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Abstract. This paper presents an experimentally verified heuristic physical model
to predict the throughput of a Wireless LAN link in presence of homogeneous inter-
ference of neighboring networks. The model predicts achievable throughput based
upon two interference characteristics: transmission rate of the interface and the
channel occupancy degree of the interference which is a measure of user activity
defined in the paper.

1 Introduction

Large scale growth of wireless networks and spectrum scarcity are introducing more
interference than ever. Intensive interference degrades wireless links and may jeop-
ardize seamless connectivity and hence Quality of Service (QoS) offered to the
users.

Cognitive Radios (CRs) are becoming a tempting solution to tackle this type
of spectrum over-utilization by introducing opportunistic usage of frequency bands
that are not heavily occupied by licensed users [1]. The equal regulatory status of
wireless terminals on the Industrial Scientific Medical (ISM) band leaves no con-
sideration of a primary user for wireless users. Therefore, interoperability of ISM
band networks is becoming a key issue that must be solved.

Wireless networks are designed to tackle homogeneous intra/inter network
interference by means of various medium access techniques. The efficiency of in-
terference mitigation techniques of the present technologies has been profoundly
assessed in literature. For instance in [2], a large number of experiments prove that
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the throughput of IEEE 802.11 WLAN is highly dependent on the traffic character-
istics of other present Wi-Fi networks.

Artificial neural networks (ANN) have also been used for radio parameter adap-
tation in CR [3, 4]. The ANN determines radio parameters for given channel states
with three optimization goals, including meeting the bit error rate (BER), maximiz-
ing the throughput and minimizing the transmit power. In [5], it is proposed to use
the ANN to characterize the real-time achievable communication performance in
CR. Since the characterization is based on runtime measurements, it provides a cer-
tain learning capability that can be exploited by the cognitive engine. The simulation
results demonstrate good modeling accuracy and flexibility in various applications
and scenarios.

Metaheuristics [6] are used for combinatorial optimization in which an optimal
solution is sought over a discrete search-space. Evolutionary Algorithms/Genetic
Algorithms (GA)s, Simulated Annealing (SA), Tabu Search (TS) and Ant Colony
Optimization (ACO) are examples of metaheuristic algorithms. Among the vari-
ous metaheuristic algorithms, the GA has been widely adopted to solve multiobjec-
tive optimization problems and to dynamically configure the CR in response to the
changing wireless environment. For instance in [7], Park et al. validate the appli-
cability of GA-based radio parameter adaptation for the CDMA2000 forward link
in a realistic scenario with Rician fading. In [8], a GA-based cell-by-cell dynamic
spectrum-allocation scheme is investigated achieving better spectral efficiency than
the fixed spectrum-allocation scheme. A new solution-encoding technique is pro-
posed to reduce the GA convergence time. In [9], a software testbed for CR with the
spectrum-sensing capability is implemented and a GA-based CE to optimize radio
parameters for dynamic spectrum access (DSA).

Game theory techniques have also been widely used in the context of cognitive
radios. In [10], population game theory has been applied to model the spectrum
access problem and develop distributed spectrum access policies based on imitation,
a behavior rule widely applied in human societies consisting of imitating successful
behaviors. In [11], the authors study the spectrum access problem in cognitive radio
networks from a game-theoretical perspective. The problem is modeled as a non-
cooperative spectrum access game where secondary users simultaneously access
multiple spectrum bands left available by primary users, optimizing their objective
function which takes into account the congestion level observed on the available
spectrum bands.

Apart from all aforementioned sophisticated methods, there are also methods in
literature that derive a physical model for the target parameters based on monitoring
physical layer parameters like Received Signal Strength Indicator (RSSI) or Carrier
to Interference and Noise Ratio (CINR). For instance, in [12], the authors derive
such a physical relation for modeling the throughput of WiMax networks based on
the CINR value at the receiver.

In this paper we develop a novel experimentally verified heuristic model to pre-
dict and optimize the throughput of wireless terminals in a cognitive network. The
model is to be used as the kernel of a cognitive decision engine. The prediction is
based on the physical spectrum information. Information is collected passively from
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the environment i.e., it does not require any interaction with external/third party net-
works and resources.

The model is derived from a set of exploratory measurements and is validated
with various practical measurements in a pseudo shielded experimental testbed
building, w-iLab.t [13]. This paper is organized as follows: in Section 2, the ex-
ploratory measurements are described. Section 3, presents the heuristic physical
model. Section 4 presents the conclusion of this paper.

2 Exploratory Measurements

After describing the network configuration and the experiment setup, we will elab-
orate the exploratory measurements we performed for deriving the physical model
of the throughput.

2.1 Experiment Description

2.1.1 Network Configuration

All experiments are conducted in a pseudo-shielded testbed environment [13] in
Ghent, Belgium. The nodes in the testbed are mounted in an open room (66 m x
20.5 m) in a grid configuration with an x-separation of 6 m and a y-separation of 3.6
m. Figure 1 shows the ground plan of the living lab with an indication of the loca-
tion of the nodes. Each node has two Wi-Fi interfaces (Sparklan WPEA-110N/E/11n
mini PCIe 2T2R chipset: AR9280) and on each Wi-Fi card, two antennas are con-
nected (2x2 MIMO (Multiple-Input Multiple-Output) is supported). Furthermore, a
ZigBee sensor node and a USB 2.0 Bluetooth interface (Micro CI2v3.0 EDR) are
incorporated into each node.

2.1.2 Experiment Setup

In each of the interference measurements, a set of experiments is executed. Each ex-
periment consists of two phases: a first phase where the QoS of the link under test is
recorded without interference, and a second phase where interference is generated
in the environment. Phase 2 of each experiment proceeds as follows:(i) Start the
interference transmission (ii) Wait 1 second to insure interference is on the air (iii)
Start the link under test transmission for n seconds (iv) Stop all data transmissions.
The value of n is set to 10 by default unless otherwise mentioned. During the exe-
cution of an experiment, the Iperf output stream containing the periodic throughput
reports of the receiver is parsed and stored in a database at the experiment controller
server of the testbed. For each record, we also log the time stamp of the throughput
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Fig. 1 W-iLab.t living lab test environment (66m x 20.5m) with indication of the nodes and
the connection links used for the experiments. Links L1 and L2 are 9.37m long and L3 and
L4 are 18m long.

report. Moreover, all physical-layer changes such as channel switching and transmit
power modifications together with their time stamps are logged into the database.
After running the experiments, the time stamps of the physical- layer changes are
used in order to calculate the achieved throughput during each of the experiments in
the total set.

During each interference measurement, two connection links are established, as
displayed in Figure 1. The first link, always operating on channel 6, is denoted as
the link under test (LUT). By default this link is set at the location L1 (see Fig-
ure 1) unless otherwise mentioned. The second link is the interfering link, between
node 30 and node 20 (see the solid link in Figure 1). The data generation rate of
the transmitters is defined as the UDP (User Datagram Protocol) bandwidth of the
Iperf application. All Wireless Local Area Network (WLAN) radio interfaces are
set to transmit at a certain bit rate (TxRate) and Iperf [14] was used as the traffic
generator. The channel occupancy degree (COD) is here defined as the ratio of the
data generation rate and the TxRate. There is a transmit buffer that is filled by data
at a rate equal to the data generation rate, while the interface transmits through this
buffer at a rate equal to the TxRate. The data generation rate is always smaller than
or equal to the TxRate.

COD [%] =
Data Generation Rate [Mbps]

TxRate [Mbps]
× 100 (1)

2.2 Measurement I: Assessment of Channel Overlap and
Interference Level Influence on throughput

The first measurement studies the influence of channel overlap of the interference
link on the throughput of the link under test. This measurement consists of 70 it-
erations each characterized by the interference channel (5 channels) and by the
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generated interference level (14 levels) as observed at node 19 (caused by interfer-
ing node 30). The channel of the interfering link was varied from channel 6 (full
overlap with link under test) to channel 10 (smallest overlap with link under test).
For each channel overlap, fourteen different interference power levels [dBm] were
observed at node 19: [-51,-52,-53,-54,-56,-57,-59,-60,-62,-63,-66,-70,-71,-72]. This
measurement was repeated for 2, 18, and 48 Mbps TxRates for the case of inter-
ference on channel 6 and 7 and for 2, 11, 24, and 48 Mbps TxRates for the case
of interference on channel 8, 9, and 10 to see if the TxRate influences the through-
put on non-overlapping channels. In all iterations, the transmission rate of the LUT
equals that of the interference link and the COD of the interference link is equal to
100% (see Equation 1). The value of n (duration of the assessment) was set to 500
seconds in this measurement.

Figure 2 shows the achieved average throughput as a function of the received
interference power level, for interference on different channels. Each region is iden-
tified by a bit rate which is the TxRate of the LUT and interference link. Note that
here the interference COD is equal to 100%. A higher channel number corresponds
with less overlap, i.e., for increasing channel separations, interference decreases
(LUT operates on channel 6). The interference level on the x-axis of these Figures
is defined as the power received from node 30 at node 19 (see Figure 1).

Measurement results in Figure 2 show that the sensitivity of the throughput to the
interference channel overlap depends on the transmission rate of the links. Firstly,
the interference power level does not affect the throughput when the interference
power level is above a certain TxRate-channel dependent threshold: the throughput
is not more impacted when the interference power is higher.

The upper regions of Figure 2 reveal high sensitivity of throughput on inter-
ference level and interference transmission rate at higher TxRates. Interference on
channels 9 and 10 (channel separation of 3 and 4) affects the throughput only when
the interference TxRate is above 2 Mbps. For the 48 Mbps case for instance, there is
more than 30% throughput reduction for interference power levels above -70 and -60
dBm on channels 9 and 10 respectively. In all cases, at higher interference TxRates,
the interference level is a key parameter that influences the achieved throughput.

Therefore, channel overlap between the interference source and the network un-
der study is an important parameter that affects the throughput of WLANs. The
results of these measurements suggest that if the cognitive decision engine has to
select an overlapping channel, it should select the channel with the least interfer-
ence level and has lower interference TxRate.

2.3 Measurement II: Joint Assessment of the Interference TxRate
and Interference COD Influence on throughput

Since interference COD and interference TxRate are not completely uncorrelated
parameters, deriving a decent 2-dimensional model requires joint assessment of
the two parameters influence on throughput. Here L3 serves as LUT and the same
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Fig. 2 Average throughput over link under test in a 500 second time frame as a function
of received interference power level, for interference with different channel overlaps. Each
region has its corresponding TxRate of the LUT and interference link. Intf. COD = 100%.
The LUT is on channel 6.

selection of interference link as described in previous measurements is used. We
measure the average achievable throughput in a ten seconds interval with interfer-
ence TxRates of [2 11 18 24 36 48 54] and interference COD values starting from 0
to 100% in steps of 6.25%. All links are set to channel 6 and the transmit power of
all terminals is set to 20 dBm. The TxRate of the LUT is set to 54 Mbps and its COD
is set to 100% percent such that the maximum achievable throughput is measured.

Sample points in Figure 3 show the results of validation measurement on link
L1. Looking at the results of this measurement unveils the dependency of the in-
terference COD and TxRate when predicting the throughput value. This is more
investigated in next Section.
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3 Development of the Model

3.1 Construction of Models

Data transmission rate of the Wi-Fi interface and the user activity are the key pa-
rameters that determine the spectrum utilization by any terminal. For a fixed amount
of data transmission, higher transmission rate (TxRate) means less spectrum occu-
pancy in time. Hence, an active user with low transmission rate occupies the spec-
trum to an extent that users of other networks in the vicinity experience a much
lower than expected throughput.

The model predicts the achievable throughput (T) based on the interference
characteristics. Parameters that characterize the interference are: COD of the in-
terference, interference TxRate, interference frequency channel. All parameters are
obtainable using the monitor mode of IEEE 802.11 interfaces [15] and packet trac-
ing applications like libtrace [16] and tcpdump [17]. Extension to all Wi-Fi channels
is feasible by periodic monitoring of all channels or by exploiting more WLAN in-
terfaces at different locations of the network each operating on a single channel.

Due to the dependency of the interference parameters, deriving a decent 2-
dimensional model to predict the throughput is crucial. The observation of the
throughput behavior in sample points of Figure 3 shows that depending on the in-
terference TxRate, the achieved throughput increases exponentially after a certain
interference COD threshold. Therefore, by applying unit step function to the expo-
nential models and partitioning the space into linear and exponential regions, we
come up with an accurate model. This is evidenced by the results of our suggested
model in Equation 2 below:

T (CODInt f .,T xRateInt f .) =

(a0e−b.CODInt f .)u(90−CODInt f .− r.TxRateInt f .)+

(a0e−b(90−r.TxRateInt f ))u(CODInt f .+ r.TxRateInt f .− 90) (2)

where u(t) is the unit step function, TxRateInt f . denotes interference TxRate,
CODInt f . denotes interference COD, and the coefficient parameters should be op-
timized for the intended link and the intended channel. The nonlinear least square
optimization results for measurements on link L3 assigns an a0 value of 23.23,
b = 0.02 and r = 0.5. These values are obtained by exploiting all the sample points
of the measurement II. Figure 3 illustrates this realization of the model for sample
points of link L3. Note that the configuration of the step function arguments are
optimized manually by looking up the results of measurement II where threshold of
the aforementioned throughput exponential behavior increases linearly from a COD
of 90% for TxRate of 2 Mbps up to the COD value of 60% for TxRate of 54 Mbps.
The obtained R2 (coefficient of determination) value is 0.9425 and the Root Mean
Square Error (RMSE) value is 1.34 which show the accuracy of the model.
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Fig. 3 The 3D demonstration of the throughput model realized at L3

3.2 Validation Measurements

The objective of these measurements is to verify the 2-dimensional model of Equa-
tion 2 for different sender-receiver distances and different link locations. To this end,
different combinations of LUT terminals with various distances of sender-receiver
were used while the interference link was fixed. These links are illustrated in Figure
1: link L2 is a replication of L1 while L4 is a replication of L3 at another location.
Except for the LUT terminal locations, the measurement configuration is identical
to measurement II described in Section 2.3.

3.3 Validation Results

The model obtained by using measurements at link L3 is assessed with measure-
ments on links L1, L2 and L4. The results are reported in Table 1. All R2 values
are above 0.89 and the RMSE does not exceed 1.7 Mbps. The maximum devia-
tion is 3.3 Mbps which is acceptable when compared to the achievable throughput
range of 20 Mbps. Hence, the model optimized for a single link location can serve
to predict the throughput at other links with an acceptable accuracy. This measure-
ment setup was limited to the node locations and propagation characteristics of the
testbed. However, for environments with more diverse propagation characteristics
and larger sender-receiver distances, a correction parameter can be added to the
model to compensate the throughput drop due to more attenuation. The simplic-
ity of this model enables the decision engine to devise it with a small number of
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Table 1 Statistics of the verifying measurements at various links with the model obtained at
L3

Link RMSE [Mbps] Max. Deviation [Mbps] R2

L4 1.65 3.31 0.8987
L3 1.34 2.93 0.9425
L2 1.59 2.57 0.9056
L1 1.59 2.66 0.9059

sample points. Figure 4 shows the RMSE and R2 of the model realized with varying
number of sample points. Every realization is a set of measurements with all possi-
ble T xRateInt f . values and CODInt f . values uniformly distributed between 0% and
100%. The R2 value is always more than 0.94 and the RMSE is always less than
1.35 Mbps. These statistics show that the model can be devised accurately with 42
samples.
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Fig. 4 Statistics of the model for realizations with varying number of sample points

4 Conclusion and Future Work

Based upon numerous exploratory measurements, a novel physical throughput
model accounting for interference channel occupancy degree (CODInt f .) and
interference transmission rate (T xRateInt f .) was devised and verified in a pseudo-
shielded testlab environment.
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Future research on this framework includes comparison of the performance of the
cognitive engine based on the proposed model with smarter higher level algorithms,
and integration of this type of physical modeling with other decision algorithms
to achieve more efficient algorithms. This model was devised in a pseudo-shielded
environment, therefore extension to office and industry environments can be the
topic of further research.
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