
Chapter 2
Coupled Oscillators

This chapter deals with small vibrations of mechanical systems with many degrees
of freedom. The effective method of solution for conservative systems is the linear
transformation leading to uncoupled single oscillators. For dissipative systems the
effective method of solution is the Laplace transform based on the linear superposi-
tion principle.

2.1 Conservative Oscillators

Differential Equations of Motion. Just as for systems with one degree of freedom,
we can use either the force method or the energy method to derive the equations
of motion for systems with two or several degrees of freedom. In the force method
we must free each part of the system from the surrounding, then draw the free-body
diagram with all acting forces, and finally apply Newton’s law. In the energy method
based on Hamilton’s variational principle, we find the Lagrange function in terms
of generalized coordinates and velocities and write down Lagrange’s equations. We
will see that, although both methods are equivalent, the energy method turns out
to be more succinct for systems with many degrees of freedom and with various
constraints. Let us begin with conservative systems having two degrees of freedom.

EXAMPLE 2.1. Coupled mass-spring oscillators. Two point-masses m1 and m2

move horizontally under the action of two massless springs of stiffnesses k1 and
k2 (see Fig. 2.1). Derive the equations of motion for these coupled oscillators.

Let x1 and x2 be the displacements from the equilibrium positions of the point-
masses m1 and m2, respectively. In the force method we first free the point-mass m1

from the springs, then draw the free-body diagram (see Fig. 2.1), and finally apply
Newton’s law for m1 in the x-direction

m1ẍ1 =∑Fx =−k1x1 + k2(x2 − x1).
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Fig. 2.1 Coupled mass-spring oscillators

Repeating the same procedure for m2 (see Fig. 2.1), we obtain

m2ẍ2 =∑Fx =−k2(x2 − x1).

Bringing the spring forces to the left-hand sides, we arrive at the system of equations
of motion

m1ẍ1 + k1x1 − k2(x2 − x1) = 0,

m2ẍ2 + k2(x2 − x1) = 0.
(2.1)

To use the energy method we write down the kinetic energy

K(ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2,

and the potential energy

U(x) =
1
2

k1x2
1 +

1
2

k2(x2 − x1)
2,

where x = (x1,x2), ẋ = (ẋ1, ẋ2). With the Lagrange function L(x, ẋ) = K(ẋ)−U(x),
we derive from Lagrange’s equations (see the derivation of these equations from
Hamilton’s variational principle in Section 2.4)

d
dt
∂L
∂ ẋ j

− ∂L
∂x j

= 0, j = 1,2

the equations of motion (2.1).

EXAMPLE 2.2. Coupled pendulums. Two pendulums are connected with each other
by a spring of stiffness k (see Fig. 2.2). Derive the equations of motion for this
system.

In the force method we must free the first pendulum and add the spring force to the
free-body diagram drawn for the mathematical pendulum in example 1.2. Because
of the smallness of ϕ1 and ϕ2, the magnitude of the spring force is equal to kl(ϕ2 −
ϕ1)/2, so the moment equation about A reads

m1l2ϕ̈1 =∑Mz =−m1glϕ1 + k
l2

4
(ϕ2 −ϕ1).
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Fig. 2.2 Coupled pendulums

Applying the same procedure to the second pendulum, we obtain

m2l2ϕ̈2 =∑Mz =−m2glϕ2 − k
l2

4
(ϕ2 −ϕ1).

To use the energy method we write down the kinetic energy

K(ϕ̇) =
1
2

m1l2ϕ̇2
1 +

1
2

m2l2ϕ̇2
2 ,

and, taking into account the smallness of ϕ1 and ϕ2, the potential energy

U(ϕ) =
1
2

m1glϕ2
1 +

1
2

m2glϕ2
2 +

1
2

k(l(ϕ2 −ϕ1)/2)2,

where ϕ = (ϕ1,ϕ2), ϕ̇ = (ϕ̇1, ϕ̇2). The last term corresponds to the energy of the
spring. With L(ϕ , ϕ̇) = K(ϕ̇)−U(ϕ) we derive from Lagrange’s equations

m1l2ϕ̈1 +m1glϕ1 − k
l2

4
(ϕ2 −ϕ1) = 0,

m2l2ϕ̈2 +m2glϕ2 + k
l2

4
(ϕ2 −ϕ1) = 0,

(2.2)

which are equivalent to the above equations.

EXAMPLE 2.3. Primitive model of a vehicle. A rigid bar, supported by two springs
of stiffnesses k1 and k2, carries out a translational motion of its center of mass S in
the vertical direction and a rotation in the plane about S (see Fig. 2.3). Derive the
equations of motion for this system.

We see again the typical “engineering” approach to the problem: instead of dealing
with a real vehicle with thousands of details and degrees of freedom, we try to select
the most important of them.1 In this simplified model the bar is constrained to have
only two degrees of freedom: the vertical motion of S and the rotation in the plane
about S. Let the vertical displacement of S from the equilibrium position be x and

1 This selection depends of course on the aim of our simulations. See also a primitive model
of an airplane with three degrees of freedom in exercise 2.12.
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the angle of rotation be ϕ . In the force method we free the bar from the springs and
apply Newton’s law to it in the x-direction

mẍ =−k1(x+ l1ϕ)− k2(x− l2ϕ).

S

k1k2
l1l2

x

Fig. 2.3 Primitive model of
vehicle

Note that the weight of the bar does not contribute
to this equation because it is compensated with the
static spring forces. In addition, the moment equa-
tion about S for the bar reads

JSϕ̈ =−k1l1(x+ l1ϕ)+ k2l2(x− l2ϕ),

with JS being the moment of inertia of the bar about
S. The static spring forces do not contribute to this
moment equation by the same reason.

To use the energy method we denote by q= (x,ϕ)
and q̇ = (ẋ, ϕ̇) and write down the kinetic energy

K(q̇) =
1
2

mẋ2 +
1
2

JSϕ̇2,

and the potential energy

U(q) =
1
2

k1(xst + x+ l1ϕ)2 +
1
2

k2(xst + x− l2ϕ)2 +mgx,

where xst corresponds to the change of length of the springs in the horizontal equi-
librium state compared to that in the stress-free state. Expanding the spring energies
and taking into account the equilibrium conditions, we see that the linear terms in x
and ϕ are canceled out, so up to a constant,

U(q) =
1
2

k1(x+ l1ϕ)2 +
1
2

k2(x− l2ϕ)2.

Thus, we derive again from Lagrange’s equations the equations of motion.

Solution. We illustrate the method of solution on example 2.2. To simplify the anal-
ysis we consider the special case m1 = m2 = m. Dividing equations (2.2) by ml2, we
get

ϕ̈1 +ω2
0ϕ1 −α(ϕ2 −ϕ1) = 0,

ϕ̈2 +ω2
0ϕ2 +α(ϕ2 −ϕ1) = 0,

(2.3)

where

ω0 =

√
g
l
, α =

k
4m

,

with ω0 being the eigenfrequency of the uncoupled pendulum and α the coupling
factor. We seek a particular solution of (2.3) in the form
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ϕ1 = ϕ̂1est , ϕ2 = ϕ̂2est ,

where ϕ̂1 and ϕ̂2 are unknown constants. Substituting this Ansatz into (2.3), we
obtain

[s2ϕ̂1 +ω2
0 ϕ̂1 −α(ϕ̂2 − ϕ̂1)]e

st = 0,

[s2ϕ̂2 +ω2
0 ϕ̂2 +α(ϕ̂2 − ϕ̂1)]e

st = 0.

Since est is not equal to zero, the expressions in the square brackets must vanish. We
may present these equations in the matrix form as follows

(
s2 +ω2

0 +α −α
−α s2 +ω2

0 +α

)(
ϕ̂1

ϕ̂2

)
=

(
0
0

)
. (2.4)

From linear algebra we know that non-trivial solutions of (2.4) exist if its determi-
nant vanishes ∣∣∣∣s

2 +ω2
0 +α −α

−α s2 +ω2
0 +α

∣∣∣∣= (s2 +ω2
0 +α)2 −α2 = 0. (2.5)

Equation (2.5), quadratic with respect to s2, yields

s2
1 =−ω2

0 , s2
2 =−(ω2

0 + 2α).

Thus, the roots of (2.5) are imaginary numbers given by

s1 =±iω1, s2 =±iω2, (2.6)

with ω1 = ω0 and ω2 =
√
ω2

0 + 2α being called the eigenfrequencies. Note that the

amplitudes ϕ̂1 and ϕ̂2 cannot be arbitrary. For example, if s = s1, then (2.4) implies
that

ϕ̂1 = ϕ̂2,

or, in the vector form,

ϕ̂ϕϕ =

(
ϕ̂1

ϕ̂2

)
=C1q1, q1 =

1√
2

(
1
1

)
.

Thus, the vector ϕ̂ϕϕ is proportional to the eigenvector q1 which is normalized to have
the length 1. Likewise, for s = s2 we have from (2.4) ϕ̂1 =−ϕ̂2, or

ϕ̂ϕϕ =C2q2, q2 =
1√
2

(−1
1

)
.

Note that q2 is orthogonal to q1. Because q jest = q je±iωt satisfy (2.3) which are the
differential equations with real coefficients, their real and imaginary parts

q j cosωt and q j sinωt
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must satisfy also these equations. The general solution can now be constructed using
the linear superposition principle

ϕϕϕ =

(
ϕ1

ϕ2

)
= q1(A1 cosω1t +B1 sinω1t)+q2(A2 cosω2t +B2 sinω2t).

The four unknown coefficients A1, B1 and A2, B2 must be found from the initial
conditions

ϕϕϕ(0) = ϕϕϕ0, ϕ̇ϕϕ(0) = ϕ̇ϕϕ0

giving

A1q1 +A2q2 = ϕϕϕ0,

B1ω1q1 +B2ω2q2 = ϕ̇ϕϕ0.

Then, using the orthogonality of q1 and q2, we obtain from here

A j = ϕϕϕ0 ·q j, B j =
1
ω j
ϕ̇ϕϕ0 ·q j, j = 1,2,

with the dot denoting the scalar product of two vectors. Alternatively, we can present
the solution in the form

ϕϕϕ = q1a1 cos(ω1t −φ1)+q2a2 cos(ω2t −φ2). (2.7)

Recalling the addition theorem for cos(ωt −φ), we find

a j =
√

A2
j +B2

j , tanφ j =
B j

A j
, j = 1,2.

For α� 1 (weak coupling) solution (2.7) exhibits an interesting phenomenon called
beating or amplitude modulation (see exercise 2.4).

Normal Modes and Coordinates. As we see from (2.7) the solution is the superpo-
sition of two harmonic cosine functions with different frequencies. If the frequency
ratio is not a rational number, the motion is no longer periodic in general.2 However,
for the initial conditions of the special form

ϕ1(0) = ϕ2(0), ϕ̇1(0) = ϕ̇2(0),

or
ϕ1(0) =−ϕ2(0), ϕ̇1(0) =−ϕ̇2(0),

the motion is purely harmonic with the frequencyω1 or ω2. We call such the special
periodic motion normal mode. Fig. 2.4 shows the normal modes corresponding to
ω = ω1 and ω = ω2, respectively. For mode 1 (symmetric mode) the pendulums
oscillate in phase, consequently the spring does not change its length and has no

2 It is in general quasi-periodic (see exercise 2.5).
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(1) (2)

Fig. 2.4 Modes of vibration: 1) ω = ω1, 2) ω = ω2

influence on the frequency (ω = ω1 = ω0). For mode 2 (antisymmetric mode) the
pendulums oscillate in counter-phases, and the spring stiffness makes the frequency
ω2 higher than ω1.

The question now arises: can we find the coordinates in which the normal modes
become independent? The first observation is that this holds true if the kinetic and
potential energies of the system, in terms of the new coordinates ξ1 and ξ2, take the
form

K(ξ̇ ) =
1
2
(ξ̇ 2

1 + ξ̇ 2
2 ), U(ξ ) =

1
2
(ω2

1ξ
2
1 +ω2

2ξ
2
2 ).

Indeed, in this case Lagrange’s equations of the system become uncoupled

d
dt
∂L

∂ ξ̇ j
− ∂L
∂ξ j

= ξ̈ j +ω2
j ξ j = 0, j = 1,2,

yielding two independent modes of vibrations with the frequenciesω1 andω2. Thus,
the answer must be found by the well-known procedure in linear algebra of simul-
taneously diagonalizing two positive definite quadratic forms [37]. In our simple
example we may divide both the kinetic and potential energies by ml2 to get

K(ϕ̇) =
1
2
(ϕ̇2

1 + ϕ̇2
2 ),

and

U(ϕ) =
1
2
ω2

0ϕ
2
1 +

1
2
ω2

0ϕ
2
2 +

1
2
α(ϕ2 −ϕ1)

2.

These formulas suggest the following obvious choice of normal coordinates

ξ1 =
1√
2
(ϕ1 +ϕ2), ξ2 =

1√
2
(ϕ2 −ϕ1).

In terms of the new coordinates we have

K(ξ̇ ) =
1
2
(ξ̇ 2

1 + ξ̇ 2
2 ), U(ξ ) =

1
2
[ω2

0ξ
2
1 +(ω2

0 + 2α)ξ 2
2 ],

so this is the Lagrange function of two independent oscillators with the frequen-
cies ω1 and ω2. We will see later that the reduction of a general conservative os-
cillator with n degrees of freedom to n uncoupled single oscillators is possible and
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realized by a linear transformation which simultaneously diagonalize the kinetic and
potential energies as quadratic forms.

2.2 Dissipative Oscillators

Differential Equations of Motion. We have seen from the previous Sections that,
although both the force and the energy methods are equivalent, the latter turns out
to be more advantageous for systems with many degrees of freedom. Since we are
now familiar with the energy method and convinced in its equivalence with the force
method, we shall use exclusively the former to derive the equations of motion.

EXAMPLE 2.4. Mass-spring-damper oscillators. Two masses m1 and m2 move hor-
izontally under the action of two massless springs of stiffnesses k1 and k2 and two
dampers of damping constants c1, c2 (see Fig. 2.5). Derive the equations of motion
for these coupled oscillators.

m1

x1

k1 k2

c1

m2

c2
x2

Fig. 2.5 Mass-spring-damper oscillators with two degrees of freedom

Let x1 and x2 be the displacements from the equilibrium positions of the masses m1

and m2, respectively. Similar to example 2.1 the Lagrange function reads

L(x, ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 −

1
2

k1x2
1 −

1
2

k2(x2 − x1)
2.

With the dissipation function

D(ẋ) =
1
2

c1ẋ2
1 +

1
2

c2(ẋ2 − ẋ1)
2,

we derive from modified Lagrange’s equations

d
dt
∂L
∂ ẋ j

− ∂L
∂x j

+
∂D
∂ ẋ j

= 0, j = 1,2

the equations of motion

m1ẍ1 + c1ẋ1 − c2(ẋ2 − ẋ1)+ k1x1 − k2(x2 − x1) = 0,

m2ẍ2 + c2(ẋ2 − ẋ1)+ k2(x2 − x1) = 0.
(2.8)

EXAMPLE 2.5. Coupled pendulums with spring and damper. Two pendulums are
connected with each other by a spring of stiffness k and a damper of damping con-
stant c (see Fig. 2.6). Derive the equations of small vibration for this system.
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Fig. 2.6 Coupled damped pendulums

Similar to example 2.2 the Lagrange function is given by

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2
1 +

1
2

ml2ϕ̇2
2 −

1
2

mglϕ2
1 −

1
2

mglϕ2
2 −

1
2

k(l(ϕ2 −ϕ1)/2)2. (2.9)

The dissipation function reads

D(ϕ̇) =
1
2

cl2(ϕ̇2 − ϕ̇1)
2. (2.10)

From modified Lagrange’s equations

d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

+
∂D
∂ ϕ̇ j

= 0, j = 1,2,

we derive the equations of motion

ml2ϕ̈1 − cl2(ϕ̇2 − ϕ̇1)+mglϕ1 − k
l2

4
(ϕ2 −ϕ1) = 0,

ml2ϕ̈2 + cl2(ϕ̇2 − ϕ̇1)+mglϕ2 + k
l2

4
(ϕ2 −ϕ1) = 0.

(2.11)

EXAMPLE 2.6. Damped vehicle. A rigid bar, connected with two springs of stiff-
nesses k1 and k2 and a damper with the damping force acting in the center of mass
S, performs a translational motion of S in the vertical direction and a rotation in the
plane about S (see Fig. 2.7). Derive the equations of motion for this damped vehicle.

Let q = (x,ϕ) and q̇ = (ẋ, ϕ̇). We write down the Lagrange function as in example
2.3

L(q, q̇) =
1
2

mẋ2 +
1
2

JSϕ̇2 − 1
2

k1(x+ l1ϕ)2 − 1
2

k2(x− l2ϕ)2.

Furthermore, the dissipation function reads

D(q̇) =
1
2

cẋ2.
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Fig. 2.7 Damped vehicle

Now, from modified Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

+
∂D
∂ q̇ j

= 0, j = 1,2,

we derive the equations of motion

mẍ+ cẋ+ k1(x+ l1ϕ)+ k2(x− l2ϕ) = 0,

JSϕ̈+ k1l1(x+ l1ϕ)− k2l2(x− l2ϕ) = 0.
(2.12)

Classification of Damping. Let q be the column vector whose components are the
generalized coordinates. In our examples 2.4, 2.5, and 2.6 it is

q =

(
x1

x2

)
, q =

(
ϕ1

ϕ2

)
, q =

(
x
ϕ

)
,

respectively. The equations of motion derived above can be written in the matrix
form as follows

Mq̈+Cq̇+Kq = 0, (2.13)

where the matrices M, C, and K are called mass, damping, and stiffness matrices,
respectively. For instance, in example 2.6 we have

M =

(
m 0
0 JS

)
, C =

(
c 0
0 0

)
, K =

(
k1 + k2 k1l1 − k2l2

k1l1 − k2l2 k1l2
1 + k2l2

2

)
.

In general, all three matrices M, C, and K are symmetric. The symmetry of C
follows from the formula for the damping forces

Q j =− ∂D
∂ q̇ j

,

and from the fact that D is quadratic with respect to q̇. In thermodynamics of
irreversible processes this symmetry property is the consequence of Onsager’s
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principle. The mass matrix M is always positive definite in the sense that there
exists a positive constant m such that the inequality

q ·Mq ≥ mq ·q
holds true for arbitrary q. If the system does not permit rigid-body motions, then the
stiffness matrix K is also positive definite. Concerning the damping matrix C we
may merely assume in general its non-negative definiteness in the sense that

q ·Cq ≥ 0

for arbitrary q. Note, however, that in reality, if the resistance to motion through the
viscous damping of the air or through the internal damping affecting all degrees of
freedom is taken into account, then C must also be positive definite.

We call the damping exhaustive if the damping matrix C is positive definite. In
this case all motions decay exponentially. If there exists some q such that q ·Cq= 0,
but nevertheless all motions of the system decay exponentially, the damping is called
permeating. If there exists some vibration mode which does not decay with time, the
damping is called non-permeating. The damping is called proportional if

C = αM+βK. (2.14)

According to this classification the damping in example 2.4 is exhaustive, and if
c1 = βk1, c2 = βk2, then it is proportional. In example 2.5 the damping is obviously
proportional, but non-exhaustive and non-permeating: the dissipation vanishes for
ϕ1 = ϕ2, and this mode of vibration does not decay with time. In example 2.6 the
damping is non-exhaustive but permeating as long as the coupling factor k1l1 − k2l2
is not equal to zero. Indeed, if x(t) decays exponentially with time, then it follows
from (2.12)1 that ϕ(t) should also decay exponentially if k1l1 − k2l2 is not equal to
zero.

Solution. We analyze two cases.

Proportional damping. In this case we may choose the normal coordinates which
diagonalize all three matrices M, C, and K simultaneously and by this reduce the
system to two independent damped oscillators. We illustrate this on example 2.5.
Dividing the Lagrange function and the dissipation function by ml2 and choosing
the normal coordinates

ξ1 =
1√
2
(ϕ1 +ϕ2), ξ2 =

1√
2
(ϕ2 −ϕ1),

we obtain

L(ξ , ξ̇ ) =
1
2
(ξ̇ 2

1 + ξ̇ 2
2 )−

1
2
(ω2

1ξ
2
1 +ω2

2ξ
2
2 ), (2.15)

and
D(ξ̇ ) =

c
m
ξ̇ 2

2 . (2.16)
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In terms of the new coordinates modified Lagrange’s equations become

ξ̈1 +ω2
1ξ1 = 0,

ξ̈2 +
2c
m
ξ̇2 +ω2

2ξ2 = 0.

Thus, we see that the motions ξ1(t) and ξ2(t) are independent, and the motion
ξ1(t) is harmonic confirming that the damping in this example is non-permeating.
The obtained uncoupled equations can be solved by the method discussed in
Section 1.2.

Non-proportional damping. We illustrate the method of solution on example 2.6.
Dividing the equations of motion (2.12) by m and Js, respectively, and introducing
the notations

k1 + k2

m
= ω2

x ,
k1l2

1 + k2l2
2

JS
= ω2

ϕ ,
c
m

= χ ,

k1l1 − k2l2
m

= α2
1 ,

k1l1 − k2l2
JS

= α2
2 , α2

1α
2
2 = α4,

with ωx and ωϕ being the frequencies of uncoupled vibrations and α the coupling
factor, we transform (2.12) to

ẍ+ χ ẋ+ω2
x x+α2

1ϕ = 0,

ϕ̈+ω2
ϕϕ+α2

2 x = 0.
(2.17)

We seek a particular solution of (2.17) in the form

x = x̂est , ϕ = ϕ̂est .

Substituting this Ansatz into (2.17) and eliminating the factor est we obtain the linear
equations (

s2 + χs+ω2
x α2

1
α2

2 s2 +ω2
ϕ

)(
x̂
ϕ̂

)
=

(
0
0

)
. (2.18)

Non-trivial solutions of this system exist if the determinant vanishes
∣∣∣∣s

2 + χs+ω2
x α2

1
α2

2 s2 +ω2
ϕ

∣∣∣∣= 0.

This yields the characteristic equation

s4 + χs3 +(ω2
x +ω

2
ϕ)s

2 + χω2
ϕs+ω2

xω
2
ϕ −α4 = 0, (2.19)

which is the algebraic equation of fourth order with respect to s.
Since (2.19) is the equation with real coefficients, the complex roots occur in

pairs of complex conjugates. We want first to show that all roots have negative real
parts. According to the Routh-Hurwitz criterion [19] this is the case if



2.2 Dissipative Oscillators 57

T0 = a0 > 0, T1 = a1 > 0, T2 =

∣∣∣∣a1 a0

a3 a2

∣∣∣∣> 0,

T3 =

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣> 0, T4 =

∣∣∣∣∣∣∣∣

a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣
= a4T3 > 0,

where

a0 = 1, a1 = χ , a2 = ω2
x +ω

2
ϕ , a3 = χω2

ϕ , a4 = ω2
xω

2
ϕ −α4

are the coefficients of the characteristic equation. Elementary calculations give

T0 = 1 > 0, T1 = χ > 0, T2 = χω2
x > 0,

T3 = χ2(ω2
x +ω

2
ϕ +ω

2
xω

2
ϕ +α

4)> 0, T4 = (ω2
xω

2
ϕ −α4)T3 > 0,

so the Routh-Hurwitz criterion is fulfilled.
Although the characteristic equation can be solved in closed analytical form, the

analysis of exact solution is rather tedious. We therefore consider the case of small
damping χ � ωx, χ � ωϕ and seek s in the form s = (−κ ± i)ω , where κ � 1.
Then to the first approximation

s2 ≈−(1± 2κ i)ω2, s3 ≈ (3κ∓ i)ω3, s4 ≈ (1± 4κ i)ω4.

Substituting this into (2.19) and neglecting the powers of χ and κ higher than one,
we obtain in the first approximation

ω4 − (ω2
x +ω2

ϕ)ω2 +ω2
xω2

ϕ −α4

± i[4κω4− χω3 − 2κ(ω2
x +ω

2
ϕ)ω

2 + χωω2
ϕ ] = 0.

This complex expression is zero if its real and imaginary parts vanish. So, we obtain
two equations determining the eigenfrequencies ω1,2 and the decay rates κ1,2ω1,2.
Note that the equation for the eigenfrequencies

ω4 − (ω2
x +ω

2
ϕ)ω

2 +ω2
xω

2
ϕ −α4 = 0

is identical with that of the undamped vehicle in example 2.3. Thus, for small damp-
ing the eigenfrequencies remain the same as those of the undamped coupled oscil-
lators which are given by

ω2
1,2 =

1
2
(ω2

x +ω
2
ϕ)∓

√
1
4
(ω2

x −ω2
ϕ)

2 +α4.

Fig. 2.8 shows the plots of dimensionless frequencies (ω1,2/ωx)
2 versus the ratio

of frequencies (ωϕ/ωx)
2 at different coupling ratios (α/ωx)

2. It can be seen that
for the zero coupling α = 0 the eigenfrequencies coincide with those of uncoupled
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Fig. 2.8 Eigenfrequencies (ω1,2/ωx)
2 vs. ratio of uncoupled frequencies (ωϕ/ωx)

2 at differ-
ent coupling ratios (α/ωx)

2

oscillators ωϕ and ωx. The larger the coupling factor, the farther the eigenfrequen-
cies lie apart. The frequency ω2 is always larger than the largest from ωϕ and ωx,
while ω1 is smaller than the smallest from them.

The decay rates κ1,2ω1,2 should be determined from the equation

4κω4 − χω3 − 2κ(ω2
x +ω

2
ϕ)ω

2 + χωω2
ϕ = 0

giving

κ1ω1 =
χ(ω2

1 −ω2
ϕ)

4ω2
1 − 2(ω2

x +ω2
ϕ)

, κ2ω2 =
χ(ω2

2 −ω2
ϕ)

4ω2
2 − 2(ω2

x +ω2
ϕ)

.

Thus, the decay rates are positive and are of the same order as χ .
By substituting s found above into (2.18) we may establish the relations between

the amplitudes of vibrations. For s = (−κi ± i)ωi we have

q̂ =

(
x̂
ϕ̂

)
=C

(
(1± 2iκi)ω2

i −ω2
ϕ

α2
2

)
, i = 1,2.

Denoting by q1 and q2 the complex-valued vectors

q1 =

(
(1+ 2iκ1)ω2

1 −ω2
ϕ

α2
2

)
, q2 =

(
(1+ 2iκ2)ω2

2 −ω2
ϕ

α2
2

)
,

we may present the general solution of (2.17) in the form

q = e−κ1ω1t(A1q1eiω1t +B1q∗
1e−iω1t)+ e−κ2ω2t(A2q2eiω2t +B2q∗

2e−iω2t),

where asterisks denote complex conjugates. The four unknown real constants A1,
B1, A2, and B2 must be determined from the initial conditions.
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2.3 Forced Oscillators and Vibration Control

Differential Equations of Motion. We illustrate the derivation of the equations of
forced vibrations for systems with two degrees of freedom.

EXAMPLE 2.7. Mass-spring forced oscillators. The mass-spring oscillators with
two degrees of freedom are excited by the motion of the end-point xe(t). Derive
the equations of motion for these forced oscillators.

m1 m2

k1 k2
x1 x2xe

Fig. 2.9 Mass-spring forced oscillators

Since the change in length of the first spring is x1 − xe, we write for the Lagrange
function

L(x, ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 −

1
2

k1(x1 − xe)
2 − 1

2
k2(x2 − x1)

2.

This Lagrange function differs from that of example 2.1 only by the third term
corresponding to the energy of the first spring. From Lagrange’s equations we derive

m1ẍ1 + k1(x1 − xe)− k2(x2 − x1) = 0,

m2ẍ2 + k2(x2 − x1) = 0.

Bringing the term −k1xe to the right-hand side we obtain

m1ẍ1 + k1x1 − k2(x2 − x1) = k1xe(t),

m2ẍ2 + k2(x2 − x1) = 0.
(2.20)

EXAMPLE 2.8. Mass-spring-damper forced oscillators. The mass-spring-damper
oscillators with two degrees of freedom are excited by the force f (t) acting on the
mass m1 (see Fig. 2.8). Derive the equations of motion for these forced oscillators.

m2

m1

c
k1/2 k1/2

k2

f(t)

Fig. 2.10 Mass-spring-damper forced oscillators
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We denote by x1 and x2 the displacements of m1 and m2 in the vertical direction
from their equilibrium positions, respectively. Then the Lagrange function equals

L(x, ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 −

1
2

k1x2
1 −

1
2

k2(x2 − x1)
2,

while the dissipation function is

D(ẋ) =
1
2

c(ẋ2 − ẋ1)
2.

From modified Lagrange’s equations for the forced vibrations

d
dt
∂L
∂ ẋ j

− ∂L
∂x j

+
∂D
∂ ẋ j

= f j(t), j = 1,2,

with f j(t) being the external forces acting on the masses m j, we derive

m1ẍ1 − c(ẋ2 − ẋ1)+ k1x1 − k2(x2 − x1) = f (t),

m2ẍ2 + c(ẋ2 − ẋ1)+ k2(x2 − x1) = 0.
(2.21)

EXAMPLE 2.9. Coupled forced pendulums. The coupled pendulums as in example
2.5 are excited by a force p(t) acting on the second mass (see Fig. 2.11). Derive the
equations of motion for these coupled forced pendulums.

m m

k

l/2

l/2

l/2

l/2

g

A B

c
p(t)

ϕ1 ϕ2

Fig. 2.11 Coupled forced pendulums

Similar to example 2.5 the Lagrange function is given by (2.9), while the dissipation
function by (2.10). The virtual work done by the external force p(t) is

δA =

∫ t1

t0
p(t)lδϕ2 dt.

From modified Lagrange’s equations

d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

+
∂D
∂ ϕ̇ j

= f j(t), j = 1,2,
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we derive the equations of motion

ml2ϕ̈1 − cl2(ϕ̇2 − ϕ̇1)+mglϕ1 − k
l2

4
(ϕ2 −ϕ1) = 0,

ml2ϕ̈2 + cl2(ϕ̇2 − ϕ̇1)+mglϕ2 + k
l2

4
(ϕ2 −ϕ1) = p(t)l.

(2.22)

Harmonic Excitations. Equations of motion derived above are the inhomogeneous
linear differential equations of second order. The solution of these linear equations is
the sum of any particular solution of the inhomogeneous equations and the general
solution of the homogeneous equations which has been found in previous Section.
Thus, it is enough to find any particular solution of the inhomogeneous equations.
For the harmonic excitations this can be done directly. We consider two cases.

Conservative oscillators. We illustrate the method of solution on example 2.7, where
the excitation is assumed in the form: xe(t) = x̂e cos(ωt). Dividing the first and the
second equations of (2.20) by m1 and m2, respectively, we rewrite them in the form

ẍ1 +ν2
1 x1 − μν2

2 x2 = ν2
10x̂e cos(ωt),

ẍ2 +ν2
2 x2 −ν2

2 x1 = 0,

where

ν2
1 =

k1 + k2

m1
, ν2

2 =
k2

m2
, μ =

m2

m1
, ν2

10 =
k1

m1
.

Since the first derivatives ẋ1 and ẋ2 do not enter the equations of motion, we seek a
particular solution of these inhomogeneous differential equations in the form

x1 = x̂1 cosωt, x2 = x̂2 cosωt.

Substituting this Ansatz into the above equations and eliminating the common factor
cosωt on both sides, we obtain

(ν2
1 −ω2)x̂1 − μν2

2 x̂2 = ν2
10x̂e,

−ν2
2 x̂1 +(ν2

2 −ω2)x̂2 = 0.
(2.23)

Thus, the amplitudes of forced vibration are given by

x̂1 =
ν2

10(ν2
2 −ω2)x̂e

(ν2
1 −ω2)(ν2

2 −ω2)− μν4
2

,

x̂2 =
ν2

10ν
2
2 x̂e

(ν2
1 −ω2)(ν2

2 −ω2)− μν4
2

.

The behavior of the amplitudes, as functions of the frequencyω , is characterized
by the zeros of the denominator and the numerator. The denominator vanishes for
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Fig. 2.12 Resonance curves of mass-spring forced oscillators

ω2
1,2 =

1
2
(ν2

1 +ν2
2 )∓

√
1
4
(ν2

1 −ν2
2 )

2 + μν4
2 ,

which correspond to the eigenfrequencies of free vibration of this system. We see
that the eigenfrequenciesω1 and ω2 always lie outside the frequency range (ν1,ν2).
The plot of resonance functions x̂i/x̂e versus ω2 is shown in Fig. 2.12. These reso-
nance functions tend to infinity as ω approaches one of the frequencies ω1 and ω2,
corresponding to the resonances, and to zero as ω → ∞. While x̂2/x̂e �= 0 for all
frequencies, the amplitude x̂1 vanishes at ω = ν2. This phenomenon is called anti-
resonance (or vibration elimination) and the mass m2 together with the spring k2

a vibration eliminator. The elimination of forced vibration can be explained physi-
cally as follows. At the frequencyω = ν2 the eliminator and the excitation vibrate in
counter-phases such that the spring force acting on m1 from the eliminator is equal
and opposite to the exciting force k1x̂e cosωt. Indeed, equations (2.23) at ω = ν2

yield

x̂2 =−ν
2
10x̂e

μν2
2

=−k1

k2
x̂e.

Thus, the resultant force acting on m1 is zero and therefore that mass does not vi-
brate. To eliminate the unwanted forced vibration of m1 caused by some excitation
source with the fixed frequencyω we must therefore choose the mass and the spring
of the eliminator in such a relation that

√
k2/m2 = ω . However, if the excitation

source has a wider range of frequencies, this choice is no longer effective because,
as it is seen from Fig. 2.12, the resonance function x̂1/x̂e increases rapidly as ω
deviates from ν2.

Damped oscillators. We see from the previous example that the elimination of
forced vibration for the conservative oscillators is effective only if the excitation
source has a constant frequency. In the case of non-zero damping the situation
changes. We illustrate the method of solution on example 2.8, where the external
force is assumed in the form f (t) = f̂ cos(ωt). We rewrite equations (2.21) in the
matrix form



2.3 Forced Oscillators and Vibration Control 63

Mẍ+Cẋ+Kx = f̂cos(ωt), (2.24)

where

M =

(
m1 0
0 m2

)
, C =

(
c −c
−c c

)
, K =

(
k1 + k2 −k2

−k2 k2

)
, x =

(
x1

x2

)
, f̂ =

(
f̂
0

)
.

Now, the Ansatz x = x̂cos(ωt) with real x̂ does not work because the first deriva-
tive in (2.24) brings terms with the factor sin(ωt). However, we may do the follow-
ing “trick” to get the solution quickly. We regard the right-hand side of (2.24) as
f̂cos(ωt) = Re(f̂eiωt) and consider instead the following auxiliary equation

Mz̈+Cż+Kz = f̂eiωt . (2.25)

Now z may be complex-valued. Then we substitute the Ansatz z = ẑeiωt into this
equation and eliminate the common factor eiωt to obtain

(−ω2M+ iωC+K)ẑ= f̂.

Provided the matrix on the left-hand side has an inverse, this equation yields

ẑ = (−ω2M+ iωC+K)−1f̂ = G(ω)f̂.

Matrix G(ω) is called a transmittance matrix of the system. Since ẑeiωt is the so-
lution of (2.25) which is the equation with real matrices, its real part must satisfy
equation (2.24). So, the trick works!

Thus, the particular solution of (2.24) is

x(t) = Re(ẑeiωt),

or, in components,
x j(t) = Re(ẑ je

iωt), j = 1,2.

Since each complex number z can be presented as z = |z|e−iφ , we obtain from here

x j = |ẑ j|cos(ωt −φ j), j = 1,2.

With the matrices given above we may calculate the amplitude of x1

|x1|= |ẑ1|=
∣∣∣∣ f̂ (−m2ω2 + icω+ k2)

(−m1ω2 + icω+ k1 + k2)(−m2ω2 + icω+ k2)− (icω+ k2)2

∣∣∣∣ .
Dividing both the numerator and the denominator by k2

1 and introducing

x10 =
f̂

k1
, ω0 =

√
k1

m1
, κ =

k2

k1
, μ =

m2

m1
, η =

ω
ω0

, δ =
c

m1ω0
,
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Fig. 2.13 Resonance curves of mass-spring-damper forced oscillators

we present the previous equation in the dimensionless form as follows

∣∣∣∣ x1

x10

∣∣∣∣=
∣∣∣∣ −μη2 + iδη+κ
(−η2 + iδη+ 1+κ)(−μη2+ iδη+κ)− (iδη+κ)2

∣∣∣∣ ,
where the right-hand side is called a resonance function.

Fig. 2.13 shows the resonance curves |x1/x10| against the frequency ratio η =
ω/ω0 for μ = κ = 0.05 and for three damping ratios δ = 0 (dashed line), δ = 0.01
(bold line), δ = 0.032 (dotted line) [48]. In contrast to the conservative oscillators
(δ = 0), neither resonance nor vibration elimination is observed for the damped
forced oscillators with the finite damping. We call therefore the mass m2 together
with the spring k2 and the damper c a vibration absorber. It turns out that all res-
onance curves corresponding to different damping ratios intersect at the two fixed
points A and B (see exercise 2.8). If we want to reduce the maxima of the resonance
curve in equal way, then an optimal choice of the parameters of absorber is achieved
when points A and B are at equal level. This takes place when

κ =
μ

(1+ μ)2 .

Arbitrary Excitations. We illustrate the method of solution on example 2.9 for
which the proportional damping holds true. The more general non-proportional
damping case will be considered in Section 2.5. The coupled forced oscillators with
the proportional damping can always be reduced to the uncoupled single forced
oscillators. Indeed, in this example we choose the normal coordinates as

ξ1 =
1√
2
(ϕ1 +ϕ2), ξ2 =

1√
2
(ϕ2 −ϕ1),
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and present the normalized virtual work in the form

1
ml2 δA =

∫ t1

t0

p(t)
ml

δϕ2 dt =
∫ t1

t0

p(t)
ml

1√
2
(δξ1 + δξ2)dt.

Together with the Lagrange function (2.15) and the dissipation function (2.16) we
derive modified Lagrange’s equations

ξ̈1 +ω2
1ξ1 =

1√
2

p(t)
ml

,

ξ̈2 +
2c
m
ξ̇2 +ω2

2ξ2 =
1√
2

p(t)
ml

,

which can be solved by the Laplace transform as shown in Section 1.3.

2.4 Variational Principles

We present in this Section the variational principles for general systems having n
degrees of freedom [29]. For small vibrations about equilibrium states the energy
and dissipation become quadratic with respect to the generalized coordinates and
velocities, so that generalized Lagrange’s equations become linear.

Conservative Systems. Suppose that each configuration of a mechanical system
is uniquely determined by a point q = (q1, . . . ,qn) in an n-dimensional space. If
q1, . . . ,qn can vary independently and arbitrarily, they are called generalized coor-
dinates, and n a number of degrees of freedom. Motion of the system is described
by a function q(t). We denote by q̇ = (q̇1, . . . , q̇n) the corresponding generalized ve-
locities. Hamilton’s variational principle states that among all admissible motions
of the conservative system satisfying the initial and end conditions

q(t0) = q̂0, q(t1) = q̂1,

the true motion is the extremal of the action functional

I[q(t)] =
∫ t1

t0
L(q, q̇)dt.

Let us derive the equations of motion from Hamilton’s variational principle. To this
end we calculate the variation of the action functional (see also [17])

δ I =
∫ t1

t0

n

∑
j=1

(
∂L
∂q j

δq j +
∂L
∂ q̇ j

δ q̇ j

)
dt.

Integrating the second term by parts and taking into account that δq j(t0)= δq j(t1)=
0 due to the initial and end conditions, we get
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δ I =
∫ t1

t0

n

∑
j=1

(
∂L
∂q j

− d
dt
∂L
∂ q̇ j

)
δq j dt = 0. (2.26)

Since the variations δq j can be chosen independently and arbitrarily inside the in-
terval (t0, t1), (2.26) implies Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1, . . . ,n. (2.27)

For any conservative mechanical system the Lagrange function equals

L(q, q̇) = K(q, q̇)−U(q),

where K(q, q̇) is the kinetic energy and U(q) the potential energy. The kinetic energy
K(q, q̇) is assumed to be a positive definite quadratic form3 with respect to q̇

K(q, q̇) =
1
2

n

∑
j,k=1

m jk(q)q̇ jq̇k.

Thus,
n

∑
j=1

∂K
∂ q̇ j

q̇ j = 2K(q, q̇).

Any function possessing this property is called homogeneous function of order two
with respect to q̇. We want to show now that the conservation of energy follows from
Lagrange’s equations (2.27). Indeed, multiplying (2.27) by q̇ j and summing up over
j from 1 to n, we obtain

n

∑
j=1

(
d
dt
∂L
∂ q̇ j

q̇ j − ∂L
∂q j

q̇ j

)
= 0.

Using the product and chain rules of differentiation, we get

n

∑
j=1

d
dt

(
∂L
∂ q̇ j

q̇ j

)
−

n

∑
j=1

(
∂L
∂ q̇ j

q̈ j +
∂L
∂q j

q̇ j

)
=

d
dt
(

n

∑
j=1

∂L
∂ q̇ j

q̇ j −L) = 0. (2.28)

Taking into account the property of K, we see that the expression in parentheses is
equal to 2K −L = K +U . Thus, the total energy E = K +U = E0 is conserved. Al-
ternatively, the conservation of energy can also be obtained directly from (2.26) by
replacing the variations δq j with the real velocities q̇ j. Indeed, the same procedure
transforms (2.26) to

∫ t1

t0

d
dt
(K +U)dt = 0 ⇒ K +U = E0.

3 In some cases rearrangement of terms between the kinetic and potential energies is re-
quired to achieve this property (see exercise 5.1).
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Assume that U(q) has a local minimum at some point q0 corresponding to a stable
equilibrium state and consider small vibrations of our mechanical system about this
stable equilibrium state. For small q we may expand U(q) and K(q, q̇) in Taylor’s
series with respect to q near q0 to get

U(q) =U(q0)+
1
2

n

∑
j,k=1

∂ 2U
∂q j∂qk

∣∣∣∣
q0

q jqk + . . . ,

K(q, q̇) = K(q0, q̇)+ . . .=
1
2

n

∑
j,k=1

m jk(q0)q̇ jq̇k + . . . .

Due to the smallness of q j and q̇ j, we keep only the quadratic terms in these series.
Thus, neglecting the unessential constant U(q0) in the potential energy, we may
present both kinetic and potential energies as follows

K(q̇) =
1
2

n

∑
j,k=1

m jkq̇ jq̇k, U(q) =
1
2

n

∑
j,k=1

k jkq jqk. (2.29)

Thus, for small vibrations near the stable equilibrium state the kinetic energy K(q̇)
and the potential energy U(q) are the quadratic forms with respect to q̇ and q, re-
spectively. We call the matrix M with the elements m jk mass matrix, while K, with
the elements k jk, stiffness matrix. Both matrices are symmetric and positive definite.
The positive definiteness of K is due to the fact that U(q) has a local minimum at q0.
Lagrange’s equations of small vibrations near the equilibrium state become linear
equations

n

∑
k=1

(m jkq̈k + k jkqk) = 0, j = 1, . . . ,n.

Let q be the column vector q = (q1, . . . ,qn)
T . We may present these equations also

in the matrix form as follows
Mq̈+Kq = 0.

Dissipative Systems. In this case the following variational principle holds true:
among all admissible motions of a dissipative system constrained by the initial and
end conditions

q(t0) = q̂0, q(t1) = q̂1,

the true motion satisfies the variational equation4

δ
∫ t1

t0
L(q, q̇)dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt = 0. (2.30)

4 See page 10, loc. cit.
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Here D(q, q̇) is the dissipation function introduced first by Rayleigh [45]. Calcu-
lating the variation of the first term of (2.30) in exactly the same manner as in the
previous case leads to

∫ t1

t0

n

∑
j=1

(
∂L
∂q j

− d
dt
∂L
∂ q̇ j

)
δq j dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt = 0.

Due to the arbitrariness of δq j inside the time interval (t0, t1) the following equations
are obtained

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

+
∂D
∂ q̇ j

= 0, j = 1, . . . ,n. (2.31)

For dissipative systems vibrating near the equilibrium states the dissipation func-
tion can be assumed as a non-negative definite quadratic form with respect to q̇

D(q, q̇) =
1
2

n

∑
j,k=1

c jk(q)q̇ jq̇k ≥ 0 for all q̇,

where c jk is a symmetric matrix (Onsager’s principle [38]). In this case D(q, q̇) is
also the homogeneous function of order two with respect to q̇. We now derive the
balance equation of energy from modified Lagrange’s equations (2.31). Multiplying
(2.31) by q̇ j and summing up over j from 1 to n, we obtain

n

∑
j=1

(
d
dt
∂K
∂ q̇ j

q̇ j − ∂L
∂q j

q̇ j

)
=−

n

∑
j=1

∂D
∂ q̇ j

q̇ j.

The expression on the right-hand side is nothing else but the power of the damping
forces. Making the same observations as in the previous case and using the property
of D we get

d
dt
(K +U) =−2D(q, q̇).

Thus, the rate of change of energy is equal to −2D(q, q̇). Since −2D(q, q̇) is the
energy loss per unit time, we call 2D(q, q̇) energy dissipation rate. We see that the
energy dissipation rate is non-negative.5 Integrating this equation from t0 to t, we
find the energy change at time t

K +U −E0 =−2
∫ t

t0
D(q(s), q̇(s))ds =−Ed(t), (2.32)

where E0 is the total energy at t = t0 and Ed(t) the amount of energy dissipated
by the dampers at time t. Note that this balance equation can also be directly ob-
tained from the variational equation (2.30) by replacing the variations δq j by the
real velocities q̇ j.

5 It is interesting to mention that, if the system does not vibrate about the equilibrium states,
this property is no longer valid (see Section 5.3).
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For small vibrations near the stable equilibrium state q0 we may, to the first ap-
proximation, assume the kinetic and potential energies in the form (2.29). The dis-
sipation function can also be expanded in Taylor’s series near this state. Neglecting
all small terms of higher orders we write

D(q, q̇) = D(q0, q̇) =
1
2

n

∑
j,k=1

c jk(q0)q̇ jq̇k,

where the matrix C with the elements c jk(q0) is called the damping matrix. Modified
Lagrange’s equations of small vibrations near the equilibrium state take the form

n

∑
k=1

(m jkq̈k + c jkq̇k + k jkqk) = 0, j = 1, . . . ,n.

We may present these equations also in the matrix form as follows

Mq̈+Cq̇+Kq = 0.

Systems with External Forces. If there are external generalized forces f j(t) acting
on q j, we must add to the left-hand side of variational equation (2.30) the virtual
work done by the external forces. The variational principle becomes: among all
admissible motions constrained by the initial and end conditions

q(t0) = q̂0, q(t1) = q̂1,

the true motion satisfies the variational equation

δ
∫ t1

t0
L(q, q̇)dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt + δA = 0, (2.33)

where δA is the virtual work done by the generalized forces f j(t)

δA =

∫ t1

t0

n

∑
j=1

f j(t)δq j dt.

We can also take the Lagrange function in the form

L(q, q̇, t) = K(q, q̇)−U(q)+
n

∑
j=1

f j(t)q j,

and reformulate the variational equation as follows

δ
∫ t1

t0
L(q, q̇, t)dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt = 0.
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Since time enters the Lagrange function explicitly, such systems are called non-
autonomous.

From (2.33) one can derive modified Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

+
∂D
∂ q̇ j

= f j(t), j = 1, . . . ,n.

Replacing in the variational equation (2.33) the variations δqi by the real velocities
q̇i and repeating the transformations as in the previous paragraph, we obtain the
balance of energy in the form

K +U −E0 =−2
∫ t

t0
D(q(s), q̇(s))ds+

∫ t

t0

n

∑
j=1

f j(s)q̇ j(s)ds =−Ed(t)+W(t),

(2.34)
where E0 is the total energy at t = t0. The last term W (t) is the work done by the
external forces which is stored in the energy of the system except that part Ed(t)
dissipated by the dampers.

For small vibrations near the stable equilibrium state Lagrange’s equations can
be presented in the matrix form as follows

Mq̈+Cq̇+Kq = f(t),

with f(t) = ( f1(t), . . . , fn(t))T being the column vector of external forces.

2.5 Oscillators with n Degrees of Freedom

We present in this Section the method of solution and some general properties for
systems with n degrees of freedom, where n is an arbitrary natural number.

Conservative Oscillators. The motion is described by the equation

Mq̈+Kq = 0, (2.35)

where M and K are symmetric and positive definite matrices. We have to find the
solution of this equation satisfying the initial conditions

q(0) = q0, q̇(0) = v0. (2.36)

Solution. Let us first seek a particular solution of (2.35) in the form

q = q̂est ,

where q̂ is a constant vector. Substituting this Ansatz into (2.35) and eliminating the
non-vanishing factor est , we reduce the latter to the eigenvalue problem

(Ms2 +K)q̂ = 0. (2.37)
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The related characteristic equation

det(Ms2 +K) = 0

is the algebraic equation of order n with respect to s2 yielding n eigenvalues. It is
easy to see that all eigenvalues are real and negative. Indeed, if s2

j is an eigenvalue
and q j a corresponding eigenvector, then, multiplying (2.37) by the vector q j, we
have

q j ·Mq js
2
j +q j ·Kq j = 0.

Thus,

s2
j =− q j ·Kq j

q j ·Mq j
< 0, (2.38)

since both the numerator and denominator are positive. Therefore the roots of the
characteristic equation are imaginary numbers given by

s j =±iω j, j = 1, . . . ,n,

where ω j are called eigenfrequencies of vibrations. We will order them in such a
way that

0 < ω1 ≤ ω2 ≤ . . .≤ ωn.

Let q j be the eigenvector (the solution of (2.37)) corresponding to the j-th eigen-
value. It is defined uniquely up to a constant factor. We can fix this constant by some
normalization condition. As such we choose

q j ·Mq j = 1.

Note that two eigenvectors q j and qk corresponding to two different eigenvalues s2
j

and s2
k are orthogonal in the sense that

q j ·Mqk = 0.

To show this we multiply equation (2.37) for s = s j by qk to get

qk ·Mq js
2
j =−qk ·Kq j. (2.39)

Similar procedure applied to the equation for s = sk gives

q j ·Mqks2
k =−q j ·Kqk.

Subtracting these equations from each other and taking into account that M and K
are symmetric, we obtain

(s2
j − s2

k)q j ·Mqk = 0,

which implies the orthogonality. The orthogonality and normalization conditions
can be presented in one equation
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q j ·Mqk = δ jk =

{
1 if j = k,

0 otherwise.
(2.40)

If there is a multiple eigenvalue, then the corresponding eigenvectors span a sub-
space of dimension equal to the multiplicity of the eigenvalue. Therefore, it is al-
ways possible to find a set of vectors in this subspace satisfying the orthogonality
and normalization conditions.

Since q jeiω jt are the solutions of (2.35) which is the differential equation with
real matrices, their real and imaginary parts

q j cosω jt and q j sinω jt

must also satisfy this equation. The general solution can now be constructed as the
linear superposition

q(t) =
n

∑
j=1

q j(A j cosω jt +B j sinω jt).

The unknown coefficients A j and B j must be found from the initial conditions (2.36)
giving

n

∑
j=1

A jq j = q0,
n

∑
j=1

B jω jq j = v0.

Multiplying these equations from the left by M and then by qi and making use of
the orthogonality and normalization conditions, we obtain from here

Ai = qi ·Mq0, Bi =
1
ωi

qi ·Mv0, i = 1, . . . ,n.

Alternatively, we can present the solution in the form

q(t) =
n

∑
j=1

q ja j cos(ω jt −φ j),

where

a j =
√

A2
j +B2

j , tanφ j =
B j

A j
, j = 1, . . . ,n.

Normal modes and coordinates. The above solution is the sum of n harmonic mo-
tions, so it is in general non-periodic if the frequency ratios are not rational numbers.
However, for the initial conditions of the special form

q0 = q0q j, v0 = v0q j,

the motion is purely harmonic with the frequency ω j. We call such motion normal
mode.
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The question now arises: can we find the coordinates in which the normal modes
become independent? The similar consideration as that provided in example 2.2
shows that this is possible if the kinetic and potential energies of the system, in
terms of the new coordinates ξ j, take the form

K(ξ̇ ) =
1
2

n

∑
j=1

ξ̇ 2
j , U(ξ ) =

1
2

n

∑
j=1

ω2
j ξ 2

j .

Thus, the problem reduces to finding a linear transformation which simultaneously
diagonalizes two quadratic forms. As we know from linear algebra [37], the required
transformation is given by

q = Qξξξ ,

with
Q = (q1 q2 . . . qn)

being the n× n matrix, whose j-th column is the j-th eigenvector found above. We
shall call Q modal matrix. In terms of the vector of normal coordinates ξξξ we have

K(ξ̇ ) =
1
2

q̇ ·Mq̇ =
1
2
ξ̇ξξ ·QT MQξ̇ξξ =

1
2
ξ̇ξξ · ξ̇ξξ ,

U(ξ ) =
1
2

q ·Kq =
1
2
ξξξ ·QT KQξξξ =

1
2
ξξξ ·ΩΩΩ 2ξξξ ,

where QT denotes the transpose of Q, and ΩΩΩ 2 is the diagonal matrix with the ele-
ments ω2

j on the diagonal. The last identities in these formulas are obtained by the
orthogonality conditions (2.39) and (2.40). So, the corresponding Lagrange func-
tion describes the motion of n uncoupled single oscillators with the frequencies ω j,
j = 1, . . . ,n.

Extremal properties. If ω is an eigenfrequency and q̂ a corresponding eigenvector,
then it follows from (2.38) that

ω2 =
q̂ ·Kq̂
q̂ ·Mq̂

= r(q̂).

The right-hand side of this equation is called Rayleigh’s quotient [45]. It turns out
that the following extremal properties hold true.

1. The square of smallest eigenfrequency ω2
1 is the minimum of r(q) among all

q �= 0. The easiest way to prove this is to rewrite Rayleigh’s quotient in terms of the
vector of normal coordinates

r(ξξξ ) =
ω2

1ξ 2
1 + . . .+ω2

nξ 2
n

ξ 2
1 + . . .+ ξ 2

n
.

Since ωn ≥ . . .≥ω1, Rayleigh’s quotient is always larger than or equal to ω2
1 . From

the other side r(ξξξ ) =ω2
1 if ξ1 = 1 and ξ2 = . . .= ξn = 0. So the statement is proved.
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2. The square of j-th eigenfrequency ω2
j is equal to the minimum of Rayleigh’s

quotient
ω2

j = min
q

r(q)

among all q �= 0 satisfying j− 1 constraints

q1 ·Mq = 0, . . . ,q j−1 ·Mq = 0.

Indeed, in terms of the normal coordinates the above constraints become

ξ1 = . . .= ξ j−1 = 0.

Thus, Rayleigh’s quotient under these constraints reduces to

r(ξξξ ) =
ω2

j ξ 2
j + . . .+ω2

nξ 2
n

ξ 2
j + . . .+ ξ 2

n
,

and the proof can be provided in a similar manner.
The extremal properties of Rayleigh’s quotient are quite useful in approximate

calculations of the eigenfrequencies [45].

Damped Oscillators. The motion is described by the equation

Mq̈+Cq̇+Kq = 0, (2.41)

subject to the initial conditions

q(0) = q0, q̇(0) = v0, (2.42)

where M and K are symmetric and positive definite matrices, while C is symmetric
and non-negative definite.

Solution. A particular solution of (2.41) is sought in the form

q = q̂est ,

where q̂ is a constant vector. Equation (2.41) reduces then to the algebraic equation

(Ms2 +Cs+K)q̂ = 0. (2.43)

Non-trivial solutions of (2.43) exist if

det(Ms2 +Cs+K) = 0.

This is the algebraic equation of order 2n with respect to s having 2n roots. Since
the matrices M, C, and K are real, the complex roots must occur in pairs of complex
conjugates. Moreover, if s∗j is the complex conjugate root with respect to s j , then
the corresponding eigenvector q∗

j must be complex conjugate to the eigenvector q j
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of s j . It turns out that all roots of the characteristic equation have non-positive real
parts. To show this one can apply the Routh-Hurwitz criterion although the proof
is not elementary. The more elementary proof is based on the balance of energy
(2.32) for dissipative systems. To this end let us assume that there is a root of the
characteristic equation with the positive real part s = δ + iω , where δ > 0. Then a
free vibration of the form

q = eδ tRe(q̂eiωt)

exists, with q̂ being the eigenvector corresponding to s. Substituting this particular
solution into the energy balance equation (2.32) and using the positive definiteness
of the dissipation function, we see that the amount of energy dissipation goes to −∞
as t tends to infinity, what contradicts the positiveness of the total energy.

The general solution of (2.41) is given in the form

q =
2n

∑
j=1

A jq je
s jt .

Using the initial conditions (2.42), we obtain the system of 2n linear equations

2n

∑
j=1

A jq j = q0,
2n

∑
j=1

A js jq j = v0,

for the determination of 2n coefficients A j.

Modal decomposition. The coupled oscillators with n degrees of freedom and with
the proportional damping can be reduced to n uncoupled damped oscillators. To
show this let us introduce the vector of normal coordinates ξξξ such that q = Qξξξ ,
with Q being the modal matrix, into the equation of motion (2.41). Multiplying this
equation from the left by QT , we obtain

QT MQξ̈ξξ +QT CQξ̇ξξ +QT KQξξξ = 0.

The modal matrix Q diagonalizes simultaneously M and K, so

QT MQ = I, QT KQ =ΩΩΩ 2 = diag(ω2
j ),

where I is the identity matrix and ΩΩΩ 2 the diagonal matrix with the elements ω2
j .

Because of the proportional damping C = αM+βK we have

ΔΔΔ = QT CQ = QT (αM+βK)Q = αI+βΩΩΩ 2 = diag(2δ jω j),

where δ jω j = (α +βω2
j )/2 are the decay rates. Thus, the damping matrix ΔΔΔ be-

comes also diagonal in terms of the normal coordinates. The equation of motion is
decomposed into n uncoupled equations

ξ̈ j + 2δ jω jξ̇ j +ω2
j ξ j = 0, j = 1, . . . ,n,
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which can be solved by the method discussed in Section 1.2.
Alternatively, we can also realize the modal decomposition by diagonalizing the

kinetic and potential energies together with the dissipation function as the quadratic
forms.

Forced Oscillators. The motion is described by the equation

Mq̈+Cq̇+Kq = f(t). (2.44)

Since this equation is linear, its solution is the sum of any particular solution and
the general solution of the homogeneous equation which has been found previously.
Thus, the problem reduces to finding any particular solution of (2.44). Besides, if
the damping is permeating, then all solutions of the homogeneous equation decay
with time, so only the particular solution of (2.44) persists at large time.

Harmonic excitations. For the harmonic excitations of the form f(t)= f̂cosωt which
is the real part of f̂eiωt we consider the auxiliary equation

Mz̈+Cż+Kz = f̂eiωt ,

where z(t) may be complex-valued. We look for the solution of the form z(t) =
ẑeiωt . Substituting this into the above equation and eliminating the factor eiωt , we
obtain

(−ω2M+ iωC+K)ẑ= f̂.

Provided the matrix on the left-hand side has an inverse, this equation yields

ẑ = (−ω2M+ iωC+K)−1f̂ = G(ω)f̂.

Matrix G(ω) is called a transmittance matrix of the system. The particular solution
of (2.44) is the real part of z(t), so

q(t) = Re(G(ω)f̂eiωt).

The analysis of forced vibrations simplifies considerably for the conservative os-
cillators with C = 0. In this case the solution also has the form q(t) = q̂cosωt,
where q̂ satisfies the linear equation

(−ω2M+K)q̂ = f̂.

If the determinant Δ(ω) of −ω2M+K differs from zero, we use Cramer’s rule to
present the solution in the form

q̂ j =
Δ j(ω)
Δ(ω)

, j = 1, . . . ,n, (2.45)

where Δ j(ω) is the determinant obtained on replacing the j-th column of Δ by the
vector f̂. The following interesting cases may occur:
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a) Δ(ω) = 0, Δ j(ω) �= 0: the frequency of excitation coincides with one of the
eigenfrequency and the oscillators are in resonance,

b) Δ(ω) = 0, Δ j(ω) = 0 for all j so that limω̃→ω Δ j(ω̃)/Δ(ω̃) < ∞: this situation
is classified as pseudo-resonance,

c) Δ(ω) �= 0, Δ j(ω) = 0: the forced vibration corresponding to the j-th degree of
freedom is eliminated (anti-resonance).

For the dissipative oscillators with small but finite damping coefficients neither
resonance nor anti-resonance occurs. The problem of vibration control reduces then
to finding optimal parameters of vibration absorbers to effectively absorb energy of
the unwanted forced vibration.

Arbitrary excitations. For forced oscillators with proportional damping the problem
can be solved by the modal decomposition as shown in example 2.9. For forced
oscillators with non-proportional damping, the Laplace transform should be used
instead. Not restricting the generality, we look for the particular solution of (2.44)
satisfying the initial conditions

q(0) = 0, q̇(0) = 0.

Applying the Laplace transform to both sides of equation (2.44), we obtain
∫ ∞

0
(Mq̈+Cq̇+Kq)e−stdt =

∫ ∞

0
f(t)e−stdt.

Using the properties of the Laplace transform and the vanishing initial conditions,
we reduce this to the algebraic equation

(Ms2 +Cs+K)X(s) = F(s),

where X(s) and F(s) are the Laplace images of q(t) and f(t), respectively. This
yields

X(s) = (Ms2 +Cs+K)−1F(s).

Applying the inverse Laplace transform, we get

q(t) =L −1[X(s)] =
1

2π i

∫ α+i∞

α−i∞
(Ms2 +Cs+K)−1F(s)estds,

where α is any positive number. Since all roots of the characteristic equation lie in
the left half-plane or on the imaginary axis, the integrand is an analytic function in
the right half-plane of the complex s-plane. Thus, for an arbitrary regular excitation
f(t) which remains finite as t goes to infinity the integral converges. The line of
integration (α− i∞,α+ i∞) can be moved arbitrarily in the right half-plane.

Let xr j(t) be the solution of (2.44) with zero initial condition, where

f(t) = h j(t) = (0, . . . ,h(t), . . . ,0)T ,
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h(t) being Heaviside’s step function. Thus, h j(t) is the column vector whose com-
ponents are zero except the j-th component which is the Heaviside’s step function.
The n× n matrix

Xr(t) = (xr1(t) . . . xrn(t)),

with j-th column being the vector xr j(t), is called a unit step response matrix of the
system. It is easy to see that

(Ms2 +Cs+K)−1 1
s
=L (Xr(t)).

Using the convolution theorem for the Laplace transform, we obtain finally

q(τ) =
∫ τ

0
Xr(τ− t)ḟ(t)dt. (2.46)

This is generalized Duhamel’s formula which solves the problem if the unit step
response matrix of the system is known.

Mention that the Laplace transform can also be used to solve the initial value
problem similar to that analyzed in Section 1.3.

2.6 Exercises

EXERCISE 2.1. Two point-masses m1 and m2 are connected with a fixed support
O and with each other by two rigid and massless bars of lengths l1 and l2 (see
Fig. 2.14). Derive the equations of small vibration of this double pendulum under
the action of gravity. Determine the eigenfrequencies of vibrations.

m1

m2

g
l1

l2

O

x

y

ϕ1

ϕ2

Fig. 2.14 Double pendulum

Solution. This system has two degrees of freedom described by the angles ϕ1 and
ϕ2. Let us write down the kinetic and potential energies of this double pendulum.
For the kinetic energy we have

K(ϕ̇) =
1
2

m1v2
1 +

1
2

m2v2
2.
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As the first point-mass m1 rotates about O with the angular velocity ϕ̇1, the mag-
nitude of its velocity is v1 = l1ϕ̇1. The velocity of m2 is the superposition of the
velocity of m1 and the relative velocity of m2 with respect to m1, so

v2 = v1 + v21.

Since both angles ϕ1 and ϕ2 are small, these two vectors are nearly parallel. Taking
into account that v21 = l2ϕ̇2, we can write

v2
2 = v2

1 + v2
21 + 2v1·v21 ≈ l2

1 ϕ̇
2
1 + l2

2ϕ̇
2
2 + 2l1l2ϕ̇1ϕ̇2.

Thus, the kinetic energy is equal to

K(ϕ̇) =
1
2
(m1 +m2)l

2
1 ϕ̇

2
1 +

1
2

m2l2
2 ϕ̇

2
2 +m2l1l2ϕ̇1ϕ̇2.

Let us choose the zero level of the potential energy at x = 0. Then the potential
energy of the point-masses in the gravitational field is given by

U(ϕ) =−m1gx1 −m2gx2 =−m1gl1 cosϕ1 −m2g(l1 cosϕ1 + l2 cosϕ2).

For small angles ϕ1 and ϕ2 we may replace cosϕ j ≈ 1−ϕ2
j /2, so up to an unessen-

tial constant,

U(ϕ) =
1
2

m1gl1ϕ2
1 +

1
2

m2gl1ϕ2
1 +

1
2

m2gl2ϕ2
2 .

Thus, the Lagrange function reads

L =
1
2
(m1 +m2)l

2
1 ϕ̇

2
1 +

1
2

m2l2
2 ϕ̇

2
2 +m2l1l2ϕ̇1ϕ̇2 − 1

2
(m1 +m2)gl1ϕ2

1 −
1
2

m2gl2ϕ2
2 .

From Lagrange’s equations

d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

= 0, j = 1,2,

we derive the equations of motion

d
dt
((m1 +m2)l

2
1 ϕ̇1 +m2l1l2ϕ̇2)+ (m1 +m2)gl1ϕ1 = 0,

d
dt
(m2l2

2 ϕ̇2 +m2l1l2ϕ̇1)+m2gl2ϕ2 = 0.

Dividing the first equation by l1 and the second one by m2l2, we reduce this system
to

(m1 +m2)l1ϕ̈1 +m2l2ϕ̈2 +(m1 +m2)gϕ1 = 0,

l1ϕ̈1 + l2ϕ̈2 + gϕ2 = 0.
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To determine the eigenfrequencies of vibrations we seek for the solution in the
form

ϕ j = ϕ̂ je
iωt .

Substituting this into the equations of motion, we get
(
(m1 +m2)(g− l1ω2) −m2l2ω2

−l1ω2 g− l2ω2

)(
ϕ̂1

ϕ̂2

)
=

(
0
0

)
.

Non-trivial solutions of this equation exist if its determinant vanishes
∣∣∣∣(m1 +m2)(g− l1ω2) −m2l2ω2

−l1ω2 g− l2ω2

∣∣∣∣= 0.

Computing the determinant, we get the following characteristic equation

m1l1l2ω4 − (m1 +m2)g(l1 + l2)ω2 +(m1 +m2)g
2 = 0.

Solving this quadratic equation (with respect to ω2), we obtain two roots ω2
1,2 given

by

g
2m1l1l2

[
(m1 +m2)(l1 + l2)∓

√
(m1 +m2)[(m1 +m2)(l1 + l2)2 − 4m1l1l2]

]
.

EXERCISE 2.2. A body of mass m is connected with the wall through a spring of
stiffness k and with a bar of length l and equal mass m which rotates in the plane
about O (see Fig. 2.15). Derive the equations of small vibration of this system.
Determine the eigenfrequencies of vibrations.

m

x
k

m

l

ϕ

O

Fig. 2.15 Body connected with spring and bar

Solution. Let q = (x,ϕ) be the generalized coordinates and S be the center of mass
of the bar. We write down the kinetic energy of this system

K(q̇) =
1
2

mẋ2 +
1
2

mv2
S +

1
2

JSϕ̇2,

where the last two terms represent the kinetic energy of the bar, with vS being the
velocity of the center of mass and JS = ml2/12 the moment of inertia of the bar
about S. For small angle ϕ � 1
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vS = ẋ+
l
2
ϕ̇ .

So, the kinetic energy of this system reads

K(q̇) =
1
2

mẋ2 +
1
2

m(ẋ+
l
2
ϕ̇)2 +

1
24

ml2ϕ̇2.

Concerning the potential energy, we have for small angle

U(q) =
1
2

kx2 +mg
l
2
(1− cosϕ)≈ 1

2
kx2 +mg

l
4
ϕ2.

Thus,

L(q, q̇) =
1
2

mẋ2 +
1
2

m(ẋ+
l
2
ϕ̇)2 +

1
24

ml2ϕ̇2 − 1
2

kx2 −mg
l
4
ϕ2.

From Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1,2,

we derive the equations of motion

mẍ+m(ẍ+
l
2
ϕ̈)+ kx = 0,

m
l
2
(ẍ+

l
2
ϕ̈)+

1
12

ml2ϕ̈+
1
2

mglϕ = 0.

These equations can be simplified to

2mẍ+m
l
2
ϕ̈+ kx = 0,

1
3

ml2ϕ̈+m
l
2

ẍ+
1
2

mglϕ = 0.

Dividing the first equation by 2m and the second one by ml2/3, respectively, we
rewrite them in the form

ẍ+
l
4
ϕ̈+ω2

x x = 0,

3
2l

ẍ+ ϕ̈+ω2
ϕϕ = 0,

where

ω2
x =

k
2m

, ω2
ϕ =

3g
2l

.
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To determine the eigenfrequencies of vibrations we seek for the solution in the
form (

x
ϕ

)
=

(
x̂
ϕ̂

)
eiωt .

Substituting this into the equations of motion, we get

(−ω2 +ω2
x − l

4ω
2

− 3
2lω

2 −ω2 +ω2
ϕ

)(
x̂
ϕ̂

)
=

(
0
0

)
.

Non-trivial solutions of this equation exist if its determinant vanishes

∣∣∣∣−ω
2 +ω2

x − l
4ω

2

− 3
2lω

2 −ω2 +ω2
ϕ

∣∣∣∣= 0.

Computing the determinant, we get the following characteristic equation

(−ω2 +ω2
x )(−ω2 +ω2

ϕ)−
3
8
ω4 = 0,

yielding two roots

ω2
1,2 =

4
5

(
ω2

x +ω
2
ϕ ∓

√
(ω2

x +ω2
ϕ)

2 − 5
2
ω2

xω2
ϕ

)
.

EXERCISE 2.3. A rigid bar of mass m and moment of inertia JS = mρ2 is hung on
two massless and unstretchable ropes of equal length l (this is the primitive mechan-
ical model of the swing). The distance between the ropes in the equilibrium state is
s. The distances between the attachment points and the center of mass of the bar are
s1 and s2, respectively. Under the assumption ϕ1 � 1, ϕ2 � 1 derive the equations
of out-of-plane vibration of the bar, neglecting its in-plane motion. Determine the
eigenfrequencies of vibrations.

S

s

l

lϕ1

ϕ2

s
1

s
2

Fig. 2.16 Bar hung on two ropes
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Solution. The motion of the bar as rigid body is the superposition of the translation
of the center of mass S and the rotation about S. Accordingly, the kinetic energy of
the bar equals

K =
1
2

mv2
S +

1
2

JSω2,

where ω is the angular velocity and JS the moment of inertia of the bar about S. This
motion can also be regarded as the pure rotation about the instantaneous center of
rotation P with the same angular velocity ω (see Fig. 2.17).

SA B P

Fig. 2.17 Pure rotation of the bar about P

The velocities of the attachment points A and B are lϕ̇1 and lϕ̇2, respectively. Let
the distance between A and P be x, then the distance between B and P is x− s1 − s2,
so

xω = lϕ̇1,

(x− s1 − s2)ω = lϕ̇2.

From here we find that

ω =
l

s1 + s2
(ϕ̇1 − ϕ̇2), x =

(s1 + s2)ϕ̇1

ϕ̇1 − ϕ̇2
.

The velocity of the center of mass, vS, can also be easily found as

vS = (x− s1)ω = l

(
s2

s1 + s2
ϕ̇1 +

s1

s1 + s2
ϕ̇2

)
.

Thus, the kinetic energy of the bar reads

K =
1
2

ml2(
s2

s1 + s2
ϕ̇1 +

s1

s1 + s2
ϕ̇2)

2 +
1
2

mρ2 l2

(s1 + s2)2 (ϕ̇1 − ϕ̇2)
2.

To write down the potential energy of the bar we find out the change of height of
the center of mass. The changes of height of the attachment points A and B are

w1 = l(1− cosϕ1)≈ l
ϕ2

1

2
, w2 = l(1− cosϕ2)≈ l

ϕ2
2

2
.

For the bar, the change of height must be a linear function of x:

w(x) = ax+ b,
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where x is the coordinate along the bar axis. Choosing x = 0 at A, we find that
b = w1. For x = s1 + s2 at B we have a(s1 + s2)+w1 = w2, so

a =
w2 −w1

s1 + s2
.

Consequently, the change of height of the center of mass equals

wS =
l

2(s1 + s2)
(s2ϕ2

1 + s1ϕ2
2 ),

and the potential energy reads

U =
mgl

2(s1 + s2)
(s2ϕ2

1 + s1ϕ2
2 ).

Combining the kinetic and potential energies, we obtain the Lagrange function in
the form

L =
ml2

2(s1 + s2)2 (s2ϕ̇1 + s1ϕ̇2)
2 +

mρ2l2

2(s1 + s2)2 (ϕ̇1 − ϕ̇2)
2 − mgl

2(s1 + s2)
(s2ϕ2

1 + s1ϕ2
2 ).

Lagrange’s equations
d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

= 0, j = 1,2

lead to

d
dt
[

ml2s2

(s1 + s2)2 (s2ϕ̇1 + s1ϕ̇2)+
mρ2l2

(s1 + s2)2 (ϕ̇1 − ϕ̇2)]+
mgls2

s1 + s2
ϕ1 = 0,

d
dt
[

ml2s1

(s1 + s2)2 (s2ϕ̇1 + s1ϕ̇2)− mρ2l2

(s1 + s2)2 (ϕ̇1 − ϕ̇2)]+
mgls1

s1 + s2
ϕ2 = 0.

Dividing both equations by ml2/(s1 + s2)
2, we reduce them to

(s2
2 +ρ

2)ϕ̈1 +(s1s2 −ρ2)ϕ̈2 +
gss2

l
ϕ1 = 0,

(s1s2 −ρ2)ϕ̈1 +(s2
1 +ρ

2)ϕ̈2 +
gss1

l
ϕ2 = 0,

where s = s1 + s2.
To determine the eigenfrequencies of vibrations we seek for the solution in the

form
ϕ j = ϕ̂ je

iωt .

Substituting this into the equations of motion, we get
(
( gss2

l − (s2
2 +ρ

2)ω2) −(s1s2 −ρ2)ω2

−(s1s2 −ρ2)ω2 ( gss1
l − (s2

1 +ρ
2)ω2)

)(
ϕ̂1

ϕ̂2

)
=

(
0
0

)
.
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From the condition of vanishing determinant, we get the following characteristic
equation

(
gss2

l
− (s2

2 +ρ
2)ω2)(

gss1

l
− (s2

1 +ρ
2)ω2)− (s1s2 −ρ2)2ω4 = 0,

which can be reduced to

ρ2ω4 − g
l
(s1s2 +ρ2)ω2 +

g2

l2 s1s2 = 0.

Solving this quadratic equation (with respect to ω2), we obtain two roots

ω2
1 =

g
l
, ω2

2 =
gs1s2

lρ2 .

EXERCISE 2.4. Beating phenomenon. Find solution of (2.7) for the coupled pendu-
lums satisfying the initial conditions: ϕ1(0) = 1, ϕ2(0) = ϕ̇1(0) = ϕ̇2(0) = 0. Plot
ϕ1(t) and ϕ2(t) for α = 0.1 and analyze their behaviors.

t

t

ϕ2

ϕ1

Fig. 2.18 Free vibrations of the coupled pendulums (ω0 = 1, α = 0.1)
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Solution. As shown in Section 2.1, the solution to equations (2.3) describing the
vibration of the coupled pendulums is given by

ϕϕϕ =

(
ϕ1

ϕ2

)
= q1(A1 cosω1t +B1 sinω1t)+q2(A2 cosω2t +B2 sinω2t),

with ω1 = ω0 =
√

g/l, ω2 =
√
ω2

0 + 2α, and

q1 =
1√
2

(
1
1

)
, q2 =

1√
2

(−1
1

)
.

To compute the coefficients we use the initial conditions

ϕϕϕ(0) = ϕϕϕ0 =

(
1
0

)
, ϕ̇ϕϕ(0) = ϕ̇ϕϕ0 =

(
0
0

)
,

together with the orthogonality and normalization conditions. We easily find that

A1 =
1√
2
, A2 =− 1√

2
, B1 = B2 = 0.

Thus, the solution is

ϕ1(t) =
1
2
(cosω1t + cosω2t), ϕ2(t) =

1
2
(cosω1t − cosω2t).

According to the addition formulas

ϕ1(t) = cosω ′t cosεt, ϕ2(t) = sinω ′t sinεt,

where, for small α ,

ω ′ =
1
2
(ω1 +ω2)≈ ω0, ε =

1
2
(ω2 −ω1)≈ 1

2
α
ω0

.

Thus, ϕ1(t) and ϕ2(t) oscillate with the frequencyω ′ but with slowly changing am-
plitude cosεt and sinεt, respectively. This is the so called beating phenomenon (or
amplitude modulation) typical for the oscillation with two nearly equal frequencies.

To simulate this solution numerically we put ω1 = ω0 = 1 and α = 0.1 so that
ω2 =

√
1+ 2α ≈ 1.095. The plots of ϕ1(t) and ϕ2(t) are shown in Fig. 2.18, from

which it is seen that the second pendulum begins to oscillate when the first comes
to rest and vice versa. Thus, the energy is transferred from the first to the second
pendulum and back.

EXERCISE 2.5. Consider a pair of uncoupled harmonic oscillators described by the
equations ẍ+ x = 0 and ÿ+ω2y = 0. Using t as parameter, plot the trajectory of the
motion in the (x,y)-plane given by x(t) = cost and y(t) = cosωt for t ∈ (0,1000)
in two cases: i) ω = 3 and ii) ω = π . The curves of this type are called Lissajous
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x

y

Fig. 2.19 Lissajous figure for ω = 3

figures, and due to the periodicity in x and y the trajectories can be regarded as
moving on a two-dimensional torus. Observe the difference in cases i) and ii).

Solution. In case i) the frequency ratio is equal to 3 which is a rational number. In
case ii) the frequency ratio is π which is an irrational number. The plots of the trajec-
tories of motion in the (x,y)-plane, made with the help of ParametricPlot command
in Mathematica, are shown in Fig. 2.19 and 2.20 for the case i) and ii), respectively.
In case i) the trajectory is periodic, with the period 2π . In case ii) the trajectory
is non-periodic and for an infinitely large interval of time it is dense on the whole
domain (−1,1)× (−1,1). Such motion is classified as quasi-periodic. Note that,
due to the periodicity in x and y, one can wrap the square (−1,1)× (−1,1) onto
the cylinder along the lines x = ±1 and then onto the torus along the lines y = ±1.
Thus, the trajectories can be regarded as moving on a two-dimensional torus. The
difference between cases i) and ii) is:

i) the frequency ratio is a rational number, and each trajectory is a closed periodic
orbit on the torus;

ii) the frequency ratio is an irrational number, and each trajectory winds around
endlessly on the torus and corresponds to the quasi-periodic motion.

EXERCISE 2.6. Determine the vibration modes and the normal coordinates of the
double pendulum with m1 = m2 = m and l1 = l2 = l.

Solution. Under the conditions m1 = m2 = m and l1 = l2 = l the Lagrange function,
as seen from the solution of the exercise 2.1, is given by

L =
1
2

ml2ϕ̇2
1 +

1
2

ml2(ϕ̇1 + ϕ̇2)
2 −mglϕ2

1 −
1
2

mglϕ2
2 .
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x

y

Fig. 2.20 Lissajous figure for ω = π

The division of this Lagrange function by ml2 does not influence the equations of
motion, so we can write

L =
1
2
ϕ̇2

1 +
1
2
(ϕ̇1 + ϕ̇2)

2 −ω2
0ϕ

2
1 −

1
2
ω2

0ϕ
2
2 ,

where ω2
0 = g/l. The equation of motion in the matrix form reads

Mq̈+Kq = 0,

where

M =

(
2 1
1 1

)
, K =

(
2ω2

0 0
0 ω2

0

)
.

The problem is to bring both matrices to the diagonal form. This can be realized by
solving the eigenvalue problem

(−ω2M+K)q̂ = 0,

or (−2ω2 + 2ω2
0 −ω2

−ω2 −ω2 +ω2
0

)(
q̂1

q̂2

)
=

(
0
0

)
.

The characteristic equation

det(−ω2M+K) = 2(ω2 −ω2
0 )

2 −ω4 = 0

yields two eigenfrequencies

ω2
1,2 = ω2

0 (2∓
√

2).
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The corresponding normalized eigenvectors of these two modes of vibrations are

q1 =
1√

2(2+
√

2)

(
1√
2

)
≈
(

0.382683
0.541196

)
,

q2 =
1√

2(2−√
2)

(−1√
2

)
≈
(−0.92388

1.30656

)
.

With these eigenvectors we form the modal matrix

Q =

(
0.382683 −0.92388
0.541196 1.30656

)
,

which has the inverse

Q−1 =

(
1.30656 0.92388

−0.541196 0.382683

)
.

Since the normal coordinates are ξξξ = Q−1q, we obtain

ξ1 = 1.30656ϕ1+ 0.92388ϕ2, ξ2 =−0.541196ϕ1+ 0.382683ϕ2.

EXERCISE 2.7. Determine the vibration modes and the normal coordinates in exer-
cise 2.3.

Solution. From the solution of exercise 2.3 we see that there are two eigenfrequen-
cies of vibrations

ω2
1 =

g
l
, ω2

2 =
gs1s2

lρ2 .

Let us find out the corresponding eigenvectors. For mode 1 with ω2
1 = g

l we have

g
l

(
s1s2 −ρ2 −(s1s2 −ρ2)

−(s1s2 −ρ2) s1s2 −ρ2

)(
q1

q2

)
=

(
0
0

)
.

Together with the normalization condition q1 ·Mq1 = 1 we find that

q1 =

(
1/s
1/s

)
.

Thus, this mode of vibration corresponds to the synchronized parallel motion of the
bar with ϕ1 = ϕ2 (the swing mode). For mode 2 with ω2

2 = gs1s2
lρ2 we have

g
l

(
ss2 − (s2

2 +ρ2) s1s2
ρ2 −(s1s2 −ρ2) s1s2

ρ2

−(s1s2 −ρ2) s1s2
ρ2 ss1 − (s2

1 +ρ2) s1s2
ρ2

)(
q1

q2

)
=

(
0
0

)
.
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Consequently,

q2

q1
=

ss2 − (s2
2 +ρ

2) s1s2
ρ2

(s1s2 −ρ2) s1s2
ρ2

=− s2

s1
.

Together with the normalization condition q2 ·Mq2 = 1 we find that

q2 =
1
ρs

(−s1

s2

)
.

This mode of vibration describes the rotation of the bar about the center of mass
(antisymmetric mode). Thus, the modal matrix equals

Q =

(
1/s −s1/(ρs)
1/s s2/(ρs)

)
.

and the normal coordinates are ξξξ = Q−1q.

EXERCISE 2.8. Find the coordinates of the fixed points A and B of the resonance
curves in example 2.8. Show that A and B are at equal level when

κ =
μ

(1+ μ)2 .

Solution. Let us analyze the resonance function

∣∣∣∣ x1

x10

∣∣∣∣=
∣∣∣∣ −μη2 + iδη+κ
(−η2 + iδη+ 1+κ)(−μη2+ iδη+κ)− (iδη+κ)2

∣∣∣∣ .
Expanding the nominator and denominator on the right-hand side, we obtain

∣∣∣∣ x1

x10

∣∣∣∣=
∣∣∣∣ −μη2 +κ+ iδη
(−η2 + 1+κ)(−μη2+κ)−κ2+ iδη(−μη2 −η2 + 1)

∣∣∣∣ .
Thus,

∣∣∣∣ x1

x10

∣∣∣∣
2

=
δ 2η2 +(κ− μη2)2

δ 2η2(−μη2 −η2 + 1)2 +[(−η2 + 1+κ)(−μη2+κ)−κ2]2
.

Let us first consider the limiting case of vanishing damping: δ = 0. In this case the
resonance function becomes∣∣∣∣ x1

x10

∣∣∣∣= |κ− μη2|
|(−η2 + 1+κ)(−μη2+κ)−κ2| .

In the other extreme case with δ → ∞ we have∣∣∣∣ x1

x10

∣∣∣∣ = 1
|−η2(μ+ 1)+ 1|.
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Since x1/x10 near the fixed points has different signs in these two cases, the
η-coordinates of the fixed points A and B satisfy the equation

κ− μη2

(−η2 + 1+κ)(−μη2+κ)−κ2 =
1

η2(μ+ 1)− 1
,

or
(μ2 + 2μ)η4 − 2(κ+κμ+ μ)η2 + 2κ = 0.

The resonance function for other δ can be presented in the form

∣∣∣∣ x1

x10

∣∣∣∣
2

=
Mδ 2 +N
Pδ 2 +Q

so that it will be independent of δ 2 only if M/P=N/Q which is again identical with
the above equation. From this equation two roots η2

1 and η2
2 can be found, which

determine the coordinates of A and B. The ordinates of points A and B are obtained
by substituting these roots in the resonance function for the case δ → ∞. Since the
signs of this function is positive at A and negative at B, the ordinates are

1

−μη2
1 −η2

1 + 1
and

1

μη2
2 +η2

2 − 1
.

We want to choose the parameters of absorber in such a way that points A and B are
at equal level. This requires that

1

−μη2
1 −η2

1 + 1
=

1

μη2
2 +η2

2 − 1
,

or

η2
1 +η

2
2 =

2
1+ μ

.

Taking into account that η2
1 and η2

2 are the roots of the quadratic equation, we obtain

2(κ+κμ+ μ)
μ2 + 2μ

=
2

1+ μ
,

which implies that

κ =
μ

(1+ μ)2 .

EXERCISE 2.9. Find the solution of example 2.9 by the Laplace transform and show
that it is equal to the solution found by the modal decomposition.

Solution. Dividing equations (2.22) describing the motion of these coupled pendu-
lums by ml2, we rewrite them as

ϕ̈1 − χ(ϕ̇2 − ϕ̇1)+ω2
0ϕ1 −α(ϕ2 −ϕ1) = 0,

ϕ̈2 + χ(ϕ̇2 − ϕ̇1)+ω2
0ϕ2 +α(ϕ2 −ϕ1) = f (t),
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where

ω0 =
√

g/l, χ = c/m, α =
k

4m
, f (t) =

p(t)
ml

.

Let us look for the particular solution of these equations satisfying the homogeneous
initial conditions. Applying the Laplace transform to both sides of these equations,
we obtain

s2Φ1 − χs(Φ2 −Φ1)+ω2
0Φ1 −α(Φ2 −Φ1) = 0,

s2Φ2 + χs(Φ2 −Φ1)+ω2
0Φ2 +α(Φ2 −Φ1) = F(s),

where Φ1(s), Φ2(s), and F(s) are the Laplace images of ϕ1(t), ϕ2(t), and f (t),
respectively. The latter equations can be represented in the matrix form as

(
s2 + χs+ω2

0 +α −χs−α
−χs−α s2 + χs+ω2

0 +α

)(
Φ1

Φ2

)
=

(
0

F(s)

)
.

Solving these equation, we find that

Φ1 =
F(s)(χs+α)

(s2 + χs+ω2
0 +α)2 − (χs+α)2

, Φ2 =
F(s)(s2 + χs+ω2

0 +α)
(s2 + χs+ω2

0 +α)2 − (χs+α)2
.

To compare with the solution obtained by the modal decomposition let us consider
the image functions

Ξ1 =
1√
2
(Φ1 +Φ2) =

1√
2

F(s)

s2 +ω2
0

,

and

Ξ2 =
1√
2
(Φ2 −Φ1) =

1√
2

F(s)

s2 +ω2
0 + 2χs+ 2α

=
1√
2

F(s)

s2 +ω2
2 + 2χs

.

It is easy to see that the original functions ξ1(t) and ξ2(t) corresponding to these
image functions satisfy the differential equations

ξ̈1 +ω2
1ξ1 =

1√
2

p(t)
ml

,

ξ̈2 +
2c
m
ξ̇2 +ω2

2ξ2 =
1√
2

p(t)
ml

.

Thus, the solution obtained by the Laplace transform coincides with the solution
obtained by the modal decomposition.

EXERCISE 2.10. A point-mass m moves in the space under the action of three
springs of stiffnesses k1, k2, and k3 whose axes do not lie in one plane (see Fig. 2.21).
The equilibrium position of the point-mass is chosen as the origin of the coordinate
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system, while n1, n2, and n3 denote the unit vectors along the spring axes. Derive the
equation of small vibrations for this oscillator and determine the eigenfrequencies.

x

y

z

k1 k2

k3

m

A

B

C

Fig. 2.21 Mass-spring oscillator with 3 degrees of freedom

Solution. Let r = (x,y,z) be the position vector of the point-mass. We write down
its kinetic energy

K(ṙ) =
1
2

mṙ · ṙ = 1
2

m(ẋ2 + ẏ2 + ż2).

The potential energy of the springs reads

U(r) =
1
2
[k1(Δ l1)

2 + k2(Δ l2)
2 + k3(Δ l3)

2],

where Δ li is the change of length of i-th spring. Let l0i be the original length of
the springs. Then the position vectors of points A, B, C are ri = l0ini, i = 1,2,3,
respectively. The change of length of i-th spring equals

Δ li = li − l0i =
√
(l0ini − r) · (l0ini − r)− l0i.

Using the smallness of r, it is easy to see that

√
(l0ini − r) · (l0ini − r)≈ l0i

√
1− 2

l0i
ni · r ≈ l0i −ni · r.

Thus,
Δ li =−ni · r,

and the potential energy of the springs becomes

U(r) =
1
2
[k1(n1 · r)2 + k2(n2 · r)2 + k3(n3 · r)2].
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Now Lagrange’s equation
d
dt
∂L
∂ ṙ

− ∂L
∂r

= 0

yields the equation of motion

mr̈+ k1n1(n1 · r)+ k2n2(n2 · r)+ k3n3(n3 · r) = 0.

To find the eigenfrequencies, we look for the solution in the form

r(t) = r̂eiωt ,

where r̂ is a constant vector. Substituting this solution Ansatz into the equation of
motion, we obtain

(−mω2I+K)r̂ = 0.

Here I is the 3×3 identity matrix, and K is the stiffness matrix with the components

Ki j = k1n1in1 j + k2n2in2 j + k3n3in3 j.

Therefore, the eigenfrequencies should be found from the equation

det(−mω2I+K) = 0.

This equation can be simplified if the unit vectors n1, n2, n3 are mutually orthogonal.
By choosing the coordinate system with these vectors as basis vectors, the stiffness
matrix becomes also diagonal

K =

⎛
⎝k1 0 0

0 k2 0
0 0 k3

⎞
⎠ .

Thus, in this case the equations become uncoupled and the eigenfrequencies are
given by

ω j =
√

k j/m, j = 1,2,3.

Correspondingly, the eigenvectors are n1, n2, n3.

EXERCISE 2.11. A pre-stretched string contains three equal and equally spaced
point-masses m (see Fig. 2.22). The tension in the string is assumed to be large
so that for small lateral displacements of the point-masses it does not change ap-
preciably. Derive the equation of small lateral vibration and determine the eigenfre-
quencies.

Solution. Let the displacements of the point-masses from their equilibrium positions
be x1, x2, and x3 (see Fig. 2.22). The kinetic energy of the point-masses is

K =
1
2

m(ẋ2
1 + ẋ2

2 + ẋ2
3).
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m m ml l l

x1 x2 x3

l

Fig. 2.22 Pre-stretched string with 3 point-masses

We denote the tension in the string by S. Since S is large, the potential energy of the
string equals

U = S(Δ l1 +Δ l2 +Δ l3 +Δ l4),

where Δ li are the changes of lengths of the string segments. Let us express these
changes in terms of xi

Δ l1 =
√

l2 + x2
1 − l = l(

√
1+(x1/l)2 − 1)≈ 1

2
l(

x1

l
)2,

Δ l2 =
√

l2 +(x2 − x1)2 − l ≈ 1
2

l(
x2 − x1

l
)2,

Δ l3 =
√

l2 +(x3 − x2)2 − l ≈ 1
2

l(
x3 − x2

l
)2,

Δ l4 =
√

l2 + x2
3 − l ≈ 1

2
l(

x3

l
)2.

Here the smallness of xi compared with l as well as the formula
√

1+ ε ≈ 1+ 1
2ε

are used. Introducing x0 = x4 = 0, we may present the potential energy in the form

U =
S
2l
[(x1 − x0)

2 +(x2 − x1)
2 +(x3 − x2)

2 +(x4 − x3)
2].

With the Lagrange function L = K −U it is easy to derive the equations of motion

mẍ j + k(x j − x j−1)+ k(x j − x j+1) = 0, j = 1,2,3,

where k = S/l. We look for the solution of these coupled equations in the form

x j = x̂ j cos(ωt −φ),

where x̂ j are the amplitudes of vibrations. With this Ansatz we reduce the differen-
tial equations to the algebraic equations

(2k−ω2m)x̂ j − k(x̂ j−1 + x̂ j+1) = 0,

or to
(2−η2)x̂ j − (x̂ j−1 + x̂ j+1) = 0,

where η2 = ω2m/k. As the amplitudes of vibrations are determined up to an arbi-
trary constant factor, we normalize them by

κ j =
x̂ j

x̂1
, j = 0,1,2,3,4.
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The above system becomes

(2−η2)κ j − (κ j−1 +κ j+1) = 0.

Thus, knowing κ0 = 0, κ1 = 1, we can successively determine other κ j according to

κ j = (2−η2)κ j−1 −κ j−2, j = 2,3,4.

So,

κ2 =−η2 + 2, κ3 = η4 − 4η2 + 3, κ4 =−η6 + 6η4 − 10η2+ 4.

Since κ4 = 0, we obtain the following equation to determine the eigenfrequencies

−η6 + 6η4 − 10η2 + 4 = 0.

The alternative method of solution is based on the following Ansatz

x̂ j =C sin jα.

This Ansatz satisfies the boundary condition x̂0 = 0. The other boundary condition
x̂4 = 0 will be satisfied if

4α = kπ , k = 1,2,3 ⇒ α =
kπ
4
.

On the other side, substituting the above Ansatz into the algebraic equations for x̂ j,
we obtain

C sin jα(2−η2 − 2cosα) = 0.

Since C cannot be zero, we obtain the equation to determine the eigenfrequencies

η2 = 2(1− cosα) = 4sin2 α
2
.

Denoting by ω0 =
√

k/m =
√

S/ml, we can write

ωk = 2ω0 sin
α
2
= 2ω0 sin

kπ
8
, k = 1,2,3.

EXERCISE 2.12. The free vibrations of an airplane can be described in a simpli-
fied model with three degrees of freedom representing the motion of the fuselage
and the wings which are connected with the fuselage by the spiral springs of stiff-
nesses k1 and k2 (see Fig. 2.23). Derive the equations of small vibrations. Under
the assumptions of symmetry θ1 = θ2 = θ , m1 = m2 = m, and k1 = k2 = k, find the
eigenfrequencies of vibrations.

Solution. Let the changes in angles of the wings be ϕ1 and ϕ2. We write down the
kinetic energy of this system
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x

M
k1 k2

m1 m2

θ1 θ2

l l

Fig. 2.23 A primitive model of an airplane with 3 degrees of freedom

K =
1
2

Mẋ2 +
1
2

m1v2
1 +

1
2

m2v2
2.

The velocity of the point-mass m1 is v1 = vM + vrel , where vrel denotes the relative
velocity. Since the vertical and horizontal components of this relative velocity are
lϕ̇1 cosθ1 and −lϕ̇1 sinθ1, respectively, we have

v2
1 = ẋ2 + 2l cosθ1ẋϕ̇1 + l2ϕ̇2

1 .

Similarly,
v2

2 = ẋ2 + 2l cosθ2ẋϕ̇2 + l2ϕ̇2
2 .

Thus, the kinetic energy of the system becomes

K =
1
2
(M+m1 +m2)ẋ

2 +m1l cosθ1ẋϕ̇1 +
1
2

m1l2ϕ̇2
1 +m2l cosθ2ẋϕ̇2 +

1
2

m2l2ϕ̇2
2 .

It is easy to show that the static spring forces, the gravitational forces, and the aero-
dynamic force due to the steady state flow do not contribute to the potential energy.
Therefore

U =
1
2

k1ϕ2
1 +

1
2

k2ϕ2
2 .

With L = K −U we derive from Lagrange’s equations

(M+m1 +m2)ẍ+m1l cosθ1ϕ̈1 +m2l cosθ2ϕ̈2 = 0,

m1l2ϕ̈1 +m1l cosθ1ẍ+ k1ϕ1 = 0,

m2l2ϕ̈2 +m2l cosθ2ẍ+ k2ϕ2 = 0.

Let qT = (x,ϕ1,ϕ2) and mT = M +m1 +m2. Then we can represent the equations
of free vibrations of this system in the matrix form

Mq̈+Kq = 0,

where

M =

⎛
⎝ mT m1l cosθ1 m2l cosθ2

m1l cosθ1 m1l2 0
m2l cosθ2 0 m2l2

⎞
⎠ , K =

⎛
⎝0 0 0

0 k1 0
0 0 k2

⎞
⎠ .
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Seeking the particular solution in the form

q = q̂eiωt ,

we obtain the eigenvalue problem

(−ω2M+K)q̂ = 0.

The related characteristic equation

det(−ω2M+K) =

∣∣∣∣∣∣
−ω2mT −ω2m1l cosθ1 −ω2m2l cosθ2

−ω2m1l cosθ1 −ω2m1l2 + k1 0
−ω2m2l cosθ2 0 −ω2m2l2 + k2

∣∣∣∣∣∣= 0

can be written in the form

ω2 [l4(mT m1m2 −m1m2
2 cos2 θ2 −m2m2

1 cos2 θ1)ω4 − l2(mT (m1k2 +m2k1)

−m2
2k1 cos2 θ2 −m2

1k2 cos2 θ1)ω2 +mT k1k2
]
= 0.

Thus, there is always the zero frequency corresponding to the mode of vertical mo-
tion of the airplane as a rigid body with x �= 0, ϕ1 = ϕ2 = 0. In the symmetric case
(θ1 = θ2 = θ , m1 = m2 = m, and k1 = k2 = k), the remaining factor in the square
brackets reduces to

m2l4(mT − 2mcos2 θ )ω4 + 2kml2(mcos2 θ −mT )ω2 +mT k2 = 0.

This yields the following eigenfrequencies

ω2
1 =

k
ml2 , ω2

2 =
kmT

ml2(mT −m−mcos2θ )
.
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