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Study of New Organic Field Transistors for 
RFID, Optoelectronic and Mobile Applications 

Marius Prelipceanu1 and Adrian Graur1 

Abstract. We present our results in developing processes and new materials for 
realization of new organic transistor which are promising for optoelectronics and 
radio frequency identification (RFID) applications. In this report we discuss the 
films morphology, profilometry and the field-effect transistor (FET) performances 
of pyrrolo phenanthroline derivatives (RA). We consider that because of  π-
conjugation which is extended and good alignment of molecules, the pyrrolo 
phenanthroline devices exhibited hole mobilities of up  0.031  cm2 V−1 s−1. The 
performance of these devices can be adequate for construction of 135-kHz RFID 
or high resolution display.  

1 Introduction 

In the last years, studies in organic semiconductors have grown because of their 
multiple applications in optoelectronic devices and radio frequency identification 
(RFID) tags [1-9]. These materials have a few advantages compared to conven-
tional inorganic electronics. We can mention here a good and easy processability, 
a good chemical control concerning the injections of the charge, a good fit in with 
plastic substrates, and reduced production price [10-13]. It is important to have 
particular molecular ordered architectures in this material, in order to obtain high 
carrier mobility. Good alignments of molecules in established orientation is fit in 
for intermolecular charge migration and also for a productive charge transport, 
necessary for a new generation of device [14-16]. During the research of organics, 
a lot of studies were made to obtain highly crystalline films [17-18].  The FETs, 
RFID and organic emitting diodes characteristics likewise, depend on the film 
morphology [19]. Here we report on the OFET particularities of pyrrolo com-
pounds [7,8] including correlation between morphology structure and performance 
of electrical measurement.  
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Fig. 4 Surface morphology of phenanthroline derivatives films (a) 3000 rot/min speed spin,  
(b) 1500 rot/min speed spin 

 
 

By AFM investigation, was found the preferred crystal orientation in all 
phenanthroline films. This is due, probably, because of spin-coating direction. The 
grains are big in dimension, in range of 20 – 160 nm. They are isolated by little 
grain boundaries.  

We observe smooth surface in all investigated films. Root mean square (RMS) 
roughness determined by ellipsometry and profilometry measurements is in range 
of 1 nm and 3 nm. At higher speed in spin-coating process, the RMS values which 
we achieved denote a smoother surface. The typical relief of a phenanthroline 
derivatives film on a SiO2 layer is shown in Fig. 4. The layers thick films were 
investigated by X-ray diffraction. The spectra does not show Bragg peaks because, 
probably, an insufficient crystallinity of the layers. Also this observation can con-
firm that domains with different inclination angles are present in the film.  

The thin-film transistors of RA1 – RA2 presented typical p-channel characteris-
tics. At a negative bias applique, the drain–source current scaled with the negative 
gate voltage because of the grown number of charge carriers, holes in our situa-
tion. The produced curves at various gate biases and the transfer curves at steady 
VD for the phenanthroline derivatives films are shown in Figure 5. The output 
characteristics show a good saturation region.  

We calculate the field-effect mobilities in the saturation regime at a drain volt-
age of VD = −50 V, the capacitance of the SiO2 insulator Ci is considered 
12.3 × 10−9 F cm−2 and the value of  VG is the gate voltage and VT threshold voltage 
are from experiment.  
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Fig. 5 Output characteristics
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this capacitance on performance, measurements were performed on devices with 
300 μm overlap (fig. 7). As expected, the overlap capacitance causes substantial 
roll-off at 10 kHz, which is reasonable for 135-kHz RFID. 

 
Fig. 7 AC performance of devices with 300 µm overlap 

The FET particularities of OFETs depend, in the first case, on the molecular 
alignment in the film and on the injection of holes from the electrodes. We assume 
that the molecules are aligned perpendicular to the substrate and the π–π superpo-
sition amongst close molecules is increased at maximum and carrier transport can 
exist. The rigidity and planarity of RA compounds can give a high crystallinity 
and vertical alignment into the reasonable and efficient molecular orientation. In 
principle, for such organic compounds that present great mobilities at the highest 
substrate temperatures because the grain dimension tends to grown and the num-
ber of grain boundaries tends to decline with increased temperature [19]. Unfortu-
nately, the OFET devices made from phenanthroline derivatives showed a weak 
stability after 15 days in air. 

4 Conclusions 

We have studied new semiconducting organic materials containing different radi-
cals group and manufactured OFETs utilizing those materials as active layer. Be-
cause of the expanded π-conjugation, productive charge injection, and right 
alignment of the molecules, the phenanthroline devices showed hole mobilities in 
range of 0.0006 - 0.031 cm2 V−1 s−1. In phenanthroline films, the carriers, holes in 
our case, move effectively, and thus the FET particularities are efficient, when the 
molecular orientation favors π–π superposition and the grains are big in dimen-
sions and isolated by little grain boundaries. The molecules aspired to align ap-
proximately perpendicular to the substrate, which favors π–π overlap between 
close molecules. Furthermore betterment in FET performance may be possible by 
improving the manufacturing conditions – using various substrates temperatures 
and the surface treatment in order to improve the orientation of molecules.  
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Our new organic transistors are promising for construction of integrated circuits 
on thick flexible polyester substrate, using methods compatible with printing pro-
cesses for mass production. These circuits can be used in optoelectronics, mobile 
and radio frequency identification (RFID) applications.   

We can mention here few advantages as a good and easy processability, a good 
chemical control concerning the injections of the charge, a good fit in with plastic 
substrates, and reduced production price 
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