
Chapter 5
Autonomous Single Oscillator

This chapter studies finite amplitude vibrations of the autonomous mechanical sys-
tems having one degree of freedom. The character of solutions depends strongly on
the type of the system. The solution methods may range from phase portrait and
Lindstedt-Poincaré method for conservative systems up to Bogoliubov-Mitropolsky
method for systems with weak dissipation.

5.1 Conservative Oscillator

Differential Equation of Motion. As before, Hamilton’s variational principle with
the Lagrange function L(q, q̇), q and q̇ being the generalized coordinate and velocity,
is our tool for deriving the equation of motion of conservative systems. However,
in contrast to the linear theory, we will see that the kinetic energy may now depend
on q as well, and the potential energy is no longer quadratic with respect to q. We
consider three simple examples.

EXAMPLE 5.1. Mass-spring oscillator. A point-mass m moves horizontally under
the action of a non-linear spring (see Fig. 5.1). Derive the equation of motion for
this oscillator.

m
x

f=-U’(x)

Fig. 5.1 Mass-spring oscillator

Like the oscillator considered in example 1.1
the kinetic energy is given by K = 1

2 mẋ2.
Concerning the potential energy of the non-
linear spring we first consider the most gen-
eral case, for which U(x) is an arbitrary
smooth function. Then Lagrange’s equation
reads

mẍ− f (x) = 0, f (x) =−dU
dx

.
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The spring force f (x) is called a restoring force. However, it is quite reasonable to
assume that the potential energy of the spring deviates only slightly from that of the
linear spring, i.e.,

U(x) =
1
2

kx2 +
1
4
α

k

l2
0

x4,

where l0 is the original length of the spring and α a small parameter. If α > 0, the
spring is called hardening; on the contrary if α < 0 it is called softening. Lagrange’s
equation becomes

mẍ+ kx+α
k

l2
0

x3 = 0.

Dividing this equation by kl0 and rewriting it in terms of the dimensionless function
x̄ = x/l0 and the dimensionless time t̄ =

√
k/mt, we obtain1

ẍ+ x+αx3 = 0. (5.1)

Equation (5.1) is known as Duffing’s equation.

EXAMPLE 5.2. Derive the equation of motion of the mathematical pendulum con-
sidered in example 1.2.

As has been shown already in that example, the Lagrange function is

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 −mgl(1− cosϕ),

but now ϕ is no longer small. Thus, the finite amplitude vibrations of this pendulum
are described by the equation

ϕ̈+ω2
0 sinϕ = 0, ω0 =

√
g
l
.

By expanding sinϕ in the Taylor series about ϕ = 0 and keeping the terms up to ϕ3

we obtain the approximate equation

ϕ̈+ω2
0 (ϕ− ϕ3

6
) = 0,

which can be transformed to (5.1) with α =−1/6.

EXAMPLE 5.3. A point-mass m is constrained to move along a frictionless path
represented by a smooth curve y= y(x) in the (x,y)-plane under the action of gravity
(see Fig. 5.2). Derive the equation of motion.

1 The bar is dropped for short.
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Fig. 5.2 Motion of point-mass along a
path

This is the typical example of systems with
holonomic constraints. Any holonomic con-
straint like that of the curve y = y(x) can be
realized by a strong potential energy U(x,y)
which forces the point-mass to move along
the path. In the limit when the potential en-
ergy goes to infinity in the neighborhood of
the path, one gets the Lagrange function eval-
uated under this constraint [5]. Using in our
example x (or, equivalently, the arc-length
s along the curve) as the coordinate of the
point-mass, we find its constrained velocity
along the path

v = ṡ =
√

1+ y′2ẋ.

Thus, the kinetic energy of the point-mass equals

K(x, ẋ) =
1
2

mv2 =
1
2

m(
√

1+ y′2ẋ)2.

Observe that the kinetic energy depends not only on ẋ, but also on x through the
function y(x). Choosing the zero level at y = 0, the potential energy is given by

U(x) = mgh = mgy(x).

Therefore, Lagrange’s equation yields

d
dt
(m
√

1+ y′2ẋ)+mg
y′√

1+ y′2
= 0.

Phase Portrait. As we know from Section 2.4, for conservative oscillators the total
energy remains constant during the motion

K(x, ẋ)+U(x) = E0.

This first integral describes the level curves (phase curves) in the phase plane (x,y),
where y = ẋ. Consider for instance example 5.1 for which

1
2

mẋ2 +U(x) = E0.

Solving this equation with respect to ẋ, we find explicitly

ẋ =±
√

2
m

√
E0 −U(x). (5.2)

The plus or minus sign depends on whether we are in the upper half or lower half of
the phase plane.
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Fig. 5.3 Potential energy and phase portrait of conservative oscillator

Fig. 5.3 shows in its upper part a prototype potential energy as function of x, while
in the lower part, with exactly the same x-scale, the corresponding phase portrait.
From (5.2) we see that the phase portrait is symmetric with respect to the x-axis and
that the phase curves must run from left to right in the upper half-plane and from
right to left in the lower half-plane as time increases. The horizontal lines 1,2,3, and
4 in the upper graph label different energy levels E0 of the oscillator for different
types of motions. Since the kinetic energy is non-negative, the potential energy of
a particular motion must lie below the corresponding energy level. The intersection
points of any E0-line with the potential energy correspond to the intersection points
of the phase curve with the x-axis. For levels 1,2 the phase curves are closed orbits
which look like ellipses intersecting the x-axis in two turning points at right angles.
These closed orbits describe periodic vibrations of the point-mass about the equi-
librium position C. The latter corresponds to the local minimum of the potential
energy, so C is the stable center. For level 3 the phase curve is quite special. This
curve passes through a saddle point S (corresponding to the local maximum of the
potential energy), and consists of four branches, called separatrices2 which do not
intersect the x-axis at right angles. In our case the separatrices separate closed orbits
from open phase curves like that of level 4, which describe aperiodic motions of
the point-mass. The motion along any separatrix requires infinite amount of time to
reach the unstable equilibrium position S. Such motions are called limit motions.

Using equation (5.2), we can now compute the time required to go from the initial
point x0 to point x along a fixed phase curve

2 The given name originates from the fact that these branches separate regions filled with
phase curves of different types.
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t = t0 ±
∫ x

x0

dξ√
2
m [E0 −U(ξ )]

.

Again, the plus or minus sign depends on whether we are in the upper half or lower
half of the phase plane. Taking into account the symmetry with respect to the x-axis,
we obtain the period of vibration along any closed orbit

T = 2
∫ xM

xm

dξ√
2
m [E0 −U(ξ )]

, (5.3)

where xm and xM are the minimum and maximum of x corresponding to the turning
points. We see that the period of vibration (and therefore the related frequency)
in the nonlinear theory depends on the initial energy, or, in other words, on the
amplitude of vibration, in contrast to the linear theory.

Variational-Asymptotic Method. If the action functional contains some small pa-
rameter in the nonlinear term, then it is possible to find the correction to the solution
and to the frequency without computing complicated integral (5.3). Let us consider
for instance Duffing’s equation (5.1) which can be obtained as Lagrange’s equation
of the functional

I[x(t)] =
∫ T

0
(

1
2

ẋ2 − 1
2

x2 − 1
4
εx4)dt,

with T being the period of vibration. We assume simply α = ε as a small parameter.
We know that the extremal of this functional depends on ε . On the other hand, the
results of the previous paragraph show that the period (and the related frequency
ω = 2π/T ) of vibration depends on the amplitude, and thus, on ε too. We want to
make ω enter the action functional explicitly by stretching the time τ = ωt so that
the functional now takes the form

I[x(τ)] =
1
ω

∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 − 1

4
εx4)dτ,

with prime denoting the derivative with respect to τ . Since the constant factor 1/ω
does not influence the extremal, instead of the obtained functional we consider the
following one

I[x(τ)] =
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 − 1

4
εx4)dτ. (5.4)

We try to find the periodic extremal of this functional. As x(τ) is periodic with
respect to τ with the period 2π , we call τ phase (or angular time). Since the func-
tional contains a small parameter ε , we shall use the variational-asymptotic method
to study this variational problem (see [8, 31]). At the first step we put simply ε = 0
to get from (5.4)

I0[x(τ)] =
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ.

As we know from the linear theory, the 2π-periodic extremal of this functional is
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x0(τ) = acosτ. (5.5)

Here a is the amplitude of vibration, the frequency ω is equal to 1 as expected, and
we have chosen the initial phase φ = 0 which is possible because functional (5.4)
does not depend explicitly on time.

At the second step we seek the periodic extremal and the corresponding fre-
quency in the form

x(τ) = x0(τ)+ x1(τ), ω = 1+ω1, (5.6)

where x1(τ) is smaller than x0(τ) in the asymptotic sense and ω1 � 1. We may
assume that x1(τ) and ω1 are of the order ε of smallness although this is even not
necessary. The order of smallness of x1(τ) and ω1 will automatically be determined
in this step. Substituting (5.6) into (5.4) and keeping the asymptotically principal
terms containing x1 and the principal cross terms between x0 and x1, we obtain3

I1[x1(τ)] =
∫ 2π

0
(

1
2

x′21 + x′0x′1 + 2ω1x′0x′1 −
1
2

x2
1 − x0x1 − εx3

0x1)dτ.

Integrating the second and the third terms by parts taking into account the periodicity
of x1(τ), we see that the underlined terms are canceled out. Besides, the cubic of
x0 = acosτ can be transformed into the sum of harmonic cosine functions like that

x3
0 = a3 cos3 τ = a3(

3
4

cosτ+
1
4

cos3τ).

Finally we have

I1[x1(τ)] =
∫ 2π

0
(

1
2

x′21 − 1
2

x2
1 +(2ω1a− ε 3

4
a3)cosτ x1 − 1

4
εa3 cos3τ x1)dτ.

This functional is reminiscent of that of forced linear oscillator, where the two last
terms play the role of the work done by the external forces. The underlined term
would lead then to resonance causing non-periodic x1 with the amplitude tending to
infinity as τ → ∞. However, it is obvious that such resonance cannot appear! Thus,
for the consistency of our asymptotic expansion we require the coefficient of cosτ
in the functional I1 to vanish.4 This consistency condition implies

2ω1a− ε 3
4

a3 = 0, that is, ω1 = ε
3
8

a2. (5.7)

Substituting the result into (5.6)2, we get the correction for the frequency-amplitude
relation

ω = 1+ ε
3
8

a2 +O(ε2). (5.8)

3 The terms containing only x0 are dropped because x0 is not subject to variation at this step.
4 Allowing some strong expression, we would say that the resonant or secular terms must

be “killed”.
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The period T = 2π/ω may then be written as

T =
2π

1+ ε 3
8 a2 +O(ε2)

= 2π
[

1− ε 3
8

a2 +O(ε2)

]
. (5.9)

With the underlined resonant term being “killed” we find the extremal of
functional I1

x1(τ) = ε
a3

32
(cos3τ− cosτ). (5.10)

Here we have chosen the initial condition such that x(0) = a which is consistent
with our choice φ = 0.

Then at the next step we seek the corrections to the extremal and the frequency
in the form

x(τ) = x0(τ)+ x1(τ)+ x2(τ), ω = 1+ω1 +ω2,

where x2(τ) and ω2 are smaller than x1(τ) and ω1 in the asymptotic sense, and
repeat the same procedure as before (see exercise 5.2).

Notice that the similar procedure applied to the differential equations containing
a small parameter has first been proposed by Lindstedt and Poincaré (see [32, 40]).

Comparison with the Exact Solution. It turns out that Duffing’s equation can be
solved exactly in terms of Jacobian elliptic functions [3]. In this paragraph we want
to get the frequency from this exact solution and compare it with the result obtained
by the variational-asymptotic method.

First of all, let us collect some well known facts about Jacobian elliptic functions.
There are three such functions: sn, cn, and dn. They depend on two variables, u and
m, where u is called an argument and m = k2 a modulus. In working with Jacobian
elliptic functions the modulus m is often dropped, so we write sn(u,m) = sn(u). Two
of them, sn and cn, are quite similar to trigonometric sine and cosine. For example
there are several identities resembling the well-known trigonometric formulas like

sn2(u)+ cn2(u) = 1,

sn′(u) = cn(u)dn(u), cn′(u) =−sn(u)dn(u),

where prime denotes the derivative with respect to u. The elliptic function dn satis-
fies the equations

dn′(u) =−msn(u)cn(u), and msn2(u)+ dn2(u) = 1.

The period of sn and cn in their argument u is 4K which is the complete elliptic
integral of the first kind. The period of dn is 2K. The asymptotic expansion of K(m)
is given by

K(m) =
π
2

[
1+

(
1
2

)2

m+

(
1 .3
2 .4

)2

m2 + . . .

]
. (5.11)
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We look for the solution of Duffing’s equation (5.1) in the form

x(t) = acn(u), where u = bt + c, (5.12)

and a, b, c, and m are still unknown constants. Only two of them may be determined
from the initial conditions. Let us fix the initial phase c = 0. Thus, there must be two
relations for the remaining constants. To find these relations we compute the time
derivative of x(t)

ẋ = abcn′(u) =−absn(u)dn(u).

Differentiating once again to get

ẍ =−ab2[cn(u)dn2(u)−msn2(u)cn(u)].

Using the above identities, this becomes

ẍ =−ab2cn(u)[1− 2m+ 2mcn2(u)].

Substituting the last equation into Duffing’s equation (5.1) (whereα = ε) and equat-
ing to zero the coefficients of cn and cn3 gives two equations relating a, b, and m

a(2b2m− b2 + 1) = 0,

−a(2b2m− εa2) = 0.

Solving for b and m in terms of a, we obtain finally

b2 = 1+ εa2, m =
εa2

2(1+ εa2)
. (5.13)

1 2 3 4 5

-1.0

-0.5

0.5

1.0

t

x(t)

Fig. 5.4 Solution of Duffing’s equation for ε = 0.5: i) Bold line: exact solution, ii) Dashed
line: approximate solution

Formulas (5.12) and (5.13) give the exact solution of Duffing’s equation. Its am-
plitude a corresponds to the amplitude of the approximate solution (5.5) and (5.10).
The period T of the exact solution is 4K/b which may be written, using asymptotic
formula (5.11),
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T =
4K(m)

b
=

2π
b

[
1+

1
4

m+
9
64

m2 +O(m3)

]
.

Substituting (5.13) into this equation and expanding for small ε , we obtain

T = 2π
[

1− ε 3
8

a2 +O(ε2)

]

which agrees with formula (5.9). Fig. 5.4 shows the comparison between the exact
solution and the approximate one found in the previous paragraph for ε = 0.5. One
can find for example in [6,20] the rigorous mathematical proof of convergence of the
approximate solution to the exact one as ε→ 0 in any finite time interval. However,
it is intuitively clear that for any small but finite ε the errors in period and in solution
accumulate with the time and become of the order 1 for the time greater than T/ε .

5.2 Dissipative Oscillator

Differential Equation of Motion. For dissipative oscillators there are three types of
nonlinearity: i) Non-quadratic energy and quadratic dissipation, ii) Quadratic energy
and non-quadratic dissipation, iii) Both energy and dissipation are non-quadratic.
The common feature of all dissipative oscillators is the positive definiteness of the
dissipation causing the decrease of the energy. Therefore periodic motions in au-
tonomous dissipative systems are clearly impossible. We consider three examples.

EXAMPLE 5.4. Mathematical pendulum with viscous damping. Derive the equation
of motion of the mathematical pendulum considered in example 1.2 taking into
account the air resistance through viscous damping.

As before the Lagrange function is given by

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 −mgl(1− cosϕ).

For the viscous damping we may assume that the dissipation function is quadratic
with respect to the velocity v = lϕ̇

D =
1
2

c(lϕ̇)2.

Thus, generalized Lagrange’s equation (2.31) yields

ϕ̈+ω2
0 sinϕ+

c
m
ϕ̇ = 0. (5.14)

This pendulum belongs to the first type of dissipative oscillator with the nonlinear
restoring force and the linear damping force.
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EXAMPLE 5.5. Mass-spring oscillator with Coulomb’s friction. A mass m moves on
the rough solid foundation under the action of a linear spring (see Fig. 5.5). Derive
the equation of motion for this oscillator.

m
x

k

Fig. 5.5 Dry friction

Up to now we have analyzed dissipative oscillators with
quadratic dissipation leading to the velocity proportional
damping force. However, we are often confronted in re-
ality with another type of damping, namely with the fric-
tion between solids with rough and unlubricated surfaces,
called Coulomb’s (or “dry”) friction. The most important
features of Coulomb’s friction are the existence of a thresh-
old value f0 for the zero velocity and the constant friction
force for nonzero velocities. The force-velocity diagram for

Coulomb’s friction is shown schematically in Fig. 5.6. We see that this “constant”
friction force is constant in magnitude but not in direction since its direction is al-
ways opposite to the direction of velocity.

fr

f0

x.

Fig. 5.6 Coulomb’s friction force

Looking at the force-velocity diagram we find that Coulomb’s friction force can
be described by the equation

fr(ẋ) =

{
f0 for ẋ < 0,

− f0 for ẋ > 0.

For ẋ = 0 the friction force may take an arbitrary value in between. Since fr =
−dD/dẋ, we have

D(ẋ) = f0|ẋ|. (5.15)

Thus, the dissipation function D(ẋ) of Coulomb’s friction is a positive definite ho-
mogeneous function of the first order. Its graph is shown schematically in Fig. 5.7.
Mention that D(ẋ) is non-smooth at ẋ = 0, but we can still use the constitutive equa-
tion fr =−dD/dẋ for ẋ = 0 if dD/dẋ is understood in the sense of sub-differential.
In this case fr can take any value between − f0 and f0.

Now, the equation of motion of this oscillator reads

mẍ =−kx+ fr(ẋ). (5.16)
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tan =f0

Fig. 5.7 Dissipation function of Coulomb’s friction

As the consequence, we see that as long as the magnitude of spring force |kx| is less
than f0, the mass, being released with the zero velocity, cannot move: it is “sticked”
to the surface. So we have the “sticky” zone − f0/k ≤ x≤ f0/k in which all positions
of the oscillator are the equilibrium positions. Released motions are possible only
outside of this “sticky” zone. This is the example of oscillators of the second type.

EXAMPLE 5.6. Nonlinear oscillator with a quadratic damping.

If a small mass connected with a non-linear spring moves very fast in a gas or a
fluid with a small viscosity, vorticities may occur around it. The resistance from
these vorticities on the moving body may sometimes be approximated as propor-
tional to the square of velocity of the point-mass. Such kind of damping is called a
“turbulent” damping. Since the damping force acts in the opposite direction to the
direction of motion, it must be equal to fr = −c|ẋ|ẋ. The corresponding dissipation
function is

D(ẋ) =
1
3

c|ẋ|3.
Now the equation of motion reads

mẍ+ c|ẋ|ẋ− f (x) = 0, f (x) =−dU
dx

. (5.17)

As the spring force f (x) is also non-linear, this oscillator belongs to the third type.

Phase Portrait. Since the energy decreases with time, it is for sure that the ampli-
tude of vibration decays also. There are different methods to determine the evolution
to equilibrium for dissipative systems with one degree of freedom. The most general
and at the same time most descriptive method remains still that of phase portrait [4].
For all types of dissipative oscillators we may combine the restoring and damping
forces in one and present the equation of motion in the form

ẍ = f (x, ẋ),

where f (x, ẋ) is the resultant force (divided by m) acting on the point-mass. With
y = ẋ we may reduce this differential equation of second order to the system of
equations of first order
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ẋ = y, (5.18)

ẏ = f (x,y).

Thus, at each point (x,y) of the phase plane there is one vector (y, f (x,y)) tangent
to the phase curve. One can plot this vector field and construct the phase curves by
integrating numerically equations (5.18) using for example Euler’s or Runge-Kutta’s
algorithm.

-3 -2 -1 1 2 3

-2

-1

1

2

Fig. 5.8 Phase portrait of damped pendulum

Consider for instance the pendulum with viscous damping in example 5.4. The
equation of motion (5.14) can be written in the dimensionless form as follows

ϕ ′′+ 2δϕ ′+ sinϕ = 0,

where prime denotes the derivative with respect to τ = ω0t, and δ = c
2mω0

is Lehr’s
damping ratio. Reducing this equation to

ϕ ′ = ω ,
ω ′ =−sinϕ− 2δω ,

we show the plot of the vector field (ω ,−sinϕ− 2δω) and the phase curves in the
phase plane in Fig. 5.8. By wrapping the phase plane onto the cylinder along the
lines ϕ =±π we obtain the phase portrait of the damped pendulum on the cylinder.
We see that there are no periodic motions and that almost all phase curves tend to
the stable equilibrium position ϕ = 0.

Oscillator with Coulomb Friction. For this type of oscillator the solution can
directly be found from the energy balance equation. Let us first mention that
the energy balance equation (2.32) derived in Section 2.4 should be modified for
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Coulomb’s friction. Since the dissipation function (5.15) is homogeneous function
of the first order, we have merely

dD
dẋ

ẋ = D(ẋ).

Thus, instead of (2.32) the energy balance equation for the Coulomb’s friction reads

K +U −E0 =−
∫ t

t0
D(ẋ(s))ds,

so that the factor 2 disappears here. With D(ẋ) from (5.15) we obtain

1
2

mẋ2 +
1
2

kx2 = E0 − f0|x− x0|, (5.19)

as long as x0 is found outside of the “sticky” zone, where E0 is the initial energy at
point x0. It is interesting to note that the dissipation is rate-independent: it depends
only on the initial and end coordinates of the point-mass.

xx0

E0

x1

E01

x2

E02

x3x4

U(x)

Fig. 5.9 Total energy and turning points of oscillator with Coulomb’s friction

Energy balance equation (5.19) gives a clear geometric method for determining
the amplitude decay and the turning points of this oscillator. Fig. 5.9 shows the
potential energy of the oscillator as well as the total energy during the process of
motion. Assume that the point-mass is released from x0 with the zero initial velocity
and then moves to the right. According to (5.19) the total energy at x is E0 − f0(x−
x0) since x > x0. This is the straight line with the negative slope − f0 describing
the decay rate of the energy. The kinetic energy is the height between the total
energy and the potential energy. It becomes zero at the turning point x1 which is the
intersection point between the parabola U(x) and the straight line. Using this point
x1 and the corresponding energy E01 as the initial data, we find that the total energy
of the motion thereafter must be E01 + f0(x− x1), since the point mass moves now
to the left with x < x1. This is the straight line with the positive slope f0 which
intersects the parabola at the turning point x2. We can then repeat this geometric
construction until |xn|< f0/k where the point mass will be sticked there.
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x

y

c0x0 x1x2

Fig. 5.10 Phase portrait of oscillator with Coulomb’s friction

We can also use the energy balance equation (5.19) to plot the phase curves.
Indeed, for ẋ > 0 we have

1
2

mẋ2 +
1
2

kx2 = E0 − f0(x− x0).

Bringing term − f0x to the left-hand side and forming there the square of x+c0 (with
c0 = f0/k), we obtain

1
2

mẋ2 +
1
2

k(x+ c0)
2 = E0 + f0x0 +

f 2
0

2k
,

or with y = ẋ/ω0 (where ω2
0 = k/m)

y2 +(x+ c0)
2 = r2, r2 =

2
k
(E0 + f0x0 +

f 2
0

2k
).

We see that the phase curves in the upper half of the phase plane are half-circles with
the center at point−c0 on the x-axis. In the lower half-plane they are also half-circles
but with the center at point c0 on the x-axis. The sticky zone lies between these
centers. As long as the phase curve does not hit the sticky zone, its continuation in
the other half-plane is possible. The sticky zone is the “dead” zone for the phase
curves (see Fig. 5.10).

Oscillator with “Turbulent” Damping. The equation of motion for the oscillator
considered in example 5.6 can be integrated separately for ẋ > 0 and ẋ < 0. Indeed,
consider first the case ẋ > 0 and denote ẋ = v. Since

ẍ =
dv
dt

=
dv
dx

dx
dt

= v
dv
dx

=
1
2

dv2

dx
,
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we can rewrite equation (5.17) in the form

dv2

dx
+αv2 − 2

m
f (x) = 0,

where α = 2c/m. This inhomogeneous differential equation of first order can be
integrated by the standard method of variation of coefficients [11] yielding

v2(x) = e−αx
(

C1 +
2
m

∫ x

0
f (ξ )eαξ dξ

)
.

Similarly, for ẋ < 0 we have

v2(x) = eαx
(

C2 +
2
m

∫ x

0
f (ξ )e−αξ dξ

)
.

The constants C1 and C2 are determined from the initial conditions. Let

U+(x) =− 2
m

∫ x

0
f (ξ )eαξ dξ =

2
m

∫ x

0
U ′(ξ )eαξ dξ ,

U−(x) =− 2
m

∫ x

0
f (ξ )e−αξ dξ =

2
m

∫ x

0
U ′(ξ )e−αξ dξ .

Assume that the point-mass is released from x0 with the zero velocity v0 = 0 and
that it moves afterward in the positive direction. Then C1 =U+(x0) and

v2(x) = e−αx[U+(x0)−U+(x)], for ẋ > 0.

The first turning point x1 can then be found as the root of the equation U+(x1) =
U+(x0). Choosing now x1 as the initial coordinate from which the point-mass is
released and moves in the negative direction, we find that C2 =U−(x1) and that

v2(x) = eαx[U−(x1)−U−(x)], for ẋ < 0.

Therefore, the second turning point, x2, must be the root of the equation U−(x2) =
U−(x1). Then we can choose x2 as the initial coordinate from which the point-mass
is released and repeat the procedure. So, if functions U+(x) and U−(x) are known,
then the solution and the turning points can successively be determined.

For illustration let us consider the case of the quadratic potential energy (linear
spring) with U(x) = 1

2 kx2. In this case functions U+(x) and U−(x) can easily be
computed

U+(x) =
2
m

∫ x

0
kξ eαξ dξ =− 2k

mα2 [e
αx(1−αx)− 1],

U−(x) =
2
m

∫ x

0
kξ e−αξ dξ =− 2k

mα2 [e
−αx(1+αx)− 1].
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U (x)+
-
*

*

-x0 xx1-x2

-1

U (x)

Fig. 5.11 Functions U∗
+(x) and U∗−(x) and sequence of turning points

The constant factor 2k
mα2 and the subtrahend −1 in the square brackets do not ob-

viously influence the determination of the turning points. So, instead of U+(x) and
U−(x) we can take the following functions

U∗
+(x) =−eαx(1−αx) and U∗

−(x) =−e−αx(1+αx)

for this purpose. Besides, U∗
+(x) =U∗−(−x), so it is enough to plot them for x > 0.

Fig. 5.11 shows the plot of these functions and the geometric method of determining
the sequence of turning points. As function U∗

+(x) cuts the x-axis at point 1/α ,
whatever we take for the initial coordinate x0, the amplitude x1 is always less than
1/α .

5.3 Self-excited Oscillator

This Section analyzes self-excited oscillators with one degree of freedom having
sustained vibrations. The key features of such oscillators are the presence of an
energy source and of a switcher, which switches the energy supply regime to the
energy dissipation regime when the amplitude (or velocity) of vibrations becomes
large.

Differential Equations of Motion. It was shown in the previous Section that free
vibrations of any dissipative system about an equilibrium position decay with time,
and in the limit t → ∞ the system approaches equilibrium. Since in reality there are
always some sources of small energy dissipation (viscosity, friction, drag force etc.),
one might think that permanent vibrations of autonomous mechanical systems are
not possible at all. However, the opposite is the case: one can observe everywhere
in nature and technique permanent vibrations of living organisms, machines, and
constructions. Examples may range from the beating of our hearts to pendulum
clocks or flutter of bridges and airplane wings. Let us consider here some simple
cases.
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EXAMPLE 5.7. Stick-slip oscillator. A mass m connected with a linear spring of
stiffness k moves on the rough band of a treadmill that rolls with a constant velocity
v0 (see Fig. 5.12). Derive the equation of motion for this oscillator taking into ac-
count Coulomb’s friction between the mass and the rolling band. Plot the power of
the friction force against the velocity of the mass.

mk

v0
Fig. 5.12 Stick-slip oscillator

This example represents a primitive model of vibrations of a violin string. In terms
of the displacement x and velocity ẋ the Lagrange function reads

L(x, ẋ) =
1
2

mẋ2 − 1
2

kx2.

The dissipation function due to Coulomb’s friction between the rolling band and the
mass must depend on their relative velocity ẋ− v0, so

D(ẋ) = f0|ẋ− v0|.

Thus, generalized Lagrange’s equation is

mẍ+ kx = fr(ẋ− v0),

where

fr(ẋ− v0) =

{
f0 for ẋ < v0,

− f0 for ẋ > v0.

For ẋ = v0 the friction force fr must be equal to the spring force taken with minus
sign.

The most interesting property of this oscillator is that the power of the friction
force may have both plus and minus sign. Indeed, doing the same calculations as in
Section 2.4 for dissipative systems we obtain the balance of energy in the form

d
dt
(K +U) =−∂D(ẋ− v0)

∂ ẋ
ẋ.

The expression on the right-hand side is the power of the friction force fr. For the
oscillator vibrating about the equilibrium position with v0 = 0 we have shown pre-
viously that this is equal to −D(ẋ), and thus, the energy dissipation rate is positive.
In our case, the power may have both signs as one can see in Fig. 5.13.
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.

x.v0

frx

Fig. 5.13 Power of Coulomb’s friction force

vr

fr
f0

Fig. 5.14 Friction force fr versus relative veloc-
ity vr = ẋ−v0

The positive power of the fric-
tion force means that energy is sup-
plied to the oscillator amplifying the
vibrations. In contrary, the negative
power of the friction force (or, equiv-
alently, the positive dissipation rate)
means the energy loss which slows
down the vibrations. We see that for
our oscillator there is the possibil-
ity of amplifying the vibration in the
region 0 < ẋ < v0. This does not
still guarantee the self-excitation of
small vibrations since we have also
the energy loss for ẋ < 0 plus the air
resistance through viscous damping
which is always present. It should be

mentioned however that the more accurate experiments show a slight dependence
of the friction force on the relative velocity as sketched in Fig. 5.14. This, as well as
the air resistance through viscous damping in the system may have some influence
on the stability of the equilibrium state. We will show later that, under some favor-
able conditions, the oscillator may develop self-sustained vibrations. From Fig. 5.13
we see also that the two different regimes of energy supply and energy dissipation is
switched at the velocities ẋ = 0 and ẋ = v0. Thus, in this case the switcher is velocity
sensitive.

EXAMPLE 5.8. Froude’s pendulum. A compound pendulum that is rigidly fasten to
a sleeve in form of a ring mounted on a shaft rotating with a constant angular veloc-
ity ν0 (see Fig. 5.15). Derive the equation of motion of this pendulum taking into
account the air resistance as well as Coulomb’s friction between the rotating shaft
and the sleeve. Plot the power of the friction moment against the angular velocity.
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Rotating
shaft

Fig. 5.15 Froude’s pendulum

This example is quite similar to the previous one,
except for non-quadratic potential energy. The La-
grange function of the pendulum is

L(ϕ , ϕ̇) =
1
2

Jϕ̇2 −mgl(1− cosϕ),

where J is the moment of inertia of the pendulum
about the center O of the rotating shaft, and l the dis-
tance from the center of mass S to O. The dissipation
function includes the dissipation due to the air resis-
tance and the dissipation due to Coulomb’s friction
between the sleeve of the pendulum and the rotating
shaft. The latter must be a function of the relative
angular velocity. Thus,

D(ϕ̇) =
1
2

cl2ϕ̇2 +Dc(ϕ̇−ν0),

and the generalized Lagrange’s equation reads

Jϕ̈+mgl sinϕ+ cl2ϕ̇−Mr(ϕ̇−ν0) = 0.

Here Mr(ϕ̇−ν0) is the friction moment acting on the pendulum

Mr(ϕ̇−ν0) =−∂Dc(ϕ̇−ν0)

∂ ϕ̇
.

If we take Dc(ϕ̇ − ν0) = f0r|ϕ̇ − ν0| as in the previous case, with r being the
radius of the shaft (which is equal to the inner radius of the sleeve), then the plot of
the power of the friction moment, Mrϕ̇ , is exactly the same as that of the stick-slip
oscillator. There exists the energy supply regime for the angular velocity ϕ̇ ∈ (0,ν0).
This does not still guarantee the self-excitation of small vibrations since we have
also the energy loss for ϕ̇ < 0 plus that due to the air resistance. However, for the
more realistic response curve of friction moment versus relative angular velocity
similar to that shown in Fig. 5.14, the Froude’s pendulum may also develop self-
sustained vibrations (see exercise 5.7).

EXAMPLE 5.9. van der Pol’s and similar oscillators.

If the mass-spring oscillator is connected with some energy source through a
switcher, which switches from the energy dissipation to the energy supply regime
when a certain combination of amplitude and velocity is less than 1, then the dissi-
pation function may be proposed for example in the form
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D(x, ẋ) =
1
2

c(αx2 +
1
2
β ẋ2 − 1)ẋ2,

where c,α , and β are positive constants. This formula does not contradict the second
law of thermodynamics as the system under consideration is open and is connected
with the energy source (or, equivalently, with an external force producing a positive
power).5 Generalized Lagrange’s equation takes the form

mẍ+ kx+ c(αx2 +β ẋ2 − 1)ẋ = 0.

If β = 0, the oscillator is called van der Pol’s oscillator.6 In this case the
switcher is amplitude sensitive. On the contrary, for the case α = 0 corresponding
to Rayleigh’s equation, the switcher is velocity sensitive like that of the stick-slip
oscillator. In the general case (both α and β are non-zero), the switcher is of the
mixed type. Mention that Rayleigh’s equation can be transformed to van der Pol’s
equation as well (see exercise 5.9).

In what follows we shall study mainly van der Pol’s oscillator as the prototype of
self-excited oscillators. It is therefore convenient to bring its governing equation to
the dimensionless form. For this purpose let us introduce the dimensionless quanti-
ties t̄ =

√
k/mt and x̄ =

√
αx. In their terms van der Pol’s equation can be written

as follow
ẍ+ x+ μ(x2− 1)ẋ = 0, (5.20)

where μ = c/
√

km, and the bar is dropped for short. Introducing y = ẋ, we can
rewrite van der Pol’s equation as the system of first order differential equations

ẋ = y, (5.21)

ẏ =−x+ μ(1− x2)y,

which has one fixed point at (x,y) = (0,0).

Energy Household and the Existence of Limit Cycles. To recognize, whether
van der Pol’s oscillator has a limit cycle in the phase plane or not, all we need is
Poincaré-Bendixson theorem proved in the theory of ordinary differential equations
(see [11]). Roughly speaking, this theorem states that if there exists a phase curve C
of the 2-D continuous dynamical system that is “confined” to stay in some compact
ring-shape region R of the phase plane not containing any fixed point, then either C
is a limit cycle, or it spirals toward a limit cycle as t goes to infinity (see Fig. 5.16).

5 Of course, the dissipation function in this model can no longer be interpreted as the pure
dissipative potential leading to the energy loss only.

6 Historically, this equation was deduced by van der Pol in 1920 to describe the self-excited
oscillations of an electrical circuit used in the first radios (see [50]). Later on, this type of
equation has been widely used in other physical systems as well, i.e., in laser, plasma, or
flutter of airplane wings.
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C

R

Fig. 5.16 “Trapping” region R

The finding of this “trapping” region for
van der Pol’s oscillator is based on the analy-
sis of energy change as the angle in the phase
plane changes on one period 2π . Indeed, let
us write down the energy balance equation for
van der Pol’s oscillator

1
2

d
dt
(ẋ2 + x2) = μ(1− x2)ẋ2. (5.22)

Consider some phase curve starting at point
(x,y) = (a0,0) in the phase plane. As the an-
gle changes on 2π the phase curve cuts the
x-axis again at another point (a1,0). Integrating equation (5.22) over the time inter-
val spent by the phase curve between these two points and taking into account that
y = ẋ = 0 at the end-points, we obtain

1
2
(a2

1 − a2
0) =

∫ t1

t0
μ(1− x2)ẋ2 dt = ΔE. (5.23)

The integral standing on the right-hand side is the energy change ΔE in one angular
period 2π . Thus, if the energy is gained in one angular period (ΔE > 0), then |a1|>
|a0|. In contrary, if the energy is lost in one angular period (ΔE < 0), then |a1|< |a0|.

Now, let μ be small. Then for the phase curve starting near the origin with
small a0 > 0 we expect that the solution remains small in one angular period. Then
|x(t)|� 1 for t ∈ (t0, t1) and the integrand on the right-hand side of (5.23) is positive.
Thus, in one angular period we have the energy gain (ΔE > 0), so a1 > a0 and the
phase curve must be repelled from the origin. For the phase curve with a large initial
amplitude a0 � 1 the situation is more subtle. Since in one angular period the oscil-
lator may dissipate energy as well as gain it when x(t) comes close to zero, we must
compute the energy change precisely. For μ = 0 equation (5.20) is the equation of
the harmonic oscillator having the solution x(t) = a0 cost. It is natural to expect that
for small μ the solution of (5.20) is close to a0 cost in one angular period. Since μ
stands also in the integral (5.23), we may use this approximate solution to estimate
the energy change in one angular period

ΔE = μ
∫ 2π

0
(1− a2

0 cos2 t)a2
0 sin2 t dt =−μ π

4
a2

0(a
2
0 − 4).

Thus, if a0 > 2 then the energy change ΔE is negative, and the phase curve must
be attracted to the origin. So, in the polar coordinates the ring-shape region trapping
the phase curve is r ∈ (δ1,δ2), with δ1 a small positive number and δ2 > 2. We see
also that the amplitude of a limit cycle must be close to 2 for small μ .

Up to now we do not know how many limit cycles van der Pol’s oscillator may
have. This information can be obtained from Liénard’s theorem which is applied to
all differential equations of the form
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ẍ+ f (x)ẋ+ g(x) = 0. (5.24)

Equation (5.24) describes the motion of a unit mass subject to a nonlinear damping
force − f (x)ẋ and a nonlinear restoring force −g(x). The formulation of Liénard’s
theorem is as follows: If

• f (x) and g(x) are continuously differentiable;
• g(x) is an odd function and g(x)> 0 for x > 0;
• f (x) is an even function;
• the odd function F(x) =

∫ x
0 f (ξ )dξ has exactly one positive zero at x = b, is

negative for 0 < x < b, is positive and nondecreasing for x > b, and F(x)→ ∞ as
x → ∞;

then equation (5.24) has one stable limit cycle surrounding the origin of the phase
plane. Since this limit cycle attracts phase curves to it, it is called an attractor. Now,
for van der Pol’s oscillator we have

g(x) = x, f (x) = μ(x2 − 1).

Integrating f (x) we obtain F(x) = μx( 1
3 x2 − 1). Thus, all conditions required in

Liénard’s theorem are satisfied (for the last condition we have b =
√

3). Conse-
quently, van der Pol’s equation has only one stable limit cycle.

-3 -2 -1 1 2 3 4
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Fig. 5.17 Phase curves and limit cycle of van der Pol’s equation with μ = 0.1

Numerical Solutions. Now we know that all phase curves of van der Pol’s oscilla-
tor are attracted to the limit cycle. But how do they approach this cycle and what
does the limit cycle look like? These questions can only be answered by integrating
equation (5.20), or equivalently, system (5.21). Unfortunately, analytical solutions
are not available. So, let us try to integrate (5.21) numerically by using for instance
Mathematica. We open a notebook in Mathematica and simply write the following
commands
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sol � NDSolve��x'�t� � y�t�, y'�t� � �x�t� � 0.1 �1 � x�t�^2� y�t�,
x�0� � 4, y�0� � 0�, �x, y�, �t, 30��

ParametricPlot�Evaluate��x�t�, y�t�� �. sol�, �t, 0, 30��

In this case we took μ = 0.1 and assumed the initial conditions x(0) = 4, y(0) = 0.
The result of computations is shown in Fig. 5.17, and we see that the phase curve
is really attracted to the limit cycle drawn by the thick line which is close in form
to the circle of radius 2. If we take a starting point inside the cycle, the phase curve
also spirals to the limit cycle from inside.

If we want to know how the solution changes in time, we add a command

Plot�Evaluate�x�t� �. sol�, �t, 0, 30��

and the computer gives us the curve x(t) shown in Fig. 5.18. The behavior of this
solution is quite similar to that of damped oscillator discussed in Section 1.2 except
that the amplitude of vibration does not tend to zero but to some value close to 2.
As one can observe, there are two characteristic time scales: i) one describing the
period of fast oscillation of x(t), ii) the other associated with the monotonic and
slow change of amplitude of vibration toward that of the limit cycle shown by the
envelopes.

5 10 15 20 25 30

4

2

2

4

t

x

Fig. 5.18 Solution x(t) of van der Pol’s equation for μ = 0.1: i) bold line: x(t), ii) dashed
lines: envelopes

If we enlarge the parameter μ , the limit cycle deviates more and more from the
circle. The motion deviates also from the harmonic motion. For very large μ van
der Pol’s oscillator exhibits quite interesting type of vibrations called relaxation
oscillations. The limit cycle and the corresponding plot of x(t) for μ = 10 are shown
in Fig. 5.19. One can see a sequence of slow motions which are quickly switched to
other slow motions. This phenomenon will be explained in the next Section.

Limit Cycle of Stick-Slip Oscillator. Poincaré-Bendixson’s or Liénard’s theorem
cannot be applied to oscillators with Coulomb’s friction because of the discontinuity
of the friction force. So this type of oscillators requires always a special treatment.
Let us analyze the stick-slip oscillator considered in example 5.7. Taking also the
air resistance into account, we write down the equation of motion
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Fig. 5.19 Limit cycle (left) and solution x(t) (right) of van der Pol’s equation with μ = 10

mẍ+ cẋ+ kx = fr(ẋ− v0).

Dividing this equation by k and introducing the notation

k
m

= ω2
0 ,

c

2
√

km
= δ ,

v0

ω0
= ν0,

we rewrite it in the form (compare with (1.15))

x′′+ 2δx′+ x = r(x′ −ν0),

where

r(x′ −ν0) =
fr(ω0(x′ −ν0))

k
,

and prime denotes the derivative with respect to τ = ω0t. This second order differ-
ential equation is equivalent to the system of equations

x′ = y, (5.25)

y′ = r(y−ν0)− 2δy− x,

which has one fixed point S on the x-axis with the coordinate x0 = r(−ν0). The
slope of the phase curve at point (x,y) is equal to

dy
dx

=
r(y−ν0)− 2δy− x

y
. (5.26)

The first interesting thing to know is whether the fixed point S of this dynamical
system is a stable equilibrium position or not. To do the stability analysis near the
fixed point we seek the neighboring solution of (5.25) in the form

x = x0 + u, y = v,
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where u� 1 and v� 1 and linearize the system (5.25) with respect to u and v. Since

r(v−ν0) = r(−ν0)+
dr
dv

∣∣∣∣−ν0

v+O(v2),

we obtain

u′ = v, v′ =

(
dr
dv

∣∣∣∣−ν0

− 2δ

)
v− u,

what is equivalent to the equation

u′′ −
(

dr
dv

∣∣∣∣−ν0

− 2δ

)
u′+ u = 0.

Thus, if
dr
dv

∣∣∣∣−ν0

> 2δ ,

then the fixed point is an unstable focus, and the phase curves starting near this fixed
point are repelled from it.

To be able to simulate the phase curves numerically let us assume that the dy-
namic friction force is described by a function r(ν) of the form

r(ν) =

{
1
2 +

1
2 (ν+ 1)2 for ν < 0,

− 1
2 − 1

2 (ν− 1)2 for ν > 0.

The threshold friction force is r0 = 1 in this case, and for ν = 0 function r(ν) can
take any value between −r0 and r0. The constant velocity is ν0 = 0.5, while Lehr’s
damping ratio is chosen to be δ = 0.01. It is easy to check that r′(−0.5) = 0.5> 2δ .

0.5

x

y

A B C

S

Fig. 5.20 Limit cycle of stick-slip os-
cillator

The vector field and some phase curves of
this oscillator are plotted in Fig. 5.20. The
phase curves hitting the horizontal line y =
ν0 must change their slopes abruptly when
crossing this line. By this reason the line y =
ν0 is called a jump line. According to equa-
tion (5.26) the jump of the slopes must be
equal to −2r0/ν0. Besides, there is a “sticky”
zone −r0 − 2δν0 < x < r0 − 2δν0 on this
jump line (the segment AC), where the mass
is sticked to the band and move together with
it with the constant velocity ν0. When the
phase curves hit this sticky zone, they have
to move along the horizontal line up to point
C with coordinates (r0 −2δν0,ν0), where the
mass is detached from the band and the slip
begins. The phase curve starting from point
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C is a spiral, which hit the segment AC at point B if the damping ratio δ is small.
This phase curve together with the segment BC correspond to the limit cycle of the
stick-slip oscillator. Indeed, the phase curves starting inside this cycle are repelled
from S and will hit the jump line at some point between B and C and merge with the
limit cycle afterwards. The phase curves starting outside of this cycle will sooner or
later hit the segment AC and after a while merge with the limit cycle. The specific
feature of the stick-slip oscillator is that the limit cycle is established after a finite
time.

t

xv0
.

Fig. 5.21 Plot of ẋ(t) at the limit cycle

It is interesting to plot the velocity ẋ at the limit cycle as function of time. This
plot is shown in Fig. 5.21. We can see clearly the sequence of stick and slip regimes,
where ẋ = v0 in the stick regime.

5.4 Oscillator with Weak or Strong Dissipation

Mathematical Formulation. The results of previous two Sections show that the
phase curves of dissipative systems may approach some attractor in the phase plane
as time goes to infinity. If the energy dissipation rate is positive definite, then the
attractor corresponds just to the equilibrium states. In contrary, if the energy dissi-
pation rate is no longer positive definite, the attractor may become a limit cycle. In
both cases the amplitude and phase of vibration change slowly with time. It turns out
that if the dissipation function of the system is small in the sense that the governing
equation is obtained from the following variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2)dt −
∫ t1

t0
ε
∂D
∂ ẋ
δxdt = 0, (5.27)

with εD(x, ẋ) being the dissipation function and ε a small parameter, then the evolu-
tion of the system to the attractor can be determined analytically in the limit ε→ 0.
It is easy to see that the governing equation of this system reads

ẍ+ x = ε f (x, ẋ),
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where

f (x, ẋ) =−∂D
∂ ẋ

.

We need to find the asymptotic behavior of solution in the limit ε → 0.

Variational-Asymptotic Method. We have seen from the numerical simulations of
van der Pol’s oscillator in the previous Section that, if ε is not equal to zero, the am-
plitude of vibration will change slowly with time due to the energy dissipation. The
same can happen also to the period T as well as to the related frequency ω as they
are in general amplitude-dependent. Similar to the asymptotic analysis provided for
Duffing’s equation in Section 5.1 we want to make ω enter the variational equation
(5.27) explicitly. For this purpose we multiply (5.27) with ω and rewrite it in terms
of the stretched angular time τ = ωt for one fixed period 2π

δ
∫ τ0+2π

τ0

(
1
2
ω2x′2 − 1

2
x2)dτ+

∫ τ0+2π

τ0

ε f (x,ωx′)δxdτ = 0, (5.28)

where prime denotes the derivative with respect to the angular time τ , and τ0 is an
arbitrary time instant. For short we set τ0 = 0.

At the first step of the variational-asymptotic procedure we put simply ε = 0 to
get from (5.28)

δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ = 0.

This leads to the eigenvalue problem yielding the following 2π-periodic extremal

x0(τ) = acosτ.

Here a is the amplitude of vibration, the frequency ω is equal to 1 as expected, and
we have chosen the initial phase φ = 0, which is possible because the governing
equation does not depend explicitly on time.

Taking into account that the amplitude a and the frequency ω are becoming
slightly dependent on time for ε �= 0, we introduce the slow time η = ετ and seek
the corrections to the extremal and to the frequency at the second step in the form7

x(τ) = a(η)cosτ+ x1(τ,η), ω = 1+ω1(η), (5.29)

where x1(τ,η) is a 2π-periodic function with respect to the fast time τ and is much
smaller than x0(τ,η) in the asymptotic sense, and ω1(η) is much smaller than 1.
To make the asymptotic analysis of small terms easier we may assume that x1 and
ω1 are of the order ε although this is even not necessary. The order of smallness of
x1 and ω1 will automatically be determined in this step. Since the angular time τ is
present also in η , the time derivative of x(τ) becomes

x′(τ) =−a(τ)sinτ+ εa,η cosτ+ x1,τ+ εx1,η ,

7 This is the crucial idea of two-timing or multi-scaling.
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where the comma before an index denotes the partial derivative with respect to the
corresponding variable. Let us substitute (5.29) into (5.28) and keep the asymptot-
ically principal terms containing x1 and the principal cross terms between x0 and
x1. Because the small parameter ε is already present in the last term of (5.28), it is
accurate at this step to replace f (x,ωx′) by f (acosτ,−asinτ). Now the variational
equation becomes

δ
∫ 2π

0
[
1
2

x2
1,τ − asinτ x1,τ + εa,η cosτ x1,τ − 2ω1asinτ x1,τ

− 1
2

x2
1 − acosτ x1 + ε f (acosτ,−asinτ)x1]dτ = 0.

Integrating the underlined terms by parts using the periodicity of x1 in τ we obtain
finally

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 + 2(εa,η sinτ+ω1acosτ)x1 + ε f (acosτ,−asinτ)x1]dτ = 0.

(5.30)
Aside from the negligibly small change of amplitude a in one period we may regard
function f (acosτ,−asinτ) as 2π-periodic with respect to τ . Let us expand it in the
Fourier series on the interval (0,2π)

f (acosτ,−asinτ) = g0(a)+
∞

∑
n=1

[gn(a)cosnτ+ hn(a)sinnτ].

Substituting this expansion into equation (5.30) we see that there are two resonant
terms in this functional, namely

ε[2a,η + h1(a)]sinτ x1 and [2ω1a+ εg1(a)]cosτ x1.

From the linear theory we know that such resonant (or secular) terms would lead to
nonperiodic x1 contradicting our asymptotic expansion. To be consistent, we have
to remove them. These consistency conditions yield two equations for the amplitude
a(η) and for the correction of the frequencyω1

a,η =−1
2

h1(a) =− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ,

ω1 =− ε
2a

g1(a) =− ε
2πa

∫ 2π

0
f (acosτ,−asinτ)cosτ dτ.

(5.31)

Since the change of a(η) in one period is of the order ε , we may regard it as “frozen”
in the integrals on the right-hand sides.

With the resonant terms being “killed” we can find in principle the extremal
x1(τ,η) in the above variational problem. It has to satisfy the following equation

x1,ττ + x1 = ε{g0(a)+
∞

∑
n=2

[gn(a)cosnτ+ hn(a)sin nτ]}.
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Then at the next step we seek the corrections to the extremal and to the frequency
in the form

x(τ) = x0(τ,η)+ x1(τ,η)+ x2(τ,η), ω = 1+ω1(η)+ω2(η),

where x2 andω2 are much smaller than x1 andω1 in the asymptotic sense, and repeat
the same procedure as before.

Notice that the similar procedure applied to the differential equations containing
a small parameter has first been proposed by Bogoliubov and Mitropolsky [9].

Applications. Since the developed variational-asymptotic method does not put any
constraint on the dissipation function, we can apply it to both dissipative and self-
excited oscillators.

We illustrate how the method works first on the simple example of the linear
damped oscillator whose solution is given by formula (1.18). In this case f (x, ẋ) =
−ẋ and ε = 2δ . Computing the integrals on the right-hand sides of (5.31) we obtain
two equations

a,η =−a
2
, ω1 = 0.

According to the second equation there is no correction to the frequency and the
period of vibration within the first approximation. Concerning the amplitude of
vibration we obtain the law of its change by integrating the first equation giving
a = a0e−η/2 = a0e−δτ , with a0 being the initial amplitude. Combining this formula
for a with (5.29) we get in the first approximation

x(τ) = a0e−δτ cosτ.

In comparison with the exact solution x(τ) = a0e−δτ cosντ (which is obtained from
(1.18) when φ = 0), we see only a slight difference in the frequency of vibration:
the exact conditional frequency ν =

√
1− δ 2 ≈ 1+O(ε2). The evolution of the

amplitude coincides with that of the exact solution.
Next, let us apply the method to van der Pol’s oscillator, for which no analytical

solution is available. In this case f (x, ẋ) = (1−x2)ẋ and ε = μ . Similar calculations
of integrals in (5.31) give

a,η =
a
8
(4− a2), ω1 = 0. (5.32)

As in the previous example there is no correction to the frequency and the period
of vibration. In contrast to the exact van der Pol equation, equation (5.32) for a can
be integrated analytically. Indeed, multiplying this equation with a and noting that
aa,η = 1

2(a
2),η we transform it to the following equation

y,η =
1
4

y(4− y),
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where y = a2. The above equation can be integrated by separating the variables
giving

ln
y

4− y
= η+C.

The constant of integration can be obtained from the initial condition y(0) = y0:
C = ln y0

4−y0
. Substituting this constant in the last equation and solving it with respect

to y we obtain

y =
4y0eη

4+ y0(eη − 1)
,

or, in terms of the original amplitude a and time τ

a =
2a0eετ/2√

4+ a2
0(e

ετ − 1)
. (5.33)

In order to compare with the numerical solution we plot a(τ) from (5.33) and show
it together with x(t) in Fig. 5.18 (the dashed envelope). The agreement is striking,
although ε = 0.1 is not quite small. We can also check that a approaches 2 as τ→∞.

Limit Cycle of Relaxation Oscillations. We have seen that for small μ the limit
cycle of van der Pol’s oscillator is nearly a circle of radius 2, and its frequency
is nearly equal to 1. Consider now the opposite case of van der Pol’s oscillator
with a large parameter μ . As our numerical simulations have shown, the solution
corresponding to the limit cycle spends most of time in a slow motion, and then
quickly jumps to another slow motion. We analyze this motion by applying the
variational-asymptotic method to the variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2)dt +
∫ t1

t0
μ(1− x2)ẋδxdt = 0. (5.34)

Let us first concentrate on the slow motion. Introducing the slow time η = t/μ ,
we have ẋ = x,η/μ , with x,η being the derivative with respect to η . Thus, equation
(5.34), multiplied by μ , becomes

δ
∫ η1

η0

(
1

2μ2 x2
,η −

1
2

x2)dη+
∫ η1

η0

(1− x2)x,ηδxdη = 0.

Neglecting the first term in this equation8 as small in accordance with the variational-
asymptotic method, we arrive at the equation

−x+(1− x2)x,η = 0, or x,η =
x

1− x2 .

8 This means neglecting the kinetic energy as small compared with the potential energy and
dissipation. Thus, the slow motion can be regarded as the motion without inertia.
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This differential equation can be solved by separation of variables yielding

ln |x|− x2

2
= η+ const.

The slow motion proceeds according to this equation until it reaches x = ±1 where
the speed x,η is infinite. At this point the assumption of slow motion is violated,
so we need to change to another time scale. Introducing now the fast time τ = μt,
ẋ = μx,τ , we rewrite (5.34), divided by μ , in the form

δ
∫ τ1

τ0

(
1
2
μ2x2

,τ −
1
2

x2)dτ+
∫ τ1

τ0

μ2(1− x2)x,τδxdτ = 0.

Neglecting the second term as small compared with other terms, we arrive at the
differential equation

x,ττ − (1− x2)x,τ = 0.

This equation possesses the first integral

x,τ − x+ x3/3 = const,

representing the fast motion (jump). We choose the constant of integration so that
this fast motion starting at x = 1 as an equilibrium point (with x,τ = 0) will end at
another equilibrium point with x,τ = 0. It is easy to see that the constant is equal to
−2/3 giving the second equilibrium point at x =−2. Similarly, the jump starting at
x =−1 ends up at x = 2.

Knowing the solution, we can now easily compute the period of this relaxation
oscillation. Since the time spent for jumps is negligible compared to the time spent
at slow motions, we compute just the half-period of slow motion as

T/2 = μ (ln |x|− x2/2)
∣∣x=1
x=2 = μ(

3
2
− ln2).

Thus, the period T = μ(3− 2ln2) tends to infinity as μ → ∞.

5.5 Exercises

EXERCISE 5.1. A point-mass m moves under the action of gravity along a friction-
less circular wire of radius r that is rotating with a constant angular velocity Ω
about its vertical diameter (see Fig. 5.22).9 Derive the equation of motion and plot
the potential energy as well as the phase portrait.

Solution. Since the point-mass moves along the wire that rotates about the vertical
axis, its absolute velocity equals

v = vl + vr.

9 A pendulum oscillating on a rotating platform can serve as a similar example.
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m

r

g

Fig. 5.22 Point-mass on rotating circular wire

In this formula vl is the instantaneous velocity of the point-mass moving together
with the rotating frame as rigid body, while vr is its velocity relative to the rotating
frame. As these two vectors are orthogonal to each other and their magnitudes are
Ωr sinθ and rθ̇ , respectively, the kinetic energy of the point-mass reads

K =
1
2

mv2 =
1
2

mr2(θ̇ 2 +Ω 2 sin2 θ ).

Choosing the zero level of potential energy at the horizontal plane θ = π/2, the
potential energy of the point-mass in the gravitation field is given by

U =−mgr cosθ .

Thus, the Lagrange function equals

L = K −U =
1
2

mr2θ̇ 2 +
1
2

mr2Ω 2 sin2 θ +mgr cosθ .

We may interpret the first term of L as the kinetic energy of the motion relative to
the rotating frame, while the term − 1

2 mr2Ω 2 sin2 θ as the potential energy of the
fictitious “centrifugal force”, called centrifugal energy. From Lagrange’s equation
we derive the equation of motion

mr2θ̈ −mr2Ω 2 sinθ cosθ +mgr sinθ = 0.

The above equation of motion can be transformed to the dimensionless form

θ ′′ −ω2 sinθ cosθ + sinθ = 0,

where ω =Ω/ω0 =Ω/
√

g/r and where prime denotes the derivative with respect
to the dimensionless time τ = ω0t. This equation yields the conservation law

1
2
θ ′2 − cosθ +

1
4
ω2 cos2θ = E0.

The plots of the modified potential energy Ũ(θ ) = −cosθ + 1
4ω

2 cos2θ for dif-
ferent ω are shown in Fig. 5.23, where the points θ = −π and θ = π , due to the
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Fig. 5.23 Modified potential energy Ũ(θ ): i) ω = 0.5 (dashed line), ii) ω = 1 (dashed and
dotted line), iii) ω = 2 (bold line)

periodicity in θ , have to be identified. For ω < 1 the modified potential energy has
one local minimum at θ = 0 corresponding to the stable equilibrium state and one
local maximum at θ = ±π corresponding to the unstable equilibrium state (saddle
point). For ω > 1 there are two local minima at θ =±θ0 =±arccos(1/ω), and two
local maxima at θ = 0 and at θ =±π . The saddle-node bifurcation occurs at ω = 1.
The phase portrait of this rotating pendulum is plotted in Fig. 5.24 for ω = 2. We
see that there are two stable centers corresponding to two minima and two saddle
points corresponding to the maxima of the potential energy.

´

Fig. 5.24 Phase portrait of the rotating pendulum (ω = 2)

EXERCISE 5.2. Do the next step of the variational-asymptotic procedure for Duff-
ing’s equation and show that

T = 2π
[

1− ε 3
8

a2 + ε2 57
256

a4 +O(ε3)

]
.

Solution. At the third step we substitute

x(τ) = x0(τ)+ x1(τ)+ x2(τ), ω = 1+ω1+ω2
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into the action functional (5.4). Keeping the asymptotically principal terms contain-
ing x2 and the principal cross terms between x0, x1, and x2, we obtain

I2[x2(τ)] =
∫ 2π

0
[
1
2

x′22 + x′0x′2 + 2ω1x′0x′2 +(2ω2 +ω2
1 )x

′
0x′2 + x′1x′2 + 2ω1x′1x′2

− 1
2

x2
2 − x0x2 − x1x2 − εx3

0x2 − 3εx2
0x1x2]dτ.

Integrating the underlined terms by parts taking into account the periodicity of x0(τ)
and x1(τ), we reduce this formula to

I2[x2(τ)] =
∫ 2π

0
[
1
2

x′22 + 2ω1x0x2 +(2ω2 +ω2
1)x0x2 − x′′1x2 − 2ω1x′′1x2

− 1
2

x2
2 − x1x2 − εx3

0x2 − 3εx2
0x1x2]dτ.

Using the equations for x1 and ω1, it is easy to check that the underlined terms are
canceled out. Besides, the last term can be transformed into the sum of harmonic
cosine functions as follows

−3εx2
0x1x2 =− 3

128
ε2a5(−2cosτ+ cos3τ+ cos5τ)x2.

Finally, we have

I2[x2(τ)] =
∫ 2π

0
[
1
2

x′22 − 1
2

x2
2+(2ω2a+ω2

1 a+
3

64
ε2a5 − 1

16
ω1εa3)cosτ x2+ . . .]dτ.

Removing the underlined (resonant) term, we get

2ω2 =−ω2
1 −

3
64
ε2a4 +

3
128

ε2a4, that is, ω2 =− 21
256

ε2a4.

Thus, the correction for the frequency-amplitude relation reads

ω = 1+
3
8
εa2 − 21

256
ε2a4.

The period T = 2π/ω may then be written as

T =
2π

1+ 3
8εa2 − 21

256ε2a4
= 2π

[
1− 3

8
εa2 +

57
256

ε2a4
]
.

EXERCISE 5.3. Consider a mass-spring oscillator with an asymmetric spring obey-
ing the equation

ẍ+ x+ εx2 = 0.
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Find the period of vibration for ε = 0.1 and x(0) = 1, ẋ(0) = 0 using the numerical
integration based on (5.3). Compare it with the result obtained by the variational-
asymptotic method.

Solution. The potential energy of the spring is

U(x) =
1
2

x2 +
ε
3

x3.

We compute the period of vibration according to

T = 2
∫ xM

xm

dξ√
2[E0 −U(ξ )]

,

where E0 is the total energy (which is conserved) and xm and xM are the turning
points. From the initial conditions we find

E0 =
1
2

v2
0 +

1
2

x2
0 +

εx3
0

3
=

1
2
+
ε
3
= 0.533.

Since the point-mass is released from x = 1, this value corresponds to the turning
point xM = 1. The other turning point is found as the root of the equation

U(x) =U(1) = E0 ⇒ xm =−1.0718.

Using the numerical integration, we find that

T = 2
∫ xM

xm

dξ√
2[E0 −U(ξ )]

≈ 6.312.

To establish the asymptotic formula for the period of vibration we analyze the
action functional

I[x(τ)] =
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 − 1

3
εx3)dτ.

Then the first step of the variational-asymptotic procedure yields

x(τ) = x0(τ) = acosτ, ω = 1.

We have chosen the initial phase φ = 0 which is consistent with the above initial
conditions. At the second step we look for the solution in the form

x(τ) = x0(τ)+ x1(τ), ω = 1+ω1.

Repeating similar calculations as in Section 5.1, we arrive at the following func-
tional

I1[x1(τ)] =
∫ 2π

0
[
1
2

x′21 − 1
2

x2
1 + 2ω1acosτ x1 − 1

2
εa2(1+ cos2τ)x1]dτ.
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Since the underlined term is the only resonant term and since x1(0) = x′1(0) = 0, we
find that

ω1 = 0, x1(τ) =
1
6
εa2(−3+ 2cosτ+ cos2τ).

At the third step we substitute

x(τ) = x0(τ)+ x1(τ)+ x2(τ), ω = 1+ω2

into the action functional. Repeating similar calculations as in the previous exercise,
we obtain

I2[x2(τ)] =
∫ 2π

0
(

1
2

x′22 − 1
2

x2
2 + 2ω2x0x2 − 2εx0x1x2)dτ.

The last term can be transformed into the sum of harmonic cosine functions as
follows

−2εx0x1x2 =−ε2a3 1
6
(2− 5cosτ+ 2cos2τ+ cos3τ).

Thus, the resonant term is

(2ω2a+
5
6
ε2a3)cosτ x2.

Removing this resonant term, we get

ω2 =− 5
12
ε2a2.

Thus, the refined frequency-amplitude relation reads

ω = 1− 5
12
ε2a2.

The period T = 2π/ω may then be written as

T = 2π
(

1+
5

12
ε2a2

)
≈ 6.309.

EXERCISE 5.4. Find and classify the fixed points of equation (5.14) of a damped
pendulum for all c > 0, and plot the phase portraits for the qualitatively different
cases.

Solution. Equation (5.14) can be written in the dimensionless form as

ϕ ′′+ 2δϕ ′+ sinϕ = 0,

where prime denotes the derivative with respect to τ = ω0t, and δ = c
2mω0

is Lehr’s
damping ratio. Transforming this equation to
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ϕ ′ = ω ,
ω ′ =−sinϕ− 2δω ,

we see that the fixed points should be

(ϕn,ωn), where ϕn = nπ , ωn = 0,

and n are integers. Due to the periodicity in ϕ with the period 2π only the fixed
points corresponding to n = 0 and n = 1 need be analyzed. For n = 0 linearization
near the fixed point (0,0) gives

ϕ ′ = ω ,
ω ′ =−ϕ− 2δω ,

which is equivalent to
ϕ ′′+ 2δϕ ′+ϕ = 0.

Thus, if 0 < δ < 1 the fixed point is a stable focus, and if δ > 1 it is a stable node.
For n = 1 linearization near the fixed point (π ,0) with ϕ = π+ u and ω = v gives

u′ = v,

v′ = u− 2δv.

The corresponding characteristic equation

λ 2 + 2δλ − 1 = 0

-3 -2 -1 0 1 2 3

-4

-2

0

2

4

ϕ

ω

Fig. 5.25 Phase portrait of overdamped pendulum
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has one negative real root λ1 =−δ−√
δ 2 + 1 and one positive real root λ2 =−δ+√

δ 2 + 1. Thus, the fixed point is a saddle point for all positive δ . The phase portrait
for δ < 1 (underdamped pendulum) was shown in Fig. 5.8. For the case δ > 1
corresponding to the overdamped pendulum, the phase portrait is shown in Fig. 5.25.
It is seen that the fixed point (0,0) is a stable node, while the fixed point (π ,0)
remains a saddle point.

EXERCISE 5.5. The motion of a mass-spring oscillator with the linear restoring
force −kx (k = 2N/cm) is damped by a constant braking force fr = 1N; this force
acts however only in the region −1cm ≤ x ≤ 1cm. Outside this region the oscillator
carries out a free vibration. Find the sequence of turning points and the number of
halves of vibrations for the initial conditions x =−3cm and ẋ = 0.

Solution. Outside the region −1cm ≤ x ≤ 1cm there is no braking force, so the
energy must be conserved

1
2

mẋ2 +
1
2

kx2 = E0.

In the region −1cm ≤ x ≤ 1cm the braking force causes the energy dissipation
according to

1
2

mẋ2 +
1
2

kx2 = E0 − fr|x− x0|.

x
x0 x1x2 x3x4

U(x)

Fig. 5.26 Energy change and the sequence of turning points

With these two equations we can construct the sequence of the turning points
as shown in Fig. 5.26. Being released from x0 = −3cm with the zero velocity, the
oscillator has the initial energy E0 =

1
2 kx2

0 = 9Ncm. From −3cm to −1cm the total
energy does not change. After passing the zone with braking force the total energy
is reduced by 2Ncm. Then the oscillator moves to the turning point without chang-
ing the energy E1 = 7Ncm. Thus, the turning point x1 =

√
7cm. Similar arguments

can again be applied for the oscillator moving now to the left. After passing the
zone with braking force the total energy becomes E2 = 5Ncm, so the next turning
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point is x2 = −√
5cm. Analogously, the next two turning points are x3 =

√
3cm

and x4 = −1cm corresponding to the total energies E3 = 3Ncm and E4 = 1Ncm.
The oscillator ends its motion at point x = 0cm which is inside the sticky zone
−0.5cm ≤ x ≤ 0.5cm.

EXERCISE 5.6. Consider a damped pendulum with “turbulent” damping described
by the equation

ϕ̈+ cϕ̇|ϕ̇ |+ω2
0 sinϕ = 0.

Find the sequence of turning angles.

Solution. As shown in example considered in Section 5.2, the above equation can be
integrated separately for ϕ̇ > 0 and ϕ̇ < 0. For ϕ̇ > 0 this equation can be rewritten
in the form

dv2

dϕ
+αv2 +β sinϕ = 0,

with v = ϕ̇ , α = 2c, β = 2ω2
0 . Applying the method of variation of coefficients, we

obtain

v2(ϕ) = e−αϕ
(

C1 −β
∫ ϕ

0
sinξ eαξ dξ

)
.

Similarly, for ϕ̇ < 0 we have

v2(ϕ) = eαϕ
(

C2 −β
∫ ϕ

0
sinξ e−αξ dξ

)
.

The constants C1 and C2 should be determined from the initial conditions. Let

U+(ϕ) = β
∫ ϕ

0
sinξ eαξ dξ =

β
1+α2 [1+ eαϕ(−cosϕ+α sinϕ)],

U−(ϕ) = β
∫ ϕ

0
sinξ e−αξ dξ =

β
1+α2 [1− e−αϕ(cosϕ+α sinϕ)].

Assume that the pendulum is released from ϕ0 with the zero angular velocity v0 = 0
and that it rotates afterward in the positive direction. Then C1 =U+(ϕ0) and

v2(ϕ) = e−αϕ [U+(ϕ0)−U+(ϕ)] for ϕ̇ > 0.

The first turning point ϕ1 can then be found as the root of the equation U+(ϕ1) =
U+(ϕ0). Choosing now ϕ1 as the initial angle from which the pendulum is released
and rotates in the negative direction, we find that C2 =U−(ϕ1) and that

v2(ϕ) = eαϕ [U−(ϕ1)−U−(ϕ)] for ϕ̇ < 0.

Therefore, the second turning point, ϕ2, must be the root of the equation U−(ϕ2) =
U−(ϕ1). Then we can choose ϕ2 as the initial angle from which the pendulum is
released and repeat the procedure. For the above functions the constant factors and
the constant summands do not obviously influence the determination of the turning
points. So, instead of U+(ϕ) and U−(ϕ) we can take the following functions
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U∗
+(ϕ) = eαϕ(−cosϕ+α sinϕ) and U∗

−(ϕ) =−e−αϕ(cosϕ+α sinϕ)

for this purpose. Besides, U∗
+(ϕ) =U∗−(−ϕ), so it is enough to plot them for ϕ > 0.

Fig. 5.27 shows the plots of these functions (for c = 1/2) and the geometric method
of determining the sequence of turning points.

0.5 1.0 1.5 2.0 2.5 3.0
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-0.5

0.5

1.0

1.5

2.0

U-

U+

Fig. 5.27 Functions U∗
+(ϕ) and U∗−(ϕ) and sequence of turning points

EXERCISE 5.7. Consider Froude’s pendulum described by the following dimen-
sionless equation

ϕ̈+ 2δ ϕ̇+ω2
0 sinϕ = mr(ϕ̇−ν0),

where

2δ =
c
J
, ω2

0 =
mgl

J
, mr =

Mr

J
.

Find conditions under which this oscillator develops self-sustained vibrations.

Solution. The above equation of motion is equivalent to the system of equations

ϕ ′ = y,

y′ = mr(y−ν0)− 2δy−ω2
0 sinϕ ,

which has one fixed point S on the ϕ-axis with the coordinate ϕ = ϕ0, where

ϕ0 = arcsin
mr(−ν0)

ω2
0

.

To know whether this equilibrium position is stable or not, we study the neighboring
solutions assumed in the form

ϕ = ϕ0 + u, y = v,

and linearize the system with respect to u and v. Since
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mr(v−ν0) = mr(−ν0)+
dmr

dv

∣∣∣∣−ν0

v+O(v2), sinϕ = sinϕ0 + ucosϕ0 +O(u2),

and mr(−v0)−ω2 sinφ0 = 0 at the fixed point S, we obtain

u′ = v, v′ =

(
dmr

dv

∣∣∣∣−ν0

− 2δ

)
v−ω2

0 cosϕ0 u,

what is equivalent to the equation

u′′ −
(

dmr

dv

∣∣∣∣−ν0

− 2δ

)
u′+ω2

0 cosϕ0 u = 0.

Thus, if
dmr

dv

∣∣∣∣−ν0

> 2δ ,

then the fixed point is an unstable focus, and the phase curves starting near this fixed
point are repelled from it.

The vector field and phase curves of this pendulum are quite similar to those
of the stick-slip oscillator shown in Fig. 5.20. The phase curves hitting the hori-
zontal line y = ν0 must change their slopes abruptly when crossing this line. By
this reason the line y = ν0 is called a jump line. Besides, there is a “sticky” zone
arcsin((−r0−2δν0)/ω2

0 )< ϕ < arcsin((r0 −2δν0)/ω2
0 ) on this jump line (the seg-

ment AC), where r0 denotes the critical threshold moment of the friction. When the
phase curves hit this sticky zone, they have to move along the horizontal line up to
point C with coordinates (arcsin((r0 − 2δν0)/ω2

0 ),ν0), where the pendulum is de-
tached from the rotating shaft and the slip begins.10 The phase curve starting from
point C is a spiral, which hit the segment AC at point B if the damping ratio δ is
small. This phase curve together with the segment BC correspond to the limit cycle
of the Froude’s pendulum.

EXERCISE 5.8. Consider the mechanical system governed by the differential equa-
tion

ẍ− ε sin ẋ+ x = 0.

Construct several phase curves for ε = 0.1 using numerical integration. Show that
more than one limit cycle exist. Use the variational-asymptotic method to calculate
the amplitudes of limit cycles.

Solution. The above equation can be written as the system

ẋ = y, ẏ =−x+ ε siny,

10 Note, however, that this detach point C exists only if r0 ≤ ω2
0 +2δν0. For larger threshold

values r0 the pendulum will rotate with the shaft without being detached from it.
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for which the numerical integration with the command NDSolve in Mathematica
is applicable as demonstrated in Section 5.3. If we set ε = 0.1 and take the initial
conditions x(0) = 3, y(0) = 0, and x(0) = 5, y(0) = 0, the corresponding phase
curves, shown in Fig. 5.28, enable one to guest that there exists one stable limit
cycle whose amplitude is near the value 4. Likewise, the phase curves starting at
x(0) = 9, y(0) = 0, and x(0) = 11, y(0) = 0 show that another stable limit cycle
whose amplitude near the value 10 exists.
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Fig. 5.28 Two phase curves starting at x(0) = 3, y(0) = 0, and x(0) = 5, y(0) = 0
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Fig. 5.29 The plot of J1(a) and the directions of change of a according to a,η = J1(a) as η
goes to infinity
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According to the variational-asymptotic method, the slow evolution of the ampli-
tudes of vibrations to those of the limit cycles and the corrections to the frequencies
for small ε are determined from the equations

a,η =− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ,

ω1 =− ε
2πa

∫ 2π

0
f (acosτ,−asinτ)cosτ dτ,

where
f (x, ẋ) = sin ẋ.

The integrals on the right-hand sides yield

a,η = J1(a), ω1 = 0,

where J1(a) is the Bessel function, whose plot is shown in Fig. 5.29. Thus, there
is no correction to the frequency. The evolution equation for a cannot be solved in
terms of special functions, but as seen from Fig. 5.29, the zeros of J1(a) at which
J′1(a) is negative give the amplitudes of the stable limit cycles. This yields

a1 = 3.83171, a2 = 10.1735, . . . .

EXERCISE 5.9. Show that Rayleigh’s equation

ẍ+ x− ε(1− 1
3

ẋ2)ẋ = 0

can be rewritten as van der Pol’s equation

ü+ u− ε(1− u2)u̇ = 0,

where u = ẋ. Find the amplitude of its limit cycle for small ε .

Solution. Let us differentiate Rayleigh’s equation using the definition u = ẋ

ü+ u− ε u̇+ εu2u̇ = 0.

We see that this is exactly van der Pol’s differential equation in terms of u. On the
other side, Rayleigh’s equation in terms of x contains a small parameter ε , so the
slow evolution of the amplitude of vibration and the correction to the frequency are
determined from the equations

a,η =− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ,

ω1 =− ε
2πa

∫ 2π

0
f (acosτ,−asinτ)cosτ dτ,
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where

f (x, ẋ) = (1− 1
3

ẋ2)ẋ.

We compute the integrals on the right-hand sides of these equations

− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ =

1
2π

∫ 2π

0
(1− 1

3
a2 sin2 τ)asin2 τ dτ

=
a
8
(4− a2),

and
∫ 2π

0
f (acosτ,−asinτ)cosτ dτ =−

∫ 2π

0
(1− 1

3
a2 sin2 τ)asinτ cosτ dτ = 0.

Thus, there is no correction to the frequency. The evolution equation for a is exactly
the same as that obtained for the van der Pol oscillator

a,η =
a
8
(4− a2).

The solution to this equation reads

a =
2a0eετ/2√

4+ a2
0(e

ετ − 1)
,

where a0 is the initial amplitude of vibration. So, the amplitude of vibration tends
to the value 2 as τ → ∞. This result is also confirmed by the numerical integration
of Rayleigh’s equation with ε = 0.1 as shown in Fig. 5.30.

-3

-3

-2

-2

-1

-1

1 2 3 4

1

2

x

y=x.

Fig. 5.30 A phase curve of Rayleigh’s equation beginning from (x,y) = (4,0)
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EXERCISE 5.10. Consider the equation

ẍ+ x+ μ(|x|− 1)ẋ= 0.

Find the approximate period and amplitude of the limit cycle for small μ .

Solution. For small μ let the slow time be η = μτ . Then the slow evolution of the
amplitude of vibration and the correction to the frequency are determined from the
equations

a,η =
1

2π

∫ 2π

0
(1− a|cosτ|)asin2 τ dτ =−a(4a− 3π)

6π
,

ω1 =
ε

2πa

∫ 2π

0
(1− a|cosτ|)asinτ cosτ dτ = 0.

Thus, there is no correction to the frequency. The equation for a can be integrated
to give

ln
4a− 3π

4a
=−η/2+C.

The constant of integration can be obtained from the initial condition a(0) = a0:
C = ln 4a0−3π

4a0
. Substituting this constant in the last equation and solving it with

respect to a we obtain

a =
3π

4(1− 4a0−3π
4a0

e−η/2)
.

Thus, a approaches 3π/4 as τ → ∞.

EXERCISE 5.11. Use the variational-asymptotic method to study the equation

ẍ+ x− ε(1− x4)ẋ = 0

for small ε . Find the approximate amplitude of the limit cycle.

Solution. The slow evolution of the amplitude of vibration and the correction to the
frequency are determined from the equations

a,η =
1

2π

∫ 2π

0
(1− a4 cos4 τ)asin2 τ dτ =

a
16

(8− a4),

ω1 =
ε

2πa

∫ 2π

0
(1− a4 cos4 τ)asinτ cosτ dτ = 0.

Thus, there is no correction to the frequency. The equation for a can be transformed
by multiplying it with 4a3

z,η =
1
4

z(8− z),

where z = a4. This equation can be integrated by separating the variables giving

ln
z

8− z
= 2η+C.
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The constant of integration can be obtained from the initial condition z(0) = z0:
C = ln z0

8−z0
. Substituting this constant into the last equation and solving it with

respect to z, we obtain

z =
8z0e2η

8− z0 + z0e2η ,

or, in terms of the original amplitude a and time τ

a4 =
8a4

0e2ετ

8− a4
0+ a4

0e2ετ .

Thus, a approaches 4
√

8 ≈ 1.682 as τ → ∞. This result is also confirmed by the
numerical integration of the equation for x (with ε = 0.1) as shown in Fig. 5.31.

x

y

Fig. 5.31 Limit cycle of the equation ẍ+x−0.1(1−x4)ẋ = 0

EXERCISE 5.12. Use the variational-asymptotic method to study the equation

ẍ+ x− μ(1+ x− x2)ẋ = 0,

where μ is a large parameter. Find the amplitude and period of the limit cycle.
Compare the results with those obtained by numerical integration for μ = 10.

Solution. The above equation is obtained from the following variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2)dt +
∫ t1

t0
μ(1+ x− x2)ẋδxdt = 0.

Numerical simulations for large μ (see, for instance, Fig. 5.32 in case μ = 10)
show that the solution corresponding to the limit cycle spends most of time in a slow
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Fig. 5.32 Numerical solution of the equation ẍ+x−10(1+x−x2)ẋ = 0

motion, and then quickly jumps to another slow motion. To analyze slow motions
we introduce the slow time η = t/μ and transform the variational equation to

δ
∫ η1

η0

(
1

2μ2 x2
,η −

1
2

x2)dη+
∫ η1

η0

(1+ x− x2)x,ηδxdη = 0.

Neglecting the first term in this equation as small in accordance with the variational-
asymptotic method, we arrive at the equation

−x+(1+ x− x2)x,η = 0, or x,η =
x

1+ x− x2 .

This differential equation can be solved by separation of variables yielding

ln |x|+ x− x2

2
= η+ const.

The slow motion proceeds according to this equation until it reaches x1,2 = (1±√
5)/2 where the speed x,η is infinite. At these points the assumption of slow motion

is violated, so we need to change to another time scale. Introducing now the fast time
τ = μt, we rewrite the variational equation as

δ
∫ τ1

τ0

(
1
2
μ2x2

,τ −
1
2

x2)dτ+
∫ τ1

τ0

μ2(1+ x− x2)x,τδxdτ = 0.

Neglecting the second term as small compared with other terms, we arrive at the
differential equation

x,ττ − (1+ x− x2)x,τ = 0.

This equation possesses the first integral

x,τ − x− x2/2+ x3/3 = const,

representing the fast motion (jump). We choose the constant of integration so that
this fast motion starting at x = x1 (x = x2) as an equilibrium point (with x,τ = 0)
will end at another equilibrium point with x,τ = 0. It is easy to see that the second
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equilibrium point corresponding to x1 is x = 2.736. Similarly, the jump starting
at x2 ends up at x = −1.736. Knowing the solution, we can easily compute the
period of this relaxation oscillation. The comparison with the solution obtained by
the numerical integration for μ = 10 shown in Fig. 5.32 yields a good agreement.
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