
Chapter 7
Coupled Oscillators

This chapter deals with finite amplitude vibrations of coupled oscillators having two
or more degrees of freedom. As a rule, the governing equations are not integrable
and can be solved only by numerical integration. The numerical solutions have to
be visualized by the Poincaré map. For mechanical systems with weak coupling
the variational-asymptotic method is applicable. This enables one to study, among
others, the bifurcation of nonlinear normal modes, KAM-theory for coupled conser-
vative oscillators, and synchronization of the coupled self-excited oscillators.

7.1 Conservative Oscillators

Differential Equations of Motion. To begin with, let us consider some simple non-
linear coupled conservative oscillators.

EXAMPLE 7.1. Nonlinear mass-spring oscillators. Two equal masses m move hor-
izontally under the action of three springs with cubic nonlinearity (see Fig. 7.1).
Derive the equations of motion for these oscillators.

x1 x2

x1+ x13 (x2-x1)3 x2+ x23

Fig. 7.1 Coupled oscillators with nonlinear springs

Let x1 and x2 be the displacements from the equilibrium positions of the point-
masses and let x = (x1,x2). The kinetic energy of the masses is given by

K(ẋ) =
1
2

m(ẋ2
1 + ẋ2

2).

We assume that all springs are nonlinear, but the connecting spring differs from the
anchor springs. We write the potential energy of the springs in the form
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U(x) =
1
2

k[x2
1 +

α
2l2

0

x4
1 + x2

2 +
α

2l2
0

x4
2 +

β
2l2

0

(x2 − x1)
4].

Thus, Lagrange’s equations are

mẍ1 + kx1 + k
α
l2
0

x3
1 − k

β
l2
0

(x2 − x1)
3 = 0,

mẍ2 + kx2 + k
α
l2
0

x3
2 + k

β
l2
0

(x2 − x1)
3 = 0.

Dividing these equations by kl0 and introducing the dimensionless quantities

t̄ = ω0t, x̄i =
xi

l0
, i = 1,2,

where ω0 =
√

k/m, we rewrite them as (the bar is dropped)

ẍ1 + x1 +αx3
1 −β (x2 − x1)

3 = 0,

ẍ2 + x2 +αx3
2 +β (x2 − x1)

3 = 0.
(7.1)

EXAMPLE 7.2. A spring pendulum. A point mass m is attached to a linear spring
of stiffness k that is swinging in the vertical plane as shown in Fig. 7.2. Derive the
equations of motion for this pendulum.

m

g
O

l+x

Fig. 7.2 Spring pendulum

Denoting the elongation of the spring from the equilib-
rium length l by x, we write the kinetic and potential en-
ergies of the pendulum as

K(q, q̇) =
1
2

m[ẋ2 +(l+ x)2ϕ̇2],

U(q) =
1
2

kx2 +mg(l+ x)(1− cosϕ)−mgx,

where q = (x,ϕ). Lagrange’s equations read

mẍ+ kx−m(l+ x)ϕ̇2 −mgcosϕ = 0,

m(l + x)2ϕ̈+mg(l+ x)sinϕ+ 2m(l+ x)ẋϕ̇ = 0.

Dividing the first equation by m and the second one by m(l + x)2, we obtain

ẍ+ω2
2 x− (l+ x)ϕ̇2 − gcosϕ = 0,

ϕ̈+
gsinϕ+ 2ẋϕ̇

l + x
= 0,

where ω2
2 = k/m.

Note that the linearization of the above equations leads to uncoupled equations
describing two independent modes of vibrations: a spring mode with a frequency
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ω2 and a pendulum mode with a frequency ω1 =
√

g/l. However, when ω2 ≈ 2ω1

the two modes are coupled causing the energy transfer between them.

EXAMPLE 7.3. Chain of nonlinear mass-spring oscillators. A chain of points of
equal mass m connected by identical nonlinear springs is constrained to move in
the longitudinal direction (see Fig. 7.3). Derive the equation of motion.

uj-1
uj uj+1

m

Fig. 7.3 Chain of nonlinear mass-spring oscillators

Denoting the displacement of the point-mass j from the equilibrium position by
u j(t) we write down the kinetic energy of the chain

K(u̇) =
1
2

m∑
j

u̇2
j .

The potential energy of the chain is the sum of energies of the springs. Considering
the springs with cubic nonlinearity, we take the potential energy in the form

U(u) =
1
2

k∑
j

[(u j − u j−1)
2 +

α
2l2

0

(u j − u j−1)
4],

where l0 is the original length of the spring which is equal to the spacing between
the point-masses in equilibrium. Here we assume that the ends of the chain are fixed:
u0 = un+1 = 0. So, the chain has n degrees of freedom. Lagrange’s equations of this
chain read

mü j + k[(u j − u j−1)+
α
l2
0

(u j − u j−1)
3]− k[(u j+1 − u j)+

α
l2
0

(u j+1 − u j)
3] = 0

for all j = 1, . . . ,n. Introducing the dimensionless quantities

t̄ = ω0t, ū j =
u j

l0
,

where ω0 =
√

k/m, we rewrite these equations in the form (the bar is dropped)

ü j +(u j − u j−1)+α(u j − u j−1)
3 − (u j+1 − u j)−α(u j+1 − u j)

3 = 0.

Hamilton’s Equations. The equations of motion derived in the previous paragraph
are differential equations of second order. As a rule they are not integrable and can
be solved only by numerical integration. For this purpose it is more convenient to
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transform them from Lagrange’s to the equivalent Hamilton’s form.1 This transfor-
mation is quite straightforward. Let us do it in the most general case.

We take the differential of the Lagrange function as function of the generalized
coordinates q = (q1, . . . ,qn) and velocities q̇ = (q̇1, . . . , q̇n)

dL =
n

∑
j=1

(
∂L
∂q j

dq j +
∂L
∂ q̇ j

dq̇ j).

We introduce the generalized impulses as p = (p1, . . . , pn), where p j = ∂L/∂ q̇ j.
Then Lagrange’s equations becomes

ṗ j =
∂L
∂q j

.

Thus, the above differential can be written as

dL =
n

∑
j=1

(ṗ jdq j + p jdq̇ j).

Since the second term in the summand is equal to p jdq̇ j = d(p jq̇ j)− q̇ jd p j, we
present this equation in the form

d(
n

∑
j=1

p jq̇ j −L) =
n

∑
j=1

(− ṗ jdq j + q̇ jd p j). (7.2)

The expression in parentheses on the left-hand side represents energy of the sys-
tem; cf. (2.28). Expressing it in terms of the coordinates and impulses means doing
Legendre’s transform [5] of L(q, q̇) with respect to q̇. We call the result Hamilton
function

H(q, p) =
n

∑
j=1

p jq̇ j −L.

Equation (7.2) then implies

q̇ j =
∂H
∂ p j

, ṗ j =− ∂H
∂q j

, (7.3)

for all j = 1,2, . . . ,n. These are the equations of motion in Hamilton’s (or canoni-
cal) form. For any conservative mechanical system with n degrees of freedom this
system of 2n differential equations of first order replaces n differential equations of
second order. If the Hamilton function does not depend explicitly on time, then

1 Except the convenience for numerical integration Hamilton’s form of equations of motion
provides a number of advantages just as the representation of motion as a phase curve in
the phase space, the treatment of various theoretical questions of mechanics as well as the
links to physics and thermodynamics [5].
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d
dt

H =
n

∑
j=1

(
∂H
∂q j

q̇ j +
∂H
∂ p j

ṗ j) = 0,

so the conservation of the energy H(q, p) = E0 follows.
For the coupled oscillators in example 7.1 the dimensionless Hamilton’s function

reads

H(q, p) =
1
2
(p2

1 + p2
2)+

1
2
[q2

1 +
α
2

q4
1 + q2

2 +
α
2

q4
2 +

β
2
(q2 − q1)

4], (7.4)

where x1 = q1 and x2 = q2. Hamilton’s equations become

q̇1 = p1, ṗ1 =−q1 −αq3
1 +β (q2 − q1)

3,

q̇2 = p2, ṗ2 =−q2 −αq3
2 −β (q2 − q1)

3.
(7.5)

Phase Curves and Poincaré Map. Just as for single oscillators, the solutions of
Hamilton’s equations (7.3) for coupled oscillators may be drawn as phase curves
in the 2n-dimensional (q, p)-phase space. There is only one phase curve passing
through a given point of the phase space. Therefore, one may think of points in the
phase space as particles of some fluid which move in accordance with Hamilton’s
equations. This motion generates a flow with an interesting property that it conserves
volumes of the phase space (Liouville’s theorem). This means that if we draw all
phase curves that begin from points inside a region of volume V in the phase space
at time t = 0, then the end points of these phase curves at time t fill a region with the
same volume. Indeed, the velocity of this Hamilton’s flow, (q̇, ṗ), is divergent-free

div(q̇, ṗ) =
n

∑
j=1

(
∂ q̇ j

∂q j
+
∂ ṗ j

∂ p j

)
=

n

∑
j=1

(
∂ 2H
∂ p j∂q j

− ∂ 2H
∂q j∂ p j

)
= 0,

which implies Liouville’s theorem.
To see what the phase curves look like let us turn to example 7.1. Equations (7.5)

do not permit in general analytical solutions except perhaps, the case β = 0 for
which the oscillators become uncoupled. We analyze first this simple case. Since
now the oscillators are uncoupled, the energy of each of them is conserved

1
2

p2
j +

1
2

q2
j +

α
4

q4
j = E j0, j = 1,2.

This leads immediately to the solution in form of elliptic integrals obtained already
in Section 5.1

t = t0 ±
∫ q j

q j0

dx√
2E j0 − x2 − α

2 x4
.

Based on this solution we may express q j and p j as periodic functions of t with two
different periods



302 7 Coupled Oscillators

Tj = 2
∫ q jM

q jm

dx√
2E j0 − x2 − α

2 x4
.

Note that the periods Tj as well as the corresponding frequenciesω j = 2π/Tj depend
on the initial energies of the oscillators. It turns out that for integrable systems there
exist always angle-action variables (ϕ , I), with ϕ = (ϕ1, . . . ,ϕn) and I = (I1, . . . , In),
in terms of which the Hamilton function becomes independent of ϕ : H = H(I)
(see [5]). The solution of Hamilton’s equations

ϕ̇ j =
∂H
∂ I j

= ω j(I j), İ j =− ∂H
∂ϕ j

= 0

Fig. 7.4 A phase curve on torus

is quite simple in these variables: ϕ j =ω jt+ϕ j0 and
I j = const. For our uncoupled oscillators the action
variables I j are computed as follows

I j =
1

2π

∮
p jdq j,

while the angle variables ϕ j correspond to the angu-
lar times. Topologically, each phase curve can then
be regarded as a curve on a 2-D torus shown in
Fig. 7.4. If the frequency ratio ω2/ω1 is a rational
number, then the phase curves are closed orbits on

the torus corresponding to the periodic motions. If this ratio is irrational, the phase
curves wind around endlessly on the torus and correspond to the quasiperiodic mo-
tions (cf. the Lissajous figures in exercise 2.5). The tori are called invariant because
each phase curve starting on some torus stays there forever. By changing the energy
of one of the oscillators, we get the one-parameter family of invariant tori which fill
the whole three-dimensional energy level surface.

As soon as β �= 0 we expect that Hamilton’s equations of these coupled oscillators
become non-integrable. KAM theory which will be considered in Section 7.3 pre-
dicts that for sufficiently small β most of invariant tori, corresponding to irrational
frequency ratios and called non-resonant tori, survive this small disturbance: they
are just slightly deformed. The resonant tori and maybe some of the non-resonant
tori are destroyed by the disturbance, resulting in layers of chaotic motion and filling
the space between preserved tori. However, the volume of the chaotic motion and
destroyed tori tends to zero as β → 0 (see Section 7.3).

Thus, from what is said above it is clear that, for β �= 0, the only way to obtain
the solution is to do numerical integration. Assume that we have found by numerical
integration a particular solution of (7.5) satisfying the initial conditions q(0) = q0

and p(0) = p0. Then the question arises: how can we visualize the phase curve
in the four-dimensional phase space? One circumstance makes this visualization
easier: due to the energy conservation the phase curve must lie on the 3-D energy
level surface

H(q1,q2, p1, p2) = E0, (7.6)
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with E0 being the initial energy. However, it is still difficult for us to draw a curve
on a 3-D energy level surface given implicitly in this form. A great help came from
Poincaré, who introduced a fixed 2-D cut plane traverse to the flow. If we plot the
intersection of the phase curve with this plane, the generated map, called Poincaré
map, (cf. Fig. 6.8), enables one to follow the traces of the phase curve on this plane.

AB
C

Fig. 7.5 Poincaré map

The Poincaré map can be constructed numerically
as follows. First, we use the energy conservation to
find the initial velocity p1(0) from the randomly cho-
sen initial data for q1, q2, p2. Next, the numerical
integration generates trajectories lying on the three-
dimensional energy level surface. Finally, we pick out
points of intersection of trajectories crossing the cut
plane q1 = 0 with the positive velocity p1 > 0. In this
case the Poincaré section is defined by

Σ = {q1 = 0, p1 > 0}.

Note that an additional restriction on the sign of the ve-
locities at the intersecting points is posed. The reason
is that we want the Poincaré map to be orientation pre-
serving [20]. In Fig. 7.5 this is realized by counting only points A and C, but not
point B where the trajectory crosses the cut plane with a negative velocity.

Imposing condition (7.6) and q1 = 0 for the specific Hamilton’s function (7.4)
we obtain

p1 =±
√

2E0 − 1
2
(α+β )q4

2 − q2
2 − p2

2.

Together with (7.6) this defines the Poincaré map for the coupled mass-spring non-
linear oscillators. The points of the Poincaré map fill the interior of a region with
the boundary corresponding to the condition p1 = 0

2E0 =
1
2
(α+β )q4

2 + q2
2+ p2

2.

Numerical Simulations. Numerical simulations of the Poincaré maps require a
little bit more elaborated commands in Mathematica than those used in previous
Chapters to simulate the phase curves in the 2-D phase plane. We took here the code
originally written by E. Weisstein2 and slightly modified it to adapt to our particular
problem.

The Poincaré maps of the dynamical system (7.5) are shown in Fig. 7.6 for the
fixed energy level E0 = 0.4 and for α = 1 in two cases: a) β = 0.1 (left), and b)
β = 0.4 (right). Looking at these Poincaré maps we can recognize the qualitatively

2 This open source code, together with some explanations, can be found on the web-
site http://mathworld.wolfram.com/notebooks/DynamicalSystems/
SurfaceofSection.nb

http://mathworld.wolfram.com/notebooks/DynamicalSystems/SurfaceofSection.nb
http://mathworld.wolfram.com/notebooks/DynamicalSystems/SurfaceofSection.nb
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Fig. 7.6 Poincaré maps for E0 = 0.4 and α = 1: a) β = 0.1, b) β = 0.4

different behavior in case a) and b). In case b) there are two fixed points correspond-
ing to the periodic solutions3 with q2 = q1 and q2 =−q1. Such special periodic solu-
tions are called nonlinear normal modes. Both symmetric (q2 = q1) and antisymmet-
ric normal modes (q2 =−q1) are orbitally stable as they are surrounded by points of
intersections of trajectories on non-resonant invariant tori with the Poincaré section.
It turns out that the bifurcation occurs for β < 1/4. For these values of β the anti-
symmetric mode becomes unstable, whereas the two bifurcating modes are orbitally
stable. Note the closed loop starting and ending at the unstable saddle point and re-
sembling the separatrix in 2-D case (in fact, there are two such loops, but the second
one is difficult to observe as it is very near to the boundary curve of the plot). This
path is called a “homoclinic orbit” [49] and is formed by trajectories that approach
the saddle point after an infinite number of positive and negative iterations. The ho-
moclinic orbits are recognized as a mechanism for generation of chaotic motions in
weakly coupled oscillators.

It is interesting to note that this type of bifurcation for nonlinear coupled oscil-
lators is sensitive only to the ratio β/α = κ , called a coupling factor, as shown in
Fig. 7.7. In this case α = 0.1 while β = 0.01 and 0.04 so that the coupling factor
remains the same as in the previous simulations. In the next Section we will use
this fact to provide the asymptotic analysis of the variational problem containing
the small parameters α and β .

3 The proof of existence of at least n periodic solutions passing through each stable equilib-
rium state for conservative mechanical system having n degrees of freedom at any fixed
level of energy can be found in [34, 52].
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Fig. 7.7 Poincaré maps for E0 = 0.4 and α = 0.1: a) β = 0.01, b) β = 0.04

7.2 Bifurcation of Nonlinear Normal Modes

This Section analyzes the bifurcation of nonlinear normal modes observed by
numerical integration in the previous Section with the help of the variational-
asymptotic method.

Nonlinear Normal Modes and the Modal Equation. Let us turn back to La-
grange’s equations (7.1) for the nonlinear coupled oscillators and rewrite them in
the form

ẍ =−∂U
∂x

, ÿ =−∂U
∂y

, (7.7)

where x = x1, y = x2, and U(x,y) is the potential energy. As we know, the energy of
this system is conserved

1
2
(ẋ2 + ẏ2)+U(x,y) = E0.

We seek the nonlinear normal modes as periodic solutions by assuming y as a func-
tion of x, without direct reference to time t, and try to eliminate t in these equations.
Using the chain rule

ẏ = y′ẋ, ÿ = y′′ẋ2 + y′ẍ,

with prime denoting the derivative of y with respect to x, and substituting this into
the second of (7.7) to get

−∂U
∂y

= y′′ẋ2 − y′
∂U
∂x

. (7.8)
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Next, we substitute ẏ into the energy conservation

1
2

ẋ2(1+ y′2)+U(x,y) = E0.

Solving this equation with respect to ẋ and substituting into (7.8), we obtain finally

2(E0 −U)y′′+(1+ y′2)(
∂U
∂y

− y′
∂U
∂x

) = 0. (7.9)

This is the differential equation to determine the nonlinear normal modes, called a
modal equation.

The system of coupled oscillators in example 7.1, due to its symmetry, admits
quite simple nonlinear normal modes for which y = cx. Such normal modes are
called similar normal modes. Indeed, substituting this form of solution into (7.9)
and keeping in mind that

U(x,y) =
1
2
[x2 +

α
2

x4 + y2 +
α
2

y4 +
β
2
(y− x)4],

we obtain

∂U
∂y

− y′
∂U
∂x

= cx+αc3x3 +β (c− 1)3x3 − c[x+αx3−βx3(c− 1)3] = 0.

-8 -6 -4 -2 0

0.1

0.2

0.3

0.4

0.5

c




Fig. 7.8 Bifurcation of normal modes

A simple algebra reduces this to

(c− 1)(c+ 1)[c+κ(c−1)2] = 0,

where κ = β/α is the coupling factor intro-
duced previously. This algebraic equation has
four roots

c = 1,−1,1− 1
2κ

± 1
κ
√

1/4−κ. (7.10)

The last two roots are real only if κ < 1/4.
Thus, for κ < 1/4 there are two additional
normal modes bifurcated out of the antisym-
metric mode y = −x (vibrations in counter-

phases) at κ = 1/4 as shown in Fig. 7.8, where the bold line denotes the stable
modes and the dashed line the unstable one. This confirms also our observation
with the Poincaré maps obtained previously by numerical integration.

Variational-Asymptotic Method. Since the normal symmetric and antisymmetric
modes and the bifurcating modes found above are sensitive only to the coupling
factor κ , we will consider the following variational problem: find the extremal of
the functional
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I[x(t),y(t)] =
1
2

∫ t1

t0
[ẋ2 + ẏ2 − x2 − ε

2
x4 − y2 − ε

2
y4 − εκ

2
(y− x)4]dt,

where ε is a small parameter and t0 and t1 are arbitrary time instants. We put for
short t0 = 0 and t1 = T . This action functional describes the coupled oscillators with
two weakly nonlinear anchor springs and the weak coupling through the connecting
nonlinear spring. It is convenient to change to the normal coordinates

u =
1
2
(x+ y), v =

1
2
(x− y).

Then the action functional becomes

I[u(t),v(t)] =
∫ T

0
[u̇2 + v̇2 − u2 − v2 − ε

4
(u+ v)4 − ε

4
(u− v)4− 4εκv4]dt. (7.11)

To apply the variational-asymptotic method we put at the first step ε = 0 to obtain

I0[u(t),v(t)] =
∫ T

0
(u̇2 + v̇2 − u2 − v2)dt.

This is the action functional describing vibrations of two uncoupled identical har-
monic oscillators. The extremal is

u0 = A1 cost +B1 sin t, v0 = A2 cost +B2 sin t, (7.12)

for which the frequencies coincide so that the period T is 2π as expected.
As soon as ε �= 0 the coefficients A1, B1, A2, B2 are becoming slightly dependent

on time. Besides, taken for granted the bifurcation of modes for κ near 1/4, we set
κ = 1/4− μ and look for the extremal at the second step in the two-timing fashion

u = A1(η)cos t +B1(η)sin t + u1(t,η),
v = A2(η)cos t +B2(η)sin t + v1(t,η),

where η = εt is the slow time. We assume that u1(t,η) and v1(t,η) are 2π-periodic
functions with respect to the fast time t and are much smaller than u0 and v0 in the
asymptotic sense. Note that the asymptotically principal terms of the time deriva-
tives of u and v are

u̇ = u0,t + εu0,η + u1,t , v̇ = v0,t + εv0,η+ v1,t ,

where the comma in indices denotes the partial derivatives. Substituting u, v and
their derivatives into functional (7.11) and keeping the principal terms of u1, v1 and
the principal cross terms between u0, v0 and u1, v1 we have
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I1[u1(t),v1(t)] =
∫ 2π

0
[u2

1,t + v2
1,t + 2u0,tu1,t + 2εu0,ηu1,t + 2v0,tv1,t + 2εv0,ηv1,t

− (u2
1 + v2

1 + 2u0u1 + 2v0v1)− ε(2u3
0u1 + 6u0v2

0u1 + 6u2
0v0v1

+ 2v3
0v1 + 16κv3

0v1)]dt.

Integrating the third up to sixth terms by parts using the periodicity of u1 and v1

with respect to t, we see that the underlined terms gives −4ε(u0,tηu1 + v0,tηv1).
Then, substituting the expressions for u0 and v0 into the functional and reducing the
products of sine and cosine to the sum of harmonic functions,4 we get the resonant
terms which should be removed in order to be consistent with the above asymptotic
expansion. The equations obtained for A1, B1, A2, B2 read

A1,η =
3
8

B1(A
2
1 +B2

1)+
3
8

B1(A
2
2 +B2

2)+
3
4

B2(A1A2 +B1B2),

B1,η = −3
8

A1(A
2
1 +B2

1)−
3
8

A1(A
2
2 +B2

2)−
3
4

A2(A1A2 +B1B2),

A2,η = (
3
8
+ 3κ)B2(A

2
2 +B2

2)+
3
8

B2(A
2
1 +B2

1)+
3
4

B1(A1A2 +B1B2),

B2,η = −(
3
8
+ 3κ)A2(A

2
2 +B2

2)−
3
8

A2(A
2
1 +B2

1)−
3
4

A1(A1A2 +B1B2).

The above equations can still be simplified in terms of the variables a1, a2, and ϕ
defined by

A1 = a1 cosφ1, B1 = a1 sinφ1,

A2 = a2 cosφ2, B2 = a2 sinφ2, (7.13)

ϕ = φ2 −φ1.

According to these formulas a1 and a2 are the amplitudes of u and v, respectively,
while ϕ is the phase difference modulo π . In terms of these new variables the equa-
tions of slow flow become (see exercise 7.7)

a1,η =
3
8

a1a2
2 sin 2ϕ ,

a2,η = −3
8

a2
1a2 sin2ϕ , (7.14)

ϕ,η = −3
8
(a2

1 + a2
2)+ 3μa2

2+
3
8
(a2

2 − a2
1)cos2ϕ .

The Slow Flow. It follows from the first two equations of (7.14) that

da1

da2
=−a2

a1
⇒ a2

1 + a2
2 = ρ

2,

4 Again, this can be done with the TrigReduce command in Mathematica.
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which means the conservation of the energy at this approximation, since terms of
the order ε2 and higher are neglected. This first integral enables one to reduce sys-
tem (7.14) to two differential equations. Indeed, let us introduce a new variable ψ
according to

a1 = ρ cosψ , a2 = ρ sinψ , (7.15)

with ρ being a constant in the above conservation law. Substituting these formulas
into the first and the last equations of (7.14) we obtain

ψ,η =−3ρ2

16
sin2ϕ sin2ψ ,

ϕ,η =−3ρ2

16
[8μ(cos2ψ− 1)+ 2+ 2cos2ψ cos2ϕ ].

(7.16)

The obtained system of equations represents a slow flow on a two-dimensional torus,
since the variables ψ and ϕ are modulo π .
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Fig. 7.9 Level curves of (7.17) for μ = 0.05

In contrast to the original system (7.1), equations (7.16) can be integrated exactly.
Indeed, by the straightforward differentiation we can easily verify that

−1
2

sin2 2ψ cos2ϕ+(1− 4μ)cos2ψ+ μ cos4ψ = k (7.17)

is the first integral of this slow flow, with k being a constant. The level curves of
equation (7.17) are shown in Fig. 7.9 for μ = 0.05. Each curve corresponds to a
fixed value k of the first integral, but all are on the same energy level ρ2. Due to the
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periodicity in ψ points lying on the lines ψ = 0 andψ = π have to be identified. The
same is true of ϕ . As a result, this figure represents the flow on the two-dimensional
torus. Observe the symmetry with respect to the dashed lines ϕ = π/2 and ψ = π/2.

As we know, the nonlinear normal modes (7.10) found from the modal equa-
tion correspond to the fixed points of this flow. Let us first consider the symmetric
normal mode for which x = y and v = 0. In this case A2 = B2 = 0 and a2 = 0,
a1 = ρ . Therefore ψ = 0 and the second equation of (7.16) implies that ϕ = π/2.
Thus, this symmetric mode corresponds to the fixed point (ψ ,ϕ) = (0,π/2) (or
(π ,π/2) denoted by S). We see that this mode is orbitally stable as the fixed point
is a center surrounded by closed curves that result as intersections of invariant tori
with the cut plane. For the antisymmetric normal mode we have x =−y and u = 0.
Therefore a1 = 0 and consequently ψ = π/2. The second equation of (7.16) im-
plies that ϕ = 1

2 arccos(1− 8μ). Thus, the antisymmetric normal mode is orbitally
unstable as it is represented by the saddle points (ψ ,ϕ) = (π/2, 1

2 arccos(1− 8μ))
(point A) and (ψ ,ϕ) = (π/2,π− 1

2 arccos(1− 8μ)). The homoclinic orbits are the
closed curves starting and ending at these saddle points.5 The bifurcating modes sat-
isfy the relations u = 1

2(1+ c)x and v = 1
2(1− c)x, so u and v are proportional and

the phase difference ϕ must be zero. It follows from the second equation of (7.16)
that ψ = 1

2 arccos 4μ−1
4μ+1 or ψ = π − 1

2 arccos 4μ−1
4μ+1 . We see that these bifurcating

modes are orbitally stable (since they appear as centers) and correspond to the fixed
points (ψ ,ϕ) = ( 1

2 arccos 4μ−1
4μ+1 ,0) (point B) and (ψ ,ϕ) = (π − 1

2 arccos 4μ−1
4μ+1 ,0),

respectively.
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Fig. 7.10 Poincaré map according to approximate theory for E0 = 0.4 and μ = 0.15

5 See the detailed analysis of the homoclinic motion in [49].
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Comparison with Numerical Simulations. The comparison with the Poincaré map
constructed numerically in the previous Section is possible if we express the results
obtained for u and v in terms of the “old” coordinates x and y

x = u+ v, y = u− v.

To compute the approximate Poincaré map we must set x = 0

x = u0 + v0 +O(ε) = 0,

so, taking into account (7.12) we have

tan t =−A2(η)+A1(η)
B2(η)+B1(η)

.

Finding from here sin t and cost and substituting into y = u0 − v0 we obtain

y =
2(B1A2 −A1B2)

(B2
2 + 2B1B2 +A2

2 + 2A1A2 +B2
1 +A2

1)
1/2

,

where the argument η from A1, B1, A2, B2 is omitted. The velocity ẏ, to the lowest
order of approximation in ε , is

ẏ = y,t =
B2

2 +A2
2 −B2

1 −A2
1

(B2
2 + 2B1B2 +A2

2 + 2A1A2 +B2
1 +A2

1)
1/2

.

In terms of the angles ϕ and ψ introduced in (7.13) and (7.15) the formulas for y
and ẏ read

y =
ρ sinϕ sin2ψ√
1+ cosϕ sin2ψ

, ẏ =
ρ cos2ψ√

1+ cosϕ sin2ψ
.

To construct the approximate Poincaré map we must use the first integral (7.17)
to find cos2ϕ for the given values of μ , k, ρ , and ψ . Then plugging the obtained
values of ϕ into the above formulas to evaluate y and ẏ and to plot the curve in
the cut plane. The total energy E0 of the system is related to ρ by the expression
E0 = ρ2. The approximate Poincaré map corresponding to the energy level E0 = 0.4
and to the coupling factor κ = 0.1 (μ = 0.15) is shown in Fig. 7.10. It is seen that
both maps in Fig. 7.7 (left) and Fig. 7.10 coincide qualitatively.

To show the quantitative agreement let us compute the Poincaré map for E0 = 0.4,
ε = 0.1, and μ = 0.15, and for a solution satisfying the following initial conditions

x(0) = 0, y(0) = 0, ẏ(0) =−0.65.

Then it is easy to find that k =−0.2519. The comparison of Poincaré maps obtained
by the numerical integration (points) and by the approximate theory (bold line) is
shown in Fig. 7.11 (see exercise 7.8). The agreement is really palpable, although
ε = 0.1 is not quite small.
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Fig. 7.11 Comparison of Poincaré maps for E0 = 0.4, ε = 0.1, and κ = 0.1

7.3 KAM Theory

The perturbation theory of quasiperiodic motions of conservative mechanical sys-
tems [5, 25] proposed by Kolmogorov, Arnold, and Moser, called for short KAM
theory, is perhaps one of the greatest achievements in mathematics and mechanics
of the 20th century. It has a lot of consequences and applications in dynamics and
also in statistical mechanics. Although the ideas upon which the theory is based
seem quite simple, the detailed proofs presented in the mathematical literature have
been for long time serious barriers for people with the engineering background. This
Section aims at explaining KAM theory with the variational-asymptotic method.

Variational Problem. Our starting point is Hamilton’s variational principle, ac-
cording to which motions of any conservative mechanical system correspond to
extremals of the action functional

I[q(t)] =
∫ t1

t0
L(q, q̇)dt, (7.18)

where q(t) = (q1(t), . . . ,qn(t)). As we know, this implies Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1, . . . ,n.

Suppose that the Lagrange function has the form

L(q, q̇) = L0(q, q̇)+ εL1(q, q̇),

where ε is a small parameter. Besides, we assume for simplicity that L(q, q̇) is an
analytic function and that the determinant detL,q̇q̇ is positive everywhere. The prob-
lem is to study the asymptotic behavior of the extremals depending on this small
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parameter ε . Note that the number n of degrees of freedom must be at least 2 since
systems with one degree of freedom are always integrable leading to the periodic
extremals for small energies.

First Step. Since the action functional (7.18) contains a small parameter, it is nat-
ural to use the variational-asymptotic method to analyze it. At the first step of the
variational-asymptotic method we neglect the small term εL1(q, q̇) and consider in-
stead the variational problem: find the extremal of the functional

I0[q(t)] =
∫ t1

t0
L0(q, q̇)dt.

This leads to Lagrange’s equations

d
dt
∂L0

∂ q̇ j
− ∂L0

∂q j
= 0. (7.19)

We assume that Lagrange’s equations (7.19) are integrable so that their solutions
can be found at this step. Such situation is met by the nonlinear coupled mass-
spring oscillators considered in example 7.1 if the coupling parameter β is set to be
zero. In this case the system reduces to two uncoupled nonlinear oscillators, each of
which has only one degree of freedom.

As equations (7.19) are integrable, there exist angle-action variables (ϕ , I) in
terms of which the unperturbed Hamilton function becomes independent of ϕ : H0 =
H0(I) (see Section 7.1 and [5]). The solution of Hamilton’s equations

ϕ̇ j =
∂H0

∂ I j
= ω j(I j), İ j =−∂H0

∂ϕ j
= 0,

which are equivalent to (7.19), is quite simple in these variables: ϕ j = ϕ j0+ω jt and
I j = const. Coming back to q(t), the solution of (7.19) can be presented in the form

q(t) = q0(t) = u0(ϕ0 +ωt),

where u0(ϕ) is the vector-valued function of ϕ = (ϕ1, . . . ,ϕn) which is periodic
in each variable ϕ j with the period 2π , and ω = (ω1, . . . ,ωn) are the constant fre-
quencies. Thus, every solution is now quasi-periodic in t: its frequency spectrum in
general does not consist of integer multiples of a single frequency as in the case with
periodic solutions, but rather of integer combinations of a finite number of different
frequencies.6 For fixed ϕ0 function u0(ϕ0 +ωt) describes a curve winding around
some invariant n-dimensional torus T n with winding numbers, ω = (ω1, . . . ,ωn).
Mention that u0(ϕ) is a differentiable one-to-one map which maps the invariant
torus onto itself. We shall use angle variables ϕ = (ϕ1, . . . ,ϕn), each is modulo 2π ,

6 In this sense, the asymptotic analysis provided here is multi-frequency analysis, which is
much more difficult than all previous asymptotic analyses due to the problem of small
divisors.
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as coordinates on the torus. All solutions with fixed I j belong to one torus, so that
the whole phase space is foliated into an n-parameter family of invariant tori.

The flow on each torus depends on the arithmetical properties of its frequencies
ω j. There are essentially two cases.

i) The frequencies ω j are non-resonant, i.e., k · ω �= 0 for all non-zero k =
(k1, . . . ,kn), with k j being integers (we write k ∈ Z

n). Then each orbit is dense on
this torus.

ii) The frequencies ω j are resonant, that is, there exist integer relations k ·ω = 0
for some non-zero k∈Z

n. In this case each orbit is dense on some lower dimensional
torus, but not in T n.

We assume that the unperturbed system is non-degenerate in the sense that

det

∣∣∣∣ ∂
2H0

∂ Ii∂ I j

∣∣∣∣ �= 0.

In this case the frequenciesω j depend on the amplitudes, so they vary with the torus.
This nonlinear frequency-amplitude relation is essential for the stability results of
the KAM theory. It follows that the subset of non-resonant tori as well as that of
resonant tori form dense subsets in phase space. Similar to the set of real numbers,
the resonant tori sit among the non-resonant ones like the rational numbers among
the irrational numbers.

Small Perturbations and KAM Theorem. Let us include now the small term
εL1(q, q̇) into the action functional and consider the perturbed variational problem.
The first result, obtained already by Poincaré, showed that the resonant tori are in
general destroyed by an arbitrarily small perturbation. In particular, out of a torus
with an n− 1-parameter family of periodic orbits, usually only finitely many peri-
odic orbits survive a small perturbation, while the others disintegrate and give way
to chaotic behavior. Since a set of resonant tori being destroyed by a small pertur-
bation is dense among all invariant tori, there seems to be no hope for other tori to
survive. In fact, until the middle of the 20th century it was a common belief that
arbitrarily small perturbations can turn an integrable system into an ergodic one on
each energy surface. By the way, it would not help if the non-degeneracy assumption
is dropped. There exists a counter-example showing that if H0 is too degenerate, the
motion may even become ergodic on each energy surface, thus destroying all tori.

Kolmogorov [25] was the first to observe that, for the non-degenerate case, the
converse is true: the majority of tori survives small perturbations. He gave the sketch
of the proof about the persistence of those tori, whose frequencies ω j are not only
non-resonant, but are strongly non-resonant in the sense that there exist constants
α > 0 and ν > 0 such that

|k ·ω | ≥ α
|k|ν (7.20)

for all non-zero k ∈ Z
n, where |k|= |k1|+ . . .+ |kn|. Condition (7.20) is called a dio-

phantine or small divisor condition. It turns out that the set of strongly non-resonant
frequencies for any fixed ν > n−1 has the full measure, in contrast to the set of re-
maining frequencies having zero measure. But although almost all frequencies are
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strongly non-resonant, it is not true that almost all tori survive a given perturbation
εL1, no matter how small ε is. In its precise formulation, KAM theorem states that
there exists a constant δ > 0 such that for the perturbations of size |ε| < δα2 the
strongly non-resonant tori of the unperturbed system persist, being only slightly de-
formed. Moreover, they depend continuously on ω and fill the phase space up to a
set of measure O(α). An immediate consequence of the KAM theorem, important
for the statistical mechanics, is that small perturbations of integrable systems do
not necessarily imply ergodicity, as the invariant tori form a set, which is neither of
full nor of zero measure. It has to be emphasized, however, that this invariant set,
although of large measure, is a Cantor set and thus has no interior points. It is there-
fore impossible to tell with finite precision whether a given initial condition falls
onto an invariant torus or into a gap between such tori. From a physical point of
view the KAM theorem rather makes a probabilistic statement: with overwhelming
probability of order 1−O(α) a randomly chosen orbit lies on an invariant torus and
thus stays there forever.

Variational Problem for Invariant Tori. Since for an invariant torus with fixed
frequenciesω the solution of Lagrange’s equations has the form q(t) = u(ϕ0 +ωt),
the generalized velocities may be written as

q̇ =
n

∑
j=1
ω j

∂
∂ϕ j

u = ∇u,

where ∇ denotes the linear first order partial differential operator with constant co-
efficients

∇=
n

∑
j=1
ω j

∂
∂ϕ j

.

Therefore it is convenient to consider the following variational problem for an in-
variant torus, first mentioned in [39]: find extremals of the functional

I[u(ϕ)] =
2π∫
0

. . .

2π∫
0

L(u,∇u)dϕ1 . . .dϕn =

∫
T n

L(u,∇u)dϕ (7.21)

among vector-valued functions u(ϕ) = (u1(ϕ), . . . ,un(ϕ)) which are 2π-periodic in
each variable ϕ j. Euler-Lagrange’s equations of this variational problem read

∇L,q̇(u,∇u)−L,q(u,∇u) = 0. (7.22)

Thus, instead of solving the ordinary differential equations, we have to deal now
with the nonlinear partial differential equations (7.22). Conversely, every solution
u(ϕ) of (7.22), 2π-periodic in each variable ϕ j, determines the flow on some in-
variant torus which satisfies original Lagrange’s equations. We shall therefore apply
the variational-asymptotic method to the variational problem (7.21). Then it is easy
to see that the first step of the variational-asymptotic procedure leads to the unper-
turbed problem
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∇L0,q̇(u,∇u)−L0,q(u,∇u) = 0,

and, consequently, to the flow on the unperturbed invariant torus induced by the
solution u0(ϕ) of this equation.

Second Step and Sketch of the Proof. In order to justify KAM theorem7 let us
proceed to the second step of the variational-asymptotic method. We fix the solution
of the unperturbed problem on some torus, u0(ϕ), and look for the extremal of (7.21)
in the form

u(ϕ) = u0(ϕ)+ u1(ϕ),

where u1(ϕ) is smaller than u0(ϕ) in the asymptotic sense. Substituting this into the
action functional (7.21), expanding the Lagrangian in the Taylor series, and keeping
the asymptotically principal terms containing u1, we obtain

I1[u1(ϕ)] =
∫

T n
[L,q|0 ·u1 +L,q̇|0 ·∇u1

+
1
2
(u1 ·L,qq|0u1 + u1 ·L,q̇q|0∇u1 +∇u1 ·L,qq̇|0u1 +∇u1 ·L,q̇q̇|0∇u1)]dϕ .

The vertical bar followed by index 0 means that the derivatives in front of it have
to be evaluated at (u0(ϕ),∇u0(ϕ)). Thus, these first and second derivatives become
functions of ϕ which are the coordinates on the torus. The obtained functional turns
out to be quadratic with respect to u1. Its Euler-Lagrange’s equation is linear and
can be presented in the form

E(u0)+ dE(u0)u1 = 0, (7.23)

where
E(u) = ∇L,q̇(u,∇u)−L,q(u,∇u), (7.24)

and

dE(u0)u1 = ∇(L,q̇q̇|0∇u1)+ (L,q̇q|0 −L,qq̇|0)∇u1 +(∇L,q̇q|0 −L,qq|0)u1. (7.25)

It is interesting to mention that

dE(u)v =
d

dλ
E(u+λv)|λ=0,

so equation (7.23) resembles Newton’s iteration method of finding the root of a tran-
scendental equation or the minimum of a function [41]. According to the variational-
asymptotic method we can also replace L in (7.25) by L0 which makes the error in
determining u1 of the order ε compared with 1. Since our aim is not computing u1,
but just proving the existence of the solution, we keep (7.25) to be exactly as in
Newton’s iteration procedure.

7 See the rigorous and detailed proof in [46].



7.3 KAM Theory 317

One of the difficulties in solving equation (7.23) comes from the linear operator∇
in (7.25). Due to the small divisors, entering the representation of this operator with
respect to the Fourier expansion of functions on the torus, its inverse is unbounded.
Indeed, let us consider an equation∇u = g, where functions u and g are 2π periodic
in each variable ϕ j and can therefore be presented in terms of the Fourier series

u(ϕ) = ∑
k∈Zn

ukeik·ϕ , g(ϕ) = ∑
k∈Zn

gkeik·ϕ .

Applying the operator ∇ to u, we get

∇u =
n

∑
j=1
ω j

∂
∂ϕ j

u = ∑
k∈Zn

i(k ·ω)ukeik·ϕ ,

so that the equation ∇u = g becomes

∑
k∈Zn

i(k ·ω)ukeik·ϕ = ∑
k∈Zn

gkeik·ϕ .

Even for non-resonant frequencies the combinations k ·ω may become arbitrar-
ily small leading to the unbounded coefficients uk of the series. The diophantine
condition (7.20) has been introduced to remove infinitely small divisors. Now it is
straightforward to show that for ω satisfying condition (7.20) and for every regular
function g(ϕ) with zero mean value, the equation∇u = g has a unique solution with
zero mean value. Indeed, since the Fourier series for g(ϕ) converges, the coefficients
gk satisfy the following conditions

|gk| ≤ aρ |k|

with some positive a and ρ < 1. Besides, g0 = 0 as g(ϕ) has the zero mean value.
Then u0 = 0, uk = gk/(ik ·ω) and the Fourier series

u(ϕ) = ∑
k �=0

gk

i(k ·ω)eik·ϕ

clearly converges on account of the diophantine condition (7.20). The norm of u(ϕ)
can be precisely estimated.

But there are still two more obstacles to solving equation (7.23). First, the terms
containing u1 and∇u1 in equation (7.25) have to be eliminated. Then, the remaining
second order partial differential equation requires a compatibility condition, namely
that the inhomogeneous term E(u0) be of zero mean value. Note that these obsta-
cles disappear in the special case when the identity map u0 = ϕ is an approximate
solution of E(u0) = 0. In this case it is easy to check that the coefficient matrices of
u1 and ∇u1 in (7.25) are small and can be neglected. Indeed, the coefficient matrix
of u1 is the Jacobian matrix of E(ϕ). For the estimation of the coefficient matrix of
∇u1 we refer to the subsequent formula (7.29)1. Therefore equation (7.23) can be
replaced by
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∇(L,q̇q̇|0∇u1) =−E(ϕ)

and, by the above arguments, it can be solved since the right-hand side must always
be of zero mean value. We conclude that, if the identity map u0 = ϕ is an approx-
imate solution of E(u0) = 0, then (7.23) admits an approximate solution u1 so that
the first step of the Newton iteration can be performed in this case.

Now the following idea allows us to reduce the general case to the one where u0 is
the identity map on the torus: let us try to change the Lagrangian so that the changed
Euler-Lagrange’s equation admits the identity map as solution. Consider the group
of one-to-one maps u(ϕ) of the torus which acts on the space of Lagrangians L
according to the rule

u∗L(ϕ ,ν) = L(u(ϕ),Uν),

where U(ϕ) = ∂u/∂ϕ denotes the Jacobian matrix of u and is therefore 2π-periodic
in each variable ϕ j. Here u∗L is regarded as a function of the formal arguments ϕ
and ν , with ν playing the role of the velocity. One verifies easily that

(u ◦ v)∗L = u∗(v∗L), id∗L = L,

where (u ◦ v)(ϕ) = u(v(ϕ)) corresponds to the composition of two maps and id is
the identity map id = ϕ . Functional (7.21) is compatible with this group action in
the sense that

IL[u ◦ v(ϕ)] = Iu∗L[v(ϕ)],

and, moreover, it is invariant under the subgroup of translations. Since the La-
grangian may change, we attach it as the index to the functional. Taking the variation
of the functionals standing on both sides, we find that

(U(v))T E(L,u ◦ v) = E(u∗L,v),

with E(L,u) being the expression (7.24) where the Lagrangian is indicated precisely.
Differentiating this equation with respect to v in the direction of a tangent vector w
to the group of maps at v = id, we obtain

UT dE(L,u)Uw = dE(u∗L, id)w− (dU ·w)T E(L,u) (7.26)

The previous equation with v = id reduces to

UT E(L,u) = E(u∗L, id). (7.27)

It now follows from (7.27) that whenever u is an approximate solution of E(L,u) = 0
then also E(u∗L, id) is small and hence the above considerations about the case u =
id show that there exists an approximate solution w of the equation dE(u∗L, id)w =
−E(u∗L, id). Combining this observation with the identities (7.26) and (7.27), we
conclude that equation (7.23) indeed has an approximate solution u1 = U0w in the
sense that errors of quadratic order are ignored.

The precise estimation for the approximate solution of the linearized equation
(7.23) are based on several formulas which are summarized below. First,
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UT dE(L,u)Uw = ∇(A∇w)+B∇w+Cw, (7.28)

where A, B, and C are the n× n matrix-valued functions on T n defined by

A =UT L,ννU, B =UT L,νϕ −LT
,νϕU, C =UT E,ϕ ,

and the following abbreviations are used

L,νϕ =
∂
∂ϕ

L,ν (u(ϕ),∇u(ϕ)), E,ϕ =
∂
∂ϕ

E(L,u), U =
∂u
∂ϕ

.

Formula (7.28) follows from equation (7.26) by inserting the expression (7.25) with
L and u1 replaced by u∗L and w, respectively. Then we have

∇B =C−CT ,∫
T n

Bdϕ = 0, (7.29)
∫

T n
UT E(L,u)dϕ = 0.

Formula (7.29)1 expresses the fact, well known in variational calculus, that the op-
erator

Mw = ∇(A∇w)+B∇w+Cw,

which represents the Hessian of the functional (7.21), is self-adjoint. Indeed, since
AT = A and BT =−B, the adjoint operator of M is given by

M∗w = ∇(AT∇w)−∇(BT w)+CT w = ∇(A∇w)+B∇w+(CT +∇B)w

so that M∗ = M if and only if CT +∇B =C.
The last two formulas reflect the fact that the functional I[u(ϕ)] defined by (7.21)

is invariant under the subgroup of translations of the torus T n (see exercise 7.9).
It follows from these formulas that if u is a solution of E(L,u) = 0 and the fre-

quency vector ω is rationally independent then C = 0 and B = 0. Indeed, since
∇B = 0 the function B(ϕ) is constant along the dense line ϕ = ωt. Hence it is con-
stant on T n and it follows from (7.29)2 that B = 0. As a consequence the linearized
operator is given by

UT dE(L,u)Uw = ∇(A∇w)

which is invertible.
Provided u1 can be found and the error we make can be estimated, we now replace

u0 by u0 + u1 and repeat the second step of the variational-asymptotic procedure to
find the next correction. This is the crucial idea of Newton’s iteration leading to the
fast convergence. It can simply be shown in the case of finding roots of transcen-
dental equations that if the initial error is ε , then the error after n iteration would be
of the order ε2n

. Such fast convergence, valid also for (7.23) as shown in [46], may
remove the errors induced by the small divisors at each iteration and guarantees the
convergence to the solution of variational problem (7.21).
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7.4 Coupled Self-excited Oscillators

As we know, a self-excited oscillator, such as van der Pol’s oscillator, may gen-
erate a limit cycle periodic vibration with a fixed frequency. What happens if two
slightly different self-excited oscillators are coupled? One may imagine for instance
two violins playing near each other and interacting through the sound wave, or two
Froude’s pendulums connected by a weak spring. Another example is two pendulum
clocks which move into the same swinging rhythm when they are hung near each
other on the wall. Although uncoupled oscillators have in general different frequen-
cies, the effect of the coupling may lead to a vibration which is phase and frequency
locked, or in another word, to synchronization.8

Two Weakly Coupled van der Pol’s Oscillators. We will study the synchronization
of two weakly coupled van der Pol’s oscillators, whose Lagrange function is given
by

L(x,y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2)− 1

2
[x2 +(1+ εα)y2 + εκ(x− y)2],

where ε is a small parameter, parameter α characterizes the difference in uncoupled
frequencies, while κ is a coupling factor. Since we are interested in the primary
resonance, we order the amplitude of the coupling to be the same as the damping
and non-linear term [10]. Thus, the dissipation function assumes the form

D(x,y, ẋ, ẏ) =
1
2
ε[(x2 − 1)ẋ2 +(y2 − 1)ẏ2].

Then x(t) and y(t) satisfy the variational equation

δ
∫ t1

t0
L(x,y, ẋ, ẏ)dt −

∫ t1

t0
(
∂D
∂ ẋ
δx+

∂D
∂ ẏ
δy)dt = 0.

Generalized Lagrange’s equations read [10]

ẍ+ x+ εκ(x− y)− ε(1− x2)ẋ = 0,

ÿ+(1+ εα)y− εκ(x− y)− ε(1− y2)ẏ = 0.
(7.30)

We need to find the asymptotic behavior of solution in the limit ε → 0.
When κ = 0 the system (7.30) is uncoupled and the two equations exhibit unsyn-

chronized limit cycle vibrations for x(t) and y(t) with different frequencies 1 and√
1+ εα. When κ is small, then we may expect by the continuity reasoning that the

vibrations are still unsynchronized. For finite κ we may have three states of a cou-
pled self-organized oscillator: strongly locked, weakly locked, and unlocked. The
vibration is said to be strongly locked (or strongly synchronized) if it is both fre-
quency and phase locked. If the vibration is frequency locked but the relative phase

8 The earliest known observation of synchronization was made by Huygens. He reported
that “two clocks, hanging side by side and separated by one or two feet, keep between
them a consonance so exact that the two pendula always strike together, never varying”.
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changes slowly with time, it is called weakly locked (or weakly synchronized). If the
frequencies of vibration are different, the system is said to be unlocked or drifting.

Numerical Solutions. The system of equations (7.30) does not admit exact analyt-
ical solutions. So, in order to observe the behavior of solutions and to illustrate the
difference between synchronized and unsynchronized vibrations let us first do some
numerical simulations.

t

xy

Fig. 7.12 Graph x(t)y(t) of coupled van der Pol’s oscillators for ε = 0.1, α = 1, and κ = 1.2

We take for example ε = 0.1, α = 1, and κ = 1.2 and find the solution to (7.30)
satisfying the initial conditions x(0) = 1, ẋ(0) = 0 and y(0) = 1, ẏ(0) = 0 by the
numerical integration with Mathematica. The plot of the product x(t)y(t) shown in
Fig. 7.12 exhibits obviously synchronization in this case. Indeed, since x(t) and y(t)
approach periodic (for small ε harmonic) functions with the same frequency and
constant phase difference, their product must have a steady-state character after a
short transient period.

t

xy

Fig. 7.13 Graph x(t)y(t) of coupled van der Pol’s oscillators for ε = 0.1, α = 1, and κ = 0.5

If we decrease the coupling factor while keeping all other parameters and ini-
tial data, the response may change drastically. For example, the plot of the product
x(t)y(t) for κ = 0.5 shown in Fig. 7.13 does not indicate vibrations of x(t) and y(t)
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with equal frequency and constant phase difference. Thus, in this case synchroniza-
tion does not occur, and the system is unlocked.

In the next paragraph we will use the variational-asymptotic method to estab-
lish the law of slow change of amplitudes and phases as function of the frequency
difference and the coupling parameter and to predict the synchronization.

Variational-Asymptotic Method. Let us introduce the frequency ω of vibration
precisely into the variational equation by multiplying it with ω and rewriting in
terms of the stretched angular time τ = ωt for one fix period 2π

δ
∫ τ0+2π

τ0

{1
2
ω2(x′2 + y′2)− 1

2
[x2 +(1+ εα)y2+ εκ(x− y)2]}dτ

+

∫ τ0+2π

τ0

εω [(1− x2)x′δx+(1− y2)y′δy]dτ = 0,

(7.31)

where prime denotes the derivative with respect to τ and τ0 is an arbitrary time
instant. We write for short τ0 = 0.

We put at the first step ε = 0 to obtain

δ
∫ 2π

0
[
1
2
ω2(x′2 + y′2)− 1

2
(x2 + y2)]dτ = 0.

The 2π-periodic extremal is

x0 = A1 cosτ+B1 sinτ, y0 = A2 cosτ+B2 sinτ, (7.32)

for which the frequency ω is equal to 1 as expected.
As soon as ε �= 0 the coefficients A1, B1, A2, B2 are becoming slightly dependent

on time and ω deviates from 1. Therefore we look for the extremal and for the
frequency at the second step in the form

x = A1(η)cosτ+B1(η)sinτ+ x1(τ,η),
y = A2(η)cosτ+B2(η)sinτ+ y1(τ,η), ω = 1+ω1,

where η = ετ is the slow time. We assume that x1(τ,η) and y1(τ,η) are 2π-periodic
functions with respect to the fast time τ and are much smaller than x0 and y0 in
the asymptotic sense, and ω1 is much smaller than 1. Note that the asymptotically
principal terms of the derivatives of x and y are

x′ = x0,τ + εx0,η + x1,τ , y′ = y0,τ + εy0,η + y1,τ ,

where the comma in indices denotes the partial derivatives. Substituting x, y together
with their derivatives into functional (7.31) and keeping the principal terms of x1, y1

and the principal cross terms between x0, y0 and x1, y1 we have
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δ
∫ 2π

0
{1

2
x2

1,τ +
1
2

y2
1,τ + x0,τx1,τ + εx0,ηx1,τ + 2ω1x0,τx1,τ + y0,τy1,τ + εy0,ηy1,τ

+ 2ω1y0,τy1,τ − (
1
2

x2
1 +

1
2

y2
1 + x0x1 + y0y1)− ε[αy0y1 +κ(x0 − y0)(x1 − y1)

− (1− x2
0)x0,τx1 − (1− y2

0)y0,τy1]}dτ = 0.

Integrating the third up to eighth terms by parts using the periodicity of x1 and y1

with respect to τ , we see that the underlined terms gives −2ε(x0,τηx1 + y0,τηy1)+
2ω1(x0x1+y0y1). Then, substituting the expressions for x0 and y0 into the functional
and reducing the products of sine and cosine to the sum of harmonic functions, we
get the resonant terms which should be removed in order to be consistent with the
above asymptotic expansion. This implies that ω1 must be of the order ε; let us
denote it by ω1 = εk1. The equations obtained for A1, B1, A2, B2 read9

2A1,η =−2k1B1 +A1 − A1

4
(A2

1 +B2
1)+κ(B1−B2),

2B1,η = 2k1A1 +B1 − B1

4
(A2

1 +B2
1)+κ(A2 −A1),

2A2,η =−2k1B2 +αB2 +A2 − A2

4
(A2

2 +B2
2)+κ(B2 −B1),

2B2,η = 2k1A2 −αA2 +B2 − B2

4
(A2

2 +B2
2)+κ(A1−A2).

This system of equations can still be simplified if we introduce the amplitudes and
phases of vibrations in accordance with

A1 = a1 cosφ1, B1 = a1 sinφ1,

A2 = a2 cosφ2, B2 = a2 sinφ2.

Thus, a1 and a2 characterize the amplitudes of x0 and y0, respectively, while φ1 and
φ2 are the corresponding phases.

In terms of the new variables the equations that result from the elimination of the
resonant terms can be written as

2a1,η = a1(1− a2
1

4
)+κa2 sin(φ1 −φ2),

2a2,η = a2(1− a2
2

4
)−κa1 sin(φ1 −φ2),

2φ1,η = 2k1 −κ+ κa2 cos(φ1 −φ2)

a1
,

2φ2,η = 2k1 −α−κ+ κa1 cos(φ1 −φ2)

a2
.

9 One may check this with the TrigReduce command in Mathematica.
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Introducing the phase difference ϕ = φ1 −φ2, we reduce this system further to three
differential equations governing the slow change of amplitudes and phase difference

2a1,η = a1(1− a2
1

4
)+κa2 sinϕ ,

2a2,η = a2(1− a2
2

4
)−κa1 sinϕ , (7.33)

2ϕ,η = α+κ cosϕ (
a2

a1
− a1

a2
).

After finding the amplitudes and phase difference from (7.33), we can find k1 from
the previous equation for φ1 by setting φ1 = 0. This is possible since the original
system is autonomous.

The Slow Flow. Let us seek fixed points of the slow flow (7.33) representing syn-
chronized vibrations of the coupled oscillators. We multiply the first equation of
(7.33) (with the zero left-hand side) by a1 and the second by a2 and add together to
get

a2
1 + a2

2 −
a4

1 + a4
2

4
= 0. (7.34)

Next, multiplying the first equation of (7.33) by a2 and the second by a1 and sub-
tracting them to obtain

sinϕ =
a1a2(a2

1 − a2
2)

4κ(a2
1 + a2

2)
.

From the third equation of (7.33) with ϕ,η = 0 on the left-hand side follows

cosϕ =
αa1a2

κ(a2
1 − a2

2)
.

Using the identity sin2+cos2 = 1 and setting

p = a2
1 + a2

2, q = a2
1 − a2

2,

we get from the two last equations

q6 − p2q4 +(16α2 + 64κ2)p2q2 − 16α2p4 = 0.

In terms of p, q, equation (7.34) becomes

q2 = 8p− p2.

Substituting this equation into the previous one, we obtain finally

p3 − 20p2+(16α2 + 32κ2+ 128)p− (64α2+ 256κ2+ 256) = 0. (7.35)

This cubic equation has either 1 or 3 positive roots for p. At bifurcation, there will
be a double root which appears if the derivative of (7.35) vanishes
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3p2 − 40p+ 16α2+ 32κ2+ 128 = 0. (7.36)

Eliminating p from (7.35) and (7.36) gives the condition for saddle-node bifurca-
tions as

α6 +(6κ2 + 2)α4 +(12κ4− 10κ2+ 1)α2 + 8κ6−κ4 = 0. (7.37)

Equation (7.37) plots as two curves intersecting as a cusp in the (α,κ)-plane (see
Fig. 7.14). At the cusp, a further degeneracy occurs and there is a triple root of
equation (7.35). Requiring the derivative of (7.36) to vanish yields p = 20/3 at the
cusp, which gives the location of the cusp as

α =
1√
27

≈ 0.1924, κ =
2√
27

≈ 0.3849.

SN

SN HOPF

Fig. 7.14 Saddle-node and Hopf’s bifurcation of coupled van der Pol’s oscillator

Next, we look for Hopf’s bifurcations of the slow flow (7.33). The presence of
a stable limit cycle surrounding an unstable fixed point, as occurs in a supercritical
Hopf’s bifurcation, means a weakly locked quasiperiodic motion of the original
system (7.30). Let (a10,a20,ϕ0) be a fixed point. The behavior of the system (7.33)
linearized in the neighborhood of this point is determined by the eigenvalues of the
Jacobian matrix

1
2

⎛
⎜⎜⎝

− 3a2
10−4
4 κ sinϕ0 κ cosϕ0a20

−κ sinϕ0 − 3a2
20−4
4 −κ cosϕ0a10

− κ cosϕ0(a
2
10+a2

20)

a2
10a20

κ cosϕ0(a
2
10+a2

20)

a10a2
20

− κ sinϕ0(a
2
20−a2

10)
a10a20

⎞
⎟⎟⎠ .
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Using the above relations between a1, a2, sinϕ , cosϕ and p, q, we can express the
elements of this matrix in terms of p. The eigenvalues of this matrix are the roots of
the cubic equation

λ 3 + c2λ 2 + c1λ + c0 = 0,

where

c2 =
p− 4

2
,

c1 =
7p3 − 112p2+(−16α2+ 512)p− 512

64p− 512
,

c0 =
p4 − 22p3+ 160p2− (32α2 + 384)p

128p− 1024
.

For a Hopf bifurcation to occur, the eigenvalues λ must include a pair of imaginary
roots, ±iβ , and a real eigenvalue, γ . This requires the characteristic equation to have
the form

λ 3 − γλ 2 +β 2λ −β 2γ = 0.

Comparing these cubic equations, we see that a necessary condition for Hopf’s bi-
furcation to occur is

c0 = c1c2 ⇒ 3p4 − 59p3+(−8α2 + 400)p2+(48α2 − 1088)p+ 1024= 0.

Eliminating p between this equation and (7.35) yields the condition for Hopf’s bi-
furcation as

49α8 +(266κ2+ 238)α6+(88κ4+ 758κ2+ 345)α4+(−1056κ6

+ 1099κ4+ 892κ2+ 172)α2 − 1152κ8− 2740κ6− 876κ4+ 16 = 0.

This equation plots as a curve in the (α,κ)-plane, which intersect the lower curve
of saddle node bifurcation at point P and touches the upper curve of saddle-node
bifurcation at point Q with the coordinates (see Fig. 7.15)

P: α ≈ 0.1918, κ ≈ 0.3846, Q: α ≈ 0.1899, κ ≈ 0.3837.

We see that the main features of saddle-node and Hopf’s bifurcations of a coupled
van der Pol’s oscillator are quite similar to those of forced van der Pol’s oscilla-
tor discussed in Section 6.3. Strong synchronization occurs everywhere in the first
quadrant of the (α,κ)-plane except in that region bounded by i) the lower curve
of saddle node bifurcations from the origin to point P, ii) the curve of Hopf bifur-
cation from point P to infinity, and iii) the α-axis. However, there is an additional
bifurcation here which did not occur in the forced problem. There is a homoclinic
bifurcation which occurs along a curve emanating from point Q. This involves the
destruction of the limit cycle which was born in the Hopf bifurcation. The limit cy-
cle grows in size until it gets so large that it hits a saddle, and disappears in a saddle
connection (see the details and further references in [10, 43]).
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P

Q

cusp

SN
SN

HOPF

Fig. 7.15 Blowup of cusp region

In summary, we see that the transition from strongly synchronized vibrations to
drifted vibrations involves an intermediate state in which the system is weakly syn-
chronized. In the three-dimensional slow flow space, we go from a stable fixed point
(strongly locked), to a stable limit cycle (weakly locked), and finally to a periodic
motion which is topologically distinct from the original limit cycle (unlocked). As
in the case of forced van der Pol’s oscillator, in order for the strong synchronization
to occur, we need either a small difference in uncoupled frequencies (small α) or a
strong interaction of oscillators guaranteed by a large coupling factor κ .

7.5 Exercises

EXERCISE 7.1. Derive the equations of nonlinear vibration of the double pendulum
considered in exercise 2.1.

Solution. Let us find the exact formula for the kinetic energy of the point-mass m2.
As seen from Fig. 2.14, the cartesian coordinates of this point-mass are

x2 = l1 cosϕ1 + l2 cosϕ2, y2 = l1 sinϕ1 + l2 sinϕ2.

Thus, the kinetic energy of m2 equals

K2 =
1
2

m2(ẋ
2
2 + ẏ2

2) =
1
2

m2[l
2
1 ϕ̇

2
1 + l2

2 ϕ̇
2
2 + 2l1l2 cos(ϕ1 −ϕ2)ϕ̇1ϕ̇2].

Taking the kinetic energy of m1 and the potential energy of the point-masses as in
the solution of the exercise 2.1, we obtain the exact Lagrange function in the form
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L =
1
2
(m1 +m2)l

2
1 ϕ̇

2
1 +

1
2

m2l2
2 ϕ̇

2
2 +m2l1l2 cos(ϕ1 −ϕ2)ϕ̇1ϕ̇2

+(m1 +m2)gl1 cosϕ1 +m2gl2 cosϕ2.

After some simple transformations we obtain from Lagrange’s equations

ϕ̈1 +α cos(ϕ1 −ϕ2)ϕ̈2 +α sin(ϕ1 −ϕ2)ϕ̇2
2 +

g
l1

sinϕ1 = 0,

ϕ̈2 +β cos(ϕ1 −ϕ2)ϕ̈1 −β sin(ϕ1 −ϕ2)ϕ̇2
1 +

g
l2

sinϕ2 = 0,

where

α =
m2l2

(m1 +m2)l1
, β =

l1
l2
.

EXERCISE 7.2. Hamilton-Jacobi equation. Let the action function S(q, t) be defined
as the integral

Sq0,t0(q, t) =
∫
γ

Ldt

along the extremal γ connecting the points (q0, t0) and (q, t). Show that S(q, t) sat-
isfies the Hamilton-Jacobi equation

∂S
∂ t

+H(q,
∂S
∂q

) = 0.

Solution. Let us first fix the time instant t and consider different extremals ending
at different points q. Calculating the variation of S we get

δS =
∂L
∂ q̇

·δq

∣∣∣∣
t

t0

+

∫ t

t0

(
∂L
∂q

− d
dt
∂L
∂ q̇

)
·δqdt = 0.

The second term vanishes because the variation is taken along the extremals satisfy-
ing Lagrange’s equations. The first term, evaluated at the lower limit t0 is also zero
because q0 is fixed. Replacing ∂L/∂ q̇ by p, we obtain

δS = p ·δq,

and, consequently
∂S
∂q

= p.

Now we let also t change. Then, it follows from the definition of S that its total time
derivative equals L

dS
dt

= L.

Using the chain rule of differentiation we have

dS
dt

=
∂S
∂ t

+
∂S
∂q

· q̇ =
∂S
∂ t

+ p · q̇.
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Thus,
∂S
∂ t

= L− p · q̇ =−H(q, p).

Substituting p = ∂S/∂q into the Hamilton function and bringing −H to the left-
hand side, we obtain the Hamilton-Jacobi equation.

EXERCISE 7.3. Find the action variable for the Duffing oscillator with

H(q, p) =
1
2
(p2 +U(q)), U =U(q) =

1
2

q2 +
1
4
αq4.

Solution. According to the definition of the action variable

I =
1

2π

∮
pdq.

We use the exact solution (5.12) of the Duffing equation to evaluate the contour
integral. Since p = q̇ and dq = q̇dt and since the phase curve is symmetric about the
q- and q̇-axes we have

∮
pdq = 4

∫ qM

0
pdq = 4

∫ T/4

0
q̇2dt.

Now we substitute the solution (5.12) into this integral. Since

q(t) = acn(bt,m), q̇ =−absn(bt,m)dn(bt,m),

where

b =
√

1+αa2, m =
αa2

2(1+αa2)
,

the integral becomes

∮
pdq = 4

∫ T/4

0
q̇2dt = 4a2b2

∫ T/4

0
sn2(bt,m)dn2(bt,m)dt.

Changing the variable t to u = bt and taking into account that bT/4 = K(m), we get

∮
pdq = 4a2b

∫ K(m)

0
sn2(u,m)dn2(u,m)du.

This integral of Jacobian elliptic functions can be computed analytically.10 The
result is ∮

pdq = 4a2b
(−1+ 2m)E(m)+ (1−m)K(m)

3m
,

where K(m) and E(m) are the complete elliptic integrals of the first and second kind,
respectively. Thus, the action variable equals

10 Use the formulas given in 5.13 of [3] or the symbolic integration with Mathematica.
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I =
2a2b
π

(−1+ 2m)E(m)+ (1−m)K(m)

3m
.

The total energy of the Duffing oscillator depends on the amplitude a as follows

H =
1
2

a2 +
1
4
αa4.

Using the properties of the complete elliptic integrals one can show that

dI
da

=
2abK(m)

π
.

Therefore

dH
dI

=
dH/da
dI/da

=
a(1+ a2)π
2abK(m)

=
πb

2K(m)
=

2π
T

= ω(a).

EXERCISE 7.4. Simulate numerically the Poincaré map for the Hénon-Heiles equa-
tions which can be obtained as Lagrange’s equation of the following Lagrange func-
tion

L =
1
2
(ẋ2 + ẏ2)− 1

2
(x2 + y2 + 2x2y− 2

3
y3).

Choose the cut plane x = 0 and the total energy i) E0 = 0.01 and ii) E0 = 1/8.
Observe the difference in cases i) and ii).

Solution. Let us derive the equations of motion of these coupled oscillators in the
Hamilton’s form. Denoting q1 = x, q2 = y and introducing p1 = q̇1, ṗ2 = q̇2, we
transform the above Lagrange function to the Hamilton function

H =
1
2
(p2

1 + p2
2)+

1
2
(q2

1 + q2
2 + 2q2

1q2 − 2
3

q3
2).

Hamilton’s equations are

q̇1 = p1, ṗ1 =−(q1 + 2q1q2),

q̇2 = p2, ṗ2 =−(q2 − q2
2 + q2

1).

This dynamical system has one stable fixed point at the origin (0,0) and three un-
stable fixed points given by

P1 : (0,1), P2 : (
√

3/2,−1/2), P3 : (−
√

3/2,−1/2).

The contour plot of the potential energy U(q) = 1
2 (q

2
1 +q2

2 +2q2
1q2 − 2

3 q3
2) is shown

in Fig. 7.16. The separatrices connecting the unstable fixed points are straight lines
and correspond to the energy level 1/6. All contours with the potential energies less
than 1/6 are inside the triangle P1P2P3.
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Fig. 7.16 Contour plot of the potential energy of Henon-Heiles oscillators

As the dynamical system of Henon-Heiles oscillators is conservative, the energy
conservation reads

H(q, p) = E0,

and the phase curves having the initial energy E0 must lie on some 3-D energy level
surface. We use this integral to find p1. Then the phase curves must be found in
some 3-D space of parameters q1,q2, p2. To follow the traces of these phase curves
we choose the cut plane q1 = 0 and plot the Poincaré map numerically using the code
written by Weinstein. The results are shown in Fig. 7.17 for the case E0 = 10−2 (left)
and E0 = 1/8 (right), respectively. For E0 = 10−2 we see four families of embedded
tories corresponding to ordered motion. For E0 = 1/8 one observes a chaotic see
surrounding small islands of ordered motion.
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Fig. 7.17 Poincaré maps of Henon-Heiles oscillators: a) E0 = 0.01, b) E0 = 1/8
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EXERCISE 7.5. Modal equation in a rotating frame. In the frame rotating with the
constant angular velocity ω , the presence of Coriolis and centripetal accelerations
changes the equations of motion (7.7) to

ẍ− 2ω ẏ−ω2x =−∂U
∂x

, ÿ+ 2ω ẋ−ω2y =−∂U
∂y

.

For this system, obtain a first integral and use it to derive a modal equation for the
orbits in the (x,y)-plane which does not involve time t.

Solution. The first integral can easily be obtained if we know the kinetic and poten-
tial energies. The absolute velocity of the point-mass equals

v = vl + vr,

where vl = ω × r = (−ωy,ωx) is the instantaneous velocity of the point-mass ro-
tating together with the frame about the z-axis and vr = (ẋ, ẏ) the relative velocity.
Thus,

v = (ẋ−ωy, ẏ+ωx),

and the kinetic energy for m = 1 becomes

K =
1
2
[(ẋ−ωy)2 +(ẏ+ωx)2].

Together with the potential energy U(x,y), the conservation of the total energy reads

1
2
[(ẋ−ωy)2 +(ẏ+ωx)2]+U(x,y) = E0.

We seek the nonlinear normal modes as periodic solutions by assuming y as a func-
tion of x, without direct reference to time t, and try to eliminate t in these equations.
Using the chain rule

ẏ = y′ẋ, ÿ = y′′ẋ2 + y′ẍ,

with prime denoting the derivative of y with respect to x, and substituting this into
the Lagrange equation for y to get

−∂U
∂y

= y′′ẋ2 + y′(2ωy′ẋ+ω2x− ∂U
∂x

)− 2ω ẋ−ω2y.

Next, we plug ẏ into the energy conservation

1
2
[ẋ2(1+ y′2)+ 2ω(xy′ − y)ẋ+ω2(x2 + y2)]+U(x,y) = E0.

Solving this equation with respect to ẋ, we obtain

ẋ =
−ω(xy′ − y)±√ω2(xy′ − y)2 − (1+ y′2)[ω2(x2 + y2)+ 2U(x,y)− 2E0]

1+ y′2
.
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Substituting this formula into the above equation, we derive the nonlinear modal
equation in terms of y(x).

EXERCISE 7.6. A rigid bar, connected with two linear springs of stiffnesses k1 and
k2, carries out a translational motion of its center of mass S in the vertical direction
and a rotation in the plane about S (see Fig. 7.18). The supports A and B can freely
move in the horizontal direction to keep the springs in the vertical position. Derive
the equations of motion for finite x and ϕ . Obtain a first integral and use it to derive
a modal equation.

S

k1k2
l1l2

x

A B

Fig. 7.18 Nonlinear model of vehicle

Solution. Let q = (x,ϕ) denote the generalized coordinates. We write down the
kinetic and potential energies of this system as follows

K(q̇) =
1
2

mẋ2 +
1
2

JSϕ̇2,

U(q) =
1
2

k1(xst + x+ l1 sinϕ)2 +
1
2

k2(xst + x− l2 sinϕ)2 +mgx

=
1
2

k1(x+ l1 sinϕ)2 +
1
2

k2(x− l2 sinϕ)2

+((k1 + k2)xst +mg)x+(k1l1 − k2l2)sinϕ+
1
2
(k1 + k2)x

2
st .

Taking the force and moment equilibrium

(k1 + k2)xst +mg = 0, (k1l1 − k2l2)xst = 0

into account and removing the last constant term in the potential energy, we can
represent it in the form

U(x,ϕ) =
1
2

k1(x+ l1 sinϕ)2 +
1
2

k2(x− l2 sinϕ)2.

It is now straightforward to derive Lagrange’s equations

mẍ+(k1 + k2)x+(k1l1 − k2l2)sinϕ = 0,

JSϕ̈+(k1l1 − k2l2)xcosϕ+
1
2
(k1l2

1 + k2l2
2)sin 2ϕ = 0.
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The first integral corresponding to the energy conservation follows

1
2

mẋ2 +
1
2

JSϕ̇2 +U(x,ϕ) = E0.

On the other hand, we can represent the equations of motion in the short form

mẍ =−∂U
∂x

, JSϕ̈ =−∂U
∂ϕ

.

To derive the modal equation, we assume ϕ as a function of x, without direct refer-
ence to time t, and try to eliminate t in these equations. That is, we assume ϕ = ϕ(x)
and compute its time derivatives according to the chain rule

ϕ̇ = ϕ ′(x)ẋ, ϕ̈ = ϕ ′′(x)ẋ2 +ϕ ′(x)ẍ,

with prime denoting the derivative of ϕ with respect to x. Using the first equation
of motion to compute the acceleration ẍ and substituting it into the second equation,
we get

JS[ϕ ′′(x)ẋ2 − 1
m
ϕ ′(x)

∂U
∂x

] =−∂U
∂ϕ

.

Next, we substitute ϕ̇ into the energy conservation and solve the latter with respect
to ẋ to find

ẋ2 =
2[E0 −U(x,ϕ)]
m+ JSϕ ′(x)2 .

The modal equation can finally be obtained by substituting this expression into the
above equation

JS

{
ϕ ′′(x)

2[E0 −U(x,ϕ)]
m+ JSϕ ′(x)2 − 1

m
ϕ ′(x)

∂U
∂x

}
=−∂U

∂ϕ
.

This last equation can be transformed to

2[E0 −U(x,ϕ)]ϕ ′′(x)+ [m+ JSϕ ′(x)2][
1
JS

∂U
∂ϕ

− 1
m
ϕ ′(x)

∂U
∂x

] = 0,

where

∂U
∂x

= (k1 + k2)x+(k1l1 − k2l2)sinϕ ,

∂U
∂ϕ

= (k1l1 − k2l2)xcosϕ+
1
2
(k1l2

1 + k2l2
2)sin 2ϕ .

EXERCISE 7.7. Derive equations (7.14).

Solution. We shall derive this system of equations from the equations of slow flow
for A1, B1, A2, B2 obtained in Section 7.2 by the variational asymptotic method
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A1,η =
3
8

B1(A
2
1 +B2

1)+
3
8

B1(A
2
2 +B2

2)+
3
4

B2(A1A2 +B1B2),

B1,η =−3
8

A1(A
2
1 +B2

1)−
3
8

A1(A
2
2 +B2

2)−
3
4

A2(A1A2 +B1B2),

A2,η = (
3
8
+ 3κ)B2(A

2
2 +B2

2)+
3
8

B2(A
2
1 +B2

1)+
3
4

B1(A1A2 +B1B2),

B2,η =−(
3
8
+ 3κ)A2(A

2
2 +B2

2)−
3
8

A2(A
2
1 +B2

1)−
3
4

A1(A1A2 +B1B2).

Multiplying the first equation by A1, the second by B1, and adding them together,
we obtain

A1A1,η +B1B1,η =
3
4
(A1A2 +B1B2)(A1B2 −A2B1).

Using the definitions of the amplitudes and the phase difference, it is easy to see that
the following identities

A1A1,η +B1B1,η =
1
2

d
dη

(A2
1 +B2

1) =
1
2

d
dη

a2
1,

A1A2 +B1B2 = a1a2 cos(φ2 −φ1) = a1a2 cosϕ ,
A1B2 −A2B1 = a1a2 sin(φ2 −φ1) = a1a2 sinϕ

hold true transforming the above equation to

a1a1,η =
3
8

a2
1a2

2 sin2ϕ ⇒ a1,η =
3
8

a1a2
2 sin2ϕ .

Thus, the first equation has been proved. The second equation for a2 can be derived
similarly. In this case we multiply the third and the fourth equations of the above
system by A2 and B2, respectively, and then add them together. The result is

1
2

d
dη

(A2
2 +B2

2) =
3
4
(A2B1 −A1B2)(A1A2 +B1B2).

With supplement of the following identity

A2B1 −A1B2 =−a1a2 sinϕ ,

we transform this equation to

a2a2,η =−3
8

a2
1a2

2 sin2ϕ ⇒ a2,η =−3
8

a2
1a2 sin2ϕ .

To derive the equation for the phase difference, we multiply the first equation by A2,
the second by B2, the third by A1, and the last by B1, and then add them together.
The latter, after some calculation, can be written as
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d
dη

(A1A2 +B1B2) = 3κ(A1B2 −A2B1)(A
2
2 +B2

2).

The derivative on the left-hand side of this equation can be expressed in terms of a1,
a2 and ϕ according to

d
dη

(a1a2 cosϕ) = (a1,ηa2 + a1a2,η)cosϕ− a1a2ϕ,η sinϕ

= (
3
8

a1a3
2 sin2ϕ− 3

8
a3

1a2 sin2ϕ)cosϕ− a1a2ϕ,η sinϕ

= [
3
4

a1a2(a
2
2 − a2

1)cos2ϕ− a1a2ϕ,η ]sinϕ ,

whereas the right-hand side is simply 3κa1a3
2 sinϕ . Plugging these into the above

equation and dividing both sides by a1a2 sinϕ , we obtain the evolution equation for
the phase difference

ϕ,η =
3
4
(a2

2 − a2
1)cos2ϕ− 3κa2

2,

which, by recalling cos2ϕ = (1+ cos2ϕ)/2, can be rewritten as

ϕ,η =−3
8
(a2

1 + a2
2)+ 3(

1
4
−κ)a2

2 +
3
8
(a2

2 − a2
1)cos2ϕ .

EXERCISE 7.8. Compute the approximate Poincaré map from the first integral
(7.17) numerically for the energy level E0 = 0.4 and for the parameter ε = 0.1,
κ = 0.1, and compare it with the Poincaré map obtained by the numerical integra-
tion of the exact equations (7.1).

Solution. In order to compute the Poincaré map of the exact equations (7.1) we
adapt the Mathematica code written by Weisstein to them. Such modified code is
shown below. There are two main functions: the first is used to produce surface of
section by condition x = 0 with the given initial conditions x(0) = x0, y(0) = y0

and ẏ(0) = ẏ0, whereas the second plots the result using the ListPlot command. The
initial velocity ẋ(0) should be computed through others by using the first integral

1
2

ẋ2 +
1
2

ẏ2 +
1
2
(x2 + y2)+

α
4
(x4 + y4)+

β
4
(y− x)4 = E0,

which implies

ẋ0 =

√
2E0 − ẏ2

0 − (x2
0 + y2

0)−
α
2
(x4

0 + y4
0)−

β
2
(y0 − x0)4.
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SurfaceOfSection��x0_, �y0_, dy0_�, e_, Α_, Β_�, tmax_� :�

Module	
dx0 � Sqrt	2 e � x02 � y02 �
Α

2
x04 �

Α

2
y04 �

Β

2
�y0 � x0�4 � dy02�, x, y, t�,

If�� � ��, ��, First���� &�Last�Reap�NDSolve��
x''�t� � �x�t� � Α x�t�^3 � Β �y�t� � x�t��^3,
y''�t� � �y�t� � Α y�t�^3 � Β �y�t� � x�t��^3,
y�0� � y0, y'�0� � dy0, x�0� � x0, x'�0� � dx0�,
�x, y�, �t, 0, tmax�, Method � �EventLocator, "Event" � x�t�,

"EventCondition" � �x'�t�  0.�, "EventAction" � Sow��y�t�, y'�t����
���

�
Internal`DeactivateMessages�ListPlot�

SurfaceOfSection��0., �0., �0.65�, 0.4, 0.1, 0.01�, 2000�,
PlotStyle � �PointSize�.005�, Black�,
AspectRatio � Automatic, AxesLabel � TraditionalForm �� �y�t�, y

��t� �,
ImageSize � 500��

The map obtained from the first integral (7.17) can be plotted with the Paramet-
ricPlot command. The comparison of these two maps was shown in Fig. 7.11.

EXERCISE 7.9. Prove the formulas (7.29)2,3.

Solution. Let us recall the definitions of matrices A, B, and C

A =UT L,vvU, B =UT L,vϕ −LT
,vϕU, C =UT E,ϕ ,

where the following abbreviations are used

L,vϕ =
∂
∂ϕ

L,v(u(ϕ),∇u(ϕ)), E,ϕ =
∂
∂ϕ

E(L,u), U =
∂u
∂ϕ

.

Consider first the matrix B with the elements

Bi j =UT
im[L,vϕ ]m j − [LT

,vϕ ]imUm j,

where the elements of matrices U and L,vϕ are given by

Uim =
∂ui

∂ϕm
, [L,vϕ ]m j =

∂
∂ϕ j

∂L
∂vm

.

Using these formulas for U and L,vϕ , we compute Bi j explicitly

Bi j =
∂um

∂ϕi

∂
∂ϕ j

∂L
∂vm

− ∂
∂ϕi

∂L
∂vm

∂um

∂ϕ j

=
∂
∂ϕi

(um
∂
∂ϕ j

∂L
∂vm

)− um
∂ 2

∂ϕi∂ϕ j

∂L
∂vm

− ∂
∂ϕ j

(um
∂
∂ϕi

∂L
∂vm

)+ um
∂ 2

∂ϕ j∂ϕi

∂L
∂vm

=
∂
∂ϕi

(um
∂
∂ϕ j

∂L
∂vm

)− ∂
∂ϕ j

(um
∂
ϕi

∂L
∂vm

),
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where the identity of mixed derivatives

∂ 2

∂ϕi∂ϕ j
(·) = ∂ 2

∂ϕ j∂ϕi
(·)

has been taken into account. Since um and vm are 2π-periodic in each variable ϕk,
so are the expressions in the above parentheses. Thus, it follows immediately that

∫
Tn

Bi j = 0.

Next, we turn to the vector Q =UT E(L,u), whose components are

Qi =UT
ik Ek(L,u) =

∂uk

∂ϕi
(∇
∂L
∂ q̇k

(u,∇u)− ∂
∂qk

L(u,∇u))

=
∂uk

∂ϕi
ω j

∂
∂ϕ j

∂L
∂vk

(u,∇u)− ∂uk

∂ϕi

∂L
∂uk

(u,∇u)

= ω j
∂
∂ϕ j

[
∂L
∂vk

(u,∇u)
∂uk

∂ϕi
]− ∂L

∂vk
(u,∇u)ω j

∂ 2uk

∂ϕ j∂ϕi
− ∂uk

∂ϕi

∂L
∂uk

(u,∇u).

Noticing that

ω j
∂ 2uk

∂ϕ j∂ϕi
=

∂
∂ϕi

∂uk

∂ϕ j

dϕ j

dt
=
∂vk

∂ϕi
,

the expression for Qi reduces to

Qi = ω j
∂
∂ϕ j

[
∂L
∂vk

(u,∇u)
∂uk

ϕi
]− ∂L

∂ϕi
.

Using the periodicity condition of u and v with respect to ϕ , we see that the integral
of Qi on the torus also vanishes

∫
T n

UT
ik Ek(L,u) = 0.

EXERCISE 7.10. Simulate numerically the solutions of equations (7.30) satisfying
the initial conditions x(0) = 1, ẋ(0) = 0 and y(0) = 1, ẏ(0) = 0 for ε = 0.1, α = 1,
and κ = 1.2. Plot the curves x(t), y(t), and x(t)y(t) and compare them with the cor-
responding curves obtained from the slow flow system (7.33). Explain why synchro-
nization leads to the stationary behavior of the amplitude modulation of x(t)y(t).

Solution. In order to compare the numerical solutions x(t), y(t) of the exact equa-
tions (7.30) and their amplitude modulations obeying the slow flow equations (7.33),
we need to refer (7.33) to the same time variable. Thus, it is necessary to solve the
slow flow equations in τ = ωt by changing from η to τ according to

d
dη

(·) = d
dτ

(·) dτ
dη

=
1
ε

d
dτ

(·).
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The following pieces of code in Mathematica provide the numerical solutions to the
systems (7.30) and (7.33). The curves x(t) and y(t) corresponding to the numerical
solution of (7.30) as well as their amplitude modulations are shown in Fig. 7.19.

sol � NDSolve�x''�t� � x�t� � Ε Κ �x�t� � y�t�� � Ε �1 � x�t�2� x'�t� � 0,

y''�t� � �1 � Ε Α� y�t� � Ε Κ �x�t� � y�t�� � Ε �1 � y�t�2� y'�t� � 0,

x�0� � 1, x'�0� � 0, y�0� � 1, y'�0� � 0�, �x�t�, y�t��, �t, 0, 5 � 102��;

slow � NDSolve	

2

Ε
a1'�t� �� a1�t� 1 �

a1�t�2

4
� Κ a2�t� Sin���t��,

2

Ε
a2'�t� � a2�t� 1 �

a2�t�2

4
� Κ a1�t� Sin���t��,

2

Ε
�'�t� � Α � Κ Cos���t��

a2�t�
a1�t�

�
a1�t�
a2�t�

, a1�0� � 1, a2�0� � 1, ��0� � 0�,

�a1�t�, a2�t�, ��t��, �t, 0, 500��;

Based on the variational-asymptotic analysis we can present the asymptotic so-
lution (in the first approximation) to the equations of coupled oscillators in the form

x0(t,η) = a1(η)cos(ωt −φ1(η)), y0(t,η) = a2(η)cos(ωt −φ2(η)),

where η = ετ = εωt. Using the product rule of trigonometric functions, we compute
their product

z0(t,η) = x0(t,η)y0(t,η) =
1
2

a1(η)a2(η)[cos(2ωt −φ1(η)−φ2(η))+ cosϕ(η)].

In the expression in square brackets the first summand containing the fast variable t
describes the fast oscillating contribution to the product with the amplitude 1

2 a1a2,
while the second summand describes the slow oscillating contribution with the same
amplitude. Thus, the amplitude modulation of x(t)y(t) at large time can be described
asymptotically as

a(η) =
1
2

a1(η)a2(η)(1+ cosϕ(η)).

We see that if strong synchronization occurs, then a(η) must approach a constant
value. The curve x(t)y(t) corresponding to the numerical solution of (7.30) as well
as its amplitude modulation, shown in Fig. 7.20, indicates the occurrence of strong
synchronization and confirms the analysis provided in Section 7.4.

EXERCISE 7.11. Recheck the slow flow equations (7.33).

Solution. We recall the equations of slow flow for A j(η) and B j(η) obtained in
Section 7.4

2A1,η =−2k1B1 +A1 − A1

4
(A2

1 +B2
1)+κ(B1−B2),

2B1,η = 2k1A1 +B1 − B1

4
(A2

1 +B2
1)+κ(A2 −A1),



340 7 Coupled Oscillators

50 100 150 200 250 300

2

1

1

2

50 100 150 200 250 300

1.5

1.0

0.5

0.5

1.0

1.5

t

x(t)

t

y(t)

Fig. 7.19 Curves x(t) and y(t) corresponding to the numerical solution of (7.30) (bold lines)
and their amplitude modulations in accordance with (7.33) (dashed lines)
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Fig. 7.20 Numerical simulation of the product x(t)y(t) (bold line) and its amplitude modula-
tion (dashed line)

2A2,η =−2k1B2 +αB2 +A2 − A2

4
(A2

2 +B2
2)+κ(B2 −B1),

2B2,η = 2k1A2 −αA2 +B2 − B2

4
(A2

2 +B2
2)+κ(A1−A2).

Multiplying the first equation by A1, the second by B1, and adding them, then per-
forming the similar operations for the third and the fourth equations, we obtain

2(A1A1,η +B1B1,η) = A2
1 +B2

1 −
1
4
(A2

1 +B2
1)

2 +κ(A2B1 −A1B2),

2(A2A2,η +B2B2,η) = A2
2 +B2

2 −
1
4
(A2

2 +B2
2)

2 −κ(A2B1 −A1B2).

Expressing A j and B j in terms of a1, a2 and φ1, φ2, this system can be rewritten as

2a1a1,η = a2
1 −

a4
1

4
+κa1a2 sin(φ1 −φ2),

2a2a2,η = a2
2 −

a4
2

4
−κa1a2 sin(φ1 −φ2),
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which is equivalent to

2a1,η = a1(1− a2
1

4
)+κa2 sinϕ ,

2a2,η = a2(1− a2
2

4
)−κa1 sinϕ ,

where ϕ = φ1 −φ2 is the phase difference.
Returning to the system of slow flow equations, we rewrite them in terms of a1,

a2, φ1, φ2 as follows

2(a1,η cosφ1 − a1 sinφ1φ1,η) =−2k1a1 sinφ1 + a1 cosφ1

− 1
4

a3
1 cosφ1 +κ(a1 sinφ1 − a2 sinφ2),

2(a1,η sinφ1 + a1 cosφ1φ1,η) = 2k1a1 cosφ1 + a1 sinφ1

− 1
4

a3
1 sinφ1 +κ(a2 cosφ2 − a1 cosφ1),

2(a2,η cosφ2 − a2 sinφ2φ2,η) =−2k1a2 sinφ2 +αa2 sinφ2 + a2 cosφ2

− 1
4

a3
2 cosφ2 +κ(a2 sinφ2 − a1 sinφ1),

2(a2,η sinφ2 + a2 cosφ2φ2,η) = 2k1a2 cosφ2 −αa2 cosφ2 + a2 sinφ2

− 1
4

a3
2 sinφ2 +κ(a1 cosφ1 − a2 cosφ2).

Multiplying the first equation by sinφ1, the second by cosφ1, subtracting the first
equation from the second one, and using the identity sin2 φ + cos2 φ = 1, we obtain

2φ1,η = 2k1 −κ+κ a2

a1
cos(φ1 −φ2).

In a similar manner, we multiply the third equation by sinφ2, the fourth by cosφ2

and subtract one from another to get

2φ2,η = 2k1 −α−κ+κ a1

a2
cos(φ1 −φ2).

The evolution equation for the phase difference ϕ = φ1 − φ2 is easily derived by
subtracting one from another of two equations just obtained yielding

2ϕ,η = α+(
a2

a1
− a1

a2
)cosϕ .

EXERCISE 7.12. Solve the slow flow system (7.33) numerically for α = 1, and κ =
1.2, with the initial conditions a1(0) = 1, a2(0) = 1, and ϕ(0) = 1. Plot the curves
a1(t), a2(t), and ϕ(t), and observe their behavior as t becomes large.
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Fig. 7.21 Amplitudes a1(t) and a2(t) of the weakly coupled van der Pol’s oscillators
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Fig. 7.22 The phase difference ϕ(t) of the weakly coupled van der Pol’s oscillators

Solution. The numerical solution of the system can be obtained via the NDSolve
command provided in Mathematica. The plotted curves of amplitudes a1(t) and
a2(t) are shown adjacent to each other in Fig. 7.21, where it can be seen that they
stay constant as time t tends to infinity. The next Figure 7.22 shows the plot of the
phase difference ϕ(t). Observe that the phase difference also approaches a constant
value as time goes to infinity. The figures illustrated here are generated using the
numerical solution obtained with the following piece of code.

slow � NDSolve	

2

Ε
a1'�t� �� a1�t� 1 �

a1�t�2

4
� Κ a2�t� Sin���t��,

2

Ε
a2'�t� � a2�t� 1 �

a2�t�2

4
� Κ a1�t� Sin���t��,

2

Ε
�'�t� � Α � Κ Cos���t��

a2�t�
a1�t�

�
a1�t�
a2�t�

, a1�0� � 1, a2�0� � 1, ��0� � 0�,

�a1�t�, a2�t�, ��t��, �t, 0, 500��;

The behavior of the amplitudes and of the phase difference indicates that, after
a short transient time of unsynchronized oscillations of the amplitudes, the steady-
state synchronized vibrations of the coupled oscillators occur. This is also confirmed
by the analysis of the coupled self-excited oscillators provided in Section 7.4 and
by Fig. 7.14.
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