
Chapter 4
Linear Waves

This chapter studies linear waves propagating in continuous media. For homoge-
neous media the method of solution is Fourier’s transform which is based entirely on
the linear superposition principle. For weakly inhomogeneous media the variational-
asymptotic method has to be used instead.

4.1 Hyperbolic Waves

Differential Equation of Wave Propagation. In contrast to vibrations of continu-
ous systems, waves transport disturbances and energy from one part of the medium
to another with a recognizable velocity of propagation. Thus, we are dealing locally
with transient processes. The equations governing wave propagation remain exactly
the same as the equations of motion for continuous oscillators. In addition, the initial
and boundary conditions have to be specified. If the influence of the boundary can
be neglected, then it is convenient to consider waves propagating in infinite media.
In this case the radiation conditions are required to select the physically meaningful
solution.

1-D Problem. We begin first with the most simple situation, namely, with the prop-
agation of hyperbolic waves in one dimension governed by the equation

u,tt = c2u,xx.

As one remembers from Section 3.2, this equation describes flexural vibrations of
a pre-stretched string, or longitudinal vibrations of an elastic bar. Now instead of
vibrations (or standing waves) we want to analyze wave propagation. If the bound-
aries of the medium are far away from the point of interest so that waves do not still
interact with them, we may consider the idealized situation of waves propagating in
an equivalent infinite medium. Introducing the characteristic coordinatesα = x−ct,
β = x+ ct, we transform the above equation to
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∂ 2u
∂α∂β

= 0,

which yields the general solution obtained first by d’Alembert

u(x, t) = f (α)+ g(β ) = f (x− ct)+ g(x+ ct).

This formula represents two waves traveling through the medium with the constant
velocity c; f to the right, and g to the left. Note that the observer moving to the right
(or left) with the velocity c does not see any change of wave shape associated with
f (or g). Such waves are called dispersionless.

For the initial value problem

u(x,0) = u0(x), u,t(x,0) = v0(x),

we determine f and g from the initial conditions

u(x,0) = f (x)+ g(x) = u0(x), u,t(x,0) =−c f ′(x)+ cg′(x) = v0(x),

giving

u(x, t) =
1
2
[u0(x− ct)+ u0(x+ ct)]+

1
2c

∫ x+ct

x−ct
v0(ξ )dξ .

We can also solve the signaling problem for the half-axis x ≥ 0 of outgoing waves
with

u,x(0, t) = p(t).

In this case the solution reads

u(x, t) =−cq(t − x/c),

where q(t) is the integral of p(t).

3-D Problem. According to Hadamard’s idea, waves propagating in three dimen-
sions will be easier to study than those in two dimensions, so we start with the 3-D
case. We first look for particular solutions of the wave equation

u,tt = c2Δu (4.1)

in the 3-D space. This equation describes sound waves in fluids and gases, as well
as dilatational or shear waves propagating in infinite elastic solids (see Section 3.6
and exercise 4.2). Since equation (4.1) is linear, its particular solutions always exist
in form of harmonic (also called monochromatic) waves1

u(x, t) = ei(k·x−ωt),

1 We work directly with the complex form of the solution keeping in mind that the real or
imaginary part should be taken when necessary.
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where k is the wave vector and ω the frequency. Indeed, substituting this Ansatz
into (4.1), we obtain the equation

(−ω2 + c2|k|2)ei(k·x−ωt) = 0,

with |k| =
√

k2
x + k2

y + k2
z being the magnitude of k. As the exponential function is

not identically zero, ω must be related to k by

ω =±c|k|.

Thus, for each non-zero wave vector k there are two harmonic waves corresponding
to ω = c|k| or ω =−c|k|. We refer to them as branches.
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Fig. 4.1 Plot of cos(x+y)

For the moment let us concentrate
just on one branch since the general so-
lution is simply the linear superposition
of them. Taking the real part, we present
the monochromatic wave as

u(x, t) = cos(k ·x− c|k|t).

We call θ (x, t) = k ·x− c|k|t phase; it
determines the position on the cycle be-
tween a crest, where u has a maximum,
and a trough, where u achieves a min-
imum. This particular solution is called
a plane wave because the phase surfaces
θ = const are parallel planes as shown in
Fig. 4.1 in 2-D case. The gradient of θ in
the space is the wave vector k, whose di-
rection is normal to the phase planes and whose magnitude κ = |k| is the average
number of crests per 2π units of distance in that direction. In Fig. 4.1 the wave
vector is k = (1,1) in the (x,y)-plane. Similarly, −θ,t is the frequency ω = cκ , the
average number of crests per 2π units of time. The wavelength is λ = 2π/κ and the
period is T = 2π/ω . The wave motion is recognized from the phase. Any particular
phase surface moves in the space with the normal velocity ω/κ = c in the direction
of k. Thus, for the wave equation u,tt = c2Δu the phase velocity agrees with the
usual propagation speed.

The monochromatic plane waves play a key role in the theory of linear waves
propagating in homogeneous media because the general solution can be obtained
by the linear superposition of these waves with various wave vectors. This leads
to Fourier’s integrals, where the contribution of each monochromatic plane wave
is Fourier’s component of the wave packet. We postpone the derivation of general
solution based on this Fourier’s analysis to the next Section 4.2. However, in what
follows we want to use the monochromatic plane waves to study reflection and re-
fraction of waves.
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Reflection and refraction of waves. When a monochromatic plane wave is incident
on the boundary between two different media, it undergoes reflection and refraction.
The motion in the first medium is a combination of the incident and reflected waves,
whereas in the second medium there is only one, the refracted wave. All three waves
have the same frequencyω ; the relations between their amplitudes and wave vectors
are determined by the boundary conditions. Consider for definiteness the reflection
and refraction of sound wave at a plane surface separating two media, say air and
water, which we take as the (x,y)-plane. Because of the translational invariance in
the x- and y-directions, all three waves have the same components kx, ky of the wave
vector, but not the same component kz.

x

z

´

Fig. 4.2 Reflection and refrac-
tion of waves

For simplicity let us consider wave propagating
in the (x,z)-plane. Then ky = 0 in all three waves, so
they are coplanar. Let ϑ be the angle between the
direction of wave propagation and the z-axis (see
Fig. 4.2). From the equality of kx = (ω/c)sinϑ
for the incident and reflected waves, it follows that
ϑ1 = ϑ ′

1, i.e. the angle of incidence ϑ1 is equal to
that of reflection ϑ ′

1. The similar equality of kx for
the incident and refracted waves implies Snell’s law

sinϑ1

sinϑ2
=

c1

c2
,

where c1 and c2 are the velocities of sound in these
two media.

In order to obtain the relation between the in-
tensities of these three waves, we write the velocity
potentials as

ϕ1 = A1eiω[(z/c1)cosϑ1+(x/c1)sinϑ1−t],

ϕ ′
1 = A′

1eiω[(−z/c1)cosϑ1+(x/c1)sinϑ1−t],

ϕ2 = A2eiω[(z/c2)cosϑ2+(x/c2)sinϑ2−t],

where A1, A′
1, and A2 are the complex amplitudes of waves. At the boundary z = 0

the pressure p =−ρϕ,t and the normal velocities vz = ϕ,z in the two media must be
equal; these conditions lead to the relations

ρ1(A1 +A′
1) = ρ2A2,

cosϑ1

c1
(A1 −A′

1) =
cosϑ2

c2
A2.

The reflection coefficient R is defined as the ratio of the average energy flux in the
reflected and incident waves. Since the energy flux of sound wave is cρv2 (see the
general derivation in Section 4.4), we have R = v′21 /v2

1 = |A′
1|2/|A1|2, where bar

denotes the time average. A simple calculation gives
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R =

(
ρ2 tanϑ2 −ρ1 tanϑ1

ρ2 tanϑ2 +ρ1 tanϑ1

)2

.

The angles ϑ1 and ϑ2 are related by Snell’s law; expressing ϑ2 in terms of ϑ1, we
can put this formula in the form

R =

⎛
⎝ρ2c2 cosϑ1 −ρ1

√
c2

1 − c2
2 sin2ϑ1

ρ2c2 cosϑ1 +ρ1

√
c2

1 − c2
2 sin2ϑ1

⎞
⎠

2

.

For normal incident (ϑ1 = 0), this formula gives simply

R =

(
ρ2c2 −ρ1c1

ρ2c2 +ρ1c1

)2

.

Solution as a Superposition of Spherical Waves. There is a simple way to obtain
the solution of the wave equation in 3-D case as a superposition of spherical waves.
We start by assuming first the spherical symmetry of a particular solution about
the origin: u = u(r, t), where r is the distance from the origin. The wave equation
reduces to

1
c2 u,tt = u,rr +

2
r

u,r.

This equation can be rewritten as

1
c2 (ru),tt = (ru),rr

which is exactly the 1-D wave equation for ru. Thus, the particular solution reads

u(r, t) =
f (r− ct)

r
.

Here we select only the outgoing wave. This selection is equivalent to posing the
radiation condition which requires that waves can only propagate from sources to
infinity. If the source generating waves is found at point ξξξ , then the particular solu-
tion takes the form

u(x, t) =
f (|x− ξξξ |− ct)

|x− ξξξ | .

Now the particular solution of (4.1) can be constructed as a linear superposition of
spherical waves

φ(x, t) =
∫
ψ(ξξξ )

δ (|x− ξξξ |− ct)
|x− ξξξ | dξ , (4.2)

where dξ = dξ1dξ2dξ3. In the integrand we take Dirac’s delta function representing
the unit source, while function ψ(ξξξ ) accounts for the fact that waves coming from
different points will have in general different intensities. The form (4.2) suggests
the introduction of spherical coordinates (ρ ,ϑ ,ϕ) with the origin at x yielding
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φ(x, t) =
∫ ∞

0

∫ π

0

∫ 2π

0
ψ(x+ρ l)δ (ρ− ct)ρ sinϑ dϕ dϑ dρ

= ct
∫ π

0

∫ 2π

0
ψ(x+ ctl)sinϑ dϕ dϑ , (4.3)

where l is the unit vector from x to ξξξ having the cartesian components

l = (sinϑ cosϕ ,sinϑ sinϕ ,cosϑ).

As t → 0 the right-hand side of (4.3) tends to zero. For a continuously differentiable
function ψ(x) we may differentiate this expression with respect to t and find the
limit as t → 0

φ,t(x,0) = 4πcψ(x).

Thus, the integral

φ(x, t) =
t

4π

∫ π

0

∫ 2π

0
v0(x+ ctl)sinϑ dϕ dϑ

solves equation (4.1) with the initial conditions

u(x,0) = 0, u,t(x,0) = v0(x).

Note that this solution can also be represented as a surface integral

φ(x, t) =
1

4πc2t

∫
S(t)

v0(x+ ctl)da,

where S(t) is the spherical surface with center at x and radius ct.
To satisfy the remaining initial condition u(x,0) = u0(x) we use the following

property: if φ is a solution of (4.1), then its time derivative φ,t is also the solution.
Consider the solution of the form

χ(x, t) = φ,t ,

where φ is given by (4.3). In this case it is easy to check that, as t → 0,

χ(x,0) = 4πcψ(x), χ,t(x,0) = φ,tt = c2Δφ = 0.

Therefore we choose now ψ(x) = u0(x)/4πc and get for χ

χ(x, t) =
∂
∂ t

[
1

4πc2t

∫
S(t)

u0(x+ ctl)da

]
.

The complete solution reads

u(x, t) =
∂
∂ t

[
1

4πc2t

∫
S(t)

u0(x+ ctl)da

]
+

1
4πc2t

∫
S(t)

v0(x+ ctl)da. (4.4)
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Equation (4.4), called Poisson’s formula, represents the total contribution of the
instantaneous sources which send spherical waves to point x at time t; they are all
exactly a distance ct away and their contributions traveling with speed c arrive at x
just at time t. Notice that sources inside S(t) do not contribute to the solution at x.
Thus, there is no “tail” for spherical waves. This is no longer so in 2-D case as will
be seen in the next paragraph.

2-D Problem. The solution to the 2-D problem can be obtained from the 3-D solu-
tion by assuming u0(x) and v0(x) to be independent of x3. Suppose now that nonzero
values of u0(x1,x2), v0(x1,x2) are specified in a finite domain C0 of the (x1,x2)-
plane. From the 3-D point of view, the non-zero initial data occupy the cylinder C
with generators parallel to the x3-axis based on the cross section C0. Thus, the do-
main of initial disturbances is no longer compact in the space. For a point outside
the cylinder C, the construction of wavefront is as before, but the spheres with the
center at x will intersect C at all time after the first time of intersection (see Fig. 4.3).
This accounts for the “tail” in the 2-D case and shows clearly the difference between
2-D and 3-D cases.

x3

C

C0
x1,x2

S(t)

,

, ,

Fig. 4.3 Reduction of wavefront from three to two dimensions

Let us consider now the integrals in (4.4) at some fixed point (x1,x2,0). At point
(ξ1,ξ2,ξ3) on S(t) (see Fig. 4.3) the value of u0 is u0(ξ1,ξ2). The outward normal
to the sphere has a component n3 given by

n3 =
ξ3

ct
=±

√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

ct
.

The surface element da is equal to dξ1dξ2/|n3|, where dξ1dξ2 is its projection in
the (x1,x2)-plane. Therefore, taking into account the two equal contributions from
above and below the (x1,x2)-plane, we have

1
4πc2t

∫
S(t)

u0(x+ ctl)da =
1

2πc

∫
σ(t)

u0(ξ1,ξ2)dξ1dξ2√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

,
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where σ(t) is the interior of the projection of S(t) onto the (x1,x2)-plane:

σ(t) = {(ξ1,ξ2) |(x1 − ξ1)
2 +(x2 − ξ2)

2 ≤ c2t2}.

Thus, the solution of 2-D problem reads

u(x1,x2, t) =
∂
∂ t

[
1

2πc

∫
σ(t)

u0(ξ1,ξ2)dξ1dξ2√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

]

+
1

2πc

∫
σ(t)

v0(ξ1,ξ2)dξ1dξ2√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

.

Since the integrals are taken over the whole domain inside the circle (x1 − ξ1)
2 +

(x2 − ξ2)
2 = c2t2, not just its boundary, the disturbance continues even after this

circle completely surrounds the initial domain C0.

Geometrical Optics. Although the exact solution to the wave equation has been
found, the computation of Poisson’s integrals is not always easy, even if we do it
numerically. A simplification is possible if the wave packet may be regarded as
plane in any small region of the medium. For this to be so it is necessary that the
amplitude and the direction of propagation vary only slightly in one wavelength. If
this condition holds, we can introduce the idea of rays as lines whose tangent at any
point coincides with the direction of wave propagation. Then, to find the wavefront
we need just to find the rays while ignoring the nature of wave propagation. This
task will be done within the so-called geometrical optics which turns out to be valid
in the high frequency (short wave) approximation.

We derive the equations of geometrical optics by assuming the periodic solution
with a given frequency ω : u(x, t) = w(x)e−iωt . Then the wave equation reduces to
Helmholtz’s equation

Δw+
ω2

c2 w = 0.

For large value of ω/c, a standard method of finding the asymptotic solutions2 is to
take

w = eiωσ(x)[w0(x)+
1
ω

w1(x)+ . . .], (4.5)

where functions σ(x) and wj(x) are to be determined. Substituting (4.5) into
Helmholtz’s equation and keeping the asymptotically leading terms only, we obtain

eiωσ(x)[ω2(−σ,ασ,α + 1
c2 )(w0 +

1
ω

w1)+ iω(Δσw0 + 2σ,αw0,α)+ . . .] = 0.

The exponential function can be dropped in this equation. Then, equating the asymp-
totically leading terms at ω2 and ω to zero, we obtain

2 Which is called WKB-method [6].
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σ,ασ,α =
1
c2 ,

Δσw0 + 2σ,αw0,α = 0.
(4.6)

The first equation is called eikonal equation which determines σ(x). The second
equation, called transport equation, can be used to find w0(x).

The eikonal equation (4.6)1, as a nonlinear partial differential equation of first
order, may be solved by the method of characteristic curves [12]. If we introduce
pα = σ,α and write this equation as

H ≡ 1
2

cpα pα − 1
2

c−1 = 0,

the characteristic curves are defined by the equation

dxα
ds

= cpα .

Parameter s is the arc-length along the characteristic curve, because c2 pα pα = 1.
The full set of characteristic equations reads

dxα
ds

= cpα ,
d pα
ds

= 0,
dσ
ds

=
1
c
.

S0

St
s=ct

Fig. 4.4 Wavefront and rays

Looking at the asymptotic solution (4.5), one may
recognize that θ = ω(σ(x)− t) is the phase of the
wave packet. Let us choose the initial phase such that
θ = 0 corresponds to the wave front. Thus, the equa-
tion of the wave front is σ(x) = t. Since the vector
p =∇σ is normal to the wavefront, the first equation
for the characteristics tells us that the rays are also
normal to it. The second equation shows that p is
constant on the ray, so the rays must be straight lines.
The new wavefront at time t + t1 (with small t1) can
be constructed by drawing the family of straight lines
normal to the wavefront at time t, and by the third
equation, σ = s/c, so t = s/c, and the new wave-
front is a distance ct1 out along the rays (see Fig. 4.4). This is Huygens’ principle
which agrees also with Poisson’s exact solution (4.4) found previously.

It remains to solve the transport equation which is the linear equation for w0. Its
characteristics are the same rays, so we can write this equation as

1
w0

dw0

ds
=−1

2
Δσ .

The integration is straightforward once σ(x) has been determined. But due to the
implicit form of σ(x) we proceed a little differently. First we note that (4.6)2 takes
the divergence form
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(σ,αw2
0),α = 0.

Let us consider a tube formed by rays going from the initial wavefront S0 to the
current wavefront St as shown in Fig. 4.4. We integrate this equation over the volume
of the tube. The use of Gauss’ theorem gives

∫
nασ,αw2

0 da = 0,

where n is the outward normal and the surface integral must be taken over the sides
Σ and ends S0, St of the ray tube. As the rays are orthogonal to the wavefronts
σ = t, nασ,α = 0 on Σ . On St the normal n and ∇σ are in the same direction, so
nασ,α = |∇σ |= 1/c. Similarly, nασ,α =−|∇σ |=−1/c on S0. Thus,

∫
St

w2
0 da =

∫
S0

w2
0 da.

This equation expresses the conservation of energy flux along the ray tube.
The geometrical optics can also be developed for anisotropic and inhomogeneous

media [53]. However, one should be cautious near the point where c = 0 (called the
turning point) as well as near the caustics, where this type of approximation needs
to be modified.

4.2 Dispersive Waves

Differential Equation and Dispersion Relation. Typically, the differential equa-
tion governing the propagation of dispersive waves in a homogeneous medium can
be written as

P(∂t ,∂α )u = 0. (4.7)

Here P(r,sα ) is a polynomial of the variables r and sα with constant coefficients,
∂t and ∂α are the partial derivatives with respect to t and xα , respectively. Some
examples in 1-D case which will be used as illustration are

u,tt +ω2
0 u− c2u,xx = 0, P(∂t ,∂x) = ∂ 2

t +ω2
0 − c2∂ 2

x ,

u,tt + γ2u,xxxx = 0, P(∂t ,∂x) = ∂ 2
t + γ∂ 4

x ,

u,t +αu,x +βu,xxx = 0, P(∂t ,∂x) = ∂t +α∂x +β∂ 3
x .

(4.8)

The first equation describes free vibrations of a string with an additional restoring
force proportional to u, or thickness vibrations of a rod [31]. It is also the Klein-
Gordon equation of quantum mechanics. The second equation of (4.8) corresponds
to Bernoulli-Euler’s beam theory (3.27) with γ =

√
EI/μ. The last equation is the

linearized version of Korteweg-de Vries equation describing small amplitude long
water waves and various other dispersive waves.

Since (4.7) is a linear differential equation with constant coefficients, its particu-
lar solutions always exist in form of harmonic waves
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u(x, t) = ei(k·x−ωt),

where k is the wave vector and ω the frequency. Indeed, substituting this Ansatz
into (4.7) and using the property of exponential function, we see that k and ω have
to be related by the equation

P(−iω , ikα) = 0.

This is the so called dispersion relation which contains all the information about the
differential equation. Knowing this dispersion relation we can restore the governing
equation by using the correspondence: ∂t ↔ −iω , ∂α ↔ ikα . Note that the above
derivation can easily be generalized for the situation when u is a vector. In this case
P becomes a matrix, whose elements are polynomials of r and sα . The harmonic
wave form of particular solutions remains, with a small modification that a constant
vector a as a factor has to be included. Nontrivial solutions exist for the vanishing
determinant of the matrix, whose elements are polynomials of −iω and ikα , yielding
the dispersion relation (see exercise 4.4).

We assume that the dispersion relation may be solved with respect to ω giving
real roots

ω =Ω(k). (4.9)

In general there will be a number of such solutions, with different functions Ω(k).
We refer to them as branches. For example, if u satisfies Bernoulli-Euler’s beam
equation (4.8)2, then the dispersion relation reads

−ω2 + γ2k4 = 0.

Solving this with respect to ω , we obtain two branches

ω = γk2, ω =−γk2.

In contrary, the linearized Korteweg-de Vries equation (4.8)3 yields only one branch
given by

ω = αk−βk3.

For the present we study just one branch since the general solution is simply the
linear superposition of them. The monochromatic plane wave corresponding to this
branch is

u = cos(k ·x−Ω(k)t).

We call as before θ = k ·x−Ω(k)t phase which determines the wave motion. Any
particular phase surface moves in the space with the normal velocityΩ(k)/κ in the
direction of k, where κ = |k|. We define the phase velocity as

c =
Ω(k)
κ

n,
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where n is the unit vector in the k-direction. For the hyperbolic waves governed
by the equation u,tt = c2Δu considered in the previous Section the phase velocity
is constant and agrees with the propagation speed c. In general c depends on κ , so
different waves propagate with different velocities causing the change of shape. This
explains the adjective “dispersive” for such waves. We classify waves as dispersive
if Ω(k) is real and the determinant of the matrix ∂ 2Ω

∂kα∂kβ
is not identically zero

(see [53]). This definition excludes hyperbolic waves.

Solution. The general solution of (4.7) can be obtained by the linear superposition
of particular solutions using Fourier’s integral

u(x, t) =
∫
ψ(k)eik·x−iΩ(k)t dk,

where dk = dk1dk2dk3. Function ψ(k) accounts for the intensity of waves with
different k and may be chosen to satisfy arbitrary initial data, provided these data are
described by regular functions admitting the Fourier transform. For illustration let us
consider the first two equations in (4.8). Each of them has two branchesω =±Ω(k),
and since we are in 1-D situation,

u(x, t) =
∫ ∞

−∞
ψ1(k)e

ikx−iΩ(k)t dk+
∫ ∞

−∞
ψ2(k)e

ikx+iΩ(k)t dk. (4.10)

As there are two branches, u(x, t) must satisfy two initial conditions

u(x,0) = u0(x), u,t(x,0) = v0(x).

This leads to
∫ ∞

−∞
[ψ1(k)+ψ2(k)]e

ikxdk = u0(x),
∫ ∞

−∞
−iΩ(k)[ψ1(k)−ψ2(k)]e

ikxdk = v0(x).

Applying the Fourier transform to these equations, we obtain

ψ1(k)+ψ2(k) =
1

2π

∫ ∞

−∞
u0(x)e

−ikxdx =U0(k),

−iΩ(k)[ψ1(k)−ψ2(k)] =
1

2π

∫ ∞

−∞
v0(x)e

−ikxdx =V0(k).

Solving the above equations with respect to ψ1(k) and ψ2(k) gives

ψ1(k) =
1
2

[
U0(k)+

iV0(k)
Ω(k)

]
, ψ2(k) =

1
2

[
U0(k)− iV0(k)

Ω(k)

]
.

Since u0(x) and v0(x) are real, their Fourier images U0(k) and V0(k) satisfy the
properties
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U0(−k) =U∗
0 (k), V0(−k) =V ∗

0 (k),

where asterisks denote complex conjugates. Thus, if Ω(k) is odd function, then

ψ1(−k) = ψ∗
1 (k), ψ2(−k) = ψ∗

2 (k).

If Ω(k) is even function, we have

ψ1(−k) = ψ∗
2 (k), ψ2(−k) = ψ∗

1 (k).

It is easy to check that the solution is real in both cases as expected.

Large Time Asymptotics. Although Fourier’s integrals give the exact solution, its
behavior is still difficult to analyze. For wave propagation it is important to know
the behavior of solution in the limits t → ∞ and x → ∞ while x/t is held fixed. Let
us analyze first the typical integral

u(x, t) =
∫ ∞

−∞
ψ(k)eikx−iΩ(k)t dk

in 1-D case. In the limit t → ∞ at fixed x/t we can write this integral as

u(x, t) =
∫ ∞

−∞
ψ(k)e−iχ(k)tdk, (4.11)

where χ(k) is the following function

χ(k) =Ω(k)− k
x
t
.

Here x/t is regarded as a fixed parameter. The asymptotic behavior of integral (4.11)
as t → ∞ can be studied by the method of stationary phase [6], according to which
the main contribution to the integral comes from the neighborhood of stationary
points of χ(k) such that

χ ′(k) =Ω ′(k)− x
t
= 0. (4.12)

Otherwise, the integrand oscillates rapidly and makes little net contribution to
u(x, t).

Assume first that χ(k) has one stationary point at k = ks. To find the leading
contribution we expand ψ(k) and χ(k) in Taylor’s series near k = ks

ψ(k)� ψ(ks), χ(k)� χ(ks)+
1
2
χ ′′(ks)(k− ks)

2,

provided χ ′′(ks) �= 0. Substitution of these formulas in (4.11) leads to

u(x, t)� ψ(ks)e
−iχ(ks)t

∫ ∞

−∞
e−

i
2 (k−ks)

2χ ′′(ks)t dk.

The remaining integral can be reduced to the standard integral
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∫ ∞

−∞
e−αz2

dz =

√
π
α

by rotating the path of integration through ±π/4; the sign should be chosen to be
the same as that of χ ′′(ks). Thus,

u(x, t)� ψ(ks)

√
2π

t|χ ′′(ks)|e
iksx−iΩ(ks)t− iπ

4 signχ ′′(ks).

If there are several stationary points, the contributions from their neighborhoods
have to be summed up to get the final result.

For the case of two branches with ω = ±Ω(k), the solution is given by (4.10).
Assuming further that Ω ′(k) is monotonic and positive for k > 0, we analyze the
asymptotic behavior of (4.10) for x > 0. If Ω(k) is even, then Ω ′(k) is odd and
there is only one positive stationary point for the first branch denoted by ks(x, t):
Ω ′(k) = x/t for x/t > 0. The second branch has also one stationary point equal to
−ks(x, t). Combining two contributions of the branches, we get

u(x, t)� 2Re

[
ψ1(ks)

√
2π

t|χ ′′(ks)|e
iksx−iΩ(ks)t− iπ

4 signχ ′′(ks)

]
for x/t > 0. (4.13)

It is easy to see that the case of odd function Ω(k) leads to the same result.

Group Velocity. At any point (x, t) formula (4.13) determines a local wave number
ks(x, t) and the corresponding local frequencyωs(x, t) =Ω(ks(x, t)). By introducing
a phase

θ (x, t) = ks(x, t)x−ωs(x, t)t,

we may present (4.13) in the form

u(x, t)� Re[A(x, t)eiθ(x,t)], (4.14)

where the complex amplitude is

A(x, t) = 2ψ1(ks)

√
2π

t|χ ′′(ks)|e
− iπ

4 signχ ′′(ks).

The difference between (4.14) and the monochromatic waves is that A, k, and ω
are no longer constants. However, this asymptotic formula still represents a nonuni-
form wave packet, with a phase θ describing the oscillations between crests and
troughs. It is natural to define the local wave number and frequency as θ,x and −θ,t ,
respectively. In our nonuniform case we have

θ,x = ks,xx+ ks−Ω ′(ks)ks,xt = ks(x, t),

θ,t = ks,t x−Ω ′(ks)ks,t t −Ω(ks) =−ωs(x, t),
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so the local wave number and frequency introduced above agree with these defini-
tions. Moreover, the local wave number and frequency satisfy the dispersion relation
even in the nonuniform wave packet. Mention that the relative changes of the local
wave number ks in one period and in one wavelength are small. Indeed, from (4.12)
we see that the quantities

ks,x

ks
=

Ω ′

ksΩ ′′
1
x
,

ks,t

ks
=− 1

ksΩ ′′
1
t

are small for large x and t. Thus, ks(x, t) is a slowly changing function in one period
and one wavelength. The same is true of the frequency ωs and amplitude A.

x

t

Fig. 4.5 Group (solid) and phase (dashed) lines for waves in beam

Let us have a closer look at the equation (4.12) determining ks(x, t). According to
that equation an observer moving with the velocityΩ ′(ks) will see the wave number
ks and the frequency ωs. Therefore we call the velocity

Ω ′(k) =
dω
dk

group velocity, or the velocity for a group of waves. To illustrate the distinction be-
tween the phase and the group velocities we consider equation (4.8)2 for Bernoulli-
Euler’s beam. The dispersion relation for the branch of waves propagating to the
right is

Ω(k) = γk2.

Therefore the equation determining k becomes x/t =Ω ′(k) = 2γk. Thus,

k =
x

2γt
, ω =

x2

4γt2 , θ = kx−ωt =
x2

4γt
.

The group lines of constant k and ω are the straight lines x
2γt = const. The lines of

constant phase θ = const are the parabola x2

4γt = const. These two families of lines
are shown in Fig. 4.5. We see that the group velocityΩ ′(k) = 2γk is twice the phase
velocity ω/k = γk for waves propagating in Bernoulli-Euler’s beam.
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x

u

Fig. 4.6 Comparison of exact and approximate solutions

To compare the solution obtained by the numerical integration of Fourier’s in-
tegrals with the asymptotic solution (4.14) let us set γ = 1 and assume the initial
conditions as follows

u(x,0) = u0(x) = 2πe−x2
, u,t(x,0) = v0(x) = 0.

Then ψ1(k) = e−k2/4/
√

2 and the asymptotic solution takes the form

u(x, t)� ψ1(
x
2t
)

√
π
t

cos(
x2

4t
− π

4
).

Fig. 4.6 plots the exact solution in terms of Fourier’s integrals computed numerically
at time t = 100 and the above asymptotic solution at the same time, where the results
are nearly identical.

The other important role of the group velocity appears in studying the distribution
of amplitude A(x, t). It turns out that |A|2 propagates with the group velocity. To
show this let us compute the integral of |A|2 between two points x2 > x1 > 0. From
the above formula for A we have

Q(t) =
∫ x2

x1

AA∗ dx = 8π
∫ x2

x1

ψ1(ks)ψ∗
1 (ks)

t|Ω ′′(ks)| dx.

In this integral ks is the root of (4.12). Using the transformation x = Ω ′(k)t as a
change of variable x → k, we rewrite Q(t) in the form

Q(t) = 8π
∫ k2

k1

ψ1(k)ψ∗
1 (k)dk,

providedΩ ′′(k)> 0, where k1 and k2 are defined by

x1 =Ω ′(k1)t, x2 =Ω ′(k2)t.

If Ω ′′(k) < 0, the order of the limits must be reversed. Now, if k1 and k2 are held
fixed as t varies, Q(t) remains constant. But for the fixed k1 and k2 the points x1
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and x2 are moving with the group velocities. Thus, the total amount of |A|2 between
any pairs of group lines remains constant, and in this sense, |A|2 propagates with the
group velocity. Moreover, we will show in Section 4.4 that the energy also propa-
gates with the group velocity. This puts the question to the radiation conditions for
the dispersive waves.

Kinematic Derivation of Group Velocity. We see from the previous paragraph that
the concept of group velocity is quite crucial in understanding the phenomenon of
wave propagation. This concept must appear and be equally important for inhomo-
geneous media as well as for non-linear problems, where Fourier’s analysis are not
directly applicable. Therefore we try to develop below the direct kinematic approach
based on the more intuitive arguments rather than using Fourier’s integrals and the
method of stationary phase. We assume that a wave packet under consideration pos-
sesses a phase function θ (x, t), and that the wave number and frequency defined by

k = θ,x, ω =−θ,t , (4.15)

are slowly changing functions of x and t. If, further, we know or can derive for them
a dispersion relation

ω =Ω(k), (4.16)

then we have an equation for θ and we could proceed to solve it to determine the
geometry of the wave pattern. The convenient way is to use the kinematic relation

k,t +ω,x = 0,

which follows from (4.15). This equation can be regarded as the conservation of
waves, with k being the density of waves and ω the flux of waves. Combining it
with (4.16), we get a non-linear partial differential equation to determine k(x, t)

k,t +C(k)k,x = 0, C(k) =Ω ′(k). (4.17)

We see that the group velocity C(k) is the propagation velocity for the wave num-
ber k. This equation can be solved by the method of characteristics. For an initial
distribution k = f (x) at t = 0 the solution is

k = f (ξ ), x = ξ + vg(ξ )t,

where vg(ξ ) = C( f (ξ )). Thus, the observer moving with the group velocity sees
always the same local wave number k. It is interesting that the above equation for k is
non-linear and hyperbolic, even though the original problem is linear and in general
non-hyperbolic as in example (4.8)2. In this sense one can preserve the association
of wave propagation with hyperbolic equations, but there is a considerable non-
hyperbolic background.

Extensions to 2- and 3-D Cases. It is not difficult to extend the obtained results to 2-
or 3-D problems. Since the exact solution is expressed in terms of multiple Fourier’s
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integrals, the asymptotically leading terms in the limit t → ∞ with x/t being held
fixed can be obtained by the method of stationary phase. For d-dimensional space
we can show that

u(x, t) =
∫
ψ(k)eik·x−iΩ(k)t dk

� ψ(ks)

(
2π
t

)d/2(
det

∣∣∣∣ ∂Ω
∂kα∂kβ

∣∣∣∣
)−1/2

eiks·x−iΩ(ks)t+iζ ,

where ks satisfies the equation

∂Ω(k)
∂kα

=
xα
t
,

and ζ depends on the number of factors iπ/4 arising from the path rotation. We
could use this asymptotic solution to study the group velocity in 2- or 3-D cases.
However, it is simpler to develop the direct kinematic approach which may also be
applied to weakly inhomogeneous media.

We consider the slowly varying wave packet in the form

u(x, t) = acosθ ,

where the amplitude a and the phase θ are functions of x and t. We define the wave
vector k and frequency ω by

kα = θ,α , ω =−θ,t . (4.18)

We assume that a dispersion relation is known and can be written as

ω =Ω(x,k). (4.19)

For homogeneous media the dispersion relation does not depend on x and can be
obtained from the monochromatic plane waves. For weakly inhomogeneous media it
would appear reasonable to find the dispersion relations first for constant parameters
of the media and then reinsert their dependence on x. This will be justified by the
variational-asymptotic method in Section 4.4.

Now, by eliminating θ from (4.18), we have

kα ,t +ω,α = 0, kα ,β − kβ ,α = 0.

Then, if ω =Ω(x,k) is inserted into the first of these equations,

kα ,t +
∂Ω
∂kβ

kβ ,α =− ∂Ω
∂xα

.

Since kα ,β = kβ ,α , this may be modified to
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kα ,t +Cβ kα ,β =− ∂Ω
∂xα

, (4.20)

where

Cβ =
∂Ω
∂kβ

.

The group velocity C defined in this way is the propagation velocity in (4.20) for
the determination of k. Equation (4.20) may be written in the characteristic form as

dkα
dt

=− ∂Ω
∂xα

on
dxα
dt

=
∂Ω
∂kα

. (4.21)

Note that k is constant on each characteristic when the medium is homogeneous in
x, and then the characteristics are straight lines in the (x, t)-space. Each value of
k propagates with the corresponding constant group velocity C(k). For inhomoge-
neous media this is no longer valid: the values of k change as they propagate along
the characteristics and the characteristics themselves become curves. However, since
the medium is time-independent

dω
dt

= ω,t +Cβω,β =
∂Ω
∂ t

= 0,

the frequency remains constant along the characteristics.
It is interesting that equations (4.21) are identical with Hamilton’s equations in

mechanics if x and k are interpreted as coordinates and impulses while Ω(x,k) is
taken to be the Hamilton function (cf. Section 7.1). If instead of eliminating θ , we
substitute for ω and k in the dispersion relation −∂θ/∂ t and ∂θ/∂x, respectively,
then the following equation holds true

∂θ
∂ t

+Ω(x,
∂θ
∂x

) = 0.

This is nothing else but the Hamilton-Jacobi equation, with θ being regarded as the
action [5] (see also exercise 7.2).

4.3 Elastic Waveguide

In signal processing it is often necessary to delay signals by sending them through
an elastic waveguide which serves as the delay line. Due to the interaction of waves
with the free boundaries, this device exhibits dispersive waves with infinite number
of branches. The other interesting property of elastic waveguides is that the phase
and group velocities may have different signs for some high-frequency thickness
branches. Such waves are called “backward waves”. Their presence plays a decisive
role in posing the radiation conditions. Guided wave propagation is used intensively
also in nondestructive testing as well as in seismology.
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x

z

h

Fig. 4.7 Strip of thickness h

Equation of Motion. For simplicity, let us consider the most simple example of
waveguide, namely an elastic strip of thickness h, as shown in Figure 4.7. The carte-
sian coordinate system is selected, with (x,y)-plane coinciding with the middle sur-
face of the strip. The face surfaces of the strip are given by z = ±h/2. Assuming
that the strip is made of a homogeneous isotropic elastic material, we write down
the three-dimensional equations of its motion in terms of the displacements uα

ρuα ,tt = (λ + μ)uβ ,βα+ μuα ,ββ ,

where λ and μ are Lamé constants. The traction-free boundary conditions on the
face surfaces z =±h/2 read

σαz|z=±h/2 = [λuβ ,βδαz + μ(uα ,z+ uz,α)]|z=±h/2 = 0.

We non-dimensionalize these equations by introducing the following variables

t̄ =
tcs

h
, (x̄, ȳ, z̄) =

1
h
(x,y,z),

where cs =
√
μ/ρ is the speed of shear wave in an infinite solid. The equations of

motion and the boundary conditions then take the dimensionless form

uα ,tt = (1+ γ)uβ ,βα+ uα ,ββ ,

[γuβ ,βδαz +(uα ,z + uz,α)]|z=±1/2 = 0,
(4.22)

where γ = λ/μ and the bars are dropped for short.

Rayleigh-Lamb Dispersion Relation. Let us look for particular solutions of the
boundary-value problem (4.22) in the form

uα = fα(z)e
i(kx−ωt).

Substituting this into the equations (4.22), we obtain two uncoupled systems.
For the shear waves (SH-waves)3 with

uy = fy(z)e
i(kx−ωt), ux = uz = 0,

3 This terminology arose in seismology where the boundary surface is usually horizontal.
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we have

f ′′y + p2
2 fy = 0,

f ′y|z=±1/2 = 0,
(4.23)

where the prime denotes the derivative with respect to z and

p2
2 = ω

2 − k2.

The eigenvalue problem (4.23) yields the following eigenfunctions:

fy = acos2πnz, p2 = 2πn, for SS-waves,

fy = asinπ(2n+ 1)z, p2 = π(2n+ 1), for AS-waves,
(4.24)

where SS stands for the symmetric shear waves, while AS for the antisymmetric
shear waves.

We turn now to the second case, for which

ux = fx(z)e
i(kx−ωt), uz = fz(z)e

i(kx−ωt), uy = 0.

Substitution of these formulas into equations (4.22)1 gives

f ′′x +(1+ γ)ik f ′z +(ω2 −η−2k2) fx = 0,

η−2 f ′′z +(1+ γ)ik f ′x+(ω2 − k2) fz = 0,
(4.25)

where

η−2 = γ+ 2 =
λ + 2μ
μ

, η =

√
μ

λ + 2μ
=

√
1− 2ν
2− 2ν

,

with ν being Poisson’s ratio. The boundary conditions (4.22)2 become

η−2 f ′z + γik fx = 0,

f ′x + ik fz = 0.
(4.26)

The eigenvalue problem (4.25) and (4.26) admits the symmetric and antisymmetric
solutions of the type

fx(z)− even, fz(z)− odd (L-waves),

fx(z)− odd, fz(z)− even (F-waves).

The characteristic equation of the system (4.25)

det

∣∣∣∣s
2 +ω2 −η−2k2 (1+ γ)iks
(1+ γ)iks η−2s2 +ω2 − k2

∣∣∣∣ = 0

has four roots given by
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s1,2 =±ip1, p1 =
√
η2ω2 − k2,

s3,4 =±ip2, p2 =
√
ω2 − k2.

Therefore the symmetric solutions corresponding to longitudinal waves (L-waves)
read

fx = i(Ak cos p1z+Bp2 cos p2z),

fz =−Ap1 sin p1z+Bk sin p2z,
(4.27)

where A and B are still unknown constants. The four boundary conditions on z =
±1/2 reduce to two equations in A and B

(k2 − p2
2)cos

p1

2
A+ 2kp2 cos

p2

2
B = 0,

−2kp1 sin
p1

2
A+(k2 − p2

2)sin
p2

2
B = 0.

(4.28)

Equating the determinant to zero, we obtain from (4.28) the dispersion relation

(k2 − p2
2)

2 sin(p2/2)cos(p1/2)+ 4k2p1 p2 sin(p1/2)cos(p2/2) = 0. (4.29)

This is the Rayleigh-Lamb dispersion relation for the propagation of the L-waves in
this waveguide. From (4.28) we also obtain the amplitude ratio

A
B
=− 2kp2 cos(p2/2)

(k2 − p2
2)cos(p1/2)

=
(k2 − p2

2)sin(p2/2)
2kp1 sin(p1/2)

.

Next, we consider the antisymmetric solutions corresponding to flexural waves
(F-waves), which are given by

fx = i(Ck sin p1z−Dp2 sin p2z),

fz =Cp1 cos p1z+Dk cos p2z,
(4.30)

where C and D are unknown constants. The traction-free boundary conditions at
z =±1/2 reduce also in this case to two equations for C and D

(k2 − p2
2)sin

p1

2
C− 2kp2 sin

p2

2
D = 0,

2kp1 cos
p1

2
C+(k2 − p2

2)cos
p2

2
D = 0.

Since the determinant should vanish to guarantee nontrivial solutions, we derive
from here the following dispersion relation for the F-waves:

(k2 − p2
2)

2 cos(p2/2)sin(p1/2)+ 4k2p1 p2 cos(p1/2)sin(p2/2) = 0. (4.31)

This is the Rayleigh-Lamb dispersion relation for F-waves. We also obtain the equa-
tion for the ratio C/D
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C
D

=
2kp2 sin(p2/2)

(k2 − p2
2)sin(p1/2)

=− (k2 − p2
2)cos(p2/2)

2kp1 cos(p1/2)
.

Mention that both equations (4.29) and (4.31) can be combined in a single equation

tan(p2/2)
tan(p1/2)

=−
[

4p1 p2k2

(k2 − p2
2)

2

]±1

,

{
+ for L-waves,

− for F-waves.
(4.32)

Dispersion Curves. The dispersion relations (4.24), (4.29) and (4.31) were obtained
independently by Rayleigh and Lamb [28, 44]. However, due to their complexity,
the full analysis of branches of the dispersion curves in the (k,ω)-plane, as well as
branches with imaginary and complex wave number k, was completed much later
(see, for instance, [31]). We provide here the detailed asymptotic analysis and nu-
merical simulations of these equations.

SS(0)

AS(0)

SS(1)

AS(1)

Im(k) Re(k)

Fig. 4.8 Dispersion curves of shear waves

For SH-waves the dispersion relation (4.24) shows that for each number n =
0,1,2, . . . there are two branches

ω =±
√
π2(2n)2 + k2, for SS(n)-waves,

ω =±
√
π2(2n+ 1)2+ k2, for AS(n)-waves.

The plus or minus sign indicates the direction of wave propagation. All SS- and
AS-waves, except SS(0), are dispersive. At some real and fixed wave number k
the eigenfunctions (4.24) form a complete orthogonal basis in the space of regu-
lar functions of z. Thus, the series of Fourier’s integrals over all branches solves
the initial value problem for the infinite strip with arbitrary regular initial displace-
ment uy0(x,z) and velocity vy0(x,z). The solvability of signaling problem for a semi-
infinite strip requires the inclusion of solutions with imaginary k. We observe that



174 4 Linear Waves

the wave number k becomes imaginary for ω < ωc, where ωc = 2nπ for SS(n) and
ωc = (2n+ 1)π for AS(n). The frequency ωc at which the group velocity becomes
zero is called a cutoff frequency. Thus, the free propagation of the correspond-
ing branch does not occur at frequencies lower than the cutoff frequency. Several
branches of the dispersion curves are plotted in Fig. 4.8. Since the dispersion curves
for real k are symmetrical about the ω-axis, the (k,ω)-half-plane with negative real
k can be replaced by the (k,ω)-half-plane with positive imaginary k. Looking at the
dispersion curves we recognize that at a given fixed frequency there are only a finite
number of real k for SH-waves. Thus, we have only a finite number of propagating
waves. To satisfy arbitrary boundary conditions for a semi-infinite strip at x = 0 in
the signaling problem, we have to combine these propagating waves with an infi-
nite number of solutions having imaginary k and corresponding to non-propagating
modes. These modes describe vibrations which are localized near the edge of the
strip.

We turn now to the longitudinal and flexural waves characterized by the disper-
sion relation (4.32) and consider the case of real k. Depending on whether (k,ω) is
found in the regions I, II, or III, as shown in Figure 4.9, we may have p1, p2 being
both imaginary, one imaginary and one real, or both real, respectively. The disper-
sion relations will alter their forms accordingly. In the region I p1 = iq1, p2 = iq2,
where q1 =

√
k2 −η2ω2, q2 =

√
k2 −ω2. The dispersion relations take the form

tanh(q2/2)
tanh(q1/2)

=

[
4q1q2k2

(k2 + q2
2)

2

]±1

,

{
+ for L-waves,

− for F-waves.

To find the asymptote of the first F-branch for small k and ω we expand the hyper-
bolic tangent

tanhx = x(1− 1
3

x2 + . . .).

Retaining the first two terms, we reduce the dispersion relation for F-waves to

q2(1− 1
3(q2/2)2)

q1(1− 1
3(q1/2)2)

=
(k2 + q2

2)
2

4q1q2k2 .

We put this in the form

−(k2 − q2
2)

2 =
1
3

k2q4
2 −

1
12

q2
1(k

2 + q2
2)

2.

Expanding this and keeping the terms according to Newton’s rule, we obtain the
asymptotic formula

ω2 =
1

6(1−ν)k4 +O(k6).

which agrees with that of the plate theory.
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Fig. 4.9 Three regions of the (k,ω)-plane

In the region II p1 = iq1, and equation (4.32) becomes

tan(p2/2)
tanh(q1/2)

=±
[

4q1 p2k2

(k2 − p2
2)

2

]±1

,

{
+ for L-waves,

− for F-waves.

The lowest F-branch has no roots in this region. For the lowest L-branch we replace
tanx ∼ x and tanhx ∼ x giving

p2

q1
=

4q1p2k2

(k2 − p2
2)

2
, or (k2 − p2

2)
2 = 4k2q2

1.

Keeping the main terms in this equation we find that

ω2 =
2

1−ν k2 +O(k4),

which agrees again with the plate theory [31].
Let us consider now the high-frequency branches of L- and F-waves. We are

interested in the asymptotic behavior of the dispersion curves near the cutoff fre-
quencies in the long-wave range k � 1. Since the dispersion curves are in the range
ω ∼ 1 and k � 1, we have to analyze (4.29) and (4.31) in the region III of the (k,ω)-
plane (see Figure 4.9). Setting k = 0 in (4.29), we see that the cutoff frequencies ωc

of L-waves are the roots of the equation

sin
ωc

2
cos

ηωc

2
= 0.

It implies that

ωc = 2πn, or ωc =
π(2n+ 1)

η
.
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The first family of roots corresponds to the cutoff frequencies of the series L‖, the
second one to the cutoff frequencies of the series L⊥.

We turn to the branch L‖(n). To study the asymptotics of the dispersion curve
near the cutoff frequency ωc = 2πn we introduce the notation

ω2 = ω2
c + y, k2 = x,

with x and y being small quantities. Expanding the left-hand side of equation (4.29)
in the Taylor series of x and y and keeping only the principal terms in accordance
with Newton’s rule, we obtain

ω4
c cos

ωc

2
1

4ωc
(y− x)cos

ηωc

2
+ 4xηω2

c sin
ηωc

2
cos

ωc

2
= 0.

Solving this with respect to y we get finally

ω2 = ω2
c +(1− 16η tan(ηωc/2)

ωc
)k2.

For the branch L⊥(n) with ωc = π(2n+ 1)/η we obtain after performing the same
operations

ω2 = ω2
c +(

1
η2 +

16cot(ωc/2)
ωc

)k2.

Analogously, the asymptotic analysis of the Rayleigh-Lamb equation for F-waves
leads to the following cutoff frequencies

ωc =
2πn
η

, or ωc = π(2n+ 1).

The first family of roots corresponds to the cutoff frequencies of the series F⊥, the
second one to the cutoff frequencies of the series F‖. Similar asymptotic formulas
for the corresponding dispersion curves in the long-wave range can also be obtained
(see exercise 4.9).

In the above consideration we implicitly assume the value of η such that
cos(ηπn) �= 0. In the opposite case the coefficient at y in the approximate disper-
sion equation vanishes, and the above equation fails to provide the true asymptotics
for long waves. Consider, for definiteness, the branch L‖(n) and introduce the new
variables

ω = ωc + y, k2 = x.

Expanding (4.29) in x and y and keeping their principal terms, we arrive at

−ω4
c cos

ωc

2
sin
ηωc

2
η
4

y2 + 4xηω2 sin
ηωc

2
cos

ωc

2
= 0,

yielding
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ω = ωc ± 4
ωc

k.

One can see from the last equation that the group velocity vg = dω/dk of L‖(1) does
not vanish at k = 0, but is equal to ±2/π , and consequently, the wave packet moves
without deformation in the long-wave range. It is also interesting to observe that, for
ν = 1/3, the cutoff frequency of the branch L‖(1) coincides with that of the branch
L⊥(0).

k
L (0)

L (0)

L (1)

L (1)

L (2)

Fig. 4.10 Dispersion curves of L-waves

Figs. 4.10 and 4.11 show the dispersion curves of L- and F-waves, respectively,
for ν = 0.25. Since the dispersion curves are symmetrical about the ω-axis, it is
enough to show them in the first quadrant k > 0, ω > 0. The lowest branches of
these waves, L‖(0) and F⊥(0), begin from the origin and approach asymptotically
the straight line ω = vrk as k →∞, where vr = cr/cs is the dimensionless Rayleigh’s
wave speed which may be obtained as the positive real root of the equation

v6
r − 8v4

r +(24− 16η2)v2
r + 16(η2 − 1) = 0.

All other branches are high-frequency thickness branches which begin at the cor-
responding cutoff frequencies and approach the straight line ω = k as k → ∞. This
means that the wave speed of these branches approaches that of the shear waves in
an infinite solid, cs =

√
μ/ρ , as k →∞. It is interesting that the dispersion curves of

some branches, say L⊥(0) or F‖(1), have negative curvatures and slopes near k = 0.
We can recognize this also from the asymptotic formulas in the long-wave range de-
rived previously for these branches. Indeed, let us consider, for example, the branch
L⊥(0) for which ωc = π/η and

ω2 = (π/η)2 +(
1
η2 +

16cot(ωc/2)
ωc

)k2
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k

F (0)

F (0)

F (1)
F (1)

F (2)

Fig. 4.11 Dispersion curves of F-waves

for small k. If ν = 0.25, then the coefficient at k2 is negative and equal to

1
η2 +

16cot(ωc/2)
ωc

=−3.56865.

Consequently, the phase and group velocities have different signs in the long-wave
range. Such waves carry energy in one direction but their phase surfaces appear to
propagate in the opposite direction. Because of this property they are called “back-
ward waves”.

Now let us consider the solvability of the initial value problem for an infinite
waveguide and for arbitrary initial conditions. This solvability is guaranteed if the
eigenfunctions found in (4.27) and (4.30) form a complete orthonormal basis in
the space of vector-valued functions of z. To show that this is the case we rewrite
the equations (4.25) in the operator form

Lf = λ f,

where λ = ω2 and

f =
(

fx(z)
fz(z)

)
, Lf =

(− fx,zz − (1+ γ)ik fz,z+η−2k2 fx

−η−2 fz,zz − (1− γ)ik fx,z+ k2 fz

)
.

It is easy to check the following property: if k is real, then the operator L is Hermi-
tian in the sense that

〈g,Lf〉− 〈Lg, f〉=
∫ 1/2

−1/2
[g∗·Lf− f∗·Lg]dz = 0

for arbitrary two vector-valued functions f(z) and g(z) satisfying the boundary con-
ditions (4.26). Therefore, the eigenvalue problem (4.25) and (4.26) has a discrete
spectrum and the eigenfunctions form a complete orthonormal basis in this function
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space [23]. Thus, the series of Fourier’s integrals over all branches solves the ini-
tial value problem for the infinite strip with arbitrary regular initial displacements
u0(x,z) and velocities v0(x,z).

k

A B C

Fig. 4.12 Selected waves

The signaling problem is much more
challenging, where many questions remain
still open.4 Similar to the SH-waves, we
have at a given fixed frequency only a finite
number of real k for L- or F-waves as seen
from Figs. 4.10 and 4.11. But in contrast to
the SH-waves, the number of solutions with
imaginary k is also finite. It can be shown,
however, that there exists a countable num-
ber of solutions with the complex conjugate
k. To satisfy arbitrary boundary conditions
for a semi-infinite strip at x= 0 in the signal-
ing problem, we have to combine the prop-
agating waves with those solutions having
imaginary and complex conjugate k. These
modes describe vibrations which are local-
ized near the edge of the strip. The other is-
sue is the radiation conditions. Since the backward waves are present, we propose
to select among propagating waves only those with positive group velocities which
transport the energy from the edge of the strip to infinity. In Fig. 4.12 presenting the
dispersion curves of branches L‖(0) and L⊥(0) near the cutoff frequency ωc = π/η
the only waves corresponding to points A, B, C are selected if the frequency of the
sent signal is fixed at the level indicated by the horizontal line.

4.4 Energy Method

Energy Balance Equation. Since waves transport energy from one part of the
medium to another, the energy balance of its fixed part must involve energy flux
entering the boundary. We want to derive the energy balance equation from Euler-
Lagrange’s equations of motion (3.51) in the general case. Multiplying equations
(3.51) with ui,t and summing up over i yields

ui,t
∂
∂ t

∂L
∂ui,t

+ ui,t
∂
∂xα

∂L
∂ui,α

− ui,t
∂L
∂ui

= 0.

This equation can be transformed to

∂
∂ t

(ui,t
∂L
∂ui,t

)+
∂
∂xα

(ui,t
∂L
∂ui,α

)− ui,tt
∂L
∂ui,t

− ui,αt
∂L
∂ui,α

− ui,t
∂L
∂ui

= 0.

4 For instance, the generalization of Saint-Venant’s principle to dynamics [15].
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Since ui,t enter only the kinetic energy density which is quadratic with respect to
ui,t , the first term gives

∂
∂ t

(ui,t
∂L
∂ui,t

) =
∂
∂ t

(ui,t
∂K
∂ui,t

) =
∂
∂ t

(2K).

It is easy to see that the last three underlined terms lead to

−ui,tt
∂L
∂ui,t

− ui,αt
∂L
∂ui,α

− ui,t
∂L
∂ui

=− ∂
∂ t

(L).

So, we obtain the energy balance equation in the form

∂
∂ t

(K +U)+
∂
∂xα

(ui,t
∂L
∂ui,α

) = 0. (4.33)

The first term of (4.33) corresponds to the local change of the total energy density
E = K +U , while its gradient term describes the energy transported by the wave
motion. We therefore call Jα = ui,t

∂L
∂ui,α

an energy flux.

Energy Propagation. To see how the energy is transported by the traveling waves
let us first consider the 1-D Klein-Gordon equation (4.8)1 which can be obtained
from the following Lagrangian

L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u2
,x).

According to the energy balance equation (4.33) we have the energy density

E =
1
2

u2
,t +

1
2
(ω2

0 u2 + c2u2
,x),

and the energy flux
J =−c2u,t u,x.

As we know, the asymptotically leading term of solution can be written in form of
wave packet

u � Re(Aeiθ ) = acos(θ +φ),

where a = |A|, φ = argA. The wave number k = θ,x, the frequency ω = −θ,t , the
initial phase φ , and the amplitude a are slowly changing functions of x and t. We
use this asymptotic formula to compute the energy density and energy flux.

First we compute the term 1
2 u2

,t in the kinetic energy density

1
2

u2
,t �

1
2
ω2a2 sin2(θ +φ)
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together with terms involving a,t and φ,t . Since a and φ are slowly changing func-
tions of t, these terms can be neglected in the first approximation. Treating the other
terms in the same way, we obtain for the energy density

E =
1
2
(ω2 + c2k2)a2 sin2(θ +φ)+

1
2
ω2

0 a2 cos2(θ +φ).

Similarly, the energy flux becomes

J = c2ωka2 sin2(θ +φ).

Now let us take the average of these quantities over one period. Since the average
values of cos2(θ +φ) and sin2(θ +φ) over one period are equal to 1/2, we get

Ē =
1
4
(ω2 + c2k2 +ω2

0 )a
2, J̄ =

1
2

c2ωka2,

where bars over quantities denote their averaged values over one period. For Klein-
Gordon equation the dispersion relation of waves propagating to the right reads

ω =
√
ω2

0 + c2k2.

Therefore

Ē =
1
2
(c2k2 +ω2

0 )a
2, J̄ =

1
2

c2k
√
ω2

0 + c2k2a2.

As we remember, the group velocity is

C(k) =
dΩ(k)

dk
=

c2k√
ω2

0 + c2k2
,

so we get the following relation

J̄ =C(k)Ē .

This relation turns out to be general.
Based on the above relation we are going to derive now the average energy bal-

ance equation
Ē,t +(CĒ),x = 0, (4.34)

which can be interpreted as follows: the total average energy between any two group
lines remains constant, or, in other words, energy propagates with the group velocity.
For, if we consider the energy

E(t) =
∫ x2(t)

x1(t)
Ē dx
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between two points x1(t) and x2(t) moving with the group velocities C(k1), C(k2),
respectively, then

dE
dt

=
∫ x2

x1

∂ Ē
∂ t

dx+C2Ē2 −C1Ē1 = 0

if (4.34) is valid. Conversely, (4.34) is just the limit of the last equation as
x2 − x1 → 0.

To prove (4.34) we use the above formula for the average energy Ē = f (k)a2.
Substituting it into the left-hand side of (4.34), we obtain

Ē,t +(CĒ),x = f (k)[(a2),t +(Ca2),x]+ f ′(k)a2(k,t +Ck,x).

The last term on the right-hand side vanishes due to (4.17). By the same arguments
given for Ē , the first term must vanish too since the expression in the square brackets
is the differential form of the result found in Section 4.2 that

Q(t) =
∫ x2(t)

x1(t)
a2 dx

remains constant between any two group lines.
The established equations of energy propagation can easily be extended to the

cases involving more unknown functions and to higher dimension. Consider, for
example, the scalar Klein-Gordon equation in 3-D case corresponding to the La-
grangian

L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u,αu,α).

From (4.33) follows the energy balance equation

E,t + Jα ,α = 0,

where

E =
1
2

u2
,t +

1
2
ω2

0 u2 +
1
2

c2u,αu,α , Jα =−c2u,tu,α .

For a slowly varying wave packet u = acos(θ +φ) the average values of E and Jα
over one period are

Ē =
1
4
(ω2 + c2kαkα +ω2

0 )a
2, J̄α =

1
2

c2ωkαa2,

with k=∇θ being the wave vector andω =−θ,t the frequency. Since the dispersion

relation for the first branch reads ω =Ω(k) =
√
ω2

0 + c2|k|2, we see that

J̄α =Cα Ē,

where Cα is the group velocity
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Cα =
∂Ω
∂kα

=
c2kα√

ω2
0 + c2|k|2

.

The average energy balance equation becomes

Ē,t +(Cα Ē),α = 0. (4.35)

Equivalently, the total energy in any volume V (t) moving with the group lines re-
mains constant

d
dt

∫
V (t)

Ēdx =
∫

V (t)
Ē,t dx+

∫
S(t)

ĒCαnαda = 0,

where S(t) is the boundary of V (t), n is the outward normal vector to S(t), and Cαnα
is its normal velocity. The last equation is obtained from (4.35) by integrating it over
V (t) and applying Gauss’ theorem. Note that equation (4.35) can be presented in the
characteristic form

dĒ
dt

=−∂Cα
∂xα

Ē on
dxα
dt

=Cα(k).

So, the energy decays due to the divergence Cα ,α of the group lines. This effect is
due lonely to the dispersion as there is no energy loss in this case.

It seems clear that these results should be established once and for all by general
arguments without pursuing the detailed derivation each time. Such arguments are
provided by the variational-asymptotic method.

Variational-Asymptotic Method. In this paragraph we are going to apply the
variational-asymptotic method to quadratic functionals only. The generalization to
non-linear problems will be given in Chapter 8.

Consider the variational problem in form of Hamilton’s variational principle: find
the extremal of the action functional

I[ui(x, t)] =
∫∫
R

L(ui,ui,α ,ui,t)dxdt, (4.36)

where R = V × (t0, t1) is any finite and fixed region in (d + 1)-dimensional space-
time. We assume that ui are prescribed at the boundary ∂R. We look for the extremal
of this variational problem in form of a slowly varying wave packet5

ui = ψi(θ ,x, t), (4.37)

where θ is a function of x and t, ψi are periodic functions (with the period 2π) with
respect to θ . Function θ plays the role of the phase, while θ,α and −θ,t correspond
to the wave vector kα and the frequency ω , respectively. We assume that the char-
acteristic scales Λ and T of changes of the functions θ,α , θ,t and ψi(θ ,x, t)|θ=const

5 The amplitudes ai appear later.
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are considerably larger than the characteristic wavelength λ and period τ . The latter
are defined as the best constants in the inequalities

|θ,α | ≤ 2π
λ

, |θ,t | ≤ 2π
τ
, (4.38)

while the former are the best constants in the inequalities

|θ,αβ | ≤
2π
λΛ

, |θ,αt | ≤ 2π
λT

, |θ,αt | ≤ 2π
τΛ

, |θ,tt | ≤ 2π
τT

,

|∂αψi| ≤ ψ̄i

Λ
, |∂tψi| ≤ ψ̄i

T
, |ψi,θ | ≤ ψ̄i, (4.39)

where ∂αψi = ∂ψi/∂xα with θ = const, and ∂tψi = ∂ψi/∂ t with θ = const. In
other words, the wave vector kα = θ,α , the frequency ω = −θ,t , and functions ψi

change little in one wavelength and one period. Therefore it makes sense to call θ
“fast” variable as opposed to the “slow” variables xα and t. Thus, in this variational
problem we have two small parameters λ/Λ and τ/T .

We now calculate the derivatives ui,α and ui,t . According to (4.37) we have

ui,α = ∂αψi +ψi,θθ,α , ui,t = ∂tψi +ψi,θθ,t .

Because of (4.38) and (4.39) they can be approximately replaced by

ui,α = ψi,θ θ,α , ui,t = ψi,θθ,t .

Keeping in the action functional (4.36) the asymptotically principal terms, we obtain
in the first approximation

I0[ψi] =

∫∫
R

L(ψi,ψi,θ θ,α ,ψi,θθ,t)dxdt.

Let us decompose the domain R into the (d + 1)-dimensional strips bounded by the
d-dimensional phase surfaces θ = 2πn, n = 0,±1,±2, . . .. The integral over R can
then be replaced by the sum of the integrals over the strips

∫∫
R

Ldxdt =∑
∫∫

L(ψi,ψi,θθ,α ,ψi,θ θ,t)κ dθ dζ , (4.40)

where ζα are the coordinates along the phase surface θ = const, and κ is the Jaco-
bian of transformation from xα , t to θ ,ζα . In the first approximation we may regard
κ , θ,α and θ,t in each strip as independent from θ . Therefore we obtain the same
problem in each strip at the first step of the variational-asymptotic procedure: find
the extremal of the functional

Ī0[ψi] =
∫ 2π

0
L(ψi,ψi,θ θ,α ,ψi,θθ,t )dθ (4.41)
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among periodic functions ψi(θ ) with the period 2π . Since the quantities kα = θ,α
and −ω = θ,t change little within one strip, they are regarded as constants in the
functional (4.41). The Euler-Lagrange’s equation of this functional is a system of n
second-order ordinary differential equations. Its solutions contain 2n arbitrary con-
stants: n of them are determined from the conditions that ψi(θ ) are 2π-periodic
functions, the other n conditions can be chosen by fixing the amplitudes ai as fol-
lows: maxψi = |ai|, where ai are arbitrary real constants. We call this variational
problem strip problem.

Let us denote by 2π L̄ the value of the functional (4.41) at its extremal. The quan-
tity L̄ is a function of ai,θ,α and θ,t . The sum (4.40), as λ/Λ → 0 and τ/T → 0, can
again be replaced by the integral

∫∫
R

L̄(ai,θ,α ,θ,t)dxdt. (4.42)

Euler-Lagrange’s equations of the average functional (4.42) read

∂ L̄
∂ai

= 0,
∂
∂ t
∂ L̄
∂θ,t

+
∂
∂xα

∂ L̄
∂θ,α

= 0. (4.43)

We will see that equations (4.43)1 express the solvability condition for the strip
problem leading to the dispersion relation, while (4.43)2 is equivalent to the equation
of energy propagation.

Notice that the variational approach described here was initiated by Whitham
[53]. His arguments were based on some heuristic reasoning. The variational-
asymptotic method in its most general formulation was proposed a little later by
Berdichevsky [7]. It has then been applied to a wide class of variational problems
having small parameters, including the homogenization of periodic and random
structures leading to the cell problems, as well as approximate theories of shells and
rods resulting in the thickness and cross-section problems (see [8, 31]). In all prob-
lems the variational-asymptotic method yielded the same results as the traditional
asymptotic analysis of differential equations. But the former has some advantages
compared with the latter. First, as we have to deal only with the variational equation,
neglecting a small term in this equation means neglecting terms in several differen-
tial equations which are not always easy to be recognized as small ones. Second,
no ad hoc assumptions about the order of smallness are needed. The order of small-
ness of terms in the asymptotic expansion is determined exclusively by minimizing
the action functional. Thus, the more degrees of freedom and the more complicated
the energy and dissipation we have to deal with, the more effective we may expect
from the variational-asymptotic method compared with other traditional asymptotic
methods as will be seen in the subsequent chapters.

Applications. Let us investigate the strip problem and the average variational prob-
lem on some concrete examples. As the first example we consider 1-D Klein-Gordon
equation (4.8)1 corresponding to the Lagrangian
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L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u2
,x).

Then the strip problem becomes: find the extremal of the functional

Ī0[ψ ] =
∫ 2π

0
[
1
2
(ω2 − c2k2)ψ2

,θ −
1
2
ω2

0ψ2]dθ

among 2π-periodic functions ψ(θ ) satisfying the constraint maxψ = a. The quan-
tities ω = −θ,t and k = θ,x are regarded as constants in this variational problem.
Lagrange’s equation implies that the 2π-periodic extremal can only be of the form

ψ(θ ) = acos(θ +φ),

providedω2−c2k2 =ω2
0 . The latter is the solvability condition for the strip problem.

Substituting this back to Ī0, we obtain the average Lagrangian

L̄(a,θ,x,θ,t) =
1
4
(θ 2

,t −ω2
0 − c2θ 2

,x)a
2.

Thus, the average Lagrangian does not depend on the initial phase φ . Let us ana-
lyze now Euler-Lagrange’s equations of the average variational problem. Once these
equations have been obtained, it is convenient to work with them in terms of a, k,
ω :

∂ L̄
∂a

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0, (4.44)

where

L̄ = G(ω ,k)a2, G(ω ,k) =
1
4
(ω2 −ω2

0 − c2k2).

We see that the equation L̄,a = 0 is nothing else but the solvability condition for the
strip problem which leads to the dispersion relation G(ω ,k) = 0. We can solve this

relation with respect to ω to have the explicit form ω = ±Ω(k) = ±
√
ω2

0 + c2k2.
The second equation of (4.44) can be written as

∂
∂ t

(G,ωa2)− ∂
∂x

(G,ka2) = 0.

Since G(Ω(k),k) = 0, we have

G,ωΩ ′(k)+G,k = 0,

and consequently,

C =Ω ′(k) =− G,k

G,ω
.

If we denote G,ω(Ω ,k) by g(k), then (4.44)2 takes the form

(g(k)a2),t +(g(k)C(k)a2),x = 0.
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It follows from the consistency condition k,t +ω,x = 0 that

k,t +Ck,x = 0.

By using this kinematic relation, the factor g(k) can be removed so that

(a2),t +(Ca2),x = 0.

This is nothing else but the equation of amplitude modulations. The equation gov-
erning energy propagation can easily be derived from here. We can also obtain the
energy equation directly from balance equation (4.33) for the average variational
problem.

Let us turn now to waves propagating in Timoshenko’s beam with the Lagrangian
given by (3.50). Introducing the unknown function u and the dimensionless variables
according to

u = hψ , t̄ = tcs/h, x̄ = x/h,

we present the Lagrangian in the form (the bar is dropped for short)

L =
1
2
(w2

,t +αu2
,t)−

1
2
[su2

,x +β
2α(u+w,x)

2].

The strip problem becomes: find the extremal of the functional

Ī0[ψ1,ψ2] =

∫ 2π

0
[
1
2
ω2(ψ2

1,θ +αψ
2
2,θ )−

1
2

sk2ψ2
2,θ −

1
2
β 2α(ψ2 + kψ1,θ )

2]dθ

among 2π-periodic functionsψ1(θ ), ψ2(θ ) satisfying the constraints maxψi = |ai|.
In this functionalω =−θ,t and k = θ,x are treated as constants. Lagrange’s equations
of this problem imply that the 2π-periodic extremal can only be of the form

ψ1(θ ) = a1 cos(θ +φ), ψ2(θ ) = a2 sin(θ +φ).

The average Lagrangian becomes

L̄(a1,a2,θ,x,θ,t) =
1
4
θ 2
,t (a

2
1 +αa2

2)−
1
4

sθ 2
,xa2

2 −
1
4
β 2α(a2 −θ,xa1)

2.

The Euler-Lagrange’s equations ∂ L̄/∂ai = 0 yield the system of two linear equa-
tions

(ω2 −β 2αk2)a1 +β 2αka2 = 0,

β 2αka1 +(ω2α− sk2 −β 2α)a2 = 0,

which has non-trivial solutions only if the determinant vanishes. This is the solv-
ability condition for the strip problem which leads also to the dispersion relation

(ω2 −β 2αk2)(ω2α− sk2 −β 2α)−β 4α2k2 = 0.
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One can check that this equation coincides with the dispersion relation obtained by
assuming the harmonic wave form. One can also find the amplitude ratio a1/a2 from
this system. Finally, one can verify that the other Euler-Lagrange’s equation implies
the equation of energy propagation in this Timoshenko’s beam (see exercise (4.10)).

It is not difficult now to rederive the geometrical optics considered in Section
4.1 from the variational-asymptotic method. The same can be said about weakly
inhomogeneous media. This would be the case, for example, if the parameters ω0

and c in the Klein-Gordon equation were functions of x. The derivation of the strip
problem remains unchanged. If the characteristic length of change of material pa-
rameters is much larger than the characteristic wavelength, then we can again regard
them as constant in this strip problem. After finding the average Lagrangian the slow
dependence of the material parameters on x can be reinserted. The method can also
be applied for the case of external forces which change slowly in time. In this case
the Lagrangian depends explicitly on time, but this dependence can be ignored in
the strip problem. However, the energy is no longer conserved. But notice that wave
action is conserved in all cases.

4.5 Exercises

EXERCISE 4.1. Solve the 1-D wave equation with c = 1 and with the following
initial conditions

u(x,0) = 0, u,t(x,0) =

⎧⎪⎨
⎪⎩

x+ 1 for x ∈ (−1,0),

1− x for x ∈ (0,1),

0 otherwise.

Plot the solution at t = 0.5 and at t = 10.

Solution. According to the d’Alembert solution with c = 1

u(x, t) = f (x− t)+ g(x+ t).

Functions f (x) and g(x) should be found from the initial conditions

u(x,0) = f (x)+ g(x) = 0, u,t(x,0) =− f ′(x)+ g′(x) = v0(x).

Thus, f (x) =−g(x), while g(x) satisfies the equation

g′(x) =
1
2

v0(x) =

⎧⎪⎨
⎪⎩
(x+ 1)/2 for x ∈ (−1,0),

(1− x)/2 for x ∈ (0,1),

0 otherwise.

Integrating this equation, we obtain for g(x)
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g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for x <−1,
1
4 (x+ 1)2 for x ∈ (−1,0),

− 1
4(x− 1)2 + 1

2 for x ∈ (0,1),

1/2 for x > 1.

The plot of this function is shown in Fig. 4.13.
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Fig. 4.13 Function g(x)

Substituting g(x) and f (x) =−g(x) into the d’Alembert solution, we can evaluate
u(x, t) and plot it at different instants of time. Figs. 4.14 and 4.15 show the solution
at t = 0.5 and t = 10, respectively. We observe that, at large t, the solution is constant
and equal to 1/2 inside the interval x ∈ (−t + 1, t − 1). Besides, there are two wave
fronts of the width 2 propagating to the left and to the right with the velocity 1.
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Fig. 4.14 Solution u(x, t) at t = 0.5

EXERCISE 4.2. For waves propagating in an infinite elastic material which is ho-
mogeneous and isotropic we seek particular solutions in form of plane waves
u = aei(k·x−ωt) . Show that there are two velocities of propagation given by
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Fig. 4.15 Solution u(x, t) at t = 10

cd =

√
λ + 2μ
ρ

, cs =

√
μ
ρ
,

corresponding to dilatational waves (a is parallel to k) and shear waves (a is orthog-
onal to k). Generalize this to homogeneous anisotropic materials.

Solution. Consider first the general case of infinite elastic material which is ho-
mogeneous and anisotropic. Then it is easy to show that the extremal of the action
functional of this elastic material (see example 3.9) satisfies the Euler-Lagrange’s
equations

ρuα ,tt −Eαβγδuγ,δβ = 0.

We look for the particular solutions of these equations in form of the plane wave

uα = aαei(kμ xμ−ωt),

where a and k are constant vectors. Substituting this formula into the equations of
motion and removing the non-zero factor ei(kμ xμ−ωt), we get the eigenvalue problem

(−ρω2δαγ +Eαβγδkδ kβ )aγ = 0,

with Kαγ = Eαβγδ kδ kβ being called the acoustic tensor.
We solve this eigenvalue problem for the case of isotropic material, for which

Eαβγδ = λδαβδγδ + μ(δαγδβδ + δαδδβγ).

The acoustic tensor becomes

Kαγ = (λ + μ)kαkγ + μk2δαγ ,

where k is the magnitude of vector k, that is, k = |k|. Without limiting generality we
may choose the x1-axis to be in the direction of vector k, i.e., k = (k,0,0). Then the
eigenvalue problem can be written in the matrix form
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⎛
⎝−ρc2 +λ + 2μ 0 0

0 −ρc2 + μ 0
0 0 −ρc2 + μ

⎞
⎠
⎛
⎝a1

a2

a3

⎞
⎠=

⎛
⎝0

0
0

⎞
⎠ ,

with c2 =ω2/k2 being the phase velocity of wave propagation. There are one single
eigenvalue and one double eigenvalue

c1 = cd =

√
λ + 2μ
ρ

, c2 = c3 = cs =

√
μ
ρ
,

corresponding to three eigenvectors

a1 =

⎛
⎝1

0
0

⎞
⎠ , a2 =

⎛
⎝0

1
0

⎞
⎠ , a3 =

⎛
⎝0

0
1

⎞
⎠ .

Thus, the first eigenvector a1 points in the direction of k and describes dilatational
waves propagating with the velocity cd . Two other eigenvectors a2 and a3 are or-
thogonal to k and correspond to shear waves propagating with the velocity cs which
is the double eigenvalue.

EXERCISE 4.3. Consider the “balloon problem” in acoustics: the pressure inside a
sphere of radius R0 is p0 +P while the pressure outside is p0. The gas is initially at
rest, and the balloon is burst at t = 0. The initial conditions for the velocity potential
read

ϕ(x,0) = 0, ϕ,t(x,0) =

{
−P/ρ0 0 < r < R0,

0 R0 < r.

Find the change of pressure with time.

Solution. Due to the spherical symmetry, the velocity potential depends only on r
and t, so

ϕ(r, t) =
f (r− ct)

r
+

g(r+ ct)
r

.

Substituting this into the initial conditions, we have

f (r)+ g(r) = 0, f ′(r)− g′(r) =

{
P
ρ0c r 0 < r < R0,

0 R0 < r.

These conditions determine f and g for positive values of their arguments. However,
it is also necessary to evaluate function f with negative argument in the solution. The
condition for that is obtained by requiring the absence of source at the origin

lim
r→0

r2 ∂ϕ
∂ r

= 0,
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which implies
f (−ct)+ g(ct) = 0 for t > 0.

The last condition determines f for negative argument in terms of g for positive
argument.

Solving the equations for f and g, we obtain

f (x) =

{
1
4

P
ρ0c (x

2 −R2
0) |x|< R0,

0 otherwise,

and

g(x) =

{
− 1

4
P
ρ0c (x

2 −R2
0) 0 < x < R0,

0 R0 < x.

With these functions we find the pressure difference

p− p0 =−ρ0ϕ,t =
P
2r

[(r− ct)F(r− ct)+ (r+ ct)G(r+ ct)],

where

F(x) =

{
1 −R0 < x < R0,

0 otherwise,

and

G(x) =

{
1 0 < x < R0,

0 R0 < x.

EXERCISE 4.4. Search for particular solutions in form of plane waves and derive
the dispersion relation for 1-D waves propagating in Timoshenko’s beam, the di-
mensionless Lagrangian of which is

L =
1
2
(w2

,t +αu2
,t)−

1
2
[su2

,x +β
2α(u+w,x)

2].

Plot the dispersion curves and study their asymptotic behavior as k → 0 and k → ∞.

Solution. Let u1 = w and u2 = u. From the Euler-Lagrange’s equations

∂
∂ t

∂L
∂ui,t

+
∂
∂x

∂L
∂ui,x

− ∂L
∂ui

= 0, i = 1,2,

we derive

w,tt −β 2α(u+w,x),x = 0,

αu,tt − su,xx +β 2α(u+w,x) = 0.

We look for the particular solutions of these equations in form of plane waves
(

w(x, t)
u(x, t)

)
=

(
a1

a2

)
ei(kx−ωt),
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where a1 and a2 are constants. Substituting this Ansatz into the equations of motion
and removing the common non-zero factor ei(kx−ωt), we obtain

(−ω2 +β 2αk2 −β 2αik
β 2αik −αω2 + sk2 +β 2α

)(
a1

a2

)
=

(
0
0

)
.

Nontrivial solutions exist if the determinant of the matrix vanishes yielding the dis-
persion relation

(−ω2 +β 2αk2)(−αω2 + sk2 +β 2α)−β 4α2k2 = 0.

Thus, for each real k there are two real and positive roots of this dispersion rela-
tions corresponding to two different branches of the dispersion curves. To plot the
dispersion curves we use the following parameters

α =
1
2

(
π2

24

)2

, β = π , s =
1

6(1−ν) ,

with ν being Poisson’s ratio (see [31]). The plot of the dispersion curves for ν = 0.31
(dashed lines) are shown in Fig. 4.16. We also plot the dispersion curves of the two
first branches of F-waves according to Rayleigh-Lamb dispersion relation (solid
lines). The comparison shows quite good agreement in the long-wave range.

ω

Re kIm k

Fig. 4.16 Dispersion curves of flexural waves propagating in a beam: a) 1-D Timoshenko
beam theory: dashed line and b) 3-D theory: solid line

In the long-wave range (k � 1) the asymptotic analysis of dispersion relation
yields the following formula

ω2 = sk4 +O(k6)

for the low-frequency branch, and

ω2 = β 2 +(αβ 2 +
s
α
)k2 +O(k4)
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for the high-frequency thickness vibrations.
In the short-wave range (k → ∞) the dispersion curves approach the asymptotes

ω = β
√
αk and ω =

√
s
α

k,

respectively.

EXERCISE 4.5. Solve the linearized Korteweg-de Vries equation with α = 0, β = 1
and with the initial condition u(x,0) = e−x2

. Compute Fourier’s integral numeri-
cally6 and plot the solution at t = 1.

Solution. Using the Fourier transform, we find that

u(x, t) =
∫ ∞

−∞
ψ(k)eikx−iΩ(k)t dk,

where, for the linearized KdV equation with α = 0, β = 1,

Ω(k) =−k3.

Function ψ(k) should be determined from the initial condition
∫ ∞

−∞
ψ(k)eikxdk = u(x,0) = e−x2

.

Applying the Fourier transform to both sides, we obtain

ψ(k) =
1

2π

∫ ∞

−∞
e−x2

e−ikxdx =
1

2
√
π

e−k2/4.

Thus, the problem reduces to computing the integral

u(x, t) =
∫ ∞

−∞
1

2
√
π

e−k2/4ei(kx+k3t) dk.

This can be done numerically by using the Fourier series package in Mathematica.
Due to the highly oscillatory integrand, we choose the maximum number of recur-
sive subdivisions to be 100 to achieve the required accuracy. The plot of u(x, t) at
t = 1 is shown in Fig. 4.17. We see the dispersive waves propagating in the negative
direction of the x-axis. For x > 0 the solution decays quickly and does not have the
oscillatory character. This behavior remains valid also for the later instants of time.

EXERCISE 4.6. Use the method of stationary phase to find the asymptotically lead-
ing term of the solution obtained in the previous exercise as t → ∞ at fixed x/t.
Compare this asymptotic solution with the exact one at t = 10.

6 Since the integrand is highly oscillatory, the accuracy is achieved only by increasing the
maximum number of recursive subdivisions.
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Fig. 4.17 Solution u(x, t) at t = 1
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Fig. 4.18 Asymptotic solution u(x, t) at t = 10

Solution. For the large time asymptotics the method of stationary phase can be used
instead of numerical integration. In our case we rewrite the solution in the form

u(x, t) =
∫ ∞

−∞
ψ(k)e−iχ(k)tdk,

where
χ(k) =−k3 − k

x
t
.

As we know, the main contributions to the integral come from the neighborhoods of
stationary points of χ(k)

χ ′(k) =−3k2 − x
t
= 0.

Thus, for x > 0 there is no stationary point, and the solution at fixed x/t and large t
must be nearly zero. For x < 0 there are two stationary points given by

k1(x, t) =

√−x
3t

and k2(x, t) =−k1(x, t) =−
√−x

3t
.
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At these stationary points

ψ(ks) =
1

2
√
π

ex/12t .

Taking into account that χ ′′(ks) =−6ks, we find that

u(x, t)� 1

2
√
π

ex/12t

√
2π

6tk1
eik1x+ik3

1t+ iπ
4 +

1

2
√
π

ex/12t

√
2π

6tk1
e−ik1x−ik3

1t− iπ
4

� ex/12t

√
1

3tk1
cos(k1x+ k3

1t +π/4).

Fig. 4.18 plots the exact solution in terms of Fourier’s integrals computed numeri-
cally at time t = 10 and the above asymptotic solution at the same time, where the
results are nearly identical in the region x < 0.

EXERCISE 4.7. Show that the lowest branches of the dispersion curves of F- and
L-waves in an elastic waveguide approach the straight line ω = vrk as k → ∞.

Solution. Consider first the lowest branch of L-waves which must be determined by
the dispersion relation

tanh(q2/2)
tanh(q1/2)

=
4q1q2k2

(k2 + q2
2)

2
,

where

q1 =
√

k2 −η2ω2, q2 =
√

k2 −ω2, η =

√
μ

λ + 2μ
=

√
1− 2ν
2− 2ν

.

Introducing the dimensionless phase velocity v = ω/k, we can represent the above
equation in the form

tanh(k
√

1− v2/2)

tanh(k
√

1−η2v2/2)
=

√
1−η2v2

√
1− v2

(1− v2/2)2 .

As k → ∞ the left-hand side must go to 1 for any finite and fixed v ∈ (0,1). Thus, v
must be determined from the equation

√
1−η2v2

√
1− v2

(1− v2/2)2 = 1.

This equation has a unique solution vr = cr/cs in the range v ∈ (0,1), where cr is
the Rayleigh wave speed (see exercise 4.9).

For the lowest branch of F-waves the dispersion relation is obtained from the
above equation by inverting the right-hand side, so ω/k→ vr also in the limit k →∞.

EXERCISE 4.8. Prove that all high-frequency thickness branches of F- and L-waves
in an elastic waveguide approach the line ω = k from above as k → ∞.
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Solution. As seen from the Rayleigh-Lamb equation for L-waves, when v = 1/η
there is an infinite number of roots given by

k =
2nπ√

1/η2 − 1
, n = 1,2, . . . .

This means that there is an infinite number of branches of the dispersion curves
crossing the straight line ω = k/η and entering the region II as k becomes large.
The dispersion relation for L-waves in this region read

tan(k
√

v2 − 1/2)

tanh(k
√

1−η2v2/2)
=

√
1−η2v2

√
v2 − 1

(1− v2/2)2 .

For large k function tanh(k
√

1−η2v2/2) is close to 1, so the above equation can be
replaced by

tan(k
√

v2 − 1/2) =

√
1−η2v2

√
v2 − 1

(1− v2/2)2 .

This equation has an infinite number of roots for each fixed v ∈ (1,1/η). From
this observation it follows that any straight line ω = vk, with v > 1, cannot be an
asymptote to any of the branches. Indeed, if the n-th branch would have v as the
limiting speed, the straight line ω = vk would intersect at most n− 1 branches (the
dispersion curves cannot intersect each other), but this contradicts the fact that there
are infinitely many dispersion curves intersecting this line. Thus, v must approach
1. In this limit the above equation can further be simplified to take the form

tan(k
√

v2 − 1/2) = 4
√

1−η2
√

v2 − 1.

Let ε =
√

v2 − 1. Solving this equation, we find that, to the first order of ε

k ∼ 2nπ
ε

∼ 2πn√
ω2/k2 − 1

=⇒ ω2 − k2 = (2πn)2.

These equations of hyperbolas describe the asymptotic behavior of the dispersion
curves as k goes to infinity. The proof for F-waves can be done in a similar manner.

EXERCISE 4.9. Rayleigh surface wave. Determine the velocity of wave propagating
near the free surface of an isotropic elastic half-space.

Solution. Let us choose the coordinate system such that the elastic medium oc-
cupies the domain z ≤ 0 with the plane z = 0 as its free boundary. We write the
dimensionless equations of motion

uα ,tt = (1+ γ)uβ ,βα+ uα ,ββ

and the traction free boundary conditions

[γuβ ,βδαz +(uα ,z+ uz,α)]|z=0 = 0
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as in (4.22), where h is an arbitrary length. We look for the solution in form of the
surface wave propagating in the x-direction

ux = f̂xeszei(kx−ωt), uy = 0, uz = f̂ze
szei(kx−ωt),

with f̂x and f̂z being constants. Since the solution must decay exponentially as z →
−∞, we choose s to be real and positive. Substituting this Ansatz into the equations
of motion, we obtain the system

(
s2 +ω2 −η−2k2 (1+ γ)iks

(1+ γ)iks η−2s2 +ω2 − k2

)(
f̂x

f̂z

)
=

(
0
0

)
.

The condition of vanishing determinant yields two real positive roots

s1 =
√

k2 −η2ω2, s2 =
√

k2 −ω2,

corresponding to two eigenvectors

(
f̂x

f̂z

)
=

(
ik
s1

)
,

(
f̂x

f̂z

)
=

(
is2

k

)
,

provided (k,ω) is found in the region I. Thus, the general solution reads

ux = i(Akes1z +Bs2es2z)ei(kx−ωt),

uz = (As1es1z +Bkes2z)ei(kx−ωt).

The traction-free boundary conditions at z = 0 yield two equations for A and B

(η−2s2
1 − γk2)A+ ks2(η−2 − γ)B = 0,

2ks1A+(s2
2 + k2)B = 0.

Equating the determinant to zero, we obtain from here the relation

(2k2 −ω2)2 − 4k2
√

k2 −η2ω2
√

k2 −ω2 = 0.

Introducing the dimensionless velocity of wave propagation v = ω/k, we bring this
relation to the form

(2− v2)2 − 4
√

1−η2v2
√

1− v2 = 0,

or, equivalently,

v6 − 8v4 +(24− 16η2)v2 + 16(η2 − 1) = 0.

It is easy to see that this cubic equation with respect to v2 has a unique root in the
range v ∈ (0,1). The plot of v = cr/cs versus Poisson’s ratio is shown in Fig. 4.19.
As the Poisson ratio changes from zero to 1/2, cr/cs changes from 0.874 to 0.955.
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Fig. 4.19 The dimensionless velocity of Rayleigh surface wave cr/cs versus Poisson’s ratio

EXERCISE 4.10. Derive the equation of energy propagation for Timoshenko’s beam
using the variational-asymptotic method and compare it with the similar equation
obtained via averaging the energy balance equation.

Solution. The Euler-Lagrange’s equation of the average variational problem

∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0

implies the equation of energy propagation

(ω L̄,ω − L̄),t +(−ω L̄,k),x = 0,

where ω L̄,ω− L̄ is the average total energy density and −ω L̄,k is the average energy
flux (see exercise 4.12). For the Timoshenko beam we have

L̄(a1,a2,k,ω) =
1
4
ω2(a2

1 +αa2
2)−

1
4

sk2a2
2 −

1
4
β 2α(a2 − ka1)

2.

Thus, the average total energy density reads

Ē = ω L̄,ω − L̄ =
1
4
ω2(a2

1 +αa2
2)+

1
4

sk2a2
2 +

1
4
β 2α(a2 − ka1)

2,

while the average energy flux equals

J̄ =−ω L̄,k =
1
2

sa2
2kω− 1

2
β 2α(a2 − ka1)a1ω .
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Let us show that the same equation can also be derived by averaging the exact
energy balance equation (4.33). For Timoshenko’s beam theory the total energy
density is

E = K +U =
1
2
(w2

,t +αu2
,t)+

1
2
[su2

,x +β
2α(u+w,x)

2],

while the energy flux equals

J = ui,t
∂L
∂ui,x

=−β 2αw,t (u+w,x)− su,tu,x.

The asymptotically leading terms of solution can be written in form of wave packet

w � a1 cos(θ +φ), u � a2 sin(θ +φ),

where a1 and a2 are amplitudes of w and u, respectively. The wave number k = θ,x,
the frequencyω =−θ,t , the initial phase φ , and the amplitudes a1 and a2 are slowly
changing functions of x and t. We use these formulas to compute the asymptotically
leading terms of the total energy density and the energy flux.

First we compute the kinetic energy density

1
2
(w2

,t +αu2
,t)�

1
2
[ω2a2

1 sin2(θ +φ)+αω2a2
2 cos2(θ +φ)]

together with terms involving ai,t and φ,t . Since ai and φ are slowly changing func-
tions of t, these terms can be neglected in the first approximation. Treating the other
terms in the same way, we obtain for the total energy density

E =
1
2
[ω2a2

1 sin2(θ +φ)+αω2a2
2 cos2(θ +φ)]

+
1
2
[sk2a2

2 cos2(θ +φ)+β 2α(a2 − a1k)2 sin2(θ +φ)].

Similarly, the energy flux becomes

J =−β 2αωa1(a2 − ka1)sin2(θ +φ)+ sωka2
2 cos2(θ +φ).

Now let us take the average of these quantities over one period. Since the average
values of cos2(θ +φ) and sin2(θ +φ) over one period are equal to 1/2, we get

Ē =
1
4
ω2(a2

1 +αa2
2)+

1
4

sk2a2
2 +

1
4
β 2α(a2 − ka1)

2,

and

J̄ =
1
2

sa2
2kω− 1

2
β 2α(a2 − ka1)a1ω ,

which coincide with the above equations obtained from the variational-asymptotic
method.
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EXERCISE 4.11. Solve the strip problem for 3-D Klein-Gordon equation

u,tt +ω2
0 u = c2Δu

to find the average Lagrangian, the dispersion relation, and the equation of energy
propagation.

Solution. For 3-D Klein-Gordon equation corresponding to the Lagrangian

L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u,αu,α),

the strip problem becomes: find the extremal of the functional

Ī0[ψ ] =
∫ 2π

0
[
1
2
(ω2 − c2kαkα)ψ2

,θ −
1
2
ω2

0ψ
2]dθ

among 2π-periodic functions ψ(θ ) satisfying the constraint maxψ = a. The quan-
tities ω = −θ,t and k = ∇θ are regarded as constants in this variational problem.
Lagrange’s equation implies that the 2π-periodic extremal can only be of the form

ψ(θ ) = acos(θ +φ),

providedω2−c2|k|2 =ω2
0 , where |k|2 = kαkα . The latter is the solvability condition

for the strip problem. Using this solution, we compute the average Lagrangian

L̄(a,θ,α ,θ,t) =
1
4
(θ 2

,t −ω2
0 − c2θ,αθ,α)a2.

Euler-Lagrange’s equations of the average variational problem, in terms of a, k, and
ω , read

∂ L̄
∂a

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂xα

∂ L̄
∂kα

= 0.

Let us write L̄ = G(ω ,k)a2, where G(ω ,k) = 1
4(ω

2 −ω2
0 − c2|k|2). We see that the

equation L̄,a = 0 is nothing else but the solvability condition G(ω ,k) = 0 for the
strip problem which is equivalent to the dispersion relation

ω2 = ω2
0 + c2|k|2.

We can solve this relation with respect to ω to have the explicit form ω =±Ω(k) =

±
√
ω2

0 + c2|k|2. The second equation can be written as

∂
∂ t

(G,ωa2)− ∂
∂xα

(G,kα a2) = 0.

Since G(Ω(k),k) = 0, we have

G,ωΩ,kα +G,kα = 0,
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and consequently,

Cα =Ω,kα =−G,kα

G,ω
.

If we denote G,ω(Ω(k),k) by g(k), then the second equation takes the form

(g(k)a2),t +(g(k)Cαa2),α = 0.

It follows from the consistency condition kα ,t +ω,α = 0 that

kα ,t +Cβkβ ,α = 0.

By using this kinematic relation, the factor g(k) can be removed so that

(a2),t +(Cαa2),α = 0.

This is nothing else but the equation of amplitude modulations. The equation gov-
erning energy propagation reads (see the next exercise)

(ω L̄,ω − L̄),t +(−ω L̄,kα ),α = 0.

With L̄ = G(ω ,k)a2 we get

Ē = ω L̄,ω − L̄ = (ωG,ω −G)a2,

and
J̄α =−ω L̄,kα =−ωG,kαa2 = ωG,ωCαa2.

Substituting these formulas into the equation of energy propagation and taking into
account the dispersion relation G(Ω(k),k) = 0, we easily see that it is equivalent to
the equation of amplitude modulations.

EXERCISE 4.12. Derive the following equations

(ω L̄,ω − L̄),t +(−ω L̄,kα ),α = 0,

(kα L̄,ω ),t +(−kα L̄,kβ + L̄δαβ ),β = 0,

for homogeneous media, which can be interpreted as the energy and “wave momen-
tum” equations, respectively. What happens if L̄ depends on the slow variables xα
and t?

Solution. The derivation of the energy equation is quite similar to that given at the
beginning of Section 4.4. Starting from the average Euler-Lagrange’s equation

∂
∂ t
∂ L̄
∂ω

− ∂
∂xα

∂ L̄
∂kα

= 0

and multiplying it with ω , we obtain

ω(L̄,ω ),t −ω(L̄,kα ),α = 0.
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Rearrange terms to get

(ω L̄,ω),t − (ω L̄,kα ),α −ω,t L̄,ω +ω,α L̄,kα = 0.

Replacingω,α in the last term by−kα ,t in accordance with the consistency condition
and taking into account the dispersion relations L̄,ai = 0, we see that the last two
terms give −L̄,t since, according to the chain rule of differentiation,

L̄,t =
∂ L̄
∂θ,t

θ,tt +
∂ L̄
∂θ,α

θ,αt +
∂ L̄
∂ai

ai,t = ω,t L̄,ω + kα ,t L̄,kα .

Thus,
(ω L̄,ω − L̄),t +(−ω L̄,kα ),α = 0.

Since ω L̄,ω is the average kinetic energy density K̄, the expression in the square
brackets of the first term is the average total energy density, while −ω L̄,kα is the
average energy flux. So, this equation is the equation of energy propagation.

The “wave momentum” equation can be derived by multiplying the average
Euler-Lagrange’s equation with kα

kα(L̄,ω),t − kα(L̄,kβ ),β = 0.

Rearranging terms to get

(kα L̄,ω ),t − (kα L̄,kβ ),β − kα ,t L̄,ω + kα ,β L̄,kβ = 0.

Replacing kα ,t by −ω,α and keeping in mind the dispersion relations, we reduce the
last two terms to L̄,α , so

(kα L̄,ω ),t +(−kα L̄,kβ + L̄δαβ ),β = 0.

If the average Lagrangian depends on the slow variables xα (weakly inhomoge-
neous media) and t (slowly changing external forces), the energy and wave momen-
tum equations change. In the case of slow dependence on t, the energy equation
becomes

(ω L̄,ω − L̄),t +(−ω L̄,kα ),α =−∂t L̄,

where ∂t L̄ denotes the partial time derivative of L̄ at fixed ω and kα . In case of slow
dependence on xα , the wave momentum equation reads

(kα L̄,ω ),t +(−kα L̄,kβ + L̄δαβ ),β = ∂α L̄,

where ∂α L̄ denotes the partial derivative of L̄ with respect to xα at fixed ω and kα .
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