
Chapter 6
Non-autonomous Single Oscillator

This Chapter analyzes non-autonomous mechanical systems with one degree of
freedom whose Lagrange function depends explicitly on time. This involves ei-
ther some time-dependent parameter or a harmonic excitation. The variational-
asymptotic analysis, combined with multi-scaling, belongs again to the arsenal of
mostly used analytical methods of solution of variational problems containing small
parameters.

6.1 Parametrically-Excited Oscillator

Differential Equation of Motion. If some parameter of an oscillator changes in
such a way that the energy supply is synchronized with the period of vibration, the
parametric resonance may occur. We consider some examples.

EXAMPLE 6.1. Pendulum with periodically moving support. The support of a pen-
dulum moves in accordance with the equation x = a(t) (see Fig. 6.1). Derive the
equation of motion for this pendulum.
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Fig. 6.1 Pendulum with mov-
ing support

In a fixed (x,y)-coordinate system the coordinates of
the point-mass are

x = a+ l cosϕ , y = l sinϕ .

Differentiating these equations with respect to t we
obtain the velocity

ẋ = ȧ− l sinϕ ϕ̇ , ẏ = l cosϕ ϕ̇ .

Therefore the kinetic energy is equal to

K =
1
2

m(ẋ2 + ẏ2) =
1
2

m(ȧ2 − 2l sinϕ ȧϕ̇+ l2ϕ̇2).

The potential energy of the point mass is
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U =−mg(a+ l cosϕ).

Note that the zero level of potential energy corresponds to x = 0. Thus, the Lagrange
function L(ϕ , ϕ̇ , t) = K −U depends explicitly on time through a(t). Mechanical
systems with the Lagrange function depending explicitly on time are classified as
non-autonomous. Substitution of this Lagrange function into Lagrange’s equation
gives

ml2ϕ̈+mgl sinϕ−mläsinϕ = 0,

or

ϕ̈+
1
l
(g− ä)sinϕ = 0. (6.1)

If a(t) is a periodic function of t, say a(t) = a0 cosωt, then (6.1) is a nonlinear
equation with periodic coefficients. In order to investigate the stability of one of the
equilibrium positions ϕ = 0 or ϕ = π , we would linearize (6.1) about the desired
equilibrium. In case ϕ = 0 the linearization yields

ϕ̈+
1
l
(g+ a0ω2 cosωt)ϕ = 0. (6.2)

This is called Mathieu’s equation [35]. We will show later that the parametric reso-
nance may occur for some values of ω and a0.

EXAMPLE 6.2. Stability of a limit cycle.

Assume that x = xs(t) is a periodic solution of the equation of motion

ẍ = f (x, ẋ). (6.3)

We would like to study the dynamic stability of this periodic solution. For this pur-
pose we investigate the neighboring solutions

x = xs(t)+ ξ (t), ẋ = ẋs(t)+ ξ̇ (t), ẍ = ẍs(t)+ ξ̈(t),

where ξ (t) and its first derivative are assumed to be small. Substituting these for-
mulas into the equation of motion, we obtain

ẍs(t)+ ξ̈(t) = f (xs(t)+ ξ (t), ẋs(t)+ ξ̇(t)).

Since ξ (t) and ξ̇ (t) are small, we expand the right-hand side into the Taylor series
and neglect all nonlinear terms

f (xs(t)+ ξ (t), ẋs(t)+ ξ̇(t)) = f (xs, ẋs)+
∂ f
∂x

(xs(t), ẋs(t))ξ (t)

+
∂ f
∂ ẋ

(xs(t), ẋs(t))ξ̇ (t)+ . . . .

Taking into account that xs(t) is the solution of (6.3), we obtain for ξ (t)
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ξ̈ =
∂ f
∂x

(xs(t), ẋs(t))ξ (t)+
∂ f
∂ ẋ

(xs(t), ẋs(t))ξ̇ (t).

Thus, the stability analysis of a limit cycle puts a question, whether or not the linear
differential equation with periodic coefficients has bounded solutions. This is quite
similar to the problem of parametric resonance.

EXAMPLE 6.3. Pendulum with periodically changeable length l(t) (see Fig. 6.2).
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Fig. 6.2 Pendulum with
changeable length

The swing known from our childhood is described by
this mechanical model. The kinetic and potential energies
of the point-mass are

K =
1
2

ml2(t)ϕ̇2, U = mgl(t)(1− cosϕ).

Lagrange’s equation has the form

ml2ϕ̈+ 2mll̇ϕ̇+mgl sinϕ = 0.

Dividing this equation by ml2 we obtain

ϕ̈+ 2
l̇
l
ϕ̇+

g
l

sinϕ = 0.

In reality, the change of length of the swing is realized by the motion of the swinger.
This changes the center of gravity causing the change of the effective length of the
physical pendulum. To pump the swing the swinger must raise his or her body as
the swing passes through the lowest point and lower themselves near the extremes
of the motion.

l1l20

Fig. 6.3 A simplified model
of swing

Solution in a Simplified Model of Swing. To get the
“feeling” of how the parametric resonance may oc-
cur, we analyze a simplified model of swing, in which
the effective length of the pendulum changes abruptly
from l1 to l2 at ϕ = 0, and from l2 to l1 as the max-
imum (or minimum) of ϕ is achieved at the turning
angle. The trajectory of the center of mass is shown in
Fig. 6.3 by a loop with arrows. Since l = l1 = const in
the first quarter of vibration, energy must be conserved
if the air resistance is neglected

1
2

ml2
1 ϕ̇

2 +mgl1(1− cosϕ) = mgl1(1− cosϕ0),

where ϕ0 is the starting angle when the swing is released. Using this equation we
can compute the angular velocity ϕ̇ just before the change of length at ϕ = 0

ϕ̇2
1− =

2g
l1
(1− cosϕ0). (6.4)
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Similarly, in the next quarter of vibration in which the swing’s length is l = l2 =
const, we have

1
2

ml2
2 ϕ̇

2 +mgl2(1− cosϕ) = mgl2(1− cosϕ2),

where ϕ2 is the turning angle, so the angular velocity immediately after the change
of length at ϕ = 0 is equal to

ϕ̇2
1+ =

2g
l2
(1− cosϕ2). (6.5)

During the short time when the length of the swing changes abruptly the force
in the radial direction is applied. Since the moment of this radial force about the
support is zero, the angular momentum must be conserved

ml2
1 ϕ̇1− = ml2

2 ϕ̇1+. (6.6)

This relation can be used to determine ϕ2 through ϕ0. Indeed, squaring (6.6) and
using (6.4) and (6.5) we get

l3
1(1− cosϕ0) = l3

2(1− cosϕ2). (6.7)

Similar arguments lead to the generalization of this equation for all subsequent
halves of vibration

l3
1(1− cosϕ2(n−1)) = l3

2(1− cosϕ2n).

Thus, the sequence of turning angles can be constructed geometrically as shown
in Fig. 6.4. Starting from the point A0 = (ϕ0, f1(ϕ0)) on the curve f1(ϕ) = l3

1(1−
cosϕ) we find the next turning angle ϕ2 at the intersection between the horizon-
tal line going though A0 and the curve f2(ϕ) = l3

2(1− cosϕ). Then, starting from
A2 = (ϕ2, f1(ϕ2)) we find the next turning angle ϕ4, and the whole process can be
continued. We see that after a finite number of halves of vibration the angle may
become larger than π .

It is interesting to find out the energy gain after each swing act. Obviously, the
energy does not change during the time when l = const. As the length of the swing
changes abruptly from l1 to l2, the energy gain is

Eg = mgh+
1
2

m(v2
1+− v2

1−),

where h = l1 − l2. The first term is the gain of potential energy, the second term
corresponds to the increase of kinetic energy. Taking into account (6.4)-(6.6) and
v = lϕ̇ , we express Eg in terms of ϕ0

Eg = mg{h+ l1(1− cosϕ0)[(l1/l2)
2 − 1]}.
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Fig. 6.4 Sequence of turning angles

After the change of the length from l2 to l1 at the turning angle ϕ2 we have the loss
of potential energy

El = mghcosϕ2.

Thus, the total energy gain in a half of vibration is equal to

ΔE = Eg −El = mg{h(1− cosϕ2)+ l1(1− cosϕ0)[(l1/l2)
2 − 1]}.

Recalling (6.7), this can be transformed to

ΔE =
h(l2

1 + l1l2 + l2
2)

l3
2

mgl1(1− cosϕ0) = kE0,

where k = h(l2
1 + l1l2 + l2

2)/l3
2 and E0 is the initial energy. Thus, the energy after the

first half of vibration is

E2 = E0 +ΔE = E0(1+ k).

Similar formulas can be derived for the subsequent halves of vibration. Thus, the
energy after n halves of vibration becomes

E2n = E0(1+ k)n.

We see that the energy grows in a geometrical progression, like an accumulation
of a capital invested with the interest rate k. In reality, this energy accumulation is
reduced by the energy loss due to the drag force of the air so that a stationary regime
may be established under certain conditions.

Numerical Solutions. We turn now to Mathieu’s equation (6.2) as the prototype
equation describing parametrically excited oscillators. We present it in the form1

ẍ+(μ+ ε cost)x = 0. (6.8)

1 It is easy to show that equation (6.2) assumes this form with μ = (ω0/ω)2, ε = a0/l, and
ω0 =

√
g/l, if time is replaced by the dimensionless time ωt.
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The main concern of this equation is whether or not all solutions are bounded for
given values of the parameters μ and ε . If all solutions are bounded, then the corre-
sponding point in the (μ ,ε)-plane is said to be stable. In the opposite case we have
the parametric resonance and the point is classified as unstable. The problem is to
find the stability chart of Mathieu’s equation.
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Fig. 6.5 Solution of Mathieu’s equation for μ = 0.24 and ε = 0.01

Although equation (6.8) can be solved analytically in terms of Mathieu’s func-
tions [3], it is even simpler first to find a solution for some μ and ε by numerical
integration. Similar commands in Mathematica like those presented in Section 5.3
work quite well. Fig. 6.5 shows the solution x(t) satisfying the initial conditions
x(0) = 1, ẋ(0) = 0, for μ = 0.24 and ε = 0.01. We can observe that there are two
characteristic time scales: i) one describing the period of fast oscillation of x(t), ii)
the other associated with the slow oscillation of amplitude of vibration marked by
the dashed envelopes. The solution remains bounded in this case.

If we change parameters μ and ε a little bit, the character of solutions may change
radically. For example, if we take μ = 0.25 while keeping ε = 0.01 as before, then
the solution satisfying the same initial conditions shown in Fig. 6.6 exhibits the
exponential growth of the amplitude. So, it is reasonable to guess that the point
(0.25,0.01) of the (μ ,ε)-plane causes the parametric resonance. Also in this case
we can observe two characteristic time scales: i) one describing the period of fast
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Fig. 6.6 Solution of Mathieu’s equation for μ = 0.25 and ε = 0.01
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oscillation of x(t), ii) the other associated with the exponential growth of amplitude
of vibration marked by the dashed envelopes.

It should be noted, however, that the numerical integration, which is quite useful
when studying the behavior of particular solutions, is not appropriate for the deter-
mination of the stability chart of Mathieu’s equation. This is due to two reasons.
First, these numerical simulations cannot be provided for an infinite time interval,
so the boundedness of solutions cannot strictly be proved. Second, one cannot do
infinite number of numerical simulations for all possible values of μ and ε as well
as for all possible initial data. Thus, other more “intelligent” methods should be
developed for this purpose.

Variational-Asymptotic Method. Let us find the approximate solutions to Math-
ieu’s equation for small ε by using the variational-asymptotic method. These solu-
tions are also the extremals of the functional

I[x(t)] =
∫ t1

t0
[
1
2

ẋ2 − 1
2
(μ+ ε cost)x2]dt, (6.9)

with t0 and t1 being arbitrary time instants. For short we set t0 = 0, t1 = T . At the
first step we put simply ε = 0 to get from (6.9)

I0[x(t)] =
∫ T

0
(

1
2

ẋ2 − 1
2
μx2)dt.

The extremal of I0[x(t)] satisfies the equation

ẍ+ μx = 0

yielding the periodic solution with the period T = 2π/√μ

x0(t) = Acos
√
μt +Bsin

√
μt. (6.10)

Taking into account that the coefficients A and B are becoming slightly dependent
on time for ε �= 0, we introduce the slow time η = εt and seek the corrections to the
extremal at the second step in the two-timing fashion

x(t) = A(η)cos
√
μt +B(η)sin

√
μt + x1(t,η), (6.11)

where x1(t,η) is a periodic function of the period T with respect to t and is much
smaller than x0(t,η) in the asymptotic sense. The time derivative of x(t) becomes

ẋ =−A
√
μ sin

√
μt + εA,η cos

√
μt +B

√
μ cos

√
μt + εB,η sin

√
μt + x1,t + εx1,η .

Substituting (6.11) into (6.9) and keeping the asymptotically principal terms con-
taining x1 and the principal cross terms between x0 and x1, we obtain
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I1[x1(t)] =
∫ T

0
[
1
2

x2
1,t −A

√
μ sin

√
μt x1,t +B

√
μ cos

√
μt x1,t

+ εA,η cos
√
μt x1,t + εB,η sin

√
μt x1,t − 1

2
μx2

1 − μAcos
√
μt x1

− μBsin
√
μt x1 − ε cost(Acos

√
μt +Bsin

√
μt)x1]dt.

Integrating the second up to fifth terms by parts taking into account the periodicity
of x1(t) we see that the underlined terms give 2ε√μ(A,η sin

√μt −B,η cos
√μt)x1.

Besides, the products cost cos
√μt and cost sin

√μt can be transformed into the
sum of harmonic functions like that

cost cos
√
μt =

1
2
[cos(1+

√
μ)t + cos(1−√

μ)t],

cost sin
√
μt =

1
2
[sin(1+

√
μ)t − sin(1−√

μ)t],

so finally we obtain

I1[x1(t)] =
∫ T

0
[
1
2

x2
1,t −

1
2
μx2

1 + 2εA,η
√
μ sin

√
μt x1 − 2εB,η

√
μ cos

√
μt x1

− 1
2
εA(cos(1+

√
μ)t + cos(1−√

μ)t)x1

− 1
2
εB(sin(1+

√
μ)t − sin(1−√

μ)t)x1]dt. (6.12)

For a general value of μ removal of resonant terms yields the trivial equations

A,η = 0, B,η = 0.

Thus, for general μ the cost term has no effect. However, if
√μ = 1−√μ , i.e.

μ = 1/4, then there are additional contributions to the resonant terms. In this case
removal of resonant terms gives the slow flow

A,η =−1
2

B,

B,η =−1
2

A.

These equations lead to A,ηη = A/4. Thus, A and B involve exponential growth, and
the parameter value μ = 1/4 causes instability. This corresponds to a 2:1 subhar-
monic resonance in which the driving frequency is twice the natural frequency as in
the example of swing.

Let us seek the correction for μ in the neighborhood of 1/4 in the form

μ =
1
4
+ μ1,



6.2 Mathieu’s Differential Equation 263

where μ1 is much smaller than 1. This brings additional resonant terms of the form
−μ1(Acos t

2 + Bsin t
2 )x1 into functional (6.12). Thus, the equations for A and B

change to

A,η = (
μ1

ε
− 1

2
)B, B,η =−(

μ1

ε
+

1
2
)A. (6.13)

This means, A,ηη +(μ2
1/ε2 −1/4)A = 0, and A and B will be sine and cosine func-

tions of η if μ2
1 > ε2/4. That is, if either μ1 > ε/2 or μ1 < −ε/2, then A and B

remain bounded. Thus, the following two curves in the (μ ,ε)-plane represent sta-
bility changes, and are called transition curves:

μ =
1
4
± ε

2
+O(ε2). (6.14)

These two curves emanate from the point μ = 1/4 on the μ-axis and define a region
of instability called a tongue. Inside the tongue, for small ε , x grows exponentially
in time. Outside the tongue x is the sum of terms, each of which is the product
of two harmonic functions with generally incommensurate frequencies, so x is a
bounded quasiperiodic function of t. This confirms our numerical simulations done
in the previous paragraph. One can also show that the approximate solution given
by equations (6.10) and (6.13) converges to the exact solution of (6.8) in any finite
time interval as ε → 0. The indirect check of this result can be done also by solv-
ing equations (6.13) and comparing it with the numerical solutions (see the dashed
envelopes in Figs. 6.5 and 6.6 computed by the equations (6.13)).

6.2 Mathieu’s Differential Equation

This Section presents the exact treatment of Mathieu’s equation based on Floquet’s
theory of linear differential equations with periodic coefficients and the finding of
stability chart.

Floquet’s Theory. We first study the general theory of linear differential equations
with periodic coefficients (Floquet’s theory). Let x be an n×1 column vector, and A
an n×n matrix whose elements are periodic functions with a period T . We consider
the following vectorial differential equation

ẋ = A(t)x. (6.15)

Notice that, since A(t+T ) = A(t), this equation is invariant with respect to the shift
of time by a constant period T . Thus, if x(t) is a solution of (6.15), then x(t +T )
must also be a solution of (6.15).

Now let us consider the fundamental solution matrix of (6.15), X(t), which is
defined as follows. X(t) is an n× n matrix, whose columns are solutions of (6.15)
such that X(0) = I, I being the identity matrix. As the columns of X(t) are linearly
independent, they form a basis for the n-dimensional solution space of (6.15). Since
X(t +T ) is also the solution matrix of equation (6.15), each of its columns may be
written as a linear combination of the columns of X(t), so
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X(t +T ) = X(t)C, (6.16)

where C is a n×n constant matrix. At t = 0 we have X(T ) = X(0)C = C, so C is in
fact equal to the fundamental matrix evaluated at time T . Thus, C could be obtained
by numerically integrating (6.15) from t = 0 to t = T , n times, once for each of the
n initial conditions satisfied by the i-th column of X(0). Taking the time instants 2T ,
3T , and so on and applying similar arguments, we can show that X(nT ) = Cn.

Let us transform (6.16) to normal coordinates. We seek another fundamental so-
lution matrix Y(t) such that

Y(t) = X(t)R,

where R is as yet unknown n× n matrix. Combining this equation with (6.16), we
obtain

Y(t +T) = Y(t)R−1CR. (6.17)

Suppose that C has n linearly independent eingenvectors. If we choose the columns
of R to be these eigenvectors, then the product R−1CR will be a diagonal matrix
with the eigenvalues λi of C on its diagonal. With R−1CR diagonal, the matrix Y(t)
satisfying (6.17) will also be diagonal. Indeed, let us construct this diagonal matrix
explicitly. Its elements satisfy the equations

yi(t +T ) = λiyi(t). (6.18)

We look for a solution to this functional equation in the form

yi(t) = λ kt
i pi(t),

where k is an unknown constant and pi(t) is an unknown function. Substitution into
(6.18) gives

yi(t +T ) = λ k(t+T )
i pi(t +T ) = λi(λ kt

i pi(t)).

This equation is satisfied if we take k = 1/T and pi(t) a periodic function of period
T . Thus, the constructed matrix with the diagonal elements

yi(t) = λ
t/T
i pi(t) (6.19)

satisfies (6.17). This implies that the original system (6.15) will be stable if every
eigenvalue λi of C has modulus less than 1. In the opposite case the solution will
grow exponentially as t → ∞ leading to instability and parametric resonance.

Hill’s Equation. Let us first apply Floquet’s theory to Hill’s equation

ẍ+ f (t)x = 0, f (t +T ) = f (t),

which contains Mathieu’s equation as a special case. This equation can be written
as a system of differential equation
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d
dt

(
x
y

)
=

(
0 1

− f (t) 0

)(
x
y

)
.

We construct a fundamental solution matrix from two solution vectors satisfying the
initial conditions (

x1(0)
y1(0)

)
=

(
1
0

)
,

(
x2(0)
y2(0)

)
=

(
0
1

)
.

Then the matrix C is the fundamental solution matrix evaluated at time T

C =

(
x1(T ) x2(T )
y1(T ) y2(T )

)
.

From the previous paragraph we know that stability is determined by the eigenvalues
of C

λ 2 − (trC)λ + detC = 0, (6.20)

where trC and detC are the trace and determinant of C. It turns out that detC = 1
for Hill’s equation. Indeed, let us compute the time derivative of the Wronskian

d
dt

W (t) =
d
dt
(x1y2 − y1x2) = y1y2 − f (t)x1x2 + f (t)x1x2 − y1y2 = 0.

Thus, W (T ) = detC =W (0) = 1 and equation (6.20) can be written as

λ 2 − (trC)λ + 1 = 0,

yielding two roots

λ1,2 =
1
2
(trC±

√
(trC)2 − 4).

According to Floquet’s theory instability occurs if either eigenvalue has modulus
larger than 1. So, if |trC| > 2, then we have two real roots, and since their product
is 1, one of them has modulus greater than 1. In this case we have instability as-
sociated with the exponential growth of solutions. If |trC| < 2, then the roots are
complex conjugate, and since their product is 1, they lie on the unit circle, with
the consequence that the solutions are bounded. The transition from stable to un-
stable behavior corresponds to those parameter values giving |trC| = 2. If trC = 2,
then we have the double root λ = 1, and formula (6.19) implies that the solutions
must be periodic functions with period T . In case trC = −2 we have the double
root λ = −1 corresponding to the periodic solutions with period 2T . Thus, on the
transition curves in parameter space, the motions are periodic with period T or 2T .
In accordance with this theory, the stability of a given pair (μ ,ε) can be determined
by finding the fundamental solution matrix at t = T through numerical integration
and investigating its eigenvalues. However, for the whole (μ ,ε)-plane the method is
still ineffective.

Stability Chart. In case of Mathieu’s equation the period of f (t) is 2π , so we may
seek the periodic solutions on the transition curves in form of a Fourier series
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x(t) =
∞

∑
j=0

(
a j cos

jt
2
+ b j sin

jt
2

)
.

The factor 1/2 in the arguments of sine and cosine guarantees that periodic functions
of period 4π are included. Substituting this Fourier series into Mathieu’s equation
(6.8), transforming the products of trigonometric functions into harmonic functions
and collecting similar terms gives four sets of homogeneous linear equations on the
coefficients a j and b j. Each set contains only coefficients a j or b j with even or odd
indices j. For a nontrivial solution of one set to exist the corresponding determinant
must vanish. This gives four infinite determinants known as Hill’s determinants. For
a j with even j we have

∣∣∣∣∣∣∣∣

μ ε/2 0 0
ε μ− 1 ε/2 0 . . .
0 ε/2 μ− 4 ε/2

. . .

∣∣∣∣∣∣∣∣
= 0.

For b j with even j, ∣∣∣∣∣∣∣∣

μ− 1 ε/2 0 0
ε/2 μ− 4 ε/2 0 . . .

0 ε/2 μ− 9 ε/2
. . .

∣∣∣∣∣∣∣∣
= 0.

For a j with odd j,

∣∣∣∣∣∣∣∣

μ− 1/4+ ε/2 ε/2 0 0
ε/2 μ− 9/4 ε/2 0 . . .

0 ε/2 μ− 25/4 ε/2
. . .

∣∣∣∣∣∣∣∣
= 0.

Finally, for b j with odd j,

∣∣∣∣∣∣∣∣

μ− 1/4− ε/2 ε/2 0 0
ε/2 μ− 9/4 ε/2 0 . . .

0 ε/2 μ− 25/4 ε/2
. . .

∣∣∣∣∣∣∣∣
= 0.

In all four determinants the typical row is

. . . 0 ε/2 μ− j2/4 ε/2 0 . . .

except for the first one or two rows.
Each of these equations represents a relation between μ and ε , which plots as a

set of transition curves in the (μ ,ε)-plane (see Fig. 6.7). Since the transition curves
are symmetric about the μ-axis, only the upper half of chart is shown. The equations
obtained at ε = 0 give the intersections of these curves with the μ-axis. For a j or b j

with even j the transition curves intersect the μ-axis at μ = j2, j = 0,1,2, . . ., while
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those curves obtained from the determinants with odd j intersect the μ-axis at μ =
(2 j+1)2/4, j = 0,1,2, . . .. For ε > 0, each of these points give rise to two transition
curves, one obtained from the a-determinant, and the other from the b-determinant.
Thus, there is a tongue of instability emanating from each of the following points
on the μ-axis: μ = j2/4, j = 0,1,2, . . .. Exception is the case j = 0 for which only
one transition curve exists.
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Fig. 6.7 Stability chart of Mathieu’s equation (U: unstable, S: stable)

To find the asymptote of a transition curve μ = f (ε) emanating from j2/4 on the
μ-axis we expand the function f (ε) in the power series

μ =
j2

4
+ μ1ε+ μ2ε2 + . . . (6.21)

Substituting this into one of the determinants and equating terms of equal order of
ε to zero, we can determine the coefficients μi. For example, for j = 1 we may take
the truncated 3× 3 a-determinant with odd j to obtain

−ε
3

8
− με2

2
+

13ε2

8
+
μ2ε

2
− 17με

4
+

225ε
32

+ μ3 − 35μ2

4
+

259μ
16

− 225
64

= 0.

Substituting (6.21) (with j = 1) into the above equation and equating terms with
ε and ε2 to zero, we obtain μ1 = −1/2 and μ2 = −1/8. This procedure can be
continued to any order of truncation. Here are the asymptotes of first five transition
curves computed in this way

μ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− ε2

2 for j = 0
1
4 − ε

2 − ε2

8 for j = 1
1
4 +

ε
2 − ε2

8 for j = 1

1− ε2

12 for j = 2

1+ 5ε2

12 for j = 2
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Note that the transition curves (6.14) obtained in Section 6.1 by the variational-
asymptotic method corresponds to j = 1. Why other tongues of instability were
missed? If we continue the next steps of the variational-asymptotic method, the
other tongues can be found also (see exercise 6.3).

6.3 Duffing’s Forced Oscillator

Differential Equation of Motion. As we know from Section 5.2 the free vibra-
tions of a nonlinear damped oscillator must decay as time increases because of the
positive dissipation rate. We want now to analyze the situation, when some external
harmonic force acts on such the oscillator. As prototype we consider a damped Duff-
ing’s oscillator subjected to a small harmonic excitation. For this forced oscillator
the displacement x(t) satisfies the variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2 − 1
4
εαx4 + ε f̂ cosωt x)dt −

∫ t1

t0
εcẋδxdt = 0, (6.22)

where ε is a small parameter. This implies the following equation of motion

ẍ+ x+ εcẋ+ εαx3 = ε f̂ cosωt. (6.23)

x

y

p

q

Fig. 6.8 Poincaré map

In contrast to the Duffing’s equation (5.1) describing free
undamped vibrations, equation (6.23) is nonautonomous,
that is, time t appears explicitly in the force term.
Therefore the phase plane is no longer appropriate for
this equation since the vector field changes in time, allow-
ing a trajectory to return to the previous point and inter-
sect itself. However, the system may be made autonomous
by introducing the angular time τ and rewriting (6.23) as
follows

ẋ = y,

ẏ =−x− εcy− εαx3+ ε f̂ cosτ
τ̇ = ω .

This system of three differential equations of first order is defined on a phase space
with topology R2 × S, where the circle S comes from the 2π-periodicity in τ of the
vector field. A convenient way to view this 3-D flow in two dimensions is to use
the Poincaré map. This map is obtained by the intersection of the trajectory with a
plane of section Σ which may be taken as τ = 0 (mod 2π) as shown schematically in
Fig. 6.8. Thus, when f̂ = 0, the equilibria that would normally lie in the (x,y)-plane,
now become periodic orbits of period 2π in this 3-D phase space. For small f̂ > 0,
we may expect by a continuity argument that these periodic orbits persist giving
rise to 2π-periodic motions. Such periodic motions correspond to fixed points of the
Poincaré map.
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Numerical Solutions. Since no analytical solution to the forced Duffing equation
(6.23) is available, we first try to find some particular solutions by numerical in-
tegration to study their behavior. Take for example ε = 0.1, c = 0, α = 1. For the
harmonic force we choose f̂ = 1 and ω = 1, together with the initial conditions
x(0) = 1, ẋ(0) = 0. The numerical integration with standard commands like those
in Section 5.3 gives the graph of x(t) shown in Fig. 6.9. Looking at this solution, we
observe that there are two time scales characterizing the vibration: i) one describ-
ing the period of fast oscillation of x(t), ii) the other associated with the slow and
periodic change of amplitude of vibration.
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Fig. 6.9 Numerical solution of forced Duffing equation for ω = 1

It turns out that for certain values of frequency and amplitude of force as well
as certain initial conditions, purely periodic solutions can be obtained. This corre-
sponds to a fixed point of the Poincaré’s map introduced in the previous paragraph.
For example, if we take ω = 0.9875 while keeping all other parameters unchanged,
the solution is purely periodic as seen in Fig. 6.10.
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Fig. 6.10 Numerical solution of forced Duffing equation for ω = 0.9875

As soon as the damping becomes nonzero, the character of solutions changes.
Take for example ε = 0.1, c = α = f̂ = 1, ω = 1, together with the initial condi-
tions x(0) = 1, ẋ(0) = 0. Now the amplitude shows first a transient character be-
fore approaching a certain steady-state amplitude that depends only on the forcing
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Fig. 6.11 Numerical solution of forced and damped Duffing oscillator for c = 1 and ω = 1

frequency and the initial conditions (see Fig. 6.11). The steady-state response fre-
quency coincides with the forcing frequency, what is similar to the linear theory.

If we increase the forcing frequency while keeping all other parameters as well as
the initial conditions, the steady-state amplitude may become even smaller as shown
in Fig. 6.12 for the case ω = 1.2. Since we cannot do infinite number of numerical
simulations to establish the behavior of slow change of amplitude due to the change
of frequency and other factors, more “intelligent” methods have to be invented for
this purpose.
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Fig. 6.12 Numerical solution of forced and damped Duffing oscillator for c = 1 and ω = 1.2

Variational-Asymptotic Method. For the convenience of our analysis let us intro-
duce the stretched angular time τ = ωt explicitly in the variational equation (6.22).
Since ẋ = ωx′, where prime denotes the derivative with respect to τ , equation (6.22)
becomes

δ
∫ τ0+2π

τ0

(
1
2
ω2x′2 − 1

2
x2 − 1

4
εαx4 + ε f̂ cosτ x)dτ −

∫ τ0+2π

τ0

εcωx′δxdτ = 0,

(6.24)
where τ1 = τ0 + 2π and τ0 is an arbitrary time instant. For short we set τ0 = 0.

At the first step of the variational-asymptotic procedure we neglect all terms con-
taining ε to get
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δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ = 0.

The 2π-periodic extremal of this variational problem is

x0(τ) = Acosτ+Bsinτ.

We see that the frequency equals 1 which is not surprising because the external
force, the damping and the nonlinear spring force are neglected. The coefficients A
and B are still unknown and should be determined from the initial conditions.

From the numerical simulations provided previously we know that, for ε �= 0,
the coefficients A and B are becoming dependent on time. In general the forcing
frequency differs from 1 also. Taking all these circumstances into account, we in-
troduce the slow time η = ετ and search for the corrections to the extremal and to
the frequency at the second step in the form

x(τ) = A(η)cosτ+B(η)sinτ+ x1(τ,η), ω = 1+ω1, (6.25)

where x1(τ,η) is a 2π-periodic function with respect to τ and is much smaller than
x0(τ,η) = A(η)cosτ+B(η)sinτ in the asymptotic sense, and ω1 is assumed to be
much smaller than 1. The second equation of (6.25) means that we are restricting to
the case where the forcing frequency is nearly equal to 1. The full time derivative of
x is equal to

x′ = x0,τ + εx0,η + x1,τ+ εx1,η . (6.26)

We substitute (6.25) and (6.26) into (6.24) and keep the asymptotically principal
terms containing x1 and the principal cross terms between x0 and x1. The variational
equation becomes

δ
∫ 2π

0
[
1
2

x2
1,τ + x0,τx

′
1 + εx0,ηx′1 + 2ω1x0,τx

′
1

− 1
2

x2
1 − x0x1 − εαx3

0x1 + ε f̂ cosτ x1 − εcx0,τx1]dτ = 0.

Next, we integrate the second, third, and fourth terms by parts using the 2π-
periodicity of x1 with respect to τ . It is easy to see that, since (x0,τ)

′ =−x0+εx0,τη ,
the underlined terms give −2εx0,ητx1. Then we expand x3

0 of the term −εαx3
0x1

and transform the products of sine and cosine into the sum of harmonic functions
according to

cos3 τ =
3
4

cosτ+
1
4

cos3τ, cos2 τ sinτ =
1
4
(sinτ+ sin3τ),

sin3 τ =
3
4

sinτ− 1
4

sin3τ, sin2 τ cosτ =
1
4
(cosτ− cos3τ).
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The variational equation takes the form

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 +(. . .)sinτ x1 +(. . .)cosτ x1 + nonresonant terms]dτ = 0.

The consistency condition requires the expressions in parentheses to vanish, giving
the following equations for A and B

2A,η + cA+ 2
ω1

ε
B− 3

4
αB(A2 +B2) = 0,

2B,η + cB− 2
ω1

ε
A+

3
4
αA(A2 +B2) = f̂ .

(6.27)

The fixed points of these equations correspond to periodic motions of the forced
Duffing equation (6.23). To find them we set A,η and B,η equal to zero. Multiplying
the first equation of (6.27) by A and adding it to the second equation multiplied by
B gives

ca2 = f̂ B, where a2 = A2 +B2.

Similarly, multiplying the first equation of (6.27) by B and subtracting it from the
second one multiplied by A yields

−2
ω1

ε
a2 +

3
4
αa4 = f̂ A.

Adding the squares of two last equations together and dividing by a2 we obtain

a2[c2 +(−2
ω1

ε
+

3
4
αa2)2] = f̂ 2.

Solving the last equation with respect to ω1 leads to

ω1 =
3
8
εαa2 ± 1

2
ε

√
f̂ 2

a2 − c2.

Thus, the correction to the frequency of the external force is of the order ε . Together
with (6.25) we have the following nonlinear relation between the frequencyω of the
external force and the response amplitude a of the corresponding forced periodic
motion

ω = 1+
3
8
εαa2 ± 1

2
ε

√
f̂ 2

a2 − c2. (6.28)

Note that if both the force f̂ and the damping c are zero, then (6.28) reduces to
the well-known formula (5.8) obtained previously for the free undamped Duffing’s
oscillator. If f̂ > 0, then there exists ωc such that for ω > ωc the amplitude a is a
multi-valued function of the frequency. However, if c > 0, then a is a multi-valued
function of ω only in the range ω ∈ (ωc,1+ 3

8εα( f̂ /c)2). Fig. 6.13 shows the am-
plitude versus frequency curves in these three different cases for α > 0 (hardening
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a

c

Fig. 6.13 Amplitude versus frequency curves of forced Duffing’s oscillator: i) dashed line:
f̂ = c = 0, ii) dotted and dashed line: c = 0, f̂ > 0, iii) bold line: both f̂ and c are positive

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 6.14 Phase versus frequency curves of forced Duffing’s oscillator

spring). Thus, for the fixed frequency ω and magnitude f̂ > 0 of the external force
we may find in general either one or three steady-state amplitudes of forced vibra-
tions. The phase of forced vibrations deviates also from that of the linear theory.
Introducing the phase of forced vibrations as

tanψ =
B
A
=

c

∓
√

f̂ 2

a2 − c2
,

we show the plot of ψ versus ω in Fig. 6.14 for ε = 0.1, α = f̂ = 1, and c = 1 (bold
line), c = 0.3 (dashed line), c = 0.1 (dotted line).

Since there are several fixed points of system (6.27) we have to study their sta-
bility to select realizable solutions. As these fixed points correspond to the periodic
solutions of (6.23), their stability means also the stability of the periodic solutions.
For simplicity of our analysis, we consider the case c = 0. Denoting ω1/ε = k1, we
write (6.27) in the form



274 6 Non-autonomous Single Oscillator

A,η =−k1B+
3
8
αB(A2 +B2),

B,η = k1A− 3
8
αA(A2 +B2)+

f̂
2
.

(6.29)

For ω > ωc there are three roots of (6.28), a1, a2, a3, such that a1 > a2 > a3 > 0.
The corresponding fixed points S1, S2, S3 have the coordinates given by

(A1,B1) = (a1,0), (A2,B2) = (−a2,0), (A3,B3) = (−a3,0).
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Fig. 6.15 Phase portrait of system
(6.29)

To determine the stability of these fixed
points we set A = Ai + u, B = v and linearize
(6.29) in u and v, giving

u,η =(
3
8
αA2

i −k1)v, v,η =(−9
8
αA2

i +k1)u.

Thus, if

D = (
3
8
αA2

i − k1)(
9
8
αA2

i − k1)> 0, (6.30)

then the fixed point is a center, and if this
same quantity is negative, the fixed point is
a saddle point. For S1 we have

k1 =
3
8
αa2

1 −
f̂

2a1
,

and condition (6.30) is satisfied for all ω so that the fixed point is a center. For S2

k1 =
3
8
αa2

2 +
f̂

2a2
,

so in this case

D =− f̂
2a2

(
3
4
αa2

2 −
f̂

2a2
)< 0,

and the fixed point is a saddle point. Finally, for S3

D =− f̂
2a3

(
3
4
αa2

3 −
f̂

2a3
)> 0,

so the fixed point is a center. It is interesting to note that, for S2 and S3 the sign of
D is opposite to the sign of the derivative dω

da . The vector field and the phase portrait
of (6.29) for ω > ωc are shown in Fig. 6.15. If some small damping is included
(c > 0), then, by the continuity reasoning we expect that the centers would become
stable foci attracting phase curves, while the saddle point remains unstable.
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Fig. 6.16 Jump phenomenon and
hysteresis

Imagine now that we can change the forcing
frequency ω so slowly that the steady-state re-
sponse amplitude a can follow it after a short
transient period. Thus, if the forcing frequency
is increased starting from zero, then the re-
sponse amplitude follows first the stable upper
branch OA up to point A. After point A no so-
lution of this branch is possible, so the ampli-
tude has to jump to the lower branch (this jump
is marked by the vertical line AB) and then
follows this stable branch down to point C. If
the forcing frequency were now to reverse its
course (again quasistatically), then the ampli-
tude would go back along the lower branch CD,
after which it jumps to the upper branch (the
jump is marked by the vertical line DE), and
finally follows this upper curve down to the end point O. This closed loop
OABCDEO is called a hysteresis loop.

Note that the convergence of the approximate solution given by equations (6.25)
and (6.27) to the exact solution of (6.23) as ε → 0 can be established for any finite
time interval. We can also indirectly verify this result by comparing the solutions
of (6.27) (presented by the dashed envelopes in Figs. 6.9-6.12) with the numerical
solutions of (6.23). The agreement is excellent, although ε = 0.1 is not quite small.

6.4 Forced Vibration of Self-excited Oscillator

Differential Equation of Motion. As we know from Section 5.3 a self-excited os-
cillator may have limit cycles as attractors of the phase curves. We want now to
analyze the situation, when some external harmonic force acts on such the oscilla-
tor. As prototype we consider van der Pol’s oscillator subjected to a small harmonic
excitation. Since we are interested in the primary 1:1 resonance, we order the am-
plitude of the excitation to be the same as the damping and non-linear term [36]. For
this forced oscillator the displacement x(t) satisfies the variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2 + ε f̂ cosωt x)dt +
∫ t1

t0
ε(1− x2)ẋδxdt = 0, (6.31)

where ε is a small parameter. This implies the following equation of motion

ẍ+ x− ε(1− x2)ẋ = ε f̂ cosωt. (6.32)

Equation (6.32) is called forced van der Pol’s equation. In the previous Section we
have seen that, when a damped Duffing-type oscillator is driven by a harmonic force,
the steady-state response will have the same frequency as the forcing frequency.
If a self-excited oscillator is driven by some harmonic force, the steady state of
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vibration may not exist at all and the forced response may include both the unforced
limit cycle oscillation as well as a response at the forcing frequency. However, if the
amplitude of the force is strong enough, and the frequency difference between the
limit cycle oscillation and the harmonic force is small enough, then it may happen
that the steady-state response exists and occurs only at the forcing frequency. In this
case the forcing function is said to have entrained the limit cycle oscillator, and the
system is said to be frequency-locked [36].

Numerical Solutions. Similar to the unforced van der Pol’s equation, (6.32) does
not permit exact analytical treatment. Therefore, to study the behavior of forced
vibrations and illustrate the possibility of entrainment (or, equivalently, frequency
locking) let us first do some numerical simulations.

We take ε = 0.1, f̂ = 1.06, and ω = 1.02 and find the solution to (6.32) sat-
isfying the initial conditions x(0) = 1, ẋ(0) = 0 by the numerical integration with
Mathematica. The result shown in Fig. 6.17 exhibits the entrainment: a steady-state
vibration with the forcing frequency is settled after a short transient period.
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Fig. 6.17 Numerical solution of forced van der Pol’s oscillator for ε = 0.1, f̂ = 1.06, and
ω = 1.02

If we increase a little bit the forcing frequency while keeping all other parameters
and initial data, the response may change drastically. For example, the solution for
ω = 1.05 shown in Fig. 6.18 exhibits a beating behavior typical for the oscillation
with two nearly equal frequencies. Thus, in this case entrainment does not occur,
and the system is unlocked.

In the next paragraph we will use the variational-asymptotic method to establish
the law of slow change of response amplitude as function of the forcing parameters
and to predict the entrainment effect for small ε . The outcome of this asymptotic
analysis is shown in Figs. 6.17 and 6.18: the dashed envelopes are computed ac-
cording to the obtained equations of slow change. The agreement is good although
ε = 0.1 is not quite small.

Variational-Asymptotic Method. Let us introduce the stretched angular time τ =
ωt explicitly in the variational equation (6.31). Since ẋ = ωx′, where prime denotes
the derivative with respect to τ , equation (6.31) becomes
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Fig. 6.18 Numerical solution of forced van der Pol’s oscillator for ε = 0.1, f̂ = 1.06, and
ω = 1.05

δ
∫ τ0+2π

τ0

(
1
2
ω2x′2 − 1

2
x2 + ε f̂ cosτ x)dτ+

∫ τ0+2π

τ0

ε(1− x2)ωx′δxdτ = 0, (6.33)

where τ1 = τ0 + 2π and τ0 is an arbitrary time instant. For short we set τ0 = 0.
At the first step of the variational-asymptotic procedure we neglect all terms con-

taining ε to get

δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ = 0.

The 2π-periodic extremal of this variational problem is

x0(τ) = Acosτ+Bsinτ.

The coefficients A and B in this solution are still unknown.
For ε �= 0 the coefficients A and B are becoming dependent on time and the

forcing frequency deviates from 1. Therefore we introduce the slow time η = ετ
and search for the corrections to the extremal and to the frequency at the second
step in the form

x(τ) = A(η)cosτ+B(η)sinτ+ x1(τ,η), ω = 1+ω1, (6.34)

where x1(τ,η) is a 2π-periodic function with respect to τ and is much smaller than
x0(τ,η) = A(η)cosτ+B(η)sinτ in the asymptotic sense, and ω1 is assumed to be
much smaller than 1. The second equation of (6.34) means that we are restricting
to the case where the forcing frequency is nearly equal to the unforced limit cycle
frequency, which is called a 1:1 resonance. Note that the time derivative of x(τ) is
equal to

x′ = x0,τ + εx0,η + x1,τ+ εx1,η .

Here the comma in index means the partial derivative. We substitute (6.34) into
(6.33) and keep the asymptotically principal terms containing x1 and the principal
cross terms between x0 and x1. The variational equation becomes



278 6 Non-autonomous Single Oscillator

δ
∫ 2π

0
[
1
2

x2
1,τ + x0,τx

′
1 + εx0,ηx′1 + 2ω1x0,τx

′
1

− 1
2

x2
1 − x0x1 + ε f̂ cosτ x1 + ε(1− x2

0)x0,τx1]dτ = 0.

Next, integrating the second, third, and fourth terms by parts using the periodicity
of x1, we get from the underlined terms −2εx0,ητx1. Finally, reducing the products
of sine and cosine in the last term to the sum of harmonic functions,2 we transform
the variational equation to

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 +(. . .)sinτ x1 +(. . .)cosτ x1 + nonresonant terms]dτ = 0.

The consistency condition requires removal of the resonant terms that leads to

2A,η = −2
ω1

ε
B+A− A

4
(A2 +B2),

2B,η = 2
ω1

ε
A+B− B

4
(A2 +B2)+ f̂ .

We see that the correction to the frequency must be of the order ε . Denoting ω1 by
ω1 = k1ε , we rewrite this system of equations in the form

2A,η =−2k1B+A− A
4
(A2 +B2),

2B,η = 2k1A+B− B
4
(A2 +B2)+ f̂ .

(6.35)

System (6.35) can be simplified by using polar coordinates a and ψ in the phase
plane

A = acosψ , B = asinψ . (6.36)

In terms of a and ψ we can present x0 as

x0(τ,η) = a(η)cos(τ−ψ(η)).

Thus, a(η) has the meaning of amplitude of vibration, while ψ(η) can be inter-
preted as the phase; both are slowly changing functions of time. Substituting (6.36)
into (6.35) gives

a,η =
a
8
(4− a2)+

f̂
2

sinψ ,

ψ,η = k1 +
f̂

2a
cosψ .

(6.37)

2 This can be done quite nicely in Mathematica with the help of TrigReduce command.
Another way is to use the complex representations of sine and cosine, then multiply every-
thing out and finally collect terms.
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When f̂ = 0, equations (6.37) reduce to the well-known equations (5.32) derived
for the self-excited vibrations of val der Pol’s oscillator. We seek fixed points of
the slow flow (6.37) which correspond to locked periodic motions of (6.32). Setting
a,η = ψ,η = 0, solving for sinψ and cosψ and using the identity sin2+cos2 = 1,
we obtain

a2
(

1− a2

4

)2

+ 4k2
1a2 = f̂ 2.

Expanding this equation and denoting p = a2, we have

p3

16
− p2

2
+(4k2

1 + 1)p− f̂ 2 = 0. (6.38)

This cubic equation in p, in view of its 3 sign changes, has either 3 positive roots,
or one positive and two complex conjugate roots. The transition between these two
cases occurs when there is a double root, which is equivalent to the condition that
the derivative of the left-hand side expression vanishes

3p2

16
− p+ 1+ 4k2

1 = 0. (6.39)
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Fig. 6.19 Response-frequency curves

Eliminating p in the last two equations,
we obtain

f̂ 4

16
− f̂ 2

27
(1+36k2

1)+
16
27

k2
1(1+4k2

1)
2 = 0.

This equation gives two curves meeting
at a cusp in the (k1, f̂ )-plane. As one of
these curves is traversed quasistatically,
a saddle-node bifurcation occurs. At the
cusp we have a triple root leading to a fur-
ther degeneracy. The condition for this is

3p
8

− 1 = 0 ⇒ p =
8
3
.

With this value p= 8/3 we can easily find
the location of the cusp at

k1 =
1√
12

≈ 0.288, f̂ =

√
32
27

≈ 1.088.

The square of amplitude versus frequency curves in terms of p = a2 and k1 are
shown in Fig. 6.19 for different forcing amplitudes f̂ . For f̂ = 0, the curves degen-
erate into the k1-axis and the point (0,4) corresponding to the limit cycle unforced
vibration. As f̂ increases, the curves first consist of two branches- a branch running
near the k1-axis and a closed curve surrounding the point (0,4). When f̂ = 4

3
√

3
, the
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two branches coalesce, and the resultant curve has a double point at (0,4/3). As f̂
increases beyond this critical value, the response curves are open curves. However,
p is still not single-valued function of k1 until f̂ exceeds the second critical value
f̂ =

√
32/

√
27. Beyond this critical value the response curves are single-valued for

all k1.

0.05 0.10 0.15 0.20 0.25 0.30

0.2

0.4

0.6

0.8

1.0

k1

f̂ Q P

det=0

det=0

tr=0

Fig. 6.20 Curves given by: i) detM = 0 (bold lines), ii) trM = 0 (dashed line)

Since several fixed points of (6.37) are present, we must investigate their stability.
Let (a0,ψ0) be a fixed point of (6.37). We search for the solutions of (6.37) in the
form

a = a0 + u, ψ = ψ0 + v,

where u and v are small perturbations. Substituting this into (6.37) and linearizing
in u and v gives

u,η =
u
2
− 3

8
a2

0u+
f̂
2

cosψ0 v,

v,η =− f̂

2a2
0

cosψ0 u− f̂
2a0

sinψ0 v.

This system may be simplified by using the following expressions valid at the fixed
point

f̂
2

sinψ0 =−a0

2
+

a3
0

8
,

f̂
2

cosψ0 =−k1a0.

Thus, the stability is determined by the eigenvalues of the following matrix M

M =

(
1
2 − 3

8 a2
0 −k1a0

k1
a0

1
2 − 1

8 a2
0

)
.

Its eigenvalues λ are the roots of the characteristic equation

λ 2 − trMλ + detM = 0,
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where

trM = 1− a2
0

2
= 1− p

2
,

detM = (−1
2
+

3
8

a2
0)(−

1
2
+

1
8

a2
0)+ k2

1 =
1
4
(

3p2

16
− p+ 1+ 4k2

1).

For stability, the eigenvalues of M must have negative real parts. This puts on the
trace and determinant of M the following conditions

trM = 1− p
2
< 0, detM =

1
4
(

3p2

16
− p+ 1+ 4k2

1)> 0.

The curves corresponding to detM = 0 (bold lines) and trM = 0 (dashed line) in the
(k1, f̂ )-plane are shown in Fig. 6.20.

P
Q

det=0

det=0 tr=0

Fig. 6.21 Bifurcation curves

Comparing the last condition with equation
(6.39), we see that detM vanishes on the curve
(6.39) along which there are saddle-node bifurca-
tions. This is a typical feature of nonlinear vibra-
tions, namely that a change in stability is accom-
panied by a bifurcation. The first condition on the
trace of M requires that p> 2 for the stability. Sub-
stitute p = 2 in (6.38), we obtain

f̂ 2 =
1
2
+ 8k2

1. (6.40)

Hopf bifurcations occur along the curve represented by (6.40), provided detM >
0. This curve intersects the lower curve of saddle-node bifurcations obtained from
(6.39) at point P, and touches the upper curve of saddle-node bifurcations at point Q
in the (k1, f̂ )-plane with the coordinates (see Fig. 6.21)

P : k1 =

√
5

8
, f̂ =

3√
8
, Q : k1 =

1
4
, f̂ =

5√
27

.

Thus, the stability analysis predicts that the forced van der Pol oscillator exhibits
stable entrainment solutions everywhere in the first quadrant of the (k1, f̂ )-plane
except in that region bounded by i) the lower curve of saddle node bifurcations cor-
responding to detM = 0 from the origin to point P, ii) the curve of Hopf bifurcation
corresponding to trM = 0 from point P to infinity, and iii) the k1-axis. In terms of p
and k1 the boundary between stable and unstable solutions is marked by the dashed
lines shown in Fig. 6.19. This means that for a given detuning k1 there is a minimum
value of forcing f̂ required in order for entrainment to occur. Note that, since k1 al-
ways appears in the form k2

1 in the equations of the bifurcation and stability curves,
the above conclusions are independent of whether we are above or below the 1:1
resonance. The discussions about other resonances can be found in [36].

The entrainment is widely used in engineering to synchronize nonlinear
oscillators (for instance clocks). Another positive and pleasant spillover effect



282 6 Non-autonomous Single Oscillator

of entrainment often takes place when an orchestra is playing music. Various string-
and wind-instruments are self-excited oscillators, which may experience extra exci-
tations through the sound waves generated by other players of the orchestra. When
one of these musical instruments produces a tone which is not quite clean, it may be
entrained by the remaining instruments so that only one tone will be heard, provided
the forcing amplitude of the sound waves is strong enough.

6.5 Exercises

EXERCISE 6.1. A point-mass m is constrained to move in the (x,y)-plane and is
restrained by two linear springs of equal stiffness k and equal unstretched length l.
The anchor points of the springs are located on the x-axis at x = −b and x = b (see
Fig. 6.22). Study the stability of the motion along the x-axis, x = acosω0t, y = 0
under the assumption that a � b.

x

y

m
k k

x=-b x=b

Fig. 6.22 Point-mass in (x,y)-plane

Solution. Let q = (x,y). To derive the equations of motion we write down the La-
grange function

L(q, q̇) = K(q̇)−U(q),

where the kinetic energy is

K(q̇) =
1
2

m(ẋ2 + ẏ2),

and the potential energy of the springs is

U(q) =
1
2

k(
√
(x+ b)2 + y2 − l)2 +

1
2

k(
√

(b− x)2 + y2 − l)2.

From Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1,2,

follow
mẍ = fx, mÿ = fy,
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where

fx =−∂U
∂x

=−k(
√
(x+ b)2 + y2 − l)(x+ b)√

(x+ b)2 + y2
+

k(
√
(b− x)2 + y2 − l)(b− x)√

(b− x)2 + y2
,

fy =−∂U
∂y

=−k(
√
(x+ b)2 + y2 − l)y√
(x+ b)2 + y2

− k(
√
(b− x)2 + y2 − l)y√
(b− x)2 + y2

.

One possible particular solution of these equations is obtained when y = 0. In this
case the second equation is identically satisfied, while the first equation reduces to

mẍ+ 2kx = 0,

yielding
x0 = acos(ω0t −φ), ω0 =

√
2k/m,

where the initial phase φ can be set equal to zero. To study the stability of this motion
along the x-axis, q0(t) = (acosω0t,0), we consider the neighboring solutions in the
form

x = acosω0t + u, y = v,

where u and v are assumed to be small. Substituting these formulas into the equa-
tions of motion, expanding the right-hand sides in the Taylor series in terms of u and
v, and taking into account the equations for q0(t), we obtain

mü =
∂ fx

∂x

∣∣∣∣
q0

u+
∂ fx

∂y

∣∣∣∣
q0

v,

mv̈ =
∂ fy

∂x

∣∣∣∣
q0

u+
∂ fy

∂y

∣∣∣∣
q0

v.

Computing the partial derivatives of fx and fy and evaluating them at q0 = (x0,0), it
is easy to check that

∂ fx

∂x

∣∣∣∣
q0

=−2k,
∂ fx

∂y

∣∣∣∣
q0

= 0,
∂ fy

∂x

∣∣∣∣
q0

= 0,

∂ fy

∂y

∣∣∣∣
q0

=−2k
1−λ −α2 cos2ω0t

1−α2 cos2ω0t
,

where

λ =
l
b
, α =

a
b
.

The equation for u turns out to be the equation for a harmonic oscillator, mü+2ku=
0, and cannot produce instability. The equation for v is

mv̈+ 2k
1−λ−α2 cos2ω0t

1−α2 cos2ω0t
v = 0.
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Expanding the second term for small α and setting τ = 2ω0t, we obtain

d2v
dτ2 +(

2− 2λ−λα2

8
− λα2

8
cosτ)v = 0,

which is the Mathieu’s equation. Thus, the stability chart of Mathieu’s equation can
be used to investigate the stability of this motion.

EXERCISE 6.2. The support of a pendulum considered in example 6.1 moves in
accordance with the equation x = a0 cosωt, where a0 = 0.1l. How large must the
frequency ω be to stabilize the vertical position ϕ = π .

Solution. The equation of motion of this pendulum is

ϕ̈+
1
l
(g+ a0ω2 cosωt)sinϕ = 0.

To analyze the stability of the vertical position, it is enough to linearize this equation
about ϕ = π . Let

ϕ = π+ x,

where x � 1 is a small perturbation. The linearization with respect to x leads to

ẍ− 1
l
(g+ a0ω2 cosωt)x = 0.

This equation can be transformed to Mathieu’s equation

ẍ+(μ+ ε cost)x = 0,

with μ = −(ω0/ω)2, ε = −a0/l, and ω0 =
√

g/l, if the time is replaced by the
dimensionless time ωt. Thus, we can use the stability chart of Mathieu’s equation
to study the stability of the vertical position. Since μ is negative, we use the first
transition curve lying in the left half-plane of the (μ ,ε)-plane described by

μ =−ε2/2

to find the condition for stability. As ε =−0.1, the vertical position is stable if

(ω0/ω)2 < 0.12/2 ⇒ ω >

√
2

0.1
ω0.

Thus, the vertical position will be stabilized if the frequency of the vibration of the
support is at least 14.14 times larger than the eigenfrequency of the pendulum.

EXERCISE 6.3. Apply the variational-asymptotic method to find the asymptotes of
the transition curves of Mathieu’s equation emanating from the point μ = 1.

Solution. The first step of the variational-asymptotic method yields

x(t) = x0(t) = Acost +Bsint.
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At the second step the obtained functional for x1 near μ = 1, as seen from (6.12),
does not contains additional resonant terms except the third and the fourth. Thus,
A,η = B,η = 0 at this step, and the extremal of (6.12) is easily found to be

x1(t) = ε(−1
2

A+
1
6

Acos2t +
1
6

Bsin2t).

At the third step we look for x(t) and μ in the form

x(t) = x0(t,η)+ x1(t,η)+ x2(t,η), μ = 1+ μ2,

where η = εt is the slow time and x0(t,η) and x1(t,η) are given by the above
formulas with A and B being now functions of the slow time. Function x2(t,η)
and μ2 are assumed to be much smaller than x1(η , t) and 1, respectively. Besides,
x2(t,η) is 2π-periodic with respect to t. The time derivative of x(t) becomes

ẋ = x0,t + εx0,η + x1,t + εx1,η + x2,t + εx2,η .

We substitute x and ẋ into (6.9) and keep the asymptotically principal terms contain-
ing x2 and the principal cross terms. The functional becomes

I2[x2(t)] =
∫ 2π

0
[
1
2

x2
2,t + x0,tx2,t + εx0,ηx2,t + x1,tx2,t + εx1,ηx2,t

− 1
2

x2
2 − x0x2 − μ2x0x2 − x1x2 − ε cost x0x2 − ε cost x1x2]dt.

Integrating the cross terms containing x2,t by parts and taking into account the peri-
odicity of x2 in t and the equations for x0 and x1, we see that the underlined and dou-
bly underlined terms are canceled out. Among the remaining terms only εx0,ηx2,t ,
−μ2x0x2 and the last term contributes to the resonant terms. The products cost cos2t
and cost sin2t in the last term can be transformed into the sum of harmonic func-
tions as follows

cost cos2t =
1
2
(cost + cos3t), cost sin 2t =

1
2
(sin t + sin3t).

Requiring that the resonant terms must vanish, we obtain for A(η) and B(η) the
equations

−εB,η +
5

12
ε2A− μ2A = 0, εA,η − 1

12
ε2B− μ2B = 0.

From these equations we obtain the resulting equation for A (and the similar for B)

ε2A,ηη +(μ2 − 5
12
ε2)(μ2 +

1
12
ε2)A = 0,
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which shows that the stability (or instability) is determined by the sign of (μ2 −
5
12ε

2)(μ2 +
1
12ε

2). Thus, the transition occurs at μ2 = − 1
12ε

2 and at μ2 =
5
12ε

2, or,
in terms of μ , at

μ = 1− 1
12
ε2 and at μ = 1+

5
12
ε2,

which are in full agreement with the asymptotic formulas obtained from the vanish-
ing Hill’s determinants.

EXERCISE 6.4. Consider the damped Mathieu’s equation

ẍ+ εcẋ+(μ+ ε cost)x = 0,

with ε being a small parameter. Apply the variational-asymptotic method to find the
asymptotes of the transition curves near the point μ = 1/4.

Solution. The variational equation corresponding to this damped Mathieu’s equa-
tion reads

δ
∫ T

0
[
1
2

ẋ2 − 1
2
(μ+ ε cost)x2]dt −

∫ T

0
εcẋδxdt = 0.

At the first step of the variational asymptotic procedure we put simply ε = 0 to get
from this equation

δ
∫ T

0
(

1
2

ẋ2 − 1
2
μx2)dt = 0.

The periodic extremal (with the period T = 2π/√μ) reads

x0(t) = Acos
√
μt +Bsin

√
μt.

Let μ = 1/4+ εμ1. Taking into account that the coefficients A and B are becoming
slightly dependent on time for ε �= 0, we introduce the slow time η = εt and seek
the corrections to the extremal at the second step in the two-timing fashion

x(t) = A(η)cos
1
2

t +B(η)sin
1
2

t + x1(t,η),

where x1(t,η) is a periodic function of the period T with respect to t and is much
smaller than x0(t,η) in the asymptotic sense. Substituting this Ansatz into the vari-
ational equation and proceeding similarly as in Section 6.1, we obtain for A and B
the following equations

A,η =− c
2

A+(μ1− 1
2
)B, B,η =− c

2
B− (μ1+

1
2
)A.

Thus, the last term in the variational equation contributes additional resonant terms.
The last equations are linear equations with constant coefficients which may be
solved by assuming a solution in the form A(η) = A0 exp(λη), B(η) = B0 exp(λη).
Nontrivial solutions exist if the following determinant vanishes
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∣∣∣∣−
c
2 −λ − 1

2 + μ1

− 1
2 − μ1 − c

2 −λ
∣∣∣∣= 0.

Thus,

λ =− c
2
±
√
−μ2

1 +
1
4
.

At the transition curve λ = 0, so

μ1 =±
√

1− c2

2
.

This gives the following expressions for the transition curves near μ = 1/4:

μ =
1
4
± ε

√
1− c2

2
.

This formula predicts that for a given value of c there is a minimum value of ε which
is required for instability to occur. The tongue, which, for c = 0, emanates from the
μ-axis, becomes detached from the μ-axis for c > 0.

EXERCISE 6.5. Non-linear parametric resonance. Consider the following equation

ẍ+ω2x+ ε cost x3 = 0,

with ε being a small parameter. Apply the variational-asymptotic method to study
the behavior of solutions near the frequency ω0 = 1/2.

Solution. The solution of the above equation is the extremal of the following action
functional ∫ T

0
[
1
2

ẋ2 − 1
2
ω2x2 − 1

4
ε costx4]dt.

It is convenient to change to the new variable τ = ω0t, in terms of which the action
functional takes the form

I[x(τ)] =
∫ 2π

0
[
1
2
ω2

0 x′2 − 1
2
ω2x2 − 1

4
ε cos

τ
ω0

x4]dτ.

At the first step of the variational-asymptotic method we put ε = 0 in this functional
to obtain ω = ω0 = 1/2 and

x(τ) = x0(τ) = Acosτ+Bsinτ.

At the second step we look for x(τ) and ω in the form

x(τ) = x0(τ,η)+ x1(τ,η), ω = ω0 +ω1,

where η = ετ and x0(τ,η) is given by the previous equation with A and B being
now the functions of η . We assume also that x1 is 2π-periodic in τ . Note that the
derivative of x equals
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x′ = x0,τ + εx0,η + x1,τ+ εx1,η .

We substitute these formulas into the action functional and keep the asymptotically
principal terms containing x1 and the principal cross terms between x0 and x1. The
functional becomes

I1[x1(τ)] =
∫ 2π

0
[
1
2
ω2

0 x2
1,τ +ω

2
0 x0,τx1,τ +ω2

0εx0,ηx1,τ

− 1
2
ω2

0 x2
1 −ω2

0 x0x1 − 2ω0ω1x0x1 − ε cos
τ
ω0

x3
0x1]dτ.

Integrating the cross terms containing x1,τ by parts and taking into account the 2π-
periodicity of x1 in τ and the equations for x0, we see that the underlined terms
are canceled out. Besides, with the TrigReduce command in Mathematica one can
show that the last term contributes two resonant terms, namely, − 1

2εA3 cosτx1 and
1
2εB3 sinτx1. Requiring that the resonant terms must vanish, we obtain for A(η) and
B(η) the equations

1
4
εA,η −ω1B+

1
2
εB3 = 0,

1
4
εB,η +ω1A+

1
2
εA3 = 0.

Dividing these equations by ε/4 and introducing k1 = 2ω1/ε , we rewrite them in
the form

A,η − 2k1B+ 2B3 = 0, B,η + 2k1A+ 2A3 = 0.

These equations have one fixed point (0,0) which is a stable center, and two other
fixed points

(0,
√

k1), (0,−
√

k1), (6.41)

provided k1 > 0, or
(
√
−k1,0), (−

√
−k1,0), (6.42)

provided k1 < 0. It is easy to check that the fixed points lying on the B- or A-axis
are saddle points.

EXERCISE 6.6. Solve the slow flow system (6.26) numerically for ε = 0.1, c = 0,
α = f̂ = 1 and for two detuning values k1 = 0 and k1 = −0.125, with the initial
conditions A(0) = 1 and B(0) = 0. Plot the curves a(τ) =

√
A2 +B2 together with

the numerical solutions shown in Figs. 6.8 and 6.9.

Solution. Remembering that the slow time η = εt, we rewrite equations (6.26) for
c = 0 in terms of the real time

A,t =−ω1B+
3
8
αεB(A2 +B2),

B,t = ω1A− 3
8
αεA(A2 +B2)+ ε

f̂
2
.
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This system of nonlinear first-order differential equations can be integrated numer-
ically by using the standard command NDSolve in Mathematica. Based on this
numerical integration function a(t) =

√
A2 +B2 can then be plotted. For ε = 0.1,

α = f̂ = 1 and ω1 = 0 the commands are

sol � NDSolve	
a'�t� �
3

8
Ε b�t� �a�t�^2 � b�t�^2�,

b'�t� � �
3

8
Ε a�t� �a�t�^2 � b�t�^2� � Ε f � 2,

a�0� � 1, b�0� � 0�, �a, b�, �t, 200��

Plot	
Evaluate	 �a�t� �. sol�^2 � �b�t� �. sol�^2 �,

Evaluate	� �a�t� �. sol�^2 � �b�t� �. sol�^2 ��,

�t, 0, 200�, PlotRange � All, PlotStyle � Black�

Here, in accordance with the recommendation of Mathematica, the lower case
letters for functions are used everywhere. The plot of a(t) =

√
A2 +B2 based on this

numerical integration is shown together with the solution of the forced Duffing’s
equation in Fig. 6.9.

The case ω = 0.9875 corresponding to the detuning value k1 = −0.125 can be
studied in a similar manner. The plot of a(t) =

√
A2 +B2 based on the numerical

integration is shown together with the solution of the forced Duffing’s equation in
Fig. 6.10. One can see that the solution is purely periodic which corresponds to the
constant amplitude a =

√
A2 +B2.

EXERCISE 6.7. Find the steady-state amplitude versus frequency curve of the forced
Duffing’s equation with the softening spring (α < 0). Discuss the jump phenomenon
and the hysteresis loop.

Solution. The plot of the amplitude-frequency curves according to the formula

ω = 1+
3
8
εαa2 ± 1

2
ε

√
f̂ 2

a2 − c2

is shown in Fig. 6.23 for ε = 0.1, α = −1, f̂ = 1, and c = 0.3. We see that, for
negative α the amplitude-frequency curves are bent to the left. There exists ωc < 1
such that for ω < ωc the amplitude a is a multi-valued function of the frequency.
However, if c > 0, then a is a multi-valued function of ω only in the range ω ∈
(1+ 3

8εα( f̂ /c)2,ωc). Imagine now that we can change the forcing frequency ω so
slowly that the steady-state response amplitude a can follow it after a short transient
period. Thus, if the forcing frequency is decreased starting from some value larger
than ωc, then the response amplitude follows first the stable upper branch OA up to
point A (it can be shown that the middle branch between points A and D contains
unstable solutions). After point A no solution of the upper branch is possible, so the
amplitude has to jump to the lower branch (this jump is marked by the vertical line
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AB) and then follows this stable branch down to point C. If the forcing frequency
were now to reverse its course (again quasistatically), then the amplitude would go
back along the lower branch CD, after which it jumps to the upper branch (the jump
is marked by the vertical line DE), and finally follows this upper curve down to
the end point O. This closed loop OABCDEO is called a hysteresis loop for the
Duffing’s oscillator with the softening spring.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
a

O

A

BC

D

E

c

Fig. 6.23 Amplitude-frequency curve and hysteresis

EXERCISE 6.8. Consider the forced oscillator with the quadratic damping described
by the equation

ẍ+ x+ εcẋ|ẋ|= ε f̂ cosωt,

where ε is small. Apply the variational-asymptotic method to find the amplitude
versus frequency curve near the 1:1 resonant frequency.

Solution. The above equation can be derived from the variational equation

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + ε f̂ cosωt x)dt −
∫ T

0
εc|ẋ|ẋδxdt = 0.

Introducing τ = ωt, we rewrite the latter in the form

δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 + ε f̂ cosτ x)dτ−

∫ 2π

0
εcω2|x′|x′δxdτ = 0.

At the first step of the variational-asymptotic procedure we put ε = 0 which leads
to ω = 1 and

x = Acosτ+Bsinτ.

At the second step we introduce the slow time η = ετ and look for the solution and
correction to the frequency in the form

x(τ) = x0(τ,η)+ x1(τ,η), ω = 1+ω1,
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where
x0(τ,η) = A(η)cosτ+B(η)sinτ,

and x1 and ω1 are much smaller than x0 and 1, respectively. Substituting this into
the variational equation, one can reduce it to

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 +(2εA,η + 2ω1B)sinτ x1

+(−2εB,η + 2ω1A+ ε f̂ )cosτ x1 + nonresonant terms]dτ = 0.

Equating the resonant terms to zero, we obtain

2A,η + 2
ω1

ε
B = 0,

2B,η − 2
ω1

ε
A = f̂ .

The fixed point of this system, B = 0 and A =−ε f̂ /2ω1, corresponds to the steady-
state vibration. Thus, the steady-state amplitude is given by

a =
√

A2 +B2 = ε f̂/2|ω1|.

Taking into account that ω = 1+ω1, we get the following amplitude-frequency
relation

a =

⎧⎨
⎩

ε f̂
2(1−ω) for ω < 1 ,
ε f̂

2(ω−1) otherwise.

EXERCISE 6.9. Resonant excitation. Consider the forced Duffing’s oscillator de-
scribed by the equation

ẍ+ x+ εcẋ+ εαx3 = f̂ cosωt,

where ε is small, but f̂ is finite (sometimes called a “hard excitation”). Apply the
variational-asymptotic method to show that, to O(ε), the only resonant excitation
frequencies are 1,3, and 1/3.

Solution. The above differential equation can be derived from the variational equa-
tion

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 − 1
4
εαx4 + f̂ cosωt x)dt −

∫ T

0
εcẋδxdt = 0.

At the first step of the variational-asymptotic method we put ε = 0 to obtain

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + f̂ cosωt x)dt = 0.

The extremal of this functional satisfies the equation

ẍ+ x = f̂ cosωt
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yielding

x =
f̂

1−ω2 cosωt +Acost +Bsint.

We see that the resonance occurs at ω = 1. Consider now the case ω �= 1. At the
second step we introduce the slow time η = εt and look for the solution in the form

x(t) = x0(t,η)+ x1(t,η),

where

x0(t,η) =
f̂

1−ω2 cosωt +A(η)cost +B(η)sin t,

and x1 is much smaller than x0 in the asymptotic sense. We assume that x1 is 2π-
periodic with respect to t. We substitute x(t) into the above variational equation
for T = 2π and keep the asymptotically principal terms containing x1 and principal
cross terms between x0 and x1

δ
∫ 2π

0
(

1
2

ẋ2
1 + ẋ0ẋ1 − 1

2
x2

1 − x0x1 − εαx3
0x1 + f̂ cosωt x1 − εcẋ0x1)dt = 0.

Integrating the second term by part using the periodicity of x1, we see that the un-
derlined terms give 2ε(A,η sin t −B,η cost)x1. We expand the fifth term containing
x3

0 and transform the products of sine and cosine into the sum of harmonic functions.
As a result, we get among others the following terms

c1 cos3ωt x1 and [c3 cos(2−ω)t + c4 sin(2−ω)t]x1.

They become resonant if ω = 1/3 or ω = 3. Thus, we have, in addition to ω = 1,
two other resonant excitation frequencies ω = 1/3 and ω = 3.

EXERCISE 6.10. Study the excitation of 3:1 subharmonic resonance in the previous
exercise by settingω = 3+kε . Obtain a slow flow of the coefficients A(η) and B(η).
Then transform to the polar coordinates a(η) and ψ(η) and look for fixed points
of those equations. Eliminate ψ in order to find a relation between a2 and other
parameters. For ε = 0.1, α = c = f̂ = 1, k = 0 simulate the exact and approximate
solutions and compare them.

Solution. We continue the solution of the previous exercise by setting ω = 3+ kε
and write x0(t,η) in the form

x0(t,η) = λ cos(3t + kη)+A(η)cost +B(η)sin t, λ =
f̂

1−ω2 .

Substituting the Ansatz x(t) = x0(t,η)+ x1(t,η) into the variational equation and
keeping the asymptotically principal terms containing x1(t,η), we reduce it to

δ
∫ 2π

0
[
1
2

x2
1,t −

1
2

x2
1 +(. . .)sin t x1 +(. . .)cost x1 + nonresonant terms]dt = 0.
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The consistency condition requiring the vanishing resonant terms leads to

2A,η = α
[

3
4

B(A2 +B2)+
3
2

Bλ 2 − 3
4
λ (A2 −B2)sin kη− 3

2
λABcoskη

]
− cA,

2B,η =−α
[

3
4

A(A2 +B2)+
3
2

Aλ 2 +
3
4
λ (A2 −B2)coskη− 3

2
λABsinkη

]
− cB.

The obtained system of equations can be simplified by using polar coordinates a and
ψ according to

A = acosψ , B = asinψ .

Multiplying the first equation by A, the second one by B, and adding them, we obtain

a,η =−3
8
αλa2 sin(3ψ+ kη)− c

2
a.

Multiplying the first equation by B and subtracting it from the second multiplied by
A, we get, after some algebra,

ψ,η =−3
4
α(λ 2 +

1
2

a2)− 3
8
αλacos(3ψ+ kη).

To transform this system of equations into an autonomous system we introduce a
new unknown function ϕ = 3ψ+ kη and write

a,η =−3
8
αλa2 sinϕ− c

2
a,

ϕ,η = k− 9
4
α(λ 2 +

1
2

a2)− 9
8
αλacosϕ .

In terms of a and ϕ the approximate solution of the original equation, to the order
O(ε), reads

x(t) = λ cos(3t + kεt)+ a(εt)cos[t − 1
3
(ϕ− kεt)].

The steady-state vibrations due to the second term correspond to the fixed points
of the slow flow system for which

c
2

a =−3
8
αλa2 sinϕ ,

(k− 9
4
αλ 2)a− 9

8
αa3 =

9
8
αλa2 cosϕ .

Eliminating ϕ from this system, we obtain the frequency-amplitude equation
[

9
4

c2 +

(
k− 9

4
αλ 2 − 9

8
αa2

)2
]

a2 =
81
64
α2λ 2a4.
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Thus, either a = 0 or

9
4

c2 +

(
k− 9

4
αλ 2 − 9

8
αa2

)2

=
81
64
α2λ 2a2,

which is quadratic in a2. Its roots are

a2 = p±
√

p2 − q,

where

p =
8
9

k
α
− 3

2
λ 2, q =

64
81α2

[
9
4

c2 +

(
k− 9

4
αλ 2

)2
]
.
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Fig. 6.24 Simulation of the exact and approximate solution: a) exact solution of the forced
Duffing’s equation with hard excitation, b) approximate solution based on the slow flow
system

Fig. 6.24 represents the results of numerical simulation of the exact and approx-
imate solutions for ε = 0.1, α = c = f̂ = 1, k = 0 which shows a good agreement.
One can see that the steady-state amplitude a goes to zero as t goes to infinity in this
case. Note that q is always positive, and thus, non-trivial steady-state free-oscillation
amplitudes occur when p > 0 and p2 ≥ q.

EXERCISE 6.11. Solve the slow flow system (6.37) numerically for ε = 0.1, k1 =
0.2 and k1 = 0.5, with the initial conditions a(0) = 1 and ψ(0) = 0. Plot the curves
a(τ) together with the numerical solutions shown in Figs. 6.17 and 6.18.

Solution. The slow flow system

a,η =
a
8
(4− a2)+

f̂
2

sinψ ,

ψ,η = k1 +
f̂

2a
cosψ ,

can be solved numerically in Mathematica by the following commands
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sol � NDSolve	
a'�t� � Ε
a�t�
8
�4 � a�t�^2� �

f

2
Ε Sin�Ψ�t��,

Ψ'�t� � 0.2 Ε �
f

2 a�t�
Ε Cos�Ψ�t��, a�0� � 1, Ψ�0� � 0�, �a, Ψ�, �t, 500��

Plot��Evaluate�a�t� �. sol�, Evaluate��a�t� �. sol��, �t, 0, 500��

Since we want to plot a as function of the real time t, we use the relation d/dη =
(1/ε)d/dt and solve the above system multiplied by ε . The values of parameters
have been chosen as ε = 0.1, f = 1.06, and k1 = 0.2 (k1 = 0.5). The plotted curves
were shown together with the corresponding numerical solutions of equation (6.32)
in Figs. 6.17 and 6.18.

EXERCISE 6.12. Resonant excitation. Consider the forced van der Pol’s oscillator
described by the equation

ẍ+ x− ε(1− x2)ẋ = f̂ cosωt,

where ε is small, but f̂ is finite. Apply the variational-asymptotic method to show
that to O(ε), the only resonant excitation frequencies are 1,3, and 1/3.

Solution. The above differential equation can be derived from the variational
equation

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + f̂ cosωt x)dt +
∫ T

0
ε(1− x2)ẋδxdt = 0.

At the first step of the variational-asymptotic method we put ε = 0 to obtain

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + f̂ cosωt x)dt = 0.

The extremal of this functional reads

x =
f̂

1−ω2 cosωt +Acost +Bsint.

We see that the resonance occurs at ω = 1. Consider now the case ω �= 1. At the
second step we introduce the slow time η = εt and look for the solution in the form

x(t) = x0(t,η)+ x1(t,η),

where

x0(t,η) =
f̂

1−ω2 cosωt +A(η)cost +B(η)sin t,

and x1 is much smaller than x0 in the asymptotic sense. We assume that x1 is 2π-
periodic with respect to t. We substitute x(t) into the above variational equation for
T = 2π and keep the asymptotically principal terms containing x1 and the principal
cross terms between x0 and x1
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δ
∫ 2π

0
[
1
2

ẋ2
1 + ẋ0ẋ1 − 1

2
x2

1 − x0x1 + f̂ cosωt x1 + ε(1− x2
0)ẋ0x1]dt = 0.

Integrating the second term by parts using the periodicity of x1, we see that the
underlined terms give 2ε(A,η sin t −B,η cost)x1. Expanding the last term and trans-
forming products of sine and cosine into the harmonics, we obtain among others the
following terms

(c1 cos3ωt + c2 sin3ωt)x1 and [c3 cos(2−ω)t + c4 sin(2−ω)t]x1.

They become resonant if ω = 1/3 or ω = 3. Thus, we have, in addition to ω = 1,
two other resonant excitation frequencies ω = 1/3 and ω = 3.
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