
Chapter 1
Single Oscillator

This chapter deals with small vibrations of the simplest mechanical systems, namely
of oscillators having only one degree of freedom. The most general and effective
method of solution is the Laplace transform which is based entirely on the linear
superposition principle.

1.1 Harmonic Oscillator

Differential Equation of Motion. The derivation of the equation of motion is the
first, and at the same time, most responsible step toward solution of a real problem.
Having derived the right equation, we have won already half the battle. In contrary,
having arrived at some wrong equation, all of our further efforts in solving it will
end in nothing but disaster. To derive the equation of motion we must

• idealize the real physical problem,
• apply the first principles of dynamics.

There are two equivalent methods of deriving the equation of motion based on the
first principles of dynamics: the force method and the energy method. In the force
method, we first free parts of the system under consideration from the surrounding,
then draw the free-body diagram with all acting forces, and finally apply Newton’s
law to each degree of freedom. The energy method is based on Hamilton’s varia-
tional principle leading to Lagrange’s equations. Since we are dealing then with only
one function, the energy method turns out to be simpler and much more effective,
especially for systems with many degrees of freedom and with various constraints.
In order to demonstrate their equivalence, let us begin with simple examples.

EXAMPLE 1.1. Mass-spring oscillator. A point-mass m moves horizontally under
the action of a massless spring of stiffness k (see Fig. 1.1). Derive the equation of
motion for this oscillator.
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Fig. 1.1 Mass-spring oscillator

We see already in the formulation of the problem
various idealizations of the real situation: the point-
mass is considered instead of a body of finite size,
this mass is constrained to move horizontally, the
spring is regarded as massless and linearly elastic,
the air resistance to motion through viscous damping
is neglected etc. How close this simple mathematical
model can describe the real physical problem is the

matter of experimental verification.
To use the force method we must first free the point-mass from the spring, then

draw the free-body diagram (see Fig. 1.1, right), and finally apply Newton’s second
law (mass times acceleration = force) in the x-direction

mẍ =∑Fx =−kx,

where the dot denotes the time derivative. Bringing the spring force −kx to the left-
hand side and dividing by m, we transform the equation of motion to the standard
form

ẍ+ω2
0 x = 0, ω0 =

√
k
m
. (1.1)

The energy method is based on Hamilton’s variational principle of least action1

which states that, among all admissible motions x(t) of the point-mass satisfying the
initial and end conditions

x(t0) = x0, x(t1) = x1,

the true motion is the extremal of the action functional

I[x(t)] =
∫ t1

t0
L(x, ẋ)dt.

The direct consequence of Hamilton’s variational principle is Lagrange’s equation
(see the derivation in Section 2.4)

d
dt
∂L
∂ ẋ

− ∂L
∂x

= 0.

Thus, all we need is a single function L(x, ẋ), called Lagrange function, which is
given by

L(x, ẋ) = K(ẋ)−U(x),

where K(ẋ) is the kinetic energy and U(x) the potential energy. As soon as we have
it, the job is done, provided one knows how to differentiate functions. In our example

1 See [21] and the detailed discussion in [29]. One may also read a curious and fascinating
story of Feynman about how he learned Hamilton’s principle of least action and tried later
to explain it from the quantum mechanics and path integral in The Feynman Lectures on
Physics [14].
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K(ẋ) =
1
2

mẋ2, U(x) =
1
2

kx2.

Computing the partial derivatives of this Lagrange function

∂L
∂ ẋ

= mẋ,
∂L
∂x

=−kx,

and substituting them into Lagrange’s equation, we obtain

mẍ+ kx = 0,

which can again be reduced to the normal form (1.1).

EXAMPLE 1.2. Mathematical pendulum. A point-mass m, connected with a fixed
support O by a rigid and massless bar of length l, rotates in the (x,y)-plane about
O under the action of gravity (see Fig. 1.2). Derive the equation of motion for this
pendulum.
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Fig. 1.2 Mathematical pendulum

We see that, again, several idealizations are made
to simplify the real physical pendulum: the whole
mass is concentrated in the point, the carrying bar
is rigid and massless, the air resistance to motion
through viscous damping is neglected.

In the force method we free the point-mass from
the carrying bar, draw the free-body diagram and
apply Newton’s law in the tangential direction

maτ =∑Fτ =−mgsinϕ .

The force of the bar acting on the point-mass does
not contribute to this equation because it is in the
radial direction. Substituting the tangential acceler-
ation aτ = lϕ̈ into this equation, bringing the force term −mgsinϕ to the left-hand
side, and dividing by ml, we obtain

ϕ̈+ω2
0 sinϕ = 0, ω0 =

√
g
l
.

For small vibrations the angle ϕ (measured in radian) is small compared with 1, so
we can linearize this equation by approximating sinϕ ≈ ϕ to obtain

ϕ̈+ω2
0ϕ = 0, (1.2)

which is identical in form with equation (1.1).
Alternatively, one can free the point-mass together with the rigid bar from the

support and apply the moment equation about the z-axis (which is the consequence
of Newton’s law) to this system



6 1 Single Oscillator

d
dt
(ml2ϕ̇) =∑Mz =−mgl sinϕ .

Since the mass is concentrated in the point, its moment of inertia about O is ml2.
In case of a real physical pendulum (rotation of a body about O) the moment of
inertia about O is given by JO = JS +mr2, where JS is the moment of inertia about
the center of mass S, and r the distance between O and S (see exercise 1.2). The
support reaction in O does not contribute to the moment equation, because its line
of action goes through O. For small vibrations we obtain from here equation (1.2).

To use the energy method we write down the kinetic energy

K(ϕ̇) =
1
2

ml2ϕ̇2,

and the potential energy

U(ϕ) = mgh = mgl(1− cosϕ).

Note that the zero level of potential energy (which can be chosen arbitrarily) corre-
sponds to the equilibrium state ϕ = 0. Thus, the Lagrange function is

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 −mgl(1− cosϕ).

For small vibrations ϕ � 1, therefore we can approximate 1− cosϕ ≈ ϕ2/2 and
write

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 − 1
2

mglϕ2.

Substituting this into Lagrange’s equation

d
dt
∂L
∂ ϕ̇

− ∂L
∂ϕ

= 0,

we obtain again the equation of motion of mathematical pendulum.

EXAMPLE 1.3. Rotating disk. A rigid disk rotates about the z-axis under the action
of a spiral spring of stiffness k (see Fig. 1.3). Derive the equation of motion of the
disk.

This example represents a primitive model of a mechanical clock. In the force
method we free the disk and the rotation axis from the supports and the spiral spring,
draw the free-body diagram, and apply the moment equation about the z-axis

d
dt
(Jzϕ̇) =∑Mz =−kϕ , (1.3)

where Jz is the moment of inertia of the system disk plus rotation axis about the
z-axis. The reaction forces from the supports do not contribute to this moment equa-
tion because their lines of action cut the z-axis. Bringing the spring moment −kϕ to
the left-hand side and dividing by Jz, we obtain equation (1.2), where ω2

0 = k/Jz.
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Fig. 1.3 Rotating disk

To use the energy method we write

K(ϕ̇) =
1
2

Jzϕ̇2, U(ϕ) =
1
2

kϕ2

for the kinetic and potential energies, respectively.
This leads again to (1.3).

Solution. Note that the equation of motion of har-
monic oscillator

ẍ+ω2
0 x = 0 (1.4)

is linear. So, if we know two linearly independent par-
ticular solutions of this equation, then we can construct the general solution by their
linear combination in accordance with the superposition principle. It is easy to check
that

cosω0t and sinω0t

are the particular solutions of (1.4). Therefore the general solution reads

x(t) = Acosω0t +Bsinω0t. (1.5)

The unknown coefficients A and B must be found from the initial conditions

x(0) = x0, ẋ(0) = v0.

Thus,
A = x0, B =

v0

ω0
.

t

x
T

a

Fig. 1.4 Harmonic motion

Alternatively, we can present the solution in form
of one harmonic cosine function

x(t) = a cos(ω0t −φ). (1.6)

In this form a has the meaning of the amplitude of
vibration, ω0 the eigenfrequency, and φ the initial
phase. Using the addition formula for cos(ω0t −φ)
we write

x(t) = a(cosφ cosω0t + sinφ sinω0t).

Comparing this with (1.5), we find the relations
between a, φ and A, B

a =
√

A2 +B2 =

√
x2

0 +
v2

0

ω2
0

, tanφ =
B
A
=

v0

x0ω0
.
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Fig. 1.4 shows the graph of x(t). The distance between two neighboring maxima (or
minima) of this periodic function is called a period T of vibration. Since the period
of cosine is 2π ,

T =
2π
ω0

.

Phase Portrait. Let the velocity ẋ be denoted by

y = ẋ.

Then each state of a single oscillator at fixed t corresponds to one point (x,y) of the
so-called phase plane. As t changes this point moves in the phase plane along the
curve called a phase curve. For the free vibration of harmonic oscillator we have
from (1.6)

x = acos(ω0t −φ), y = ẋ =−aω0 sin(ω0t −φ). (1.7)

x

y

O

Fig. 1.5 Phase portrait of harmonic
oscillator

Consequently, the phase curves satisfy the
equation

x2

a2 +
y2

a2ω2
0

= 1, (1.8)

which describes ellipses with the aspect ratio
1 : ω0. Note that (1.8) can also be obtained
from the conservation of energy

K(ẋ)+U(x) = E0, (1.9)

which is the consequence of Lagrange’s equa-
tion (see Section 2.4). Indeed, consider for ex-
ample the mass-spring oscillator for which the
energy conservation takes the form

1
2

my2 +
1
2

kx2 =
1
2

mv2
0 +

1
2

kx2
0 =

ka2

2
.

Dividing this equation by the constant on the right-hand side, we arrive again at
(1.8). With (1.8) we can express y = ẋ in terms of x and integrate it to obtain the
solution (1.6).

Fig. 1.5 shows the phase curves of the harmonic oscillator. In general there is no
more than one phase curve passing through a given point of the phase plane. Since
y = ẋ > 0 in the upper half-plane and y = ẋ < 0 in the lower half-plane, the phase
curves must run from left to right in the upper half-plane and from right to left in
the lower half-plane as time increases. All phase curves cut the x-axis at right angle,
with points of intersection corresponding to maxima or minima of x(t) which are



1.2 Damped Oscillator 9

the turning points. The origin O of the phase plane is the fixed point corresponding
to the stable equilibrium state. For the harmonic oscillator this fixed point is called
a center.

Energy Balance. As we see from (1.9), the total energy of the harmonic oscillator
is conserved. Let us analyze the change of its kinetic and potential energies during
the vibration. Substituting x(t) from (1.7) into the potential energy U(x), we get

U(x) =
1
2

kx2 =
ka2

2
cos2(ω0t −φ) = ka2

4
[1+ cos(2ω0t − 2φ)].

Similarly, with ẋ(t) from (1.7) we obtain

K(ẋ) =
1
2

mẋ2 =
ma2ω2

0

2
sin2(ω0t −φ) = ka2

4
[1− cos(2ω0t − 2φ)].

Thus, the kinetic and potential energies oscillate with the same amplitude which is
equal to the total energy E0 = ka2/2, but with the double frequency 2ω0. Fig. 1.6
shows the change of kinetic and potential energies from which it is seen that they
oscillate in counter-phases so that their sum remains constant, in full agreement with
the conservation of energy.

t

K U

E
0

Fig. 1.6 Energy change: a) bold line: kinetic energy, b) dashed line: potential energy, c)
horizontal line: total energy

1.2 Damped Oscillator

Differential Equation of Motion. Both the force and the energy methods can again
be applied to derive the equation of motion for damped oscillators. However, in the
energy method a new function describing the dissipation potential of the damper has
to be introduced. We consider two examples.
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EXAMPLE 1.4. Mass-spring-damper oscillator. A mass m moves horizontally under
the action of a spring of stiffness k and a damper with a damping constant c (see
Fig. 1.7). Derive the equation of motion for this oscillator.

m m

x

k

c

Fig. 1.7 Mass-spring-damper
oscillator

To apply the force method we note that the only dif-
ference compared with example 1.1 is the additional
force from the damper which is proportional to the ve-
locity ẋ (see the free-body diagram in Fig. 1.7, right).
Thus, Newton’s law now reads

mẍ =∑Fx =−kx− cẋ.

Bringing the two terms on the right-hand side to the
left-hand side, we obtain

mẍ+ cẋ+ kx = 0. (1.10)

The energy method is based on the following variational principle for dissipa-
tive systems: among all admissible motions x(t) constrained by the initial and end
conditions

x(t0) = x0, x(t1) = x1,

the true motion satisfies the variational equation2

δ
∫ t1

t0
L(x, ẋ)dt −

∫ t1

t0

∂D
∂ ẋ
δxdt = 0. (1.11)

Thus, a new function D(x, ẋ), called dissipation function, appears such that the
damping force fr is expressed by

fr =−cẋ =−∂D
∂ ẋ

.

The direct consequence of (1.11) is modified Langrange’s equation for dissipative
systems (see Section 2.4)

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0. (1.12)

We see that the behavior of any dissipative mechanical system is governed by
two functions, namely, the Lagrange function L(x, ẋ) and the dissipation function
D(x, ẋ). In our example

2 This variational equation originates from d’Alembert’s principle in dynamics [8,29], where
the last term corresponds to the virtual work done by the damping force expressed in terms
of the dissipation function [45].
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L =
1
2

mẋ2 − 1
2

kx2, D =
1
2

cẋ2,

so, substituting this into (1.12), we derive again the equation of motion (1.10).

EXAMPLE 1.5. Mathematical pendulum with spring and damper. Derive the equa-
tion of small vibration for the mathematical pendulum connected with a spring and
a damper (see Fig. 1.8).

m

gl/2

mg

O

x

y

k

c

l/2
ϕ

Fig. 1.8 Spring-damper-
pendulum

This model is equivalent to that of the pendulum with
the spring and with the air resistance since, in reality, the
air acts as a damper with viscous damping. In the force
method we must add the forces of spring and damper to
the free-body diagram compared with that of the math-
ematical pendulum in example 1.2. Taking into account
the smallness of ϕ , the moment equation about the z-axis
reads

ml2ϕ̈ =∑Mz =−mglϕ− k
l2

4
ϕ− cl2ϕ̇ .

Bringing all terms to the left-hand side and dividing by
l2, we get

mϕ̈+ cϕ̇+(
mg
l

+
k
4
)ϕ = 0. (1.13)

This is identical in form with equation (1.10).
To use the energy method we must include in the Lagrange function already

found in example 1.2 for small vibrations an additional term associated with the
energy of the spring

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 − 1
2

mglϕ2 − 1
2

k

(
lϕ
2

)2

.

Here, the change in length of the spring, due to the smallness of ϕ , is approximated
by lϕ/2 (see Fig. 1.8). The dissipation function must be a quadratic function of the
velocity lϕ̇

D(ϕ̇) =
1
2

c(lϕ̇)2 =
1
2

cl2(ϕ̇)2.

Substituting these formulas into modified Langrange’s equation for dissipative sys-
tems

d
dt
∂L
∂ ϕ̇

− ∂L
∂ϕ

+
∂D
∂ ϕ̇

= 0,

we derive the equation

ml2ϕ̈+ cl2ϕ̇+(mgl+ k
l2

4
)ϕ = 0,

which, after division by l2, takes the form (1.13).
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Reduction to the Standard Form. Let us divide the equation of motion (1.10) by k

1

ω2
0

ẍ+
c
k

ẋ+ x = 0, ω0 =

√
k
m
. (1.14)

We introduce now the dimensionless time τ = ω0t, in terms of which the first and
second derivatives of x become

ẋ =
dx
dt

=
dx
dτ

dτ
dt

= ω0x′,

ẍ =
dẋ
dt

=
dẋ
dτ

dτ
dt

= ω2
0 x′′.

Here the prime denotes the derivative with respect to τ . Substituting these formulas
into (1.14), we obtain the equation of motion in standard form

x′′+ 2δx′+ x = 0, (1.15)

where the positive coefficient

δ =
cω0

2k
=

c
2mω0

=
c

2
√

km

is called Lehr’s damping ratio.

Solution. We seek a particular solution of (1.15) in the form

x = esτ .

Substituting this Ansatz into (1.15)

(s2 + 2δ s+ 1)esτ = 0,

we see that, since the factor esτ is not equal to zero, s must satisfy the characteristic
equation

s2 + 2δ s+ 1 = 0. (1.16)

The quadratic equation (1.16) has two roots

s1,2 =−δ ±
√
δ 2 − 1.

The character of roots and consequently of the solutions depends on whether a)
0 < δ < 1, b) δ > 1, or c) δ = 1. We analyze now these special cases.

Case a. Since 0 < δ < 1, we set 1−δ 2 = ν2 > 0. In this case the roots are complex-
conjugate

s1,2 =−δ ± iν.

Because esτ = e−δτeiντ satisfies (1.15) which is the differential equation with real
coefficients, its real and imaginary parts
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e−δτ cosντ and e−δτ sinντ

also satisfy this equation. The general solution can now be constructed using the
linear superposition principle

x = e−δτ(Acosντ+Bsinντ).

The unknown coefficients A and B must be found from the initial conditions

x(0) = x0, x′(0) = x′0. (1.17)

Thus,

A = x0, B =
x′0 + δx0

ν
.

Alternatively, we can present the solution in the form

x = a0e−δτ cos(ντ−φ). (1.18)

Using the addition theorem for cos(ντ −φ), we then find that

a0 =
√

A2 +B2 =

√
x2

0 +
(x′0 + δx0)2

ν2 , tanφ =
B
A
=

x′0 + δx0

νx0
.

Case b. Because now δ > 1, we set δ 2 − 1 = κ2 > 0. Thus, there are two real roots
of (1.16)

s1 =−δ +κ =−q1, s2 =−δ −κ =−q2,

where q2 > q1 > 0. The corresponding particular solutions of (1.15) are

e−q1τ and e−q2τ .

The general solution reads

x = Ae−q1τ +Be−q2τ .

Then the initial conditions (1.17) lead to

A =
1

2κ
(x′0 + q2x0), B =− 1

2κ
(x′0 + q1x0).

Thus,

x =
1

2κ
[(x′0 + q2x0)e

−q1τ − (x′0 + q1x0)e
−q2τ ]. (1.19)

Case c. This is the degenerate case, where the real roots are equal (the double real
root): s1 = s2 =−δ =−1. According to the theory of ordinary differential equations
[11] the particular solutions should be e−τ and τe−τ . Combining them, we obtain
the general solution in the form
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x = e−τ(Aτ+B).

The initial conditions (1.17) yield

A = x0 + x′0, B = x0.

Thus,
x = e−τ [x0(1+ τ)+ x′0τ].

Behavior. Having found the solutions in these cases, we can now study their
behaviors.

x

τ

Fig. 1.9 Solid line: motion x = a0e−δτ cos(ντ−φ), dashed lines: envelopes x =±a0e−δτ

Case a. The motion is classified as damped vibration. Fig. 1.9 shows the plot of
x(τ) (the solid line). Since |cos(ντ − φ)| ≤ 1, the motion oscillates between two
envelopes x = ±a0e−δτ drawn by the dashed lines in this Figure. Looking at this
motion we can recognize two characteristic dimensionless time scales

τd =
1
δ

and τc =
2π
ν

=
2π√

1− δ 2
,

or, in the dimension of real time

Td =
1
δω0

=
2m
c

and Tc =
2π
ωc

=
2π

ω0
√

1− δ 2
=

T0√
1− δ 2

.

The time scale τd characterizes the decay rate of amplitude due to damping: the
exponent function e−δτ decays after τd by the factor 1/e ≈ 0,368, the amplitude
of vibration diminishes by 63%. The time scale τc tells us about the so-called con-
ditional period Tc of vibration, which is larger (by the factor 1/

√
1− δ 2) than the

period T0 of the corresponding harmonic oscillator.
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tan(ντ)

ττ∗

−δ/ν

Fig. 1.10 Roots of equation tanντ =−δ/ν

The distance between zeros of x(τ) (the roots of cos(ντ − φ) = 0) is π/ν . The
points at which x(τ) touches the envelopes correspond to the roots of the equations

cos(ντ−φ) =±1.

Thus, they lie in the middle between zeros. However these points are not identical
with the points at which maxima or minima of x(τ) are achieved. Its maxima or
minima are achieved at time instants satisfying the equation

x′(τ) =−a0δe−δτ cos(ντ −φ)− a0νe−δτ sin(ντ −φ) = 0,

so, they are roots of the equation tan(ντ − φ) = −δ/ν . Assuming for simplicity
φ = 0, we find that these roots are displaced from the zeros of the function tanντ to
the left by the constant amount

τ∗ = arctan(δ/ν)/ν (1.20)

on the τ-axis (see Fig. 1.10). Thus, the conditional period of vibration can be read
off also from the distance between two maxima or minima.

There is another important characteristic of amplitude decay which can easily be
measured by the oscillograph. To introduce it we denote by

x1,x2, . . . ,xn, . . .

the maxima of x(τ), and by
τ1,τ2, . . . ,τn, . . .

the corresponding time instants, at which these maxima are achieved. From the be-
havior of solution we know that

xn = a0e−δτn cos(ντn −φ),
xn+1 = a0e−δ (τn+τc) cos[ν(τn + τc)−φ ].
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Dividing xn by xn+1 and using the periodicity of cosine function, we get

xn

xn+1
= eδτc .

We define

ϑ = ln
xn

xn+1
= δτc =

2πδ√
1− δ 2

as a logarithmic decrement of vibration. Knowing ϑ from measurements we can
restore the damping ratio δ according to

δ =
ϑ√

4π2 +ϑ 2
.

Case b. The motion is overdamped and loses the oscillatory character (it is called
therefore an aperiodic motion). The decay rates of exponential functions e−q1τ and
e−q2τ to zero are characterized by two time scales

τd1 =
1
q1

=
1

δ −κ and τd2 =
1
q2

=
1

δ +κ
.

To recognize the aperiodic character of motion let us find the instants of time, τ1

and τ2, at which x(τ1) = 0 and x′(τ2) = 0, respectively. Using (1.19), we derive the
following equations for τ1 and τ2:

e2κτ1 = 1− 2κx0

x′0 + q2x0
,

e2κτ2 = 1+
2κx′0

q1(x′0 + q2x0)
.

Since the exponent is a monotonic function, we see that each equation has no more
than one root. Thus, oscillatory motion is impossible. If we fix the initial coordinate
x0 and variate the initial velocity x′0, then the solution may have different behaviors
depending on the initial velocity as shown in Fig. 1.11.

x

1

2

3

τ

Fig. 1.11 Different aperiodic motions: 1) one root τ2, 2) no roots for τ1 and τ2 (monotone
decreasing function x(τ)), 3) one root for τ1 and τ2
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Case c. This is the limiting case of aperiodic motion. The behavior is similar to the
previous case.

Phase Portrait. The phase portraits exhibit different characters in the above cases.

Case a. To find the phase curves in the phase plane (x,y), y = x′, we transform the
equation of motion in standard form (1.15) to the system of first-order differential
equations

x′ = y, y′ =−x− 2δy.

Thus, the tangent vector to the phase curve at point (x,y) is (y,−x−2δy). Fig. 1.12
shows the vector field (y,−x − 2δy) and one phase curve in the phase plane for
δ = 0.1.

-4 -2 2 4

-4

-2

2

4

x

y

Fig. 1.12 Vector field (y,−x−2δy) and a phase curve

We derive the equation for the phase curves from the solution

x = a0e−δτ cos(ντ−φ),
x′ =−a0e−δτ [δ cos(ντ −φ)+ν sin(ντ −φ)].

Introducing
u = νx, v = x′+ δx, (1.21)

we obtain
u = a1e−δτ cos(ντ−φ), v =−a1e−δτ sin(ντ−φ),

where a1 = νa0. In terms of the polar coordinates ρ and ϑ

u = ρ cosϑ , v = ρ sinϑ ,

these equations become



18 1 Single Oscillator

ρ = a1e−δτ , ϑ =−ντ+φ .

Expressing τ through ϑ by τ =− 1
ν (ϑ −φ), we obtain finally

ρ = a1eδϑ/νe−δφ/ν = a2eδϑ/ν , (1.22)

where a2 = a1e−δφ/ν . Equation (1.22) describes the family of logarithmic spirals in
the (u,v)-plane. As τ increases, ϑ decreases and the spirals approach the origin.

Coming back to the original coordinates x and y, we have

ρ2 = u2 + v2 = ν2x2 +(y+ δx)2 = y2 + 2δxy+ x2,

ϑ = arctan
v
u
= arctan

y+ δx
νx

.

Thus, the equation of phase curves in terms of x and y reads

y2 + 2δxy+ x2 = a2
2e2 δν arctan y+δx

νx .

Since the transformation (1.21) from (u,v) to (x,y) is linear, this equation also de-
scribes the logarithmic spirals in the (x,y)-plane. All spirals approach the origin as
τ goes to infinity. The origin is a fixed point called a (stable) focus.

Case b. To derive the equation of phase curves in the phase plane we use the solution

x = Ae−q1τ +Be−q2τ ,

y = x′ =−q1Ae−q1τ − q2Be−q2τ .

Thus, their linear combinations give

y+ q1x = (q1 − q2)Be−q2τ , y+ q2x = (q2 − q1)Ae−q1τ .

Raising the first equation to the power q1 and the second to the power q2 and com-
paring them, we obtain

(y+ q1x)q1 =C(y+ q2x)q2 .

This is the equation of the phase curves in the (x,y)-plane. Introducing the new
variables

u = y+ q2x, v = y+ q1x, (1.23)

we can rewrite the equation of the phase curves in the form

v =Cuα , α =
q2

q1
> 1.

This equation describes the family of power functions Cuα (with α > 1) in the
(u,v)-plane (see Fig. 1.13 on the left). The linear transformation (1.23) transforms
the u- and v-axis to the straight lines y+q1x = 0 and y+q2x = 0 in the (x,y)-plane.
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Fig. 1.13 Phase portrait of overdamped oscillator in: a) (u,v)-plane, b) (x,y)-plane

x

y
y=-x

Fig. 1.14 Phase portrait of critically damped oscillator in (x,y)-plane

The phase curves in the (x,y)-plane are shown in Fig. 1.13 on the right. Similar to
the previous case all phase curves approach the origin as τ tends to infinity. The
origin is a fixed point called a (stable) node.

Case c. This is the degenerate case of aperiodic motion. Since q1 = q2 = 1, the
two axes y+ q2x = 0 and y+ q1x = 0 coincide with the bisector y =−x. The phase
curves in the (x,y)-plane are shown in Fig. 1.14. Similar to the previous case all
phase curves approach the origin as τ tends to infinity.

Since Lehr’s damping ratio δ is given by δ = c/2mω0, equation δ = 1 describes
the parabola c/m = 2

√
k/m in the (k/m,c/m)-plane of parameters. The latter is the

boundary between different types of motion considered above as shown in Fig. 1.15.

Energy Balance. Because of the presence of damper in the system, the energy is no
longer conserved. The initial energy will be dissipated gradually by the damper into
heat, and the motion decays as time increases. As time goes to infinity, the initial
energy will be dissipated completely, and the system approaches equilibrium. To
find the rate of decay of the total energy we multiply modified Langrange’s equation
(1.12) by ẋ
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Fig. 1.15 Classification of motion in the (k/m,c/m)-plane

ẋ
d
dt
∂L
∂ ẋ

− ẋ
∂L
∂x

=−∂D
∂ ẋ

ẋ.

Observing that

ẋ
d
dt
∂L
∂ ẋ

= ẋ
d
dt
∂K
∂ ẋ

= mẋẍ =
d
dt
(

1
2

mẋ2) =
dK
dt

,

−ẋ
∂L
∂x

= ẋ
∂U
∂x

=
dU
dt

,

−∂D
∂ ẋ

ẋ =−cẋ2 =−2D(ẋ),

we obtain the energy dissipation rate in the form

d
dt
(K +U) =−2D(ẋ). (1.24)

A similar equation also holds true for oscillators with many degrees of freedom (see
Section 2.4). Integrating equation (1.24) from t0 to t, we find the energy change at
time t

K +U −E0 =−2
∫ t

t0
D(ẋ(s))ds =−Ed(t),

where E0 is the total energy at t = t0 and Ed(t) the amount of energy dissipated by
the damper at time t.

1.3 Forced Oscillator

Differential Equation of Motion. If there is an additional external force (excitation)
acting on the oscillator, the latter is called a forced oscillator. Also in this case both
the force and the energy methods can be used to derive the equation of motion. In
the energy method the virtual work done by the external force must be taken into
account. We consider an example.
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EXAMPLE 1.6. Mass-spring-damper forced oscillator. A mass m, connected with a
spring of stiffness k and a damper of damping constant c, moves horizontally under
the action of an external force f (t) (see Fig. 1.16). Derive the equation of motion
for this forced oscillator.

m m

x

k

c

f f

Fig. 1.16 Mass-spring-damper forced oscillator

In the force method the only difference compared with example 1.4 is the external
force f (t) (see the free-body diagram in Fig. 1.16). Thus, Newton’s law in the x-
direction reads

mẍ =∑Fx =−kx− cẋ+ f (t).

Bringing the spring and damping forces to the left-hand side, we obtain

mẍ+ cẋ+ kx = f (t). (1.25)

To use the energy method we must add to the left-hand side of variational equa-
tion (1.11) the virtual work done by the external force. The variational principle
becomes: among all admissible motions x(t) constrained by the conditions

x(t0) = x0, x(t1) = x1,

the true motion satisfies the variational equation (see the footnote on page 10)

δ
∫ t1

t0
L(x, ẋ)dt −

∫ t1

t0

∂D
∂ ẋ
δxdt +

∫ t1

t0
f (t)δxdt = 0. (1.26)

Note that the last integral representing the virtual work of external force can also be
included in the first integral as follows

δ
∫ t1

t0
[L(x, ẋ)+ f (t)x]dt −

∫ t1

t0

∂D
∂ ẋ
δxdt = 0.

From (1.26) we can derive modified Lagrange’s equation

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= f (t). (1.27)

With

L(x, ẋ) =
1
2

mẋ2 − 1
2

kx2, D(ẋ) =
1
2

cẋ2,

we arrive again at the equation of motion (1.25).
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Reduction to the Standard Form. Let us divide equation (1.25) by k

1

ω2
0

ẍ+
c
k

ẋ+ x =
f (t)
k

.

Introducing the dimensionless time τ =ω0t as in the previous Section, we transform
this equation to the standard form

x′′+ 2δx′+ x = g(τ), (1.28)

where the prime denotes as before the derivative with respect to τ and g(τ) =
f (τ/ω0)/k. Equation (1.28) is the inhomogeneous linear differential equation of
second order. According to the theory of ordinary differential equations [11] the
solution of this linear equation is the sum of any particular solution of the inho-
mogeneous equation and the general solution of the homogeneous equation which
has been found in the previous Section. Thus, the problem reduces to finding any
particular solution of the inhomogeneous equation (1.28).

Particular Solution for a Step Function. Consider first a special excitation in form
of the unit step (Heaviside) function

g(τ) = h(τ) =

{
0 for τ ≤ 0,

1 for τ > 0.

We seek the solution of equation (1.28) satisfying the initial conditions

x(0) = 0, x′(0) = 0.

Such the solution is called a unit step response. For an underdamped oscillator (δ <
1) the solution has obviously the form

x = 1+Ce−δτ cos(ντ−φ).

The initial conditions will be satisfied if

x(0) = 1+C cosφ = 0,

and
x′(0) =−C(δ cosφ −ν sinφ) = 0. (1.29)

It follows from the last equation and (1.20) that

tanφ =
δ
ν
=

δ√
1− δ 2

⇒ φ = ντ∗ =
√

1− δ 2τ∗,

where τ∗ is given by (1.20). From x(0) = 0 we find the coefficient C
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C =− 1
cosφ

.

Since tanφ = δ/
√

1− δ 2, it is easy to show that cosφ =
√

1− δ 2, so

C =− 1√
1− δ 2

.

Thus, the unit step response for the underdamped oscillator is given by

xr(τ) = 1− e−δτ√
1− δ 2

cos[
√

1− δ 2(τ− τ∗)].

2 4 6 8

0.2

0.4

0.6

0.8

1

1.2

xr a

b

c

d

τ

Fig. 1.17 Unit step response: a) δ = 0.25, b) δ = 0.5, c) δ = 1, d) δ = 2

Doing similar calculations, we can obtain the unit step responses also for the
overdamped oscillator (δ > 1)

xr(τ) = 1− δ +κ
2κ

e−(δ−κ)τ+
δ −κ

2κ
e−(δ+κ)τ ,

as well as for the critically damped oscillator (δ = 1)

xr(τ) = 1− (1+ τ)e−τ,

(see exercise 1.5). The graphs of these unit step responses are plotted in Fig. 1.17
for different values of damping ratio δ .

Particular Solution for General Excitations. Let us consider now an arbitrary
excitation g(τ) which is zero for τ ≤ 0 and remains finite as τ goes to infinity.
Since the initial conditions can later be satisfied by the solution of the corresponding
homogeneous equation, we seek a particular solution of (1.28) satisfying the initial
conditions

x(0) = 0, x′(0) = 0.

The effective way of finding the solution is the Laplace transform (see, for example
[13]). For any function x(τ) we define its Laplace transform according to
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X(s) =L [x(τ)] =
∫ ∞

0
x(τ)e−sτ dτ,

with X(s) being called the Laplace image of x(τ). We assume that the Laplace trans-
forms of g(τ), x(τ) and its derivatives are defined for any complex number s with the
positive real part. Applying the Laplace transform to both sides of equation (1.28),
we obtain ∫ ∞

0
(x′′+ 2δx′+ x)e−sτdτ =

∫ ∞

0
g(τ)e−sτdτ.

Performing the partial integration, we have

L [x′] =
∫ ∞

0
x′e−sτdτ = xe−sτ ∣∣∞

0 +

∫ ∞

0
sxe−sτdτ = sL [x] = sX(s).

The initial condition x(0) = 0 as well as the behavior of x(τ) at infinity have been
taken into account. Similarly,

L [x′′] =
∫ ∞

0
x′′e−sτdτ = x′e−sτ ∣∣∞

0 +
∫ ∞

0
sx′e−sτdτ = sL [x′] = s2X(s).

Thus, the differential equation (1.28) is transformed into an algebraic equation

(s2 + 2δ s+ 1)X(s) = G(s),

yielding immediately

X(s) =
G(s)

s2 + 2δ s+ 1
. (1.30)

To find the original function from its image function we apply the inverse Laplace
transform to (1.30)

x(τ) =L −1[X(s)] =
1

2π i

∫ α+i∞

α−i∞

G(s)
s2 + 2δ s+ 1

esτds, (1.31)

where α is any real and positive number. Integral (1.31) is taken along the line
(α − i∞,α + i∞) in the complex plane of s. Since the roots of the characteristic
equation have non-positive real parts, the integrand of (1.31) is regular along this
line and thus, the integral converges. The problem reduces then to computing the
inverse Laplace transform of the product G(s)/(s2 + 2δ s + 1). Observe that the
inverse Laplace transform of sG(s) is g′(τ), while the inverse Laplace transform
of 1/s(s2 + 2δ s+ 1) is the unit step response xr(τ) found previously. Indeed, the
Laplace transform of the Heaviside function is

L [h(τ)] =
∫ ∞

0
e−sτdτ =

1
s
,

so, by substituting this in (1.30), we obtain 1/s(s2 + 2δ s+ 1) as the image function
of the unit step response.
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To compute the inverse Laplace transform of the product we use the following
property of the Laplace transform. Consider two arbitrary functions f (τ) and g(τ),
with f (τ) = g(τ) = 0 for τ ≤ 0. Denote the convolution of two functions f (τ) and
g(τ) by

( f ∗ g)(τ) =
∫ ∞

0
f (τ − t)g(t)dt =

∫ τ

0
f (τ − t)g(t)dt = (g ∗ f )(τ).

We compute the Laplace transform of the convolution

L [ f ∗ g] =
∫ ∞

0

(∫ ∞

0
f (τ − t)g(t)dt

)
e−sτdτ.

Changing the order of integration with respect to τ and t, we have

L [ f ∗ g] =
∫ ∞

0

∫ ∞

0
f (τ − t)e−sτdτ g(t)dt.

Changing the variable of integration from τ to u = τ− t, we obtain finally

L [ f ∗ g] =
∫ ∞

0
f (u)e−sudu

∫ ∞

0
g(t)e−stdt = F(s)G(s).

Thus, the Laplace transform of the convolution f ∗g is equal to the product F(s)G(s)
and vice versa. Consequently, the inverse Laplace transform of (1.31) yields

x(τ) =
∫ τ

0
g′(t)xr(τ− t)dt. (1.32)

This is Duhamel’s formula for the particular solution of (1.28).

Solution of Initial-Value Problem. It turns out that the Laplace transform can also
be used to find the solution of the initial-value problem

x′′+ 2δx′+ x = 0,

x(0) = x0, x′(0) = x′0.

Indeed, applying the Laplace transform to this equation and observing that, due to
the initial conditions,

L [x′] =
∫ ∞

0
x′e−sτdτ =−x0 + sX(s),

L [x′′] =
∫ ∞

0
x′′e−sτdτ =−x′0 − sx0 + s2X(s),

we obtain
(s2 + 2δ s+ 1)X(s) = x′0 + sx0 + 2δx0.
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Thus,

X(s) =
x′0 + sx0 + 2δx0

s2 + 2δ s+ 1
,

and the problem reduces to computing the inverse Laplace transform of the rational
function (see exercise 1.6).

Energy Balance. We calculate the rate of change of the total energy due to the work
done by the external force and the dissipation. Multiplying modified Langrange’s
equation (1.27) by ẋ, we obtain

ẋ
d
dt
∂L
∂ ẋ

− ẋ
∂L
∂x

=−∂D
∂ ẋ

ẋ+ f (t)ẋ.

Making the same observation as in previous Section, we obtain the rate of change
of energy in the form

d
dt
(K +U) =−2D(ẋ)+ f (t)ẋ. (1.33)

Integrating equation (1.33) from t0 to t, we find the energy change at time t

K +U −E0 =−2
∫ t

t0
D(ẋ(s))ds+

∫ t

t0
f (s)ẋ(s)ds =−Ed(t)+W(t),

where E0 is the total energy at t = t0. The last term W (t) is the work done by the
external force which is stored in the energy of the system except that part Ed(t)
dissipated by the damper.

1.4 Harmonic Excitations and Resonance

As we know from Section 1.2, any solution of the homogeneous equation ap-
proaches zero as τ becomes large if the damping ratio δ is positive. Therefore
only the particular solution of inhomogeneous equation which persists at large time
(called forced vibration) presents interest in most applications. The forced vibra-
tion has been found in the previous Section for an arbitrary excitation through the
Laplace transform leading to Duhamel’s formula. In spite of this general method
of solution we consider in this Section the special case of harmonic excitations for
which the forced vibration can be determined directly and in a simple way, without
using the Laplace transform technique. The results of this Section are also important
for the variational-asymptotic method in non-linear vibrations.

Type of Excitations. We consider three cases of harmonic excitations.

Case a. Harmonic force excitation or excitation through the spring.

EXAMPLE 1.7. The damper-mass-spring oscillator is excited by the harmonic mo-
tion of the spring hanger: xe = x0 cosωt (see Fig. 1.18).

Since the spring force is proportional to the change of length x− xe(t), the equation
of motion reads
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Fig. 1.18 Oscillator excited through spring hanger

mẍ =−cẋ− k(x− xe).

On the other side, the same equation can also be derived from the Lagrange function

L(x, ẋ) =
1
2

mẋ2 − 1
2

k(xe(t)− x)2

and the dissipation function D(ẋ) = 1
2 cẋ2. Bringing the two terms −cẋ and −kx to

the left-hand side and transforming the obtained equation to the dimensionless form
as in Section 1.2, we get

x′′+ 2δx′+ x = x0 cosητ,

where η =ω/ω0 is the frequency ratio. Note that the same equation of motion holds
true for the forced oscillator in example 1.6 if we set f (t) = f0 cosωt and x0 = f0/k.

Case b. Harmonic excitation through the damper.

EXAMPLE 1.8. The spring-mass-damper oscillator is excited by the harmonic mo-
tion of the damper piston: xe = x0 sinωt (see Fig. 1.19).

m m

x

x
e

k c

Fig. 1.19 Oscillator excited through damper piston

In this case the damping force as well as the dissipation function depend on the
relative velocity ẋ− ẋe. Thus, the equation of motion takes the form

mẍ =−kx− c(ẋ− ẋe).

Bringing the two terms −kx and −cẋ to the left-hand side and transforming the
obtained equation to the dimensionless form, we get

x′′+ 2δx′+ x = 2δηx0 cosητ.

Case c. Harmonic excitation through the motion of the frame.

EXAMPLE 1.9. The spring-mass-damper oscillator is excited by the harmonic mo-
tion of the support frame: xe = x0 cosωt (see Fig. 1.20).
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Fig. 1.20 Oscillator excited by motion of frame

We write the equation of motion in terms of the relative displacement of the mass
with respect to the moving frame, xr = x− xe. Since the acceleration in the fixed
inertial frame is ẍ = ẍr + ẍe, we have

m(ẍr + ẍe) =−cẋr − kxr.

Bringing all terms in the right-hand side to the left-hand side, the term mẍe =
−mx0ω2 cosωt to the right-hand side and transforming the obtained equation to
the dimensionless form, we get

x′′r + 2δx′r + xr = η2x0 cosητ.

One can of course derive the equations of motion in examples 1.8 and 1.9 also by
the energy method (see exercise 1.8).

Thus, in all three cases we may present the equations of motion in the form

x′′+ 2δx′+ x = x0α cosητ, (1.34)

where the factor α is equal to

α =

⎧⎪⎨
⎪⎩

1 in case a,

2δη in case b,

η2 in case c.

Amplitude and Phase of Forced Vibration. We seek the particular solution of
equation (1.34) in form of harmonic motion

x = x0M cos(ητ−ψ) = x0M(cosητ cosψ+ sinητ sinψ),

where M is called a magnification factor and ψ the phase of forced vibration. Dif-
ferentiating this equation with respect to τ , we have

x′ =−x0Mη(sinητ cosψ− cosητ sinψ),

x′′ =−x0Mη2(cosητ cosψ+ sinητ sinψ).

Substitution of these formulas into the equation of motion (1.34) gives
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Fig. 1.21 Phase ψ versus frequency ratio η at different damping ratios δ

cosητ[x0M(1−η2)cosψ+ 2δηx0M sinψ− x0α]

+sinητ[x0M(1−η2)sinψ− 2δηx0M cosψ ] = 0.

Since cosητ and sinητ are independent and are not identically zero, the expres-
sions in the square brackets must vanish yielding

tanψ =
2δη

1−η2 , (1.35)

and
M =

α
(1−η2)cosψ+ 2δη sinψ

.

We see from (1.35) that the phase ψ is independent of α , so it remains the same
in all three cases. However, one should keep in mind that ψ in case b) is the phase
difference between the response x and the velocity ẋe. The plot of ψ(η) for different
values of δ is shown in Fig. 1.21.

0.5 1 1.5 2

1

2

3

4

5

M

η

δ=0

0.25

0.5
1

2

Fig. 1.22 Magnification factor M versus frequency ratio η at different damping ratios δ
(case a)

The equation for the magnification factor M can still be reduced to the form
independent of the phase ψ . We first note that, due to (1.35),



30 1 Single Oscillator

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
M

η

2

1

0.5

0.25

δ=0

Fig. 1.23 Magnification factor M versus frequency ratio η at different damping ratios δ
(case b)

(1−η2)cosψ+ 2δη sinψ = 2δη(sinψ+
cosψ
tanψ

) =
2δη
sinψ

.

From the same formula (1.35) we can easily express sinψ as

sinψ =
2δη√

(1−η2)2 + 4δ 2η2
. (1.36)

Thus,

M =
α√

(1−η2)2 + 4δ 2η2
. (1.37)

The plots of magnification factor M versus the frequency ratio η for different values
of damping ratio δ are shown in Figs. 1.22-1.24 in cases a, b, and c, respectively.
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Fig. 1.24 Magnification factor M versus frequency ratio η at different damping ratios δ
(case c)
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One may be interested in finding the maximum of magnification factor and the
frequency ratio at which this maximum is achieved. One speaks then of the resonant
vibration. In case a) the maximum of M is achieved at ηm =

√
1− 2δ 2 giving

Mm =
1√

1−η4
m

=
1

2δ
√

1− δ 2

for δ < 1/
√

2 and at η = 0 giving Mm = 1 otherwise. In case b) the maximum is
always achieved at η = 1 giving Mm = 1. In case c) the maximum of M is achieved
at ηm = 1/

√
1− 2δ 2 giving

Mm =
η2

m√
η4

m − 1
=

1

2δ
√

1− δ 2

for δ < 1/
√

2 and at η = ∞ giving Mm = 1 otherwise. The curves corresponding
to the maxima of the magnification factors are drawn in Figs. 1.22 and 1.24 by the
dashed lines. It is remarkable that the maxima of M are in general not achieved when
the frequency of external excitation coincides with the frequency of free vibration
ωc = ω0

√
1− δ 2 (which means η =

√
1− δ 2) except the case δ = 0 for which

Mm = ∞ (strict resonance).3 Some characteristic values of phase and magnification
factors are presented in Table 1.1.

Table 1.1 Characteristic values of ψ and M

η ψ M (case a) M (case b) M (case c)

0 0 1 0 0

1 π/2 1
2δ 1 1

2δ

∞ π 0 0 1

ηm - 1
2δ

√
1−δ 2 1 1

2δ
√

1−δ 2

Power and Work. Let us find out the power and work done by the external force on
the forced vibration. We define the power of the external force as

P = f (t)ẋ.

For the forced oscillator with f (t) = kx0 cosωt (case a) the forced vibration is de-
scribed by

x = x0M cos(ωt −ψ), ẋ =−x0ωM sin(ωt −ψ).
3 Actually the solution in this case is x0Mτ sinτ , and its amplitude tends to infinity only in

the limit τ→ ∞ (see exercise 1.10).
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Thus,

P = f (t)ẋ =−kx2
0ωM cosωt sin(ωt −ψ)

=
1
2

kx2
0ωM[sinψ− sin(2ωt −ψ)] = Pa −Pi,

where the constant part Pa = 1
2 kx2

0ωM sinψ is called an active power, while the
oscillating with doubled frequency part Pi =

1
2 kx2

0ωM sin(2ωt −ψ) an idle power.
Remembering the formulas (1.36) and (1.37), we obtain in case a)

Pa = kx2
0ω0

δη2

(1−η2)2 + 4δ 2η2 = kx2
0ω0Ma,

Pi = kx2
0ω0

η
2
√
(1−η2)2 + 4δ 2η2

sin(2ωt −ψ) = kx2
0ω0Mi sin(2ωt −ψ).

Knowing the power, we can easily calculate the work done by the external force
according to

W =

∫ t

t0
Pdt =

1
2

F0x̂ω(t − t0)sinψ+
1
4

F0x̂[cos(2ωt −ψ)− cos(2ωt0 −ψ)],

where F0 = kx0 and x̂ = x0M. We see that the work done by the external force can
be decomposed into two parts: the active work Wa which grows linearly with time,
and the idle work Wi which is the periodic function. The work done in one period of
vibration is given by

W ∗ = πF0x̂sinψ .

We know that, for periodic motions, the kinetic and potential energies are periodic
functions, so they do not change in one period. In contrary, the energy dissipation in
one period of vibration is positive and equals

R∗ = 2
∫ T

0
D(ẋ)dt = cω x̂2

∫ 2π

0
sin2(ωt −ψ)d(ωt) = πcx̂2ω .

W*

R*

xs

^ ^
x

Fig. 1.25 Energy diagram of forced vibration
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Diagram 1.25 shows the comparison between the work done W ∗ and the energy
dissipation R∗ in one period of forced vibration as function of the amplitude x̂ at
some fixed frequency. While the work done in one period is a linear function of
x̂, the energy dissipation is quadratic with respect to x̂. The straight line cuts the
parabola at a point with coordinate x̂s = F0 sinψ/cω . If x̂ < x̂s, then the work done
by the external force is larger than the energy dissipation, so the amplitude of forced
vibration must increase. If x̂> x̂s, then the work done by the external force is smaller
than the energy dissipation, so the amplitude decreases. Thus, x̂s corresponds to the
steady-state amplitude of forced vibration.

1.5 Exercises

EXERCISE 1.1. Derive the equation of motion of a roller (mass m, radius r) hung
on an unstretchable rope and a spring (see Fig. 1.26) with the help of

r

k

m

Fig. 1.26 Roller hung on rope and spring

i) the force method,
ii) the energy method.

Determine the eigenfrequency of vibration.

Solution. i) The force method. We free the roller from the rope and the spring (see
Fig. 1.27) and apply the moment equation about A

d
dt
(JAϕ̇) =∑Mz =−Fs2r.

From the kinematics we know that ϕ = x/2r. Besides, the spring force is equal to
Fs = kx, while the moment of inertia of the roller about A is

JA = JO +mr2 =
1
2

mr2 +mr2 =
3
2

mr2.

Thus, the equation of motion reads

3
2

mr2 ẍ
2r

=−kx2r ⇒ ẍ+
8k
3m

x = 0,
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r
kx

O
O A

x
2r

Fig. 1.27 Roller and the forces

and the eigenfrequency is given by

ω2
0 =

8k
3m

⇒ ω0 =

√
8k
3m

.

ii) The energy method. We write down the kinetic and potential energies:

K =
1
2

JAϕ̇2, U =
1
2

kx2.

Taking into account the kinematic relation ϕ = x/2r and the formula JA = 3
2 mr2, we

obtain the Lagrange function in the form

L = K −U =
3

16
mẋ2 − 1

2
kx2.

Then, from Lagrange’s equation

d
dt
∂L
∂ ẋ

− ∂L
∂x

= 0,

we derive again the above equation of motion and the formula for ω0.

EXERCISE 1.2. Derive the equation of motion of a thin circular ring (mass m, radius
r) hung on a support O (see Fig. 1.28). Determine the eigenfrequency of its small
vibration.

+
r

O

Fig. 1.28 Ring hung on support
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Solution. We write down the kinetic and potential energies:

K =
1
2

JOϕ̇2, U = mgr(1− cosϕ).

The moment of inertia of the thin ring is equal to

JO = JS +mr2 = mr2 +mr2 = 2mr2.

For small vibrations with ϕ � 1 we approximate 1− cosϕ ≈ 1
2ϕ

2. Thus,

L = mr2ϕ̇2 − 1
2

mgrϕ2.

From Lagrange’s equation we derive the equation of motion

2mr2ϕ̈+mgrϕ = 0.

Consequently, the eigenfrequency is

ω0 =

√
g
2r

.

EXERCISE 1.3. Three turning points are measured from the vibration of a damped
oscillator: x1 = 8.6mm, x2 = −4.1mm, x3 = 4.3mm. Determine the middle point
of vibration (position of equilibrium). Find the logarithmic decrement ϑ and the
damping ratio δ .

Solution. The free vibration of the underdamped oscillator is described by

x(τ) = xm + a0e−δτ cos(ντ −φ),

where xm corresponds to the position of equilibrium. As we know, x(τ) achieves
maxima or minima if

tan(ντ−φ) =−δ/ν.
So, the turning points (corresponding to maxima or minima) occur at the time in-
stants τ1, τ1 + τc/2, τ1 + τc and so on, with τ1 being the time instant of the first
turning point and τc = 2π/ν the conditional period of vibration. Taking the period-
icity of cosine function into account, we have

x1 = xm +C,

x2 = xm −Ce−δπ/ν ,

x3 = xm +Ce−δ2π/ν ,

where C = a0e−δτ1 cos(ντ1 −φ). Forming the differences we easily see that

x1 − x2

x3 − x2
= eδπ/ν = eδτc/2.
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Thus,

ln
x1 − x2

x3 − x2
= δτc/2 =

ϑ
2
,

with ϑ being the logarithmic decrement. Substituting the given values of turning
points into this formula we obtain

ϑ = 2ln
x1 − x2

x3 − x2
= 0.827.

Knowing the logarithmic decrement, we find Lehr’s damping ratio

δ =
ϑ√

4π2 +ϑ 2
= 0.13.

Now we form the differences x1 − xm and xm − x2 and consider the quotient

x1 − xm

xm − x2
= eδτc/2 = eϑ/2.

From the last equation it is ready to find xm

xm =
x1 + x2eϑ/2

1+ eϑ/2
= 0.956mm.

EXERCISE 1.4. The time constants are measured from the vibration of a damped
oscillator: Td = 5s, Tc = 2s. Determine ϑ and δ .

Solution. According to the formulas for the characteristic times Td and Tc we have

Td =
1
δω0

and Tc =
2π

ω0
√

1− δ 2
.

Thus, it is not difficult to see that

ϑ =
2πδ√
1− δ 2

=
Tc

Td
= 0.4.

Knowing ϑ , we can restore the damping ratio δ according to

δ =
ϑ√

4π2 +ϑ 2
= 0.0635.

EXERCISE 1.5. Determine the unit step responses for the overdamped and the crit-
ically damped oscillators.

Solution. For an overdamped oscillator (δ > 1) the unit step response satisfying the
initial conditions

xr(0) = 0, x′r(0) = 0



1.5 Exercises 37

has obviously the form

xr(τ) = 1+Ae−q1τ +Be−q2τ ,

where
q1 = δ −κ , q2 = δ +κ ,

and κ =
√
δ 2 − 1. Substituting this solution into the initial conditions, we obtain for

A and B the equations

xr(0) = 1+A+B= 0,

x′r(0) =−Aq1 −Bq2 = 0.

Solving these equations with respect to A and B, we get

A =−δ +κ
2κ

, B =
δ −κ

2κ
.

Thus,

xr(τ) = 1− δ +κ
2κ

e−(δ−κ)τ+
δ −κ

2κ
e−(δ+κ)τ .

For a critically damped oscillator (δ = 1) the unit step response must have the
form

xr(τ) = 1+ e−τ(Aτ+B).

The initial conditions lead to

xr(0) = 1+B = 0, x′r(0) = A−B = 0,

yielding
A = B =−1.

Thus,
xr(τ) = 1− (1+ τ)e−τ.

EXERCISE 1.6. Find the solution of the initial-value problem

x′′+ 2δx′+ x = 0,

satisfying x(0) = x0 and x′(0) = x′0 with the help of the Laplace transform.

Solution. As shown in Section 1.3 the Laplace transform applied to this initial-value
problem leads to

X(s) =
x′0 + sx0 + 2δx0

s2 + 2δ s+ 1
,

where X(s) is the Laplace image of x(τ). Thus, the problem reduces to computing
the inverse Laplace transform of the rational function

x(τ) =L −1[X(s)] =
1

2π i

∫ α+i∞

α−i∞

x′0 + sx0 + 2δx0

s2 + 2δ s+ 1
esτds.
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Since X(s) is the ratio of two polynomials P(s)/Q(s), its inverse Laplace transform
equals the sum of the residues of X(s)esτ at the singular points (poles) of X(s). For
the overdamped oscillator (δ > 1) we have two different real roots of the character-
istic equation corresponding to two simple poles of X(s)

s = s1 =−q1, s = s2 =−q2,

therefore

x(τ) =
P(−q1)

Q′(−q1)
e−q1τ +

P(−q2)

Q′(−q2)
e−q2τ .

Since
P(s) = x′0 + sx0 + 2δx0, Q′(s) = 2s+ 2δ ,

and
q1 = δ −κ , q2 = δ +κ ,

we easily find that

P(−q1)

Q′(−q1)
=

1
2κ

(x′0 + q2x0),
P(−q2)

Q′(−q2)
=− 1

2κ
(x′0 + q1x0).

Thus,

x(τ) =
1

2κ
[(x′0 + q2x0)e

−q1τ − (x′0 + q1x0)e
−q2τ ],

which agrees with the formula (1.19).
For the underdamped oscillator with δ < 1 we have two complex conjugate roots,

and the computation of the inverse Laplace transform can be done in a similar man-
ner. For the critically damped oscillator (δ = 1) there is one double root s = −1
corresponding to the pole of order two, so

x(τ) =
d
ds

[P(s)esτ ]

∣∣∣∣
s=−1

= e−τ [x0(1+ τ)+ x′0τ].

EXERCISE 1.7. Use Duhamel’s formula to compute the response of the critically
damped oscillator with δ = 1 to the so-called ramp function

g(τ) =

⎧⎪⎨
⎪⎩

0 for τ < 0,

ατ for 0 ≤ τ ≤ τ0,

ατ0 for τ > τ0.

The oscillator was at rest for τ ≤ 0.

Solution. According to Duhamel’s formula

x(τ) =
∫ τ

0
g′(t)xr(τ− t)dt,

where xr(τ) is the unit step response function. For δ = 1 we have
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xr(τ) = 1− (1+ τ)e−τ.

We compute the derivative of the ramp function g(τ) given above

g′(τ) =

⎧⎪⎨
⎪⎩

0 for τ < 0,

α for 0 ≤ τ ≤ τ0,

0 for τ > τ0.

So we need to consider two different cases.
Case a: τ ≤ τ0. In this case

x(τ) =
∫ τ

0
α[1− (1+(τ− t))e−(τ−t)]dt

= α
[
τ−

∫ τ

0
e−(τ−t) dt −

∫ τ

0
(τ− t)e−(τ−t)dt

]

= α
[
τ−

∫ 0

−τ
eu du+

∫ 0

−τ
ueu du

]

= α(τ − 2+ 2e−τ+ τe−τ) = α[τ− 2+(τ+ 2)e−τ ].

Case b: τ > τ0. Since g′(τ) = 0 for τ > τ0, we have

x(τ) =
∫ τ0

0
α[1− (1+(τ− t))e−(τ−t)]dt

= α
[
τ0 −

∫ τ0

0
e−(τ−t) dt −

∫ τ0

0
(τ− t)e−(τ−t)dt

]

= α
[
τ0 −

∫ τ0−τ

−τ
eu du+

∫ τ0−τ

−τ
ueu du

]

= α[τ0 − (2+ τ− τ0)e
−(τ−τ0) + (τ+ 2)e−τ ].

EXERCISE 1.8. Derive the equations of motion in examples 1.8 and 1.9 by the
energy method.

Solution. In example 1.8 (see Fig. 1.19) the Lagrange function reads

L(x, ẋ) =
1
2

mẋ2 − 1
2

kx2.

The dissipation function depends however on the relative velocity

D =
1
2

c(ẋ− ẋe)
2.

From modified Lagrange’s equation for dissipative systems

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0,
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we derive the equation of motion

mẍ+ kx+ c(ẋ− ẋe) = 0.

For the system in example 1.9 (see Fig. 1.20) the Lagrange function reads

L(x, ẋ) =
1
2

mẋ2 − 1
2

k(x− xe)
2.

We see that the potential energy depends on the relative displacement. The dissipa-
tion function depends also on the relative velocity

D =
1
2

c(ẋ− ẋe)
2.

From modified Langrange’s equation for dissipative systems

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0,

we derive the equation of motion

mẍ+ k(x− xe)+ c(ẋ− ẋe) = 0.

Introducing the relative displacement xr = x− xe, we can present this equation in
the form

mẍr + cẋr + kxr =−mẍe.

EXERCISE 1.9. Derive the equation of vertical motion of a frame (mass m f ) excited
by two rotating unbalanced masses (mass mu/2, frequency of rotation ω , radius of
rotation r). The frame is connected with two springs of equal stiffness k/2 and a
damper with damping constant c (see Fig. 1.29). Determine the magnification factor
of forced vibration.

m
u
/2

ck/2 k/2

m
fx

ω ω

Fig. 1.29 Vertical forced vibration of frame

Solution. We derive the equation of motion by the energy method. Let x be the ver-
tical displacement of the center of mass of the frame from the equilibrium position.
The displacements of the unbalanced masses from their equilibrium positions are
given by
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xu = x+ r cosωt, yu =±r sinωt.

The plus and minus signs are due to the fact that the unbalanced masses rotate in the
opposite directions. Their velocities are

ẋu = ẋ− rω sinωt, ẏu =±rω cosωt.

Thus, the kinetic energy of masses equals

K(ẋ) =
1
2

m f ẋ2 +
1
2

mu(ẋ− rω sinωt)2 +
1
2

mur2ω2 cos2ωt.

Since the gravitational force and the static spring forces do not contribute to the
potential energy, we have

U(x) =
1
2

kx2.

The Lagrange function reads

L = K −U =
1
2

m f ẋ2 +
1
2

mu(ẋ− rω sinωt)2 +
1
2

mur2ω2 cos2ωt − 1
2

kx2.

The dissipation function is given by

D(ẋ) =
1
2

cẋ2.

From modified Lagrange’s equation

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0,

we derive the equation of motion of this system

(m f +mu)ẍ+ cẋ+ kx = murω2 cosωt.

The eigenfrequency of free and undamped vibration is ω0 =
√

k
mf +mu

. Introducing

the dimensionless time τ = ω0t, we reduce the equation of motion to the standard
form

x′′+ 2δx′+ x = x0η2 cosητ,

where
δ =

cω0

2k
, x0 =

mu

m f +mu
r, η =

ω
ω0

.

The forced vibration reads

x = x0M cos(ητ−ψ) = x0M(cosητ cosψ+ sinητ sinψ),

where M is called a magnification factor and ψ the phase of forced vibration. The
magnification factor is equal to (see Section 1.4)
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M =
η2√

(1−η2)2 + 4δ 2η2
.

EXERCISE 1.10. Show that the variational problem

δ
∫ 2π

0
(

1
2

x′2 − 1
2

x2 + cosτ x)dτ = 0

has no extremal in the class of periodic functions with x(0) = x(2π) and x′(0) =
x′(2π). Find its extremal. What happens if the last term in the integrand is sinτ x?

Solution. Lagrange’s equation for the extremal of this action functional reads

x′′+ x = cosτ.

Since the frequency of the external excitation coincides with the eigenfrequency of
the system corresponding to the resonance, we look for the particular solution of
this equation in the form

x(τ) = Aτ sinτ.

Computing the derivatives of x(τ), we have

x′ = A(sinτ+ τ cosτ), x′′ = A(2cosτ− τ sinτ).

Substituting these formulas into Lagrange’s equation, we find that

x′′+ x = 2Acosτ = cosτ ⇒ A =
1
2
.

The general solution then follows

x(τ) =
1
2
τ sinτ+ acos(τ−φ).

We see that the extremal is non-periodic, and the amplitude of forced vibration goes
to infinity as τ → ∞.

If the last term in the action functional is replaced by sinτ x, then the Lagrange’s
equation changes to

x′′+ x = sinτ.

Similar calculations show that

x(τ) =−1
2
τ cosτ+ acos(τ−φ).

This corresponds again to the resonance because the extremal is non-periodic, and
the amplitude of forced vibration goes to infinity as τ → ∞.

EXERCISE 1.11. Find the maxima of the magnification factors M in three cases a,
b, and c considered in Section 1.4.
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Solution. As shown in Section 1.4, the magnification factor M is given by

M =
α√

(1−η2)2 + 4δ 2η2
,

where

α =

⎧⎪⎨
⎪⎩

1 in case a,

2δη in case b,

η2 in case c.

To find the maximum of M we must differentiate M with respect to η . Consider first
case a. In this case

dMa

dη
=

2η(1−η2 − 2δ 2)

[(1−η2)2 + 4δ 2η2]3/2
.

Equating this derivative with zero, we find that the maximum is achieved either at
η = 0 or at

η =
√

1− 2δ 2.

Substituting these values into the formula for M, we find that the maximum is either
1 or

maxMa =
1

2δ
√

1− δ 2
.

In case b we have

dMb

dη
=

2δ√
(1−η2)2 + 4δ 2η2

− δη(−4(1−η2)η+ 8δ 2η)
[(1−η2)2 + 4δ 2η2]3/2

.

Simplifying this expression, we obtain

dMb

dη
=

2δ (1−η2)(1+η2)

[(1−η2)2 + 4δ 2η2]3/2
.

Thus, the maximum is always achieved at η = 1 giving maxMb = 1.
In case c the calculations give

dMc

dη
=

2η√
(1−η2)2 + 4δ 2η2

− η2(−2(1−η2)η+ 4δ 2η)
[(1−η2)2 + 4δ 2η2]3/2

.

Simplifying this expression, we obtain

dMc

dη
=

2η(1− (1− 2δ 2)η2)

[(1−η2)2 + 4δ 2η2]3/2
.

Thus, the maximum of Mc is achieved at ηm = 1/
√

1− 2δ 2 giving

maxMc =
η2

m√
η4

m − 1
=

1

2δ
√

1− δ 2
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for δ < 1/
√

2, and at η = ∞ giving limη→∞Mc = 1 otherwise.

EXERCISE 1.12. Find the idle and active works done by the external forces in cases
b and c considered in Section 1.4.

Solution. In example 1.8 corresponding to case b (see Fig. 1.19) the equation of
motion reads

mẍ+ kx+ cẋ = cẋe = cωx0 cosωt.

The right-hand side of this equation is the force acting on the damper piston. The
power of this force is equal to

P = f (t)ẋ =−cx2
0ω

2M cosωt sin(ωt −ψ)
=

1
2

cx2
0ω2M[sinψ− sin(2ωt −ψ)] = Pa −Pi.

The constant part Pa =
1
2 cx2

0ω2M sinψ is the active power while the oscillating with
doubled frequency part Pi =

1
2 cx2

0ω2M sin(2ωt −ψ) an idle power. Remembering
the formulas for M and sinψ , we have in case b

Pa = cx2
0ω2

0
2δ 2η4

(1−η2)2 + 4δ 2η2 ,

Pi = cx2
0ω

2
0

δη3√
(1−η2)2 + 4δ 2η2

sin(2ωt −ψ).

In example 1.9 corresponding to case c (see Fig. 1.20) the equation of motion
reads

mẍr + kxr + cẋr =−mẍe = mω2x0 cosωt.

The right-hand side of this equation is the force acting on the frame. The power of
this force is equal to

P = f (t)ẋe =−mx2
0ω

3M cosωt sin(ωt −ψ)
=

1
2

mx2
0ω

3M[sinψ− sin(2ωt −ψ)] = Pa −Pi.

The constant part Pa =
1
2 mx2

0ω3M sinψ is the active power while the oscillating with
doubled frequency part Pi =

1
2 mx2

0ω
3M sin(2ωt −ψ) an idle power. Recalling the

formulas for M and sinψ , we have in case c

Pa = mx2
0ω

3
0

δη6

(1−η2)2 + 4δ 2η2 ,

Pi =
1
2

mx2
0ω

3
0

η5√
(1−η2)2 + 4δ 2η2

sin(2ωt −ψ).

Integrating these formulas over t, we easily find the active and idle works.
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