 R. Alvarez-Valdes et al.

horizon T in which sets ˘k are defined. The starting times of each activity i form
a finite set Wi and therefore the existence of feasible solutions is not guaranteed.
In fact, Schirmer (2000) has shown that the feasibility variant of the RCPSP/� is
NP-complete in the strong sense.

The above formulation is called the normalized formulation by Böttcher et al.
(1999) and Schirmer (2000). Both consider an alternative, more general, formulation
in which several subsets of periods are associated with each resource k 2 Rp .
˘k D fPk1; : : : ; Pk�g is a set of subsets of periods where each subset of periods
Pk� 2 ˘k has a resource capacity Rk�. This general formulation can be transformed
into the above formulation by a “normalization” procedure in which a new resource
k0 is defined for each subset of periods Pk�. Therefore, the normalized formulation
can be used without loss of generalization.

11.2.2 Modeling Capabilities

In this section we describe several situations in which partially renewable resources
can be used to model conditions which classical renewable or non-renewable cannot
accommodate.

11.2.2.1 Lunch Break Assignments

In this example, taken from Böttcher et al. (1999), we have five workers in a 09:00
to 18:00 shift with a lunch break of 1 h. If the lunch period is fixed to period 13 for
all workers, the availability profile would be that depicted in Fig. 11.1. We would
get more flexibility if each worker could have the break either in period 13 or 14.
However, if we use renewable resources, the number of workers taking the break at
each period must have been decided beforehand. An example appears in Fig. 11.2,
in which three workers take the break at period 13 and two at period 14.

The situation can be more appropriately modeled by using a partially renewable
resource k with ˘k D f13; 14g and total availability of Rk D 5 units. Each task con-
sumes rik D 1. Therefore, the total number of working hours assigned to these peri-
ods cannot exceed five, leaving time for the five workers to have their lunch break.

0 5 10 15 20 24

1

3

5

Staff

Fig. 11.1 Fixed break at period 13

11 Partially Renewable Resources 207

0 5 10 15 20 24

1

3

5

Staff

Fig. 11.2 Fixed distribution of breaks between periods 13 and 14

A B C

6 7 13 14 20 21

Fig. 11.3 Weekend days-off assignment

11.2.2.2 Weekend Days-Off Assignments

Let us consider a contractual condition like that of working at most two weekend
days out of every three consecutive weeks (Alvarez-Valdes et al. 2008). This
condition cannot be modeled as a renewable resource because this type of resource
considers each period separately. It cannot be modeled as a non-renewable resource
because this type of resource considers the whole planning horizon. We model this
condition for each worker as a partially renewable resource k with a set of periods
˘k D f6; 7; 13; 14; 20; 21g for the first three weekends and a total availability of
Rk D 2 units. Each task i assigned to this worker consumes rik D 1 unit of this
resource for each weekend day in which it is processed. In Fig. 11.3 we see three
activities A, B, and C scheduled within the timescale depicted above. Activity A is
in process at periods 6 and 7 and then it consumes two units of the resource. Activity
B does not consume the resource and activity C consumes one unit in period 20. If
these three activities had to be done by the same worker, the solution in the figure
would not be possible because it would exceed the resource availability.

11.2.2.3 Special Conditions in School Timetabling Problems

When building their timetables, some schools include conditions such as that each
teacher must have classes at least one afternoon per week and at most two afternoons
per week. Let us assume for simplicity that the morning sessions are numbered 1, 3,
5, 7, 9 and the afternoon sessions are numbered 2, 4, 6, 8, 10. For each teacher we
define two partially renewable resources. In both cases, ˘1 D ˘2 D f2; 4; 6; 8; 10g.
In order to ensure that the teacher attends at least one afternoon session, R1 D �1

and for each of the teacher’s classes, ri1 D �1. The second condition is ensured
defining R2 D 2, ri2 D 1.

208 R. Alvarez-Valdes et al.

A complete study of logical conditions that can be modeled by using partially
renewable resources and then applied to different real situations can be found in
Schirmer (2000).

11.2.3 A Branch & Bound Algorithm

Böttcher et al. (1999) proposed an exact algorithm for the RCPSP/� that is based
upon the branch and bound method introduced by Talbot and Patterson (1978) for
the classical RCPSP, because this was one of the few approaches allowing time-
varying capacity profiles to be accommodated. The basic scheme of the algorithm
is straightforward. Starting with an empty schedule, partial schedules are feasibly
augmented by activities, one at a time. The enumeration tree is built with a depth-
first strategy, where the depth of a branch is the number of activities scheduled.
Backtracking occurs when an activity cannot be scheduled within its feasible
interval. In order to reduce the computational effort, Böttcher et al. (1999) developed
several resource-based feasibility bounds tailored to the specifics of the problem.

The authors employed a sample of 1,000 test instances generated from a
modification of ProGen (Kolisch et al. 1995). They generated four sets with 250
instances each one and with 15, 20, 30, and 60 activities, respectively. The number
of resources for each set was 30. Applying the branch and bound algorithm in
a truncated version (TBB), using a CPU time limit of 5 min per instance on a
C-language implementation on an IBM RS/6000 workstation at 66 MHz, produced
the results shown in Table 11.1.

The study by Böttcher et al. (1999) also included several priority rules designed
to obtain good quality solutions in short computing times. First, they tested some
classical rules: MINEFT (minimum earliest finishing time), MINLFT (minimum
latest finishing time), MINSLK (minimum slack), MTSUCC (most total suc-
cessors). Defining the maximum resource usage of each activity i as SRUi DP

k2Rp rik, they included the priority rules MAXSRU and MINSRU, considering
the maximum and minimum of the activities resource consumptions. In order
to obtain a more accurate calculation of resource usage they defined SCikt, the
consumption of resource k by activity i when started at period t , MCikt D
minfSCik� jt � � � LSi g, the minimum resource consumption of resource k

by activity i when started not earlier than t and not later than LSi , and MCIikt

Table 11.1 Effectiveness of
TBB algorithm proposed by
Böttcher et al. (1999)

Solved to Solved to

Activities optimality feasibility Unsolved

15 240 10 –

20 229 21 –

30 217 14 19

60 229 11 10

11 Partially Renewable Resources 209

which is the sum of MCikt of all the successors of activity i considering their
corresponding time intervals. These elements were used to calculate TRUit DP

k2Rp.SCikt C MCIikt/ and RRUit D P
k2Rp WRk>0.SCik C MCIikt/=Rk which

are lower bounds on the absolute and relative resource usage, producing rules
MAXTRU, MINTRU, MAXRRU, MINRRU. These rules are static because they
do no take into account the resources already consumed in a partial solution.
If R0

k if the left-over capacity of resource k with respect to a partial schedule,
DRRUjt D P

k2Rp WR0
k>0.SCikt C MCIikt/=R0

k is the dynamic relative resource

usage and TRCjt D P
k2Rp.R0

k � SCikt C MCIikt/=R0
k an upper bound of the

total remaining capacity. These values were used to define rules MAXDRRU,
MINDRRU, MAXTRC, MINTRC. Böttcher et al. (1999) concluded that classical
rules worked well for easy instances, while the new dynamic rules did a better job
on hard instances. In summary, rule MINLFT seemed to be the most promising one.

11.2.4 Schirmer’s Algorithms

In his book in 2000, Schirmer made a complete study of partially renewable
resources, their modeling capabilities and theoretical properties. He also developed
a series of progressively more complex algorithms. First, he collected known
priority rules and added some new ones. The list appears in Table 11.2. In order
to test them, Schirmer used Progen to generate new instances, but previously he
analyzed the parameter combinations that generally produce infeasible solutions.
So he selected the most promising parameter combinations to generate the new set
of test instances. For each of the 96 promising clusters, ten instances were generated
of sizes 10, 20, 30, and 40 with 30 resources.

In Table 11.2, RKks is the remaining availability or resource k at stage s; RDikt is
the relevant demand (consumption) of resource k if activity i starts at time t ; MDEikt

is the minimum relevant demand on resource k of all the successors of activity i

when it starts at time t ; and Ds is the set of possible assignments .i; t/ at stage s.
The 12 rules involving resources can use all the resources or only those which are
potentially scarce. Therefore, a total of 32 rules were defined.

In a second phase he introduced randomization, using the Modified Regret-
Based Biased Random Sampling, in which the probability assigned to each activity
is calculated using the regret, that is the worst possible consequences that might
result from selecting another candidate. In a third phase, Schirmer developed a local
search, based on local and global left-shifts of the activities. Finally, he proposed a
Tabu Search algorithm. He compared the results with those obtained with the TBB
algorithm by Böttcher et al. (1999) and concluded that good construction methods
solved significantly more instances optimally than tabu search, so these perform
better on easier instances. Yet, on very hard instances, tabu search outperformed all
construction methods. Indeed, the multi-start version of the tabu search method was
the only one that managed to solve all the instances attempted, except for five that
he conjectured to be infeasible.

210 R. Alvarez-Valdes et al.

Table 11.2 Priority rules proposed by Schirmer (2000)

Static vs. Local vs.

Measure Definition dynamic global

MIN EFi ESi C pi S L

MIN ESi ESi S G

MIN LFi LSi C pi S L

MIN LSi LSi S G

MAX MTSi jfi 0ji < i 0gj S L

MIN SLK i LSi � EFi D L

MIN SPT i pi S L

MIN SSLK i LSi � ESi S L

MAX DRCit
P

k.RKks � RDikt/ D L

MAX DRC=Eit
P

k.RKks � RDikt � MDEikt/ D G

MIN DRDit
P

k RDikt=maxfRDi 0kt0 j.i 0; t 0/ 2 Ds D G

MIN DRD=Eit
P

k.RDikt C MDEikt/=maxfRDi 0kt0 D G

CMDEi 0kt0 j.i 0; t 0/ 2 Ds/

MIN DRSit
P

k RDikt=RKks D L

MIN DRS=Eit
P

k.RDikt C MDEikt/=RKks D G

MIN RRDit
P

k RDikt=.rikpi / S L

MIN RRD=Eit
P

k RDikt=.rikpi / C P
i<j MDEjkESTj

=.rjkpk/ D G

MIN TRDit
P

k RDikt S L

MIN TRD=Eit
P

k.RDikt C MDEikt/ S G

MIN TRSit
P

k RDikt=Rk S L

MIN TRS=Eit
P

k.RDikt C MDEikt/=Rk S G

11.3 Preprocessing

Preprocessing has two objectives. First, helping to decide whether a given instance
is infeasible or if it has feasible solutions. If the latter is the case, a second objective
is to reduce the number of possible starting times of the activities and the number of
resources. If these two objectives are satisfactorily achieved, the solution procedures
will not waste time trying to solve infeasible problems and will concentrate their
efforts on the relevant elements of the problem.

The preprocessing we have developed includes several procedures:

1. Identifying trivial problems
If the solution in which the starting time of each activity i is set to ESi is resource-
feasible, then it is optimal.

2. Reducing the planning horizon T

For each instance, we are given a planning horizon .0; T /. This value plays an
important role in the time-indexed problem formulation. In fact, late starting
times of the activities, LSi are calculated starting from T in a backward recursion.
Therefore, the lower the value T , the fewer variables the problem will have. In

11 Partially Renewable Resources 211

order to reduce T , we try to build a feasible solution for the given instance, using
a GRASP algorithm, which will be described later. The GRASP iterative process
stops as soon as a feasible solution is obtained or after 200 iterations. The new
value T is updated to the makespan of the feasible solution obtained. Otherwise,
T is unchanged.
If the makespan of the solution equals the length of the critical path in the
precedence graph, the solution is optimal and the process stops and returns the
solution.

3. Eliminating idle resources
Each resource k 2 Rp is consumed only if the activities requiring it are
processed in periods t 2 ˘k . Each activity can only be processed in a finite
interval. It is therefore possible that no activity requiring the resource can be
processed in any period of ˘k . In this case, the resource is idle and can be
eliminated. More precisely, if we denote the points in time where activity i can be
in progress by Wi D fESi ; : : : ; LSi Cpi �1g , and 8i j rik > 0 W ˘k

T
Wi D ;;

the resource k 2 Rp is idle and can be eliminated.
4. Eliminating non-scarce resources

Schirmer (2000) distinguishes between scarce and non-scarce resources. He
considers a resource k 2 Rp as scarce if

Pn
iD1 rikpi > Rk; that is, if an upper

bound on the maximum resource consumption exceeds the resource availability.
In this case, the upper bound is computed by supposing that all the activities
requiring the resource are processed completely inside ˘k .
We have refined this idea by taking into account the precedence constraints.
Specifically, we calculate an upper bound on the maximum consumption of
resource k by solving the following linear problem:

Max.
nX

iD1

rik

X
t2˘k

X
q2Qit

T
Wi

xiq (11.6)

s. t.
X
t2Wi

xit D 1 .i D 1; : : : ; n/ (11.7)

TX
�Dt

xj� C
tCpj �1X

�D1

xi� � 1 .i D 1; : : : ; nI j 2 Pred.i/I t � T /

(11.8)

xit � 0 .i D 1; : : : ; nI t 2 Wi / (11.9)

The objective function (11.6) maximizes the resource consumption over the
whole project. Constraints (11.7) ensure that each activity starts once. Constraints
(11.8) are the precedence constraints. We use this expression, introduced by
Christofides et al. (1987), because it is more efficient than the usual precedence
constraint. In fact, the reformulation of these constraints produces a linear
problem whose coefficient matrix is totally unimodular and thus all the vertices

212 R. Alvarez-Valdes et al.

of the feasible region are integer-valued (Chaudhuri et al. 1994). If the solution
value is not greater than the resource availability, this resource will not cause any
conflict and can be skipped in the solution process.

5. A filter for variables based on resources
For each activity i and each possible starting time t 2 Wi , we compute a lower
bound LBkit on the consumption of each resource k if activity i starts at time t .
We first include the resource consumption of activity i when starting at that time
t and then for each other activity in the project we consider all its possible starting
times, determine for which of them the resource consumption is minimum and
add that amount to LBkit. Note that this minimum is calculated over all the periods
in Wj for each activity j not linked with i by precedence constraints, but for an
activity h which is a predecessor or successor of i , the set Wh is reduced by taking
into account that i is starting at time t . If for some resource k, LBkit > Rk , time
t is not feasible for activity i to start in, and the corresponding variable xit is set
to 0.
When this filter is applied to an activity i , some of its possible starting times can
be eliminated. From then on, the set of possible starting times is no longer Wi .
We denote by Wi the set of starting times passing the filter.
This filter is applied iteratively. After a first run on every activity and every
starting time, if some of the variables are eliminated the process starts again,
but this time computing LBkit on the reduced sets. As the minimum resource
consumptions are calculated over restricted subsets, it is possible that new
starting times will fail the test and can be eliminated. The process is repeated
until no starting time is eliminated in a complete run.

6. Consistency test for finishing times
When the above filter eliminates a starting time of an activity i , it is possible
that some of the starting times of its predecessors and successors are no longer
feasible. For an activity i , �i D maxft j t 2 Wig. Then, for each j 2 Pred.i/

the starting times t 2 Wj such that t > �i � pj can be eliminated. Analogously,
�i D minft j t 2 Wi g. Then, for each j 2 Succ.i/, the starting times t 2 Wj such
that t < �i C pi can also be eliminated.
This test is also applied iteratively until no more starting times are eliminated.
If, after applying these two procedures for reducing variables, an activity i has
Wi D ;, the problem is infeasible. If the makespan of the initial solution built
by GRASP equals the minimum starting time of the last activity n C 1, then this
solution is optimal.

7. A linear programming bound for the starting time of activity n C 1

We solve the linear relaxation of the integer formulation of the problem given
in Sect. 11.2.1, using only variables and resources not eliminated in previous
preprocessing procedures and replacing expression (11.3) with expression (11.8)
for the precedence constraints. The optimal value of the linear program, opl1,
is a lower bound for the optimal value of the starting time of activity n C 1.
Therefore we can set xnC1;t WD 0 for all t < dopl1e. If that eliminates some
variables with non-zero fractional values, we solve the modified problem and

11 Partially Renewable Resources 213

obtain a new solution opl2, strictly greater than opl1, which can in turn be used
to eliminate new variables, and the process goes on until no more variables are
removed. If the solution value obtained by GRASP equals the updated minimum
starting time for activity n C 1, this solution is optimal. Otherwise, the lower
bound can be used to check the optimality of improved solutions obtained in the
GRASP process.

11.4 GRASP Algorithm

In this section we describe the elements of our GRASP implementation in detail.
The first two subsections contain the constructive randomized phase and the
improvement phase. The last two subsections describe an enhanced GRASP
procedure and a Path Relinking algorithm operating over the best GRASP solutions
obtained. A comprehensive review of GRASP can be found in Resende and Ribeiro
(2003).

11.4.1 The Constructive Phase

11.4.1.1 A Deterministic Constructive Algorithm

We have adapted the serial schedule-generation scheme (SSS) proposed by Schirmer
(2000), which in turn is an adaptation of the serial schedule-generation scheme
commonly used for the classical RCPSP. We denote by Si the starting time assigned
to activity i . At each stage of the iterative procedure an activity is scheduled by
choosing from among the current set of decisions, defined as the pairs .i; t/ of an
activity i and a possible starting time t 2 Wi . The selection is based on a priority
rule.

Step 0. Initialization
S0 WD 0 (sequencing dummy activity 0)
C WD f0g (activities already scheduled)
8k 2 Rp W RKk WD Rk (remaining capacity of resource k)

TDk WD
nP

iD1

rikpi (maximum possible demand for k)

SR WD fk 2 Rp j TDk > RKkg (set of possible scarce resources)
EL WD set of eligible activities, i.e. those activities for which activity 0 is the only
predecessor

Step 1. Constructing the set of decisions
D WD f.i; t/ j i 2 EL ; t 2 Wi g

Step 2. Choosing the decision
Select the best decision .i�; t�/ in D , according to a priority rule

214 R. Alvarez-Valdes et al.

Step 3. Feasibility test
if .i�; t�/ is resource-feasible, go to Step 4.
else

D WD D n f.i�; t�/g
if D D ;, STOP. The algorithm does not find a feasible solution.
else, go to Step 2.

Step 4. Update
Si� WD t�
C WD C [fi�g
EL WD .EL n fi�g/ [fi j Pred.i/ � Sg
8h j i 2 Pred.h/ W Wh D Wh n f� j t� C pi� > �g
8k 2 Rp W RKk WD RKk � RDikt

TDk WD TDk � ri�kpi�

if TDk � RKk ; then SR D SR n fkg
if jS j D n C 2, STOP. The sequence is completed.
else, go to Step 1.

At Steps 1 and 2, we follow Schirmer’s design, working with the set of decisions
D and choosing from it both the activity to sequence and the time at which it
starts. An alternative could have been to first select the activity and then the time,
choosing, for instance, the earliest resource-feasible time. However, this strategy has
serious drawbacks. First, it is less flexible. Priority rules which take into account the
resource consumption could not be used, because this consumption varies depending
on the periods in which the activity is processed. Second, as Schirmer has shown in
his book, scheduling each activity at its earliest resource-feasible time may not only
fail to produce an optimal solution but may also fail to produce feasible solutions.
As he says: “delaying activities from their earliest feasible start time is crucial to
finding good—even feasible—solutions for some instances”.

At Step 3, we perform a complex feasibility test which does not involve only
activity i� but also the unscheduled activities. Following a process which is quite
similar to the filter described in Sect. 11.3, we try to assess the effect of scheduling
i� at time t� by computing an estimation of the global resource consumptions,
also considering the minimum consumption of the activities not yet scheduled.
If this estimation exceeds the remaining resource availability, t� is labeled as
non-feasible for i�. This test allows us to avoid decisions which will inevitably
produce infeasible solutions in the later stages of the constructive process and our
computational experience has told us that significantly improves the proportion of
feasible solutions we obtain. However, it has a larger computational cost. Therefore,
we do not perform the feasibility test for each decision of D at Step 1, as in
Schirmer’s algorithm, but only for the decision chosen at Step 2. In problems with
a large number of possible finishing times for the activities, this strategy is more
efficient. If this decision fails the feasibility test of Step 3, the second best decision
is tested and so on. Few tests are usually required and therefore it is more convenient
to take the feasibility test out of Step 1.

11 Partially Renewable Resources 215

The resource availabilities are updated, subtracting RDikt, the consumption of
activity i when starting at period t from the remaining capacity Rk . We also keep
the set of possible scarce resources SR updated because some priority rules based
on resource consumption only take this type of resource into account.

11.4.1.2 Priority Rules

We have tested the 32 priority rules used by Schirmer (2000). The first eight are
based on the network structure, including classical rules such as EFT, LFT, SPT or
MINSLK. The other 24 rules are based on resource utilization. Twelve of them
use all the resources and the other 12 only the scarce resources. A preliminary
computational experience allowed us to choose the most promising rules and use
them in the next phases of the algorithm’s development. These preliminary results
also showed that even with the best performing rules, the deterministic constructive
algorithm failed to obtain a feasible solution for many of the ten-activity instances
generated by Böttcher et al. (1999). Therefore, the objective of the randomization
procedures included in the algorithm was not only to produce diverse solutions but
also to ensure that for most of the problems the algorithm would obtain a feasible
solution.

11.4.1.3 Randomization Strategies

We introduce randomization procedures for selecting the decision at Step 2 of the
constructive algorithm. Let scit be the score of decision .i; t/ on the priority rule we
are using, let scmax D maxfscitj.i; t/ 2 Dg, and let ı be a parameter to be determined
(0 < ı < 1). We have considered three alternatives:

1. Random selection on the Restricted Candidate List, RCL
Select decision .i�; t�/ at random in set RCL D f.i; t/ j scit � ıscmaxg

2. Biased selection on the Restricted Candidate List, RCL
We build the Restricted Candidate List as in alternative 1, but instead of choosing
at random from among its elements, the decisions involving the same activity i

are given a weight which is inversely proportional to the order of their finishing
times. For instance, if in RCL we have decisions .2; 4/; .2; 5/; .2; 7/; .2; 8/

involving activity 2 and ordered by increasing finishing times, then decision
.2; 4/ will have a weight of 1, decision .2; 5/ weight 1=2, decision .2; 7/

weight 1=3 and decision .2; 8/ weight 1=4. The same procedure is applied to
the decisions corresponding to the other activities. Therefore, the decisions in
RCL corresponding to the lowest starting times of the activities involved will be
equally likely and the randomized selection process will favor them.

3. Biased selection on the set of decisions D
We have also implemented the Modified Regret-Based Biased Random Sampling
(MRBRS/ı) proposed by Schirmer (2000), in which the decision .i; t/ is chosen

216 R. Alvarez-Valdes et al.

from among the whole set D but with its probability proportional to its regret
value. The regret value is a measure of the worst possible consequence that might
result from selecting another decision.

11.4.1.4 A Repairing Mechanism

The randomization strategies described above significantly improve the ability of the
constructive algorithm to find feasible solutions for tightly constrained instances.
However, a limited computational experience showed that not even with the best
priority rule and the best randomization procedure could the constructive algorithm
obtain feasible solutions for all of the ten-activity instances generated by Böttcher
et al. (1999). Therefore, we felt that the algorithm was not well-prepared for solving
larger problems and we decided to include a repairing mechanism for infeasible
partial schedules.

In the construction process, if at Step 3 all the decisions in D fail the feasibility
test and D finally becomes empty, instead of stopping the process and starting a
new iteration, we try to re-assign some of the already sequenced activities to other
finishing times in order to free some resources that could be used for the first of the
unscheduled activities to be processed. If this procedure succeeds, the constructive
process continues. Otherwise, it stops.

11.4.2 The Improvement Phase

Given a feasible solution obtained in the constructive phase, the improvement phase
basically consists of two steps. First, identifying the activities whose starting times
must be reduced in order to have a new solution with the shortest makespan. These
activities are labeled as critical. Second, moving critical activities to lower finishing
times in such a way that the resulting sequence is feasible according to precedence
and resource constraints. We have designed two types of moves: a simple move,
involving only the critical activity, and a double move in which, apart from the
critical activity, other activities are also moved.

11.4.3 An Aggressive Procedure

The standard version of our heuristic algorithm starts by applying the prepro-
cessing procedure in Sect. 11.3. The reduced problem then goes through the
iterative GRASP algorithm described above, combining a constructive phase and
an improvement phase at each iteration, until the stopping criterion, here a fixed
number of iterations, is met.

11 Partially Renewable Resources 217

An enhanced version of the heuristic algorithm combines preprocessing and
GRASP procedures in a more aggressive way. After a given number of iterations
(stopping criterion), we check whether the best known solution has been improved.
If this is the case, we run the preprocessing procedures again, setting the planning
horizon T to the makespan of the best-known solution and running the filters for
variable reduction. The GRASP algorithm is then applied to the reduced problem.
Obtaining feasible solutions is now harder, but if the procedure succeeds we will get
high quality solutions.

The stopping criterion combines two aspects: the number of iterations since the
last improvement and the number of iterations since the last call to preprocessing.
For the first aspect a low limit of 50 iterations is set. We do not call preprocessing
every time the solution is improved, but we do not wait too long to take advantage
of the improvements. For the second aspect we set a higher limit of 500 iterations
to give the process enough possibilities of improving the best current solution and,
at the same time, do not allow it to run for too long a time.

11.4.4 Path Relinking

If throughout the iterative procedures described above we keep a set of the best
solutions, usually denoted as elite solutions, we can perform a Path Relinking
procedure. Starting from one of these elite solutions called the initiating solution,
we build a path towards another elite solution called the guiding solution. We
progressively impose the attributes of the guiding solution onto the intermediate
solutions in the path, so these intermediate solutions evolve from the initiating
solution until they reach the guiding solution. Hopefully, along these paths we will
find solutions which are better than both the initiating and the guiding solutions.

We keep the ten best solutions obtained in the GRASP procedure. We consider
each of them in turn as the initiating solution and another as the guiding solution. We
build a path from the initiating to the final solution with n�1 intermediate solutions.
The j th solution will have the finishing times of the first j activities taken from the
guiding solution, while the remaining n � j finishing times will still correspond to
those of the initiating solution. Therefore, along the path, the intermediate solutions
will become progressively more similar to the guiding solution and more different
from the initiating one. In many cases these intermediate solutions will not be
feasible. If this is the case, a repairing mechanism similar to that described in
Sect. 11.4 is applied. We proceed from activity 1 to activity n, checking for each
activity j whether the partial solution from 1 to j is feasible. If it is not, we first try
to find a feasible finishing time for activity j , keeping previous activities unchanged.
If that is not possible, we try to re-assign some of the previous activities to other
finishing times in order to obtain some resources which are necessary for processing
activity j at one of its possible finishing times. If this procedure succeeds, we
consider activity j C 1. Otherwise, the solution is discarded and we proceed to the
next intermediate solution. If we obtain a complete intermediate solution which is
feasible, we apply to it the improvement phase described in the GRASP algorithm.

218 R. Alvarez-Valdes et al.

11.5 Scatter Search Algorithm

A Scatter Search algorithm is an approximate procedure in which an initial
population of feasible solutions is built and then the elements of specific subsets
of that population are systematically combined to produce new feasible solutions
which will hopefully improve the best known solution (see the book by Laguna
and Marti (2004) for a comprehensive description of the algorithm). The basic
algorithmic scheme is composed of five steps:

1. Generation and improvement of solutions
2. Construction of the Reference Set
3. Subset selection
4. Combination procedure
5. Update of the Reference Set

This basic algorithm stops when the Reference Set cannot be updated and then
no new solutions are available for the combination procedure. However, the scheme
can be enhanced by adding a new step in which the Reference Set is regenerated
and new combinations are possible. The following enumeration describes each step
of the algorithm in detail.

1. Generation and improvement of solutions
The initial population is generated by using the basic version of the GRASP
algorithm.

2. Generation of the Reference Set
The Reference Set, RefSet, the set of solutions which will be combined to obtain
new solutions, is built by choosing a fixed number b of solutions from the initial
population. Following the usual strategy, b1 of them are selected according to a
quality criterion: the b1 solutions with the shortest makespan, with ties randomly
broken. The remaining b2 D b � b1 solutions are selected according to a
diversity criterion: the solutions are selected one at a time, each one of them
the most diverse from the solutions currently in RefSet. That is, select solution S 0
for which the MinS2RefSetfdist.S; S 0/g is maximum. The distance between two
solutions S1 and S2 is defined as

dist.S1; S2/ D
nC1X
iD1

jS1
i � S2

i j

where S
�
i is the starting time of the i -th activity in solution S�.

3. Subset selection
Several combination procedures were developed and tested. Most of them
combine two solutions, but one of them combines three solutions. The first time
the combination procedure is called, all pairs (or trios) of solutions are considered
and combined. In the subsequent calls to the combination procedure, when the

11 Partially Renewable Resources 219

Reference Set has been updated and is composed of new and old solutions, only
combinations containing at least one new solution are studied.

4. Combining solutions
Eight different combination procedures have been developed. Each solution S�

is represented by the vector of the starting times of the activities of the project:
S� D .S

�
0 ; S

�
1 ; S�2; : : : ; S

�
n ; S

�
nC1/. When combining two solutions S1 and S2

(or three solutions S1, S2 and S3), the solutions will be ordered by nondecreasing
makespan. Therefore, S1 will be a solution with a makespan lower than or equal
to the makespan of S2 (and the makespan of S2 will be lower than or equal to
the makespan of S3).
Combination 1
The starting times of each activity in the new solution, Snew, will be a weighted
average of the corresponding starting times in the two original solutions:

Snew
i D bk1S

1
i C k2S

2
i

k1 C k2

c where k1 D .1=S1
nC1/

2 and k2 D .1=S2
nC1/

2

Combination 2
A crosspoint m 2 f1; 2; ::; ng is taken randomly. The new solution, Snew, takes the
first m starting times from S1. The remaining starting times mC1; mC2; ::; nC1

are selected at random from S1 or S2.
Combination 3
A crosspoint m 2 f1; 2; ::; ng is taken randomly. The new solution, Snew, takes the
first m starting times from S1. The remaining starting times mC1; mC2; ::; nC1

are selected from S1 or S2 with probabilities, �1 and �2, inversely proportional
to the square of their makespan:

�1 D .1=S1
nC1/

2

.1=S1
nC1/

2 C .1=S2
nC1/

2
and �2 D .1=S2

nC1/
2

.1=S1
nC1/

2 C .1=S2
nC1/

2

Combination 4
The combination procedure 2 with m D 1. Only the first starting time is
guaranteed to be taken from S1.
Combination 5
The combination procedure 3 with m D 1. Only the first starting time is
guaranteed to be taken from S1.
Combination 6
Two crosspoints m1; m2 2 f1; 2; ::; ng are taken randomly. The new solution,
Snew, takes the first m1 starting times from S1. The starting times m1 C 1; m1 C
2; ::; m2 are taken from S2 and the starting times m2 C 1; m2 C 2; ::; n C 1 are
taken from S1.

220 R. Alvarez-Valdes et al.

Combination 7
The starting times of S1 and S2 are taken alternatively to be included in Snew.
Starting from the last activity n C 1, Snew

nC1 D S1
nC1, then Snew

n D S2
n and so on

until completing the combined solution.
Combination 8
Three solutions S1, S2 and S3 are combined by using a voting procedure. When
deciding the value of Snew

i , the three solutions vote for their own starting time S1
i ,

S2
i , S3

i . The value with a majority of votes is taken as Snew
i . If the three values are

different, there is a tie. In that case, if the makespan of S1 is strictly lower than
the others, the vote of quality of S1 imposes its finishing time. Otherwise, if two
or three solutions have the same minimum makespan, the starting time is chosen
at random from among those of the tied solutions.

Snew
i D

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

S1
i if S1

i D S2
i

S2
i if S1

i ¤ S2
i D S3

i

S1
i if S1

i ¤ S2
i ¤ S3

i and S1
nC1 < S2

nC1

randomfS1
i ; S2

i g if S1
i ¤ S2

i ¤ S3
i and S1

nC1 D S2
nC1 < S3

nC1

randomfS1
i ; S2

i ; S3
i g if S1

i ¤ S2
i ¤ S3

i and S1
nC1 D S2

nC1 D S3
nC1

Most of the solutions obtained by the combination procedures do not satisfy all
the resource and precedence constraints. The non-feasible solutions go through
a repairing process that tries to produce feasible solutions which are as close
as possible to the non-feasible combined solution. This process is composed of
two phases. First, the starting times Snew

i are considered in topological order
to check if the partial solution .Snew

0 ; Snew
1 ; ::; Snew

i / satisfies precedence and
resource constraints. If that is the case, the next time Snew

iC1 is studied. Otherwise,
Snew

i is discarded as the starting time of activity i and a new time is searched
for from among those possible starting times of i . The search goes from times
close to Snew

i to times far away from it. As soon as a time t i is found which could
be included in a feasible partial solution .Snew

0 ; Snew
1 ; ::; t i /, the search stops and

the next time Snew
iC1 is considered. If no feasible time is found for activity i , the

process goes to the second phase which consists of a repairing procedure similar
to that of the constructive algorithm. This procedure tries to change the starting
times of previous activities, 1; 2; ::; i � 1, in order to give activity i more chances
of finding a starting time satisfying precedence and resource constraints. If this
repairing mechanism succeeds, the process goes back to the first phase and the
next time Snew

iC1 is considered. Otherwise, the combined solution is discarded.
5. Updating the Reference Set

The combined solutions which were initially feasible and the feasible solutions
obtained by the repairing process described above go through the improvement
phase in Sect. 11.4.2. The improved solutions are then considered for inclusion in
the Reference Set. The Reference Set RefSet is updated according to the quality

11 Partially Renewable Resources 221

criterion: the best b solutions from among those currently in RefSet and from
those coming from the improvement phase will form the updated set RefSet.
If the set RefSet is not updated because none of the new solutions qualify, then the
algorithm stops, unless the regeneration of RefSet is included in the algorithmic
scheme.

6. Regenerating the Reference Set
The regeneration of Reference Set RefSet has two objectives: on the one hand,
introducing diversity into the set, because the way in which RefSet is updated
may cause diverse solutions with a high makespan to be quickly substituted with
new solutions with a lower makespan but more similar to solutions already in
RefSet; on the other hand, obtaining high quality solutions, even better than those
currently in RefSet.
The new solutions are obtained by again applying the GRASP algorithm with a
modification. We take advantage of the information about the optimal solution
obtained up to that point in order to focus the search on high quality solutions.
More precisely, if the best known solution has a makespan Sbest

nC1, we set the
planning horizon T D Sbest

nC1 and run the preprocessing procedures again,
reducing the possible starting times of the activities. When we run the GRASP
algorithm, obtaining solutions is harder, because only solutions with a makespan
lower than or equal to Sbest

nC1 are allowed, but if the algorithm succeeds we will
get high quality solutions.
For the regenerated set RefSet we then consider three sources of solutions: the
solutions obtained by the GRASP algorithm, the solutions currently in RefSet and
the solutions in the initial population. From these solutions, the new set RefSet is
formed. Typically, the b1 quality solutions will come from the solutions obtained
by the GRASP, completed if necessary by the best solutions already in RefSet,
while the b2 diverse solutions will come from the initial population.

11.6 Computational Results

This section describes the test instances used and summarizes the results obtained
on them by the preprocessing procedures, the priority rules, and the metaheuristic
algorithms developed in previous sections.

11.6.1 Test Instances

Böttcher et al. (1999) generated an instance generator PROGEN 2. Taking as
their starting point PROGEN (Kolisch et al. 1995), an instance generator for the
classical RCPSP with renewable resources, they modified and enlarged the set of
parameters and generated a set of 2,160 instances with ten non-dummy activities,
ten replications for each one of the 216 combinations of parameter values. As most

222 R. Alvarez-Valdes et al.

of the problems were infeasible, they restricted the parameter values to the 25 most
promising combinations and generated 250 instances of sizes 15, 20, 30 and 60 of
non-dummy activities, always keeping the number of resources to 30.

Later Schirmer (2000) developed PROGEN 3, an extension of PROGEN 2, and
generated some new test instances. He generated 960 instances of sizes 10, 20, 30,
and 40, with 30 resources. Most of them have a feasible solution, while a few of
those with ten activities are infeasible. Additionally, we generated a new set of test
instances of 60 activities using Schirmer’s PROGEN 3, with the same parameter
values he used to generate his problems. This new set gave us an indication of the
performance and running times of our algorithms on larger problems.

We applied all the algorithms and procedures described in previous sections to
both sets of instances, obtaining similar results. In the next subsections we present
and comment on the results obtained on Schirmer’s problems.

11.6.2 Preprocessing Results

Table 11.3 shows the detailed results of the preprocessing process. A first filter
identifies the trivial instances. For the remaining instances, a first feasible solution
is obtained. Let us suppose that the value of this solution is S start

nC1. If S start
nC1 equals the

length of the critical path, the solution is optimal. The number of instances proven
optimal by this test appears as CPM_bound. Otherwise, the filters for resources and
variables are used, sometimes eliminating some feasible finishing times for the last
activity n C 1. If S start

nC1 equals the minimum possible finishing time of n C 1, the
solution is optimal. The number of instances proven optimal by this test appears as
MIN_PFT_bound. Finally, the linear bound is calculated. If S start

nC1 equals the linear
bound, the solution is optimal. The number of instances proven optimal by this
test appears as LP_bound. However, the linear bound is only applied if the number
of remaining variables is fewer than 1,500, to avoid lengthy runs. The sum of the
instances proven to be optimal by these three tests appears as Solved to optimality
by preprocessing. The remaining problems are shown on the last line of the table.
For more than 60 % of the non-trivial problems, the preprocessing procedures are
able to provide a provably optimal solution.

A characteristic of PROGEN 3 is that it tends to produce large values of the
planning horizon T . For this set of problems the reduction of T described in
Sect. 11.3 is especially useful. Table 11.4 shows the reduction of T obtained by
that procedure on the non-optimally solved problems.

The reductions in the planning horizon T , together with the procedures for
reducing possible finishing times for the activities, produce significant decreases
in the final number of variables to be used by solution procedures, as can be seen in
Table 11.5.

11 Partially Renewable Resources 223

Table 11.3 Schirmer problems—optimal solutions identified in the preprocessing

Activities 10 20 30 40 60

Problems 951 960 960 960 960

Feasible problems 946 960 960 960 960

Trivial problems 143 395 507 574 614

Solved to optimality by pre-processing 502 341 291 221 202

CPM_bound 259 287 279 212 201

MIN_PFT_bound 209 46 10 8 1

LP_bound 34 8 2 1 0

Remaining problems 301 224 162 165 144

Table 11.4 Schirmer
problems—reductions of
planning horizon T

Activities 10 20 30 40 60

Problems 301 224 162 165 144

Average initial T 43 82 120 158 230

Average reduction 21 % 38 % 43 % 48 % 53 %

Maximal reduction 54 % 66 % 68 % 73 % 73 %

Table 11.5 Schirmer problems—reductions of resources and variables

Activities 10 20 30 40 60

Problems 301 224 162 165 144

Initial resources 30 30 30 30 30

Remaining resources (average) 15 (50 %) 15 (50 %) 18 (60 %) 18 (60 %) 20 (67 %)

Initial variables (average) 211 971 2,281 4,256 9,962

Remaining variables (average) 103 (49 %) 338 (35 %) 718 (31 %) 1,188 (28 %) 2,616 (26 %)

11.6.3 Computational Results of Constructive Algorithms

The 32 priority rules described by Schirmer (2000) were coded and embedded in the
constructive algorithm in Sect. 11.4.1. In a preliminary computational study these
rules were tested on the 879 feasible instances of size 10 generated by Böttcher et al.
(1999). Table 11.6 shows the results obtained by the six best performing rules. The
first three rules are based on the network structure of the problems. The last three
rules are based on resource consumption. In them, SR indicates that the rules require
the use of only scarce resources, indexed by k. RKks is the remaining capacity of
resource k at stage s. RDikt is the relevant demand, defined as RDikt D rikjQit \˘kj:
MDEikt is the minimum relevant demand entailed for resource k by all successors
of activity i when started at period t . The most important feature of Table 11.6
is that even the best rules fail to produce a feasible solution for 20 % of these
small instances of size 10. Therefore, we need randomizing strategies and repairing
mechanisms to significantly increase the probability of finding feasible solutions in
the constructive phase of the GRASP algorithm.

224 R. Alvarez-Valdes et al.

Table 11.6 Results of priority rules

Rule Definition Feasible solutions (%) Optimal solutions (%)

LFT MinfLFTj g 80.09 64.28

MTS Maxfjfi jj 2 P 0
i gjg 79.64 69.98

SLK MinfLSTj � EFTj g 76.22 61.66

DRC/SR MaxfPr .RKrs � RDjrt/g 81.57 27.08

DRS/SR MinfPr .RKrs=RDjrt/g 79.29 27.53

TRS/SR MinfPr .RDjrt C MDEjrt/g 79.41 28.56

The randomization procedures allowed us to get an important increase in the
number of feasible solutions. However, not all these small problems could be solved.
That was the reason for the development of a repairing mechanism to help the
constructive algorithm to find feasible solutions for the more tightly constrained
problems. After this preliminary study we decided to use the second randomization
procedure, a biased selection on the Restricted Candidate List, and the priority rule
LFT.

11.6.4 Computational Results of GRASP Algorithms

Table 11.7 contains the results on the 2,553 non-trivial Schirmer instances, including
the 60-activity instances we generated. The first part of the table shows the average
distance to optimal solutions. However, not all the optimal solutions are known. The
optimal solution is not known for one instance of size 30 and five instances of size
40. In these cases, the comparison is made with the best-known solution, obtained
by a time-limited run of the CPLEX integer code, by the best version of GRASP
algorithms in any of the preliminary tests or by the best version of the Scatter Search
algorithm. The second part of the table shows the number of times the best solution
does not match the optimal or best known solution, while the third part shows the
average computing times in seconds.

Columns 6 to 9 of Table 11.7 show the results of the GRASP algorithms.
Four versions have been tested: GRASP, the basic GRASP algorithm, GR+PR,
in which the best solutions obtained in the GRASP iterations go through the
Path Relinking phase, AG-GR, the aggressive GRASP procedure, and AG+PR,
combining aggressive GRASP and Path Relinking. The GRASP algorithms use
priority rule LFT and the second randomization procedure with ı D 0:85. The
GRASP algorithm runs for a maximum of 2,000 iterations while for the aggressive
procedure in Sect. 11.4.3 we use the limits described there.

The results in Table 11.7 allow us to observe the different performance of the
four algorithms more clearly. The aggressive GRASP procedure does not guarantee
a better solution than the basic GRASP algorithm for each instance, but it tends to

11 Partially Renewable Resources 225

Table 11.7 Comparison of Scatter Search and GRASP algorithms on Schirmer problems

Non-trivial Scatter Search GRASP

Activities instances Regen 0 Regen 1 Regen 6 GRASP GR+PR AG-GR AG+PR

Average deviation from optimal solution (%)

10 803 0.02 0.00 0.00 0.00 0.00 0.00 0.00

20 565 0.15 0.03 0.04 0.40 0.33 0.13 0.12

30 453 0.32 0.19 0.10 1.00 0.88 0.24 0.21

40 386 0.59 0.36 0.25 2.03 1.82 0.67 0.59

60 346 1.22 0.90 0.71 3.68 3.31 1.38 1.16

Total 2;553 0.35 0.04 0.03 0.27 0.24 0.07 0.06

Non-optimal solutions

10 803 3 0 0 1 1 1 1

20 565 22 10 5 43 32 22 19

30 453 41 29 21 68 63 35 33

40 386 61 41 31 89 84 59 54

60 346 85 74 67 110 105 91 80

Total 2;553 212 154 124 311 285 208 187

Average running time

10 803 1.2 1.8 2.5 0.9 0.9 0.3 0.3

20 565 3.0 3.4 17.0 1.4 1.4 1.1 1.2

30 453 7.2 11.8 28.8 2.9 3.1 3.4 3.7

40 386 15.7 25.8 51.1 5.7 6.2 2.9 7.2

60 346 55.8 105.2 175.9 8.7 10.3 10.6 13.4

Total 2;553 18.3 33.6 60.1 3.6 4.1 4.0 4.9

produce better results especially for large problems. The Path Relinking algorithm
adds little improvement to the good results obtained by GRASP procedures.

The last lines of the table provide the running times of the algorithms, in CPU
seconds. In all cases preprocessing is included as a part of the solution procedure.
The algorithms have been coded in C++ and run on a Pentium IV at 2.8 GHz. The
average running times are very short, though some problems would require quite
long times. In order to avoid excessively long runs, we have imposed a time limit of
60 s for the GRASP procedures. This limit negatively affects the solution of some
hard instances, which could have obtained better solutions in longer times, but in
general it ensures a good balance between solution quality and required running
time. The addition of the Path Relinking procedure does not increase the running
times very much, in part because we have included a mechanism to detect solutions
which have already been explored and avoid submitting them to the improvement
procedure. Therefore it seems convenient to keep it in the final implementation.
Therefore, the aggressive GRASP algorithm with Path Relinking seems to be the
best option for this type of metaheuristic algorithm.

226 R. Alvarez-Valdes et al.

11.6.5 Computational Results of Scatter Search Algorithms

In order to obtain the initial population, the GRASP algorithm is run until 100
different feasible solutions are obtained or the limit of 2,000 iterations is reached.
From the initial population, a reference set RefSet of b D 10 solutions is built, with
b1 D 5 quality solutions and b2 D 5 diverse solutions.

In a preliminary experience, the eight combination procedures described in
Sect. 11.5 have been tested on Schirmer’s problems. In this case, no regeneration
of the reference set is included and the algorithm stops whenever no new solutions
can be added to the Reference Set after a combination phase. We could see that all
the combinations except for Combination 7 obtained similar results. So for further
testing we keep Combinations 1 and 8, which produce the best results and have
completely different structures. We could observe that the basic Scatter Search
algorithm is very efficient, obtaining optimal solutions for most of the 3,826 feasible
Schirmer test instances. Therefore, an additional step in which the reference set is
regenerated will only be justified if it helps to solve the hardest problems, those
not solved by the basic algorithm. The regeneration procedure depends on three
parameters: the number of iterations of the modified GRASP algorithm, the number
of new solutions obtained, and the number of times the regeneration process is
called. We have considered the following values for these parameters:

1. Maximum number of iterations: 500–1,000
2. Maximum number of new solutions: 20–50
3. Calls to regenerate: three times—Only when the solution is improved after the

last call to regenerating

Table 11.7 shows the results for three versions of the Scatter Search algo-
rithm: Regen 0 (without regeneration), Regen 1 (500 iterations, 20 solutions, the
regeneration is called while the solution is improved), Regen 6 (1,000 iterations,
50 solutions, regeneration is called three times), and compare them with the
best version of the GRASP algorithms. The table shows that while the GRASP
algorithm is very efficient and can obtain better solutions on small problems, the
Scatter Search procedure with increasingly complex regeneration strategies can
significantly improve the overall results with a moderate increase in the running
times. Similar results were obtained for the test instances of Böttcher et al. (1999).

11.7 Conclusions

Partially renewable resources, in which the availability of the resource is associated
to a given set of periods and the activities only consume it when they are processed
in these periods, can be seen as a generalization of renewable and non-renewable
resources, but their main interest comes from their usefulness for modeling complex

11 Partially Renewable Resources 227

situations appearing in timetabling and labor scheduling problems, which can be
approached as project scheduling problems.

Preprocessing techniques which help to determine the existence of feasible
solutions and to reduce the number of variables and constraints are specially useful
for this type of problems because of the existence of a time horizon in which the
partially renewable resources are defined.

In this chapter we have reviewed existing formulations and exact algorithms but
we have focused on preprocessing techniques and heuristic algorithms, ranging form
simple priority rules to sophisticated GRASP/Path Relinking and Scatter Search
procedures. The computational results show that these metaheuristic algorithms are
able to produce high quality solutions in moderate computing times.

Acknowledgements This work has been partially supported by the Spanish Ministry of Education
and Science DPI2011-24977.

References

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2006) GRASP and path relinking for project
scheduling under partially renewable resources. Eur J Oper Res 189:1153–1170

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2008) A scatter search algorithm for project
scheduling under partially renewable resources. J Heuristics 12:95–113

Böttcher J, Drexl A, Kolisch R, Salewski F (1999) Project scheduling under partially renewable
resource constraints. Manage Sci 45:544–559

Chaudhuri S, Walker RA, Mitchell JE (1994) Analyzing and exploiting the structure of the
constraints in the ILP approach to the scheduling problem. IEEE T VLSI Syst 2:456–471

Christofides N, Alvarez-Valdes R, Tamarit JM (1987) Project scheduling with resource constraints:
a branch and bound approach. Eur J Oper Res 29:262–273

de Boer(1998) Resource-constrained multi-project management: a hierarchical decision support
system. Ph.D. dissertation, University of Twente, Twente, The Netherlands

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manage Sci 41:1693–1703

Laguna M, Marti R (2004) Scatter search. Kluwer, Boston
Mellentien C, Schwindt C, Trautmann N (2004) Scheduling the factory pick-up of new cars. OR

Spectr 26:579–601
Neumann K, Schwindt C, Trautmann N (2002) Advanced production scheduling for batch plants

in process industries. OR Spectr 24:251–279
Neumann K, Schwindt C, Trautmann N (2005) Scheduling of continuous and discontinuous

material flows with intermediate storage restrictions. Eur J Oper Res 165:495–509
Resende, MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F,

Kochenbeger G (eds) Handbook of metaheuristics. Kluwer, Boston, pp 219–249
Schirmer A (2000) Project scheduling with scarce resources. Dr. Kovac, Hamburg
Schwindt C, Trautmann N (2003) Scheduling the production of rolling ingots: industrial context,

model and solution method. Int Trans Oper Res 10:547–563
Shewchuk JP, Chang TC (1995) Resource-constrained job scheduling with recyclable resources.

Eur J Oper Res 81:364–375
Talbot FB, Patterson JH (1978) An efficient integer programming algorithm with network cuts fo

solving resource-constrained project scheduling problems. Manage Sci 24:1163–1174

	11 Partially Renewable Resources
	11.1 Introduction
	11.2 Solving Problems with Partially Renewable Resources
	11.2.1 Formulation of the Problem
	11.2.2 Modeling Capabilities
	11.2.2.1 Lunch Break Assignments
	11.2.2.2 Weekend Days-Off Assignments
	11.2.2.3 Special Conditions in School Timetabling Problems

	11.2.3 A Branch & Bound Algorithm
	11.2.4 Schirmer's Algorithms

	11.3 Preprocessing
	11.4 GRASP Algorithm
	11.4.1 The Constructive Phase
	11.4.1.1 A Deterministic Constructive Algorithm
	11.4.1.2 Priority Rules
	11.4.1.3 Randomization Strategies
	11.4.1.4 A Repairing Mechanism

	11.4.2 The Improvement Phase
	11.4.3 An Aggressive Procedure
	11.4.4 Path Relinking

	11.5 Scatter Search Algorithm
	11.6 Computational Results
	11.6.1 Test Instances
	11.6.2 Preprocessing Results
	11.6.3 Computational Results of Constructive Algorithms
	11.6.4 Computational Results of GRASP Algorithms
	11.6.5 Computational Results of Scatter Search Algorithms

	11.7 Conclusions
	References

