
123

Tristan Cazenave
Mark H.M. Winands
Hiroyuki Iida (Eds.)

Workshop on Computer Games, CGW 2013
Held in Conjunction with the 23rd International Conference
on Artificial Intelligence, IJCAI 2013, Beijing, China, August 3, 2013
Revised Selected Papers

Computer Games

Communications in Computer and Information Science 408

Communications
in Computer and Information Science 408

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Cosenza, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜḂITAK ḂILGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian Academy
of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Dominik Ślęzak
University of Warsaw and Infobright, Warsaw, Poland

Takashi Washio
Osaka University, Osaka, Japan

Xiaokang Yang
Shanghai Jiao Tong University, Shangai, China

For further volumes:
http://www.springer.com/series/7899

http://www.springer.com/series/7899

Tristan Cazenave • Mark H.M. Winands
Hiroyuki Iida (Eds.)

Computer Games

Workshop on Computer Games, CGW 2013
Held in Conjunction with the 23rd International
Conference on Artificial Intelligence, IJCAI 2013
Beijing, China, August 3, 2013
Revised Selected Papers

123

Editors
Tristan Cazenave
Université Paris-Dauphine
Paris
France

Mark H.M. Winands
Universiteit Maastricht
Maastricht
The Netherlands

Hiroyuki Iida
School of Information Science
JAIST
Nomi
Japan

ISSN 1865-0929 ISSN 1865-0937 (electronic)
ISBN 978-3-319-05427-8 ISBN 978-3-319-05428-5 (eBook)
DOI 10.1007/978-3-319-05428-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934688

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the papers of the Computer Games Workshop at IJCAI
2013 (CGW 2013) held in Beijing, China. The workshop took place August 3, 2013,
in conjunction with the 23rd International Conference on Artificial Intelligence (IJCAI
2013). The Program Committee received 15 submissions. Each paper was sent to two
referees. In the end, ten papers were accepted for presentation at the workshop, of
which nine made it into these proceedings.

The published papers cover a wide range of topics related to computer games. They
discuss six games that are played by humans in practice: Chess, Domineering, Chinese
Checkers, Go, Goofspiel, and Tzaar. Moreover, there is one puzzle, the Sliding Tile
Puzzle, one application, Cooperative Path-Finding problems, and one paper on
General Game Playing. Below we provide a brief outline of the contributions, in the
order in which they appear in the book.

‘‘Monte-Carlo Fork Search for Cooperative Path-Finding’’ is authored by Bruno
Bouzy. He proposes a new algorithm, called Monte-Carlo Fork Search (MCFS), which
solves Cooperative Path-Finding (CPF) problems with simultaneity. Its background is
Monte-Carlo Tree Search (MCTS) and Nested Monte-Carlo Search (NMCS). The key
idea of MCFS is to build a search tree balanced over the whole game tree. After a
simulation, MCFS stores the whole sequence of actions in the tree, which enables
MCFS to fork new sequences at any depth in the built tree. The algorithm is suited for
CPF problems in which the branching factor is too large for MCTS or A*, and in
which congestion may arise at any distance from the initial state. With sufficient time
and memory, Nested MCFS (NMCFS) solves congestion problems in the literature
finding better solutions than the state-of-the-art solutions. It also solves N-puzzles
without hole near-optimally.

‘‘Building Large Compressed PDBs for the Sliding Tile Puzzle,’’ written by Robert
Döbbelin, Thorsten Schütt, and Alexander Reinefeld, describes the computation of 9-
9-6, 9-8-7, and 8-8-8 Pattern Databases (PDB) for the 24-puzzle that are three orders
of magnitude larger (up to 1.4 TB) than the 6-6-6-6 PDB. This is possible by per-
forming a parallel breadth-first search in the compressed pattern space. Their exper-
iments indicate an average eight-fold improvement of the 9-9-6 PDB over the 6-6-6-6
PDB for the 24-puzzle.

‘‘Monte Carlo Tree Search in Simultaneous Move Games with Applications to
Goofspiel’’ is a joint effort by Marc Lanctot, Viliam Lisý, and Mark Winands, and
discusses the adaptation of MCTS to simultaneous move games with and without
chance events. They introduced a new algorithm, Online Outcome Sampling (OOS),
which approaches a Nash equilibrium strategy over time. The authors compare both
head-to-head performance and exploitability of several MCTS variants in Goofspiel.
The result reveals that regret matching and OOS performs best and that all variants
produced less exploitable strategies than UCT.

‘‘Decision Trees for Computer Go Features,’’ by Francois van Niekerk and Steve
Kroon, investigates the feasibility of using decision trees to generate features for
guiding MCTS in Computer Go. Their approach employs queries that refine knowl-
edge of the current board position as the tree is descended. The experiments show that
while this approach exhibits potential, the initial prototype is not as powerful as using
traditional pattern features.

‘‘UCT Enhancements in Chinese Checkers Using an Endgame Database,’’ is a
contribution of Max Roschke and Nathan Sturtevant. They assessed the performance
of MCTS-based AIs and the effectiveness of augmenting them with a lookup table
containing evaluations of games states in the game of Chinese Checkers. The lookup
table is only guaranteed to be correct during the endgame, but serves as an accurate
heuristic throughout the game. Experiments show that using the lookup table only for
its endgames is harmful, while using it for its heuristic values improves the quality of
play. The research is performed on a board with 81 locations and 6 pieces, which is
larger than previous work on lookup tables in Chinese Checkers. It is a precursor to
using the 500-GB full-game single-agent data on the full-size board with 81 locations
and 10 pieces.

‘‘Automated Generation of New Concepts from General Game Playing,’’ by
Yuichiro Sato and Tristan Cazenave, describes how to extract explicit concepts from
heuristic functions obtained using a simulation-based approach. The proposed algo-
rithm quickly learns new concepts without any supervision but from experience in the
environment. Concepts to understand the semantics of Tic-tac-toe are generated by
their approach. These concepts are also available to understand the semantics of
Connect Four. The authors conclude that their approach is applicable to General Game
Playing and is able to extract explicit concepts, which are able to be understood by
humans.

‘‘WALTZ: A Strong Tzaar-Playing Program,’’ written by Tomáš Valla and Pavel
Veselý, introduces the game of Tzaar, part of the Project GIPF, to the AI community.
It is an abstract strategy two-player game, which has recently gained popularity in the
gaming community and has won several awards. The high branching factor makes
Tzaar a difficult game for computers. The authors present WALTZ, a strong Tzaar-
playing program, using enhanced variants of ab and proof-number search. After many
tests with computer opponents and a year of deployment on a popular board-gaming
portal, the authors conclude that WALTZ can defeat all available computer programs
and even strong human players.

‘‘Perfectly Solving Domineering Boards,’’ by Jos Uiterwijk, presents the author’s
research in the game of Domineering. For this game the author defined 12 knowledge
rules, of increasing complexity. Of these rules, six can be used to show that
the starting player (assumed to be Vertical) can win a game against any opposition,
while six can be used to prove a definite loss (a win for the second player, Horizontal).
Applying this knowledge-based method to all 81 rectangular boards up to 10910
(omitting the trivial 1 9 n and m 9 1 boards), 67 could be solved perfectly. This is in
sharp contrast with previous publications reporting the solution of Domineering
boards, where only a few tiny boards were solved perfectly, the remainder requiring

VI Preface

up to large amounts of search. Applying this method to larger boards with one or both
sizes up to 30 solves 216 more boards, mainly with one dimension odd. All results
fully agree with previously reported game-theoretic values.

‘‘How Relevant Are Chess Composition Conventions?’’ is a contribution by Azlan
Iqbal. Using an existing experimentally validated computational aesthetics model for
three-move mate problems, the author analyzes sets of computer-generated chess
compositions adhering to at least two, three and four comparable conventions to test
whether simply conforming to more conventions has a positive effect on their aes-
thetics, as is generally believed by human composers. The paper also analyzes human
judge scores of 145 three-move mate problems composed by humans to see if they
have any positive correlation with the computational aesthetic scores of those prob-
lems. The results suggest two main things. First, the right amount of adherence to
composition conventions in a composition has a positive effect on its perceived aes-
thetics. Second, human judges either do not look at the same conventions related to
aesthetics in the model used or emphasize others that have less to do with beauty as
perceived by the majority of players, even though they may mistakenly consider their
judgments ‘‘beautiful’’ in the traditional, non-esoteric sense.

This book would not have been produced without the help of many persons.
In particular, we would like to mention the authors and referees for their help.
Moreover, the organizers of IJCAI 2013 contributed substantially by bringing the
researchers together.

December 2013 Tristan Cazenave
Mark H.M. Winands

Hiroyuki Iida

Preface VII

Organization

Program Committee Chairs

Tristan Cazenave Université Paris-Dauphine, France
Hiroyuki Iida JAIST, Japan
Mark H.M. Winands Maastricht University, The Netherlands

Program Committee

Yngvi Björnsson CADIA, Reykjavik University, Iceland
Bruno Bouzy Université Paris-Descartes, France
Michael Buro University of Alberta, Canada
Tristan Cazenave Université Paris-Dauphine, France
Remi Coulom Université Lille 3, France
Stefan Edelkamp University of Bremen, Germany
Hiroyuki Iida JAIST, Japan
Eric Jacopin CREC Saint-Cyr, France
Nicolas Jouandeau Université Paris 8, France
Sylvain Lagrue Université de Lens, France
Marc Lanctot Maastricht University, The Netherlands
Jean Méhat Université Paris 8, France
Martin Müller University of Alberta, Canada
Abdallah Saffidine Université Paris-Dauphine, France
Maarten Schadd Maastricht University, The Netherlands
Nathan Sturtevant University of Denver, USA
Fabien Teytaud Université du Littoral, France
Olivier Teytaud Université Paris-Sud, France
Mark H.M. Winands Maastricht University, The Netherlands
I-Chen Wu National Chiao-Tung University, Taiwan

Contents

Monte-Carlo Fork Search for Cooperative Path-Finding 1
Bruno Bouzy

Building Large Compressed PDBs for the Sliding Tile Puzzle 16
Robert Döbbelin, Thorsten Schütt, and Alexander Reinefeld

Monte Carlo Tree Search in Simultaneous Move Games
with Applications to Goofspiel . 28

Marc Lanctot, Viliam Lisý, and Mark H.M. Winands

Decision Trees for Computer Go Features . 44
Francois van Niekerk and Steve Kroon

UCT Enhancements in Chinese Checkers Using an Endgame Database. 57
Max Roschke and Nathan R. Sturtevant

Automated Generation of New Concepts from General Game Playing 71
Yuichiro Sato and Tristan Cazenave

WALTZ: A Strong Tzaar-Playing Program . 81
Tomáš Valla and Pavel Veselý

Perfectly Solving Domineering Boards . 97
Jos W.H.M. Uiterwijk

How Relevant Are Chess Composition Conventions? 122
Azlan Iqbal

Author Index . 133

http://dx.doi.org/10.1007/978-3-319-05428-5_1
http://dx.doi.org/10.1007/978-3-319-05428-5_2
http://dx.doi.org/10.1007/978-3-319-05428-5_3
http://dx.doi.org/10.1007/978-3-319-05428-5_3
http://dx.doi.org/10.1007/978-3-319-05428-5_4
http://dx.doi.org/10.1007/978-3-319-05428-5_5
http://dx.doi.org/10.1007/978-3-319-05428-5_6
http://dx.doi.org/10.1007/978-3-319-05428-5_7
http://dx.doi.org/10.1007/978-3-319-05428-5_8
http://dx.doi.org/10.1007/978-3-319-05428-5_9

Monte-Carlo Fork Search for Cooperative
Path-Finding

Bruno Bouzy(B)

LIPADE, Université Paris Descartes, Paris, France
bruno.bouzy@parisdescartes.fr

Abstract. This paper presents Monte-Carlo Fork Search (MCFS), a new
algorithm that solves Cooperative Path-Finding (CPF) problems with
simultaneity. The background is Monte-Carlo Tree Search (MCTS) and
Nested Monte-Carlo Search (NMCS). Concerning CPF, MCFS avoids to
enter into the curse of the very high branching factor. Regarding MCTS,
the key idea of MCFS is to build a tree balanced over the whole game tree.
To do so, after a simulation, MCFS stores the whole sequence of actions in
the tree, which enables MCFS to fork new sequences at any depth in the
built tree. This idea fits CPF problems in which the branching factor is too
large for MCTS or A* approaches, and in which congestion may arise at
any distance from the start state. With sufficient time and memory, Nested
MCFS (NMCFS) solves congestion problems in the literature finding bet-
ter solutions than the state-of-the-art solutions, and it solves N-puzzles
without hole near-optimally. The algorithm is anytime and complete. The
scalability of the approach is shown for gridsize up to 200× 200 and up to
400 agents.

1 Introduction

Cooperative pathfinding (CPF) addresses the problem of finding paths for a
set of agents, for them to move to their goals. At each timestep, every agent
moves to a neighbouring cell. The set of agents has to find the minimal cost for
reaching its set of goals. The cost is the elapsed time. There are two families of
approaches: the coupled approach and the decoupled approach. In the coupled
approach, the whole set of agents is considered as one. One main bottleneck is
the size of the set of joint actions which is exponential in the number of agents.
In the decoupled approach, each agent is considered individually and the main
obstacle is managing the collisions between the agents.

A* is the prototype of the coupled approach. A* with operator decomposi-
tion (A*+OD) [16] is a speed-up version of A*. ICTS [14] searches a solution
in an Incremental Cost Tree (ICT). The weakness of the coupled approach is
its inability to solve large problems or including complex coordination between
agents. However, very recently, a new work, TOMPP [21], modeling multi-
agent pathfinding as a network flow, contradicts this statement. Windowed
Hierarchical Cooperative A* (WHCA*) [15] illustrates the decoupled approach.

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 1–15, 2014.
DOI: 10.1007/978-3-319-05428-5 1, c© Springer International Publishing Switzerland 2014

2 B. Bouzy

Push&Swap (P&S) [9] solves CPF problems on graphs with at least 2 empty cells.
TASS (Tree-based Agent Swapping Strategy) is designed to solve problems with
at most 4 empty cells [5,6]. These solvers are very fast but they cannot improve
their solution with more computing time.

In this paper we present Monte-Carlo Fork Search (MCFS) and its nested
version Nested Monte-Carlo Fork Search (NMCFS) for CPF. The background
is Monte-Carlo Tree Search (MCTS) [7] and NMCS [3]. MCTS and NMCS have
been applied with success to many planning problems such as Morpion Solitaire
[12]. However, their weakness lies in their inability to deal with the high branch-
ing factor of CPF problems. To solve CPF problems, our goal is to design a new
algorithm that has the strength of MCTS and NMCS, and is not sensitive to the
branching factor. The key idea is to make the built tree cover all the interesting
parts of the game tree in a balanced way.

Like MCTS, MCFS is anytime. It has been compared to TOMPP, TASS,
and Push&Swap on their test problems: specific congestion problems [5,8], and
N-puzzles without hole problems with simultaneous actions [21]. For scalability,
MCFS has been assessed on grids with size up to 200×200, with obstacles (20%)
and with a number of agents up to 400. Some of the results obtained with the
parallel criterion are manually proved optimal, and the others are conjectured
to be near-optimal. The results are translated into the sequential criterion to be
compared with the numerous work using this criterion, and we show that MCFS
obtains better results on this criterion.

The outline of the paper is the following. First, we give the CPF problem
definition. Secondly, we relate previous work on CPF and on MCTS. Thirdly,
we present the MCFS and NMCFS algorithms. Fourthly, we describe the exper-
iments and the significant results. Fifthly, we discuss the properties of the algo-
rithm. Finally, we conclude and present future work.

2 CPF Problem Definition

The CPF literature contains a lot of work. Each work uses its specific criteria
to define the problem, which makes comparisons difficult. In the literature, the
cells are mostly squares used with 4-connectivity or 8-connectivity. Whatever
the grid connectivity, an agent can move on the neighbouring cells or stay, and
respect the two following rules: No two agents can be on the same cell (Rule 0),
No two agents can swap (Rule 1). With 8-connectivity, specialized rules must
define whether two agents may cross diagonally or not, whether an agent can
move diagonally when one obstacle is on its side, or whether it can cross two
obstacles situated on a diagonal. In this paper, we use squares and 4-connectivity
with rule 0 and rule 1 only.

The most important feature is the simultaneity or sequentiality of elementary
actions. A lot of work fall in the sequential category. In this work, we use simul-
taneous, parallel moves. When the elementary actions are executed in parallel,
the agents must respect rule 0: when several agents wish to move towards the
same cell, only one of them can actually move to the cell. However, an agent may

Monte-Carlo Fork Search for Cooperative Path-Finding 3

Table 1. A simple CPF problem (problem 520 of [6]). In a cell, the first symbol
represents either an obstacle (x), or void () or the number of the agent occupying the
cell. When present, the second number represents the number of the agent whose goal
is to reach this cell. For instance, agent number 1 is occupying the lower right cell. Its
goal is to reach the cell situated on the second row and the second column.

2 x x 4 x x
3 1 2 x x

3 x x 4 1

Table 2. A solution to the CPF problem of Table 1. The movements of the agents
are shown in bold. The number of timesteps equals 6. The sum of elementary actions
equals 17. This solution is TIME and SUM optimal.

x x x x x x x x x x 1 x x

2 3 1 4 2 x x 2 3 4 1 1 2 x x 3 3 2 1 4 2 x x

3 x x 1 4 3 x x 4 x x 4

t = 1 t = 2 t = 3

x x 1 x x x x x x x x x x

3 3 1 2 2 x x 3 3 1 1 2 x x 3 3 1 1 2 2 x x

x x 4 4 x x 2 4 4 x x 4 4

t = 4 t = 5 t = 6

move to an occupied cell provided that this cell is freed by its occupant during
the timestep. Therefore, it is worth noting than joint actions including circular
elementary actions are possible. For instance, 4 agents situated on 4 adjacent
cells can move circularly.

In the multi-agent context, two targets can be optimized: the sum of individ-
ual costs (SUM), the number of timesteps (TIME). In most work [6,9,14–16],
the optimized target is SUM. However, in this paper, we optimize TIME, that
is to say the global elapsed time. Some work such as [21] fall into this category.
The number of timesteps is also commonly called makespan. Comparing work
optimizing SUM with our work is still possible provided that we estimate the
SUM target by counting the elementary actions of the sequences found.

At each timestep, an agent can either stay on its cell or move to an adjacent
cell provided it respects rule 0 and rule 1. During a timestep, all the agents act
simultaneously. The joint goal is found when all the agents have reached their
individual goals. The problem is to find the minimum number of timesteps to
reach the joint goal. Table 1 shows an instance of a CPF problem on a 3×4 grid.
Table 2 shows an optimal solution to this problem. In the following, a position
refers to the set of positions of the agents. A path, a plan, an episode, a simulation
refer to the same concept: a sequence of positions linked two-by-two by a joint
action. The goal is the final position. A hole is an empty cell. A CPF problem
may have or not have holes.

4 B. Bouzy

3 Related Work

This section presents related work on CPF, and related work on MCTS.

3.1 Cooperative Path-Finding

The starting point of CPF is centralized A*. A* works optimally on very small
problems with very few agents. To avoid the exponential number of actions in
the number of agents, Standley has proposed Operator Decomposition (OD)
[16]. A*+OD and an admissible heuristic are optimal [16].

ICTS [14] is a two-level search: a global level and a low level. At the global
level, the search proceeds on an Incremental Cost Tree (ICT) in which one node
corresponds to a vector of costs. At depth δ, the sum of the costs of a node
is the optimal cost plus δ. A node is a goal for ICT when there is an effective
combination of individual paths without conflict and with costs corresponding
to the costs of the node.

TOMPP [20,21] optimizes the global elapsed time. It models a multi-agent
path-finding problem as a network flow and shows the equivalence between the
two models. It uses integer linear programming to solve the network flow problem
and the multi-agent path-finding problem as a consequence. TOMPP is tested
on the N-puzzle without hole, and in many-agents-many-obstacles problems.
TOMPP is time-optimal.

In video games, the optimal methods are not used because they are not scal-
able. Adaptations of A* are used instead. Windowed HCA* (WHCA*) decom-
poses the whole task into a series of single agent searches and searches m-steps
plans [15]. Sub-optimal methods with some completeness guarantees on well-
specified sub-classes of problems give good results: P&S [9] solves CPF prob-
lems on graphs with at least 2 empty cells. TASS (Tree-based Agent Swapping
Strategy) [6] is designed to solve problems with at most 4 empty cells. Reference
[5,8] provide interesting test problems. MAPP (Multi-Agent Path Planning)
[19] defines the Slideable class and presents a method complete on this class of
problems.

3.2 MCTS

MCTS is the approach that revolutionized computer go in 2006 with the UCT
method [7] and the Go playing programs Crazy Stone [4] or MoGo [13]. In the
following years, MCTS was also successful in many other games and planning
problems [2]. MCTS iteratively expands a tree starting a the root, and launches
simulations to obtain rewards at the end of the games. An iteration has four
phases: selection, expansion, simulation and propagation. In the selection phase,
MCTS starts at the root of the tree and go down to a leaf node by using the UCB
rule [1]. When reaching a node not fully expanded, MCTS chooses the next state
with its simulation policy, and adds the corresponding node into the tree. Then
MCTS starts the simulation phase. At the end of the simulation, the reward is
obtained and propagated into the nodes browsed by the selection phase.

Monte-Carlo Fork Search for Cooperative Path-Finding 5

4 MCFS

First, this section presents the rationale of MCFS. Secondly, since MCFS is
largely inspired from MCTS, this section shows the similarities and the dif-
ferences with MCTS. Thirdly, it presents the algorithm in its nested version
(NMCFS) or not (MCFS). Fourthly, it describes how the basic simulations are
performed, and fifthly, it presents the necessary pre and post-processing. The
guidelines of MCFS are:

– not entering into the curse of the branching factor,
– making use of the whole simulation to build the tree,
– forking new paths at appropriate nodes of the built tree.

First, the branching factor of CPF problems being very high, the move gen-
eration itself can be problematic (see for instance N-puzzles without hole) and
very time consuming when complete.

Secondly, after performing a simulation, nothing forbids to store the whole
simulation to use it later.

Thirdly, a previous simulation being given, a natural idea is to improve this
simulation by forking a new one starting at a promising node of this sequence.

4.1 Similarities and Differences with MCTS

Like MCTS, MCFS iteratively builds a tree with four stages: selection, expan-
sion, simulation and propagation. The simulation stage and the propagation
stage in MCFS remain identical to the corresponding stages in MCTS. Like
MCTS, MCFS uses the optimism faced to uncertainty principle by using the
UCB rule [1]. The difference between MCTS and MCFS mainly lies in the man-
ner the game tree is explored, in the manner the start of the next simulation is
selected, and in the manner the built tree is expanded at each iteration. MCTS
explores the game tree by respecting a width principle: at a node, MCTS prefers
to explore an unexplored action rather than an already explored child node.
Consequently, MCTS can be stuck near the root if the branching factor is high.
The tree built by MCTS browses the upper part of the game tree only. More-
over, the next simulation starts from a leaf node of the built tree. Furthermore,
in standard MCTS, MCTS adds one node after each simulation.

MCFS explores the game tree in a depth-first manner. First, after each itera-
tion, all the states encountered during the simulation become nodes added into
the MCFS tree. Secondly, at the beginning of an iteration, with the help of the
UCB rule, MCFS selects the best node to fork, among all the nodes of the built
tree. This is very different from the MCTS selection stage that starts from the
root node and iteratively chooses a child node with the UCB rule until it reaches
a node with an unexplored action. In MCFS, the next simulation starts from this
selected node which is an interior node of the built tree. In MCFS, the built tree
has only one leaf node: the goal node.

Figure 1 shows an overview of how the trees built by MCFS and MCTS fill the
whole game tree. As iterations are going on, the MCTS tree is deepening, and the

6 B. Bouzy

Fig. 1. The tree built by MCFS (left) and MCTS (right) within the game tree repre-
sented by a triangle. The root is at the top. The goal is the bottom line. Each action
is a small straight line. The circles represent nodes whith a fork. The numbers are the
iteration numbers.

MCFS tree is widening. At iteration 1, a length-12 sequence is found. The second
iteration selects the root as a starting node, and a length-15 sequence is found.
Iteration 3 selects a node situated at depth 2 on the current best sequence, and
finds a length-15 sub-sequence giving a length-17 sequence. Iteration 4 selects a
node at depth 4 and finds a sub-sequence of length 5 giving a length-9 sequence,
the new current best. Iteration 5, selects a node at depth 6 and finds a sub-
sequence of length 2 giving a sequence of length 8, the new current best. And
so on until the iteration budget is exhausted. The idea to allow MCFS to fork
sub-sequences anywhere in the game tree is respected.

4.2 MCFS and NMCFS Algorithms

Since the pseudo-code of NMCFS is very similar to that of MCFS, Algorithm
1 directly shows the pseudo-code for NMCFS. (The MCFS pseudo-code corre-
sponds to the NMCFS pseudo-code with lev = 1). NMCFS takes the starting
position (a), the goal position (b) and the nesting level (lev) as inputs. NMCFS
returns the length of the best plan found (bestSeq) (line 1). If the level is zero,
NMCFS calls sample the basic simulation function. n is the number of simula-
tions performed so far. lmin contains the current best length. actualSeq is the
sequence of positions played at each iteration. root is the root node initialized
with the starting position a. NMCFS is a while loop (lines 7–14). it is the num-
ber of iterations to perform. During an iteration, the best node of the tree is
selected (line 8) with Eq. 1. NMCFS is called, starting on this node with the
nesting level minus one (line 9). The length of the simulation plus the depth of
the node in the tree is compared to lmin (line 10). If the comparaison holds,
lmin and bestSeq are updated (line 11). The nodes between the selected node
and the root are updated with l, and the tree is expanded by adding actualSeq
to it (backUp and append line 13).

In Eq. 1, it is essential to notice that argmin is applied over the whole tree,
whis is very different from the MCTS selection. nd.lmin+nd.depth is used as an
exploitation term to focus the search near the current best sequence. Concerning
the exploration term, C is a parameter set experimentally. var is the variance

Monte-Carlo Fork Search for Cooperative Path-Finding 7

int NMCFS(a, b, bestSeq, lev)1

begin2

if lev == 0 then3

return sample(a, b, actualSeq)4

end5

n = 1 ; lmin = +∞ ; actualSeq ; Node root(a)6

while n ≤ it do7

Node nd = root.selectNode() ; pos = nd.positions8

l = NMCFS(pos, b, actualSeq, lev − 1)9

if l + nd.depth < lmin then10

lmin = l + nd.depth ; bestSeq = seq(root(a), nd) + actualSeq11

end12

nd.backUp(l) ; nd.append(actualSeq, l, b) ; n = n + 113

end14

return lmin15

end16

Algorithm 1: NMCFS

over the lengths of the sequences going through the node. It enables MCFS to
prefer nodes with high variance. nForks is the number of times the node has
been selected so far. log(n) makes it possible to forget no node for n sufficiently
large.

nd = arg min
builttree

(lmin + depth − C

√
var log(n)

1 + nForks
) (1)

4.3 Basic Simulations

Algorithm 2 shows function sample that executes a basic simulation starting on
position p. seq contains the actual sequence played out. l is the current length
of the simulation. It executes a loop while the goal is not reached and l does not
exceed ls the maximal length of sequences. The joint action is determined by
pseudoRandomChoice. It returns a joint action according to a pseudo-random
policy. pseudoRandomChoice does not enumerate all the joint actions, which
could be tricky when the number of agents is large. Instead, each agent says
which cell it wants to move on: its wish. If all the wishes are compatible with
Rule 0 and Rule 1, then the joint action is valid and returned. When two wishes
are in conflict, the conflict is solved by prioritizing one agent over the other
at random. When all the conflicts are solved, the wishes become the actual
elementary actions, and the joint action is returned. If some conflicts cannot
be solved after a given number of tries, then the agents relax their wish, and
the wishes are formulated again. Without relaxing the wishes, the joint action
contains optimal elementary actions only. With relaxing, the joint action may
also contain non optimal elementary actions. The function play transforms the
position according to the effects of the joint action.

8 B. Bouzy

int sample(p, b, seq) begin1

l = 02

while ((p ∅= b) and (l < ls)) do3

action = pseudoRandomChoice(b)4

p = play(p, action) ; seq[l] = p ; l = l + 15

end6

return l7

end8

Algorithm 2: Sample

4.4 Pre and Post Processing

Before launching NMCFS, all the distances between two cells assuming the obsta-
cles and no agent are computed, and stored in a table to be used in the sim-
ulations. After completing a best simulation, NMCFS counts the number of
elementary actions used.

5 Experiments

This section describes the test set, the experimental settings and the results.

5.1 Set of Problems

To assess our approach, we have taken three kinds of problems. First, we addressed
the congestion problems of TASS and Push&Swap. Reference [5] contains six
interesting problems which we named from 515 up to 520. Problem 5xy refers to
the problem defined by figure 5.xy pages 58–61 in [5]. For instance, 515 contains 10
agents with 19 cells and 520 contains 4 agents with 8 cells (see Table 1). Reference
[9] contains eight specific problems: Tree, Corners, Tunnel, String, Loopchain,
Connector, Rotation, and Stacks. The first six problems contain between 3 and
7 agents on small graphs with at most 18 nodes. The last two problems have 16
agents with 24 or 25 nodes.

Secondly, we addressed some N-puzzle problems with one hole (N = 8, 15,
24) or no hole (N = 9, 16, 25). The N-puzzle problem with one hole in which
SUM is optimized is known to be NP-hard [11]. The N-puzzle problem without
hole in which TIME is optimized is very representative of the CPF class of
problems.

Thirdly,we addressedmedium-sized-to-large-grid-many-agents-with-obstacles
problems with a low level of congestion. References [16,17] contain two such exam-
ples which we call s10 and s11. In video games, the problems encountered may have
one thousand agents or more [19]. Furthermore, they may have large grids, like
512×512 in reference benchmarks [18]. However, we have generated smaller prob-
lems: random problems on 25×25 grids, with 125 (20 %) obstacles and 100 agents,
on 100 × 100 grids with 400 agents and 2000 (20 %) obstacles, and on 200 × 200
grids with 400 agents and 4000 (10 %) obstacles.

Monte-Carlo Fork Search for Cooperative Path-Finding 9

5.2 Experimental Settings

The experiments were performed with elementary actions played simultaneously,
with 4-connectivity, and TIME as target of optimization. maxpl is the heuristic
value using the maximum over the individual path lengths. C = 1. ls = 500.
For each problem and each algorithm, we give the number of time steps used
(nts) and the number of elementary actions used (nea) to solve the problem.
Furthermore, we mention the computing time spent, the nesting level (lv) and
the number of iterations for each level (il). We used a 3.2 Ghz computer with
6 Gb to perform the experiments. We compare the results of NMCFS to those
of TASS [5], Push&Swap [8,9] and TOMPP [21].

Two points must be specified to reproduce the experiments and obtain the
same results. First, because a CPF problem is reversible, bi-directional search
[10] is suited to CPF problems, and the results shown in the paper were actually
obtained with a bi-directional NMCFS. However, this point, subject of another
work, is not presented here, not to obscure the presentation of NMCFS. Sec-
ondly, we obtained the results with a version of NMCFS slightly different from
Algorithm 1: line 4 was replaced by a call to an adapted level-1 MC search [3] in
which the branching factor was limited by 2 + maxpl. And the adapted level-1
MC search calls the sample function of Algorithm 2. This means that the actual
number of levels used by a search is lev+1 actually: the number of levels used by
Algorithm 1 plus one used by the adapted level-1 MC search. The lev variable
in the tables correspond to lev in Algorithm 1.

5.3 Results

This section presents the results obtained by NMCFS on congestion problems,
on N-puzzle problems and on many-agent-large-grid problems.

Congestion Problems. Table 3 shows the results on Khorshid’s congestion
problems. For each problem, the table gives nea of TASS, nea and nts of NMCFS
and Optim. In order to underline the anytime property of NMCFS, the table
gives nts and nea obtained by NMCFS for relevant time constraints. For a
time t, the number of levels (lev) and the number of iterations per level (il) are
provided as well. The results in terms of nts are new. For the first four problems,
we found the optimal value (Optim) with paper and pen, and NMCFS found the
optimal values for these problems. For problems 516 and 515, we do not know if
the solutions are optimal or not. In terms of nea, and without considering the
time constraint, NMCFS outperforms TASS. The harder the problem, the larger
the difference. However, TASS solves all the problems in less than one second.
NMCFS solved the easy problems in less than one second, but used three days
for problem 516 to find out the last value in the table. With less than 3 days of
time, NMCFS was not able to solve the problems of [5] which are more complex
than problems 515 and 516. Finally, the table shows that, in one second of time,
NMCFS finds out better nea values than TASS on problems 520, 519, 518, 517

10 B. Bouzy

Table 3. Results on Khorshid’s congestion problems.

TASS NMCFS Optim
nea t nts nea lev il nts nea

520 34 0.1s 6 17 2 5 6 17
519 30 0.03s 8 18 2 5 8 12
518 58 1s 15 40 1 5 10 ≤ 26

10s 11 34 2 14
1m 10 32 2 40

517 170 1s 31 105 1 4 13 ≤ 31
10s 17 67 2 7
1m 13 51 2 18
3m 13 31 2 30

515 459 1s 34 159 1 3 ≤ 15 ≤ 71
10s 26 133 1 36
1m 19 111 1 256
10m 17 103 2 60
30m 15 71 3 40

516 234 1m 167 464 1 2 ≤ 19 ≤ 78
10m 63 250 1 20
1h 45 216 2 10
10h 27 128 2 40

3 days 19 78 3 30

and 515. NMCFS needs one hour to find a better solution than TASS on problem
516.

Table 4 shows the results on Luna’s congestion problems. For each relevant
time constraint, this table gives the same kind of information as Table 3. Again,
the results in terms of nts are new. For the problems Rotation, Tree, String,
Corners and Loopchain, we found the Optim value with paper and pen. NMCFS
found the optimal value for Rotation, Tree, String, and Corners but not for
Loopchain. For Tunnel and Connector, we do not know if the results are optimal
or not. In terms of nea, and without considering the time constraint, NMCFS
outperforms Push&Swap. For Loopchain, the difference is large. Push&Swap
solves all the problems in a few seconds [9]. NMCFS solves the easy problems in
less than one second, but used several hours for Loopchain. The table shows that,
in one second of time, NMCFS finds out better nea values than Push&Swap on
problems Rotation, Tree, String, and Corners. But NMCFS needs one minute
to find a better solution than Push&Swap on problem Connection, few minutes
on problem Tunnel, and ten seconds for problem Loopchain.

N-puzzle Problems. Table 5 shows the results obtained by NMCFS on puzzle
problems. For the 8-Puzzle, NMCFS found the optimal solution quickly. For the
5×5-puzzle, NMCFS is slightly sub-optimal because the optimal length is 7 [20],
and NMCFS found a solution of length 8. Table 6 gives the best solution found
by NMCFS on this problem. For the other puzzles, NMCFS found solutions for
which the optimality remains unknown. For each problem, Table 5 also gives the
branching factor to show that NMCFS is not constrained by this feature.

Monte-Carlo Fork Search for Cooperative Path-Finding 11

Table 4. Results on Luna’s congestion problems.

Push&Swap NMCFS Optim
nea t nts nea lev il nts nea

rotation 18 0.01s 1 16 1 1 1 16
tree 18 0.01s 6 12 1 5 6 12
string 26 0.02s 8 20 1 5 8 20
corners 50 1s 8 32 2 5 8 32

connection 86 1s 20 96 1 10 ≤ 16 ≤ 70
10s 18 90 1 150
1m 16 70 2 20

tunnel 81 1s 90 221 1 2 ≤ 15 ≤ 49
10s 43 109 1 16
1m 34 95 1 96
10m 20 57 2 32
1h 15 49 3 30

loopchain 350 10s 69 290 1 2 ≤ 17 ≤ 95
1m 65 234 1 16
10m 48 176 1 160
1h 33 144 2 32
12h 19 95 3 200

Table 5. Results and branching factors (bf) on N-puzzle problems.

NMCFS
nAgents branchFactor t nts nea level it.p.lev.

8 123 0.1s 4 26 1 10
9 27 1s 8 48 1 3

5s 6 38 1 10
15 3815 1s 12 128 1 3

10s 11 112 1 100
1m 9 94 2 34
10m 8 90 2 120
20m 7 84 3 50

16 951 1s 14 128 1 1
10s 13 128 1 10
1m 10 106 1 100
10m 10 106 2 35
1h 8 96 3 80

24 ≈ 105 1s 20 269 1 1
10s 16 295 1 16
1m 11 201 1 120
10m 11 181 2 32
1h 9 171 3 17
10h 7 141 3 30

25 ≈ 3 × 104 10s 27 400 1 1
1m 21 258 1 10
10m 16 218 2 11
1h 13 218 2 25
10h 9 152 2 90
30h 8 120 3 30

Many-Agents-Large-Grid Problems. Table 7 shows the results achieved by
NMCFS on large grids with many agents. na is the number of agents, nobs the
number of obstacles, pb the problem, and h the maxpl value.

On 25 × 25 gridsize problems with 20% of obstacles and 100 agents, we
performed two experiments. One experiment shows the result obtained with one
simulation at level 1. One simulation lasts about 1 minute on average. In this
setting, nea ranges in the interval 2480, 2825 with 2650 on average. A second

12 B. Bouzy

Table 6. From left to right, the best sequence found on the 5 × 5-puzzle problem
without hole [20] (nts = 8 and nea = 120). The elementary moves are in bold type
style.

13 17 4 14 23 1 13 9 4 14 1 13 9 4 14
1 22 9 12 7 11 17 15 12 23 11 17 6 15 12

11 16 15 8 21 16 22 6 21 7 16 22 5 21 23
25 24 6 19 20 24 3 5 8 19 24 3 2 8 7
10 3 5 2 18 25 10 2 18 20 25 10 18 20 19

t = 0 t = 1 t = 2
1 13 9 4 14 11 1 13 9 4 1 3 13 9 4

11 17 6 15 12 17 3 6 15 14 11 6 2 5 15
22 3 2 5 23 22 10 2 5 12 17 8 10 12 14
16 10 8 21 7 16 8 21 7 23 22 21 7 23 19
24 25 18 20 19 24 25 18 20 19 16 24 25 18 20

t = 3 t = 4 t = 5
1 3 13 9 4 1 2 3 9 4 1 2 3 4 5
6 2 10 5 15 6 8 13 10 5 6 7 8 9 10

11 8 7 12 14 11 7 12 14 15 11 12 13 14 15
17 22 23 18 19 16 17 18 19 20 16 17 18 19 20
16 21 24 25 20 21 22 23 24 25 21 22 23 24 25

t = 6 t = 7 t = 8

Table 7. Results on large grids with obstacles and many agents.

gridsize na nobs pb nts h nea t lv il
8 × 8 11 15 10 12 12 63 0.1s 1 5

11 11 11 48
25 × 25 100 125 1 45 41 2480 30s 1 1

2 49 43 2590 1m
3 56 41 2748 2m
4 53 40 2825 2m
1 43 41 2351 6h 2 50
2 43 43 2508
3 44 41 2460
4 44 40 2569

100 × 100 100 1000 1 164 164 6879 1m 1 1
200 2000 1 165 165 14203 5m
400 2000 1 171 171 33286 15m

200 × 200 400 4000 1 344 344 55620 1h

experiment gives the values obtained in 6 hours at level 2 with 50 iterations. Here,
nea ranges in the interval 2350, 2570 with 2470 on average. Our values can be
compared with the values in the literature: for a 30×20 grid with 100 agents and
17% of obstacles, [9] mentions the average solution quality for WHCA* and P&S
of 2700 and 2300 respectively. This is to show that, in this set of problems, the
values obtained in one iteration at level one are not bad already, and that they
are not much enhanced by the level-2 search. Knowing how far from optimality
is level-2 search remains a question.

Table 7 also shows the results achieved by NMCFS on 100 × 100 grids with
up to 400 agents and 2000 obstacles. With such level of congestion (20% of
obstacles and 4 % of agents), NMCFS at level 2 finds “good” solutions - not
to say near-optimal. On 200 × 200 grids with 400 agents and 4000 obstacles,
since the congestion is very low (10% of obstacles and 1 % of agents), NMCFS
finds the optimal solution despite the size of the grid and the time spent to

Monte-Carlo Fork Search for Cooperative Path-Finding 13

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100

lm
in

neps

lmin = f(neps)

seed=1
seed=2
seed=3
seed=4

Fig. 2. lmin (i.e. nts) decreasing with the iteration number (neps) on four runs of
MCFS on the loopchain problem at level 2.

perform it (one hour). To conclude this section, we see that the time to perform
one simulation on large boards with many agents remains the limitation of the
approach.

6 Discussion

This section discusses some properties of MCFS: the anytime property, memory
use, completeness, optimality and computation time. Let it be the number of
iterations, na the number of agents, gs the gridsize, ls the length of the simula-
tions, nlv the number of nesting levels, and nnd the number of nodes.

The anytime property was detailed by the tables giving the results. NMCFS
obtains a first value after its first simulation, and progressively improves this
value as time is going on. Figure 2 graphically illustrates the anytime property
of MCFS.

Concerning memory use, most of the memory used by MCFS concerns nnd.
nnd is linear in it, and linear in ls (which mainly depends on gs). The size of
a node depends linearly on na. Memory used by MCFS is in O(na × it × ls).
Nesting MCFS permits to build smaller trees at each nesting level and to save
memory. The memory used by NMCFS is in O(na × nlv × it1/nlv × ls).

To discuss the completeness of the approach, we have to prove that at least
one simulation will reach the goal. For the bad cases, MCFS uses pseudo-random
simulations that are not biased: all the elementary actions are drawn with the
uniform distribution of probability. The set of agents executes a random walk on
a finite graph of the problem. All actions are reversible. The set of agents cannot
be trapped in a dead-end. If a problem is solvable, there is a sequence linking the
starting position to the goal, and given a sufficiently large number of timesteps, a
random walk on this graph encounters the goal position. However, if the number
of timesteps is finite, which is the case in practice, then some random walks do
not encounter the goal. If the number of timesteps is large enough, a random
walk reaches the goal with a probability p > 0. With a sufficiently large number
of random walks, the goal will be reached at least once. Provided we set up ls

14 B. Bouzy

and it at sufficiently large values, a least one simulation succeeds. Therefore,
MCFS, with ls and it sufficiently large, is complete on the set of solvable CPF
problems whose graph size is less than a given threshold.

The computation time is linear in it. One iteration time is mainly linear in
ls. At each timestep, the time to perform the choice of the joint action and to
process the effects of the joint action is at least linear in na. When collisions
have to be managed, the time is longer. Therefore, in the good case only, the
computation time of MCFS is in O(it × ls × na).

We have no proof of optimality, but we observed near-optimality in practice.
Asymptotically, we believe that all nodes will be visited infinitely, and the best
sequence found. The problem is that MCFS tackles the problem by lowering its
current upper bound progressively without using any measure of near-optimality.
The relevant question is which value of it garantees MCFS to find the optimal
solution.

7 Conclusion

In this paper, we have described both MCFS, a new algorithm inspired from
MCTS, that solves CPF problems, known for their very high branching factor,
and NMCFS its nested version. MCFS works well on CPF problems because it
does not enter into the curse of the branching factor of the CPF tree. MCFS
does not think in-width on which child node to conduct the search as MCTS
does. MCFS thinks in-depth along the best sequence found so far, and finds the
best node of this sequence on which to fork a new sequence. MCFS is one of
the first approaches that deals with CPF problems by optimizing time. NMCFS
near-optimally solves the 16-puzzle and the 25-puzzle - puzzles without hole -
but it is still surpassed by TOMPP. For congestion problems with four holes or
two holes, NMCFS outperforms TASS and P&S. For large problems with many
agents, large grids, and obstacles, our approach gives results with up to 400
agents and 200× 200 gridsize. The cost of obtaining such results is computation
time. MCFS is anytime and provides approximate solutions in limited time.
Conversely to MCTS and A*, MCFS is not constrained by the huge branching
factor of CPF problems. With sufficient time and memory, MCFS is complete. In
finite time and with a finite memory, MCFS is not complete, and near-optimal
only.

The current work can be investigated further in several directions. First, we
aim at investigating the appropriate allocation of iterations in each nesting level.
Secondly, studying the speed of convergence to optimality is an important per-
spective. Thirdly, we want to handle benchmarks [18]. Fourthly, assessing MCFS
on other very high branching factor planning problems would be informative.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multi-armed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

Monte-Carlo Fork Search for Cooperative Path-Finding 15

2. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte- Carlo tree
search methods. IEEE TCIAIG 4(1), 1–43 (2012)

3. Cazenave, T.: Nested Monte-Carlo Search. In: IJCAI (2011)
4. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.

In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

5. Khorshid, M.M.: Solving multi-agent pathfinding problems in polynomial time
using tree decomposition. Master’s thesis, University of Alberta (2011)

6. Khorshid, M.M., Holte, R.C., Sturtevant, N.R.: A polynomial-time algorithm for
non-optimal multi-agent pathfinding. In: SoCS, pp. 76–83 (2011)

7. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

8. Luna, R., Bekris, K.E.: Efficient and complete centralized multi-robot path plan-
ning. In: IROS (2011)

9. Luna, R., Bekris, K.E.: Push and swap: fast cooperative path-finding with com-
pleteness guarantees. In: IJCAI, pp. 294–300 (2011)

10. Pohl, I.: Bi-directional search. Mach. Intell. 6, 127–140 (1971)
11. Ratner, D., Warmuth, M.: Finding a shortest solution for the Nx N-extension of

the 15-puzzle is intractable. J. Symbolic Comput. 10, 111–137 (1990)
12. Rosin, C.: Nested rollout policy adaptation for Monte Carlo- tree search. In: IJCAI,

pp. 649–654 (2011)
13. Gelly, S., Silver, D.: Achieving master level play in 9x9 computer go. In: AAAI,

pp. 1537–1540 (2008)
14. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search

for optimal multi-agent pathfinding. In: IJCAI, pp. 662–667 (2011)
15. Silver, D.: Cooperative Pathfinding. AI Programming Wisdom (2006)
16. Standley, T.S.: Finding optimal solutions to cooperative pathfinding problems. In:

AAAI (2010)
17. Standley, T.S., Korf, R.: Complete algorithms for cooperative pathfinding prob-

lems. In: IJCAI, pp. 668–673 (2011)
18. Sturtevant, N.: Benchmarks for grid-based pathfinding. IEEE TCIAIG 4(2), 144–

148 (2012)
19. Wang, K.-H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm

with tractability and completeness guarantees. JAIR 42, 55–90 (2011)
20. Yu, J., LaValle, S.: Planning optimal paths for multiple agents on graphs.

arXiv:1204.3830 (2012)
21. Yu, J., LaValle, S.: Time optimal multi-agent path planning on graphs. In: WoMP

(2012)

Building Large Compressed PDBs
for the Sliding Tile Puzzle

Robert Döbbelin, Thorsten Schütt(B), and Alexander Reinefeld

Zuse Institute Berlin, Berlin, Germany
schuett@zib.de

http://www.zib.de

Abstract. The performance of heuristic search algorithms depends cru-
cially on the effectiveness of the heuristic. A pattern database (PDB) is
a powerful heuristic in the form of a pre-computed lookup table. Larger
PDBs provide better bounds and thus allow more cut-offs in the search
process. We computed 9-9-6, 9-8-7, and 8-8-8 PDBs for the 24-puzzle
that are three orders of magnitude larger (up to 1.4 TB) than the 6-6-6-
6 PDB. This was possible by performing a parallel breadth-first search
in the compressed pattern space. Our experiments indicate an average
8-fold improvement of the 9-9-6 PDB over the 6-6-6-6 PDB on the 24-
puzzle. Combining several large PDBs yields a 13-fold improvement.

1 Introduction

Heuristic search algorithms are widely used to solve combinatorial optimization
problems. While traversing the problem space, the search process is guided by a
heuristic function that provides a lower bound on the cost to a goal state. This
allows to prune large parts of the search space and thus reduces the overall search
effort. The more accurate the heuristic is, the more states can be pruned in the
search. Pattern Databases (PDBs) are powerful heuristic functions in form of a
lookup table. They store the exact solution of a relaxed version of the problem.
The less the original problem is relaxed the larger is the size of the PDB and
thereby the tighter are its bounds.

In this paper we present for the first time very large complete PDBs for the
24-puzzle: a 8-8-8 PDB with 122 GB, a 9-8-7 PDB with 733 GB, and a 9-9-6
PDB with 1381 GB. The largest one gave node savings by up to a factor of 37
compared to the 6-6-6-6 PDB [11].

We present a parallel algorithm that performs a breadth-first search in the
compressed pattern space and thereby allows to compute very large PDBs on
compute clusters with a modest amount of memory. The application of such
large PDBs in heuristic search, however, requires a computer that allows to load
the whole PDB into main memory. This can be as much as 1.4 TB for the 9-9-6
PDB, for example. While systems with more than 1 TB of main memory are not
yet common, we believe that our work will help in studying the pruning-power
of large PDBs.

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 16–27, 2014.
DOI: 10.1007/978-3-319-05428-5 2, c© Springer International Publishing Switzerland 2014

Building Large Compressed PDBs for the Sliding Tile Puzzle 17

The remainder of this paper is structured as follows. Section 2 sets the context
of our work by reviewing relevant literature. Thereafter, PDBs are introduced in
Sect. 3 and the algorithms and compressed data structures for generating large
PDBs are presented in Sect. 4. In Sect. 5 we provide a statistical and empirical
analysis and we summarize our work in Sect. 6.

2 Background

PDBs were first mentioned by Culberson and Schaeffer [3] and have been
improved by several researchers. For instance, Felner et al. [8] presented additive
PDBs in which the heuristic estimate is computed as the sum of the values of
several smaller PDBs. The same authors also proposed a method for compressing
a PDB for sliding tile puzzles by disregarding the blank tile and by computing
the minimum distance over all possible blank positions. PDBs can be built with
a backward breadth-first search over the complete state space. Large breadth-
first searches have been used by Korf and Schultze [12] to expand the complete
graph of the 15-puzzle for the first time. This was achieved by keeping the search
front on disks and hiding the disk latency with multiple threads.

Orthogonal to additive PDBs is the idea of Holte et al. [9] to take the max-
imum h-value from several smaller PDBs instead of a single large one. They
show that the accuracy of small h-values is especially important for reducing the
number of expanded nodes.

Felner and Adler [6] use instance dependent PDBs to utilize large PDBs
without completely creating them. They build on the observation of Zhou and
Hansen [13] that only the nodes generated by the best-first search algorithm
A* are needed in the pattern space to solve an individual instance. For each
pattern of the given instance, Felner and Adler perform an A* search from the
goal pattern towards the start pattern until the available memory is exhausted.
This database is then used for the forward search. When h-values are missing,
several smaller PDBs are used instead.

Breyer and Korf [1] apply a dense representation for problem spaces [2] to
pattern databases. They store the heuristic estimates modulo three and restore
the actual h-value during search. This results is a new compression technique
using 1.6 bits per entry in the PDB.

Edelkamp et al. [4] created large symbolic pattern databases using an external
breadth-first search with Binary Decision Diagrams (BDDs). They built a set of
7-tile PDBs for the 35-puzzle with a total size of 195 GB.

3 Pattern Databases

In this paper we are concerned with sliding tile puzzles. An instance of the
(n−1)-puzzle can be described by n state variables, one for each tile. Each state
variable describes the position of one specific tile in the tray. A pattern considers
only a subset of the state variables; the remaining state variables are ignored.
Hence, patterns abstract from the original problem by mapping several states to

18 R. Döbbelin et al.

the same point in the pattern space. The number of ignored state variables can
be used to control the information loss.

In the (n−1)-puzzle, a pattern is defined by a subset of the tiles. The position
of the pattern tiles, the pattern tile configuration, and the blank defines a node in
the pattern space. Move operations in the original problem can be analogously
applied to nodes in the pattern space by moving either a pattern tile or a non-
pattern tile, i.e. a don’t care tile. Although we count the moves of don’t cares,
they are indistinguishable from each other. The size of the pattern space for a
pattern with k tiles for the (N − 1)-puzzle is N !

(N−k−1)! .
The number of moves needed to reach the goal in the pattern space can

be used as an admissible heuristic for the move number in the original space.
Because of the don’t care tiles, a path in the original search space can only be
longer than the corresponding path in the pattern space and hence the heuristic
is admissible, i.e. non-overestimating.

To compute a PDB, we perform a backward breadth-first search from the
goal to the start node and record for each visited node the distance from the
goal.

3.1 Additive Pattern Databases

Because of space limitations, only small PDBs can be built. To get better heuris-
tic estimates, several PDBs must be combined. However, with the above method,
which also counts the movements of don’t care tiles, we cannot simply add the
h values of PDBs, even when the patterns are disjoint, because the same move
would be counted several times. For additive PDBs [7] we only count the moves
of pattern tiles.

The search space is mapped to the pattern space in the following way. Two
states of the original space map to the same state in the pattern space, if the
pattern tiles are in the same position and the two blank positions can be reached
from each other by moving only don’t care tiles. There is an edge between two
nodes a and b in the pattern space if and only if there are two nodes c and d
in the puzzle space where c maps to a and d maps to b and there is an edge
between c and d.

Figure 1 shows an example for the 8-puzzle. Positions (a) and (b) map to the
same state in the pattern space, because the blank positions are reachable from
each other without moving pattern tiles. Positions (a) and (c), in contrast, do
not map to the same state in the pattern space, because at least one pattern tile
must be moved to shift the blank to the same position.

To further reduce the memory consumption, we compress the databases by
the blank position as described in [7]. This is done by storing for any pattern-
tile configuration, independent of the different blank positions, only the minimal
distance from the goal node. For the three examples shown in Fig. 1 we only
store one (the smallest) distance g in the PDB.

Building Large Compressed PDBs for the Sliding Tile Puzzle 19

1

4

7

1

4

7

1

4

7

(a) (b) (c)

Fig. 1. Patterns with different blank positions (8-puzzle).

4 Building Compressed PDBs

When building large PDBs we ran into two limits: space and time. Not only
do we need to keep the PDB itself in main memory, but also the Open and
Closed lists must be stored. In Sect. 4.1 we describe a sequential algorithm and a
compressed data structure for computing large PDBs. In Sect. 4.2 we describe a
parallel implementation that uses the combined memory and compute capacity
of a cluster as a single resource.

4.1 Sequential Algorithm

Our algorithm for building PDBs builds on ideas of [2]. To store the k-tile PDB,
we use an array of N !

(N−k)! elements, one entry for each state of the compressed
pattern space. For our 9-tile PDB this results in 25!

16! = 741 · 109 entries. We
use a perfect hash function to map a configuration of the pattern to this array.
The hash function is reversible so that we can map an array index back to its
pattern tile configuration. Each entry in the array is made up of three values: g,
open list and closed list.

struct {
byte g ;
byte o p e n l i s t ;
byte c l o s e d l i s t ;

} a r ray ent ry ;

The variable g in Algorithm 1 stores for each entry the minimum g in which
we found that state. Additionally, we need to store for each tuple of a pattern
tile configuration and blank position whether it is in the Open or in the Closed
list. This could be done by simply storing two bit strings of length N − k in
each PDB entry and setting the responsible bit whenever a new blank position
is visited.

However, this simple approach can be improved to achieve a further data
compression. A blank partition is a set of blank positions with a common pattern
tile configuration where all blank positions are reachable from each other by
only moving don’t care tiles [5]. This is shown in Fig. 1: (a) and (b) belong to
the same blank partition, while (a) and (c) do not. For patterns with 9 tiles,
the pattern tile configurations have no more than 8 blank partitions. We can
simply enumerate the blank partitions and only store one bit for each partition

20 R. Döbbelin et al.

Algorithm 1 BFS in compressed, indexed PDB space.
1: PDBArray A
2: initialize array
3: expandedNodes = −1;
4: g = 1;
5: while expandedNodes ∞= 0 do
6: expandedNodes = 0;
7: for i = 0 ≤ A.size − 1 do
8: if A[i].open list = ∅ then
9: continue;

10: end if
11: expandedNodes++;
12: pattern = unindex(i);
13: blanks = unpackBlanks(A[i].open list);
14: succs = genSuccs(pattern, blanks);
15: for j = 0 ≤ succs.size − 1 do
16: sIndex = index(succs[j]);
17: rBlanks = reachableBlanks(succs[j]);
18: pBlanks = packBlanks(rBlanks);
19: pBlanks −= A[sIndex].closed list;
20: A[sIndex].open list += pBlanks;
21: A[sIndex].g = min(A[sIndex].g, g);
22: end for
23: A[i].closed list += A[i].open list;
24: A[i].open list = ∅;
25: end for
26: g++;
27: end while

in the open list or closed list. In the backward breadth-first search we used
pre-computed lookup tables to map the blank positions to blank partitions. To
build a PDB with up to 9 tiles, this scheme requires 3 bytes per state, one for
g, open list, and closed list, respectively.

The breadth-first search over the pattern space is performed as follows (Algo-
rithm 1): All open lists and closed lists are initialized with zeroes. The g for
each state is set to the maximum value. For the initial state, the blank partition
of the initial position is set in the open list.

Then the array is scanned repeatedly (line 4). For each entry, we check if the
Open list is empty (line 7). If not, we create the pattern tile configuration (line
11), extract all blank positions from the Open list (line 12) and finally generate
the successors (line 13). For each successor, we calculate the index in the PDB
(line 15), compress the blank positions (line 16-17) and update the successor’s
entry in the PDB (line 18–20). Note that backward steps are eliminated with
the update. Finally, we update the open list and closed list of the current
position. This is repeated until the complete pattern space has been visited. Note
that the final PDB is stored using one byte per entry. The two bytes used for
open list and closed list can be discarded.

Building Large Compressed PDBs for the Sliding Tile Puzzle 21

generate
successors

shuffle data

update PDB

CPU A CPU B CPU C CPU D

Fig. 2. Workflow of the parallel implementation.

4.2 Parallel Algorithm

For the parallel algorithm, we distribute the array (in disjoint partitions) over
all compute nodes. To avoid imbalances in the work load, we do not assign
contiguous parts to the nodes but use a hash function for assigning partitions of
the array to the compute nodes. The parallel algorithm has the same structure
as the sequential algorithm (see Fig. 2) but it needs additional communication
to move the results to remote compute nodes.

For each g, first each node scans its part of the array and generates the
successors as described in Algorithm 1. But instead of directly updating the
PDB, each node collects the successors locally. In the shuffle phase (Fig. 2),
these successors are sent to the nodes storing the corresponding partitions in the
PDB. Finally, the PDB is updated locally.

Dealing with Memory Limitations. The parallel implementation requires
more memory than the sequential algorithm, because successors are cached
locally before they are stored in the array. The generated successors in a large
search front could exceed the available memory of a compute node. Thus, we
implemented the following scheme to bound the overall memory consumption.
If a processor is about to run out of memory, it stops scanning the array and
raises a flag. In this case all processor mark updates to the Open lists in the
BFS array as new, g is not incremented and the array is scanned again. Then
only those Open lists are considered, which are not marked as new. Once all
processors succeeded scanning the array, the flag is removed from all Open lists
and the algorithm proceeds with the next g.

5 Evaluation

We used the presented parallel algorithm to build three large PDBs, 8-8-8, 9-
8-7, and 9-9-6, with sizes of 122 GB, 733 GB and 1381 GB, respectively. For
comparison, the 6-6-6-6 PDB has a size of only 488 MB.

22 R. Döbbelin et al.

(a) 6-6-6-6 (b) 8-8-8 (c) 9-8-7 (d) 9-9-6

In our cluster, each compute node has 2 quad-core Intel Xeon X5570 with
48 GB of main memory. It took about 6 hours to build a single 9-tile PDB on
255 nodes. The maximum amount of memory required to build such a PDB was
3 TB. For the empirical analysis we used an SGI UV 1000, a large shared-memory
machine with 64 octo-core Intel Xeon X7560 and 2 TB of main memory.

In the following, we first present a statistical analysis of the performance of
our PDBs on a large number of randomly generated positions. Thereafter we
show the performance on Korf’s set of random 24-puzzle instances [12]. In both
cases, we used mirroring [3] to improve the accuracy of the heuristics.

5.1 Statistical Evaluation

We created 100,000,000 random instances of the 24-puzzle and recorded the h-
values obtained with the 6-6-6-6, 8-8-8, 9-8-7, and 9-9-6 PDB. Figure 3 shows the
cumulative distribution, i.e. the probability P (X ≤ h), that the heuristic value
for a random state is less or equal to h. The higher the h-value, the better the
pruning power of the heuristic. This is because all heuristics are admissible, i.e.
they never overestimate the goal distance. Higher h-values represent therefore
tighter bounds on the true value. As can be seen in Fig. 3, all graphs lie close
together and their order corresponds to the size and pruning power of the PDBs.
Interestingly, the new PDBs are distinctively better than the 6-6-6-6 PDB (see
the dashed line).

Note that the increased number of small h-values is especially important for
the performance of the heuristic [9]. Figure 4 shows a magnification of the lower
left corner of the data in Fig. 3. It can be seen that all curves are clearly distinct
and that the large PDBs provide a considerable improvement over the 6-6-6-6
PDB.

Table 1 lists the average, minimum, and maximum values. In accordance with
Fig. 3, larger PDBs return on average a higher h-value. Checking the extreme
values reveals an interesting fact: While the minimum value of the 9-9-6 PDB is
4 moves higher than the lowest value of the 6-6-6-6, its maximum value is only

Table 1. Average, minimum and maximum h-values of 100,000,000 random instances.

PDB Size [GB] Avg.h Min.h Max.h

6-6-6-6 0.488 81.85 40 115
8-8-8 122 82.84 40 116
9-8-7 733 83.10 43 116
9-9-6 1381 83.56 44 116

Building Large Compressed PDBs for the Sliding Tile Puzzle 23

Fig. 3. Cumulative distribution of h-values of 100,000,000 random samples.

Fig. 4. Magnification of the lower left corner of Fig. 3.

8−8−8

9−8−7

9−9−6

max−of

0 10 20 30 40 50 60

Fig. 5. Reduction factors compared to 6-6-6-6 PDB.

24 R. Döbbelin et al.

increased by one. Thus, the large PDBs return fewer small values but they do
not provide a significantly higher maximum.

5.2 Empirical Evaluation

For the second set of experiments, we used Korf’s fifty random instances and
solved them optimally. We present data on the breadth-first iterative deepening
A* algorithm (BF-IDA*) [14], a breadth-first variant of IDA* [10]. We chose BF-
IDA* over IDA* because its performance does not depend on the node ordering
and it therefore allows to better assess the performance of the heuristic. We
sorted the 50 instances by the number of expanded nodes with BF-IDA* using
the 6-6-6-6 PDB.

Figure 6 shows the reduction of node expansions in comparison to the 6-6-6-6
PDB. For each bar we divided the nodes expanded by the 6-6-6-6 PDB by that
of the other PDBs. In general, larger PDBs tend to perform better than smaller
ones and the gain seems to be independent from the problem difficulty. However,
there are a number of outliers in both directions.

Figure 5 summarizes Fig. 6 and groups the reduction factors by PDB. For the
max-of line on the top, the maximum of the 6-6-6-6, 8-8-8, 9-8-7 and 9-9-6 PDBs
for the heuristic. The memory consumption is only marginally larger because of
the overlapping partitions. The four PDBs reduce the number of expanded nodes
by a median factor of 2.16, 3.86, 6.81 and 9.36. However, there are some outliers
towards both ends of the scale. For some instances the number of expanded
nodes was higher compared to the 6-6-6-6 PDB. On the other hand, it could be
reduced by a factor of up to 10 with the 8-8-8 PDB and up to 40 with the 9-8-7

Fig. 6. Reduction factor to 6-6-6-6 PDB on Korf’s random set (ordered by IDA* nodes)
using BF-IDA*.

Building Large Compressed PDBs for the Sliding Tile Puzzle 25

and 9-9-6 PDBs. The standard deviation seems to slightly increase with the size
of the heuristic.

Table 2 in the Appendix shows the detailed results for each problem instance.
The first column gives the Id used in [12] and the second column states the length
d of the shortest path. The number of expanded nodes with the individual PDBs
are listed in columns three to seven. Columns eight to eleven give the reduction
factor of the 8-8-8, 9-8-7, 9-9-6, and max-of PDBs relative to the 6-6-6-6 PDB.

6 Conclusion

We presented an efficient parallel algorithm and a compact data structure that
allowed us to compute for the first time very large compressed PDBs. The par-
allel algorithm utilizes the aggregated memory of multiple parallel computers to
compute and store the PDB in the main memory.

We computed three additive PDBs for the 24-puzzle, an 8-8-8, 9-8-7 and 9-
9-6 PDB. To the best of our knowledge, these are the largest PDBs reported for
this domain.

The 9-9-6 PDB gives on average an 8-fold node reduction compared to a
6-6-6-6 PDB on Korf’s random instances of the 24-puzzle. We observed a high
variance on the reduction rate, which ranges from 2x to 37x savings (Table 2).
Hence, we suggest to use the maximum over several additive PDBs in practice.
This is feasible, because multiple additive PDBs do not proportionally increase
the memory consumption. This is because the same PDB can be utilized by
multiple additive PDBs. As an example, the same 9 PDB can be used in both
of our 9-9-6 PDB and the 9-8-7 PDB.

Acknowledgments. This work was partly supported by the EU project CONTRAIL,
the DFG project FFMK and the North German Supercomputer Alliance HLRN.

Appendix

Table 2. Expanded nodes of all 50 random instances (r1: 6-6-6-6 / 8-8-8, r2: 6-6-6-
6 / 9-8-7 , r3: 6-6-6-6 / 9-9-6, r4: 6-6-6-6 / max-of).

Id d 6-6-6-6 8-8-8 9-8-7 9-9-6 max-of r1 r2 r3 r4

40 82 26,320,497 49,291,000 26,655,910 10,486,000 7,166,383 0.53 0.99 2.51 3.67
38 96 58,097,633 9,577,883 3,573,949 1,906,127 1,638,334 6.07 16.26 30.48 35.46
25 81 127,949,696 118,780,897 85,141,009 17,658,986 15,217,162 1.08 1.50 7.25 8.41
44 93 181,555,996 37,853,812 11,869,090 7,686,937 5,547,600 4.80 15.30 23.62 32.73
32 97 399,045,498 281,515,091 232,222,028 117,317,314 67,570,393 1.42 1.72 3.40 5.91
28 98 450,493,295 114,571,662 36,263,727 25,552,985 19,743,793 3.93 12.42 17.63 22.82
22 95 581,539,254 82,503,279 88,652,504 81,038,427 37,858,513 7.05 6.56 7.18 15.36

(continued)

26 R. Döbbelin et al.

Table 2. (continued)

Id d 6-6-6-6 8-8-8 9-8-7 9-9-6 max-of r1 r2 r3 r4

36 90 603,580,192 408,261,989 252,309,866 133,482,919 95,563,302 1.48 2.39 4.52 6.32
30 92 661,835,606 256,431,250 158,409,200 99,557,684 52,338,447 2.58 4.18 6.65 12.65
1 95 1,059,622,872 199,198,406 163,950,295 133,060,463 63,948,759 5.32 6.46 7.96 16.57
29 88 1,090,385,785 128,886,129 34,814,333 59,609,938 21,223,415 8.46 31.32 18.29 51.38
37 100 1,646,715,005 628,890,120 725,323,664 542,573,720 331,223,844 2.62 2.27 3.04 4.97
16 96 1,783,144,872 1,729,554,795 966,783,772 387,360,939 296,519,726 1.03 1.84 4.60 6.01
5 100 1,859,102,197 3,125,977,623 1,078,990,063 905,861,248 565,263,022 0.59 1.72 2.05 3.27
13 101 1,979,587,555 1,181,771,575 690,327,991 444,476,728 268,475,464 1.68 2.87 4.45 7.37
47 92 4,385,270,986 3,825,636,827 4,520,442,316 1,479,759,728 960,463,883 1.15 0.97 2.96 4.57
3 97 4,805,007,493 5,699,072,723 6,731,407,433 2,146,564,697 1,113,194,453 0.84 0.71 2.24 4.32
4 98 5,154,861,019 1,361,290,863 581,368,420 632,299,449 370,467,747 3.79 8.87 8.15 13.91
26 105 6,039,700,647 4,993,857,550 2,525,926,189 1,337,993,889 955,364,988 1.21 2.39 4.51 6.32
31 99 7,785,405,374 3,653,831,114 2,058,364,161 1,622,465,469 992,726,542 2.13 3.78 4.80 7.84
27 99 7,884,559,441 1,415,859,414 611,960,188 432,345,846 337,466,232 5.57 12.88 18.24 23.23
41 106 8,064,453,928 1,737,010,534 1,123,917,776 561,944,277 455,028,148 4.64 7.18 14.35 17.72
43 104 8,816,151,498 4,378,714,353 3,498,876,258 1,532,474,999 1,090,696,435 2.01 2.52 5.75 8.08
6 101 9,810,208,759 2,397,434,227 1,982,606,973 2,739,184,006 1,053,141,115 4.09 4.95 3.58 9.32
49 100 11,220,738,849 5,526,627,744 4,160,235,910 2,792,736,271 1,587,674,537 2.03 2.70 4.02 7.07
45 101 17,068,061,084 5,614,562,048 2,909,124,921 2,408,543,192 1,339,279,458 3.04 5.87 7.09 12.74
20 92 20,689,215,063 9,014,702,404 4,354,383,611 1,615,310,063 1,378,812,797 2.30 4.75 12.81 15.01
46 100 21,674,806,323 9,872,851,915 10,304,210,129 8,017,940,089 3,402,288,275 2.20 2.10 2.70 6.37
19 106 22,761,173,348 6,759,987,121 4,019,764,127 2,836,304,399 2,125,081,076 3.37 5.66 8.02 10.71
35 98 23,049,423,391 8,584,994,059 4,998,934,055 3,208,321,325 2,369,834,229 2.68 4.61 7.18 9.73
7 104 27,686,193,468 26,781,188,637 19,232,502,973 6,429,879,587 4,395,653,789 1.03 1.44 4.31 6.30
8 108 29,575,219,906 4,318,849,565 4,366,429,730 2,609,051,057 1,727,994,805 6.85 6.77 11.34 17.12
39 104 34,198,605,172 22,810,919,845 6,881,101,921 2,912,577,301 2,428,595,642 1.50 4.97 11.74 14.08
42 108 37,492,323,962 9,339,335,844 7,508,532,598 3,490,897,448 2,697,310,294 4.01 4.99 10.74 13.09
24 107 38,272,741,957 25,802,863,114 15,170,752,402 4,724,091,699 3,837,236,834 1.48 2.52 8.10 9.97
2 96 40,161,477,151 29,318,072,174 28,011,360,591 14,446,211,551 8,963,348,921 1.37 1.43 2.78 4.48
15 103 52,178,879,610 26,951,022,561 18,771,225,751 9,741,418,794 8,075,823,446 1.94 2.78 5.36 6.46
23 104 54,281,904,788 36,611,741,317 32,729,241,923 11,103,574,065 8,930,804,356 1.48 1.66 4.89 6.08
48 107 58,365,224,981 99,614,525,233 68,013,167,519 19,890,964,633 12,563,246,704 0.59 0.86 2.93 4.65
34 102 59,225,710,222 49,923,377,951 24,336,781,035 7,384,409,074 5,346,161,078 1.19 2.43 8.02 11.08
12 109 76,476,143,041 43,132,155,298 14,260,876,794 5,820,163,959 4,265,458,902 1.77 5.36 13.14 17.93
21 103 98,083,647,769 25,411,173,479 18,746,227,139 13,731,206,789 8,402,416,300 3.86 5.23 7.14 11.67
18 110 126,470,260,027 18,375,847,744 18,999,810,842 15,070,620,942 7,809,249,544 6.88 6.66 8.39 16,19
9 113 132,599,245,368 82,839,919,151 33,749,539,711 22,489,080,304 16,927,179,096 1.60 3.93 5.90 7.83
33 106 134,103,676,989 77,163,409,262 57,402,766,270 42,219,474,099 25,271,466,707 1.74 2.34 3.18 5.31
17 109 143,972,316,747 49,516,974,145 25,000,824,805 20,405,484,237 15,304,298,302 2.91 5.76 7.06 9.41
11 106 309,253,017,124 22,602,670,676 7,683,989,291 8,343,197,181 4,678,739,173 13.68 40.25 37.07 66.10
14 111 312,885,453,572 419,699,251,120 360,169,788,945 74,779,904,961 63,056,188,490 0.75 0.87 4.18 4.96
10 114 525,907,193,133 207,752,246,775 192,243,603,386 105,311,763,457 63,629,118,230 2.53 2.74 4.99 8.27
50 113 1,067,321,687,213 334,283,260,227 168,384,195,109 152,720,707,871 100,026,128,248 3.19 6.34 6.99 10.67

Average 71,004,578,707.12 33,908,766,050.50 23,611,990,572.06 11,599,129,942.46 7,794,424,738.66 3.00 5.74 8.37 12.85
Median 14,144,399,966.50 5,570,594,896.00 4,257,309,760.50 2,508,797,124.50 1,359,046,127.50 2.16 3.86 6.81 9.36

References

1. Breyer, T.M., Korf, R.E.: 1.6-bit pattern databases. In: AAAI (2010)
2. Cooperman, G., Finkelstein, L.: New methods for using Cayley graphs in intercon-

nection networks. Discrete Appl. Math. 37, 95–118 (1992)
3. Culberson, J.C., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3), 318–334

(1998)
4. Edelkamp, S., Jabbar, S., Kissmann, P.: Scaling search with pattern databases. In:

Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 49–64.
Springer, Heidelberg (2009)

Building Large Compressed PDBs for the Sliding Tile Puzzle 27

5. Felner, A.: Improving search techniques and using them on different environments.
Ph.D. thesis (2001)

6. Felner, A., Adler, A.: Solving the 24 Puzzle with instance dependent pattern data-
bases. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607,
pp. 248–260. Springer, Heidelberg (2005)

7. Felner, A., Korf, R.E., Hanan, S.: Additive pattern database heuristics. J. Artif.
Intell. Res. 22, 279–318 (2004)

8. Felner, A., Meshulam, R., Holte, R.C., Korf, R.E.: Compressing pattern databases.
In: AAAI, pp. 638–643 (2004)

9. Holte, R.C., Newton, J., Felner, A., Meshulam, R., Furcy, D.: Multiple pattern
databases. In: Proceedings of the Fourteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS-04), pp. 122–131 (2004)

10. Korf, R.E.: Depth-first iterative-deepening an optimal admissible tree search. Artif.
Intell. 27(1), 97–109 (1985)

11. Korf, R.E., Felner, A.: Disjoint pattern database heuristics. Artif. Intell. 134(1–2),
9–22 (2002)

12. Korf, R.E., Schultze, P.: Large-scale parallel breadth-first search. In: Proceedings
of the National Conference on Artificial Intelligence, vol. 20, pp. 1380–1385. AAAI
Press/MIT Press (2005)

13. Zhou, R., Hansen, E.A.: Space-efficient memory-based heuristics. In: Proceedings of
the National Conference on Artificial Intelligence, pp. 677–682. AAAI Press/MIT
Press (2004)

14. Zhou, R., Hansen, E.A.: Breadth-first heuristic search. Artif. Intell. 170(4–5), 385–
408 (2006)

Monte Carlo Tree Search in Simultaneous Move
Games with Applications to Goofspiel

Marc Lanctot1(B), Viliam Lisý2, and Mark H.M. Winands1

1 Department of Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands

2 Department of Computer Science, Czech Technical University in Prague,
Praha, Czech Republic

{marc.lanctot,m.winands}@maastrichtuniversity.nl, lisy@agents.fel.cvut.cz

Abstract. Monte Carlo Tree Search (MCTS) has become a widely pop-
ular sampled-based search algorithm for two-player games with perfect
information. When actions are chosen simultaneously, players may need
to mix between their strategies. In this paper, we discuss the adaptation
of MCTS to simultaneous move games. We introduce a new algorithm,
Online Outcome Sampling (OOS), that approaches a Nash equilibrium
strategy over time. We compare both head-to-head performance and
exploitability of several MCTS variants in Goofspiel. We show that regret
matching and OOS perform best and that all variants produce less
exploitable strategies than UCT.

1 Introduction

Monte Carlo Tree Search (MCTS) is a simulation-based search technique often
used in extensive-form games [9,16]. Having first seen practical success in com-
puter Go [13], MCTS has since been applied successfully to general game play-
ing, real-time and continuous domains, multi-player games, single-player games,
imperfect information games, computer games, and more [4].

Despite its empirical success, formal guarantees of convergence of a MCTS
to the optimal action choice were analyzed only for a MCTS variant called
UCT [16], in the case of two-player zero-sum perfect-information sequential
(turn-taking) games. In this paper, we focus on MCTS in zero-sum games with
perfect information and simultaneous moves. We argue that a good search algo-
rithm for this class of games should converge to a Nash equilibrium (NE) of the
game, which is not the case for a variant of UCT [25], commonly used in this
setting. Other variants of MCTS, which may converge to NE were suggested [26],
but this property was never proven or experimentally evaluated.

In this paper, we introduce Online Outcome Sampling (OOS), a MCTS algo-
rithm derived from Monte Carlo counterfactual regret minimization [17], which
provably converges to NE in this class of games. We provide experimental evi-
dence that OOS and several other variants of MCTS, based on Exp3 and Regret
matching, also converge to NE in a smaller version of the card game Goofspiel.

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 28–43, 2014.
DOI: 10.1007/978-3-319-05428-5 3, c© Springer International Publishing Switzerland 2014

Monte Carlo Tree Search in Simultaneous Move Games 29

In addition, we compare the head-to-head performance of five different MCTS
variants in full-size Goofspiel. Since Goofspiel has recently been solved [21], we
use the optimal minimax values of every state to estimate the exploitability
(i.e., worst-case regret) of the strategies used in the full game. The results show
that regret matching and an optimized form of OOS (OOS+), which have never
been used in context of MCTS, produce the strongest Goofspiel players.

1.1 Related Work

The first application of MCTS to simultaneous move games was in general game
playing (GGP) [11] programs. The Cadiaplayer [12] using a strategy we describe
as DUCT in Subsect. 3.1 was the top performing player of the GGP competition
between 2007 and 2009. Despite this success, Shafiei et al. [25] provide a counter-
example showing that this straightforward application of UCT does not converge
to NE even in the simplest simultaneous move games and that a player playing
a NE can exploit this strategy. Another variant of UCT, which has been applied
to the simultaneous move game Tron [24], builds the tree as if the players were
moving sequentially giving one of the player unrealistic informational advantage.
This approach also cannot converge to NE in general.

For this reason, other variants of MCTS were considered for simultaneous
move games. Teytaud and Flory [26] describe a search algorithm for games with
short-term imperfect information, which are a generalization of simultaneous
move games. Their algorithm uses Exp3 (see Subsect. 3.2) for the simultaneous
moves and was shown to work well in the Internet card game Urban Rivals. A
more thorough investigation of different selection policies including UCB, UCB1-
Tuned, δ-greedy, Exp3, and more is reported in the game of Tron [20]. We show
a similar head-to-head performance comparison for Goofspiel in Sect. 4 and we
add an analysis of convergence to NE.

Finnsson applied simultaneous move MCTS to several games, including small
games of Goofspiel [12, Chapter 6]. This work focused mainly on pruning prov-
ably dominated moves. Their algorithm uses solutions to linear programs in the
framework of Score-Bounded MCTS [6] to extend the ideas of MCTS-Solver [27]
to simultaneous move games. Saffidine et al. [23] and Bosansky et al. [3] recently
described methods for αβ pruning in simultaneous move games, and also applied
their algorithms to simplified Goofspiel. Our work differs in that our algorithm
is built with the simulation-based search framework of Monte Carlo Tree Search
(MCTS), which is more suitable for larger games with difficult evaluation of the
quality of intermediate game states.

The ideas presented in this paper are different than MMCTS and IS-MCTS
[2,10] in the sense that the imperfect information that arises in simultaneous
move games is rather short term because it only occurs between state transitions.
In our case game trees may include chance events, but the outcomes of the chance
events are observable by each player. As a result, techniques such as backward
induction [5,21,22] are applicable, and search algorithms can be seen as sample-
based approximations of these solvers.

30 M. Lanctot et al.

2 Simultaneous Move Games

A finite game with simultaneous moves and chance can be described by a tuple
(N ,S = D ≤C ≤Z,A, T ,Δc, ui, s0). The player set N = {1, 2, c} contains player
labels, where c denotes the chance player and by convention a player is denoted
i ∈ N . S is a set of states, with Z denoting the terminal states, D the states
where players make decisions, and C the possibly empty set of states where
chance events occur. A = A1×A2 is the set of joint actions of individual players.
We denote Ai(s) the actions available to player i in state s ∈ S. The transition
function T : S × A1 × A2 �∞ S defines the successor state given a current state
and actions for both players. Δc : C �∞ Δ(S) describes a probability distribution
over possible successor states of the chance event. The utility functions ui : Z �∞
[vmin, vmax] ⊆ R gives the utility of player i, with vmin and vmax denoting the
minimum and maximum possible utility respectively. We assume constant-sum
games: ∀z ∈ Z, u1(z) = k − u2(z). The game begins in an initial state s0.

A matrix game is a single step simultaneous move game with action sets A1

and A2. Each entry in the matrix Arc where (r, c) ∈ A1 × A2 corresponds to
a payoff (to player 1) if row r is chosen by player 1 and column c by player 2.
For example, in Matching Pennies, each player has two actions (heads or tails).
The row player receives a payoff of 1 if both players choose the same action and
0 if they do not match. Two-player simultaneous move games are sometimes
called stacked matrix games because at every state s there is a joint action set
A1(s) × A2(s) that either leads to a terminal state or (possibly after a chance
transition) to a subgame which is itself another stacked matrix game.

A behavioral strategy for player i is a mapping from states s ∈ S to a
probability distribution over the actions Ai(s), denoted σi(s). Given a profile
σ = (σ1, σ2), define the probability of reaching a terminal state z under σ as
πσ(z) = π1(z)π2(z)πc(z), where each πi(z) is a product of probabilities of the
actions taken by player i along the path to z (c being chance’s probabilities).
Define Σi to be the set of behavioral strategies for player i. A Nash equilibrium
profile in this case is a pair of behavioral strategies optimizing

V ≤ = max
σ1≈Σ1

min
σ2≈Σ2

Ez∼σ[u1(z)] = max
σ1≈Σ1

min
σ2≈Σ2

∑
z≈Z

πσ(z)u1(z). (1)

In other words, none of the players can improve their utility by deviating uni-
laterally. For example, the Matching Pennies matrix game has a single state and
the only equilibrium strategy is to mix equally between both actions, i.e., play
with a mixed strategy (distribution) of (0.5, 0.5) giving an expected payoff of
V ≤ = 0.5. If the strategies also optimize Eq. 1 in each subgame starting in an
arbitrary state, the equilibrium strategy is termed subgame perfect.

In two-player constant sum games a (subgame perfect) Nash equilibrium
strategy is often considered to be optimal. It guarantees the payoff of at least
V ≤ against any opponent. Any non-equilibrium strategy has its nemesis, which
will make it win less than V ≤ in expectation. Moreover, subgame perfect NE
strategy can earn more than V ≤ against weak opponents. After the opponent

Monte Carlo Tree Search in Simultaneous Move Games 31

* * *. . .

. . .

. . .

. . .

Chance
state

Decision state

Fig. 1. Examples of a two-player simultaneous game without chance nodes (left) which
has Matching Pennies as a subgame, and a portion of 3-card Goofspiel including chance
nodes (right). The dark squares are terminal states. The values shown are optimal
values that could be obtained by backward induction. Note: the left figure is taken
from [3] and provided by Branislav Bosansky.

makes a sub-optimal move, the strategy will never allow it to gain the loss back.
The value V ≤ is known as the minimax-optimal value of the game and is the
same for every equilibrium profile by von Neumann’s minimax theorem.

A two-player simultaneous move game is a specific type of two-player imper-
fect information extensive-form game. In imperfect information games, states
are grouped into information sets: two states s, s′ ∈ I if the player to act at I
cannot distinguish which of these states the game is currently in. Any simul-
taneous move game can be modeled using an information set to represent a
half-completed transition, i.e., T (s, a1, ?) or T (s, ?, a2).

The model described above is similar to a two-player finite horizon Markov
Game [19] with chance events. Examples of such games are depicted in Fig. 1.

3 Simultaneous Move Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [9,16] is a simulation-based search algorithm
often used in game trees. The main idea is to iteratively run simulations to a
terminal state, incrementally growing a tree rooted at the current state. In its
simplest form, the tree is initially empty and a single leaf is added each iteration.
The nodes in the tree represent game states (decision nodes) or chance events
(chance nodes). Each simulation starts by visiting nodes in the tree, selecting
(or sampling) which actions to take based on information maintained in the
node, and then consequently transitioning to the successor states. When a node
is visited whose immediate children are not all in the tree, the node is expanded
by adding a new leaf to the tree. Then, a rollout policy is applied from the new
leaf to a terminal state. The outcome of the simulation is then back-propagated
to all the nodes that were visited during the simulation.

In Simultaneous Move MCTS (SM-MCTS), the main difference is that a joint
action is selected. The convergence to an optimal strategy depends critically on

32 M. Lanctot et al.

SM-MCTS(node s)1

if s is a terminal state (s ∞ Z) then return u1(s)2

else if s ∞ T and s is a chance node (s ∞ C) then3

Sample s∼ ≤ Δc(s)4

if s∼ ∅∞ T then add s∼ to T5

u1 ← SM-MCTS(s∼)6

Xs ← Xs + u1; ns ← ns + 17

return u18

else if s ∞ T and ∃(a1, a2) ∞ A1(s) × A2(s) not previously selected then9

Choose one of the previously unselected (a1, a2) and s∼ ← T (s, a1, a2)10

Add s∼ to T11

u1 ← Rollout(s∼)12

Xs′ ← Xs′ + u1; ns′ ← ns′ + 113

Update(s, a1, a2, u1)14

return u115

(a1, a2) ← Select(s)16

s∼ ← T (s, a1, a2)17

u1 ← SM-MCTS(s∼)18

Update(s, a1, a2, u1)19

return u120

Algorithm 1: Simultaneous Move Monte Carlo Tree Search

the selection and update policies applied, which are not as straightforward as
in purely sequential games. Algorithm 1 describes a single simulation of SM-
MCTS. T represents the MCTS tree in which each state is represented by one
node. Every node s maintains a cumulative reward sum over all simulations
through it, Xs, and a visit count ns, both initially set to 0. As with standard
MCTS, when a state is visited these values are incremented, in the same way on
lines 7 and 13, and in the node updates on lines 14 and 19. As seen in Fig. 1, a
matrix of references to the children is maintained at each decision node.

Chance nodes are explicitly added to the tree and handled between lines 3
and 7, which is skipped in games without chance events since |C| = 0. At a
chance node s, X̄s = Xs/ns represents the mean value of the chance node and
corresponding joint action at the parent of s. This mean value at chance nodes
approximates the expected value (weighted sum) that would be computed by
backward induction or a depth-limited search algorithm.

At a decision node s, the estimated values X̄s′ of the children nodes s′ =
T (s, a1, a2) over all joint actions form an estimated payoff matrix for node s.
The critical parts of the algorithm are the updates on lines 14 and 19 and the
selection on line 16. Each variant below will describe a different way to select a
joint action and update a decision node.

In practice, there are several optimizations to the base algorithm that might
be desirable. For example, if a game has a large branching factor, it may take
many iterations for the expansion condition and consequence in lines 9 to 10 to
fill up the matrix before switching to a selection policy. The matrix can instead

Monte Carlo Tree Search in Simultaneous Move Games 33

be filled such that at least one action has been taken from each row and one from
each column before switching to the selection policy. Since DUCT and Exp3 do
not require values for each entry in the matrix, this could reduce the number of
simulations before switching to |A1(s)| + |A2(s)| from |A1(s)||A2(s)|. The use
of progressive widening [7,8] may also lead to deeper searches. In this paper,
the implementation for experiments is based on the pseudo-code presented in
Algorithm 1.

3.1 Decoupled UCT

In Decoupled UCT (DUCT) [11], each player i maintains separate reward sums
Xi

s,a and visit counts ni
s,a for their own action set a ∈ Ai(s). When a joint action

needs to be selected on line 16, each player selects an action that maximizes the
UCB value over their reward estimates independently:

ai = argmax
a≈Ai(s)

{
X̄i

s,a + Ci

√
ln ns

ns,a

}
, where X̄i

s,a =
Xi

s,a

ns,a
(2)

The update policy increases the rewards and visit counts for each player i:
Xi

s,ai
← Xi

s,ai
+ ui, and ns,ai

← ns,ai
+ 1.

While references to children nodes in the MCTS tree are maintained in a
matrix, each player decouples the values and estimates from the joint actions
space. In other words, for some state s, each player maintains their own tables
of values. For example, suppose the actions sets are A1(s) = {a, b, c} and A2(s) =
{A,B,C}, then the information maintained by at state s is depicted in Fig. 2.
Many of the other selection policies also maintain values separately, and some
use jointly maintained values.

After the simulations, a move is chosen that maximizes X̄i
s,ai

for the searching
player i. Alternatively, one can choose to play a mixed (i.e., randomized) strategy
by normalizing the visit counts. We call the former DUCT(max) and the latter
DUCT(mix).

3.2 Exp3

In Exp3 [1], each player maintains an estimate of the sum of rewards, denoted
x̂i

s,a, and visit counts ni
s,a for each of their actions. The joint action selected on

Player 1

Action Reward Sum Visit Count

a X1
s,a ns,a

b X1
s,b ns,b

c X1
s,c ns,c

Player 2

Action Reward Sum Visit Count

A X2
s,A ns,A

B X2
s,B ns,B

C X2
s,C ns,C

Fig. 2. Decoupled values maintained in the tree at a node representing state s.

34 M. Lanctot et al.

line 16 is composed of an action independently selected for each player based on
the probability distribution. This probability of sampling action ai is

σt
i(s, ai) =

(1 − γ) exp(ηwi
s,ai

)∑
aj≈Ai(s)

exp(ηwi
s,aj

)
+

γ

|Ai(s)| , where (3)

η =
γ

|Ai(s)| , and wi
s,a = x̂i

s,a − max
a′≈Ai(s)

x̂i
s,a′ .

Here, the reason to use wi
s,a is for numerical stability in the implementation.

The action selected by normalizing over the maximum value will be identical to
the action chosen without normalizing.

The update after selecting actions (a1, a2) and obtaining a simulation result
(u1, u2) updates the visits count and adds to the corresponding reward sum
estimates the reward divided by the probability that the action was played by
the player using

ns,ai
← ns,ai

+ 1, x̂i
s,ai

← x̂i
s,ai

+
ui

σt
i(s, ai)

.

Dividing the value by the probability of selecting the corresponding action makes
x̂i

s,a estimate the sum of rewards over all iterations, not only the once where ai

was selected.
Since these values and strategies are maintained separately for each player,

Exp3 is decoupled in the same sense as DUCT, storing values separately as
depicted by Fig. 2.

The mixed strategy used by player i after the simulations are done is given
by the frequencies of visit counts of the actions,

σfinal
i (s, ai) =

ns,ai∑
bi≈Ai(s)

ns,bi

.

Previous work [26] suggests first removing the samples caused by the explo-
ration. This modification proved to be useful also in our experiments, so before
computing the resulting final mixed strategy, we set

ns,ai
← max

⎛
⎝0, ns,ai

− γ

|Ai(s)|
∑

bi≈Ai(s)

ns,bi

⎞
⎠ . (4)

3.3 Regret Matching

This variant applies regret matching [15] to the current estimated matrix game
at each stage. Suppose iterations are numbered from t ∈ {1, 2, 3, · · · } and at
each iteration and each decision node s there is a mixed strategy σt

i(s) used
by each player i for each node s in the tree, initially set to uniform random:
σ0

i (s, a) = 1/|A(s)|. Each player i maintains a cumulative regret ri
s[a] for having

played σt
i(s) instead of a ∈ Ai(s). In addition, a table for the average strategy

Monte Carlo Tree Search in Simultaneous Move Games 35

is maintained per player as well σ̄i
s[a]. The values in both tables are initially set

to 0.
On iteration t, the selection policy (line 16 in Algorithm 1) first builds the

player’s current strategies from the cumulative regret. Define x+ = max(x, 0),

σt
i(s, a) =

ri
s[a]

R+
sum

if R+
sum > 0 oth.

1
|Ai(s)| , where R+

sum =
∑

a≈Ai(s)

ri,+
s [a]. (5)

The main idea is to adjust the strategy by assigning higher weight proportionally
to actions based on the regret of having not taken them over the long-term. To
ensure exploration, an γ-on-policy sampling procedure similar to Eq. 3 is used
choosing action a with probability γ/|A(s)| + (1 − γ)σt

i(s, a).
The updates on line 14 and 19 add regret accumulated at the iteration to the

regret tables ri
s and the average strategy σ̄i

s[a]. Suppose joint action (a1, a2) is
sampled from the selection policy and utility ui is returned from the recursive call
on line 18. Label the current child (i, j) estimate X̄s,i,j and the reward(i, j) =
X̄s,i,j if (i, j) 	= (a1, a2), or ui otherwise. The updates to the regret are:

∀a′
1 ∈ A1(s), r1s [a′

1] ← r1s [a′
1] + (reward(a′

1, a2) − u1),

∀a′
2 ∈ A2(s), r2s [a′

2] ← r2s [a′
2] + (reward(a1, a

′
2) − u2),

and average strategy updates for each player, σ̄i
s[a] ← σ̄i

s[a] + σt
i(s, a).

The regret values ri
s[ai] are maintained separately by each player, as in DUCT

and depicted by Fig. 2. However, the updates and specifically the reward uses a
value that is a function of the joint action space.

After the simulations, a move for the root s is chosen by sampling over the
strategy obtained by normalizing the values in σ̄i

s.

3.4 Online Outcome Sampling

Online Outcome Sampling (OOS) is an MCTS adaptation of the outcome sam-
pling MCCFR algorithm designed for offline equilibrium computation in imper-
fect information games [17]. Regret matching is applied but to a different type
of regret, the sampled counterfactual regret. Counterfactual regret is a way to
define individual regrets at s for not having played actions a ∈ Ai(s) weighted
by the probability that the opponent played to reach s [28]. The sampled coun-
terfactual regret is an unbiased estimate of the counterfactual regret.

In OOS, each simulation chooses a single exploration player iexp, which alter-
nates across simulations. Also, the probability of sampling to a state s due to
the exploring player’s selection policy, π, is maintained. These two parameters
are added to the function in line 1 of Algorithm 1. Define σt

i(s), regret and aver-
age strategy tables as in Subsect. 3.3. Regret matching (Eq. 5) is used to build
the strategies, and the action selected for i = iexp is sampled with probability
ps,ai

= γ/|A(s)| + (1 − γ)σt
i(s, ai). The other player j’s action is selected with

probability ps,aj
= σt

j(s, aj). The recursive call on line 18 then sends down πps,ai

as the new sample probability.

36 M. Lanctot et al.

Upon return from the recursive call, the exploring player i = iexp first builds
a table of expected values given their strategies vi

s[a]. In outcome sampling, the
values assigned to nodes that were not sampled are assigned a value of 0. This
ensures that the estimate of the true counterfactual values remains unbiased.
Due to the complexity of the implementation we omit this standard version of
outcome sampling and refer interested readers to [18, Chapter 4]. Instead, we
present a simpler optimized form inspired by Generalized MCCFR with prob-
ing [14] that seems to perform better in practice in our initial investigation.
The idea is to set the value of the unsampled actions to their current estimated
value. Define the child state s{ai,aj} = T (s, ai, aj) if (i, j) = (1, 2) or T (s, aj , ai)
otherwise. For the exploring player i = iexp, for a ∈ Ai(s), the values are:

vi
s[a] =

∑
a′≈Aj(s)

σt
j(s, a

′)Xj
s,a′ where Xj

s,a′ =

{
ui if {a, a′} were selected
Xs′
ns′ oth., where s′ = s{a,a′}

The expected value of the current strategy for the exploring player i = iexp

is then vi
s,σ =

∑
i≈Ai(s)

σt
i(s, a)vi

s[a]. The regrets are updated for i = iexp and
average strategy for j 	= iexp as follows. For all ai ∈ Ai(s) and all aj ∈ Aj(s):

ri
s[ai] ← ri

s[ai] +
1
π

⎪
vi

s[ai] − vi
s,σ

⎨
, and

σ̄j
s[aj] ← σ̄j

s[aj] +
1
π

σt
j(s, aj)

Finally, after all the simulations a move is chosen for player i by [21] selecting
an action from the mixed strategy obtained by normalizing the values in σ̄i

sroot
.

We refer to this optimized version of OOS as OOS+.
Since OOS is an application of outcome sampling to the subgame defined

by the search tree, it converges to an equilibrium as the number of iterations
at the same rate as outcome sampling MCCFR [18]. OOS+ introduces bias and
hence may not converge to an equilibrium strategy [14]. Approximate observed
convergence rates are shown in Subsect. 4.3.

By way of example, consider Fig. 3. Suppose iexp = i = 1, the trajectory
sampled is the one depicted giving payoff u1 to Player 1, and Player 1’s sampled
action sequence is a, c, e. Given this trajectory, Player 1’s regret tables and Player
2’s average strategies are updated at s1, s2, and s3. Specifically at s3, the matrix
shown contains the reward estimates such that the top-left entry corresponds to
Xs3,e,f/ns3,e,f . The probability of sampling s3 was π = ps1,a · ps2,c. The values

f f ∼

e 1/2 1/5

e∼ 6/10 7/10

s s s1 2 3

(a,b) (c,d) (e,f)
u1

Fig. 3. Example of online outcome sampling.

Monte Carlo Tree Search in Simultaneous Move Games 37

vi
s3

[e] = σj(s3, f)u1 + σj(s3, f ′)/5, vi
s3

[e′] = 6σj(s3, f)/10 + 7σj(s3, f ′)/10, and
vi

s,σ = σi(s3, e)vi
s3

[e] + σi(s3, e′)vi
s3

[e′].

4 Empirical Evaluation

In this section we present and discuss the experiments performed to assess the
practical behavior of the algorithms above.

4.1 Goofspiel

Goofspiel is a card game where each player gets N cards marked 1-N , and there
is a central pile, shuffled and face down called the point-card deck (also 1-N).
Every turn, the top card of this point card deck flips, it is called the upcard.
Then, players choose a bid card from their hand and reveal it simultaneously.
The player with the higher bid card obtains a number of points equal to the
value of the upcard. The bid cards and upcard are then discarded and a new
round starts. At the end of N rounds, the player with the highest number of
points wins. If the number of points are tied, the game ends in a draw. The
standard game of Goofspiel has N = 13, which has (13!)3 ≈ 2.41 · 1029 unique
play sequences including chance events.

There are two ways to define the payoffs received at terminal states. Either
the player with the highest points wins (payoffs {0, 0.5, 1}) or the payoff to the
players is the difference in scores. We refer to the former as Win-Loss Goofspiel
(WL-Goof(N)) and the latter as Point-Difference Goofspiel (PD-Goof(N)). A
backward induction method to solve PD-Goof(N) was originally described in
[22] and has recently been implemented and used to solve the game [21] for
N ≤ 13, therefore the optimal minimax value for each state is known. Our
evaluation makes use of these in Subsect. 4.3. However, WL-Goof(N) is more
common in the games and AI community [3,12,17,23].

Mixing between strategies is important in Goofspiel. Suppose a player does
not mix and always bids with card n at s. An opponent can respond by playing
card n + 1 if n 	= 13 and n = 1 otherwise. This counter-strategy results in
collecting every point card except the one lost by the n = 13, leading to a
victory by a margin of at least 78 points when N = 13. This remains true even
if the point-card deck was fixed (removing all chance nodes). Nonetheless, the
results presented below may differ in a game without chance nodes.

4.2 Head-to-Head Performance

To assess the individual performance of each algorithm, we run a round-robin
tournament where each player plays against each other player n = 10000 times.
This tournament is run using WL-Goof(13) and PD-Goof(13). Parameters are
tuned manually by playing against a mix of the players. The metric used to
measure performance in WL-Goof is win percentage with 0.5 win for a tie and
in PD-Goof is the average number of points gained per game. Each player has

38 M. Lanctot et al.

Table 1. Top: Win percentages for player 1 in WL-Goof(13), 95% confidence interval
widths ≤ 1 %. Bottom: Average points earned per game for player 1 in PD-Goof(13).
95 % confidence intervals widths ≤ 0.28. 10000 games per matchup. Draws considered
half wins to each player to ensure the percentages sum to 100.

P1 \ P2 RND DUCT(max) DUCT(mix) Exp3 OOS OOS+ Tuned Parm.

DUCT(max) 76.0 Ci = 1.5
DUCT(mix) 78.3 57.5 Ci = 1.5
Exp3 80.0 55.8 48.4 γ = 0.2
OOS 73.1 55.3 43.8 47.0 γ = 0.5
OOS+ 77.7 67.0 53.3 60.0 57.1 γ = 0.55
RM 80.9 63.3 53.2 57.2 58.3 50.4 γ = 0.025

DUCT(max) 12.92 Ci = 150
DUCT(mix) 11.88 0.91 Ci = 150
Exp3 13.18 4.15 3.17 γ = 0.01
OOS 10.69 3.33 0.82 −1.71 γ = 0.5
OOS+ 10.83 8.08 3.23 1.03 1.03 γ = 0.4
RM 12.94 6.60 3.41 1.12 1.05 0.17 γ = 0.025

1 s of search time and in our implementation each algorithm generally achieves
well above 100000 simulations per second (see Table 2) using a single thread
run on a 2.2 GHz AMD Opteron 6174. A uniform random strategy is used for
the rollout policy. Ideally we are interested in the performance under different
rollout policies, but we leave this as an interesting topic of future work.

The results are shown in Table 1. The RND player chooses a card to play uni-
formly at random. Of the MCTS variants, we notice that DUCT(max) had the
worst performance, losing to every other algorithm in both games. In contrast,
RM and OOS had the best performance, winning against every other algorithm
in both games. RM’s wins and gains against OOS+ are not statistically sig-
nificant, and OOS+ seems to perform better against the other variants. This
may mean that the reach probabilities and counterfactual values are important,
even in the simultaneous move setting, the simplest form of imperfect informa-
tion. However, in both games Exp3 appears to perform better than standard
OOS. Also, some results differ between the two games, implying that their rel-
ative strength may vary. For example, in WL-Goof, RM wins 58.3 % vs. OOS
and 53.2 % against DUCT(mix) and in PD-Goof wins only 1.05 points vs. OOS
compared to 3.41 vs. DUCT(mix).

4.3 Exploitability and Convergence

After its simulations, each MCTS algorithm above recommends a play strategy
for each state in the tree σi(s). The exploitability of this strategy can be obtained
by computing the amount it can lose against its worst-case opponent. Defined
formally, Ex(s, σi) = maxσj≈Σj

(V ≤(s) − ui(s, σi, σj)), where ui(s, σi, σj) is the
expected return of the subgame rooted at s when players use (σi, σj) and V ≤(s) is
the optimal minimax value of state s. Zero exploitability means that σi is a Nash
equilibrium strategy. Computing exact exploitability would require a strategy at

Monte Carlo Tree Search in Simultaneous Move Games 39

Table 2. Depth-limited exploitability at different depths and relative speeds in PD-
Goof(11). 800 search samples per root state, 95% confidence interval widths.

Algorithm Mean Ex2 Mean Ex4 Mean simulations per second

DUCT(max) 7.43 ± 0.15 12.87 ± 0.13 124127 ± 286
DUCT(mix) 5.10 ± 0.05 7.96 ± 0.02 124227 ± 286
Exp3 5.77 ± 0.10 10.12 ± 0.08 125165 ± 61
OOS 4.02 ± 0.06 7.92 ± 0.04 186962 ± 361
OOS+ 5.59 ± 0.09 9.30 ± 0.08 85940 ± 200
RM 5.56 ± 0.10 9.36 ± 0.07 138284 ± 249

every state in the game, which may not be well defined after short computation
in the root. Therefore, we compute a depth-limited lower bound approximation
to this value, which assumes optimal play after depth d:

Exd(s, σi) =

⎧
⎪⎨

⎪⎩

V ∗(s) if d = 0;
∑

s′∈Δc(s)
Δc(s, s

∼)Exd−1(s
∼, σi) if s ∞ C;

maxaj∈Aj(s)

{∑
ai∈Ai(s)

σi(s, ai)Exd−1(T (s, ai, aj), σi)
}

otherwise.

It can be computed using a depth-limited expectimax search.
We assume that the player will not run additional simulations in the following

moves and follow the strategy computed in the root until the end of the game.
If this strategy is undefined at some point of the game, we assume selecting an
arbitrary action. The mean exploitability values for depth d ∈ {2, 4} over every
initial upcard in PD-Goof(11), are shown in Table 2.

The results in Table 2 indicate that standard OOS, the only method known to
converge to NE, produces the strategies with the lowest depth-limited exploitabil-
ity for d ∈ {2, 4}. However, as seen in Subsect. 4.2 this does not necessarily lead
to gains in performance, likely due to the restricted search time. Nonetheless, in
a repeated play setting where opponents may adapt, less exploitable strategies
are desirable. Each of the other algorithms produce less exploitable strategies
than DUCT(max), which was expected in Goofspiel due to the importance of
mixing. However, surprisingly, DUCT(mix) strategies are much less exploitable
than expected. This begs the question of whether DUCT(mix) produces less
exploitable strategies in Goofspiel, so in our next experiment we run the full
best response to compute the full-game exploitability in smaller games of Goof-
spiel. Given the results below, we speculate that DUCT(mix) may be rotating
among strategies in the support of an equilibrium strategy recommending a
mixed strategy that coincidentally is less exploitable in PD-Goof(11) given the
low search time. We do admit that more work is needed to clarify this point.

The next experiment evaluates how quickly the strategy computed by MCTS
converges to a Nash equilibrium strategy in smaller game. We run MCTS with
each of the selection strategies for 100000 iterations from the root and we
computed the value of the full best response against this strategy after every
1000 iterations. The eight graphs in Fig. 4 represent the number of runs(out of

40 M. Lanctot et al.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 s

tr
at

eg
ie

s

Iteration/1000

DUCT (C=2) in WL-Goof(4)

0.4
0.3
0.2

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 s

tr
at

eg
ie

s

Iteration/1000

DUCT (C=4) in PD-Goof(4)

0.4
0.3
0.2

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 s

tr
at

eg
ie

s

Iteration/1000

Exp3 (γ=0.2) in WL-Goof(4)

0.3
0.2
0.1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
P

or
tio

n
of

 s
tr

at
eg

ie
s

Iteration/1000

Exp3 (γ=0.15) in PD-Goof(4)

0.5
0.4
0.3

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 s

tr
at

eg
ie

s

Iteration/1000

OOS+ (γ=0.4) in WL-Goof(4)

0.3
0.2
0.1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 s

tr
at

eg
ie

s

Iteration/1000

OOS+ (γ=0.3) in PD-Goof(4)

0.4
0.3
0.2

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 s

tr
at

eg
ie

s

Iteration/1000

RM (γ=0.4) in WL-Goof(4)

0.3
0.2
0.1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
or

tio
n

of
 s

tr
at

eg
ie

s

Iteration/1000

RM (γ=0.15) in PD-Goof(4)

0.4
0.3
0.2
0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 10 20 30 40 50 60 70 80 90 100

E
xp

lo
ita

bi
lit

y

Iteration/1000

Mean Exploitability in WL-Goof(4)

DUCT
Exp3

OOS+
RM

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 10 20 30 40 50 60 70 80 90 100

E
xp

lo
ita

bi
lit

y

Iteration/1000

Mean Exploitability in PD-Goof(4)

DUCT
Exp3

OOS+
RM

Fig. 4. The percentage of strategies produced by MCTS with exploitability lower than
the given threshold after certain number of iterations in WL-Goof(4) (first four in
left column), PD-Goof(4) (first four in right column) and mean exploitability for both
Goofspiel versions (bottom two).

Monte Carlo Tree Search in Simultaneous Move Games 41

one hundred), in which the exploitability of the strategy was lower than the
given threshold in PD/WL-Goof(4). For example with Exp3 in WL-Goof(4), the
exploitability was always smaller than 0.3 after 30 thousand iterations and in 49
out of 100 runs, it was less than 0.1 after 100 thousand iterations. The last two
graphs show the mean exploitability of the strategies. Consistently with the pre-
vious observations [25], the results show that DUCT does not converge to Nash
equilibrium of the game. In fact, the exploitability of the produced strategy starts
to increase after 20000 iterations. Exp3, OOS+, and RM strategies converge to
the (at least good approximation of) Nash equilibrium strategy in this game.
The computed strategies have low exploitability with increasing probability. In
WL-Goof(4), OOS+ and RM converge much faster in the earlier iterations, but
Exp3 converges more quickly and steadily with more iterations. In PD-Goof(4),
RM clearly dominates the other strategies after 20000 iterations.

5 Conclusion and Future Work

In this paper, we compare six different selection strategies for MCTS in games
with perfect information and simultaneous moves with respect to actual playing
performance in a large game of Goofspiel and convergence to the Nash equilib-
rium in its smaller variant. The OOS strategy we introduced is the only one,
which provably eventually converges to NE. After the whole tree is constructed,
the updates behave exactly as in MCCFR, an offline equilibrium computation
method with formal guarantees of convergence. The initial finite number of iter-
ations, in which the strategy in some nodes was not updated cannot prevent the
convergence. We believe OOS+, RM, and Exp3 also converge to Nash equilibria
in this class of games, which we experimentally verify in the small Goofspiel
games. We aim to provide the formal proofs and analysis of convergence rates
in the future work.

The novel OOS+ and RM strategies have the quickest experimental conver-
gence and performed best also in head-to-head matches. Both have beaten all
the other strategies significantly and the performance difference in their mutual
matches were insignificant.

In future work, we hope to apply some of these algorithms in the general
game-playing and other simultaneous move games, such as Tron and Oshi-Zumo,
and compare to existing algorithms such as SMAB and double-oracle methods
to better assess their general performance. In addition, we are curious about
the effect of different rollout policies on the behavior of each algorithm, the
comparison to existing studies in UCT.

Acknowledgments. We would like to thank Laurent Bartholdi for sharing his code
for solving Goofspiel. We would also like to thank Olivier Teytaud for advice in optimiz-
ing Exp3. This work is partially funded by the Netherlands Organisation for Scientific
Research (NWO) in the framework of the project Go4Nature, grant number 612.000.938
and the Czech Science Foundation, grant no. P202/12/2054.

42 M. Lanctot et al.

References

1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:
the adversarial multi-armed bandit problem. In: Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pp. 322–331 (1995)

2. Auger, D.: Multiple tree for partially observable Monte-Carlo tree search. In: Di
Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 53–62.
Springer, Heidelberg (2011)

3. Bosansky, B., Lisy, V., Cermak, J., Vitek, R., Pechoucek, M.: Using double-oracle
method and serialized alpha-beta search for pruning in simultaneous moves games.
In: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI), pp. 48–54 (2013)

4. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo
tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

5. Buro, M.: Solving the Oshi-Zumo game. In: Van Den Herik, H.J., Iida, H., Heinz,
E.A. (eds.) Advances in Computer Games. IFIP, vol. 135, pp. 361–366. Springer,
Heidelberg (2003)

6. Cazenave, T., Saffidine, A.: Score bounded Monte-Carlo tree search. In: van den
Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 93–104.
Springer, Heidelberg (2011)

7. Chaslot, G.M.J.B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.,
Bouzy, B.: Progressive strategies for Monte-Carlo tree search. New Math. Nat.
Comput. 4(3), 343–357 (2008)

8. Couetoux, A., Hoock, J.-B., Sokolovska, N., Teytaud, O., Bonnard, N.: Continuous
upper confidence trees. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp.
433–445. Springer, Heidelberg (2011)

9. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.J. (eds.) CG 2006. LNCS, vol.
4630, pp. 72–83. Springer, Heidelberg (2007)

10. Cowling, P.I., Powley, E.J., Whitehouse, D.: Information set Monte Carlo tree
search. IEEE Trans. Comput. Intell. AI Games 4(2), 120–143 (2012)

11. Finnsson, H.: Cadia-player: a general game playing agent. Master’s thesis, Reyk-
jav́ık University (2007)

12. Finnsson, H.: Simulation-based general game playing. Ph.D. thesis, Reykjav́ık Uni-
versity (2012)

13. Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., Teytaud,
O.: The grand challenge of computer go: Monte Carlo tree search and extensions.
Commun. ACM 55(3), 106–113 (2012)

14. Gibson, R., Lanctot, M., Burch, N., Szafron, D., Bowling, M.: Generalized sampling
and variance in counterfactual regret minimization. In: Proceedings of the Twenty-
Sixth Conference on Artificial Intelligence (AAAI-12), pp. 1355–1361 (2012)

15. Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equi-
librium. Econometrica 68(5), 1127–1150 (2000)

16. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

17. Lanctot, M., Waugh, K., Bowling, M., Zinkevich, M.: Sampling for regret minimiza-
tion in extensive games. In: Advances in Neural Information Processing Systems
(NIPS 2009), pp. 1078–1086 (2009)

Monte Carlo Tree Search in Simultaneous Move Games 43

18. Lanctot, M.: Monte Carlo sampling and regret minimization for equilibrium com-
putation and decision-making in large extensive form games. Ph.D. thesis, Depart-
ment of Computing Science, University of Alberta, Edmonton, Alberta, Canada
(2013)

19. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In. Proceedings of the Eleventh International Conference on Machine Learning,
pp. 157–163. Morgan Kaufmann (1994)

20. Perick, P., St-Pierre, D.L., Maes, F., Ernst, D.: Comparison of different selection
strategies in Monte-Carlo tree search for the game of Tron. In: Proceedings of the
IEEE Conference on Computational Intelligence and Games (CIG), pp. 242–249
(2012)

21. Rhoads, G.C., Bartholdi, L.: Computer solution to the game of pure strategy.
Games 3(4), 150–156 (2012)

22. Ross, S.M.: Goofspiel – the game of pure strategy. J. Appl. Probab. 8(3), 621–625
(1971)

23. Saffidine, A., Finnsson, H., Buro, M.: Alpha-beta pruning for games with simulta-
neous moves. In: Proceedings of the Thirty-Second Conference on Artificial Intel-
ligence (AAAI-12), pp. 556–562 (2012)

24. Samothrakis, S., Robles, D., Lucas, S.M.: A UCT agent for Tron: initial investiga-
tions. In: Proceedings of the 2010 IEEE Symposium on Computational Intelligence
and Games (CIG), pp. 365–371 (2010)

25. Shafiei, M., Sturtevant, N.R., Schaeffer, J.: Comparing UCT versus CFR in simul-
taneous games. In: Proceeding of the IJCAI Workshop on General Game-Playing
(GIGA), pp. 75–82 (2009)

26. Teytaud, O., Flory, S.: Upper confidence trees with short term partial information.
In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp.
153–162. Springer, Heidelberg (2011)

27. Winands, M.H.M., Björnsson, Y., Saito, J.-T.: Monte-Carlo tree search solver. In:
van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 25–36. Springer, Heidelberg (2008)

28. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in
games with incomplete information. In: Advances in Neural Information Processing
Systems 20 (NIPS 2007), pp. 905–912 (2008)

Decision Trees for Computer Go Features

Francois van Niekerk(B) and Steve Kroon

Computer Science Division, Stellenbosch University, Stellenbosch, South Africa
francoisvn@ml.sun.ac.za, kroon@sun.ac.za

Abstract. Monte-Carlo Tree Search (MCTS) is currently the dominant
algorithm in Computer Go. MCTS is an asymmetric tree search tech-
nique employing stochastic simulations to evaluate leaves and guide the
search. Using features to further guide MCTS is a powerful approach
to improving performance. In Computer Go, these features are typically
comprised of a number of hand-crafted heuristics and a collection of
patterns, with weights for these features usually trained using data from
high-level Go games. This paper investigates the feasibility of using deci-
sion trees to generate features for Computer Go. Our experiments show
that while this approach exhibits potential, our initial prototype is not
as powerful as using traditional pattern features.

1 Introduction

In Computer Go, Monte-Carlo Tree Search (MCTS) is currently the dominant
algorithm [1,2]. While the standard MCTS algorithm requires limited domain
knowledge for a moderate level of strength [1], it has been shown that the inclu-
sion of more domain knowledge can greatly increase the playing strength of
Computer Go engines using MCTS [1,3,4]. One successful approach to incor-
porating such domain knowledge is using features [5]. This paper reports on a
prototype implementation using decision trees as MCTS features in order to
extract domain knowledge for Go.

After giving some background in Sect. 2, Sect. 3 describes our proposed
method of using decision trees as features. Section 4 presents experimental results
for the proposed approach.

2 Background

2.1 The Game of Go

Go is a combinatorial game played on a board consisting of a rectangular grid
of intersections (a 19×19 grid is the most popular board size) [6]. Two players,
black and white, alternate placing stones of their respective color on empty board
intersections. Orthogonally contiguous stones of the same color form chains. If
a chain of stones has zero adjacent empty intersections, also known as liberties,
then the entire chain is removed from the board. The game ends after two suc-
cessive passes — the winner is the player controlling the largest portion of the
board.

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 44–56, 2014.
DOI: 10.1007/978-3-319-05428-5 4, c© Springer International Publishing Switzerland 2014

Decision Trees for Computer Go Features 45

2.2 Go Features for Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is the current dominant algorithm in Com-
puter Go and all the top engines make use of MCTS variants [1,2]. While hand-
coded domain knowledge can quickly improve performance of MCTS engines, it
is highly preferable to use automated methods of incorporating domain knowl-
edge. One technique that successfully incorporates a large amount of domain
knowledge in an automated manner is the use of Go features [5].

Go features are traditionally divided into pattern and tactical features [5].
Pattern features are simple encodings of the state of the surrounding board inter-
sections. Tactical features encode simple domain knowledge not present in the
pattern features, such as capturing a chain in atari (i.e. with only one remaining
liberty). Each feature takes on one of a number of mutually exclusive levels. A
comprehensive list of the tactical features used in this work is given in Table 1.
Each potential move can then be described by a feature vector, with each vector
component specifying which level a feature assumes for the candidate move. Pat-
terns are typically represented by a single feature with many levels, with each
level corresponding to a different pattern.

The intersections included in a pattern are typically all those within a certain
distance from the center of the pattern. A popular distance measure used for large
patterns in Go, and in this paper, is circular distance [5,7]: δx+δy+max(δx, δy),
where δx(δy) is the difference between the x(y)-coordinates of the pattern center
and another intersection.

Feature levels for patterns should be invariant to changes in rotation, reflec-
tion, and whose turn it is to play. Invariance to player turns is usually achieved
by swapping stone colors as necessary, while the invariance requirements for rota-
tion and reflection are met by considering the eight combinations of rotation and
reflection and using the pattern with the lowest hash value.

In order to make practical use of features, each level of each feature is assigned
a trained weight, as discussed in Sect. 2.3. Feature weights corresponding to the
levels in the potential move’s feature vector are combined to form a compound
weight for the move. These move weights can then be used in the MCTS tree to
order moves for exploration, and in playouts for move selection.

2.3 The Generalized Bradley-Terry Model and Training Weights

In order to train weights for each feature level, features can be modeled using
the generalized Bradley-Terry model for predicting the outcome of competitions
between multiple teams of individuals [5]. In this model, the skill of each indi-
vidual i is represented by a positive value γi, with a larger γ corresponding to
a more skilled individual [5]. For training feature level weights, each individual
represents a feature level and a team represents the feature vector for a potential
move. The following example shows how the model predicts the outcome of a
competition between teams of individuals [5]:

P (1-2-3 wins against 2-4 and 1-5-6-7) =
γ1γ2γ3

γ1γ2γ3 + γ2γ4 + γ1γ5γ6γ7

46 F. van Niekerk and S. Kroon

A collection of competition results harvested from game records can be ana-
lyzed using this model — the resultant optimization problem (to determine the
γ values, representing weights) can be approximately solved using minorization-
maximization (MM), which has been shown to have good performance [5,8].

Alternative techniques for training weights, not considered in this work,
include Loopy Bayesian Ranking, Bayesian Approximation Ranking, Laplaceq
Marginal Propagation, and Simulation Balancing [8–10].

2.4 Graphs for Go

While simple Go patterns are useful, an alternative representation of the Go
board is the Common Fate Graph (CFG) [11]. In the CFG of a Go board, each
chain of stones and each empty intersection is represented by a single graph node.
This causes certain functionally equivalent patterns to become equal. Due to
computational concerns, their practical use in Computer Go has been limited —
one notable concept arising from this representation is the CFG distance [2]. The
decision tree approach in this work makes use of another graph representation
for Go positions.

2.5 Decision Trees

Decision trees are tree structures with queries at internal nodes and values at
leaves [12]. The queries evaluate the attributes of an input data point. In order to
use a decision tree, the tree is descended, with the evaluated queries at internal
nodes determining the descent path. The value stored at the resultant leaf is
then typically used as a predicted outcome for the input.

Decision trees can be particularly sensitive to queries near the root of the
tree. Decision forests, also known as random forests, can be used to construct
a more robust model: this approach uses multiple decision trees that are grown
from subsets of the input data to create an ensemble of decision trees. Such an
ensemble of decision trees has been shown to yield more accurate classification
than a single decision tree in many cases [13].

3 Decision Trees as Features

3.1 Overview

This section presents an approach to using decision trees as features for Go. An
alternative way of viewing decision trees is that they partition the input space in
a hierarchical fashion, and assign a predicted value to each element of the final
partition, represented by the leaves. In our method, each query in a decision tree
provides additional information about the surrounding board position — each
node can be thought of as representing a pattern, with leaves representing the
most complex patterns.

For this paper, we utilize a graph representation of the board: a discovered
graph of the board area surrounding a candidate move is grown during each tree

Decision Trees for Computer Go Features 47

descent, such that the patterns represented by this graph at decision tree nodes
grow in size and specificity as the tree is descended. If the discovered graph were
grown to its maximum size and detail, it would yield the graph representation
of the whole board.

A decision forest, an ensemble of such decision trees, is used to improve
robustness. Each decision tree in the forest is treated as a separate feature with
each leaf node corresponding to a unique feature level.

Section 3.2 presents the structure of these decision trees, by specifying our
stone graph board representation and the form of the queries. In Sect. 3.3, a
method for growing and training weights for the leaf nodes of such trees is
described.

3.2 Structure

Queries in the decision tree are phrased in terms of a graph representation of
the Go board and various representations are possible. In this work, we elected
to use the following stone graph to represent the board position:1

– There is a node corresponding to each stone on the board and each of the four
board sides.

– There is an edge between every pair of nodes.
– The weight of each edge is the Manhattan distance between the two stones (or

the stone and board side) represented by the edge’s end nodes on the board.
– Each node has, as applicable, attributes for the status (black, white or side),

size (number of stones) and number of liberties2 of its respective chain.

An additional node, that represents the empty intersection for the potential
move under consideration, is then added to the stone graph to form the aug-
mented stone graph (ASG). This node has edges to every other node in the ASG
— these edges have weights allocated as in the stone graph. This node is labeled
as node zero and referred to as the center. At the root of the decision tree the
discovered graph contains only node zero. As the tree is descended, each query
encountered either adds a node from the ASG to the discovered graph (as well
as its edges to nodes in the discovered graph), or refines information about the
attributes of a node or the weight of an edge already in the discovered graph.

Each decision tree query has multiple possible outcomes, one per child tree
node. The queries were designed to be invariant to rotation and reflection as far
as possible.

We specified three possible parametrized queries for expanding decision tree
nodes — parameters are shown like [this]:

1 This graph representation was chosen in the view that it may improve the opening
of Oakfoam, the MCTS implementation being extended [14].

2 A variation of pseudo-liberties [15] (where chains in atari have their number of
pseudo-liberties set to one) was used to simplify implementation.

48 F. van Niekerk and S. Kroon

NEW(BW,8)

Is there a new black
or white node with
an edge weight to

the center less than
or equal to eight?

Black

White

None

NEW(S,5)

Is there a new
side node with an
edge weight to the
center less than
or equal to five?

Side

DIST(0,1,=,3)

Is the distance
between node zero

(center) and node one
(side) equal to three?

Yes

No

None

Fig. 1. A portion of an example decision tree showing a descent path. The leaf at the
end of the descent path corresponds to a move on the fourth line with no stones within
a Manhattan distance of eight.

NEW: Is there a new [black? white? side?]3 node with an edge weight to
the center less than or equal to [distance]?
Look for a new node to add to the discovered graph from the ASG, and
number the new node incrementally, if one is found. If multiple matching
nodes in the ASG are found, attempt to select a unique node according to
the rules found in Appendix A. Separate children are added to the decision
tree for each allowed status, and none.

DIST: Is the edge weight between node [x] and node [y] [less than|equal to]4
[val]?
Query an edge of the discovered graph. Children are added to the decision
tree for yes and no.

ATTR: Is the [size|number of liberties] of node [x] [less than|equal to]
[val]?
Query a node of the discovered graph. Children are added to the decision tree
for yes and no.

Figure 1 shows a portion of an example decision tree with a highlighted
descent path. The leaf at the end of the descent path corresponds to a move
on the fourth line with no stones within a Manhattan distance of eight. Note
that node zero is the node representing the candidate move and, in this case,
node one is the closest border. Also note that the distance between an intersec-
tion on the fourth line and the border is three.

3.3 Learning

Traditional decision trees attempt to partition the input space such that labels
for points in the input space are homogeneous within partition elements. In
our case, we do not have labeled points, so conventional decision tree training
techniques are not applicable. Instead, we aim to construct our decision trees
3 This parameter can be any combination of black, white and side, such as: black or

side.
4 [x|y] means either x or y.

Decision Trees for Computer Go Features 49

such that the portion of input space corresponding to each of the final partition
elements is roughly equal in size.

To achieve this, we choose queries that divide visits to children nodes roughly
evenly. Statistics are gathered for candidate queries, and the query with the best
split quality q is chosen when a certain number of descents to the respective node
have occurred and the relevant quality is above a certain threshold. To divide
tree descents evenly, we defined q = 1 − 2|0.5 − s|, where s is the proportion of
visits to the last outcome for the candidate query.5

Once a decision tree has been grown, weights for the leaf nodes can be trained
along with any other features using MM [5]. When a decision forest is used, each
tree is independently grown and then the weights of all the trees are trained
together (again with any other features). MM was chosen for training because
it has been shown to have good performance, and there is a freely available tool
that has been used for previous work, allowing us to verify our implementation
for tactical and pattern features [5,8].6

4 Experiments and Results

4.1 Overview

Our decision tree features will be used for move ordering, so their performance
will first be tested on a move prediction task. We will then use the best config-
uration for a limited playing strength comparison.

Oakfoam [14] is an open source MCTS Go engine, used for the implementa-
tion and testing of these decision tree modifications. A collection of high-level
19×19 games played on KGS from 2001 to 2009 was used for training and testing.
This data set is available from [16].

The following approach was used for extracting features and training their
weights:

1. If enabled, harvest popular patterns from the collection. The number of games
used is varied to adjust the number of patterns. Patterns with intersections
within circular distances of 3–15 from their center, which occur at least 20
times in the considered games, are harvested.

2. If enabled, grow a decision forest by collecting statistics from games in the
collection. A query is added to a node after at least 1000 descents to the node
have occurred, and the quality is sufficient (q ≥ 0.4 was chosen). The number
of games used is varied to adjust the size of the trees.

3. Train weights for all the features using MM.

Only 10 % of the games’ moves were used in order to sample from a large
number of games. For decision forests, the 10 % of moves were independently
sampled for each tree. Once the weights were trained, the appropriate test (move
5 This is designed to deal with NEW queries that have more than two children.
6 However, we later discovered that the MM tool was unable to deal with large training

data sets for our tests.

50 F. van Niekerk and S. Kroon

prediction or strength comparison) was performed. More details on these tests
follow in Sects. 4.2 and 4.3.

The sections that follow, the notation of x/y for decision forests is used to
signify a decision forest comprising y trees with x leaves in total.

Table 1 lists the tactical features used in this work. The table also includes
example weights for two configurations: one using tactical and pattern features,
and another using tactical and decision tree features.

4.2 Move Prediction

For move prediction, features were used to compute move weights for all legal
moves in a Go board position, and an ordering of the moves according to these
weights was formed. The rank of the actual move played in this ordering was
then used as a measure of move prediction accuracy. This process was repeated
for every position in a collection of games. Each point on the resultant move
prediction graphs show the proportion of positions where the actual move was
within the top x ranked moves.

These move prediction tests were each performed on 100 19×19 games that
are disjoint from the training data set. The 95 % confidence interval width, w.r.t.
different testing data, for a single data point assuming 100 moves in each of the
100 games (typical for 19×19 games) is smaller than 0.02. These confidence
intervals are therefore not shown on the graphs. Slight changes in the curves
are observed for different training data sets, but more time would be needed to
quantify this variance.

In the legends of the graphs that follow, tactical, pattern and decision tree
features are indicated with T, P and DT respectively. The number of games
used for training weights is indicated in square brackets; e.g.: “T + DT(10000/1)
[1000]” indicates that the configuration used tactical and decision tree features,
there was one decision tree with 10000 leaves, and that the weights were trained
with 1000 games.

We first evaluated the effect of increasing the number of decision tree leaves,
while keeping the number of trees fixed. This was done for a single decision tree
and a decision forest with eight trees. The results are shown in Fig. 2. We found
that move prediction accuracy improved as the number of leaves increased, but
only up to a certain point.

We then investigated the impact of increasing the number of trees in the deci-
sion forest for a roughly fixed total number of leaves. We began with the strongest
configuration from the previous series of tests: T + DT(17761/8) [4000]. The
results are shown in Fig. 3. We found that increasing the decision forest from
one to eight trees improved the move prediction accuracy. We also found that
increasing the number of trees in the decision forest from eight to sixteen trees
decreased the number of games we could use for training to 2000. This increase
in decision forest size did not yield an improvement for move prediction, but it
did require more processing time, so the previous configuration was kept for use
in the next step.

Decision Trees for Computer Go Features 51

Table 1. List of tactical features, with example weights from two configurations: γP

for tactical and pattern features with 83644 patterns, and γDT for tactical and decision
tree features with a 17761/8 decision forest. The weights for level zero of each feature
are fixed at 1.0. When multiple feature levels are applicable, the highest level is selected.

Feature Level γP γDT Description

Pass 1 7.68 1.00 Pass after a normal move
2 408.71 54.13 Pass after another pass

Capture 1 0.40 1.00 Capture a chain
2 37.51 3.93 Capture a chain in a

ladder
3 2.21 8.71 Capture, preventing an

extension
4 3.04 11.80 Re-capture the last move
5 14.59 42.03 Capture a chain adjacent

to a chain in atari
6 33.74 17.12 Capture a chain as above

of 10 or more stones
Extension 1 5.06 10.07 Extend a chain in atari

2 0.63 1.13 Extend a chain in a ladder
Self-atari 1 0.59 0.44 Self-atari of 5 or fewer

stones
2 0.21 0.16 Self-atari of more than 5

stones
Atari 1 1.92 1.84 Atari a chain

2 0.84 0.60 Atari a chain and there is
a ko

3 2.03 2.19 Atari a chain in a ladder
Distance to border 1 0.43 0.84

2 1.12 1.16
3 1.51 1.16
4 1.20 1.13

Circular distance 2 9.18 13.36
to last move 3 6.44 7.75

4 3.57 4.37
5 3.27 3.79

.
10 1.53 1.68

Circular distance 2 1.41 1.67
to second-last move 3 1.54 1.77

4 1.23 1.14
.
10 1.08 1.10

CFG distance 1 2.98 2.63
to last move 2 3.38 2.96

(continued)

52 F. van Niekerk and S. Kroon

Table 1. (continued)

Feature Level γP γDT Description

3 3.42 3.26
4 2.13 1.97

.
10 1.06 1.02

CFG distance 1 4.33 3.00
to second-last move 2 3.39 2.51

3 2.50 1.70
4 2.08 1.66

.
10 1.16 1.08

1 2 3 4 5 6
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Move Rank

C
u
m
u
la
ti
v
e
P
ro

b
a
b
il
it
y

T [4000]

T + DT (2097/1) [1000]

T + DT (8854/1) [1000]

T + DT (20267/1) [2000]

T + DT (44280/1) [2000]

T + DT (3545/8) [2000]

T + DT (17761/8) [4000]

T + DT (35131/8) [4000]

Fig. 2. Move prediction of tactical and decision tree features with different numbers of
decision tree leaves.

Finally, we compared various combinations of tactical, pattern and decision
tree features. The results are shown in Fig. 4. We found that tactical and decision
tree features did not perform as well as tactical and pattern features, but that
they showed a substantial improvement over tactical features alone. We also
found that the inclusion of decision trees along with tactical and pattern features
made no significant difference to move prediction accuracy.

4.3 Playing Strength

We used move prediction performance to select configurations for strength com-
parison tests — the configurations used in Fig. 4 were compared in terms of
playing strength by playing a series of games against GNU Go [17]. All games

Decision Trees for Computer Go Features 53

1 2 3 4 5 6 7 8 9 10
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Move Rank

C
u
m
u
la
ti
v
e
P
ro

b
a
b
il
it
y

T [4000]

T + DT (20267/1) [2000]

T + DT (17761/8) [4000]

T + DT (16530/16) [2000]

Fig. 3. Move prediction of tactical and decision tree features with different decision
forest sizes.

Table 2. Comparison of playing strength of 10000 playouts per move vs GNU Go with
various configurations. MP accuracy proportion of moves ranked best by the features
used.

Tactical Pattern Decision forest MP Accuracy (%) Games Winrate (%)

X - - 20.6 200 5.0
X 83644 - 35.3 300 49.0
X - 17761/8 29.8 200 30.0
X 84237 16951/8 35.7 200 50.5

were played on 19×19 against GNU Go (version 3.8, level 10) with 7.5 komi and
alternating colors starting on consecutive games. Playing strength was compared
using 10000 playouts per move. This restriction was used because the aim was to
investigate the feasibility of the decision tree features, and the prototype deci-
sion tree implementation was not optimized. For these tests, features were used
for move selection during progressive widening in the MCTS tree [1,5]. Results
of the strength comparison are shown in Table 2.

We found that the inclusion of decision tree features with tactical features
resulted in a large increase in playing strength. We also found that the inclusion
of decision tree features with tactical and pattern features did not result in a
significant change to playing strength. These results are as expected from the
move prediction results in Sect. 4.2.

5 Conclusions and Future Work

We have presented an approach using decision trees as features for extract-
ing domain knowledge from game records for Computer Go. Our approach

54 F. van Niekerk and S. Kroon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Move Rank

C
u
m
u
la
ti
v
e
P
ro

b
a
b
il
it
y

T [4000]

T + P (83644) [4000]

T + DT (17761/8) [4000]

T + P (84237) + DT (16951/8) [4000]

Fig. 4. Move prediction of the best configurations of each combination of pattern
and/or decision tree features.

employs queries that refine knowledge of the current board position as the tree
is descended. Our prototype implementation showed reasonable results in terms
of move prediction and playing strength, although it did not perform as well as
traditional pattern features. However, we believe there is significant potential for
our method due to the general applicability of our method: many other board
representations, query structures, and query selection criteria can be considered,
and the general approach should be easily transferable to other domains.

One can specify tactical and pattern features as decision trees — from this
perspective, our approach benefits from the structure of the tree being learned
from training data, and not just the weights.

Our current work was not able to investigate larger decision trees, since the
MM tool employed was not able to handle sufficient training data for these
situations. To address this, we intend to explore other methods for training
weights, such as Laplaceq Marginal Propagation [9].

Acknowledgments. The first author would like to thank the MIH Media Lab at
Stellenbosch University for the use of their facilities and support of the work presented
here.

A Multiple Decision Tree Descent Paths

It is possible that a NEW decision tree query may not be able to identify a unique
node from the ASG to add to the discovered graph. In this situation, a sequence
of conditions are considered, in an attempt to enforce uniqueness. Each condition
will select the node(s) that best satisfy the condition and eliminate the others.
These conditions are designed to enforce invariance to changes in rotation and

Decision Trees for Computer Go Features 55

reflection as far as possible. If the conditions are not able to identify a unique
node, then each of the possibilities is considered.7 The sequence of conditions
used in this work is as follows:

– Select node(s) closest to the candidate move.
– Select black over white over side nodes.
– Select node(s) closest to nodes already in the discovered graph, in reverse

order of discovery.
– Select node(s) with the most stones in its respective chain.
– Select node(s) with the most liberties around its respective chain.

Even though these conditions are not always able to find a unique node,
empirical results showed that a single leaf node is reached in about 85 % of tree
descents. It was therefore decided to only return one of these nodes, namely the
left-most node in the tree. Investigation showed that this option made negli-
gible difference to move prediction accuracy, while providing a large reduction
in training time and an increase in the size of training data set that could be
handled. This is due to the leaf nodes of each decision tree becoming mutually
exclusive, allowing decision trees to be treated as single features.

B Reproducibility

All source code used in this work is available in the codebase of Oakfoam, an
open-source MCTS-based Computer Go player [14]. Version 0.1.3 was used for
the work in this paper and is tagged in the code repository. Default parameters
were used unless specified otherwise.

The MM tool of Rémi Coulom was used to train feature weights. This tool
is available at: http://remi.coulom.free.fr/Amsterdam2007/.

References

1. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree
search methods. IEEE Trans. Comput. Intell. Al Games 4(1), 1–49 (2012)

2. Rimmel, A., Teytaud, O., Lee, C.-S., Yen, S.-J., Wang, M.-H., Tsai, S.-R.: Current
frontiers in computer go. In: IEEE Symposium on Computational Intelligence and
Al in Games, vol. 2, no. 4, pp. 229–238 (2010)

3. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: 24th
International Conference on Machine Learning, pp. 273–280. ACM Press (2007)

4. Chaslot, G.M.J.-B., Chatriot, L., Fiter, C., Gelly, S., Perez, J., Rimmel, A., Tey-
taud, O.: Combining expert, offline, transient and online knowledge in Monte-Carlo
exploration. IEEE Trans. Comput. Intell. Al Games (2008)

5. Coulom, R.: Computing elo ratings of move patterns in the game of go. ICGA J.
30, 198–208 (2007)

7 Note that this violates the conceptual view that the decision tree partitions the input
space, since one position may ultimately correspond to multiple leaf nodes.

http://remi.coulom.free.fr/Amsterdam2007/

56 F. van Niekerk and S. Kroon

6. Baker, K.: The Way to Go. American Go Foundation (1986)
7. de Groot, F.: Moyo Go Studio. http://www.moyogo.com (2004)
8. Wistuba, M., Schaefers, L., Platzner, M.: Comparison of Bayesian move prediction

systems for computer go. In: IEEE Conference on Computational Intelligence and
Games, pp. 91–99, September 2012

9. Lew, L.: Modeling go game as a large decomposable decision process. Ph.D. thesis,
Warsaw University (2011)

10. Huang, S.-C., Coulom, R., Lin, S.-S.: Monte-Carlo simulation balancing in practice.
In: van den Herik, H., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp.
81–92. Springer, Heidelberg (2011)

11. Ralaivola, L., Wu, L., Baldi, P.: SVM and pattern-enriched common fate graphs
for the game of go. In: European Symposium on Artificial, Neural Networks, pp.
485–490 (2005)

12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pear-
son, Englewood Cliffs (2010)

13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
14. Oakfoam. http://oakfoam.com
15. House, J.: Groups, liberties, and such. http://go.computer.free.fr/go-computer/

msg08075.html (2005)
16. Game records in SGF format. http://www.u-go.net/gamerecords/
17. GNU Go. http://www.gnu.org/software/gnugo/

http://www.moyogo.com
http://oakfoam.com
http://go.computer.free.fr/go-computer/msg08075.html
http://go.computer.free.fr/go-computer/msg08075.html
http://www.u-go.net/gamerecords/
http://www.gnu.org/software/gnugo/

UCT Enhancements in Chinese Checkers
Using an Endgame Database

Max Roschke and Nathan R. Sturtevant(B)

Department of Computer Science, University of Denver, Denver, CO, USA
max.roschke@gmail.com, sturtevant@cs.du.edu

Abstract. The UCT algorithm has gained popularity for use in AI for
games, especially in board games. This paper assess the performance
of UCT-based AIs and the effectiveness of augmenting them with a
lookup table containing evaluations of games states in the game of Chi-
nese Checkers. Our lookup table is only guaranteed to be correct during
the endgame, but serves as an accurate heuristic throughout the game.
Experiments show that using the lookup table only for its endgames is
harmful, while using it for its heuristic values improves the quality of
play. This work is performed on a board with 81 locations and 6 pieces,
which is larger than previous work on lookup tables in Chinese Checkers.
It is a precursor to using the 500 GB full-game single-agent data on the
full-size board with 81 locations and 10 pieces.

1 Introduction

The UCT algorithm has recently proven to be a powerful tool for running sim-
ulations. Similar algorithms have been used to write powerful computer players
for Go, a game which had long resisted other tactics. Its strength comes in part
from its reliance on simulations, which approximate paths to the end of the
game. After simulating to the end of the game, states are easily evaluated as a
win or loss, so there is no explicit need for evaluation functions or expert knowl-
edge. Even without these requirements, there are still many modifications that
try to improve upon this model. A recent survey [2] lists over thirty potential
enhancements across multiple domains, each with varying degrees of success.

Herein, we will test the effects of two enhancements to UCT in Chinese Check-
ers, each relying on a precomputed lookup table, which contains the distance of
a single player’s pieces to the goal state [13]. Towards the end of the game, this
lookup table is effectively an endgame database and can be used to determine
the winner and loser. It has already been demonstrated that opening books can
improve the play of the UCT algorithm [1,3], so it seems reasonable to expect
that endgame databases can also improve play. By knowing the endgame states,
the playout length may be reduced, allowing for more playouts to run. Also,
standard UCT playout policies may not follow the perfect endgame strategies.
Thus, standard UCT may accept playouts where players make mistakes in the
endgame. Using the lookup table to determine the exact value should eliminate

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 57–70, 2014.
DOI: 10.1007/978-3-319-05428-5 5, c© Springer International Publishing Switzerland 2014

58 M. Roschke and N.R. Sturtevant

this possibility, making the simulations more accurate. Thus, we propose running
simulations only until an endgame state is reached, rather than playing them
out to completion.

Even during the mid-game, the lookup table may be used as an evaluation
function. The information is not necessarily accurate, as it ignores the positions
of the opponents pieces, but it may still favor advantageous board positions.
These kinds of lookup tables have been used before in Chinese Checkers and
have been found to produce a viable evaluation function [8,9,11]. The evalua-
tion function becomes more accurate as the game progresses, as it eventually
becomes an endgame database. This heuristic will be compared to a more com-
mon evaluation function that uses the average position of the pieces on the
board. UCT will also be combined with the lookup table heuristic, to determine
whether UCT estimations are a viable tactic for Chinese Checkers.

2 Background

2.1 Minimax Algorithm

The Minimax algorithm is a commonly-used technique for exploring the game
tree of a two-player game. It creates a game tree of a certain depth, and then
scores each leaf-state using an evaluation function. The evaluations are propa-
gated up the tree with the player choosing the maximum value at his own nodes,
and the opponent choosing the minimum value at its nodes. This explores all
paths of that depth, and returns the best path for the player.

While simple, this algorithm provides a Nash equilibrium solution, allowing
for a player to maximize his score for the given evaluation function. However,
there are several drawbacks to this approach.

First, it has an exponential runtime. When searching a game with branching
factor b to a depth of d, it has a runtime of O(bd). Using αβ-pruning, this can be
reduced to O(bd/2), but this is still gives a constraint on how deep the tree can
be searched, especially in games with a large branching factor. There are other
methods that attempt to improve on αβ-pruning, but we do not examine those
here. Additionally, this approach does not scale well to multiplayer games. The
maxn algorithm, the multiplayer equivalent, can only be pruned to O(b(n−1)d/n)
for n players [12].

Second, the result of the algorithm is only as accurate as the evaluation
function itself. Evaluation functions are often inaccurate, as the middle stages
of the game are ambiguous and difficult to rate. Any error in the evaluation
function will become apparent in the results of the search.

2.2 UCT Algorithm

The UCT algorithm [5] relies on simulations to gather information about the
game tree. It maintains a partial game tree in memory, and traverses it in four
distinct stages: selection, expansion, simulation, and propagation.

UCT Enhancements in Chinese Checkers 59

First, an action is selected from the tree. At each node in the tree, an action
is selected to maximize its UCB1 score, which is given by:

xi + C

√
ln(T)

Ti

where xi is the average payoff of an action, C is the exploration constant, T is the
number of times the parent of the action has been played, and Ti is the number
of times the action has been taken. The second part of the equation determines
whether states are explored or exploited. The higher this second term, the less
the score of the action depends on its average payoff, and the more it depends
on the number of samples. A high C value encourages more exploration. This
process is repeated until a leaf node of the tree is reached.

The leaf node may be expanded to add a new node to the tree, depending
on the expansion policy of the tree. A common change is to only expand a node
after it has been sampled a certain number of times [4]. This prevents the tree
from growing rapidly, and tends to expand only nodes which have received better
scores.

From this new node, a simulation is run to the end of the game. The sim-
ulation may be guided by a playout policy. In many games a random policy
is acceptable, but in other games it is not. In fact, for some games, random
playouts are completely unfeasible. For example, in Chinese Checkers, pieces
may move both forwards and backwards, which means that the games may be
infinite in length. Random playouts then would be too long and unrealistic to
provide useful data about the game. For this reason, playout strategies are often
imposed, for example, taking only forward moves and ignoring backward moves.
If the playout policy matches usual player strategies, then this covers realistic
play, and the simulations become more useful.

Finally, a win or loss is observed at the terminal game state, and that value
is propagated up the tree. More information may be calculated at this terminal
state to give an evaluation as well. For example, to emphasize shorter games, one
may include the length of the simulation in its score. This value is then added to
the total payout of each node on the path up the tree, updating its UCB1 score.

Many of these simulations are run, and then the best node is chosen from the
tree. What constitutes the best node may be difficult to determine, as it should
take into account both the sample rate and the average payout of that node.

Over time the game tree created by this algorithm approaches the actual
minimax game tree which evaluates states based on wins, losses, or ties. When
given infinite time and space to work with, it will eventually converge to that
value [5]. However, this relies on all possible paths being traversed. Modifications
to the tree, such as changing the playout and expansion policies, that cause some
paths to be omitted from the tree eliminate this guarantee from a theoretical
perspective.

60 M. Roschke and N.R. Sturtevant

(b)

(a)

Fig. 1. A Chinese checkers board.

2.3 Chinese Checkers

Chinese checkers is a board game that can be played by two, three, four, or six
players on an isometric board. Each player tries to move his pieces across the
board, from his starting corner to the opposite corner. A player wins once all of
his pieces have crossed the board, and are in the same configuration in which
they started. The board is arranged into a hexagram when there are more than
two players, and is simply a diamond when there are only two players. The piece
counts may also vary; in smaller games, players have six pieces each, and in
larger games, players have ten pieces each.

Pieces may move in two ways. They may move into adjacent empty spaces,
or they may jump over an adjacent piece to a free space immediately opposite
its original position (see Fig. 1 (right)). These jumps may be chained arbitrarily,
so a piece may even move most of the way across the board on a single turn.

There is some ambiguity in the end of the game, as one player may leave pieces
behind, preventing the opponent from filling that corner. However, to account
for this case, we define a player to win once they have at least one piece across
the board, and the tiles of that corner are all filled. Thus, if a player leaves pieces
behind and the opponent fills all other spaces in that corner, the opponent wins.
In this version of the game there can be no ties, as one player must reach the
opposing side first. Games may also proceed indefinitely, as there is no restriction
on the direction pieces may move. For simplicity, our experiments will be run
on a nine-by-nine board with 81 possible locations for pieces – the same size as
in the Fig. 1, but without the four blue corners – and each player will have only
six pieces.

2.4 Endgame Databases

Endgame databases have proven effective in many other games. They contain
all the necessary information to complete a game given a certain state. Chess
programs make extensive use of these databases to improve play and many

UCT Enhancements in Chinese Checkers 61

resources have been devoted to analyzing and generating these databases (see
[14]). To date, all five-piece endgames have been calculated, giving the computer
an immense amount of knowledge and sparing much computational time. These
playouts can be especially complex, as many of them must take the fifty-move
rule into account. While many databases do not specifically acknowledge the
fifty-move rule in their returned solutions, the evaluation still gives the com-
puter a glimpse of the probabilities of winning, losing, and drawing without
doing any explicit calculation.

Endgame databases were also heavily used in the Checkers AI Chinook [10].
Move databases were extended to include all ending positions containing ten
pieces or less, considerably increasing the accuracy of play.

Endgame databases have also been used before in Chinese Checkers and
have been shown to improve the quality of play [8]. This has also been shown to
aid UCT playouts as well [7], although their experiments were performed with
smaller lookup tables than we will be using here.

3 Lookup Table

The lookup table is a simple table containing entries for all of the positions for
a single player on the board [13]. Our experiments are run on a nine-by-nine
board with each player having six pieces. This board has 81 positions, and is the
board seen in Fig. 1 without the four blue corners. On this smaller board, there
is an entry for each of the

(
81
6

)
= 324, 540, 216 positions. Each entry contains the

minimum number of moves it would take that player to move all his pieces to
the home area. This kind of database has been used before [7], although it was
done on a seven-by-seven board, which contains much fewer positions.

Since this table only takes into account one player’s pieces, it is not accurate
when the players’ pieces may interact. Opponent pieces may block the shortest
path making the table value too low, or jumps offered by opponent pieces may
offer a quicker path, making the table value too high. Table values are completely
accurate once the pieces are separated. When there is no interference, the correct
path is known, and players may complete the game with perfect play guided by
lookups alone, so the lookup table may function as an endgame database.

While the lookup table is quite large, most of its entries are unused during
the course of a normal game, so only a fraction of it needs to be loaded into
memory. The entries are sorted by the furthest piece from the home area. All
of the remaining pieces must be distributed after this starting piece, so there
are

(
80−n

5

)
positions for starting position n in general. As this back piece moves

across the board, the number of potential configurations drops substantially (see
Table 1). In most cases, this piece is not going to stay in the home area for long,
as the pieces move quickest when kept in a group. This means that earlier, larger
sections of the table can be omitted from memory, greatly reducing the memory
requirements of the lookup table.

This is not a problem with the smaller data set, as the six-piece data can
easily fit into memory. The ten-piece data set is much larger however, and cannot

62 M. Roschke and N.R. Sturtevant

Table 1. Lookup table size versus starting position

Six pieces Ten pieces
Start position # of positions % of positions # of positions % of positions

1 324,540,216 100.000 1,878,392,407,320 100.000
5 237,093,780 73.055 1,096,993,404,430 58.401
10 156,238,908 48.142 536,211,932,256 28.546
15 99,795,696 30.750 247,994,680,648 13.202
20 61,474,519 18.942 107,518,933,731 5.724
25 36,288,252 11.181 43,183,019,880 2.299
30 20,358,520 6.273 15,820,024,220 0.842
35 10,737,573 3.309 5,178,066,751 0.276
40 5,245,786 1.616 1,471,442,973 0.078

easily be fit into memory. We have not run experiments on this larger data set
yet, but some omission of data will be necessary to make its usage realistic.

4 Proposed Experiments

The experiments will be carried out on a nine-by-nine two player board. Each
player will each have six pieces. This smaller board will lessen complexity and
enable more trials to be run, but it is larger than boards used in previous exper-
iments [7], so it will offer more information about the effects of board size on the
table’s effectiveness. Using this board configuration, we shall test two varieties
of player. There will be two players using the αβ-pruning approach, and there
will be three variations of the UCT algorithm. Each AI will be given a limit of
100,000 node expansions per move, allowing them equal access to resources.

4.1 αβ-Players

Each αβ player will search to a depth of five ply using only non-backward moves.
Backward moves are used much less often than other moves, and, in practice,
led to a player that tried to block the opponent instead of moving his own pieces
across the board. Removing the backwards moves also reduces the branching
factor, leading to quicker play. These settings reached a balance of depth and
speed, usually having the player respond in less than one second.

There will be two potential evaluation functions. The first uses the lookup
table as a heuristic. The evaluation of a state will be the difference of the two
players’ values in the table. This will lead a player to block good opponent moves,
while trying to move across the board as quickly as possible. The other function
will be the difference in average position of the two players. Each player will
check how many rows away from the home area their pieces are. This gives an
approximation of how close the group is to winning. Again, using the difference
should lead players to try and block each other, while moving quickly across the
board, if possible.

UCT Enhancements in Chinese Checkers 63

Table 2. UCT parameters

Tree policy Three variations: nodes in a tree may contain all moves, all
non-backward moves, or all forward moves

Expansion policy Nodes will only added to the tree once they have been
visited a minimum number of times

Playout policy Only forward moves are expanded for all playouts to reduce
their length and approximate a reasonable strategy

Random move % Some percentage of moves during the playouts are random,
while the remaining moves are the farthest move – that
which advances a piece the furthest number of rows

Weight of playout length A small addition to the score which favors shorter wins or
longer losses

C constant The exploration versus exploitation value of the tree
Evaluation Three variations: a win or loss value is returned once a

simulation is completed, a win or loss value is returned
once a simulation has reached a known endgame state,
or an evaluation is returned once a simulation has run
a set length

The lookup table may have an advantage over the simpler function, as it takes
into account jumps and other factors that contribute to a piece’s distance from
the home area. Whether or not this information is truly more useful remains to
be seen. These players will serve as a baseline, as their results do not depend
on simulations. Without random simulations, they are guaranteed to give one
solution for a given game state, so its results are less varied (Table 2).

4.2 UCT Players

Basic UCT. These players will be constructed with the standard UCT app-
roach without any external knowledge. These players run simulations all the way
to the end of the game, and then return a corresponding win or loss value. There
are five variables which were tuned for this type of UCT player.

First, the expansion policy was varied. Nodes could only be placed into the
tree after a certain number of samples had been run. There were three additional
policies on the type of node that could be added to the tree. One policy added
all nodes, another added only non-backward nodes, and the last added only
forward moves. Experimentally, expanding only forward nodes gave the best
results. Nodes were also not added to the tree until they had been sampled a
minimum number of times.

Second, the playout policy was varied. All of these players only chose for-
ward moves. However, there is much variation in the forward moves, so another
variable was added. A set percentage of the time, the farthest move – one which
took a piece the most rows toward its home state – was taken, while the remain-
der of moves was selected randomly. This attempts to model quick movement
strategies, while allowing enough variation to give many sample points.

64 M. Roschke and N.R. Sturtevant

Third, the return value was augmented with the length of the simulation.
Wins and losses accounted for most of the payout, but a small amount was
varied based on the simulation length. Quick wins received a better evaluation
than long wins, and long losses received a better evaluation than short losses.
This steered the playouts to a better options, as quicker wins and longer losses
are easier to exploit.

Finally, the C constant was tuned. This takes into account all of the other
modifications and found the right amount of exploration versus exploitation for
that combination of variables.

Tuning was done using a hill-climbing approach. Three players were created,
each with a different category of playout policy, and the other four variables were
tuned using the following procedure. All variables initially received a default
value. A variable was selected and varied over a range of values near its current
value. Six players, identical except for that variable, were created and all assume
new values within that range. These six new players were pitted against the
original (an equal number of times as first and second player), and the AI with
the most victories was chosen as the new AI. The original remained if none of
the new players defeated it more than fifty percent of the time. A single pass of
tuning did this for each variable. Three passes were run on each policy, shrinking
the range each time. The variables depend on each other, and each player was
only tuned against variations of itself, so these tunings are in no way guaranteed
to be optimal.

These tuned players gained the following configurations (some tuned para-
meters are omitted):

Name Playout policy Random move % Expand threshold

base0 Forward 17 18
base1 Non-backward 14 18
base2 All 22 20

Heuristic UCT Player. This version of the UCT player runs simulations to
a fixed depth, and then evaluates them using the difference in distance, just
like the αβ lookup player. It was tuned using the same variables as the general
UCT player – playout policy, random move percentage, expand threshold, and C
constant– as well as two more: weight of the difference function and the playout
depth. The difference function weight is just the linear weight of the difference
function, and the playout depth is the number of moves playouts are run before
the difference function is applied. All numeric constants were tuned with the
same process used for the general UCT player.

Since this is the same evaluation function as the lookup-based αβ player,
this method will approximate the game tree value at that depth. This AI will
evaluate the effectiveness of estimating that tree’s value.

The technique of stopping a UCT simulation early has been used before in
the game of Amazons [6]. Their AI also did the best after a certain number of
random moves had been played – the same tactic that we shall use here.

UCT Enhancements in Chinese Checkers 65

The tuned players gained the following configurations:

Name Playout policy Random % Expand threshold Playout depth

heur0 Forward 43 32 13
heur1 Non-backward 55 20 13
heur2 All 32 27 14

Endgame UCT Player. This UCT Player runs simulations until the players
are separated. Separation is determined using the centerline of the board as a
divider. Once the player and their opponent’s pieces are on opposite sides of the
centerline, the pieces are considered separated. This is not entirely accurate, as
it is still possible for a piece to jump to the centerline and then interact with
opposing pieces. However, the likelihood of this is small, and it is even less likely
that this would benefit or hinder either player.

Once separated, the winner is declared based on each player’s distance from
his respective goal. All other variables remained the same as the general UCT
player.

Name Moves in tree Random % Expand threshold

end0 Forward 17 18
end1 Non-backward 6 2
end2 All 21 23

5 Experiment Results and Analysis

5.1 Depth-Based Trials

Table 3 shows the results of the best players in each category. While three versions
were created in each category, these were the strongest. The player on the left
played as first player, while the player on top played as second player. The
percentage shown is the winning percentage of the first player. All results are
out of 100 trials, except for the αβ results, which are not listed, as there is no
randomness in their algorithms, hence, no variation. The UCT algorithms were
given 100,000 node expansions per move. The best tree expansion policy turned
out to use only forward moves. In practice, when the players were allowed to
use all moves, they tended to play overly defensively, and attempted to block
the opponent more than they tried to cross the board. This became especially
true when they started to lose, as the evaluation function gave better results for
blocking the opponent’s advances.

There appears to be a slight bias towards the first player. The general trials
showed advantages of approximately 5 % more wins for the first player.

The general UCT player tends to do better than the average-based αβ player,
taking an average amount of second player wins (after accounting for the first
player advantage), and winning many more first player rounds. It fails to beat

66 M. Roschke and N.R. Sturtevant

Table 3. Results for the best players using 100 trials

Player one wins (first player left, second player top)
αβ αβ-lookup base0 heur0 end0

αβ – – 54.0 % 18.0 % 67.0 %
αβ-lookup – – 75.0 % 36.0 % 88.0 %
base0 83.0 % 65.0 % 56.0 % 5.0 % 62.0 %
heur0 96.0 % 87.0 % 96.0 % 67.0 % 97.0 %
end0 72.0 % 27.0 % 43.0 % 5.0 % 49.0 %

the αβ player that uses the lookup table, however, indicating that the lookup
table serves as a decent evaluation function throughout the game.

Further, the lookup table heuristic appears much more accurate than the
average distance metric based on the relative performances of the αβ players.
The αβ player using the lookup table won an additional 18 % of the rounds as
first player than the αβ player without that data. It was also able to better
defend itself as second player, winning at least 9 % more of the overall rounds.

Of the two enhancements to UCT, using the lookup table as a heuristic
appears much more effective than using it solely to calculate endgames. While
the additional of heuristic values resulted in a stronger player, the addition of
endgames lowered the quality of play.

5.2 Sample Based Trials

For this experiment (see Table 4), players were only allowed to complete a certain
number of playouts before they made a move. This would remove the benefits
of shorter playouts of the heuristic player and the endgame player, as there are
a limited number of playouts regardless of depth.

Versus the plain UCT player, the heuristic player’s performance suffered. As
second player, it lost several times the games that it did in the node expansion
experiment. It also did slightly worse as the first player. However, these results
do not seem to vary consistently with the number of playouts. Increasing the
number of playouts allowed per turn did not give an advantage to either player.

Table 4. Trials with limited number of playouts (200 trials)

Player one win rates
Number of playouts per turn

p1 p2 1,000 2,000 4,000 8,000 16,000

base0 heur0 13.0 % 12.5 % 12.5 % 17.0 % 11.5 %
heur0 base0 88.5 % 92.5 % 94.5 % 90.5 % 94.0 %
base0 end3 63.0 % 61.5 % 74.0 % 70.0 % 80.5 %
end3 base0 49.5 % 46.0 % 40.5 % 37.0 % 27.5 %
heur0 end3 97.0 % 97.5 % 100.0 % 98.5 % 99.5 %
end3 heur0 6.5 % 4.0 % 3.0 % 1.5 % 1.5 %

UCT Enhancements in Chinese Checkers 67

The plain UCT Player benefitted from more playouts when put against the
endgame player. As the number of playouts per turn increased, so did the wins
of the plain UCT player as both first and second player.

The heuristic player also did better against the endgame player when allowed
more playouts per turn. As first player, the heuristic model won almost all of
the time, and as second player it won almost all matches when allowed at least
4,000 playouts per turn.

Overall, both the heuristic and the endgame players suffered some perfor-
mance penalties. The basic UCT player improved its performance as both the
first and second player compared to the two models that shortened playouts.
However, the heuristic model remained as the clear winner between these three
strategies.

5.3 Time Based Trials

Next, we considered giving an equal amount of time to each player. This would
show more of the strengths and weaknesses of each approach. The plain UCT
player has no cost for lookups, and never needs to check if a state is in memory,
but also then must play each playout game to completion. The heuristic player
only plays to a static depth before looking up the end state in memory, which
should take little time overall. The endgame player must play out a game until
each player is in a state that is in memory. This likely will take the longest
time, as it has to check its states most often. This will then vary the number of
playouts each player can run in a turn, giving an advantage to the faster players
(Table 5).

The heuristic player remained strong versus the plain UCT player under time
trials, while the endgame player did not. The heuristic player won most of its
matches, only once having its win rate drop below 90 %. This did not seem to
vary on the overall time, as the rates remained close as time increased per turn.

Table 5. Trials with limited time per turn

Player one win rates
Time per turn

p1 p2 1 s 2 s 4 s 8 s

base0 heur0 10.6 % 8.0 % 7.0 % 9.0 %
heur0 base0 95.0 % 93.5 % 97.0 % 97.0 %
base0 end3 55.6 % 62.5 % 56.5 % 59.0 %
end3 base0 51.9 % 49.0 % 57.5 % 54.0 %
heur0 end3 98.8 % 99.0 % 96.0 % 94.0 %
end3 heur0 8.1 % 4.0 % 1.5 % 3.0 %

1 s results from 160 trials
2 and 4 s results from 200 trials
8 s results from 100 trials

68 M. Roschke and N.R. Sturtevant

The endgame player was able to match the strength of the plain UCT player
almost evenly. Each player usually won between 50 and 60 percent of matches
when playing as first player. This matches previous indications of a first player
bias, so these players seem evenly matched when given equal amounts of time
to think.

The endgame player did not play well versus the heuristic player and lost
most of the matches it played. This seemed to vary little with time. Although
it did the best during the 1 s trials as first player, this could be due to the
granularity of the timer used. It also seemed to fare better as the time was
increased as second player, as it was able to win six percent of its matches with
more time.

When given equal amounts of time, the plain UCT was able to perform 1.5
times as many node expansions as the heuristic player, and twice as many as the
endgame player. When playing each other, the endgame and heuristic players
expanded roughly the same number of nodes.

6 Conclusions and Further Work

There are several conclusions to be drawn from these results. First, it would
seem that the lookup table serves as a good heuristic throughout the game. Not
only was the αβ search able to challenge the UCT players effectively, but the
UCT player using this heuristic was able to win more than 85 % of its first player
games, and more than 60 % of its second player games. This leads to the second
point, that using the UCT algorithm to approximate the game tree at a certain
depth gives useful results. Since both the UCT algorithm and this αβ were using
the same heuristic, it would seem that the approximation of the heuristic at a
depth of fourteen proved more useful than the exact value of that heuristic at
depth five.

While the endgame databases caused performance to suffer here, it should
not be taken as a general trend. It outperformed the average-based αβ player,
but fell short of defeating the lookup-based αβ player. This is only based on
100,000 node expansions, however, which is less than one second of calculation
per move. Additionally, the tuning procedure was not guaranteed to be optimal.
Given more resources, the performance of the endgame player will likely improve.

In general, the heuristic player was shown to give the best results in both
time-dependent and time-independent trials. It would seem that the lookup table
provides useful, general information about the state of the game. In terms of the
larger lookup table, however, this may not be true. In this case, with a lookup
table that can completely fit into memory, it is feasible to lookup any state
of the board. This strategy requires that option, for it always plays a fixed
number of moves ahead. This is less easily accomplished with a larger table, so
the performance of this player will likely suffer the most from increases to the
lookup table’s size.

More work can be done on expanding these results. These results can be
scaled up by giving the players more time to make each move. This will give the

UCT Enhancements in Chinese Checkers 69

algorithms more time to converge to a good move, and it will show the cost of
each approach. Time trials show that the plain UCT player is much faster than
either the heuristic player or the endgame player, and this advantage will only
become greater as the size of the lookup table increases. These trials still contain
reasonably small tables (approximately 350 Mb at largest). Once the tables can
no longer fit into memory, these lookups will be even longer.

The lookup table size will also be scaled up. We have the ten-piece data set,
which presents its own challenges. While these players were able to freely query
the lookup table for any state, players querying the ten-piece data set will need
to confront the massive size of that data set. The effects of loading only portions
of the database will be examined, as well as the effects on time. A larger lookup
table means that the queries will likely take longer, further reducing the number
of trials these players will be able to run.

References

1. Audouard, P., Chaslot, G., Hoock, J.-B., Perez, J., Rimmel, A., Teytaud, O.:
Grid coevolution for adaptive simulations: application to the building of open-
ing books in the game of Go. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di
Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P.
(eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 323–332. Springer, Heidelberg
(2009)

2. Browne, C., Powley, E.J., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

3. Chaslot, G.M.J.-B., Hoock, J.-B., Perez, J., Rimmel, A., Teytaud, O., Winands,
M.H.M.: Meta monte-carlo tree search for automatic opening book generation. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, 2009, pp. 7–12 (2009)

4. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.J. (eds.) CG 2006. LNCS, vol.
4630, pp. 72–83. Springer, Heidelberg (2007)

5. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

6. Lorentz, R.J.: Amazons discover Monte-Carlo. In: van den Herik, H.J., Xu, X.,
Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer,
Heidelberg (2008)

7. Nijssen, J.A.M., Winands, M.H.M.: Playout search for Monte-Carlo tree search in
multi-player games. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS,
vol. 7168, pp. 72–83. Springer, Heidelberg (2012)

8. Samadi, M., Schaeffer, J., Torabi Asr, F., Samar, M., Azimifar, Z.: Using abstrac-
tion in two-player games. In: ECAI, pp. 545–549 (2008)

9. Schadd, M.P.D., Winands, M.H.M.: Best reply search for multiplayer games. IEEE
Trans. Comput. Intell. AI Games 3(1), 57–66 (2011)

10. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building the
checkers 10-piece endgame databases. In: van den Herik, H.J., Iida, H., Heinz, E.A.
(eds.) Advances in Computer Games 10, pp. 193–210. Springer, New York (2003)

70 M. Roschke and N.R. Sturtevant

11. Sturtevant, N.R.: A comparison of algorithms for multi-player games. In: Schaef-
fer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 108–122.
Springer, Heidelberg (2003)

12. Sturtevant, N.R.: Last-branch and speculative pruning algorithms for maxn. In:
Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 669–678. Morgan Kaufmann (2003)

13. Sturtevant, N.R., Rutherford, M.J.: Minimizing writes in parallel external memory
search. In: International Joint Conference on Artificial Intelligence (IJCAI), pp.
666–673 (2013)

14. Thompson, K.: Retrograde analysis of certain endgames. ICCA J. 9(3), 131–139
(1986)

Automated Generation of New Concepts
from General Game Playing

Yuichiro Sato1(B) and Tristan Cazenave2

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
sato.yuichiro@jaist.ac.jp

2 Université Paris-Dauphine, Paris, France
cazenave@lamsade.dauphine.fr

Abstract. In this paper, we propose algorithms to extract explicit con-
cepts from general games and these concepts are useful to understand
semantics of games using General Game Playing as a research domain.
General Game Playing is a research domain to invent game players
which are able to play general games without any human intervention.
There are many approaches to General Game Playing, for example, UCT,
Neural Network, and Simulation-based approaches. Successful knowledge
acquisition is reported in these approaches. However, generated knowl-
edge is not explicit in conventional methods. We extract explicit concepts
from heuristic functions obtained using a simulation based approach.
Concepts to understand the semantics of Tic-tac-toe are generated by our
approach. These concepts are also available to understand the semantics
of Connect Four. We conclude that our approach is applicable to gen-
eral games and is able to extract explicit concepts which are able to be
understood by humans.

1 Introduction

An intelligent system is able to adapt itself to its environment. To invent artificial
intelligence, it is a good strategy to make a program which learns knowledge
from the environment. We can use our living world itself as the environment for
a system, e.g., Natural Language Processing. In this study, we focus on artificial
environments, i.e., games. A game has concrete rules, and is easy to simulate
and evaluate without any human intervention. We tried to discover new concepts
from experience in this artificial environment. We use General Game Playing
(GGP) as a research domain. GGP is a research domain to invent game players
which are able to play general games.

There are many General Game Players. J. Méhat et al. developed a UCT
based player [8], and D. Michulke et al. developed a machine learning based
player [9]. Also, simulation and knowledge based approaches are studied. T.
Kaneko et al. developed a successful method to learn logical features using a
Boolean network approach [5]. P. Skowronski et al. extracted features for selec-
tive search extensions [12]. H. Finnsson et al. also extracted knowledge for gen-
eral games to improve search efficiency of their player [1,3]. However, generated

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 71–80, 2014.
DOI: 10.1007/978-3-319-05428-5 6, c© Springer International Publishing Switzerland 2014

72 Y. Sato and T. Cazenave

knowledge is not explicit in these conventional research. In this study, we pro-
pose the generation of new concepts which are explicit enough to be understood
by humans.

2 Method

We made our General Game Player using ECLiPSe Prolog and Java. It reads
games expressed in the Game Description Language (GDL) [7] through a parser
[11] into a Prolog engine, then the engine is called from Java through a Java-
Prolog interface to simulate a game.

We automatically produced heuristics for the game by statistical analysis of
simulation results. GDL is convertible to first-order predicate logic, therefore we
can write GDL in Prolog [8]. Also, we can write positions of games as Prolog like
facts. Thus, we made heuristics out of a set of Prolog rules. For each rule, the
body is a subset of a game position, and the argument of head is the evaluation
value of the position.

evaluation(value) : −a subset of position of game. (1)

We used Tic-tac-toe and Connect Four as subject games. In Tic-tac-toe, x
player and o player try to make a straight line on a 3× 3 two-dimensional board
using his/her mark. In Connect Four, white player and red player also try to
make a straight line with one’s color, but the board size is 7 × 6. Additionally,
it has gravity, so the players need to drop the tokens of their color from the top
and pile them up. Therefore, players need to play Connect Four using a different
strategy to Tic-tac-toe.

Even though the game rules are different, the representation of the board is
shared by both games. In both games, a board is represented by a set of cell
terms with arity 3, two arguments are for the coordinate and one is for the mark
or color on the cell. This situation is convenient for our purpose.

3 Automated Generation of Heuristic Functions from
Simulations

We tried automated generation of heuristic functions from random simulations of
Tic-tac-toe and Connect Four. J. Clune successfully generated heuristic functions
for GGP [2]. M. Kirci et al. successfully extracted winning positions of general
games from playouts [6]. We statistically evaluated positions.

We simulated Tic-tac-toe games till we got 10,000 playouts with each player
as the winner. Then, we counted up what kind of subset of position is included
in playouts and calculated the frequency to appear for each player. Finally, we
picked the top 10 % of frequent subsets and made Prolog rules which have the
frequency as its evaluation value as written in Algorithm 1. We cut off Prolog
rules in the heuristic functions which have greater body size than a specific size.

Automated Generation of New Concepts from General Game Playing 73

We made three heuristic functions by using three different cut off sizes, 1, 2
and 3.

The following rules were included in generated heuristic functions.

evaluation(0.238...) : −cell(3, 1, o), cell(2, 2, o). (2)
evaluation(0.237...) : −cell(3, 3, o), cell(2, 2, o), cell(1, 3, x). (3)

These heuristics are appropriate for Tic-tac-toe. An evaluation value of a position
is a sum of evaluation values of heuristic functions which match to the position.
We generated heuristic functions in the same way for Connect Four by 1000
simulations for each player. For Connect Four, we used a cut off size of 1 and 2.
We omitted cut off size 3 to reduce simulation time.

We evaluated the performance of each heuristic function by simulation. In
the simulation, a 1-depth alpha-beta search player with each heuristic function
played against both a random player and a 1-depth alpha-beta search player
without heuristics. The 1-depth alpha-beta search player chooses a winning move
when it is found by 1-depth search. Otherwise, the player chooses a random move.
We did 10,000 simulations for Tic-tac-toe, 1000 simulations for Connect Four.
Against a random player, for both games, winning ratios tend to improve when
the cut off size gets greater, as can be seen in Table 1. If the cut off size is 0, it
means that the player has no heuristic function. The same tendency was seen
against an alpha-beta search player in Table 2. These results suggest that this
algorithm successfully extracted features of games properly and encoded them
as heuristic functions.

Algorithm 1 makeStatisticalHeuristics(playouts)
M ⇐ Hash Map
for all playout p in playouts do

S ⇐ getSubset(p)
for all subset s in S do

if M contains s then
increment counter for s

else
create hash for s and set the counter as 1

end if
end for

end for
for all m in M do

v ⇐ counter for m / size of playouts
add Prolog rule type heuristic, “evaluation(v):-m.” into H

end for
H ⇐ pick up rules which have top 10% of its evaluation value from H
return H

74 Y. Sato and T. Cazenave

Table 1. Evaluation of heuristic functions for Tic-tac-toe and Connect Four against a
random player.

cut off size
0 1 2 3

game player win(%)/lose(%)/draw(%)

Tic-tac x 80.73/12.32/6.95 93.38/4.53/2.09 90.17/7.45/2.38 96.49/2.76/0.75
-toe o 50.57/40.69/8.74 65.64/27.50/6.86 68.10/28.11/3.79 73.65/24.77/1.58

Connect white 81.4/18.6/0 84.4/15.6/0 90.2/9.8/0 -
Four red 71.3/28.6/0.1 70.4/29.6/0 77.4/22.6/0 -

Table 2. Evaluation of heuristic functions for Tic-tac-toe and Connect Four against a
1-depth alpha-beta search player.

cut off size
0 1 2 3

game player win(%)/lose(%)/draw(%)

Tic-tac-toe x 67.98/27.51/4.51 85.81/13.57/0.62 74.53/25.47/0 91.42/8.58/0
o 27.00/68.71/4.29 41.78/55.40/2.82 41.95/57.87/0.18 50.42/49.58/0

Connect white 57.4/42.6/0 62.2/37.8/0 79.7/20.3/0 -
Four red 40.1/59.9/0 40.4/59.6/0 54.4/45.6/0 -

4 Automated Generation of New Concepts for Games
from Heuristic Functions

We consider that heuristic functions include essential concepts about games. We
tried to extract them as explicit new concepts. This is the Predicate Invention,
one of the research areas of Inductive Logic Programming [4].

First, for all Prolog rules in each heuristic function, we made pairs of terms
included in its body. Then we replaced arguments with variables in the pairs if an
argument in one of the terms in the pair relates to the corresponding argument
in the other term. If an argument was a number, the argument was replaced by
a new variable and the other was replaced by the sum of the variable and the
difference between the two arguments. If the arguments were the same strings, we
replaced them with a new variable. We introduced variables into original terms
in this way. After removing duplicates, finally we got explicit new concepts from
Prolog like heuristic functions, as written in Algorithm 2.

We extracted new concepts from heuristic functions for Tic-tac-toe generated
in Sect. 3. Typical concepts are as follows.

concept1(X0,X1,X2) : −cell(X0,X1,X2), cell(X0,X1 + 1,X2). (4)
concept11(X0,X1,X2) : −cell(X0,X1,X2), cell(X0 + 2,X1 + 2,X2). (5)

concept20(X0,X1) : −cell(X0,X1, x), cell(X0 + 2,X1 + 2, o). (6)

We are able to interpret these concepts as human language. Equation 4 means
“a cell and its right cell are marked by the same symbol”. Equation 5 means “a

Automated Generation of New Concepts from General Game Playing 75

cell and its lower right cell are marked by the same symbol”. Equation 6 means
“a cell is marked by x and its lower right cell is marked by o”. These are natural
concepts for humans to play Tic-tac-toe. Concepts which have a variable as
the role argument are general concepts which are available for both Tic-tac-toe
and Connect Four. Concepts which do not have a variable as the role argument
are specialized for Tic-tac-toe and not available for Connect Four because role
symbols are different between Tic-tac-toe and Connect Four.

Algorithm 2 generateNewConcept(prolog rules)
for all rule r in prolog rules do

P ⇐ all pairs of terms in the body of r
for all pair (p1, p2) in P do

for i = 0 to arity of p1 do
if i-th argument of p1, ai and i-th argument of p2, bi are instances of the
same class then

if ai is an instance of number then
replace ai to a new variable and bi to sum of the variable and bi − ai

else if ai equals to bi then
replace ai and bi to a new variable

end if
end if

end for
if generated pair (p1, p2) is not in C then

add generated pair (p1, p2) to C as a new concept
end if

end for
end for
return C

5 Applying Automated Generated Concepts to Games

We tried to use the generated concepts to reconstruct heuristic functions. We
send queries to a Prolog engine whether each generated concept matches to
subsets of simulated playouts. If the query matched, we saved the matching
result and counted up how many times it matched. Then we assert a Prolog like
heuristic rule of which an evaluation value is the ratio of number of matches
frequency to number of subsets as written in Algorithm 3. In our experience,
reconstructed heuristic functions are made of only binary relations because all
of the generated concepts in Sect. 4 are binary relations on terms.

For Tic-tac-toe, we made heuristic functions from 10,000 random game play-
outs with each player as the winner, then we evaluated performance using 10,000
simulations against both a random game player and a 1-depth alpha-beta search
player. In the results, improvements were seen compared to the player who has
no heuristic function, for example, winning ratio of x player improved 14 %, but

76 Y. Sato and T. Cazenave

not to players whose heuristic function is better than the 1-body size heuristic
function as seen in Tables 3 and 4. We think this is because they lack 1-body
and 3-body Prolog rules as we mentioned above.

We also made heuristic functions for Connect Four in the same way. We made
two different heuristic functions, one is made from only 10 simulations and the
other is made from 100 simulations. Even though only a few simulations, for
white player, the generated heuristic functions have good performance. Only 10
simulations are enough to compete with 1-body heuristic functions. 100 simu-
lations are enough to be competitive with 2-body heuristic functions as seen in
Tables 3 and 4. This is proof that concepts learned from experience of small
games can play bigger games.

We successfully generated new concepts for games from experience of Tic-
tac-toe. However, for red player, the result is not good. The difference is that
white is the first player and red is the second player. From random game sim-
ulation results, it is suggested that the second player has a disadvantage com-
pared to the first player. The difference of performance is possibly due to this
property.

Algorithm 3 makeStructuredHeuristics(concepts,playouts)
for all concept c in concepts do

M ⇐ Hash Map
for all playout p in playouts do

S ⇐ getSubset(p)
for all subset s in S do

if prolog query of c matches to s then
r ⇐ matching result of s
if M contains r then

increment counter for r
else

create a hash for r and set the counter as 1
end if

end if
increment the number of subsets size

end for
end for
for all m in M do

v ⇐ the counter for m / size
add a heuristic, “evaluation(v):-m.” into H

end for
end for
return H

Automated Generation of New Concepts from General Game Playing 77

Table 3. Evaluation of heuristic functions made of new concepts for Tic-tac-toe and
Connect Four against a random player.

game player simulation size win(%)/lose(%)/draw(%)

Tic-tac-toe x 10000 94.60/3.77/1.63
o 10000 56.91/38.05/5.04

white 10 90.6/9.4/0
Connect white 100 92.3/7.7/0

Four red 10 61.8/38.2/0
red 100 69.4/30.6/0

Table 4. Evaluation of heuristic functions made of new concepts for Tic-tac-toe and
Connect Four against a 1-depth alpha-beta search player.

game player simulation size win(%)/lose(%)/draw(%)

Tic-tac-toe x 10000 89.64/10.36/0
o 10000 39.16/56.87/3.97

white 10 74.5/25.5/0
Connect white 100 78.3/21.7/0

Four red 10 29.5/70.5/0
red 100 44.3/55.7/0

6 Automated Generation of Ternary Concepts from
Binary Concepts

Generated concepts in Algorithm 2 are relationships between a cell and another
cell, i.e., binary relationships. We tried to make ternary relationships as a con-
junction of binary relationships. If two binary concepts are satisfied at the same
time and a cell is shared in both concepts, the situation is a ternary relationship.
Therefore, ternary relationships are made by unification of pairs of terms in each
binary concept as written in Algorithm 4.

We generated ternary concepts from the binary concepts generated in Sect. 4.
Typical generated concepts are as follows.

concept67(X1,X2,X3) : −cell(X1,X2,X3), cell(X1,X2 + 1,X3),
cell(X1,X2 + 2,X3). (7)

concept155(X1,X2,X3) : −cell(X1,X2,X3), cell(X1 + 1,X2 + 1,X3),
cell(X1 − 1,X2 − 1,X3). (8)

Equation 7 and 8 represent an idea of line in Tic-tac-toe. Important ternary
concepts are successfully generated by this algorithm. The same algorithm has
a possibility to make more complex concepts.

We also made heuristic functions made of ternary concepts for Connect Four
by Algorithm 3. To reduce generation time, we input 10 simulations and ternary
concepts generated as above to Algorithm 3 and made heuristic functions. Then,

78 Y. Sato and T. Cazenave

Algorithm 4 makeTernaryConcepts(concepts)
P ⇐ makePairsOfConcept(concepts)
for all pair (c1, c2) in P do

for all term t1 in body of c1 do
for all term t2 in body of c2 do

if t1 is able to unificate to t2 then
t3 ⇐ unification result of t1 to t2
b1 ⇐ make new body as like t3 appearing in c1 by unification
b2 ⇐ make new body as like t3 appearing in c2 by unification
if b1 is not equals to b2 then

R ⇐ make new concept by conjunction of b1 and b2
end if

end if
end for

end for
end for
R ⇐ remove overlap from R
return R

Table 5. Evaluation of heuristic functions made of ternary concepts for Connect Four
against a random player.

game player simulation size win(%)/lose(%)/draw(%)

Connect Four white 10 72.7/27.3/0
red 10 71.7/28.3/0

Table 6. Evaluation of heuristic functions made of ternary concepts for Connect Four
against a 1-depth alpha-beta search player.

game player simulation size win(%)/lose(%)/draw(%)

Connect Four white 10 39.7/60.3/0
red 10 37.8/62.2/0

we evaluated it using 1,000 simulations against a random game player or a 1-
depth alpha-beta search player. Results are not good as seen in Table 5 and 6.
We think this is due to noises from less important concepts. In Algorithm 3,
all input concepts are concerned, therefore, not only important concepts like
Eq. 7 or 8 but also less important concepts affect evaluation values. This result
suggests a limitation of Algorithm 3 and a need for better algorithm.

7 Discussion

In this study, we successfully extracted the essential concepts included in the
game automatically. The proposed algorithm is applicable to general games.
The algorithm learns new concepts without any supervised signals but from

Automated Generation of New Concepts from General Game Playing 79

experience in a certain environment. The generated concepts are fundamental
features of the environment, and can be used to play some games with different
rules.

A typical concept learned in this study is as follows.

concept(X0,X1,X2) : −cell(X0,X1,X2), cell(X0,X1 + 1,X2). (9)

This concept is applicable to all games in which players put a mark or piece on
a two-dimensional board. Even more, through appropriate filters, it is possible
to apply the concept to computer vision to understand semantics of a picture.
If one makes a filter which converts a picture to Prolog like facts, this concept is
applicable for recognizing semantics of series of squares with contents. In other
words, concepts generated in this study are available to understand semantics
of our living world, not only of artificial game worlds.

It is necessary for a human being to input supervised signals when an artificial
intelligence learns concepts about our living world. For example, when we do
Natural Language Processing to generate ontology, we need to input well written
texts which are written by human beings [10]. It is impossible to learn ontology
from automatically generated strings. However, in this study, we successfully
generated concepts about our world without any supervised signals by human
beings. This property is due to the special advantage of games, i.e., environments
having concrete rules. In other words, human beings do not have to judge a
meaning of record of random games because a simulator is able to judge it,
i.e., who is the winner according to its game rules. This tremendously desirable
advantage is available only in games, not in other fields. In our study, it is proven
that we are able to generate essential concepts about our living world from games
according to the advantage.

8 Conclusions

In our study, we automatically generated concepts which were applicable to
understand the world of the games for General Game Playing. Obtained concepts
were general and useful to understand several games. General Game Playing is a
desirable research area for automatically learning concepts of our living world. To
apply obtained concepts to more games and to generate more complex concepts
are the problems which remain to be solved.

Acknowledgments. The authors would like to express their appreciation to Mr.
Abdallah Saffidine for his contribution to the stimulating discussions, Prof. Erick
Alphonse for his comments on Inductive Logic Programming, Prof. Hiroyuki Iida and
Japan Advanced Institute of Science and Technology for funding and Dr. Kristian
Spoerer for proof reading.

References

1. Björnsson, Y., Finnsson, H.: CADIAPLAYER: a simulation-based general game
player. IEEE Trans. Comput. Intell. AI Games 1, 4–15 (2009)

80 Y. Sato and T. Cazenave

2. Clune, J.: Heuristic evaluation functions for general game playing. In: Proceedings
of the National Conference on Artificial Intelligence, pp. 1134–1139 (2007)

3. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
pp. 259–264 (2008)

4. Inoue, K., Furukawa, K., Kobayashi.: Abducing rules with predicate invention. In:
The 19th International Conference on Inductive Logic Programming (2009)

5. Kaneko, T., Yamaguchi, K., Kawai, S.: Automatic feature construction and opti-
mization for general game player. In: Proceedings of Game Programming Workshop
2001, pp. 25–32 (2001)

6. Kirci, M., Sturtevant, N., Schaeffer, J.: A GGP feature learning algorithm. KI -
Künstliche Intell. 25, 35–42 (2011)

7. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game play-
ing: game description language specification. http://games.stanford.edu/readings/
gdl spec.pdf (2008)

8. Méhat, J., Cazenave, T.: A parallel general game player. KI-Künstliche Intell. 25,
43–47 (2011)

9. Michulke, D., Thielscher, M.: Neural networks for state evaluation in general game
playing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part II. LNCS(LNAI), vol. 5782, pp. 95–110. Springer, Hei-
delberg (2009)

10. Mohamed, T.P., Hruschka, E.R.J., Mitchell, T.M.: Discovering relations between
noun categories. In: Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing, pp. 1447–1455 (2011)

11. Schiffel, S.: http://www.general-game-playing.de/index.html (2008)
12. Skowronski, P., Björnsson, Y., Winands, H.M.M.: Automated discovery of search-

control features. In: Proceedings of the Twelfth International Advances in Com-
puter Games Conference, pp. 182–194 (2009)

http://games.stanford.edu/readings/gdl_spec.pdf
http://games.stanford.edu/readings/gdl_spec.pdf
http://www.general-game-playing.de/index.html

WALTZ: A Strong Tzaar-Playing Program

Tomáš Valla1 and Pavel Veselý2(B)

1 Faculty of Information Technology,
Czech Technical University in Prague, Praha 6, Czech Republic

tomas.valla@fit.cvut.cz
2 Faculty of Mathematics and Physics,

Charles University in Prague, Praha 1, Czech Republic
vesely@iuuk.mff.cuni.cz

Abstract. Tzaar is an abstract strategy two-player game, which has
recently gained popularity in the gaming community and has won sev-
eral awards. There are some properties, most notably the high branch-
ing factor, that make Tzaar hard for computers. We developed Waltz,
a strong Tzaar-playing program, using enhanced variants of Alpha-beta
and Proof-number Search based algorithms. After many tests with com-
puter opponents and a year of deployment on a popular board-gaming
portal, we conclude that Waltz can defeat all available computer pro-
grams and even strong human players. In this paper we describe Waltz,
its performance and an enhancement of Proof-number Search developed
for Waltz that can be also used in other domains than Tzaar.

1 Introduction

Tzaar is a relatively new game, which was invented by Kris Burm and published
in 2007. Despite being so young, Tzaar has won quite a lot of awards, most
notably the Games Magazine’s award “Game of the Year 2009” [19], “Spiel des
Jahres” Recommendation in 2008 [21], and earned nominations to several other
awards. Tzaar is also highly rated by the gaming community, for example on
the popular server BoardGameGeek.com it has the second highest rating among
abstract games. It is a part of the Project GIPF, a set of six abstract strategy
two-player games. The first game of the project, also called GIPF, was played
on Computer Olympiad [20] in 2001.

There are several properties that make Tzaar a hard game to play for com-
puters. Most notably it is the high branching factor (see Sect. 1.3). Even in the
endgame there is usually more than one solution to a threat, thus algorithms
based on threats like Dependency-based Search [1] or Lambda Search [10] are
not effective. We cannot also easily decompose the game into independent parts
(unlike Amazons), thus standard techniques from combinatorial game theory
are not applicable. Therefore, writing a strong Tzaar playing program is a chal-
lenge. We address this challenge by developing Waltz,1 a strong program able

Tomáš Valla—This work was supported by the Centre of Excellence—Inst. for Theor.
Comp. Sci. (project P202/12/G061 of GA ČR).

1 The name stands for the recursive acronym Waltz ALgorithmic TZaar.

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 81–96, 2014.
DOI: 10.1007/978-3-319-05428-5 7, c© Springer International Publishing Switzerland 2014

82 T. Valla and P. Veselý

to defeat all other Tzaar programs that we are aware of, and also—which is more
important—match up with and defeat even strong human players.

We have installed several playable “robots” on the popular board-gaming por-
tal Boitejeaux.net [18], where some very strong players are playing. The details
about Waltz performance against both computer and human opponents can be
found in Sect. 4.

The algorithms employed in Waltz are based on Alpha-beta pruning and
Proof-number Search (PNS), together with many enhancements, see Sect. 2 for
more details. We chose and tuned these algorithms and their enhancements after
numerous statistical experiments and play-outs with other Tzaar playing pro-
grams, humans, and different versions of Waltz.

We also developed an enhancement of PNS for Waltz called Heuristic Weak
PNS. See Sect. 2.2 for its description.

This paper was preceded by the thesis of Veselý [13], which, although slightly
outdated, contains a lot of details that are omitted here. Waltz, the thesis, and
other information can be downloaded from our website [11].

1.1 Tzaar Rules

Tzaar is a modern abstract strategy two-player game with full information, bear-
ing a distant similarity to Checkers in some sense.

The board for Tzaar is hexagonal and consists of 30 lines that makes 60 inter-
sections. There is a missing intersection in the center of the board. In the starting
position there are 30 white and 30 black pieces, one at each intersection. Each
color has pieces of three types: 6 are Tzaars, 9 are Tzarras and 15 are Totts. See
Fig. 1 for illustration.

The initial placement could be random or players can use a fixed starting
position which is defined in the official rules [2].

Pieces can form stacks, that means, towers of pieces of the same color. In the
beginning, all stacks on the board have height one. A stack is one entity, thus
it cannot be divided into two stacks. The type of a stack is the type of its top
piece.

White player and black player take turns, white has the first turn. Each
player’s turn consists of two moves. There is an exception in the very first turn
of white player, as his turn consists only of the first move.

The first move of each turn must be a capture. The player on turn moves one
of his stacks along a line to an intersection with an opponent’s stack. A stack
cannot jump over other stacks or over the center of the board. Only a jump over
an arbitrary number of empty intersections is allowed. No stack may end the
jump on an empty intersection. A captured stack must have height at most the
height of the capturing stack. Captured pieces leave the board.

The second move of a turn can be another capture move, or a stacking move,
or a pass move. Passing means that the player on turn does not move with any
stack. During the stacking move the player jumps with his stack on some other
stack of his color. The height of the resulting stack is the sum of both stacks
heights. The type of the resulting stack is determined by the piece on the top.

WALTZ: A Strong Tzaar-Playing Program 83

2

4

5

Tzaar

Tzarra

Tott

Tzaar

Tzarra

Tott

Fig. 1. The Tzaar board with a sample position and piece types on the left. The
possible moves of the black Tzaar stack in the second move of a turn are marked by
arrows, the dashed arrows represent stacking moves and the numbers denote the stack
heights greater than one.

A player loses when the last stack of one of the three types is captured, or if
he cannot capture in the first move of his turn. A draw is not possible.

1.2 Strategies

In this section we discuss some common heuristic strategies how to play Tzaar.
These observations are based on authors’ experiences from numerous play-outs
with both human and computer opponents. We use these strategies to construct
the evaluation function of Waltz, see Sect. 2.1. However, as these strategies are
based on heuristic arguments, there are of course positions where they do not
yield good results.

The first move is always a capture move, but it often depends which type of
piece is captured. A good move usually consists of capturing piece type t such that
the opponent does not have a high stack of type t, and as a secondary condition
such type t that there are not many stacks of type t. In a typical game the player
starts by creating a stack of Tzaar, it is thus convenient to capture Tzarras.

In the second move of a turn a player has three possibilities:

– Capturing again (so called double-capture move). This is appropriate if the
opponent is running out of pieces of a certain type (he should not have a high
stack of that type), or if a high stack can be captured. Height of the double
captured stack should be greater than two, because by capturing stacks of size

84 T. Valla and P. Veselý

2

2

2

6

9

3

4

2

Fig. 2. In this position, black player is on turn. After the last black Tzaar stack captures
the white Tzaar piece in the right corner, the only move not leading to a loss for black
is the pass move.

two, a player may lose capturing possibilities. Moreover, double capturing
two pieces with height one usually leads to a loss because of no capturing
possibilities.

– Stacking is often the most reasonable move, because it makes one of the stacks
more powerful and more safe against opponent’s stacks. The other reason is
that the opponent loses capturing possibilities, thus it is more likely that he
will run out of captures and lose in the endgame.

– Passing occurs rarely during the game. It is worth playing only in the endgame
when stacking and capturing are not possible or would result in a loss. See
Fig. 2 for an example of such position.

There are generally two stacking strategies:

1. Creating one high stack which is powerful and can capture all opponent’s
stacks, or which forces the opponent to raise his highest stack.

2. Creating more lower stacks, usually of height two, although it is safer when
some of them have height at least three.

It is not known to us which strategy is better. Using the first strategy the
player can quite easily threaten or even capture small opponent’s stacks, but
using the second strategy it is sometimes impossible for the opponent to create
a new stack (it would be captured immediately) and the opponent can lose
because of it. The second strategy is more reasonable during the endgame, since
it decreases the opponent’s capturing possibilities. Also, having a stack much
higher than all other opponent’s stacks is worse than having more lower stacks.

WALTZ: A Strong Tzaar-Playing Program 85

These strategy observations were mostly about material; now we give some
positional strategy tips:

– Keeping high stacks inside the board, not on the border. Stacks inside are able
to move to any direction and thus they threaten large part of the board. More-
over, during the middle game a stack placed inside the board can nearly always
escape from a threat. The worst positions are the six corners of the board.

– Limiting moving possibilities of an opponent’s high stack, i.e., moving pieces
away from lines containing an opponent’s high stack.

– Isolating a small stack (preferably of size one) such that there are no other
pieces on the same lines as the isolated stack. The reason is that the player
cannot run out of the type of an isolated piece, thus the type is safe.

– Isolating own high stack is not good, because the stack cannot be used for
capturing opponent’s stacks.

– Limiting opponent’s capturing possibilities and also preparing own capturing
possibilities during the endgame.

The black player has a small advantage, because he is stacking first. Hence
he can often threaten white player by attacking white stacks and white player
should create his first stack as far from black player’s stack as possible.

1.3 Game Properties

We estimate the maximum height of a stack. Observe that before a stacking
move that created a stack of height h, the opponent must have captured at least
h − 1 pieces. There should be two pieces of another types present and there are
30 pieces of each color, the maximum number of captures is 13 as at least two
other pieces must be present, so the maximum stack height is 14.

The state space complexity is the number of game positions reachable from
any starting position. There are

(
60
v

)
different choices of fields for stacks, where

v is the number of free fields. Let k be the sum of heights of all white stacks on
the board, i.e. the number of white pieces, and analogously δ for the black color.
Both numbers are bounded from above by the number of necessary captures
before exactly v free fields appeared on the board. Thus k, δ ≤ 30 − ∈ 1

4v� (at
least one fourth of moves must capture a white stack).

Let there be s white stacks, so the number of black stacks is 60 − v − s. We
know that s ≤ min(k, 58 − v), since there are k white pieces and there must be
two black stacks on 60− v occupied fields on the board. The number of different
stack heights for s stacks with k white pieces is

(
k−1
s−1

)
; the number of different

choices of fields for white stacks is
(
60−v

s

)
and 3s is the number of different types

of white stacks. Similar formulas hold for black player. This gives us the upper
bound on the number of possible states:

55∑
v=1

(
60
v

) 30−≤ 1
4 v≈∑

k=2

min(k,58−v)∑
s=2

(
60 − v

s

)(
k − 1
s − 1

)
3s·

30−≤ 1
4v≈∑

σ=60−v−s

(
δ − 1

59 − v − s

)
360−s−v

.= 9.17 · 1057

86 T. Valla and P. Veselý

Let us now take symmetries into account. The position can have 6 equivalent
rotations. The position may also have 6 isomorphic mirrors by 6 axes (between
opposite corners of the board and between centers of opposite sides). Mirroring
twice by any two axes results in a rotated position, thus there are 12 isomorphic
positions. We use Burnside’s Lemma (the orbit-counting theorem) to count the
number of distinct positions.

For each symmetry we estimate the number of fixed points, i.e., positions
that are the same after applying a symmetry. The identity has clearly 9.17 ·1057

fixed points. Rotation symmetries (except identity) have at most (14 ·6+1)10 .=
1.97 · 1019 fixed points, since the maximal height is 14, Tzaar has six types of
pieces and the six triangles with 10 fields that lie between the side of the board
and the side of the empty part in the middle must be the same. Mirroring by
axes has at most 4.83 ·1028 fixed points which we obtain using similar formula as
for the state space complexity. From Burnside’s Lemma we get the upper bound
on the number of distinct positions reachable from any starting position:

(9.17 · 1057 + 5 · 1.97 · 1019 + 6 · 4.83 · 1028)/12 = 7.64 · 1056

This is an upper bound on the number of positions that can be reached from
all starting positions altogether, but some positions can be obtained from more
than one initial position.

The number of different starting positions is 60!/(15! · 9! · 6!)2 .= 7.13 · 1040.
Using Burnside’s Lemma to deal with symmetries we get 5.94 · 1039 different
starting positions. The number of fixed points is zero for rotation symmetries,
since the number of black Totts is not divisible by six. For mirroring symmetries
the number of fixed points is at most 30!/(8! · 5! · 3!)2 .= 3.15 · 1017.

Let us now estimate the number of endgame positions. We count the number
of positions with six stacks of different types or colors—if there are two pieces of
the same color and type, the position is won by one of the players. We observe
that the number of positions with more than six stacks is higher. The number of
positions with exactly six stacks is the number of different choices of six fields on
the board multiplied by the number of permutations of six stacks and the number
of different stack sizes for each piece type and for each player. The maximum
sum of stack sizes for a player is 16, because there should be a capture before
each stacking. Therefore, the number of endgame positions is

(
60
6

)
· 6! ·

⎛
16∑

i=3

(
i − 1

2

)⎝2

.= 1.13 · 1016,

where i denotes the sum of stack heights for one player.
After taking symmetries into account, we get 9.42 · 1014 different positions

with six different stacks. Note that the number of fixed points is zero for rotations
symmetries and for mirroring by axes between opposite sides. For mirroring
between opposite corners it is at most

6! ·
⎛

16∑
i=3

(
i − 1

2

)⎝2

.= 2.26 · 108

WALTZ: A Strong Tzaar-Playing Program 87

Table 1. Minimum, maximum and average branching factor according to the number
of stacks on the board. The table contains also the number of positions from which
the values were obtained. We sampled positions from real games at BAJ [18] and these
positions can be downloaded from [11].

Stacks 59 55 49 43 37 31 25 19 13 9 7 6
positions 470 464 456 460 446 427 399 338 170 61 15 7

Minimum 4961 3962 2732 1732 906 403 139 35 1 1 1 1
Maximum 9933 7651 6007 4235 2986 2078 1073 476 114 21 4 2
Average 7497 5965 4463 2971 1978 1117 562 203 37 7 1 1

For a lower bound on the state space complexity we can use the number of
distinct starting positions which is 5.94 ·1039. We thus believe that the real state
space complexity lies roughly between 1045 and 1055.

The branching factor depends on the starting position. The fixed starting
position has the maximum branching factor around 5 500, but there are starting
positions with the branching factor up to 10 000. We count positions reachable
by two possible ways only once, otherwise the branching factor can be 14 000.
During the game, the branching factor is decreasing as the pieces are captured
or stacked. Table 1 provides a summary of the minimum, maximum and average
branching factor according to the number of stacks on the board, computed
statistically from real play-outs.

The game tree complexity is usually estimated by multiplying the average
branching factor for each turn. For Tzaar we get approximately 1079.

We conclude that Tzaar has much larger state space complexity than GIPF
that has roughly 1025 different positions [14] and probably slightly larger than
Chess that has 1046 positions [3]. The game is also harder for computers because
of huge number of possible starting positions and more importantly the branch-
ing factor which is more than 1000 for most of the game. In contrast, GIPF or
Chess have average branching factor from 30 to 40. On the other hand, Tzaar
games are quite short, typically up to 28 turns of a player, thus the game tree
of Chess or GIPF is larger (about 10123 for Chess and 10132 for GIPF [14]).

2 Algorithms for Tzaar

We now discuss algorithms we have implemented in Waltz. We also describe
domain dependent heuristics. Since the game tree properties differ in the middle
game and in the endgame, we discuss these parts of the game separately.

Due to the high number of possible starting positions the Opening database
technique is not applicable. Similarly, one cannot use the endgame database as
even the number of positions with only six different stacks is 9.42 · 1014 as we
counted in Sect. 1.3. We thus believe that data-base methods are not applicable
in Tzaar.

88 T. Valla and P. Veselý

We cannot also easily decompose the game into independent parts, since
stacks can jump from one part of the board to another by few moves. Hence
standard techniques from combinatorial game theory are not applicable.

Opening has the highest branching factor, but otherwise it is not very dif-
ferent from the middle game. Before the endgame, the attacking player usually
cannot capture defender’s high stack or even win in a few moves by a threat
sequence. Defender can escape with his stack from most threats easily and there
are often more different ways to do it. We thus conclude that algorithms based
on threats would be ineffective during the opening and middle game, therefore
Proof-number Search (PNS) is used only during the endgame.

The most frequently used algorithm in Waltz is Minimax with the Alpha-
beta pruning and several enhancements, namely:

– Transposition Table (TT): Used for storing moves from the previous shallower
search (the Principal Variation Move, PV) and also because some positions
can be reached by a few different move sequences.

– Iterative Deepening (ID): Implemented because of time estimation (how deep
may the engine search), and because of PV.

– domain specific Move Ordering (MO): Done by heuristically assigning values
to moves and sorting moves according to these values. In most cases, stacking
is preferred to capturing.

– History Heuristic (HH): Only for the first move of a turn.
– NegaScout (NS): To quickly find cutoff nodes.
– Randomized Alpha-beta: for the first two moves, Waltz chooses uniformly

randomly among moves with a value at least bestValue − margin for a given
constant margin. These moves are found using a slightly modified Alpha-beta
search. See [13] for more details.

– Playing in lost positions: when Waltz finds out that it is in a lost position,
it uses the best move in the last iteration of the Iterative Deepening where
Alpha-beta has not found out that the position is lost. Thus Waltz plays a
move that leads to a loss after the maximal possible number of moves.

In the endgame the branching factor is not so high and threat sequences
occur more frequently. There are also fewer solutions to threats, thus threats
limit the branching factor and Proof-number Search (PNS) can sometimes be
more effective than Alpha-beta search. However, PNS as proposed by Allis [1]
consumes a considerable amount of memory. Therefore, we use the Depth-first
Proof-number Search (DFPN) [6] with the following enhancements:

– Move Ordering: The same as in Alpha-beta.
– Evaluation Function Based PNS (EFB PNS) [15]: Heuristic initialization of

leaves using the evaluation function.
– 1 + α Trick [7]: To avoid frequent jumping of the search across the tree.
– Weak PNS (WPNS) [4] and Dynamic Widening (DW) [17]: To suppress over-

estimation of proof and disproof numbers.
– Heuristic Weak PNS (HW PNS): A new enhancement, see Sect. 2.2.

WALTZ: A Strong Tzaar-Playing Program 89

– Time estimation: How many nodes can DFPN visit within a given time—at
first a certain number of nodes is visited and then the number of nodes to
visit is estimated.

We note that there are some other algorithms for solving endgame positions.
For the Lambda Search [10] we were not able to determine quickly the order of
a threat. Since there is usually more than one way to evade a threat, we may
conclude that the Dependency-based Search [1] is not suitable for Tzaar.

See Sect. 3 for an evaluation of how each enhancement improves the search.
The detailed description of the algorithms and their enhancements can be found
e.g. in [13].

2.1 Evaluation Function

The evaluation of a position in Tzaar is used both by the Alpha-beta search and
DFPN. We created the evaluation function according to strategy observations
given in Sect. 1.2. We tuned up its constants by playing with Waltz and by
numerous play-outs between different versions of the evaluation function.

In positions with a positive value, white player has an advantage (∞ is a
win), and vice versa for black player. We basically use this formula:

eval(position) = material(position,White) + positional(position,White)
−material(position,Black) − positional(position,Black)

The material value for a player is the sum of values of player’s stacks:

material(position, player) =
∑

s is a stack
of player

heightValue(s) · countValue(s)

The function heightValue grows rapidly up to 150 for heights less than 4,
then stays nearly the same and decreases for stacks higher than 8. The reason is
that instead of building very high stacks a player can build more lower stacks,
which is usually better. The function countValue is inversely proportional to the
count of stacks with the same piece type as the stack s. It is 100 for the count
1, then it decreases rapidly and it is less than 20 for counts higher than 5.

The material value is more important in the first half of the game. The
material value together with some positional information is counted incremen-
tally (when a move is executed or reverted), other positional features are counted
statically for each leaf node that is not won by a player.

For the positional value the Zone of Control (ZOC) is maintained. It deter-
mines how many stacks of a certain type can be captured in one move, no matter
who is on turn. It is used also for determining whether a player on turn has lost
because of no possible captures.

The positional value for a player is roughly the sum of these bonuses:

– 20 000 000 for an immediate threat: The player is on turn and he can capture
all stacks of an opponent’s piece type (the player can win).

90 T. Valla and P. Veselý

– 1 000 for a threat, when the player is not on turn.
– 1 000–200 000 if the opponent has few possible captures.
– Value of ZOC:

⎞
opponent′s
piece type t

stacksInZOC(t) · (1 − count(t)/ initialCount(t))

– 25 000 for each player’s piece type that is “secure”—the player has a stack
higher than all stacks of his opponent—and 100 000 if all types are secure.

– 50 000 for stacks with height at least 2 of all types.
– 50 000 if an opponent’s valuable stack can be captured.
– 1 000–100 000 for an opponent’s high stack that cannot move.
– 10–25 for high stacks not on the margin of the board and −30 for a stack in

the corner.

2.2 Heuristic Weak PNS

As positions often occur more than once in a game, the state space is described
by a directed acyclic graph instead of a tree. Then DFPN suffers from the double-
counting problem, when the proof number of a position contains the proof number
of another position more than once.

This problem can be addressed by modifying the summation of disproof
numbers in OR nodes and proof numbers in AND nodes. Weak PNS [4] proposes
taking the maximum disproof number and adding the number of children minus
one. Another solution to this problem is described by Kishimoto [5].

We propose a new enhancement based on Weak PNS and the evaluation
function. We modify counting disproof numbers in OR nodes (and analogously
in AND nodes) in a way similar to Evaluation Function Based PNS. The idea
of using the evaluation function is also briefly mentioned by Kishimoto [5].

We define the step function similarly to Evaluation Function Based PNS:

step(value) =

⎠⎪⎨
⎪⎩

2 if value ⊆ t,

1 if − t < value < t,

0 if value ≤ −t,

where value is the value of the current position and the threshold t indicates the
player’s high advantage. The best value for t is at least 106 (see Sect. 3) while a
win has value 2 · 109.

We count the disproof number (DN) as maxDN +h(m−1) step(value), where
maxDN is the maximum disproof number among children, m is the number of
moves and h > 0 is a constant.

Now we discuss reasons for this modification of Weak PNS. When the player
on turn has a big advantage and value ⊆ t, DN is ∞ with a high probability. We
can thus set DN to maxDN + 2h(m − 1). In the case of a balanced position, we
count DN similarly to Weak PNS. Because of this, the parameter h should be
close to 1. When the player on turn is in a bad position, we likely do not need
to search many positions to disprove the node, so DN is set to maxDN .

WALTZ: A Strong Tzaar-Playing Program 91

3 Experiments with Waltz

This section shows the results of search runtime optimization. For parameter tun-
ing and measuring the runtime we use two sets of Tzaar positions. The first set,
we call it MidSet , consists of 200 middle game positions with exactly 41 stacks
on the board. It is intended for testing Alpha-beta.

For experimenting with DFPN we have a set of 713 endgame positions with
less than 27 stacks on the board, we call it EndSet . This set contains both easy
positions (Waltz solves them quickly) and hard positions (neither DFPN, nor
Alpha-beta are able to find a solution within a minute). Both MidSet and EndSet
are available at [11]. We took these positions from Waltz’s games with strong
and intermediate players on BAJ.

We performed the tests on a Dual-Core AMD Opteron 2216 server with
64 GiB of memory, but we used only one of its cores.

For Alpha-beta we measured the efficiency of the Alpha-beta enhancements
in the domain of Tzaar by searching each MidSet position to the depth of 3 turns.
We observed that it is best to use all Alpha-beta enhancements listed in Sect. 2.
Since this behavior occurs also in other games, this approach does not contribute
with some new insight, so we omit the exact results. They can be found in [13].

Table 2 shows the importance of enhancements for DFPN. Note that there
is nearly no difference between DW, WPNS and HW PNS, and that one single
enhancement is still not enough. Surprisingly, sorting moves heuristically using
the same algorithm as in Alpha-beta is useful. We ran the tests on EndSet
positions with the time limit of 60 s.

We find it strange that Heuristic Weak PNS does not solve more positions
than Weak PNS, but we think that Heuristic Weak PNS can improve solvers in
other games.

We experimented also with different sizes of TT and constants used in DFPN
enhancements, namely Heuristic Weak PNS, 1 + α Trick, EFB PNS and DW.
For each constant we tried different values, run the experiments and counted the
number of solved positions from EndSet . The results are omitted due to space
limitations and can be found in [13].

Table 2. Results of the DFPN search with diffierent enhancements listed in Sect. 2.

Enhancements Solved (out of 713)

HW, 1 + ε Trick and EFB 484
WPNS, 1 + ε Trick and EFB 484
DW, 1 + ε Trick and EFB 480
HW, 1 + ε Trick and EFB without sorting moves 465
Only 1 + ε Trick 343
Without enhancements 336
Only Heuristic Weak (HW) 289
Only Evaluation Function Based (EFB) 289

92 T. Valla and P. Veselý

Heuristic Weak PNS has two parameters: the threshold t for the step function
and the multiplier h. From the experiments we observed that the best values are
h = 1 and t ⊆ 106—the value of a position in which a player has a significant
advantage.

3.1 DFPN versus Alpha-beta in Endgames

DFPN was designed to find long winning strategies where the player can force
his opponent to have only a limited number of possible moves. We tried DFPN
on Tzaar endgames, although Tzaar has relatively high branching factor even in
endgames. On the other hand, the player can sometimes force his opponent to
have a small number of moves.

To decide whether to use Alpha-beta or DFPN in endgames we ran statistical
experiments. Using the best possible setting of constants in DFPN, it solved 495
out of 713 positions. Then we tried Alpha-beta (with all enhancements) and it
solved 506 positions. There are 20 positions which DFPN solved and Alpha-beta
did not, so DFPN is reasonable to use in Waltz.

Hence Waltz try to use DFPN first in the endgame when the number of
stacks is at most 23. If it does not succeed because of the time limit or because
DFPN found disproof, we run the Alpha-beta search.

4 Results Against Computer and Human Opponents

We tested Waltz against other existing programs for playing Tzaar that are
available: HsTZAAR [12] and programs of students from University of Alaska
[22].2 See Table 3 for the results.

During the tests, Waltz had a time limit of 30 s. Each game started with
a random starting position. We performed tests with HsTZAAR on Intel Xeon
ES-1620 server with 64 GiB of memory and tests with the other programs on a
AMD Turion II P560 Dual-Core notebook with 4 GiB of memory.

To test Waltz against people we chose the game server Boiteajeux.net (BAJ)
[18], since a lot of people play Tzaar there.3 For each game, an ELO rating is
counted.4

We created four different versions of Waltz which are described in Table 4.
We performed matches between these versions to compare their strength. See
Table 5 for the results.

Now we describe how successful Waltz was against human opponents on
BAJ. We focus only on the expert and unbeatable versions since the other ver-
sions are intended to play weaker.
2 There are also some more programs available, but due to their design it is not possible

to run automatic play-outs between them and Waltz.
3 299 players have played Tzaar in the last six month till May 10, 2013 and 24 842

Tzaar games were finished on BAJ from October 31, 2008 to May 10, 2013.
4 For a win a player obtains some ELO points according to his and opponent’s ELO

and his opponent loses the same number of points. New player receives ELO 1 500.

WALTZ: A Strong Tzaar-Playing Program 93

Table 3. Results of Waltz against other Tzaar-playing programs. Wins and losses are
counted from the Waltz’s point of view.

Program Wins Losses Note

HsTZAAR 479 121 Used with the algorithm pscout full 4 on 4 cores
GreensteinTzaarAI 342 53 We could not set a time limit
BiTzaarBot 196 5 The time limit was 40 s
Mockinator++ 83 2 The time limit was 40 s
Mockinator 82 1 The time limit was 40 s

Table 4. Versions of Waltz.

Level Username on BAJ Time Used algorithms
limit [s]

Beginner PauliebotBeginner 30 RandomizedAlpha-beta with a
big margin (5000) and a very
simple evaluation function to
the depth of two turns of a
player for the whole game

Intermediate PauliebotMedium 30 RandomizedAlpha-beta with a
small margin (20) and the
full evaluation function to the
depth of two and half turns for
the whole game

Expert Pauliebot 30 BothAlpha-beta and DFPN with
the full evaluation function

“Unbeatable” PauliebotUnbeatable 300 BothAlpha-beta and DFPN with
the full evaluation function

Table 5. Results of matches between versions of Waltz.

Beginner Intermediate Expert “Unbeatable”

Beginner 224:1140 218:1090 45:351
Intermediate 1140:224 647:1371 84:208
Expert 1090:218 1371:647 98:149
“Unbeatable” 351:45 208:84 149:98

We released Waltz in the expert version on March 20, 2012 under username
Pauliebot, and it was under development until April 4, 2012. After that we made
only minor updates, mostly improving the evaluation function. On April 24, 2012
we released the other versions of Waltz.

The expert version has played 154 games so far.5 It won 114 of them and it
is the 16th best Tzaar player with ELO 2 068.6 Most important results of the
expert version are in the left part of Table 6. We conclude that the expert version
5 Some of these games were played for testing purposes.
6 ELOs of players and other data in this section were up to the date March 4, 2013.

94 T. Valla and P. Veselý

Table 6. Some results of the expert (left) and unbeatable (right) versions. Wins and
losses are counted from the Waltz’s point of view. Note that Paulie is a nickname of
one of the authors, not of one of the Waltz’s version.

Player Rank ELO Wins Losses

SlowBrain 1st 2 432 1 3

Gambit 2nd 2 229 2 4

Paulie 3rd 2 220 8 3

evrardmoloic 17th 2 062 1 1

mat76 77th 1 690 16 1

Gregg 78th 1 684 14 5

PhilDakota 79th 1 684 14 3

Player Rank ELO Wins Losses

SlowBrain 1st 2 432 9 16

Paulie 3rd 2 220 1 3

mnmr 6th 2 184 0 1

Zeichner 9th 2 143 1 0

Talisac 13th 2 100 3 0

azazhel 28th 1 931 8 2

played on the level of best players on BAJ, but sometimes intermediate players
were able to defeat it.

The unbeatable Waltz version has ELO 2087, the 14th highest, and played
74 games from which it won 46 games.7 The most important results of the
unbeatable version are in the right part of Table 6. The 9 wins against SlowBrain
are a great success because SlowBrain is far better than other players. From these
results we conclude that more time to search helps Waltz to play better.

The most frequently appearing reason why Waltz lost games on BAJ was
the loss of the last stack of Tzarras. We observed that in two or three last turns
of these lost games Waltz had no chance to create a stack of Tzarras which
could not be captured by the opponent—Waltz was probably not aware of such
an opponent’s trap soon enough. Another bad thing in Waltz’s behavior during
these games was losing quite high stacks (size 3, 4, or even 5) during the middle
game.

We thus tried to improve the evaluation function to avoid these problems.
The version with the enhanced evaluation function won 136 and lost 102 games
against the version with the old evaluation function. On March 4, 2013 we
released the version with the enhanced evaluation function.

5 Further Work

There are some other algorithms which we did not implement in Waltz. Monte
Carlo Tree Search is probably the most promising approach, and we consider
it to be the next direction where we would like to move Waltz’s development.
Another direction lies in parallelizing Waltz’s algorithms, which is a natural
step we would like to try. For example the DFPN algorithm can be parallelized
by Job-level Proof-number search [16], there are also parallelization approaches
proposed by Saito, Winands and van den Herik [9], or Saffidine, Jouandeau and
Cazenave [8].
7 Some of these games were against other Waltz versions—this was done to increase

robot’s ELO, otherwise strong players would not want to play against an opponent
with a low ELO.

WALTZ: A Strong Tzaar-Playing Program 95

It turned out that the enhancement Heuristic Weak PNS was not better than
Weak PNS in the domain of Tzaar, but we leave for a future research whether
it can be useful in other domains.

References

1. Allis, L.V.: Searching for solutions in games and artificial intelligence. Ph.D. thesis,
University of Limburg, Maastricht, The Netherlands (1994)

2. Burm, K.: Tzaar rules. GIPF Project. http://www.gipf.com/tzaar/rules/rules.
html

3. Chinchalkar, S.: An upper bound for the number of reachable positions. ICCA J.
19(3), 181–183 (1996)

4. Ueda, T., Hashimoto, T., Hashimoto, J., Iida, H.: Weak Proof-number search. In:
van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 157–168. Springer, Heidelberg (2008)

5. Kishimoto, A.: Dealing with infinite loops, underestimation, and overestimation of
depth-first proof-number search. In: Fox, M., Poole, D. (eds.) Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA. AAAI Press (2010)

6. Nagai, A.: Df-pn algorithm for searching AND/OR trees and its applications. Ph.D.
thesis, The University of Tokyo, Japan (2002)

7. Pawlewicz, J., Lew, ffL.: Improving depth-first PN-search: 1 + ε trick. In: van den
Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630,
pp. 160–171. Springer, Heidelberg (2007)

8. Saffidine, A., Jouandeau, N., Cazenave, T.: Solving breakthrough with race
patterns and job-level proof number search. In: van den Herik, H.J., Plaat, A.
(eds.) ACG 2011. LNCS, vol. 7168, pp. 196–207. Springer, Heidelberg (2012)

9. Saito, J.-T., Winands, M.H.M., van den Herik, H.J.: Randomized parallel proof-
number search. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol.
6048, pp. 75–87. Springer, Heidelberg (2010)

10. Thomsen, T.: Lambda-search in game trees - with application to go. ICGA J.
23(4), 203–217 (2001). (Springer)

11. Valla, T., Veselý, P.: Waltz. http://kam.mffi.cuni.cz/∼vesely/tzaar/
12. Vasconcelos, P.: HsTZAAR. http://www.dcc.fc.up.pt/∼pbv/stuffi/hstzaar/
13. Veselý, P.: Artificial intelligence in abstract 2-player games. Bachelor’s thesis, Fac-

ulty of Mathematics and Physics, Charles University in Prague, Czech Republic.
http://kam.mffi.cuni.cz/∼vesely/tzaar/thesis.pdf (2012)

14. Wentink, D.: Analysis and implementation of the game Gipf. Master’s thesis, Uni-
versiteit Maastricht (2001)

15. Winands, M.H.M., Schadd, M.P.D.: Evaluation-function based proof-number
search. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol.
6515, pp. 23–35. Springer, Heidelberg (2011)

16. Wu, I.-C., Lin, H.-H., Lin, P.-H., Sun, D.-J., Chan, Y.-C., Chen, B.-T.: Job-
level proof-number search for Connect6. In: van den Herik, H.J., Iida, H., Plaat,
A. (eds.) CG 2010. LNCS, vol. 6515, pp. 11–22. Springer, Heidelberg (2011).
http://dl.acm.org/citation.cfm?id=1950322.1950324

17. Yoshizoe, K.: A new proof-number calculation technique for proof-number search.
In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 135–145. Springer, Heidelberg (2008)

http://www.gipf.com/tzaar/rules/rules.html
http://www.gipf.com/tzaar/rules/rules.html
http://kam.mff.cuni.cz/~vesely/tzaar/
http://www.dcc.fc.up.pt/~pbv/stuff/hstzaar/
http://kam.mff.cuni.cz/~vesely/tzaar/thesis.pdf

96 T. Valla and P. Veselý

18. Boiteajeux board-gaming portal. http://www.boiteajeux.net/
19. GAMES game awards. Games Magazine. http://www.gamesmagazine-online.com/

gameslinks/archives.html2009awards
20. List of games, ICGA tournaments. [cit. 2013-05-11]. http://www.grappa.

univ-lille3.fr/icga/games.php
21. Spiel des jahres, awarded games 2008. http://www.spiel-des-jahres.com/cms/

front content.php?idart=925
22. Tzaar - ai game project for 2011. http://www.math.uaa.alaska.edu/∼afkjm/cs405/

tzaar/

http://www.boiteajeux.net/
http://www.gamesmagazine-online.com/gameslinks/archives.html2009awards
http://www.gamesmagazine-online.com/gameslinks/archives.html2009awards
http://www.grappa.univ-lille3.fr/icga/games.php
http://www.grappa.univ-lille3.fr/icga/games.php
http://www.spiel-des-jahres.com/cms/front_content.php?idart=925
http://www.spiel-des-jahres.com/cms/front_content.php?idart=925
http://www.math.uaa.alaska.edu/~afkjm/cs405/tzaar/
http://www.math.uaa.alaska.edu/~afkjm/cs405/tzaar/

Perfectly Solving Domineering Boards

Jos W.H.M. Uiterwijk(B)

Department of Knowledge Engineering (DKE), Maastricht University,
Maastricht, The Netherlands

uiterwijk@maastrichtuniversity.nl

Abstract. In this paper we describe the perfect solving of rectangular
empty Domineering boards. Perfect solving is defined as solving without
any search. This is done solely based on the number of various move types
in the initial position. For this purpose we first characterize several such
move types. Next we define 12 knowledge rules, of increasing complexity.
Of these rules, 6 can be used to show that the starting player (assumed
to be Vertical) can win a game against any opposition, while 6 can be
used to prove a definite loss (a win for the second player, Horizontal).

Applying this knowledge-based method to all 81 rectangular boards
up to 10 × 10 (omitting the trivial 1 × n and m × 1 boards), 67 could
be solved perfectly. This is in sharp contrast with previous publications
reporting the solution of Domineering boards, where only a few tiny
boards were solved perfectly, the remainder requiring up to large amounts
of search. Applying this method to larger boards with one or both sizes
up to 30 solves 216 more boards, mainly with one dimension odd. All
results fully agree with previously reported game-theoretic values.

Finally, we prove some more general theorems: (1) all m × 3 boards
(m > 1) are a win for Vertical; (2) all 2k × n boards with n = 3, 5, 7, 9,
and 11 are a win for Vertical; (3) all 3 × n boards (n > 3) are a win
for Horizontal; and (4) all m × 2k boards for m = 5 and 9, all m × 2k
boards with k > 1 for m = 3 and 7, and all 11× 4k boards are a win for
Horizontal.

1 Introduction

Domineering is a two-player perfect-information game invented by Göran
Andersson around 1973. It was popularized to the general public in an arti-
cle by Martin Gardner [9]. It can be played on any subset of a square lattice,
though mostly it is restricted to rectangular m × n boards, where m denotes
the number of rows and n the number of columns. The version introduced by
Andersson and Gardner was the 8 × 8 board.

Play consists of the two players alternately placing a 1 × 2 tile (domino) on
the board, where the first player may place the tile only in a vertical alignment,
the second player only horizontally. Dominoes may not overlap. The first player
being unable to move loses the game, his opponent (who made the last move)
being declared the winner. Since the board is gradually filled, i.e., Domineering
is a converging game, the game always ends, and ties are impossible. With these

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 97–121, 2014.
DOI: 10.1007/978-3-319-05428-5 8, c© Springer International Publishing Switzerland 2014

98 J.W.H.M. Uiterwijk

rules the game belongs to the category of combinatorial games, for which a
whole theory (the Combinatorial Game Theory) has been developed, especially
by Conway [8] and Berlekamp et al. in their famous book set Winning Ways [3].
In combinatorial game theory the first player conventionally is called Left, the
second Right, though in our case we will use the more convenient indications of
Vertical and Horizontal, for the first and second player, respectively.

Among combinatorial game theorists Domineering received quite some atten-
tion, but this was limited to rather small or irregular boards [1–3,8,11,16]. Larger
(rectangular) boards were solved using αβ search [12], leading to solving all
boards up to and including the standard 8 × 8 board [4], later extended to the
9 × 9 board [10], and finally extended to larger boards up to 10 × 10 [5,6].

2 Characteristics of Domineering

The knowledge rules to be defined in Sect. 3 are based on (counts for) several
types of moves. These are defined here. We then define some parameters counting
these move types. The move types and parameters will be illustrated for the 4×4
board. Next we will give some characteristics of the moves.

2.1 Move Types

We characterize moves in Domineering based on their vulnerability (can a move
be prevented by the opponent?) and their destructive power (how many moves
of the opponent are prevented by the move?). This leads to the following types
of moves.

– A destroyable move is a move that can be prevented by the opponent, if it is
his turn to move.

– A safe move is a move that cannot be prevented by the opponent (both squares
are unreachable for him).

– A double-destroying (or DD for short) move is a move that diminishes the
number of real moves of the opponent (the maximum number of moves the
opponent would be able to put on the current board if he was allowed to do
so; see Sect. 2.2 for a more formal definition) by 2. Therefore, each square of
the DD move should prevent a move of the opponent separately.

– Analogously, a single-destroying (SD) move is a move that diminishes the
number of real moves of the opponent by 1. Therefore, only one of the two
squares of the SD move should prevent a move of the opponent.

– A zero-destroying (ZD) move is a move that does not diminish the number of
real moves of the opponent.

– An extended double-destroying (xDD) move is a move that diminishes the
number of DD moves of the opponent by 2. Therefore, both squares of the
DD move should prevent a DD move of the opponent. These are under specific
circumstances (see Lemma 5) the most powerful moves.

Perfectly Solving Domineering Boards 99

– A safe-making (SM) move is a move that increases the number of safe moves
of the current player. According to the number of safe moves created they can
be categorized further as being of type 1 (SM1) or 2 (SM2) for generating 1
or 2 additional safe moves.

– An extended safe-making (xSM) move is a SM move that is created by a SM
move, not overlapping another SM move.

2.2 Board Parameters

Next we use parameters counting the numbers of some move types.

– RealCur = number of real moves of the current player, which is the maximum
number of moves the current player can put on the board if the opponent does
not move further. Note that this is not the number of possible moves by the
player, since possible moves can overlap.

– DDCur = maximum number of DD moves the current player can put on the
board if the opponent does not move further. Again, this is not the number of
possible DD moves, since after playing a DD move other moves may change
their nature.

– xDDCur = maximum number of xDD moves the current player can put on
the board if the opponent does not move further.

– SafeCur = number of non-overlapping safe moves the current player has on
the board.

– SM1Cur, SM2Cur, and xSMCur = number of non-overlapping SM moves
of types 1, 2, and extended, the current player can put on the board.

The RealCur and SafeCur parameters were already used by Breuker
et al. [4,14] and Bullock [5,6] in their programs Domi and Obsequi, respectively.
The analogous parameters RealOpp, DDOpp, xDDOpp, SafeOpp, SM1Opp,
SM2Opp, and xSMOpp, are defined similarly for the opponent. Note that the
parameters for the opponent are counts as if the opponent were to move, i.e.,
neglecting effects of the move the current player can make.

Let us illustrate these move types and parameters with an example, to be
used throughout this and the next section. For the 4 × 4 board (see Fig. 1a),
Vertical has 12 possible moves (3 per column), of which maximally 8 can be put
on the empty board (RealCur = 8). Moreover, every move of Vertical is a DD
move on the empty board, however it is taken into account that DD moves may
change the nature of future moves. E.g., a move like 1 in Fig. 1b will change the
future move 5 in Fig. 1d from DD to non-DD (in this case into a safe move).
For the empty 4 × 4 board the maximum number of DD moves Vertical can
put on the board is 4, so DDCur = 4. Vertical has four xDD moves (all moves
covering the 2nd and 3rd square of each column, though again maximally two
can be put on the board (xDDCur = 2). Of course, Vertical has no safe moves
on the empty board yet (SafeCur = 0). However, every move in the 2nd or
3rd column generates a safe move of type 1, so SM1Cur = 4. Other SM counts
are 0 for this example, in particular xSMCur = 0, since extended SM moves

100 J.W.H.M. Uiterwijk

≤ 2 2

1

1

≤
3

2 2 3

1 4 4

1

≤
8 8 3 7

2 2 3 7

5 1 4 4

5 1 6 6

(a) (b) (c) (d)

Fig. 1. A possible (non-optimal) move sequence on the 4 × 4 board.

may not overlap with SM moves. Note that for the 4 × 4 board all analogous
opponent parameters have the same values as their counterparts for the current
player. This holds for any empty square board. For non-square boards analogous
parameters may have different values.

We also introduce a notation for Domineering games. We use a chess-like
notation for boards, where columns are denoted from left to right with ‘a’,
‘b’, etc, and rows from bottom to top by ‘1’, ‘2’, etc. A square is denoted by
its column and row. So, for the 4 × 4 board the four corner squares starting
in the left-down corner are denoted by ‘a1’, ‘a4’, ‘d4’, and ‘d1’, in clockwise
order. A vertical move is indicated by the lower square of the domino, for a hor-
izontal move we indicate the left square of the domino. Unlike Chess, we use a
separate move number for each move separately, so that all odd-numbered moves
are moves made by Vertical (the first player) and all even-numbered moves are
moves made by Horizontal (the second player). In this notation we denote the
move sequence in Fig. 1 by 1. b1 2. a3 3. c3 4. c2 5. a1 6. c1 7. d3 8. a4
0-1 (Horizontal wins).

2.3 Move-Type Characteristics

In this section we describe some characteristics of move types, that are important
for the knowledge rules to be defined in the next section. Formal proofs are by
careful case analysis, but are omitted here for space reasons.

Lemma 1. Every DD move is destroyable

On empty boards, the number of DD moves is given by the number of non-
overlapping empty 2 × 2 regions on the board (quadrants). If the dimension of
the board is even in the opponent’s direction, any move of the current player on
an empty board is a DD move, if it is odd, only moves in the even columns (for
Vertical) or rows (for Horizontal) are DD moves. If both dimensions are odd,
only moves covering the (even, even) squares are DD moves. So, for an empty
m × n board DDCur = DDOpp = ∈m

2 � × ∈n
2 �. By their nature of covering

essential squares in quadrants, a DD move by a player can always be destroyed
by his opponent. So a DD move is both aggressive and vulnerable.

Perfectly Solving Domineering Boards 101

Lemma 2. DD moves destroy each other in pairs

In every empty quadrant, Vertical to move can destroy one horizontal DD move
(and one non-DD move) using a DD move, and vice versa. Consequently, as
long as only DD moves are played (in the first phase of the game) it holds that
DDCur = DDOpp.

Lemma 3. Two DD moves can be destroyed in one move only with an xDD
move

An xDD move is a move involving 2 quadrants, deleting one opponent DD move
in each, at the cost of also using 2 DD moves. This is only possible when the
size of the board in that direction is even. An example of an xDD move is move
1 in Fig. 2a.

Lemma 4. Every SM move is also a DD move

Since a SM move together with the safe move generated (making these squares
inaccessible for the opponent) cover a whole quadrant, every SM move destroys
two opponent moves, hence is a DD move.

Lemma 5. An xDD move is only profitable on even by even boards when the
number of DD moves is even

Since using an xDD move is at the cost of one additional move (diminishing
RealCur by 2) and possibly at the cost of one safe move generated (if a safe
move is generated, using it would cost again an additional move), playing an
xDD move should only be applied when the number of DD moves is even and
the opponent can not reply with an xDD move, since then the player to move
effectively can use one DD move more than the opponent. Even then playing
xDD moves may not be useful. However, when the size of the board in the
opponent’s direction is also even, an additional advantage of using an xDD move
is that such a move guarantees two additional opponent moves to be destroyable.
Consequently, an xDD move if possible should only be applied on even × even
boards when the number of DD moves is even and the opponent cannot respond
with an xDD move.

To show that using an xDD move is profitable in and only in this case, we
provide the following proof.

Proof. Suppose that Vertical has the possibility to play the last xDD move. Con-
sider the position in the game at which the number of DD moves left is exactly 2,
and arbitrarily assume that Vertical is able to use his xDD move at this position.
Let i and j be the number of real moves of Vertical and Horizontal, respectively,
at this point in the game. We use the notation i/j for the number of i vertical and
j horizontal moves in a position, the overline indicating the player to move. Then
if Vertical would not use his xDD move, but in stead plays a regular DD move,
Horizontal might respond by playing the last DD move. So in this case play might
proceed as i/j ≤ i−1/j−2 ≤ i−3/j−3 ≤ i−4/j−3 ≤ i−5/j−4 ≤ i−6/j−4.

102 J.W.H.M. Uiterwijk

Here we have given three additional moves from the position where the DD
moves are exhausted, assuming pessimistically that the opponent (Horizontal)
always can destroy a (single) vertical move, whereas Vertical cannot destroy an
opponent move. Using the xDD move on the other hand leads to the following
sequence: i/j ≤ i−2/j−2 ≤ i−3/j−3 ≤ i−4/j−3 ≤ i−5/j−4 ≤ i−6/j−4.
Clearly there is no net gain. If, however, Vertical also takes advantage of the
possibility to destroy an additional move in this phase of the game, the sequence
would be i/j ≤ i−2/j−2 ≤ i−3/j−3 ≤ i−4/j−4. So, for the same reduction in
number of opponent moves Vertical has consumed 2 moves less. Note that even
when using an xDD move is at the cost of a SM move, the player using the xDD
move still will have a profit of 1. ∞⊆

The profitable use of an xDD move is captured in the level-6 rules (see
Sect. 3.6) and exemplified by Fig. 2.

Lemma 6. More destructive moves are always better than less destructive moves

Due to the nature of the game a player should always destroy as many moves of
the opponent as possible in every position. In particular, both players will play
DD moves as long as available (phase 1 of the game). After that, SD moves will
be used as long as available to at least one player (phase 2 of the game). Only
then both players will use ZD moves till the end of the game (phase 3).

3 Perfectly Solving Domineering

In this section we report on perfectly solving Domineering positions, which we
define as solving without any search, i.e., completely knowledge-based. For this
purpose, we have defined 6 sets of knowledge rules of increasing difficulty level
(and power) to prove for a position that the first or second player can always
win. The rules are based on the fact that for a player it is always better to play
a move of larger destructive power than of lower destructive power (see Lemma
6), if known, and depend solely on the number and types of moves defined in the
previous section. They do not take specific locations of moves into account (which
would imply a covert form of searching). Every set consists of a pair of (dual)
rules, the first one testing a first-player’s win potential, the second rule testing
the second player’s win potential. Note that the rules are not complementary,
but cumulative, thus incorporating the full power of the rules of lower level.

3.1 Level-1 Rules

A position is a win for the current player if RealCur > RealOpp and SafeCur ∀
RealOpp. This is evident: if after playing an arbitrary move the current player
has as many safe moves as real moves of the opponent, the current player is
guaranteed to make the last move.

Alternately, a position is a win for the opponent (so a loss for the current
player) if SafeOpp ∀ RealCur. Here the opponent needs at least as many safe

Perfectly Solving Domineering Boards 103

moves as the current player has real moves, but not necessarily more moves.
This is a consequence of the fact that it is the current player’s obligation to
move (called the combinatorial advantage of the second player).

3.2 Level-2 Rules

The level-1 rules can be enhanced by realizing that an opponent move can max-
imally destroy two moves of the current player, after which the current player
has to play a (third) move, possibly destroying none of the opponent’s moves.
This means that the current player needs maximally 3 times the number of
real moves of the opponent. In addition, any safe move of the current player
counts for one move of the opponent (safe moves cannot be destroyed). This
leads to the following two rules. (1) A position is a win for the current player
if RealCur > 3 × RealOpp − 2 × SafeCur, and (2) a position is a loss for the
current player if RealOpp ∀ 3 × RealCur − 2 × SafeOpp.

For the 4 × 4 board this means that Vertical (“having to move first”) would
need at least 25 real moves to have a guaranteed win, whereas Horizontal would
need 24 real moves.

However, these rules can be enhanced considerably, by realizing that at every
turn of the current player he can at least transform a DD move of the opponent if
any into a SD move, or otherwise a SD move into a ZD move, again if any. More-
over, the above formulae assume that all opponent moves are of type DD, which
they are not. This leads to new formulae, that are quite complex and include
notions of the effective number of DD moves, the effective number of SD moves,
etc. It is much easier (and less error-prone) to implement a function that just
calculates the number of real moves a player needs to win the game (called the
threshold). This function has as input RealOpp, DDOpp, and SafeCur for test-
ing a vertical win, and RealCur, DDCur, and SafeOpp for testing a horizontal
win. The function simulates the move type sequence, assuming optimal move
decisions for both players (the opponent playing DD moves, as long as available,
playing SD moves if available otherwise, and the current player transforming
an opponent DD move into an SD move if possible, otherwise transforming an
opponent SD move into a ZD move, if possible). We call such a sequence the
optimal move-type sequence (OMTS) and the associated function the OMTSk-P
function. The subscript k indicates the knowledge-rules’ level and P can be V
or H standing for a win test for Vertical or Horizontal, respectively.

For the 4 × 4 board, the OMTS sequence is as follows.

8(4,4) 8(3,5)* 7(2,5) 7(1,6)* 6(0,6) 6(0,5)* 5(0,4) 5(0,3)* 4(0,2) 4(0,1)* ...

16/0* 15/0 13/0* 12/0 10/0* 9/0 8/0* 7/0 6/0* 5/0 ...

... 3(0,0) 3(0,0)* 2(0,0) 2(0,0)* 1(0,0) 1(0,0)* 0(0,0) 0(0,0)*

... 4/0* 3/0 3/0* 2/0 2/0* 1/0 1/0* 0/0

Above the horizontal line are the opponent moves, in the form RealOpp(DDOpp,
SDOpp). Remaining opponent moves are assumed to be of type ZD (ZDOpp =

104 J.W.H.M. Uiterwijk

RealOpp − DDOpp − SDOpp). To guarantee correctness of the rule we always
assume maximum power of the opponent initially, in particular that all non-DD
moves of the opponent are SD moves. Below the horizontal line are the corre-
sponding current player’s moves, in the form RealCur/SafeCur. A ‘*’ denotes
the player to move. It should be read by starting at the opponent’s initial con-
figuration (above, left) and “playing” until the opponent loses, indicated by the
0(0,0)* (the opponent is to move and has no more moves left). In this line, if
the opponent is to move the next entry has 1 RealOpp less, playing a double-
destroying move if possible, otherwise a single-destroying move if possible. If it is
the current player’s turn, the opponent’s potential is decreased by 1 (transform-
ing a DD move into a SD move if possible, otherwise a SD move into a ZD move
if possible). No opponent move is destroyed according to the rules at this level.
After reaching the loss condition for the opponent (upper line, right), the needed
current player’s moves are “constructed” (lower line, from right to left), termi-
nating in the number of moves required to win. Here, if in the configuration the
current player is to move, RealCur is augmented by one, and if possible SafeCur
also. Otherwise, the increase in RealCur is 0 when RealCur ← SafeCur (the
player only has safe moves left), otherwise the increment depends on the avail-
able opponent moves here (entry above): 2 if DD moves are available, otherwise
1 if SD moves are available, else 0.

The given example shows that if RealOpp = 8, DDOpp = 4, and SafeCur=0,
OMTS2-V (8,4,0) = 16, meaning that 16 real moves for Vertical assure him the win,
a deficit of 8 compared to RealCur.

The equivalent loss-rule is similar, by assuming that at the start board Hori-
zontal just moved (a kind of “null” move), after which Vertical has the opponent
role and Horizontal acts as current player. Since OMTS2-H(8,4,0) = 15 it follows
that Horizontal needs 15 moves to win the game, a deficit of 7.

3.3 Level-3 Rules

The level-3 rules are an easy yet powerful improvement upon the level-2 rules,
by realizing that any DD move of the opponent is destroyable (see Lemma 1).
Therefore, as long as the opponent has DD moves left, the current player always
will destroy 1 of these per move.

For the 4×4 example, realizing that Vertical can delete a horizontal DD move
twice, gives an OMTS3-V (8,4,0) threshold of 13, a gain of 3 compared with the
level-2 rules, but still a deficit of 5 (see the following OMTS sequence).

8(4,4) 7(3,4)* 6(2,4) 5(1,4)* 4(0,4) 4(0,3)* 3(0,2) 3(0,1)* 2(0,0) 2(0,0)* 1(0,0) ...

13/0* 12/0 10/0* 9/0 7/0* 6/0 5/0* 4/0 3/0* 2/0 2/0* ...

... 1(0,0)* 0(0,0) 0(0,0)*

... 1/0 1/0* 0/0

The corresponding loss condition is given by OMTS3-H(8,4,0) = 12, also a
gain of 3, and a deficit of 4 now.

Perfectly Solving Domineering Boards 105

3.4 Level-4 Rules

At this level, the evaluator explicitly takes into account the number of DD moves
of the current player also. As long as available, the current player will play a
DD move, deleting 2 moves of the opponent per own move. It can be shown
for empty boards (see Lemma 2) that among these two moves deleted from the
opponent always 1 can be a DD move, as long as available. This means that, as
long as both players have DD moves, they will alternate playing them, always
deleting 2 moves of the other player, including 1 DD move. Effectively this means
that per iteration (1 DD move by both players) the count of real moves of both
players diminishes by 3, and the number of DD moves by 2. One additional
requirement to guarantee correctness of the V -win rule is that if, after Vertical’s
first move, an even number of DD moves is left, Horizontal will play if possible an
xDD move once (the only way to diminish the opponent’s number of DD moves
by 2, see Lemma 3). We do not take into account possible disadvantages for
Horizontal (i.e., we just assume maximal usefulness for the opponent). Similarly,
for correctness of the H-win rule Vertical plays as first move an xDD move, if
available, when the number of DD moves is even.

For the 4×4 example, the corresponding OMTS4-V (8,4,0) call yields a thresh-
old of 10, a gain of 3 compared with the level-3 rules, but still a deficit of 2. This
is shown in the following OMTS sequence.

8(4,4) 6(3,3)* 5(2,3) 3(1,2)* 2(0,2) 2(0,1)* 1(0,0) 1(0,0)* 0(0,0) 0(0,0)*

10/0* 9/0 7/0* 6/0 4/0* 3/0 2/0* 1/0 1/0* 0/0

Note that we do not need to supply the DDCur parameter, since DDCur is
always equal to DDOpp. In the present case, no xDD move is used by the
opponent (Horizontal), since when it is his turn the number of DD moves left is
odd.

Trying to prove that Horizontal can win gives OMTS4-H(8,4,0) = 10, also a
deficit of 2. Here, Vertical is allowed an xDD move once, since at his turn the
number of DD moves is even.

3.5 Level-5 Rules

One further important enhancement is to recognize how many safe moves the
current player minimally will achieve. A safe move is generated by a SM move,
which only can be used in the first phase, when both players only use DD moves
(see Lemma 4). The building of safe moves is essential in bringing the thresholds
down further, since in the last stage of the move sequence any opponent move
then just requires 1 current player’s move. This is either the case when the
opponent only has ZD moves left, and/or when the current player has only safe
moves left.

In order to recognize how many safe moves the current player can build, we
first determine the number and types of the SM moves. A SM move generates 1

106 J.W.H.M. Uiterwijk

safe move at a time (in the 2nd or (n−1)th column for Vertical, and equivalently
in the 2nd or (m − 1)th row for Horizontal, or 2 safe moves for m × 3 boards
for Vertical, and 3×n boards for Horizontal. Further, we calculate how many of
the type-1 SM moves generate themselves new SM moves (the number of xSM
moves). We then calculate the effective number of safe moves the current player
will create during the first phase of the move sequence (effectively by counting
every odd move of the series with SM moves plus xSM moves generated) and add
this number to SafeCur. For Horizontal, the corresponding number is given by
counting the even moves of the corresponding series.

For the 4 × 4 example, realizing that Vertical has 4 SM moves, of which he
can use at least 2, and no xSM moves, the number of safe moves of the current
player is augmented by 2, giving an OMTS5-V (8,4,2) threshold of 9, a gain of
1 compared with the level-4 rule, but still lacking a single move (see the next
OMTS sequence).

8(4,4) 6(3,3)* 5(2,3) 3(1,2)* 2(0,2) 2(0,1)* 1(0,0) 1(0,0)* 0(0,0) 0(0,0)*

9/2* 8/2 6/2* 5/2 3/2* 2/2 2/2* 1/1 1/1* 0/0

Trying to prove a Horizontal win does not make any progress, since OMTS5-
H(8,4,2) still has a value of 10.

3.6 Level-6 Rules

On level 6 we take the availability of xDD moves fully into account. This means
that if a player with an even number of DD moves left among which is at least
an xDD move, and if both dimensions of the board are even, he will use that
one, on the additional condition that the opponent can not (anymore) respond
with an xDD move himself (see Lemma 5). Essential is that an xDD move makes
two non-DD opponent moves destroyable, at the cost of not using one safe move
generated. Playing an xDD move should only be done when profitable to the
player to move. The determination which player can effectively use the last xDD
move (denoted as having the xDD-lead), if any, requires careful analysis and is
the most difficult component of the knowledge rules so far. It presently has been
determined for all even × even boards with sizes up to 10. Moreover, it can
easily be shown that for m×n boards with n = 2, 4, and 6 and m even and ∀ 10
(all being extended in the vertical direction) Vertical has the xDD-lead, whereas
similarly for the horizontally extended boards (m×n boards with m = 2, 4, and
6 and n even and ∀ 10) Horizontal has the xDD-lead.

For the 4 × 4 example, Vertical indeed can better play an xDD move. We
decrement the number of safe moves that Vertical can obtain by 1 (for the xDD
move used), and we take into account that 2 opponent moves left are destroyable.
This gives an OMTS6-V (8,4,1) threshold of 8, which is just enough to guarantee
Vertical the win.

8(4,4) 6(2,4)* 5(1,4) 3(0,3)* 2(0,2) 1(0,1)* 0(0,0) 0(0,0)*

8/1* 6/1 4/1* 3/1 2/1* 1/1 1/1* 0/0

Perfectly Solving Domineering Boards 107

1

1
≤

3

1 3

1 2 2
≤

5 3

5 1 3

1 2 2

4 4

≤
5 3 7

5 1 3 7

1 2 2

4 4 6 6

(a) (b) (c) (d)

Fig. 2. An optimal move sequence on the 4 × 4 board.

The corresponding Horizontal-win test, though not relevant anymore, would
give OMTS6-H(8,4,2) = 9, still 1 deficit.

To show the profitable use of an xDD move in practise, we give in Fig. 2 an
optimal move sequence for the 4 × 4 board.

Here, Vertical plays an xDD move right at the start (move 1), after which
Horizontal is unable to respond with an xDD move himself. In this way Vertical
effectively can use one DD move more than Horizontal (2 against 1 instead of 2
against 2 when no xDD move is played). The first phase ends after move 3 (see
Fig. 2b). Moreover, Vertical is guaranteed to be able to play a SD move in the
second phase of the game (move 5 in Fig. 2c). In the final phase, both players
just play their supply of safe moves (Fig. 2d), after which Horizontal is the first
player being unable to move. So by the profitable use of the xDD move Vertical
assures the win, even though the use of the xDD move was at the cost of a safe
move generated (1 in stead of 2, cf. Fig. 1).

4 Results

For testing our rules we used the set of all rectangular empty m × n boards, m
and n both ranging from 2–10. These are more or less the same boards as solved
by Obsequi [5,6]. For all boards Vertical is the first player. Of course an m × n
board with Vertical to move is equivalent with an n × m board with Horizontal
to move. All tests are done in increasing level of the rule set in use.

4.1 Level-1 and Level-2 Results

No boards are solved using these simple rule sets. The reason is obvious: for the
level-1 and level-2 rules to be of any use we need at least some safe moves, which
clearly is not the case for empty boards.

4.2 Level-3 Results

Incorporating the knowledge that every opponent DD move is destroyable solves
5 boards, all with one of the board dimensions equal to 3 and the other even.
Though the results of these boards are rather obvious when inspecting them,
we stress that the publications reporting on solved Domineering boards did not

108 J.W.H.M. Uiterwijk

mention the perfect solving of any board of these. (Data are not complete in the
sense that the publications only report the sums of the nodes investigated for
m × n and n × m boards together, always being larger than 2, meaning that at
least never a pair of two such related boards were both perfectly solved.)

4.3 Level-4 Results

The biggest step in number of perfectly solved boards is reached at level 4,
when the DD moves of the current player are being used to their full potential
(deleting 2 moves of the opponent, among which 1 DD move if available). This
enhancement gives rise to 34 new boards perfectly solved. The newly solved
boards include all boards of the shape 2k × n, with n = 3, 5 or 7, not yet solved
at level 3. In Sect. 6 we will prove that such boards are always wins for Vertical
(Theorems 1 and 2). They rely on the fact that Vertical has an initial advantage
(by the fact that the width of the board is odd, whereas the height is even).
Similarly, many of the m × 2k boards for m = 3, 5, 7, and 9 are proven to be
horizontal wins, which also will lead to a generalization in Sect. 6 (Theorems 3
and 4).

4.4 Level-5 Results

Including the information on the number of safe moves guaranteed for the current
player solves 13 more boards, including all 5 of the shape 2k × 9. Here, Vertical
is able to build a sufficient potential of safe moves needed after both players’
DD moves have been exhausted. In Sect. 6 we will prove that such boards also
are always wins for Vertical.

4.5 Level-6 Results

Making full use of the xDD moves perfectly solves 15 more boards, 12 wins for
Vertical, 3 for Horizontal. All of them are boards with both dimensions even,
which makes sense, since it is one of the requirements for profitably using xDD
moves.

4.6 Summary of Results up to 10 × 10

In Table 1 we summarize our results for boards up to 10 × 10. The table shows
that 67 of the 81 boards are perfectly solved. Of these, 41 are wins for Ver-
tical (61 %), and 26 for Horizontal (39 %). This indicates that like in many
board games the first player has the advantage of the initiative (for a more
general discussion of this phenomenon, see [14]). Realizing that Domineering,
by virtue of being a combinatorial game, has an implicit advantage for the
second player (since the last mover wins), we conclude that the advantage

Perfectly Solving Domineering Boards 109

Table 1. Summary of number of solutions for boards up to 10 × 10. The first and
second columns give the level and the total number of solutions found for that level,
distinguished into wins for Vertical (third column) and for Horizontal (fourth column).
The last line gives the total counts.

level sol. V wins H wins

1 0 0 0
2 0 0 0
3 5 3 2
4 34 18 16
5 13 8 5
6 15 12 3
total 67 41 26

Table 2. Summary of number of solutions for boards up to 30 × 30. Again, the first
and second columns give the level and the total number of solutions found for that
level, distinguished into the wins for Vertical (third column) and for Horizontal (fourth
column). The last line gives the total counts.

level sol. V wins H wins

1 0 0 0
2 0 0 0
3 15 8 7
4 137 67 70
5 76 50 26
6 55 37 18
total 283 162 121

of the initiative is quite large, outperforming the first player’s combinatorial
disadvantage.

4.7 Summary of Results up to 30 × 30

Given the success for boards up to 10 × 10 we decided to apply our method
to all boards with sizes up to 30, again omitting the trivial 1 × n and m × 1
boards. The results are summarized in Table 2. For all unsolved boards for which
no xDD analysis was performed (the even × even boards with both dimensions
∀ 8, except 8 × 8, 8 × 10, 10 × 8, and 10 × 10), we tried the possibilities that
Vertical, Horizontal, or none of the players has the xDD-lead. None of these
possibilities led to additionally solved boards, which means that the results in
the table are complete up to 30 × 30, also for level 6.

The table shows that 283 of the 841 boards are perfectly solved. Of these,
162 are wins for Vertical (57 %), and 121 for Horizontal (43 %). We see that the
percentage of vertical wins is diminished compared to the smaller test set, which
indicates that the advantage of the initiative is especially notable for smaller
boards, a phenomenon also observed for other games [10,14].

110 J.W.H.M. Uiterwijk

5 Discussion

In this section we will discuss the results and provide arguments for the cor-
rectness of the methods applied. Also we will sketch a winning strategy for won
positions, based on the knowledge rules used to solve the games.

5.1 Discussion of Results

An overview of all perfectly solved rectangular boards with dimensions from
2 to 10 is given in Table 3. For solved boards the minimum level needed for
solving is indicated. For unsolved boards, we provide the deficits for Vertical
and Horizontal (i.e., the differences between the number of moves guaranteeing
a win and the real number of moves, according to the level-6 rules).

Table 3. Game-theoretic values of many m × n Domineering boards, for m,n ∞ 10,
Vertical moving first. V indicates a Vertical win, H a Horizontal win. The subscript
indicates the lowest knowledge level able to perfectly solve the board. For non-solved
boards an entry m/n gives the deficits for Vertical/Horizontal at level 6, the overline
indicating the winning side, according to previously published results.

m\n 2 3 4 5 6 7 8 9 10

2 V4 V3 H5 V4 V6 V4 H5 V5 V6

3 V5 V4 H3 H4 H4 3/1 H3 H4 H4

4 V6 V4 V6 V4 V6 V4 H6 V5 H6

5 H4 V5 H4 3/2 H4 5/1 H4 H5 H4

6 V4 V3 V6 V4 V6 V4 H6 V5 2/2
7 V5 V4 H4 2/4 H5 1/6 H4 7/2 H5

8 V6 V4 V6 V4 V6 V4 1/3 V5 4/3
9 H4 V4 H4 1/6 H4 3/6 H4 6/6 H4

10 V4 V3 V6 V4 V6 V4 2/5 V5 3/8

Some observations are in order. (1) All results are fully in agreement with
previously published results (see, e.g., [7]). (2) The smallest board not solved
is 3 × 7. A closer inspection shows that to solve this board rules are needed
that guarantee a player the ability to destroy opponent moves in the second
phase of the game, something that is lacking in the present rule set, apart from
the small use in level 6 after playing an xDD move. See also Sect. 8 on future
research in this direction. (3) The next-smallest board not solved is 5×5. This is
indeed a difficult board, the only square board known to be a win for Horizontal.
Moreover, this is the smallest of five non-solved square boards in the test set.
This makes sense, since these boards are inherently difficult to solve (and play),
since neither player has an explicit starting advantage in number of real moves,
and the advantage of the initiative of the first player is more or less balanced by
the combinatorial advantage of the second player, leading to rather even boards.
(4) We observe that all odd × even and even × odd boards are solved. This also
makes sense, since for these boards one of the players has a starting advantage

Perfectly Solving Domineering Boards 111

Table 4. Game-theoretic values of many perfectly solved m × n Domineering boards,
for m,n ∞ 30, Vertical moving first. V indicates a Vertical win, H a Horizontal win.

m\n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 V V H V V V H V V V H V H V H H H
3 V V H
4 V V V V V V H V H V H H H H H H H H H H
5 H V H
6 V V V V V V H V V H H H H H
7 V V H
8 V V V V V V V V
9 H V H H H H H H H H H H H H H H
10 V V V V V V V V
11 V V H V V H H H H H H
12 V V V V V V V V
13 V V
14 V V V V V V V V
15 V V V V
16 V V V V V V V V
17 V V V
18 V V V V V V V V
19 V V V V
20 V V V V V V V V
21 V V V
22 V V V V V V V V
23 V V V V
24 V V V V V V V V
25 V V V
26 V V V V V V V V
27 V V V V
28 V V V V V V V V
29 V V V
30 V V V V V V V V

in number of real moves. (5) Of the 14 unsolved boards investigated, 5 have a
deficit of 1 for the winning side, 5 of 2, 3 of 3, and 1 of 6 (9 × 9). The large
number of small deficits for the winning players indicate that the level-6 rules
are in these cases very close to solving, whereas 9 × 9 apparently is still far from
being solved.

An overview of all perfectly solved rectangular boards with dimensions from
2 to 30 is given in Table 4. Here we refrain from giving information on knowledge
level or deficits.

The table shows that when the boards are vertically extended (m > n) Ver-
tical has a clear advantage, especially when the number of columns is odd. Sim-
ilarly, for horizontally extended boards (m < n) Horizontal has the advantage,
especially when the number of rows is odd. An even closer inspection led to the
formulation of four theorems (see Sect. 6) explaining these findings. We further

112 J.W.H.M. Uiterwijk

remark that, although no boards have been solved of which the game-theoretic
value was not known so far, several such boards have very low deficits (not given
in Table 4 for space reasons), indicating that they are probably close to being
solved. Again, see Sect. 8 on future research for more ideas in this direction.

An up-to-date overview of all known game-theoretic values of Domineering
boards with sizes up to 30, including information on whether they are perfectly
solved, solved by search or combinatorial game theory, or by using translational
symmetry rules, is given in AppendixA.

5.2 Correctness of Results

Though the correctness of the results is difficult to be verified, we provide four
arguments supporting the validity of the rules used and the correctness of their
implementation.

1. All rules have been closely inspected and their results have elaborately been
investigated by case analysis.

2. All results obtained are fully in agreement with known game-theoretic val-
ues, either obtained by search or by theoretical consideration (as on Nathan
Bullock’s website with updated game theoretic values of Domineering boards
[7]).

3. The rules are always applied in the order of increasing level. Since the rules are
cumulative (fully incorporate the knowledge of lower-level rules), the number
of moves required to prove a win never may grow. Of course it also holds that
as soon as a win is proved for one side, no rule ever may prove a win for the
other side. Therefore, as an additional check, after a position was solved we
still applied all rules not applied yet. In no case we observed an increase in
number of moves required, nor a contradiction between the results.

4. Although Theorems 1–4 (see next section) were triggered by the results, they
were proven on theoretical considerations only. Therefore, we see the fact that
all experimental results are fully in agreement with the theorems as further
support for the methods used.

5.3 Winning Strategy

Naturally the question comes up whether the rules perfectly solving boards lead
to an inherent playing strategy for won positions. Although this is in principle
impossible, since a playing strategy guaranteeing a win per definition requires
a winning move after every opponent’s reply in the game (i.e., a solution tree,
which only can be obtained by full search), we still can give a general strategy.

We first note that such a strategy is only applicable to empty rectangular
boards, since all rules apply only to such positions.

Next we note that an optimal game consists of three phases, which by analogy
with chess praxis we may call the opening (phase 1), the middle game (phase 2),
and the endgame (phase 3). In the opening both players only play DD moves.
The winning player makes sure meanwhile using as many SM moves as possible.

Perfectly Solving Domineering Boards 113

Only when use of an xDD move is possible and profitable, the winning player will
use it at a moment after which the opponent cannot reply with an xDD move
anymore. Note that playing an xDD move earlier, after which the opponent
might be able to respond with an xDD move by himself, even if the current
player then might be able to use an additional xDD move, never is profitable for
the winning player, since successive xDD moves give no net gain, whereas they
might lead to a further reduction in the supply of safe moves built. When the
DD moves are exhausted, we enter the middle game. (Only in some cases when
the supply of safe moves built is sufficiently large, this phase is skipped.) In the
middle game the opponent always is assumed to play moves that also delete a
move of the winning player, whereas the winning player does not. (He might have
SD moves, himself, but this is not guaranteed by the rules, except once after a
xDD move is played by one of the players.) The only requirement in this phase
is that the winning side plays moves that at least diminish the destructive power
of the opponent’s moves (from SD to ZD moves). When the winning player only
has safe moves left (which is equivalent to the opponent having only ZD moves
left), we enter the endgame. This phase of the game is trivial, since it just means
playing arbitrary moves until the opponent is out of supply.

6 Some General Theorems

Triggered by the results shown in Table 4 we noticed several patterns. Closer
investigation led to four general theorems. These and their proofs are given
below. Since the theorems are explicitly stated for either Vertical or Horizontal,
we will use RealV and RealH in stead of RealCur and RealOpp, and likewise
for the other parameters.

Theorem 1. All m × 3 boards (m > 1) are a win for Vertical

Proof. For m ← 5 the results are obtained from Table 3. For an m × 3 board
with m ∀ 6 we have the following. Suppose Vertical plays his first move at the
bottom of the 2nd column, creating 2 safe moves. Now RealH = m−2. The best
case for Horizontal is when m − 2 is a 4-fold + 3, since then Horizontal has 1
more DD move than Vertical + one additional row, with Horizontal to move. So
suppose m − 2 = 4k + 3 for k ∀ 1. Then RealH = 4k + 3. Since in every pair
of empty rows both Vertical and Horizontal have 1 DD move, every group of 4
rows implies 1 iteration, in which Horizontal and Vertical both play a DD move,
effectively diminishing the number of real moves of both sides by 3. So after k
iterations, RealH = k +3. Since every DD move by Vertical creates 2 additional
safe moves, the total number of safe moves of Vertical after k iterations has been
increased to 2k + 2. Since 2k + 2 ∀ k + 3 for all k ∀ 1, it follows that Vertical
has at least as many safe moves left as all moves of Horizontal, implying that
Vertical always wins. ∞⊆

Next we prove that Vertical wins all 2k × n boards with n = 3, 5, 7, 9, and
11. Of course, for n = 3 this is already covered by Theorem 1. However, to see

114 J.W.H.M. Uiterwijk

Table 5. Relevant information in the proof of Theorem 2.

2k × 3 2k × 5 2k × 7 2k × 9 2k × 11
k even k even k even

At start

RealV 3k 5k 7k 9k 11k
RealH 2k 4k 6k 8k 10k
DD k 2k 3k 4k 5k
iter. 1st phase 1/2k k 11/2k 2k 21/2k

After 1st phase

RealV 11/2k 2k 21/2k 3k 31/2k
RealH 1/2k k 11/2k 2k 21/2k
SafeV k k 11/2k + 1 ≤11/2k∅ + 1 11/2k + 1

iter. 3rd phase 1/2k k 11/2k ≤11/2k∅ + 1 11/2k + 1

Remainder for 2nd phase

RealV k − 1 k − 1 k − 1 ←11/2k∃ − 2 2k − 2
RealH 0 0 0 ←1/2k∃ − 1 k − 1

the pattern in this method more clearly, we include the case n = 3 in the next
theorem also.

Theorem 2. All 2k × n boards for n = 3, 5, 7, 9, and 11 are a win for Vertical

Proof. We start by giving relevant information in Table 5.
The first block (at the top) gives the number of real moves of Vertical and

Horizontal, and the number of DD moves, at the start, for the five cases 2k × 3,
2k × 5, 2k × 7, 2k × 9, and 2k × 11. For the cases 2k × 3, 2k × 7, and 2k × 11
we first consider the case with k is even. In the first phase of the game both
players will play their DD moves. No xDD moves will be played due to the fact
that the width of the board is odd. The length of this phase is half the number
of DD moves, so 1/2k, k, 11/2k, 2k, and 21/2k iterations, respectively (see next
row). During this phase, every iteration reduces RealV and RealH both with 3.
Note that for these five cases the number of DD moves is always even, so it is
always Vertical’s move after the first phase.

The values of RealV and RealH after this phase, together with SafeV , the
number of safe moves built by Vertical, are given in the second block. Note that
for 2k × 3 boards, k safe moves have been generated after 1/2k iterations, due to
the fact that all SM moves are of type 2. For 2k×5 boards k iterations generate k
safe moves, since all vertical DD moves are SM moves of type 1 (no xSM moves).
For the 2k × n boards with n = 7, 9, and 11 the 11/2k, 2k, and 21/2k iterations
in this phase generate ∈11/2k�+1 safe moves, since this is the maximum number
of safe moves guaranteed after the first phase (from 2k SM moves of type 1 and
2k extended SM moves). The additional safe move results from the fact that the
first move on a 2k × n board for n ∀ 7 transforms an xSM move into an SM
move and adds another xSM move, yielding one additional safe move.

Perfectly Solving Domineering Boards 115

In the last phase of the game, Vertical will play these safe moves, each against
a single move of Horizontal. Since we let Vertical start this phase also, Vertical
needs at least one more move. This phase lasts until Horizontal has no more
moves left, or Vertical has used his full supply of safe moves, i.e., the minimum
of RealH and SafeV in the second block. So, the length of this phase is 1/2k,
k, 11/2k, ∈11/2k� + 1, and 11/2k + 1 iterations, respectively.

The last block gives the remainder of RealV and RealH for the five cases.
These moves will be played in the second phase, where we pessimistically suppose
that any vertical move destroys no horizontal move, but any horizontal move
destroys 1 vertical move. So Vertical is guaranteed to win if he has at least twice
as many moves as Horizontal in this phase. For the 2k × n boards with n = 3, 5,
and 7 we see that Horizontal is out of moves, guaranteeing Vertical the win.
(This means that the second phase of the game is skipped.) For the 2k×9 board
it holds that 	11/2k≈ − 2 ∀ 2 × (1/2k≈ − 1), for any k > 0, guaranteeing Vertical
the win. For the 2k × 11 boards, we see that Vertical has exactly twice as many
moves as Horizontal, irrespective of k, enough for Vertical to win the game.

Finally, for the cases 2k × 3, 2k × 7, and 2k × 11 with k is odd, we note
that Vertical then even has one DD move more than Horizontal, assuring him
an even easier win. The proof is given by extending the first phase with one
additional horizontal move, which only destroys 1 in stead of 2 vertical moves.
Then the rest of the analysis is the same, with Vertical having one more move
for the remainder in the second phase, giving k, k, and 2k − 1 vertical moves for
2k×3, 2k×7, and 2k×11 boards, respectively, all being larger than the number
of horizontal moves in this phase (0, 0, and k − 1, respectively). ∞⊆

We note that applying this method to wider 2k × n boards with odd n does
not lead to additional theorems. For n ∀ 13 the number of safe moves built
by Vertical in the first phase might be not enough to oppose the number of
horizontal moves. As a case in point, the 2 × 13 and 4 × 13 boards are known to
be wins for Horizontal. For even wider boards of this type, vertical wins become
rare, including only 2×15 and 2×19 as far as known up to date (see Appendix A).

Theorem 3. All 3 × n boards (n > 3) are a win for Horizontal

This theorem is the counterpart of Theorem 1, except that Vertical still moves
first. As a consequence, a few small boards can be won by Vertical, even though
Horizontal has more moves. These are the 3 × 2 and 3 × 3 boards. For boards of
width at least 4, the proof is as follows.

Proof. The best case for Vertical is when n is a 4-fold + 3, since then Vertical
has 1 more DD move than Horizontal + one additional column, with Vertical
to move. So suppose n = 4k + 3. Then RealV = 4k + 3. Since in every pair of
empty columns both Vertical and Horizontal have 1 DD move, every group of
4 columns implies 1 iteration, in which Vertical and Horizontal both play a DD
move, effectively diminishing the number of real moves of both sides by 3. So
after k iterations, RealV = k + 3. Since every DD move by Horizontal creates 2
safe moves, the total number of safe moves of Horizontal after k iterations has

116 J.W.H.M. Uiterwijk

Table 6. Relevant information in the proof of Theorem 4.

3 × 2k 5 × 2k 7 × 2k 9 × 2k 11 × 2k
k even k even k even

At start

RealH 3k 5k 7k 9k 11k
RealV 2k 4k 6k 8k 10k
DD k 2k 3k 4k 5k
iter. 1st phase 1/2k k 11/2k 2k 21/2k

After 1st phase

RealH 11/2k 2k 21/2k 3k 31/2k
RealV 1/2k k 11/2k 2k 21/2k
SafeH k k 11/2k ≤11/2k∅ 11/2k

iter. 3rd phase 1/2k k 11/2k ≤11/2k∅ 11/2k

Remainder for 2nd phase

RealH k k k ←11/2k∃ 2k
RealV 0 0 0 ←1/2k∃ k

been increased to 2k. Since 2k ∀ k + 3 for all k ∀ 3, it follows that Horizontal
has at least as many safe moves left as all moves of Vertical for boards 3 × n
with n ∀ 12. Using the fact that the boards 3×n with 4 ← n ← 11 are known to
be a win for Horizontal also, completes the proof that Horizontal wins all 3 × n
boards for n > 3. ∞⊆
Theorem 4. All m × 2k boards for m = 5 and 9, all m × 2k boards with k > 1
for m = 3 and 7, and all 11 × 4k boards are a win for Horizontal

This theorem is the counterpart of Theorem 2. For the cases with an even number
of DD moves, i.e., 5 × 2k and 9 × 2k for any k, and 3 × 2k, 7 × 2k, and 11 × 2k
for even k, the proof is similar as of Theorem 2.

Proof. We again start by giving relevant information in Table 6.
Since Horizontal is the second player, he has the advantage that he does not

need the additional move in phase 3 as Vertical needs for a vertical win, as was
the case in the proof of Theorem 2. On the other hand, for the cases 7 × 2k,
9 × 2k, and 11 × 2k the number of safe moves guaranteed for Horizontal is one
less than those for Vertical in the similar cases covered by Theorem 2.

The analysis shown in Table 6 reveals that for all three cases 3 × 2k with k
even, 5 × 2k for any k, and 7 × 2k for k even, Horizontal has k moves left to be
used in phase 2, whereas Vertical has no moves left for that phase, guaranteeing
a win for Horizontal. For 9 × 2k for any k, Horizontal has 	11/2k≈ moves left
which for any k > 0 is at least twice the number of vertical moves for this phase,
being 	1/2k≈, again guaranteeing a horizontal win. Further, for the 11×2k boards
with k even Horizontal has 2k moves left for phase 2, exactly twice the number
Vertical has, again assuring a horizontal win.

What remains are the three cases 3 × 2k, 7 × 2k, and 11 × 2k, all for odd k.
Here Horizontal has the disadvantage that Vertical can make one more DD move

Perfectly Solving Domineering Boards 117

in the first phase. For the analysis, we again prolong the first phase with one
horizontal move, which however is not guaranteed to destroy any vertical move
in stead of 2. Therefore, compared with the three cases with even k, Vertical has
2 additional moves left for phase 2. For 3× 2k and 7 × 2k, both with odd k, this
means that Horizontal has k moves left for phase 2, while Vertical has 2. That
means that Horizontal has at least twice the number of vertical moves and thus
a guaranteed win in these cases when k > 1. Finally, for the 11×2k boards with
odd k Horizontal has 2k moves for phase 2, while Vertical has k + 2, thus never
guaranteeing Horizontal a win. ∞⊆

The theorems agree with results in [13], reporting game-theoretical values
based on translational considerations involving smaller boards for which search
was needed.

7 Conclusions

In this paper we have introduced the concept of perfect solving, which means
solving without any search. The main conclusion is that this concept can fruit-
fully be applied to the game of Domineering. Of the 81 non-trivial boards up to
10 × 10 this method was able to solve 67 perfectly. We then applied our method
also to larger boards (with sizes up to 30 × 30) and perfectly solved 216 more
boards. Most of these have not been investigated by search before, but have
known game-theoretic values, based on translational considerations [13]. All our
results fully agree with the known game-theoretic values.

Further, triggered by the results, we theoretically proved that all m×3 boards
(m > 1) and all 2k × n boards (n = 3, 5, 7, 9, and 11) are wins for Vertical.
Analogously, all 3 × n boards (n > 3), all m × 2k boards (m = 3, 5, 7, and 9)
except 3 × 2 and 7 × 2, and all 11 × 4k boards are wins for Horizontal. These
results fully agree with the findings by Lachman and coworkers [13].

Finally, we believe that this paper also provides much additional insight into
this intriguing game, which surely will lead to further findings (see also the next
section). An update of all game-theoretic results known to date has been made
available by the author [15] and will be maintained in the future.

8 Future Research

There are several directions for future research.
First, we plan to develop even more powerful rules to perfectly solve more

Domineering boards. This is promising since several of the boards not solved yet
have at the highest knowledge level used small deficits for the winning side. This
indicates that a rule that gives a small additional reduction might be enough to
solve several more boards. A first line of research is a more detailed analysis of
the number of safe moves obtainable by the players. While the numbers used in
the level-5 rules and level-6 rules are guaranteed, they in fact give lower bounds,
but it is known that for reasonably wide or high boards the number of safe moves

118 J.W.H.M. Uiterwijk

obtainable can be higher. This research is in progress. Further, since the knowl-
edge rules developed so far focus on the opening and endgame of a Domineering
game (only the part of the level-6 rules concerning the destroyability of 2 oppo-
nent moves after playing an xDD move concerns the middle game), we believe
that new knowledge rules should concentrate on the middle game. In particular
we plan to investigate rules that show in what situations in the middle game
moves of the opponent are destroyable or moves of the current player are not
destroyable.

Second, we are already implementing our knowledge rules into a search-based
Domineering solver in order to solve more boards, especially boards that have
not been solved so far. We note that implementation of the knowledge rules
in a search-based solver is not straightforward, especially the higher-level ones,
since determining the number of move types on an empty rectangular board is
much easier than determining it for general boards encountered during search.
Preliminary results (up to knowledge level 5) indicate that this approach is
very effective, for most complex boards yielding orders-of-magnitude reductions
compared to Obsequi, the best search-based solver to date. Results will be
published separately in the near future.

Third, we plan to extend the theorems to cover more general cases. Whereas
Theorems 1 and 2 cover cases where Vertical wins on boards with odd width
up to width 11, it is clear that Vertical also will win on boards with even width
or on boards with odd width larger than 11, provided that they are “vertically
extended” enough. Similar expectations exist for Horizontal. It is planned to set
up and prove theorems covering such cases.

Fourth, although Domineering is a combinatorial game, we so far made no use
of results from combinatorial game theory. In particular, treating larger boards
as disjunctive sums of smaller boards might be useful. Although we do not see
how this fruitfully can be applied to perfectly solving boards, since the boards
not solved so far are far too big for CGT analysis, we do expect it to be applicable
during a search-based approach, especially at the end of search variations.

A Appendix

In this appendix we provide fuller details on the results for all m × n boards
for m and n ∀ 2 and ← 30. We first summarize the boards solved per level,
distinguishing them into wins for Vertical and wins for Horizontal.

Level 3

Wins for Vertical: 2 × 3, 6 × 3, 10 × 3, 14 × 3, 18 × 3, 22 × 3, 26 × 3, 30 × 3; 8 in
total.
Wins for Horizontal: 3× 4, 3× 8, 3× 12, 3× 16, 3× 20, 3× 24, 3× 28; 7 in total.

Perfectly Solving Domineering Boards 119

Level 4

Wins for Vertical: 2 × 2, 6 × 2, 10 × 2, 3 × 3, 4 × 3, 7 × 3, 8 × 3, 9 × 3, 11 × 3,
12× 3, 13× 3, 15× 3, 16× 3, 17× 3, 19× 3, 20× 3, 21× 3, 23× 3, 24× 3, 25× 3,
27 × 3, 28 × 3, 29 × 3, 2 × 5, 4 × 5, 6 × 5, 8 × 5, 10 × 5, 12 × 5, 14 × 5, 15 × 5,
16× 5, 17× 5, 18× 5, 19× 5, 20× 5, 21× 5, 22× 5, 23× 5, 24× 5, 25× 5, 26× 5,
27 × 5, 28 × 5, 29 × 5, 30 × 5, 2 × 7, 4 × 7, 6 × 7, 8 × 7, 10 × 7, 12 × 7, 14 × 7,
16× 7, 18× 7, 20× 7, 22× 7, 24× 7, 26× 7, 27× 7, 28× 7, 30× 7, 2× 11, 6× 11,
10 × 11, 2 × 15, 2 × 19; 67 in total.
Wins for Horizontal: 5 × 2, 9 × 2, 5 × 4, 7 × 4, 9 × 4, 3 × 5, 3 × 6, 5 × 6, 9 × 6,
5 × 8, 7 × 8, 9 × 8, 3 × 9, 3 × 10, 5 × 10, 9 × 10, 3 × 11, 5 × 12, 7 × 12, 9 × 12,
3× 13, 5× 13, 3× 14, 5× 14, 7× 14, 9× 14, 3× 15, 5× 15, 5× 16, 7× 16, 9× 16,
3× 17, 5× 17, 3× 18, 5× 18, 7× 18, 9× 18, 3× 19, 5× 19, 5× 20, 7× 20, 9× 20,
3× 21, 5× 21, 3× 22, 5× 22, 7× 22, 9× 22, 3× 23, 5× 23, 5× 24, 7× 24, 9× 24,
3× 25, 5× 25, 3× 26, 5× 26, 7× 26, 9× 26, 3× 27, 5× 27, 5× 28, 7× 28, 9× 28,
3 × 29, 5 × 29, 3 × 30, 5 × 30, 7 × 30, 9 × 30; 70 in total.

Level 5

Wins for Vertical: 3 × 2, 7 × 2, 11 × 2, 14 × 2, 15 × 2, 18 × 2, 19 × 2, 22 × 2,
23 × 2, 26 × 2, 27 × 2, 30 × 2, 5 × 3, 11 × 5, 13 × 5, 11 × 7, 15 × 7, 17 × 7, 19 × 7,
21 × 7, 23 × 7, 25 × 7, 29 × 7, 2 × 9, 4 × 9, 6 × 9, 8 × 9, 10 × 9, 12 × 9, 14 × 9,
16×9, 18×9, 20×9, 22×9, 24×9, 26×9, 28×9, 30×9, 4×11, 8×11, 12×11,
14 × 11, 16 × 11, 18 × 11, 20 × 11, 22 × 11, 24 × 11, 26 × 11, 28 × 11, 30 × 11; 50
in total.
Wins for Horizontal: 2 × 4, 11 × 4, 7 × 6, 2 × 8, 11 × 8, 5 × 9, 7 × 10, 5 × 11,
2 × 12, 11 × 12, 7 × 13, 2 × 16, 11 × 16, 7 × 17, 7 × 19, 2 × 20, 11 × 20, 7 × 21,
7 × 23, 2 × 24, 11 × 24, 7 × 25, 7 × 27, 2 × 28, 11 × 28, 7 × 29; 26 in total.

Level 6

Wins for Vertical: 4 × 2, 8 × 2, 12 × 2, 16 × 2, 20 × 2, 24 × 2, 28 × 2, 4 × 4, 6 × 4,
8 × 4, 10 × 4, 12 × 4, 14 × 4, 16 × 4, 18 × 4, 20 × 4, 22 × 4, 24 × 4, 26 × 4, 28 × 4,
30 × 4, 2 × 6, 4 × 6, 6 × 6, 8 × 6, 10 × 6, 12 × 6, 14 × 6, 16 × 6, 18 × 6, 20 × 6,
22 × 6, 24 × 6, 26 × 6, 28 × 6, 30 × 6, 2 × 10; 37 in total.
Wins for Horizontal: 4 × 8, 6 × 8, 4 × 10, 4 × 12, 6 × 12, 4 × 14, 4 × 16, 6 × 16,
4×18, 4×20, 6×20, 4×22, 4×24, 6×24, 4×26, 4×28, 6×28, 4×30; 18 in total.

We next provide in Table 7 an up-to-date overview of all known game-theoretic
values of Domineering boards with sizes up to 30, including information on
whether they are perfectly solved, solved by search or combinatorial game the-
ory, or by using translational symmetry rules.

120 J.W.H.M. Uiterwijk

Table 7. Game-theoretic values of many m × n Domineering boards, for m,n ∞ 30,
Vertical moving first. V or v indicates a Vertical win, H or h a Horizontal win. An
uppercase character (V or H) is used for boards solved by search or combinatorial
game theory, a lowercase character (v or h) is used when the game is solved using the
translational symmetry rules. An overline on any character means that our program
perfectly solves the game.

m\n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 V V H V V V H V V V H H V V H H V V H H H V H H H V H H H

3 V V H

4 V V V V V V H V H V H H H H H H H H h H h h h h h h h h h

5 H V H H H H H H H H H H H H H h h h h h h h h h h h h h h

6 V V V V V V H V V V H V H h h h h h h h

7 V V H V H V H H H H h h h h h h h h h h h h h h h h h h h

8 V V V V V V V V H v v h h h h

9 H V H V H V H V h h h h h h h h h h h h h h h

10 V V V V V V V v V v v h

11 V V H V V V h v h h h h h h h h

12 V V V V V v v v v h

13 H V H V h v h v h h h h h h h h h h h

14 V V V V V v v v v h

15 V V V V v v v h

16 V V V V v v v v v

17 V V V v v v

18 V V V v v v v v v v

19 V V V v v v v v v

20 V V v v v v v v v v

21 V V V v v v v

22 V V v v v v v v v v

23 V V v v v v v v v

24 V V v v v v v v v v

25 V V v v v v v v

26 V V v v v v v v v v v

27 V V v v v v v v v

28 V V v v v v v v v v

29 V V v v v v v

30 V V v v v v v v v v v v

Perfectly Solving Domineering Boards 121

References

1. Albert, M.H., Nowakowski, R.J., Wolfe, D.: Lessons in Play: An Introduction to
Combinatorial Game Theory. A K Peters, Wellesley (2007)

2. Berlekamp, E.R.: Blockbusting and domineering. J. Combin. Theor. (Ser. A) 49,
67–116 (1988)

3. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical
Plays, vols. 1–3, Academic Press, London (1982); 2nd edn., in four volumes: vol. 1
(2001), vols. 2, 3 (2003), vol. 4 (2004). A K Peters, Wellesley

4. Breuker, D.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Solving 8×8 Domineer-
ing. Theoret. Comput. Sci. (Math Games) 230, 195–206 (2000)

5. Bullock, N.: Domineering: solving large combinatorial search spaces. M.Sc. thesis,
University of Alberta (2002)

6. Bullock, N.: Domineering: solving large combinatorial search spaces. ICGA J. 25,
67–84 (2002)

7. Bullock, N.: Updated game theoretic values for Domineering boards. http://
webdocs.cs.ualberta.ca/∼games/domineering/updated.html

8. Conway, J.H.: On Numbers and Games. Academic Press, London (1976)
9. Gardner, M.: Mathematical games. Sci. Am. 230, 106–108 (1974)

10. van den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J.: Games solved: now
and in the future. Artif. Intell. 134, 277–311 (2002)

11. Kim, Y.: New values in Domineering. Theoret. Comput. Sci. (Math Games) 156,
263–280 (1996)

12. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6,
293–326 (1975)

13. Lachmann, M., Moore, C., Rapaport, I.: Who wins Domineering on rectangular
boards? In: Nowakowski, R.J. (ed.) More Games of No Chance, vol. 42, pp. 307–
315. Cambridge University Press, MSRI Publications, Cambridge (2002)

14. Uiterwijk, J.W.H.M., van den Herik, H.J.: The advantage of the initiative. Inf. Sci.
122, 43–58 (2000)

15. Uiterwijk, J.W.H.M.: Updated game theoretic values for Domineering boards.
https://dke.maastrichtuniversity.nl/jos.uiterwijk/?page id=39

16. Wolfe, D.: Snakes in Domineering games. Theoret. Comput. Sci. (Math Games)
119, 323–329 (1993)

http://webdocs.cs.ualberta.ca/~games/domineering/updated.html
http://webdocs.cs.ualberta.ca/~games/domineering/updated.html
https://dke.maastrichtuniversity.nl/jos.uiterwijk/?page_id=39

How Relevant Are Chess Composition
Conventions?

Azlan Iqbal(&)

College of Information Technology, Universiti Tenaga Nasional,
Kampus Putrajaya, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia

azlan@uniten.edu.my

Abstract. Composition conventions are guidelines used by human composers
in composing chess problems. They are particularly significant in composition
tournaments. Examples include, not having any ‘check’ in the first move of the
solution and not ‘dressing up’ the board with unnecessary pieces. Conventions
are often associated or even directly conflated with the overall aesthetics or
beauty of a composition. Using an existing experimentally-validated compu-
tational aesthetics model for three-move mate problems, we analyzed sets of
computer-generated compositions adhering to at least 2, 3 and 4 comparable
conventions to test if simply conforming to more conventions had a positive
effect on their aesthetics, as is generally believed by human composers. We
found slight but statistically significant evidence that it does, but only to a
point. We also analyzed human judge scores of 145 three-move mate problems
composed by humans to see if they had any positive correlation with the
computational aesthetic scores of those problems. We found that they did not.
These seemingly conflicting findings suggest two main things. First, the right
amount of adherence to composition conventions in a composition has a
positive effect on its perceived aesthetics. Second, human judges either do not
look at the same conventions related to aesthetics in the model used or
emphasize others that have less to do with beauty as perceived by the majority
of players, even though they may mistakenly consider their judgements
‘beautiful’ in the traditional, non-esoteric sense. Human judges may also be
relying significantly on personal tastes as we found no correlation between their
individual scores either.

Keywords: Chess � Composition � Conventions � Human � Judge � Beauty

1 Introduction

A chess problem or composition is a type of puzzle typically created by a human
composer using a chess set. It presents potential solvers with a stipulation, e.g. White
to play and mate in 3 moves, and is usually composed with aesthetics or beauty in
mind. Compositions often adhere to many ‘composition conventions’ as well.
Examples include: possess a solution that is difficult rather than easy; contain no
unnecessary moves to illustrate a theme; have White move first and mate Black; have a
starting position that absolutely must be possible to achieve in a real game, however

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 122–131, 2014.
DOI: 10.1007/978-3-319-05428-5_9, � Springer International Publishing Switzerland 2014

improbable. A more comprehensive list and supporting references are provided in
Sect. 3.3.1 of [1]. Composition tournaments or ‘tourneys’ are at present held all over
the world and attract competitors from diverse backgrounds [2].

These conventions exist and are adhered to because they are generally thought to
improve the quality or beauty of a composition [1]. They are also useful as a kind of
standard so that ‘‘like is compared with like’’ [3]. In Sect. 3.2 of [1], a case is made for
how not all conventions are prerequisites for beauty. Even so, many composers and
players tend to conflate conventions with aesthetics, i.e. a ‘good’ composition – one
that adheres to conventions – is a more beautiful one. Award-winning compositions
are therefore among the most beautiful. In this article, we put this belief to the test as it
tends to lead to confusion in the world of composition and how the public understands
what they produce.

A review of relevant material relating to computational aesthetics in chess can be
found in Chap. 2 of [1]. Notably, Sect. 2.4 of [1] explains how modern computer
chess problem composition techniques starting in the late 1980s have managed to
produce compositions at varying degrees of efficiency and ‘quality’. However, the
issue of aesthetics and how conventions actually relate to aesthetics is not explored in
detail and left largely to the purview of human experts. Included also are comparable
works related to Tsume-Shogi, the Japanese equivalent to chess problems. The same
chapter illustrates the many problems associated with deriving an aesthetics model
from the somewhat vague methods employed by human chess problem judges alone.
Our methodology for this research is presented in Sect. 2. In Sect. 3 we explain the
experimental setups and results. Section 4 presents a discussion of these results. We
conclude the article in Sect. 5 with a summary of the main points and some ideas for
future work.

2 Methodology

In this research, we used an experimentally-validated computational aesthetics model
[4] to evaluate the beauty of three-move mate problems. It has been shown to be able
to evaluate and rank aesthetics or beauty in a way that correlates positively and well
with domain-competent human assessment, i.e. not necessarily ‘experts’ but also
people with sufficient knowledge of the domain to appreciate beauty in it. The model
uses formalizations of well-known aesthetic principles and themes in chess in com-
bination with a stochastic approach, i.e. the inclusion of some randomness. All the
necessary information regarding its logic, workings and validation can be obtained by
the interested reader in [4].

A computer program called CHESTHETICA, which incorporates the model, was
used to automatically compose three-move mate problems [5] and evaluate their
aesthetics. This was necessary in the first experiment (see Sect. 3.1) – in which we
tested the idea that adherence to more conventions leads to increased beauty – because
human compositions tend to contain more variations (alternative lines of play) and
variety of conventions than was feasible to calculate manually for each composition.
Computer-generated compositions tend to feature just one forced line and fewer, more
easily identifiable conventions. The problems used in this research are therefore not of

How Relevant Are Chess Composition Conventions? 123

the ‘enumerative’ kind [6]. The composing module of the program is entirely separate
from the aesthetics-evaluating one. Ideally, the latter should be usable to aid the
former; however, doing so has proven to be exceedingly challenging. A useful
analogy may be how the ability to rank beautiful pieces of art does not easily translate
into the ability to create beautiful pieces of art.

The aesthetics model incorporated into CHESTHETICA assesses primarily ‘visual
appeal’ (see Appendix A of [4] for examples) which is what the majority of chess
players and composers with sufficient (not necessarily expert) domain knowledge
understand by ‘beauty’ in the game. Essentially, this includes, for example, tactical
maneuvers like sacrifices or combinations that achieve a clear objective such as mate.
‘Depth’ appeal, on the other hand, relates more toward strategic or long-term
maneuvers – perhaps involving many alternative lines of play – amounting to a rather
esoteric understanding of the game, furthermore specifically in relation to a particular
class of chess composition, e.g. three-movers, endgame studies.

In the second experiment (see Sect. 3.2), human judge scores for human-composed
problems were compared against the computer’s aesthetic scores to see if there was any
good, positive correlation. The underlying idea is that, aside from the slippery concept
of ‘originality’, since human judges tend to emphasize adherence to conventions [1, 3]
and consider their judgements pertaining largely to ‘beauty’ in the sense understood by
most players and composers, we would expect that there exists such a correlation with
the computer’s assessments. Except, of course, in unusual circumstances where there is
sufficient compensation in some other aspect of the composition that the judge finds
attractive. Together, these two experiments shed some light on the role conventions
play in terms of ‘beauty’ with regard to chess problems and whether human judges are,
in fact, scoring beauty as perceived by most players or something else no less relevant
to their established art form [7–10].

3 Experimental Setups and Results

3.1 Conventions and Aesthetics

For the first experiment, we had CHESTHETICA automatically compose as many
three-move mate problems as possible in the time available to us using both ‘random’
and ‘experience’ approaches. The ‘experience’ approach was based on a database of
human compositions. In short, pieces are placed at random on the board or based on
the probability where they are most likely to be in a chess problem. They are then
tested using a chess engine to see if a forced mate exists; see [5] for a more detailed
explanation. The ‘experience’ approach tends to be slightly more effective at com-
posing than the random one and the two are tested here also as an extension of
previous work (ibid).

For the first set of composing ‘attempts’, a filter of two composition conventions
was applied so that the resulting compositions would (1) not be ‘cooked’, and (2) have
no duals in their solution. A chess problem is said to be cooked when there is a second
‘key move’ (i.e. first move) not intended by the composer. A solution to a composition
is said to contain a ‘dual’ when White has more than one valid continuation after the

124 A. Iqbal

key move. For the second set, a filter of three composition conventions was applied so
that the resulting compositions would have (1) no ‘check’ in the key move, (2) no
captures in the key move, and (3) no key move that restricted the enemy king’s
movement. For the third set, a filter of four composition conventions was applied;
namely the two conventions from the first set and the first two from the second set.

These conventions were selected because they could be determined with relative
certainty and were easier to implement programmatically than others. Based on the
literature surveyed (see Sect. 3.3.1 of [1]) there is no particular aesthetic distinction
between them or even a strict hierarchy of importance. It is important to note that
since thousands of generated compositions needed to be tested for validity, manual
determination of conventions was simply not feasible and doing so would have been
prone to much human error. Also, the fact that, for example, two conventions were
confirmed in the first set and three in the second does not exclude the possibility that
more conventions – even those other than CHESTHETICA could detect – were not
present, however unlikely. What can be said with some confidence is that the first set
contained at least two conventions, the second set contained at least three, and the
third at least four.

For the first two sets, there was a total of 120,000 composing attempts run in
batches of 1,000 attempts, i.e. where the computer tries to generate a composition that
meets all the defined criteria of success. This took approximately 70 days using two
standard desktop computers running 24 h a day. For the third set, several different
computers were run simultaneously over a period of approximately 5 months in order
to produce the valid compositions. As the number of conventions increases, the
efficiency reduces. The composing approach consumes a lot of time primarily because
there are far more ‘misses’ than ‘hits’ when a chess engine is used to determine if the
particular configuration of pieces produced leads to a forced mate.

The computer program used, CHESTHETICA, is also not optimized for this
particular composing task. It was designed primarily to evaluate the aesthetics of a
move sequence. It is not simply a matter of having more CPU cycles at one’s disposal
because the approach to automatic composition incorporates many different modules
(e.g. random number generation, ‘intelligent’ piece selection, probability computation,
error-correction mechanisms, looping, mate solver) that can take time to produce
something, not unlike with human composers. An analogy might be existing chess-
playing engines. Simply having more processing power does not necessarily make for
a better engine. The quality of the heuristics and other technologies used are also
highly relevant.

Table 1 shows the results. Set 3 has no composing attempts and efficiencies listed
that can be compared with the other two sets because the attempts were handled
differently due to time constraints. Based on past experiments, the efficiencies for the
random and experience approaches for set 3 are similar, i.e. between 0.03 to 0.05 %.
Despite the slightly higher mean composing efficiencies using the ‘experience’
approach, they were not different to a statistically significant degree from the mean
composing efficiencies of the random approach. As anticipated in [5], using con-
ventions as a filter significantly reduces the productivity of the automatic composer.

Table 2 shows the results in terms of aesthetics. The increase of 0.067 in aesthetic
value in using 3 conventions instead of 2 was minor but statistically significant; two

How Relevant Are Chess Composition Conventions? 125

sample t-test assuming unequal variances: t(1425) = -2.72, P \ 0.01. The decrease
of 0.12 in aesthetic value in using 4 conventions instead of 3 was also minor but
statistically significant; two sample t-test assuming equal variances: t(1340) = -4.77,
P \ 0.01. Realistically, we would not usually consider small differences in aesthetic
values relevant. However, given that computer-generated compositions were used and
an increase of only one convention as a basis of discrimination, we are hesitant to
dismiss the findings. On a side note – in relation to an extension of previous research
[5] – there was a statistically significant increase in the quality of compositions
generated using the ‘experience’ over ‘random’ approach for set 1 but not for set 3.
For set 2, the decrease was not significant.

3.2 Human Judge Ratings and Aesthetics

For the second experiment, we looked at the human judge ratings of 145 compositions
by human composers. These three-movers were taken from the ‘FIDE Album
2001–2003’. Unfortunately, we are unable to make these positions and their scores
publicly available even though other researchers may obtain them by purchasing the

Set 1 Set 2 Set 3
Random Experience Random Experience Random Experience

Composing Attempts 30,000 30,000 -
Conventions

Adhered 32 4

Successful
Compositions 429 459 303 329 413 297

Mean Composing
Efficiency 1.43% 1.53% 1.01% 1.10% - -

Total Compositions 888 632 710

Table 1. Automatic composing results.

Set 1 Set 2 Set 3

Random Experience Random Experience Random Experience
Conventions

Adhered 432

Mean Aesthetic
Score 2.167 2.241 2.307 2.240 2.148 2.158

Standard
Deviation 0.48 0.50 0.46 0.45 0.473 0.458

Mean Aesthetic
Score 2.205 2.272 2.152

Standard
Deviation 0.49 0.45 0.47

Table 2. Aesthetic scores of the computer-generated compositions.

126 A. Iqbal

album [11]. In that system, three judges score each composition on a scale of 0 to 4
and the scores are then summed. The higher the total, the better the composition is
considered to be. Details pertaining to judging and selection are available at [12].
Notably, there is nothing explicitly related to aesthetics mentioned. Here is an excerpt.

‘‘Using a scale of 0 to 4 including half-points, each judge will allocate points to the entries, in
accordance with the guidelines shown in Annex 1. The whole scale should be used, but the very
highest scores should not occur often. The normal score for a composition good enough for
publication in a magazine but without any point of real interest is 1 or 1.5 points. A com-
position known by the judge to be totally anticipated will attract a score of 0. A composition
believed to be unsound but not computer-testable should be given a score nonetheless, since it
may turn out to be sound after all. A judge who considers a composition to be incorrect should
send his claim and analysis to the director together with his score.’’ [12]

‘‘ANNEX 1: MEANING OF THE POINT-SCALE

4: Outstanding: must be in the Album
3.5
3: Very good: ought to be in the Album
2.5
2: Good: could be in the Album
1.5
1: Mediocre: ought not to be in the Album
0.5
0: Worthless or completely anticipated: must not be in the Album’’ [12]

A chess composition is said to be ‘anticipated’ when its theme has already
appeared in an earlier problem without the knowledge of the later composer. The
board configuration therefore does not have to be exactly the same. The 145 problems
from the album were also analyzed using CHESTHETICA three times on a scale of 0
to at most 5. There is actually no hard upper limit but no three-mover has ever been
found to exceed 5. Due to its stochastic element, the computational aesthetics model
may deliver a slightly different score the second or third time it is used to evaluate a
composition. Ideally, an average score is used if a crisp value is desired. In this case,
however, it was considered more suitable that three evaluations of a composition were
totaled just like the three human judge scores.

Incidentally, none of the 145 problems from the album had a score of ‘0’ attributed
by any judge so we did not have to compensate for the aesthetics model’s inability to
detect ‘lack of originality’ by filtering them out, for instance. CHESTHETICA itself is
not available to the public but a version of the program that can evaluate and rank
three-move problems and endgame studies in terms of aesthetics is available [13],
though this version cannot compose chess problems. Table 3 shows an example of
how the human judge scores and computer scores were recorded.

The actual scores themselves need not use the same scale because the Spearman or
rank correlation was applied. For consistency, the computer’s evaluations – in total
and average – were always rounded to one decimal place to match the format of the
human judge scores. Beyond that, the remaining dissimilar precision in both scales
(0.1 vs. 0.5) were not arbitrarily adjusted for. We found no correlation (0.00533; two-
tailed, significance level of 1 %) between the judge total scores for the 145

How Relevant Are Chess Composition Conventions? 127

compositions and computer’s total scores for them. We tested the mean judge scores
against the mean of the computer’s scores and still found no correlation (-0.00523;
same). In other words, there was absolutely no aesthetic relationship between the
human judge scores and the computer’s scores. In fact, there was no significant
(Pearson) correlation between the scores of judges 1 and 2 (r = 0.062), judges 2 and 3
(r = -0.036) and judges 1 and 3 (r = 0.115). This suggests that even between judges
there is little agreement.

4 Discussion

In the first experiment which examined the significance of using more conventions to
attain greater aesthetic quality (see Sect. 3.1), we found a very small yet statistically
significant increase in adhering to one more convention but only in the incremental
step from 2 conventions to 3. The opposite effect was found in adhering to 4. Even
though no standard distinction or hierarchy of significance is known in conventions,
some are clearly more related to aesthetics than others. For instance, avoid castling
moves because it cannot be proved legal has likely less to do with beauty than say, no
‘check’ in the key move. The five conventions used in the first experiment are probably
of the type that is associated more with aesthetics and this is why the results were
suggestive of their contribution to beauty.

Human judges, on the other hand, do not usually standardize which conventions
they should look for. Assuming they are as objective as humanly possible, they will
evaluate or rate compositions by looking at both conventions that are associated with
beauty and those that are less so. Not to mention factors that have little to do with
anything other judges might consider relevant. Human judges also consider other
intangible concepts such as ‘originality’ and cannot completely ignore their personal
tastes. This might explain why, in the second experiment (see Sect. 3.2), we found no
correlation between the human judge scores and the computer’s. The issue is when the
scores or rankings given by these judges are said to be based on ‘‘beauty’’. Beauty, as
perceived by the majority of chess players and composers, is unlikely what these
judges are mainly evaluating. This is not to say that human judges have no right to use
the word ‘beauty’ but this research would suggest that that sort of beauty is actually a

Human Judge Scores
Judge 1 Judge 2 Judge 3 Total

Composition 1 2 2.5 3 7.5
Composition 2 3.5 4 3.5 11
 Computer Scores

Round 1 Round 2 Round 3 Total
Composition 1 1.679 1.699 1.639 5.0
Composition 2 1.753 1.753 1.773 5.3

Table 3. Sample human judge and computer scores.

128 A. Iqbal

combination of other things, including personal taste, that is less likely to be under-
stood by the public.

Despite that, the evaluations of these judges are no less viable than they were
before because it simply means that ‘winning’ compositions are not necessarily the
most beautiful, as the term is commonly understood. There are special things about
award-winning compositions that few others outside the domain of expert composition
would fully understand, but ‘beauty’ or aesthetics as evaluated by the model plays
only a small part in it. Figures 1 and 2 show the highest-scoring and lowest-scoring
three-movers, respectively, from the collection of computer-generated compositions
used in the first experiment and the collection of 145 compositions by human com-
posers used in the second experiment. Only the main lines are shown.

Readers with sufficient knowledge of chess should be able to form an opinion as to
how much human judges are factoring in what we understand by ‘beauty’ in the game.
Notably, beauty in the judge-rated problems appears to be more complicated and
understood properly by relatively few (depth appeal) whereas beauty in the computer-
generated compositions appears to be more easily perceived and understood by the

1. Na4 g3 2. d7 g2 3. d8=N# 1. Be6 Bc2 2. Qxd2 dxe3 3. Bf5#
)b()a(

Fig. 1. The highest-scoring computer composition (a) and judge-rated problem (b).

1. Qxb4+ Ka6 2. Bd3+ b5 3. Qxb5#
(a)

1. Rf6 Rad4 2. Qc3 Rc4 3. Rd6#
(b)

Fig. 2. The lowest-scoring computer composition (a) and judge-rated problem (b).

How Relevant Are Chess Composition Conventions? 129

majority of players and even composers (visual appeal). Readers with no under-
standing of the game might reach the same conclusion based simply on what they can
see from the positions above.

As for the ‘random’ versus ‘experience’ approaches (see Sect. 3.1), the results
suggest that the latter is no worse, aesthetically, than the former but in compositions
filtered using fewer conventions, it can be better. This is not inconsistent with previous
findings [5].

5 Conclusions

The results of this research suggest that adhering to more conventions, to a point,
increases the perceived aesthetic value of a chess problem and that human judges are
probably not factoring this sort of (visual) beauty into their rankings or assessments.
These findings are important because adherence to more conventions is often confused
with increased aesthetics, and because the term ‘beauty’ is often bandied about in the
world of chess composition when it carries a somewhat different meaning outside that
esoteric domain.

Aside from certain conventions, the assessment criteria for chess problems are
vague and dependent largely on the judges themselves. It is not uncommon for human
judges to also be in disagreement with each other about the merits of a composition.
Even so, their assessments do result in what we call ‘depth appeal’ (see Appendix A
of [4] for an example) which is sort of a deep appreciation of the theme and variations
of play that relatively few with domain competence (e.g. a club player or casual
composer) could understand properly. Such appreciation usually occurs after careful
study of the problem and is not immediately obvious.

If the aim of experienced composers is greater publicity and accessibility to their
art form [3], then more emphasis on ‘visual appeal’ would be prudent in tourneys and
published compositions. However, if this is considered unsuitable, then at least a
clarification of what they are really looking at when evaluating chess problems would
be wise as the term ‘beauty’ can be quite misleading, especially outside specialized
composing circles. Figures 1 and 2 above perhaps illustrate the contrast between what
the majority of chess players and casual composers understand by ‘beauty’ and what
judges of tourneys do.

Further work in this area may involve examining the use of even more conventions
to see if the downtrend continues or improves beyond the use of just 3. Experimen-
tation in this regard is likely to be more difficult because automatic chess problem
composition will require an exponentially longer amount of time. Human judge
evaluations of other types of compositions (e.g. endgame studies) can be examined as
well to see if there is any correlation with aesthetics based on the model used.

Acknowledgement. This research is sponsored in part by the Ministry of Science, Technology
and Innovation (MOSTI) in Malaysia under their eScienceFund research grant (01-02-03-
SF0240).

130 A. Iqbal

References

1. Iqbal, M.A.M.: A discrete computational aesthetics model for a zero-sum perfect
information game. Ph.D. Thesis, Faculty of Computer Science and Information
Technology, University of Malaya, Kuala Lumpur, Malaysia. http://metalab.uniten.edu.
my/*azlan/Research/pdfs/phd_thesis_azlan.pdf (2008)

2. Giddins, S.: Problems, problems, problems. ChessBase News, 16 April 2010. http://www.
chessbase.com/newsdetail.asp?newsid=6261 (2010)

3. Albrecht, H.: How should the role of a (chess) tourney judge be interpreted? The
Problemist, July, 217–218 (1993). Originally published as Über Die Auffassung Des
Richteramtes In Problemturnieren, Problem, January, 107–109 (1959)

4. Iqbal, A., van der Heijden, H., Guid, M., Makhmali, A.: Evaluating the aesthetics of
endgame studies: a computational model of human aesthetic perception. IEEE Trans.
Comput. Intell. AI in Games: Special Issue on Computational Aesthetics in Games 4(3),
178–191 (2012)

5. Iqbal, A.: Increasing efficiency and quality in the automatic composition of three-move
mate problems. In: Anacleto, J.C., Fels, S., Graham, N., Kapralos, B., Saif El-Nasr, M.,
Stanley, K. (eds.) ICEC 2011. LNCS, vol. 6972, pp. 186–197. Springer, Heidelberg (2011)

6. Elkies, N.D.: New directions in enumerative chess problems. Electron. J. Combin. 11(2),
1–14 (2005)

7. Osborne, H.: Notes on the aesthetics of chess and the concept of intellectual beauty. Br.
J. Aesthet. 4, 160–163 (1964)

8. Humble, P.N.: Chess as an art form. Br. J. Aesthet. 33, 59–66 (1993)
9. Troyer, J.G.: Truth and beauty: the aesthetics of chess problems. In: Haller (ed.) Aesthetics,

pp. 126–130. Holder-Pichler-Tempsky, Vienna (1983)
10. Walls, B.P.: Beautiful mates: applying principles of beauty to computer chess heuristics.

Dissertation.com, 1st edn. (1997)
11. Fougiaxis, H., Harkola, H.: World Federation for Chess Composition, FIDE Albums. http://

www.saunalahti.fi/*stniekat/pccc/fa.htm, June 2013
12. Fougiaxis, H., Harkola, H.: FIDE Album Instructions. http://www.saunalahti.fi/*stniekat/

pccc/fainstr.htm, January 2013
13. Iqbal, A., van der Heijden, H., Guid, M., Makhmali, A.: A computer program to identify

beauty in problems and studies (What makes problems and studies beautiful? A computer
program takes a look). ChessBase News, Hamburg, Germany. http://en.chessbase.com/
home/TabId/211/PostId/4008602, 15 December 2012

How Relevant Are Chess Composition Conventions? 131

http://metalab.uniten.edu.my/~azlan/Research/pdfs/phd_thesis_azlan.pdf
http://metalab.uniten.edu.my/~azlan/Research/pdfs/phd_thesis_azlan.pdf
http://www.chessbase.com/newsdetail.asp?newsid=6261
http://www.chessbase.com/newsdetail.asp?newsid=6261
http://Dissertation.com
http://www.saunalahti.fi/~stniekat/pccc/fa.htm
http://www.saunalahti.fi/~stniekat/pccc/fa.htm
http://www.saunalahti.fi/~stniekat/pccc/fainstr.htm
http://www.saunalahti.fi/~stniekat/pccc/fainstr.htm
http://en.chessbase.com/home/TabId/211/PostId/4008602
http://en.chessbase.com/home/TabId/211/PostId/4008602

Author Index

Bouzy, Bruno 1

Cazenave, Tristan 71

Döbbelin, Robert 16

Iqbal, Azlan 122

Kroon, Steve 44

Lanctot, Marc 28
Lisý, Viliam 28

Reinefeld, Alexander 16
Roschke, Max 57

Sato, Yuichiro 71
Schütt, Thorsten 16
Sturtevant, Nathan R. 57

Uiterwijk, Jos W.H.M. 97

Valla, Tomáš 81
van Niekerk, Francois 44
Veselý, Pavel 81

Winands, Mark H.M. 28

	Preface
	Organization
	Contents
	Monte-Carlo Fork Search for Cooperative Path-Finding
	1 Introduction
	2 CPF Problem Definition
	3 Related Work
	3.1 Cooperative Path-Finding
	3.2 MCTS

	4 MCFS
	4.1 Similarities and Differences with MCTS
	4.2 MCFS and NMCFS Algorithms
	4.3 Basic Simulations
	4.4 Pre and Post Processing

	5 Experiments
	5.1 Set of Problems
	5.2 Experimental Settings
	5.3 Results

	6 Discussion
	7 Conclusion
	References

	Building Large Compressed PDBs for the Sliding Tile Puzzle
	1 Introduction
	2 Background
	3 Pattern Databases
	3.1 Additive Pattern Databases

	4 Building Compressed PDBs
	4.1 Sequential Algorithm
	4.2 Parallel Algorithm

	5 Evaluation
	5.1 Statistical Evaluation
	5.2 Empirical Evaluation

	6 Conclusion
	References

	Monte Carlo Tree Search in Simultaneous Move Games with Applications to Goofspiel
	1 Introduction
	1.1 Related Work

	2 Simultaneous Move Games
	3 Simultaneous Move Monte Carlo Tree Search
	3.1 Decoupled UCT
	3.2 Exp3
	3.3 Regret Matching
	3.4 Online Outcome Sampling

	4 Empirical Evaluation
	4.1 Goofspiel
	4.2 Head-to-Head Performance
	4.3 Exploitability and Convergence

	5 Conclusion and Future Work
	References

	Decision Trees for Computer Go Features
	1 Introduction
	2 Background
	2.1 The Game of Go
	2.2 Go Features for Monte-Carlo Tree Search
	2.3 The Generalized Bradley-Terry Model and Training Weights
	2.4 Graphs for Go
	2.5 Decision Trees

	3 Decision Trees as Features
	3.1 Overview
	3.2 Structure
	3.3 Learning

	4 Experiments and Results
	4.1 Overview
	4.2 Move Prediction
	4.3 Playing Strength

	5 Conclusions and Future Work
	A Multiple Decision Tree Descent Paths
	References

	UCT Enhancements in Chinese Checkers Using an Endgame Database
	1 Introduction
	2 Background
	2.1 Minimax Algorithm
	2.2 UCT Algorithm
	2.3 Chinese Checkers
	2.4 Endgame Databases

	3 Lookup Table
	4 Proposed Experiments
	4.1 -Players
	4.2 UCT Players

	5 Experiment Results and Analysis
	5.1 Depth-Based Trials
	5.2 Sample Based Trials
	5.3 Time Based Trials

	6 Conclusions and Further Work
	References

	Automated Generation of New Concepts from General Game Playing
	1 Introduction
	2 Method
	3 Automated Generation of Heuristic Functions from Simulations
	4 Automated Generation of New Concepts for Games from Heuristic Functions
	5 Applying Automated Generated Concepts to Games
	6 Automated Generation of Ternary Concepts from Binary Concepts
	7 Discussion
	8 Conclusions
	References

	WALTZ: A Strong Tzaar-Playing Program
	1 Introduction
	1.1 Tzaar Rules
	1.2 Strategies
	1.3 Game Properties

	2 Algorithms for Tzaar
	2.1 Evaluation Function
	2.2 Heuristic Weak PNS

	3 Experiments with Waltz
	3.1 DFPN versus Alpha-beta in Endgames

	4 Results Against Computer and Human Opponents
	5 Further Work
	References

	Perfectly Solving Domineering Boards
	1 Introduction
	2 Characteristics of Domineering
	2.1 Move Types
	2.2 Board Parameters
	2.3 Move-Type Characteristics

	3 Perfectly Solving Domineering
	3.1 Level-1 Rules
	3.2 Level-2 Rules
	3.3 Level-3 Rules
	3.4 Level-4 Rules
	3.5 Level-5 Rules
	3.6 Level-6 Rules

	4 Results
	4.1 Level-1 and Level-2 Results
	4.2 Level-3 Results
	4.3 Level-4 Results
	4.4 Level-5 Results
	4.5 Level-6 Results
	4.6 Summary of Results up to 10 10
	4.7 Summary of Results up to 30 30

	5 Discussion
	5.1 Discussion of Results
	5.2 Correctness of Results
	5.3 Winning Strategy

	6 Some General Theorems
	7 Conclusions
	8 Future Research
	A Appendix
	References

	How Relevant Are Chess Composition Conventions?
	Abstract
	1 Introduction
	2 Methodology
	3 Experimental Setups and Results
	3.1 Conventions and Aesthetics
	3.2 Human Judge Ratings and Aesthetics

	4 Discussion
	5 Conclusions
	Acknowledgement
	References

	Author Index

