
Hybrid Multi-objective Network Planning
Optimization Algorithm

Ning Liu, David Plets, Wout Joseph, and Luc Martens

Abstract. In this paper, a novel hybrid algorithm for the optimization of indoor
wireless network planning is applied to a polyvalent arts centre. The results of the
algorithm are compared with those of a heuristic network planner for three scenar-
ios. Results show that our algorithm is effective for optimization of wireless net-
works, satisfying maximum coverage, minimal power consumption, minimal cost,
and minimal human exposure.

1 Introduction

When planning wireless networks, different characteristics of the result can be con-
sidered and optimized, e.g. coverage, energy consumption, exposure and cost. In [5],
energy conservation techniques on different types of base stations were compared.
Exposure in office environments has been investigated in [8] and [21]. As for wire-
less network planning optimization with four main requirements, in [18, 20], re-
searchers have focused on femtocells and hybrid (DVB-H/UMTS) networks, since
these networks are associated with improved coverage and lower exposure. Plets
et al. have presented a heuristic to optimize the exposure in indoor wireless net-
works, which is named the WiCa Heuristic Indoor Propagation Prediction (WHIPP)
tool [16, 14, 15].
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Mainly three types of optimization algorithms are considered when optimizing
indoor wireless environments planning [22, 13, 23]: PSO (Particle Swarm Optimiza-
tion) [8], ACO (Ant Colony Optimization) [21] and GA (Genetic Algorithm) [18].
In [11], researchers use ACO to optimize the wireless networks in order to achieve
coverage in energy-efficient way. In [3], Chen proposed an altered version of the
PSO algorithm to solve the network planning problem in RFID systems. GAs have
been developed to plan wireless communication networks in [9, 24] and have also
shown good performance for coverage optimization and exposure minimization
in [10, 2]. GA and PSO algorithms have both yielded successful results and fast
convergence in this field [22, 23], while ACO needs much more iterations for opti-
mizing wireless network in [23].

In [12], a hybrid algorithm (combining GA and quasi-PSO) was proposed for the
optimization of the wireless network planning, accounting for four requirements:
maximum coverage, minimal power consumption, minimal cost, and minimal hu-
man exposure. In this paper, this algorithm and the WHIPP algorithm will be ap-
plied to a polyvalent arts centre for three different optimization scenarios. Section 2
briefly introduces the configuration and the fitness functions that are used. In Sec-
tion 3, three scenarios are presented. A summary of our hybrid algorithm is provided
in Section 4. The results and comparison with WHIPP of these scenarios for the in-
door environment are provided in Section 5. Conclusions are presented in Section 6.

2 Configuration and Fitness Function

2.1 Configuration

Fig. 1 shows a map of the ground floor of the Vooruit cultural centre (a polyva-
lent arts center). It is mainly constructed with large concrete walls and glass. The
goal is to design a wireless network with WiFi (801.11n) access points operating at
a frequency of 2.4 GHz, with an antenna gain of 2 dBi, and for required received
power of −68 dBm (for HD video coverage). The EIRP (Effective Isotropic Radi-
ated Power) range of the access points runs from 0 to 20 dBm. The receiver antenna
gain is 0 dB. There are 202 possible positions to place WiFi access points; these
are also the receiver points for which coverage and exposure will be calculated. The
path loss PL (the ratio of the transmitted power and the received power) will be
modeled according to the following two models.

• The first model is the two-slope model proposed by the IEEE 802.11 TGn chan-
nel models group [7].

PL(d) = PLf ree (d)+X (d ≤ dbr)

PL(d) = PLf ree (d)+ 32log10

(
d

dbr

)
+X (d > dbr) (1)
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Fig. 1 Map of The Indoor Environment and the Exposure Level for Scenario III for the SIDP
Model

Where PLf ree (d) is the free space loss [19]. The variation of path loss X due to
shadowing follows a lognormal distribution, with two different standard devia-
tions σ [dB] of X for d ≤ dbr and d > dbr. In this situation, parameters are con-
sidered as follows: dbr of 10m, σ = 3 dB for d ≤ dbr and σ = 5 dB for d > dbr,
corresponding to a 95% shadowing margin of 4.92 dB and 8.2 dB for d ≤ dbr and
d > dbr respectively [7]. The temporal fading margin is set at 5 dB [1].

• The second model is Simple Indoor Dominant Path Loss model used in [17].
The shadowing margin is set at 7 dB (95%) and the fading margin at 5 dB (99%).

2.2 Fitness Functions

Four different fitness functions will be investigated for the optimization of the net-
work planning. Each fitness function optimizes one or more of the four main wire-
less network characteristics (coverage, power consumption, cost, human exposure).
The results of the different functions, fi (i = 1,2,3) will range from 0 to 100, so that
they have an equal contribution when they are combined in a new fitness function
(see Section 2.2.4). A comparable value of the weights (w1, w2, w3) of the differ-
ent functions ( f1, f2, f3) then causes a comparable influence of the function on the
combined fitness function ( f4).
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2.2.1 Coverage

The first fitness function represents coverage fitness as in Eq. (2),

f1 = 100
fsol

ftot
(2)

Where ftot is the number of all reception points (202 for the considered building),
fsol is the number of reception points covered by the current solution in this indoor
environment and f1 represents the coverage percentage of the considered network
configuration.

2.2.2 Power Consumption and Economic Cost

In Eq. (3), f2 represents the ratio of the actual power consumption of the consid-
ered network configuration to the maximum achievable power consumption in the
network:

f2 = 100
∑n

i=1 pi

pmax
, (3)

where pi is the power consumption of the i-th access point (12 W for a WiFi access
point which is on [6], 0 W when it is turned off), pmax is the total power consumption
when all possible access points are turned on. The actual EIRP also affects the total
power consumption. However, because the impact is small [6], we neglect the effect
of the radiated power and assume a fixed value of 12W per access point [4, 6].
Eq. (3) then reduces to

f2 = 100
m
n
, (4)

where m is the number of access points which are turned on, and n total number of
possible positions (202 for Vooruit).

The cost of all installed access points represents the economic cost (Capital Ex-
penditures). Since a fixed power consumption is assumed for all access points, f2

represents both the economic cost fitness function and the power consumption fit-
ness function of the considered network deployment.

2.2.3 Exposure

In Eq. (5), f3 is a fitness function based on the median electric-field strength
Em [V/m] observed at the considered receiver points in the environment.

f3 = 100
Em

Emax
, (5)

where Emax is the maximal median electric-field value that could be achieved. This
is the case when all (202) access points are turned on with an EIRP of 20 dBm,
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yielding a value for Emax of 2.19 V/m is obtained for TGn model and 2.46 V/m
for SIDP model. The optimal solution of this fitness function has a minimal median
electric field strength.

2.2.4 Combined Fitness Function

In Eq. (6), f4 is a global fitness function which combines above three presented
fitness function:

f4 = w1 f1 −w2 f2 −w3 f3 (6)

where wi is the weight (values between 0 and 1) of function fi with its value de-
termined by the importance of fi. By adjusting wi , four demands can be jointly
optimized. 2. w2 and w3 are chosen so that coverage is the most important factor in
optimization (w1 = 1). However, on top of coverage optimization, energy consump-
tion (w2) and exposure (w3) are also important, but less than coverage. The values
of w2 and w3 need to be small enough to obtain a solution with 100% coverage,
but large enough to still minimize energy consumption and exposure. Consequently,
when we increase w2, results with less access points are expected. When we in-
crease w3, results with lower exposure levels are expected. The weights control the
value of the fitness function and the fitness value affects the result of the algorithm.
The best solutions are the ones with the highest combined fitness function values,
as they correspond to higher coverage rates, lower total power consumptions (and
cost), and lower exposure values. For the optimization of the fitness function, a hy-
brid genetic optimization algorithm is used [12].

3 Scenarios

We define three scenarios to investigate the influence of coverage, exposure, and
cost restrictions on the network deployment for Vooruit (in Fig. 1) by applying our
algorithm and comparing with the WHIPP algorithm. Unlike for our hybrid opti-
mization algorithm, the WHIPP optimization is not based on the use of a fitness
function and the evaluation of a number of iterations. It builds a solution based on a
number of optimization phases following a fixed procedure. The WHIPP algorithm
allows an optimization for 100% coverage with a minimal number of APs, as well as
an optimization for 100% coverage with a minimal exposure. This allows a compar-
ison with the output of Scenarios I and II by our algorithm, as described hereafter.
All scenarios are applied to the configuration and using the PL model of Section 2.
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3.1 Scenario I: Coverage with Minimal Number of APs

Scenario I aims to obtain 100% coverage rate with a minimal number of access
points (minimal both cost and power consumption). We select the weight w2 for the
f2 as 0.2, since this value is large enough to minimize the number of APs and small
enough to aim for a coverage rate of 100%. The combined fitness function of Eq. (6)
in scenario I is as follows:

f4 = f1 − 0.2 f2 (w1 = 1,w2 = 0.2) (7)

3.2 Scenario II: Coverage with Minimal Human Exposure

Scenario II intends to obtain 100% coverage rate with a minimal median exposure.
The combined function f4 is as follows:

f4 = f1 − 0.2 f3 (w1 = 1,w3 = 0.2) (8)

We select the weight for the exposure level fitness w3 as 0.2, since this value is large
enough to minimize the exposure level and small enough to obtain 100% coverage.

3.3 Scenario III: Coverage with Minimal Human Exposure and
Minimal Number of APs

Scenario III is defined to consider a tradeoff among a high coverage rate, a low total
power consumption and a low median electric-field strength. Under the condition
of scenario III in Eq. (9), we consider different requirements together: coverage,
number of access points (cost and power consumption), and exposure level.

f4 = f1 − 0.2 f2 − 0.2 f3 (w1 = 1,w2 = 0.2,w3 = 0.2) (9)

4 Our Algorithm

Fig. 2 shows the flow chart that corresponds to the operation of our algorithm. The
main operations of the genetic algorithm are crossover and mutation operations.

Firstly, 1000 random solutions are generated and their fitness values are calcu-
lated. The solutions with the top-80 fitness values are put into a list.

Secondly, after sorting this solution list based on their fitness values, the top-40
of the list with the high fitness values is called ’good list’ and the rest of the list is
called ’bad list’.
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Thirdly, new solutions are generated by a crossover operation between a father
solution from the good list and a mother solution from the bad list. In this operation
one third of the father solution is combined with two third of a mother solution. If
the offspring gets a higher fitness value than that of mother solution, we put it into
the corresponding location of the list.

Fourthly, the mutation operation adds random changes in a solution and makes
the algorithm converge to a global optimum instead of to a local optimum. Dur-
ing each mutation, a solution has equal possibility to perform one of the following
operations:

• Turn off one access point in this solution;
• Turn on an access point with random power value;
• Turn on an access point with random power value and turn off another access

point of this solution;
• Turn off two access points of this solution and turn on an access point with ran-

dom power value;
• Change the power value of an access point of this solution;
• Change the position of an access point of this solution.

GAs and PSOs are suitable to solve the multi-objective problem described in Sec-
tion 1. Since we can obtain benefit from the evaluation and heredity of GA, the GA
is better than PSO. PSO performs better, when the solution consists of only one AP,
due to a slight change of solution in each iteration is better to quickly find the opti-
mal solution. Therefore, our algorithm introduces operations of PSOs into the GA
system. When only one access point is sufficient, offspring are generated by using
the quasi-PSO with a certain probability. The new algorithm approaches the global
optimum more efficiently.

5 Results

5.1 Simple Indoor Dominant Path Loss Model (SIDP)

The results for the scenarios described above are investigated for WHIPP and our
algorithm based on the SIDP model and are listed in Table 1. For all scenarios, the
coverage of all methods is 100%. For scenario I, our algorithm obtains a solution
with 3 access points, while WHIPP obtains a solution with 4 access points. The
solution of our algorithm generates a lower median exposure level of 123.7 mV/m
versus 155.6 mV/m of WHIPP, due to the lower number and EIRP of APs of the
solution of our algorithm. The solution of our algorithm for scenario II also gen-
erates a slightly lower median exposure level (9.3% lower) than that of WHIPP,
although, the 95% percentile exposure level of our algorithm is much higher than
that of WHIPP, since there is less spatial homogeneity in the exposure levels of our
solution. The solution of our algorithm for scenario III is a compromise between
all criteria (high coverage, low exposure and needs a low number of APs). It shows
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Fig. 2 Flow Chart of Our Algorithm

the advantage of our algorithm, since scenario III is difficult to implement in the
WHIPP tool. The solution of our algorithm for scenario III requires 5 APs and gen-
erates a median exposure level of only 47.2 mV/m which is about 1% higher than
that of scenario II which needs 10 APs. Fig. 1 shows the electronic field distribu-
tion for scenario III in the considered building. The location and EIRP of the APs
is also indicated. Compared to WHIPP [15, 14], the simulation time (last column
in Table 1) of the our algorithm is always much higher than that of WHIPP, since
WHIPP is a heuristic. Limiting the simulation time of our algorithm to the WHIPP
simulation times would yield worse results, since a substantial number of iterations
is required for this type of algorithms (GAs). However, since network planning is
mostly a task that is performed only once, large computation times are not really an
issue if the algorithm finally provides a better result.

Fig. 3 shows the comparison of CDF of the exposure values based on the SIDP
model for WHIPP and our algorithm. It shows that the exposure level of our al-
gorithm is always lower than that of WHIPP at the same probability for scenario I.
However, when we consider scenario II, this situation is reversed when the probabil-
ity greater than 80% (see Fig. 3), since the less spatial homogeneity in the exposure
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Table 1 The Results of Scenarios for indoor Environment Based on Simple Indoor Dominant
Path Loss Model

Scenarios Method Coverage
Rate
[%]

#APs [-] E50
a

[mV/m]
E95

b

[mV/m]
EIRP [dBm] Simulation

Time [s]

Scenario I WHIPP 100 4 155.6 819.7 4×20dBm 111
Our Algorithm 100 3 123.7 775.0 15dBm,2×20dBm 8.8×103

Scenario II WHIPP 100 12 51.6 190.2 −26dBm, −13dBm,
−1dBm, 0dBm, 5× 1dBm,
2dBm, 4dBm, 5dBm

274

Our Algorithm 100 10 46.8 422.2 2 × 0dBm, 2dBm, 4dBm,
2 × 5dBm, 3 × 9dBm,
17dBm

7.2×104

Scenario III WHIPPc - - - - - -
Our Algorithm 100 5 47.2 465.3 3dBm, 10dBm, 13dBm,

16dBm, 18dBm
6.6×104

aE50: 50% percentile of E (mV/m)
bE95: 95% percentile of E (mV/m)
cWHIPP cannot optimize 3 requirements as required for scenario III
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Fig. 3 Comparison The CDF of The Exposure Results for Indoor Environment (Based on
The Simple Indoor Dominant Path Loss Model)

levels of our solution. The exposure level of our algorithm for scenario III is very
close to that of our algorithm for scenario II.
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Table 2 The Results of Scenarios for Indoor Environment Based on TGn Two-Slope Path
Loss Model

Scenarios Method Coverage
Rate
[%]

#APs [-] E50
a

[mV/m]
E95

b

[mV/m]
EIRP [dBm] Simulation

Time [s]

Scenario I WHIPP 100 2 164.1 631.8 2×20dBm 1
Our Algorithm 100 2 115.5 434.9 8dBm, 19dBm 35

Scenario II WHIPP 100 6 35.0 116.1 6×1dBm 6
Our Algorithm 100 5 34.5 118.6 2×1dBm, 3×2dBm 137

Scenario III WHIPPc - - - - - -
Our Algorithm 100 4 41.6 294.0 1dBm, 2×2dBm, 18dBm 104

aE50: 50% percentile of E (mV/m)
bE95: 95% percentile of E (mV/m)
cWHIPP cannot optimize 3 requirements as required for scenario III

5.2 TGn Model

Table 2 lists the results of WHIPP and our algorithm. As for scenario I, WHIPP
and our algorithm both obtain a solution with 2 APs. The median and the 95%
percentile exposure levels of our algorithm for scenario I are both lower than that
of WHIPP, due to the lower EIRP of the APs of our algorithm. The differences
between the exposure results of WHIPP and our algorithm for scenario II is small.
The solution of our algorithm needs 6 APs, while that of WHIPP needs 5 APs. For
the exposure level for scenario II, the median exposure level of WHIPP is 1.5%
higher than that of our algorithm. However, E95 of our algorithm is 2.1% higher
than that of WHIPP. For scenario III (Table 2), our algorithm obtains a solution with
4 APs (20% lower than that of our algorithm for scenario II) and generates a median
exposure of 41.6 mV/m (74.6% lower than that of our algorithm for scenario I).
As for the simulation time, that of WHIPP is again always lower than that of our
algorithm for each scenario, but calculation times are limited for a algorithm as well
(maximum =137s for scenario III).

Comparison of the CDFs for the TGn model shows that the exposure values for
our algorithm are mostly lower than for WHIPP at the same probability for sce-
nario I (see Fig.4). The difference between the exposure levels of WHIPP and that
of our algorithm for scenario II is small. For scenario III, the curve of our algorithm
is between scenario I (minimal cost or number of APs) and scenario II (minimal
exposure).

6 Conclusions

A hybrid genetic optimization algorithm has been proposed to optimize coverage
rate, human exposure to radio-frequency sources, energy consumption and economic
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Fig. 4 Comparison The CDF of The Exposure Results for Indoor Environment (Based on
The TGn Model)

cost of the indoor wireless networks. Specific fitness functions were used to evaluate
the solutions for a homogeneous WiFi network. Three scenarios are defined to verify
the performance of the algorithm and good results are obtained. An application for
a realistic indoor environment (Vooruit) is investigated leading to reductions of cost
and exposure when applying our algorithm compared to a heuristic tool (a median
exposure level reduction of 9% or a cost reduction of 25% are obtained compared
to WHIPP based on the SIDP model). Future research enable planning of heteroge-
neous wireless networks for various indoor environments.
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