
Chapter 8
Nonlinear Waves

This Chapter studies several nonlinear equations of wave propagation which admit
the exact solutions by the inverse scattering transform. It analyzes also the amplitude
and slope modulations obtained by the variational-asymptotic method which may be
applied to non-integrable systems as well.

8.1 Solitary and Periodic Waves

Korteweg-de Vries Equation. Let us begin our study of nonlinear waves with the
Korteweg-de Vries (KdV) equation [26]

u,t + 6uu,x+ u,xxx = 0. (8.1)

This equation arose originally in the theory of shallow water waves, but it is now
widely used to describe dispersive waves in various nonlinear media.1 The constant
factor 6 in front of the nonlinear term is conventional but of no great significance.
The last term accounts for the dispersion. Due to the balanced effects of nonlinearity
and dispersion, waves may propagate without changing their shape. To demonstrate
this let us seek a particular solution of (8.1) in form of wave traveling with constant
velocity c

u = ϕ(ξ ), ξ = x− ct,

which is similar to d’Alembert’s solution for linear hyperbolic waves. Substitution
of this Ansatz into (8.1) gives

−cϕ ′+ 6ϕϕ ′+ϕ ′′′ = 0,

with prime denoting the derivative with respect to ξ . The integration yields

1 Particularly, Zabusky and Kruskal [54] have shown that the KdV equation is the continuum
limit of the equations governing the Fermi-Pasta-Ulam chain. Note that the original KdV
equation [53] differs from (8.1) but can be brought to this form by a simple transformation.
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ϕ ′′ =−3ϕ2 + cϕ− g,

where g is an integration constant. This resembles the equation of motion of mass-
spring oscillator with a unit mass and a nonlinear restoring force derivable from the
cubic potential energy U(ϕ) = ϕ3 − 1

2 cϕ2 + gϕ .

-

-

’

Fig. 8.1 Separatrix

The first integral of the above equation
is

1
2
ϕ ′2 =−ϕ3 +

1
2

cϕ2 − gϕ+ h.

In the special case when ϕ and its first
derivative tend to zero as ξ →±∞, we
may set g = h = 0. Then the first inte-
gral becomes

ϕ ′2 = ϕ2(c− 2ϕ).

The corresponding phase curve in the
(ϕ ,ϕ ′)-plane is the separatrix shown
in Fig. 8.1 for c = 1. It is seen that ϕ
increases from zero at ξ = −∞, rises
to a maximum ϕm = c/2 and then de-
creases to zero as ξ →∞. The solution
of the last equation can be found ex-
plicitly by quadrature and is given by

ϕ(ξ ) =
c
2

sech2(
ξ
√

c
2

).

This particular solution is called a soliton. Mention that the solution remains still
valid if ξ = x− ct − d, where d is any constant. Looking at this solution we can
observe that: i) the wave speed of the soliton is twice its amplitude, ii) the width
of the soliton is inversely proportional to the square root of the wave speed and
therefore taller solitons are narrower in width and move faster than shorter ones.
The shape of the solitary wave for c = 1 is shown in Fig. 8.2.

In general g and h differ from zero and

ϕ ′2 = p(ϕ),

where p(ϕ) is a cubic polynomial having three simple zeros. For bounded solutions
all zeros must be real, and the periodic solution must oscillate between two of them.
Let the zeros be b1, b2, b3, and we order them such that b1 > b2 > b3. Then

p(ϕ) =−2(ϕ− b1)(ϕ− b2)(ϕ− b3).
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Fig. 8.2 Solitary wave of KdV equation

Since p(ϕ) > 0 for ϕ ∈ (b2,b1), the solution oscillates between b2 and b1. So, let
us define a = b1−b2 as the amplitude of the wave. Comparing p(ϕ) with that in the
first integral, we find

c = 2(b1 + b2 + b3), g = b1b2 + b1b3 + b2b3, h = b1b2b3.

It can easily be checked that the solution of the first integral is expressed in terms of
Jacobian elliptic function cn as follows (see exercise 8.1)

ϕ(ξ ) = b2 +(b1 − b2)cn2(
√
(b1 − b3)/2ξ ,m), m =

b1 − b2

b1 − b3
.

Such periodic solutions are called cnoidal waves. As the period of cn2(u,m) in its
argument u is 2K(m), with K(m) being the complete elliptic integral of the first kind,
the wave length is

λ =
2K(m)√
(b1 − b3)/2

. (8.2)

The phase velocity of this periodic wave packet is c = 2(b1 +b2+b3). The solution
can also be presented in the form

ϕ(ξ ) = ψ(θ ) = ψ(kx−ωt),

where ψ(θ ) is the periodic function of period 2π . Since k = 2π/λ , we have for the
frequency

ω = ck = 2(b1 + b2 + b3)k.

From (8.2), b1 − b3 is a function of λ and a = b1 − b2. In the special case b2 = 0
the root b3 can be expressed through a and the dispersion relation for these periodic
waves takes the form

ω =Ω(k,a).

We see that the dispersion relation for nonlinear waves involves the amplitude, what
is quite similar to nonlinear vibrations where the frequency depends also on the
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amplitude. If the amplitude of the wave is small, a � 1 and m → 0 then 2K(m) �
π , so ω � 2b3k � −4 π

2

λ 2 k = −k3, and we recover the dispersion relation of the
linearized KdV equation

u,t + u,xxx = 0.

In contrary, if b3 → 0, m → 1, and a = b1 → c/2, then the wavelength λ tends to
infinity, and the solution approaches that of soliton.

Nonlinear Klein-Gordon Equation. We turn next to the nonlinear equation which
is derivable from the following Lagrangian

L =
1
2

u2
,t −

1
2

u2
,x −U(u).

Euler-Lagrange’s equation reads

u,tt − u,xx +U ′(u) = 0. (8.3)

This is the so-called non-linear Klein-Gordon equation which arises in various phys-
ical situations. This is especially true of the case U(u) = 1− cosu known as the
Sine-Gordon equation for which U ′(u) = sinu. It describes for instance free tor-
sional vibrations of an elastic rod along which rigid pendulums are attached at close
intervals. The pendulums cause additional restoring forces proportional to sin u. An-
other mechanical problem leading to this equation deals with the motion of dislo-
cations in crystals, where the sinu term occurs due to the periodic structure of the
crystal lattice. Besides, it is used in modeling Josephson junctions, laser pulses and
many other phenomena. The alternative choice U(u) = u2/2+αu4/4 arises in the
problem of free vibrations of a pre-stretched string along which nonlinear springs
with the cubic nonlinearity are attached at close intervals. Mention also that the
small amplitude expansion of the Sine-Gordon equation leads to this model with
α =−1/6.
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Fig. 8.3 Separatrix

We look first for the soliton travel-
ing with a constant velocity c < 1 in the
form: u = ϕ(ξ ), ξ = x− ct. Substitution
of this Ansatz into (8.3) gives

(1− c2)ϕ ′′ −U ′(ϕ) = 0.

This resembles the equation of motion
of mass-spring oscillator with a mass
m = 1 − c2 and a nonlinear restoring
force derivable from the potential energy
−U(ϕ). The first integral is

1
2

mϕ ′2 −U(ϕ) = h.
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If ϕ and its first derivative tend to zero as ξ →±∞, then h = 0. For definiteness we
consider U(ϕ) = ϕ2/2+αϕ4/4 with a negative α . The first integral with h = 0

ϕ ′2 =
1
m
ϕ2(1+αϕ2/2)

plots as the separatrix in the (ϕ ,ϕ ′)-plane shown in Fig. 8.3 for c = 1/2, α =−0.1.
Thus ϕ increases from zero at ξ =−∞, rises to a maximum ϕm =

√
2/|α| and then

decreases to zero as ξ →∞. The solution of the last equation can be found explicitly
by quadrature and is given by

ϕ(ξ ) =

√
2
|α|

2e−|ξ |/
√

1−c2

1+ e−2|ξ |/
√

1−c2
.

This solitary wave is shown in Fig. 8.4. Mention that the solution remains still valid
if ξ = x− ct − d, where d is any constant. We can observe that: i) the amplitude of
the soliton is constant and independent of the wave speed, ii) the width of the soliton
is proportional to

√
1− c2, so the narrower soliton moves faster than the wider one.
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Fig. 8.4 Solitary wave of Klein-Gordon equation

Let us find now the periodic solutions of Klein-Gordon equation. They are ob-
tained by taking u = ψ(θ ), with θ = kx−ωt, where we assume that ψ(θ ) is 2π-
periodic function. Substituting u = ψ(θ ) into (8.3), we get

(ω2 − k2)ψ ′′+U ′(ψ) = 0.

The finding of ψ(θ ) is equivalent to searching for the 2π-periodic extremal of the
following functional

I[ψ ] =
∫ θ0+2π

θ0

[
1
2
(ω2 − k2)ψ ′2 −U(ψ)]dθ , (8.4)

where θ0 may be set equal to zero without limiting the generality. The first integral
of Lagrange’s equation reads
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1
2
(ω2 − k2)ψ ′2 +U(ψ) = h.

Its solution can be found by the separation of variables. The result is

θ =

√
ω2 − k2
√

2

∫
dψ√

h−U(ψ)
.

If U(ψ) is either a cubic, a quartic, or a trigonometric function, then ψ(θ ) can be
expressed in terms of standard elliptic functions. Periodic solutions are obtained
when ψ oscillates between two simple zeros of h−U(ψ). At the zeros ψ ′(θ ) = 0,
and the solution has a maximum (crest) or a minimum (trough); these points occur
at finite values of θ since the above integral converges when the zeros are simple.
We denote the zeros by ψ1 and ψ2 and consider the case

ψ1 ≤ ψ ≤ ψ2, h−U(ψ)≥ 0, ω2 − k2 > 0.

As the period of ψ(θ ) is assumed to be 2π ,

2π =

√
ω2 − k2
√

2

∮
dψ√

h−U(ψ)
. (8.5)

The contour integral in this formula denotes the integral over a complete oscillation
of ψ from ψ1 up to ψ2 and back, so it is equal to twice the integral from ψ1 to ψ2

because the sign of the square root has to be changed appropriately in the two parts
of the contour. This integral may also be interpreted as the contour integral around
a cut from ψ1 to ψ2 in the complex ψ-plane.

In the linear case U(ψ) = 1
2ψ

2, and, as we know, the 2π-periodic solution is

ψ(θ ) = acosθ , h =
a2

2
,

so the amplitude a cancels out in the integral on the right-hand side of (8.5). Then
(8.5) becomes the linear dispersion relation

ω2 − k2 = 1,

obtained previously for the linear Klein-Gordon equation. This dispersion relation is
also the solvability condition of the variational problem (8.4). In the nonlinear case
the parameter h does not drop out of (8.5) and we have the typical dependence of the
dispersion relation on the amplitude. Consider for example the case U(ϕ) = ϕ2/2+
αϕ4/4 with small α . Then (8.4) is exactly the variational problem (5.4) studied by
the variational-asymptotic (or Lindstedt-Poincaré) method in Section 5.1, with ω2

replaced by ω2 − k2 and ε by α . Therefore the following asymptotic formulas

√
ω2 − k2 = 1+

3
8
αa2 ⇒ ω2 − k2 = 1+

3
4
αa2,
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and

ψ(θ ) = acosθ +α
a3

32
(cos3θ − cosθ )

follow at once.

u(x,t)

u(x,t)

u(x,t)

Fig. 8.5 2 traveling solitons

Behavior of Solitons. Through extensive
numerical simulations of the KdV equa-
tion2 the following remarkable behavior
of solitons was discovered. If we con-
sider two solitons traveling from left to
right with the taller one behind as shown
in Fig. 8.5, then since the taller soliton
moves faster than the shorter soliton, they
will collide. After a short collision time
of nonlinear interaction and overlapping
the solitons separate again, with the taller
one now ahead, and the amplitudes and
velocities regain their initial values. The
only effect of nonlinear interaction are
phase shifts, that is the centers of solitons
are slightly shifted from the places where
they should have been as if there had been
no interaction (see Fig. 8.6). This resem-
bles the collision of particles; so similar to particles the name soliton was given to
these special waves.

Fig. 8.6 Two-soliton solution of the KdV equation

This remarkable numerical discovery led to a series of first integrals of the KdV
equation. All these first integrals are of the form

2 First initiated by Zabusky and Kruskal in 1965 [54].
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I j =

∫ ∞

−∞
Pj(u,u,x, . . . ,

∂ ju
∂x j )dx = const,

where Pj are polynomials. For example, the first three integrals are (see exercise 8.3)

I−1 =

∫ ∞

−∞
udx, I0 =

∫ ∞

−∞
u2 dx, I1 =

∫ ∞

−∞
(u3 − 1

2
u2
,x)dx.

In searching for further first integrals of the KdV equation Miura discovered the
following transformation: if v is a solution of the modified KdV equation

v,t − 6v2v,x + v,xxx = 0,

then
u =−(v2 + v,x)

satisfies KdV equation. This is readily seen from the relation

u,t + 6uu,x+ u,xxx =−(2v+ ∂x)(v,t − 6v2v,x + v,xxx).

The equation u = −(v2 + v,x) may be viewed as Riccati’s equation for v in terms of
u. It can be transformed to a linear equation by substituting v = ψ,x/ψ . This yields

ψ,xx + uψ = 0.

Since the KdV equation is Galilean invariant, that is invariant under the transforma-
tion

(x, t,u(x, t))→ (x− ct, t,u(x, t)+
1
6

c),

it is natural to replace u by u−λ and consider the equation

ψ,xx + uψ = λψ .

This is nothing else but the stationary Schrödinger equation which has been studied
extensively in context of the scattering problem, where function −u(x, t) plays the
role of the scattering potential. The association of the Schrödinger equation with
the KdV equation led Gardner, Green, Kruskal, and Miura later [16] to the fruitful
development of a beautiful mathematical method called inverse scattering transform
which can be used to fully integrate a wide class of nonlinear partial differential
equations [1]. We consider this method in the next Section.

8.2 Inverse Scattering Transform

This Section presents the analytical solution of KdV equation based on the inverse
scattering transform.3

3 See the detailed derivations in [1].
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Lax Pair. Let us consider the KdV equation (8.1) subject to the initial condition

u(x,0) = u0(x),

where u0(x) decays sufficiently rapidly as |x| → ∞. Since the KdV equation is non-
linear, the Fourier transform cannot directly be applied to solve this initial-value
problem. However, as motivated in the previous Section, we can relate this equation
to the stationary Schrödinger equation

Lψ = λψ , (8.6)

where L is the linear operator defined by

Lψ = ψ,xx + u(x, t)ψ .

The idea is based on the following construction proposed by Lax [30]. Assume that
ψ evolves in time in accordance with

ψ,t = Aψ . (8.7)

Thus, A is the linear operator governing the time evolution of ψ . Now we calculate
the time derivative of equation (8.6)

L,tψ+Lψ,t = λ,tψ+λψ,t .

Taking into account (8.7) we transform the above equation to

(L,t +LA−AL)ψ = λ,tψ .

Thus, if λ,t = 0, then the so-called Lax equation

L,t +[L,A] = 0, [L,A] = LA−AL,

holds true. The problem reduces then to finding A so that Lax’s equation is compat-
ible with the KdV equation. It is easy to show by the direct inspection (see exercise
8.4) that Lax’s equation is compatible with the KdV equation if we choose A as
follows

Aψ = (γ+ u,x)ψ− (4λ + 2u)ψ,x, (8.8)

where γ is an arbitrary constant. The byproduct of Lax’s construction is that the
KdV equation possesses an infinite number of first integrals since all eigenvalues
of Lψ = λψ are such first integrals. The linear operators L and A, called Lax’s
pair, have been found later on for a wide class of nonlinear partial differential
equations, including the Sine-Gordon equation, the nonlinear Schrödinger
equation, the Kadomtsev-Petviashvili equation and many other equations of
mathematical physics.4

4 The list of fully integrable nonlinear equations can be found in [1].
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Inverse Scattering Transform. Based on the Lax representation we can now solve
the KdV equation, corresponding to u→ 0 as |x| →∞, in three steps sketched below.
The mathematical justification will be given in the next paragraph.

i) First step. At time t = 0 the initial condition u(x,0) = u0(x) is known. With
these given initial data we solve the direct scattering problem: find the eigenvalues
and the corresponding eigenfunctions of (8.6). One can show that the spectrum of
the Schrödinger equation with u(x, t)→ 0 as |x| → ∞ is discrete for λ > 0 and con-
tinuous for λ < 0. Denote the discrete eigenvalues by λ = κ2

n , n= 1,2, . . . ,N and the
continuous eigenvalues by λ =−k2. It turns out that the normalized eigenfunctions
corresponding to the discrete eigenvalues behave asymptotically as x→∞ according
to

ψn(x, t)∼ σn(t)e
−κnx,

with the normalization condition
∫ ∞

−∞
ψ2

n dx = 1.

For the continuous spectrum the asymptotic behaviors of the eigenfunctions are
described by

ψ(x, t)∼ e−ikx +ρ(k, t)eikx as x → ∞,
ψ(x, t)∼ τ(k, t)e−ikx as x →−∞,

where ρ(k, t) is the reflection coefficient and τ(k, t) the transmission coefficient. At
t = 0 the obtained scattering data

S(λ ,0) =
({κn,σn(0)}N

n=1,ρ(k,0),τ(k,0)
)

serve as the input data for the next step.
ii) Second step. We use now the evolution equation (8.7) with A from (8.8) to de-

termine the time dependence of the scattering data. We know that κn are unchanged.
It will be shown that, for n = 1,2, . . . ,N

σn(t) = σn(0)e4κ3
nt ,

and

τ(k, t) = τ(k,0),

ρ(k, t) = ρ(k,0)e8ik3t .

Thus, the scattering data at time t are given by

S(λ , t) =
({κn,σn(t)}N

n=1,ρ(k, t),τ(k, t)
)
.

We use this as the input data for the last step.
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iii) Third (last) step. At this final step we solve the inverse scattering problem:
reconstruct the potential u(x, t) which is the solution of the KdV equation from the
knowledge of the scattering data S(λ , t). The results may be summarized as follows.
From the scattering data we find the function

F(x, t) =
N

∑
n=1
σ2

n (t)e
−κnx +

1
2π

∫ ∞

−∞
ρ(k, t)eikxdk.

We then solve the linear integral equation

K(x,y, t)+F(x+ y, t)+
∫ ∞

x
K(x,z, t)F(z+ y, t)dz = 0, (8.9)

called Gelfand-Levitan equation. Finally we compute u(x, t) in accordance with

u(x, t) = 2
∂
∂x

[K(x,x, t)].

As we see, this method is conceptually quite similar to the Fourier transform used
for solving linear equations (cf. Chapter 4), except that the last step of solving the
inverse scattering problem is highly nontrivial. Schematically, the described steps
may be summarized in the following diagram

u(x,0)
direct scattering−→ S(λ ,0)⏐⏐*time evolution

u(x, t)
inverse scattering←− S(λ , t)

In this diagram the direct scattering plays the role of the Fourier transform, while the
inverse scattering the inverse Fourier transform. The time evolution of the scattering
data is similar to the multiplication of the Fourier image with function eiΩ(k)t which
accounts for the dispersion. Note that at each step we have to deal just with linear
problems which are “doable”.

Mathematical Justification. In this paragraph we present briefly the justification of
the above results based on the direct and inverse scattering problems.5 In the direct
scattering problem it is convenient to put λ =−k2 and write (8.6) as

ψ,xx +[u(x, t)+ k2]ψ = 0.

For a given k we let φ(x,k), φ̄ (x,k) and ψ(x,k), ψ̄(x,k) be the corresponding eigen-
functions which satisfy the following asymptotic behaviors

φ(x,k) ∼ eikx, φ̄(x,k) ∼ e−ikx as x → ∞,

ψ(x,k)∼ e−ikx, ψ̄(x,k)∼ eikx as x →−∞.
5 See the detailed expositions in [1].
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Equation (8.6) is a linear second order differential equation. Therefore, between
these eigenfunctions there are linear relationships

ψ(x,k) = a(k)φ̄ (x,k)+ b(k)φ(x,k),
ψ̄(x,k) =−ā(k)φ(x,k)+ b̄(k)φ̄ (x,k).

where a(k) and b(k) satisfy the following symmetry properties

ā(k) =−a(−k) =−a∗(k∗), b̄(k) = b(−k) = b∗(k∗).

Besides, the following identity holds true

a(k)ā(k)+ b(k)b̄(k) =−1.

This can easily be checked by computing the Wronskians giving

W (ψ(x,k), ψ̄(x,−k)) = [a(k)ā(k)+ b(k)b̄(k)]W (φ(x,k), φ̄ (x,k)).

We introduce τ(k) = 1/a(k) and ρ(k) = b(k)/a(k) as the transmission and reflection
coefficients, respectively and consider the normalized eigenfunctionψ(x,k)/a as in
the previous paragraph. It is easy to see that |ρ(k)|2 + |τ(k)|2 = 1.

We turn now to the time dependence of the scattering data. The evolution of
ψ(x,k, t) is described by (8.7), with A from (8.8). We introduce the modified eigen-
function N(x,k, t) such that

1
a
ψ(x,k, t) = N(x,k, t)e−ikx.

Then N satisfies the equation

N,t = (γ− 4ik3 + u,x + 2iku)N+(4k2 − 2u)N,x.

The asymptotic behavior of ψ(x,k, t) implies that

N(x,k, t)→ τ(k, t) as x →−∞,
N(x,k, t)→ 1+ρ(k, t)e2ik as x → ∞.

By considering the above equation for N(x,k, t) as x →−∞ and using the fact that
u and its first derivative tend to zero in this limit, we obtain

τ,t = (γ− 4ik3)τ.

Thus, the choice γ = 4ik3 makes the transmission coefficient τ(k) independent of t.
Then, in the other limit x → ∞ we get

ρ,t = 8ik3ρ ⇒ ρ(k, t) = ρ(k,0)e8ik3t .



8.2 Inverse Scattering Transform 355

Concerning the discrete spectrum we know that the eigenvalues λ = κ2
n are posi-

tive and time independent. Denote by χn(x,κn, t) the eigenfunctions with the asymp-
totic behavior χn ∼ e−κnx as x→∞ and assume thatψn(x, t) =σn(t)χn(x,κn, t). With
(8.6) and (8.7) it is easy to check that

d
dt

∫ ∞

−∞
χ2

n dx =−8κ3
n

∫ ∞

−∞
χ2

n dx.

Taking into account the normalization condition we have

σ2
n (t) =

1∫ ∞
−∞ χ2

n dx
.

Thus,
σ2

n (t) = σ
2
n (0)e

8κ3
nt ⇒ σn(t) = σn(0)e4κ3

nt .

The rigorous derivation of the Gelfand-Levitan integral equation requires a
deeper insight into the spectral analysis [18] than that provided so far. Let us show
nevertheless how to obtain, at least formally, this equation by working with the
Schrödinger equation in an equivalent “time domain”. We consider equation (8.6)
as the Fourier transform of the “wave” equation

ϕ,xx −ϕ,θθ + uϕ = 0, (8.10)

where function ϕ(x,θ , t) is the Fourier image of ψ(x,k, t) with respect to k

ϕ(x,θ , t) =
∫ ∞

−∞
ψ(x,k, t)eikθdk.

We suppress at present the true time variable t. Consider an incident wave ϕ =
δ (x+θ ) from x = ∞ and let the reflected wave be F(x−θ ). Thus,

ϕ ∼ ϕ∞ = δ (x+θ )+F(x−θ ) as x → ∞.

We propose that the corresponding solution of (8.10) may be written

ϕ(x,θ ) = ϕ∞(x,θ )+
∫ ∞

x
K(x,z)ϕ∞(x,θ )dz,

what is equivalent to a crucial step in Gelfand-Levitan’s work. By direct substitution
in (8.10) we verify that there is such a solution provided

K,zz −K,xx + uK = 0, z > x,

u(x) = 2
d
dx

K(x,x),

K,K,z → 0 as x → ∞.

This is a well-posed problem, therefore K(x,z) exists. From the causality property
of the wave equation we know that ϕ must vanish for x+θ < 0. Therefore
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ϕ∞(x,θ )+
∫ ∞

x
K(x,z)ϕ∞(x,θ )dz = 0 for x+θ < 0.

Introducing the expression for ϕ∞(x,θ ) in this equation we get

K(x,−θ )+F(x−θ )+
∫ ∞

x
K(x,z)F(z−θ )dz = 0 for x+θ < 0.

With θ = −y this becomes Gelfand-Levitan equation (8.9). At a fixed time t, F is
determined from the direct scattering problem in terms of u(x, t) as

F(x−θ ) =
N

∑
n=1

σ2
n (t)e

−κn(x−θ) +
1

2π

∫ ∞

−∞
ρ(k, t)eik(x−θ)dk.

With θ = −y and with the scattering data at time t we obtain the expression for F
in the Gelfand-Levitan equation.

Reflectionless Potential. The solution of the Gelfand-Levitan equation simplifies
considerably if the reflection coefficient is zero. In this case we obtain the special
soliton solutions by the separation of variables. Indeed, if ρ(k, t) = 0, then we have
for function F(x, t)

F(x, t) =
N

∑
n=1
σ2

n (t)e
−κnx,

with σn(t) = σn(0)e4κ3
nt > 0 and distinct κn > 0, n = 1,2, . . . ,N. So the Gelfand-

Levitan equation becomes

K(x,y, t)+
N

∑
n=1

σ2
n (t)e

−κn(x+y) +

∫ ∞

x
K(x,z, t)

N

∑
n=1

σ2
n (t)e

−κn(z+y) dz = 0.

We seek the solution of this equation in the form

K(x,y, t) =
N

∑
n=1
σnvn(x)e

−κny.

Substituting this solution Ansatz into the integral equation we get for m= 1,2, . . . ,N

vm(x)+
N

∑
n=1

σm(t)σn(t)
κm +κn

e−(κm+κn)xvn(x) = σm(t)e
−κmx.

This is a system of N algebraic equations which can be written in the matrix form
as

(I+C)v = f, (8.11)

where v=(v1,v2, . . . ,vN)
T , f=( f1, f2, . . . , fN)

T with fm =σme−κmx, m= 1,2, . . . ,N,
I is the identity matrix and C is a symmetric N ×N matrix with elements
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Cmn =
σm(t)σn(t)
κm +κn

e−(κm+κn)x, m,n = 1,2, . . . ,N.

A sufficient condition for the system (8.11) to have a unique solution is that C is
positive definite. The latter holds true because the quadratic form

ξξξ ·Cξξξ =
N

∑
m=1

N

∑
n=1

σm(t)σn(t)ξmξn

κm +κn
e−(κm+κn)x =

∫ ∞

x

(
N

∑
n=1

σn(t)ξne−κnx

)2

dy

is clearly positive for an arbitrary ξξξ �= 0. The unique solution to the KdV equation
in this case is

u(x, t) = 2
∂ 2

∂x2 [lndet(I+C)]. (8.12)

Soliton Solutions. Consider first the simplest case N = 1 for which

C =
σ2

1 (t)
2κ1

e−2κ1x =
σ2

1 (0)
2κ1

e−2κ1x+8κ3
1 t .

Introducing ξ = x− ct − d, where

c = 4κ2
1 , d =− 1

κ1
ln
σ1(0)
2κ1

,

we may write C = e−2κ1ξ . Then

u(x, t) = 2
∂ 2

∂x2 [ln(1+C)] = 8κ2
1

C
(1+C)2 = 2κ2

1 sech2(κ1ξ )

coincides with the one soliton solution obtained in Section 8.1.
For N = 2 we have

Δ = det(I+C) = 1+ e−2κ1ξ1 + e−2κ2ξ2 + e−2κ1ξ1−2κ2ξ2+A12 ,

with

ξn = x− 4κ2
nt − dn, A12 = 2ln

(
κ1 −κ2

κ1 +κ2

)
.

This formula implies that the only effect of the interaction of two solitary waves is a
phase shift. Indeed, consider the trajectory ξ1 = const, and assume that κ1 > κ2 > 0.
Then

Δ ∼ 1+ e−2κ1ξ1 as t →−∞,
Δ ∼ e−2κ2ξ2 + e−2κ1ξ1−2κ2ξ2+A12 as t → ∞.
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Therefore, from (8.12) it follows that for fixed ξ1

u(x, t) = 2
∂ 2

∂x2 (lnΔ)∼ 2κ2
1 sech2(κ1ξ1 + δ±1 ) as t →±∞,

with

δ+1 =
1
2

A12, δ−1 = 0.

Similarly, for fixed ξ2

u(x, t)∼ 2κ2
2 sech2(κ2ξ2 + δ±2 ) as t →±∞,

with

δ+2 = 0, δ−2 =
1
2

A12.

Thus, for large negative time, the taller soliton is behind the shorter one, and vice-
versa for large positive time. The phase shifts of solitons are A12/2 and −A12/2,
respectively.

The calculations for N solitons show the similar behavior. If κ1 > κ2 > .. . >
κN > 0, then for fixed ξn

u(x, t)∼ 2κ2
n sech2(κnξn + δ±n ) as t →±∞,

where

δ+n =
N

∑
m=n+1

ln

(
κn −κm

κn +κm

)
, δ−n =

n−1

∑
m=1

ln

(
κm −κn

κm +κn

)
.

Therefore, the n-th soliton undergoes a phase shift given by

δn = δ+n − δ−n =
N

∑
m=n+1

ln

(
κn −κm

κn +κm

)
−

n−1

∑
m=1

ln

(
κm −κn

κm +κn

)
.

We see that the total phase shift is equal to the sum of phase shifts resulted from
pair interaction with every other soliton.

To illustrate the relationship between the initial condition and the number of soli-
tons, let us take the initial condition in the form

u(x,n) = N(N + 1)sech2x.

In this case the scattering problem, with λ = κ2, reads

ψ,xx +[N(N + 1)sech2x− k2]ψ = 0.

If we make the transformation μ = tanhx, then this equation becomes

(1− μ2)
d2ψ
dμ2 − 2μ

dψ
dμ

+[N(N + 1)− κ2

1− μ2 ]ψ = 0, (8.13)
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which is the associate Legendre equation (see [3]). Equation (8.13) has N distinct
eigenvalues κn = 1,2, . . . ,N and bounded eigenfunctions in terms of Legendre poly-
nomials

ψn(x) = γnPn
N(tanhx)∼ cne−nx as x → ∞,

where cn is determined from the normalization condition. The N-soliton solution of
the KdV equation is given by (8.12), where

Cmn =
cm + cn

m+ n
e−(m+n)x.

In particular, the two-soliton solution of the KdV equation satisfying the above
initial condition for N = 2 reads

u(x, t) = 12
3+ 4cosh(2x− 8t)+ cosh(4x− 64t)
[3cosh(x− 28t)+ cosh(3x− 36t)]2

.

If we introduce ξ1 = x− 16t and ξ2 = x− 4t, then the two-soliton solution can be
expressed as

u(x, t) = 12
3+ 4cosh(2ξ1 + 24t)+ cosh(4ξ1)

[3cosh(ξ1 − 12t)+ cosh(3ξ1 + 12t)]2
,

and, alternatively,

u(x, t) = 12
3+ 4cosh(2ξ2)+ cosh(4ξ2 − 48t)

[3cosh(ξ2 − 24t)+ cosh(3ξ2 − 24t)]2
.

Expanding these formulas, keeping ξ1 (alternatively ξ2) fixed, it is easy to see that
as t →±∞

u(x, t)∼ 2sech2(ξ2 ± 1
2

ln3)+ 8sech2(2ξ1 ∓ 1
2

ln3).

Thus, the phase shifts are ± ln3/2 in this case.

8.3 Energy Method

In this Section we are going to apply the variational-asymptotic method to general
variational problems of wave propagation.

Variational-Asymptotic Method. Consider the variational problem in form of
Hamilton’s variational principle: find the extremal of the action functional

I[ui(x, t)] =
∫∫
R

L(ui,ui,α ,ui,t)dxdt, (8.14)
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where R = V × (t0, t1) is any finite and fixed region in (d + 1)-dimensional space-
time. We assume that ui are prescribed at the boundary ∂R. We look for the extremal
of this variational problem in form of a slowly varying wave packet6

ui = ψi(θ ,x, t), (8.15)

where θ is a function of x and t, ψi are 2π-periodic functions with respect to θ .
Function θ plays the role of the phase, while θ,α and −θ,t correspond to the wave
vector kα and the frequency ω , respectively. As in the linear case we assume that
functions θ,α , θ,t and ψi(θ ,x, t)|θ=const change slowly in one wavelength λ and one
period τ . The latter are defined as the best constants in the inequalities

|θ,α | ≤ 2π
λ

, |θ,t | ≤ 2π
τ
. (8.16)

The characteristic length- and time-scales Λ and T of changes of the functions θ,α ,
θ,t and ψi(θ ,x, t)|θ=const are defined as the best constants in the inequalities

|θ,αβ | ≤
2π
λΛ

, |θ,αt | ≤ 2π
λT

, |θ,αt | ≤ 2π
τΛ

, |θ,tt | ≤ 2π
τT

,

|∂αψi| ≤ ψ̄i

Λ
, |∂tψi| ≤ ψ̄i

T
, |ψi,θ | ≤ ψ̄i, (8.17)

where ∂αψi = ∂ψi/∂xα with θ = const, and ∂tψi = ∂ψi/∂ t with θ = const. There-
fore it makes sense to call θ “fast” variable as opposed to the “slow” variables xα
and t. Thus, in this variational problem we have two small parameters λ/Λ and
τ/T .

We now calculate the derivatives ui,α and ui,t . According to (8.15)

ui,α = ∂αψi +ψi,θθ,α , ui,t = ∂tψi +ψi,θθ,t .

Because of (8.16) and (8.17) they can be approximately replaced by

ui,α = ψi,θ θ,α , ui,t = ψi,θθ,t .

Keeping in the action functional (8.14) the asymptotically principal terms, we obtain
in the first approximation

I0[ψi] =

∫∫
R

L(ψi,ψi,θ θ,α ,ψi,θθ,t)dxdt.

Similar to the linear case we decompose the domain R into the (d +1)-dimensional
strips bounded by the d-dimensional phase surfaces θ = 2πn, n = 0,±1,±2, . . ..
The integral over R can then be replaced by the sum of the integrals over the strips

6 The amplitudes ai appear later.
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∫∫
R

Ldxdt =∑
∫∫

L(ψi,ψi,θθ,α ,ψi,θ θ,t)κ dθ dζ , (8.18)

where ζα are the coordinates along the phase surface θ = const, and κ is the Jaco-
bian of transformation from xα , t to θ ,ζα . In the first approximation we may regard
κ , θ,α and θ,t in each strip as independent from θ . Therefore we obtain the same
problem in each strip at the first step of the variational-asymptotic procedure [8]:
find the extremal of the functional

Ī0[ψi] =

∫ 2π

0
L(ψi,ψi,θ θ,α ,ψi,θθ,t )dθ (8.19)

among 2π-periodic functions ψi(θ ). Since the quantities kα = θ,α and −ω = θ,t
change little within one strip, they are regarded as constants in the functional (8.19).
The Euler-Lagrange equation of this functional is a system of n nonlinear second-
order ordinary differential equations. Its solutions contain 2n arbitrary constants: n
of them is determined from the conditions that ψi(θ ) are 2π-periodic functions, the
other n conditions can be chosen by fixing the amplitudes ai as follows: maxψi =
|ai|, where ai are arbitrary real constants.7 We call this variational problem strip
problem.

Let us denote by 2π L̄ the value of the functional (8.19) at its extremal. The quan-
tity L̄ is a function of ai,θ,α and θ,t . The sum (8.18), as λ/Λ → 0 and τ/T → 0, can
again be replaced by the integral

∫∫
R

L̄(ai,θ,x,θ,t)dxdt. (8.20)

Euler-Lagrange’s equations of the average functional (8.20) read

∂ L̄
∂ai

= 0,
∂
∂ t
∂ L̄
∂θ,t

+
∂
∂xα

∂ L̄
∂θ,α

= 0. (8.21)

We will see that equations (8.21)1 express the solvability condition for the strip
problem leading to the nonlinear dispersion relation, while (8.21)2 is equivalent to
the equation of energy propagation.

Strip Problems. As an example let us consider the strip problem for the nonlinear
Klein-Gordon equation, whose Lagrangian is given by

L =
1
2

u2
,t −

1
2

u2
,x −U(u).

In this case the average Lagrangian must be calculated according to

7 This choice is dictated by the phase portrait of the strip problem. We will see later that, in
some cases, the constants must be chosen by fixing the slopes rather than the amplitudes.
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L̄ =
1

2π
min

maxψ=a

∫ 2π

0
[
1
2
(ω2 − k2)ψ ′2 −U(ψ)]dθ ,

where ω =−θ,t and k = θ,x are regarded as constants. We use the first integral

1
2
(ω2 − k2)ψ ′2 +U(ψ) =U(a) = h

to express L̄ in the form

L̄ =
1

2π

∫ 2π

0
(ω2 − k2)ψ ′2 dθ − h.

Changing the variable θ → ψ , we obtain finally

L̄ =
1

2π
(ω2−k2)

∫ 2π

0
ψ ′ dψ−h=

1
2π

√
2(ω2 − k2)

∮ √
h−U(ψ)dψ−h. (8.22)

The contour integral in (8.22) denotes the integral over a complete oscillation of ψ
from b, with U(b) =U(a), up to a and back, so it is equal to twice the integral from
b to a because the sign of the square root has to be changed appropriately in the two
parts of the contour. This integral may also be interpreted as the contour integral
around a cut from b to a in the complex ψ-plane, where ψ plays the role of the
variable of integration.

Now let us consider the average variational problem (8.20) in which L̄ is given
by (8.22) with h =U(a), ω =−θ,t , and k = θ,x. Euler-Lagrange’s equations of this
problem read

∂ L̄
∂h

dh
da

= 0, − ∂
∂ t
∂ L̄
∂ω

+
∂
∂xα

∂ L̄
∂k

= 0. (8.23)

It is easy to see that differentiation of L̄ with respect to h gives

∂ L̄
∂h

=
1

2π

√
ω2 − k2
√

2

∮
dψ√

h−U(ψ)
− 1.

Thus, the first equation of (8.23) is nothing else but the nonlinear dispersion relation
(8.5) for the nonlinear Klein-Gordon equation. Together with the kinematic relation

k,t +ω,x = 0, (8.24)

they form a system of nonlinear coupled equations describing the amplitude modu-
lations.

The strip problems for two or more unknown functions reduce to the problem
of finding the nonlinear normal modes already solved in Chapter 7. Consider for
example the wave equations which are Euler-Lagrange’s equations of the following
Lagrangian

L =
1
2
(u2

1,t + u2
2,t)−

1
2
(u2

1,x + u2
2,x)−U(u1,u2).
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This Lagrangian arises in the problem of coupled vibrations of two pre-stretched
strings along which nonlinear springs with the cubic nonlinearity are attached at
close intervals, where function U(u1,u2) describes the potential energy density of
the springs. The strip problem becomes: find the 2π-periodic functions ψ1 and ψ2

which minimize the following functional

I0[ψ1,ψ2] =

∫ 2π

0
[
1
2
(ω2 − k2)(ψ2

1,θ +ψ
2
2,θ )−U(ψ1,ψ2)]dθ .

Denotingω2−k2 =m, we write the corresponding Lagrange’s equations in the form

mψ1,θθ =− ∂U
∂ψ1

, mψ2,θθ =− ∂U
∂ψ2

.

This is nothing else but equations (7.7) studied in connection with the nonlinear
normal modes in Section 7.2. If we seek the nonlinear normal modes as 2π-periodic
solutions by assuming ψ2 as a function of ψ1, then the problem reduces to solving
the modal equation

2(h−U)ψ ′′
2 +(1+ψ ′2

2 )(
∂U
∂ψ2

−ψ ′
2
∂U
∂ψ1

) = 0,

which is the ordinary differential equation of second order, where the prime denotes
the derivative with respect to ψ1 and h is a constant in the first integral

1
2

mψ2
1,θ (1+ψ

′2
2 )+U(ψ1,ψ2) = h.

Particularly, if U(ψ1,ψ2) equals

U(ψ1,ψ2) =
1
2
[ψ2

1 +
α
2
ψ4

1 +ψ
2
2 +

α
2
ψ4

2 +
β
2
(ψ2 −ψ1)

4],

then the normal modes become similar modes ψ2 = cψ1, with

c = 1,−1,1− 1
2κ

± 1
κ
√

1/4−κ,

where κ = β/α is the coupling factor. The strip problem reduces then to the prob-
lem with one unknown function admitting the analytical solution (see exercise 8.7).
Thus, for κ < 1/4, there are two additional normal modes bifurcated out of the
antisymmetric mode ψ2 = −ψ1 (vibrations in counter-phases) at κ = 1/4. This in-
dicates the bifurcation of amplitude modulations in our original problem of wave
propagation.

Hamilton’s Equations for the Strip Problem. It is quite straightforward to trans-
form Lagrange’s equations of the strip problem to the equivalent Hamilton’s form.
We take the differential of the Lagrange function Λ(ψi,ψ ′

i ) = L(ψi,kαψ ′
i ,−ωψ ′

i )
as function of ψi and ψ ′

i = ψi,θ
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dΛ =
n

∑
i=1

(
∂Λ
∂ψi

dψi +
∂Λ
∂ψ ′

i
dψ ′

i ).

We introduce new variables pi = ∂Λ/∂ψ ′
i and the Hamilton function H(ψi, pi) as

Legendre’s transform of Λ(ψi,ψ ′
i ) with respect to ψ ′

i

H(ψi, pi) =
n

∑
i=1

piψ ′
i −Λ .

The Lagrange’s equations of the strip problem are equivalent to

ψ ′
i =

∂H
∂ pi

, p′i =− ∂H
∂ψi

,

for all i = 1,2, . . . ,n. These replace n differential equations of second order by the
system of 2n differential equations of first order. The functional (8.19) may now be
written as

Ī0[ψi, pi] =
∫ 2π

0
[

n

∑
i=1

piψ ′
i −H(ψi, pi)]dθ .

It is easy to check that the extremal of this functional among 2π-periodic functions
ψi(θ ) and pi(θ ) corresponds to the extremal of the functional (8.19). If the Hamilton
function does not depend explicitly on θ , then the first integral follows

H(ψi, pi) = h.

Adiabatic Invariants. If we consider wave propagation in weakly inhomogeneous
media or wave propagation under some external forces which change slowly in
space and time, then the Lagrangian depends explicitly on x and t. This is quite
similar to the vibrations of a non-autonomous mechanical system where one pa-
rameter of the system changes slowly in time.8 It turns out that some quantities,
called adiabatic invariants, remain constant in this situation. The finding of these
adiabatic invariants can be done by the variational-asymptotic method. For simplic-
ity let us consider a nonlinear oscillator with one degree of freedom q(t) and one
slowly varying parameter λ (t). Hamilton’s variational principle states that

δ
∫ t1

t0
L(q, q̇,λ )dt = 0.

We first calculate the average Lagrange function for the periodic motion with λ
held fixed. Since the period is T = 2π/ω , we have

L̄ =
ω
2π

∫ T

0
L(q, q̇,λ )dt.

8 For example, the vibration of a pendulum with slowly changing length.
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With λ = const the conservation of energy

q̇
∂L
∂ q̇

−L = h

holds true. This equation may be solved with respect to q̇ so that the generalized
momentum p = ∂L/∂ q̇ can be expressed as

p = p(q,h,λ ).

Using the same conservation of energy we may calculate the average Lagrange func-
tion as follows

L̄ =
ω
2π

∫ T

0
pq̇dt − h =

ω
2π

∮
p(q,h,λ )dq− h, (8.25)

where
∮

pdq means the integral over one complete period of vibration which corre-
sponds to the close orbit in the phase plane. We now allow a slow change of λ in
time, and consider the average variational problem obtained as the particular case
of (8.20)

δ
∫ t1

t0
L̄(a,θ,t ,λ )dt = 0.

Here θ,t = −ω , with ω being the frequency of vibration. Lagrange’s equations of
this variational problem read

∂ L̄
∂a

=
∂ L̄
∂h

dh
da

= 0,
∂
∂ t
∂ L̄
∂θ,t

=− ∂
∂ t
∂ L̄
∂ω

= 0. (8.26)

The first equation is nothing else but the frequency-amplitude equation of this non-
linear oscillator (see exercise 8.8). The second equation leads to the conservation of
the action variable

I(ω ,h) =
∂ L̄
∂ω

=
1

2π

∮
p(q,h,λ )dq = const,

which is just the classical result of the adiabatic invariant [5]. From (8.25) and (8.26)
the period is given by

T =
2π
ω

=
∂ I
∂h

,

which is also classical.
From this analysis we see that for waves the quantities ∂ L̄/∂ω and ∂ L̄/∂kα are

akin to the adiabatic invariants with respect to time and space. If the wave packet is
uniform in space but responding to changes of the medium in time, then we must
have

∂ L̄
∂ω

= const.
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Alternatively, for a wave packet of fixed frequency moving in a weakly inhomoge-
neous medium dependent only on one coordinate x, we have

∂ L̄
∂k

= const.

In general, modulations in space and time balance according to the equation

∂
∂ t
∂ L̄
∂ω

− ∂
∂xα

∂ L̄
∂kα

= 0,

which describes the propagation of the amplitude modulations.

Effect of Damping. If the medium in which waves propagate possesses some vis-
cosity, then the energy is not only transported by the waves, but also dissipated
during the process of wave propagation. The average equations of amplitude mod-
ulations can be obtained by the variational-asymptotic method for the case of small
dissipation. Let us illustrate this on the example of the nonlinear Klein-Gordon equa-
tion with a small resistance force

u,tt − u,xx +U ′(u) = f (u,u,t),

where f (u,u,t) =−∂D/∂u,t is a small term of the order (τ/T )u, with D(u,u,t) being
the dissipation function assumed as homogeneous of order 2 with respect to u,t . It
is easy to show that this equation can be obtained from the variational equation

δ
∫∫

[
1
2

u2
,t −

1
2

u2
,x −U(u)]dxdt +

∫∫
f (u,u,t)δudxdt = 0. (8.27)

In the first step of the variational-asymptotic method we neglect the last term in
(8.27) as small compared with other terms and seek for the solution in the form

u = u0(θ ,x, t),

where u0 and θ behave in the same way as in (8.15). So, the analysis provided in
the first paragraph of this Section leads to the following strip problem

min
maxu0=a

〈1
2
(ω2 − k2)u2

0,θ −U(u0)〉,

where 〈.〉 = 1
2π
∫ 2π

0 .dθ denotes the averaging over the strip, and where ω = −θ,t
and k = θ,x are treated as constants. Let L̄(a,ω ,k) be the minimum and u0 =ψ(a,θ )
the corresponding minimizer of this strip problem.

It can be shown that the second step brings correction of the order u1 � (τ/T )u0

in u and corrections of the order (τ/T )2u2
0 in the average Lagrangian and dissipation

causing no influence on the average equations for a and θ .
To find the average equations let us substitute u = ψ(a,θ ) into the original vari-

ational equation (8.27) and keep the asymptotically principal terms up to the order
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(τ/T )ψ2 of smallness. Replacing the sums over the strips by the integrals in the
limit λ/Λ → 0 and τ/T → 0, we obtain

δ
∫∫

L̄(a,−θ,t ,θx)dxdt +
∫∫

〈 f (ψ ,−ψ,θω)δψ(a,θ )〉dxdt = 0.

Substitution of δψ = ψ,aδa+ψ,θδθ into this equation yields

δ
∫∫

L̄(a,−θ,t ,θx)dxdt +
∫∫

〈 f (ψ ,−ψ,θω)(ψ,aδa+ψ,θδθ )〉dxdt = 0.

It is easy to see that the term containing δa in the second integral brings just a small
correction to the dispersion relation, so it can be neglected. Since the dissipation
function D(u,u,t) is a homogeneous function of second order with respect to u,t ,

〈 f (ψ ,−ψ,θω)ψ,θ δθ 〉= 2
ω
〈D(ψ ,−ψθω)〉δθ =

2
ω

D̄δθ ,

where D̄ is the average dissipation function. Thus, the average variational equation
reads

δ
∫∫

L̄(a,−θ,t ,θ,x)dxdt +
∫∫

2
ω

D̄δθ dxdt = 0. (8.28)

Varying equation (8.28) with respect to a, we obtain

∂ L̄
∂a

= 0,

which shows that the dispersion relation remains exactly the same as in the case
without dissipation. Varying (8.28) with respect to θ , we derive the following equa-
tion

∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

=− 2
ω

D̄.

This equation shows the loss in wave action due to dissipation. We see also that the
term on the right-hand side must be maintained because it is of the same order of
smallness as the terms standing on the left-hand side. The energy balance equation,
which can easily be obtained from here, reads

(ω L̄,ω − L̄),t − (ω L̄,k),x =−2D̄.

We see that some portion of energy is transported by the energy flux −ω L̄,k, and
some is simply dissipated against the resistance due to viscosity. To complete the
system of average equations of amplitude modulations we have to include also

k,t +ω,x = 0,

which is simply the kinematic relation. It is easy to generalize this result to higher
dimensions and more unknown functions.
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8.4 Amplitude and Slope Modulation

This Section studies the theory of amplitude (or slope) modulation of nonlinear
dispersive waves and presents some of its selected applications.9

The Near-Linear Case. As we know already from the previous Section, the ampli-
tude modulation in 1-D case is described by the equations

L̄,a = 0, k,t +ω,x = 0,

(L̄,ω ),t − (L̄,k),x = 0.
(8.29)

The first equation corresponds to the nonlinear dispersion relation. The near-linear
theory is obtained by expanding L̄ in powers of the amplitude. This expansion may
be taken as

L̄ = G(ω ,k)a2 +G2(ω ,k)a4 + . . . .

Computing L̄,a, we may solve (8.29)1 with respect to ω to have explicitly

ω =Ω(k,a) =Ω0(k)+Ω2(k)a
2 + . . . , (8.30)

where

G(Ω0,k) = 0, Ω2(k) =−2G2(Ω0(k),k)
G,ω(Ω0(k),k)

.

We see that the dispersion relation ω = Ω(k,a) couples the remaining equations
(8.29). With (8.30) equation (8.29)2 becomes

k,t +[Ω ′
0(k)+Ω

′
2(k)a

2]k,x +Ω2(k)(a
2),x = 0.

The important coupling term is Ω2(k)(a2),x because it leads to the correction O(a)
to the characteristic velocities. The other new term Ω ′

2(k)a
2k,x merely contributes

the correction of oder O(a2). Concerning (8.29)3 the inclusion of terms of order
a4 would provide corrections of order a2 to the existing terms. Therefore in the
first assessment of nonlinear effects we leave in the dispersion relation only one
additional term Ω2(k)a2 and consider

k,t +Ω ′
0(k)k,x +Ω2(k)(a

2),x = 0,

(a2),t +(Ω ′
0(k)a

2),x = 0.
(8.31)

This system of equations admits the characteristic form. To see this let us multiply
the first equation by p and the second by q and then add them together. The resulting
equation is

[pk,t +(pΩ ′
0 + qΩ ′′

0 a2)k,x]+ [q(a2),t +(pΩ2 + qΩ ′
0)(a

2),x] = 0.

9 Various applications of the theory of amplitude modulations to laser beams and water
waves can be found in [53].
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We want to choose p and q so that the expressions in the square brackets represent
full derivatives of k and a2 along the same characteristic curve. This is possible if

p
pΩ ′

0 + qΩ ′′
0 a2 =

q
pΩ2 + qΩ ′

0
⇒ p =±

√
Ω ′′

0 (k)

Ω2(k)
aq.

We may choose p = 1. Then, the characteristic form of (8.31) read

1
2

√
Ω ′′

0 (k)

Ω2(k)
(signΩ ′′

0 (k))dk± da = 0

on the characteristics

dx
dt

=Ω ′
0(k)±

√
Ω2(k)Ω ′′

0 (k)a. (8.32)

This simple near-linear version of the theory of amplitude modulation already shows
some interesting results. In the case Ω2(k)Ω ′′

0 (k) > 0, the characteristics are real
and the system is hyperbolic. The double characteristic velocity splits under the
nonlinear correction and we have the two velocities given by (8.32). In general, an
initial disturbance or modulating source will introduce disturbances on both families
of characteristics. If the initial disturbance is concentrated in a compact domain, it
will eventually split into two.

When Ω2(k)Ω ′′
0 (k)< 0, the characteristics are imaginary and the system is ellip-

tic. This leads to ill-posed problems in the wave propagation context. It means that
small perturbations will grow in time leading to the instability of the wave packet.
This case turns out to be not rare. For example, the Klein-Gordon equation with
U(ϕ) = ϕ2/2+αϕ4/4, α being small, gives

Ω0 =
√

1+ k2, Ω2 =
3
8
α/
√

1+ k2.

Thus, the sign of Ω2(k)Ω ′′
0 (k) coincides with the sign of α; the modulation equa-

tions are hyperbolic for α > 0 and elliptic for α < 0. For waves of small up to mod-
erate amplitudes, the Sine-Gordon equation has α = −1/6 > 0. Thus, the waves
of small amplitudes governed by the Sine-Gordon equation are unstable. This con-
sequence of the near-linear theory, already non-trivial, is not easy to obtain by the
direct stability analysis of the Sine-Gordon equation.

Characteristic Form of the Equations of Amplitude Modulation. Also the gov-
erning equations (8.29) of fully nonlinear theory of amplitude modulation admit
the characteristic form. This can be obtained by doing Legendre transform of the
average Lagrangian L̄(a,k,ω) with respect to ω

H(a,k, I) = ω L̄,ω − L̄ = ωI − L̄,
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where I = L̄,ω . Due to the property of Legendre transform we have

L̄,k =−H,k =−J, ω = H,I . (8.33)

Therefore equations (8.29)2,3 become

k,t +(H,I),x = 0,

I,t +(H,k),x = 0.

Recalling that L̄,a = −H,a = 0 due to the first equation of (8.29), we rewrite the
above equations in the vector form as

v,t +Mv,x = 0,

where

v =

(
k
I

)
, M =

(
H,Ik H,II

H,kk H,kI

)
.

Proceeding similarly as for equations (8.31) we get the characteristic equations
√

H,kkdk±√H,IIdI = 0

on the characteristics
dx
dt

= HIk ±
√

H,kkH,II .

If the characteristics are real, then the system (8.29) is hyperbolic. In the opposite
case the system is elliptic. The type of the equations depends thus on the sign of
H,kkH,II .

Slope Modulation of Waves Governed by Sine-Gordon Equation. The phase por-
trait of the strip problem for the Sine-Gordon equation

u,tt − u,xx = sin u (8.34)

exhibits in the subsonic regime quite different behavior than that of non-linear
Klein-Gordon equation with α > 0. This behavior dictates the fixing of slope rather
than amplitude for its solution. To see this, let us start from the variational formula-
tion of (8.34): find the extremal of the functional

I[u(x, t)] =
∫∫

[
1
2

u2
,t −

1
2

u2
,x − (1− cosu)]dxdt.

The variational asymptotic procedure using the multi-scale Ansatz u = ψ(θ ,x, t),
developed in the previous Section, leads to the following strip problem: find the
extremal of the functional

I0[ψ(θ )] =
1

2π

∫ 2π

0
[
1
2
(ω2 − k2)ψ2

,θ − (1− cosψ)]dθ
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among functions ψ(θ ) satisfying the conditions

ψ(2π) = ψ(0)+ 2π , ψ,θ (2π) = ψ,θ (0). (8.35)

In this strip problem, the wave number k = θ,x and the frequency ω = −θ,t are
regarded as constants. Since we are interested in the subsonic regime ω2 < k2, it
is convenient to change the sign of this functional which does not influence Euler-
Lagrange’s equation. Thus, we need to find the extremal of the functional

1
2π

∫ 2π

0
[
1
2

mψ2
,θ − (cosψ− 1)]dθ (8.36)

among functions ψ(θ ) satisfying the conditions (8.35), where m = k2 −ω2. Varia-
tional problem (8.36) possesses an obvious first integral

1
2

mψ2
,θ +(cosψ− 1) = h

resembling that of the mathematical pendulum in the upward position. The corre-
sponding phase portrait is plotted in Fig. 8.7. Looking at this phase portrait, we see
that the determination of the phase curves as extremals of (8.36) outside the separa-
trix requires, in addition to (8.35), the fixing of the maximal slope of ψ as follows:

max
θ

|ψ,θ |= p, (8.37)

where p is an arbitrary real and positive number.

0 1 2 3 4 5 6

�3

�2

�1

0

1

2

3

Fig. 8.7 Phase portrait of a pendulum with m = 1
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Let us denote by L̄ the average Lagrangian (extremum of functional (8.36)) which
is a function of p, k = θ,x, and ω =−θ,t . The sum of integrals over the strips, as the
wave length goes to zero, can again be replaced by the integral

Ī0[p,θ ] =
∫∫

L̄(p,θ,x,−θ,t)dxdt.

Euler-Lagrange’s equations of this average functional read

∂ L̄
∂ p

=
∂ L̄
∂h

∂h
∂ p

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0.

The first equation yields the nonlinear dispersion relation, while the second equation
is the equation of slope modulation.

Using the above integral, we find the solution in terms of elliptic functions and
then the average Lagrangian according to

L̄ =
1

2π

∫ 2π

0
mψ2

,θdθ − h =
1

2π

∫ 2π

0
mψ,θdψ− h.

Now, to find the explicit dependence of L̄ on p and m we use condition (8.37). Since
the maximal slope of ψ is achieved at θ = π (see Fig. 8.7), this condition implies
that 1

2 mp2 − 2 = h. We require h ≥ 0, so p ≥ 2/
√

m. Then, from the first integral it
follows

L̄(p,k,ω) =
√

2m
2π

f (h)− h, (8.38)

where f (h) is the function expressed in terms of the complete elliptic integral

f (h) =
∫ 2π

0

√
h− cosψ+ 1dψ = 2[

√
hE(−2/h)+

√
2+ hE(2/(2+ h))].

According to (8.38) the dispersion relation reads
√

2m
2π

f ′(h)− 1 = 0. (8.39)

Keeping in mind this dispersion relation, let us find the derivatives

∂ L̄
∂k

=

√
2

2π
m,k

2
√

m
f (h)+

(√
2m

2π
f ′(h)− 1

)
h,k =

√
2

2π
k√
m

f (h),

and
∂ L̄
∂ω

=

√
2

2π
m,ω

2
√

m
f (h)+

(√
2m

2π
f ′(h)− 1

)
h,ω =−

√
2

2π
ω√
m

f (h),

where the last terms in these formulas vanish due to (8.39). Now we substitute these
derivatives into the equation of slope modulation and compute the partial derivatives
with respect to x and t. After some algebra we get
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f (h)
m
√

m
I1(ω ,k)+

2π√
2m

q(k2k,x −2kωω,x −ω2ω,t)+
π√
2
(kq,x +ωq,t) = 0, (8.40)

where q = p2 and
I1(ω ,k) = k2ω,t −ω2k,x + 2kωω,x.

The equation of slope modulation in terms of θ is obtained if we replace in (8.40)
k = θ,x and ω =−θ,t . Equivalently, equation (8.40) can be solved together with the
consistency condition

ω,x + k,t = 0.

Asymptotic Solution to the Equation of Slope Modulation. From numerous nu-
merical simulations and n-soliton exact solutions of the Sine-Gordon equation we
know that, at large time, the solitons become non-interacting and propagating along
the straight lines x/t = const. Since the phase increases by 2π when one soliton is
passed, let us look for the phase in the following form

θ (x, t) = g(ξ (x, t)), ξ (x, t) = x/t.

According to this Ansatz we have

k = θ,x = g′(ξ )
1
t
, ω =−θ,t = g′(ξ )

x
t2 , k,x = g′′(ξ )

1
t2 , (8.41)

ω,x = g′′(ξ )
x
t3 + g′(ξ )

1
t2 , ω,t =−

(
g′′(ξ )

x2

t4 + 2g′(ξ )
x
t3

)
.

It is now straightforward to check that I1(ω ,k) = 0, so the equation of slope mod-
ulation takes the form

2qI2(ω ,k)+m(kq,x +ωq,t) = 0, (8.42)

where

I2(ω ,k) = k2k,x − 2kωω,x −ω2ω,t

= g′(ξ )2g′′(ξ )
(

t2 − x2

t4

)2

− 2g′(ξ )3 x
t5

(
t2 − x2

t2

)
,

and

m = k2 −ω2 = g′(ξ )2 t2 − x2

t4 . (8.43)

Substituting these formulas into (8.42), we obtain

2q[g′′(ξ )(t2 − x2)− 2g′(ξ )xt]+ g′(ξ )t2(tq,x + xq,t) = 0. (8.44)
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Equation (8.44) is the partial differential equation of first order which can be
solved by the method of characteristics. The characteristic curves are determined by
the equation

dx
dt

=
t
x
,

yielding
t2 − x2 = α > 0.

Along any characteristic curve (8.44) becomes an ordinary differential equation

dQα
dt

+ 2Aα(t)Qα(t) = 0, (8.45)

where α remains constant along each curve, Qα(t) = q(xα(t), t), and

Aα(t) =
α

xα(t)t2

g′′(ξα(t))
g′(ξα(t))

− 2
t
, ξα(t) =

xα(t)
t

, xα(t) =±
√

t2 −α.

A standard integration of (8.45) leads to

Qα(t) =C(α)2 t4

g′(ξα(t))2 ,

with C(α) being a function of α . Turning back to the original coordinates x and t,
we obtain

q(x, t) =C(t2 − x2)2 t4

g′(ξ (x, t))2 , ξ (x, t) =
x
t
,

and thus,

p(x, t) =
√

q(x, t) =C(t2 − x2)
t2

g′(ξ (x, t))
. (8.46)

As g(ξ ) describes the phase, function g′(ξ ) can be identified with 2πρ(ξ ), where
ρ(ξ ) is the density of solitons (or the number of solitons per unit length).

The unknown function C(t2−x2) should be determined from the dispersion rela-
tion (8.39). Using the solution given by (8.46) and formula (8.43) for m, we obtain

h =
1
2

mp2 − 2 =
1
2
(t2 − x2)C(t2 − x2)2 − 2.

Since m goes to zero as t goes to infinity, the dispersion relation is fulfilled at large
time if and only if h goes to zero. 10 Thus,

C(t2 − x2) =
2√

t2 − x2
,

and the final asymptotic formula for the slope reads

10 Strictly speaking, the exact fulfillment of the dispersion relation is warranted if h is of the
order m/2 as t → ∞, but this does not affect the asymptotically leading term for p.
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p(x, t) =
2t2

g′(ξ (x, t))
√

t2 − x2
. (8.47)

Comparison with the Exact Solution. Let us compare the asymptotic solution
(8.47) with the exact solution of Sine-Gordon equation obtained by the inverse scat-
tering transform. It turns out that the exact solution of Sine-Gordon equation is inti-
mately related to that of KdV equation. Note, however, that while the exact solution
of KdV equation is given explicitly, the solution of Sine-Gordon equation is only
obtainable through its slope u,x. It is convenient to solve the Sine-Gordon equation
in cone coordinates

X =
1
2
(x+ t), T =

1
2
(x− t). (8.48)

Knowing the solution in X and T , the solution in the physical coordinates x and t
can easily be found through a simple change of variables.

V1=-1/4 V2=-1/16 V3=-1/25

A1=4 A2=8 A3=12

-30 -25 -20 -15 -10 -5 0
X

4

8

12

v1=-3/5 v2=-15/17 v3=-12/13
a1=6 a2=4 a3=2

-110 -100 -90 -80 -70 -60 -50
x

2

4

6

u,X(X,T) u(x,t)

Fig. 8.8 3-soliton solution in physical coordinates (right) and its slope in cone coordinates
(left). The eigenvalues, velocities and amplitudes of solitons and their slope are presented in
the respective tables.

The solution reads (see [2])

1
4

(
∂u
∂X

)2

=
∂ 2

∂X2 ln [det(I+AA∗)] , (8.49)

where

Alm =

√
cl(T )c∗m(T )
ζl − ζ ∗m

exp [i(ζl − ζ ∗m)X ] ,

and cl(T ) = cl0 exp(−iT/2ζl). In the above formulas the asterisk is used to denote
complex conjugate, while I corresponds to the identity matrix. Constants cl0 charac-
terize the initial state of solitons, while ζl = iηl are different purely imaginary eigen-
values of the linear operator associated with the Sine-Gordon equation (see [1,2] for
the setting of the eigenvalue problem). Distinct types of solutions of this equation
are determined by different choices of pairs of eigenvalues ζl and ζm = ζ ∗l . We shall
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concentrate on the traveling solitons, so the discrete and distinct imaginary eigenval-
ues are henceforth sufficient for our comparison purpose. Fig. 8.8 shows a 3-soliton
solution (with solitons propagating to the left) together with its slope. By adding
three other solitons (dislocations) propagating to the right and having the negative
slope we may get the shape of the symmetrically propagating crack.

T � 112

-75 -60 -45 -30 -15 0
X

4

8

12

16

T � 176

-75 -60 -45 -30 -15 0
X

4

8

12

16

T � 240

-75 -60 -45 -30 -15 0
X

4

8

12

16

T � 304

-75 -60 -45 -30 -15 0
X

4

8

12

16

u,X(X,T) u,X(X,T)

u,X(X,T) u,X(X,T)

Fig. 8.9 Slope of 4-soliton solution in cone coordinates

As seen from Fig. 8.8 the slope of n-soliton solution to Sine-Gordon equation
is itself n solitons having different shape. For this reason it makes sense to denote
by Vj the velocities of solitons, which mark the velocities of points where maxima
are achieved (centers of solitons), and by A j the corresponding maxima. They are
computed according to the following formulas

Vj =− 1
(2η j)2 , A j = 4η j,

in which the minus sign indicates that the solitons travel to the left. The velocities
of the j-th soliton in real space-time can be obtained through the change of variable
(8.48)

v j =−1+Vj

1−Vj
.

In Fig. 8.9, several snap-shots at different time instants of the slope of 4-soliton solu-
tion constructed with the eigenvaluesη j = j, velocities Vj =−1/4 j2 and amplitudes
A j = 4 j are shown in cone coordinates.
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T�1000
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u,X�X,T�

Fig. 8.10 Slope of 5-soliton in cone coordinates versus slope modulation: a) exact solution
u,X (bold line), b) asymptotic law 2

√
T/|X | (dashed line)

To compare with the asymptotic solution obtained in the previous paragraph we
note that for the slowly varying wave packet and to the first approximation,

u,X = u,x + u,t = ψ,θ (k−ω).

Since the maximum of ψ,θ in one wavelength is chosen to be p, we expect that
p(k−ω), with p being given by (8.47), should serve as the asymptotic envelope for
the exact slope of soliton solution. Using (8.41) and (8.48), this quantity is given in
cone coordinates by

p(k−ω) = 2
t − x√
t2 − x2

= 2

√
−T

X
(8.50)

Formula (8.50) holds true for solitons traveling to the left. For solitons traveling to
the right and having the negative slope, the signs inside and in front of the square
root should be changed. Note also that this asymptotic law which can be used to
predict, among others, the shape of the propagating crack regarded as the wave
packet of moving dislocations in crystals, is universal and does not depend on the
distribution of solitons. Fig. 8.10 shows the slope of the exact 5-soliton solution
and the graph of 2

√
T/|X | (see exercise 8.10). From this Figure it is seen that, at

large time, the curve 2
√

T/|X | can serve as the asymptotic envelope for the slope
of solitons.

8.5 Amplitude Modulations for KdV Equation

This last Section studies Whitham’s theory of amplitude modulations of waves gov-
erned by the KdV equation.

Derivation of Whitham’s Equations. In view of the exact analytical solution of
KdV equation by the inverse scattering transform, it is tempting to develop the
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theory of amplitude modulations for the KdV equation and to compare its asymp-
totic law with the exact solution. Unfortunately, in contrast to the Sine-Gordon equa-
tion the KdV equation does not admit a direct variational formulation. However,
keeping in mind that the KdV equation is derivable from the Boussinesq’s equa-
tion which admits a variational formulation, we may associate this equation with a
variational principle by substituting u = η,x into (8.1) to get the equation

η,xt + 6η,xη,xx +η,xxxx = 0.

The latter can be obtained from the stationarity of the following functional

I[η(x, t)] =
∫∫

(−1
2
η,tη,x −η3

,x +
1
2
η2
,xx)dxdt. (8.51)

We shall use this indirect variational formulation through η to derive the equations
of amplitude modulations for u. We look for the extremal of this variational problem
in form of slowly varying wave packet

η(x, t) = ϕ(θ ,x, t)+ χ(x, t),

with ϕ a function of fast variable θ and slow variables x and t. We assume that
ϕ is 2π-periodic with respect to θ . The fast variable θ , being itself a function of
slow variables x and t, plays the role of the phase, with θ,x and −θ,t corresponding
to the wave number k and the frequency ω , respectively. Besides, the derivative
β = χ,x accounts for the mean value of u over one θ -period. We calculate the partial
derivatives of η in accordance with this Ansatz

η,x = ϕ,θθ,x + ∂xϕ+ χ,x, η,t = ϕ,θθ,t + ∂tϕ+ χ,t ,

η,xx = ϕ,θθθ 2
,x +ϕ,θθ,xx + 2∂xϕ,θθ,x + ∂ 2

x ϕ+ χ,xx.

Based on the assumptions similar to those in (8.17), one recognizes immediately
that the underlined terms are negligibly small compared with their first respective
terms. Besides, the wave number and the frequency change slowly in one wave
length and one period. We assume further that the mean value β = χ,x changes also
slowly in one wavelength so that its derivative β,x = χ,xx can be neglected in the first
approximation. Taking all these circumstances into account, the derivatives of η can
approximately be replaced by

η,x = ϕ,θ θ,x + χ,x, η,t = ϕ,θθ,t + χ,t , η,xx = ϕ,θθ θ 2
,x,

where γ = −χ,t is assumed to change slowly in one period. Substituting these for-
mulas into (8.51), we obtain the functional

I0[ϕ ,θ ] =
∫∫

[−1
2
(ϕ,θθ,t + χ,t)(ϕ,θθ,x + χ,x)− (ϕ,θθ,x +β )2 +

1
2
θ 4
,xϕ2

,θθ ]dxdt.
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In accordance with the method developed in Section 8.3, we formulate the strip
problem as follows: find the extremal of the functional

1
2π

∫ 2π

0
[
1
2
(ωϕ,θ + γ)(kϕ,θ +β )− (kϕ,θ +β )3 +

1
2

k4ϕ2
,θθ ]dθ (8.52)

among functions ϕ(θ ) satisfying 2π-periodicity conditions

ϕ(2π) = ϕ(0), ϕ,θ (2π) = ϕ,θ (0), ϕ,θθ (2π) = ϕ,θθ (0).

In this strip problem k, ω , β , and γ are considered as constants. Let us denote by
c = ω/k the phase velocity.

To reduce the order of the resulting differential equations, let us make a change
of unknown function

φ = kϕ,θ +β .

It is natural to use this new unknown function in the strip problem because it repre-
sents the approximate solution of KdV equation. According to it we have

ϕ,θ =
φ −β

k
, φ,θ = kϕ,θθ .

As function ϕ(θ ) is 2π-periodic, the introduced new function φ(θ ) should satisfy
the constraint

1
2π

∫ 2π

0
φdθ =

1
2π

∫ 2π

0
(kϕ,θ +β )dθ = β . (8.53)

Thus, we replace the functional (8.52) by

1
2π

∫ 2π

0
[
1
2
(
φ −β

k
ω+ γ)φ −φ3 +

1
2

k2φ2
,θ ]dθ

=
1

2π

∫ 2π

0
[
1
2

cφ2 −φ3 +
1
2

k2φ2
,θ ]dθ +

1
2
(γ− cβ )β ,

which must be minimized among 2π-periodic functions φ(θ ) satisfying the con-
straint (8.53). To get rid of constraint (8.53) we introduce the Lagrange multiplier
and consider the following equivalent variational problem: find the extremal of the
functional

1
2π

∫ 2π

0
[
1
2

k2φ2
,θ +

1
2

cφ2 −φ3]dθ +
1
2
(γ− cβ )β −λ ( 1

2π

∫ 2π

0
φdθ −β )

=
1

2π

∫ 2π

0
[
1
2

k2φ2
,θ −U(φ ,c,λ )]dθ +

1
2
(γ− cβ )β +λβ

among λ and φ(θ ) satisfying the periodicity conditions

φ(2π) = φ(0), φ,θ (2π) = φ,θ (0),
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where the function of three arguments U(φ ,c,λ ) is given by

U(φ ,c,λ ) = φ3 − 1
2

cφ2 +λφ .

This variational problem leads to Lagrange’s equation of second order in terms of
φ(θ ), which possesses an obvious first integral

1
2

k2φ2
,θ +U(φ ,c,λ ) = h.

Using this formula and introducing an elliptic integral

W (c,λ ,h) =
1

2π

∮ √
2h− 2U(φ ,c,λ )dφ =

1
2π

∮ √
2h− 2λφ+ cφ2 − 2φ3dφ ,

we find the average Lagrangian as the minimum of the above functional in the form

L̄(λ ,β ,γ,h,k,ω) = kW (
ω
k
,λ ,h)+

1
2
(γ− ω

k
β )β +λβ − h.

Then the variational-asymptotic analysis leads to the following average varia-
tional problem

δ
∫∫

L̄(λ ,χ,x,−χ,t ,h,θ,x,−θ,t)dxdt = 0.

The Euler-Lagrange’s equations for λ and χ read

β =−kW,λ ,
1
2
β,t − (λ +

1
2
γ− cβ ),x = 0.

From the last equation and from the consistency condition β,t + γ,x = 0 it follows
that γ can be taken as γ = cβ − λ . Thus, β = −kW,λ , γ = −ckW,λ − λ , and the
consistency condition becomes

(kW,λ ),t +(ckW,λ +λ ),x = 0. (8.54)

For h and θ we have

kW,h = 1, (L̄,ω ),t − (L̄,k),x = 0.

Multiplying the last equation by k and using the chain rule of differentiation together
with the consistency condition k,t +ω,x = 0, we obtain

(kL̄,ω ),t − (kL̄,k),x + L̄,ωω,x + L̄,kk,x = 0. (8.55)

On the other hand, differentiation of the average Lagrangian L̄ with respect to x
gives

L̄,x = L̄,kk,x + L̄,ωω,x + L̄,ββ,x + L̄,γγ,x
= L̄,kk,x + L̄,ωω,x +(β L̄,β ),x −β (L̄,β ),x − (β L̄,γ),t +β (L̄,γ),t ,
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which implies

L̄,ωω,x + L̄,kk,x = L̄,x − (β L̄,β ),x +(β L̄,γ),t +β [(L̄,γ),t − (L̄,β ),x].

The last term vanishes due to the Lagrange’s equation for χ yielding

L̄,ωω,x + L̄,kk,x = L̄,x − (β L̄,β ),x +(β L̄,γ),t . (8.56)

Substituting (8.56) into (8.55), we obtain the so-called wave momentum equation

(kL̄,ω +β L̄,γ),t +(L̄− kL̄,k −β L̄,β ),x = 0,

which can replace the Lagrange’s equation for θ . In our case, this equation becomes

(kW,c),t +(ckW,c − h),x = 0. (8.57)

Again, the consistency condition

k,t +(ck),x = 0 (8.58)

has to be included. Equations (8.54), (8.57), and (8.58) may be viewed as three
equations for h, λ , and c, with k given by the dispersion relation k = 1/W,h. A more
symmetric equivalent form of this system is

D
Dt

(W,h) =W,hc,x,
D
Dt

(W,λ ) =−W,hλ,x,
D
Dt

(W,c) =W,hh,x, (8.59)

where
D
Dt

=
∂
∂ t

+ c
∂
∂x

.

In terms of these unknown functions the wave number, the frequency, and the mean
value of u, ū = β , are given by

k =
1

W,h
, ω =

c
W,h

, β =−W,λ

W,h
.

The amplitude is obtained by relating the zeros of the cubic polynomial in W to the
coefficients h, λ , and c.

The Characteristic Equations. It turns out that the system (8.59) is hyperbolic and
can be written in the characteristic form. If the zeros b1, b2, b3 of the cubic equation

φ3 − 1
2

cφ2 +λφ − h = 0 (8.60)

are used as new unknown functions instead of h, λ , c, Whitham’s equations may be
put in a simple characteristic form as
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D
Dt

r j +Vjr j,x = 0, j = 1,2,3, (no sum!)

where r1 = b2 +b3, V1 =W,h/(W,h),b1 , together with similar equations for r2 and r3

in cyclic permutation. In the following we sketch a brief proof for the first of these
equations. Let us factorize the cubic polynomial (8.60) as

φ3 − 1
2

cφ2 +λφ − h = (φ − b1)(φ − b2)(φ − b3).

According to this identity the unknowns c, λ , h are related to the zeros b1, b2, b3 by

c = 2(b1 + b2 + b3), λ = b1b2 + b1b3 + b2b3, h = b1b2b3.

Differentiating these relations with respect to x, we rewrite Whitham’s equations
(8.59) in terms of new unknown functions b j in the form

(W,h),b1

Db1

Dt
+(W,h),b2

Db2

Dt
+(W,h),b3

Db3

Dt
= 2W,h(b1,x + b2,x + b3,x),

(W,λ ),b1

Db1

Dt
+(W,λ ),b2

Db2

Dt
+(W,λ ),b3

Db3

Dt
=−W,h[(b2 + b3)b1,x (8.61)

+(b1 + b3)b2,x +(b1 + b2)b3,x],

(W,c),b1

Db1

Dt
+(W,c),b2

Db2

Dt
+(W,c),b3

Db3

Dt
=W,h(b2b3b1,x + b1b3b2,x + b1b2b3,x).

We introduce

f (φ) = 2h− 2λφ+ cφ2 − 2φ3 =−2(φ − b1)(φ − b2)(φ − b3),

and denote the elliptic integral as follows

W (c,λ ,h) =
1

2π

∮ √
2h− 2λφ+ cφ2 − 2φ3dφ =

1
2π

∮ √
f (φ)dφ .

With this notation at hand we compute W,h, W,λ , W,c

W,h =
1

2π

∮
dφ√
f (φ)

, W,λ =− 1
2π

∮ φdφ√
f (φ)

, W,c =
1

2π

∮ φ2dφ
2
√

f (φ)
.

Next, differentiating these formulas with respect to b1, we obtain

(W,h),b1 =
1

4π

∮
1

(φ − b1)
√

f (φ)
dφ ,

(W,λ ),b1 =− 1
4π

∮ φ
(φ − b1)

√
f (φ)

dφ ,

(W,c),b1 =
1

4π

∮ φ2

2(φ − b1)
√

f (φ)
dφ .
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Similar formulas hold true for the derivatives with respect to b2 and b3. Now the
trick comes to play at this step. We multiply the first equation of (8.61) by p, the
second by q, and the third by r, add them, and choose p, q, r in such a way that
the coefficient of b1,x on the right-hand side vanishes, while those of b2,x and b3,x

are equal. This leads to the two following conditions

2p− q(b2+ b3)+ rb2b3 = 0,

2p− q(b1+ b3)+ rb1b3 = 2p− q(b1+ b2)+ rb1b2.

The solution of the above system reads

q = rb1, p =
r
2
(b1b2 + b1b3 − b2b3),

in which r can be chosen arbitrarily. Let us choose r = 2 for convenience and obtain
the explicit expressions for q and p

r = 2, q = 2b1, p = b1b2 + b1b3 − b2b3.

With this choice, the right-hand side of the equation resulted from these operations
takes the form

RHS = [2(b1b2 + b1b3 − b2b3)− 2b1(b1 + b3)+ 2b1b3]W,h(b2 + b3),x

=−2(b1 − b2)(b1 − b3)W,h(b2 + b3),x. (8.62)

Let us turn now to the left-hand side and denote by K1, K2, and K3 the coefficients
of Db1/Dt, Db2/Dt, and Db3/Dt, respectively. Then we have

K1 = p(W,h),b1 + q(W,λ ),b1 + r(W,c),b1

=
1

4π

∮
b1b2 + b1b3 − b2b3 − 2b1φ +φ2

(φ − b1)
√

f (φ)
dφ ,

K2 = p(W,h),b2 + q(W,λ ),b2 + r(W,c),b2

=
1

4π

∮
b1b2 + b1b3 − b2b3 − 2b1φ +φ2

(φ − b2)
√

f (φ)
dφ ,

K3 = p(W,h),b3 + q(W,λ ),b3 + r(W,c),b3

=
1

4π

∮
b1b2 + b1b3 − b2b3 − 2b1φ +φ2

(φ − b3)
√

f (φ)
dφ .

One can prove the following identities (see exercise 8.11)

K1 = 0, K2 = K3. (8.63)
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Furthermore, we can rewrite the coefficients K2 and K3 as

K2 =−b1 − b2

2π

∮ φ − b3

(φ − b2)
√

f (φ)
dφ +

1
4π

∮ φ2 − 2b2φ + b1b2 + b2b3 − b1b3

(φ − b2)
√

f (φ)
dφ ,

K3 =−b1 − b3

2π

∮ φ − b2

(φ − b3)
√

f (φ)
dφ +

1
4π

∮ φ2 − 2b3φ + b1b3 + b2b3 − b1b2

(φ − b3)
√

f (φ)
dφ .

The last terms in K2 and K3 vanish because their integrands are again full differen-
tials. Thus,

K2 =−(b1 − b2)W,h − 2(b1 − b2)(b2 − b3)(W,h),b2 ,

K3 =−(b1 − b3)W,h − 2(b1 − b3)(b3 − b2)(W,h),b3 .

Equality K2 = K3 gives

W,h = 2[(b1 − b2)(W,h),b2 +(b1 − b3)(W,h),b3 ],

which implies

K2 = K3 =−2(b1 − b2)(b1 − b3)[(W,h),b2 +(W,h),b3 ].

Due to the identity

(W,h),b1 +(W,h),b2 +(W,h),b3 =
1

4π

∮
f ′(φ)

f 3/2(φ)
dφ = 0,

we can write the last formula in the form

K2 = K3 = 2(b1 − b2)(b1 − b3)(W,h),b1 . (8.64)

With (8.62) and (8.64) we get one of the Whitham’s equations in the characteristic
form

D
Dt

(b2 + b3)+
W,h

(W,h),b1

(b2 + b3),x = 0,

which shows that b2 +b3 is the Riemann’s invariant. The other two equations for r2

and r3 in cyclic permutations can be established in the same manner.

Alternative Representation of Whitham’s Equations. Whitham’s equations in-
volve three unknown functions, namely c, λ , and h. In order to find the amplitude
modulation in particular cases such as wave of small up to moderate amplitudes or
trains of solitons one have to relate them to the amplitude a = b1 − b2. Then, using
Whitham’s equation in the characteristic form, different types of solution can be
found. Here and below we consider an alternative but equivalent version of system
of equations which directly involves the amplitude. For this purpose let us define
the amplitude in a slightly different way
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a = maxφ .

Note that the amplitude defined in this way is nothing else but b1. Using this defini-
tion, we rewrite the average Lagrangian as follows

L̄ =
k
√

2
π

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ−U(a,c,λ )+λβ+

1
2
(γ−cβ )β , (8.65)

where the energy level h has been replaced by U(a,c,λ ), namely h = U(a,c,λ ).
Observe that the integrand in the above integral vanishes at three zeros a, b2, b3 due
to

U(a,c,λ )−U(φ ,c,λ ) = (a−φ)(φ − b2)(φ − b3).

This circumstance will be used later when one differentiates the average Lagrangian.
The Euler-Lagrange’s equations associated with this average Lagrangian read

∂ L̄
∂a

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0,

∂ L̄
∂λ

= 0,
∂
∂ t
∂ L̄
∂γ

− ∂
∂x
∂ L̄
∂β

= 0.

(8.66)

The first equation is nothing else but the dispersion relation, whereas the third equa-
tion is equivalent to the constraint (8.53). To express these equations in terms of a,
c, and λ let us compute the derivative of L̄ from (8.65) with respect to a and λ

∂ L̄
∂a

=
∂U
∂a

(a,c,λ )[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1],

∂ L̄
∂λ

=
∂U
∂λ

(a,c,λ )[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1]

− k
√

2
2π

∫ a

b2

φdφ√
U(a,c,λ )−U(φ ,c,λ )

+β .

Thus, the dispersion relation and the constraint associated with λ follow at once

k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1 = 0, (8.67)

k
√

2
2π

∫ a

b2

φdφ√
U(a,c,λ )−U(φ ,c,λ )

−β = 0. (8.68)

Let us turn now to the equation of amplitude modulation. First, we compute the
derivative of L̄ with respect to ω
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∂ L̄
∂ω

=
∂U
∂c

(a,c,λ )
∂c
∂ω

[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1]

+

√
2

4π
F(a,c,λ )− β 2

2k
=

√
2

4π
F(a,c,λ )− β 2

2k
,

where

F(a,c,λ ) =
∫ a

b2

φ2dφ√
U(a,c,λ )−U(φ ,c,λ )

.

Differentiation of L̄ with respect to k gives

∂ L̄
∂k

=

√
2
π

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ

+
∂U
∂c

(a,c,λ )
∂c
∂k

[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1]

+
∂c
∂k

[
k
√

2
4π

∫ a

b2

φ2dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1
2
β 2]

=

√
2
π

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ − c

∂ L̄
∂ω

.

Plugging these derivatives into (8.66)2, we obtain the Euler-Lagrange’s equation
for θ

√
2

4π
[
∂F
∂a

(a,t + ca,x)+
∂F
∂c

(c,t + cc,x)+
∂F
∂λ

(λ,t + cλ,x)]+
√

2
4π

F(a,c,λ )c,x

− 1
2
[(
β 2

k
),t +(c

β 2

k
),x]−

√
2
π

∂
∂x

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ = 0.

Further, using the dispersion relation (8.67) and constraint (8.68), we compute the
derivative

J =
∂
∂x

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ

=
π

k
√

2

∂U
∂a

(a,c,λ )a,x − 1
2
π

k
√

2
a2c,x +

π
k
√

2
aλ,x − π

k
√

2
βλ,x +

1
4

F(a,c,λ )c,x.

Finally, substituting this expression into the above equation and dividing the latter
by

√
2/4π , we obtain the equation of amplitude modulation in terms of a, c and λ

∂F
∂a

(a,t + ca,x)+
∂F
∂c

(c,t + cc,x)+
∂F
∂λ

(λ,t + cλ,x)

+
π
√

2
k

{a2c,x − 2∂aU(a,c,λ )a,x + 2(β − a)λ,x− k[(
β 2

k
),t +(c

β 2

k
),x]}= 0.

(8.69)
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As indicated in the previous paragraph, the equation for χ will be automatically
satisfied if the parameters are chosen such that

γ = cβ −λ . (8.70)

The four equations (8.67)-(8.70) constitute a system of differential equations which
is equivalent to (8.59) plus the dispersion relation kW,h = 1.

Trains of Solitons. In the limit λ → 0 and h → 0, the wave packet becomes a train
of solitary waves. For the wave packet consisting of n solitons we know that the
solitons cease to interact at large time in such a way that each of them propagates
with a constant velocity along the line x/t = const. Based on this observation we
look for the solution a = a(x, t) of (8.69) using the following Ansatz for θ and χ

θ (x, t) = q(ξ (x, t)), χ(x, t) = p(ξ (x, t)), ξ (x, t) = x/t.

Differentiating θ (x, t) and χ(x, t) in accordance with these Ansatz, we find k, ω , c,
β , and γ in the form

k =
1
t

q′(ξ ), ω =
x
t2 q′(ξ ), c =

x
t
,

β =
1
t

p′(ξ ), γ =
x
t2 p′(ξ ).

It is easy to see that β and γ from the last equations satisfy (8.70), provided λ = 0.
Besides, the following equation

(
β 2

k
),t +(c

β 2

k
),x = 0

is fulfilled identically. Furthermore, if the amplitude is searched among functions of
the form

a(x, t) = g(ξ (x, t)),

the term ∂F
∂a (a,t + ca,x) vanishes, so (8.69) reduces to

g(ξ )2 − 2∂aU(g(ξ ),ξ ,0)g′(ξ ) = 0,

where ∂aU(a,c,λ ) = 3a2 − ca+λ . The last equation can also be rewritten as

g(ξ )2 − (6g(ξ )2 − 2ξg(ξ ))g′(ξ ) = 0,

which is equivalent to

g(ξ )− (6g(ξ )− 2ξ )g′(ξ ) = 0. (8.71)

General solution of (8.71) contains one constant of integration that should be de-
termined from the dispersion relation. In the following we shall guess a particular
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solution of (8.71) and prove its validity by verifying the fulfillment of dispersion re-
lation at large time. Looking at this equation, we see that one of its possible solutions
is the linear function

g(ξ ) =C1ξ +C2.

Substituting this guess into (8.71) and equating the coefficient of first power of ξ
and the free one to zero, we find

C1 = 1/2, C2 = 0.

Thus, a simple particular solution of (8.69) reads

a(x, t) =
x
2t
. (8.72)

To see the fulfillment of the dispersion relation at large time we rewrite (8.67) in an
equivalent form

k =
π
√
(a− b2)/2
mK(m)

, m =

√
a− b2

a− b3
,

where K(m) is the complete elliptic integral. In the limit λ → 0, h → 0, the roots b2

and b3 go to 0, so m → 1. Provided the derivative q′(x/t) is finite, the left- and right-
hand sides of the dispersion relation tend to 0 as t → ∞, so the dispersion relation is
satisfied asymptotically at large time.

Recalling that a soliton of amplitude a moves with the velocity 2a, one can easily
recognize that (8.72) represents a large-time asymptotic envelope of a sequence of
solitons each retaining a constant amplitude and moving on the path x = 2at as
shown in Fig. 8.11. Another way of obtaining this amplitude modulation of soliton
solution is to derive the system of equations

k̄,t +(2ak̄),x = 0, a,t + 2aa,x = 0, k̄ =
k

2π
(8.73)

directly from the conservation laws of the KdV equation and integrate it. Note that,
due to the nonlinearity and hyperbolicity of the system (8.73), the shock wave will
develop sooner or later which violates the amplitude modulation. However, in this
case equations (8.73) can be used to justify the jump conditions at the shock waves
(see exercise 8.12).

Thus, we are now at the end of these lectures. Before closing, let us summarize
shortly. Looking back, one sees that we have learned a lot of things. Among them,
we would put on the first place Hamilton’s variational principle of least action and
its generalizations for the derivation of the equations of motion. We have studied
also various methods of solving these equations and finding laws of behavior of the
solutions. Some of the numerical methods, in particular finite element method, were
not touched at all. But fortunately there are other excellent courses where one can
learn those methods (see, for instance, [41, 55]). One thing is for sure: with numer-
ical methods alone one can hardly establish any behavioral law for the solutions.
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Fig. 8.11 A train of solitons (bold line) and the amplitude modulation (dashed line): a) at
small time, b) at large time

To establish such laws, which are often quite useful in engineering applications,
analytical skills have to be trained and cultivated. For those problems containing
small parameters, the variational-asymptotic method turns out quite effective, and it
is hoped that this course has helped students a little bit in mastering it. Last but not
least, one should not forget about the exercises. Just remember “Übung macht den
Meister” (practice makes perfect), as Germans say.

8.6 Exercises

EXERCISE 8.1. Use the identities for the Jacobian elliptic functions sn, cn, and dn
given in Section 5.1 to check that ϕ(ξ ) = acn2(

√
b/2ξ ,a/b), with ξ = x− ct, is

the periodic solution of the KdV equation (in this case b1 = a, b2 = 0, b3 = a− b).

Solution. In the special case

b1 = a, b2 = 0, b3 = a− b,

where a and b > a are two real and positive numbers, the first integral for the peri-
odic solution of the KdV equation reduces to

ϕ ′2 = 2(a−ϕ)ϕ(ϕ+ b− a).

Let us check that
ϕ(ξ ) = acn2(

√
b/2ξ ,a/b)

satisfies this equation. Differentiating ϕ with respect to ξ and using the formulas
for the Jacobian elliptic functions sn, cn, and dn given in Section 5.1, we get

ϕ ′ =−2a
√

b/2cn(
√

b/2ξ ,a/b)sn(
√

b/2ξ ,a/b)dn(
√

b/2ξ ,a/b).

Squaring both sides of this formula and using the identities sn2 = 1−cn2 and dn2 =
1−m+mcn2, with m = a/b, one can easily show that ϕ(ξ ) = acn2(

√
b/2ξ ,a/b)

satisfies the above equation.
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EXERCISE 8.2. Show that

u(x, t) = 4arctaneγ(x−ct),

with γ = 1/
√

1− c2 is the soliton solution of the Sine-Gordon equation.

Solution. Consider the Sine-Gordon equation

u,tt − u,xx + sinu = 0.

We look for the soliton solution in the form

u(x, t) = ϕ(x− ct),

with c being a constant. Substitution in the above equation gives

(c2 − 1)ϕ ′′+ sinϕ = 0,

where prime denotes the derivative with respect to ξ = x− ct. The last equation can
be presented in the form

mϕ ′′ −U ′(ϕ) = 0,

with
m = 1− c2, U(ϕ) = 1− cosϕ .

This resembles the equation of motion of mass-spring oscillator with a mass m =
1− c2 and a nonlinear restoring force derivable from the potential energy −U(ϕ).
The first integral is

1
2

mϕ ′2 −U(ϕ) = h.

If ϕ and its first derivative tend to zero as ξ →±∞, then h = 0. In this case

ϕ ′ =
2√
m

sin(ϕ/2).

Integrating this equation by separating the variables ξ and ϕ , we obtain

√
m ln[tan(ϕ/4)] = ξ , (8.74)

and, thus,
u(x, t) = ϕ(ξ ) = 4arctaneγ(x−ct).

EXERCISE 8.3. Use the conservation law of the KdV equation

u,t +(3u2 + u,xx),x = 0

to show that
I−1 =

∫ ∞

−∞
udx
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is the first integral. Show that the conservation laws of the KdV equation for I0 and
I1 are

(u2),t +(4u3 + 2uu,xx− u2
,x),x = 0,

(u3 − 1
2

u2
,x),t +(

9
2

u4 + 3u2u,xx − 6uu2
,x− u,xu,xxx +

1
2

u2
,xx),x = 0.

Solution. It is easy to see that the equation

u,t +(3u2 + u,xx),x = 0

follows at once from the KdV equation. Integrating this equation over x from −∞ to
∞ and taking into account the behavior of the solution at infinity, we obtain

d
dt

∫ ∞

−∞
udx = 0,

so I−1 is conserved. Differentiating the second equation, we have

2uu,t + 12u2u,x + 2u,xu,xx + 2uu,xxx − 2u,xu,xx = 0,

and it is again the consequence of the KdV equation. Integrating this conservation
law over x from −∞ to ∞, we can establish that I0 is conserved. To show that the
third conservation law also follows from the KdV equation, we differentiate the
expressions in the brackets to obtain

3u2u,t − u,xu,xt + 18u3u,x + 6uu,xu,xx + 3u2u,xxx

− 6u3
,x− 12uu,xu,xx − u,xxu,xxx − u,xu,xxxx + u,xxu,xxx = 0.

The underlined terms represent the product of u,x with the derivative of the KdV
equation with respect to x, taken with minus sign, while the remaining terms give
the product of 3u2 with the KdV equation. So, the third conservation law is also the
consequence of the KdV equation, and hence, I1 is conserved.

EXERCISE 8.4. With the Lax’s pair

Lψ = ψ,xx + u(x, t)ψ , Aψ = (γ+ u,x)ψ− (4λ + 2u)ψ,x,

show that the Lax equation L,t +[L,A] = 0 (which expresses the compatibility con-
dition between Lψ = λψ and ψ,t = Aψ) is satisfied if and only if the KdV equation
is fulfilled.

Solution. As shown in Section 8.2, the Lax equation is fulfilled if and only if λ,t = 0.
But if λ,t = 0, then the differentiation of the equation ψ,xx + uψ = λψ with respect
to t yields

ψ,xxt + uψ,t + u,tψ = λψ,t .

Replacing ψ,t in this equation by Aψ = (γ+ u,x)ψ− (4λ + 2u)ψ,x, we obtain
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ψ,xxt = [(λ − u)(γ+ u,x)− u,t ]ψ− (λ − u)(4λ + 2u)ψ,x.

On the other side, if we differentiate the evolution equation ψ,t = Aψ with respect
to x, then

ψ,tx = (γ+ u,x)ψ,x + u,xxψ− (4λ + 2u)ψ,xx − 2u,xψ,x.

Replacing ψ,xx by (λ − u)ψ , we obtain

ψ,tx = (γ+ u,x)ψ,x + u,xxψ− (4λ + 2u)(λ − u)ψ− 2u,xψ,x.

Differentiating this again with respect to x with the use of the condition ψ ,xx=
(λ − u)ψ leads to

ψ,txx = [(γ+ u,x)(λ − u)+ u,xxx+ 6uu,x]ψ− (λ − u)(4λ + 2u)ψ,x.

Thus, the two equations for ψ,xxt and ψ,txx are compatible (ψ,xxt = ψ,txx) if and only
if u satisfies KdV equation.

EXERCISE 8.5. Consider two linear equations

v,x = Xv, v,t = Tv,

where v is an n-dimensional vector and X and T are n× n matrices. Provided these
equations are compatible, that is v,xt = v,tx, show that X and T satisfy

X,t −T,x +[X,T] = 0.

The pair X and T is similar to Lax’s pair L and A, and the last equation may lead to
various interesting equations of mathematical physics [1].

Solution. Let us differentiate the first equation with respect to t

v,xt = X,tv+Xv,t .

Replacing v,t by Tv in accordance with the second equation, we obtain

v,xt = (X,t +XT)v.

Analogously, the differentiation of the second equation with respect to x leads to

v,tx = (T,x +TX)v.

Thus, the above equations are compatible (v,xt = v,tx) if

X,t −T,x +[X,T] = 0.

EXERCISE 8.6. Consider the two-soliton solution

u(x, t) = 12
3+ 4cosh(2x− 8t)+ cosh(4x− 64t)
[3cosh(x− 28t)+ cosh(3x− 36t)]2

.
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Fig. 8.12 Two solitons before, during, and after collision

Plot this function for the time instants before, during, and after the collision. Observe
the behavior of the amplitudes and phases.

Solution. After opening a notebook in Mathematica we first define function u(x, t)
given above representing the two-soliton solution. Then, by typing the following
command

Plot[u[x, -0.5], {x,−10,10}, PlotRange → All] ,
we plot this function at time instant t =−0.5. Doing the same for the time instants
t = −0.1 and t = 0.5, we obtain the sequence of graphs representing two solitons
moving to the right before, during, and after collision as shown in Fig. 8.12. One can
observe that the solitons maintain their original shapes after the collision. The only
change is the phase shift. The graph of this function in the (x, t)-plane was shown in
Fig. 8.6.

EXERCISE 8.7. Find the average Lagrangian by solving the minimization problem

L̄ =
1

2π
min
ψ1,ψ2

∫ 2π

0
[
1
2
(ω2 − k2)(ψ2

1,θ +ψ
2
2,θ )−U(ψ1,ψ2)]dθ ,
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where

U(ψ1,ψ2) =
1
2
[ψ2

1 +
α
2
ψ4

1 +ψ
2
2 +

α
2
ψ4

2 +
β
2
(ψ2 −ψ1)

4],

among 2π-periodic functions for which ψ2 = cψ1.

Solution. Let ψ1 = ψ . Substitute the relation ψ2 = cψ (which describes the similar
normal mode) into the above variational problem for the average Lagrangian, we
reduce it to

L̄ =
1

2π
min

maxψ=a

∫ 2π

0
[
1
2
(ω2 − k2)(1+ c2)ψ2

,θ −U1(ψ ,c)]dθ ,

where

U1(ψ ,c) =
1
2
[(1+ c2)ψ2 +

α
2
(1+ c4)ψ4 +

β
2
(1− c)4ψ4].

Let prime denote the derivative with respect to θ . We use the first integral

1
2
(ω2 − k2)(1+ c2)ψ ′2 +U1(ψ ,c) =U1(a,c) = h

to express L̄ in the form

L̄ =
1

2π

∫ 2π

0
(ω2 − k2)(1+ c2)ψ ′2 dθ − h.

Changing the variable θ → ψ , we obtain finally

L̄ =
1

2π
(ω2 − k2)(1+ c2)

∮
ψ ′ dψ− h

=
1

2π

√
2(ω2 − k2)(1+ c2)

∮ √
h−U1(ψ ,c)dψ− h.

The contour integral in this formula denotes the integral over a complete oscillation
of ψ from b, with U1(b,c) = U1(a,c), up to a and back, so it is equal to twice the
integral from b to a because the sign of the square root has to be changed appro-
priately in the two parts of the contour. This integral may also be interpreted as the
contour integral around a cut from b to a in the complex ψ-plane, where ψ plays
the role of the variable of integration.

EXERCISE 8.8. For the average Lagrange function

L̄ =
ω
2π

∫ T

0
pq̇dt − h =

ω
2π

∮
p(q,h,λ )dq− h

of an oscillator depending on the slowly changing parameter λ show that ∂ L̄/∂h= 0
coincides with the amplitude-frequency equation.

Solution. We use the conservation of energy
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1
2m

p2 +U(q,λ ) = h

to express the impulse p in terms of q

p =
√

2m
√

h−U(q,λ ).

Substitute this into the formula for the average Lagrange function to obtain

L̄ =
ω
2π

√
2m

∮ √
h−U(q,λ )dq− h.

Let us differentiate this average Lagrange function with respect to h

∂ L̄
∂h

=
ω
2π

√
m
2

∮
dq√

h−U(q,λ )
− 1.

Thus, the equation L̄,h = 0 is equivalent to

∮
dq√

2/m
√

h−U(q,λ )
=

2π
ω

= T.

The last equation is nothing else but the amplitude-frequency (or amplitude-period)
relation; cf. (5.3).

EXERCISE 8.9. Show that the Sine-Gordon equation in cone coordinates takes the
form

u,XT = sinu.

Develop the theory of slope modulation for this equation.

Solution. Using the cone-coordinates (8.48), we can establish, in our case, the fol-
lowing chain rule of differentiation

∂
∂ t

=
∂
∂X

∂X
∂ t

+
∂
∂T

∂T
∂ t

=
1
2
(
∂
∂X

− ∂
∂T

),

∂
∂x

=
∂
∂X

∂X
∂x

+
∂
∂T

∂T
∂ t

=
1
2
(
∂
∂X

+
∂
∂T

).

Then the second derivatives follow

∂ 2

∂ t2 =
1
4
(
∂ 2

∂X2 − 2
∂ 2

∂X∂T
+
∂ 2

∂T 2 ),
∂ 2

∂x2 =
1
4
(
∂ 2

∂X2 + 2
∂ 2

∂X∂T
+
∂ 2

∂T 2 ).

Thus, the left-hand side of Sine-Gordon can be replaced by

(
∂ 2

∂ t2 − ∂ 2

∂x2 )u =− ∂ 2

∂X∂T
u,

and consequently, the Sine-Gordon equation in cone coordinates reads
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−u,XT + sinu = 0 ⇒ u,XT = sinu.

The strip problem associated with this form of Sine-Gordon equation is stated as
follows: find the extremal of the functional

∫ 2π

0
[
1
2

kωψ2
,θ − (1− cosψ)]dθ (8.75)

among functions ψ(θ ) satisfying

ψ(2π) = ψ(0)+ 2π , ψ,θ (2π) = ψ,θ (0). (8.76)

The maximal slope of solution is defined as before: p = max |ψ,θ |, with p being an
arbitrary real and positive number. The construction of average Lagrangian as well
as the associated functional has been discussed in Section 8.4. However, there are
two modifications. Firstly, the first integral should read now

1
2

mψ2
,θ +(1− cosψ) = h, m = kω .

The phase portrait is shown in Fig. 8.13, where it can be seen that the maximal slope
is achieved at ψ = 0. This implies mp2/2 = h. Secondly, the average Lagrangian
need be slightly modified as follows

L̄(p,k,ω) =
√

2m
2π

f (h)− h,

�2 Π �Π 0 Π 2 Π
�4

�2

0

2

4

�2 Π �Π 0 Π 2 Π

�4

�2

0

2

4

Fig. 8.13 Phase portrait associated with the strip problem with m = 1
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where f (h) is the function expressed in terms of the complete elliptic integral.

f (h) =
∫ 2π

0

√
h− (1− cosψ)dψ .

The latter is nothing else but the time required for a pendulum with mass m = 2 and
unit length to complete its full circular motion in the gravitational field. Note that the
average Lagrangian does not change its form compared to (8.38), so the dispersion
relation remains unchanged in its form. To derive the equation of slope modulation
let us compute the derivatives

∂ L̄
∂k

=

√
2

2π
m,k

2
√

m
f (h)+ (

√
2m

2π
f ′(h)− 1)h,k =

√
2

4π
ω√
kω

f (h) =

√
2

4π
√

c f (h),

∂ L̄
∂ω

=

√
2

4π
m,ω

2
√

m
f (h)+ (

√
2m

2π
f ′(h)− 1)h,ω =

√
2

4π
k√
kω

f (h) =

√
2

4π
1√
c

f (h),

where c = ω/k and the dispersion relation (8.38) has been used in two steps. Next,
we compute their derivatives with respect to X and T

∂
∂X

∂ L̄
∂k

=

√
2

4π
[

c,X
2
√

c
f (h)+

√
c

2
f ′(h)(k,Xω+ω,Xk)p2 +

√
c

2
f ′(h)m(p2),X ],

∂
∂T

∂ L̄
∂ω

=

√
2

4π
[− c,T

2c
√

c
f (h)+

1
2
√

c
f ′(h)(k,Tω+ω,T k)p2 +

1
2
√

c
f ′(h)m(p2),T ].

Subtracting the second equation from the first one and dividing the result by the
common factor

√
2/4π , we get, after some algebra,

f (h)
2c
√

c
(c,T + cc,X)+

f ′(h)
2
√

c
q(k,X

ω2

k
+2ω,Xω−ω,T k)+

f ′(h)
2
√

c
(ω2q,X − kωq,T ) = 0,

where the square of maximal slope is denoted by q = p2.
We shall find only a particular solution to this equation using the Ansatz for the

phase as before: θ (X ,T ) = g(ξ (X ,T )), ξ (X ,T ) = X/T . With this Ansatz the above
equation reduces to

4[Tg′(ξ )+Xg′′(ξ )]q(X ,T )+Tg′(ξ )(Xq,X −Tq,T ) = 0.

The last equation is the partial differential equation of first order which can be solved
by the method of characteristics and whose solution is given by

q(X ,T ) =W (XT )2 T 4

g′(ξ (X ,T ))2 , ξ (X ,T ) =
X
T
,

and thus,

p(X ,T ) =
√

q(X ,T ) =W (XT )
T 2

g′(ξ (X ,T ))
. (8.77)
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The unknown function W (XT ) should be determined from the expression for h in
the limit h → 2, which corresponds to the separatrix in the phase portrait

h =
1
2

mp2 =
1
2

XT ×W (XT )2 ⇒ W (XT ) =
2√
XT

.

The final asymptotic formula for the slope reads

p(X ,T ) =
2T

√
T√|X |g′(ξ (X ,T ))

.

EXERCISE 8.10. Use the analytical soliton solution for the Sine-Gordon equation
given in cone coordinates by (8.49) to simulate the 5-soliton solution and compare
it with the asymptotic formula 2

√
T/|X | at large time.

Solution. We use formula (8.49) representing the exact analytical solution of the
Sine-Gordon equation. The Mathematica code which enables one to simulate this
solution is reproduced below.

createDelta�Η_, c0_� :� Block	�matrixC, Γ, num, m, k, n�, num � Length�Η�;

Γ � Table	Exp	��Η�k� � Η�n�� X �
T

4

1

Η�k�
�

1

Η�n�
�, �k, num�, �n, num��;

matrixC � Table�Null, �k, num�, �n, num��;
For	k � 1, k � num, k��,

For	n � 1, n � k, n��,

matrixC�k, n� ��
m�1

num
c0�m� c0�k� c0�n�

Γ�k, m� Γ�m, n�
�Η�k� � Η�m�� �Η�m� � Η�n��

;

matrixC�n, k� � matrixC�k, n���;
Return�Det�IdentityMatrix�num� � matrixC��;
�;

� � createDelta�Table�k, �k, 5��, Table�1, �5���;

du � Simplify	4
D��, �X, 2�� � � ��X��2

�2
� ;

To explain this code let us first consider elements of matrix C = AA∗. Since the
eigenvalues are purely imaginary, we have

ζk − ζ ∗n = i(ηk +ηn).

Therefore, function ck(T ) and, consequently, its conjugate, turn out to be real func-
tions

ck(T ) = ck0 exp(−T/2ηk), ck(T )
∗ = ck(T ).

It is now easy to write the elements of matrix A and A∗
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Akn =− i
√

ck0cn0

ηk +ηn
γkn(X ,T ), A∗

kn =
i
√

ck0cn0

ηk +ηn
γkn(X ,T ),

γkn(X ,T ) = exp

[
−(ηk +ηn)X − T

4
(

1
ηk

+
1
ηn

)

]
.

Thus,

Ckn =
N

∑
m=1

AkmA∗
mn =

N

∑
m=1

cm0
√

ck0cn0
γkm(X ,T )γmn(X ,T )
(ηk +ηm)(ηm +ηn)

.

Denoting Δ = det[I+C], we differentiate the right-hand side of the expression for
the slope solution to get

∂ 2

∂X2 lnΔ =
Δ∂ 2

XΔ − (∂XΔ)2

Δ2 ,

which implies further

∂u
∂X

= 2

√
Δ∂ 2

XΔ − (∂XΔ)2

Δ
.

The first piece of the above code is used to generate the determinant Δ = det[I+C],
while the next one is aimed at computing the slope ∂u/∂X . The graph of ∂u/∂X
is plotted with the usual Plot Command. Using this Mathematica code, one can
reproduce Fig. 8.10 shown at the end of Section 8.4.

EXERCISE 8.11. Prove the identities K1 = 0, K2 = K3.

Solution. Since K1 is given as an integral over a closed contour, K1 vanishes if its
integrand is a full differential of a function. To show that this is the case let us
compute the following derivative

D1 =
d

dφ

[
2

√
(φ − b2)(φ − b3)

b1 −φ

]

=

√
φ − b3

(φ − b2)(b1 −φ) +
√

φ − b2

(φ − b3)(b1 −φ) +
1

b1 −φ

√
(φ − b2)(φ − b3)

b1 −φ

=
1

φ − b1

√
2

f (φ)
[(φ − b3)(φ − b1)+ (φ − b2)(φ − b1)− (φ − b2)(φ − b3)]

=

√
2(φ2 − 2b1φ + b1b2 + b1b3 − b2b3)

(φ − b1)
√

f (φ)
,

where f (φ) is equal to

f (φ) = 2(b1 −φ)(φ − b2)(φ − b3).
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We see that D1/
√

2 is exactly the integrand standing in the integral of K1, which
implies that K1 vanishes.

Now, we prove that the difference K2−K3 also vanishes using the same argument.
Subtracting K3 from K2, we obtain

K2 −K3 =
b2 − b3

4π

∮ φ2 − 2b1φ + b1b2 + b1b3 − b2b3

(φ − b2)(φ − b3)
√

f (φ)
dφ .

Then we consider the following derivative

D2 =
d

dφ

[√
2(b1 −φ)

(φ − b2)(φ − b3)

]

=− 1√
f (φ)

− b1 −φ
(φ − b2)

√
f (φ)

− b1 −φ
(φ − b3)

√
f (φ)

.

=− (φ − b2)(φ − b3)+ (b1−φ)(φ − b2)+ (b1 −φ)(φ − b3)

(φ − b2)(φ − b3)
√

f (φ)

=
φ2 − 2b1φ + b1b2 + b1b3 − b2b3

(φ − b2)(φ − b3)
√

f (φ)
.

Thus, the integrand in the above formula for K2 −K3 is again the full differential
and consequently, the integral vanishes.

EXERCISE 8.12. Derive equations (8.73) directly from the conservation law of
KdV equation

u,t +(3u2+ u,xx),x = 0.

Find its solution.

Solution. Let us average the above equation over a unit length (having k̄ solitons) to
obtain

ū,t + 3(u2),x = 0.

Since there are k̄ solitons in a unit length, the average values should be

ū = k̄
∫ ∞

−∞
u1dx, u2 = k̄

∫ ∞

−∞
u2

1dx,

where u1 is a single soliton solution having the amplitude a, and the integrals are
computed approximately by extending the unit interval to the whole real axis. Now,
for the single soliton given by

u1 = asech2[
√

a/2(x− 2at)],

the integration yields

ū = 2
√

2 k̄
√

a, u2 =
4
√

2
3

k̄a3/2.
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The average equation becomes

(k̄
√

a),t +(2k̄a3/2),x = 0.

Keeping in mind that the phase velocity c, in case of solitons, is c = 2a, we obtain
from the kinematic condition k̄,t +(ck̄),x = 0 the following equation

k̄,t +(2ak̄),x = 0.

We rewrite the above equation as (k̄
√

a),t +(ck̄
√

a),x = 0, expand the derivatives
and factorize appropriately to obtain

√
a[k̄,t +(ck̄),x]+

k̄
2
√

a
(a,t + ca,x) = 0.

The second equation of (8.73) follows from the above equation plus the consistency
condition.

In this approximation the system is not strictly hyperbolic, but a may be found
by integration along the characteristics dx/dt = 2a. Along this curve, the amplitude
a remains constant, due to

da
dt

= a,t +
dx
dt

a,x = 0.

Thus,
dx
dt

= 2a = 2C ⇒ x
t
= 2C,

where C is a constant characterizing such a curve. By varying this constant, one can
obtain the solution a = a(x, t) spanned in the whole plane (x, t)

a(x, t) =
x
2t
.

With this solution the first equation, after some algebra, is reduced to

∂t(tk̄)+ xk̄,x = 0.

Changing the unknown function q = tk̄, we obtain

q,t +
x
t

q,x = 0,

which admits a simple solution q(x, t) = f (x/t), where f is an arbitrary function.
Thus, the average number of solitons is

k̄ =
1
t

f (
x
t
).
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However, to achieve the full agreement, solution a(x, t) = x/2t has to be cut off
at some leading solitary wave in the sequence. This is equivalent to posing jump
conditions on the shock waves. If we accept (8.73), the jump conditions have to be

−V [[k̄
√

a]]+ [[2k̄a3/2]] = 0,

−V [[k̄]]+ [[2ak̄]] = 0,

where V is the velocity of the discontinuity and [[·]] denotes the jump. A jump from
a = 0 to a nonzero value a(0) would therefore have V = 2a(0). This is the phase
velocity and the result indicates that the solution a(x, t) = x/2t may be cut off at a
leading solitary wave in the sequence.
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