
Chapter 3
Continuous Oscillators

This Chapter deals with small vibrations of mechanical systems having infinite num-
ber of degrees of freedom. It begins with the discrete models of linear chain of oscil-
lators and then moves to the continuum models of strings, beams, membranes, and
plates. The last Section is devoted to the most general continuous oscillators. The
vibrations of these oscillators can be found in form of the linear superposition of the
standing waves leading to the eigenvalue problems in infinite dimensional spaces.

3.1 Chain of Oscillators

Differential Equations of Motion. Crystals having periodic lattice structures with
atoms vibrating about the lattice sites can be regarded as mechanical systems with
countable number of degrees of freedom. Our aim is to construct mathematical mod-
els for such discrete systems with countable number of degrees of freedom by means
of the continuum mechanics. Let us first begin with two simple examples.

EXAMPLE 3.1. 1-D chain of mass-spring oscillators. A linear 1-D chain of points
of equal mass m connected by springs of equal stiffness k1 is constrained to move in
the longitudinal direction (see Fig. 3.1). Derive the equations of motion.
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Fig. 3.1 A linear chain of mass-spring-oscillators

In this example the point-masses model atoms, while the springs their nearest
neighbor interaction. In equilibrium the distances between neighboring atoms are
equal to a lattice constant b. Denoting the displacement of the atom j from its equi-
librium position jb by u j(t), we write down the kinetic energy of the chain
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K(u̇) =
1
2

m∑
j

u̇2
j . (3.1)

The potential energy of the chain is the sum of energies of the springs

U(u) =
1
2

k1∑
j
(u j − u j−1)

2. (3.2)

Thus, Lagrange’s equations of this chain read

mü j + k1(u j − u j−1)− k1(u j+1 − u j) = 0

for all j = 1, . . . ,n− 1 except the end points of the chain.

EXAMPLE 3.2. 1-D chain of atoms with next-to-nearest-neighbor interaction. Con-
sider the similar 1-D chain of atoms as in the previous example. But now in addition
to the springs of stiffness k1 there are springs of stiffness k2 connecting the next to
nearest neighboring atoms as well (see Fig. 3.2). Derive the equations of longitudi-
nal motion.

mk1
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Fig. 3.2 A chain of oscillators with next-to-nearest-neighbor interaction

As before, the kinetic energy of this chain remains the same as (3.1). But its potential
energy changes. Because of the presence of the next-to-nearest-neighbor interaction,
we have to include energies of the springs of stiffness k2

U(u) =
1
2

k1∑
j

(u j − u j−1)
2 +

1
2

k2∑
j

(u j − u j−2)
2. (3.3)

It is interesting to mention that, in some physical situation, we may even assume the
negative spring stiffness k2. Lagrange’s equations of this chain become

mü j +
2

∑
l=1

[kl(u j − u j−l)− kl(u j+l − u j)] = 0 (3.4)

for all j = 2, . . . ,n− 2 except the end points of the chain. It is easy to write down
the equations of motion for the chain, where each atom interacts with m neighbors
to the left as well as with m neighbors to the right (see exercise 3.1).

The derived systems of coupled differential equations are quite difficult to study.
However, it turns out that, as n → ∞, they can be reduced in the long wave limit to
one partial differential equation which is easier to solve.
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Quasicontinuum. The idea is to set up one-to-one correspondences between func-
tions of discrete argument and functions of continuous argument and between op-
erations on them. Consider the case n = ∞ (infinite chain) and let u( jb) = u j be a
function of the discrete argument j defined at the lattice sites. At present, the de-
pendence of u j on t is suppressed for short; it will be restored in the final stage. We
are going to interpolate this function to a smooth function u(x) defined on the whole
x-axis such that all wave lengths shorter than b are filtered out. The precise meaning
of this can be given in terms of the Fourier transform of u(x) which we denote1 by
u(k)

u(k) =F [u(x)] =
∫ ∞

−∞
e−ikxu(x)dx, u(x) =

1
2π

∫ ∞

−∞
eikxu(k)dk. (3.5)

Namely, we require that the Fourier image u(k) differs from zero only on the seg-
ment B = [−π/b,π/b], called Brillouin zone. Then u(k) can be expanded in a
Fourier series on this segment

u(k) = χB(k)∑
j

c je
−i jbk, (3.6)

where χB(k) is a characteristic function of the segment B, i.e., χB(k) = 1 when k ∈ B
and χB(k) = 0 otherwise. Substituting this equation in (3.5) for u(x), we find

u(x) =∑
j

c jδB(x− jb),

where

δB(x) =
1

2π

∫
B

eikx dk =
sin(πx/b)

πx
.

It is easy to see that δB(x) = δB(−x) and

δB(0) =
1
b
, δB( jb) = 0 for j �= 0.

Thus, if we set c j = bu( jb), then

u(x) = b∑
j

u( jb)δB(x− jb) (3.7)

is the required interpolating function, since it is equal to u( jb) at the lattice sites and
its Fourier image has the compact support in the Brillouin zone B. It can be proved
that (3.7) is a unique and one-to-one correspondence between functions of discrete
and continuous argument satisfying these two requirements [27].

1 This notation involves no risk of confusion as we can see the difference in arguments of
u(x) and u(k). Besides, it emphasizes that u(x) and the image u(k) are the same function
in x and k spaces.



102 3 Continuous Oscillators

Based on this one-to-one correspondence, we can now present the Lagrange func-
tion of our chain in terms of the continuous function (3.7). First of all, let us show
that the following identity

∑
j

u2( jb) =
1
b

∫
u2(x)dx

holds true for an arbitrary function u( jb). Indeed, according to Parseval’s identity
[47] we have for any real function

∫ ∞

−∞
u2(x)dx =

1
2π

∫ ∞

−∞
u∗(k)u(k)dk,

where u∗(k) is the complex conjugate of u(k). With u(k) from (3.6) (where c j =
bu( jb)) and with the identities

1
2π

∫
B

ei(l− j)bk dk =
1
b
δ jl ,

we can easily check the required formula. Thus, the kinetic energy of the chain (3.1)
can be expressed in terms of u,t(x, t) as

K(u,t) =
∫

1
2
μu2

,t dx, (3.8)

with the comma in indices denoting the partial derivative and μ = m/b the mass
density per unit length. Let us turn now to the potential energy of the chain and
rewrite it in the form

U(u) =
1
2∑j,l

u jΦ( j− l)ul ,

where Φ(− j) =Φ( j) and for U(u) from (3.2)

Φ(0) = 2k1, Φ(1) =−k1, Φ( j) = 0 for | j|> 1.

For U(u) from (3.3) we have

Φ(0) = 2(k1 + k2), Φ(1) =−k1, Φ(2) =−k2, Φ( j) = 0 for | j|> 2,

and this can easily be generalized for chains with m interacting neighbors, m >
2. Applying the convolution theorem and Parseval’s identity, we have for any real
function u(x) and Φ(x)

∫ ∞

−∞

∫ ∞

−∞
u(x)Φ(x− y)u(y)dxdy =

1
2π

∫ ∞

−∞
u∗(k)Φ(k)u(k)dk, (3.9)

where
Φ(k) =

∫ ∞

−∞
Φ(x)e−ikxdx.
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Now, if we set

Φ(k) =
1
b∑j

Φ( j)e−i jbk, k ∈ B, (3.10)

and substitute it into the right-hand side of (3.9), we obtain

U(u) =
1
2∑j,l

u jΦ( j− l)ul =
1
2

∫ ∞

−∞

∫ ∞

−∞
u(x)Φ(x− y)u(y)dxdy.

Thus, the action functional can be presented in terms of the function u(x, t) as

I[u(x, t)] =
∫ t1

t0
dt
∫ ∞

−∞

[
1
2
μu2

,t −
1
2

∫ ∞

−∞
u(x, t)Φ(x− y)u(y, t)dy

]
dx (3.11)

Varying the action functional, we easily obtain the following integral equation

μu,tt +
∫ ∞

−∞
Φ(x− y)u(y, t)dy = 0, (3.12)

which is equivalent to the system of equations (3.4). Note that equation (3.12) can
also be directly obtained from (3.4).

Dispersion Curve and Long-Wave Approximation. Since equation (3.12) is lin-
ear, we seek its solution in the form

u(x, t) = aei(kx−ωt). (3.13)

This solution corresponds to the wave propagating along the x-axis, with a being
the amplitude, k the wave number, and ω the frequency of vibration. Substitution of
(3.13) into (3.12) leads to the dispersion relation between k and ω

−μω2 +Φ(k) = 0. (3.14)

For the chain with the nearest neighbor interaction we have from (3.10)

Φ(k) =
2k1

b
(1− cosbk) =

4k1

b
sin2 bk

2
, k ∈ B.

Denoting by ω0 =
√

k1/m, we present the dimensionless dispersion curve ν =
ω/ω0 versus κ = bk in Fig. 3.3.

For the propagating wave (3.13) the characteristic wavelength is l = 2π/k =
2πb/κ . If this characteristic wavelength is much larger than the lattice constant
b, then κ � 1 and functionΦ(k) can be approximated by

Φ(k) =
4k1

b
sin2 bk

2
≈ k1

b
(bk)2. (3.15)
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Fig. 3.3 Dispersion curve for a chain with nearest neighbor interaction

This approximation simplifies considerably the potential energy in the action func-
tional and makes the theory local. Indeed, using the property of the Fourier trans-
form

1
2π

∫
k2u∗(k)u(k)dk =

∫ ∞

−∞
u2
,x dx,

we write the potential energy in the form

U(u) =
k1b
2

∫ ∞

−∞
u2
,x dx.

Thus, the action functional becomes

I[u(x, t)] =
∫ t1

t0
dt
∫ ∞

−∞
(

1
2
μu2

,t −
1
2

k1bu2
,x)dx, (3.16)

which yields the following Lagrange’s equation

μu,tt − k1bu,xx = 0. (3.17)

This type of partial differential equations will be studied in the next Sections within
the continuum mechanics.

3.2 String

Differential Equation of Motion. In previous Section the transition from discrete
to continuum descriptions has been demonstrated. Let us now derive the equation
of motion directly within the framework of continuum mechanics. We start with
simple one-dimensional continua.

EXAMPLE 3.3. Flexural vibration of string. Derive the equation of small flexural
vibration of a pre-stretched string.
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w(x,t)

x

S(x)
S(x+Δx)

α

Fig. 3.4 Flexural vibration of string

Under string we mean a thin pre-stretched
elastic body with negligible bending stiff-
ness whose diameter of the cross-section
is much smaller than its length l. We shall
model the string by a one-dimensional
continuum. We show first the derivation
based on the force method. Let x be the
coordinate along the string axis, x ∈ (0, l),
and w(x, t) the transverse displacement of
the string. We also denote by α(x, t) the slope of the curve w(x, t). For small vibra-
tion both w(x, t) and α(x, t) are small so that α = w,x. The tension is assumed to
be large, and the change of stress along the string during the vibration is negligibly
small compared with this tension. We cut a part of the deformed string from x to
x+Δx and free it from the rest. Keeping in mind the free body diagram shown in
Fig. 3.4, we apply Newton’s law in the transverse direction,

μ(x)Δxw,tt = S(x+Δx)α(x+Δx, t)− S(x)α(x, t),

where S(x) and S(x+Δx) are the forces from the surrounding exerted on the cut part
of the string, μ(x) the mass per unit length, and, due to the smallness of α , sinα is
approximately replaced by α in this equation. Dividing both sides by Δx and letting
Δx → 0, we obtain in the limit

μ(x)w,tt =
∂
∂x

[S(x)w,x(x, t)].

Here the slope α is replaced by w,x, with comma denoting the partial derivative
with respect to x. For the homogeneous string with constant cross-section area A the
mass density per unit length does not depend on x: μ(x) = ρA = μ . We also assume
that S(x) = S, where S/A is the tension in the equilibrium state. Dividing the above
equation by μ , we reduce it to the standard form

w,tt = c2w,xx(x, t), c =

√
S
μ
. (3.18)

This equation is subject to the boundary conditions

w(0, t) = w(l, t) = 0. (3.19)

The energy method is based on Hamilton’s variational principle of least action:
among all admissible motions w(x, t) satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x)

and the boundary conditions (3.19) the true motion is the extremal of the action
functional
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I[w(x, t)] =
∫ t1

t0

∫ l

0
L(w,w,x,w,t)dxdt.

The consequence of Hamilton’s variational principle is Euler-Lagrange’s equation
(see the derivation in Section 3.6)

∂
∂ t

∂L
∂w,t

+
∂
∂x

∂L
∂w,x

− ∂L
∂w

= 0. (3.20)

Thus, the motion of the conservative one-dimensional continuum is governed by a
single function L(w,w,x,w,t), called Lagrangian, which is given by

L(w,w,x,w,t) = K(w,t)−U(w,w,x),

where K(w,t) is the kinetic and U(w,w,x) the internal energy densities. In our exam-
ple the kinetic energy density is equal to

K(w,t ) =
1
2
μw2

,t .

The internal energy density (per unit length) must be a function of the strain ε:
U = U(ε). Denoting the strain in the pre-stretched state as ε = ε0, we expand the
energy density in Taylor’s series near this state:

U(ε) =U(ε0)+U ′(ε0)(ε− ε0)+ . . . .

Neglecting the unessential constant U(ε0) as well as terms of higher orders and
taking into account that U ′(ε0) = S, we obtain

U(ε) = S(ε− ε0).

Now, for the transverse displacement considered above

ε− ε0 = lim
Δx→0

√
(Δx)2 +(w(x+Δx)−w(x))2 −Δx

Δx
≈ 1

2
w2
,x.

Thus, the internal energy density depends only on w,x, U(w,w,x) =
1
2 Sw2

,x, and

L(w,w,x,w,t) =
1
2
μw2

,t −
1
2

Sw2
,x.

Substitution of this Lagrangian into (3.20) leads again to the equation of motion
(3.18).

EXAMPLE 3.4. Longitudinal vibration of bar. Derive the equation of small longitu-
dinal vibration of an elastic bar.

Under bar we mean a thin elastic body whose diameter of the cross-section is much
smaller than the length l of the bar. Let x be the coordinate along the bar axis,
x ∈ (0, l), and u(x, t) the longitudinal displacement of the bar. The kinetic energy
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x u(x,t)

Fig. 3.5 Longitudinal vibration of bar

per unit length of the bar is given by

K(u,t) =
1
2
ρA(x)u2

,t ,

while the internal energy per unit length by

U(u,x) =
1
2

EA(x)u2
,x.

Here we denote by ρ the mass density, A(x) the cross-section area which may vary
along the bar axis, and E the Young modulus. With the Lagrangian L(u,x,u,t) =
K(u,t)−U(u,x) we derive from (3.20)

ρA(x)u,tt =
∂
∂x

[EA(x)u,x(x, t)],

and, if A(x) = const, reduce it to the standard form (3.18) with c =
√

E/ρ and w
being replaced by u.

EXAMPLE 3.5. Torsional vibration of bar. Derive the equation of small torsional
vibration of an elastic bar.

x ϕ(x,t)

Fig. 3.6 Torsional vibration of bar

Let ϕ(x, t) be the rotation angle of the cross-section in its own plane. The kinetic
energy per unit length of the bar is given by

K(ϕ,t) =
1
2
ρJp(x)ϕ2

,t ,

while the internal energy per unit length by

U(ϕ,x) =
1
2

GJp(x)ϕ2
,x.

Here Jp(x) corresponds to the polar moment of inertia of the cross-section, and G the
shear modulus. With L(ϕ,x,ϕ,t) = K(ϕ,t)−U(ϕ,x) we derive from Euler-Lagrange’s
equation
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ρJp(x)ϕ,tt =
∂
∂x

[GJp(x)ϕ,x(x, t)],

which, for Jp(x) = const, can again be reduced to the standard form (3.18) with
c =

√
G/ρ and w being replaced by ϕ .

Solution. We first seek particular solutions of equation (3.18) and then construct the
general solution using the linear superposition principle. We assume the particular
solution of the form

w(x, t) = q(x)u(t).

As this particular solution is the product of two functions depending separately on x
and t, the corresponding method of solution is called separation of variables. Plug-
ging this Ansatz into equation (3.18) and assuming that neither q(x) nor u(t) is
identically zero, we divide the obtained equation by q(x)u(t) to get

ü
u
= c2 q′′

q
.

Since the left-hand side expression depends on t while its right-hand side counter-
part depends only on x, the equation implies that both must be a constant which we
denote by −ω2. Thus, we obtain two ordinary differential equations

ü+ω2u = 0,

q′′+
(ω

c

)2
q = 0.

(3.21)

The solution of the second equation reads

q(x) = Acos
ω
c

x+Bsin
ω
c

x.

The boundary conditions (3.19) require that q(0) = q(l) = 0, so A = 0 and the non-
trivial solution exists if

sin
ω
c

l = 0 ⇒ ω = ω j = j
πc
l
, j = 1,2, . . . . (3.22)

Thus,

q j(x) = B j sin
jπ
l

x.

We may fix the coefficients B j by choosing some normalization condition. As such
we propose ∫ l

0
q2

j(x)dx = 1 ⇒ q j(x) =

√
2
l

sin
jπ
l

x.

Functions q j(x) describe the shapes of normal modes and are called eigenfunc-
tions (or standing waves). Function q1(x) corresponds to the shape of mode with the
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x
l

i=1
i=2
i=3

qi(x)

Fig. 3.7 Three first eigenfunctions

lowest frequency (or the fundamental tone).
Functions q j(x) with j > 1 describe the
shape of modes with higher frequencies
(called overtones). The eigenfunction q j(x)
has j − 1 fix points which do not move
(one speaks of the vibration nodes). Fig. 3.7
shows three first eigenfunctions. It turns out
that the functions q j(x) are orthogonal in the
following sense

∫ l

0
q j(x)qk(x)dx = 0 for j �= k.

This can easily be checked by using the
well-known trigonometric formula for sine function.

The first equation of (3.21) for ω = ω j has the solution

u(t) = a j cosω jt + b j sinω jt.

Now, the general solution of equation (3.18) satisfying the boundary conditions
(3.19) is obtained in form of the Fourier series

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt).

We have to satisfy also the initial conditions

w(x,0) = w0(x), w,t(x,0) = v0(x).

With the above solution we obtain from the initial conditions√
2
l

∞

∑
j=1

a j sin
jπ
l

x = w0(x),

√
2
l

∞

∑
j=1
ω jb j sin

jπ
l

x = v0(x).

(3.23)

To determine the unknown coefficients a j and b j we multiply these equations with

the eigenfunction qk(x) =
√

2
l sin kπ

l x and integrate over x from 0 to l. Using the
orthogonality and normalization conditions, we obtain

a j =

√
2
l

∫ l

0
w0(x)sin

jπ
l

xdx, b j =

√
2
l

1
ω j

∫ l

0
v0(x)sin

jπ
l

xdx.
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In the harmonic analysis [12, 56] it is proved that if functions w0(x) and v0(x) are
continuous and piecewise continuously differentiable, then the Fourier series (3.23)
converge uniformly to w0(x) and v0(x) in the interval (0, l). Thus, the eigenfunctions
found above form a complete orthogonal basis for this class of initial data.

3.3 Beam

Bernoulli-Euler’s Beam Theory. Under beam we mean a thin elastic body whose
undeformed axis is a straight segment of length l. The thickness h of the beam is
assumed to be much smaller than its length l. Let x be the coordinate along the
beam axis, x ∈ (0, l), and w(x, t) the transverse displacement of the beam axis in the
(x,y)-plane (see Fig. 3.8).

x

w(x,t)

Fig. 3.8 Flexural vibration of beam

According to Bernoulli-Euler’s beam theory the kinetic energy density of the
beam is equal to

K(w,t ) =
1
2
μw2

,t ,

where μ is the mass per unit length. The internal energy density of the beam must
be a quadratic function of the curvature of the deformed beam axis w,xx

U(w,xx) =
1
2

EJ(w,xx)
2,

with EJ being the bending stiffness. Thus, the action functional reads

I[w(x, t)] =
∫ t1

t0

∫ l

0
L(w,xx,w,t)dxdt,

where

L(w,xx,w,t ) =
1
2
μw2

,t −
1
2

EJ(w,xx)
2. (3.24)

The difference between this Lagrangian and those in the previous Section is the
presence of the second derivative in the internal energy density.

We first consider the case of clamped edges such that

w(0, t) = w(l, t) = 0, w,x(0, t) = w,x(l, t) = 0. (3.25)

The second condition of (3.25) means the vanishing rotation angle of the beam about
the clamped edge. Hamilton’s variational principle of least action for the beam states
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that among all admissible motions w(x, t) satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x)

and the boundary conditions (3.25) the true motion is the extremal of the action
functional

δ I[w(x, t)] = δ
∫ t1

t0

∫ l

0
L(w,xx,w,t )dxdt = 0.

To derive the equation of flexural vibration from this variational principle we calcu-
late the first variation of the action functional

δ I =
∫ t1

t0

∫ l

0
(μw,tδw,t −EJw,xxδw,xx)dxdt = 0. (3.26)

Integrating by parts over x and t and using the initial and end conditions as well as
the clamped boundary conditions, we obtain

δ I =
∫ t1

t0

∫ l

0
(−μw,tt −EJw,xxxx)δwdxdt = 0.

Since δw can be chosen arbitrarily inside the region (0, l)× (t0, t1), the variational
equation implies that

μw,tt +EJw,xxxx = 0. (3.27)

Note that Hamilton’s principle applies to other boundary conditions as well. Prac-
tically, there are three types of boundary conditions at x∗ (x∗ = 0 or x∗ = l) corre-
sponding to:

a) Clamped edge: w(x∗, t) = w,x(x∗, t) = 0.
b) Simply supported edge: w(x∗, t) = 0, but w,x(x∗, t) may be varied arbitrarily.
c) Free edge: both w(x∗, t) and w,x(x∗, t) may be varied arbitrarily.

Provided equation (3.27) is fulfilled, we reduce equation (3.26) for the variations
not vanishing at the boundaries to

δ I =
∫ t1

t0
(−EJw,xxδw,x +EJw,xxxδw)|x=l

x=0 dt = 0.

Thus, from the last equation we see that, in case b) the additional boundary condition
obtained from Hamilton’s principle is

w,xx(x∗, t) = 0,

which means the vanishing bending moment. In case c) the boundary conditions
read

w,xx(x∗, t) = 0, w,xxx(x∗, t) = 0,

which mean the vanishing bending moment and shear force. Contrary to the kine-
matic (or essential) boundary conditions of the type w(x∗, t) = 0 or w,x(x∗, t) = 0, the
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additional boundary conditions derived from Hamilton’s principle are called natural
boundary conditions.

Solution. The method of solution is quite similar to that considered in previous
Section. We first seek a particular solution of the form

w(x, t) = q(x)u(t).

The separation of variables in (3.27) leads to

ü
u
=−EJ

μ
q′′′′

q
.

The left-hand side expression depends on t while its right-hand side counterpart
depends only on x, therefore two ordinary differential equations follow

ü+ω2u = 0,

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ. The solution of the second equation reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Consider, for example, the beam which is simply supported at x = 0 and x = l. In
this case the boundary conditions require that

q(0) = q′′(0) = 0, q(l) = q′′(l) = 0.

So we get four homogeneous equations for four coefficients C1, C2, C3, and C4.
Dividing the equations q′′(0) = 0 and q′′(l) = 0 by κ2 and rewriting them in one
matrix equation, we have

⎛
⎜⎜⎝

0 1 0 1
0 −1 0 1

sinλ cosλ sinhλ coshλ
−sinλ −cosλ sinhλ coshλ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

where λ = κ l. The non-trivial solution exists if the determinant of the matrix van-
ishes giving

sinλ sinhλ = 0 ⇒ λ j = jπ , j = 1,2, . . . . (3.28)

For λ j = jπ the above equation implies that C1 �= 0, C2 = C3 = C4 = 0. We fix C1

by the normalization condition

∫ l

0
q2

j(x)dx = 1 ⇒ q j(x) =

√
2
l

sin
jπ
l

x.
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Thus, the eigenfunctions q j(x) for the beam with the supported edges remain the
same as the shapes of normal modes of the string.

With λ j = jπ we obtain for the eigenfrequencies

ω j = λ 2
j

√
EJ
μ l4 = ( jπ)2

√
EJ
μ l4 , j = 1,2, . . . . (3.29)

Note that the frequencies are proportional to j2. The first equation for u(t) has the
solution

u(t) = a j cosω jt + b j sinω jt.

Now, the general solution is obtained in form of the Fourier series

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt),

where the coefficients a j and b j should be determined from the initial data w0(x)
and v0(x) by using the orthogonality condition.

Table 3.1 The frequency equations

Boundary conditions Frequency equation
free-free 1−cosλ coshλ = 0

supported-free tanλ − tanhλ = 0
clamped-free 1+cosλ coshλ = 0

supported-supported sinλ = 0
clamped-supported tanλ − tanhλ = 0
clamped-clamped 1−cosλ coshλ = 0

2 4 6 8 10

-1

-0.5

0.5

1

1/coshλ cosλ

λ2
λ1 λ3 λ

Fig. 3.9 Roots of the frequency equation 1/coshλ = cosλ

The modal analysis of the beam with other boundary conditions is similar and
the frequency equations are summarized in Table 3.1. Knowing the roots of the fre-
quency equations, one finds the eigenfrequencies in accordance with (3.29). Con-
sider for example the free-free or clamped-clamped edges, for which the frequency
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equation is 1/coshλ = cosλ . The roots of this transcendental equation correspond
to the λ -coordinates of the intersection points of the curves 1/coshλ and cosλ
shown in Fig. 3.9, from which it is seen that for j > 3 we have approximately
λ j ≈ (2 j + 1)π/2. Note that the beams with the free edges or with one simply
supported edge and one free edge possess also zero frequencies as these types of
boundary conditions admit rigid-body motions.

3.4 Membrane

Differential Equation of Motion. Under membrane we mean a thin pre-stretched
elastic body with negligible bending stiffness whose thickness is much smaller than
other characteristic lengths. The pre-stress is assumed to be large, and the change of
stresses in the membrane during its vibration is negligibly small compared with the
pre-stress. We shall model the membrane by a two-dimensional continuum occupy-
ing the area A in its plane. Let x1 and x2 be the Cartesian coordinates in this plane,
x = (x1,x2) ∈ A, and w(x, t) the small transverse displacement of the membrane in
the x3-direction. Hamilton’s variational principle of least action states that, among
all admissible motions w(x, t) satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x),

as well as the boundary conditions

w(x, t) = 0 for x ∈ ∂A, (3.30)

the true motion is the extremal of the action functional

I[w(x, t)] =
∫ t1

t0

∫
A

L(w,w,α ,w,t )dxdt.

Here and in what follows, Greek indices numerating the coordinates run from 1 to
2, the comma in indices denotes partial derivatives with respect to the correspond-
ing coordinates, and dx = dx1dx2 is the area element. From Hamilton’s variational
principle we derive Euler-Lagrange’s equation (see Section 3.6)

∂
∂ t

∂L
∂w,t

+
∂
∂xα

∂L
∂w,α

− ∂L
∂w

= 0. (3.31)

We use for short Einstein’s summation convention according to which all the terms
with repeated indices will be summed up over these indices from 1 to 2. For exam-
ple, the second term in the above equation reads

∂
∂xα

∂L
∂w,α

=
∂
∂x1

∂L
∂w,1

+
∂
∂x2

∂L
∂w,2

.
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The motion of membrane is thus governed by the Lagrangian

L(w,w,α ,w,t) = K(w,t)−U(w,w,α),

where K(w,t) is the kinetic and U(w,w,α ) the internal energy densities. The kinetic
energy density of the membrane is equal to

K(w,t ) =
1
2
μw2

,t ,

with μ being the mass per unit area. The internal energy density (per unit area) must
be a function of the strains εαβ : U =U(εαβ ). Without restricting generality we may
regard the strains in the pre-stretched state as ε = 0, and expand the energy density
in Taylor’s series near this state:

U(εαβ ) =U(0)+
∂U
∂εαβ

∣∣∣∣
εαβ=0

εαβ + . . . .

Neglecting the unessential constant U(0) as well as terms of higher orders and as-
suming that ∂U/∂εαβ |0 = Sδαβ , with S being the pre-stress, we obtain

U(ε) = Sεαα .

Since εαα describes the increase in area of the membrane, which, for the small
transverse displacement with w,α � 1, is equal to

εαα =
√

1+w,αw,α − 1 ≈ 1
2

w,αw,α ,

the internal energy density does not depend on w, U(w,w,α) =
1
2 Sw,αw,α . Thus, the

Lagrangian reads

L(w,w,α ,w,t ) =
1
2
μw2

,t −
1
2

Sw,αw,α .

Plugging this into the equation of motion (3.31), we get finally

μw,tt − SΔw = 0,

where Δw = w,αα is Laplace’s operator applied to w. Bringing the second term to
the right-hand side and dividing by μ , we reduce the above equation to the standard
form

w,tt = c2Δw, c =

√
S
μ
. (3.32)

Solution. We separate the variables x and t by seeking the particular solution in the
form

w(x, t) = q(x)u(t).
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Substitution in (3.32) together with the standard arguments lead to

ü+ω2u = 0,

Δq+λq = 0,
(3.33)

where λ = ω2/c2. The second equation of (3.33) is subject to the boundary condi-
tion

q(x) = 0 at x ∈ ∂A.

The solution of this eigenvalue problem in closed analytical form is possible for
rectangular and circular membranes. We consider these special cases.

Rectangular membrane. Let a and b denote the width and the height of the rectangle
so that A = (0,a)× (0,b). We look for the solution of (3.33)2 in the form

q(x) = X1(x1)X2(x2).

The standard separation of variables leads to

X ′′
1

X1
=−X ′′

2

X2
−λ =−α2.

The equation for X1(x1),
X ′′

1 +α2X1 = 0,

together with the boundary conditions

X1(0) = X1(a) = 0,

yields
X1(x1) =C1 sinαx1,

where
α = j1

π
a
, j1 = 1,2, . . . .

Similarly, the equation for X2(x2),

X ′′
2 +β 2X2 = 0,

with β 2 = λ −α2, together with the boundary conditions

X2(0) = X2(b) = 0,

implies that
X2(x2) =C2 sinβx2,

where
β = j2

π
b
, j2 = 1,2, . . . .
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Denoting by j the vector ( j1, j2), we present the eigenfunctions in the form

q j(x) =C sin
j1πx1

a
sin

j2πx2

b
, j1, j2 = 1,2, . . . .

The corresponding eigenvalues belonging to the spectrum of the rectangular mem-
brane are2

λ j =
(ω j

c

)2
= α2 +β 2 = π2

(
j2
1

a2 +
j2
2

b2

)
.

We may fix the constant C by the normalization condition

∫
A

q2
j(x)dx = 1 ⇒ C =

2√
ab

.

One can also easily prove that
∫

A
q j(x)qk(x)dx = 0 for j �= k.

Mention that multiple eigenvalues may occur. For rectangles with rational ratios a : b
this is always the case. For instant, if a = b (the square membrane), then j′ = ( j2, j1)
gives the same eigenvalue as j = ( j1, j2). Together with the solution of (3.33)1

u j(t) = a j cosω jt + b j sinω jt,

we construct the general solution of (3.32) by the linear superposition principle

w(x, t) =
2√
ab

∞

∑
j1, j2=1

sin
j1πx1

a
sin

j2πx2

b
(a j cosω jt + b j sinω jt).

Taking into account the initial conditions

w(x,0) = w0(x), w,t(x,0) = v0(x),

we obtain

2√
ab

∞

∑
j1, j2=1

a j sin
j1πx1

a
sin

j2πx2

b
= w0(x1,x2),

2√
ab

∞

∑
j1, j2=1

ω jb j sin
j1πx1

a
sin

j2πx2

b
= v0(x1,x2).

The orthogonality property can be used to find the coefficients a j and b j from the
initial data w0(x) and v0(x). In the harmonic analysis [12, 56] it is proved that if

2 Let us mention in this connection one interesting and still not completely solved mathe-
matical problem: are there two distinct shapes of membrane having the same spectrum?
This question was originally posed by Hermann Weyl and rephrased later by Mark Kac in
the following way: ”Can one hear the shape of a drum?” (see [22]).
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functions w0(x) and v0(x) are continuous and piecewise continuously differentiable,
then the double Fourier series converge uniformly to w0(x) and v0(x) in the square
(0,a)× (0,b). Thus, the eigenfunctions found above form a complete orthogonal
basis for this class of initial data.

Circular membrane. For the circular membrane we choose the polar coordinates r
and ϑ (see Fig. 3.10) in which equation (3.33)2 takes the form

q,rr +
1
r

q,r +
1
r2 q,ϑϑ +λq = 0.

Looking for the solution of this equation as the product

q(r,ϑ) = R(r)Θ(ϑ)

and separating the variables, we obtain

R′′+R′/r+λR
R/r2 =−Θ

′′

Θ
= κ2.

r

x1

x2

θ

Fig. 3.10 Circular membrane and polar coordinates

Consider first the equation forΘ(ϑ)

Θ ′′+κ2Θ = 0,

which yields the solution

Θ(ϑ) = α cosκϑ +β sinκϑ .

It is obvious that functionΘ(ϑ) must be periodic with the period 2π

Θ(2π) =Θ(0), Θ ′(2π) =Θ ′(0).

The periodicity implies that κ = j, where j is a nonnegative integer j = 0,1,2, . . ..
Then the equation for R(r) becomes Bessel’s equation [51]
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R′′+
1
r

R′+
(
ω2

c2 − j2

r2

)
R = 0.

Its solution is expressed in terms of Bessel’s function of order j

R = Jj(
ωr
c
).

The boundary condition (3.30) at r = rm, with rm being the radius of the membrane,
requires that

Jj(
ωrm

c
) = 0.

Thus, the eigenfrequencies are obtained from the zeros of Bessel’s function Jj(x),
which we denote by ξ jk, k = 1,2, . . .. The eigenfunctions now read

q jk(r,ϑ) = Jj(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ).

The constants α jk and β jk may still be arbitrary, indicating that ξ jk with j �= 0 are at
least double eigenvalues.

Together with the solution of (3.33)1

u jk(t) = a jk cosω jkt + b jk sinω jkt,

we construct the general solution of (3.32) by the linear superposition principle

w =
∞

∑
j=0,k=1

Jj(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ)(a jk cosω jkt + b jk sinω jkt).

Then the initial conditions

w(r,ϑ ,0) = w0(r,ϑ), w,t(r,ϑ ,0) = v0(r,ϑ),

yield

∞

∑
j=0,k=1

a jkJj(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ) = w0(r,ϑ),

∞

∑
j=0,k=1

b jkω jkJ j(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ) = v0(r,ϑ).

One can again prove that if functions w0(r,ϑ) and v0(r,ϑ) are continuous, piecewise
continuously differentiable, and periodic in ϑ with the period 2π , then the above
double series converge uniformly to them in the domain (0,rm)× (0,2π). Thus, the
eigenfunctions found above form a complete orthogonal basis for this class of initial
data.
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3.5 Plate

Kirchhoff’s Plate Theory. Under plate we mean a thin elastic body occupying in
its undeformed state a region A× (−h/2,h/2) of the three-dimensional Euclidean
point space, where A is an area in the (x1,x2)-plane. The thickness h of the plate is
assumed to be much smaller than the characteristic sizes of A. We shall model the
plate by a two-dimensional continuum. Let x = (x1,x2) ∈ A and w(x, t) be the small
transverse displacement of the middle plane in the x3-direction (see Fig. 3.11).

w(x,t)

Fig. 3.11 A thin plate and transverse displacement of the middle plane

According to Kirchhoff’s plate theory [24] the kinetic energy density of the plate
is equal to

K(w,t) =
1
2
ρhw2

,t ,

where ρ is the mass density. The internal energy density of the plate must be a
quadratic function of the curvature of the deformed middle surface w,αβ

U(w,αβ ) =
μh3

12
(σw2

,αα +w,αβw,αβ ),

with σ = λ
λ+2μ , λ and μ being the Lamé constants of the elastic material. Thus, the

action functional reads

I[w(x, t)] =
∫ t1

t0

∫
A

L(w,αβ ,w,t )dxdt,

where

L(w,αβ ,w,t) =
1
2
ρhw2

,t −
μh3

12
(σw2

,αα +w,αβw,αβ ). (3.34)

The difference between this action functional and that of the membrane is the
presence of the second partial derivatives in the internal energy density. The deriva-
tion of (3.34) from the three-dimensional elasticity theory based on the variational-
asymptotic method is given in [31].

Since L depends on w,αβ , the action functional “feels” the change of the deriva-
tive of w at the boundary ∂A. If the edge of the plate is free, then it is natural to
assume that no constraints are imposed on w at the boundary. If the edge of the plate
is clamped, we let I[w] be defined on the space of admissible displacement fields
w(x, t) satisfying the kinematic boundary conditions
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w(x, t) = 0, w,ανα = 0 at x ∈ ∂A, (3.35)

where να denotes the components of the outward unit vector normal to the curve
∂A. The last condition of (3.35) expresses the fact that the rotation angle of the plate
about the clamped edge vanishes. Finally, if the edge is simply supported, then only
the displacement should vanish

w(x, t) = 0 at x ∈ ∂A. (3.36)

Hamilton’s variational principle states that, among all admissible motions w(x, t)
satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x),

as well as the kinematic boundary conditions, the true motion is the extremal of the
action functional

δ I = 0.

In order to derive the equations of motion of the plate let us calculate the variation
of the action functional

δ I =
∫ t1

t0

∫
A
(ρhw,tδw,t −mαβδw,αβ )dxdt, (3.37)

where

mαβ =
∂U
∂w,αβ

= μ
h3

6
(σw,γγ δαβ +w,αβ ).

From equation (3.37) one can see that mαβ “works” on the bending (or change of
the curvature) of the plate. Therefore it is natural to call mαβ bending moments.

Integrating (3.37) by parts with the help of Gauss’ theorem, we obtain for the
variations vanishing at the boundary ∂A

δ I =
∫ t1

t0

∫
A
(−ρhw,tt −mαβ ,αβ)δwdxdt = 0.

Since δw is arbitrary inside the region A× (t0, t1), we conclude that

ρhw,tt +mαβ ,αβ = 0 or ρhw,tt +DΔΔw = 0, (3.38)

where

D = μ(σ + 1)
h3

6
=

Eh3

12(1−ν2)

is the bending stiffness of the plate. This is the two-dimensional equation of flexural
vibration of the thin plate.

Provided the equation (3.38) is fulfilled, we reduce the equation δ I = 0 for the
variations not vanishing at the boundary to
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∫ t1

t0

∫
∂A
(mαβ ,βναδw−mαβδw,ανβ )dsdt = 0, (3.39)

where ds is the length element. Now we need to select independent variations at the
boundary. The gradient δw,α may be resolved in the normal and tangential direc-
tions to the boundary as follows:

δw,α = νανγδw,γ + τατγδw,γ .

This is due to the identity δαγ = νανγ + τατγ , with τα being the components of the
vector tangential to the curve ∂A. Since τγδw,γ = dδw/ds, we can integrate by parts
that term in (3.39) containing it to get

∫ t1

t0

∫
∂A
[mαβ ,βναδw+

d
ds

(mαβ τανβ )δw−mαβνανβ νγδw,γ ]dsdt = 0.

For the free edge of the plate the variations δw and νγδw,γ are arbitrary at ∂A; hence

mαβ ,βνα +
d
ds

(mαβ τανβ ) = 0,

mαβ νανβ = 0.
(3.40)

These are the free-edge boundary conditions. For the clamped edge, the kinematic
boundary conditions (3.35) should be fulfilled. If the edge is simply supported,
(3.36) and (3.40)2 are the boundary conditions at ∂A.

Frequency Spectra of Circular Plate. We investigate the free vibrations of a cir-
cular plate of radius rm. We look for solutions of the form

w(x, t) = q(x)u(t).

The standard separation of variables x and t leads to

DΔΔq−ρhω2q = 0, (3.41)

where ω is the frequency of vibration. We introduce the dimensionless variables

ζα =
xα
rm

, β 4 = ω2ρhr4
m/D =

6ρω2r4
m

μ(σ + 1)h2 .

Now we transform (3.41) to the dimensionless form

(ΔΔ −β 4)q = (Δ +β 2)(Δ −β 2)q = 0. (3.42)

Therefore the solution of (3.42) may be written as

q = q1 + q2,
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where functions q1, q2 satisfy respectively

Δq1 +β 2q1 = 0,

Δq2 −β 2q2 = 0.
(3.43)

These equations can be solved again by the separation of variables. In the polar
coordinates r, ϑ (see Fig. 3.10) we have

Δq =
∂ 2q
∂ r2 +

1
r
∂q
∂ r

+
1
r2

∂ 2q
∂ϑ 2 .

Assuming q1 = R1(r)Θ1(ϑ), from (3.43)1 we obtain the following differential equa-
tion forΘ1(ϑ)

Θ ′′
1 =−κ2Θ1.

Since Θ1(ϑ) must be periodic with the period 2π , we find that κ = j, where j is a
nonnegative integer, j = 0,1,2, . . ., and

Θ1(ϑ) = cos jϑ or Θ1(ϑ) = sin jϑ .

Then the equation for R1(r) reads

R′′
1 +

1
r

R′
1 +(β 2 − j2

r2 )R1 = 0.

This is Bessel’s equation of order j, which has the following non-singular solution

R1 = aJj(β r).

Combination of R1 andΘ1 yields

q1 = aJj(β r)

{
cos jϑ
sin jϑ

.

For q2 = R2(r)Θ2(ϑ) the same results are obtained for Θ2(ϑ), while for R2(r) the
modified Bessel’s equation holds true

R′′
2 +

1
r

R′
2 − (β 2 +

j2

r2 )R2 = 0.

The non-singular solution of this equation is given by

R2 = bIj(β r),

where I j(x) is the modified Bessel’s function of order j. Combining q1 and q2, we
get finally
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q = [aJj(β r)+ bIj(β r)]

{
cos jϑ
sin jϑ

. (3.44)

Consider the simplest case of the clamped edge, for which the boundary
conditions

q|r=1 =
∂
∂ r

q|r=1 = 0 (3.45)

hold true. Substituting (3.44) into (3.45) and equating the determinant to zero, we
obtain the following frequency equation:

Jj(β )I′j(β )− I j(β )J′j(β ) = 0. (3.46)

The three lowest roots β jk of (3.46) for j = 0,1,2 are given in the following table:

k j = 0 j = 1 j = 2
1 3.196 4.611 5.906
2 6.306 7.799 9.197
3 9.439 10.958 12.402

j=0,k=1 j=0,k=2

j=1,k=1 j=2,k=1

Fig. 3.12 Few normal modes of clamped circular plate

The frequencies of vibrations should be calculated by the formula

ω jk =
β 2

jkh

r2
m

√
μ

6(1−ν)ρ ,

while the corresponding eigenfunctions are given by

q jk = [Jj(β jkr)− Jj(β jk)

I j(β jk)
I j(β jkr)]

{
cos jϑ
sin jϑ

.



3.5 Plate 125

A few of the deformed shapes of the plate are shown in Fig. 3.12. Chladni invented
an experimental method of observing the nodal lines of vibrations of a plate by
pouring a thin layer of sand on its upper face: during the vibration the sand-grains
will move to the nodal lines. Such nodal patterns are called Chladni’s figures.3

Let us turn to the case of the free edge. The displacement w should then satisfy
the boundary conditions (3.40). In the polar coordinates r, ϑ we have

mαβ ,βνα = μ
h3

6
(σ + 1)

∂
∂ r
Δq,

mαβ τανβ = μ
h3

6
1
r
(
∂ 2q
∂ r∂ϑ

− 1
r
∂q
∂ϑ

),

mαβνανβ = μ
h3

6
(σΔq+

∂ 2q
∂ r2 ).

Substituting these into (3.40), we obtain the following conditions at the boundary
r = 1:

[(σ + 1)
∂
∂ r
Δq+

∂ 3q
∂ r∂ϑ 2 − ∂ 2q

∂ϑ 2 ]|r=1 = 0,

(σΔq+
∂ 2q
∂ r2 )|r=1 = 0.

(3.47)

With q from (3.44) we transform (3.47) to

a{−β 3J′j(β )+ (1−ν) j2[Jj(β )−βJ′j(β )]}
+b{β 3I′j(β )+ (1−ν) j2[I j(β )−β I′j(β )]}= 0,

a{−β 2Jj(β )+ (1−ν)[ j2Jj(β )−βJ′j(β )]}
+b{β 2I j(β )+ (1−ν)[ j2I j(β )−β I′j(β )]}= 0.

(3.48)

The frequency equation is obtained by the condition of vanishing determinant of
(3.48). When j = 0, the frequency equation can be presented in a simple form

2(1−ν)+β J0(β )
J′0(β )

−β I0(β )
I′0(β )

= 0.

The three lowest roots β jk of the frequency equation for j = 0,1,2 and ν = 0.31
have the following values:

k j = 0 j = 1 j = 2
1 0.0 0.0 2.308
2 3.004 4.526 5.938
3 6.202 7.735 9.185

3 One can see such experiments as well as various Chladni’s figures, for instance, on the
following website: http://www.youtube.com/watch?v=Qf0t4qIVWF4

http://www.youtube.com/watch?v=Qf0t4qIVWF4
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j=0,k=2 j=2,k=1

Fig. 3.13 Two normal modes of free circular plate

The first two zero frequencies correspond to the translation q = a and small rota-
tion q= ar sinϑ of the plate without deformation. The frequency according to β21 is
the lowest one that is positive. Two deformed shapes of the plate for j = 0, k = 2 and
j = 2, k = 1 are shown in Figure 3.13. If we sum up all these particular solutions,
the obtained Fourier series converges again uniformly to the solution satisfying ar-
bitrary regular initial conditions. The approximate solution for the rectangular plate
can be found in [48].

3.6 General Continuous Oscillators

We present in this Section the variational principles for general continuous oscilla-
tors and the method of solution.

Conservative Systems. We model an arbitrary continuous oscillator by a contin-
uum occupying the region V in the d-dimensional space, where x = (x1, . . . ,xd)
denotes any point of V . We have in all applications d = 1,2,3. Suppose that each
configuration of this continuum is uniquely determined by a set of functions (fields)
u1(x), . . . ,un(x). If u1(x), . . . ,un(x) can vary independently and arbitrarily at each
point x of the continuum, they are called generalized displacements, and n a num-
ber of degrees of freedom at that point. Motion of the system is described by the
time dependent fields ui(x, t). We denote by ui,t = (u1,t , . . . ,un,t) the corresponding
velocities.

Hamilton’s variational principle. Hamilton’s variational principle of least action
states that among all admissible motions of the conservative system satisfying the
initial and end conditions

ui(x, t0) = ui0(x), ui(x, t1) = ui1(x),

as well as the boundary conditions

ui(x, t) = 0 at x ∈ ∂V , (3.49)

the true motion is the extremal of the action functional

I[ui(x, t)] =
∫ t1

t0

∫
V

L(x,ui,ui,α ,ui,t)dxdt.
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Here and in what follows, Latin indices numerating the degrees of freedom run from
1 to n, while Greek indices numerating the coordinates run from 1 to d, the comma
in indices denotes partial derivatives with respect to the corresponding coordinates,
and dx = dx1 . . .dxd is the volume element. Before deriving the equations of mo-
tion let us consider briefly, without detailed derivations, some further examples of
Lagrangian.

EXAMPLE 3.6. Timoshenko’s beam theory.

In this one-dimensional model (d = 1) we have two degrees of freedom at each
point x: the displacement of the beam axis w(x) and function ψ(x) describing the
first branch of the thickness-shear vibration of the cross-section. The Lagrangian of
the Timoshenko beam is given by

L =
1
2
ρh2(w2

,t +αh2ψ2
,t )−

1
2
μh2[sh2ψ2

,x +β
2α(ψ+w,x)

2], (3.50)

with ρ being the mass density, h the thickness of the cross-section, μ the shear
modulus, and α , s, and β the constants depending on the geometry of the cross-
section (see the derivation of this formula in [31]).

EXAMPLE 3.7. Reissner-Mindlin’s plate theory.

This is the two-dimensional model (d = 2) of the plate with three degrees of freedom
at each point: w(x) corresponding to the mean transverse displacement of the plate,
ψ1(x) and ψ2(x) describing the first branches of the thickness-shear vibration. The
Lagrangian of Reissner-Mindlin’s plate theory reads

L =
1
2
ρh(w2

,t +αh2ψ2
1,t +αh2ψ2

2,t)

− 1
2
μh[

h2

6
(σψ2

α ,α +ψ(α ,β )ψ(α ,β ))+απ2(ψα +w,α)(ψα +w,α)],

where

ψ(α ,β ) =
1
2
(ψα ,β +ψβ ,α), α =

1
2

(
π2

24

)2

and all other notations remain the same as for Kirchhoff’s plate theory (see [31] for
the derivation of this theory as well as many other shell and rod theories).

EXAMPLE 3.8. Acoustic vibrations (sound waves).

Small amplitude vibrations of ideal compressible fluids (or ideal gases) are governed
by the equations of motion of these media linearized about their equilibrium state
[8,45]. The velocity potentialϕ(x) is regarded as the only generalized displacement,
so in 3-D case we have d = 3 and n = 1. The Lagrangian reads

L =
1
2
ρ0(ϕ,αϕ,α − 1

c2ϕ
2
,t ),
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where ρ0 is the equilibrium mass density and c =
√
∂ p/∂ρ |ρ0 the speed of sound,

with p being the pressure. The interesting feature of this Lagrangian is that its first
term corresponds to the kinetic energy, while the second term describes the devia-
tion of the internal energy density from that of the equilibrium state. However, the
governing equation does not change if we change the sign of L and interpret the
second term as the kinetic energy, while the first term as the potential energy.

EXAMPLE 3.9. Vibrations of a three-dimensional elastic body.

Vibrations of a three-dimensional elastic body are best described within the 3-D
elasticity theory [33], for which d = n = 3. At each point x of the body we have
three displacements uα(x), α = 1,2,3. The Lagrangian reads

L =
1
2
ρ(x)uα ,tuα ,t − 1

2
Eαβγδ (x)εαβ εγδ ,

where ρ(x) is the mass density,

εαβ =
1
2
(uα ,β + uβ ,α)

are the components of the strain tensor and Eαβγδ (x) the elastic moduli. For homo-
geneous bodies ρ and Eαβγδ do not depend on x.

EXAMPLE 3.10. Vibrations of a three-dimensional piezoelectric body.

Piezoelectric crystals and ceramics are widely used as sensors and actuators for
the active vibration control [31, 42]. Their vibrations are described within the 3-D
dynamic theory of piezoelectricity, for which d = 3 and n = 4. At each point x of
the body we have three displacements uα(x), α = 1,2,3 and the electric potential
ϕ(x). The Lagrangian reads

L =
1
2
ρuα ,tuα ,t − (

1
2

cE
αβγδ εαβ εγδ − eαβγεαβEγ − 1

2
εS
αβEαEβ ),

where

εαβ =
1
2
(uα ,β + uβ ,α) and Eα =−ϕ,α

are the components of the strain tensor and the electric field, respectively.
Let us derive the equations of motion from Hamilton’s variational principle. To

this end we calculate the variation of the action functional

δ I =
∫ t1

t0

∫
V

(
∂L
∂ui

δui +
∂L
∂ui,α

δui,α +
∂L
∂ui,t

δui,t

)
dxdt.

As before we employ Einstein’s summation convention according to which all terms
with repeated indices will be summed up within their ranges. For example, the sec-
ond term in the above equation reads
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∂L
∂ui,α

δui,α =
n

∑
i=1

d

∑
α=1

∂L
∂ui,α

δui,α .

Integrating by parts over x and t with the help of Gauss’ theorem and using the
initial and end conditions as well as the boundary conditions, we obtain

δ I =
∫ t1

t0

∫
V

(
∂L
∂ui

− ∂
∂xα

∂L
∂ui,α

− ∂
∂ t

∂L
∂ui,t

)
δui dxdt = 0.

Since δui can be chosen independently and arbitrarily inside the region V × (t0, t1),
the variational equation implies Euler-Lagrange’s equations

∂
∂ t

∂L
∂ui,t

+
∂
∂xα

∂L
∂ui,α

− ∂L
∂ui

= 0, i = 1, . . . ,n. (3.51)

These equations are subject to the kinematic boundary conditions (3.49) for the
fixed boundary. For the free boundary δui may vary arbitrarily at ∂V , so the natural
boundary conditions

∂L
∂ui,α

να = 0 at ∂V , i = 1, . . . ,n,

must be used instead.
Thus, the motion of any conservative mechanical system is governed by a single

function, the Lagrangian, which is of the form

L(x,ui,ui,α ,ui,t) = K(x,ui,t)−U(x,ui,ui,α),

where K(x,ui,t) is the kinetic energy density and U(x,ui,ui,α) the internal energy
density. The kinetic energy density K(x,ui,t) is a positive definite quadratic form
with respect to ui,t

K(x,ui,t) =
1
2
ρi j(x)ui,tu j,t , (3.52)

where ρi j(x) is n× n symmetric matrix called a mass density matrix. Thus,

∂K
∂ui,t

ui,t = 2K(ui,t),

showing that K is a homogeneous function of order two with respect to ui,t . We
now prove that the conservation of energy follows from equations (3.51). Indeed,
multiplying (3.51) with ui,t and integrating over V , we obtain

∫
V

(
∂
∂ t
∂K
∂ui,t

ui,t +
∂
∂xα

∂L
∂ui,α

ui,t − ∂L
∂ui

ui,t

)
dx = 0.

Integrating the second term by parts using the boundary conditions and keeping in
mind the property of K, we get
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∫
V

[
∂
∂ t

(2K)− ∂L
∂ui,t

ui,tt − ∂L
∂ui,α

ui,αt − ∂L
∂ui

ui,t

]
dx = 0.

The last three terms in the integrand give −∂L/∂ t. Thus,

d
dt

E =
d
dt

∫
V
(K +U)dx = 0,

and the total energy E is conserved.
For small vibrations we may assume that both ui and ui,α are small and present

the internal energy density U as the quadratic form

U(x,ui,ui,α) =
1
2

Eiα jβ (x)ui,αu j,β +
1
2

Ai j(x)(ui −Bα(x)ui,α)(u j −Bβ (x)u j,β ).

(3.53)
The examples considered above show that the internal energy density U(x,ui,ui,α)
must be non-negative definite4 with respect to its arguments ui and ui,α , but not
necessarily positive definite. The internal energy density may vanish for example at
rigid-body motions if the boundary conditions admit such motions. Concerning the
coefficients of this quadratic form we require the following symmetry properties

Ai j(x) = A ji(x), Eiα jβ (x) = E jβ iα(x).

Taking these symmetry properties into account, we get for the partial derivatives of
the Lagrangian with respect to ui and ui,α the following formulas

∂L
∂ui

=−∂U
∂ui

=−Ai j(u j −Bβu j,β ),

∂L
∂ui,α

=− ∂U
∂ui,α

=−Eiα jβu j,β +Ai jBα(u j −Bβu j,β ),

where the argument x of the coefficients is suppressed for short. Substituting these
formulas into Euler-Lagrange’s equations, we obtain the equations of motion

ρi ju j,tt − (Eiα jβu j,β ),α +(Ai jBα(u j −Bβu j,β )),α +Ai j(u j −Bβu j,β ) = 0.

These equations can be presented also in the operator form as follows

Mu,tt +Ku = 0, (3.54)

where M is the mass density matrix and K the differential operator, called a stiffness
operator, which maps the vector-valued function u(x, t) (having n components) into
the vector-valued function according to

4 Except piezoelectric bodies considered in example 3.10 where U represents the electric
enthalpy. Using Legendre transformation we can obtain the non-negative definite internal
energy in terms of the strain tensor and the electric induction field [31].
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(Ku)i =−(Eiα jβu j,β ),α +(Ai jBα(u j −Bβu j,β )),α +Ai j(u j −Bβu j,β ).

We have to find the solution of (3.54) satisfying the initial conditions

u(x,0) = u0(x), u,t(x,0) = v0(x). (3.55)

and the boundary conditions (3.49) (or the natural boundary conditions for the free
boundary).

Solution. We seek a particular solution of (3.54) in the form

u(x, t) = q(x)w(t).

Separating the variables x and t as usual, we arrive at the eigenvalue problem

(K−λM)q = 0, (3.56)

subject to the boundary condition

q = 0 at x ∈ ∂V ,

where λ = ω2, ω being the eigenfrequency. It turns out that all eigenvalues are real
and non-negative. Indeed, if λ is an eigenvalue and q(x) a corresponding eigenfunc-
tion, then, by taking the scalar product of (3.56) with q(x) we have

〈q,Kq〉−λ 〈q,Mq〉= 0.

Here and in what follows the scalar product between two vector-valued functions
u(x) and v(x) is defined by

〈u,v〉 ≡
∫

V
ui(x)vi(x)dx.

Thus,

λ =
〈q,Kq〉
〈q,Mq〉 .

The numerator can be transformed by the integration by parts using the boundary
conditions giving

〈q,Kq〉=
∫

V
qi[−(Eiα jβq j,β ),α +(Ai jBα(q j −Bβq j,β )),α +Ai j(q j −Bβq j,β )]dx

=

∫
V
[Eiα jβqi,αq j,β +Ai j(qi −Bαqi,α)(q j −Bβq j,β )]dx = 2

∫
V

U(x,qi,qi,α)dx,

so 〈q,Kq〉 ≥ 0. Since the denominator 〈q,Mq〉 = 2
∫

V K(x,qi)dx is positive, the
eigenvalue λ is non-negative. The expression for λ is Rayleigh’s quotient, for which
extremal properties of eigenfrequencies of a continuous oscillator can be established
(see exercise 3.11).



132 3 Continuous Oscillators

Note that the stiffness operator K is self-adjoint in the following sense: for arbi-
trary two functions u(x) and v(x)

〈u,Kv〉= 〈v,Ku〉.

Indeed, integrating the expression on the left-hand side by parts using the boundary
conditions and the symmetry properties of Ai j(x) and Eiα jβ (x), we have

〈u,Kv〉=
∫

V
ui[−(Eiα jβ v j,β ),α +(Ai jBα(v j −Bβv j,β )),α +Ai j(v j −Bβv j,β )]dx

=

∫
V
[Eiα jβui,αv j,β +Ai j(ui −Bαui,α)(v j −Bβv j,β )]dx

=

∫
V

vi[−(Eiα jβu j,β ),α +(Ai jBα(u j −Bβu j,β )),α +Ai j(u j −Bβu j,β )]dx,

and thus 〈u,Kv〉= 〈v,Ku〉. The self-adjointness of K implies the following orthog-
onality property: two eigenfunctions q1,q2 corresponding to two different eigenval-
ues λ1 �= λ2 are orthogonal in the following sense

〈q1,Mq2〉= 0, 〈q1,Kq2〉= 0.

To show this we multiply equation (3.56) for λ1 with q2 to get

〈q2,Kq1〉= λ1〈q2,Mq1〉.

Similar procedure applied to the equation for λ2 gives

〈q1,Kq2〉= λ2〈q1,Mq2〉.

Subtracting these equations from each other and using the symmetry of M and the
self-adjointness of K, we obtain

(λ1 −λ2)〈q1,Mq2〉= 0,

which implies the orthogonality. We choose the following normalization condition
for the eigenfunctions

〈q j ,Mq j〉= 1.

Provided the region V is compact and the operator K is self-adjoint and non-
negative definite, one can show that the problem (3.56) has a countable set of eigen-
values

0 ≤ λ1 ≤ λ2 ≤ . . . , lim
j→∞

λ j =+∞,

called a spectrum of the continuous oscillator. Based on this result we can now
solve the initial boundary-value problem by combining the eigenfunctions with the
solutions for wj(t)
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wj(t) = a j cosω jt + b j sinω jt

to present the general solution of (3.54) in form of the series

u(x, t) =
∞

∑
j=1

q j(x)(a j cosω jt + b j sinω jt).

The initial conditions (3.55) lead to

∞

∑
j=1

a jq j(x) = u0(x),
∞

∑
j=1

b jω jq j(x) = v0(x).

Multiplying these equations with Mqi and making use of the orthogonality and nor-
malization conditions, we get

ai = 〈u0,Mqi〉, bi =
1
ωi

〈v0,Mqi〉.

For the compact region V one can prove that the eigenfunctions form an orthogonal
basis in the space of continuous and piecewise continuously differentiable functions
(see, e.g., [12]) and the Fourier series converges uniformly to the solution if its initial
data u0 and v0 belong to this function space.

Dissipative Systems. For dissipative continuous oscillators the following varia-
tional principle holds true: among all admissible motions of an arbitrary dissipative
system constrained by the initial and end conditions

u(x, t0) = u0(x), u(x, t1) = u1(x),

as well as the boundary conditions (3.49), the true motion satisfies the variational
equation

δ
∫ t1

t0

∫
V

L(x,u,u,α ,u,t)dxdt −
∫ t1

t0

∫
V

(
∂D
∂ui,t

δui +
∂D
∂ui,αt

δui,α

)
dxdt = 0. (3.57)

Here D(x,ui,t ,ui,αt) is the dissipation function. Calculation of variation in exactly
the same manner as in the previous case leads to

∫ t1

t0

∫
V

(
∂L
∂ui

− ∂
∂xα

∂L
∂ui,α

− ∂
∂ t

∂L
∂ui,t

− ∂D
∂ui,t

+
∂
∂xα

∂D
∂ui,αt

)
δui dxdt = 0.

Due to the arbitrariness of δui inside the region V × (t0, t1) the following equations
are obtained

∂
∂ t

∂L
∂ui,t

+
∂
∂xα

∂L
∂ui,α

− ∂L
∂ui

+
∂D
∂ui,t

− ∂
∂xα

∂D
∂ui,αt

= 0, i = 1, . . . ,n.
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These equations are subject to the kinematic boundary conditions (3.49) for the fixed
boundary. For the free boundary the natural boundary conditions

(
∂L
∂ui,α

− ∂D
∂ui,αt

)
να = 0 at ∂V , i = 1, . . . ,n,

must be used instead.
Thus, the motion of continuous dissipative mechanical systems is governed by

two functions, the Lagrangian and the dissipation function. We take the Lagrangian
in the form

L(x,ui,ui,α ,ui,t) = K(x,ui,t)−U(x,ui,ui,α),

where the kinetic and potential energy densities are given by (3.52) and (3.53), re-
spectively. Concerning the dissipation function the most simple assumption is that
of proportional damping, for which

D(x,ui,t ,ui,αt) = αK(x,ui,t)+βU(x,ui,t,ui,αt),

with α and β being two constants. The first term in the right-hand side of this
equation is thought of as the external damping due to the resistance to motion by
the surrounding medium (say, the air resistance), while its second term is normally
referred to as the internal damping which must be proportional to the relative motion
of parts of the system. In this case, it is easy to show that the equation of motion can
be presented in the form

Mu,tt +Cu,t +Ku = 0, (3.58)

where M is the mass density matrix and K the stiffness operator obtained previously.
The operator C, called a damping operator, is given by

C = αM+βK.

Equation (3.58) is subject to the boundary conditions (3.49) and the initial condi-
tions (3.55).

Solution. We seek a particular solution of (3.58) in the form

u(x, t) = q j(x)wj(t),

where q j(x) is an eigenvector found from the eigenvalue problem (3.56) and wj(t)
an unknown scalar function. Substituting this Ansatz into (3.58) and taking into
account the proportionality property, we reduce this equation to

Mq j[ẅ j +(α+βω2
j )ẇ j +ω2

j w j] = 0.

Since Mq j �= 0, the expression in the square brackets must vanish giving

ẅ j +(α+βω2
j )ẇ j +ω2

j w j = 0.
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This ordinary differential equation can be solved by the method discussed in Sec-
tion 1.2. The general solution of (3.58) is obtained as the linear superposition of
these particular solutions. Thus, the problem reduces to solving a countable set of
uncoupled differential equations. Since the damping coefficients of these equations
increase with the frequencies, the amplitudes of high frequency modes decay much
faster than those of low-frequency modes. Thus, the truncation of the mass, stiff-
ness, and damping matrices makes sense and its error can be controlled if α and β
are known.

3.7 Exercises

EXERCISE 3.1. Derive the equations of motion for an infinite chain of atoms, where
each atom interacts with m nearest neighbors on the left as well as m nearest neigh-
bors on the right. Show the transition to the continuum.

Solution. Let u j be the displacements of atoms from their equilibrium positions.
Then the kinetic energy of this chain reads

K(u̇) =
1
2

m∑
j

u̇2
j .

The potential energy of the springs is

U(u) =
1
2∑j

m

∑
α=1

kα(u j − u j−α)2.

Lagrange’s equations of this chain lead to

mü j +
m

∑
α=1

[kα(u j − u j−α)− kα(u j+α − u j)] = 0.

We can represent these equations in the equivalent quasi-continuum form by using
the one-to-one correspondence between functions of discrete and continuous argu-
ments

u(x) = b∑
j

u( jb)δB(x− jb),

where b is the lattice constant. As shown in Section 3.1, the kinetic energy of the
chain becomes

K(u,t) =
∫

1
2
μu2

,t dx,

where μ = m/b. Let us rewrite the potential energy of the discrete chain in the form

U(u) =
1
2∑j,l

u jΦ( j− l)ul ,
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where Φ(− j) =Φ( j) and

Φ(0) = 2
m

∑
α=1

kα , Φ( j) =−k j for 0 < j ≤ m, Φ( j) = 0 for | j|> m.

In terms of u(x) the potential energy is given by

U(u) =
1
2

∫ ∞

−∞

∫ ∞

−∞
u(x)Φ(x− y)u(y)dxdy,

where

Φ(x) =
1

2π

∫ ∞

−∞
Φ(k)eikxdk,

and

Φ(k) =
1
b ∑| j|≤m

Φ( j)e−i jbk, k ∈ B.

Thus, the action functional can be presented in terms of the function u(x, t) as fol-
lows

I[u(x, t)] =
∫ t1

t0
dt
∫ ∞

−∞

[
1
2
μu2

,t −
1
2

∫ ∞

−∞
u(x, t)Φ(x− y)u(y, t)dy

]
dx.

Varying this action functional, we obtain the integral equation

μu,tt +
∫ ∞

−∞
Φ(x− y)u(y, t)dy = 0.

The continuum limit can be obtained by approximating function Φ(k) in the long
wave range |k| � 1:

Φ(k) =
2
b

m

∑
α=1

kα(1− cosαbk)≈
m

∑
α=1

kαα2

b
(bk)2.

With this approximation the equation of motion reduces to

μu,tt − Su,xx = 0,

where S = b∑m
α=1 kαα2.

EXERCISE 3.2. A string of length l is released from a position shown in Fig. 3.14.
Determine its motion.

Solution. The initial conditions of the string are

w(x,0) = w0(x) =

{
w0
a x for x < a,
w0
a−l (x− l) otherwise,

w,t(x,0) = 0.
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a l

w0

Fig. 3.14 Initial position of string

The solution to the equation of motion w,tt = c2w,xx satisfying the boundary condi-
tions w(0, t) = w(l, t) = 0 reads

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt),

where ω j = j πc
l . The initial conditions yield

√
2
l

∞

∑
j=1

a j sin
jπ
l

x = w0(x),

√
2
l

∞

∑
j=1

ω jb j sin
jπ
l

x = v0(x) = 0.

Thus, the coefficients b j vanish. To determine the coefficients a j, we use the orthog-
onality and normalization conditions to get

a j =

√
2
l

∫ l

0
w0(x)sin

jπ
l

xdx

=

√
2
l

[∫ a

0

w0

a
xsin

jπ
l

xdx+
∫ l

a

w0

a− l
(x− l)sin

jπ
l

xdx

]

=

√
2
l

⎡
⎣ lw0

(
l sin

(
πa j

l

)
−πa j cos

(
πa j

l

))
π2a j2

+
lw0

(
l
(

sin(π j)− sin
(
πa j

l

))
+π j(a− l)cos

(
πa j

l

))
π2 j2(a− l)

⎤
⎦

=

√
2
l

l3w0 sin
(
πa j

l

)
π2 j2a(l − a)

.

Finally, the solution takes the form

w(x, t) =
∞

∑
j=1

2l2w0 sin
(
πa j

l

)
π2 j2a(l − a)

sin
jπ
l

xcos j
πc
l

t.
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EXERCISE 3.3. An elastic bar of length l has its free end stretched uniformly so
that its length becomes l+u0, and then is released from that position (see Fig. 3.15).
Determine its motion.

l

l+u0

Fig. 3.15 Uniformly stretched bar

Solution. Let u(x, t) be the longitudinal displacement of the bar. The equation of
longitudinal vibration of the bar reads

u,tt = c2u,xx.

This equation is subject to the boundary conditions

u(0, t) = 0, u,x(l, t) = 0.

The last condition is the traction free boundary condition.
Let us first find the particular solutions by separating the variables with the

Ansatz u(x, t) = q(x)p(t). It is easy to show that q(x) satisfies the equation

q′′+
(ω

c

)2
q = 0

and the boundary conditions

q(0) = 0, q′(l) = 0.

The solution reads
q(x) = Acos

ω
c

x+Bsin
ω
c

x.

The first boundary condition implies that A = 0. From the second boundary condi-
tion we get

cos
ω
c

l = 0 ⇒ ω = ω j = (2 j− 1)
πc
2l

, j = 1,2, . . . .

As the normalization condition we choose again

∫ l

0
q2

j(x)dx = 1 ⇒ q j(x) =

√
2
l

sin
(2 j− 1)π

2l
x.

Combining this with the solution for p(t)

p(t) = a j cosω jt + b j sinω jt,

we represent the general solution in form of the Fourier series
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u(x, t) =

√
2
l

∞

∑
j=1

sin
(2 j− 1)π

2l
x(a j cosω jt + b j sinω jt).

The initial conditions of the bar

u(x,0) = u0(x) =
u0

l
x, u,t(x,0) = 0,

yield

√
2
l

∞

∑
j=1

a j sin
(2 j− 1)π

2l
x = u0(x),

√
2
l

∞

∑
j=1
ω jb j sin

(2 j− 1)π
2l

x = v0(x) = 0.

Thus, the coefficients b j vanish. To determine the coefficients a j we use the orthog-
onality and normalization conditions to get

a j =

√
2
l

∫ l

0

u0

l
xsin

(2 j− 1)π
2l

xdx =

√
2
l

4lu0(−1) j+1

π2(2 j− 1)2 .

Finally, the solution takes the form

u(x, t) =
∞

∑
j=1

8u0(−1) j+1

π2(2 j− 1)2 sin
(2 j− 1)π

2l
x cos(2 j− 1)

πc
2l

t.

EXERCISE 3.4. An elastic shaft having a rigid disk attached at its free end performs
torsional vibrations. The disk has a moment of inertia JD (see Fig. 3.16). Derive the
equation of small vibrations and the boundary conditions from Hamilton’s varia-
tional principle. Determine the eigenfrequencies.

Fig. 3.16 Shaft with rigid disk attached at its end

Solution. We write down the action functional of this system

I[ϕ(x, t)] =
∫ t1

t0

∫ l

0
(

1
2
ρJpϕ2

,t −
1
2

GJpϕ2
,x)dxdt +

∫ t1

t0

1
2

JDϕ,t(l, t)2 dt.

The last term corresponds to the action functional of the disk. Varying this action
functional, we have
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δ I =
∫ t1

t0

∫ l

0
(ρJpϕ,tδϕ,t −GJpϕ,xδϕ,x)dxdt +

∫ t1

t0
JDϕ,t(l, t)δϕ,t (l, t)dt

=

∫ t1

t0

∫ l

0
(−ρJpϕ,tt +GJpϕ,xx)δϕ dxdt −

∫ t1

t0
(GJpϕ,x + JDϕ,tt )δϕ

∣∣
x=l dt = 0.

Since δϕ can be chosen arbitrarily in the interval (0, l) and at the end point x = l,
this equation implies that

ρJpϕ,tt −GJpϕ,xx = 0 ⇒ ϕ,tt − c2ϕ,xx = 0

inside (0, l), with c2 = G/ρ , and

GJpϕ,x + JDϕ,tt = 0

at x = l. Together with the boundary condition at x = 0

ϕ(0, t) = 0,

these constitute the eigenvalue problem. To determine the spectrum of this system
we seek for the solution in the form

ϕ(x, t) = q(x)eiωt .

Substituting this Ansatz into the equation of motion and the boundary conditions,
we obtain

ω2q+ c2q′′ = 0,

and
q(0) = 0, GJpq′(l)− JDω2q(l) = 0.

From the equation for q(x) we find that

q(x) = Acos
ω
c

x+Bsin
ω
c

x.

The boundary condition q(0) = 0 yields A = 0. The other boundary condition at
x = l leads to the transcendental equation to determine the eigenfrequencies

GJp
ω
c

cos
ω
c

l − JDω2 sin
ω
c

l = 0,

or

tan
ω
c

l =
GJp

JD

1
ωc

.

EXERCISE 3.5. Find the eigenfrequencies of flexural vibrations of a beam with one
clamped edge and one free edge. Plot the shapes of the first three modes of vibra-
tions.

Solution. For the beam with one clamped edge at x = 0 and one free edge at x = l
the boundary conditions read
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w(0, t) = w,x(0, t) = 0, w,xx(l, t) = w,xxx(l, t) = 0.

The standard separation of variables leads to the following eigenvalue problem

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ, together with the boundary conditions

q(0) = q′(0) = 0, q′′(l) = q′′′(l) = 0.

The solution reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Substituting this solution into the boundary conditions, we obtain
⎛
⎜⎜⎝

0 1 0 1
1 0 1 0

−sinλ −cosλ sinhλ coshλ
−cosλ sinλ coshλ sinhλ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

where λ = κ l. The non-trivial solution exists if the determinant of the matrix van-
ishes giving

1+ cosλ coshλ = 0.

The first three roots of this equation are

λ1 = 1.8751, λ2 = 4.6941, λ3 = 7.8548.

The roots λ j with j > 3 are approximately given by (2 j−1)π/2. The shapes of the
first three modes of vibrations are plotted in Fig. 3.17.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

xl

qj(x)

Fig. 3.17 Three first eigenfunctions

EXERCISE 3.6. The beam of length l and mass m sketched in Fig. 3.18 is released
and latches upon impact onto the support B. Provided there is no rebound and no
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loss of energy, determine the flexural vibration of the beam after impact. How to
proceed if there is a rebound?

h

A B

Fig. 3.18 Falling beam

Solution. Before impact the beam experiences a free falling. The conservation of
energy yields

1
2

JAϕ̇2
0 = mg

h
2
,

where ϕ̇0 is the angular velocity of the beam immediately before impact, and

JA = JS +m(l/2)2 = m
l2

12
+m

l2

4
= m

l2

3

is the moment of inertia of the beam about A. Thus, the angular velocity ϕ̇0 is equal
to

ϕ̇0 =

√
3gh
l2 .

Knowing this angular velocity before impact, we find the initial conditions of the
beam upon impact

w(x,0) = w0(x) = 0, w,t(x,0) = ϕ̇0x.

The solution to the equation of motion μw,tt = EJw,xxxx satisfying the simply sup-
ported boundary conditions reads

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt),

where ω j = ( jπ)2
√

EJ
μl4 . The initial conditions yield

√
2
l

∞

∑
j=1

a j sin
jπ
l

x = 0,

√
2
l

∞

∑
j=1

ω jb j sin
jπ
l

x = v0(x) = ϕ̇0x.
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Thus, the coefficients a j vanish. To determine the coefficients b j we use the orthog-
onality and normalization condition to get

b j =
1
ω j

√
2
l

∫ l

0
ϕ̇0xsin

jπ
l

xdx =
1
ω j

√
2
l
ϕ̇0l2(−1) j+1

π j
.

Finally, the solution takes the form

w(x, t) =
∞

∑
j=1

2ϕ̇0l(−1) j+1

ω jπ j
sin

jπ
l

xsinω jt.

In case of rebound the simply supported boundary conditions at x = l should be
replaced by the free boundary conditions

w,xx(l, t) = w,xxx(l, t) = 0,

while the initial conditions are obtained from the previous solution by the continuity
of displacement and velocity.

EXERCISE 3.7. Derive the boundary conditions for a beam connected with a spring
shown in Fig. 3.19. Find the eigenfrequencies.

k

Fig. 3.19 Beam with spring

Solution. To derive the boundary conditions we write down the action functional

I[w(x, t)] =
∫ t1

t0

∫ l

0
[
1
2
μw2

,t −
1
2

EJ(w,xx)
2]dxdt −

∫ t1

t0

1
2

k(w(l, t))2 dt,

where the last term is associated with the potential energy of the spring. Varying this
action functional, we obtain

δ I =
∫ t1

t0

∫ l

0
(μw,tδw,t −EJw,xxδw,xx)dxdt −

∫ t1

t0
kw(l, t)δw(l, t)dt.

Integrating the first two terms by parts and using the initial and end conditions as
well as the kinematic boundary conditions at x = 0

w(0, t) = w,x(0, t) = 0,

we reduce the first variation to
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δ I =
∫ t1

t0

∫ l

0
(−μw,tt −EJw,xxxx)δwdxdt −

∫ t1

t0
EJw,xxδw,x|x=l dt

+

∫ t1

t0
(EJw,xxx − kw)δw|x=l dt.

Thus, the first variation vanishes for arbitrary variations of w when

μw,tt +EJw,xxxx = 0

inside the interval (0, l) and

w = w,x = 0 at x = 0,

w,xx = 0, EJw,xxx − kw = 0 at x = l.

The last boundary condition means that the resultant force acting on the beam is
equal to the spring force. This condition can also be written in the form

w,xxx −αw = 0 at x = l, α =
k

EJ
.

5 10 15 20

-5000

5000

D( )/cosh

Fig. 3.20 Function D(λ )/coshλ

The standard separation of variables leads to the following equation for the shape
function

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ. The solution of this equation reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Substituting this solution into the boundary condition we get four linear equations
to determine four coefficients C1, C2, C3, C4. The determinant of this system, D(λ ),
reads
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∣∣∣∣∣∣∣∣

0 1 0 1
1 0 1 0

−sinλ −cosλ sinhλ coshλ
−λ 3 cosλ −β sinλ λ 3 sinλ −β cosλ λ 3 coshλ −β sinhλ λ 3 sinhλ −β coshλ

∣∣∣∣∣∣∣∣
where λ = κ l and β = l3k/EJ. Fig. 3.20 shows the plot of function D(λ )/coshλ
against λ at β = 1. The roots of this function correspond to the dimensionless fre-
quencies.

EXERCISE 3.8. An elastic beam is subjected to a harmonic end load as shown in
Fig. 3.21. Determine its forced vibration.

f̂ cos t

Fig. 3.21 Beam under harmonic end load

Solution. The vibration of the beam must be the extremal of the following action
functional

I[w(x, t)] =
∫ t1

t0

∫ l

0
[
1
2
μw2

,t −
1
2

EJ(w,xx)
2]dxdt +

∫ t1

t0
f (t)w(l, t)dt,

where the last term describes the virtual work done by the concentrated load. Vary-
ing this action functional we have

δ I =
∫ t1

t0

∫ l

0
(μw,tδw,t −EJw,xxδw,xx)dxdt +

∫ t1

t0
f (t)δw(l, t)dt

=

∫ t1

t0

∫ l

0
(−μw,tt −EJw,xxxx)δwdxdt

−
∫ t1

t0
EJw,xxδw,x|x=l dt +

∫ t1

t0
(EJw,xxx + f (t))δw|x=l dt = 0.

This implies the equation of motion

μw,tt +EJw,xxxx = 0,

and the boundary conditions at x = l

w,xx = 0, EJw,xxx + f (t) = 0.

Together with the kinematic boundary conditions at x = 0

w(0, t) = 0, w,x(0, t) = 0,
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these constitute the boundary-value problem to determine the forced vibration. For
the harmonic end load f (t) =− f̂ cosωt we look for the particular solution (describ-
ing the forced vibration) in the form

w(x, t) = q(x)cosωt.

Substituting into the equation of motion and the boundary conditions, we obtain

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ, and
q(0) = 0, q′(0) = 0,

as well as

q′′(l) = 0, q′′′(l) =
f̂

EJ
.

Thus, the solution reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Substituting this solution into the above boundary conditions, we get four linear
equations to determine four coefficients C1, C2, C3, C4

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0

−sinλ −cosλ sinhλ coshλ
−cosλ sinλ coshλ sinhλ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
0
f̂

EJκ3

⎞
⎟⎟⎠ ,

where λ = κ l.

EXERCISE 3.9. A square membrane is subjected to a harmonic load acting at its
center. Determine the forced vibration.

Solution. Consider first the case of an arbitrarily distributed load f (x, t). The equa-
tion of motion of the membrane can be obtained from Hamilton’s variational prin-
ciple and from the following action functional

I[w(x, t)] =
∫ t1

t0

∫
A
(

1
2
μw2

,t −
1
2

Sw,αw,α)dxdt +
∫ t1

t0

∫
A

f (x, t)wdxdt.

The last term in this action functional represents the work done by the external load.
Varying this functional we easily derive the following equation

μw,tt − SΔw = f (x, t).

Dividing this equation by μ , we reduce it to the form

w,tt − c2Δw = p(x, t),
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where p = f/μ . For the harmonic load p = p̂(x)cosωt we look for the particular
solution (describing the forced vibration) in the form

w(x, t) = q(x)cosωt.

Substituting this Ansatz into the equation of motion, we obtain the Helmholtz equa-
tion

−ω2q− c2Δq = p̂(x)

Since the eigenfunctions

q j(x) =
2
a

sin
j1πx1

a
sin

j2πx2

a
, j = ( j1, j2), j1, j2 = 1,2, . . . ,

form a complete orthogonal basis in the space of continuously differentiable func-
tions, we expand both p̂(x) and q(x) in the double Fourier series

p̂(x) =∑
j

Pjq j(x), q(x) =∑
j

Q jq j(x).

Substituting these series into the equation for q, making use of the properties of
eigenfunctions

Δq j +λ jq j = 0, λ j =
ω2

j

c2 = π2
(

j2
1

a2 +
j2
2

b2

)
,

and comparing the terms on the right- and left-hand sides with the same q j, we
obtain for the coefficients Q j the formulas

(ω2
j −ω2)Q j = Pj ⇒ Q j =

Pj

ω2
j −ω2

.

For the concentrated load acting in the middle of the membrane p̂(x) = p̂0δ (x−
x0), with x0 = (a/2,a/2), the coefficients Pj are given by

Pj =
∫

A
p̂0δ (x− x0)q j(x)dx = p̂0q j(x0) = p̂0

2
a

sin
j1π
2

sin
j2π
2

.

Thus, if j1 = 2k1 − 1 and j2 = 2k2 − 1, then Pj =
2 p̂0

a (−1)k1+k2 , otherwise Pj = 0.
Consequently, the solution reads

w(x, t) =
∞

∑
k1,k2=1

4 p̂0

a2

1

ω2
j −ω2

(−1)k1+k2 sin
(2k1 − 1)πx1

a
sin

(2k2 − 1)πx2

a
cosωt,

where j = (2k1 − 1,2k2− 1).

EXERCISE 3.10. Determine the eigenfrequencies of a circular plate with a simply
supported boundary.



148 3 Continuous Oscillators

Solution. The equation of motion of the plate as well as the boundary conditions are
derived from Hamilton’s variational principle with the following action functional

I[w(x, t)] =
∫ t1

t0

∫
A
[
1
2
ρhw2

,t −
μh3

12
(σw2

,αα +w,αβw,αβ )]dxdt.

Computing the first variation of this action functional in exactly the same manner as
in Section 3.5, we derive the equation

ρhw,tt +DΔΔw = 0.

Taking into account that w= 0 at ∂A but νγδw,γ may be chosen arbitrarily, we derive
from Hamilton’s variational principle the following boundary conditions

w = 0, mαβ νανβ = 0 at ∂A.

For the circular plate the standard separation of time and of the polar coordinates
r and ϑ leads to

w(r,ϑ , t) = q(r,ϑ)eiωt ,

where

q = [aJj(β r)+ bIj(β r)]

{
cos jϑ
sin jϑ

,

and β 4 = ω2ρhr4
m/D = 6ρω2r4

m
μ(σ+1)h2 . In the polar coordinates r,ϑ we have

mαβ νανβ = μ
h3

6
(σΔq+

∂ 2q
∂ r2 ) = 0

at r = 1. Substituting the solution into these boundary conditions, we obtain

aJj(β )+ bIj(β ) = 0,

a{−β 2Jj(β )+ (1−ν)[ j2Jj(β )−βJ′j(β )]}
+b{β 2I j(β )+ (1−ν)[ j2I j(β )−β I′j(β )]}= 0.

The frequency equation is obtained by the condition of vanishing determinant.
When j = 0, the frequency equation can be presented in a simple form

J0(β )[β I0(β )− (1−ν)I′0(β )]+ I0(β )[βJ0(β )+ (1−ν)J′0(β )] = 0.

The three lowest roots βk of this frequency equation for ν = 0.31 are

β1 = 2.5504, β2 = 5.585, β3 = 8.6948.
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EXERCISE 3.11. Prove the extremal properties of eigenfrequencies of a continuous
oscillator based on the minimization of Rayleigh’s quotient.

Solution. Consider the variational problem of minimization of Rayleigh’s quotient

min
q�=0

〈q,Kq〉
〈q,Mq〉 ,

where
〈q,Mq〉=

∫
V

qi(x)ρi j(x)q j(x)dx,

and
〈q,Kq〉=

∫
V
[Eiα jβqi,αq j,β +Ai j(qi −Bαqi,α)(q j −Bβq j,β )]dx.

Obviously, this minimization problem is equivalent to the following problem: find
the minimum of the functional

〈q,Kq〉
among q satisfying the constraint

〈q,Mq〉= 1.

To get rid of this constraint we introduce the Lagrange multiplier, λ , and consider
the following functional

〈q,Kq〉−λ (〈q,Mq〉− 1).

Varying this functional with respect to λ and q we obtain the above constraint to-
gether with the following equation

(K−λM)q = 0.

Thus, λ is the eigenvalue. By writing Rayleigh’s quotient in terms of the normal
coordinates we can show that its minimum corresponds to the smallest eigenvalue.

EXERCISE 3.12. Find the spectrum of radial vibrations for an elastic isotropic
sphere of radius a.

Solution. We derive the equation of motion in the spherical coordinates. For the
radial vibrations the non-zero component of displacement, ur, depends only on r. In
this situation the non-zero components of the strain tensor are

εrr = ur,r, εθθ = εϕϕ =
ur

r
.

Then the action functional reduces to

I[ur(r)] =
∫ t1

t0

∫ a

0
L(r,ur,ur,r,ur,t)dr dt,
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where

L(r,ur,ur,r,ur,t) = 4π
[

1
2
ρ(ur,t)

2 − 1
2
λ (ur,r +

2ur

r
)2 − μ(ur,r)

2 − 2μ(
ur

r
)2
]

r2.

It is easy to show that the Euler-Lagrange equation

∂
∂ t

∂L
∂ur,t

+
∂
∂ r

∂L
∂ur,r

− ∂L
∂ur

= 0

implies

ρur,tt − (λ + 2μ)
(

ur,r +
2ur

r

)
,r
= 0.

The standard Ansatz with ur(r, t) = q(r)eiωt reduces this equation to
(

q,r +
2q
r

)
,r
+ k2q = 0,

where k2 =ω2/c2
d , with cd =

√
(λ + 2μ)/ρ being the velocity of dilatational waves.

Let q = φ,r. Then in terms of φ we have the equation

φ,rr +
2φ,r

r
+ k2φ = 0.

The solution which is regular at r = 0 reads

φ =
A
r

sinkr.

The boundary condition obtained from the above action functional at r = a is

λ (ur,r + 2
ur

r
)+ 2μur,r = 0.

Taking into account the equation for φ , this boundary condition can be written in
the form

c2
dk2φ + 4c2

s
φ,r
a

= 0,

where cs =
√
μ/ρ denotes the velocity of shear waves. Substituting the solution

into this boundary condition we obtain the transcendental equation

tanka
ka

=
1

1− (kacd/2cs)2 .

whose roots determine the spectrum of the radial vibrations.
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