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Preface to the Second Edition

Since the appearance of the first edition we have received various feedbacks and sug-
gestions from students and teachers. To make the textbook more suitable for learn-
ing and teaching purposes, especially to show the energy and variational-asymptotic
method “in action”, we decided to include the solutions to all exercises in this sec-
ond edition (some of the exercises have been changed). Besides, we have found
and corrected various small errors and misprints in the first edition. Finally, Sec-
tion 8.4 is rewritten completely taking into account the new developments in ampli-
tude and slope modulation of nonlinear dispersive waves. We would like to thank
especially the editor of the series ”Interaction of Mechanics and Mathematics”,
L. Truskinovsky, for his various constructive suggestions. The interest and support
of the publishing editor of Springer Verlag, Dr. T. Ditzinger, in this second edition
is also gratefully acknowledged.

Bochum, November 2013
Khanh Chau Le

Lu Trong Khiem Nguyen



Preface to the First Edition

We live in the world surrounded by vibrations and waves. Some, such as sound,
light, and electricity, are familiar companions in everyday life, while many others,
such as lattice vibrations, vibrations of fluid particles in a turbulent flow, or vibra-
tions of temperature about its average value, cannot be observed by naked eyes but
can be measured by sensitive modern instruments. Vibrations and waves also dom-
inate in the micro-world: vibrations of atoms, waves of elementary particles, and
one would be remiss to fail to mention that the governing equation of quantum me-
chanics is the Schrödinger wave equation. Vibrations and waves find various appli-
cations in engineering and in our everyday life, from clocks, bells, lamps, musical
instruments, to radio, television, laser, plasma, computer, internet etc. Sometimes
vibrations and waves are not as harmless as one might think. Whoever lives near a
highway or an airport knows, how annoying permanent noise can be. Medical tech-
niques and high precision equipments often require vibration free frames which are
not always easily realizable. The wings of airplane or the rotor blades of helicopter
may encounter strong vibrations during exploitation causing their quick damage.
Various catastrophes in the nature like earthquake or tsunami are also due to vibra-
tions and waves.

The above examples should make clear the necessity of understanding the mech-
anism of vibrations and waves in order to control them in an optimal way. How-
ever, vibrations and waves are governed by differential equations which require,
as a rule, rather complicated mathematical methods for their analysis. The aim of
this textbook is to help students acquire both a good grasp of the first principles
from which the governing equations can be derived, and the adequate mathemati-
cal methods for their solving. Its distinctive features, as seen from the title, lie in
the systematic and intensive use of Hamilton’s variational principle and its gener-
alizations for deriving the governing equations of conservative and dissipative me-
chanical systems, and also in providing the direct variational-asymptotic analysis,
whenever available, of the energy and dissipation for the solution of these equations.
It will be demonstrated that many well-known methods in dynamics like those of
Lindstedt-Poincaré, Bogoliubov-Mitropolsky, Kolmogorov-Arnold-Moser (KAM),
and Whitham are derivable from this variational-asymptotic analysis.



X Preface to the First Edition

This book grew up from the lectures given by the author in the last decade at
the Ruhr University Bochum, Germany. Since vibrations and waves are constituents
of various disciplines (physics, mechanics, electrical engineering etc.) and cannot
be handled in a single textbook, I have restricted myself mainly to vibrations and
waves of mechanical nature. Unfortunately, due to the time constraint I had to leave
out the most exciting and quickly developing part of dynamics, namely the deter-
ministic chaos. Chapter 7 can serve as an introduction to this fascinating topic. The
material of this book can be recommended for a one year course in higher dynamics
for graduate students of mechanical and civil engineering. For this circle of read-
ers, the emphasis is made on the constructive methods of solution and not on the
rigorous mathematical proofs of convergence. As compensation, various numerical
simulations of the exact and approximate solutions are provided which demonstrate
vividly the validity of the used methods. To help students become more proficient,
each chapter ends with exercises, of which some can be solved effectively by using
Mathematica.

I would like to thank first of all K. Hackl, who insisted that this one-year grad-
uate course in higher dynamics at Ruhr University Bochum must be taught by me,
and V. Berdichevsky, C. Günther, D. Hodges, M. Kaluza, R. Knops, G. Schmid, L.
Truskinovsky, and many other friends and colleagues for their comments and useful
discussions.

Bochum, May 2011
Khanh Chau Le
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Part I
Linear Theory



Chapter 1
Single Oscillator

This chapter deals with small vibrations of the simplest mechanical systems, namely
of oscillators having only one degree of freedom. The most general and effective
method of solution is the Laplace transform which is based entirely on the linear
superposition principle.

1.1 Harmonic Oscillator

Differential Equation of Motion. The derivation of the equation of motion is the
first, and at the same time, most responsible step toward solution of a real problem.
Having derived the right equation, we have won already half the battle. In contrary,
having arrived at some wrong equation, all of our further efforts in solving it will
end in nothing but disaster. To derive the equation of motion we must

• idealize the real physical problem,
• apply the first principles of dynamics.

There are two equivalent methods of deriving the equation of motion based on the
first principles of dynamics: the force method and the energy method. In the force
method, we first free parts of the system under consideration from the surrounding,
then draw the free-body diagram with all acting forces, and finally apply Newton’s
law to each degree of freedom. The energy method is based on Hamilton’s varia-
tional principle leading to Lagrange’s equations. Since we are dealing then with only
one function, the energy method turns out to be simpler and much more effective,
especially for systems with many degrees of freedom and with various constraints.
In order to demonstrate their equivalence, let us begin with simple examples.

EXAMPLE 1.1. Mass-spring oscillator. A point-mass m moves horizontally under
the action of a massless spring of stiffness k (see Fig. 1.1). Derive the equation of
motion for this oscillator.
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m

k
x

F

Fig. 1.1 Mass-spring oscillator

We see already in the formulation of the problem
various idealizations of the real situation: the point-
mass is considered instead of a body of finite size,
this mass is constrained to move horizontally, the
spring is regarded as massless and linearly elastic,
the air resistance to motion through viscous damping
is neglected etc. How close this simple mathematical
model can describe the real physical problem is the

matter of experimental verification.
To use the force method we must first free the point-mass from the spring, then

draw the free-body diagram (see Fig. 1.1, right), and finally apply Newton’s second
law (mass times acceleration = force) in the x-direction

mẍ =∑Fx =−kx,

where the dot denotes the time derivative. Bringing the spring force −kx to the left-
hand side and dividing by m, we transform the equation of motion to the standard
form

ẍ+ω2
0 x = 0, ω0 =

√
k
m
. (1.1)

The energy method is based on Hamilton’s variational principle of least action1

which states that, among all admissible motions x(t) of the point-mass satisfying the
initial and end conditions

x(t0) = x0, x(t1) = x1,

the true motion is the extremal of the action functional

I[x(t)] =
∫ t1

t0
L(x, ẋ)dt.

The direct consequence of Hamilton’s variational principle is Lagrange’s equation
(see the derivation in Section 2.4)

d
dt
∂L
∂ ẋ

− ∂L
∂x

= 0.

Thus, all we need is a single function L(x, ẋ), called Lagrange function, which is
given by

L(x, ẋ) = K(ẋ)−U(x),

where K(ẋ) is the kinetic energy and U(x) the potential energy. As soon as we have
it, the job is done, provided one knows how to differentiate functions. In our example

1 See [21] and the detailed discussion in [29]. One may also read a curious and fascinating
story of Feynman about how he learned Hamilton’s principle of least action and tried later
to explain it from the quantum mechanics and path integral in The Feynman Lectures on
Physics [14].
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K(ẋ) =
1
2

mẋ2, U(x) =
1
2

kx2.

Computing the partial derivatives of this Lagrange function

∂L
∂ ẋ

= mẋ,
∂L
∂x

=−kx,

and substituting them into Lagrange’s equation, we obtain

mẍ+ kx = 0,

which can again be reduced to the normal form (1.1).

EXAMPLE 1.2. Mathematical pendulum. A point-mass m, connected with a fixed
support O by a rigid and massless bar of length l, rotates in the (x,y)-plane about
O under the action of gravity (see Fig. 1.2). Derive the equation of motion for this
pendulum.

m

g

l

mg

O

x

y

τ

ϕ

Fig. 1.2 Mathematical pendulum

We see that, again, several idealizations are made
to simplify the real physical pendulum: the whole
mass is concentrated in the point, the carrying bar
is rigid and massless, the air resistance to motion
through viscous damping is neglected.

In the force method we free the point-mass from
the carrying bar, draw the free-body diagram and
apply Newton’s law in the tangential direction

maτ =∑Fτ =−mgsinϕ .

The force of the bar acting on the point-mass does
not contribute to this equation because it is in the
radial direction. Substituting the tangential acceler-
ation aτ = lϕ̈ into this equation, bringing the force term −mgsinϕ to the left-hand
side, and dividing by ml, we obtain

ϕ̈+ω2
0 sinϕ = 0, ω0 =

√
g
l
.

For small vibrations the angle ϕ (measured in radian) is small compared with 1, so
we can linearize this equation by approximating sinϕ ≈ ϕ to obtain

ϕ̈+ω2
0ϕ = 0, (1.2)

which is identical in form with equation (1.1).
Alternatively, one can free the point-mass together with the rigid bar from the

support and apply the moment equation about the z-axis (which is the consequence
of Newton’s law) to this system
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d
dt
(ml2ϕ̇) =∑Mz =−mgl sinϕ .

Since the mass is concentrated in the point, its moment of inertia about O is ml2.
In case of a real physical pendulum (rotation of a body about O) the moment of
inertia about O is given by JO = JS +mr2, where JS is the moment of inertia about
the center of mass S, and r the distance between O and S (see exercise 1.2). The
support reaction in O does not contribute to the moment equation, because its line
of action goes through O. For small vibrations we obtain from here equation (1.2).

To use the energy method we write down the kinetic energy

K(ϕ̇) =
1
2

ml2ϕ̇2,

and the potential energy

U(ϕ) = mgh = mgl(1− cosϕ).

Note that the zero level of potential energy (which can be chosen arbitrarily) corre-
sponds to the equilibrium state ϕ = 0. Thus, the Lagrange function is

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 −mgl(1− cosϕ).

For small vibrations ϕ � 1, therefore we can approximate 1− cosϕ ≈ ϕ2/2 and
write

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 − 1
2

mglϕ2.

Substituting this into Lagrange’s equation

d
dt
∂L
∂ ϕ̇

− ∂L
∂ϕ

= 0,

we obtain again the equation of motion of mathematical pendulum.

EXAMPLE 1.3. Rotating disk. A rigid disk rotates about the z-axis under the action
of a spiral spring of stiffness k (see Fig. 1.3). Derive the equation of motion of the
disk.

This example represents a primitive model of a mechanical clock. In the force
method we free the disk and the rotation axis from the supports and the spiral spring,
draw the free-body diagram, and apply the moment equation about the z-axis

d
dt
(Jzϕ̇) =∑Mz =−kϕ , (1.3)

where Jz is the moment of inertia of the system disk plus rotation axis about the
z-axis. The reaction forces from the supports do not contribute to this moment equa-
tion because their lines of action cut the z-axis. Bringing the spring moment −kϕ to
the left-hand side and dividing by Jz, we obtain equation (1.2), where ω2

0 = k/Jz.
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x

y

z

k

ϕ

Fig. 1.3 Rotating disk

To use the energy method we write

K(ϕ̇) =
1
2

Jzϕ̇2, U(ϕ) =
1
2

kϕ2

for the kinetic and potential energies, respectively.
This leads again to (1.3).

Solution. Note that the equation of motion of har-
monic oscillator

ẍ+ω2
0 x = 0 (1.4)

is linear. So, if we know two linearly independent par-
ticular solutions of this equation, then we can construct the general solution by their
linear combination in accordance with the superposition principle. It is easy to check
that

cosω0t and sinω0t

are the particular solutions of (1.4). Therefore the general solution reads

x(t) = Acosω0t +Bsinω0t. (1.5)

The unknown coefficients A and B must be found from the initial conditions

x(0) = x0, ẋ(0) = v0.

Thus,
A = x0, B =

v0

ω0
.

t

x
T

a

Fig. 1.4 Harmonic motion

Alternatively, we can present the solution in form
of one harmonic cosine function

x(t) = a cos(ω0t −φ). (1.6)

In this form a has the meaning of the amplitude of
vibration, ω0 the eigenfrequency, and φ the initial
phase. Using the addition formula for cos(ω0t −φ)
we write

x(t) = a(cosφ cosω0t + sinφ sinω0t).

Comparing this with (1.5), we find the relations
between a, φ and A, B

a =
√

A2 +B2 =

√
x2

0 +
v2

0

ω2
0

, tanφ =
B
A
=

v0

x0ω0
.



8 1 Single Oscillator

Fig. 1.4 shows the graph of x(t). The distance between two neighboring maxima (or
minima) of this periodic function is called a period T of vibration. Since the period
of cosine is 2π ,

T =
2π
ω0

.

Phase Portrait. Let the velocity ẋ be denoted by

y = ẋ.

Then each state of a single oscillator at fixed t corresponds to one point (x,y) of the
so-called phase plane. As t changes this point moves in the phase plane along the
curve called a phase curve. For the free vibration of harmonic oscillator we have
from (1.6)

x = acos(ω0t −φ), y = ẋ =−aω0 sin(ω0t −φ). (1.7)

x

y

O

Fig. 1.5 Phase portrait of harmonic
oscillator

Consequently, the phase curves satisfy the
equation

x2

a2 +
y2

a2ω2
0

= 1, (1.8)

which describes ellipses with the aspect ratio
1 : ω0. Note that (1.8) can also be obtained
from the conservation of energy

K(ẋ)+U(x) = E0, (1.9)

which is the consequence of Lagrange’s equa-
tion (see Section 2.4). Indeed, consider for ex-
ample the mass-spring oscillator for which the
energy conservation takes the form

1
2

my2 +
1
2

kx2 =
1
2

mv2
0 +

1
2

kx2
0 =

ka2

2
.

Dividing this equation by the constant on the right-hand side, we arrive again at
(1.8). With (1.8) we can express y = ẋ in terms of x and integrate it to obtain the
solution (1.6).

Fig. 1.5 shows the phase curves of the harmonic oscillator. In general there is no
more than one phase curve passing through a given point of the phase plane. Since
y = ẋ > 0 in the upper half-plane and y = ẋ < 0 in the lower half-plane, the phase
curves must run from left to right in the upper half-plane and from right to left in
the lower half-plane as time increases. All phase curves cut the x-axis at right angle,
with points of intersection corresponding to maxima or minima of x(t) which are
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the turning points. The origin O of the phase plane is the fixed point corresponding
to the stable equilibrium state. For the harmonic oscillator this fixed point is called
a center.

Energy Balance. As we see from (1.9), the total energy of the harmonic oscillator
is conserved. Let us analyze the change of its kinetic and potential energies during
the vibration. Substituting x(t) from (1.7) into the potential energy U(x), we get

U(x) =
1
2

kx2 =
ka2

2
cos2(ω0t −φ) = ka2

4
[1+ cos(2ω0t − 2φ)].

Similarly, with ẋ(t) from (1.7) we obtain

K(ẋ) =
1
2

mẋ2 =
ma2ω2

0

2
sin2(ω0t −φ) = ka2

4
[1− cos(2ω0t − 2φ)].

Thus, the kinetic and potential energies oscillate with the same amplitude which is
equal to the total energy E0 = ka2/2, but with the double frequency 2ω0. Fig. 1.6
shows the change of kinetic and potential energies from which it is seen that they
oscillate in counter-phases so that their sum remains constant, in full agreement with
the conservation of energy.

t

K U

E
0

Fig. 1.6 Energy change: a) bold line: kinetic energy, b) dashed line: potential energy, c)
horizontal line: total energy

1.2 Damped Oscillator

Differential Equation of Motion. Both the force and the energy methods can again
be applied to derive the equation of motion for damped oscillators. However, in the
energy method a new function describing the dissipation potential of the damper has
to be introduced. We consider two examples.
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EXAMPLE 1.4. Mass-spring-damper oscillator. A mass m moves horizontally under
the action of a spring of stiffness k and a damper with a damping constant c (see
Fig. 1.7). Derive the equation of motion for this oscillator.

m m

x

k

c

Fig. 1.7 Mass-spring-damper
oscillator

To apply the force method we note that the only dif-
ference compared with example 1.1 is the additional
force from the damper which is proportional to the ve-
locity ẋ (see the free-body diagram in Fig. 1.7, right).
Thus, Newton’s law now reads

mẍ =∑Fx =−kx− cẋ.

Bringing the two terms on the right-hand side to the
left-hand side, we obtain

mẍ+ cẋ+ kx = 0. (1.10)

The energy method is based on the following variational principle for dissipa-
tive systems: among all admissible motions x(t) constrained by the initial and end
conditions

x(t0) = x0, x(t1) = x1,

the true motion satisfies the variational equation2

δ
∫ t1

t0
L(x, ẋ)dt −

∫ t1

t0

∂D
∂ ẋ
δxdt = 0. (1.11)

Thus, a new function D(x, ẋ), called dissipation function, appears such that the
damping force fr is expressed by

fr =−cẋ =−∂D
∂ ẋ

.

The direct consequence of (1.11) is modified Langrange’s equation for dissipative
systems (see Section 2.4)

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0. (1.12)

We see that the behavior of any dissipative mechanical system is governed by
two functions, namely, the Lagrange function L(x, ẋ) and the dissipation function
D(x, ẋ). In our example

2 This variational equation originates from d’Alembert’s principle in dynamics [8,29], where
the last term corresponds to the virtual work done by the damping force expressed in terms
of the dissipation function [45].
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L =
1
2

mẋ2 − 1
2

kx2, D =
1
2

cẋ2,

so, substituting this into (1.12), we derive again the equation of motion (1.10).

EXAMPLE 1.5. Mathematical pendulum with spring and damper. Derive the equa-
tion of small vibration for the mathematical pendulum connected with a spring and
a damper (see Fig. 1.8).

m

gl/2

mg

O

x

y

k

c

l/2
ϕ

Fig. 1.8 Spring-damper-
pendulum

This model is equivalent to that of the pendulum with
the spring and with the air resistance since, in reality, the
air acts as a damper with viscous damping. In the force
method we must add the forces of spring and damper to
the free-body diagram compared with that of the math-
ematical pendulum in example 1.2. Taking into account
the smallness of ϕ , the moment equation about the z-axis
reads

ml2ϕ̈ =∑Mz =−mglϕ− k
l2

4
ϕ− cl2ϕ̇ .

Bringing all terms to the left-hand side and dividing by
l2, we get

mϕ̈+ cϕ̇+(
mg
l

+
k
4
)ϕ = 0. (1.13)

This is identical in form with equation (1.10).
To use the energy method we must include in the Lagrange function already

found in example 1.2 for small vibrations an additional term associated with the
energy of the spring

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 − 1
2

mglϕ2 − 1
2

k

(
lϕ
2

)2

.

Here, the change in length of the spring, due to the smallness of ϕ , is approximated
by lϕ/2 (see Fig. 1.8). The dissipation function must be a quadratic function of the
velocity lϕ̇

D(ϕ̇) =
1
2

c(lϕ̇)2 =
1
2

cl2(ϕ̇)2.

Substituting these formulas into modified Langrange’s equation for dissipative sys-
tems

d
dt
∂L
∂ ϕ̇

− ∂L
∂ϕ

+
∂D
∂ ϕ̇

= 0,

we derive the equation

ml2ϕ̈+ cl2ϕ̇+(mgl+ k
l2

4
)ϕ = 0,

which, after division by l2, takes the form (1.13).
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Reduction to the Standard Form. Let us divide the equation of motion (1.10) by k

1

ω2
0

ẍ+
c
k

ẋ+ x = 0, ω0 =

√
k
m
. (1.14)

We introduce now the dimensionless time τ = ω0t, in terms of which the first and
second derivatives of x become

ẋ =
dx
dt

=
dx
dτ

dτ
dt

= ω0x′,

ẍ =
dẋ
dt

=
dẋ
dτ

dτ
dt

= ω2
0 x′′.

Here the prime denotes the derivative with respect to τ . Substituting these formulas
into (1.14), we obtain the equation of motion in standard form

x′′+ 2δx′+ x = 0, (1.15)

where the positive coefficient

δ =
cω0

2k
=

c
2mω0

=
c

2
√

km

is called Lehr’s damping ratio.

Solution. We seek a particular solution of (1.15) in the form

x = esτ .

Substituting this Ansatz into (1.15)

(s2 + 2δ s+ 1)esτ = 0,

we see that, since the factor esτ is not equal to zero, s must satisfy the characteristic
equation

s2 + 2δ s+ 1 = 0. (1.16)

The quadratic equation (1.16) has two roots

s1,2 =−δ ±
√
δ 2 − 1.

The character of roots and consequently of the solutions depends on whether a)
0 < δ < 1, b) δ > 1, or c) δ = 1. We analyze now these special cases.

Case a. Since 0 < δ < 1, we set 1−δ 2 = ν2 > 0. In this case the roots are complex-
conjugate

s1,2 =−δ ± iν.

Because esτ = e−δτeiντ satisfies (1.15) which is the differential equation with real
coefficients, its real and imaginary parts
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e−δτ cosντ and e−δτ sinντ

also satisfy this equation. The general solution can now be constructed using the
linear superposition principle

x = e−δτ(Acosντ+Bsinντ).

The unknown coefficients A and B must be found from the initial conditions

x(0) = x0, x′(0) = x′0. (1.17)

Thus,

A = x0, B =
x′0 + δx0

ν
.

Alternatively, we can present the solution in the form

x = a0e−δτ cos(ντ−φ). (1.18)

Using the addition theorem for cos(ντ −φ), we then find that

a0 =
√

A2 +B2 =

√
x2

0 +
(x′0 + δx0)2

ν2 , tanφ =
B
A
=

x′0 + δx0

νx0
.

Case b. Because now δ > 1, we set δ 2 − 1 = κ2 > 0. Thus, there are two real roots
of (1.16)

s1 =−δ +κ =−q1, s2 =−δ −κ =−q2,

where q2 > q1 > 0. The corresponding particular solutions of (1.15) are

e−q1τ and e−q2τ .

The general solution reads

x = Ae−q1τ +Be−q2τ .

Then the initial conditions (1.17) lead to

A =
1

2κ
(x′0 + q2x0), B =− 1

2κ
(x′0 + q1x0).

Thus,

x =
1

2κ
[(x′0 + q2x0)e

−q1τ − (x′0 + q1x0)e
−q2τ ]. (1.19)

Case c. This is the degenerate case, where the real roots are equal (the double real
root): s1 = s2 =−δ =−1. According to the theory of ordinary differential equations
[11] the particular solutions should be e−τ and τe−τ . Combining them, we obtain
the general solution in the form
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x = e−τ(Aτ+B).

The initial conditions (1.17) yield

A = x0 + x′0, B = x0.

Thus,
x = e−τ [x0(1+ τ)+ x′0τ].

Behavior. Having found the solutions in these cases, we can now study their
behaviors.

x

τ

Fig. 1.9 Solid line: motion x = a0e−δτ cos(ντ−φ), dashed lines: envelopes x =±a0e−δτ

Case a. The motion is classified as damped vibration. Fig. 1.9 shows the plot of
x(τ) (the solid line). Since |cos(ντ − φ)| ≤ 1, the motion oscillates between two
envelopes x = ±a0e−δτ drawn by the dashed lines in this Figure. Looking at this
motion we can recognize two characteristic dimensionless time scales

τd =
1
δ

and τc =
2π
ν

=
2π√

1− δ 2
,

or, in the dimension of real time

Td =
1
δω0

=
2m
c

and Tc =
2π
ωc

=
2π

ω0
√

1− δ 2
=

T0√
1− δ 2

.

The time scale τd characterizes the decay rate of amplitude due to damping: the
exponent function e−δτ decays after τd by the factor 1/e ≈ 0,368, the amplitude
of vibration diminishes by 63%. The time scale τc tells us about the so-called con-
ditional period Tc of vibration, which is larger (by the factor 1/

√
1− δ 2) than the

period T0 of the corresponding harmonic oscillator.
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tan(ντ)

ττ∗

−δ/ν

Fig. 1.10 Roots of equation tanντ =−δ/ν

The distance between zeros of x(τ) (the roots of cos(ντ − φ) = 0) is π/ν . The
points at which x(τ) touches the envelopes correspond to the roots of the equations

cos(ντ−φ) =±1.

Thus, they lie in the middle between zeros. However these points are not identical
with the points at which maxima or minima of x(τ) are achieved. Its maxima or
minima are achieved at time instants satisfying the equation

x′(τ) =−a0δe−δτ cos(ντ −φ)− a0νe−δτ sin(ντ −φ) = 0,

so, they are roots of the equation tan(ντ − φ) = −δ/ν . Assuming for simplicity
φ = 0, we find that these roots are displaced from the zeros of the function tanντ to
the left by the constant amount

τ∗ = arctan(δ/ν)/ν (1.20)

on the τ-axis (see Fig. 1.10). Thus, the conditional period of vibration can be read
off also from the distance between two maxima or minima.

There is another important characteristic of amplitude decay which can easily be
measured by the oscillograph. To introduce it we denote by

x1,x2, . . . ,xn, . . .

the maxima of x(τ), and by
τ1,τ2, . . . ,τn, . . .

the corresponding time instants, at which these maxima are achieved. From the be-
havior of solution we know that

xn = a0e−δτn cos(ντn −φ),
xn+1 = a0e−δ (τn+τc) cos[ν(τn + τc)−φ ].
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Dividing xn by xn+1 and using the periodicity of cosine function, we get

xn

xn+1
= eδτc .

We define

ϑ = ln
xn

xn+1
= δτc =

2πδ√
1− δ 2

as a logarithmic decrement of vibration. Knowing ϑ from measurements we can
restore the damping ratio δ according to

δ =
ϑ√

4π2 +ϑ 2
.

Case b. The motion is overdamped and loses the oscillatory character (it is called
therefore an aperiodic motion). The decay rates of exponential functions e−q1τ and
e−q2τ to zero are characterized by two time scales

τd1 =
1
q1

=
1

δ −κ and τd2 =
1
q2

=
1

δ +κ
.

To recognize the aperiodic character of motion let us find the instants of time, τ1

and τ2, at which x(τ1) = 0 and x′(τ2) = 0, respectively. Using (1.19), we derive the
following equations for τ1 and τ2:

e2κτ1 = 1− 2κx0

x′0 + q2x0
,

e2κτ2 = 1+
2κx′0

q1(x′0 + q2x0)
.

Since the exponent is a monotonic function, we see that each equation has no more
than one root. Thus, oscillatory motion is impossible. If we fix the initial coordinate
x0 and variate the initial velocity x′0, then the solution may have different behaviors
depending on the initial velocity as shown in Fig. 1.11.

x

1

2

3

τ

Fig. 1.11 Different aperiodic motions: 1) one root τ2, 2) no roots for τ1 and τ2 (monotone
decreasing function x(τ)), 3) one root for τ1 and τ2
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Case c. This is the limiting case of aperiodic motion. The behavior is similar to the
previous case.

Phase Portrait. The phase portraits exhibit different characters in the above cases.

Case a. To find the phase curves in the phase plane (x,y), y = x′, we transform the
equation of motion in standard form (1.15) to the system of first-order differential
equations

x′ = y, y′ =−x− 2δy.

Thus, the tangent vector to the phase curve at point (x,y) is (y,−x−2δy). Fig. 1.12
shows the vector field (y,−x − 2δy) and one phase curve in the phase plane for
δ = 0.1.

-4 -2 2 4

-4

-2

2

4

x

y

Fig. 1.12 Vector field (y,−x−2δy) and a phase curve

We derive the equation for the phase curves from the solution

x = a0e−δτ cos(ντ−φ),
x′ =−a0e−δτ [δ cos(ντ −φ)+ν sin(ντ −φ)].

Introducing
u = νx, v = x′+ δx, (1.21)

we obtain
u = a1e−δτ cos(ντ−φ), v =−a1e−δτ sin(ντ−φ),

where a1 = νa0. In terms of the polar coordinates ρ and ϑ

u = ρ cosϑ , v = ρ sinϑ ,

these equations become
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ρ = a1e−δτ , ϑ =−ντ+φ .

Expressing τ through ϑ by τ =− 1
ν (ϑ −φ), we obtain finally

ρ = a1eδϑ/νe−δφ/ν = a2eδϑ/ν , (1.22)

where a2 = a1e−δφ/ν . Equation (1.22) describes the family of logarithmic spirals in
the (u,v)-plane. As τ increases, ϑ decreases and the spirals approach the origin.

Coming back to the original coordinates x and y, we have

ρ2 = u2 + v2 = ν2x2 +(y+ δx)2 = y2 + 2δxy+ x2,

ϑ = arctan
v
u
= arctan

y+ δx
νx

.

Thus, the equation of phase curves in terms of x and y reads

y2 + 2δxy+ x2 = a2
2e2 δν arctan y+δx

νx .

Since the transformation (1.21) from (u,v) to (x,y) is linear, this equation also de-
scribes the logarithmic spirals in the (x,y)-plane. All spirals approach the origin as
τ goes to infinity. The origin is a fixed point called a (stable) focus.

Case b. To derive the equation of phase curves in the phase plane we use the solution

x = Ae−q1τ +Be−q2τ ,

y = x′ =−q1Ae−q1τ − q2Be−q2τ .

Thus, their linear combinations give

y+ q1x = (q1 − q2)Be−q2τ , y+ q2x = (q2 − q1)Ae−q1τ .

Raising the first equation to the power q1 and the second to the power q2 and com-
paring them, we obtain

(y+ q1x)q1 =C(y+ q2x)q2 .

This is the equation of the phase curves in the (x,y)-plane. Introducing the new
variables

u = y+ q2x, v = y+ q1x, (1.23)

we can rewrite the equation of the phase curves in the form

v =Cuα , α =
q2

q1
> 1.

This equation describes the family of power functions Cuα (with α > 1) in the
(u,v)-plane (see Fig. 1.13 on the left). The linear transformation (1.23) transforms
the u- and v-axis to the straight lines y+q1x = 0 and y+q2x = 0 in the (x,y)-plane.
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u

v

a)

x

y-q1x 

-q2x 

b)

Fig. 1.13 Phase portrait of overdamped oscillator in: a) (u,v)-plane, b) (x,y)-plane

x

y
y=-x

Fig. 1.14 Phase portrait of critically damped oscillator in (x,y)-plane

The phase curves in the (x,y)-plane are shown in Fig. 1.13 on the right. Similar to
the previous case all phase curves approach the origin as τ tends to infinity. The
origin is a fixed point called a (stable) node.

Case c. This is the degenerate case of aperiodic motion. Since q1 = q2 = 1, the
two axes y+ q2x = 0 and y+ q1x = 0 coincide with the bisector y =−x. The phase
curves in the (x,y)-plane are shown in Fig. 1.14. Similar to the previous case all
phase curves approach the origin as τ tends to infinity.

Since Lehr’s damping ratio δ is given by δ = c/2mω0, equation δ = 1 describes
the parabola c/m = 2

√
k/m in the (k/m,c/m)-plane of parameters. The latter is the

boundary between different types of motion considered above as shown in Fig. 1.15.

Energy Balance. Because of the presence of damper in the system, the energy is no
longer conserved. The initial energy will be dissipated gradually by the damper into
heat, and the motion decays as time increases. As time goes to infinity, the initial
energy will be dissipated completely, and the system approaches equilibrium. To
find the rate of decay of the total energy we multiply modified Langrange’s equation
(1.12) by ẋ
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c/m

k/m

stable node

aperiodic

motion

stable focus

damped

vibration

δ=0,stable center,

harmonic vibration

δ>1

δ=1

δ<1

Fig. 1.15 Classification of motion in the (k/m,c/m)-plane

ẋ
d
dt
∂L
∂ ẋ

− ẋ
∂L
∂x

=−∂D
∂ ẋ

ẋ.

Observing that

ẋ
d
dt
∂L
∂ ẋ

= ẋ
d
dt
∂K
∂ ẋ

= mẋẍ =
d
dt
(

1
2

mẋ2) =
dK
dt

,

−ẋ
∂L
∂x

= ẋ
∂U
∂x

=
dU
dt

,

−∂D
∂ ẋ

ẋ =−cẋ2 =−2D(ẋ),

we obtain the energy dissipation rate in the form

d
dt
(K +U) =−2D(ẋ). (1.24)

A similar equation also holds true for oscillators with many degrees of freedom (see
Section 2.4). Integrating equation (1.24) from t0 to t, we find the energy change at
time t

K +U −E0 =−2
∫ t

t0
D(ẋ(s))ds =−Ed(t),

where E0 is the total energy at t = t0 and Ed(t) the amount of energy dissipated by
the damper at time t.

1.3 Forced Oscillator

Differential Equation of Motion. If there is an additional external force (excitation)
acting on the oscillator, the latter is called a forced oscillator. Also in this case both
the force and the energy methods can be used to derive the equation of motion. In
the energy method the virtual work done by the external force must be taken into
account. We consider an example.
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EXAMPLE 1.6. Mass-spring-damper forced oscillator. A mass m, connected with a
spring of stiffness k and a damper of damping constant c, moves horizontally under
the action of an external force f (t) (see Fig. 1.16). Derive the equation of motion
for this forced oscillator.

m m

x

k

c

f f

Fig. 1.16 Mass-spring-damper forced oscillator

In the force method the only difference compared with example 1.4 is the external
force f (t) (see the free-body diagram in Fig. 1.16). Thus, Newton’s law in the x-
direction reads

mẍ =∑Fx =−kx− cẋ+ f (t).

Bringing the spring and damping forces to the left-hand side, we obtain

mẍ+ cẋ+ kx = f (t). (1.25)

To use the energy method we must add to the left-hand side of variational equa-
tion (1.11) the virtual work done by the external force. The variational principle
becomes: among all admissible motions x(t) constrained by the conditions

x(t0) = x0, x(t1) = x1,

the true motion satisfies the variational equation (see the footnote on page 10)

δ
∫ t1

t0
L(x, ẋ)dt −

∫ t1

t0

∂D
∂ ẋ
δxdt +

∫ t1

t0
f (t)δxdt = 0. (1.26)

Note that the last integral representing the virtual work of external force can also be
included in the first integral as follows

δ
∫ t1

t0
[L(x, ẋ)+ f (t)x]dt −

∫ t1

t0

∂D
∂ ẋ
δxdt = 0.

From (1.26) we can derive modified Lagrange’s equation

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= f (t). (1.27)

With

L(x, ẋ) =
1
2

mẋ2 − 1
2

kx2, D(ẋ) =
1
2

cẋ2,

we arrive again at the equation of motion (1.25).
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Reduction to the Standard Form. Let us divide equation (1.25) by k

1

ω2
0

ẍ+
c
k

ẋ+ x =
f (t)
k

.

Introducing the dimensionless time τ =ω0t as in the previous Section, we transform
this equation to the standard form

x′′+ 2δx′+ x = g(τ), (1.28)

where the prime denotes as before the derivative with respect to τ and g(τ) =
f (τ/ω0)/k. Equation (1.28) is the inhomogeneous linear differential equation of
second order. According to the theory of ordinary differential equations [11] the
solution of this linear equation is the sum of any particular solution of the inho-
mogeneous equation and the general solution of the homogeneous equation which
has been found in the previous Section. Thus, the problem reduces to finding any
particular solution of the inhomogeneous equation (1.28).

Particular Solution for a Step Function. Consider first a special excitation in form
of the unit step (Heaviside) function

g(τ) = h(τ) =

{
0 for τ ≤ 0,

1 for τ > 0.

We seek the solution of equation (1.28) satisfying the initial conditions

x(0) = 0, x′(0) = 0.

Such the solution is called a unit step response. For an underdamped oscillator (δ <
1) the solution has obviously the form

x = 1+Ce−δτ cos(ντ−φ).

The initial conditions will be satisfied if

x(0) = 1+C cosφ = 0,

and
x′(0) =−C(δ cosφ −ν sinφ) = 0. (1.29)

It follows from the last equation and (1.20) that

tanφ =
δ
ν
=

δ√
1− δ 2

⇒ φ = ντ∗ =
√

1− δ 2τ∗,

where τ∗ is given by (1.20). From x(0) = 0 we find the coefficient C
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C =− 1
cosφ

.

Since tanφ = δ/
√

1− δ 2, it is easy to show that cosφ =
√

1− δ 2, so

C =− 1√
1− δ 2

.

Thus, the unit step response for the underdamped oscillator is given by

xr(τ) = 1− e−δτ√
1− δ 2

cos[
√

1− δ 2(τ− τ∗)].

2 4 6 8

0.2

0.4

0.6

0.8

1

1.2

xr a

b

c

d

τ

Fig. 1.17 Unit step response: a) δ = 0.25, b) δ = 0.5, c) δ = 1, d) δ = 2

Doing similar calculations, we can obtain the unit step responses also for the
overdamped oscillator (δ > 1)

xr(τ) = 1− δ +κ
2κ

e−(δ−κ)τ+
δ −κ

2κ
e−(δ+κ)τ ,

as well as for the critically damped oscillator (δ = 1)

xr(τ) = 1− (1+ τ)e−τ,

(see exercise 1.5). The graphs of these unit step responses are plotted in Fig. 1.17
for different values of damping ratio δ .

Particular Solution for General Excitations. Let us consider now an arbitrary
excitation g(τ) which is zero for τ ≤ 0 and remains finite as τ goes to infinity.
Since the initial conditions can later be satisfied by the solution of the corresponding
homogeneous equation, we seek a particular solution of (1.28) satisfying the initial
conditions

x(0) = 0, x′(0) = 0.

The effective way of finding the solution is the Laplace transform (see, for example
[13]). For any function x(τ) we define its Laplace transform according to
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X(s) =L [x(τ)] =
∫ ∞

0
x(τ)e−sτ dτ,

with X(s) being called the Laplace image of x(τ). We assume that the Laplace trans-
forms of g(τ), x(τ) and its derivatives are defined for any complex number s with the
positive real part. Applying the Laplace transform to both sides of equation (1.28),
we obtain ∫ ∞

0
(x′′+ 2δx′+ x)e−sτdτ =

∫ ∞

0
g(τ)e−sτdτ.

Performing the partial integration, we have

L [x′] =
∫ ∞

0
x′e−sτdτ = xe−sτ ∣∣∞

0 +

∫ ∞

0
sxe−sτdτ = sL [x] = sX(s).

The initial condition x(0) = 0 as well as the behavior of x(τ) at infinity have been
taken into account. Similarly,

L [x′′] =
∫ ∞

0
x′′e−sτdτ = x′e−sτ ∣∣∞

0 +
∫ ∞

0
sx′e−sτdτ = sL [x′] = s2X(s).

Thus, the differential equation (1.28) is transformed into an algebraic equation

(s2 + 2δ s+ 1)X(s) = G(s),

yielding immediately

X(s) =
G(s)

s2 + 2δ s+ 1
. (1.30)

To find the original function from its image function we apply the inverse Laplace
transform to (1.30)

x(τ) =L −1[X(s)] =
1

2π i

∫ α+i∞

α−i∞

G(s)
s2 + 2δ s+ 1

esτds, (1.31)

where α is any real and positive number. Integral (1.31) is taken along the line
(α − i∞,α + i∞) in the complex plane of s. Since the roots of the characteristic
equation have non-positive real parts, the integrand of (1.31) is regular along this
line and thus, the integral converges. The problem reduces then to computing the
inverse Laplace transform of the product G(s)/(s2 + 2δ s + 1). Observe that the
inverse Laplace transform of sG(s) is g′(τ), while the inverse Laplace transform
of 1/s(s2 + 2δ s+ 1) is the unit step response xr(τ) found previously. Indeed, the
Laplace transform of the Heaviside function is

L [h(τ)] =
∫ ∞

0
e−sτdτ =

1
s
,

so, by substituting this in (1.30), we obtain 1/s(s2 + 2δ s+ 1) as the image function
of the unit step response.
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To compute the inverse Laplace transform of the product we use the following
property of the Laplace transform. Consider two arbitrary functions f (τ) and g(τ),
with f (τ) = g(τ) = 0 for τ ≤ 0. Denote the convolution of two functions f (τ) and
g(τ) by

( f ∗ g)(τ) =
∫ ∞

0
f (τ − t)g(t)dt =

∫ τ

0
f (τ − t)g(t)dt = (g ∗ f )(τ).

We compute the Laplace transform of the convolution

L [ f ∗ g] =
∫ ∞

0

(∫ ∞

0
f (τ − t)g(t)dt

)
e−sτdτ.

Changing the order of integration with respect to τ and t, we have

L [ f ∗ g] =
∫ ∞

0

∫ ∞

0
f (τ − t)e−sτdτ g(t)dt.

Changing the variable of integration from τ to u = τ− t, we obtain finally

L [ f ∗ g] =
∫ ∞

0
f (u)e−sudu

∫ ∞

0
g(t)e−stdt = F(s)G(s).

Thus, the Laplace transform of the convolution f ∗g is equal to the product F(s)G(s)
and vice versa. Consequently, the inverse Laplace transform of (1.31) yields

x(τ) =
∫ τ

0
g′(t)xr(τ− t)dt. (1.32)

This is Duhamel’s formula for the particular solution of (1.28).

Solution of Initial-Value Problem. It turns out that the Laplace transform can also
be used to find the solution of the initial-value problem

x′′+ 2δx′+ x = 0,

x(0) = x0, x′(0) = x′0.

Indeed, applying the Laplace transform to this equation and observing that, due to
the initial conditions,

L [x′] =
∫ ∞

0
x′e−sτdτ =−x0 + sX(s),

L [x′′] =
∫ ∞

0
x′′e−sτdτ =−x′0 − sx0 + s2X(s),

we obtain
(s2 + 2δ s+ 1)X(s) = x′0 + sx0 + 2δx0.
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Thus,

X(s) =
x′0 + sx0 + 2δx0

s2 + 2δ s+ 1
,

and the problem reduces to computing the inverse Laplace transform of the rational
function (see exercise 1.6).

Energy Balance. We calculate the rate of change of the total energy due to the work
done by the external force and the dissipation. Multiplying modified Langrange’s
equation (1.27) by ẋ, we obtain

ẋ
d
dt
∂L
∂ ẋ

− ẋ
∂L
∂x

=−∂D
∂ ẋ

ẋ+ f (t)ẋ.

Making the same observation as in previous Section, we obtain the rate of change
of energy in the form

d
dt
(K +U) =−2D(ẋ)+ f (t)ẋ. (1.33)

Integrating equation (1.33) from t0 to t, we find the energy change at time t

K +U −E0 =−2
∫ t

t0
D(ẋ(s))ds+

∫ t

t0
f (s)ẋ(s)ds =−Ed(t)+W(t),

where E0 is the total energy at t = t0. The last term W (t) is the work done by the
external force which is stored in the energy of the system except that part Ed(t)
dissipated by the damper.

1.4 Harmonic Excitations and Resonance

As we know from Section 1.2, any solution of the homogeneous equation ap-
proaches zero as τ becomes large if the damping ratio δ is positive. Therefore
only the particular solution of inhomogeneous equation which persists at large time
(called forced vibration) presents interest in most applications. The forced vibra-
tion has been found in the previous Section for an arbitrary excitation through the
Laplace transform leading to Duhamel’s formula. In spite of this general method
of solution we consider in this Section the special case of harmonic excitations for
which the forced vibration can be determined directly and in a simple way, without
using the Laplace transform technique. The results of this Section are also important
for the variational-asymptotic method in non-linear vibrations.

Type of Excitations. We consider three cases of harmonic excitations.

Case a. Harmonic force excitation or excitation through the spring.

EXAMPLE 1.7. The damper-mass-spring oscillator is excited by the harmonic mo-
tion of the spring hanger: xe = x0 cosωt (see Fig. 1.18).

Since the spring force is proportional to the change of length x− xe(t), the equation
of motion reads
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Fig. 1.18 Oscillator excited through spring hanger

mẍ =−cẋ− k(x− xe).

On the other side, the same equation can also be derived from the Lagrange function

L(x, ẋ) =
1
2

mẋ2 − 1
2

k(xe(t)− x)2

and the dissipation function D(ẋ) = 1
2 cẋ2. Bringing the two terms −cẋ and −kx to

the left-hand side and transforming the obtained equation to the dimensionless form
as in Section 1.2, we get

x′′+ 2δx′+ x = x0 cosητ,

where η =ω/ω0 is the frequency ratio. Note that the same equation of motion holds
true for the forced oscillator in example 1.6 if we set f (t) = f0 cosωt and x0 = f0/k.

Case b. Harmonic excitation through the damper.

EXAMPLE 1.8. The spring-mass-damper oscillator is excited by the harmonic mo-
tion of the damper piston: xe = x0 sinωt (see Fig. 1.19).

m m

x

x
e

k c

Fig. 1.19 Oscillator excited through damper piston

In this case the damping force as well as the dissipation function depend on the
relative velocity ẋ− ẋe. Thus, the equation of motion takes the form

mẍ =−kx− c(ẋ− ẋe).

Bringing the two terms −kx and −cẋ to the left-hand side and transforming the
obtained equation to the dimensionless form, we get

x′′+ 2δx′+ x = 2δηx0 cosητ.

Case c. Harmonic excitation through the motion of the frame.

EXAMPLE 1.9. The spring-mass-damper oscillator is excited by the harmonic mo-
tion of the support frame: xe = x0 cosωt (see Fig. 1.20).
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Fig. 1.20 Oscillator excited by motion of frame

We write the equation of motion in terms of the relative displacement of the mass
with respect to the moving frame, xr = x− xe. Since the acceleration in the fixed
inertial frame is ẍ = ẍr + ẍe, we have

m(ẍr + ẍe) =−cẋr − kxr.

Bringing all terms in the right-hand side to the left-hand side, the term mẍe =
−mx0ω2 cosωt to the right-hand side and transforming the obtained equation to
the dimensionless form, we get

x′′r + 2δx′r + xr = η2x0 cosητ.

One can of course derive the equations of motion in examples 1.8 and 1.9 also by
the energy method (see exercise 1.8).

Thus, in all three cases we may present the equations of motion in the form

x′′+ 2δx′+ x = x0α cosητ, (1.34)

where the factor α is equal to

α =

⎧⎪⎨
⎪⎩

1 in case a,

2δη in case b,

η2 in case c.

Amplitude and Phase of Forced Vibration. We seek the particular solution of
equation (1.34) in form of harmonic motion

x = x0M cos(ητ−ψ) = x0M(cosητ cosψ+ sinητ sinψ),

where M is called a magnification factor and ψ the phase of forced vibration. Dif-
ferentiating this equation with respect to τ , we have

x′ =−x0Mη(sinητ cosψ− cosητ sinψ),

x′′ =−x0Mη2(cosητ cosψ+ sinητ sinψ).

Substitution of these formulas into the equation of motion (1.34) gives



1.4 Harmonic Excitations and Resonance 29

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

ψ

η

δ=0

0.25
0.5
1
2

Fig. 1.21 Phase ψ versus frequency ratio η at different damping ratios δ

cosητ[x0M(1−η2)cosψ+ 2δηx0M sinψ− x0α]

+sinητ[x0M(1−η2)sinψ− 2δηx0M cosψ ] = 0.

Since cosητ and sinητ are independent and are not identically zero, the expres-
sions in the square brackets must vanish yielding

tanψ =
2δη

1−η2 , (1.35)

and
M =

α
(1−η2)cosψ+ 2δη sinψ

.

We see from (1.35) that the phase ψ is independent of α , so it remains the same
in all three cases. However, one should keep in mind that ψ in case b) is the phase
difference between the response x and the velocity ẋe. The plot of ψ(η) for different
values of δ is shown in Fig. 1.21.
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Fig. 1.22 Magnification factor M versus frequency ratio η at different damping ratios δ
(case a)

The equation for the magnification factor M can still be reduced to the form
independent of the phase ψ . We first note that, due to (1.35),
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Fig. 1.23 Magnification factor M versus frequency ratio η at different damping ratios δ
(case b)

(1−η2)cosψ+ 2δη sinψ = 2δη(sinψ+
cosψ
tanψ

) =
2δη
sinψ

.

From the same formula (1.35) we can easily express sinψ as

sinψ =
2δη√

(1−η2)2 + 4δ 2η2
. (1.36)

Thus,

M =
α√

(1−η2)2 + 4δ 2η2
. (1.37)

The plots of magnification factor M versus the frequency ratio η for different values
of damping ratio δ are shown in Figs. 1.22-1.24 in cases a, b, and c, respectively.
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Fig. 1.24 Magnification factor M versus frequency ratio η at different damping ratios δ
(case c)
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One may be interested in finding the maximum of magnification factor and the
frequency ratio at which this maximum is achieved. One speaks then of the resonant
vibration. In case a) the maximum of M is achieved at ηm =

√
1− 2δ 2 giving

Mm =
1√

1−η4
m

=
1

2δ
√

1− δ 2

for δ < 1/
√

2 and at η = 0 giving Mm = 1 otherwise. In case b) the maximum is
always achieved at η = 1 giving Mm = 1. In case c) the maximum of M is achieved
at ηm = 1/

√
1− 2δ 2 giving

Mm =
η2

m√
η4

m − 1
=

1

2δ
√

1− δ 2

for δ < 1/
√

2 and at η = ∞ giving Mm = 1 otherwise. The curves corresponding
to the maxima of the magnification factors are drawn in Figs. 1.22 and 1.24 by the
dashed lines. It is remarkable that the maxima of M are in general not achieved when
the frequency of external excitation coincides with the frequency of free vibration
ωc = ω0

√
1− δ 2 (which means η =

√
1− δ 2) except the case δ = 0 for which

Mm = ∞ (strict resonance).3 Some characteristic values of phase and magnification
factors are presented in Table 1.1.

Table 1.1 Characteristic values of ψ and M

η ψ M (case a) M (case b) M (case c)

0 0 1 0 0

1 π/2 1
2δ 1 1

2δ

∞ π 0 0 1

ηm - 1
2δ

√
1−δ 2 1 1

2δ
√

1−δ 2

Power and Work. Let us find out the power and work done by the external force on
the forced vibration. We define the power of the external force as

P = f (t)ẋ.

For the forced oscillator with f (t) = kx0 cosωt (case a) the forced vibration is de-
scribed by

x = x0M cos(ωt −ψ), ẋ =−x0ωM sin(ωt −ψ).
3 Actually the solution in this case is x0Mτ sinτ , and its amplitude tends to infinity only in

the limit τ→ ∞ (see exercise 1.10).
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Thus,

P = f (t)ẋ =−kx2
0ωM cosωt sin(ωt −ψ)

=
1
2

kx2
0ωM[sinψ− sin(2ωt −ψ)] = Pa −Pi,

where the constant part Pa = 1
2 kx2

0ωM sinψ is called an active power, while the
oscillating with doubled frequency part Pi =

1
2 kx2

0ωM sin(2ωt −ψ) an idle power.
Remembering the formulas (1.36) and (1.37), we obtain in case a)

Pa = kx2
0ω0

δη2

(1−η2)2 + 4δ 2η2 = kx2
0ω0Ma,

Pi = kx2
0ω0

η
2
√
(1−η2)2 + 4δ 2η2

sin(2ωt −ψ) = kx2
0ω0Mi sin(2ωt −ψ).

Knowing the power, we can easily calculate the work done by the external force
according to

W =

∫ t

t0
Pdt =

1
2

F0x̂ω(t − t0)sinψ+
1
4

F0x̂[cos(2ωt −ψ)− cos(2ωt0 −ψ)],

where F0 = kx0 and x̂ = x0M. We see that the work done by the external force can
be decomposed into two parts: the active work Wa which grows linearly with time,
and the idle work Wi which is the periodic function. The work done in one period of
vibration is given by

W ∗ = πF0x̂sinψ .

We know that, for periodic motions, the kinetic and potential energies are periodic
functions, so they do not change in one period. In contrary, the energy dissipation in
one period of vibration is positive and equals

R∗ = 2
∫ T

0
D(ẋ)dt = cω x̂2

∫ 2π

0
sin2(ωt −ψ)d(ωt) = πcx̂2ω .

W*

R*

xs

^ ^
x

Fig. 1.25 Energy diagram of forced vibration
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Diagram 1.25 shows the comparison between the work done W ∗ and the energy
dissipation R∗ in one period of forced vibration as function of the amplitude x̂ at
some fixed frequency. While the work done in one period is a linear function of
x̂, the energy dissipation is quadratic with respect to x̂. The straight line cuts the
parabola at a point with coordinate x̂s = F0 sinψ/cω . If x̂ < x̂s, then the work done
by the external force is larger than the energy dissipation, so the amplitude of forced
vibration must increase. If x̂> x̂s, then the work done by the external force is smaller
than the energy dissipation, so the amplitude decreases. Thus, x̂s corresponds to the
steady-state amplitude of forced vibration.

1.5 Exercises

EXERCISE 1.1. Derive the equation of motion of a roller (mass m, radius r) hung
on an unstretchable rope and a spring (see Fig. 1.26) with the help of

r

k

m

Fig. 1.26 Roller hung on rope and spring

i) the force method,
ii) the energy method.

Determine the eigenfrequency of vibration.

Solution. i) The force method. We free the roller from the rope and the spring (see
Fig. 1.27) and apply the moment equation about A

d
dt
(JAϕ̇) =∑Mz =−Fs2r.

From the kinematics we know that ϕ = x/2r. Besides, the spring force is equal to
Fs = kx, while the moment of inertia of the roller about A is

JA = JO +mr2 =
1
2

mr2 +mr2 =
3
2

mr2.

Thus, the equation of motion reads

3
2

mr2 ẍ
2r

=−kx2r ⇒ ẍ+
8k
3m

x = 0,
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Fig. 1.27 Roller and the forces

and the eigenfrequency is given by

ω2
0 =

8k
3m

⇒ ω0 =

√
8k
3m

.

ii) The energy method. We write down the kinetic and potential energies:

K =
1
2

JAϕ̇2, U =
1
2

kx2.

Taking into account the kinematic relation ϕ = x/2r and the formula JA = 3
2 mr2, we

obtain the Lagrange function in the form

L = K −U =
3

16
mẋ2 − 1

2
kx2.

Then, from Lagrange’s equation

d
dt
∂L
∂ ẋ

− ∂L
∂x

= 0,

we derive again the above equation of motion and the formula for ω0.

EXERCISE 1.2. Derive the equation of motion of a thin circular ring (mass m, radius
r) hung on a support O (see Fig. 1.28). Determine the eigenfrequency of its small
vibration.

+
r

O

Fig. 1.28 Ring hung on support
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Solution. We write down the kinetic and potential energies:

K =
1
2

JOϕ̇2, U = mgr(1− cosϕ).

The moment of inertia of the thin ring is equal to

JO = JS +mr2 = mr2 +mr2 = 2mr2.

For small vibrations with ϕ � 1 we approximate 1− cosϕ ≈ 1
2ϕ

2. Thus,

L = mr2ϕ̇2 − 1
2

mgrϕ2.

From Lagrange’s equation we derive the equation of motion

2mr2ϕ̈+mgrϕ = 0.

Consequently, the eigenfrequency is

ω0 =

√
g
2r

.

EXERCISE 1.3. Three turning points are measured from the vibration of a damped
oscillator: x1 = 8.6mm, x2 = −4.1mm, x3 = 4.3mm. Determine the middle point
of vibration (position of equilibrium). Find the logarithmic decrement ϑ and the
damping ratio δ .

Solution. The free vibration of the underdamped oscillator is described by

x(τ) = xm + a0e−δτ cos(ντ −φ),

where xm corresponds to the position of equilibrium. As we know, x(τ) achieves
maxima or minima if

tan(ντ−φ) =−δ/ν.
So, the turning points (corresponding to maxima or minima) occur at the time in-
stants τ1, τ1 + τc/2, τ1 + τc and so on, with τ1 being the time instant of the first
turning point and τc = 2π/ν the conditional period of vibration. Taking the period-
icity of cosine function into account, we have

x1 = xm +C,

x2 = xm −Ce−δπ/ν ,

x3 = xm +Ce−δ2π/ν ,

where C = a0e−δτ1 cos(ντ1 −φ). Forming the differences we easily see that

x1 − x2

x3 − x2
= eδπ/ν = eδτc/2.
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Thus,

ln
x1 − x2

x3 − x2
= δτc/2 =

ϑ
2
,

with ϑ being the logarithmic decrement. Substituting the given values of turning
points into this formula we obtain

ϑ = 2ln
x1 − x2

x3 − x2
= 0.827.

Knowing the logarithmic decrement, we find Lehr’s damping ratio

δ =
ϑ√

4π2 +ϑ 2
= 0.13.

Now we form the differences x1 − xm and xm − x2 and consider the quotient

x1 − xm

xm − x2
= eδτc/2 = eϑ/2.

From the last equation it is ready to find xm

xm =
x1 + x2eϑ/2

1+ eϑ/2
= 0.956mm.

EXERCISE 1.4. The time constants are measured from the vibration of a damped
oscillator: Td = 5s, Tc = 2s. Determine ϑ and δ .

Solution. According to the formulas for the characteristic times Td and Tc we have

Td =
1
δω0

and Tc =
2π

ω0
√

1− δ 2
.

Thus, it is not difficult to see that

ϑ =
2πδ√
1− δ 2

=
Tc

Td
= 0.4.

Knowing ϑ , we can restore the damping ratio δ according to

δ =
ϑ√

4π2 +ϑ 2
= 0.0635.

EXERCISE 1.5. Determine the unit step responses for the overdamped and the crit-
ically damped oscillators.

Solution. For an overdamped oscillator (δ > 1) the unit step response satisfying the
initial conditions

xr(0) = 0, x′r(0) = 0
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has obviously the form

xr(τ) = 1+Ae−q1τ +Be−q2τ ,

where
q1 = δ −κ , q2 = δ +κ ,

and κ =
√
δ 2 − 1. Substituting this solution into the initial conditions, we obtain for

A and B the equations

xr(0) = 1+A+B= 0,

x′r(0) =−Aq1 −Bq2 = 0.

Solving these equations with respect to A and B, we get

A =−δ +κ
2κ

, B =
δ −κ

2κ
.

Thus,

xr(τ) = 1− δ +κ
2κ

e−(δ−κ)τ+
δ −κ

2κ
e−(δ+κ)τ .

For a critically damped oscillator (δ = 1) the unit step response must have the
form

xr(τ) = 1+ e−τ(Aτ+B).

The initial conditions lead to

xr(0) = 1+B = 0, x′r(0) = A−B = 0,

yielding
A = B =−1.

Thus,
xr(τ) = 1− (1+ τ)e−τ.

EXERCISE 1.6. Find the solution of the initial-value problem

x′′+ 2δx′+ x = 0,

satisfying x(0) = x0 and x′(0) = x′0 with the help of the Laplace transform.

Solution. As shown in Section 1.3 the Laplace transform applied to this initial-value
problem leads to

X(s) =
x′0 + sx0 + 2δx0

s2 + 2δ s+ 1
,

where X(s) is the Laplace image of x(τ). Thus, the problem reduces to computing
the inverse Laplace transform of the rational function

x(τ) =L −1[X(s)] =
1

2π i

∫ α+i∞

α−i∞

x′0 + sx0 + 2δx0

s2 + 2δ s+ 1
esτds.
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Since X(s) is the ratio of two polynomials P(s)/Q(s), its inverse Laplace transform
equals the sum of the residues of X(s)esτ at the singular points (poles) of X(s). For
the overdamped oscillator (δ > 1) we have two different real roots of the character-
istic equation corresponding to two simple poles of X(s)

s = s1 =−q1, s = s2 =−q2,

therefore

x(τ) =
P(−q1)

Q′(−q1)
e−q1τ +

P(−q2)

Q′(−q2)
e−q2τ .

Since
P(s) = x′0 + sx0 + 2δx0, Q′(s) = 2s+ 2δ ,

and
q1 = δ −κ , q2 = δ +κ ,

we easily find that

P(−q1)

Q′(−q1)
=

1
2κ

(x′0 + q2x0),
P(−q2)

Q′(−q2)
=− 1

2κ
(x′0 + q1x0).

Thus,

x(τ) =
1

2κ
[(x′0 + q2x0)e

−q1τ − (x′0 + q1x0)e
−q2τ ],

which agrees with the formula (1.19).
For the underdamped oscillator with δ < 1 we have two complex conjugate roots,

and the computation of the inverse Laplace transform can be done in a similar man-
ner. For the critically damped oscillator (δ = 1) there is one double root s = −1
corresponding to the pole of order two, so

x(τ) =
d
ds

[P(s)esτ ]

∣∣∣∣
s=−1

= e−τ [x0(1+ τ)+ x′0τ].

EXERCISE 1.7. Use Duhamel’s formula to compute the response of the critically
damped oscillator with δ = 1 to the so-called ramp function

g(τ) =

⎧⎪⎨
⎪⎩

0 for τ < 0,

ατ for 0 ≤ τ ≤ τ0,

ατ0 for τ > τ0.

The oscillator was at rest for τ ≤ 0.

Solution. According to Duhamel’s formula

x(τ) =
∫ τ

0
g′(t)xr(τ− t)dt,

where xr(τ) is the unit step response function. For δ = 1 we have
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xr(τ) = 1− (1+ τ)e−τ.

We compute the derivative of the ramp function g(τ) given above

g′(τ) =

⎧⎪⎨
⎪⎩

0 for τ < 0,

α for 0 ≤ τ ≤ τ0,

0 for τ > τ0.

So we need to consider two different cases.
Case a: τ ≤ τ0. In this case

x(τ) =
∫ τ

0
α[1− (1+(τ− t))e−(τ−t)]dt

= α
[
τ−

∫ τ

0
e−(τ−t) dt −

∫ τ

0
(τ− t)e−(τ−t)dt

]

= α
[
τ−

∫ 0

−τ
eu du+

∫ 0

−τ
ueu du

]

= α(τ − 2+ 2e−τ+ τe−τ) = α[τ− 2+(τ+ 2)e−τ ].

Case b: τ > τ0. Since g′(τ) = 0 for τ > τ0, we have

x(τ) =
∫ τ0

0
α[1− (1+(τ− t))e−(τ−t)]dt

= α
[
τ0 −

∫ τ0

0
e−(τ−t) dt −

∫ τ0

0
(τ− t)e−(τ−t)dt

]

= α
[
τ0 −

∫ τ0−τ

−τ
eu du+

∫ τ0−τ

−τ
ueu du

]

= α[τ0 − (2+ τ− τ0)e
−(τ−τ0) + (τ+ 2)e−τ ].

EXERCISE 1.8. Derive the equations of motion in examples 1.8 and 1.9 by the
energy method.

Solution. In example 1.8 (see Fig. 1.19) the Lagrange function reads

L(x, ẋ) =
1
2

mẋ2 − 1
2

kx2.

The dissipation function depends however on the relative velocity

D =
1
2

c(ẋ− ẋe)
2.

From modified Lagrange’s equation for dissipative systems

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0,
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we derive the equation of motion

mẍ+ kx+ c(ẋ− ẋe) = 0.

For the system in example 1.9 (see Fig. 1.20) the Lagrange function reads

L(x, ẋ) =
1
2

mẋ2 − 1
2

k(x− xe)
2.

We see that the potential energy depends on the relative displacement. The dissipa-
tion function depends also on the relative velocity

D =
1
2

c(ẋ− ẋe)
2.

From modified Langrange’s equation for dissipative systems

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0,

we derive the equation of motion

mẍ+ k(x− xe)+ c(ẋ− ẋe) = 0.

Introducing the relative displacement xr = x− xe, we can present this equation in
the form

mẍr + cẋr + kxr =−mẍe.

EXERCISE 1.9. Derive the equation of vertical motion of a frame (mass m f ) excited
by two rotating unbalanced masses (mass mu/2, frequency of rotation ω , radius of
rotation r). The frame is connected with two springs of equal stiffness k/2 and a
damper with damping constant c (see Fig. 1.29). Determine the magnification factor
of forced vibration.

m
u
/2

ck/2 k/2

m
fx

ω ω

Fig. 1.29 Vertical forced vibration of frame

Solution. We derive the equation of motion by the energy method. Let x be the ver-
tical displacement of the center of mass of the frame from the equilibrium position.
The displacements of the unbalanced masses from their equilibrium positions are
given by
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xu = x+ r cosωt, yu =±r sinωt.

The plus and minus signs are due to the fact that the unbalanced masses rotate in the
opposite directions. Their velocities are

ẋu = ẋ− rω sinωt, ẏu =±rω cosωt.

Thus, the kinetic energy of masses equals

K(ẋ) =
1
2

m f ẋ2 +
1
2

mu(ẋ− rω sinωt)2 +
1
2

mur2ω2 cos2ωt.

Since the gravitational force and the static spring forces do not contribute to the
potential energy, we have

U(x) =
1
2

kx2.

The Lagrange function reads

L = K −U =
1
2

m f ẋ2 +
1
2

mu(ẋ− rω sinωt)2 +
1
2

mur2ω2 cos2ωt − 1
2

kx2.

The dissipation function is given by

D(ẋ) =
1
2

cẋ2.

From modified Lagrange’s equation

d
dt
∂L
∂ ẋ

− ∂L
∂x

+
∂D
∂ ẋ

= 0,

we derive the equation of motion of this system

(m f +mu)ẍ+ cẋ+ kx = murω2 cosωt.

The eigenfrequency of free and undamped vibration is ω0 =
√

k
mf +mu

. Introducing

the dimensionless time τ = ω0t, we reduce the equation of motion to the standard
form

x′′+ 2δx′+ x = x0η2 cosητ,

where
δ =

cω0

2k
, x0 =

mu

m f +mu
r, η =

ω
ω0

.

The forced vibration reads

x = x0M cos(ητ−ψ) = x0M(cosητ cosψ+ sinητ sinψ),

where M is called a magnification factor and ψ the phase of forced vibration. The
magnification factor is equal to (see Section 1.4)



42 1 Single Oscillator

M =
η2√

(1−η2)2 + 4δ 2η2
.

EXERCISE 1.10. Show that the variational problem

δ
∫ 2π

0
(

1
2

x′2 − 1
2

x2 + cosτ x)dτ = 0

has no extremal in the class of periodic functions with x(0) = x(2π) and x′(0) =
x′(2π). Find its extremal. What happens if the last term in the integrand is sinτ x?

Solution. Lagrange’s equation for the extremal of this action functional reads

x′′+ x = cosτ.

Since the frequency of the external excitation coincides with the eigenfrequency of
the system corresponding to the resonance, we look for the particular solution of
this equation in the form

x(τ) = Aτ sinτ.

Computing the derivatives of x(τ), we have

x′ = A(sinτ+ τ cosτ), x′′ = A(2cosτ− τ sinτ).

Substituting these formulas into Lagrange’s equation, we find that

x′′+ x = 2Acosτ = cosτ ⇒ A =
1
2
.

The general solution then follows

x(τ) =
1
2
τ sinτ+ acos(τ−φ).

We see that the extremal is non-periodic, and the amplitude of forced vibration goes
to infinity as τ → ∞.

If the last term in the action functional is replaced by sinτ x, then the Lagrange’s
equation changes to

x′′+ x = sinτ.

Similar calculations show that

x(τ) =−1
2
τ cosτ+ acos(τ−φ).

This corresponds again to the resonance because the extremal is non-periodic, and
the amplitude of forced vibration goes to infinity as τ → ∞.

EXERCISE 1.11. Find the maxima of the magnification factors M in three cases a,
b, and c considered in Section 1.4.



1.5 Exercises 43

Solution. As shown in Section 1.4, the magnification factor M is given by

M =
α√

(1−η2)2 + 4δ 2η2
,

where

α =

⎧⎪⎨
⎪⎩

1 in case a,

2δη in case b,

η2 in case c.

To find the maximum of M we must differentiate M with respect to η . Consider first
case a. In this case

dMa

dη
=

2η(1−η2 − 2δ 2)

[(1−η2)2 + 4δ 2η2]3/2
.

Equating this derivative with zero, we find that the maximum is achieved either at
η = 0 or at

η =
√

1− 2δ 2.

Substituting these values into the formula for M, we find that the maximum is either
1 or

maxMa =
1

2δ
√

1− δ 2
.

In case b we have

dMb

dη
=

2δ√
(1−η2)2 + 4δ 2η2

− δη(−4(1−η2)η+ 8δ 2η)
[(1−η2)2 + 4δ 2η2]3/2

.

Simplifying this expression, we obtain

dMb

dη
=

2δ (1−η2)(1+η2)

[(1−η2)2 + 4δ 2η2]3/2
.

Thus, the maximum is always achieved at η = 1 giving maxMb = 1.
In case c the calculations give

dMc

dη
=

2η√
(1−η2)2 + 4δ 2η2

− η2(−2(1−η2)η+ 4δ 2η)
[(1−η2)2 + 4δ 2η2]3/2

.

Simplifying this expression, we obtain

dMc

dη
=

2η(1− (1− 2δ 2)η2)

[(1−η2)2 + 4δ 2η2]3/2
.

Thus, the maximum of Mc is achieved at ηm = 1/
√

1− 2δ 2 giving

maxMc =
η2

m√
η4

m − 1
=

1

2δ
√

1− δ 2



44 1 Single Oscillator

for δ < 1/
√

2, and at η = ∞ giving limη→∞Mc = 1 otherwise.

EXERCISE 1.12. Find the idle and active works done by the external forces in cases
b and c considered in Section 1.4.

Solution. In example 1.8 corresponding to case b (see Fig. 1.19) the equation of
motion reads

mẍ+ kx+ cẋ = cẋe = cωx0 cosωt.

The right-hand side of this equation is the force acting on the damper piston. The
power of this force is equal to

P = f (t)ẋ =−cx2
0ω

2M cosωt sin(ωt −ψ)
=

1
2

cx2
0ω2M[sinψ− sin(2ωt −ψ)] = Pa −Pi.

The constant part Pa =
1
2 cx2

0ω2M sinψ is the active power while the oscillating with
doubled frequency part Pi =

1
2 cx2

0ω2M sin(2ωt −ψ) an idle power. Remembering
the formulas for M and sinψ , we have in case b

Pa = cx2
0ω2

0
2δ 2η4

(1−η2)2 + 4δ 2η2 ,

Pi = cx2
0ω

2
0

δη3√
(1−η2)2 + 4δ 2η2

sin(2ωt −ψ).

In example 1.9 corresponding to case c (see Fig. 1.20) the equation of motion
reads

mẍr + kxr + cẋr =−mẍe = mω2x0 cosωt.

The right-hand side of this equation is the force acting on the frame. The power of
this force is equal to

P = f (t)ẋe =−mx2
0ω

3M cosωt sin(ωt −ψ)
=

1
2

mx2
0ω

3M[sinψ− sin(2ωt −ψ)] = Pa −Pi.

The constant part Pa =
1
2 mx2

0ω3M sinψ is the active power while the oscillating with
doubled frequency part Pi =

1
2 mx2

0ω
3M sin(2ωt −ψ) an idle power. Recalling the

formulas for M and sinψ , we have in case c

Pa = mx2
0ω

3
0

δη6

(1−η2)2 + 4δ 2η2 ,

Pi =
1
2

mx2
0ω

3
0

η5√
(1−η2)2 + 4δ 2η2

sin(2ωt −ψ).

Integrating these formulas over t, we easily find the active and idle works.



Chapter 2
Coupled Oscillators

This chapter deals with small vibrations of mechanical systems with many degrees
of freedom. The effective method of solution for conservative systems is the linear
transformation leading to uncoupled single oscillators. For dissipative systems the
effective method of solution is the Laplace transform based on the linear superposi-
tion principle.

2.1 Conservative Oscillators

Differential Equations of Motion. Just as for systems with one degree of freedom,
we can use either the force method or the energy method to derive the equations
of motion for systems with two or several degrees of freedom. In the force method
we must free each part of the system from the surrounding, then draw the free-body
diagram with all acting forces, and finally apply Newton’s law. In the energy method
based on Hamilton’s variational principle, we find the Lagrange function in terms
of generalized coordinates and velocities and write down Lagrange’s equations. We
will see that, although both methods are equivalent, the energy method turns out
to be more succinct for systems with many degrees of freedom and with various
constraints. Let us begin with conservative systems having two degrees of freedom.

EXAMPLE 2.1. Coupled mass-spring oscillators. Two point-masses m1 and m2

move horizontally under the action of two massless springs of stiffnesses k1 and
k2 (see Fig. 2.1). Derive the equations of motion for these coupled oscillators.

Let x1 and x2 be the displacements from the equilibrium positions of the point-
masses m1 and m2, respectively. In the force method we first free the point-mass m1

from the springs, then draw the free-body diagram (see Fig. 2.1), and finally apply
Newton’s law for m1 in the x-direction

m1ẍ1 =∑Fx =−k1x1 + k2(x2 − x1).
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m1

m1

m2

m2

k1 k2
x1 x2

F1 F2 -F2

Fig. 2.1 Coupled mass-spring oscillators

Repeating the same procedure for m2 (see Fig. 2.1), we obtain

m2ẍ2 =∑Fx =−k2(x2 − x1).

Bringing the spring forces to the left-hand sides, we arrive at the system of equations
of motion

m1ẍ1 + k1x1 − k2(x2 − x1) = 0,

m2ẍ2 + k2(x2 − x1) = 0.
(2.1)

To use the energy method we write down the kinetic energy

K(ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2,

and the potential energy

U(x) =
1
2

k1x2
1 +

1
2

k2(x2 − x1)
2,

where x = (x1,x2), ẋ = (ẋ1, ẋ2). With the Lagrange function L(x, ẋ) = K(ẋ)−U(x),
we derive from Lagrange’s equations (see the derivation of these equations from
Hamilton’s variational principle in Section 2.4)

d
dt
∂L
∂ ẋ j

− ∂L
∂x j

= 0, j = 1,2

the equations of motion (2.1).

EXAMPLE 2.2. Coupled pendulums. Two pendulums are connected with each other
by a spring of stiffness k (see Fig. 2.2). Derive the equations of motion for this
system.

In the force method we must free the first pendulum and add the spring force to the
free-body diagram drawn for the mathematical pendulum in example 1.2. Because
of the smallness of ϕ1 and ϕ2, the magnitude of the spring force is equal to kl(ϕ2 −
ϕ1)/2, so the moment equation about A reads

m1l2ϕ̈1 =∑Mz =−m1glϕ1 + k
l2

4
(ϕ2 −ϕ1).
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m1
m2

k

l/2

l/2

l/2

l/2

g

A B
ϕ1 ϕ2

Fig. 2.2 Coupled pendulums

Applying the same procedure to the second pendulum, we obtain

m2l2ϕ̈2 =∑Mz =−m2glϕ2 − k
l2

4
(ϕ2 −ϕ1).

To use the energy method we write down the kinetic energy

K(ϕ̇) =
1
2

m1l2ϕ̇2
1 +

1
2

m2l2ϕ̇2
2 ,

and, taking into account the smallness of ϕ1 and ϕ2, the potential energy

U(ϕ) =
1
2

m1glϕ2
1 +

1
2

m2glϕ2
2 +

1
2

k(l(ϕ2 −ϕ1)/2)2,

where ϕ = (ϕ1,ϕ2), ϕ̇ = (ϕ̇1, ϕ̇2). The last term corresponds to the energy of the
spring. With L(ϕ , ϕ̇) = K(ϕ̇)−U(ϕ) we derive from Lagrange’s equations

m1l2ϕ̈1 +m1glϕ1 − k
l2

4
(ϕ2 −ϕ1) = 0,

m2l2ϕ̈2 +m2glϕ2 + k
l2

4
(ϕ2 −ϕ1) = 0,

(2.2)

which are equivalent to the above equations.

EXAMPLE 2.3. Primitive model of a vehicle. A rigid bar, supported by two springs
of stiffnesses k1 and k2, carries out a translational motion of its center of mass S in
the vertical direction and a rotation in the plane about S (see Fig. 2.3). Derive the
equations of motion for this system.

We see again the typical “engineering” approach to the problem: instead of dealing
with a real vehicle with thousands of details and degrees of freedom, we try to select
the most important of them.1 In this simplified model the bar is constrained to have
only two degrees of freedom: the vertical motion of S and the rotation in the plane
about S. Let the vertical displacement of S from the equilibrium position be x and

1 This selection depends of course on the aim of our simulations. See also a primitive model
of an airplane with three degrees of freedom in exercise 2.12.
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the angle of rotation be ϕ . In the force method we free the bar from the springs and
apply Newton’s law to it in the x-direction

mẍ =−k1(x+ l1ϕ)− k2(x− l2ϕ).

S

k1k2

l1l2

x

Fig. 2.3 Primitive model of
vehicle

Note that the weight of the bar does not contribute
to this equation because it is compensated with the
static spring forces. In addition, the moment equa-
tion about S for the bar reads

JSϕ̈ =−k1l1(x+ l1ϕ)+ k2l2(x− l2ϕ),

with JS being the moment of inertia of the bar about
S. The static spring forces do not contribute to this
moment equation by the same reason.

To use the energy method we denote by q= (x,ϕ)
and q̇ = (ẋ, ϕ̇) and write down the kinetic energy

K(q̇) =
1
2

mẋ2 +
1
2

JSϕ̇2,

and the potential energy

U(q) =
1
2

k1(xst + x+ l1ϕ)2 +
1
2

k2(xst + x− l2ϕ)2 +mgx,

where xst corresponds to the change of length of the springs in the horizontal equi-
librium state compared to that in the stress-free state. Expanding the spring energies
and taking into account the equilibrium conditions, we see that the linear terms in x
and ϕ are canceled out, so up to a constant,

U(q) =
1
2

k1(x+ l1ϕ)2 +
1
2

k2(x− l2ϕ)2.

Thus, we derive again from Lagrange’s equations the equations of motion.

Solution. We illustrate the method of solution on example 2.2. To simplify the anal-
ysis we consider the special case m1 = m2 = m. Dividing equations (2.2) by ml2, we
get

ϕ̈1 +ω2
0ϕ1 −α(ϕ2 −ϕ1) = 0,

ϕ̈2 +ω2
0ϕ2 +α(ϕ2 −ϕ1) = 0,

(2.3)

where

ω0 =

√
g
l
, α =

k
4m

,

with ω0 being the eigenfrequency of the uncoupled pendulum and α the coupling
factor. We seek a particular solution of (2.3) in the form
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ϕ1 = ϕ̂1est , ϕ2 = ϕ̂2est ,

where ϕ̂1 and ϕ̂2 are unknown constants. Substituting this Ansatz into (2.3), we
obtain

[s2ϕ̂1 +ω2
0 ϕ̂1 −α(ϕ̂2 − ϕ̂1)]e

st = 0,

[s2ϕ̂2 +ω2
0 ϕ̂2 +α(ϕ̂2 − ϕ̂1)]e

st = 0.

Since est is not equal to zero, the expressions in the square brackets must vanish. We
may present these equations in the matrix form as follows

(
s2 +ω2

0 +α −α
−α s2 +ω2

0 +α

)(
ϕ̂1

ϕ̂2

)
=

(
0
0

)
. (2.4)

From linear algebra we know that non-trivial solutions of (2.4) exist if its determi-
nant vanishes ∣∣∣∣s

2 +ω2
0 +α −α

−α s2 +ω2
0 +α

∣∣∣∣= (s2 +ω2
0 +α)2 −α2 = 0. (2.5)

Equation (2.5), quadratic with respect to s2, yields

s2
1 =−ω2

0 , s2
2 =−(ω2

0 + 2α).

Thus, the roots of (2.5) are imaginary numbers given by

s1 =±iω1, s2 =±iω2, (2.6)

with ω1 = ω0 and ω2 =
√
ω2

0 + 2α being called the eigenfrequencies. Note that the

amplitudes ϕ̂1 and ϕ̂2 cannot be arbitrary. For example, if s = s1, then (2.4) implies
that

ϕ̂1 = ϕ̂2,

or, in the vector form,

ϕ̂ϕϕ =

(
ϕ̂1

ϕ̂2

)
=C1q1, q1 =

1√
2

(
1
1

)
.

Thus, the vector ϕ̂ϕϕ is proportional to the eigenvector q1 which is normalized to have
the length 1. Likewise, for s = s2 we have from (2.4) ϕ̂1 =−ϕ̂2, or

ϕ̂ϕϕ =C2q2, q2 =
1√
2

(−1
1

)
.

Note that q2 is orthogonal to q1. Because q jest = q je±iωt satisfy (2.3) which are the
differential equations with real coefficients, their real and imaginary parts

q j cosωt and q j sinωt
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must satisfy also these equations. The general solution can now be constructed using
the linear superposition principle

ϕϕϕ =

(
ϕ1

ϕ2

)
= q1(A1 cosω1t +B1 sinω1t)+q2(A2 cosω2t +B2 sinω2t).

The four unknown coefficients A1, B1 and A2, B2 must be found from the initial
conditions

ϕϕϕ(0) = ϕϕϕ0, ϕ̇ϕϕ(0) = ϕ̇ϕϕ0

giving

A1q1 +A2q2 = ϕϕϕ0,

B1ω1q1 +B2ω2q2 = ϕ̇ϕϕ0.

Then, using the orthogonality of q1 and q2, we obtain from here

A j = ϕϕϕ0 ·q j, B j =
1
ω j
ϕ̇ϕϕ0 ·q j, j = 1,2,

with the dot denoting the scalar product of two vectors. Alternatively, we can present
the solution in the form

ϕϕϕ = q1a1 cos(ω1t −φ1)+q2a2 cos(ω2t −φ2). (2.7)

Recalling the addition theorem for cos(ωt −φ), we find

a j =
√

A2
j +B2

j , tanφ j =
B j

A j
, j = 1,2.

For α� 1 (weak coupling) solution (2.7) exhibits an interesting phenomenon called
beating or amplitude modulation (see exercise 2.4).

Normal Modes and Coordinates. As we see from (2.7) the solution is the superpo-
sition of two harmonic cosine functions with different frequencies. If the frequency
ratio is not a rational number, the motion is no longer periodic in general.2 However,
for the initial conditions of the special form

ϕ1(0) = ϕ2(0), ϕ̇1(0) = ϕ̇2(0),

or
ϕ1(0) =−ϕ2(0), ϕ̇1(0) =−ϕ̇2(0),

the motion is purely harmonic with the frequencyω1 or ω2. We call such the special
periodic motion normal mode. Fig. 2.4 shows the normal modes corresponding to
ω = ω1 and ω = ω2, respectively. For mode 1 (symmetric mode) the pendulums
oscillate in phase, consequently the spring does not change its length and has no

2 It is in general quasi-periodic (see exercise 2.5).
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(1) (2)

Fig. 2.4 Modes of vibration: 1) ω = ω1, 2) ω = ω2

influence on the frequency (ω = ω1 = ω0). For mode 2 (antisymmetric mode) the
pendulums oscillate in counter-phases, and the spring stiffness makes the frequency
ω2 higher than ω1.

The question now arises: can we find the coordinates in which the normal modes
become independent? The first observation is that this holds true if the kinetic and
potential energies of the system, in terms of the new coordinates ξ1 and ξ2, take the
form

K(ξ̇ ) =
1
2
(ξ̇ 2

1 + ξ̇ 2
2 ), U(ξ ) =

1
2
(ω2

1ξ
2
1 +ω2

2ξ
2
2 ).

Indeed, in this case Lagrange’s equations of the system become uncoupled

d
dt
∂L

∂ ξ̇ j
− ∂L
∂ξ j

= ξ̈ j +ω2
j ξ j = 0, j = 1,2,

yielding two independent modes of vibrations with the frequenciesω1 andω2. Thus,
the answer must be found by the well-known procedure in linear algebra of simul-
taneously diagonalizing two positive definite quadratic forms [37]. In our simple
example we may divide both the kinetic and potential energies by ml2 to get

K(ϕ̇) =
1
2
(ϕ̇2

1 + ϕ̇2
2 ),

and

U(ϕ) =
1
2
ω2

0ϕ
2
1 +

1
2
ω2

0ϕ
2
2 +

1
2
α(ϕ2 −ϕ1)

2.

These formulas suggest the following obvious choice of normal coordinates

ξ1 =
1√
2
(ϕ1 +ϕ2), ξ2 =

1√
2
(ϕ2 −ϕ1).

In terms of the new coordinates we have

K(ξ̇ ) =
1
2
(ξ̇ 2

1 + ξ̇ 2
2 ), U(ξ ) =

1
2
[ω2

0ξ
2
1 +(ω2

0 + 2α)ξ 2
2 ],

so this is the Lagrange function of two independent oscillators with the frequen-
cies ω1 and ω2. We will see later that the reduction of a general conservative os-
cillator with n degrees of freedom to n uncoupled single oscillators is possible and
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realized by a linear transformation which simultaneously diagonalize the kinetic and
potential energies as quadratic forms.

2.2 Dissipative Oscillators

Differential Equations of Motion. We have seen from the previous Sections that,
although both the force and the energy methods are equivalent, the latter turns out
to be more advantageous for systems with many degrees of freedom. Since we are
now familiar with the energy method and convinced in its equivalence with the force
method, we shall use exclusively the former to derive the equations of motion.

EXAMPLE 2.4. Mass-spring-damper oscillators. Two masses m1 and m2 move hor-
izontally under the action of two massless springs of stiffnesses k1 and k2 and two
dampers of damping constants c1, c2 (see Fig. 2.5). Derive the equations of motion
for these coupled oscillators.

m1

x1

k1 k2

c1

m2

c2
x2

Fig. 2.5 Mass-spring-damper oscillators with two degrees of freedom

Let x1 and x2 be the displacements from the equilibrium positions of the masses m1

and m2, respectively. Similar to example 2.1 the Lagrange function reads

L(x, ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 −

1
2

k1x2
1 −

1
2

k2(x2 − x1)
2.

With the dissipation function

D(ẋ) =
1
2

c1ẋ2
1 +

1
2

c2(ẋ2 − ẋ1)
2,

we derive from modified Lagrange’s equations

d
dt
∂L
∂ ẋ j

− ∂L
∂x j

+
∂D
∂ ẋ j

= 0, j = 1,2

the equations of motion

m1ẍ1 + c1ẋ1 − c2(ẋ2 − ẋ1)+ k1x1 − k2(x2 − x1) = 0,

m2ẍ2 + c2(ẋ2 − ẋ1)+ k2(x2 − x1) = 0.
(2.8)

EXAMPLE 2.5. Coupled pendulums with spring and damper. Two pendulums are
connected with each other by a spring of stiffness k and a damper of damping con-
stant c (see Fig. 2.6). Derive the equations of small vibration for this system.
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m m

k

l/2

l/2

l/2

l/2

g

A B

c

ϕ1 ϕ2

Fig. 2.6 Coupled damped pendulums

Similar to example 2.2 the Lagrange function is given by

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2
1 +

1
2

ml2ϕ̇2
2 −

1
2

mglϕ2
1 −

1
2

mglϕ2
2 −

1
2

k(l(ϕ2 −ϕ1)/2)2. (2.9)

The dissipation function reads

D(ϕ̇) =
1
2

cl2(ϕ̇2 − ϕ̇1)
2. (2.10)

From modified Lagrange’s equations

d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

+
∂D
∂ ϕ̇ j

= 0, j = 1,2,

we derive the equations of motion

ml2ϕ̈1 − cl2(ϕ̇2 − ϕ̇1)+mglϕ1 − k
l2

4
(ϕ2 −ϕ1) = 0,

ml2ϕ̈2 + cl2(ϕ̇2 − ϕ̇1)+mglϕ2 + k
l2

4
(ϕ2 −ϕ1) = 0.

(2.11)

EXAMPLE 2.6. Damped vehicle. A rigid bar, connected with two springs of stiff-
nesses k1 and k2 and a damper with the damping force acting in the center of mass
S, performs a translational motion of S in the vertical direction and a rotation in the
plane about S (see Fig. 2.7). Derive the equations of motion for this damped vehicle.

Let q = (x,ϕ) and q̇ = (ẋ, ϕ̇). We write down the Lagrange function as in example
2.3

L(q, q̇) =
1
2

mẋ2 +
1
2

JSϕ̇2 − 1
2

k1(x+ l1ϕ)2 − 1
2

k2(x− l2ϕ)2.

Furthermore, the dissipation function reads

D(q̇) =
1
2

cẋ2.
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S

k1
k2

l1l2

x

c

ϕ

Fig. 2.7 Damped vehicle

Now, from modified Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

+
∂D
∂ q̇ j

= 0, j = 1,2,

we derive the equations of motion

mẍ+ cẋ+ k1(x+ l1ϕ)+ k2(x− l2ϕ) = 0,

JSϕ̈+ k1l1(x+ l1ϕ)− k2l2(x− l2ϕ) = 0.
(2.12)

Classification of Damping. Let q be the column vector whose components are the
generalized coordinates. In our examples 2.4, 2.5, and 2.6 it is

q =

(
x1

x2

)
, q =

(
ϕ1

ϕ2

)
, q =

(
x
ϕ

)
,

respectively. The equations of motion derived above can be written in the matrix
form as follows

Mq̈+Cq̇+Kq = 0, (2.13)

where the matrices M, C, and K are called mass, damping, and stiffness matrices,
respectively. For instance, in example 2.6 we have

M =

(
m 0
0 JS

)
, C =

(
c 0
0 0

)
, K =

(
k1 + k2 k1l1 − k2l2

k1l1 − k2l2 k1l2
1 + k2l2

2

)
.

In general, all three matrices M, C, and K are symmetric. The symmetry of C
follows from the formula for the damping forces

Q j =− ∂D
∂ q̇ j

,

and from the fact that D is quadratic with respect to q̇. In thermodynamics of
irreversible processes this symmetry property is the consequence of Onsager’s
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principle. The mass matrix M is always positive definite in the sense that there
exists a positive constant m such that the inequality

q ·Mq ≥ mq ·q
holds true for arbitrary q. If the system does not permit rigid-body motions, then the
stiffness matrix K is also positive definite. Concerning the damping matrix C we
may merely assume in general its non-negative definiteness in the sense that

q ·Cq ≥ 0

for arbitrary q. Note, however, that in reality, if the resistance to motion through the
viscous damping of the air or through the internal damping affecting all degrees of
freedom is taken into account, then C must also be positive definite.

We call the damping exhaustive if the damping matrix C is positive definite. In
this case all motions decay exponentially. If there exists some q such that q ·Cq= 0,
but nevertheless all motions of the system decay exponentially, the damping is called
permeating. If there exists some vibration mode which does not decay with time, the
damping is called non-permeating. The damping is called proportional if

C = αM+βK. (2.14)

According to this classification the damping in example 2.4 is exhaustive, and if
c1 = βk1, c2 = βk2, then it is proportional. In example 2.5 the damping is obviously
proportional, but non-exhaustive and non-permeating: the dissipation vanishes for
ϕ1 = ϕ2, and this mode of vibration does not decay with time. In example 2.6 the
damping is non-exhaustive but permeating as long as the coupling factor k1l1 − k2l2
is not equal to zero. Indeed, if x(t) decays exponentially with time, then it follows
from (2.12)1 that ϕ(t) should also decay exponentially if k1l1 − k2l2 is not equal to
zero.

Solution. We analyze two cases.

Proportional damping. In this case we may choose the normal coordinates which
diagonalize all three matrices M, C, and K simultaneously and by this reduce the
system to two independent damped oscillators. We illustrate this on example 2.5.
Dividing the Lagrange function and the dissipation function by ml2 and choosing
the normal coordinates

ξ1 =
1√
2
(ϕ1 +ϕ2), ξ2 =

1√
2
(ϕ2 −ϕ1),

we obtain

L(ξ , ξ̇ ) =
1
2
(ξ̇ 2

1 + ξ̇ 2
2 )−

1
2
(ω2

1ξ
2
1 +ω2

2ξ
2
2 ), (2.15)

and
D(ξ̇ ) =

c
m
ξ̇ 2

2 . (2.16)
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In terms of the new coordinates modified Lagrange’s equations become

ξ̈1 +ω2
1ξ1 = 0,

ξ̈2 +
2c
m
ξ̇2 +ω2

2ξ2 = 0.

Thus, we see that the motions ξ1(t) and ξ2(t) are independent, and the motion
ξ1(t) is harmonic confirming that the damping in this example is non-permeating.
The obtained uncoupled equations can be solved by the method discussed in
Section 1.2.

Non-proportional damping. We illustrate the method of solution on example 2.6.
Dividing the equations of motion (2.12) by m and Js, respectively, and introducing
the notations

k1 + k2

m
= ω2

x ,
k1l2

1 + k2l2
2

JS
= ω2

ϕ ,
c
m

= χ ,

k1l1 − k2l2
m

= α2
1 ,

k1l1 − k2l2
JS

= α2
2 , α2

1α
2
2 = α4,

with ωx and ωϕ being the frequencies of uncoupled vibrations and α the coupling
factor, we transform (2.12) to

ẍ+ χ ẋ+ω2
x x+α2

1ϕ = 0,

ϕ̈+ω2
ϕϕ+α2

2 x = 0.
(2.17)

We seek a particular solution of (2.17) in the form

x = x̂est , ϕ = ϕ̂est .

Substituting this Ansatz into (2.17) and eliminating the factor est we obtain the linear
equations (

s2 + χs+ω2
x α2

1
α2

2 s2 +ω2
ϕ

)(
x̂
ϕ̂

)
=

(
0
0

)
. (2.18)

Non-trivial solutions of this system exist if the determinant vanishes
∣∣∣∣s

2 + χs+ω2
x α2

1
α2

2 s2 +ω2
ϕ

∣∣∣∣= 0.

This yields the characteristic equation

s4 + χs3 +(ω2
x +ω

2
ϕ)s

2 + χω2
ϕs+ω2

xω
2
ϕ −α4 = 0, (2.19)

which is the algebraic equation of fourth order with respect to s.
Since (2.19) is the equation with real coefficients, the complex roots occur in

pairs of complex conjugates. We want first to show that all roots have negative real
parts. According to the Routh-Hurwitz criterion [19] this is the case if
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T0 = a0 > 0, T1 = a1 > 0, T2 =

∣∣∣∣a1 a0

a3 a2

∣∣∣∣> 0,

T3 =

∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣> 0, T4 =

∣∣∣∣∣∣∣∣

a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣
= a4T3 > 0,

where

a0 = 1, a1 = χ , a2 = ω2
x +ω

2
ϕ , a3 = χω2

ϕ , a4 = ω2
xω

2
ϕ −α4

are the coefficients of the characteristic equation. Elementary calculations give

T0 = 1 > 0, T1 = χ > 0, T2 = χω2
x > 0,

T3 = χ2(ω2
x +ω

2
ϕ +ω

2
xω

2
ϕ +α

4)> 0, T4 = (ω2
xω

2
ϕ −α4)T3 > 0,

so the Routh-Hurwitz criterion is fulfilled.
Although the characteristic equation can be solved in closed analytical form, the

analysis of exact solution is rather tedious. We therefore consider the case of small
damping χ � ωx, χ � ωϕ and seek s in the form s = (−κ ± i)ω , where κ � 1.
Then to the first approximation

s2 ≈−(1± 2κ i)ω2, s3 ≈ (3κ∓ i)ω3, s4 ≈ (1± 4κ i)ω4.

Substituting this into (2.19) and neglecting the powers of χ and κ higher than one,
we obtain in the first approximation

ω4 − (ω2
x +ω2

ϕ)ω2 +ω2
xω2

ϕ −α4

± i[4κω4− χω3 − 2κ(ω2
x +ω

2
ϕ)ω

2 + χωω2
ϕ ] = 0.

This complex expression is zero if its real and imaginary parts vanish. So, we obtain
two equations determining the eigenfrequencies ω1,2 and the decay rates κ1,2ω1,2.
Note that the equation for the eigenfrequencies

ω4 − (ω2
x +ω

2
ϕ)ω

2 +ω2
xω

2
ϕ −α4 = 0

is identical with that of the undamped vehicle in example 2.3. Thus, for small damp-
ing the eigenfrequencies remain the same as those of the undamped coupled oscil-
lators which are given by

ω2
1,2 =

1
2
(ω2

x +ω
2
ϕ)∓

√
1
4
(ω2

x −ω2
ϕ)

2 +α4.

Fig. 2.8 shows the plots of dimensionless frequencies (ω1,2/ωx)
2 versus the ratio

of frequencies (ωϕ/ωx)
2 at different coupling ratios (α/ωx)

2. It can be seen that
for the zero coupling α = 0 the eigenfrequencies coincide with those of uncoupled
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Fig. 2.8 Eigenfrequencies (ω1,2/ωx)
2 vs. ratio of uncoupled frequencies (ωϕ/ωx)

2 at differ-
ent coupling ratios (α/ωx)

2

oscillators ωϕ and ωx. The larger the coupling factor, the farther the eigenfrequen-
cies lie apart. The frequency ω2 is always larger than the largest from ωϕ and ωx,
while ω1 is smaller than the smallest from them.

The decay rates κ1,2ω1,2 should be determined from the equation

4κω4 − χω3 − 2κ(ω2
x +ω

2
ϕ)ω

2 + χωω2
ϕ = 0

giving

κ1ω1 =
χ(ω2

1 −ω2
ϕ)

4ω2
1 − 2(ω2

x +ω2
ϕ)

, κ2ω2 =
χ(ω2

2 −ω2
ϕ)

4ω2
2 − 2(ω2

x +ω2
ϕ)

.

Thus, the decay rates are positive and are of the same order as χ .
By substituting s found above into (2.18) we may establish the relations between

the amplitudes of vibrations. For s = (−κi ± i)ωi we have

q̂ =

(
x̂
ϕ̂

)
=C

(
(1± 2iκi)ω2

i −ω2
ϕ

α2
2

)
, i = 1,2.

Denoting by q1 and q2 the complex-valued vectors

q1 =

(
(1+ 2iκ1)ω2

1 −ω2
ϕ

α2
2

)
, q2 =

(
(1+ 2iκ2)ω2

2 −ω2
ϕ

α2
2

)
,

we may present the general solution of (2.17) in the form

q = e−κ1ω1t(A1q1eiω1t +B1q∗
1e−iω1t)+ e−κ2ω2t(A2q2eiω2t +B2q∗

2e−iω2t),

where asterisks denote complex conjugates. The four unknown real constants A1,
B1, A2, and B2 must be determined from the initial conditions.



2.3 Forced Oscillators and Vibration Control 59

2.3 Forced Oscillators and Vibration Control

Differential Equations of Motion. We illustrate the derivation of the equations of
forced vibrations for systems with two degrees of freedom.

EXAMPLE 2.7. Mass-spring forced oscillators. The mass-spring oscillators with
two degrees of freedom are excited by the motion of the end-point xe(t). Derive
the equations of motion for these forced oscillators.

m1 m2

k1 k2
x1 x2xe

Fig. 2.9 Mass-spring forced oscillators

Since the change in length of the first spring is x1 − xe, we write for the Lagrange
function

L(x, ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 −

1
2

k1(x1 − xe)
2 − 1

2
k2(x2 − x1)

2.

This Lagrange function differs from that of example 2.1 only by the third term
corresponding to the energy of the first spring. From Lagrange’s equations we derive

m1ẍ1 + k1(x1 − xe)− k2(x2 − x1) = 0,

m2ẍ2 + k2(x2 − x1) = 0.

Bringing the term −k1xe to the right-hand side we obtain

m1ẍ1 + k1x1 − k2(x2 − x1) = k1xe(t),

m2ẍ2 + k2(x2 − x1) = 0.
(2.20)

EXAMPLE 2.8. Mass-spring-damper forced oscillators. The mass-spring-damper
oscillators with two degrees of freedom are excited by the force f (t) acting on the
mass m1 (see Fig. 2.8). Derive the equations of motion for these forced oscillators.

m2

m1

c
k1/2 k1/2

k2

f(t)

Fig. 2.10 Mass-spring-damper forced oscillators
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We denote by x1 and x2 the displacements of m1 and m2 in the vertical direction
from their equilibrium positions, respectively. Then the Lagrange function equals

L(x, ẋ) =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 −

1
2

k1x2
1 −

1
2

k2(x2 − x1)
2,

while the dissipation function is

D(ẋ) =
1
2

c(ẋ2 − ẋ1)
2.

From modified Lagrange’s equations for the forced vibrations

d
dt
∂L
∂ ẋ j

− ∂L
∂x j

+
∂D
∂ ẋ j

= f j(t), j = 1,2,

with f j(t) being the external forces acting on the masses m j, we derive

m1ẍ1 − c(ẋ2 − ẋ1)+ k1x1 − k2(x2 − x1) = f (t),

m2ẍ2 + c(ẋ2 − ẋ1)+ k2(x2 − x1) = 0.
(2.21)

EXAMPLE 2.9. Coupled forced pendulums. The coupled pendulums as in example
2.5 are excited by a force p(t) acting on the second mass (see Fig. 2.11). Derive the
equations of motion for these coupled forced pendulums.

m m

k

l/2

l/2

l/2

l/2

g

A B

c
p(t)

ϕ1 ϕ2

Fig. 2.11 Coupled forced pendulums

Similar to example 2.5 the Lagrange function is given by (2.9), while the dissipation
function by (2.10). The virtual work done by the external force p(t) is

δA =

∫ t1

t0
p(t)lδϕ2 dt.

From modified Lagrange’s equations

d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

+
∂D
∂ ϕ̇ j

= f j(t), j = 1,2,
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we derive the equations of motion

ml2ϕ̈1 − cl2(ϕ̇2 − ϕ̇1)+mglϕ1 − k
l2

4
(ϕ2 −ϕ1) = 0,

ml2ϕ̈2 + cl2(ϕ̇2 − ϕ̇1)+mglϕ2 + k
l2

4
(ϕ2 −ϕ1) = p(t)l.

(2.22)

Harmonic Excitations. Equations of motion derived above are the inhomogeneous
linear differential equations of second order. The solution of these linear equations is
the sum of any particular solution of the inhomogeneous equations and the general
solution of the homogeneous equations which has been found in previous Section.
Thus, it is enough to find any particular solution of the inhomogeneous equations.
For the harmonic excitations this can be done directly. We consider two cases.

Conservative oscillators. We illustrate the method of solution on example 2.7, where
the excitation is assumed in the form: xe(t) = x̂e cos(ωt). Dividing the first and the
second equations of (2.20) by m1 and m2, respectively, we rewrite them in the form

ẍ1 +ν2
1 x1 − μν2

2 x2 = ν2
10x̂e cos(ωt),

ẍ2 +ν2
2 x2 −ν2

2 x1 = 0,

where

ν2
1 =

k1 + k2

m1
, ν2

2 =
k2

m2
, μ =

m2

m1
, ν2

10 =
k1

m1
.

Since the first derivatives ẋ1 and ẋ2 do not enter the equations of motion, we seek a
particular solution of these inhomogeneous differential equations in the form

x1 = x̂1 cosωt, x2 = x̂2 cosωt.

Substituting this Ansatz into the above equations and eliminating the common factor
cosωt on both sides, we obtain

(ν2
1 −ω2)x̂1 − μν2

2 x̂2 = ν2
10x̂e,

−ν2
2 x̂1 +(ν2

2 −ω2)x̂2 = 0.
(2.23)

Thus, the amplitudes of forced vibration are given by

x̂1 =
ν2

10(ν2
2 −ω2)x̂e

(ν2
1 −ω2)(ν2

2 −ω2)− μν4
2

,

x̂2 =
ν2

10ν
2
2 x̂e

(ν2
1 −ω2)(ν2

2 −ω2)− μν4
2

.

The behavior of the amplitudes, as functions of the frequencyω , is characterized
by the zeros of the denominator and the numerator. The denominator vanishes for
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Fig. 2.12 Resonance curves of mass-spring forced oscillators

ω2
1,2 =

1
2
(ν2

1 +ν2
2 )∓

√
1
4
(ν2

1 −ν2
2 )

2 + μν4
2 ,

which correspond to the eigenfrequencies of free vibration of this system. We see
that the eigenfrequenciesω1 and ω2 always lie outside the frequency range (ν1,ν2).
The plot of resonance functions x̂i/x̂e versus ω2 is shown in Fig. 2.12. These reso-
nance functions tend to infinity as ω approaches one of the frequencies ω1 and ω2,
corresponding to the resonances, and to zero as ω → ∞. While x̂2/x̂e �= 0 for all
frequencies, the amplitude x̂1 vanishes at ω = ν2. This phenomenon is called anti-
resonance (or vibration elimination) and the mass m2 together with the spring k2

a vibration eliminator. The elimination of forced vibration can be explained physi-
cally as follows. At the frequencyω = ν2 the eliminator and the excitation vibrate in
counter-phases such that the spring force acting on m1 from the eliminator is equal
and opposite to the exciting force k1x̂e cosωt. Indeed, equations (2.23) at ω = ν2

yield

x̂2 =−ν
2
10x̂e

μν2
2

=−k1

k2
x̂e.

Thus, the resultant force acting on m1 is zero and therefore that mass does not vi-
brate. To eliminate the unwanted forced vibration of m1 caused by some excitation
source with the fixed frequencyω we must therefore choose the mass and the spring
of the eliminator in such a relation that

√
k2/m2 = ω . However, if the excitation

source has a wider range of frequencies, this choice is no longer effective because,
as it is seen from Fig. 2.12, the resonance function x̂1/x̂e increases rapidly as ω
deviates from ν2.

Damped oscillators. We see from the previous example that the elimination of
forced vibration for the conservative oscillators is effective only if the excitation
source has a constant frequency. In the case of non-zero damping the situation
changes. We illustrate the method of solution on example 2.8, where the external
force is assumed in the form f (t) = f̂ cos(ωt). We rewrite equations (2.21) in the
matrix form
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Mẍ+Cẋ+Kx = f̂cos(ωt), (2.24)

where

M =

(
m1 0
0 m2

)
, C =

(
c −c
−c c

)
, K =

(
k1 + k2 −k2

−k2 k2

)
, x =

(
x1

x2

)
, f̂ =

(
f̂
0

)
.

Now, the Ansatz x = x̂cos(ωt) with real x̂ does not work because the first deriva-
tive in (2.24) brings terms with the factor sin(ωt). However, we may do the follow-
ing “trick” to get the solution quickly. We regard the right-hand side of (2.24) as
f̂cos(ωt) = Re(f̂eiωt) and consider instead the following auxiliary equation

Mz̈+Cż+Kz = f̂eiωt . (2.25)

Now z may be complex-valued. Then we substitute the Ansatz z = ẑeiωt into this
equation and eliminate the common factor eiωt to obtain

(−ω2M+ iωC+K)ẑ= f̂.

Provided the matrix on the left-hand side has an inverse, this equation yields

ẑ = (−ω2M+ iωC+K)−1f̂ = G(ω)f̂.

Matrix G(ω) is called a transmittance matrix of the system. Since ẑeiωt is the so-
lution of (2.25) which is the equation with real matrices, its real part must satisfy
equation (2.24). So, the trick works!

Thus, the particular solution of (2.24) is

x(t) = Re(ẑeiωt),

or, in components,
x j(t) = Re(ẑ je

iωt), j = 1,2.

Since each complex number z can be presented as z = |z|e−iφ , we obtain from here

x j = |ẑ j|cos(ωt −φ j), j = 1,2.

With the matrices given above we may calculate the amplitude of x1

|x1|= |ẑ1|=
∣∣∣∣ f̂ (−m2ω2 + icω+ k2)

(−m1ω2 + icω+ k1 + k2)(−m2ω2 + icω+ k2)− (icω+ k2)2

∣∣∣∣ .
Dividing both the numerator and the denominator by k2

1 and introducing

x10 =
f̂

k1
, ω0 =

√
k1

m1
, κ =

k2

k1
, μ =

m2

m1
, η =

ω
ω0

, δ =
c

m1ω0
,
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Fig. 2.13 Resonance curves of mass-spring-damper forced oscillators

we present the previous equation in the dimensionless form as follows

∣∣∣∣ x1

x10

∣∣∣∣=
∣∣∣∣ −μη2 + iδη+κ
(−η2 + iδη+ 1+κ)(−μη2+ iδη+κ)− (iδη+κ)2

∣∣∣∣ ,
where the right-hand side is called a resonance function.

Fig. 2.13 shows the resonance curves |x1/x10| against the frequency ratio η =
ω/ω0 for μ = κ = 0.05 and for three damping ratios δ = 0 (dashed line), δ = 0.01
(bold line), δ = 0.032 (dotted line) [48]. In contrast to the conservative oscillators
(δ = 0), neither resonance nor vibration elimination is observed for the damped
forced oscillators with the finite damping. We call therefore the mass m2 together
with the spring k2 and the damper c a vibration absorber. It turns out that all res-
onance curves corresponding to different damping ratios intersect at the two fixed
points A and B (see exercise 2.8). If we want to reduce the maxima of the resonance
curve in equal way, then an optimal choice of the parameters of absorber is achieved
when points A and B are at equal level. This takes place when

κ =
μ

(1+ μ)2 .

Arbitrary Excitations. We illustrate the method of solution on example 2.9 for
which the proportional damping holds true. The more general non-proportional
damping case will be considered in Section 2.5. The coupled forced oscillators with
the proportional damping can always be reduced to the uncoupled single forced
oscillators. Indeed, in this example we choose the normal coordinates as

ξ1 =
1√
2
(ϕ1 +ϕ2), ξ2 =

1√
2
(ϕ2 −ϕ1),
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and present the normalized virtual work in the form

1
ml2 δA =

∫ t1

t0

p(t)
ml

δϕ2 dt =
∫ t1

t0

p(t)
ml

1√
2
(δξ1 + δξ2)dt.

Together with the Lagrange function (2.15) and the dissipation function (2.16) we
derive modified Lagrange’s equations

ξ̈1 +ω2
1ξ1 =

1√
2

p(t)
ml

,

ξ̈2 +
2c
m
ξ̇2 +ω2

2ξ2 =
1√
2

p(t)
ml

,

which can be solved by the Laplace transform as shown in Section 1.3.

2.4 Variational Principles

We present in this Section the variational principles for general systems having n
degrees of freedom [29]. For small vibrations about equilibrium states the energy
and dissipation become quadratic with respect to the generalized coordinates and
velocities, so that generalized Lagrange’s equations become linear.

Conservative Systems. Suppose that each configuration of a mechanical system
is uniquely determined by a point q = (q1, . . . ,qn) in an n-dimensional space. If
q1, . . . ,qn can vary independently and arbitrarily, they are called generalized coor-
dinates, and n a number of degrees of freedom. Motion of the system is described
by a function q(t). We denote by q̇ = (q̇1, . . . , q̇n) the corresponding generalized ve-
locities. Hamilton’s variational principle states that among all admissible motions
of the conservative system satisfying the initial and end conditions

q(t0) = q̂0, q(t1) = q̂1,

the true motion is the extremal of the action functional

I[q(t)] =
∫ t1

t0
L(q, q̇)dt.

Let us derive the equations of motion from Hamilton’s variational principle. To this
end we calculate the variation of the action functional (see also [17])

δ I =
∫ t1

t0

n

∑
j=1

(
∂L
∂q j

δq j +
∂L
∂ q̇ j

δ q̇ j

)
dt.

Integrating the second term by parts and taking into account that δq j(t0)= δq j(t1)=
0 due to the initial and end conditions, we get
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δ I =
∫ t1

t0

n

∑
j=1

(
∂L
∂q j

− d
dt
∂L
∂ q̇ j

)
δq j dt = 0. (2.26)

Since the variations δq j can be chosen independently and arbitrarily inside the in-
terval (t0, t1), (2.26) implies Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1, . . . ,n. (2.27)

For any conservative mechanical system the Lagrange function equals

L(q, q̇) = K(q, q̇)−U(q),

where K(q, q̇) is the kinetic energy and U(q) the potential energy. The kinetic energy
K(q, q̇) is assumed to be a positive definite quadratic form3 with respect to q̇

K(q, q̇) =
1
2

n

∑
j,k=1

m jk(q)q̇ jq̇k.

Thus,
n

∑
j=1

∂K
∂ q̇ j

q̇ j = 2K(q, q̇).

Any function possessing this property is called homogeneous function of order two
with respect to q̇. We want to show now that the conservation of energy follows from
Lagrange’s equations (2.27). Indeed, multiplying (2.27) by q̇ j and summing up over
j from 1 to n, we obtain

n

∑
j=1

(
d
dt
∂L
∂ q̇ j

q̇ j − ∂L
∂q j

q̇ j

)
= 0.

Using the product and chain rules of differentiation, we get

n

∑
j=1

d
dt

(
∂L
∂ q̇ j

q̇ j

)
−

n

∑
j=1

(
∂L
∂ q̇ j

q̈ j +
∂L
∂q j

q̇ j

)
=

d
dt
(

n

∑
j=1

∂L
∂ q̇ j

q̇ j −L) = 0. (2.28)

Taking into account the property of K, we see that the expression in parentheses is
equal to 2K −L = K +U . Thus, the total energy E = K +U = E0 is conserved. Al-
ternatively, the conservation of energy can also be obtained directly from (2.26) by
replacing the variations δq j with the real velocities q̇ j. Indeed, the same procedure
transforms (2.26) to

∫ t1

t0

d
dt
(K +U)dt = 0 ⇒ K +U = E0.

3 In some cases rearrangement of terms between the kinetic and potential energies is re-
quired to achieve this property (see exercise 5.1).
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Assume that U(q) has a local minimum at some point q0 corresponding to a stable
equilibrium state and consider small vibrations of our mechanical system about this
stable equilibrium state. For small q we may expand U(q) and K(q, q̇) in Taylor’s
series with respect to q near q0 to get

U(q) =U(q0)+
1
2

n

∑
j,k=1

∂ 2U
∂q j∂qk

∣∣∣∣
q0

q jqk + . . . ,

K(q, q̇) = K(q0, q̇)+ . . .=
1
2

n

∑
j,k=1

m jk(q0)q̇ jq̇k + . . . .

Due to the smallness of q j and q̇ j, we keep only the quadratic terms in these series.
Thus, neglecting the unessential constant U(q0) in the potential energy, we may
present both kinetic and potential energies as follows

K(q̇) =
1
2

n

∑
j,k=1

m jkq̇ jq̇k, U(q) =
1
2

n

∑
j,k=1

k jkq jqk. (2.29)

Thus, for small vibrations near the stable equilibrium state the kinetic energy K(q̇)
and the potential energy U(q) are the quadratic forms with respect to q̇ and q, re-
spectively. We call the matrix M with the elements m jk mass matrix, while K, with
the elements k jk, stiffness matrix. Both matrices are symmetric and positive definite.
The positive definiteness of K is due to the fact that U(q) has a local minimum at q0.
Lagrange’s equations of small vibrations near the equilibrium state become linear
equations

n

∑
k=1

(m jkq̈k + k jkqk) = 0, j = 1, . . . ,n.

Let q be the column vector q = (q1, . . . ,qn)
T . We may present these equations also

in the matrix form as follows
Mq̈+Kq = 0.

Dissipative Systems. In this case the following variational principle holds true:
among all admissible motions of a dissipative system constrained by the initial and
end conditions

q(t0) = q̂0, q(t1) = q̂1,

the true motion satisfies the variational equation4

δ
∫ t1

t0
L(q, q̇)dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt = 0. (2.30)

4 See page 10, loc. cit.
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Here D(q, q̇) is the dissipation function introduced first by Rayleigh [45]. Calcu-
lating the variation of the first term of (2.30) in exactly the same manner as in the
previous case leads to

∫ t1

t0

n

∑
j=1

(
∂L
∂q j

− d
dt
∂L
∂ q̇ j

)
δq j dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt = 0.

Due to the arbitrariness of δq j inside the time interval (t0, t1) the following equations
are obtained

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

+
∂D
∂ q̇ j

= 0, j = 1, . . . ,n. (2.31)

For dissipative systems vibrating near the equilibrium states the dissipation func-
tion can be assumed as a non-negative definite quadratic form with respect to q̇

D(q, q̇) =
1
2

n

∑
j,k=1

c jk(q)q̇ jq̇k ≥ 0 for all q̇,

where c jk is a symmetric matrix (Onsager’s principle [38]). In this case D(q, q̇) is
also the homogeneous function of order two with respect to q̇. We now derive the
balance equation of energy from modified Lagrange’s equations (2.31). Multiplying
(2.31) by q̇ j and summing up over j from 1 to n, we obtain

n

∑
j=1

(
d
dt
∂K
∂ q̇ j

q̇ j − ∂L
∂q j

q̇ j

)
=−

n

∑
j=1

∂D
∂ q̇ j

q̇ j.

The expression on the right-hand side is nothing else but the power of the damping
forces. Making the same observations as in the previous case and using the property
of D we get

d
dt
(K +U) =−2D(q, q̇).

Thus, the rate of change of energy is equal to −2D(q, q̇). Since −2D(q, q̇) is the
energy loss per unit time, we call 2D(q, q̇) energy dissipation rate. We see that the
energy dissipation rate is non-negative.5 Integrating this equation from t0 to t, we
find the energy change at time t

K +U −E0 =−2
∫ t

t0
D(q(s), q̇(s))ds =−Ed(t), (2.32)

where E0 is the total energy at t = t0 and Ed(t) the amount of energy dissipated
by the dampers at time t. Note that this balance equation can also be directly ob-
tained from the variational equation (2.30) by replacing the variations δq j by the
real velocities q̇ j.

5 It is interesting to mention that, if the system does not vibrate about the equilibrium states,
this property is no longer valid (see Section 5.3).
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For small vibrations near the stable equilibrium state q0 we may, to the first ap-
proximation, assume the kinetic and potential energies in the form (2.29). The dis-
sipation function can also be expanded in Taylor’s series near this state. Neglecting
all small terms of higher orders we write

D(q, q̇) = D(q0, q̇) =
1
2

n

∑
j,k=1

c jk(q0)q̇ jq̇k,

where the matrix C with the elements c jk(q0) is called the damping matrix. Modified
Lagrange’s equations of small vibrations near the equilibrium state take the form

n

∑
k=1

(m jkq̈k + c jkq̇k + k jkqk) = 0, j = 1, . . . ,n.

We may present these equations also in the matrix form as follows

Mq̈+Cq̇+Kq = 0.

Systems with External Forces. If there are external generalized forces f j(t) acting
on q j, we must add to the left-hand side of variational equation (2.30) the virtual
work done by the external forces. The variational principle becomes: among all
admissible motions constrained by the initial and end conditions

q(t0) = q̂0, q(t1) = q̂1,

the true motion satisfies the variational equation

δ
∫ t1

t0
L(q, q̇)dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt + δA = 0, (2.33)

where δA is the virtual work done by the generalized forces f j(t)

δA =

∫ t1

t0

n

∑
j=1

f j(t)δq j dt.

We can also take the Lagrange function in the form

L(q, q̇, t) = K(q, q̇)−U(q)+
n

∑
j=1

f j(t)q j,

and reformulate the variational equation as follows

δ
∫ t1

t0
L(q, q̇, t)dt −

∫ t1

t0

n

∑
j=1

∂D
∂ q̇ j

δq j dt = 0.
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Since time enters the Lagrange function explicitly, such systems are called non-
autonomous.

From (2.33) one can derive modified Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

+
∂D
∂ q̇ j

= f j(t), j = 1, . . . ,n.

Replacing in the variational equation (2.33) the variations δqi by the real velocities
q̇i and repeating the transformations as in the previous paragraph, we obtain the
balance of energy in the form

K +U −E0 =−2
∫ t

t0
D(q(s), q̇(s))ds+

∫ t

t0

n

∑
j=1

f j(s)q̇ j(s)ds =−Ed(t)+W(t),

(2.34)
where E0 is the total energy at t = t0. The last term W (t) is the work done by the
external forces which is stored in the energy of the system except that part Ed(t)
dissipated by the dampers.

For small vibrations near the stable equilibrium state Lagrange’s equations can
be presented in the matrix form as follows

Mq̈+Cq̇+Kq = f(t),

with f(t) = ( f1(t), . . . , fn(t))T being the column vector of external forces.

2.5 Oscillators with n Degrees of Freedom

We present in this Section the method of solution and some general properties for
systems with n degrees of freedom, where n is an arbitrary natural number.

Conservative Oscillators. The motion is described by the equation

Mq̈+Kq = 0, (2.35)

where M and K are symmetric and positive definite matrices. We have to find the
solution of this equation satisfying the initial conditions

q(0) = q0, q̇(0) = v0. (2.36)

Solution. Let us first seek a particular solution of (2.35) in the form

q = q̂est ,

where q̂ is a constant vector. Substituting this Ansatz into (2.35) and eliminating the
non-vanishing factor est , we reduce the latter to the eigenvalue problem

(Ms2 +K)q̂ = 0. (2.37)
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The related characteristic equation

det(Ms2 +K) = 0

is the algebraic equation of order n with respect to s2 yielding n eigenvalues. It is
easy to see that all eigenvalues are real and negative. Indeed, if s2

j is an eigenvalue
and q j a corresponding eigenvector, then, multiplying (2.37) by the vector q j, we
have

q j ·Mq js
2
j +q j ·Kq j = 0.

Thus,

s2
j =− q j ·Kq j

q j ·Mq j
< 0, (2.38)

since both the numerator and denominator are positive. Therefore the roots of the
characteristic equation are imaginary numbers given by

s j =±iω j, j = 1, . . . ,n,

where ω j are called eigenfrequencies of vibrations. We will order them in such a
way that

0 < ω1 ≤ ω2 ≤ . . .≤ ωn.

Let q j be the eigenvector (the solution of (2.37)) corresponding to the j-th eigen-
value. It is defined uniquely up to a constant factor. We can fix this constant by some
normalization condition. As such we choose

q j ·Mq j = 1.

Note that two eigenvectors q j and qk corresponding to two different eigenvalues s2
j

and s2
k are orthogonal in the sense that

q j ·Mqk = 0.

To show this we multiply equation (2.37) for s = s j by qk to get

qk ·Mq js
2
j =−qk ·Kq j. (2.39)

Similar procedure applied to the equation for s = sk gives

q j ·Mqks2
k =−q j ·Kqk.

Subtracting these equations from each other and taking into account that M and K
are symmetric, we obtain

(s2
j − s2

k)q j ·Mqk = 0,

which implies the orthogonality. The orthogonality and normalization conditions
can be presented in one equation
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q j ·Mqk = δ jk =

{
1 if j = k,

0 otherwise.
(2.40)

If there is a multiple eigenvalue, then the corresponding eigenvectors span a sub-
space of dimension equal to the multiplicity of the eigenvalue. Therefore, it is al-
ways possible to find a set of vectors in this subspace satisfying the orthogonality
and normalization conditions.

Since q jeiω jt are the solutions of (2.35) which is the differential equation with
real matrices, their real and imaginary parts

q j cosω jt and q j sinω jt

must also satisfy this equation. The general solution can now be constructed as the
linear superposition

q(t) =
n

∑
j=1

q j(A j cosω jt +B j sinω jt).

The unknown coefficients A j and B j must be found from the initial conditions (2.36)
giving

n

∑
j=1

A jq j = q0,
n

∑
j=1

B jω jq j = v0.

Multiplying these equations from the left by M and then by qi and making use of
the orthogonality and normalization conditions, we obtain from here

Ai = qi ·Mq0, Bi =
1
ωi

qi ·Mv0, i = 1, . . . ,n.

Alternatively, we can present the solution in the form

q(t) =
n

∑
j=1

q ja j cos(ω jt −φ j),

where

a j =
√

A2
j +B2

j , tanφ j =
B j

A j
, j = 1, . . . ,n.

Normal modes and coordinates. The above solution is the sum of n harmonic mo-
tions, so it is in general non-periodic if the frequency ratios are not rational numbers.
However, for the initial conditions of the special form

q0 = q0q j, v0 = v0q j,

the motion is purely harmonic with the frequency ω j. We call such motion normal
mode.
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The question now arises: can we find the coordinates in which the normal modes
become independent? The similar consideration as that provided in example 2.2
shows that this is possible if the kinetic and potential energies of the system, in
terms of the new coordinates ξ j, take the form

K(ξ̇ ) =
1
2

n

∑
j=1

ξ̇ 2
j , U(ξ ) =

1
2

n

∑
j=1

ω2
j ξ 2

j .

Thus, the problem reduces to finding a linear transformation which simultaneously
diagonalizes two quadratic forms. As we know from linear algebra [37], the required
transformation is given by

q = Qξξξ ,

with
Q = (q1 q2 . . . qn)

being the n× n matrix, whose j-th column is the j-th eigenvector found above. We
shall call Q modal matrix. In terms of the vector of normal coordinates ξξξ we have

K(ξ̇ ) =
1
2

q̇ ·Mq̇ =
1
2
ξ̇ξξ ·QT MQξ̇ξξ =

1
2
ξ̇ξξ · ξ̇ξξ ,

U(ξ ) =
1
2

q ·Kq =
1
2
ξξξ ·QT KQξξξ =

1
2
ξξξ ·ΩΩΩ 2ξξξ ,

where QT denotes the transpose of Q, and ΩΩΩ 2 is the diagonal matrix with the ele-
ments ω2

j on the diagonal. The last identities in these formulas are obtained by the
orthogonality conditions (2.39) and (2.40). So, the corresponding Lagrange func-
tion describes the motion of n uncoupled single oscillators with the frequencies ω j,
j = 1, . . . ,n.

Extremal properties. If ω is an eigenfrequency and q̂ a corresponding eigenvector,
then it follows from (2.38) that

ω2 =
q̂ ·Kq̂
q̂ ·Mq̂

= r(q̂).

The right-hand side of this equation is called Rayleigh’s quotient [45]. It turns out
that the following extremal properties hold true.

1. The square of smallest eigenfrequency ω2
1 is the minimum of r(q) among all

q �= 0. The easiest way to prove this is to rewrite Rayleigh’s quotient in terms of the
vector of normal coordinates

r(ξξξ ) =
ω2

1ξ 2
1 + . . .+ω2

nξ 2
n

ξ 2
1 + . . .+ ξ 2

n
.

Since ωn ≥ . . .≥ω1, Rayleigh’s quotient is always larger than or equal to ω2
1 . From

the other side r(ξξξ ) =ω2
1 if ξ1 = 1 and ξ2 = . . .= ξn = 0. So the statement is proved.
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2. The square of j-th eigenfrequency ω2
j is equal to the minimum of Rayleigh’s

quotient
ω2

j = min
q

r(q)

among all q �= 0 satisfying j− 1 constraints

q1 ·Mq = 0, . . . ,q j−1 ·Mq = 0.

Indeed, in terms of the normal coordinates the above constraints become

ξ1 = . . .= ξ j−1 = 0.

Thus, Rayleigh’s quotient under these constraints reduces to

r(ξξξ ) =
ω2

j ξ 2
j + . . .+ω2

nξ 2
n

ξ 2
j + . . .+ ξ 2

n
,

and the proof can be provided in a similar manner.
The extremal properties of Rayleigh’s quotient are quite useful in approximate

calculations of the eigenfrequencies [45].

Damped Oscillators. The motion is described by the equation

Mq̈+Cq̇+Kq = 0, (2.41)

subject to the initial conditions

q(0) = q0, q̇(0) = v0, (2.42)

where M and K are symmetric and positive definite matrices, while C is symmetric
and non-negative definite.

Solution. A particular solution of (2.41) is sought in the form

q = q̂est ,

where q̂ is a constant vector. Equation (2.41) reduces then to the algebraic equation

(Ms2 +Cs+K)q̂ = 0. (2.43)

Non-trivial solutions of (2.43) exist if

det(Ms2 +Cs+K) = 0.

This is the algebraic equation of order 2n with respect to s having 2n roots. Since
the matrices M, C, and K are real, the complex roots must occur in pairs of complex
conjugates. Moreover, if s∗j is the complex conjugate root with respect to s j , then
the corresponding eigenvector q∗

j must be complex conjugate to the eigenvector q j
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of s j . It turns out that all roots of the characteristic equation have non-positive real
parts. To show this one can apply the Routh-Hurwitz criterion although the proof
is not elementary. The more elementary proof is based on the balance of energy
(2.32) for dissipative systems. To this end let us assume that there is a root of the
characteristic equation with the positive real part s = δ + iω , where δ > 0. Then a
free vibration of the form

q = eδ tRe(q̂eiωt)

exists, with q̂ being the eigenvector corresponding to s. Substituting this particular
solution into the energy balance equation (2.32) and using the positive definiteness
of the dissipation function, we see that the amount of energy dissipation goes to −∞
as t tends to infinity, what contradicts the positiveness of the total energy.

The general solution of (2.41) is given in the form

q =
2n

∑
j=1

A jq je
s jt .

Using the initial conditions (2.42), we obtain the system of 2n linear equations

2n

∑
j=1

A jq j = q0,
2n

∑
j=1

A js jq j = v0,

for the determination of 2n coefficients A j.

Modal decomposition. The coupled oscillators with n degrees of freedom and with
the proportional damping can be reduced to n uncoupled damped oscillators. To
show this let us introduce the vector of normal coordinates ξξξ such that q = Qξξξ ,
with Q being the modal matrix, into the equation of motion (2.41). Multiplying this
equation from the left by QT , we obtain

QT MQξ̈ξξ +QT CQξ̇ξξ +QT KQξξξ = 0.

The modal matrix Q diagonalizes simultaneously M and K, so

QT MQ = I, QT KQ =ΩΩΩ 2 = diag(ω2
j ),

where I is the identity matrix and ΩΩΩ 2 the diagonal matrix with the elements ω2
j .

Because of the proportional damping C = αM+βK we have

ΔΔΔ = QT CQ = QT (αM+βK)Q = αI+βΩΩΩ 2 = diag(2δ jω j),

where δ jω j = (α +βω2
j )/2 are the decay rates. Thus, the damping matrix ΔΔΔ be-

comes also diagonal in terms of the normal coordinates. The equation of motion is
decomposed into n uncoupled equations

ξ̈ j + 2δ jω jξ̇ j +ω2
j ξ j = 0, j = 1, . . . ,n,
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which can be solved by the method discussed in Section 1.2.
Alternatively, we can also realize the modal decomposition by diagonalizing the

kinetic and potential energies together with the dissipation function as the quadratic
forms.

Forced Oscillators. The motion is described by the equation

Mq̈+Cq̇+Kq = f(t). (2.44)

Since this equation is linear, its solution is the sum of any particular solution and
the general solution of the homogeneous equation which has been found previously.
Thus, the problem reduces to finding any particular solution of (2.44). Besides, if
the damping is permeating, then all solutions of the homogeneous equation decay
with time, so only the particular solution of (2.44) persists at large time.

Harmonic excitations. For the harmonic excitations of the form f(t)= f̂cosωt which
is the real part of f̂eiωt we consider the auxiliary equation

Mz̈+Cż+Kz = f̂eiωt ,

where z(t) may be complex-valued. We look for the solution of the form z(t) =
ẑeiωt . Substituting this into the above equation and eliminating the factor eiωt , we
obtain

(−ω2M+ iωC+K)ẑ= f̂.

Provided the matrix on the left-hand side has an inverse, this equation yields

ẑ = (−ω2M+ iωC+K)−1f̂ = G(ω)f̂.

Matrix G(ω) is called a transmittance matrix of the system. The particular solution
of (2.44) is the real part of z(t), so

q(t) = Re(G(ω)f̂eiωt).

The analysis of forced vibrations simplifies considerably for the conservative os-
cillators with C = 0. In this case the solution also has the form q(t) = q̂cosωt,
where q̂ satisfies the linear equation

(−ω2M+K)q̂ = f̂.

If the determinant Δ(ω) of −ω2M+K differs from zero, we use Cramer’s rule to
present the solution in the form

q̂ j =
Δ j(ω)
Δ(ω)

, j = 1, . . . ,n, (2.45)

where Δ j(ω) is the determinant obtained on replacing the j-th column of Δ by the
vector f̂. The following interesting cases may occur:
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a) Δ(ω) = 0, Δ j(ω) �= 0: the frequency of excitation coincides with one of the
eigenfrequency and the oscillators are in resonance,

b) Δ(ω) = 0, Δ j(ω) = 0 for all j so that limω̃→ω Δ j(ω̃)/Δ(ω̃) < ∞: this situation
is classified as pseudo-resonance,

c) Δ(ω) �= 0, Δ j(ω) = 0: the forced vibration corresponding to the j-th degree of
freedom is eliminated (anti-resonance).

For the dissipative oscillators with small but finite damping coefficients neither
resonance nor anti-resonance occurs. The problem of vibration control reduces then
to finding optimal parameters of vibration absorbers to effectively absorb energy of
the unwanted forced vibration.

Arbitrary excitations. For forced oscillators with proportional damping the problem
can be solved by the modal decomposition as shown in example 2.9. For forced
oscillators with non-proportional damping, the Laplace transform should be used
instead. Not restricting the generality, we look for the particular solution of (2.44)
satisfying the initial conditions

q(0) = 0, q̇(0) = 0.

Applying the Laplace transform to both sides of equation (2.44), we obtain
∫ ∞

0
(Mq̈+Cq̇+Kq)e−stdt =

∫ ∞

0
f(t)e−stdt.

Using the properties of the Laplace transform and the vanishing initial conditions,
we reduce this to the algebraic equation

(Ms2 +Cs+K)X(s) = F(s),

where X(s) and F(s) are the Laplace images of q(t) and f(t), respectively. This
yields

X(s) = (Ms2 +Cs+K)−1F(s).

Applying the inverse Laplace transform, we get

q(t) =L −1[X(s)] =
1

2π i

∫ α+i∞

α−i∞
(Ms2 +Cs+K)−1F(s)estds,

where α is any positive number. Since all roots of the characteristic equation lie in
the left half-plane or on the imaginary axis, the integrand is an analytic function in
the right half-plane of the complex s-plane. Thus, for an arbitrary regular excitation
f(t) which remains finite as t goes to infinity the integral converges. The line of
integration (α− i∞,α+ i∞) can be moved arbitrarily in the right half-plane.

Let xr j(t) be the solution of (2.44) with zero initial condition, where

f(t) = h j(t) = (0, . . . ,h(t), . . . ,0)T ,
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h(t) being Heaviside’s step function. Thus, h j(t) is the column vector whose com-
ponents are zero except the j-th component which is the Heaviside’s step function.
The n× n matrix

Xr(t) = (xr1(t) . . . xrn(t)),

with j-th column being the vector xr j(t), is called a unit step response matrix of the
system. It is easy to see that

(Ms2 +Cs+K)−1 1
s
=L (Xr(t)).

Using the convolution theorem for the Laplace transform, we obtain finally

q(τ) =
∫ τ

0
Xr(τ− t)ḟ(t)dt. (2.46)

This is generalized Duhamel’s formula which solves the problem if the unit step
response matrix of the system is known.

Mention that the Laplace transform can also be used to solve the initial value
problem similar to that analyzed in Section 1.3.

2.6 Exercises

EXERCISE 2.1. Two point-masses m1 and m2 are connected with a fixed support
O and with each other by two rigid and massless bars of lengths l1 and l2 (see
Fig. 2.14). Derive the equations of small vibration of this double pendulum under
the action of gravity. Determine the eigenfrequencies of vibrations.

m1

m2

g
l1

l2

O

x

y

ϕ1

ϕ2

Fig. 2.14 Double pendulum

Solution. This system has two degrees of freedom described by the angles ϕ1 and
ϕ2. Let us write down the kinetic and potential energies of this double pendulum.
For the kinetic energy we have

K(ϕ̇) =
1
2

m1v2
1 +

1
2

m2v2
2.
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As the first point-mass m1 rotates about O with the angular velocity ϕ̇1, the mag-
nitude of its velocity is v1 = l1ϕ̇1. The velocity of m2 is the superposition of the
velocity of m1 and the relative velocity of m2 with respect to m1, so

v2 = v1 + v21.

Since both angles ϕ1 and ϕ2 are small, these two vectors are nearly parallel. Taking
into account that v21 = l2ϕ̇2, we can write

v2
2 = v2

1 + v2
21 + 2v1·v21 ≈ l2

1 ϕ̇
2
1 + l2

2ϕ̇
2
2 + 2l1l2ϕ̇1ϕ̇2.

Thus, the kinetic energy is equal to

K(ϕ̇) =
1
2
(m1 +m2)l

2
1 ϕ̇

2
1 +

1
2

m2l2
2 ϕ̇

2
2 +m2l1l2ϕ̇1ϕ̇2.

Let us choose the zero level of the potential energy at x = 0. Then the potential
energy of the point-masses in the gravitational field is given by

U(ϕ) =−m1gx1 −m2gx2 =−m1gl1 cosϕ1 −m2g(l1 cosϕ1 + l2 cosϕ2).

For small angles ϕ1 and ϕ2 we may replace cosϕ j ≈ 1−ϕ2
j /2, so up to an unessen-

tial constant,

U(ϕ) =
1
2

m1gl1ϕ2
1 +

1
2

m2gl1ϕ2
1 +

1
2

m2gl2ϕ2
2 .

Thus, the Lagrange function reads

L =
1
2
(m1 +m2)l

2
1 ϕ̇

2
1 +

1
2

m2l2
2 ϕ̇

2
2 +m2l1l2ϕ̇1ϕ̇2 − 1

2
(m1 +m2)gl1ϕ2

1 −
1
2

m2gl2ϕ2
2 .

From Lagrange’s equations

d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

= 0, j = 1,2,

we derive the equations of motion

d
dt
((m1 +m2)l

2
1 ϕ̇1 +m2l1l2ϕ̇2)+ (m1 +m2)gl1ϕ1 = 0,

d
dt
(m2l2

2 ϕ̇2 +m2l1l2ϕ̇1)+m2gl2ϕ2 = 0.

Dividing the first equation by l1 and the second one by m2l2, we reduce this system
to

(m1 +m2)l1ϕ̈1 +m2l2ϕ̈2 +(m1 +m2)gϕ1 = 0,

l1ϕ̈1 + l2ϕ̈2 + gϕ2 = 0.
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To determine the eigenfrequencies of vibrations we seek for the solution in the
form

ϕ j = ϕ̂ je
iωt .

Substituting this into the equations of motion, we get
(
(m1 +m2)(g− l1ω2) −m2l2ω2

−l1ω2 g− l2ω2

)(
ϕ̂1

ϕ̂2

)
=

(
0
0

)
.

Non-trivial solutions of this equation exist if its determinant vanishes
∣∣∣∣(m1 +m2)(g− l1ω2) −m2l2ω2

−l1ω2 g− l2ω2

∣∣∣∣= 0.

Computing the determinant, we get the following characteristic equation

m1l1l2ω4 − (m1 +m2)g(l1 + l2)ω2 +(m1 +m2)g
2 = 0.

Solving this quadratic equation (with respect to ω2), we obtain two roots ω2
1,2 given

by

g
2m1l1l2

[
(m1 +m2)(l1 + l2)∓

√
(m1 +m2)[(m1 +m2)(l1 + l2)2 − 4m1l1l2]

]
.

EXERCISE 2.2. A body of mass m is connected with the wall through a spring of
stiffness k and with a bar of length l and equal mass m which rotates in the plane
about O (see Fig. 2.15). Derive the equations of small vibration of this system.
Determine the eigenfrequencies of vibrations.

m

x
k

m

l

ϕ

O

Fig. 2.15 Body connected with spring and bar

Solution. Let q = (x,ϕ) be the generalized coordinates and S be the center of mass
of the bar. We write down the kinetic energy of this system

K(q̇) =
1
2

mẋ2 +
1
2

mv2
S +

1
2

JSϕ̇2,

where the last two terms represent the kinetic energy of the bar, with vS being the
velocity of the center of mass and JS = ml2/12 the moment of inertia of the bar
about S. For small angle ϕ � 1
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vS = ẋ+
l
2
ϕ̇ .

So, the kinetic energy of this system reads

K(q̇) =
1
2

mẋ2 +
1
2

m(ẋ+
l
2
ϕ̇)2 +

1
24

ml2ϕ̇2.

Concerning the potential energy, we have for small angle

U(q) =
1
2

kx2 +mg
l
2
(1− cosϕ)≈ 1

2
kx2 +mg

l
4
ϕ2.

Thus,

L(q, q̇) =
1
2

mẋ2 +
1
2

m(ẋ+
l
2
ϕ̇)2 +

1
24

ml2ϕ̇2 − 1
2

kx2 −mg
l
4
ϕ2.

From Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1,2,

we derive the equations of motion

mẍ+m(ẍ+
l
2
ϕ̈)+ kx = 0,

m
l
2
(ẍ+

l
2
ϕ̈)+

1
12

ml2ϕ̈+
1
2

mglϕ = 0.

These equations can be simplified to

2mẍ+m
l
2
ϕ̈+ kx = 0,

1
3

ml2ϕ̈+m
l
2

ẍ+
1
2

mglϕ = 0.

Dividing the first equation by 2m and the second one by ml2/3, respectively, we
rewrite them in the form

ẍ+
l
4
ϕ̈+ω2

x x = 0,

3
2l

ẍ+ ϕ̈+ω2
ϕϕ = 0,

where

ω2
x =

k
2m

, ω2
ϕ =

3g
2l

.
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To determine the eigenfrequencies of vibrations we seek for the solution in the
form (

x
ϕ

)
=

(
x̂
ϕ̂

)
eiωt .

Substituting this into the equations of motion, we get

(−ω2 +ω2
x − l

4ω
2

− 3
2lω

2 −ω2 +ω2
ϕ

)(
x̂
ϕ̂

)
=

(
0
0

)
.

Non-trivial solutions of this equation exist if its determinant vanishes

∣∣∣∣−ω
2 +ω2

x − l
4ω

2

− 3
2lω

2 −ω2 +ω2
ϕ

∣∣∣∣= 0.

Computing the determinant, we get the following characteristic equation

(−ω2 +ω2
x )(−ω2 +ω2

ϕ)−
3
8
ω4 = 0,

yielding two roots

ω2
1,2 =

4
5

(
ω2

x +ω
2
ϕ ∓

√
(ω2

x +ω2
ϕ)

2 − 5
2
ω2

xω2
ϕ

)
.

EXERCISE 2.3. A rigid bar of mass m and moment of inertia JS = mρ2 is hung on
two massless and unstretchable ropes of equal length l (this is the primitive mechan-
ical model of the swing). The distance between the ropes in the equilibrium state is
s. The distances between the attachment points and the center of mass of the bar are
s1 and s2, respectively. Under the assumption ϕ1 � 1, ϕ2 � 1 derive the equations
of out-of-plane vibration of the bar, neglecting its in-plane motion. Determine the
eigenfrequencies of vibrations.

S

s

l

lϕ1

ϕ2

s
1

s
2

Fig. 2.16 Bar hung on two ropes
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Solution. The motion of the bar as rigid body is the superposition of the translation
of the center of mass S and the rotation about S. Accordingly, the kinetic energy of
the bar equals

K =
1
2

mv2
S +

1
2

JSω2,

where ω is the angular velocity and JS the moment of inertia of the bar about S. This
motion can also be regarded as the pure rotation about the instantaneous center of
rotation P with the same angular velocity ω (see Fig. 2.17).

SA B P

Fig. 2.17 Pure rotation of the bar about P

The velocities of the attachment points A and B are lϕ̇1 and lϕ̇2, respectively. Let
the distance between A and P be x, then the distance between B and P is x− s1 − s2,
so

xω = lϕ̇1,

(x− s1 − s2)ω = lϕ̇2.

From here we find that

ω =
l

s1 + s2
(ϕ̇1 − ϕ̇2), x =

(s1 + s2)ϕ̇1

ϕ̇1 − ϕ̇2
.

The velocity of the center of mass, vS, can also be easily found as

vS = (x− s1)ω = l

(
s2

s1 + s2
ϕ̇1 +

s1

s1 + s2
ϕ̇2

)
.

Thus, the kinetic energy of the bar reads

K =
1
2

ml2(
s2

s1 + s2
ϕ̇1 +

s1

s1 + s2
ϕ̇2)

2 +
1
2

mρ2 l2

(s1 + s2)2 (ϕ̇1 − ϕ̇2)
2.

To write down the potential energy of the bar we find out the change of height of
the center of mass. The changes of height of the attachment points A and B are

w1 = l(1− cosϕ1)≈ l
ϕ2

1

2
, w2 = l(1− cosϕ2)≈ l

ϕ2
2

2
.

For the bar, the change of height must be a linear function of x:

w(x) = ax+ b,
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where x is the coordinate along the bar axis. Choosing x = 0 at A, we find that
b = w1. For x = s1 + s2 at B we have a(s1 + s2)+w1 = w2, so

a =
w2 −w1

s1 + s2
.

Consequently, the change of height of the center of mass equals

wS =
l

2(s1 + s2)
(s2ϕ2

1 + s1ϕ2
2 ),

and the potential energy reads

U =
mgl

2(s1 + s2)
(s2ϕ2

1 + s1ϕ2
2 ).

Combining the kinetic and potential energies, we obtain the Lagrange function in
the form

L =
ml2

2(s1 + s2)2 (s2ϕ̇1 + s1ϕ̇2)
2 +

mρ2l2

2(s1 + s2)2 (ϕ̇1 − ϕ̇2)
2 − mgl

2(s1 + s2)
(s2ϕ2

1 + s1ϕ2
2 ).

Lagrange’s equations
d
dt
∂L
∂ ϕ̇ j

− ∂L
∂ϕ j

= 0, j = 1,2

lead to

d
dt
[

ml2s2

(s1 + s2)2 (s2ϕ̇1 + s1ϕ̇2)+
mρ2l2

(s1 + s2)2 (ϕ̇1 − ϕ̇2)]+
mgls2

s1 + s2
ϕ1 = 0,

d
dt
[

ml2s1

(s1 + s2)2 (s2ϕ̇1 + s1ϕ̇2)− mρ2l2

(s1 + s2)2 (ϕ̇1 − ϕ̇2)]+
mgls1

s1 + s2
ϕ2 = 0.

Dividing both equations by ml2/(s1 + s2)
2, we reduce them to

(s2
2 +ρ

2)ϕ̈1 +(s1s2 −ρ2)ϕ̈2 +
gss2

l
ϕ1 = 0,

(s1s2 −ρ2)ϕ̈1 +(s2
1 +ρ

2)ϕ̈2 +
gss1

l
ϕ2 = 0,

where s = s1 + s2.
To determine the eigenfrequencies of vibrations we seek for the solution in the

form
ϕ j = ϕ̂ je

iωt .

Substituting this into the equations of motion, we get
(
( gss2

l − (s2
2 +ρ

2)ω2) −(s1s2 −ρ2)ω2

−(s1s2 −ρ2)ω2 ( gss1
l − (s2

1 +ρ
2)ω2)

)(
ϕ̂1

ϕ̂2

)
=

(
0
0

)
.
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From the condition of vanishing determinant, we get the following characteristic
equation

(
gss2

l
− (s2

2 +ρ
2)ω2)(

gss1

l
− (s2

1 +ρ
2)ω2)− (s1s2 −ρ2)2ω4 = 0,

which can be reduced to

ρ2ω4 − g
l
(s1s2 +ρ2)ω2 +

g2

l2 s1s2 = 0.

Solving this quadratic equation (with respect to ω2), we obtain two roots

ω2
1 =

g
l
, ω2

2 =
gs1s2

lρ2 .

EXERCISE 2.4. Beating phenomenon. Find solution of (2.7) for the coupled pendu-
lums satisfying the initial conditions: ϕ1(0) = 1, ϕ2(0) = ϕ̇1(0) = ϕ̇2(0) = 0. Plot
ϕ1(t) and ϕ2(t) for α = 0.1 and analyze their behaviors.

t

t

ϕ2

ϕ1

Fig. 2.18 Free vibrations of the coupled pendulums (ω0 = 1, α = 0.1)
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Solution. As shown in Section 2.1, the solution to equations (2.3) describing the
vibration of the coupled pendulums is given by

ϕϕϕ =

(
ϕ1

ϕ2

)
= q1(A1 cosω1t +B1 sinω1t)+q2(A2 cosω2t +B2 sinω2t),

with ω1 = ω0 =
√

g/l, ω2 =
√
ω2

0 + 2α, and

q1 =
1√
2

(
1
1

)
, q2 =

1√
2

(−1
1

)
.

To compute the coefficients we use the initial conditions

ϕϕϕ(0) = ϕϕϕ0 =

(
1
0

)
, ϕ̇ϕϕ(0) = ϕ̇ϕϕ0 =

(
0
0

)
,

together with the orthogonality and normalization conditions. We easily find that

A1 =
1√
2
, A2 =− 1√

2
, B1 = B2 = 0.

Thus, the solution is

ϕ1(t) =
1
2
(cosω1t + cosω2t), ϕ2(t) =

1
2
(cosω1t − cosω2t).

According to the addition formulas

ϕ1(t) = cosω ′t cosεt, ϕ2(t) = sinω ′t sinεt,

where, for small α ,

ω ′ =
1
2
(ω1 +ω2)≈ ω0, ε =

1
2
(ω2 −ω1)≈ 1

2
α
ω0

.

Thus, ϕ1(t) and ϕ2(t) oscillate with the frequencyω ′ but with slowly changing am-
plitude cosεt and sinεt, respectively. This is the so called beating phenomenon (or
amplitude modulation) typical for the oscillation with two nearly equal frequencies.

To simulate this solution numerically we put ω1 = ω0 = 1 and α = 0.1 so that
ω2 =

√
1+ 2α ≈ 1.095. The plots of ϕ1(t) and ϕ2(t) are shown in Fig. 2.18, from

which it is seen that the second pendulum begins to oscillate when the first comes
to rest and vice versa. Thus, the energy is transferred from the first to the second
pendulum and back.

EXERCISE 2.5. Consider a pair of uncoupled harmonic oscillators described by the
equations ẍ+ x = 0 and ÿ+ω2y = 0. Using t as parameter, plot the trajectory of the
motion in the (x,y)-plane given by x(t) = cost and y(t) = cosωt for t ∈ (0,1000)
in two cases: i) ω = 3 and ii) ω = π . The curves of this type are called Lissajous
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x

y

Fig. 2.19 Lissajous figure for ω = 3

figures, and due to the periodicity in x and y the trajectories can be regarded as
moving on a two-dimensional torus. Observe the difference in cases i) and ii).

Solution. In case i) the frequency ratio is equal to 3 which is a rational number. In
case ii) the frequency ratio is π which is an irrational number. The plots of the trajec-
tories of motion in the (x,y)-plane, made with the help of ParametricPlot command
in Mathematica, are shown in Fig. 2.19 and 2.20 for the case i) and ii), respectively.
In case i) the trajectory is periodic, with the period 2π . In case ii) the trajectory
is non-periodic and for an infinitely large interval of time it is dense on the whole
domain (−1,1)× (−1,1). Such motion is classified as quasi-periodic. Note that,
due to the periodicity in x and y, one can wrap the square (−1,1)× (−1,1) onto
the cylinder along the lines x = ±1 and then onto the torus along the lines y = ±1.
Thus, the trajectories can be regarded as moving on a two-dimensional torus. The
difference between cases i) and ii) is:

i) the frequency ratio is a rational number, and each trajectory is a closed periodic
orbit on the torus;

ii) the frequency ratio is an irrational number, and each trajectory winds around
endlessly on the torus and corresponds to the quasi-periodic motion.

EXERCISE 2.6. Determine the vibration modes and the normal coordinates of the
double pendulum with m1 = m2 = m and l1 = l2 = l.

Solution. Under the conditions m1 = m2 = m and l1 = l2 = l the Lagrange function,
as seen from the solution of the exercise 2.1, is given by

L =
1
2

ml2ϕ̇2
1 +

1
2

ml2(ϕ̇1 + ϕ̇2)
2 −mglϕ2

1 −
1
2

mglϕ2
2 .
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x

y

Fig. 2.20 Lissajous figure for ω = π

The division of this Lagrange function by ml2 does not influence the equations of
motion, so we can write

L =
1
2
ϕ̇2

1 +
1
2
(ϕ̇1 + ϕ̇2)

2 −ω2
0ϕ

2
1 −

1
2
ω2

0ϕ
2
2 ,

where ω2
0 = g/l. The equation of motion in the matrix form reads

Mq̈+Kq = 0,

where

M =

(
2 1
1 1

)
, K =

(
2ω2

0 0
0 ω2

0

)
.

The problem is to bring both matrices to the diagonal form. This can be realized by
solving the eigenvalue problem

(−ω2M+K)q̂ = 0,

or (−2ω2 + 2ω2
0 −ω2

−ω2 −ω2 +ω2
0

)(
q̂1

q̂2

)
=

(
0
0

)
.

The characteristic equation

det(−ω2M+K) = 2(ω2 −ω2
0 )

2 −ω4 = 0

yields two eigenfrequencies

ω2
1,2 = ω2

0 (2∓
√

2).
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The corresponding normalized eigenvectors of these two modes of vibrations are

q1 =
1√

2(2+
√

2)

(
1√
2

)
≈
(

0.382683
0.541196

)
,

q2 =
1√

2(2−√
2)

(−1√
2

)
≈
(−0.92388

1.30656

)
.

With these eigenvectors we form the modal matrix

Q =

(
0.382683 −0.92388
0.541196 1.30656

)
,

which has the inverse

Q−1 =

(
1.30656 0.92388

−0.541196 0.382683

)
.

Since the normal coordinates are ξξξ = Q−1q, we obtain

ξ1 = 1.30656ϕ1+ 0.92388ϕ2, ξ2 =−0.541196ϕ1+ 0.382683ϕ2.

EXERCISE 2.7. Determine the vibration modes and the normal coordinates in exer-
cise 2.3.

Solution. From the solution of exercise 2.3 we see that there are two eigenfrequen-
cies of vibrations

ω2
1 =

g
l
, ω2

2 =
gs1s2

lρ2 .

Let us find out the corresponding eigenvectors. For mode 1 with ω2
1 = g

l we have

g
l

(
s1s2 −ρ2 −(s1s2 −ρ2)

−(s1s2 −ρ2) s1s2 −ρ2

)(
q1

q2

)
=

(
0
0

)
.

Together with the normalization condition q1 ·Mq1 = 1 we find that

q1 =

(
1/s
1/s

)
.

Thus, this mode of vibration corresponds to the synchronized parallel motion of the
bar with ϕ1 = ϕ2 (the swing mode). For mode 2 with ω2

2 = gs1s2
lρ2 we have

g
l

(
ss2 − (s2

2 +ρ2) s1s2
ρ2 −(s1s2 −ρ2) s1s2

ρ2

−(s1s2 −ρ2) s1s2
ρ2 ss1 − (s2

1 +ρ2) s1s2
ρ2

)(
q1

q2

)
=

(
0
0

)
.
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Consequently,

q2

q1
=

ss2 − (s2
2 +ρ

2) s1s2
ρ2

(s1s2 −ρ2) s1s2
ρ2

=− s2

s1
.

Together with the normalization condition q2 ·Mq2 = 1 we find that

q2 =
1
ρs

(−s1

s2

)
.

This mode of vibration describes the rotation of the bar about the center of mass
(antisymmetric mode). Thus, the modal matrix equals

Q =

(
1/s −s1/(ρs)
1/s s2/(ρs)

)
.

and the normal coordinates are ξξξ = Q−1q.

EXERCISE 2.8. Find the coordinates of the fixed points A and B of the resonance
curves in example 2.8. Show that A and B are at equal level when

κ =
μ

(1+ μ)2 .

Solution. Let us analyze the resonance function

∣∣∣∣ x1

x10

∣∣∣∣=
∣∣∣∣ −μη2 + iδη+κ
(−η2 + iδη+ 1+κ)(−μη2+ iδη+κ)− (iδη+κ)2

∣∣∣∣ .
Expanding the nominator and denominator on the right-hand side, we obtain

∣∣∣∣ x1

x10

∣∣∣∣=
∣∣∣∣ −μη2 +κ+ iδη
(−η2 + 1+κ)(−μη2+κ)−κ2+ iδη(−μη2 −η2 + 1)

∣∣∣∣ .
Thus,

∣∣∣∣ x1

x10

∣∣∣∣
2

=
δ 2η2 +(κ− μη2)2

δ 2η2(−μη2 −η2 + 1)2 +[(−η2 + 1+κ)(−μη2+κ)−κ2]2
.

Let us first consider the limiting case of vanishing damping: δ = 0. In this case the
resonance function becomes∣∣∣∣ x1

x10

∣∣∣∣= |κ− μη2|
|(−η2 + 1+κ)(−μη2+κ)−κ2| .

In the other extreme case with δ → ∞ we have∣∣∣∣ x1

x10

∣∣∣∣ = 1
|−η2(μ+ 1)+ 1|.
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Since x1/x10 near the fixed points has different signs in these two cases, the
η-coordinates of the fixed points A and B satisfy the equation

κ− μη2

(−η2 + 1+κ)(−μη2+κ)−κ2 =
1

η2(μ+ 1)− 1
,

or
(μ2 + 2μ)η4 − 2(κ+κμ+ μ)η2 + 2κ = 0.

The resonance function for other δ can be presented in the form

∣∣∣∣ x1

x10

∣∣∣∣
2

=
Mδ 2 +N
Pδ 2 +Q

so that it will be independent of δ 2 only if M/P=N/Q which is again identical with
the above equation. From this equation two roots η2

1 and η2
2 can be found, which

determine the coordinates of A and B. The ordinates of points A and B are obtained
by substituting these roots in the resonance function for the case δ → ∞. Since the
signs of this function is positive at A and negative at B, the ordinates are

1

−μη2
1 −η2

1 + 1
and

1

μη2
2 +η2

2 − 1
.

We want to choose the parameters of absorber in such a way that points A and B are
at equal level. This requires that

1

−μη2
1 −η2

1 + 1
=

1

μη2
2 +η2

2 − 1
,

or

η2
1 +η

2
2 =

2
1+ μ

.

Taking into account that η2
1 and η2

2 are the roots of the quadratic equation, we obtain

2(κ+κμ+ μ)
μ2 + 2μ

=
2

1+ μ
,

which implies that

κ =
μ

(1+ μ)2 .

EXERCISE 2.9. Find the solution of example 2.9 by the Laplace transform and show
that it is equal to the solution found by the modal decomposition.

Solution. Dividing equations (2.22) describing the motion of these coupled pendu-
lums by ml2, we rewrite them as

ϕ̈1 − χ(ϕ̇2 − ϕ̇1)+ω2
0ϕ1 −α(ϕ2 −ϕ1) = 0,

ϕ̈2 + χ(ϕ̇2 − ϕ̇1)+ω2
0ϕ2 +α(ϕ2 −ϕ1) = f (t),



92 2 Coupled Oscillators

where

ω0 =
√

g/l, χ = c/m, α =
k

4m
, f (t) =

p(t)
ml

.

Let us look for the particular solution of these equations satisfying the homogeneous
initial conditions. Applying the Laplace transform to both sides of these equations,
we obtain

s2Φ1 − χs(Φ2 −Φ1)+ω2
0Φ1 −α(Φ2 −Φ1) = 0,

s2Φ2 + χs(Φ2 −Φ1)+ω2
0Φ2 +α(Φ2 −Φ1) = F(s),

where Φ1(s), Φ2(s), and F(s) are the Laplace images of ϕ1(t), ϕ2(t), and f (t),
respectively. The latter equations can be represented in the matrix form as

(
s2 + χs+ω2

0 +α −χs−α
−χs−α s2 + χs+ω2

0 +α

)(
Φ1

Φ2

)
=

(
0

F(s)

)
.

Solving these equation, we find that

Φ1 =
F(s)(χs+α)

(s2 + χs+ω2
0 +α)2 − (χs+α)2

, Φ2 =
F(s)(s2 + χs+ω2

0 +α)
(s2 + χs+ω2

0 +α)2 − (χs+α)2
.

To compare with the solution obtained by the modal decomposition let us consider
the image functions

Ξ1 =
1√
2
(Φ1 +Φ2) =

1√
2

F(s)

s2 +ω2
0

,

and

Ξ2 =
1√
2
(Φ2 −Φ1) =

1√
2

F(s)

s2 +ω2
0 + 2χs+ 2α

=
1√
2

F(s)

s2 +ω2
2 + 2χs

.

It is easy to see that the original functions ξ1(t) and ξ2(t) corresponding to these
image functions satisfy the differential equations

ξ̈1 +ω2
1ξ1 =

1√
2

p(t)
ml

,

ξ̈2 +
2c
m
ξ̇2 +ω2

2ξ2 =
1√
2

p(t)
ml

.

Thus, the solution obtained by the Laplace transform coincides with the solution
obtained by the modal decomposition.

EXERCISE 2.10. A point-mass m moves in the space under the action of three
springs of stiffnesses k1, k2, and k3 whose axes do not lie in one plane (see Fig. 2.21).
The equilibrium position of the point-mass is chosen as the origin of the coordinate
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system, while n1, n2, and n3 denote the unit vectors along the spring axes. Derive the
equation of small vibrations for this oscillator and determine the eigenfrequencies.

x

y

z

k1 k2

k3

m

A

B

C

Fig. 2.21 Mass-spring oscillator with 3 degrees of freedom

Solution. Let r = (x,y,z) be the position vector of the point-mass. We write down
its kinetic energy

K(ṙ) =
1
2

mṙ · ṙ = 1
2

m(ẋ2 + ẏ2 + ż2).

The potential energy of the springs reads

U(r) =
1
2
[k1(Δ l1)

2 + k2(Δ l2)
2 + k3(Δ l3)

2],

where Δ li is the change of length of i-th spring. Let l0i be the original length of
the springs. Then the position vectors of points A, B, C are ri = l0ini, i = 1,2,3,
respectively. The change of length of i-th spring equals

Δ li = li − l0i =
√
(l0ini − r) · (l0ini − r)− l0i.

Using the smallness of r, it is easy to see that

√
(l0ini − r) · (l0ini − r)≈ l0i

√
1− 2

l0i
ni · r ≈ l0i −ni · r.

Thus,
Δ li =−ni · r,

and the potential energy of the springs becomes

U(r) =
1
2
[k1(n1 · r)2 + k2(n2 · r)2 + k3(n3 · r)2].
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Now Lagrange’s equation
d
dt
∂L
∂ ṙ

− ∂L
∂r

= 0

yields the equation of motion

mr̈+ k1n1(n1 · r)+ k2n2(n2 · r)+ k3n3(n3 · r) = 0.

To find the eigenfrequencies, we look for the solution in the form

r(t) = r̂eiωt ,

where r̂ is a constant vector. Substituting this solution Ansatz into the equation of
motion, we obtain

(−mω2I+K)r̂ = 0.

Here I is the 3×3 identity matrix, and K is the stiffness matrix with the components

Ki j = k1n1in1 j + k2n2in2 j + k3n3in3 j.

Therefore, the eigenfrequencies should be found from the equation

det(−mω2I+K) = 0.

This equation can be simplified if the unit vectors n1, n2, n3 are mutually orthogonal.
By choosing the coordinate system with these vectors as basis vectors, the stiffness
matrix becomes also diagonal

K =

⎛
⎝k1 0 0

0 k2 0
0 0 k3

⎞
⎠ .

Thus, in this case the equations become uncoupled and the eigenfrequencies are
given by

ω j =
√

k j/m, j = 1,2,3.

Correspondingly, the eigenvectors are n1, n2, n3.

EXERCISE 2.11. A pre-stretched string contains three equal and equally spaced
point-masses m (see Fig. 2.22). The tension in the string is assumed to be large
so that for small lateral displacements of the point-masses it does not change ap-
preciably. Derive the equation of small lateral vibration and determine the eigenfre-
quencies.

Solution. Let the displacements of the point-masses from their equilibrium positions
be x1, x2, and x3 (see Fig. 2.22). The kinetic energy of the point-masses is

K =
1
2

m(ẋ2
1 + ẋ2

2 + ẋ2
3).
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m m ml l l

x1 x2 x3

l

Fig. 2.22 Pre-stretched string with 3 point-masses

We denote the tension in the string by S. Since S is large, the potential energy of the
string equals

U = S(Δ l1 +Δ l2 +Δ l3 +Δ l4),

where Δ li are the changes of lengths of the string segments. Let us express these
changes in terms of xi

Δ l1 =
√

l2 + x2
1 − l = l(

√
1+(x1/l)2 − 1)≈ 1

2
l(

x1

l
)2,

Δ l2 =
√

l2 +(x2 − x1)2 − l ≈ 1
2

l(
x2 − x1

l
)2,

Δ l3 =
√

l2 +(x3 − x2)2 − l ≈ 1
2

l(
x3 − x2

l
)2,

Δ l4 =
√

l2 + x2
3 − l ≈ 1

2
l(

x3

l
)2.

Here the smallness of xi compared with l as well as the formula
√

1+ ε ≈ 1+ 1
2ε

are used. Introducing x0 = x4 = 0, we may present the potential energy in the form

U =
S
2l
[(x1 − x0)

2 +(x2 − x1)
2 +(x3 − x2)

2 +(x4 − x3)
2].

With the Lagrange function L = K −U it is easy to derive the equations of motion

mẍ j + k(x j − x j−1)+ k(x j − x j+1) = 0, j = 1,2,3,

where k = S/l. We look for the solution of these coupled equations in the form

x j = x̂ j cos(ωt −φ),

where x̂ j are the amplitudes of vibrations. With this Ansatz we reduce the differen-
tial equations to the algebraic equations

(2k−ω2m)x̂ j − k(x̂ j−1 + x̂ j+1) = 0,

or to
(2−η2)x̂ j − (x̂ j−1 + x̂ j+1) = 0,

where η2 = ω2m/k. As the amplitudes of vibrations are determined up to an arbi-
trary constant factor, we normalize them by

κ j =
x̂ j

x̂1
, j = 0,1,2,3,4.
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The above system becomes

(2−η2)κ j − (κ j−1 +κ j+1) = 0.

Thus, knowing κ0 = 0, κ1 = 1, we can successively determine other κ j according to

κ j = (2−η2)κ j−1 −κ j−2, j = 2,3,4.

So,

κ2 =−η2 + 2, κ3 = η4 − 4η2 + 3, κ4 =−η6 + 6η4 − 10η2+ 4.

Since κ4 = 0, we obtain the following equation to determine the eigenfrequencies

−η6 + 6η4 − 10η2 + 4 = 0.

The alternative method of solution is based on the following Ansatz

x̂ j =C sin jα.

This Ansatz satisfies the boundary condition x̂0 = 0. The other boundary condition
x̂4 = 0 will be satisfied if

4α = kπ , k = 1,2,3 ⇒ α =
kπ
4
.

On the other side, substituting the above Ansatz into the algebraic equations for x̂ j,
we obtain

C sin jα(2−η2 − 2cosα) = 0.

Since C cannot be zero, we obtain the equation to determine the eigenfrequencies

η2 = 2(1− cosα) = 4sin2 α
2
.

Denoting by ω0 =
√

k/m =
√

S/ml, we can write

ωk = 2ω0 sin
α
2
= 2ω0 sin

kπ
8
, k = 1,2,3.

EXERCISE 2.12. The free vibrations of an airplane can be described in a simpli-
fied model with three degrees of freedom representing the motion of the fuselage
and the wings which are connected with the fuselage by the spiral springs of stiff-
nesses k1 and k2 (see Fig. 2.23). Derive the equations of small vibrations. Under
the assumptions of symmetry θ1 = θ2 = θ , m1 = m2 = m, and k1 = k2 = k, find the
eigenfrequencies of vibrations.

Solution. Let the changes in angles of the wings be ϕ1 and ϕ2. We write down the
kinetic energy of this system
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x

M
k1 k2

m1 m2

θ1 θ2

l l

Fig. 2.23 A primitive model of an airplane with 3 degrees of freedom

K =
1
2

Mẋ2 +
1
2

m1v2
1 +

1
2

m2v2
2.

The velocity of the point-mass m1 is v1 = vM + vrel , where vrel denotes the relative
velocity. Since the vertical and horizontal components of this relative velocity are
lϕ̇1 cosθ1 and −lϕ̇1 sinθ1, respectively, we have

v2
1 = ẋ2 + 2l cosθ1ẋϕ̇1 + l2ϕ̇2

1 .

Similarly,
v2

2 = ẋ2 + 2l cosθ2ẋϕ̇2 + l2ϕ̇2
2 .

Thus, the kinetic energy of the system becomes

K =
1
2
(M+m1 +m2)ẋ

2 +m1l cosθ1ẋϕ̇1 +
1
2

m1l2ϕ̇2
1 +m2l cosθ2ẋϕ̇2 +

1
2

m2l2ϕ̇2
2 .

It is easy to show that the static spring forces, the gravitational forces, and the aero-
dynamic force due to the steady state flow do not contribute to the potential energy.
Therefore

U =
1
2

k1ϕ2
1 +

1
2

k2ϕ2
2 .

With L = K −U we derive from Lagrange’s equations

(M+m1 +m2)ẍ+m1l cosθ1ϕ̈1 +m2l cosθ2ϕ̈2 = 0,

m1l2ϕ̈1 +m1l cosθ1ẍ+ k1ϕ1 = 0,

m2l2ϕ̈2 +m2l cosθ2ẍ+ k2ϕ2 = 0.

Let qT = (x,ϕ1,ϕ2) and mT = M +m1 +m2. Then we can represent the equations
of free vibrations of this system in the matrix form

Mq̈+Kq = 0,

where

M =

⎛
⎝ mT m1l cosθ1 m2l cosθ2

m1l cosθ1 m1l2 0
m2l cosθ2 0 m2l2

⎞
⎠ , K =

⎛
⎝0 0 0

0 k1 0
0 0 k2

⎞
⎠ .
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Seeking the particular solution in the form

q = q̂eiωt ,

we obtain the eigenvalue problem

(−ω2M+K)q̂ = 0.

The related characteristic equation

det(−ω2M+K) =

∣∣∣∣∣∣
−ω2mT −ω2m1l cosθ1 −ω2m2l cosθ2

−ω2m1l cosθ1 −ω2m1l2 + k1 0
−ω2m2l cosθ2 0 −ω2m2l2 + k2

∣∣∣∣∣∣= 0

can be written in the form

ω2 [l4(mT m1m2 −m1m2
2 cos2 θ2 −m2m2

1 cos2 θ1)ω4 − l2(mT (m1k2 +m2k1)

−m2
2k1 cos2 θ2 −m2

1k2 cos2 θ1)ω2 +mT k1k2
]
= 0.

Thus, there is always the zero frequency corresponding to the mode of vertical mo-
tion of the airplane as a rigid body with x �= 0, ϕ1 = ϕ2 = 0. In the symmetric case
(θ1 = θ2 = θ , m1 = m2 = m, and k1 = k2 = k), the remaining factor in the square
brackets reduces to

m2l4(mT − 2mcos2 θ )ω4 + 2kml2(mcos2 θ −mT )ω2 +mT k2 = 0.

This yields the following eigenfrequencies

ω2
1 =

k
ml2 , ω2

2 =
kmT

ml2(mT −m−mcos2θ )
.



Chapter 3
Continuous Oscillators

This Chapter deals with small vibrations of mechanical systems having infinite num-
ber of degrees of freedom. It begins with the discrete models of linear chain of oscil-
lators and then moves to the continuum models of strings, beams, membranes, and
plates. The last Section is devoted to the most general continuous oscillators. The
vibrations of these oscillators can be found in form of the linear superposition of the
standing waves leading to the eigenvalue problems in infinite dimensional spaces.

3.1 Chain of Oscillators

Differential Equations of Motion. Crystals having periodic lattice structures with
atoms vibrating about the lattice sites can be regarded as mechanical systems with
countable number of degrees of freedom. Our aim is to construct mathematical mod-
els for such discrete systems with countable number of degrees of freedom by means
of the continuum mechanics. Let us first begin with two simple examples.

EXAMPLE 3.1. 1-D chain of mass-spring oscillators. A linear 1-D chain of points
of equal mass m connected by springs of equal stiffness k1 is constrained to move in
the longitudinal direction (see Fig. 3.1). Derive the equations of motion.

uj-1
uj uj+1

mk1

Fig. 3.1 A linear chain of mass-spring-oscillators

In this example the point-masses model atoms, while the springs their nearest
neighbor interaction. In equilibrium the distances between neighboring atoms are
equal to a lattice constant b. Denoting the displacement of the atom j from its equi-
librium position jb by u j(t), we write down the kinetic energy of the chain
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K(u̇) =
1
2

m∑
j

u̇2
j . (3.1)

The potential energy of the chain is the sum of energies of the springs

U(u) =
1
2

k1∑
j
(u j − u j−1)

2. (3.2)

Thus, Lagrange’s equations of this chain read

mü j + k1(u j − u j−1)− k1(u j+1 − u j) = 0

for all j = 1, . . . ,n− 1 except the end points of the chain.

EXAMPLE 3.2. 1-D chain of atoms with next-to-nearest-neighbor interaction. Con-
sider the similar 1-D chain of atoms as in the previous example. But now in addition
to the springs of stiffness k1 there are springs of stiffness k2 connecting the next to
nearest neighboring atoms as well (see Fig. 3.2). Derive the equations of longitudi-
nal motion.

mk1

k2

k2

Fig. 3.2 A chain of oscillators with next-to-nearest-neighbor interaction

As before, the kinetic energy of this chain remains the same as (3.1). But its potential
energy changes. Because of the presence of the next-to-nearest-neighbor interaction,
we have to include energies of the springs of stiffness k2

U(u) =
1
2

k1∑
j

(u j − u j−1)
2 +

1
2

k2∑
j

(u j − u j−2)
2. (3.3)

It is interesting to mention that, in some physical situation, we may even assume the
negative spring stiffness k2. Lagrange’s equations of this chain become

mü j +
2

∑
l=1

[kl(u j − u j−l)− kl(u j+l − u j)] = 0 (3.4)

for all j = 2, . . . ,n− 2 except the end points of the chain. It is easy to write down
the equations of motion for the chain, where each atom interacts with m neighbors
to the left as well as with m neighbors to the right (see exercise 3.1).

The derived systems of coupled differential equations are quite difficult to study.
However, it turns out that, as n → ∞, they can be reduced in the long wave limit to
one partial differential equation which is easier to solve.
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Quasicontinuum. The idea is to set up one-to-one correspondences between func-
tions of discrete argument and functions of continuous argument and between op-
erations on them. Consider the case n = ∞ (infinite chain) and let u( jb) = u j be a
function of the discrete argument j defined at the lattice sites. At present, the de-
pendence of u j on t is suppressed for short; it will be restored in the final stage. We
are going to interpolate this function to a smooth function u(x) defined on the whole
x-axis such that all wave lengths shorter than b are filtered out. The precise meaning
of this can be given in terms of the Fourier transform of u(x) which we denote1 by
u(k)

u(k) =F [u(x)] =
∫ ∞

−∞
e−ikxu(x)dx, u(x) =

1
2π

∫ ∞

−∞
eikxu(k)dk. (3.5)

Namely, we require that the Fourier image u(k) differs from zero only on the seg-
ment B = [−π/b,π/b], called Brillouin zone. Then u(k) can be expanded in a
Fourier series on this segment

u(k) = χB(k)∑
j

c je
−i jbk, (3.6)

where χB(k) is a characteristic function of the segment B, i.e., χB(k) = 1 when k ∈ B
and χB(k) = 0 otherwise. Substituting this equation in (3.5) for u(x), we find

u(x) =∑
j

c jδB(x− jb),

where

δB(x) =
1

2π

∫
B

eikx dk =
sin(πx/b)

πx
.

It is easy to see that δB(x) = δB(−x) and

δB(0) =
1
b
, δB( jb) = 0 for j �= 0.

Thus, if we set c j = bu( jb), then

u(x) = b∑
j

u( jb)δB(x− jb) (3.7)

is the required interpolating function, since it is equal to u( jb) at the lattice sites and
its Fourier image has the compact support in the Brillouin zone B. It can be proved
that (3.7) is a unique and one-to-one correspondence between functions of discrete
and continuous argument satisfying these two requirements [27].

1 This notation involves no risk of confusion as we can see the difference in arguments of
u(x) and u(k). Besides, it emphasizes that u(x) and the image u(k) are the same function
in x and k spaces.
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Based on this one-to-one correspondence, we can now present the Lagrange func-
tion of our chain in terms of the continuous function (3.7). First of all, let us show
that the following identity

∑
j

u2( jb) =
1
b

∫
u2(x)dx

holds true for an arbitrary function u( jb). Indeed, according to Parseval’s identity
[47] we have for any real function

∫ ∞

−∞
u2(x)dx =

1
2π

∫ ∞

−∞
u∗(k)u(k)dk,

where u∗(k) is the complex conjugate of u(k). With u(k) from (3.6) (where c j =
bu( jb)) and with the identities

1
2π

∫
B

ei(l− j)bk dk =
1
b
δ jl ,

we can easily check the required formula. Thus, the kinetic energy of the chain (3.1)
can be expressed in terms of u,t(x, t) as

K(u,t) =
∫

1
2
μu2

,t dx, (3.8)

with the comma in indices denoting the partial derivative and μ = m/b the mass
density per unit length. Let us turn now to the potential energy of the chain and
rewrite it in the form

U(u) =
1
2∑j,l

u jΦ( j− l)ul ,

where Φ(− j) =Φ( j) and for U(u) from (3.2)

Φ(0) = 2k1, Φ(1) =−k1, Φ( j) = 0 for | j|> 1.

For U(u) from (3.3) we have

Φ(0) = 2(k1 + k2), Φ(1) =−k1, Φ(2) =−k2, Φ( j) = 0 for | j|> 2,

and this can easily be generalized for chains with m interacting neighbors, m >
2. Applying the convolution theorem and Parseval’s identity, we have for any real
function u(x) and Φ(x)

∫ ∞

−∞

∫ ∞

−∞
u(x)Φ(x− y)u(y)dxdy =

1
2π

∫ ∞

−∞
u∗(k)Φ(k)u(k)dk, (3.9)

where
Φ(k) =

∫ ∞

−∞
Φ(x)e−ikxdx.
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Now, if we set

Φ(k) =
1
b∑j

Φ( j)e−i jbk, k ∈ B, (3.10)

and substitute it into the right-hand side of (3.9), we obtain

U(u) =
1
2∑j,l

u jΦ( j− l)ul =
1
2

∫ ∞

−∞

∫ ∞

−∞
u(x)Φ(x− y)u(y)dxdy.

Thus, the action functional can be presented in terms of the function u(x, t) as

I[u(x, t)] =
∫ t1

t0
dt
∫ ∞

−∞

[
1
2
μu2

,t −
1
2

∫ ∞

−∞
u(x, t)Φ(x− y)u(y, t)dy

]
dx (3.11)

Varying the action functional, we easily obtain the following integral equation

μu,tt +
∫ ∞

−∞
Φ(x− y)u(y, t)dy = 0, (3.12)

which is equivalent to the system of equations (3.4). Note that equation (3.12) can
also be directly obtained from (3.4).

Dispersion Curve and Long-Wave Approximation. Since equation (3.12) is lin-
ear, we seek its solution in the form

u(x, t) = aei(kx−ωt). (3.13)

This solution corresponds to the wave propagating along the x-axis, with a being
the amplitude, k the wave number, and ω the frequency of vibration. Substitution of
(3.13) into (3.12) leads to the dispersion relation between k and ω

−μω2 +Φ(k) = 0. (3.14)

For the chain with the nearest neighbor interaction we have from (3.10)

Φ(k) =
2k1

b
(1− cosbk) =

4k1

b
sin2 bk

2
, k ∈ B.

Denoting by ω0 =
√

k1/m, we present the dimensionless dispersion curve ν =
ω/ω0 versus κ = bk in Fig. 3.3.

For the propagating wave (3.13) the characteristic wavelength is l = 2π/k =
2πb/κ . If this characteristic wavelength is much larger than the lattice constant
b, then κ � 1 and functionΦ(k) can be approximated by

Φ(k) =
4k1

b
sin2 bk

2
≈ k1

b
(bk)2. (3.15)
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Fig. 3.3 Dispersion curve for a chain with nearest neighbor interaction

This approximation simplifies considerably the potential energy in the action func-
tional and makes the theory local. Indeed, using the property of the Fourier trans-
form

1
2π

∫
k2u∗(k)u(k)dk =

∫ ∞

−∞
u2
,x dx,

we write the potential energy in the form

U(u) =
k1b
2

∫ ∞

−∞
u2
,x dx.

Thus, the action functional becomes

I[u(x, t)] =
∫ t1

t0
dt
∫ ∞

−∞
(

1
2
μu2

,t −
1
2

k1bu2
,x)dx, (3.16)

which yields the following Lagrange’s equation

μu,tt − k1bu,xx = 0. (3.17)

This type of partial differential equations will be studied in the next Sections within
the continuum mechanics.

3.2 String

Differential Equation of Motion. In previous Section the transition from discrete
to continuum descriptions has been demonstrated. Let us now derive the equation
of motion directly within the framework of continuum mechanics. We start with
simple one-dimensional continua.

EXAMPLE 3.3. Flexural vibration of string. Derive the equation of small flexural
vibration of a pre-stretched string.
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w(x,t)

x

S(x)
S(x+Δx)

α

Fig. 3.4 Flexural vibration of string

Under string we mean a thin pre-stretched
elastic body with negligible bending stiff-
ness whose diameter of the cross-section
is much smaller than its length l. We shall
model the string by a one-dimensional
continuum. We show first the derivation
based on the force method. Let x be the
coordinate along the string axis, x ∈ (0, l),
and w(x, t) the transverse displacement of
the string. We also denote by α(x, t) the slope of the curve w(x, t). For small vibra-
tion both w(x, t) and α(x, t) are small so that α = w,x. The tension is assumed to
be large, and the change of stress along the string during the vibration is negligibly
small compared with this tension. We cut a part of the deformed string from x to
x+Δx and free it from the rest. Keeping in mind the free body diagram shown in
Fig. 3.4, we apply Newton’s law in the transverse direction,

μ(x)Δxw,tt = S(x+Δx)α(x+Δx, t)− S(x)α(x, t),

where S(x) and S(x+Δx) are the forces from the surrounding exerted on the cut part
of the string, μ(x) the mass per unit length, and, due to the smallness of α , sinα is
approximately replaced by α in this equation. Dividing both sides by Δx and letting
Δx → 0, we obtain in the limit

μ(x)w,tt =
∂
∂x

[S(x)w,x(x, t)].

Here the slope α is replaced by w,x, with comma denoting the partial derivative
with respect to x. For the homogeneous string with constant cross-section area A the
mass density per unit length does not depend on x: μ(x) = ρA = μ . We also assume
that S(x) = S, where S/A is the tension in the equilibrium state. Dividing the above
equation by μ , we reduce it to the standard form

w,tt = c2w,xx(x, t), c =

√
S
μ
. (3.18)

This equation is subject to the boundary conditions

w(0, t) = w(l, t) = 0. (3.19)

The energy method is based on Hamilton’s variational principle of least action:
among all admissible motions w(x, t) satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x)

and the boundary conditions (3.19) the true motion is the extremal of the action
functional



106 3 Continuous Oscillators

I[w(x, t)] =
∫ t1

t0

∫ l

0
L(w,w,x,w,t)dxdt.

The consequence of Hamilton’s variational principle is Euler-Lagrange’s equation
(see the derivation in Section 3.6)

∂
∂ t

∂L
∂w,t

+
∂
∂x

∂L
∂w,x

− ∂L
∂w

= 0. (3.20)

Thus, the motion of the conservative one-dimensional continuum is governed by a
single function L(w,w,x,w,t), called Lagrangian, which is given by

L(w,w,x,w,t) = K(w,t)−U(w,w,x),

where K(w,t) is the kinetic and U(w,w,x) the internal energy densities. In our exam-
ple the kinetic energy density is equal to

K(w,t ) =
1
2
μw2

,t .

The internal energy density (per unit length) must be a function of the strain ε:
U = U(ε). Denoting the strain in the pre-stretched state as ε = ε0, we expand the
energy density in Taylor’s series near this state:

U(ε) =U(ε0)+U ′(ε0)(ε− ε0)+ . . . .

Neglecting the unessential constant U(ε0) as well as terms of higher orders and
taking into account that U ′(ε0) = S, we obtain

U(ε) = S(ε− ε0).

Now, for the transverse displacement considered above

ε− ε0 = lim
Δx→0

√
(Δx)2 +(w(x+Δx)−w(x))2 −Δx

Δx
≈ 1

2
w2
,x.

Thus, the internal energy density depends only on w,x, U(w,w,x) =
1
2 Sw2

,x, and

L(w,w,x,w,t) =
1
2
μw2

,t −
1
2

Sw2
,x.

Substitution of this Lagrangian into (3.20) leads again to the equation of motion
(3.18).

EXAMPLE 3.4. Longitudinal vibration of bar. Derive the equation of small longitu-
dinal vibration of an elastic bar.

Under bar we mean a thin elastic body whose diameter of the cross-section is much
smaller than the length l of the bar. Let x be the coordinate along the bar axis,
x ∈ (0, l), and u(x, t) the longitudinal displacement of the bar. The kinetic energy
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x u(x,t)

Fig. 3.5 Longitudinal vibration of bar

per unit length of the bar is given by

K(u,t) =
1
2
ρA(x)u2

,t ,

while the internal energy per unit length by

U(u,x) =
1
2

EA(x)u2
,x.

Here we denote by ρ the mass density, A(x) the cross-section area which may vary
along the bar axis, and E the Young modulus. With the Lagrangian L(u,x,u,t) =
K(u,t)−U(u,x) we derive from (3.20)

ρA(x)u,tt =
∂
∂x

[EA(x)u,x(x, t)],

and, if A(x) = const, reduce it to the standard form (3.18) with c =
√

E/ρ and w
being replaced by u.

EXAMPLE 3.5. Torsional vibration of bar. Derive the equation of small torsional
vibration of an elastic bar.

x ϕ(x,t)

Fig. 3.6 Torsional vibration of bar

Let ϕ(x, t) be the rotation angle of the cross-section in its own plane. The kinetic
energy per unit length of the bar is given by

K(ϕ,t) =
1
2
ρJp(x)ϕ2

,t ,

while the internal energy per unit length by

U(ϕ,x) =
1
2

GJp(x)ϕ2
,x.

Here Jp(x) corresponds to the polar moment of inertia of the cross-section, and G the
shear modulus. With L(ϕ,x,ϕ,t) = K(ϕ,t)−U(ϕ,x) we derive from Euler-Lagrange’s
equation
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ρJp(x)ϕ,tt =
∂
∂x

[GJp(x)ϕ,x(x, t)],

which, for Jp(x) = const, can again be reduced to the standard form (3.18) with
c =

√
G/ρ and w being replaced by ϕ .

Solution. We first seek particular solutions of equation (3.18) and then construct the
general solution using the linear superposition principle. We assume the particular
solution of the form

w(x, t) = q(x)u(t).

As this particular solution is the product of two functions depending separately on x
and t, the corresponding method of solution is called separation of variables. Plug-
ging this Ansatz into equation (3.18) and assuming that neither q(x) nor u(t) is
identically zero, we divide the obtained equation by q(x)u(t) to get

ü
u
= c2 q′′

q
.

Since the left-hand side expression depends on t while its right-hand side counter-
part depends only on x, the equation implies that both must be a constant which we
denote by −ω2. Thus, we obtain two ordinary differential equations

ü+ω2u = 0,

q′′+
(ω

c

)2
q = 0.

(3.21)

The solution of the second equation reads

q(x) = Acos
ω
c

x+Bsin
ω
c

x.

The boundary conditions (3.19) require that q(0) = q(l) = 0, so A = 0 and the non-
trivial solution exists if

sin
ω
c

l = 0 ⇒ ω = ω j = j
πc
l
, j = 1,2, . . . . (3.22)

Thus,

q j(x) = B j sin
jπ
l

x.

We may fix the coefficients B j by choosing some normalization condition. As such
we propose ∫ l

0
q2

j(x)dx = 1 ⇒ q j(x) =

√
2
l

sin
jπ
l

x.

Functions q j(x) describe the shapes of normal modes and are called eigenfunc-
tions (or standing waves). Function q1(x) corresponds to the shape of mode with the
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x
l

i=1
i=2
i=3

qi(x)

Fig. 3.7 Three first eigenfunctions

lowest frequency (or the fundamental tone).
Functions q j(x) with j > 1 describe the
shape of modes with higher frequencies
(called overtones). The eigenfunction q j(x)
has j − 1 fix points which do not move
(one speaks of the vibration nodes). Fig. 3.7
shows three first eigenfunctions. It turns out
that the functions q j(x) are orthogonal in the
following sense

∫ l

0
q j(x)qk(x)dx = 0 for j �= k.

This can easily be checked by using the
well-known trigonometric formula for sine function.

The first equation of (3.21) for ω = ω j has the solution

u(t) = a j cosω jt + b j sinω jt.

Now, the general solution of equation (3.18) satisfying the boundary conditions
(3.19) is obtained in form of the Fourier series

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt).

We have to satisfy also the initial conditions

w(x,0) = w0(x), w,t(x,0) = v0(x).

With the above solution we obtain from the initial conditions√
2
l

∞

∑
j=1

a j sin
jπ
l

x = w0(x),

√
2
l

∞

∑
j=1
ω jb j sin

jπ
l

x = v0(x).

(3.23)

To determine the unknown coefficients a j and b j we multiply these equations with

the eigenfunction qk(x) =
√

2
l sin kπ

l x and integrate over x from 0 to l. Using the
orthogonality and normalization conditions, we obtain

a j =

√
2
l

∫ l

0
w0(x)sin

jπ
l

xdx, b j =

√
2
l

1
ω j

∫ l

0
v0(x)sin

jπ
l

xdx.
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In the harmonic analysis [12, 56] it is proved that if functions w0(x) and v0(x) are
continuous and piecewise continuously differentiable, then the Fourier series (3.23)
converge uniformly to w0(x) and v0(x) in the interval (0, l). Thus, the eigenfunctions
found above form a complete orthogonal basis for this class of initial data.

3.3 Beam

Bernoulli-Euler’s Beam Theory. Under beam we mean a thin elastic body whose
undeformed axis is a straight segment of length l. The thickness h of the beam is
assumed to be much smaller than its length l. Let x be the coordinate along the
beam axis, x ∈ (0, l), and w(x, t) the transverse displacement of the beam axis in the
(x,y)-plane (see Fig. 3.8).

x

w(x,t)

Fig. 3.8 Flexural vibration of beam

According to Bernoulli-Euler’s beam theory the kinetic energy density of the
beam is equal to

K(w,t ) =
1
2
μw2

,t ,

where μ is the mass per unit length. The internal energy density of the beam must
be a quadratic function of the curvature of the deformed beam axis w,xx

U(w,xx) =
1
2

EJ(w,xx)
2,

with EJ being the bending stiffness. Thus, the action functional reads

I[w(x, t)] =
∫ t1

t0

∫ l

0
L(w,xx,w,t)dxdt,

where

L(w,xx,w,t ) =
1
2
μw2

,t −
1
2

EJ(w,xx)
2. (3.24)

The difference between this Lagrangian and those in the previous Section is the
presence of the second derivative in the internal energy density.

We first consider the case of clamped edges such that

w(0, t) = w(l, t) = 0, w,x(0, t) = w,x(l, t) = 0. (3.25)

The second condition of (3.25) means the vanishing rotation angle of the beam about
the clamped edge. Hamilton’s variational principle of least action for the beam states
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that among all admissible motions w(x, t) satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x)

and the boundary conditions (3.25) the true motion is the extremal of the action
functional

δ I[w(x, t)] = δ
∫ t1

t0

∫ l

0
L(w,xx,w,t )dxdt = 0.

To derive the equation of flexural vibration from this variational principle we calcu-
late the first variation of the action functional

δ I =
∫ t1

t0

∫ l

0
(μw,tδw,t −EJw,xxδw,xx)dxdt = 0. (3.26)

Integrating by parts over x and t and using the initial and end conditions as well as
the clamped boundary conditions, we obtain

δ I =
∫ t1

t0

∫ l

0
(−μw,tt −EJw,xxxx)δwdxdt = 0.

Since δw can be chosen arbitrarily inside the region (0, l)× (t0, t1), the variational
equation implies that

μw,tt +EJw,xxxx = 0. (3.27)

Note that Hamilton’s principle applies to other boundary conditions as well. Prac-
tically, there are three types of boundary conditions at x∗ (x∗ = 0 or x∗ = l) corre-
sponding to:

a) Clamped edge: w(x∗, t) = w,x(x∗, t) = 0.
b) Simply supported edge: w(x∗, t) = 0, but w,x(x∗, t) may be varied arbitrarily.
c) Free edge: both w(x∗, t) and w,x(x∗, t) may be varied arbitrarily.

Provided equation (3.27) is fulfilled, we reduce equation (3.26) for the variations
not vanishing at the boundaries to

δ I =
∫ t1

t0
(−EJw,xxδw,x +EJw,xxxδw)|x=l

x=0 dt = 0.

Thus, from the last equation we see that, in case b) the additional boundary condition
obtained from Hamilton’s principle is

w,xx(x∗, t) = 0,

which means the vanishing bending moment. In case c) the boundary conditions
read

w,xx(x∗, t) = 0, w,xxx(x∗, t) = 0,

which mean the vanishing bending moment and shear force. Contrary to the kine-
matic (or essential) boundary conditions of the type w(x∗, t) = 0 or w,x(x∗, t) = 0, the
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additional boundary conditions derived from Hamilton’s principle are called natural
boundary conditions.

Solution. The method of solution is quite similar to that considered in previous
Section. We first seek a particular solution of the form

w(x, t) = q(x)u(t).

The separation of variables in (3.27) leads to

ü
u
=−EJ

μ
q′′′′

q
.

The left-hand side expression depends on t while its right-hand side counterpart
depends only on x, therefore two ordinary differential equations follow

ü+ω2u = 0,

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ. The solution of the second equation reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Consider, for example, the beam which is simply supported at x = 0 and x = l. In
this case the boundary conditions require that

q(0) = q′′(0) = 0, q(l) = q′′(l) = 0.

So we get four homogeneous equations for four coefficients C1, C2, C3, and C4.
Dividing the equations q′′(0) = 0 and q′′(l) = 0 by κ2 and rewriting them in one
matrix equation, we have

⎛
⎜⎜⎝

0 1 0 1
0 −1 0 1

sinλ cosλ sinhλ coshλ
−sinλ −cosλ sinhλ coshλ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

where λ = κ l. The non-trivial solution exists if the determinant of the matrix van-
ishes giving

sinλ sinhλ = 0 ⇒ λ j = jπ , j = 1,2, . . . . (3.28)

For λ j = jπ the above equation implies that C1 �= 0, C2 = C3 = C4 = 0. We fix C1

by the normalization condition

∫ l

0
q2

j(x)dx = 1 ⇒ q j(x) =

√
2
l

sin
jπ
l

x.
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Thus, the eigenfunctions q j(x) for the beam with the supported edges remain the
same as the shapes of normal modes of the string.

With λ j = jπ we obtain for the eigenfrequencies

ω j = λ 2
j

√
EJ
μ l4 = ( jπ)2

√
EJ
μ l4 , j = 1,2, . . . . (3.29)

Note that the frequencies are proportional to j2. The first equation for u(t) has the
solution

u(t) = a j cosω jt + b j sinω jt.

Now, the general solution is obtained in form of the Fourier series

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt),

where the coefficients a j and b j should be determined from the initial data w0(x)
and v0(x) by using the orthogonality condition.

Table 3.1 The frequency equations

Boundary conditions Frequency equation
free-free 1−cosλ coshλ = 0

supported-free tanλ − tanhλ = 0
clamped-free 1+cosλ coshλ = 0

supported-supported sinλ = 0
clamped-supported tanλ − tanhλ = 0
clamped-clamped 1−cosλ coshλ = 0

2 4 6 8 10

-1

-0.5

0.5

1

1/coshλ cosλ

λ2
λ1 λ3 λ

Fig. 3.9 Roots of the frequency equation 1/coshλ = cosλ

The modal analysis of the beam with other boundary conditions is similar and
the frequency equations are summarized in Table 3.1. Knowing the roots of the fre-
quency equations, one finds the eigenfrequencies in accordance with (3.29). Con-
sider for example the free-free or clamped-clamped edges, for which the frequency
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equation is 1/coshλ = cosλ . The roots of this transcendental equation correspond
to the λ -coordinates of the intersection points of the curves 1/coshλ and cosλ
shown in Fig. 3.9, from which it is seen that for j > 3 we have approximately
λ j ≈ (2 j + 1)π/2. Note that the beams with the free edges or with one simply
supported edge and one free edge possess also zero frequencies as these types of
boundary conditions admit rigid-body motions.

3.4 Membrane

Differential Equation of Motion. Under membrane we mean a thin pre-stretched
elastic body with negligible bending stiffness whose thickness is much smaller than
other characteristic lengths. The pre-stress is assumed to be large, and the change of
stresses in the membrane during its vibration is negligibly small compared with the
pre-stress. We shall model the membrane by a two-dimensional continuum occupy-
ing the area A in its plane. Let x1 and x2 be the Cartesian coordinates in this plane,
x = (x1,x2) ∈ A, and w(x, t) the small transverse displacement of the membrane in
the x3-direction. Hamilton’s variational principle of least action states that, among
all admissible motions w(x, t) satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x),

as well as the boundary conditions

w(x, t) = 0 for x ∈ ∂A, (3.30)

the true motion is the extremal of the action functional

I[w(x, t)] =
∫ t1

t0

∫
A

L(w,w,α ,w,t )dxdt.

Here and in what follows, Greek indices numerating the coordinates run from 1 to
2, the comma in indices denotes partial derivatives with respect to the correspond-
ing coordinates, and dx = dx1dx2 is the area element. From Hamilton’s variational
principle we derive Euler-Lagrange’s equation (see Section 3.6)

∂
∂ t

∂L
∂w,t

+
∂
∂xα

∂L
∂w,α

− ∂L
∂w

= 0. (3.31)

We use for short Einstein’s summation convention according to which all the terms
with repeated indices will be summed up over these indices from 1 to 2. For exam-
ple, the second term in the above equation reads

∂
∂xα

∂L
∂w,α

=
∂
∂x1

∂L
∂w,1

+
∂
∂x2

∂L
∂w,2

.
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The motion of membrane is thus governed by the Lagrangian

L(w,w,α ,w,t) = K(w,t)−U(w,w,α),

where K(w,t) is the kinetic and U(w,w,α ) the internal energy densities. The kinetic
energy density of the membrane is equal to

K(w,t ) =
1
2
μw2

,t ,

with μ being the mass per unit area. The internal energy density (per unit area) must
be a function of the strains εαβ : U =U(εαβ ). Without restricting generality we may
regard the strains in the pre-stretched state as ε = 0, and expand the energy density
in Taylor’s series near this state:

U(εαβ ) =U(0)+
∂U
∂εαβ

∣∣∣∣
εαβ=0

εαβ + . . . .

Neglecting the unessential constant U(0) as well as terms of higher orders and as-
suming that ∂U/∂εαβ |0 = Sδαβ , with S being the pre-stress, we obtain

U(ε) = Sεαα .

Since εαα describes the increase in area of the membrane, which, for the small
transverse displacement with w,α � 1, is equal to

εαα =
√

1+w,αw,α − 1 ≈ 1
2

w,αw,α ,

the internal energy density does not depend on w, U(w,w,α) =
1
2 Sw,αw,α . Thus, the

Lagrangian reads

L(w,w,α ,w,t ) =
1
2
μw2

,t −
1
2

Sw,αw,α .

Plugging this into the equation of motion (3.31), we get finally

μw,tt − SΔw = 0,

where Δw = w,αα is Laplace’s operator applied to w. Bringing the second term to
the right-hand side and dividing by μ , we reduce the above equation to the standard
form

w,tt = c2Δw, c =

√
S
μ
. (3.32)

Solution. We separate the variables x and t by seeking the particular solution in the
form

w(x, t) = q(x)u(t).
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Substitution in (3.32) together with the standard arguments lead to

ü+ω2u = 0,

Δq+λq = 0,
(3.33)

where λ = ω2/c2. The second equation of (3.33) is subject to the boundary condi-
tion

q(x) = 0 at x ∈ ∂A.

The solution of this eigenvalue problem in closed analytical form is possible for
rectangular and circular membranes. We consider these special cases.

Rectangular membrane. Let a and b denote the width and the height of the rectangle
so that A = (0,a)× (0,b). We look for the solution of (3.33)2 in the form

q(x) = X1(x1)X2(x2).

The standard separation of variables leads to

X ′′
1

X1
=−X ′′

2

X2
−λ =−α2.

The equation for X1(x1),
X ′′

1 +α2X1 = 0,

together with the boundary conditions

X1(0) = X1(a) = 0,

yields
X1(x1) =C1 sinαx1,

where
α = j1

π
a
, j1 = 1,2, . . . .

Similarly, the equation for X2(x2),

X ′′
2 +β 2X2 = 0,

with β 2 = λ −α2, together with the boundary conditions

X2(0) = X2(b) = 0,

implies that
X2(x2) =C2 sinβx2,

where
β = j2

π
b
, j2 = 1,2, . . . .
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Denoting by j the vector ( j1, j2), we present the eigenfunctions in the form

q j(x) =C sin
j1πx1

a
sin

j2πx2

b
, j1, j2 = 1,2, . . . .

The corresponding eigenvalues belonging to the spectrum of the rectangular mem-
brane are2

λ j =
(ω j

c

)2
= α2 +β 2 = π2

(
j2
1

a2 +
j2
2

b2

)
.

We may fix the constant C by the normalization condition

∫
A

q2
j(x)dx = 1 ⇒ C =

2√
ab

.

One can also easily prove that
∫

A
q j(x)qk(x)dx = 0 for j �= k.

Mention that multiple eigenvalues may occur. For rectangles with rational ratios a : b
this is always the case. For instant, if a = b (the square membrane), then j′ = ( j2, j1)
gives the same eigenvalue as j = ( j1, j2). Together with the solution of (3.33)1

u j(t) = a j cosω jt + b j sinω jt,

we construct the general solution of (3.32) by the linear superposition principle

w(x, t) =
2√
ab

∞

∑
j1, j2=1

sin
j1πx1

a
sin

j2πx2

b
(a j cosω jt + b j sinω jt).

Taking into account the initial conditions

w(x,0) = w0(x), w,t(x,0) = v0(x),

we obtain

2√
ab

∞

∑
j1, j2=1

a j sin
j1πx1

a
sin

j2πx2

b
= w0(x1,x2),

2√
ab

∞

∑
j1, j2=1

ω jb j sin
j1πx1

a
sin

j2πx2

b
= v0(x1,x2).

The orthogonality property can be used to find the coefficients a j and b j from the
initial data w0(x) and v0(x). In the harmonic analysis [12, 56] it is proved that if

2 Let us mention in this connection one interesting and still not completely solved mathe-
matical problem: are there two distinct shapes of membrane having the same spectrum?
This question was originally posed by Hermann Weyl and rephrased later by Mark Kac in
the following way: ”Can one hear the shape of a drum?” (see [22]).
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functions w0(x) and v0(x) are continuous and piecewise continuously differentiable,
then the double Fourier series converge uniformly to w0(x) and v0(x) in the square
(0,a)× (0,b). Thus, the eigenfunctions found above form a complete orthogonal
basis for this class of initial data.

Circular membrane. For the circular membrane we choose the polar coordinates r
and ϑ (see Fig. 3.10) in which equation (3.33)2 takes the form

q,rr +
1
r

q,r +
1
r2 q,ϑϑ +λq = 0.

Looking for the solution of this equation as the product

q(r,ϑ) = R(r)Θ(ϑ)

and separating the variables, we obtain

R′′+R′/r+λR
R/r2 =−Θ

′′

Θ
= κ2.

r

x1

x2

θ

Fig. 3.10 Circular membrane and polar coordinates

Consider first the equation forΘ(ϑ)

Θ ′′+κ2Θ = 0,

which yields the solution

Θ(ϑ) = α cosκϑ +β sinκϑ .

It is obvious that functionΘ(ϑ) must be periodic with the period 2π

Θ(2π) =Θ(0), Θ ′(2π) =Θ ′(0).

The periodicity implies that κ = j, where j is a nonnegative integer j = 0,1,2, . . ..
Then the equation for R(r) becomes Bessel’s equation [51]
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R′′+
1
r

R′+
(
ω2

c2 − j2

r2

)
R = 0.

Its solution is expressed in terms of Bessel’s function of order j

R = Jj(
ωr
c
).

The boundary condition (3.30) at r = rm, with rm being the radius of the membrane,
requires that

Jj(
ωrm

c
) = 0.

Thus, the eigenfrequencies are obtained from the zeros of Bessel’s function Jj(x),
which we denote by ξ jk, k = 1,2, . . .. The eigenfunctions now read

q jk(r,ϑ) = Jj(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ).

The constants α jk and β jk may still be arbitrary, indicating that ξ jk with j �= 0 are at
least double eigenvalues.

Together with the solution of (3.33)1

u jk(t) = a jk cosω jkt + b jk sinω jkt,

we construct the general solution of (3.32) by the linear superposition principle

w =
∞

∑
j=0,k=1

Jj(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ)(a jk cosω jkt + b jk sinω jkt).

Then the initial conditions

w(r,ϑ ,0) = w0(r,ϑ), w,t(r,ϑ ,0) = v0(r,ϑ),

yield

∞

∑
j=0,k=1

a jkJj(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ) = w0(r,ϑ),

∞

∑
j=0,k=1

b jkω jkJ j(ξ jkr/rm)(α jk cos jϑ +β jk sin jϑ) = v0(r,ϑ).

One can again prove that if functions w0(r,ϑ) and v0(r,ϑ) are continuous, piecewise
continuously differentiable, and periodic in ϑ with the period 2π , then the above
double series converge uniformly to them in the domain (0,rm)× (0,2π). Thus, the
eigenfunctions found above form a complete orthogonal basis for this class of initial
data.
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3.5 Plate

Kirchhoff’s Plate Theory. Under plate we mean a thin elastic body occupying in
its undeformed state a region A× (−h/2,h/2) of the three-dimensional Euclidean
point space, where A is an area in the (x1,x2)-plane. The thickness h of the plate is
assumed to be much smaller than the characteristic sizes of A. We shall model the
plate by a two-dimensional continuum. Let x = (x1,x2) ∈ A and w(x, t) be the small
transverse displacement of the middle plane in the x3-direction (see Fig. 3.11).

w(x,t)

Fig. 3.11 A thin plate and transverse displacement of the middle plane

According to Kirchhoff’s plate theory [24] the kinetic energy density of the plate
is equal to

K(w,t) =
1
2
ρhw2

,t ,

where ρ is the mass density. The internal energy density of the plate must be a
quadratic function of the curvature of the deformed middle surface w,αβ

U(w,αβ ) =
μh3

12
(σw2

,αα +w,αβw,αβ ),

with σ = λ
λ+2μ , λ and μ being the Lamé constants of the elastic material. Thus, the

action functional reads

I[w(x, t)] =
∫ t1

t0

∫
A

L(w,αβ ,w,t )dxdt,

where

L(w,αβ ,w,t) =
1
2
ρhw2

,t −
μh3

12
(σw2

,αα +w,αβw,αβ ). (3.34)

The difference between this action functional and that of the membrane is the
presence of the second partial derivatives in the internal energy density. The deriva-
tion of (3.34) from the three-dimensional elasticity theory based on the variational-
asymptotic method is given in [31].

Since L depends on w,αβ , the action functional “feels” the change of the deriva-
tive of w at the boundary ∂A. If the edge of the plate is free, then it is natural to
assume that no constraints are imposed on w at the boundary. If the edge of the plate
is clamped, we let I[w] be defined on the space of admissible displacement fields
w(x, t) satisfying the kinematic boundary conditions
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w(x, t) = 0, w,ανα = 0 at x ∈ ∂A, (3.35)

where να denotes the components of the outward unit vector normal to the curve
∂A. The last condition of (3.35) expresses the fact that the rotation angle of the plate
about the clamped edge vanishes. Finally, if the edge is simply supported, then only
the displacement should vanish

w(x, t) = 0 at x ∈ ∂A. (3.36)

Hamilton’s variational principle states that, among all admissible motions w(x, t)
satisfying the initial and end conditions

w(x, t0) = w0(x), w(x, t1) = w1(x),

as well as the kinematic boundary conditions, the true motion is the extremal of the
action functional

δ I = 0.

In order to derive the equations of motion of the plate let us calculate the variation
of the action functional

δ I =
∫ t1

t0

∫
A
(ρhw,tδw,t −mαβδw,αβ )dxdt, (3.37)

where

mαβ =
∂U
∂w,αβ

= μ
h3

6
(σw,γγ δαβ +w,αβ ).

From equation (3.37) one can see that mαβ “works” on the bending (or change of
the curvature) of the plate. Therefore it is natural to call mαβ bending moments.

Integrating (3.37) by parts with the help of Gauss’ theorem, we obtain for the
variations vanishing at the boundary ∂A

δ I =
∫ t1

t0

∫
A
(−ρhw,tt −mαβ ,αβ)δwdxdt = 0.

Since δw is arbitrary inside the region A× (t0, t1), we conclude that

ρhw,tt +mαβ ,αβ = 0 or ρhw,tt +DΔΔw = 0, (3.38)

where

D = μ(σ + 1)
h3

6
=

Eh3

12(1−ν2)

is the bending stiffness of the plate. This is the two-dimensional equation of flexural
vibration of the thin plate.

Provided the equation (3.38) is fulfilled, we reduce the equation δ I = 0 for the
variations not vanishing at the boundary to
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∫ t1

t0

∫
∂A
(mαβ ,βναδw−mαβδw,ανβ )dsdt = 0, (3.39)

where ds is the length element. Now we need to select independent variations at the
boundary. The gradient δw,α may be resolved in the normal and tangential direc-
tions to the boundary as follows:

δw,α = νανγδw,γ + τατγδw,γ .

This is due to the identity δαγ = νανγ + τατγ , with τα being the components of the
vector tangential to the curve ∂A. Since τγδw,γ = dδw/ds, we can integrate by parts
that term in (3.39) containing it to get

∫ t1

t0

∫
∂A
[mαβ ,βναδw+

d
ds

(mαβ τανβ )δw−mαβνανβ νγδw,γ ]dsdt = 0.

For the free edge of the plate the variations δw and νγδw,γ are arbitrary at ∂A; hence

mαβ ,βνα +
d
ds

(mαβ τανβ ) = 0,

mαβ νανβ = 0.
(3.40)

These are the free-edge boundary conditions. For the clamped edge, the kinematic
boundary conditions (3.35) should be fulfilled. If the edge is simply supported,
(3.36) and (3.40)2 are the boundary conditions at ∂A.

Frequency Spectra of Circular Plate. We investigate the free vibrations of a cir-
cular plate of radius rm. We look for solutions of the form

w(x, t) = q(x)u(t).

The standard separation of variables x and t leads to

DΔΔq−ρhω2q = 0, (3.41)

where ω is the frequency of vibration. We introduce the dimensionless variables

ζα =
xα
rm

, β 4 = ω2ρhr4
m/D =

6ρω2r4
m

μ(σ + 1)h2 .

Now we transform (3.41) to the dimensionless form

(ΔΔ −β 4)q = (Δ +β 2)(Δ −β 2)q = 0. (3.42)

Therefore the solution of (3.42) may be written as

q = q1 + q2,
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where functions q1, q2 satisfy respectively

Δq1 +β 2q1 = 0,

Δq2 −β 2q2 = 0.
(3.43)

These equations can be solved again by the separation of variables. In the polar
coordinates r, ϑ (see Fig. 3.10) we have

Δq =
∂ 2q
∂ r2 +

1
r
∂q
∂ r

+
1
r2

∂ 2q
∂ϑ 2 .

Assuming q1 = R1(r)Θ1(ϑ), from (3.43)1 we obtain the following differential equa-
tion forΘ1(ϑ)

Θ ′′
1 =−κ2Θ1.

Since Θ1(ϑ) must be periodic with the period 2π , we find that κ = j, where j is a
nonnegative integer, j = 0,1,2, . . ., and

Θ1(ϑ) = cos jϑ or Θ1(ϑ) = sin jϑ .

Then the equation for R1(r) reads

R′′
1 +

1
r

R′
1 +(β 2 − j2

r2 )R1 = 0.

This is Bessel’s equation of order j, which has the following non-singular solution

R1 = aJj(β r).

Combination of R1 andΘ1 yields

q1 = aJj(β r)

{
cos jϑ
sin jϑ

.

For q2 = R2(r)Θ2(ϑ) the same results are obtained for Θ2(ϑ), while for R2(r) the
modified Bessel’s equation holds true

R′′
2 +

1
r

R′
2 − (β 2 +

j2

r2 )R2 = 0.

The non-singular solution of this equation is given by

R2 = bIj(β r),

where I j(x) is the modified Bessel’s function of order j. Combining q1 and q2, we
get finally
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q = [aJj(β r)+ bIj(β r)]

{
cos jϑ
sin jϑ

. (3.44)

Consider the simplest case of the clamped edge, for which the boundary
conditions

q|r=1 =
∂
∂ r

q|r=1 = 0 (3.45)

hold true. Substituting (3.44) into (3.45) and equating the determinant to zero, we
obtain the following frequency equation:

Jj(β )I′j(β )− I j(β )J′j(β ) = 0. (3.46)

The three lowest roots β jk of (3.46) for j = 0,1,2 are given in the following table:

k j = 0 j = 1 j = 2
1 3.196 4.611 5.906
2 6.306 7.799 9.197
3 9.439 10.958 12.402

j=0,k=1 j=0,k=2

j=1,k=1 j=2,k=1

Fig. 3.12 Few normal modes of clamped circular plate

The frequencies of vibrations should be calculated by the formula

ω jk =
β 2

jkh

r2
m

√
μ

6(1−ν)ρ ,

while the corresponding eigenfunctions are given by

q jk = [Jj(β jkr)− Jj(β jk)

I j(β jk)
I j(β jkr)]

{
cos jϑ
sin jϑ

.
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A few of the deformed shapes of the plate are shown in Fig. 3.12. Chladni invented
an experimental method of observing the nodal lines of vibrations of a plate by
pouring a thin layer of sand on its upper face: during the vibration the sand-grains
will move to the nodal lines. Such nodal patterns are called Chladni’s figures.3

Let us turn to the case of the free edge. The displacement w should then satisfy
the boundary conditions (3.40). In the polar coordinates r, ϑ we have

mαβ ,βνα = μ
h3

6
(σ + 1)

∂
∂ r
Δq,

mαβ τανβ = μ
h3

6
1
r
(
∂ 2q
∂ r∂ϑ

− 1
r
∂q
∂ϑ

),

mαβνανβ = μ
h3

6
(σΔq+

∂ 2q
∂ r2 ).

Substituting these into (3.40), we obtain the following conditions at the boundary
r = 1:

[(σ + 1)
∂
∂ r
Δq+

∂ 3q
∂ r∂ϑ 2 − ∂ 2q

∂ϑ 2 ]|r=1 = 0,

(σΔq+
∂ 2q
∂ r2 )|r=1 = 0.

(3.47)

With q from (3.44) we transform (3.47) to

a{−β 3J′j(β )+ (1−ν) j2[Jj(β )−βJ′j(β )]}
+b{β 3I′j(β )+ (1−ν) j2[I j(β )−β I′j(β )]}= 0,

a{−β 2Jj(β )+ (1−ν)[ j2Jj(β )−βJ′j(β )]}
+b{β 2I j(β )+ (1−ν)[ j2I j(β )−β I′j(β )]}= 0.

(3.48)

The frequency equation is obtained by the condition of vanishing determinant of
(3.48). When j = 0, the frequency equation can be presented in a simple form

2(1−ν)+β J0(β )
J′0(β )

−β I0(β )
I′0(β )

= 0.

The three lowest roots β jk of the frequency equation for j = 0,1,2 and ν = 0.31
have the following values:

k j = 0 j = 1 j = 2
1 0.0 0.0 2.308
2 3.004 4.526 5.938
3 6.202 7.735 9.185

3 One can see such experiments as well as various Chladni’s figures, for instance, on the
following website: http://www.youtube.com/watch?v=Qf0t4qIVWF4

http://www.youtube.com/watch?v=Qf0t4qIVWF4
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j=0,k=2 j=2,k=1

Fig. 3.13 Two normal modes of free circular plate

The first two zero frequencies correspond to the translation q = a and small rota-
tion q= ar sinϑ of the plate without deformation. The frequency according to β21 is
the lowest one that is positive. Two deformed shapes of the plate for j = 0, k = 2 and
j = 2, k = 1 are shown in Figure 3.13. If we sum up all these particular solutions,
the obtained Fourier series converges again uniformly to the solution satisfying ar-
bitrary regular initial conditions. The approximate solution for the rectangular plate
can be found in [48].

3.6 General Continuous Oscillators

We present in this Section the variational principles for general continuous oscilla-
tors and the method of solution.

Conservative Systems. We model an arbitrary continuous oscillator by a contin-
uum occupying the region V in the d-dimensional space, where x = (x1, . . . ,xd)
denotes any point of V . We have in all applications d = 1,2,3. Suppose that each
configuration of this continuum is uniquely determined by a set of functions (fields)
u1(x), . . . ,un(x). If u1(x), . . . ,un(x) can vary independently and arbitrarily at each
point x of the continuum, they are called generalized displacements, and n a num-
ber of degrees of freedom at that point. Motion of the system is described by the
time dependent fields ui(x, t). We denote by ui,t = (u1,t , . . . ,un,t) the corresponding
velocities.

Hamilton’s variational principle. Hamilton’s variational principle of least action
states that among all admissible motions of the conservative system satisfying the
initial and end conditions

ui(x, t0) = ui0(x), ui(x, t1) = ui1(x),

as well as the boundary conditions

ui(x, t) = 0 at x ∈ ∂V , (3.49)

the true motion is the extremal of the action functional

I[ui(x, t)] =
∫ t1

t0

∫
V

L(x,ui,ui,α ,ui,t)dxdt.
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Here and in what follows, Latin indices numerating the degrees of freedom run from
1 to n, while Greek indices numerating the coordinates run from 1 to d, the comma
in indices denotes partial derivatives with respect to the corresponding coordinates,
and dx = dx1 . . .dxd is the volume element. Before deriving the equations of mo-
tion let us consider briefly, without detailed derivations, some further examples of
Lagrangian.

EXAMPLE 3.6. Timoshenko’s beam theory.

In this one-dimensional model (d = 1) we have two degrees of freedom at each
point x: the displacement of the beam axis w(x) and function ψ(x) describing the
first branch of the thickness-shear vibration of the cross-section. The Lagrangian of
the Timoshenko beam is given by

L =
1
2
ρh2(w2

,t +αh2ψ2
,t )−

1
2
μh2[sh2ψ2

,x +β
2α(ψ+w,x)

2], (3.50)

with ρ being the mass density, h the thickness of the cross-section, μ the shear
modulus, and α , s, and β the constants depending on the geometry of the cross-
section (see the derivation of this formula in [31]).

EXAMPLE 3.7. Reissner-Mindlin’s plate theory.

This is the two-dimensional model (d = 2) of the plate with three degrees of freedom
at each point: w(x) corresponding to the mean transverse displacement of the plate,
ψ1(x) and ψ2(x) describing the first branches of the thickness-shear vibration. The
Lagrangian of Reissner-Mindlin’s plate theory reads

L =
1
2
ρh(w2

,t +αh2ψ2
1,t +αh2ψ2

2,t)

− 1
2
μh[

h2

6
(σψ2

α ,α +ψ(α ,β )ψ(α ,β ))+απ2(ψα +w,α)(ψα +w,α)],

where

ψ(α ,β ) =
1
2
(ψα ,β +ψβ ,α), α =

1
2

(
π2

24

)2

and all other notations remain the same as for Kirchhoff’s plate theory (see [31] for
the derivation of this theory as well as many other shell and rod theories).

EXAMPLE 3.8. Acoustic vibrations (sound waves).

Small amplitude vibrations of ideal compressible fluids (or ideal gases) are governed
by the equations of motion of these media linearized about their equilibrium state
[8,45]. The velocity potentialϕ(x) is regarded as the only generalized displacement,
so in 3-D case we have d = 3 and n = 1. The Lagrangian reads

L =
1
2
ρ0(ϕ,αϕ,α − 1

c2ϕ
2
,t ),
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where ρ0 is the equilibrium mass density and c =
√
∂ p/∂ρ |ρ0 the speed of sound,

with p being the pressure. The interesting feature of this Lagrangian is that its first
term corresponds to the kinetic energy, while the second term describes the devia-
tion of the internal energy density from that of the equilibrium state. However, the
governing equation does not change if we change the sign of L and interpret the
second term as the kinetic energy, while the first term as the potential energy.

EXAMPLE 3.9. Vibrations of a three-dimensional elastic body.

Vibrations of a three-dimensional elastic body are best described within the 3-D
elasticity theory [33], for which d = n = 3. At each point x of the body we have
three displacements uα(x), α = 1,2,3. The Lagrangian reads

L =
1
2
ρ(x)uα ,tuα ,t − 1

2
Eαβγδ (x)εαβ εγδ ,

where ρ(x) is the mass density,

εαβ =
1
2
(uα ,β + uβ ,α)

are the components of the strain tensor and Eαβγδ (x) the elastic moduli. For homo-
geneous bodies ρ and Eαβγδ do not depend on x.

EXAMPLE 3.10. Vibrations of a three-dimensional piezoelectric body.

Piezoelectric crystals and ceramics are widely used as sensors and actuators for
the active vibration control [31, 42]. Their vibrations are described within the 3-D
dynamic theory of piezoelectricity, for which d = 3 and n = 4. At each point x of
the body we have three displacements uα(x), α = 1,2,3 and the electric potential
ϕ(x). The Lagrangian reads

L =
1
2
ρuα ,tuα ,t − (

1
2

cE
αβγδ εαβ εγδ − eαβγεαβEγ − 1

2
εS
αβEαEβ ),

where

εαβ =
1
2
(uα ,β + uβ ,α) and Eα =−ϕ,α

are the components of the strain tensor and the electric field, respectively.
Let us derive the equations of motion from Hamilton’s variational principle. To

this end we calculate the variation of the action functional

δ I =
∫ t1

t0

∫
V

(
∂L
∂ui

δui +
∂L
∂ui,α

δui,α +
∂L
∂ui,t

δui,t

)
dxdt.

As before we employ Einstein’s summation convention according to which all terms
with repeated indices will be summed up within their ranges. For example, the sec-
ond term in the above equation reads
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∂L
∂ui,α

δui,α =
n

∑
i=1

d

∑
α=1

∂L
∂ui,α

δui,α .

Integrating by parts over x and t with the help of Gauss’ theorem and using the
initial and end conditions as well as the boundary conditions, we obtain

δ I =
∫ t1

t0

∫
V

(
∂L
∂ui

− ∂
∂xα

∂L
∂ui,α

− ∂
∂ t

∂L
∂ui,t

)
δui dxdt = 0.

Since δui can be chosen independently and arbitrarily inside the region V × (t0, t1),
the variational equation implies Euler-Lagrange’s equations

∂
∂ t

∂L
∂ui,t

+
∂
∂xα

∂L
∂ui,α

− ∂L
∂ui

= 0, i = 1, . . . ,n. (3.51)

These equations are subject to the kinematic boundary conditions (3.49) for the
fixed boundary. For the free boundary δui may vary arbitrarily at ∂V , so the natural
boundary conditions

∂L
∂ui,α

να = 0 at ∂V , i = 1, . . . ,n,

must be used instead.
Thus, the motion of any conservative mechanical system is governed by a single

function, the Lagrangian, which is of the form

L(x,ui,ui,α ,ui,t) = K(x,ui,t)−U(x,ui,ui,α),

where K(x,ui,t) is the kinetic energy density and U(x,ui,ui,α) the internal energy
density. The kinetic energy density K(x,ui,t) is a positive definite quadratic form
with respect to ui,t

K(x,ui,t) =
1
2
ρi j(x)ui,tu j,t , (3.52)

where ρi j(x) is n× n symmetric matrix called a mass density matrix. Thus,

∂K
∂ui,t

ui,t = 2K(ui,t),

showing that K is a homogeneous function of order two with respect to ui,t . We
now prove that the conservation of energy follows from equations (3.51). Indeed,
multiplying (3.51) with ui,t and integrating over V , we obtain

∫
V

(
∂
∂ t
∂K
∂ui,t

ui,t +
∂
∂xα

∂L
∂ui,α

ui,t − ∂L
∂ui

ui,t

)
dx = 0.

Integrating the second term by parts using the boundary conditions and keeping in
mind the property of K, we get
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∫
V

[
∂
∂ t

(2K)− ∂L
∂ui,t

ui,tt − ∂L
∂ui,α

ui,αt − ∂L
∂ui

ui,t

]
dx = 0.

The last three terms in the integrand give −∂L/∂ t. Thus,

d
dt

E =
d
dt

∫
V
(K +U)dx = 0,

and the total energy E is conserved.
For small vibrations we may assume that both ui and ui,α are small and present

the internal energy density U as the quadratic form

U(x,ui,ui,α) =
1
2

Eiα jβ (x)ui,αu j,β +
1
2

Ai j(x)(ui −Bα(x)ui,α)(u j −Bβ (x)u j,β ).

(3.53)
The examples considered above show that the internal energy density U(x,ui,ui,α)
must be non-negative definite4 with respect to its arguments ui and ui,α , but not
necessarily positive definite. The internal energy density may vanish for example at
rigid-body motions if the boundary conditions admit such motions. Concerning the
coefficients of this quadratic form we require the following symmetry properties

Ai j(x) = A ji(x), Eiα jβ (x) = E jβ iα(x).

Taking these symmetry properties into account, we get for the partial derivatives of
the Lagrangian with respect to ui and ui,α the following formulas

∂L
∂ui

=−∂U
∂ui

=−Ai j(u j −Bβu j,β ),

∂L
∂ui,α

=− ∂U
∂ui,α

=−Eiα jβu j,β +Ai jBα(u j −Bβu j,β ),

where the argument x of the coefficients is suppressed for short. Substituting these
formulas into Euler-Lagrange’s equations, we obtain the equations of motion

ρi ju j,tt − (Eiα jβu j,β ),α +(Ai jBα(u j −Bβu j,β )),α +Ai j(u j −Bβu j,β ) = 0.

These equations can be presented also in the operator form as follows

Mu,tt +Ku = 0, (3.54)

where M is the mass density matrix and K the differential operator, called a stiffness
operator, which maps the vector-valued function u(x, t) (having n components) into
the vector-valued function according to

4 Except piezoelectric bodies considered in example 3.10 where U represents the electric
enthalpy. Using Legendre transformation we can obtain the non-negative definite internal
energy in terms of the strain tensor and the electric induction field [31].
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(Ku)i =−(Eiα jβu j,β ),α +(Ai jBα(u j −Bβu j,β )),α +Ai j(u j −Bβu j,β ).

We have to find the solution of (3.54) satisfying the initial conditions

u(x,0) = u0(x), u,t(x,0) = v0(x). (3.55)

and the boundary conditions (3.49) (or the natural boundary conditions for the free
boundary).

Solution. We seek a particular solution of (3.54) in the form

u(x, t) = q(x)w(t).

Separating the variables x and t as usual, we arrive at the eigenvalue problem

(K−λM)q = 0, (3.56)

subject to the boundary condition

q = 0 at x ∈ ∂V ,

where λ = ω2, ω being the eigenfrequency. It turns out that all eigenvalues are real
and non-negative. Indeed, if λ is an eigenvalue and q(x) a corresponding eigenfunc-
tion, then, by taking the scalar product of (3.56) with q(x) we have

〈q,Kq〉−λ 〈q,Mq〉= 0.

Here and in what follows the scalar product between two vector-valued functions
u(x) and v(x) is defined by

〈u,v〉 ≡
∫

V
ui(x)vi(x)dx.

Thus,

λ =
〈q,Kq〉
〈q,Mq〉 .

The numerator can be transformed by the integration by parts using the boundary
conditions giving

〈q,Kq〉=
∫

V
qi[−(Eiα jβq j,β ),α +(Ai jBα(q j −Bβq j,β )),α +Ai j(q j −Bβq j,β )]dx

=

∫
V
[Eiα jβqi,αq j,β +Ai j(qi −Bαqi,α)(q j −Bβq j,β )]dx = 2

∫
V

U(x,qi,qi,α)dx,

so 〈q,Kq〉 ≥ 0. Since the denominator 〈q,Mq〉 = 2
∫

V K(x,qi)dx is positive, the
eigenvalue λ is non-negative. The expression for λ is Rayleigh’s quotient, for which
extremal properties of eigenfrequencies of a continuous oscillator can be established
(see exercise 3.11).
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Note that the stiffness operator K is self-adjoint in the following sense: for arbi-
trary two functions u(x) and v(x)

〈u,Kv〉= 〈v,Ku〉.

Indeed, integrating the expression on the left-hand side by parts using the boundary
conditions and the symmetry properties of Ai j(x) and Eiα jβ (x), we have

〈u,Kv〉=
∫

V
ui[−(Eiα jβ v j,β ),α +(Ai jBα(v j −Bβv j,β )),α +Ai j(v j −Bβv j,β )]dx

=

∫
V
[Eiα jβui,αv j,β +Ai j(ui −Bαui,α)(v j −Bβv j,β )]dx

=

∫
V

vi[−(Eiα jβu j,β ),α +(Ai jBα(u j −Bβu j,β )),α +Ai j(u j −Bβu j,β )]dx,

and thus 〈u,Kv〉= 〈v,Ku〉. The self-adjointness of K implies the following orthog-
onality property: two eigenfunctions q1,q2 corresponding to two different eigenval-
ues λ1 �= λ2 are orthogonal in the following sense

〈q1,Mq2〉= 0, 〈q1,Kq2〉= 0.

To show this we multiply equation (3.56) for λ1 with q2 to get

〈q2,Kq1〉= λ1〈q2,Mq1〉.

Similar procedure applied to the equation for λ2 gives

〈q1,Kq2〉= λ2〈q1,Mq2〉.

Subtracting these equations from each other and using the symmetry of M and the
self-adjointness of K, we obtain

(λ1 −λ2)〈q1,Mq2〉= 0,

which implies the orthogonality. We choose the following normalization condition
for the eigenfunctions

〈q j ,Mq j〉= 1.

Provided the region V is compact and the operator K is self-adjoint and non-
negative definite, one can show that the problem (3.56) has a countable set of eigen-
values

0 ≤ λ1 ≤ λ2 ≤ . . . , lim
j→∞

λ j =+∞,

called a spectrum of the continuous oscillator. Based on this result we can now
solve the initial boundary-value problem by combining the eigenfunctions with the
solutions for wj(t)
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wj(t) = a j cosω jt + b j sinω jt

to present the general solution of (3.54) in form of the series

u(x, t) =
∞

∑
j=1

q j(x)(a j cosω jt + b j sinω jt).

The initial conditions (3.55) lead to

∞

∑
j=1

a jq j(x) = u0(x),
∞

∑
j=1

b jω jq j(x) = v0(x).

Multiplying these equations with Mqi and making use of the orthogonality and nor-
malization conditions, we get

ai = 〈u0,Mqi〉, bi =
1
ωi

〈v0,Mqi〉.

For the compact region V one can prove that the eigenfunctions form an orthogonal
basis in the space of continuous and piecewise continuously differentiable functions
(see, e.g., [12]) and the Fourier series converges uniformly to the solution if its initial
data u0 and v0 belong to this function space.

Dissipative Systems. For dissipative continuous oscillators the following varia-
tional principle holds true: among all admissible motions of an arbitrary dissipative
system constrained by the initial and end conditions

u(x, t0) = u0(x), u(x, t1) = u1(x),

as well as the boundary conditions (3.49), the true motion satisfies the variational
equation

δ
∫ t1

t0

∫
V

L(x,u,u,α ,u,t)dxdt −
∫ t1

t0

∫
V

(
∂D
∂ui,t

δui +
∂D
∂ui,αt

δui,α

)
dxdt = 0. (3.57)

Here D(x,ui,t ,ui,αt) is the dissipation function. Calculation of variation in exactly
the same manner as in the previous case leads to

∫ t1

t0

∫
V

(
∂L
∂ui

− ∂
∂xα

∂L
∂ui,α

− ∂
∂ t

∂L
∂ui,t

− ∂D
∂ui,t

+
∂
∂xα

∂D
∂ui,αt

)
δui dxdt = 0.

Due to the arbitrariness of δui inside the region V × (t0, t1) the following equations
are obtained

∂
∂ t

∂L
∂ui,t

+
∂
∂xα

∂L
∂ui,α

− ∂L
∂ui

+
∂D
∂ui,t

− ∂
∂xα

∂D
∂ui,αt

= 0, i = 1, . . . ,n.
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These equations are subject to the kinematic boundary conditions (3.49) for the fixed
boundary. For the free boundary the natural boundary conditions

(
∂L
∂ui,α

− ∂D
∂ui,αt

)
να = 0 at ∂V , i = 1, . . . ,n,

must be used instead.
Thus, the motion of continuous dissipative mechanical systems is governed by

two functions, the Lagrangian and the dissipation function. We take the Lagrangian
in the form

L(x,ui,ui,α ,ui,t) = K(x,ui,t)−U(x,ui,ui,α),

where the kinetic and potential energy densities are given by (3.52) and (3.53), re-
spectively. Concerning the dissipation function the most simple assumption is that
of proportional damping, for which

D(x,ui,t ,ui,αt) = αK(x,ui,t)+βU(x,ui,t,ui,αt),

with α and β being two constants. The first term in the right-hand side of this
equation is thought of as the external damping due to the resistance to motion by
the surrounding medium (say, the air resistance), while its second term is normally
referred to as the internal damping which must be proportional to the relative motion
of parts of the system. In this case, it is easy to show that the equation of motion can
be presented in the form

Mu,tt +Cu,t +Ku = 0, (3.58)

where M is the mass density matrix and K the stiffness operator obtained previously.
The operator C, called a damping operator, is given by

C = αM+βK.

Equation (3.58) is subject to the boundary conditions (3.49) and the initial condi-
tions (3.55).

Solution. We seek a particular solution of (3.58) in the form

u(x, t) = q j(x)wj(t),

where q j(x) is an eigenvector found from the eigenvalue problem (3.56) and wj(t)
an unknown scalar function. Substituting this Ansatz into (3.58) and taking into
account the proportionality property, we reduce this equation to

Mq j[ẅ j +(α+βω2
j )ẇ j +ω2

j w j] = 0.

Since Mq j �= 0, the expression in the square brackets must vanish giving

ẅ j +(α+βω2
j )ẇ j +ω2

j w j = 0.
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This ordinary differential equation can be solved by the method discussed in Sec-
tion 1.2. The general solution of (3.58) is obtained as the linear superposition of
these particular solutions. Thus, the problem reduces to solving a countable set of
uncoupled differential equations. Since the damping coefficients of these equations
increase with the frequencies, the amplitudes of high frequency modes decay much
faster than those of low-frequency modes. Thus, the truncation of the mass, stiff-
ness, and damping matrices makes sense and its error can be controlled if α and β
are known.

3.7 Exercises

EXERCISE 3.1. Derive the equations of motion for an infinite chain of atoms, where
each atom interacts with m nearest neighbors on the left as well as m nearest neigh-
bors on the right. Show the transition to the continuum.

Solution. Let u j be the displacements of atoms from their equilibrium positions.
Then the kinetic energy of this chain reads

K(u̇) =
1
2

m∑
j

u̇2
j .

The potential energy of the springs is

U(u) =
1
2∑j

m

∑
α=1

kα(u j − u j−α)2.

Lagrange’s equations of this chain lead to

mü j +
m

∑
α=1

[kα(u j − u j−α)− kα(u j+α − u j)] = 0.

We can represent these equations in the equivalent quasi-continuum form by using
the one-to-one correspondence between functions of discrete and continuous argu-
ments

u(x) = b∑
j

u( jb)δB(x− jb),

where b is the lattice constant. As shown in Section 3.1, the kinetic energy of the
chain becomes

K(u,t) =
∫

1
2
μu2

,t dx,

where μ = m/b. Let us rewrite the potential energy of the discrete chain in the form

U(u) =
1
2∑j,l

u jΦ( j− l)ul ,
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where Φ(− j) =Φ( j) and

Φ(0) = 2
m

∑
α=1

kα , Φ( j) =−k j for 0 < j ≤ m, Φ( j) = 0 for | j|> m.

In terms of u(x) the potential energy is given by

U(u) =
1
2

∫ ∞

−∞

∫ ∞

−∞
u(x)Φ(x− y)u(y)dxdy,

where

Φ(x) =
1

2π

∫ ∞

−∞
Φ(k)eikxdk,

and

Φ(k) =
1
b ∑| j|≤m

Φ( j)e−i jbk, k ∈ B.

Thus, the action functional can be presented in terms of the function u(x, t) as fol-
lows

I[u(x, t)] =
∫ t1

t0
dt
∫ ∞

−∞

[
1
2
μu2

,t −
1
2

∫ ∞

−∞
u(x, t)Φ(x− y)u(y, t)dy

]
dx.

Varying this action functional, we obtain the integral equation

μu,tt +
∫ ∞

−∞
Φ(x− y)u(y, t)dy = 0.

The continuum limit can be obtained by approximating function Φ(k) in the long
wave range |k| � 1:

Φ(k) =
2
b

m

∑
α=1

kα(1− cosαbk)≈
m

∑
α=1

kαα2

b
(bk)2.

With this approximation the equation of motion reduces to

μu,tt − Su,xx = 0,

where S = b∑m
α=1 kαα2.

EXERCISE 3.2. A string of length l is released from a position shown in Fig. 3.14.
Determine its motion.

Solution. The initial conditions of the string are

w(x,0) = w0(x) =

{
w0
a x for x < a,
w0
a−l (x− l) otherwise,

w,t(x,0) = 0.
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a l

w0

Fig. 3.14 Initial position of string

The solution to the equation of motion w,tt = c2w,xx satisfying the boundary condi-
tions w(0, t) = w(l, t) = 0 reads

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt),

where ω j = j πc
l . The initial conditions yield

√
2
l

∞

∑
j=1

a j sin
jπ
l

x = w0(x),

√
2
l

∞

∑
j=1

ω jb j sin
jπ
l

x = v0(x) = 0.

Thus, the coefficients b j vanish. To determine the coefficients a j, we use the orthog-
onality and normalization conditions to get

a j =

√
2
l

∫ l

0
w0(x)sin

jπ
l

xdx

=

√
2
l

[∫ a

0

w0

a
xsin

jπ
l

xdx+
∫ l

a

w0

a− l
(x− l)sin

jπ
l

xdx

]

=

√
2
l

⎡
⎣ lw0

(
l sin

(
πa j

l

)
−πa j cos

(
πa j

l

))
π2a j2

+
lw0

(
l
(

sin(π j)− sin
(
πa j

l

))
+π j(a− l)cos

(
πa j

l

))
π2 j2(a− l)

⎤
⎦

=

√
2
l

l3w0 sin
(
πa j

l

)
π2 j2a(l − a)

.

Finally, the solution takes the form

w(x, t) =
∞

∑
j=1

2l2w0 sin
(
πa j

l

)
π2 j2a(l − a)

sin
jπ
l

xcos j
πc
l

t.
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EXERCISE 3.3. An elastic bar of length l has its free end stretched uniformly so
that its length becomes l+u0, and then is released from that position (see Fig. 3.15).
Determine its motion.

l

l+u0

Fig. 3.15 Uniformly stretched bar

Solution. Let u(x, t) be the longitudinal displacement of the bar. The equation of
longitudinal vibration of the bar reads

u,tt = c2u,xx.

This equation is subject to the boundary conditions

u(0, t) = 0, u,x(l, t) = 0.

The last condition is the traction free boundary condition.
Let us first find the particular solutions by separating the variables with the

Ansatz u(x, t) = q(x)p(t). It is easy to show that q(x) satisfies the equation

q′′+
(ω

c

)2
q = 0

and the boundary conditions

q(0) = 0, q′(l) = 0.

The solution reads
q(x) = Acos

ω
c

x+Bsin
ω
c

x.

The first boundary condition implies that A = 0. From the second boundary condi-
tion we get

cos
ω
c

l = 0 ⇒ ω = ω j = (2 j− 1)
πc
2l

, j = 1,2, . . . .

As the normalization condition we choose again

∫ l

0
q2

j(x)dx = 1 ⇒ q j(x) =

√
2
l

sin
(2 j− 1)π

2l
x.

Combining this with the solution for p(t)

p(t) = a j cosω jt + b j sinω jt,

we represent the general solution in form of the Fourier series
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u(x, t) =

√
2
l

∞

∑
j=1

sin
(2 j− 1)π

2l
x(a j cosω jt + b j sinω jt).

The initial conditions of the bar

u(x,0) = u0(x) =
u0

l
x, u,t(x,0) = 0,

yield

√
2
l

∞

∑
j=1

a j sin
(2 j− 1)π

2l
x = u0(x),

√
2
l

∞

∑
j=1
ω jb j sin

(2 j− 1)π
2l

x = v0(x) = 0.

Thus, the coefficients b j vanish. To determine the coefficients a j we use the orthog-
onality and normalization conditions to get

a j =

√
2
l

∫ l

0

u0

l
xsin

(2 j− 1)π
2l

xdx =

√
2
l

4lu0(−1) j+1

π2(2 j− 1)2 .

Finally, the solution takes the form

u(x, t) =
∞

∑
j=1

8u0(−1) j+1

π2(2 j− 1)2 sin
(2 j− 1)π

2l
x cos(2 j− 1)

πc
2l

t.

EXERCISE 3.4. An elastic shaft having a rigid disk attached at its free end performs
torsional vibrations. The disk has a moment of inertia JD (see Fig. 3.16). Derive the
equation of small vibrations and the boundary conditions from Hamilton’s varia-
tional principle. Determine the eigenfrequencies.

Fig. 3.16 Shaft with rigid disk attached at its end

Solution. We write down the action functional of this system

I[ϕ(x, t)] =
∫ t1

t0

∫ l

0
(

1
2
ρJpϕ2

,t −
1
2

GJpϕ2
,x)dxdt +

∫ t1

t0

1
2

JDϕ,t(l, t)2 dt.

The last term corresponds to the action functional of the disk. Varying this action
functional, we have



140 3 Continuous Oscillators

δ I =
∫ t1

t0

∫ l

0
(ρJpϕ,tδϕ,t −GJpϕ,xδϕ,x)dxdt +

∫ t1

t0
JDϕ,t(l, t)δϕ,t (l, t)dt

=

∫ t1

t0

∫ l

0
(−ρJpϕ,tt +GJpϕ,xx)δϕ dxdt −

∫ t1

t0
(GJpϕ,x + JDϕ,tt )δϕ

∣∣
x=l dt = 0.

Since δϕ can be chosen arbitrarily in the interval (0, l) and at the end point x = l,
this equation implies that

ρJpϕ,tt −GJpϕ,xx = 0 ⇒ ϕ,tt − c2ϕ,xx = 0

inside (0, l), with c2 = G/ρ , and

GJpϕ,x + JDϕ,tt = 0

at x = l. Together with the boundary condition at x = 0

ϕ(0, t) = 0,

these constitute the eigenvalue problem. To determine the spectrum of this system
we seek for the solution in the form

ϕ(x, t) = q(x)eiωt .

Substituting this Ansatz into the equation of motion and the boundary conditions,
we obtain

ω2q+ c2q′′ = 0,

and
q(0) = 0, GJpq′(l)− JDω2q(l) = 0.

From the equation for q(x) we find that

q(x) = Acos
ω
c

x+Bsin
ω
c

x.

The boundary condition q(0) = 0 yields A = 0. The other boundary condition at
x = l leads to the transcendental equation to determine the eigenfrequencies

GJp
ω
c

cos
ω
c

l − JDω2 sin
ω
c

l = 0,

or

tan
ω
c

l =
GJp

JD

1
ωc

.

EXERCISE 3.5. Find the eigenfrequencies of flexural vibrations of a beam with one
clamped edge and one free edge. Plot the shapes of the first three modes of vibra-
tions.

Solution. For the beam with one clamped edge at x = 0 and one free edge at x = l
the boundary conditions read
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w(0, t) = w,x(0, t) = 0, w,xx(l, t) = w,xxx(l, t) = 0.

The standard separation of variables leads to the following eigenvalue problem

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ, together with the boundary conditions

q(0) = q′(0) = 0, q′′(l) = q′′′(l) = 0.

The solution reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Substituting this solution into the boundary conditions, we obtain
⎛
⎜⎜⎝

0 1 0 1
1 0 1 0

−sinλ −cosλ sinhλ coshλ
−cosλ sinλ coshλ sinhλ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

where λ = κ l. The non-trivial solution exists if the determinant of the matrix van-
ishes giving

1+ cosλ coshλ = 0.

The first three roots of this equation are

λ1 = 1.8751, λ2 = 4.6941, λ3 = 7.8548.

The roots λ j with j > 3 are approximately given by (2 j−1)π/2. The shapes of the
first three modes of vibrations are plotted in Fig. 3.17.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

xl

qj(x)

Fig. 3.17 Three first eigenfunctions

EXERCISE 3.6. The beam of length l and mass m sketched in Fig. 3.18 is released
and latches upon impact onto the support B. Provided there is no rebound and no
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loss of energy, determine the flexural vibration of the beam after impact. How to
proceed if there is a rebound?

h

A B

Fig. 3.18 Falling beam

Solution. Before impact the beam experiences a free falling. The conservation of
energy yields

1
2

JAϕ̇2
0 = mg

h
2
,

where ϕ̇0 is the angular velocity of the beam immediately before impact, and

JA = JS +m(l/2)2 = m
l2

12
+m

l2

4
= m

l2

3

is the moment of inertia of the beam about A. Thus, the angular velocity ϕ̇0 is equal
to

ϕ̇0 =

√
3gh
l2 .

Knowing this angular velocity before impact, we find the initial conditions of the
beam upon impact

w(x,0) = w0(x) = 0, w,t(x,0) = ϕ̇0x.

The solution to the equation of motion μw,tt = EJw,xxxx satisfying the simply sup-
ported boundary conditions reads

w(x, t) =

√
2
l

∞

∑
j=1

sin
jπ
l

x(a j cosω jt + b j sinω jt),

where ω j = ( jπ)2
√

EJ
μl4 . The initial conditions yield

√
2
l

∞

∑
j=1

a j sin
jπ
l

x = 0,

√
2
l

∞

∑
j=1

ω jb j sin
jπ
l

x = v0(x) = ϕ̇0x.
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Thus, the coefficients a j vanish. To determine the coefficients b j we use the orthog-
onality and normalization condition to get

b j =
1
ω j

√
2
l

∫ l

0
ϕ̇0xsin

jπ
l

xdx =
1
ω j

√
2
l
ϕ̇0l2(−1) j+1

π j
.

Finally, the solution takes the form

w(x, t) =
∞

∑
j=1

2ϕ̇0l(−1) j+1

ω jπ j
sin

jπ
l

xsinω jt.

In case of rebound the simply supported boundary conditions at x = l should be
replaced by the free boundary conditions

w,xx(l, t) = w,xxx(l, t) = 0,

while the initial conditions are obtained from the previous solution by the continuity
of displacement and velocity.

EXERCISE 3.7. Derive the boundary conditions for a beam connected with a spring
shown in Fig. 3.19. Find the eigenfrequencies.

k

Fig. 3.19 Beam with spring

Solution. To derive the boundary conditions we write down the action functional

I[w(x, t)] =
∫ t1

t0

∫ l

0
[
1
2
μw2

,t −
1
2

EJ(w,xx)
2]dxdt −

∫ t1

t0

1
2

k(w(l, t))2 dt,

where the last term is associated with the potential energy of the spring. Varying this
action functional, we obtain

δ I =
∫ t1

t0

∫ l

0
(μw,tδw,t −EJw,xxδw,xx)dxdt −

∫ t1

t0
kw(l, t)δw(l, t)dt.

Integrating the first two terms by parts and using the initial and end conditions as
well as the kinematic boundary conditions at x = 0

w(0, t) = w,x(0, t) = 0,

we reduce the first variation to
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δ I =
∫ t1

t0

∫ l

0
(−μw,tt −EJw,xxxx)δwdxdt −

∫ t1

t0
EJw,xxδw,x|x=l dt

+

∫ t1

t0
(EJw,xxx − kw)δw|x=l dt.

Thus, the first variation vanishes for arbitrary variations of w when

μw,tt +EJw,xxxx = 0

inside the interval (0, l) and

w = w,x = 0 at x = 0,

w,xx = 0, EJw,xxx − kw = 0 at x = l.

The last boundary condition means that the resultant force acting on the beam is
equal to the spring force. This condition can also be written in the form

w,xxx −αw = 0 at x = l, α =
k

EJ
.

5 10 15 20

-5000

5000

D( )/cosh

Fig. 3.20 Function D(λ )/coshλ

The standard separation of variables leads to the following equation for the shape
function

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ. The solution of this equation reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Substituting this solution into the boundary condition we get four linear equations
to determine four coefficients C1, C2, C3, C4. The determinant of this system, D(λ ),
reads
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∣∣∣∣∣∣∣∣

0 1 0 1
1 0 1 0

−sinλ −cosλ sinhλ coshλ
−λ 3 cosλ −β sinλ λ 3 sinλ −β cosλ λ 3 coshλ −β sinhλ λ 3 sinhλ −β coshλ

∣∣∣∣∣∣∣∣
where λ = κ l and β = l3k/EJ. Fig. 3.20 shows the plot of function D(λ )/coshλ
against λ at β = 1. The roots of this function correspond to the dimensionless fre-
quencies.

EXERCISE 3.8. An elastic beam is subjected to a harmonic end load as shown in
Fig. 3.21. Determine its forced vibration.

f̂ cos t

Fig. 3.21 Beam under harmonic end load

Solution. The vibration of the beam must be the extremal of the following action
functional

I[w(x, t)] =
∫ t1

t0

∫ l

0
[
1
2
μw2

,t −
1
2

EJ(w,xx)
2]dxdt +

∫ t1

t0
f (t)w(l, t)dt,

where the last term describes the virtual work done by the concentrated load. Vary-
ing this action functional we have

δ I =
∫ t1

t0

∫ l

0
(μw,tδw,t −EJw,xxδw,xx)dxdt +

∫ t1

t0
f (t)δw(l, t)dt

=

∫ t1

t0

∫ l

0
(−μw,tt −EJw,xxxx)δwdxdt

−
∫ t1

t0
EJw,xxδw,x|x=l dt +

∫ t1

t0
(EJw,xxx + f (t))δw|x=l dt = 0.

This implies the equation of motion

μw,tt +EJw,xxxx = 0,

and the boundary conditions at x = l

w,xx = 0, EJw,xxx + f (t) = 0.

Together with the kinematic boundary conditions at x = 0

w(0, t) = 0, w,x(0, t) = 0,
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these constitute the boundary-value problem to determine the forced vibration. For
the harmonic end load f (t) =− f̂ cosωt we look for the particular solution (describ-
ing the forced vibration) in the form

w(x, t) = q(x)cosωt.

Substituting into the equation of motion and the boundary conditions, we obtain

q′′′′ −κ4q = 0,

with κ4 = ω2μ/EJ, and
q(0) = 0, q′(0) = 0,

as well as

q′′(l) = 0, q′′′(l) =
f̂

EJ
.

Thus, the solution reads

q(x) =C1 sinκx+C2 cosκx+C3 sinhκx+C4 coshκx.

Substituting this solution into the above boundary conditions, we get four linear
equations to determine four coefficients C1, C2, C3, C4

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0

−sinλ −cosλ sinhλ coshλ
−cosλ sinλ coshλ sinhλ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
0
f̂

EJκ3

⎞
⎟⎟⎠ ,

where λ = κ l.

EXERCISE 3.9. A square membrane is subjected to a harmonic load acting at its
center. Determine the forced vibration.

Solution. Consider first the case of an arbitrarily distributed load f (x, t). The equa-
tion of motion of the membrane can be obtained from Hamilton’s variational prin-
ciple and from the following action functional

I[w(x, t)] =
∫ t1

t0

∫
A
(

1
2
μw2

,t −
1
2

Sw,αw,α)dxdt +
∫ t1

t0

∫
A

f (x, t)wdxdt.

The last term in this action functional represents the work done by the external load.
Varying this functional we easily derive the following equation

μw,tt − SΔw = f (x, t).

Dividing this equation by μ , we reduce it to the form

w,tt − c2Δw = p(x, t),
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where p = f/μ . For the harmonic load p = p̂(x)cosωt we look for the particular
solution (describing the forced vibration) in the form

w(x, t) = q(x)cosωt.

Substituting this Ansatz into the equation of motion, we obtain the Helmholtz equa-
tion

−ω2q− c2Δq = p̂(x)

Since the eigenfunctions

q j(x) =
2
a

sin
j1πx1

a
sin

j2πx2

a
, j = ( j1, j2), j1, j2 = 1,2, . . . ,

form a complete orthogonal basis in the space of continuously differentiable func-
tions, we expand both p̂(x) and q(x) in the double Fourier series

p̂(x) =∑
j

Pjq j(x), q(x) =∑
j

Q jq j(x).

Substituting these series into the equation for q, making use of the properties of
eigenfunctions

Δq j +λ jq j = 0, λ j =
ω2

j

c2 = π2
(

j2
1

a2 +
j2
2

b2

)
,

and comparing the terms on the right- and left-hand sides with the same q j, we
obtain for the coefficients Q j the formulas

(ω2
j −ω2)Q j = Pj ⇒ Q j =

Pj

ω2
j −ω2

.

For the concentrated load acting in the middle of the membrane p̂(x) = p̂0δ (x−
x0), with x0 = (a/2,a/2), the coefficients Pj are given by

Pj =
∫

A
p̂0δ (x− x0)q j(x)dx = p̂0q j(x0) = p̂0

2
a

sin
j1π
2

sin
j2π
2

.

Thus, if j1 = 2k1 − 1 and j2 = 2k2 − 1, then Pj =
2 p̂0

a (−1)k1+k2 , otherwise Pj = 0.
Consequently, the solution reads

w(x, t) =
∞

∑
k1,k2=1

4 p̂0

a2

1

ω2
j −ω2

(−1)k1+k2 sin
(2k1 − 1)πx1

a
sin

(2k2 − 1)πx2

a
cosωt,

where j = (2k1 − 1,2k2− 1).

EXERCISE 3.10. Determine the eigenfrequencies of a circular plate with a simply
supported boundary.
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Solution. The equation of motion of the plate as well as the boundary conditions are
derived from Hamilton’s variational principle with the following action functional

I[w(x, t)] =
∫ t1

t0

∫
A
[
1
2
ρhw2

,t −
μh3

12
(σw2

,αα +w,αβw,αβ )]dxdt.

Computing the first variation of this action functional in exactly the same manner as
in Section 3.5, we derive the equation

ρhw,tt +DΔΔw = 0.

Taking into account that w= 0 at ∂A but νγδw,γ may be chosen arbitrarily, we derive
from Hamilton’s variational principle the following boundary conditions

w = 0, mαβ νανβ = 0 at ∂A.

For the circular plate the standard separation of time and of the polar coordinates
r and ϑ leads to

w(r,ϑ , t) = q(r,ϑ)eiωt ,

where

q = [aJj(β r)+ bIj(β r)]

{
cos jϑ
sin jϑ

,

and β 4 = ω2ρhr4
m/D = 6ρω2r4

m
μ(σ+1)h2 . In the polar coordinates r,ϑ we have

mαβ νανβ = μ
h3

6
(σΔq+

∂ 2q
∂ r2 ) = 0

at r = 1. Substituting the solution into these boundary conditions, we obtain

aJj(β )+ bIj(β ) = 0,

a{−β 2Jj(β )+ (1−ν)[ j2Jj(β )−βJ′j(β )]}
+b{β 2I j(β )+ (1−ν)[ j2I j(β )−β I′j(β )]}= 0.

The frequency equation is obtained by the condition of vanishing determinant.
When j = 0, the frequency equation can be presented in a simple form

J0(β )[β I0(β )− (1−ν)I′0(β )]+ I0(β )[βJ0(β )+ (1−ν)J′0(β )] = 0.

The three lowest roots βk of this frequency equation for ν = 0.31 are

β1 = 2.5504, β2 = 5.585, β3 = 8.6948.
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EXERCISE 3.11. Prove the extremal properties of eigenfrequencies of a continuous
oscillator based on the minimization of Rayleigh’s quotient.

Solution. Consider the variational problem of minimization of Rayleigh’s quotient

min
q�=0

〈q,Kq〉
〈q,Mq〉 ,

where
〈q,Mq〉=

∫
V

qi(x)ρi j(x)q j(x)dx,

and
〈q,Kq〉=

∫
V
[Eiα jβqi,αq j,β +Ai j(qi −Bαqi,α)(q j −Bβq j,β )]dx.

Obviously, this minimization problem is equivalent to the following problem: find
the minimum of the functional

〈q,Kq〉
among q satisfying the constraint

〈q,Mq〉= 1.

To get rid of this constraint we introduce the Lagrange multiplier, λ , and consider
the following functional

〈q,Kq〉−λ (〈q,Mq〉− 1).

Varying this functional with respect to λ and q we obtain the above constraint to-
gether with the following equation

(K−λM)q = 0.

Thus, λ is the eigenvalue. By writing Rayleigh’s quotient in terms of the normal
coordinates we can show that its minimum corresponds to the smallest eigenvalue.

EXERCISE 3.12. Find the spectrum of radial vibrations for an elastic isotropic
sphere of radius a.

Solution. We derive the equation of motion in the spherical coordinates. For the
radial vibrations the non-zero component of displacement, ur, depends only on r. In
this situation the non-zero components of the strain tensor are

εrr = ur,r, εθθ = εϕϕ =
ur

r
.

Then the action functional reduces to

I[ur(r)] =
∫ t1

t0

∫ a

0
L(r,ur,ur,r,ur,t)dr dt,
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where

L(r,ur,ur,r,ur,t) = 4π
[

1
2
ρ(ur,t)

2 − 1
2
λ (ur,r +

2ur

r
)2 − μ(ur,r)

2 − 2μ(
ur

r
)2
]

r2.

It is easy to show that the Euler-Lagrange equation

∂
∂ t

∂L
∂ur,t

+
∂
∂ r

∂L
∂ur,r

− ∂L
∂ur

= 0

implies

ρur,tt − (λ + 2μ)
(

ur,r +
2ur

r

)
,r
= 0.

The standard Ansatz with ur(r, t) = q(r)eiωt reduces this equation to
(

q,r +
2q
r

)
,r
+ k2q = 0,

where k2 =ω2/c2
d , with cd =

√
(λ + 2μ)/ρ being the velocity of dilatational waves.

Let q = φ,r. Then in terms of φ we have the equation

φ,rr +
2φ,r

r
+ k2φ = 0.

The solution which is regular at r = 0 reads

φ =
A
r

sinkr.

The boundary condition obtained from the above action functional at r = a is

λ (ur,r + 2
ur

r
)+ 2μur,r = 0.

Taking into account the equation for φ , this boundary condition can be written in
the form

c2
dk2φ + 4c2

s
φ,r
a

= 0,

where cs =
√
μ/ρ denotes the velocity of shear waves. Substituting the solution

into this boundary condition we obtain the transcendental equation

tanka
ka

=
1

1− (kacd/2cs)2 .

whose roots determine the spectrum of the radial vibrations.



Chapter 4
Linear Waves

This chapter studies linear waves propagating in continuous media. For homoge-
neous media the method of solution is Fourier’s transform which is based entirely on
the linear superposition principle. For weakly inhomogeneous media the variational-
asymptotic method has to be used instead.

4.1 Hyperbolic Waves

Differential Equation of Wave Propagation. In contrast to vibrations of continu-
ous systems, waves transport disturbances and energy from one part of the medium
to another with a recognizable velocity of propagation. Thus, we are dealing locally
with transient processes. The equations governing wave propagation remain exactly
the same as the equations of motion for continuous oscillators. In addition, the initial
and boundary conditions have to be specified. If the influence of the boundary can
be neglected, then it is convenient to consider waves propagating in infinite media.
In this case the radiation conditions are required to select the physically meaningful
solution.

1-D Problem. We begin first with the most simple situation, namely, with the prop-
agation of hyperbolic waves in one dimension governed by the equation

u,tt = c2u,xx.

As one remembers from Section 3.2, this equation describes flexural vibrations of
a pre-stretched string, or longitudinal vibrations of an elastic bar. Now instead of
vibrations (or standing waves) we want to analyze wave propagation. If the bound-
aries of the medium are far away from the point of interest so that waves do not still
interact with them, we may consider the idealized situation of waves propagating in
an equivalent infinite medium. Introducing the characteristic coordinatesα = x−ct,
β = x+ ct, we transform the above equation to
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∂ 2u
∂α∂β

= 0,

which yields the general solution obtained first by d’Alembert

u(x, t) = f (α)+ g(β ) = f (x− ct)+ g(x+ ct).

This formula represents two waves traveling through the medium with the constant
velocity c; f to the right, and g to the left. Note that the observer moving to the right
(or left) with the velocity c does not see any change of wave shape associated with
f (or g). Such waves are called dispersionless.

For the initial value problem

u(x,0) = u0(x), u,t(x,0) = v0(x),

we determine f and g from the initial conditions

u(x,0) = f (x)+ g(x) = u0(x), u,t(x,0) =−c f ′(x)+ cg′(x) = v0(x),

giving

u(x, t) =
1
2
[u0(x− ct)+ u0(x+ ct)]+

1
2c

∫ x+ct

x−ct
v0(ξ )dξ .

We can also solve the signaling problem for the half-axis x ≥ 0 of outgoing waves
with

u,x(0, t) = p(t).

In this case the solution reads

u(x, t) =−cq(t − x/c),

where q(t) is the integral of p(t).

3-D Problem. According to Hadamard’s idea, waves propagating in three dimen-
sions will be easier to study than those in two dimensions, so we start with the 3-D
case. We first look for particular solutions of the wave equation

u,tt = c2Δu (4.1)

in the 3-D space. This equation describes sound waves in fluids and gases, as well
as dilatational or shear waves propagating in infinite elastic solids (see Section 3.6
and exercise 4.2). Since equation (4.1) is linear, its particular solutions always exist
in form of harmonic (also called monochromatic) waves1

u(x, t) = ei(k·x−ωt),

1 We work directly with the complex form of the solution keeping in mind that the real or
imaginary part should be taken when necessary.
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where k is the wave vector and ω the frequency. Indeed, substituting this Ansatz
into (4.1), we obtain the equation

(−ω2 + c2|k|2)ei(k·x−ωt) = 0,

with |k| =
√

k2
x + k2

y + k2
z being the magnitude of k. As the exponential function is

not identically zero, ω must be related to k by

ω =±c|k|.

Thus, for each non-zero wave vector k there are two harmonic waves corresponding
to ω = c|k| or ω =−c|k|. We refer to them as branches.
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Fig. 4.1 Plot of cos(x+y)

For the moment let us concentrate
just on one branch since the general so-
lution is simply the linear superposition
of them. Taking the real part, we present
the monochromatic wave as

u(x, t) = cos(k ·x− c|k|t).

We call θ (x, t) = k ·x− c|k|t phase; it
determines the position on the cycle be-
tween a crest, where u has a maximum,
and a trough, where u achieves a min-
imum. This particular solution is called
a plane wave because the phase surfaces
θ = const are parallel planes as shown in
Fig. 4.1 in 2-D case. The gradient of θ in
the space is the wave vector k, whose di-
rection is normal to the phase planes and whose magnitude κ = |k| is the average
number of crests per 2π units of distance in that direction. In Fig. 4.1 the wave
vector is k = (1,1) in the (x,y)-plane. Similarly, −θ,t is the frequency ω = cκ , the
average number of crests per 2π units of time. The wavelength is λ = 2π/κ and the
period is T = 2π/ω . The wave motion is recognized from the phase. Any particular
phase surface moves in the space with the normal velocity ω/κ = c in the direction
of k. Thus, for the wave equation u,tt = c2Δu the phase velocity agrees with the
usual propagation speed.

The monochromatic plane waves play a key role in the theory of linear waves
propagating in homogeneous media because the general solution can be obtained
by the linear superposition of these waves with various wave vectors. This leads
to Fourier’s integrals, where the contribution of each monochromatic plane wave
is Fourier’s component of the wave packet. We postpone the derivation of general
solution based on this Fourier’s analysis to the next Section 4.2. However, in what
follows we want to use the monochromatic plane waves to study reflection and re-
fraction of waves.
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Reflection and refraction of waves. When a monochromatic plane wave is incident
on the boundary between two different media, it undergoes reflection and refraction.
The motion in the first medium is a combination of the incident and reflected waves,
whereas in the second medium there is only one, the refracted wave. All three waves
have the same frequencyω ; the relations between their amplitudes and wave vectors
are determined by the boundary conditions. Consider for definiteness the reflection
and refraction of sound wave at a plane surface separating two media, say air and
water, which we take as the (x,y)-plane. Because of the translational invariance in
the x- and y-directions, all three waves have the same components kx, ky of the wave
vector, but not the same component kz.

x

z

´

Fig. 4.2 Reflection and refrac-
tion of waves

For simplicity let us consider wave propagating
in the (x,z)-plane. Then ky = 0 in all three waves, so
they are coplanar. Let ϑ be the angle between the
direction of wave propagation and the z-axis (see
Fig. 4.2). From the equality of kx = (ω/c)sinϑ
for the incident and reflected waves, it follows that
ϑ1 = ϑ ′

1, i.e. the angle of incidence ϑ1 is equal to
that of reflection ϑ ′

1. The similar equality of kx for
the incident and refracted waves implies Snell’s law

sinϑ1

sinϑ2
=

c1

c2
,

where c1 and c2 are the velocities of sound in these
two media.

In order to obtain the relation between the in-
tensities of these three waves, we write the velocity
potentials as

ϕ1 = A1eiω[(z/c1)cosϑ1+(x/c1)sinϑ1−t],

ϕ ′
1 = A′

1eiω[(−z/c1)cosϑ1+(x/c1)sinϑ1−t],

ϕ2 = A2eiω[(z/c2)cosϑ2+(x/c2)sinϑ2−t],

where A1, A′
1, and A2 are the complex amplitudes of waves. At the boundary z = 0

the pressure p =−ρϕ,t and the normal velocities vz = ϕ,z in the two media must be
equal; these conditions lead to the relations

ρ1(A1 +A′
1) = ρ2A2,

cosϑ1

c1
(A1 −A′

1) =
cosϑ2

c2
A2.

The reflection coefficient R is defined as the ratio of the average energy flux in the
reflected and incident waves. Since the energy flux of sound wave is cρv2 (see the
general derivation in Section 4.4), we have R = v′21 /v2

1 = |A′
1|2/|A1|2, where bar

denotes the time average. A simple calculation gives
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R =

(
ρ2 tanϑ2 −ρ1 tanϑ1

ρ2 tanϑ2 +ρ1 tanϑ1

)2

.

The angles ϑ1 and ϑ2 are related by Snell’s law; expressing ϑ2 in terms of ϑ1, we
can put this formula in the form

R =

⎛
⎝ρ2c2 cosϑ1 −ρ1

√
c2

1 − c2
2 sin2ϑ1

ρ2c2 cosϑ1 +ρ1

√
c2

1 − c2
2 sin2ϑ1

⎞
⎠

2

.

For normal incident (ϑ1 = 0), this formula gives simply

R =

(
ρ2c2 −ρ1c1

ρ2c2 +ρ1c1

)2

.

Solution as a Superposition of Spherical Waves. There is a simple way to obtain
the solution of the wave equation in 3-D case as a superposition of spherical waves.
We start by assuming first the spherical symmetry of a particular solution about
the origin: u = u(r, t), where r is the distance from the origin. The wave equation
reduces to

1
c2 u,tt = u,rr +

2
r

u,r.

This equation can be rewritten as

1
c2 (ru),tt = (ru),rr

which is exactly the 1-D wave equation for ru. Thus, the particular solution reads

u(r, t) =
f (r− ct)

r
.

Here we select only the outgoing wave. This selection is equivalent to posing the
radiation condition which requires that waves can only propagate from sources to
infinity. If the source generating waves is found at point ξξξ , then the particular solu-
tion takes the form

u(x, t) =
f (|x− ξξξ |− ct)

|x− ξξξ | .

Now the particular solution of (4.1) can be constructed as a linear superposition of
spherical waves

φ(x, t) =
∫
ψ(ξξξ )

δ (|x− ξξξ |− ct)
|x− ξξξ | dξ , (4.2)

where dξ = dξ1dξ2dξ3. In the integrand we take Dirac’s delta function representing
the unit source, while function ψ(ξξξ ) accounts for the fact that waves coming from
different points will have in general different intensities. The form (4.2) suggests
the introduction of spherical coordinates (ρ ,ϑ ,ϕ) with the origin at x yielding
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φ(x, t) =
∫ ∞

0

∫ π

0

∫ 2π

0
ψ(x+ρ l)δ (ρ− ct)ρ sinϑ dϕ dϑ dρ

= ct
∫ π

0

∫ 2π

0
ψ(x+ ctl)sinϑ dϕ dϑ , (4.3)

where l is the unit vector from x to ξξξ having the cartesian components

l = (sinϑ cosϕ ,sinϑ sinϕ ,cosϑ).

As t → 0 the right-hand side of (4.3) tends to zero. For a continuously differentiable
function ψ(x) we may differentiate this expression with respect to t and find the
limit as t → 0

φ,t(x,0) = 4πcψ(x).

Thus, the integral

φ(x, t) =
t

4π

∫ π

0

∫ 2π

0
v0(x+ ctl)sinϑ dϕ dϑ

solves equation (4.1) with the initial conditions

u(x,0) = 0, u,t(x,0) = v0(x).

Note that this solution can also be represented as a surface integral

φ(x, t) =
1

4πc2t

∫
S(t)

v0(x+ ctl)da,

where S(t) is the spherical surface with center at x and radius ct.
To satisfy the remaining initial condition u(x,0) = u0(x) we use the following

property: if φ is a solution of (4.1), then its time derivative φ,t is also the solution.
Consider the solution of the form

χ(x, t) = φ,t ,

where φ is given by (4.3). In this case it is easy to check that, as t → 0,

χ(x,0) = 4πcψ(x), χ,t(x,0) = φ,tt = c2Δφ = 0.

Therefore we choose now ψ(x) = u0(x)/4πc and get for χ

χ(x, t) =
∂
∂ t

[
1

4πc2t

∫
S(t)

u0(x+ ctl)da

]
.

The complete solution reads

u(x, t) =
∂
∂ t

[
1

4πc2t

∫
S(t)

u0(x+ ctl)da

]
+

1
4πc2t

∫
S(t)

v0(x+ ctl)da. (4.4)
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Equation (4.4), called Poisson’s formula, represents the total contribution of the
instantaneous sources which send spherical waves to point x at time t; they are all
exactly a distance ct away and their contributions traveling with speed c arrive at x
just at time t. Notice that sources inside S(t) do not contribute to the solution at x.
Thus, there is no “tail” for spherical waves. This is no longer so in 2-D case as will
be seen in the next paragraph.

2-D Problem. The solution to the 2-D problem can be obtained from the 3-D solu-
tion by assuming u0(x) and v0(x) to be independent of x3. Suppose now that nonzero
values of u0(x1,x2), v0(x1,x2) are specified in a finite domain C0 of the (x1,x2)-
plane. From the 3-D point of view, the non-zero initial data occupy the cylinder C
with generators parallel to the x3-axis based on the cross section C0. Thus, the do-
main of initial disturbances is no longer compact in the space. For a point outside
the cylinder C, the construction of wavefront is as before, but the spheres with the
center at x will intersect C at all time after the first time of intersection (see Fig. 4.3).
This accounts for the “tail” in the 2-D case and shows clearly the difference between
2-D and 3-D cases.

x3

C

C0
x1,x2

S(t)

,

, ,

Fig. 4.3 Reduction of wavefront from three to two dimensions

Let us consider now the integrals in (4.4) at some fixed point (x1,x2,0). At point
(ξ1,ξ2,ξ3) on S(t) (see Fig. 4.3) the value of u0 is u0(ξ1,ξ2). The outward normal
to the sphere has a component n3 given by

n3 =
ξ3

ct
=±

√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

ct
.

The surface element da is equal to dξ1dξ2/|n3|, where dξ1dξ2 is its projection in
the (x1,x2)-plane. Therefore, taking into account the two equal contributions from
above and below the (x1,x2)-plane, we have

1
4πc2t

∫
S(t)

u0(x+ ctl)da =
1

2πc

∫
σ(t)

u0(ξ1,ξ2)dξ1dξ2√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

,
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where σ(t) is the interior of the projection of S(t) onto the (x1,x2)-plane:

σ(t) = {(ξ1,ξ2) |(x1 − ξ1)
2 +(x2 − ξ2)

2 ≤ c2t2}.

Thus, the solution of 2-D problem reads

u(x1,x2, t) =
∂
∂ t

[
1

2πc

∫
σ(t)

u0(ξ1,ξ2)dξ1dξ2√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

]

+
1

2πc

∫
σ(t)

v0(ξ1,ξ2)dξ1dξ2√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

.

Since the integrals are taken over the whole domain inside the circle (x1 − ξ1)
2 +

(x2 − ξ2)
2 = c2t2, not just its boundary, the disturbance continues even after this

circle completely surrounds the initial domain C0.

Geometrical Optics. Although the exact solution to the wave equation has been
found, the computation of Poisson’s integrals is not always easy, even if we do it
numerically. A simplification is possible if the wave packet may be regarded as
plane in any small region of the medium. For this to be so it is necessary that the
amplitude and the direction of propagation vary only slightly in one wavelength. If
this condition holds, we can introduce the idea of rays as lines whose tangent at any
point coincides with the direction of wave propagation. Then, to find the wavefront
we need just to find the rays while ignoring the nature of wave propagation. This
task will be done within the so-called geometrical optics which turns out to be valid
in the high frequency (short wave) approximation.

We derive the equations of geometrical optics by assuming the periodic solution
with a given frequency ω : u(x, t) = w(x)e−iωt . Then the wave equation reduces to
Helmholtz’s equation

Δw+
ω2

c2 w = 0.

For large value of ω/c, a standard method of finding the asymptotic solutions2 is to
take

w = eiωσ(x)[w0(x)+
1
ω

w1(x)+ . . .], (4.5)

where functions σ(x) and wj(x) are to be determined. Substituting (4.5) into
Helmholtz’s equation and keeping the asymptotically leading terms only, we obtain

eiωσ(x)[ω2(−σ,ασ,α + 1
c2 )(w0 +

1
ω

w1)+ iω(Δσw0 + 2σ,αw0,α)+ . . .] = 0.

The exponential function can be dropped in this equation. Then, equating the asymp-
totically leading terms at ω2 and ω to zero, we obtain

2 Which is called WKB-method [6].
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σ,ασ,α =
1
c2 ,

Δσw0 + 2σ,αw0,α = 0.
(4.6)

The first equation is called eikonal equation which determines σ(x). The second
equation, called transport equation, can be used to find w0(x).

The eikonal equation (4.6)1, as a nonlinear partial differential equation of first
order, may be solved by the method of characteristic curves [12]. If we introduce
pα = σ,α and write this equation as

H ≡ 1
2

cpα pα − 1
2

c−1 = 0,

the characteristic curves are defined by the equation

dxα
ds

= cpα .

Parameter s is the arc-length along the characteristic curve, because c2 pα pα = 1.
The full set of characteristic equations reads

dxα
ds

= cpα ,
d pα
ds

= 0,
dσ
ds

=
1
c
.

S0

St

s=ct

Fig. 4.4 Wavefront and rays

Looking at the asymptotic solution (4.5), one may
recognize that θ = ω(σ(x)− t) is the phase of the
wave packet. Let us choose the initial phase such that
θ = 0 corresponds to the wave front. Thus, the equa-
tion of the wave front is σ(x) = t. Since the vector
p =∇σ is normal to the wavefront, the first equation
for the characteristics tells us that the rays are also
normal to it. The second equation shows that p is
constant on the ray, so the rays must be straight lines.
The new wavefront at time t + t1 (with small t1) can
be constructed by drawing the family of straight lines
normal to the wavefront at time t, and by the third
equation, σ = s/c, so t = s/c, and the new wave-
front is a distance ct1 out along the rays (see Fig. 4.4). This is Huygens’ principle
which agrees also with Poisson’s exact solution (4.4) found previously.

It remains to solve the transport equation which is the linear equation for w0. Its
characteristics are the same rays, so we can write this equation as

1
w0

dw0

ds
=−1

2
Δσ .

The integration is straightforward once σ(x) has been determined. But due to the
implicit form of σ(x) we proceed a little differently. First we note that (4.6)2 takes
the divergence form
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(σ,αw2
0),α = 0.

Let us consider a tube formed by rays going from the initial wavefront S0 to the
current wavefront St as shown in Fig. 4.4. We integrate this equation over the volume
of the tube. The use of Gauss’ theorem gives

∫
nασ,αw2

0 da = 0,

where n is the outward normal and the surface integral must be taken over the sides
Σ and ends S0, St of the ray tube. As the rays are orthogonal to the wavefronts
σ = t, nασ,α = 0 on Σ . On St the normal n and ∇σ are in the same direction, so
nασ,α = |∇σ |= 1/c. Similarly, nασ,α =−|∇σ |=−1/c on S0. Thus,

∫
St

w2
0 da =

∫
S0

w2
0 da.

This equation expresses the conservation of energy flux along the ray tube.
The geometrical optics can also be developed for anisotropic and inhomogeneous

media [53]. However, one should be cautious near the point where c = 0 (called the
turning point) as well as near the caustics, where this type of approximation needs
to be modified.

4.2 Dispersive Waves

Differential Equation and Dispersion Relation. Typically, the differential equa-
tion governing the propagation of dispersive waves in a homogeneous medium can
be written as

P(∂t ,∂α )u = 0. (4.7)

Here P(r,sα ) is a polynomial of the variables r and sα with constant coefficients,
∂t and ∂α are the partial derivatives with respect to t and xα , respectively. Some
examples in 1-D case which will be used as illustration are

u,tt +ω2
0 u− c2u,xx = 0, P(∂t ,∂x) = ∂ 2

t +ω2
0 − c2∂ 2

x ,

u,tt + γ2u,xxxx = 0, P(∂t ,∂x) = ∂ 2
t + γ∂ 4

x ,

u,t +αu,x +βu,xxx = 0, P(∂t ,∂x) = ∂t +α∂x +β∂ 3
x .

(4.8)

The first equation describes free vibrations of a string with an additional restoring
force proportional to u, or thickness vibrations of a rod [31]. It is also the Klein-
Gordon equation of quantum mechanics. The second equation of (4.8) corresponds
to Bernoulli-Euler’s beam theory (3.27) with γ =

√
EI/μ. The last equation is the

linearized version of Korteweg-de Vries equation describing small amplitude long
water waves and various other dispersive waves.

Since (4.7) is a linear differential equation with constant coefficients, its particu-
lar solutions always exist in form of harmonic waves



4.2 Dispersive Waves 161

u(x, t) = ei(k·x−ωt),

where k is the wave vector and ω the frequency. Indeed, substituting this Ansatz
into (4.7) and using the property of exponential function, we see that k and ω have
to be related by the equation

P(−iω , ikα) = 0.

This is the so called dispersion relation which contains all the information about the
differential equation. Knowing this dispersion relation we can restore the governing
equation by using the correspondence: ∂t ↔ −iω , ∂α ↔ ikα . Note that the above
derivation can easily be generalized for the situation when u is a vector. In this case
P becomes a matrix, whose elements are polynomials of r and sα . The harmonic
wave form of particular solutions remains, with a small modification that a constant
vector a as a factor has to be included. Nontrivial solutions exist for the vanishing
determinant of the matrix, whose elements are polynomials of −iω and ikα , yielding
the dispersion relation (see exercise 4.4).

We assume that the dispersion relation may be solved with respect to ω giving
real roots

ω =Ω(k). (4.9)

In general there will be a number of such solutions, with different functions Ω(k).
We refer to them as branches. For example, if u satisfies Bernoulli-Euler’s beam
equation (4.8)2, then the dispersion relation reads

−ω2 + γ2k4 = 0.

Solving this with respect to ω , we obtain two branches

ω = γk2, ω =−γk2.

In contrary, the linearized Korteweg-de Vries equation (4.8)3 yields only one branch
given by

ω = αk−βk3.

For the present we study just one branch since the general solution is simply the
linear superposition of them. The monochromatic plane wave corresponding to this
branch is

u = cos(k ·x−Ω(k)t).

We call as before θ = k ·x−Ω(k)t phase which determines the wave motion. Any
particular phase surface moves in the space with the normal velocityΩ(k)/κ in the
direction of k, where κ = |k|. We define the phase velocity as

c =
Ω(k)
κ

n,
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where n is the unit vector in the k-direction. For the hyperbolic waves governed
by the equation u,tt = c2Δu considered in the previous Section the phase velocity
is constant and agrees with the propagation speed c. In general c depends on κ , so
different waves propagate with different velocities causing the change of shape. This
explains the adjective “dispersive” for such waves. We classify waves as dispersive
if Ω(k) is real and the determinant of the matrix ∂ 2Ω

∂kα∂kβ
is not identically zero

(see [53]). This definition excludes hyperbolic waves.

Solution. The general solution of (4.7) can be obtained by the linear superposition
of particular solutions using Fourier’s integral

u(x, t) =
∫
ψ(k)eik·x−iΩ(k)t dk,

where dk = dk1dk2dk3. Function ψ(k) accounts for the intensity of waves with
different k and may be chosen to satisfy arbitrary initial data, provided these data are
described by regular functions admitting the Fourier transform. For illustration let us
consider the first two equations in (4.8). Each of them has two branchesω =±Ω(k),
and since we are in 1-D situation,

u(x, t) =
∫ ∞

−∞
ψ1(k)e

ikx−iΩ(k)t dk+
∫ ∞

−∞
ψ2(k)e

ikx+iΩ(k)t dk. (4.10)

As there are two branches, u(x, t) must satisfy two initial conditions

u(x,0) = u0(x), u,t(x,0) = v0(x).

This leads to
∫ ∞

−∞
[ψ1(k)+ψ2(k)]e

ikxdk = u0(x),
∫ ∞

−∞
−iΩ(k)[ψ1(k)−ψ2(k)]e

ikxdk = v0(x).

Applying the Fourier transform to these equations, we obtain

ψ1(k)+ψ2(k) =
1

2π

∫ ∞

−∞
u0(x)e

−ikxdx =U0(k),

−iΩ(k)[ψ1(k)−ψ2(k)] =
1

2π

∫ ∞

−∞
v0(x)e

−ikxdx =V0(k).

Solving the above equations with respect to ψ1(k) and ψ2(k) gives

ψ1(k) =
1
2

[
U0(k)+

iV0(k)
Ω(k)

]
, ψ2(k) =

1
2

[
U0(k)− iV0(k)

Ω(k)

]
.

Since u0(x) and v0(x) are real, their Fourier images U0(k) and V0(k) satisfy the
properties
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U0(−k) =U∗
0 (k), V0(−k) =V ∗

0 (k),

where asterisks denote complex conjugates. Thus, if Ω(k) is odd function, then

ψ1(−k) = ψ∗
1 (k), ψ2(−k) = ψ∗

2 (k).

If Ω(k) is even function, we have

ψ1(−k) = ψ∗
2 (k), ψ2(−k) = ψ∗

1 (k).

It is easy to check that the solution is real in both cases as expected.

Large Time Asymptotics. Although Fourier’s integrals give the exact solution, its
behavior is still difficult to analyze. For wave propagation it is important to know
the behavior of solution in the limits t → ∞ and x → ∞ while x/t is held fixed. Let
us analyze first the typical integral

u(x, t) =
∫ ∞

−∞
ψ(k)eikx−iΩ(k)t dk

in 1-D case. In the limit t → ∞ at fixed x/t we can write this integral as

u(x, t) =
∫ ∞

−∞
ψ(k)e−iχ(k)tdk, (4.11)

where χ(k) is the following function

χ(k) =Ω(k)− k
x
t
.

Here x/t is regarded as a fixed parameter. The asymptotic behavior of integral (4.11)
as t → ∞ can be studied by the method of stationary phase [6], according to which
the main contribution to the integral comes from the neighborhood of stationary
points of χ(k) such that

χ ′(k) =Ω ′(k)− x
t
= 0. (4.12)

Otherwise, the integrand oscillates rapidly and makes little net contribution to
u(x, t).

Assume first that χ(k) has one stationary point at k = ks. To find the leading
contribution we expand ψ(k) and χ(k) in Taylor’s series near k = ks

ψ(k)� ψ(ks), χ(k)� χ(ks)+
1
2
χ ′′(ks)(k− ks)

2,

provided χ ′′(ks) �= 0. Substitution of these formulas in (4.11) leads to

u(x, t)� ψ(ks)e
−iχ(ks)t

∫ ∞

−∞
e−

i
2 (k−ks)

2χ ′′(ks)t dk.

The remaining integral can be reduced to the standard integral
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∫ ∞

−∞
e−αz2

dz =

√
π
α

by rotating the path of integration through ±π/4; the sign should be chosen to be
the same as that of χ ′′(ks). Thus,

u(x, t)� ψ(ks)

√
2π

t|χ ′′(ks)|e
iksx−iΩ(ks)t− iπ

4 signχ ′′(ks).

If there are several stationary points, the contributions from their neighborhoods
have to be summed up to get the final result.

For the case of two branches with ω = ±Ω(k), the solution is given by (4.10).
Assuming further that Ω ′(k) is monotonic and positive for k > 0, we analyze the
asymptotic behavior of (4.10) for x > 0. If Ω(k) is even, then Ω ′(k) is odd and
there is only one positive stationary point for the first branch denoted by ks(x, t):
Ω ′(k) = x/t for x/t > 0. The second branch has also one stationary point equal to
−ks(x, t). Combining two contributions of the branches, we get

u(x, t)� 2Re

[
ψ1(ks)

√
2π

t|χ ′′(ks)|e
iksx−iΩ(ks)t− iπ

4 signχ ′′(ks)

]
for x/t > 0. (4.13)

It is easy to see that the case of odd function Ω(k) leads to the same result.

Group Velocity. At any point (x, t) formula (4.13) determines a local wave number
ks(x, t) and the corresponding local frequencyωs(x, t) =Ω(ks(x, t)). By introducing
a phase

θ (x, t) = ks(x, t)x−ωs(x, t)t,

we may present (4.13) in the form

u(x, t)� Re[A(x, t)eiθ(x,t)], (4.14)

where the complex amplitude is

A(x, t) = 2ψ1(ks)

√
2π

t|χ ′′(ks)|e
− iπ

4 signχ ′′(ks).

The difference between (4.14) and the monochromatic waves is that A, k, and ω
are no longer constants. However, this asymptotic formula still represents a nonuni-
form wave packet, with a phase θ describing the oscillations between crests and
troughs. It is natural to define the local wave number and frequency as θ,x and −θ,t ,
respectively. In our nonuniform case we have

θ,x = ks,xx+ ks−Ω ′(ks)ks,xt = ks(x, t),

θ,t = ks,t x−Ω ′(ks)ks,t t −Ω(ks) =−ωs(x, t),
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so the local wave number and frequency introduced above agree with these defini-
tions. Moreover, the local wave number and frequency satisfy the dispersion relation
even in the nonuniform wave packet. Mention that the relative changes of the local
wave number ks in one period and in one wavelength are small. Indeed, from (4.12)
we see that the quantities

ks,x

ks
=

Ω ′

ksΩ ′′
1
x
,

ks,t

ks
=− 1

ksΩ ′′
1
t

are small for large x and t. Thus, ks(x, t) is a slowly changing function in one period
and one wavelength. The same is true of the frequency ωs and amplitude A.

x

t

Fig. 4.5 Group (solid) and phase (dashed) lines for waves in beam

Let us have a closer look at the equation (4.12) determining ks(x, t). According to
that equation an observer moving with the velocityΩ ′(ks) will see the wave number
ks and the frequency ωs. Therefore we call the velocity

Ω ′(k) =
dω
dk

group velocity, or the velocity for a group of waves. To illustrate the distinction be-
tween the phase and the group velocities we consider equation (4.8)2 for Bernoulli-
Euler’s beam. The dispersion relation for the branch of waves propagating to the
right is

Ω(k) = γk2.

Therefore the equation determining k becomes x/t =Ω ′(k) = 2γk. Thus,

k =
x

2γt
, ω =

x2

4γt2 , θ = kx−ωt =
x2

4γt
.

The group lines of constant k and ω are the straight lines x
2γt = const. The lines of

constant phase θ = const are the parabola x2

4γt = const. These two families of lines
are shown in Fig. 4.5. We see that the group velocityΩ ′(k) = 2γk is twice the phase
velocity ω/k = γk for waves propagating in Bernoulli-Euler’s beam.
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x

u

Fig. 4.6 Comparison of exact and approximate solutions

To compare the solution obtained by the numerical integration of Fourier’s in-
tegrals with the asymptotic solution (4.14) let us set γ = 1 and assume the initial
conditions as follows

u(x,0) = u0(x) = 2πe−x2
, u,t(x,0) = v0(x) = 0.

Then ψ1(k) = e−k2/4/
√

2 and the asymptotic solution takes the form

u(x, t)� ψ1(
x
2t
)

√
π
t

cos(
x2

4t
− π

4
).

Fig. 4.6 plots the exact solution in terms of Fourier’s integrals computed numerically
at time t = 100 and the above asymptotic solution at the same time, where the results
are nearly identical.

The other important role of the group velocity appears in studying the distribution
of amplitude A(x, t). It turns out that |A|2 propagates with the group velocity. To
show this let us compute the integral of |A|2 between two points x2 > x1 > 0. From
the above formula for A we have

Q(t) =
∫ x2

x1

AA∗ dx = 8π
∫ x2

x1

ψ1(ks)ψ∗
1 (ks)

t|Ω ′′(ks)| dx.

In this integral ks is the root of (4.12). Using the transformation x = Ω ′(k)t as a
change of variable x → k, we rewrite Q(t) in the form

Q(t) = 8π
∫ k2

k1

ψ1(k)ψ∗
1 (k)dk,

providedΩ ′′(k)> 0, where k1 and k2 are defined by

x1 =Ω ′(k1)t, x2 =Ω ′(k2)t.

If Ω ′′(k) < 0, the order of the limits must be reversed. Now, if k1 and k2 are held
fixed as t varies, Q(t) remains constant. But for the fixed k1 and k2 the points x1
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and x2 are moving with the group velocities. Thus, the total amount of |A|2 between
any pairs of group lines remains constant, and in this sense, |A|2 propagates with the
group velocity. Moreover, we will show in Section 4.4 that the energy also propa-
gates with the group velocity. This puts the question to the radiation conditions for
the dispersive waves.

Kinematic Derivation of Group Velocity. We see from the previous paragraph that
the concept of group velocity is quite crucial in understanding the phenomenon of
wave propagation. This concept must appear and be equally important for inhomo-
geneous media as well as for non-linear problems, where Fourier’s analysis are not
directly applicable. Therefore we try to develop below the direct kinematic approach
based on the more intuitive arguments rather than using Fourier’s integrals and the
method of stationary phase. We assume that a wave packet under consideration pos-
sesses a phase function θ (x, t), and that the wave number and frequency defined by

k = θ,x, ω =−θ,t , (4.15)

are slowly changing functions of x and t. If, further, we know or can derive for them
a dispersion relation

ω =Ω(k), (4.16)

then we have an equation for θ and we could proceed to solve it to determine the
geometry of the wave pattern. The convenient way is to use the kinematic relation

k,t +ω,x = 0,

which follows from (4.15). This equation can be regarded as the conservation of
waves, with k being the density of waves and ω the flux of waves. Combining it
with (4.16), we get a non-linear partial differential equation to determine k(x, t)

k,t +C(k)k,x = 0, C(k) =Ω ′(k). (4.17)

We see that the group velocity C(k) is the propagation velocity for the wave num-
ber k. This equation can be solved by the method of characteristics. For an initial
distribution k = f (x) at t = 0 the solution is

k = f (ξ ), x = ξ + vg(ξ )t,

where vg(ξ ) = C( f (ξ )). Thus, the observer moving with the group velocity sees
always the same local wave number k. It is interesting that the above equation for k is
non-linear and hyperbolic, even though the original problem is linear and in general
non-hyperbolic as in example (4.8)2. In this sense one can preserve the association
of wave propagation with hyperbolic equations, but there is a considerable non-
hyperbolic background.

Extensions to 2- and 3-D Cases. It is not difficult to extend the obtained results to 2-
or 3-D problems. Since the exact solution is expressed in terms of multiple Fourier’s



168 4 Linear Waves

integrals, the asymptotically leading terms in the limit t → ∞ with x/t being held
fixed can be obtained by the method of stationary phase. For d-dimensional space
we can show that

u(x, t) =
∫
ψ(k)eik·x−iΩ(k)t dk

� ψ(ks)

(
2π
t

)d/2(
det

∣∣∣∣ ∂Ω
∂kα∂kβ

∣∣∣∣
)−1/2

eiks·x−iΩ(ks)t+iζ ,

where ks satisfies the equation

∂Ω(k)
∂kα

=
xα
t
,

and ζ depends on the number of factors iπ/4 arising from the path rotation. We
could use this asymptotic solution to study the group velocity in 2- or 3-D cases.
However, it is simpler to develop the direct kinematic approach which may also be
applied to weakly inhomogeneous media.

We consider the slowly varying wave packet in the form

u(x, t) = acosθ ,

where the amplitude a and the phase θ are functions of x and t. We define the wave
vector k and frequency ω by

kα = θ,α , ω =−θ,t . (4.18)

We assume that a dispersion relation is known and can be written as

ω =Ω(x,k). (4.19)

For homogeneous media the dispersion relation does not depend on x and can be
obtained from the monochromatic plane waves. For weakly inhomogeneous media it
would appear reasonable to find the dispersion relations first for constant parameters
of the media and then reinsert their dependence on x. This will be justified by the
variational-asymptotic method in Section 4.4.

Now, by eliminating θ from (4.18), we have

kα ,t +ω,α = 0, kα ,β − kβ ,α = 0.

Then, if ω =Ω(x,k) is inserted into the first of these equations,

kα ,t +
∂Ω
∂kβ

kβ ,α =− ∂Ω
∂xα

.

Since kα ,β = kβ ,α , this may be modified to
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kα ,t +Cβ kα ,β =− ∂Ω
∂xα

, (4.20)

where

Cβ =
∂Ω
∂kβ

.

The group velocity C defined in this way is the propagation velocity in (4.20) for
the determination of k. Equation (4.20) may be written in the characteristic form as

dkα
dt

=− ∂Ω
∂xα

on
dxα
dt

=
∂Ω
∂kα

. (4.21)

Note that k is constant on each characteristic when the medium is homogeneous in
x, and then the characteristics are straight lines in the (x, t)-space. Each value of
k propagates with the corresponding constant group velocity C(k). For inhomoge-
neous media this is no longer valid: the values of k change as they propagate along
the characteristics and the characteristics themselves become curves. However, since
the medium is time-independent

dω
dt

= ω,t +Cβω,β =
∂Ω
∂ t

= 0,

the frequency remains constant along the characteristics.
It is interesting that equations (4.21) are identical with Hamilton’s equations in

mechanics if x and k are interpreted as coordinates and impulses while Ω(x,k) is
taken to be the Hamilton function (cf. Section 7.1). If instead of eliminating θ , we
substitute for ω and k in the dispersion relation −∂θ/∂ t and ∂θ/∂x, respectively,
then the following equation holds true

∂θ
∂ t

+Ω(x,
∂θ
∂x

) = 0.

This is nothing else but the Hamilton-Jacobi equation, with θ being regarded as the
action [5] (see also exercise 7.2).

4.3 Elastic Waveguide

In signal processing it is often necessary to delay signals by sending them through
an elastic waveguide which serves as the delay line. Due to the interaction of waves
with the free boundaries, this device exhibits dispersive waves with infinite number
of branches. The other interesting property of elastic waveguides is that the phase
and group velocities may have different signs for some high-frequency thickness
branches. Such waves are called “backward waves”. Their presence plays a decisive
role in posing the radiation conditions. Guided wave propagation is used intensively
also in nondestructive testing as well as in seismology.
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h

Fig. 4.7 Strip of thickness h

Equation of Motion. For simplicity, let us consider the most simple example of
waveguide, namely an elastic strip of thickness h, as shown in Figure 4.7. The carte-
sian coordinate system is selected, with (x,y)-plane coinciding with the middle sur-
face of the strip. The face surfaces of the strip are given by z = ±h/2. Assuming
that the strip is made of a homogeneous isotropic elastic material, we write down
the three-dimensional equations of its motion in terms of the displacements uα

ρuα ,tt = (λ + μ)uβ ,βα+ μuα ,ββ ,

where λ and μ are Lamé constants. The traction-free boundary conditions on the
face surfaces z =±h/2 read

σαz|z=±h/2 = [λuβ ,βδαz + μ(uα ,z+ uz,α)]|z=±h/2 = 0.

We non-dimensionalize these equations by introducing the following variables

t̄ =
tcs

h
, (x̄, ȳ, z̄) =

1
h
(x,y,z),

where cs =
√
μ/ρ is the speed of shear wave in an infinite solid. The equations of

motion and the boundary conditions then take the dimensionless form

uα ,tt = (1+ γ)uβ ,βα+ uα ,ββ ,

[γuβ ,βδαz +(uα ,z + uz,α)]|z=±1/2 = 0,
(4.22)

where γ = λ/μ and the bars are dropped for short.

Rayleigh-Lamb Dispersion Relation. Let us look for particular solutions of the
boundary-value problem (4.22) in the form

uα = fα(z)e
i(kx−ωt).

Substituting this into the equations (4.22), we obtain two uncoupled systems.
For the shear waves (SH-waves)3 with

uy = fy(z)e
i(kx−ωt), ux = uz = 0,

3 This terminology arose in seismology where the boundary surface is usually horizontal.
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we have

f ′′y + p2
2 fy = 0,

f ′y|z=±1/2 = 0,
(4.23)

where the prime denotes the derivative with respect to z and

p2
2 = ω

2 − k2.

The eigenvalue problem (4.23) yields the following eigenfunctions:

fy = acos2πnz, p2 = 2πn, for SS-waves,

fy = asinπ(2n+ 1)z, p2 = π(2n+ 1), for AS-waves,
(4.24)

where SS stands for the symmetric shear waves, while AS for the antisymmetric
shear waves.

We turn now to the second case, for which

ux = fx(z)e
i(kx−ωt), uz = fz(z)e

i(kx−ωt), uy = 0.

Substitution of these formulas into equations (4.22)1 gives

f ′′x +(1+ γ)ik f ′z +(ω2 −η−2k2) fx = 0,

η−2 f ′′z +(1+ γ)ik f ′x+(ω2 − k2) fz = 0,
(4.25)

where

η−2 = γ+ 2 =
λ + 2μ
μ

, η =

√
μ

λ + 2μ
=

√
1− 2ν
2− 2ν

,

with ν being Poisson’s ratio. The boundary conditions (4.22)2 become

η−2 f ′z + γik fx = 0,

f ′x + ik fz = 0.
(4.26)

The eigenvalue problem (4.25) and (4.26) admits the symmetric and antisymmetric
solutions of the type

fx(z)− even, fz(z)− odd (L-waves),

fx(z)− odd, fz(z)− even (F-waves).

The characteristic equation of the system (4.25)

det

∣∣∣∣s
2 +ω2 −η−2k2 (1+ γ)iks
(1+ γ)iks η−2s2 +ω2 − k2

∣∣∣∣ = 0

has four roots given by



172 4 Linear Waves

s1,2 =±ip1, p1 =
√
η2ω2 − k2,

s3,4 =±ip2, p2 =
√
ω2 − k2.

Therefore the symmetric solutions corresponding to longitudinal waves (L-waves)
read

fx = i(Ak cos p1z+Bp2 cos p2z),

fz =−Ap1 sin p1z+Bk sin p2z,
(4.27)

where A and B are still unknown constants. The four boundary conditions on z =
±1/2 reduce to two equations in A and B

(k2 − p2
2)cos

p1

2
A+ 2kp2 cos

p2

2
B = 0,

−2kp1 sin
p1

2
A+(k2 − p2

2)sin
p2

2
B = 0.

(4.28)

Equating the determinant to zero, we obtain from (4.28) the dispersion relation

(k2 − p2
2)

2 sin(p2/2)cos(p1/2)+ 4k2p1 p2 sin(p1/2)cos(p2/2) = 0. (4.29)

This is the Rayleigh-Lamb dispersion relation for the propagation of the L-waves in
this waveguide. From (4.28) we also obtain the amplitude ratio

A
B
=− 2kp2 cos(p2/2)

(k2 − p2
2)cos(p1/2)

=
(k2 − p2

2)sin(p2/2)
2kp1 sin(p1/2)

.

Next, we consider the antisymmetric solutions corresponding to flexural waves
(F-waves), which are given by

fx = i(Ck sin p1z−Dp2 sin p2z),

fz =Cp1 cos p1z+Dk cos p2z,
(4.30)

where C and D are unknown constants. The traction-free boundary conditions at
z =±1/2 reduce also in this case to two equations for C and D

(k2 − p2
2)sin

p1

2
C− 2kp2 sin

p2

2
D = 0,

2kp1 cos
p1

2
C+(k2 − p2

2)cos
p2

2
D = 0.

Since the determinant should vanish to guarantee nontrivial solutions, we derive
from here the following dispersion relation for the F-waves:

(k2 − p2
2)

2 cos(p2/2)sin(p1/2)+ 4k2p1 p2 cos(p1/2)sin(p2/2) = 0. (4.31)

This is the Rayleigh-Lamb dispersion relation for F-waves. We also obtain the equa-
tion for the ratio C/D
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C
D

=
2kp2 sin(p2/2)

(k2 − p2
2)sin(p1/2)

=− (k2 − p2
2)cos(p2/2)

2kp1 cos(p1/2)
.

Mention that both equations (4.29) and (4.31) can be combined in a single equation

tan(p2/2)
tan(p1/2)

=−
[

4p1 p2k2

(k2 − p2
2)

2

]±1

,

{
+ for L-waves,

− for F-waves.
(4.32)

Dispersion Curves. The dispersion relations (4.24), (4.29) and (4.31) were obtained
independently by Rayleigh and Lamb [28, 44]. However, due to their complexity,
the full analysis of branches of the dispersion curves in the (k,ω)-plane, as well as
branches with imaginary and complex wave number k, was completed much later
(see, for instance, [31]). We provide here the detailed asymptotic analysis and nu-
merical simulations of these equations.

SS(0)

AS(0)

SS(1)

AS(1)

Im(k) Re(k)

Fig. 4.8 Dispersion curves of shear waves

For SH-waves the dispersion relation (4.24) shows that for each number n =
0,1,2, . . . there are two branches

ω =±
√
π2(2n)2 + k2, for SS(n)-waves,

ω =±
√
π2(2n+ 1)2+ k2, for AS(n)-waves.

The plus or minus sign indicates the direction of wave propagation. All SS- and
AS-waves, except SS(0), are dispersive. At some real and fixed wave number k
the eigenfunctions (4.24) form a complete orthogonal basis in the space of regu-
lar functions of z. Thus, the series of Fourier’s integrals over all branches solves
the initial value problem for the infinite strip with arbitrary regular initial displace-
ment uy0(x,z) and velocity vy0(x,z). The solvability of signaling problem for a semi-
infinite strip requires the inclusion of solutions with imaginary k. We observe that
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the wave number k becomes imaginary for ω < ωc, where ωc = 2nπ for SS(n) and
ωc = (2n+ 1)π for AS(n). The frequency ωc at which the group velocity becomes
zero is called a cutoff frequency. Thus, the free propagation of the correspond-
ing branch does not occur at frequencies lower than the cutoff frequency. Several
branches of the dispersion curves are plotted in Fig. 4.8. Since the dispersion curves
for real k are symmetrical about the ω-axis, the (k,ω)-half-plane with negative real
k can be replaced by the (k,ω)-half-plane with positive imaginary k. Looking at the
dispersion curves we recognize that at a given fixed frequency there are only a finite
number of real k for SH-waves. Thus, we have only a finite number of propagating
waves. To satisfy arbitrary boundary conditions for a semi-infinite strip at x = 0 in
the signaling problem, we have to combine these propagating waves with an infi-
nite number of solutions having imaginary k and corresponding to non-propagating
modes. These modes describe vibrations which are localized near the edge of the
strip.

We turn now to the longitudinal and flexural waves characterized by the disper-
sion relation (4.32) and consider the case of real k. Depending on whether (k,ω) is
found in the regions I, II, or III, as shown in Figure 4.9, we may have p1, p2 being
both imaginary, one imaginary and one real, or both real, respectively. The disper-
sion relations will alter their forms accordingly. In the region I p1 = iq1, p2 = iq2,
where q1 =

√
k2 −η2ω2, q2 =

√
k2 −ω2. The dispersion relations take the form

tanh(q2/2)
tanh(q1/2)

=

[
4q1q2k2

(k2 + q2
2)

2

]±1

,

{
+ for L-waves,

− for F-waves.

To find the asymptote of the first F-branch for small k and ω we expand the hyper-
bolic tangent

tanhx = x(1− 1
3

x2 + . . .).

Retaining the first two terms, we reduce the dispersion relation for F-waves to

q2(1− 1
3(q2/2)2)

q1(1− 1
3(q1/2)2)

=
(k2 + q2

2)
2

4q1q2k2 .

We put this in the form

−(k2 − q2
2)

2 =
1
3

k2q4
2 −

1
12

q2
1(k

2 + q2
2)

2.

Expanding this and keeping the terms according to Newton’s rule, we obtain the
asymptotic formula

ω2 =
1

6(1−ν)k4 +O(k6).

which agrees with that of the plate theory.
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Fig. 4.9 Three regions of the (k,ω)-plane

In the region II p1 = iq1, and equation (4.32) becomes

tan(p2/2)
tanh(q1/2)

=±
[

4q1 p2k2

(k2 − p2
2)

2

]±1

,

{
+ for L-waves,

− for F-waves.

The lowest F-branch has no roots in this region. For the lowest L-branch we replace
tanx ∼ x and tanhx ∼ x giving

p2

q1
=

4q1p2k2

(k2 − p2
2)

2
, or (k2 − p2

2)
2 = 4k2q2

1.

Keeping the main terms in this equation we find that

ω2 =
2

1−ν k2 +O(k4),

which agrees again with the plate theory [31].
Let us consider now the high-frequency branches of L- and F-waves. We are

interested in the asymptotic behavior of the dispersion curves near the cutoff fre-
quencies in the long-wave range k � 1. Since the dispersion curves are in the range
ω ∼ 1 and k � 1, we have to analyze (4.29) and (4.31) in the region III of the (k,ω)-
plane (see Figure 4.9). Setting k = 0 in (4.29), we see that the cutoff frequencies ωc

of L-waves are the roots of the equation

sin
ωc

2
cos

ηωc

2
= 0.

It implies that

ωc = 2πn, or ωc =
π(2n+ 1)

η
.
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The first family of roots corresponds to the cutoff frequencies of the series L‖, the
second one to the cutoff frequencies of the series L⊥.

We turn to the branch L‖(n). To study the asymptotics of the dispersion curve
near the cutoff frequency ωc = 2πn we introduce the notation

ω2 = ω2
c + y, k2 = x,

with x and y being small quantities. Expanding the left-hand side of equation (4.29)
in the Taylor series of x and y and keeping only the principal terms in accordance
with Newton’s rule, we obtain

ω4
c cos

ωc

2
1

4ωc
(y− x)cos

ηωc

2
+ 4xηω2

c sin
ηωc

2
cos

ωc

2
= 0.

Solving this with respect to y we get finally

ω2 = ω2
c +(1− 16η tan(ηωc/2)

ωc
)k2.

For the branch L⊥(n) with ωc = π(2n+ 1)/η we obtain after performing the same
operations

ω2 = ω2
c +(

1
η2 +

16cot(ωc/2)
ωc

)k2.

Analogously, the asymptotic analysis of the Rayleigh-Lamb equation for F-waves
leads to the following cutoff frequencies

ωc =
2πn
η

, or ωc = π(2n+ 1).

The first family of roots corresponds to the cutoff frequencies of the series F⊥, the
second one to the cutoff frequencies of the series F‖. Similar asymptotic formulas
for the corresponding dispersion curves in the long-wave range can also be obtained
(see exercise 4.9).

In the above consideration we implicitly assume the value of η such that
cos(ηπn) �= 0. In the opposite case the coefficient at y in the approximate disper-
sion equation vanishes, and the above equation fails to provide the true asymptotics
for long waves. Consider, for definiteness, the branch L‖(n) and introduce the new
variables

ω = ωc + y, k2 = x.

Expanding (4.29) in x and y and keeping their principal terms, we arrive at

−ω4
c cos

ωc

2
sin
ηωc

2
η
4

y2 + 4xηω2 sin
ηωc

2
cos

ωc

2
= 0,

yielding
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ω = ωc ± 4
ωc

k.

One can see from the last equation that the group velocity vg = dω/dk of L‖(1) does
not vanish at k = 0, but is equal to ±2/π , and consequently, the wave packet moves
without deformation in the long-wave range. It is also interesting to observe that, for
ν = 1/3, the cutoff frequency of the branch L‖(1) coincides with that of the branch
L⊥(0).

k
L (0)

L (0)

L (1)

L (1)

L (2)

Fig. 4.10 Dispersion curves of L-waves

Figs. 4.10 and 4.11 show the dispersion curves of L- and F-waves, respectively,
for ν = 0.25. Since the dispersion curves are symmetrical about the ω-axis, it is
enough to show them in the first quadrant k > 0, ω > 0. The lowest branches of
these waves, L‖(0) and F⊥(0), begin from the origin and approach asymptotically
the straight line ω = vrk as k →∞, where vr = cr/cs is the dimensionless Rayleigh’s
wave speed which may be obtained as the positive real root of the equation

v6
r − 8v4

r +(24− 16η2)v2
r + 16(η2 − 1) = 0.

All other branches are high-frequency thickness branches which begin at the cor-
responding cutoff frequencies and approach the straight line ω = k as k → ∞. This
means that the wave speed of these branches approaches that of the shear waves in
an infinite solid, cs =

√
μ/ρ , as k →∞. It is interesting that the dispersion curves of

some branches, say L⊥(0) or F‖(1), have negative curvatures and slopes near k = 0.
We can recognize this also from the asymptotic formulas in the long-wave range de-
rived previously for these branches. Indeed, let us consider, for example, the branch
L⊥(0) for which ωc = π/η and

ω2 = (π/η)2 +(
1
η2 +

16cot(ωc/2)
ωc

)k2
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k

F (0)

F (0)

F (1)
F (1)

F (2)

Fig. 4.11 Dispersion curves of F-waves

for small k. If ν = 0.25, then the coefficient at k2 is negative and equal to

1
η2 +

16cot(ωc/2)
ωc

=−3.56865.

Consequently, the phase and group velocities have different signs in the long-wave
range. Such waves carry energy in one direction but their phase surfaces appear to
propagate in the opposite direction. Because of this property they are called “back-
ward waves”.

Now let us consider the solvability of the initial value problem for an infinite
waveguide and for arbitrary initial conditions. This solvability is guaranteed if the
eigenfunctions found in (4.27) and (4.30) form a complete orthonormal basis in
the space of vector-valued functions of z. To show that this is the case we rewrite
the equations (4.25) in the operator form

Lf = λ f,

where λ = ω2 and

f =
(

fx(z)
fz(z)

)
, Lf =

(− fx,zz − (1+ γ)ik fz,z+η−2k2 fx

−η−2 fz,zz − (1− γ)ik fx,z+ k2 fz

)
.

It is easy to check the following property: if k is real, then the operator L is Hermi-
tian in the sense that

〈g,Lf〉− 〈Lg, f〉=
∫ 1/2

−1/2
[g∗·Lf− f∗·Lg]dz = 0

for arbitrary two vector-valued functions f(z) and g(z) satisfying the boundary con-
ditions (4.26). Therefore, the eigenvalue problem (4.25) and (4.26) has a discrete
spectrum and the eigenfunctions form a complete orthonormal basis in this function
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space [23]. Thus, the series of Fourier’s integrals over all branches solves the ini-
tial value problem for the infinite strip with arbitrary regular initial displacements
u0(x,z) and velocities v0(x,z).

k

A B C

Fig. 4.12 Selected waves

The signaling problem is much more
challenging, where many questions remain
still open.4 Similar to the SH-waves, we
have at a given fixed frequency only a finite
number of real k for L- or F-waves as seen
from Figs. 4.10 and 4.11. But in contrast to
the SH-waves, the number of solutions with
imaginary k is also finite. It can be shown,
however, that there exists a countable num-
ber of solutions with the complex conjugate
k. To satisfy arbitrary boundary conditions
for a semi-infinite strip at x= 0 in the signal-
ing problem, we have to combine the prop-
agating waves with those solutions having
imaginary and complex conjugate k. These
modes describe vibrations which are local-
ized near the edge of the strip. The other is-
sue is the radiation conditions. Since the backward waves are present, we propose
to select among propagating waves only those with positive group velocities which
transport the energy from the edge of the strip to infinity. In Fig. 4.12 presenting the
dispersion curves of branches L‖(0) and L⊥(0) near the cutoff frequency ωc = π/η
the only waves corresponding to points A, B, C are selected if the frequency of the
sent signal is fixed at the level indicated by the horizontal line.

4.4 Energy Method

Energy Balance Equation. Since waves transport energy from one part of the
medium to another, the energy balance of its fixed part must involve energy flux
entering the boundary. We want to derive the energy balance equation from Euler-
Lagrange’s equations of motion (3.51) in the general case. Multiplying equations
(3.51) with ui,t and summing up over i yields

ui,t
∂
∂ t

∂L
∂ui,t

+ ui,t
∂
∂xα

∂L
∂ui,α

− ui,t
∂L
∂ui

= 0.

This equation can be transformed to

∂
∂ t

(ui,t
∂L
∂ui,t

)+
∂
∂xα

(ui,t
∂L
∂ui,α

)− ui,tt
∂L
∂ui,t

− ui,αt
∂L
∂ui,α

− ui,t
∂L
∂ui

= 0.

4 For instance, the generalization of Saint-Venant’s principle to dynamics [15].
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Since ui,t enter only the kinetic energy density which is quadratic with respect to
ui,t , the first term gives

∂
∂ t

(ui,t
∂L
∂ui,t

) =
∂
∂ t

(ui,t
∂K
∂ui,t

) =
∂
∂ t

(2K).

It is easy to see that the last three underlined terms lead to

−ui,tt
∂L
∂ui,t

− ui,αt
∂L
∂ui,α

− ui,t
∂L
∂ui

=− ∂
∂ t

(L).

So, we obtain the energy balance equation in the form

∂
∂ t

(K +U)+
∂
∂xα

(ui,t
∂L
∂ui,α

) = 0. (4.33)

The first term of (4.33) corresponds to the local change of the total energy density
E = K +U , while its gradient term describes the energy transported by the wave
motion. We therefore call Jα = ui,t

∂L
∂ui,α

an energy flux.

Energy Propagation. To see how the energy is transported by the traveling waves
let us first consider the 1-D Klein-Gordon equation (4.8)1 which can be obtained
from the following Lagrangian

L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u2
,x).

According to the energy balance equation (4.33) we have the energy density

E =
1
2

u2
,t +

1
2
(ω2

0 u2 + c2u2
,x),

and the energy flux
J =−c2u,t u,x.

As we know, the asymptotically leading term of solution can be written in form of
wave packet

u � Re(Aeiθ ) = acos(θ +φ),

where a = |A|, φ = argA. The wave number k = θ,x, the frequency ω = −θ,t , the
initial phase φ , and the amplitude a are slowly changing functions of x and t. We
use this asymptotic formula to compute the energy density and energy flux.

First we compute the term 1
2 u2

,t in the kinetic energy density

1
2

u2
,t �

1
2
ω2a2 sin2(θ +φ)
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together with terms involving a,t and φ,t . Since a and φ are slowly changing func-
tions of t, these terms can be neglected in the first approximation. Treating the other
terms in the same way, we obtain for the energy density

E =
1
2
(ω2 + c2k2)a2 sin2(θ +φ)+

1
2
ω2

0 a2 cos2(θ +φ).

Similarly, the energy flux becomes

J = c2ωka2 sin2(θ +φ).

Now let us take the average of these quantities over one period. Since the average
values of cos2(θ +φ) and sin2(θ +φ) over one period are equal to 1/2, we get

Ē =
1
4
(ω2 + c2k2 +ω2

0 )a
2, J̄ =

1
2

c2ωka2,

where bars over quantities denote their averaged values over one period. For Klein-
Gordon equation the dispersion relation of waves propagating to the right reads

ω =
√
ω2

0 + c2k2.

Therefore

Ē =
1
2
(c2k2 +ω2

0 )a
2, J̄ =

1
2

c2k
√
ω2

0 + c2k2a2.

As we remember, the group velocity is

C(k) =
dΩ(k)

dk
=

c2k√
ω2

0 + c2k2
,

so we get the following relation

J̄ =C(k)Ē .

This relation turns out to be general.
Based on the above relation we are going to derive now the average energy bal-

ance equation
Ē,t +(CĒ),x = 0, (4.34)

which can be interpreted as follows: the total average energy between any two group
lines remains constant, or, in other words, energy propagates with the group velocity.
For, if we consider the energy

E(t) =
∫ x2(t)

x1(t)
Ē dx
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between two points x1(t) and x2(t) moving with the group velocities C(k1), C(k2),
respectively, then

dE
dt

=
∫ x2

x1

∂ Ē
∂ t

dx+C2Ē2 −C1Ē1 = 0

if (4.34) is valid. Conversely, (4.34) is just the limit of the last equation as
x2 − x1 → 0.

To prove (4.34) we use the above formula for the average energy Ē = f (k)a2.
Substituting it into the left-hand side of (4.34), we obtain

Ē,t +(CĒ),x = f (k)[(a2),t +(Ca2),x]+ f ′(k)a2(k,t +Ck,x).

The last term on the right-hand side vanishes due to (4.17). By the same arguments
given for Ē , the first term must vanish too since the expression in the square brackets
is the differential form of the result found in Section 4.2 that

Q(t) =
∫ x2(t)

x1(t)
a2 dx

remains constant between any two group lines.
The established equations of energy propagation can easily be extended to the

cases involving more unknown functions and to higher dimension. Consider, for
example, the scalar Klein-Gordon equation in 3-D case corresponding to the La-
grangian

L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u,αu,α).

From (4.33) follows the energy balance equation

E,t + Jα ,α = 0,

where

E =
1
2

u2
,t +

1
2
ω2

0 u2 +
1
2

c2u,αu,α , Jα =−c2u,tu,α .

For a slowly varying wave packet u = acos(θ +φ) the average values of E and Jα
over one period are

Ē =
1
4
(ω2 + c2kαkα +ω2

0 )a
2, J̄α =

1
2

c2ωkαa2,

with k=∇θ being the wave vector andω =−θ,t the frequency. Since the dispersion

relation for the first branch reads ω =Ω(k) =
√
ω2

0 + c2|k|2, we see that

J̄α =Cα Ē,

where Cα is the group velocity
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Cα =
∂Ω
∂kα

=
c2kα√

ω2
0 + c2|k|2

.

The average energy balance equation becomes

Ē,t +(Cα Ē),α = 0. (4.35)

Equivalently, the total energy in any volume V (t) moving with the group lines re-
mains constant

d
dt

∫
V (t)

Ēdx =
∫

V (t)
Ē,t dx+

∫
S(t)

ĒCαnαda = 0,

where S(t) is the boundary of V (t), n is the outward normal vector to S(t), and Cαnα
is its normal velocity. The last equation is obtained from (4.35) by integrating it over
V (t) and applying Gauss’ theorem. Note that equation (4.35) can be presented in the
characteristic form

dĒ
dt

=−∂Cα
∂xα

Ē on
dxα
dt

=Cα(k).

So, the energy decays due to the divergence Cα ,α of the group lines. This effect is
due lonely to the dispersion as there is no energy loss in this case.

It seems clear that these results should be established once and for all by general
arguments without pursuing the detailed derivation each time. Such arguments are
provided by the variational-asymptotic method.

Variational-Asymptotic Method. In this paragraph we are going to apply the
variational-asymptotic method to quadratic functionals only. The generalization to
non-linear problems will be given in Chapter 8.

Consider the variational problem in form of Hamilton’s variational principle: find
the extremal of the action functional

I[ui(x, t)] =
∫∫
R

L(ui,ui,α ,ui,t)dxdt, (4.36)

where R = V × (t0, t1) is any finite and fixed region in (d + 1)-dimensional space-
time. We assume that ui are prescribed at the boundary ∂R. We look for the extremal
of this variational problem in form of a slowly varying wave packet5

ui = ψi(θ ,x, t), (4.37)

where θ is a function of x and t, ψi are periodic functions (with the period 2π) with
respect to θ . Function θ plays the role of the phase, while θ,α and −θ,t correspond
to the wave vector kα and the frequency ω , respectively. We assume that the char-
acteristic scales Λ and T of changes of the functions θ,α , θ,t and ψi(θ ,x, t)|θ=const

5 The amplitudes ai appear later.
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are considerably larger than the characteristic wavelength λ and period τ . The latter
are defined as the best constants in the inequalities

|θ,α | ≤ 2π
λ

, |θ,t | ≤ 2π
τ
, (4.38)

while the former are the best constants in the inequalities

|θ,αβ | ≤
2π
λΛ

, |θ,αt | ≤ 2π
λT

, |θ,αt | ≤ 2π
τΛ

, |θ,tt | ≤ 2π
τT

,

|∂αψi| ≤ ψ̄i

Λ
, |∂tψi| ≤ ψ̄i

T
, |ψi,θ | ≤ ψ̄i, (4.39)

where ∂αψi = ∂ψi/∂xα with θ = const, and ∂tψi = ∂ψi/∂ t with θ = const. In
other words, the wave vector kα = θ,α , the frequency ω = −θ,t , and functions ψi

change little in one wavelength and one period. Therefore it makes sense to call θ
“fast” variable as opposed to the “slow” variables xα and t. Thus, in this variational
problem we have two small parameters λ/Λ and τ/T .

We now calculate the derivatives ui,α and ui,t . According to (4.37) we have

ui,α = ∂αψi +ψi,θθ,α , ui,t = ∂tψi +ψi,θθ,t .

Because of (4.38) and (4.39) they can be approximately replaced by

ui,α = ψi,θ θ,α , ui,t = ψi,θθ,t .

Keeping in the action functional (4.36) the asymptotically principal terms, we obtain
in the first approximation

I0[ψi] =

∫∫
R

L(ψi,ψi,θ θ,α ,ψi,θθ,t)dxdt.

Let us decompose the domain R into the (d + 1)-dimensional strips bounded by the
d-dimensional phase surfaces θ = 2πn, n = 0,±1,±2, . . .. The integral over R can
then be replaced by the sum of the integrals over the strips

∫∫
R

Ldxdt =∑
∫∫

L(ψi,ψi,θθ,α ,ψi,θ θ,t)κ dθ dζ , (4.40)

where ζα are the coordinates along the phase surface θ = const, and κ is the Jaco-
bian of transformation from xα , t to θ ,ζα . In the first approximation we may regard
κ , θ,α and θ,t in each strip as independent from θ . Therefore we obtain the same
problem in each strip at the first step of the variational-asymptotic procedure: find
the extremal of the functional

Ī0[ψi] =
∫ 2π

0
L(ψi,ψi,θ θ,α ,ψi,θθ,t )dθ (4.41)
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among periodic functions ψi(θ ) with the period 2π . Since the quantities kα = θ,α
and −ω = θ,t change little within one strip, they are regarded as constants in the
functional (4.41). The Euler-Lagrange’s equation of this functional is a system of n
second-order ordinary differential equations. Its solutions contain 2n arbitrary con-
stants: n of them are determined from the conditions that ψi(θ ) are 2π-periodic
functions, the other n conditions can be chosen by fixing the amplitudes ai as fol-
lows: maxψi = |ai|, where ai are arbitrary real constants. We call this variational
problem strip problem.

Let us denote by 2π L̄ the value of the functional (4.41) at its extremal. The quan-
tity L̄ is a function of ai,θ,α and θ,t . The sum (4.40), as λ/Λ → 0 and τ/T → 0, can
again be replaced by the integral

∫∫
R

L̄(ai,θ,α ,θ,t)dxdt. (4.42)

Euler-Lagrange’s equations of the average functional (4.42) read

∂ L̄
∂ai

= 0,
∂
∂ t
∂ L̄
∂θ,t

+
∂
∂xα

∂ L̄
∂θ,α

= 0. (4.43)

We will see that equations (4.43)1 express the solvability condition for the strip
problem leading to the dispersion relation, while (4.43)2 is equivalent to the equation
of energy propagation.

Notice that the variational approach described here was initiated by Whitham
[53]. His arguments were based on some heuristic reasoning. The variational-
asymptotic method in its most general formulation was proposed a little later by
Berdichevsky [7]. It has then been applied to a wide class of variational problems
having small parameters, including the homogenization of periodic and random
structures leading to the cell problems, as well as approximate theories of shells and
rods resulting in the thickness and cross-section problems (see [8, 31]). In all prob-
lems the variational-asymptotic method yielded the same results as the traditional
asymptotic analysis of differential equations. But the former has some advantages
compared with the latter. First, as we have to deal only with the variational equation,
neglecting a small term in this equation means neglecting terms in several differen-
tial equations which are not always easy to be recognized as small ones. Second,
no ad hoc assumptions about the order of smallness are needed. The order of small-
ness of terms in the asymptotic expansion is determined exclusively by minimizing
the action functional. Thus, the more degrees of freedom and the more complicated
the energy and dissipation we have to deal with, the more effective we may expect
from the variational-asymptotic method compared with other traditional asymptotic
methods as will be seen in the subsequent chapters.

Applications. Let us investigate the strip problem and the average variational prob-
lem on some concrete examples. As the first example we consider 1-D Klein-Gordon
equation (4.8)1 corresponding to the Lagrangian



186 4 Linear Waves

L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u2
,x).

Then the strip problem becomes: find the extremal of the functional

Ī0[ψ ] =
∫ 2π

0
[
1
2
(ω2 − c2k2)ψ2

,θ −
1
2
ω2

0ψ2]dθ

among 2π-periodic functions ψ(θ ) satisfying the constraint maxψ = a. The quan-
tities ω = −θ,t and k = θ,x are regarded as constants in this variational problem.
Lagrange’s equation implies that the 2π-periodic extremal can only be of the form

ψ(θ ) = acos(θ +φ),

providedω2−c2k2 =ω2
0 . The latter is the solvability condition for the strip problem.

Substituting this back to Ī0, we obtain the average Lagrangian

L̄(a,θ,x,θ,t) =
1
4
(θ 2

,t −ω2
0 − c2θ 2

,x)a
2.

Thus, the average Lagrangian does not depend on the initial phase φ . Let us ana-
lyze now Euler-Lagrange’s equations of the average variational problem. Once these
equations have been obtained, it is convenient to work with them in terms of a, k,
ω :

∂ L̄
∂a

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0, (4.44)

where

L̄ = G(ω ,k)a2, G(ω ,k) =
1
4
(ω2 −ω2

0 − c2k2).

We see that the equation L̄,a = 0 is nothing else but the solvability condition for the
strip problem which leads to the dispersion relation G(ω ,k) = 0. We can solve this

relation with respect to ω to have the explicit form ω = ±Ω(k) = ±
√
ω2

0 + c2k2.
The second equation of (4.44) can be written as

∂
∂ t

(G,ωa2)− ∂
∂x

(G,ka2) = 0.

Since G(Ω(k),k) = 0, we have

G,ωΩ ′(k)+G,k = 0,

and consequently,

C =Ω ′(k) =− G,k

G,ω
.

If we denote G,ω(Ω ,k) by g(k), then (4.44)2 takes the form

(g(k)a2),t +(g(k)C(k)a2),x = 0.
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It follows from the consistency condition k,t +ω,x = 0 that

k,t +Ck,x = 0.

By using this kinematic relation, the factor g(k) can be removed so that

(a2),t +(Ca2),x = 0.

This is nothing else but the equation of amplitude modulations. The equation gov-
erning energy propagation can easily be derived from here. We can also obtain the
energy equation directly from balance equation (4.33) for the average variational
problem.

Let us turn now to waves propagating in Timoshenko’s beam with the Lagrangian
given by (3.50). Introducing the unknown function u and the dimensionless variables
according to

u = hψ , t̄ = tcs/h, x̄ = x/h,

we present the Lagrangian in the form (the bar is dropped for short)

L =
1
2
(w2

,t +αu2
,t)−

1
2
[su2

,x +β
2α(u+w,x)

2].

The strip problem becomes: find the extremal of the functional

Ī0[ψ1,ψ2] =

∫ 2π

0
[
1
2
ω2(ψ2

1,θ +αψ
2
2,θ )−

1
2

sk2ψ2
2,θ −

1
2
β 2α(ψ2 + kψ1,θ )

2]dθ

among 2π-periodic functionsψ1(θ ), ψ2(θ ) satisfying the constraints maxψi = |ai|.
In this functionalω =−θ,t and k = θ,x are treated as constants. Lagrange’s equations
of this problem imply that the 2π-periodic extremal can only be of the form

ψ1(θ ) = a1 cos(θ +φ), ψ2(θ ) = a2 sin(θ +φ).

The average Lagrangian becomes

L̄(a1,a2,θ,x,θ,t) =
1
4
θ 2
,t (a

2
1 +αa2

2)−
1
4

sθ 2
,xa2

2 −
1
4
β 2α(a2 −θ,xa1)

2.

The Euler-Lagrange’s equations ∂ L̄/∂ai = 0 yield the system of two linear equa-
tions

(ω2 −β 2αk2)a1 +β 2αka2 = 0,

β 2αka1 +(ω2α− sk2 −β 2α)a2 = 0,

which has non-trivial solutions only if the determinant vanishes. This is the solv-
ability condition for the strip problem which leads also to the dispersion relation

(ω2 −β 2αk2)(ω2α− sk2 −β 2α)−β 4α2k2 = 0.
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One can check that this equation coincides with the dispersion relation obtained by
assuming the harmonic wave form. One can also find the amplitude ratio a1/a2 from
this system. Finally, one can verify that the other Euler-Lagrange’s equation implies
the equation of energy propagation in this Timoshenko’s beam (see exercise (4.10)).

It is not difficult now to rederive the geometrical optics considered in Section
4.1 from the variational-asymptotic method. The same can be said about weakly
inhomogeneous media. This would be the case, for example, if the parameters ω0

and c in the Klein-Gordon equation were functions of x. The derivation of the strip
problem remains unchanged. If the characteristic length of change of material pa-
rameters is much larger than the characteristic wavelength, then we can again regard
them as constant in this strip problem. After finding the average Lagrangian the slow
dependence of the material parameters on x can be reinserted. The method can also
be applied for the case of external forces which change slowly in time. In this case
the Lagrangian depends explicitly on time, but this dependence can be ignored in
the strip problem. However, the energy is no longer conserved. But notice that wave
action is conserved in all cases.

4.5 Exercises

EXERCISE 4.1. Solve the 1-D wave equation with c = 1 and with the following
initial conditions

u(x,0) = 0, u,t(x,0) =

⎧⎪⎨
⎪⎩

x+ 1 for x ∈ (−1,0),

1− x for x ∈ (0,1),

0 otherwise.

Plot the solution at t = 0.5 and at t = 10.

Solution. According to the d’Alembert solution with c = 1

u(x, t) = f (x− t)+ g(x+ t).

Functions f (x) and g(x) should be found from the initial conditions

u(x,0) = f (x)+ g(x) = 0, u,t(x,0) =− f ′(x)+ g′(x) = v0(x).

Thus, f (x) =−g(x), while g(x) satisfies the equation

g′(x) =
1
2

v0(x) =

⎧⎪⎨
⎪⎩
(x+ 1)/2 for x ∈ (−1,0),

(1− x)/2 for x ∈ (0,1),

0 otherwise.

Integrating this equation, we obtain for g(x)
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g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for x <−1,
1
4 (x+ 1)2 for x ∈ (−1,0),

− 1
4(x− 1)2 + 1

2 for x ∈ (0,1),

1/2 for x > 1.

The plot of this function is shown in Fig. 4.13.
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g(x)

Fig. 4.13 Function g(x)

Substituting g(x) and f (x) =−g(x) into the d’Alembert solution, we can evaluate
u(x, t) and plot it at different instants of time. Figs. 4.14 and 4.15 show the solution
at t = 0.5 and t = 10, respectively. We observe that, at large t, the solution is constant
and equal to 1/2 inside the interval x ∈ (−t + 1, t − 1). Besides, there are two wave
fronts of the width 2 propagating to the left and to the right with the velocity 1.
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Fig. 4.14 Solution u(x, t) at t = 0.5

EXERCISE 4.2. For waves propagating in an infinite elastic material which is ho-
mogeneous and isotropic we seek particular solutions in form of plane waves
u = aei(k·x−ωt) . Show that there are two velocities of propagation given by
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Fig. 4.15 Solution u(x, t) at t = 10

cd =

√
λ + 2μ
ρ

, cs =

√
μ
ρ
,

corresponding to dilatational waves (a is parallel to k) and shear waves (a is orthog-
onal to k). Generalize this to homogeneous anisotropic materials.

Solution. Consider first the general case of infinite elastic material which is ho-
mogeneous and anisotropic. Then it is easy to show that the extremal of the action
functional of this elastic material (see example 3.9) satisfies the Euler-Lagrange’s
equations

ρuα ,tt −Eαβγδuγ,δβ = 0.

We look for the particular solutions of these equations in form of the plane wave

uα = aαei(kμ xμ−ωt),

where a and k are constant vectors. Substituting this formula into the equations of
motion and removing the non-zero factor ei(kμ xμ−ωt), we get the eigenvalue problem

(−ρω2δαγ +Eαβγδkδ kβ )aγ = 0,

with Kαγ = Eαβγδ kδ kβ being called the acoustic tensor.
We solve this eigenvalue problem for the case of isotropic material, for which

Eαβγδ = λδαβδγδ + μ(δαγδβδ + δαδδβγ).

The acoustic tensor becomes

Kαγ = (λ + μ)kαkγ + μk2δαγ ,

where k is the magnitude of vector k, that is, k = |k|. Without limiting generality we
may choose the x1-axis to be in the direction of vector k, i.e., k = (k,0,0). Then the
eigenvalue problem can be written in the matrix form
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⎛
⎝−ρc2 +λ + 2μ 0 0

0 −ρc2 + μ 0
0 0 −ρc2 + μ

⎞
⎠
⎛
⎝a1

a2

a3

⎞
⎠=

⎛
⎝0

0
0

⎞
⎠ ,

with c2 =ω2/k2 being the phase velocity of wave propagation. There are one single
eigenvalue and one double eigenvalue

c1 = cd =

√
λ + 2μ
ρ

, c2 = c3 = cs =

√
μ
ρ
,

corresponding to three eigenvectors

a1 =

⎛
⎝1

0
0

⎞
⎠ , a2 =

⎛
⎝0

1
0

⎞
⎠ , a3 =

⎛
⎝0

0
1

⎞
⎠ .

Thus, the first eigenvector a1 points in the direction of k and describes dilatational
waves propagating with the velocity cd . Two other eigenvectors a2 and a3 are or-
thogonal to k and correspond to shear waves propagating with the velocity cs which
is the double eigenvalue.

EXERCISE 4.3. Consider the “balloon problem” in acoustics: the pressure inside a
sphere of radius R0 is p0 +P while the pressure outside is p0. The gas is initially at
rest, and the balloon is burst at t = 0. The initial conditions for the velocity potential
read

ϕ(x,0) = 0, ϕ,t(x,0) =

{
−P/ρ0 0 < r < R0,

0 R0 < r.

Find the change of pressure with time.

Solution. Due to the spherical symmetry, the velocity potential depends only on r
and t, so

ϕ(r, t) =
f (r− ct)

r
+

g(r+ ct)
r

.

Substituting this into the initial conditions, we have

f (r)+ g(r) = 0, f ′(r)− g′(r) =

{
P
ρ0c r 0 < r < R0,

0 R0 < r.

These conditions determine f and g for positive values of their arguments. However,
it is also necessary to evaluate function f with negative argument in the solution. The
condition for that is obtained by requiring the absence of source at the origin

lim
r→0

r2 ∂ϕ
∂ r

= 0,
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which implies
f (−ct)+ g(ct) = 0 for t > 0.

The last condition determines f for negative argument in terms of g for positive
argument.

Solving the equations for f and g, we obtain

f (x) =

{
1
4

P
ρ0c (x

2 −R2
0) |x|< R0,

0 otherwise,

and

g(x) =

{
− 1

4
P
ρ0c (x

2 −R2
0) 0 < x < R0,

0 R0 < x.

With these functions we find the pressure difference

p− p0 =−ρ0ϕ,t =
P
2r

[(r− ct)F(r− ct)+ (r+ ct)G(r+ ct)],

where

F(x) =

{
1 −R0 < x < R0,

0 otherwise,

and

G(x) =

{
1 0 < x < R0,

0 R0 < x.

EXERCISE 4.4. Search for particular solutions in form of plane waves and derive
the dispersion relation for 1-D waves propagating in Timoshenko’s beam, the di-
mensionless Lagrangian of which is

L =
1
2
(w2

,t +αu2
,t)−

1
2
[su2

,x +β
2α(u+w,x)

2].

Plot the dispersion curves and study their asymptotic behavior as k → 0 and k → ∞.

Solution. Let u1 = w and u2 = u. From the Euler-Lagrange’s equations

∂
∂ t

∂L
∂ui,t

+
∂
∂x

∂L
∂ui,x

− ∂L
∂ui

= 0, i = 1,2,

we derive

w,tt −β 2α(u+w,x),x = 0,

αu,tt − su,xx +β 2α(u+w,x) = 0.

We look for the particular solutions of these equations in form of plane waves
(

w(x, t)
u(x, t)

)
=

(
a1

a2

)
ei(kx−ωt),



4.5 Exercises 193

where a1 and a2 are constants. Substituting this Ansatz into the equations of motion
and removing the common non-zero factor ei(kx−ωt), we obtain

(−ω2 +β 2αk2 −β 2αik
β 2αik −αω2 + sk2 +β 2α

)(
a1

a2

)
=

(
0
0

)
.

Nontrivial solutions exist if the determinant of the matrix vanishes yielding the dis-
persion relation

(−ω2 +β 2αk2)(−αω2 + sk2 +β 2α)−β 4α2k2 = 0.

Thus, for each real k there are two real and positive roots of this dispersion rela-
tions corresponding to two different branches of the dispersion curves. To plot the
dispersion curves we use the following parameters

α =
1
2

(
π2

24

)2

, β = π , s =
1

6(1−ν) ,

with ν being Poisson’s ratio (see [31]). The plot of the dispersion curves for ν = 0.31
(dashed lines) are shown in Fig. 4.16. We also plot the dispersion curves of the two
first branches of F-waves according to Rayleigh-Lamb dispersion relation (solid
lines). The comparison shows quite good agreement in the long-wave range.

ω

Re kIm k

Fig. 4.16 Dispersion curves of flexural waves propagating in a beam: a) 1-D Timoshenko
beam theory: dashed line and b) 3-D theory: solid line

In the long-wave range (k � 1) the asymptotic analysis of dispersion relation
yields the following formula

ω2 = sk4 +O(k6)

for the low-frequency branch, and

ω2 = β 2 +(αβ 2 +
s
α
)k2 +O(k4)
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for the high-frequency thickness vibrations.
In the short-wave range (k → ∞) the dispersion curves approach the asymptotes

ω = β
√
αk and ω =

√
s
α

k,

respectively.

EXERCISE 4.5. Solve the linearized Korteweg-de Vries equation with α = 0, β = 1
and with the initial condition u(x,0) = e−x2

. Compute Fourier’s integral numeri-
cally6 and plot the solution at t = 1.

Solution. Using the Fourier transform, we find that

u(x, t) =
∫ ∞

−∞
ψ(k)eikx−iΩ(k)t dk,

where, for the linearized KdV equation with α = 0, β = 1,

Ω(k) =−k3.

Function ψ(k) should be determined from the initial condition
∫ ∞

−∞
ψ(k)eikxdk = u(x,0) = e−x2

.

Applying the Fourier transform to both sides, we obtain

ψ(k) =
1

2π

∫ ∞

−∞
e−x2

e−ikxdx =
1

2
√
π

e−k2/4.

Thus, the problem reduces to computing the integral

u(x, t) =
∫ ∞

−∞
1

2
√
π

e−k2/4ei(kx+k3t) dk.

This can be done numerically by using the Fourier series package in Mathematica.
Due to the highly oscillatory integrand, we choose the maximum number of recur-
sive subdivisions to be 100 to achieve the required accuracy. The plot of u(x, t) at
t = 1 is shown in Fig. 4.17. We see the dispersive waves propagating in the negative
direction of the x-axis. For x > 0 the solution decays quickly and does not have the
oscillatory character. This behavior remains valid also for the later instants of time.

EXERCISE 4.6. Use the method of stationary phase to find the asymptotically lead-
ing term of the solution obtained in the previous exercise as t → ∞ at fixed x/t.
Compare this asymptotic solution with the exact one at t = 10.

6 Since the integrand is highly oscillatory, the accuracy is achieved only by increasing the
maximum number of recursive subdivisions.
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Fig. 4.17 Solution u(x, t) at t = 1
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Fig. 4.18 Asymptotic solution u(x, t) at t = 10

Solution. For the large time asymptotics the method of stationary phase can be used
instead of numerical integration. In our case we rewrite the solution in the form

u(x, t) =
∫ ∞

−∞
ψ(k)e−iχ(k)tdk,

where
χ(k) =−k3 − k

x
t
.

As we know, the main contributions to the integral come from the neighborhoods of
stationary points of χ(k)

χ ′(k) =−3k2 − x
t
= 0.

Thus, for x > 0 there is no stationary point, and the solution at fixed x/t and large t
must be nearly zero. For x < 0 there are two stationary points given by

k1(x, t) =

√−x
3t

and k2(x, t) =−k1(x, t) =−
√−x

3t
.
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At these stationary points

ψ(ks) =
1

2
√
π

ex/12t .

Taking into account that χ ′′(ks) =−6ks, we find that

u(x, t)� 1

2
√
π

ex/12t

√
2π

6tk1
eik1x+ik3

1t+ iπ
4 +

1

2
√
π

ex/12t

√
2π

6tk1
e−ik1x−ik3

1t− iπ
4

� ex/12t

√
1

3tk1
cos(k1x+ k3

1t +π/4).

Fig. 4.18 plots the exact solution in terms of Fourier’s integrals computed numeri-
cally at time t = 10 and the above asymptotic solution at the same time, where the
results are nearly identical in the region x < 0.

EXERCISE 4.7. Show that the lowest branches of the dispersion curves of F- and
L-waves in an elastic waveguide approach the straight line ω = vrk as k → ∞.

Solution. Consider first the lowest branch of L-waves which must be determined by
the dispersion relation

tanh(q2/2)
tanh(q1/2)

=
4q1q2k2

(k2 + q2
2)

2
,

where

q1 =
√

k2 −η2ω2, q2 =
√

k2 −ω2, η =

√
μ

λ + 2μ
=

√
1− 2ν
2− 2ν

.

Introducing the dimensionless phase velocity v = ω/k, we can represent the above
equation in the form

tanh(k
√

1− v2/2)

tanh(k
√

1−η2v2/2)
=

√
1−η2v2

√
1− v2

(1− v2/2)2 .

As k → ∞ the left-hand side must go to 1 for any finite and fixed v ∈ (0,1). Thus, v
must be determined from the equation

√
1−η2v2

√
1− v2

(1− v2/2)2 = 1.

This equation has a unique solution vr = cr/cs in the range v ∈ (0,1), where cr is
the Rayleigh wave speed (see exercise 4.9).

For the lowest branch of F-waves the dispersion relation is obtained from the
above equation by inverting the right-hand side, so ω/k→ vr also in the limit k →∞.

EXERCISE 4.8. Prove that all high-frequency thickness branches of F- and L-waves
in an elastic waveguide approach the line ω = k from above as k → ∞.
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Solution. As seen from the Rayleigh-Lamb equation for L-waves, when v = 1/η
there is an infinite number of roots given by

k =
2nπ√

1/η2 − 1
, n = 1,2, . . . .

This means that there is an infinite number of branches of the dispersion curves
crossing the straight line ω = k/η and entering the region II as k becomes large.
The dispersion relation for L-waves in this region read

tan(k
√

v2 − 1/2)

tanh(k
√

1−η2v2/2)
=

√
1−η2v2

√
v2 − 1

(1− v2/2)2 .

For large k function tanh(k
√

1−η2v2/2) is close to 1, so the above equation can be
replaced by

tan(k
√

v2 − 1/2) =

√
1−η2v2

√
v2 − 1

(1− v2/2)2 .

This equation has an infinite number of roots for each fixed v ∈ (1,1/η). From
this observation it follows that any straight line ω = vk, with v > 1, cannot be an
asymptote to any of the branches. Indeed, if the n-th branch would have v as the
limiting speed, the straight line ω = vk would intersect at most n− 1 branches (the
dispersion curves cannot intersect each other), but this contradicts the fact that there
are infinitely many dispersion curves intersecting this line. Thus, v must approach
1. In this limit the above equation can further be simplified to take the form

tan(k
√

v2 − 1/2) = 4
√

1−η2
√

v2 − 1.

Let ε =
√

v2 − 1. Solving this equation, we find that, to the first order of ε

k ∼ 2nπ
ε

∼ 2πn√
ω2/k2 − 1

=⇒ ω2 − k2 = (2πn)2.

These equations of hyperbolas describe the asymptotic behavior of the dispersion
curves as k goes to infinity. The proof for F-waves can be done in a similar manner.

EXERCISE 4.9. Rayleigh surface wave. Determine the velocity of wave propagating
near the free surface of an isotropic elastic half-space.

Solution. Let us choose the coordinate system such that the elastic medium oc-
cupies the domain z ≤ 0 with the plane z = 0 as its free boundary. We write the
dimensionless equations of motion

uα ,tt = (1+ γ)uβ ,βα+ uα ,ββ

and the traction free boundary conditions

[γuβ ,βδαz +(uα ,z+ uz,α)]|z=0 = 0
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as in (4.22), where h is an arbitrary length. We look for the solution in form of the
surface wave propagating in the x-direction

ux = f̂xeszei(kx−ωt), uy = 0, uz = f̂ze
szei(kx−ωt),

with f̂x and f̂z being constants. Since the solution must decay exponentially as z →
−∞, we choose s to be real and positive. Substituting this Ansatz into the equations
of motion, we obtain the system

(
s2 +ω2 −η−2k2 (1+ γ)iks

(1+ γ)iks η−2s2 +ω2 − k2

)(
f̂x

f̂z

)
=

(
0
0

)
.

The condition of vanishing determinant yields two real positive roots

s1 =
√

k2 −η2ω2, s2 =
√

k2 −ω2,

corresponding to two eigenvectors

(
f̂x

f̂z

)
=

(
ik
s1

)
,

(
f̂x

f̂z

)
=

(
is2

k

)
,

provided (k,ω) is found in the region I. Thus, the general solution reads

ux = i(Akes1z +Bs2es2z)ei(kx−ωt),

uz = (As1es1z +Bkes2z)ei(kx−ωt).

The traction-free boundary conditions at z = 0 yield two equations for A and B

(η−2s2
1 − γk2)A+ ks2(η−2 − γ)B = 0,

2ks1A+(s2
2 + k2)B = 0.

Equating the determinant to zero, we obtain from here the relation

(2k2 −ω2)2 − 4k2
√

k2 −η2ω2
√

k2 −ω2 = 0.

Introducing the dimensionless velocity of wave propagation v = ω/k, we bring this
relation to the form

(2− v2)2 − 4
√

1−η2v2
√

1− v2 = 0,

or, equivalently,

v6 − 8v4 +(24− 16η2)v2 + 16(η2 − 1) = 0.

It is easy to see that this cubic equation with respect to v2 has a unique root in the
range v ∈ (0,1). The plot of v = cr/cs versus Poisson’s ratio is shown in Fig. 4.19.
As the Poisson ratio changes from zero to 1/2, cr/cs changes from 0.874 to 0.955.
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Fig. 4.19 The dimensionless velocity of Rayleigh surface wave cr/cs versus Poisson’s ratio

EXERCISE 4.10. Derive the equation of energy propagation for Timoshenko’s beam
using the variational-asymptotic method and compare it with the similar equation
obtained via averaging the energy balance equation.

Solution. The Euler-Lagrange’s equation of the average variational problem

∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0

implies the equation of energy propagation

(ω L̄,ω − L̄),t +(−ω L̄,k),x = 0,

where ω L̄,ω− L̄ is the average total energy density and −ω L̄,k is the average energy
flux (see exercise 4.12). For the Timoshenko beam we have

L̄(a1,a2,k,ω) =
1
4
ω2(a2

1 +αa2
2)−

1
4

sk2a2
2 −

1
4
β 2α(a2 − ka1)

2.

Thus, the average total energy density reads

Ē = ω L̄,ω − L̄ =
1
4
ω2(a2

1 +αa2
2)+

1
4

sk2a2
2 +

1
4
β 2α(a2 − ka1)

2,

while the average energy flux equals

J̄ =−ω L̄,k =
1
2

sa2
2kω− 1

2
β 2α(a2 − ka1)a1ω .



200 4 Linear Waves

Let us show that the same equation can also be derived by averaging the exact
energy balance equation (4.33). For Timoshenko’s beam theory the total energy
density is

E = K +U =
1
2
(w2

,t +αu2
,t)+

1
2
[su2

,x +β
2α(u+w,x)

2],

while the energy flux equals

J = ui,t
∂L
∂ui,x

=−β 2αw,t (u+w,x)− su,tu,x.

The asymptotically leading terms of solution can be written in form of wave packet

w � a1 cos(θ +φ), u � a2 sin(θ +φ),

where a1 and a2 are amplitudes of w and u, respectively. The wave number k = θ,x,
the frequencyω =−θ,t , the initial phase φ , and the amplitudes a1 and a2 are slowly
changing functions of x and t. We use these formulas to compute the asymptotically
leading terms of the total energy density and the energy flux.

First we compute the kinetic energy density

1
2
(w2

,t +αu2
,t)�

1
2
[ω2a2

1 sin2(θ +φ)+αω2a2
2 cos2(θ +φ)]

together with terms involving ai,t and φ,t . Since ai and φ are slowly changing func-
tions of t, these terms can be neglected in the first approximation. Treating the other
terms in the same way, we obtain for the total energy density

E =
1
2
[ω2a2

1 sin2(θ +φ)+αω2a2
2 cos2(θ +φ)]

+
1
2
[sk2a2

2 cos2(θ +φ)+β 2α(a2 − a1k)2 sin2(θ +φ)].

Similarly, the energy flux becomes

J =−β 2αωa1(a2 − ka1)sin2(θ +φ)+ sωka2
2 cos2(θ +φ).

Now let us take the average of these quantities over one period. Since the average
values of cos2(θ +φ) and sin2(θ +φ) over one period are equal to 1/2, we get

Ē =
1
4
ω2(a2

1 +αa2
2)+

1
4

sk2a2
2 +

1
4
β 2α(a2 − ka1)

2,

and

J̄ =
1
2

sa2
2kω− 1

2
β 2α(a2 − ka1)a1ω ,

which coincide with the above equations obtained from the variational-asymptotic
method.
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EXERCISE 4.11. Solve the strip problem for 3-D Klein-Gordon equation

u,tt +ω2
0 u = c2Δu

to find the average Lagrangian, the dispersion relation, and the equation of energy
propagation.

Solution. For 3-D Klein-Gordon equation corresponding to the Lagrangian

L =
1
2

u2
,t −

1
2
(ω2

0 u2 + c2u,αu,α),

the strip problem becomes: find the extremal of the functional

Ī0[ψ ] =
∫ 2π

0
[
1
2
(ω2 − c2kαkα)ψ2

,θ −
1
2
ω2

0ψ
2]dθ

among 2π-periodic functions ψ(θ ) satisfying the constraint maxψ = a. The quan-
tities ω = −θ,t and k = ∇θ are regarded as constants in this variational problem.
Lagrange’s equation implies that the 2π-periodic extremal can only be of the form

ψ(θ ) = acos(θ +φ),

providedω2−c2|k|2 =ω2
0 , where |k|2 = kαkα . The latter is the solvability condition

for the strip problem. Using this solution, we compute the average Lagrangian

L̄(a,θ,α ,θ,t) =
1
4
(θ 2

,t −ω2
0 − c2θ,αθ,α)a2.

Euler-Lagrange’s equations of the average variational problem, in terms of a, k, and
ω , read

∂ L̄
∂a

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂xα

∂ L̄
∂kα

= 0.

Let us write L̄ = G(ω ,k)a2, where G(ω ,k) = 1
4(ω

2 −ω2
0 − c2|k|2). We see that the

equation L̄,a = 0 is nothing else but the solvability condition G(ω ,k) = 0 for the
strip problem which is equivalent to the dispersion relation

ω2 = ω2
0 + c2|k|2.

We can solve this relation with respect to ω to have the explicit form ω =±Ω(k) =

±
√
ω2

0 + c2|k|2. The second equation can be written as

∂
∂ t

(G,ωa2)− ∂
∂xα

(G,kα a2) = 0.

Since G(Ω(k),k) = 0, we have

G,ωΩ,kα +G,kα = 0,
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and consequently,

Cα =Ω,kα =−G,kα

G,ω
.

If we denote G,ω(Ω(k),k) by g(k), then the second equation takes the form

(g(k)a2),t +(g(k)Cαa2),α = 0.

It follows from the consistency condition kα ,t +ω,α = 0 that

kα ,t +Cβkβ ,α = 0.

By using this kinematic relation, the factor g(k) can be removed so that

(a2),t +(Cαa2),α = 0.

This is nothing else but the equation of amplitude modulations. The equation gov-
erning energy propagation reads (see the next exercise)

(ω L̄,ω − L̄),t +(−ω L̄,kα ),α = 0.

With L̄ = G(ω ,k)a2 we get

Ē = ω L̄,ω − L̄ = (ωG,ω −G)a2,

and
J̄α =−ω L̄,kα =−ωG,kαa2 = ωG,ωCαa2.

Substituting these formulas into the equation of energy propagation and taking into
account the dispersion relation G(Ω(k),k) = 0, we easily see that it is equivalent to
the equation of amplitude modulations.

EXERCISE 4.12. Derive the following equations

(ω L̄,ω − L̄),t +(−ω L̄,kα ),α = 0,

(kα L̄,ω ),t +(−kα L̄,kβ + L̄δαβ ),β = 0,

for homogeneous media, which can be interpreted as the energy and “wave momen-
tum” equations, respectively. What happens if L̄ depends on the slow variables xα
and t?

Solution. The derivation of the energy equation is quite similar to that given at the
beginning of Section 4.4. Starting from the average Euler-Lagrange’s equation

∂
∂ t
∂ L̄
∂ω

− ∂
∂xα

∂ L̄
∂kα

= 0

and multiplying it with ω , we obtain

ω(L̄,ω ),t −ω(L̄,kα ),α = 0.
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Rearrange terms to get

(ω L̄,ω),t − (ω L̄,kα ),α −ω,t L̄,ω +ω,α L̄,kα = 0.

Replacingω,α in the last term by−kα ,t in accordance with the consistency condition
and taking into account the dispersion relations L̄,ai = 0, we see that the last two
terms give −L̄,t since, according to the chain rule of differentiation,

L̄,t =
∂ L̄
∂θ,t

θ,tt +
∂ L̄
∂θ,α

θ,αt +
∂ L̄
∂ai

ai,t = ω,t L̄,ω + kα ,t L̄,kα .

Thus,
(ω L̄,ω − L̄),t +(−ω L̄,kα ),α = 0.

Since ω L̄,ω is the average kinetic energy density K̄, the expression in the square
brackets of the first term is the average total energy density, while −ω L̄,kα is the
average energy flux. So, this equation is the equation of energy propagation.

The “wave momentum” equation can be derived by multiplying the average
Euler-Lagrange’s equation with kα

kα(L̄,ω),t − kα(L̄,kβ ),β = 0.

Rearranging terms to get

(kα L̄,ω ),t − (kα L̄,kβ ),β − kα ,t L̄,ω + kα ,β L̄,kβ = 0.

Replacing kα ,t by −ω,α and keeping in mind the dispersion relations, we reduce the
last two terms to L̄,α , so

(kα L̄,ω ),t +(−kα L̄,kβ + L̄δαβ ),β = 0.

If the average Lagrangian depends on the slow variables xα (weakly inhomoge-
neous media) and t (slowly changing external forces), the energy and wave momen-
tum equations change. In the case of slow dependence on t, the energy equation
becomes

(ω L̄,ω − L̄),t +(−ω L̄,kα ),α =−∂t L̄,

where ∂t L̄ denotes the partial time derivative of L̄ at fixed ω and kα . In case of slow
dependence on xα , the wave momentum equation reads

(kα L̄,ω ),t +(−kα L̄,kβ + L̄δαβ ),β = ∂α L̄,

where ∂α L̄ denotes the partial derivative of L̄ with respect to xα at fixed ω and kα .



Part II
Nonlinear Theory



Chapter 5
Autonomous Single Oscillator

This chapter studies finite amplitude vibrations of the autonomous mechanical sys-
tems having one degree of freedom. The character of solutions depends strongly on
the type of the system. The solution methods may range from phase portrait and
Lindstedt-Poincaré method for conservative systems up to Bogoliubov-Mitropolsky
method for systems with weak dissipation.

5.1 Conservative Oscillator

Differential Equation of Motion. As before, Hamilton’s variational principle with
the Lagrange function L(q, q̇), q and q̇ being the generalized coordinate and velocity,
is our tool for deriving the equation of motion of conservative systems. However,
in contrast to the linear theory, we will see that the kinetic energy may now depend
on q as well, and the potential energy is no longer quadratic with respect to q. We
consider three simple examples.

EXAMPLE 5.1. Mass-spring oscillator. A point-mass m moves horizontally under
the action of a non-linear spring (see Fig. 5.1). Derive the equation of motion for
this oscillator.

m
x

f=-U’(x)

Fig. 5.1 Mass-spring oscillator

Like the oscillator considered in example 1.1
the kinetic energy is given by K = 1

2 mẋ2.
Concerning the potential energy of the non-
linear spring we first consider the most gen-
eral case, for which U(x) is an arbitrary
smooth function. Then Lagrange’s equation
reads

mẍ− f (x) = 0, f (x) =−dU
dx

.
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The spring force f (x) is called a restoring force. However, it is quite reasonable to
assume that the potential energy of the spring deviates only slightly from that of the
linear spring, i.e.,

U(x) =
1
2

kx2 +
1
4
α

k

l2
0

x4,

where l0 is the original length of the spring and α a small parameter. If α > 0, the
spring is called hardening; on the contrary if α < 0 it is called softening. Lagrange’s
equation becomes

mẍ+ kx+α
k

l2
0

x3 = 0.

Dividing this equation by kl0 and rewriting it in terms of the dimensionless function
x̄ = x/l0 and the dimensionless time t̄ =

√
k/mt, we obtain1

ẍ+ x+αx3 = 0. (5.1)

Equation (5.1) is known as Duffing’s equation.

EXAMPLE 5.2. Derive the equation of motion of the mathematical pendulum con-
sidered in example 1.2.

As has been shown already in that example, the Lagrange function is

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 −mgl(1− cosϕ),

but now ϕ is no longer small. Thus, the finite amplitude vibrations of this pendulum
are described by the equation

ϕ̈+ω2
0 sinϕ = 0, ω0 =

√
g
l
.

By expanding sinϕ in the Taylor series about ϕ = 0 and keeping the terms up to ϕ3

we obtain the approximate equation

ϕ̈+ω2
0 (ϕ− ϕ3

6
) = 0,

which can be transformed to (5.1) with α =−1/6.

EXAMPLE 5.3. A point-mass m is constrained to move along a frictionless path
represented by a smooth curve y= y(x) in the (x,y)-plane under the action of gravity
(see Fig. 5.2). Derive the equation of motion.

1 The bar is dropped for short.
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x

y

mg

y=y(x)

Fig. 5.2 Motion of point-mass along a
path

This is the typical example of systems with
holonomic constraints. Any holonomic con-
straint like that of the curve y = y(x) can be
realized by a strong potential energy U(x,y)
which forces the point-mass to move along
the path. In the limit when the potential en-
ergy goes to infinity in the neighborhood of
the path, one gets the Lagrange function eval-
uated under this constraint [5]. Using in our
example x (or, equivalently, the arc-length
s along the curve) as the coordinate of the
point-mass, we find its constrained velocity
along the path

v = ṡ =
√

1+ y′2ẋ.

Thus, the kinetic energy of the point-mass equals

K(x, ẋ) =
1
2

mv2 =
1
2

m(
√

1+ y′2ẋ)2.

Observe that the kinetic energy depends not only on ẋ, but also on x through the
function y(x). Choosing the zero level at y = 0, the potential energy is given by

U(x) = mgh = mgy(x).

Therefore, Lagrange’s equation yields

d
dt
(m
√

1+ y′2ẋ)+mg
y′√

1+ y′2
= 0.

Phase Portrait. As we know from Section 2.4, for conservative oscillators the total
energy remains constant during the motion

K(x, ẋ)+U(x) = E0.

This first integral describes the level curves (phase curves) in the phase plane (x,y),
where y = ẋ. Consider for instance example 5.1 for which

1
2

mẋ2 +U(x) = E0.

Solving this equation with respect to ẋ, we find explicitly

ẋ =±
√

2
m

√
E0 −U(x). (5.2)

The plus or minus sign depends on whether we are in the upper half or lower half of
the phase plane.
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x

x

y

1

1

2

2

3

3

4

4

CS

U(x)

Fig. 5.3 Potential energy and phase portrait of conservative oscillator

Fig. 5.3 shows in its upper part a prototype potential energy as function of x, while
in the lower part, with exactly the same x-scale, the corresponding phase portrait.
From (5.2) we see that the phase portrait is symmetric with respect to the x-axis and
that the phase curves must run from left to right in the upper half-plane and from
right to left in the lower half-plane as time increases. The horizontal lines 1,2,3, and
4 in the upper graph label different energy levels E0 of the oscillator for different
types of motions. Since the kinetic energy is non-negative, the potential energy of
a particular motion must lie below the corresponding energy level. The intersection
points of any E0-line with the potential energy correspond to the intersection points
of the phase curve with the x-axis. For levels 1,2 the phase curves are closed orbits
which look like ellipses intersecting the x-axis in two turning points at right angles.
These closed orbits describe periodic vibrations of the point-mass about the equi-
librium position C. The latter corresponds to the local minimum of the potential
energy, so C is the stable center. For level 3 the phase curve is quite special. This
curve passes through a saddle point S (corresponding to the local maximum of the
potential energy), and consists of four branches, called separatrices2 which do not
intersect the x-axis at right angles. In our case the separatrices separate closed orbits
from open phase curves like that of level 4, which describe aperiodic motions of
the point-mass. The motion along any separatrix requires infinite amount of time to
reach the unstable equilibrium position S. Such motions are called limit motions.

Using equation (5.2), we can now compute the time required to go from the initial
point x0 to point x along a fixed phase curve

2 The given name originates from the fact that these branches separate regions filled with
phase curves of different types.
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t = t0 ±
∫ x

x0

dξ√
2
m [E0 −U(ξ )]

.

Again, the plus or minus sign depends on whether we are in the upper half or lower
half of the phase plane. Taking into account the symmetry with respect to the x-axis,
we obtain the period of vibration along any closed orbit

T = 2
∫ xM

xm

dξ√
2
m [E0 −U(ξ )]

, (5.3)

where xm and xM are the minimum and maximum of x corresponding to the turning
points. We see that the period of vibration (and therefore the related frequency)
in the nonlinear theory depends on the initial energy, or, in other words, on the
amplitude of vibration, in contrast to the linear theory.

Variational-Asymptotic Method. If the action functional contains some small pa-
rameter in the nonlinear term, then it is possible to find the correction to the solution
and to the frequency without computing complicated integral (5.3). Let us consider
for instance Duffing’s equation (5.1) which can be obtained as Lagrange’s equation
of the functional

I[x(t)] =
∫ T

0
(

1
2

ẋ2 − 1
2

x2 − 1
4
εx4)dt,

with T being the period of vibration. We assume simply α = ε as a small parameter.
We know that the extremal of this functional depends on ε . On the other hand, the
results of the previous paragraph show that the period (and the related frequency
ω = 2π/T ) of vibration depends on the amplitude, and thus, on ε too. We want to
make ω enter the action functional explicitly by stretching the time τ = ωt so that
the functional now takes the form

I[x(τ)] =
1
ω

∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 − 1

4
εx4)dτ,

with prime denoting the derivative with respect to τ . Since the constant factor 1/ω
does not influence the extremal, instead of the obtained functional we consider the
following one

I[x(τ)] =
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 − 1

4
εx4)dτ. (5.4)

We try to find the periodic extremal of this functional. As x(τ) is periodic with
respect to τ with the period 2π , we call τ phase (or angular time). Since the func-
tional contains a small parameter ε , we shall use the variational-asymptotic method
to study this variational problem (see [8, 31]). At the first step we put simply ε = 0
to get from (5.4)

I0[x(τ)] =
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ.

As we know from the linear theory, the 2π-periodic extremal of this functional is
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x0(τ) = acosτ. (5.5)

Here a is the amplitude of vibration, the frequency ω is equal to 1 as expected, and
we have chosen the initial phase φ = 0 which is possible because functional (5.4)
does not depend explicitly on time.

At the second step we seek the periodic extremal and the corresponding fre-
quency in the form

x(τ) = x0(τ)+ x1(τ), ω = 1+ω1, (5.6)

where x1(τ) is smaller than x0(τ) in the asymptotic sense and ω1 � 1. We may
assume that x1(τ) and ω1 are of the order ε of smallness although this is even not
necessary. The order of smallness of x1(τ) and ω1 will automatically be determined
in this step. Substituting (5.6) into (5.4) and keeping the asymptotically principal
terms containing x1 and the principal cross terms between x0 and x1, we obtain3

I1[x1(τ)] =
∫ 2π

0
(

1
2

x′21 + x′0x′1 + 2ω1x′0x′1 −
1
2

x2
1 − x0x1 − εx3

0x1)dτ.

Integrating the second and the third terms by parts taking into account the periodicity
of x1(τ), we see that the underlined terms are canceled out. Besides, the cubic of
x0 = acosτ can be transformed into the sum of harmonic cosine functions like that

x3
0 = a3 cos3 τ = a3(

3
4

cosτ+
1
4

cos3τ).

Finally we have

I1[x1(τ)] =
∫ 2π

0
(

1
2

x′21 − 1
2

x2
1 +(2ω1a− ε 3

4
a3)cosτ x1 − 1

4
εa3 cos3τ x1)dτ.

This functional is reminiscent of that of forced linear oscillator, where the two last
terms play the role of the work done by the external forces. The underlined term
would lead then to resonance causing non-periodic x1 with the amplitude tending to
infinity as τ → ∞. However, it is obvious that such resonance cannot appear! Thus,
for the consistency of our asymptotic expansion we require the coefficient of cosτ
in the functional I1 to vanish.4 This consistency condition implies

2ω1a− ε 3
4

a3 = 0, that is, ω1 = ε
3
8

a2. (5.7)

Substituting the result into (5.6)2, we get the correction for the frequency-amplitude
relation

ω = 1+ ε
3
8

a2 +O(ε2). (5.8)

3 The terms containing only x0 are dropped because x0 is not subject to variation at this step.
4 Allowing some strong expression, we would say that the resonant or secular terms must

be “killed”.
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The period T = 2π/ω may then be written as

T =
2π

1+ ε 3
8 a2 +O(ε2)

= 2π
[

1− ε 3
8

a2 +O(ε2)

]
. (5.9)

With the underlined resonant term being “killed” we find the extremal of
functional I1

x1(τ) = ε
a3

32
(cos3τ− cosτ). (5.10)

Here we have chosen the initial condition such that x(0) = a which is consistent
with our choice φ = 0.

Then at the next step we seek the corrections to the extremal and the frequency
in the form

x(τ) = x0(τ)+ x1(τ)+ x2(τ), ω = 1+ω1 +ω2,

where x2(τ) and ω2 are smaller than x1(τ) and ω1 in the asymptotic sense, and
repeat the same procedure as before (see exercise 5.2).

Notice that the similar procedure applied to the differential equations containing
a small parameter has first been proposed by Lindstedt and Poincaré (see [32, 40]).

Comparison with the Exact Solution. It turns out that Duffing’s equation can be
solved exactly in terms of Jacobian elliptic functions [3]. In this paragraph we want
to get the frequency from this exact solution and compare it with the result obtained
by the variational-asymptotic method.

First of all, let us collect some well known facts about Jacobian elliptic functions.
There are three such functions: sn, cn, and dn. They depend on two variables, u and
m, where u is called an argument and m = k2 a modulus. In working with Jacobian
elliptic functions the modulus m is often dropped, so we write sn(u,m) = sn(u). Two
of them, sn and cn, are quite similar to trigonometric sine and cosine. For example
there are several identities resembling the well-known trigonometric formulas like

sn2(u)+ cn2(u) = 1,

sn′(u) = cn(u)dn(u), cn′(u) =−sn(u)dn(u),

where prime denotes the derivative with respect to u. The elliptic function dn satis-
fies the equations

dn′(u) =−msn(u)cn(u), and msn2(u)+ dn2(u) = 1.

The period of sn and cn in their argument u is 4K which is the complete elliptic
integral of the first kind. The period of dn is 2K. The asymptotic expansion of K(m)
is given by

K(m) =
π
2

[
1+

(
1
2

)2

m+

(
1 .3
2 .4

)2

m2 + . . .

]
. (5.11)
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We look for the solution of Duffing’s equation (5.1) in the form

x(t) = acn(u), where u = bt + c, (5.12)

and a, b, c, and m are still unknown constants. Only two of them may be determined
from the initial conditions. Let us fix the initial phase c = 0. Thus, there must be two
relations for the remaining constants. To find these relations we compute the time
derivative of x(t)

ẋ = abcn′(u) =−absn(u)dn(u).

Differentiating once again to get

ẍ =−ab2[cn(u)dn2(u)−msn2(u)cn(u)].

Using the above identities, this becomes

ẍ =−ab2cn(u)[1− 2m+ 2mcn2(u)].

Substituting the last equation into Duffing’s equation (5.1) (whereα = ε) and equat-
ing to zero the coefficients of cn and cn3 gives two equations relating a, b, and m

a(2b2m− b2 + 1) = 0,

−a(2b2m− εa2) = 0.

Solving for b and m in terms of a, we obtain finally

b2 = 1+ εa2, m =
εa2

2(1+ εa2)
. (5.13)

1 2 3 4 5

-1.0

-0.5

0.5

1.0

t

x(t)

Fig. 5.4 Solution of Duffing’s equation for ε = 0.5: i) Bold line: exact solution, ii) Dashed
line: approximate solution

Formulas (5.12) and (5.13) give the exact solution of Duffing’s equation. Its am-
plitude a corresponds to the amplitude of the approximate solution (5.5) and (5.10).
The period T of the exact solution is 4K/b which may be written, using asymptotic
formula (5.11),
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T =
4K(m)

b
=

2π
b

[
1+

1
4

m+
9
64

m2 +O(m3)

]
.

Substituting (5.13) into this equation and expanding for small ε , we obtain

T = 2π
[

1− ε 3
8

a2 +O(ε2)

]

which agrees with formula (5.9). Fig. 5.4 shows the comparison between the exact
solution and the approximate one found in the previous paragraph for ε = 0.5. One
can find for example in [6,20] the rigorous mathematical proof of convergence of the
approximate solution to the exact one as ε→ 0 in any finite time interval. However,
it is intuitively clear that for any small but finite ε the errors in period and in solution
accumulate with the time and become of the order 1 for the time greater than T/ε .

5.2 Dissipative Oscillator

Differential Equation of Motion. For dissipative oscillators there are three types of
nonlinearity: i) Non-quadratic energy and quadratic dissipation, ii) Quadratic energy
and non-quadratic dissipation, iii) Both energy and dissipation are non-quadratic.
The common feature of all dissipative oscillators is the positive definiteness of the
dissipation causing the decrease of the energy. Therefore periodic motions in au-
tonomous dissipative systems are clearly impossible. We consider three examples.

EXAMPLE 5.4. Mathematical pendulum with viscous damping. Derive the equation
of motion of the mathematical pendulum considered in example 1.2 taking into
account the air resistance through viscous damping.

As before the Lagrange function is given by

L(ϕ , ϕ̇) =
1
2

ml2ϕ̇2 −mgl(1− cosϕ).

For the viscous damping we may assume that the dissipation function is quadratic
with respect to the velocity v = lϕ̇

D =
1
2

c(lϕ̇)2.

Thus, generalized Lagrange’s equation (2.31) yields

ϕ̈+ω2
0 sinϕ+

c
m
ϕ̇ = 0. (5.14)

This pendulum belongs to the first type of dissipative oscillator with the nonlinear
restoring force and the linear damping force.
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EXAMPLE 5.5. Mass-spring oscillator with Coulomb’s friction. A mass m moves on
the rough solid foundation under the action of a linear spring (see Fig. 5.5). Derive
the equation of motion for this oscillator.

m
x

k

Fig. 5.5 Dry friction

Up to now we have analyzed dissipative oscillators with
quadratic dissipation leading to the velocity proportional
damping force. However, we are often confronted in re-
ality with another type of damping, namely with the fric-
tion between solids with rough and unlubricated surfaces,
called Coulomb’s (or “dry”) friction. The most important
features of Coulomb’s friction are the existence of a thresh-
old value f0 for the zero velocity and the constant friction
force for nonzero velocities. The force-velocity diagram for

Coulomb’s friction is shown schematically in Fig. 5.6. We see that this “constant”
friction force is constant in magnitude but not in direction since its direction is al-
ways opposite to the direction of velocity.

fr

f0

x.

Fig. 5.6 Coulomb’s friction force

Looking at the force-velocity diagram we find that Coulomb’s friction force can
be described by the equation

fr(ẋ) =

{
f0 for ẋ < 0,

− f0 for ẋ > 0.

For ẋ = 0 the friction force may take an arbitrary value in between. Since fr =
−dD/dẋ, we have

D(ẋ) = f0|ẋ|. (5.15)

Thus, the dissipation function D(ẋ) of Coulomb’s friction is a positive definite ho-
mogeneous function of the first order. Its graph is shown schematically in Fig. 5.7.
Mention that D(ẋ) is non-smooth at ẋ = 0, but we can still use the constitutive equa-
tion fr =−dD/dẋ for ẋ = 0 if dD/dẋ is understood in the sense of sub-differential.
In this case fr can take any value between − f0 and f0.

Now, the equation of motion of this oscillator reads

mẍ =−kx+ fr(ẋ). (5.16)
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x.

D

tan =f0

Fig. 5.7 Dissipation function of Coulomb’s friction

As the consequence, we see that as long as the magnitude of spring force |kx| is less
than f0, the mass, being released with the zero velocity, cannot move: it is “sticked”
to the surface. So we have the “sticky” zone − f0/k ≤ x≤ f0/k in which all positions
of the oscillator are the equilibrium positions. Released motions are possible only
outside of this “sticky” zone. This is the example of oscillators of the second type.

EXAMPLE 5.6. Nonlinear oscillator with a quadratic damping.

If a small mass connected with a non-linear spring moves very fast in a gas or a
fluid with a small viscosity, vorticities may occur around it. The resistance from
these vorticities on the moving body may sometimes be approximated as propor-
tional to the square of velocity of the point-mass. Such kind of damping is called a
“turbulent” damping. Since the damping force acts in the opposite direction to the
direction of motion, it must be equal to fr = −c|ẋ|ẋ. The corresponding dissipation
function is

D(ẋ) =
1
3

c|ẋ|3.
Now the equation of motion reads

mẍ+ c|ẋ|ẋ− f (x) = 0, f (x) =−dU
dx

. (5.17)

As the spring force f (x) is also non-linear, this oscillator belongs to the third type.

Phase Portrait. Since the energy decreases with time, it is for sure that the ampli-
tude of vibration decays also. There are different methods to determine the evolution
to equilibrium for dissipative systems with one degree of freedom. The most general
and at the same time most descriptive method remains still that of phase portrait [4].
For all types of dissipative oscillators we may combine the restoring and damping
forces in one and present the equation of motion in the form

ẍ = f (x, ẋ),

where f (x, ẋ) is the resultant force (divided by m) acting on the point-mass. With
y = ẋ we may reduce this differential equation of second order to the system of
equations of first order
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ẋ = y, (5.18)

ẏ = f (x,y).

Thus, at each point (x,y) of the phase plane there is one vector (y, f (x,y)) tangent
to the phase curve. One can plot this vector field and construct the phase curves by
integrating numerically equations (5.18) using for example Euler’s or Runge-Kutta’s
algorithm.

-3 -2 -1 1 2 3

-2

-1

1

2

Fig. 5.8 Phase portrait of damped pendulum

Consider for instance the pendulum with viscous damping in example 5.4. The
equation of motion (5.14) can be written in the dimensionless form as follows

ϕ ′′+ 2δϕ ′+ sinϕ = 0,

where prime denotes the derivative with respect to τ = ω0t, and δ = c
2mω0

is Lehr’s
damping ratio. Reducing this equation to

ϕ ′ = ω ,
ω ′ =−sinϕ− 2δω ,

we show the plot of the vector field (ω ,−sinϕ− 2δω) and the phase curves in the
phase plane in Fig. 5.8. By wrapping the phase plane onto the cylinder along the
lines ϕ =±π we obtain the phase portrait of the damped pendulum on the cylinder.
We see that there are no periodic motions and that almost all phase curves tend to
the stable equilibrium position ϕ = 0.

Oscillator with Coulomb Friction. For this type of oscillator the solution can
directly be found from the energy balance equation. Let us first mention that
the energy balance equation (2.32) derived in Section 2.4 should be modified for
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Coulomb’s friction. Since the dissipation function (5.15) is homogeneous function
of the first order, we have merely

dD
dẋ

ẋ = D(ẋ).

Thus, instead of (2.32) the energy balance equation for the Coulomb’s friction reads

K +U −E0 =−
∫ t

t0
D(ẋ(s))ds,

so that the factor 2 disappears here. With D(ẋ) from (5.15) we obtain

1
2

mẋ2 +
1
2

kx2 = E0 − f0|x− x0|, (5.19)

as long as x0 is found outside of the “sticky” zone, where E0 is the initial energy at
point x0. It is interesting to note that the dissipation is rate-independent: it depends
only on the initial and end coordinates of the point-mass.

xx0

E0

x1

E01

x2

E02

x3x4

U(x)

Fig. 5.9 Total energy and turning points of oscillator with Coulomb’s friction

Energy balance equation (5.19) gives a clear geometric method for determining
the amplitude decay and the turning points of this oscillator. Fig. 5.9 shows the
potential energy of the oscillator as well as the total energy during the process of
motion. Assume that the point-mass is released from x0 with the zero initial velocity
and then moves to the right. According to (5.19) the total energy at x is E0 − f0(x−
x0) since x > x0. This is the straight line with the negative slope − f0 describing
the decay rate of the energy. The kinetic energy is the height between the total
energy and the potential energy. It becomes zero at the turning point x1 which is the
intersection point between the parabola U(x) and the straight line. Using this point
x1 and the corresponding energy E01 as the initial data, we find that the total energy
of the motion thereafter must be E01 + f0(x− x1), since the point mass moves now
to the left with x < x1. This is the straight line with the positive slope f0 which
intersects the parabola at the turning point x2. We can then repeat this geometric
construction until |xn|< f0/k where the point mass will be sticked there.
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x

y

c0x0 x1x2

Fig. 5.10 Phase portrait of oscillator with Coulomb’s friction

We can also use the energy balance equation (5.19) to plot the phase curves.
Indeed, for ẋ > 0 we have

1
2

mẋ2 +
1
2

kx2 = E0 − f0(x− x0).

Bringing term − f0x to the left-hand side and forming there the square of x+c0 (with
c0 = f0/k), we obtain

1
2

mẋ2 +
1
2

k(x+ c0)
2 = E0 + f0x0 +

f 2
0

2k
,

or with y = ẋ/ω0 (where ω2
0 = k/m)

y2 +(x+ c0)
2 = r2, r2 =

2
k
(E0 + f0x0 +

f 2
0

2k
).

We see that the phase curves in the upper half of the phase plane are half-circles with
the center at point−c0 on the x-axis. In the lower half-plane they are also half-circles
but with the center at point c0 on the x-axis. The sticky zone lies between these
centers. As long as the phase curve does not hit the sticky zone, its continuation in
the other half-plane is possible. The sticky zone is the “dead” zone for the phase
curves (see Fig. 5.10).

Oscillator with “Turbulent” Damping. The equation of motion for the oscillator
considered in example 5.6 can be integrated separately for ẋ > 0 and ẋ < 0. Indeed,
consider first the case ẋ > 0 and denote ẋ = v. Since

ẍ =
dv
dt

=
dv
dx

dx
dt

= v
dv
dx

=
1
2

dv2

dx
,
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we can rewrite equation (5.17) in the form

dv2

dx
+αv2 − 2

m
f (x) = 0,

where α = 2c/m. This inhomogeneous differential equation of first order can be
integrated by the standard method of variation of coefficients [11] yielding

v2(x) = e−αx
(

C1 +
2
m

∫ x

0
f (ξ )eαξ dξ

)
.

Similarly, for ẋ < 0 we have

v2(x) = eαx
(

C2 +
2
m

∫ x

0
f (ξ )e−αξ dξ

)
.

The constants C1 and C2 are determined from the initial conditions. Let

U+(x) =− 2
m

∫ x

0
f (ξ )eαξ dξ =

2
m

∫ x

0
U ′(ξ )eαξ dξ ,

U−(x) =− 2
m

∫ x

0
f (ξ )e−αξ dξ =

2
m

∫ x

0
U ′(ξ )e−αξ dξ .

Assume that the point-mass is released from x0 with the zero velocity v0 = 0 and
that it moves afterward in the positive direction. Then C1 =U+(x0) and

v2(x) = e−αx[U+(x0)−U+(x)], for ẋ > 0.

The first turning point x1 can then be found as the root of the equation U+(x1) =
U+(x0). Choosing now x1 as the initial coordinate from which the point-mass is
released and moves in the negative direction, we find that C2 =U−(x1) and that

v2(x) = eαx[U−(x1)−U−(x)], for ẋ < 0.

Therefore, the second turning point, x2, must be the root of the equation U−(x2) =
U−(x1). Then we can choose x2 as the initial coordinate from which the point-mass
is released and repeat the procedure. So, if functions U+(x) and U−(x) are known,
then the solution and the turning points can successively be determined.

For illustration let us consider the case of the quadratic potential energy (linear
spring) with U(x) = 1

2 kx2. In this case functions U+(x) and U−(x) can easily be
computed

U+(x) =
2
m

∫ x

0
kξ eαξ dξ =− 2k

mα2 [e
αx(1−αx)− 1],

U−(x) =
2
m

∫ x

0
kξ e−αξ dξ =− 2k

mα2 [e
−αx(1+αx)− 1].
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U (x)+
-
*

*

-x0 xx1-x2
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U (x)

Fig. 5.11 Functions U∗
+(x) and U∗−(x) and sequence of turning points

The constant factor 2k
mα2 and the subtrahend −1 in the square brackets do not ob-

viously influence the determination of the turning points. So, instead of U+(x) and
U−(x) we can take the following functions

U∗
+(x) =−eαx(1−αx) and U∗

−(x) =−e−αx(1+αx)

for this purpose. Besides, U∗
+(x) =U∗−(−x), so it is enough to plot them for x > 0.

Fig. 5.11 shows the plot of these functions and the geometric method of determining
the sequence of turning points. As function U∗

+(x) cuts the x-axis at point 1/α ,
whatever we take for the initial coordinate x0, the amplitude x1 is always less than
1/α .

5.3 Self-excited Oscillator

This Section analyzes self-excited oscillators with one degree of freedom having
sustained vibrations. The key features of such oscillators are the presence of an
energy source and of a switcher, which switches the energy supply regime to the
energy dissipation regime when the amplitude (or velocity) of vibrations becomes
large.

Differential Equations of Motion. It was shown in the previous Section that free
vibrations of any dissipative system about an equilibrium position decay with time,
and in the limit t → ∞ the system approaches equilibrium. Since in reality there are
always some sources of small energy dissipation (viscosity, friction, drag force etc.),
one might think that permanent vibrations of autonomous mechanical systems are
not possible at all. However, the opposite is the case: one can observe everywhere
in nature and technique permanent vibrations of living organisms, machines, and
constructions. Examples may range from the beating of our hearts to pendulum
clocks or flutter of bridges and airplane wings. Let us consider here some simple
cases.
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EXAMPLE 5.7. Stick-slip oscillator. A mass m connected with a linear spring of
stiffness k moves on the rough band of a treadmill that rolls with a constant velocity
v0 (see Fig. 5.12). Derive the equation of motion for this oscillator taking into ac-
count Coulomb’s friction between the mass and the rolling band. Plot the power of
the friction force against the velocity of the mass.

mk

v0

Fig. 5.12 Stick-slip oscillator

This example represents a primitive model of vibrations of a violin string. In terms
of the displacement x and velocity ẋ the Lagrange function reads

L(x, ẋ) =
1
2

mẋ2 − 1
2

kx2.

The dissipation function due to Coulomb’s friction between the rolling band and the
mass must depend on their relative velocity ẋ− v0, so

D(ẋ) = f0|ẋ− v0|.

Thus, generalized Lagrange’s equation is

mẍ+ kx = fr(ẋ− v0),

where

fr(ẋ− v0) =

{
f0 for ẋ < v0,

− f0 for ẋ > v0.

For ẋ = v0 the friction force fr must be equal to the spring force taken with minus
sign.

The most interesting property of this oscillator is that the power of the friction
force may have both plus and minus sign. Indeed, doing the same calculations as in
Section 2.4 for dissipative systems we obtain the balance of energy in the form

d
dt
(K +U) =−∂D(ẋ− v0)

∂ ẋ
ẋ.

The expression on the right-hand side is the power of the friction force fr. For the
oscillator vibrating about the equilibrium position with v0 = 0 we have shown pre-
viously that this is equal to −D(ẋ), and thus, the energy dissipation rate is positive.
In our case, the power may have both signs as one can see in Fig. 5.13.
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.

x.v0

frx

Fig. 5.13 Power of Coulomb’s friction force

vr

fr
f0

Fig. 5.14 Friction force fr versus relative veloc-
ity vr = ẋ−v0

The positive power of the fric-
tion force means that energy is sup-
plied to the oscillator amplifying the
vibrations. In contrary, the negative
power of the friction force (or, equiv-
alently, the positive dissipation rate)
means the energy loss which slows
down the vibrations. We see that for
our oscillator there is the possibil-
ity of amplifying the vibration in the
region 0 < ẋ < v0. This does not
still guarantee the self-excitation of
small vibrations since we have also
the energy loss for ẋ < 0 plus the air
resistance through viscous damping
which is always present. It should be

mentioned however that the more accurate experiments show a slight dependence
of the friction force on the relative velocity as sketched in Fig. 5.14. This, as well as
the air resistance through viscous damping in the system may have some influence
on the stability of the equilibrium state. We will show later that, under some favor-
able conditions, the oscillator may develop self-sustained vibrations. From Fig. 5.13
we see also that the two different regimes of energy supply and energy dissipation is
switched at the velocities ẋ = 0 and ẋ = v0. Thus, in this case the switcher is velocity
sensitive.

EXAMPLE 5.8. Froude’s pendulum. A compound pendulum that is rigidly fasten to
a sleeve in form of a ring mounted on a shaft rotating with a constant angular veloc-
ity ν0 (see Fig. 5.15). Derive the equation of motion of this pendulum taking into
account the air resistance as well as Coulomb’s friction between the rotating shaft
and the sleeve. Plot the power of the friction moment against the angular velocity.
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Rotating
shaft

Fig. 5.15 Froude’s pendulum

This example is quite similar to the previous one,
except for non-quadratic potential energy. The La-
grange function of the pendulum is

L(ϕ , ϕ̇) =
1
2

Jϕ̇2 −mgl(1− cosϕ),

where J is the moment of inertia of the pendulum
about the center O of the rotating shaft, and l the dis-
tance from the center of mass S to O. The dissipation
function includes the dissipation due to the air resis-
tance and the dissipation due to Coulomb’s friction
between the sleeve of the pendulum and the rotating
shaft. The latter must be a function of the relative
angular velocity. Thus,

D(ϕ̇) =
1
2

cl2ϕ̇2 +Dc(ϕ̇−ν0),

and the generalized Lagrange’s equation reads

Jϕ̈+mgl sinϕ+ cl2ϕ̇−Mr(ϕ̇−ν0) = 0.

Here Mr(ϕ̇−ν0) is the friction moment acting on the pendulum

Mr(ϕ̇−ν0) =−∂Dc(ϕ̇−ν0)

∂ ϕ̇
.

If we take Dc(ϕ̇ − ν0) = f0r|ϕ̇ − ν0| as in the previous case, with r being the
radius of the shaft (which is equal to the inner radius of the sleeve), then the plot of
the power of the friction moment, Mrϕ̇ , is exactly the same as that of the stick-slip
oscillator. There exists the energy supply regime for the angular velocity ϕ̇ ∈ (0,ν0).
This does not still guarantee the self-excitation of small vibrations since we have
also the energy loss for ϕ̇ < 0 plus that due to the air resistance. However, for the
more realistic response curve of friction moment versus relative angular velocity
similar to that shown in Fig. 5.14, the Froude’s pendulum may also develop self-
sustained vibrations (see exercise 5.7).

EXAMPLE 5.9. van der Pol’s and similar oscillators.

If the mass-spring oscillator is connected with some energy source through a
switcher, which switches from the energy dissipation to the energy supply regime
when a certain combination of amplitude and velocity is less than 1, then the dissi-
pation function may be proposed for example in the form
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D(x, ẋ) =
1
2

c(αx2 +
1
2
β ẋ2 − 1)ẋ2,

where c,α , and β are positive constants. This formula does not contradict the second
law of thermodynamics as the system under consideration is open and is connected
with the energy source (or, equivalently, with an external force producing a positive
power).5 Generalized Lagrange’s equation takes the form

mẍ+ kx+ c(αx2 +β ẋ2 − 1)ẋ = 0.

If β = 0, the oscillator is called van der Pol’s oscillator.6 In this case the
switcher is amplitude sensitive. On the contrary, for the case α = 0 corresponding
to Rayleigh’s equation, the switcher is velocity sensitive like that of the stick-slip
oscillator. In the general case (both α and β are non-zero), the switcher is of the
mixed type. Mention that Rayleigh’s equation can be transformed to van der Pol’s
equation as well (see exercise 5.9).

In what follows we shall study mainly van der Pol’s oscillator as the prototype of
self-excited oscillators. It is therefore convenient to bring its governing equation to
the dimensionless form. For this purpose let us introduce the dimensionless quanti-
ties t̄ =

√
k/mt and x̄ =

√
αx. In their terms van der Pol’s equation can be written

as follow
ẍ+ x+ μ(x2− 1)ẋ = 0, (5.20)

where μ = c/
√

km, and the bar is dropped for short. Introducing y = ẋ, we can
rewrite van der Pol’s equation as the system of first order differential equations

ẋ = y, (5.21)

ẏ =−x+ μ(1− x2)y,

which has one fixed point at (x,y) = (0,0).

Energy Household and the Existence of Limit Cycles. To recognize, whether
van der Pol’s oscillator has a limit cycle in the phase plane or not, all we need is
Poincaré-Bendixson theorem proved in the theory of ordinary differential equations
(see [11]). Roughly speaking, this theorem states that if there exists a phase curve C
of the 2-D continuous dynamical system that is “confined” to stay in some compact
ring-shape region R of the phase plane not containing any fixed point, then either C
is a limit cycle, or it spirals toward a limit cycle as t goes to infinity (see Fig. 5.16).

5 Of course, the dissipation function in this model can no longer be interpreted as the pure
dissipative potential leading to the energy loss only.

6 Historically, this equation was deduced by van der Pol in 1920 to describe the self-excited
oscillations of an electrical circuit used in the first radios (see [50]). Later on, this type of
equation has been widely used in other physical systems as well, i.e., in laser, plasma, or
flutter of airplane wings.
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C

R

Fig. 5.16 “Trapping” region R

The finding of this “trapping” region for
van der Pol’s oscillator is based on the analy-
sis of energy change as the angle in the phase
plane changes on one period 2π . Indeed, let
us write down the energy balance equation for
van der Pol’s oscillator

1
2

d
dt
(ẋ2 + x2) = μ(1− x2)ẋ2. (5.22)

Consider some phase curve starting at point
(x,y) = (a0,0) in the phase plane. As the an-
gle changes on 2π the phase curve cuts the
x-axis again at another point (a1,0). Integrating equation (5.22) over the time inter-
val spent by the phase curve between these two points and taking into account that
y = ẋ = 0 at the end-points, we obtain

1
2
(a2

1 − a2
0) =

∫ t1

t0
μ(1− x2)ẋ2 dt = ΔE. (5.23)

The integral standing on the right-hand side is the energy change ΔE in one angular
period 2π . Thus, if the energy is gained in one angular period (ΔE > 0), then |a1|>
|a0|. In contrary, if the energy is lost in one angular period (ΔE < 0), then |a1|< |a0|.

Now, let μ be small. Then for the phase curve starting near the origin with
small a0 > 0 we expect that the solution remains small in one angular period. Then
|x(t)|� 1 for t ∈ (t0, t1) and the integrand on the right-hand side of (5.23) is positive.
Thus, in one angular period we have the energy gain (ΔE > 0), so a1 > a0 and the
phase curve must be repelled from the origin. For the phase curve with a large initial
amplitude a0 � 1 the situation is more subtle. Since in one angular period the oscil-
lator may dissipate energy as well as gain it when x(t) comes close to zero, we must
compute the energy change precisely. For μ = 0 equation (5.20) is the equation of
the harmonic oscillator having the solution x(t) = a0 cost. It is natural to expect that
for small μ the solution of (5.20) is close to a0 cost in one angular period. Since μ
stands also in the integral (5.23), we may use this approximate solution to estimate
the energy change in one angular period

ΔE = μ
∫ 2π

0
(1− a2

0 cos2 t)a2
0 sin2 t dt =−μ π

4
a2

0(a
2
0 − 4).

Thus, if a0 > 2 then the energy change ΔE is negative, and the phase curve must
be attracted to the origin. So, in the polar coordinates the ring-shape region trapping
the phase curve is r ∈ (δ1,δ2), with δ1 a small positive number and δ2 > 2. We see
also that the amplitude of a limit cycle must be close to 2 for small μ .

Up to now we do not know how many limit cycles van der Pol’s oscillator may
have. This information can be obtained from Liénard’s theorem which is applied to
all differential equations of the form
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ẍ+ f (x)ẋ+ g(x) = 0. (5.24)

Equation (5.24) describes the motion of a unit mass subject to a nonlinear damping
force − f (x)ẋ and a nonlinear restoring force −g(x). The formulation of Liénard’s
theorem is as follows: If

• f (x) and g(x) are continuously differentiable;
• g(x) is an odd function and g(x)> 0 for x > 0;
• f (x) is an even function;
• the odd function F(x) =

∫ x
0 f (ξ )dξ has exactly one positive zero at x = b, is

negative for 0 < x < b, is positive and nondecreasing for x > b, and F(x)→ ∞ as
x → ∞;

then equation (5.24) has one stable limit cycle surrounding the origin of the phase
plane. Since this limit cycle attracts phase curves to it, it is called an attractor. Now,
for van der Pol’s oscillator we have

g(x) = x, f (x) = μ(x2 − 1).

Integrating f (x) we obtain F(x) = μx( 1
3 x2 − 1). Thus, all conditions required in

Liénard’s theorem are satisfied (for the last condition we have b =
√

3). Conse-
quently, van der Pol’s equation has only one stable limit cycle.
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Fig. 5.17 Phase curves and limit cycle of van der Pol’s equation with μ = 0.1

Numerical Solutions. Now we know that all phase curves of van der Pol’s oscilla-
tor are attracted to the limit cycle. But how do they approach this cycle and what
does the limit cycle look like? These questions can only be answered by integrating
equation (5.20), or equivalently, system (5.21). Unfortunately, analytical solutions
are not available. So, let us try to integrate (5.21) numerically by using for instance
Mathematica. We open a notebook in Mathematica and simply write the following
commands
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sol � NDSolve��x'�t� � y�t�, y'�t� � �x�t� � 0.1 �1 � x�t�^2� y�t�,
x�0� � 4, y�0� � 0�, �x, y�, �t, 30��

ParametricPlot�Evaluate��x�t�, y�t�� �. sol�, �t, 0, 30��

In this case we took μ = 0.1 and assumed the initial conditions x(0) = 4, y(0) = 0.
The result of computations is shown in Fig. 5.17, and we see that the phase curve
is really attracted to the limit cycle drawn by the thick line which is close in form
to the circle of radius 2. If we take a starting point inside the cycle, the phase curve
also spirals to the limit cycle from inside.

If we want to know how the solution changes in time, we add a command

Plot�Evaluate�x�t� �. sol�, �t, 0, 30��

and the computer gives us the curve x(t) shown in Fig. 5.18. The behavior of this
solution is quite similar to that of damped oscillator discussed in Section 1.2 except
that the amplitude of vibration does not tend to zero but to some value close to 2.
As one can observe, there are two characteristic time scales: i) one describing the
period of fast oscillation of x(t), ii) the other associated with the monotonic and
slow change of amplitude of vibration toward that of the limit cycle shown by the
envelopes.

5 10 15 20 25 30
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t

x

Fig. 5.18 Solution x(t) of van der Pol’s equation for μ = 0.1: i) bold line: x(t), ii) dashed
lines: envelopes

If we enlarge the parameter μ , the limit cycle deviates more and more from the
circle. The motion deviates also from the harmonic motion. For very large μ van
der Pol’s oscillator exhibits quite interesting type of vibrations called relaxation
oscillations. The limit cycle and the corresponding plot of x(t) for μ = 10 are shown
in Fig. 5.19. One can see a sequence of slow motions which are quickly switched to
other slow motions. This phenomenon will be explained in the next Section.

Limit Cycle of Stick-Slip Oscillator. Poincaré-Bendixson’s or Liénard’s theorem
cannot be applied to oscillators with Coulomb’s friction because of the discontinuity
of the friction force. So this type of oscillators requires always a special treatment.
Let us analyze the stick-slip oscillator considered in example 5.7. Taking also the
air resistance into account, we write down the equation of motion
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Fig. 5.19 Limit cycle (left) and solution x(t) (right) of van der Pol’s equation with μ = 10

mẍ+ cẋ+ kx = fr(ẋ− v0).

Dividing this equation by k and introducing the notation

k
m

= ω2
0 ,

c

2
√

km
= δ ,

v0

ω0
= ν0,

we rewrite it in the form (compare with (1.15))

x′′+ 2δx′+ x = r(x′ −ν0),

where

r(x′ −ν0) =
fr(ω0(x′ −ν0))

k
,

and prime denotes the derivative with respect to τ = ω0t. This second order differ-
ential equation is equivalent to the system of equations

x′ = y, (5.25)

y′ = r(y−ν0)− 2δy− x,

which has one fixed point S on the x-axis with the coordinate x0 = r(−ν0). The
slope of the phase curve at point (x,y) is equal to

dy
dx

=
r(y−ν0)− 2δy− x

y
. (5.26)

The first interesting thing to know is whether the fixed point S of this dynamical
system is a stable equilibrium position or not. To do the stability analysis near the
fixed point we seek the neighboring solution of (5.25) in the form

x = x0 + u, y = v,
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where u� 1 and v� 1 and linearize the system (5.25) with respect to u and v. Since

r(v−ν0) = r(−ν0)+
dr
dv

∣∣∣∣−ν0

v+O(v2),

we obtain

u′ = v, v′ =

(
dr
dv

∣∣∣∣−ν0

− 2δ

)
v− u,

what is equivalent to the equation

u′′ −
(

dr
dv

∣∣∣∣−ν0

− 2δ

)
u′+ u = 0.

Thus, if
dr
dv

∣∣∣∣−ν0

> 2δ ,

then the fixed point is an unstable focus, and the phase curves starting near this fixed
point are repelled from it.

To be able to simulate the phase curves numerically let us assume that the dy-
namic friction force is described by a function r(ν) of the form

r(ν) =

{
1
2 +

1
2 (ν+ 1)2 for ν < 0,

− 1
2 − 1

2 (ν− 1)2 for ν > 0.

The threshold friction force is r0 = 1 in this case, and for ν = 0 function r(ν) can
take any value between −r0 and r0. The constant velocity is ν0 = 0.5, while Lehr’s
damping ratio is chosen to be δ = 0.01. It is easy to check that r′(−0.5) = 0.5> 2δ .

0.5
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y
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S

Fig. 5.20 Limit cycle of stick-slip os-
cillator

The vector field and some phase curves of
this oscillator are plotted in Fig. 5.20. The
phase curves hitting the horizontal line y =
ν0 must change their slopes abruptly when
crossing this line. By this reason the line y =
ν0 is called a jump line. According to equa-
tion (5.26) the jump of the slopes must be
equal to −2r0/ν0. Besides, there is a “sticky”
zone −r0 − 2δν0 < x < r0 − 2δν0 on this
jump line (the segment AC), where the mass
is sticked to the band and move together with
it with the constant velocity ν0. When the
phase curves hit this sticky zone, they have
to move along the horizontal line up to point
C with coordinates (r0 −2δν0,ν0), where the
mass is detached from the band and the slip
begins. The phase curve starting from point
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C is a spiral, which hit the segment AC at point B if the damping ratio δ is small.
This phase curve together with the segment BC correspond to the limit cycle of the
stick-slip oscillator. Indeed, the phase curves starting inside this cycle are repelled
from S and will hit the jump line at some point between B and C and merge with the
limit cycle afterwards. The phase curves starting outside of this cycle will sooner or
later hit the segment AC and after a while merge with the limit cycle. The specific
feature of the stick-slip oscillator is that the limit cycle is established after a finite
time.

t

xv0

.

Fig. 5.21 Plot of ẋ(t) at the limit cycle

It is interesting to plot the velocity ẋ at the limit cycle as function of time. This
plot is shown in Fig. 5.21. We can see clearly the sequence of stick and slip regimes,
where ẋ = v0 in the stick regime.

5.4 Oscillator with Weak or Strong Dissipation

Mathematical Formulation. The results of previous two Sections show that the
phase curves of dissipative systems may approach some attractor in the phase plane
as time goes to infinity. If the energy dissipation rate is positive definite, then the
attractor corresponds just to the equilibrium states. In contrary, if the energy dissi-
pation rate is no longer positive definite, the attractor may become a limit cycle. In
both cases the amplitude and phase of vibration change slowly with time. It turns out
that if the dissipation function of the system is small in the sense that the governing
equation is obtained from the following variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2)dt −
∫ t1

t0
ε
∂D
∂ ẋ
δxdt = 0, (5.27)

with εD(x, ẋ) being the dissipation function and ε a small parameter, then the evolu-
tion of the system to the attractor can be determined analytically in the limit ε→ 0.
It is easy to see that the governing equation of this system reads

ẍ+ x = ε f (x, ẋ),



5.4 Oscillator with Weak or Strong Dissipation 233

where

f (x, ẋ) =−∂D
∂ ẋ

.

We need to find the asymptotic behavior of solution in the limit ε → 0.

Variational-Asymptotic Method. We have seen from the numerical simulations of
van der Pol’s oscillator in the previous Section that, if ε is not equal to zero, the am-
plitude of vibration will change slowly with time due to the energy dissipation. The
same can happen also to the period T as well as to the related frequency ω as they
are in general amplitude-dependent. Similar to the asymptotic analysis provided for
Duffing’s equation in Section 5.1 we want to make ω enter the variational equation
(5.27) explicitly. For this purpose we multiply (5.27) with ω and rewrite it in terms
of the stretched angular time τ = ωt for one fixed period 2π

δ
∫ τ0+2π

τ0

(
1
2
ω2x′2 − 1

2
x2)dτ+

∫ τ0+2π

τ0

ε f (x,ωx′)δxdτ = 0, (5.28)

where prime denotes the derivative with respect to the angular time τ , and τ0 is an
arbitrary time instant. For short we set τ0 = 0.

At the first step of the variational-asymptotic procedure we put simply ε = 0 to
get from (5.28)

δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ = 0.

This leads to the eigenvalue problem yielding the following 2π-periodic extremal

x0(τ) = acosτ.

Here a is the amplitude of vibration, the frequency ω is equal to 1 as expected, and
we have chosen the initial phase φ = 0, which is possible because the governing
equation does not depend explicitly on time.

Taking into account that the amplitude a and the frequency ω are becoming
slightly dependent on time for ε �= 0, we introduce the slow time η = ετ and seek
the corrections to the extremal and to the frequency at the second step in the form7

x(τ) = a(η)cosτ+ x1(τ,η), ω = 1+ω1(η), (5.29)

where x1(τ,η) is a 2π-periodic function with respect to the fast time τ and is much
smaller than x0(τ,η) in the asymptotic sense, and ω1(η) is much smaller than 1.
To make the asymptotic analysis of small terms easier we may assume that x1 and
ω1 are of the order ε although this is even not necessary. The order of smallness of
x1 and ω1 will automatically be determined in this step. Since the angular time τ is
present also in η , the time derivative of x(τ) becomes

x′(τ) =−a(τ)sinτ+ εa,η cosτ+ x1,τ+ εx1,η ,

7 This is the crucial idea of two-timing or multi-scaling.
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where the comma before an index denotes the partial derivative with respect to the
corresponding variable. Let us substitute (5.29) into (5.28) and keep the asymptot-
ically principal terms containing x1 and the principal cross terms between x0 and
x1. Because the small parameter ε is already present in the last term of (5.28), it is
accurate at this step to replace f (x,ωx′) by f (acosτ,−asinτ). Now the variational
equation becomes

δ
∫ 2π

0
[
1
2

x2
1,τ − asinτ x1,τ + εa,η cosτ x1,τ − 2ω1asinτ x1,τ

− 1
2

x2
1 − acosτ x1 + ε f (acosτ,−asinτ)x1]dτ = 0.

Integrating the underlined terms by parts using the periodicity of x1 in τ we obtain
finally

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 + 2(εa,η sinτ+ω1acosτ)x1 + ε f (acosτ,−asinτ)x1]dτ = 0.

(5.30)
Aside from the negligibly small change of amplitude a in one period we may regard
function f (acosτ,−asinτ) as 2π-periodic with respect to τ . Let us expand it in the
Fourier series on the interval (0,2π)

f (acosτ,−asinτ) = g0(a)+
∞

∑
n=1

[gn(a)cosnτ+ hn(a)sinnτ].

Substituting this expansion into equation (5.30) we see that there are two resonant
terms in this functional, namely

ε[2a,η + h1(a)]sinτ x1 and [2ω1a+ εg1(a)]cosτ x1.

From the linear theory we know that such resonant (or secular) terms would lead to
nonperiodic x1 contradicting our asymptotic expansion. To be consistent, we have
to remove them. These consistency conditions yield two equations for the amplitude
a(η) and for the correction of the frequencyω1

a,η =−1
2

h1(a) =− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ,

ω1 =− ε
2a

g1(a) =− ε
2πa

∫ 2π

0
f (acosτ,−asinτ)cosτ dτ.

(5.31)

Since the change of a(η) in one period is of the order ε , we may regard it as “frozen”
in the integrals on the right-hand sides.

With the resonant terms being “killed” we can find in principle the extremal
x1(τ,η) in the above variational problem. It has to satisfy the following equation

x1,ττ + x1 = ε{g0(a)+
∞

∑
n=2

[gn(a)cosnτ+ hn(a)sin nτ]}.
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Then at the next step we seek the corrections to the extremal and to the frequency
in the form

x(τ) = x0(τ,η)+ x1(τ,η)+ x2(τ,η), ω = 1+ω1(η)+ω2(η),

where x2 andω2 are much smaller than x1 andω1 in the asymptotic sense, and repeat
the same procedure as before.

Notice that the similar procedure applied to the differential equations containing
a small parameter has first been proposed by Bogoliubov and Mitropolsky [9].

Applications. Since the developed variational-asymptotic method does not put any
constraint on the dissipation function, we can apply it to both dissipative and self-
excited oscillators.

We illustrate how the method works first on the simple example of the linear
damped oscillator whose solution is given by formula (1.18). In this case f (x, ẋ) =
−ẋ and ε = 2δ . Computing the integrals on the right-hand sides of (5.31) we obtain
two equations

a,η =−a
2
, ω1 = 0.

According to the second equation there is no correction to the frequency and the
period of vibration within the first approximation. Concerning the amplitude of
vibration we obtain the law of its change by integrating the first equation giving
a = a0e−η/2 = a0e−δτ , with a0 being the initial amplitude. Combining this formula
for a with (5.29) we get in the first approximation

x(τ) = a0e−δτ cosτ.

In comparison with the exact solution x(τ) = a0e−δτ cosντ (which is obtained from
(1.18) when φ = 0), we see only a slight difference in the frequency of vibration:
the exact conditional frequency ν =

√
1− δ 2 ≈ 1+O(ε2). The evolution of the

amplitude coincides with that of the exact solution.
Next, let us apply the method to van der Pol’s oscillator, for which no analytical

solution is available. In this case f (x, ẋ) = (1−x2)ẋ and ε = μ . Similar calculations
of integrals in (5.31) give

a,η =
a
8
(4− a2), ω1 = 0. (5.32)

As in the previous example there is no correction to the frequency and the period
of vibration. In contrast to the exact van der Pol equation, equation (5.32) for a can
be integrated analytically. Indeed, multiplying this equation with a and noting that
aa,η = 1

2(a
2),η we transform it to the following equation

y,η =
1
4

y(4− y),
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where y = a2. The above equation can be integrated by separating the variables
giving

ln
y

4− y
= η+C.

The constant of integration can be obtained from the initial condition y(0) = y0:
C = ln y0

4−y0
. Substituting this constant in the last equation and solving it with respect

to y we obtain

y =
4y0eη

4+ y0(eη − 1)
,

or, in terms of the original amplitude a and time τ

a =
2a0eετ/2√

4+ a2
0(e

ετ − 1)
. (5.33)

In order to compare with the numerical solution we plot a(τ) from (5.33) and show
it together with x(t) in Fig. 5.18 (the dashed envelope). The agreement is striking,
although ε = 0.1 is not quite small. We can also check that a approaches 2 as τ→∞.

Limit Cycle of Relaxation Oscillations. We have seen that for small μ the limit
cycle of van der Pol’s oscillator is nearly a circle of radius 2, and its frequency
is nearly equal to 1. Consider now the opposite case of van der Pol’s oscillator
with a large parameter μ . As our numerical simulations have shown, the solution
corresponding to the limit cycle spends most of time in a slow motion, and then
quickly jumps to another slow motion. We analyze this motion by applying the
variational-asymptotic method to the variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2)dt +
∫ t1

t0
μ(1− x2)ẋδxdt = 0. (5.34)

Let us first concentrate on the slow motion. Introducing the slow time η = t/μ ,
we have ẋ = x,η/μ , with x,η being the derivative with respect to η . Thus, equation
(5.34), multiplied by μ , becomes

δ
∫ η1

η0

(
1

2μ2 x2
,η −

1
2

x2)dη+
∫ η1

η0

(1− x2)x,ηδxdη = 0.

Neglecting the first term in this equation8 as small in accordance with the variational-
asymptotic method, we arrive at the equation

−x+(1− x2)x,η = 0, or x,η =
x

1− x2 .

8 This means neglecting the kinetic energy as small compared with the potential energy and
dissipation. Thus, the slow motion can be regarded as the motion without inertia.
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This differential equation can be solved by separation of variables yielding

ln |x|− x2

2
= η+ const.

The slow motion proceeds according to this equation until it reaches x = ±1 where
the speed x,η is infinite. At this point the assumption of slow motion is violated,
so we need to change to another time scale. Introducing now the fast time τ = μt,
ẋ = μx,τ , we rewrite (5.34), divided by μ , in the form

δ
∫ τ1

τ0

(
1
2
μ2x2

,τ −
1
2

x2)dτ+
∫ τ1

τ0

μ2(1− x2)x,τδxdτ = 0.

Neglecting the second term as small compared with other terms, we arrive at the
differential equation

x,ττ − (1− x2)x,τ = 0.

This equation possesses the first integral

x,τ − x+ x3/3 = const,

representing the fast motion (jump). We choose the constant of integration so that
this fast motion starting at x = 1 as an equilibrium point (with x,τ = 0) will end at
another equilibrium point with x,τ = 0. It is easy to see that the constant is equal to
−2/3 giving the second equilibrium point at x =−2. Similarly, the jump starting at
x =−1 ends up at x = 2.

Knowing the solution, we can now easily compute the period of this relaxation
oscillation. Since the time spent for jumps is negligible compared to the time spent
at slow motions, we compute just the half-period of slow motion as

T/2 = μ (ln |x|− x2/2)
∣∣x=1
x=2 = μ(

3
2
− ln2).

Thus, the period T = μ(3− 2ln2) tends to infinity as μ → ∞.

5.5 Exercises

EXERCISE 5.1. A point-mass m moves under the action of gravity along a friction-
less circular wire of radius r that is rotating with a constant angular velocity Ω
about its vertical diameter (see Fig. 5.22).9 Derive the equation of motion and plot
the potential energy as well as the phase portrait.

Solution. Since the point-mass moves along the wire that rotates about the vertical
axis, its absolute velocity equals

v = vl + vr.

9 A pendulum oscillating on a rotating platform can serve as a similar example.



238 5 Autonomous Single Oscillator

m

r

g

Fig. 5.22 Point-mass on rotating circular wire

In this formula vl is the instantaneous velocity of the point-mass moving together
with the rotating frame as rigid body, while vr is its velocity relative to the rotating
frame. As these two vectors are orthogonal to each other and their magnitudes are
Ωr sinθ and rθ̇ , respectively, the kinetic energy of the point-mass reads

K =
1
2

mv2 =
1
2

mr2(θ̇ 2 +Ω 2 sin2 θ ).

Choosing the zero level of potential energy at the horizontal plane θ = π/2, the
potential energy of the point-mass in the gravitation field is given by

U =−mgr cosθ .

Thus, the Lagrange function equals

L = K −U =
1
2

mr2θ̇ 2 +
1
2

mr2Ω 2 sin2 θ +mgr cosθ .

We may interpret the first term of L as the kinetic energy of the motion relative to
the rotating frame, while the term − 1

2 mr2Ω 2 sin2 θ as the potential energy of the
fictitious “centrifugal force”, called centrifugal energy. From Lagrange’s equation
we derive the equation of motion

mr2θ̈ −mr2Ω 2 sinθ cosθ +mgr sinθ = 0.

The above equation of motion can be transformed to the dimensionless form

θ ′′ −ω2 sinθ cosθ + sinθ = 0,

where ω =Ω/ω0 =Ω/
√

g/r and where prime denotes the derivative with respect
to the dimensionless time τ = ω0t. This equation yields the conservation law

1
2
θ ′2 − cosθ +

1
4
ω2 cos2θ = E0.

The plots of the modified potential energy Ũ(θ ) = −cosθ + 1
4ω

2 cos2θ for dif-
ferent ω are shown in Fig. 5.23, where the points θ = −π and θ = π , due to the
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Fig. 5.23 Modified potential energy Ũ(θ ): i) ω = 0.5 (dashed line), ii) ω = 1 (dashed and
dotted line), iii) ω = 2 (bold line)

periodicity in θ , have to be identified. For ω < 1 the modified potential energy has
one local minimum at θ = 0 corresponding to the stable equilibrium state and one
local maximum at θ = ±π corresponding to the unstable equilibrium state (saddle
point). For ω > 1 there are two local minima at θ =±θ0 =±arccos(1/ω), and two
local maxima at θ = 0 and at θ =±π . The saddle-node bifurcation occurs at ω = 1.
The phase portrait of this rotating pendulum is plotted in Fig. 5.24 for ω = 2. We
see that there are two stable centers corresponding to two minima and two saddle
points corresponding to the maxima of the potential energy.

´

Fig. 5.24 Phase portrait of the rotating pendulum (ω = 2)

EXERCISE 5.2. Do the next step of the variational-asymptotic procedure for Duff-
ing’s equation and show that

T = 2π
[

1− ε 3
8

a2 + ε2 57
256

a4 +O(ε3)

]
.

Solution. At the third step we substitute

x(τ) = x0(τ)+ x1(τ)+ x2(τ), ω = 1+ω1+ω2
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into the action functional (5.4). Keeping the asymptotically principal terms contain-
ing x2 and the principal cross terms between x0, x1, and x2, we obtain

I2[x2(τ)] =
∫ 2π

0
[
1
2

x′22 + x′0x′2 + 2ω1x′0x′2 +(2ω2 +ω2
1 )x

′
0x′2 + x′1x′2 + 2ω1x′1x′2

− 1
2

x2
2 − x0x2 − x1x2 − εx3

0x2 − 3εx2
0x1x2]dτ.

Integrating the underlined terms by parts taking into account the periodicity of x0(τ)
and x1(τ), we reduce this formula to

I2[x2(τ)] =
∫ 2π

0
[
1
2

x′22 + 2ω1x0x2 +(2ω2 +ω2
1)x0x2 − x′′1x2 − 2ω1x′′1x2

− 1
2

x2
2 − x1x2 − εx3

0x2 − 3εx2
0x1x2]dτ.

Using the equations for x1 and ω1, it is easy to check that the underlined terms are
canceled out. Besides, the last term can be transformed into the sum of harmonic
cosine functions as follows

−3εx2
0x1x2 =− 3

128
ε2a5(−2cosτ+ cos3τ+ cos5τ)x2.

Finally, we have

I2[x2(τ)] =
∫ 2π

0
[
1
2

x′22 − 1
2

x2
2+(2ω2a+ω2

1 a+
3

64
ε2a5 − 1

16
ω1εa3)cosτ x2+ . . .]dτ.

Removing the underlined (resonant) term, we get

2ω2 =−ω2
1 −

3
64
ε2a4 +

3
128

ε2a4, that is, ω2 =− 21
256

ε2a4.

Thus, the correction for the frequency-amplitude relation reads

ω = 1+
3
8
εa2 − 21

256
ε2a4.

The period T = 2π/ω may then be written as

T =
2π

1+ 3
8εa2 − 21

256ε2a4
= 2π

[
1− 3

8
εa2 +

57
256

ε2a4
]
.

EXERCISE 5.3. Consider a mass-spring oscillator with an asymmetric spring obey-
ing the equation

ẍ+ x+ εx2 = 0.
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Find the period of vibration for ε = 0.1 and x(0) = 1, ẋ(0) = 0 using the numerical
integration based on (5.3). Compare it with the result obtained by the variational-
asymptotic method.

Solution. The potential energy of the spring is

U(x) =
1
2

x2 +
ε
3

x3.

We compute the period of vibration according to

T = 2
∫ xM

xm

dξ√
2[E0 −U(ξ )]

,

where E0 is the total energy (which is conserved) and xm and xM are the turning
points. From the initial conditions we find

E0 =
1
2

v2
0 +

1
2

x2
0 +

εx3
0

3
=

1
2
+
ε
3
= 0.533.

Since the point-mass is released from x = 1, this value corresponds to the turning
point xM = 1. The other turning point is found as the root of the equation

U(x) =U(1) = E0 ⇒ xm =−1.0718.

Using the numerical integration, we find that

T = 2
∫ xM

xm

dξ√
2[E0 −U(ξ )]

≈ 6.312.

To establish the asymptotic formula for the period of vibration we analyze the
action functional

I[x(τ)] =
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 − 1

3
εx3)dτ.

Then the first step of the variational-asymptotic procedure yields

x(τ) = x0(τ) = acosτ, ω = 1.

We have chosen the initial phase φ = 0 which is consistent with the above initial
conditions. At the second step we look for the solution in the form

x(τ) = x0(τ)+ x1(τ), ω = 1+ω1.

Repeating similar calculations as in Section 5.1, we arrive at the following func-
tional

I1[x1(τ)] =
∫ 2π

0
[
1
2

x′21 − 1
2

x2
1 + 2ω1acosτ x1 − 1

2
εa2(1+ cos2τ)x1]dτ.
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Since the underlined term is the only resonant term and since x1(0) = x′1(0) = 0, we
find that

ω1 = 0, x1(τ) =
1
6
εa2(−3+ 2cosτ+ cos2τ).

At the third step we substitute

x(τ) = x0(τ)+ x1(τ)+ x2(τ), ω = 1+ω2

into the action functional. Repeating similar calculations as in the previous exercise,
we obtain

I2[x2(τ)] =
∫ 2π

0
(

1
2

x′22 − 1
2

x2
2 + 2ω2x0x2 − 2εx0x1x2)dτ.

The last term can be transformed into the sum of harmonic cosine functions as
follows

−2εx0x1x2 =−ε2a3 1
6
(2− 5cosτ+ 2cos2τ+ cos3τ).

Thus, the resonant term is

(2ω2a+
5
6
ε2a3)cosτ x2.

Removing this resonant term, we get

ω2 =− 5
12
ε2a2.

Thus, the refined frequency-amplitude relation reads

ω = 1− 5
12
ε2a2.

The period T = 2π/ω may then be written as

T = 2π
(

1+
5

12
ε2a2

)
≈ 6.309.

EXERCISE 5.4. Find and classify the fixed points of equation (5.14) of a damped
pendulum for all c > 0, and plot the phase portraits for the qualitatively different
cases.

Solution. Equation (5.14) can be written in the dimensionless form as

ϕ ′′+ 2δϕ ′+ sinϕ = 0,

where prime denotes the derivative with respect to τ = ω0t, and δ = c
2mω0

is Lehr’s
damping ratio. Transforming this equation to
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ϕ ′ = ω ,
ω ′ =−sinϕ− 2δω ,

we see that the fixed points should be

(ϕn,ωn), where ϕn = nπ , ωn = 0,

and n are integers. Due to the periodicity in ϕ with the period 2π only the fixed
points corresponding to n = 0 and n = 1 need be analyzed. For n = 0 linearization
near the fixed point (0,0) gives

ϕ ′ = ω ,
ω ′ =−ϕ− 2δω ,

which is equivalent to
ϕ ′′+ 2δϕ ′+ϕ = 0.

Thus, if 0 < δ < 1 the fixed point is a stable focus, and if δ > 1 it is a stable node.
For n = 1 linearization near the fixed point (π ,0) with ϕ = π+ u and ω = v gives

u′ = v,

v′ = u− 2δv.

The corresponding characteristic equation

λ 2 + 2δλ − 1 = 0

-3 -2 -1 0 1 2 3

-4

-2

0

2

4

ϕ

ω

Fig. 5.25 Phase portrait of overdamped pendulum
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has one negative real root λ1 =−δ−√
δ 2 + 1 and one positive real root λ2 =−δ+√

δ 2 + 1. Thus, the fixed point is a saddle point for all positive δ . The phase portrait
for δ < 1 (underdamped pendulum) was shown in Fig. 5.8. For the case δ > 1
corresponding to the overdamped pendulum, the phase portrait is shown in Fig. 5.25.
It is seen that the fixed point (0,0) is a stable node, while the fixed point (π ,0)
remains a saddle point.

EXERCISE 5.5. The motion of a mass-spring oscillator with the linear restoring
force −kx (k = 2N/cm) is damped by a constant braking force fr = 1N; this force
acts however only in the region −1cm ≤ x ≤ 1cm. Outside this region the oscillator
carries out a free vibration. Find the sequence of turning points and the number of
halves of vibrations for the initial conditions x =−3cm and ẋ = 0.

Solution. Outside the region −1cm ≤ x ≤ 1cm there is no braking force, so the
energy must be conserved

1
2

mẋ2 +
1
2

kx2 = E0.

In the region −1cm ≤ x ≤ 1cm the braking force causes the energy dissipation
according to

1
2

mẋ2 +
1
2

kx2 = E0 − fr|x− x0|.

x
x0 x1x2 x3x4

U(x)

Fig. 5.26 Energy change and the sequence of turning points

With these two equations we can construct the sequence of the turning points
as shown in Fig. 5.26. Being released from x0 = −3cm with the zero velocity, the
oscillator has the initial energy E0 =

1
2 kx2

0 = 9Ncm. From −3cm to −1cm the total
energy does not change. After passing the zone with braking force the total energy
is reduced by 2Ncm. Then the oscillator moves to the turning point without chang-
ing the energy E1 = 7Ncm. Thus, the turning point x1 =

√
7cm. Similar arguments

can again be applied for the oscillator moving now to the left. After passing the
zone with braking force the total energy becomes E2 = 5Ncm, so the next turning
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point is x2 = −√
5cm. Analogously, the next two turning points are x3 =

√
3cm

and x4 = −1cm corresponding to the total energies E3 = 3Ncm and E4 = 1Ncm.
The oscillator ends its motion at point x = 0cm which is inside the sticky zone
−0.5cm ≤ x ≤ 0.5cm.

EXERCISE 5.6. Consider a damped pendulum with “turbulent” damping described
by the equation

ϕ̈+ cϕ̇|ϕ̇ |+ω2
0 sinϕ = 0.

Find the sequence of turning angles.

Solution. As shown in example considered in Section 5.2, the above equation can be
integrated separately for ϕ̇ > 0 and ϕ̇ < 0. For ϕ̇ > 0 this equation can be rewritten
in the form

dv2

dϕ
+αv2 +β sinϕ = 0,

with v = ϕ̇ , α = 2c, β = 2ω2
0 . Applying the method of variation of coefficients, we

obtain

v2(ϕ) = e−αϕ
(

C1 −β
∫ ϕ

0
sinξ eαξ dξ

)
.

Similarly, for ϕ̇ < 0 we have

v2(ϕ) = eαϕ
(

C2 −β
∫ ϕ

0
sinξ e−αξ dξ

)
.

The constants C1 and C2 should be determined from the initial conditions. Let

U+(ϕ) = β
∫ ϕ

0
sinξ eαξ dξ =

β
1+α2 [1+ eαϕ(−cosϕ+α sinϕ)],

U−(ϕ) = β
∫ ϕ

0
sinξ e−αξ dξ =

β
1+α2 [1− e−αϕ(cosϕ+α sinϕ)].

Assume that the pendulum is released from ϕ0 with the zero angular velocity v0 = 0
and that it rotates afterward in the positive direction. Then C1 =U+(ϕ0) and

v2(ϕ) = e−αϕ [U+(ϕ0)−U+(ϕ)] for ϕ̇ > 0.

The first turning point ϕ1 can then be found as the root of the equation U+(ϕ1) =
U+(ϕ0). Choosing now ϕ1 as the initial angle from which the pendulum is released
and rotates in the negative direction, we find that C2 =U−(ϕ1) and that

v2(ϕ) = eαϕ [U−(ϕ1)−U−(ϕ)] for ϕ̇ < 0.

Therefore, the second turning point, ϕ2, must be the root of the equation U−(ϕ2) =
U−(ϕ1). Then we can choose ϕ2 as the initial angle from which the pendulum is
released and repeat the procedure. For the above functions the constant factors and
the constant summands do not obviously influence the determination of the turning
points. So, instead of U+(ϕ) and U−(ϕ) we can take the following functions



246 5 Autonomous Single Oscillator

U∗
+(ϕ) = eαϕ(−cosϕ+α sinϕ) and U∗

−(ϕ) =−e−αϕ(cosϕ+α sinϕ)

for this purpose. Besides, U∗
+(ϕ) =U∗−(−ϕ), so it is enough to plot them for ϕ > 0.

Fig. 5.27 shows the plots of these functions (for c = 1/2) and the geometric method
of determining the sequence of turning points.

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5
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Fig. 5.27 Functions U∗
+(ϕ) and U∗−(ϕ) and sequence of turning points

EXERCISE 5.7. Consider Froude’s pendulum described by the following dimen-
sionless equation

ϕ̈+ 2δ ϕ̇+ω2
0 sinϕ = mr(ϕ̇−ν0),

where

2δ =
c
J
, ω2

0 =
mgl

J
, mr =

Mr

J
.

Find conditions under which this oscillator develops self-sustained vibrations.

Solution. The above equation of motion is equivalent to the system of equations

ϕ ′ = y,

y′ = mr(y−ν0)− 2δy−ω2
0 sinϕ ,

which has one fixed point S on the ϕ-axis with the coordinate ϕ = ϕ0, where

ϕ0 = arcsin
mr(−ν0)

ω2
0

.

To know whether this equilibrium position is stable or not, we study the neighboring
solutions assumed in the form

ϕ = ϕ0 + u, y = v,

and linearize the system with respect to u and v. Since
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mr(v−ν0) = mr(−ν0)+
dmr

dv

∣∣∣∣−ν0

v+O(v2), sinϕ = sinϕ0 + ucosϕ0 +O(u2),

and mr(−v0)−ω2 sinφ0 = 0 at the fixed point S, we obtain

u′ = v, v′ =

(
dmr

dv

∣∣∣∣−ν0

− 2δ

)
v−ω2

0 cosϕ0 u,

what is equivalent to the equation

u′′ −
(

dmr

dv

∣∣∣∣−ν0

− 2δ

)
u′+ω2

0 cosϕ0 u = 0.

Thus, if
dmr

dv

∣∣∣∣−ν0

> 2δ ,

then the fixed point is an unstable focus, and the phase curves starting near this fixed
point are repelled from it.

The vector field and phase curves of this pendulum are quite similar to those
of the stick-slip oscillator shown in Fig. 5.20. The phase curves hitting the hori-
zontal line y = ν0 must change their slopes abruptly when crossing this line. By
this reason the line y = ν0 is called a jump line. Besides, there is a “sticky” zone
arcsin((−r0−2δν0)/ω2

0 )< ϕ < arcsin((r0 −2δν0)/ω2
0 ) on this jump line (the seg-

ment AC), where r0 denotes the critical threshold moment of the friction. When the
phase curves hit this sticky zone, they have to move along the horizontal line up to
point C with coordinates (arcsin((r0 − 2δν0)/ω2

0 ),ν0), where the pendulum is de-
tached from the rotating shaft and the slip begins.10 The phase curve starting from
point C is a spiral, which hit the segment AC at point B if the damping ratio δ is
small. This phase curve together with the segment BC correspond to the limit cycle
of the Froude’s pendulum.

EXERCISE 5.8. Consider the mechanical system governed by the differential equa-
tion

ẍ− ε sin ẋ+ x = 0.

Construct several phase curves for ε = 0.1 using numerical integration. Show that
more than one limit cycle exist. Use the variational-asymptotic method to calculate
the amplitudes of limit cycles.

Solution. The above equation can be written as the system

ẋ = y, ẏ =−x+ ε siny,

10 Note, however, that this detach point C exists only if r0 ≤ ω2
0 +2δν0. For larger threshold

values r0 the pendulum will rotate with the shaft without being detached from it.
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for which the numerical integration with the command NDSolve in Mathematica
is applicable as demonstrated in Section 5.3. If we set ε = 0.1 and take the initial
conditions x(0) = 3, y(0) = 0, and x(0) = 5, y(0) = 0, the corresponding phase
curves, shown in Fig. 5.28, enable one to guest that there exists one stable limit
cycle whose amplitude is near the value 4. Likewise, the phase curves starting at
x(0) = 9, y(0) = 0, and x(0) = 11, y(0) = 0 show that another stable limit cycle
whose amplitude near the value 10 exists.

-4 -2 2 4
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-2

2

4

x

y

Fig. 5.28 Two phase curves starting at x(0) = 3, y(0) = 0, and x(0) = 5, y(0) = 0
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Fig. 5.29 The plot of J1(a) and the directions of change of a according to a,η = J1(a) as η
goes to infinity
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According to the variational-asymptotic method, the slow evolution of the ampli-
tudes of vibrations to those of the limit cycles and the corrections to the frequencies
for small ε are determined from the equations

a,η =− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ,

ω1 =− ε
2πa

∫ 2π

0
f (acosτ,−asinτ)cosτ dτ,

where
f (x, ẋ) = sin ẋ.

The integrals on the right-hand sides yield

a,η = J1(a), ω1 = 0,

where J1(a) is the Bessel function, whose plot is shown in Fig. 5.29. Thus, there
is no correction to the frequency. The evolution equation for a cannot be solved in
terms of special functions, but as seen from Fig. 5.29, the zeros of J1(a) at which
J′1(a) is negative give the amplitudes of the stable limit cycles. This yields

a1 = 3.83171, a2 = 10.1735, . . . .

EXERCISE 5.9. Show that Rayleigh’s equation

ẍ+ x− ε(1− 1
3

ẋ2)ẋ = 0

can be rewritten as van der Pol’s equation

ü+ u− ε(1− u2)u̇ = 0,

where u = ẋ. Find the amplitude of its limit cycle for small ε .

Solution. Let us differentiate Rayleigh’s equation using the definition u = ẋ

ü+ u− ε u̇+ εu2u̇ = 0.

We see that this is exactly van der Pol’s differential equation in terms of u. On the
other side, Rayleigh’s equation in terms of x contains a small parameter ε , so the
slow evolution of the amplitude of vibration and the correction to the frequency are
determined from the equations

a,η =− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ,

ω1 =− ε
2πa

∫ 2π

0
f (acosτ,−asinτ)cosτ dτ,
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where

f (x, ẋ) = (1− 1
3

ẋ2)ẋ.

We compute the integrals on the right-hand sides of these equations

− 1
2π

∫ 2π

0
f (acosτ,−asinτ)sinτ dτ =

1
2π

∫ 2π

0
(1− 1

3
a2 sin2 τ)asin2 τ dτ

=
a
8
(4− a2),

and
∫ 2π

0
f (acosτ,−asinτ)cosτ dτ =−

∫ 2π

0
(1− 1

3
a2 sin2 τ)asinτ cosτ dτ = 0.

Thus, there is no correction to the frequency. The evolution equation for a is exactly
the same as that obtained for the van der Pol oscillator

a,η =
a
8
(4− a2).

The solution to this equation reads

a =
2a0eετ/2√

4+ a2
0(e

ετ − 1)
,

where a0 is the initial amplitude of vibration. So, the amplitude of vibration tends
to the value 2 as τ → ∞. This result is also confirmed by the numerical integration
of Rayleigh’s equation with ε = 0.1 as shown in Fig. 5.30.
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Fig. 5.30 A phase curve of Rayleigh’s equation beginning from (x,y) = (4,0)
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EXERCISE 5.10. Consider the equation

ẍ+ x+ μ(|x|− 1)ẋ= 0.

Find the approximate period and amplitude of the limit cycle for small μ .

Solution. For small μ let the slow time be η = μτ . Then the slow evolution of the
amplitude of vibration and the correction to the frequency are determined from the
equations

a,η =
1

2π

∫ 2π

0
(1− a|cosτ|)asin2 τ dτ =−a(4a− 3π)

6π
,

ω1 =
ε

2πa

∫ 2π

0
(1− a|cosτ|)asinτ cosτ dτ = 0.

Thus, there is no correction to the frequency. The equation for a can be integrated
to give

ln
4a− 3π

4a
=−η/2+C.

The constant of integration can be obtained from the initial condition a(0) = a0:
C = ln 4a0−3π

4a0
. Substituting this constant in the last equation and solving it with

respect to a we obtain

a =
3π

4(1− 4a0−3π
4a0

e−η/2)
.

Thus, a approaches 3π/4 as τ → ∞.

EXERCISE 5.11. Use the variational-asymptotic method to study the equation

ẍ+ x− ε(1− x4)ẋ = 0

for small ε . Find the approximate amplitude of the limit cycle.

Solution. The slow evolution of the amplitude of vibration and the correction to the
frequency are determined from the equations

a,η =
1

2π

∫ 2π

0
(1− a4 cos4 τ)asin2 τ dτ =

a
16

(8− a4),

ω1 =
ε

2πa

∫ 2π

0
(1− a4 cos4 τ)asinτ cosτ dτ = 0.

Thus, there is no correction to the frequency. The equation for a can be transformed
by multiplying it with 4a3

z,η =
1
4

z(8− z),

where z = a4. This equation can be integrated by separating the variables giving

ln
z

8− z
= 2η+C.
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The constant of integration can be obtained from the initial condition z(0) = z0:
C = ln z0

8−z0
. Substituting this constant into the last equation and solving it with

respect to z, we obtain

z =
8z0e2η

8− z0 + z0e2η ,

or, in terms of the original amplitude a and time τ

a4 =
8a4

0e2ετ

8− a4
0+ a4

0e2ετ .

Thus, a approaches 4
√

8 ≈ 1.682 as τ → ∞. This result is also confirmed by the
numerical integration of the equation for x (with ε = 0.1) as shown in Fig. 5.31.

x

y

Fig. 5.31 Limit cycle of the equation ẍ+x−0.1(1−x4)ẋ = 0

EXERCISE 5.12. Use the variational-asymptotic method to study the equation

ẍ+ x− μ(1+ x− x2)ẋ = 0,

where μ is a large parameter. Find the amplitude and period of the limit cycle.
Compare the results with those obtained by numerical integration for μ = 10.

Solution. The above equation is obtained from the following variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2)dt +
∫ t1

t0
μ(1+ x− x2)ẋδxdt = 0.

Numerical simulations for large μ (see, for instance, Fig. 5.32 in case μ = 10)
show that the solution corresponding to the limit cycle spends most of time in a slow
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Fig. 5.32 Numerical solution of the equation ẍ+x−10(1+x−x2)ẋ = 0

motion, and then quickly jumps to another slow motion. To analyze slow motions
we introduce the slow time η = t/μ and transform the variational equation to

δ
∫ η1

η0

(
1

2μ2 x2
,η −

1
2

x2)dη+
∫ η1

η0

(1+ x− x2)x,ηδxdη = 0.

Neglecting the first term in this equation as small in accordance with the variational-
asymptotic method, we arrive at the equation

−x+(1+ x− x2)x,η = 0, or x,η =
x

1+ x− x2 .

This differential equation can be solved by separation of variables yielding

ln |x|+ x− x2

2
= η+ const.

The slow motion proceeds according to this equation until it reaches x1,2 = (1±√
5)/2 where the speed x,η is infinite. At these points the assumption of slow motion

is violated, so we need to change to another time scale. Introducing now the fast time
τ = μt, we rewrite the variational equation as

δ
∫ τ1

τ0

(
1
2
μ2x2

,τ −
1
2

x2)dτ+
∫ τ1

τ0

μ2(1+ x− x2)x,τδxdτ = 0.

Neglecting the second term as small compared with other terms, we arrive at the
differential equation

x,ττ − (1+ x− x2)x,τ = 0.

This equation possesses the first integral

x,τ − x− x2/2+ x3/3 = const,

representing the fast motion (jump). We choose the constant of integration so that
this fast motion starting at x = x1 (x = x2) as an equilibrium point (with x,τ = 0)
will end at another equilibrium point with x,τ = 0. It is easy to see that the second
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equilibrium point corresponding to x1 is x = 2.736. Similarly, the jump starting
at x2 ends up at x = −1.736. Knowing the solution, we can easily compute the
period of this relaxation oscillation. The comparison with the solution obtained by
the numerical integration for μ = 10 shown in Fig. 5.32 yields a good agreement.



Chapter 6
Non-autonomous Single Oscillator

This Chapter analyzes non-autonomous mechanical systems with one degree of
freedom whose Lagrange function depends explicitly on time. This involves ei-
ther some time-dependent parameter or a harmonic excitation. The variational-
asymptotic analysis, combined with multi-scaling, belongs again to the arsenal of
mostly used analytical methods of solution of variational problems containing small
parameters.

6.1 Parametrically-Excited Oscillator

Differential Equation of Motion. If some parameter of an oscillator changes in
such a way that the energy supply is synchronized with the period of vibration, the
parametric resonance may occur. We consider some examples.

EXAMPLE 6.1. Pendulum with periodically moving support. The support of a pen-
dulum moves in accordance with the equation x = a(t) (see Fig. 6.1). Derive the
equation of motion for this pendulum.

m
g

l

x

a(t)

Fig. 6.1 Pendulum with mov-
ing support

In a fixed (x,y)-coordinate system the coordinates of
the point-mass are

x = a+ l cosϕ , y = l sinϕ .

Differentiating these equations with respect to t we
obtain the velocity

ẋ = ȧ− l sinϕ ϕ̇ , ẏ = l cosϕ ϕ̇ .

Therefore the kinetic energy is equal to

K =
1
2

m(ẋ2 + ẏ2) =
1
2

m(ȧ2 − 2l sinϕ ȧϕ̇+ l2ϕ̇2).

The potential energy of the point mass is
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U =−mg(a+ l cosϕ).

Note that the zero level of potential energy corresponds to x = 0. Thus, the Lagrange
function L(ϕ , ϕ̇ , t) = K −U depends explicitly on time through a(t). Mechanical
systems with the Lagrange function depending explicitly on time are classified as
non-autonomous. Substitution of this Lagrange function into Lagrange’s equation
gives

ml2ϕ̈+mgl sinϕ−mläsinϕ = 0,

or

ϕ̈+
1
l
(g− ä)sinϕ = 0. (6.1)

If a(t) is a periodic function of t, say a(t) = a0 cosωt, then (6.1) is a nonlinear
equation with periodic coefficients. In order to investigate the stability of one of the
equilibrium positions ϕ = 0 or ϕ = π , we would linearize (6.1) about the desired
equilibrium. In case ϕ = 0 the linearization yields

ϕ̈+
1
l
(g+ a0ω2 cosωt)ϕ = 0. (6.2)

This is called Mathieu’s equation [35]. We will show later that the parametric reso-
nance may occur for some values of ω and a0.

EXAMPLE 6.2. Stability of a limit cycle.

Assume that x = xs(t) is a periodic solution of the equation of motion

ẍ = f (x, ẋ). (6.3)

We would like to study the dynamic stability of this periodic solution. For this pur-
pose we investigate the neighboring solutions

x = xs(t)+ ξ (t), ẋ = ẋs(t)+ ξ̇ (t), ẍ = ẍs(t)+ ξ̈(t),

where ξ (t) and its first derivative are assumed to be small. Substituting these for-
mulas into the equation of motion, we obtain

ẍs(t)+ ξ̈(t) = f (xs(t)+ ξ (t), ẋs(t)+ ξ̇(t)).

Since ξ (t) and ξ̇ (t) are small, we expand the right-hand side into the Taylor series
and neglect all nonlinear terms

f (xs(t)+ ξ (t), ẋs(t)+ ξ̇(t)) = f (xs, ẋs)+
∂ f
∂x

(xs(t), ẋs(t))ξ (t)

+
∂ f
∂ ẋ

(xs(t), ẋs(t))ξ̇ (t)+ . . . .

Taking into account that xs(t) is the solution of (6.3), we obtain for ξ (t)
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ξ̈ =
∂ f
∂x

(xs(t), ẋs(t))ξ (t)+
∂ f
∂ ẋ

(xs(t), ẋs(t))ξ̇ (t).

Thus, the stability analysis of a limit cycle puts a question, whether or not the linear
differential equation with periodic coefficients has bounded solutions. This is quite
similar to the problem of parametric resonance.

EXAMPLE 6.3. Pendulum with periodically changeable length l(t) (see Fig. 6.2).

m
g

l(t)

x

Fig. 6.2 Pendulum with
changeable length

The swing known from our childhood is described by
this mechanical model. The kinetic and potential energies
of the point-mass are

K =
1
2

ml2(t)ϕ̇2, U = mgl(t)(1− cosϕ).

Lagrange’s equation has the form

ml2ϕ̈+ 2mll̇ϕ̇+mgl sinϕ = 0.

Dividing this equation by ml2 we obtain

ϕ̈+ 2
l̇
l
ϕ̇+

g
l

sinϕ = 0.

In reality, the change of length of the swing is realized by the motion of the swinger.
This changes the center of gravity causing the change of the effective length of the
physical pendulum. To pump the swing the swinger must raise his or her body as
the swing passes through the lowest point and lower themselves near the extremes
of the motion.

l1l2
0

Fig. 6.3 A simplified model
of swing

Solution in a Simplified Model of Swing. To get the
“feeling” of how the parametric resonance may oc-
cur, we analyze a simplified model of swing, in which
the effective length of the pendulum changes abruptly
from l1 to l2 at ϕ = 0, and from l2 to l1 as the max-
imum (or minimum) of ϕ is achieved at the turning
angle. The trajectory of the center of mass is shown in
Fig. 6.3 by a loop with arrows. Since l = l1 = const in
the first quarter of vibration, energy must be conserved
if the air resistance is neglected

1
2

ml2
1 ϕ̇

2 +mgl1(1− cosϕ) = mgl1(1− cosϕ0),

where ϕ0 is the starting angle when the swing is released. Using this equation we
can compute the angular velocity ϕ̇ just before the change of length at ϕ = 0

ϕ̇2
1− =

2g
l1
(1− cosϕ0). (6.4)
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Similarly, in the next quarter of vibration in which the swing’s length is l = l2 =
const, we have

1
2

ml2
2 ϕ̇

2 +mgl2(1− cosϕ) = mgl2(1− cosϕ2),

where ϕ2 is the turning angle, so the angular velocity immediately after the change
of length at ϕ = 0 is equal to

ϕ̇2
1+ =

2g
l2
(1− cosϕ2). (6.5)

During the short time when the length of the swing changes abruptly the force
in the radial direction is applied. Since the moment of this radial force about the
support is zero, the angular momentum must be conserved

ml2
1 ϕ̇1− = ml2

2 ϕ̇1+. (6.6)

This relation can be used to determine ϕ2 through ϕ0. Indeed, squaring (6.6) and
using (6.4) and (6.5) we get

l3
1(1− cosϕ0) = l3

2(1− cosϕ2). (6.7)

Similar arguments lead to the generalization of this equation for all subsequent
halves of vibration

l3
1(1− cosϕ2(n−1)) = l3

2(1− cosϕ2n).

Thus, the sequence of turning angles can be constructed geometrically as shown
in Fig. 6.4. Starting from the point A0 = (ϕ0, f1(ϕ0)) on the curve f1(ϕ) = l3

1(1−
cosϕ) we find the next turning angle ϕ2 at the intersection between the horizon-
tal line going though A0 and the curve f2(ϕ) = l3

2(1− cosϕ). Then, starting from
A2 = (ϕ2, f1(ϕ2)) we find the next turning angle ϕ4, and the whole process can be
continued. We see that after a finite number of halves of vibration the angle may
become larger than π .

It is interesting to find out the energy gain after each swing act. Obviously, the
energy does not change during the time when l = const. As the length of the swing
changes abruptly from l1 to l2, the energy gain is

Eg = mgh+
1
2

m(v2
1+− v2

1−),

where h = l1 − l2. The first term is the gain of potential energy, the second term
corresponds to the increase of kinetic energy. Taking into account (6.4)-(6.6) and
v = lϕ̇ , we express Eg in terms of ϕ0

Eg = mg{h+ l1(1− cosϕ0)[(l1/l2)
2 − 1]}.
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Fig. 6.4 Sequence of turning angles

After the change of the length from l2 to l1 at the turning angle ϕ2 we have the loss
of potential energy

El = mghcosϕ2.

Thus, the total energy gain in a half of vibration is equal to

ΔE = Eg −El = mg{h(1− cosϕ2)+ l1(1− cosϕ0)[(l1/l2)
2 − 1]}.

Recalling (6.7), this can be transformed to

ΔE =
h(l2

1 + l1l2 + l2
2)

l3
2

mgl1(1− cosϕ0) = kE0,

where k = h(l2
1 + l1l2 + l2

2)/l3
2 and E0 is the initial energy. Thus, the energy after the

first half of vibration is

E2 = E0 +ΔE = E0(1+ k).

Similar formulas can be derived for the subsequent halves of vibration. Thus, the
energy after n halves of vibration becomes

E2n = E0(1+ k)n.

We see that the energy grows in a geometrical progression, like an accumulation
of a capital invested with the interest rate k. In reality, this energy accumulation is
reduced by the energy loss due to the drag force of the air so that a stationary regime
may be established under certain conditions.

Numerical Solutions. We turn now to Mathieu’s equation (6.2) as the prototype
equation describing parametrically excited oscillators. We present it in the form1

ẍ+(μ+ ε cost)x = 0. (6.8)

1 It is easy to show that equation (6.2) assumes this form with μ = (ω0/ω)2, ε = a0/l, and
ω0 =

√
g/l, if time is replaced by the dimensionless time ωt.
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The main concern of this equation is whether or not all solutions are bounded for
given values of the parameters μ and ε . If all solutions are bounded, then the corre-
sponding point in the (μ ,ε)-plane is said to be stable. In the opposite case we have
the parametric resonance and the point is classified as unstable. The problem is to
find the stability chart of Mathieu’s equation.

100 200 300 400

1.0

0.5

0.5

1.0

t

x

Fig. 6.5 Solution of Mathieu’s equation for μ = 0.24 and ε = 0.01

Although equation (6.8) can be solved analytically in terms of Mathieu’s func-
tions [3], it is even simpler first to find a solution for some μ and ε by numerical
integration. Similar commands in Mathematica like those presented in Section 5.3
work quite well. Fig. 6.5 shows the solution x(t) satisfying the initial conditions
x(0) = 1, ẋ(0) = 0, for μ = 0.24 and ε = 0.01. We can observe that there are two
characteristic time scales: i) one describing the period of fast oscillation of x(t), ii)
the other associated with the slow oscillation of amplitude of vibration marked by
the dashed envelopes. The solution remains bounded in this case.

If we change parameters μ and ε a little bit, the character of solutions may change
radically. For example, if we take μ = 0.25 while keeping ε = 0.01 as before, then
the solution satisfying the same initial conditions shown in Fig. 6.6 exhibits the
exponential growth of the amplitude. So, it is reasonable to guess that the point
(0.25,0.01) of the (μ ,ε)-plane causes the parametric resonance. Also in this case
we can observe two characteristic time scales: i) one describing the period of fast

100 200 300 400

-5

5

t

x

Fig. 6.6 Solution of Mathieu’s equation for μ = 0.25 and ε = 0.01
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oscillation of x(t), ii) the other associated with the exponential growth of amplitude
of vibration marked by the dashed envelopes.

It should be noted, however, that the numerical integration, which is quite useful
when studying the behavior of particular solutions, is not appropriate for the deter-
mination of the stability chart of Mathieu’s equation. This is due to two reasons.
First, these numerical simulations cannot be provided for an infinite time interval,
so the boundedness of solutions cannot strictly be proved. Second, one cannot do
infinite number of numerical simulations for all possible values of μ and ε as well
as for all possible initial data. Thus, other more “intelligent” methods should be
developed for this purpose.

Variational-Asymptotic Method. Let us find the approximate solutions to Math-
ieu’s equation for small ε by using the variational-asymptotic method. These solu-
tions are also the extremals of the functional

I[x(t)] =
∫ t1

t0
[
1
2

ẋ2 − 1
2
(μ+ ε cost)x2]dt, (6.9)

with t0 and t1 being arbitrary time instants. For short we set t0 = 0, t1 = T . At the
first step we put simply ε = 0 to get from (6.9)

I0[x(t)] =
∫ T

0
(

1
2

ẋ2 − 1
2
μx2)dt.

The extremal of I0[x(t)] satisfies the equation

ẍ+ μx = 0

yielding the periodic solution with the period T = 2π/√μ

x0(t) = Acos
√
μt +Bsin

√
μt. (6.10)

Taking into account that the coefficients A and B are becoming slightly dependent
on time for ε �= 0, we introduce the slow time η = εt and seek the corrections to the
extremal at the second step in the two-timing fashion

x(t) = A(η)cos
√
μt +B(η)sin

√
μt + x1(t,η), (6.11)

where x1(t,η) is a periodic function of the period T with respect to t and is much
smaller than x0(t,η) in the asymptotic sense. The time derivative of x(t) becomes

ẋ =−A
√
μ sin

√
μt + εA,η cos

√
μt +B

√
μ cos

√
μt + εB,η sin

√
μt + x1,t + εx1,η .

Substituting (6.11) into (6.9) and keeping the asymptotically principal terms con-
taining x1 and the principal cross terms between x0 and x1, we obtain
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I1[x1(t)] =
∫ T

0
[
1
2

x2
1,t −A

√
μ sin

√
μt x1,t +B

√
μ cos

√
μt x1,t

+ εA,η cos
√
μt x1,t + εB,η sin

√
μt x1,t − 1

2
μx2

1 − μAcos
√
μt x1

− μBsin
√
μt x1 − ε cost(Acos

√
μt +Bsin

√
μt)x1]dt.

Integrating the second up to fifth terms by parts taking into account the periodicity
of x1(t) we see that the underlined terms give 2ε√μ(A,η sin

√μt −B,η cos
√μt)x1.

Besides, the products cost cos
√μt and cost sin

√μt can be transformed into the
sum of harmonic functions like that

cost cos
√
μt =

1
2
[cos(1+

√
μ)t + cos(1−√

μ)t],

cost sin
√
μt =

1
2
[sin(1+

√
μ)t − sin(1−√

μ)t],

so finally we obtain

I1[x1(t)] =
∫ T

0
[
1
2

x2
1,t −

1
2
μx2

1 + 2εA,η
√
μ sin

√
μt x1 − 2εB,η

√
μ cos

√
μt x1

− 1
2
εA(cos(1+

√
μ)t + cos(1−√

μ)t)x1

− 1
2
εB(sin(1+

√
μ)t − sin(1−√

μ)t)x1]dt. (6.12)

For a general value of μ removal of resonant terms yields the trivial equations

A,η = 0, B,η = 0.

Thus, for general μ the cost term has no effect. However, if
√μ = 1−√μ , i.e.

μ = 1/4, then there are additional contributions to the resonant terms. In this case
removal of resonant terms gives the slow flow

A,η =−1
2

B,

B,η =−1
2

A.

These equations lead to A,ηη = A/4. Thus, A and B involve exponential growth, and
the parameter value μ = 1/4 causes instability. This corresponds to a 2:1 subhar-
monic resonance in which the driving frequency is twice the natural frequency as in
the example of swing.

Let us seek the correction for μ in the neighborhood of 1/4 in the form

μ =
1
4
+ μ1,
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where μ1 is much smaller than 1. This brings additional resonant terms of the form
−μ1(Acos t

2 + Bsin t
2 )x1 into functional (6.12). Thus, the equations for A and B

change to

A,η = (
μ1

ε
− 1

2
)B, B,η =−(

μ1

ε
+

1
2
)A. (6.13)

This means, A,ηη +(μ2
1/ε2 −1/4)A = 0, and A and B will be sine and cosine func-

tions of η if μ2
1 > ε2/4. That is, if either μ1 > ε/2 or μ1 < −ε/2, then A and B

remain bounded. Thus, the following two curves in the (μ ,ε)-plane represent sta-
bility changes, and are called transition curves:

μ =
1
4
± ε

2
+O(ε2). (6.14)

These two curves emanate from the point μ = 1/4 on the μ-axis and define a region
of instability called a tongue. Inside the tongue, for small ε , x grows exponentially
in time. Outside the tongue x is the sum of terms, each of which is the product
of two harmonic functions with generally incommensurate frequencies, so x is a
bounded quasiperiodic function of t. This confirms our numerical simulations done
in the previous paragraph. One can also show that the approximate solution given
by equations (6.10) and (6.13) converges to the exact solution of (6.8) in any finite
time interval as ε → 0. The indirect check of this result can be done also by solv-
ing equations (6.13) and comparing it with the numerical solutions (see the dashed
envelopes in Figs. 6.5 and 6.6 computed by the equations (6.13)).

6.2 Mathieu’s Differential Equation

This Section presents the exact treatment of Mathieu’s equation based on Floquet’s
theory of linear differential equations with periodic coefficients and the finding of
stability chart.

Floquet’s Theory. We first study the general theory of linear differential equations
with periodic coefficients (Floquet’s theory). Let x be an n×1 column vector, and A
an n×n matrix whose elements are periodic functions with a period T . We consider
the following vectorial differential equation

ẋ = A(t)x. (6.15)

Notice that, since A(t+T ) = A(t), this equation is invariant with respect to the shift
of time by a constant period T . Thus, if x(t) is a solution of (6.15), then x(t +T )
must also be a solution of (6.15).

Now let us consider the fundamental solution matrix of (6.15), X(t), which is
defined as follows. X(t) is an n× n matrix, whose columns are solutions of (6.15)
such that X(0) = I, I being the identity matrix. As the columns of X(t) are linearly
independent, they form a basis for the n-dimensional solution space of (6.15). Since
X(t +T ) is also the solution matrix of equation (6.15), each of its columns may be
written as a linear combination of the columns of X(t), so
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X(t +T ) = X(t)C, (6.16)

where C is a n×n constant matrix. At t = 0 we have X(T ) = X(0)C = C, so C is in
fact equal to the fundamental matrix evaluated at time T . Thus, C could be obtained
by numerically integrating (6.15) from t = 0 to t = T , n times, once for each of the
n initial conditions satisfied by the i-th column of X(0). Taking the time instants 2T ,
3T , and so on and applying similar arguments, we can show that X(nT ) = Cn.

Let us transform (6.16) to normal coordinates. We seek another fundamental so-
lution matrix Y(t) such that

Y(t) = X(t)R,

where R is as yet unknown n× n matrix. Combining this equation with (6.16), we
obtain

Y(t +T) = Y(t)R−1CR. (6.17)

Suppose that C has n linearly independent eingenvectors. If we choose the columns
of R to be these eigenvectors, then the product R−1CR will be a diagonal matrix
with the eigenvalues λi of C on its diagonal. With R−1CR diagonal, the matrix Y(t)
satisfying (6.17) will also be diagonal. Indeed, let us construct this diagonal matrix
explicitly. Its elements satisfy the equations

yi(t +T ) = λiyi(t). (6.18)

We look for a solution to this functional equation in the form

yi(t) = λ kt
i pi(t),

where k is an unknown constant and pi(t) is an unknown function. Substitution into
(6.18) gives

yi(t +T ) = λ k(t+T )
i pi(t +T ) = λi(λ kt

i pi(t)).

This equation is satisfied if we take k = 1/T and pi(t) a periodic function of period
T . Thus, the constructed matrix with the diagonal elements

yi(t) = λ
t/T
i pi(t) (6.19)

satisfies (6.17). This implies that the original system (6.15) will be stable if every
eigenvalue λi of C has modulus less than 1. In the opposite case the solution will
grow exponentially as t → ∞ leading to instability and parametric resonance.

Hill’s Equation. Let us first apply Floquet’s theory to Hill’s equation

ẍ+ f (t)x = 0, f (t +T ) = f (t),

which contains Mathieu’s equation as a special case. This equation can be written
as a system of differential equation
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d
dt

(
x
y

)
=

(
0 1

− f (t) 0

)(
x
y

)
.

We construct a fundamental solution matrix from two solution vectors satisfying the
initial conditions (

x1(0)
y1(0)

)
=

(
1
0

)
,

(
x2(0)
y2(0)

)
=

(
0
1

)
.

Then the matrix C is the fundamental solution matrix evaluated at time T

C =

(
x1(T ) x2(T )
y1(T ) y2(T )

)
.

From the previous paragraph we know that stability is determined by the eigenvalues
of C

λ 2 − (trC)λ + detC = 0, (6.20)

where trC and detC are the trace and determinant of C. It turns out that detC = 1
for Hill’s equation. Indeed, let us compute the time derivative of the Wronskian

d
dt

W (t) =
d
dt
(x1y2 − y1x2) = y1y2 − f (t)x1x2 + f (t)x1x2 − y1y2 = 0.

Thus, W (T ) = detC =W (0) = 1 and equation (6.20) can be written as

λ 2 − (trC)λ + 1 = 0,

yielding two roots

λ1,2 =
1
2
(trC±

√
(trC)2 − 4).

According to Floquet’s theory instability occurs if either eigenvalue has modulus
larger than 1. So, if |trC| > 2, then we have two real roots, and since their product
is 1, one of them has modulus greater than 1. In this case we have instability as-
sociated with the exponential growth of solutions. If |trC| < 2, then the roots are
complex conjugate, and since their product is 1, they lie on the unit circle, with
the consequence that the solutions are bounded. The transition from stable to un-
stable behavior corresponds to those parameter values giving |trC| = 2. If trC = 2,
then we have the double root λ = 1, and formula (6.19) implies that the solutions
must be periodic functions with period T . In case trC = −2 we have the double
root λ = −1 corresponding to the periodic solutions with period 2T . Thus, on the
transition curves in parameter space, the motions are periodic with period T or 2T .
In accordance with this theory, the stability of a given pair (μ ,ε) can be determined
by finding the fundamental solution matrix at t = T through numerical integration
and investigating its eigenvalues. However, for the whole (μ ,ε)-plane the method is
still ineffective.

Stability Chart. In case of Mathieu’s equation the period of f (t) is 2π , so we may
seek the periodic solutions on the transition curves in form of a Fourier series



266 6 Non-autonomous Single Oscillator

x(t) =
∞

∑
j=0

(
a j cos

jt
2
+ b j sin

jt
2

)
.

The factor 1/2 in the arguments of sine and cosine guarantees that periodic functions
of period 4π are included. Substituting this Fourier series into Mathieu’s equation
(6.8), transforming the products of trigonometric functions into harmonic functions
and collecting similar terms gives four sets of homogeneous linear equations on the
coefficients a j and b j. Each set contains only coefficients a j or b j with even or odd
indices j. For a nontrivial solution of one set to exist the corresponding determinant
must vanish. This gives four infinite determinants known as Hill’s determinants. For
a j with even j we have

∣∣∣∣∣∣∣∣

μ ε/2 0 0
ε μ− 1 ε/2 0 . . .
0 ε/2 μ− 4 ε/2

. . .

∣∣∣∣∣∣∣∣
= 0.

For b j with even j, ∣∣∣∣∣∣∣∣

μ− 1 ε/2 0 0
ε/2 μ− 4 ε/2 0 . . .

0 ε/2 μ− 9 ε/2
. . .

∣∣∣∣∣∣∣∣
= 0.

For a j with odd j,

∣∣∣∣∣∣∣∣

μ− 1/4+ ε/2 ε/2 0 0
ε/2 μ− 9/4 ε/2 0 . . .

0 ε/2 μ− 25/4 ε/2
. . .

∣∣∣∣∣∣∣∣
= 0.

Finally, for b j with odd j,

∣∣∣∣∣∣∣∣

μ− 1/4− ε/2 ε/2 0 0
ε/2 μ− 9/4 ε/2 0 . . .

0 ε/2 μ− 25/4 ε/2
. . .

∣∣∣∣∣∣∣∣
= 0.

In all four determinants the typical row is

. . . 0 ε/2 μ− j2/4 ε/2 0 . . .

except for the first one or two rows.
Each of these equations represents a relation between μ and ε , which plots as a

set of transition curves in the (μ ,ε)-plane (see Fig. 6.7). Since the transition curves
are symmetric about the μ-axis, only the upper half of chart is shown. The equations
obtained at ε = 0 give the intersections of these curves with the μ-axis. For a j or b j

with even j the transition curves intersect the μ-axis at μ = j2, j = 0,1,2, . . ., while
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those curves obtained from the determinants with odd j intersect the μ-axis at μ =
(2 j+1)2/4, j = 0,1,2, . . .. For ε > 0, each of these points give rise to two transition
curves, one obtained from the a-determinant, and the other from the b-determinant.
Thus, there is a tongue of instability emanating from each of the following points
on the μ-axis: μ = j2/4, j = 0,1,2, . . .. Exception is the case j = 0 for which only
one transition curve exists.

UU U

S S S
-1.0 -0.5 0.5 1.0 1.5

0.5

1.0

1.5

Fig. 6.7 Stability chart of Mathieu’s equation (U: unstable, S: stable)

To find the asymptote of a transition curve μ = f (ε) emanating from j2/4 on the
μ-axis we expand the function f (ε) in the power series

μ =
j2

4
+ μ1ε+ μ2ε2 + . . . (6.21)

Substituting this into one of the determinants and equating terms of equal order of
ε to zero, we can determine the coefficients μi. For example, for j = 1 we may take
the truncated 3× 3 a-determinant with odd j to obtain

−ε
3

8
− με2

2
+

13ε2

8
+
μ2ε

2
− 17με

4
+

225ε
32

+ μ3 − 35μ2

4
+

259μ
16

− 225
64

= 0.

Substituting (6.21) (with j = 1) into the above equation and equating terms with
ε and ε2 to zero, we obtain μ1 = −1/2 and μ2 = −1/8. This procedure can be
continued to any order of truncation. Here are the asymptotes of first five transition
curves computed in this way

μ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− ε2

2 for j = 0
1
4 − ε

2 − ε2

8 for j = 1
1
4 +

ε
2 − ε2

8 for j = 1

1− ε2

12 for j = 2

1+ 5ε2

12 for j = 2
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Note that the transition curves (6.14) obtained in Section 6.1 by the variational-
asymptotic method corresponds to j = 1. Why other tongues of instability were
missed? If we continue the next steps of the variational-asymptotic method, the
other tongues can be found also (see exercise 6.3).

6.3 Duffing’s Forced Oscillator

Differential Equation of Motion. As we know from Section 5.2 the free vibra-
tions of a nonlinear damped oscillator must decay as time increases because of the
positive dissipation rate. We want now to analyze the situation, when some external
harmonic force acts on such the oscillator. As prototype we consider a damped Duff-
ing’s oscillator subjected to a small harmonic excitation. For this forced oscillator
the displacement x(t) satisfies the variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2 − 1
4
εαx4 + ε f̂ cosωt x)dt −

∫ t1

t0
εcẋδxdt = 0, (6.22)

where ε is a small parameter. This implies the following equation of motion

ẍ+ x+ εcẋ+ εαx3 = ε f̂ cosωt. (6.23)

x

y

p

q

Fig. 6.8 Poincaré map

In contrast to the Duffing’s equation (5.1) describing free
undamped vibrations, equation (6.23) is nonautonomous,
that is, time t appears explicitly in the force term.
Therefore the phase plane is no longer appropriate for
this equation since the vector field changes in time, allow-
ing a trajectory to return to the previous point and inter-
sect itself. However, the system may be made autonomous
by introducing the angular time τ and rewriting (6.23) as
follows

ẋ = y,

ẏ =−x− εcy− εαx3+ ε f̂ cosτ
τ̇ = ω .

This system of three differential equations of first order is defined on a phase space
with topology R2 × S, where the circle S comes from the 2π-periodicity in τ of the
vector field. A convenient way to view this 3-D flow in two dimensions is to use
the Poincaré map. This map is obtained by the intersection of the trajectory with a
plane of section Σ which may be taken as τ = 0 (mod 2π) as shown schematically in
Fig. 6.8. Thus, when f̂ = 0, the equilibria that would normally lie in the (x,y)-plane,
now become periodic orbits of period 2π in this 3-D phase space. For small f̂ > 0,
we may expect by a continuity argument that these periodic orbits persist giving
rise to 2π-periodic motions. Such periodic motions correspond to fixed points of the
Poincaré map.
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Numerical Solutions. Since no analytical solution to the forced Duffing equation
(6.23) is available, we first try to find some particular solutions by numerical in-
tegration to study their behavior. Take for example ε = 0.1, c = 0, α = 1. For the
harmonic force we choose f̂ = 1 and ω = 1, together with the initial conditions
x(0) = 1, ẋ(0) = 0. The numerical integration with standard commands like those
in Section 5.3 gives the graph of x(t) shown in Fig. 6.9. Looking at this solution, we
observe that there are two time scales characterizing the vibration: i) one describ-
ing the period of fast oscillation of x(t), ii) the other associated with the slow and
periodic change of amplitude of vibration.
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Fig. 6.9 Numerical solution of forced Duffing equation for ω = 1

It turns out that for certain values of frequency and amplitude of force as well
as certain initial conditions, purely periodic solutions can be obtained. This corre-
sponds to a fixed point of the Poincaré’s map introduced in the previous paragraph.
For example, if we take ω = 0.9875 while keeping all other parameters unchanged,
the solution is purely periodic as seen in Fig. 6.10.
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Fig. 6.10 Numerical solution of forced Duffing equation for ω = 0.9875

As soon as the damping becomes nonzero, the character of solutions changes.
Take for example ε = 0.1, c = α = f̂ = 1, ω = 1, together with the initial condi-
tions x(0) = 1, ẋ(0) = 0. Now the amplitude shows first a transient character be-
fore approaching a certain steady-state amplitude that depends only on the forcing
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Fig. 6.11 Numerical solution of forced and damped Duffing oscillator for c = 1 and ω = 1

frequency and the initial conditions (see Fig. 6.11). The steady-state response fre-
quency coincides with the forcing frequency, what is similar to the linear theory.

If we increase the forcing frequency while keeping all other parameters as well as
the initial conditions, the steady-state amplitude may become even smaller as shown
in Fig. 6.12 for the case ω = 1.2. Since we cannot do infinite number of numerical
simulations to establish the behavior of slow change of amplitude due to the change
of frequency and other factors, more “intelligent” methods have to be invented for
this purpose.
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Fig. 6.12 Numerical solution of forced and damped Duffing oscillator for c = 1 and ω = 1.2

Variational-Asymptotic Method. For the convenience of our analysis let us intro-
duce the stretched angular time τ = ωt explicitly in the variational equation (6.22).
Since ẋ = ωx′, where prime denotes the derivative with respect to τ , equation (6.22)
becomes

δ
∫ τ0+2π

τ0

(
1
2
ω2x′2 − 1

2
x2 − 1

4
εαx4 + ε f̂ cosτ x)dτ −

∫ τ0+2π

τ0

εcωx′δxdτ = 0,

(6.24)
where τ1 = τ0 + 2π and τ0 is an arbitrary time instant. For short we set τ0 = 0.

At the first step of the variational-asymptotic procedure we neglect all terms con-
taining ε to get
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δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ = 0.

The 2π-periodic extremal of this variational problem is

x0(τ) = Acosτ+Bsinτ.

We see that the frequency equals 1 which is not surprising because the external
force, the damping and the nonlinear spring force are neglected. The coefficients A
and B are still unknown and should be determined from the initial conditions.

From the numerical simulations provided previously we know that, for ε �= 0,
the coefficients A and B are becoming dependent on time. In general the forcing
frequency differs from 1 also. Taking all these circumstances into account, we in-
troduce the slow time η = ετ and search for the corrections to the extremal and to
the frequency at the second step in the form

x(τ) = A(η)cosτ+B(η)sinτ+ x1(τ,η), ω = 1+ω1, (6.25)

where x1(τ,η) is a 2π-periodic function with respect to τ and is much smaller than
x0(τ,η) = A(η)cosτ+B(η)sinτ in the asymptotic sense, and ω1 is assumed to be
much smaller than 1. The second equation of (6.25) means that we are restricting to
the case where the forcing frequency is nearly equal to 1. The full time derivative of
x is equal to

x′ = x0,τ + εx0,η + x1,τ+ εx1,η . (6.26)

We substitute (6.25) and (6.26) into (6.24) and keep the asymptotically principal
terms containing x1 and the principal cross terms between x0 and x1. The variational
equation becomes

δ
∫ 2π

0
[
1
2

x2
1,τ + x0,τx

′
1 + εx0,ηx′1 + 2ω1x0,τx

′
1

− 1
2

x2
1 − x0x1 − εαx3

0x1 + ε f̂ cosτ x1 − εcx0,τx1]dτ = 0.

Next, we integrate the second, third, and fourth terms by parts using the 2π-
periodicity of x1 with respect to τ . It is easy to see that, since (x0,τ)

′ =−x0+εx0,τη ,
the underlined terms give −2εx0,ητx1. Then we expand x3

0 of the term −εαx3
0x1

and transform the products of sine and cosine into the sum of harmonic functions
according to

cos3 τ =
3
4

cosτ+
1
4

cos3τ, cos2 τ sinτ =
1
4
(sinτ+ sin3τ),

sin3 τ =
3
4

sinτ− 1
4

sin3τ, sin2 τ cosτ =
1
4
(cosτ− cos3τ).
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The variational equation takes the form

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 +(. . .)sinτ x1 +(. . .)cosτ x1 + nonresonant terms]dτ = 0.

The consistency condition requires the expressions in parentheses to vanish, giving
the following equations for A and B

2A,η + cA+ 2
ω1

ε
B− 3

4
αB(A2 +B2) = 0,

2B,η + cB− 2
ω1

ε
A+

3
4
αA(A2 +B2) = f̂ .

(6.27)

The fixed points of these equations correspond to periodic motions of the forced
Duffing equation (6.23). To find them we set A,η and B,η equal to zero. Multiplying
the first equation of (6.27) by A and adding it to the second equation multiplied by
B gives

ca2 = f̂ B, where a2 = A2 +B2.

Similarly, multiplying the first equation of (6.27) by B and subtracting it from the
second one multiplied by A yields

−2
ω1

ε
a2 +

3
4
αa4 = f̂ A.

Adding the squares of two last equations together and dividing by a2 we obtain

a2[c2 +(−2
ω1

ε
+

3
4
αa2)2] = f̂ 2.

Solving the last equation with respect to ω1 leads to

ω1 =
3
8
εαa2 ± 1

2
ε

√
f̂ 2

a2 − c2.

Thus, the correction to the frequency of the external force is of the order ε . Together
with (6.25) we have the following nonlinear relation between the frequencyω of the
external force and the response amplitude a of the corresponding forced periodic
motion

ω = 1+
3
8
εαa2 ± 1

2
ε

√
f̂ 2

a2 − c2. (6.28)

Note that if both the force f̂ and the damping c are zero, then (6.28) reduces to
the well-known formula (5.8) obtained previously for the free undamped Duffing’s
oscillator. If f̂ > 0, then there exists ωc such that for ω > ωc the amplitude a is a
multi-valued function of the frequency. However, if c > 0, then a is a multi-valued
function of ω only in the range ω ∈ (ωc,1+ 3

8εα( f̂ /c)2). Fig. 6.13 shows the am-
plitude versus frequency curves in these three different cases for α > 0 (hardening
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a

c

Fig. 6.13 Amplitude versus frequency curves of forced Duffing’s oscillator: i) dashed line:
f̂ = c = 0, ii) dotted and dashed line: c = 0, f̂ > 0, iii) bold line: both f̂ and c are positive
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Fig. 6.14 Phase versus frequency curves of forced Duffing’s oscillator

spring). Thus, for the fixed frequency ω and magnitude f̂ > 0 of the external force
we may find in general either one or three steady-state amplitudes of forced vibra-
tions. The phase of forced vibrations deviates also from that of the linear theory.
Introducing the phase of forced vibrations as

tanψ =
B
A
=

c

∓
√

f̂ 2

a2 − c2
,

we show the plot of ψ versus ω in Fig. 6.14 for ε = 0.1, α = f̂ = 1, and c = 1 (bold
line), c = 0.3 (dashed line), c = 0.1 (dotted line).

Since there are several fixed points of system (6.27) we have to study their sta-
bility to select realizable solutions. As these fixed points correspond to the periodic
solutions of (6.23), their stability means also the stability of the periodic solutions.
For simplicity of our analysis, we consider the case c = 0. Denoting ω1/ε = k1, we
write (6.27) in the form
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A,η =−k1B+
3
8
αB(A2 +B2),

B,η = k1A− 3
8
αA(A2 +B2)+

f̂
2
.

(6.29)

For ω > ωc there are three roots of (6.28), a1, a2, a3, such that a1 > a2 > a3 > 0.
The corresponding fixed points S1, S2, S3 have the coordinates given by

(A1,B1) = (a1,0), (A2,B2) = (−a2,0), (A3,B3) = (−a3,0).

-4 -2 2 4 6

-6

-4

-2

2

4

6

A

B

Fig. 6.15 Phase portrait of system
(6.29)

To determine the stability of these fixed
points we set A = Ai + u, B = v and linearize
(6.29) in u and v, giving

u,η =(
3
8
αA2

i −k1)v, v,η =(−9
8
αA2

i +k1)u.

Thus, if

D = (
3
8
αA2

i − k1)(
9
8
αA2

i − k1)> 0, (6.30)

then the fixed point is a center, and if this
same quantity is negative, the fixed point is
a saddle point. For S1 we have

k1 =
3
8
αa2

1 −
f̂

2a1
,

and condition (6.30) is satisfied for all ω so that the fixed point is a center. For S2

k1 =
3
8
αa2

2 +
f̂

2a2
,

so in this case

D =− f̂
2a2

(
3
4
αa2

2 −
f̂

2a2
)< 0,

and the fixed point is a saddle point. Finally, for S3

D =− f̂
2a3

(
3
4
αa2

3 −
f̂

2a3
)> 0,

so the fixed point is a center. It is interesting to note that, for S2 and S3 the sign of
D is opposite to the sign of the derivative dω

da . The vector field and the phase portrait
of (6.29) for ω > ωc are shown in Fig. 6.15. If some small damping is included
(c > 0), then, by the continuity reasoning we expect that the centers would become
stable foci attracting phase curves, while the saddle point remains unstable.
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Fig. 6.16 Jump phenomenon and
hysteresis

Imagine now that we can change the forcing
frequency ω so slowly that the steady-state re-
sponse amplitude a can follow it after a short
transient period. Thus, if the forcing frequency
is increased starting from zero, then the re-
sponse amplitude follows first the stable upper
branch OA up to point A. After point A no so-
lution of this branch is possible, so the ampli-
tude has to jump to the lower branch (this jump
is marked by the vertical line AB) and then
follows this stable branch down to point C. If
the forcing frequency were now to reverse its
course (again quasistatically), then the ampli-
tude would go back along the lower branch CD,
after which it jumps to the upper branch (the
jump is marked by the vertical line DE), and
finally follows this upper curve down to the end point O. This closed loop
OABCDEO is called a hysteresis loop.

Note that the convergence of the approximate solution given by equations (6.25)
and (6.27) to the exact solution of (6.23) as ε → 0 can be established for any finite
time interval. We can also indirectly verify this result by comparing the solutions
of (6.27) (presented by the dashed envelopes in Figs. 6.9-6.12) with the numerical
solutions of (6.23). The agreement is excellent, although ε = 0.1 is not quite small.

6.4 Forced Vibration of Self-excited Oscillator

Differential Equation of Motion. As we know from Section 5.3 a self-excited os-
cillator may have limit cycles as attractors of the phase curves. We want now to
analyze the situation, when some external harmonic force acts on such the oscilla-
tor. As prototype we consider van der Pol’s oscillator subjected to a small harmonic
excitation. Since we are interested in the primary 1:1 resonance, we order the am-
plitude of the excitation to be the same as the damping and non-linear term [36]. For
this forced oscillator the displacement x(t) satisfies the variational equation

δ
∫ t1

t0
(

1
2

ẋ2 − 1
2

x2 + ε f̂ cosωt x)dt +
∫ t1

t0
ε(1− x2)ẋδxdt = 0, (6.31)

where ε is a small parameter. This implies the following equation of motion

ẍ+ x− ε(1− x2)ẋ = ε f̂ cosωt. (6.32)

Equation (6.32) is called forced van der Pol’s equation. In the previous Section we
have seen that, when a damped Duffing-type oscillator is driven by a harmonic force,
the steady-state response will have the same frequency as the forcing frequency.
If a self-excited oscillator is driven by some harmonic force, the steady state of
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vibration may not exist at all and the forced response may include both the unforced
limit cycle oscillation as well as a response at the forcing frequency. However, if the
amplitude of the force is strong enough, and the frequency difference between the
limit cycle oscillation and the harmonic force is small enough, then it may happen
that the steady-state response exists and occurs only at the forcing frequency. In this
case the forcing function is said to have entrained the limit cycle oscillator, and the
system is said to be frequency-locked [36].

Numerical Solutions. Similar to the unforced van der Pol’s equation, (6.32) does
not permit exact analytical treatment. Therefore, to study the behavior of forced
vibrations and illustrate the possibility of entrainment (or, equivalently, frequency
locking) let us first do some numerical simulations.

We take ε = 0.1, f̂ = 1.06, and ω = 1.02 and find the solution to (6.32) sat-
isfying the initial conditions x(0) = 1, ẋ(0) = 0 by the numerical integration with
Mathematica. The result shown in Fig. 6.17 exhibits the entrainment: a steady-state
vibration with the forcing frequency is settled after a short transient period.
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Fig. 6.17 Numerical solution of forced van der Pol’s oscillator for ε = 0.1, f̂ = 1.06, and
ω = 1.02

If we increase a little bit the forcing frequency while keeping all other parameters
and initial data, the response may change drastically. For example, the solution for
ω = 1.05 shown in Fig. 6.18 exhibits a beating behavior typical for the oscillation
with two nearly equal frequencies. Thus, in this case entrainment does not occur,
and the system is unlocked.

In the next paragraph we will use the variational-asymptotic method to establish
the law of slow change of response amplitude as function of the forcing parameters
and to predict the entrainment effect for small ε . The outcome of this asymptotic
analysis is shown in Figs. 6.17 and 6.18: the dashed envelopes are computed ac-
cording to the obtained equations of slow change. The agreement is good although
ε = 0.1 is not quite small.

Variational-Asymptotic Method. Let us introduce the stretched angular time τ =
ωt explicitly in the variational equation (6.31). Since ẋ = ωx′, where prime denotes
the derivative with respect to τ , equation (6.31) becomes
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Fig. 6.18 Numerical solution of forced van der Pol’s oscillator for ε = 0.1, f̂ = 1.06, and
ω = 1.05

δ
∫ τ0+2π

τ0

(
1
2
ω2x′2 − 1

2
x2 + ε f̂ cosτ x)dτ+

∫ τ0+2π

τ0

ε(1− x2)ωx′δxdτ = 0, (6.33)

where τ1 = τ0 + 2π and τ0 is an arbitrary time instant. For short we set τ0 = 0.
At the first step of the variational-asymptotic procedure we neglect all terms con-

taining ε to get

δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2)dτ = 0.

The 2π-periodic extremal of this variational problem is

x0(τ) = Acosτ+Bsinτ.

The coefficients A and B in this solution are still unknown.
For ε �= 0 the coefficients A and B are becoming dependent on time and the

forcing frequency deviates from 1. Therefore we introduce the slow time η = ετ
and search for the corrections to the extremal and to the frequency at the second
step in the form

x(τ) = A(η)cosτ+B(η)sinτ+ x1(τ,η), ω = 1+ω1, (6.34)

where x1(τ,η) is a 2π-periodic function with respect to τ and is much smaller than
x0(τ,η) = A(η)cosτ+B(η)sinτ in the asymptotic sense, and ω1 is assumed to be
much smaller than 1. The second equation of (6.34) means that we are restricting
to the case where the forcing frequency is nearly equal to the unforced limit cycle
frequency, which is called a 1:1 resonance. Note that the time derivative of x(τ) is
equal to

x′ = x0,τ + εx0,η + x1,τ+ εx1,η .

Here the comma in index means the partial derivative. We substitute (6.34) into
(6.33) and keep the asymptotically principal terms containing x1 and the principal
cross terms between x0 and x1. The variational equation becomes
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δ
∫ 2π

0
[
1
2

x2
1,τ + x0,τx

′
1 + εx0,ηx′1 + 2ω1x0,τx

′
1

− 1
2

x2
1 − x0x1 + ε f̂ cosτ x1 + ε(1− x2

0)x0,τx1]dτ = 0.

Next, integrating the second, third, and fourth terms by parts using the periodicity
of x1, we get from the underlined terms −2εx0,ητx1. Finally, reducing the products
of sine and cosine in the last term to the sum of harmonic functions,2 we transform
the variational equation to

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 +(. . .)sinτ x1 +(. . .)cosτ x1 + nonresonant terms]dτ = 0.

The consistency condition requires removal of the resonant terms that leads to

2A,η = −2
ω1

ε
B+A− A

4
(A2 +B2),

2B,η = 2
ω1

ε
A+B− B

4
(A2 +B2)+ f̂ .

We see that the correction to the frequency must be of the order ε . Denoting ω1 by
ω1 = k1ε , we rewrite this system of equations in the form

2A,η =−2k1B+A− A
4
(A2 +B2),

2B,η = 2k1A+B− B
4
(A2 +B2)+ f̂ .

(6.35)

System (6.35) can be simplified by using polar coordinates a and ψ in the phase
plane

A = acosψ , B = asinψ . (6.36)

In terms of a and ψ we can present x0 as

x0(τ,η) = a(η)cos(τ−ψ(η)).

Thus, a(η) has the meaning of amplitude of vibration, while ψ(η) can be inter-
preted as the phase; both are slowly changing functions of time. Substituting (6.36)
into (6.35) gives

a,η =
a
8
(4− a2)+

f̂
2

sinψ ,

ψ,η = k1 +
f̂

2a
cosψ .

(6.37)

2 This can be done quite nicely in Mathematica with the help of TrigReduce command.
Another way is to use the complex representations of sine and cosine, then multiply every-
thing out and finally collect terms.
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When f̂ = 0, equations (6.37) reduce to the well-known equations (5.32) derived
for the self-excited vibrations of val der Pol’s oscillator. We seek fixed points of
the slow flow (6.37) which correspond to locked periodic motions of (6.32). Setting
a,η = ψ,η = 0, solving for sinψ and cosψ and using the identity sin2+cos2 = 1,
we obtain

a2
(

1− a2

4

)2

+ 4k2
1a2 = f̂ 2.

Expanding this equation and denoting p = a2, we have

p3

16
− p2

2
+(4k2

1 + 1)p− f̂ 2 = 0. (6.38)

This cubic equation in p, in view of its 3 sign changes, has either 3 positive roots,
or one positive and two complex conjugate roots. The transition between these two
cases occurs when there is a double root, which is equivalent to the condition that
the derivative of the left-hand side expression vanishes

3p2

16
− p+ 1+ 4k2

1 = 0. (6.39)
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unstable
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f=0.77

f=0.6

f=0.3

Fig. 6.19 Response-frequency curves

Eliminating p in the last two equations,
we obtain

f̂ 4

16
− f̂ 2

27
(1+36k2

1)+
16
27

k2
1(1+4k2

1)
2 = 0.

This equation gives two curves meeting
at a cusp in the (k1, f̂ )-plane. As one of
these curves is traversed quasistatically,
a saddle-node bifurcation occurs. At the
cusp we have a triple root leading to a fur-
ther degeneracy. The condition for this is

3p
8

− 1 = 0 ⇒ p =
8
3
.

With this value p= 8/3 we can easily find
the location of the cusp at

k1 =
1√
12

≈ 0.288, f̂ =

√
32
27

≈ 1.088.

The square of amplitude versus frequency curves in terms of p = a2 and k1 are
shown in Fig. 6.19 for different forcing amplitudes f̂ . For f̂ = 0, the curves degen-
erate into the k1-axis and the point (0,4) corresponding to the limit cycle unforced
vibration. As f̂ increases, the curves first consist of two branches- a branch running
near the k1-axis and a closed curve surrounding the point (0,4). When f̂ = 4

3
√

3
, the
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two branches coalesce, and the resultant curve has a double point at (0,4/3). As f̂
increases beyond this critical value, the response curves are open curves. However,
p is still not single-valued function of k1 until f̂ exceeds the second critical value
f̂ =

√
32/

√
27. Beyond this critical value the response curves are single-valued for

all k1.
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det=0

det=0
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Fig. 6.20 Curves given by: i) detM = 0 (bold lines), ii) trM = 0 (dashed line)

Since several fixed points of (6.37) are present, we must investigate their stability.
Let (a0,ψ0) be a fixed point of (6.37). We search for the solutions of (6.37) in the
form

a = a0 + u, ψ = ψ0 + v,

where u and v are small perturbations. Substituting this into (6.37) and linearizing
in u and v gives

u,η =
u
2
− 3

8
a2

0u+
f̂
2

cosψ0 v,

v,η =− f̂

2a2
0

cosψ0 u− f̂
2a0

sinψ0 v.

This system may be simplified by using the following expressions valid at the fixed
point

f̂
2

sinψ0 =−a0

2
+

a3
0

8
,

f̂
2

cosψ0 =−k1a0.

Thus, the stability is determined by the eigenvalues of the following matrix M

M =

(
1
2 − 3

8 a2
0 −k1a0

k1
a0

1
2 − 1

8 a2
0

)
.

Its eigenvalues λ are the roots of the characteristic equation

λ 2 − trMλ + detM = 0,
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where

trM = 1− a2
0

2
= 1− p

2
,

detM = (−1
2
+

3
8

a2
0)(−

1
2
+

1
8

a2
0)+ k2

1 =
1
4
(

3p2

16
− p+ 1+ 4k2

1).

For stability, the eigenvalues of M must have negative real parts. This puts on the
trace and determinant of M the following conditions

trM = 1− p
2
< 0, detM =

1
4
(

3p2

16
− p+ 1+ 4k2

1)> 0.

The curves corresponding to detM = 0 (bold lines) and trM = 0 (dashed line) in the
(k1, f̂ )-plane are shown in Fig. 6.20.

P
Q

det=0

det=0 tr=0

Fig. 6.21 Bifurcation curves

Comparing the last condition with equation
(6.39), we see that detM vanishes on the curve
(6.39) along which there are saddle-node bifurca-
tions. This is a typical feature of nonlinear vibra-
tions, namely that a change in stability is accom-
panied by a bifurcation. The first condition on the
trace of M requires that p> 2 for the stability. Sub-
stitute p = 2 in (6.38), we obtain

f̂ 2 =
1
2
+ 8k2

1. (6.40)

Hopf bifurcations occur along the curve represented by (6.40), provided detM >
0. This curve intersects the lower curve of saddle-node bifurcations obtained from
(6.39) at point P, and touches the upper curve of saddle-node bifurcations at point Q
in the (k1, f̂ )-plane with the coordinates (see Fig. 6.21)

P : k1 =

√
5

8
, f̂ =

3√
8
, Q : k1 =

1
4
, f̂ =

5√
27

.

Thus, the stability analysis predicts that the forced van der Pol oscillator exhibits
stable entrainment solutions everywhere in the first quadrant of the (k1, f̂ )-plane
except in that region bounded by i) the lower curve of saddle node bifurcations cor-
responding to detM = 0 from the origin to point P, ii) the curve of Hopf bifurcation
corresponding to trM = 0 from point P to infinity, and iii) the k1-axis. In terms of p
and k1 the boundary between stable and unstable solutions is marked by the dashed
lines shown in Fig. 6.19. This means that for a given detuning k1 there is a minimum
value of forcing f̂ required in order for entrainment to occur. Note that, since k1 al-
ways appears in the form k2

1 in the equations of the bifurcation and stability curves,
the above conclusions are independent of whether we are above or below the 1:1
resonance. The discussions about other resonances can be found in [36].

The entrainment is widely used in engineering to synchronize nonlinear
oscillators (for instance clocks). Another positive and pleasant spillover effect
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of entrainment often takes place when an orchestra is playing music. Various string-
and wind-instruments are self-excited oscillators, which may experience extra exci-
tations through the sound waves generated by other players of the orchestra. When
one of these musical instruments produces a tone which is not quite clean, it may be
entrained by the remaining instruments so that only one tone will be heard, provided
the forcing amplitude of the sound waves is strong enough.

6.5 Exercises

EXERCISE 6.1. A point-mass m is constrained to move in the (x,y)-plane and is
restrained by two linear springs of equal stiffness k and equal unstretched length l.
The anchor points of the springs are located on the x-axis at x = −b and x = b (see
Fig. 6.22). Study the stability of the motion along the x-axis, x = acosω0t, y = 0
under the assumption that a � b.

x

y

m
k k

x=-b x=b

Fig. 6.22 Point-mass in (x,y)-plane

Solution. Let q = (x,y). To derive the equations of motion we write down the La-
grange function

L(q, q̇) = K(q̇)−U(q),

where the kinetic energy is

K(q̇) =
1
2

m(ẋ2 + ẏ2),

and the potential energy of the springs is

U(q) =
1
2

k(
√
(x+ b)2 + y2 − l)2 +

1
2

k(
√

(b− x)2 + y2 − l)2.

From Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1,2,

follow
mẍ = fx, mÿ = fy,
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where

fx =−∂U
∂x

=−k(
√
(x+ b)2 + y2 − l)(x+ b)√

(x+ b)2 + y2
+

k(
√
(b− x)2 + y2 − l)(b− x)√

(b− x)2 + y2
,

fy =−∂U
∂y

=−k(
√
(x+ b)2 + y2 − l)y√
(x+ b)2 + y2

− k(
√
(b− x)2 + y2 − l)y√
(b− x)2 + y2

.

One possible particular solution of these equations is obtained when y = 0. In this
case the second equation is identically satisfied, while the first equation reduces to

mẍ+ 2kx = 0,

yielding
x0 = acos(ω0t −φ), ω0 =

√
2k/m,

where the initial phase φ can be set equal to zero. To study the stability of this motion
along the x-axis, q0(t) = (acosω0t,0), we consider the neighboring solutions in the
form

x = acosω0t + u, y = v,

where u and v are assumed to be small. Substituting these formulas into the equa-
tions of motion, expanding the right-hand sides in the Taylor series in terms of u and
v, and taking into account the equations for q0(t), we obtain

mü =
∂ fx

∂x

∣∣∣∣
q0

u+
∂ fx

∂y

∣∣∣∣
q0

v,

mv̈ =
∂ fy

∂x

∣∣∣∣
q0

u+
∂ fy

∂y

∣∣∣∣
q0

v.

Computing the partial derivatives of fx and fy and evaluating them at q0 = (x0,0), it
is easy to check that

∂ fx

∂x

∣∣∣∣
q0

=−2k,
∂ fx

∂y

∣∣∣∣
q0

= 0,
∂ fy

∂x

∣∣∣∣
q0

= 0,

∂ fy

∂y

∣∣∣∣
q0

=−2k
1−λ −α2 cos2ω0t

1−α2 cos2ω0t
,

where

λ =
l
b
, α =

a
b
.

The equation for u turns out to be the equation for a harmonic oscillator, mü+2ku=
0, and cannot produce instability. The equation for v is

mv̈+ 2k
1−λ−α2 cos2ω0t

1−α2 cos2ω0t
v = 0.
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Expanding the second term for small α and setting τ = 2ω0t, we obtain

d2v
dτ2 +(

2− 2λ−λα2

8
− λα2

8
cosτ)v = 0,

which is the Mathieu’s equation. Thus, the stability chart of Mathieu’s equation can
be used to investigate the stability of this motion.

EXERCISE 6.2. The support of a pendulum considered in example 6.1 moves in
accordance with the equation x = a0 cosωt, where a0 = 0.1l. How large must the
frequency ω be to stabilize the vertical position ϕ = π .

Solution. The equation of motion of this pendulum is

ϕ̈+
1
l
(g+ a0ω2 cosωt)sinϕ = 0.

To analyze the stability of the vertical position, it is enough to linearize this equation
about ϕ = π . Let

ϕ = π+ x,

where x � 1 is a small perturbation. The linearization with respect to x leads to

ẍ− 1
l
(g+ a0ω2 cosωt)x = 0.

This equation can be transformed to Mathieu’s equation

ẍ+(μ+ ε cost)x = 0,

with μ = −(ω0/ω)2, ε = −a0/l, and ω0 =
√

g/l, if the time is replaced by the
dimensionless time ωt. Thus, we can use the stability chart of Mathieu’s equation
to study the stability of the vertical position. Since μ is negative, we use the first
transition curve lying in the left half-plane of the (μ ,ε)-plane described by

μ =−ε2/2

to find the condition for stability. As ε =−0.1, the vertical position is stable if

(ω0/ω)2 < 0.12/2 ⇒ ω >

√
2

0.1
ω0.

Thus, the vertical position will be stabilized if the frequency of the vibration of the
support is at least 14.14 times larger than the eigenfrequency of the pendulum.

EXERCISE 6.3. Apply the variational-asymptotic method to find the asymptotes of
the transition curves of Mathieu’s equation emanating from the point μ = 1.

Solution. The first step of the variational-asymptotic method yields

x(t) = x0(t) = Acost +Bsint.
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At the second step the obtained functional for x1 near μ = 1, as seen from (6.12),
does not contains additional resonant terms except the third and the fourth. Thus,
A,η = B,η = 0 at this step, and the extremal of (6.12) is easily found to be

x1(t) = ε(−1
2

A+
1
6

Acos2t +
1
6

Bsin2t).

At the third step we look for x(t) and μ in the form

x(t) = x0(t,η)+ x1(t,η)+ x2(t,η), μ = 1+ μ2,

where η = εt is the slow time and x0(t,η) and x1(t,η) are given by the above
formulas with A and B being now functions of the slow time. Function x2(t,η)
and μ2 are assumed to be much smaller than x1(η , t) and 1, respectively. Besides,
x2(t,η) is 2π-periodic with respect to t. The time derivative of x(t) becomes

ẋ = x0,t + εx0,η + x1,t + εx1,η + x2,t + εx2,η .

We substitute x and ẋ into (6.9) and keep the asymptotically principal terms contain-
ing x2 and the principal cross terms. The functional becomes

I2[x2(t)] =
∫ 2π

0
[
1
2

x2
2,t + x0,tx2,t + εx0,ηx2,t + x1,tx2,t + εx1,ηx2,t

− 1
2

x2
2 − x0x2 − μ2x0x2 − x1x2 − ε cost x0x2 − ε cost x1x2]dt.

Integrating the cross terms containing x2,t by parts and taking into account the peri-
odicity of x2 in t and the equations for x0 and x1, we see that the underlined and dou-
bly underlined terms are canceled out. Among the remaining terms only εx0,ηx2,t ,
−μ2x0x2 and the last term contributes to the resonant terms. The products cost cos2t
and cost sin2t in the last term can be transformed into the sum of harmonic func-
tions as follows

cost cos2t =
1
2
(cost + cos3t), cost sin 2t =

1
2
(sin t + sin3t).

Requiring that the resonant terms must vanish, we obtain for A(η) and B(η) the
equations

−εB,η +
5

12
ε2A− μ2A = 0, εA,η − 1

12
ε2B− μ2B = 0.

From these equations we obtain the resulting equation for A (and the similar for B)

ε2A,ηη +(μ2 − 5
12
ε2)(μ2 +

1
12
ε2)A = 0,
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which shows that the stability (or instability) is determined by the sign of (μ2 −
5
12ε

2)(μ2 +
1
12ε

2). Thus, the transition occurs at μ2 = − 1
12ε

2 and at μ2 =
5
12ε

2, or,
in terms of μ , at

μ = 1− 1
12
ε2 and at μ = 1+

5
12
ε2,

which are in full agreement with the asymptotic formulas obtained from the vanish-
ing Hill’s determinants.

EXERCISE 6.4. Consider the damped Mathieu’s equation

ẍ+ εcẋ+(μ+ ε cost)x = 0,

with ε being a small parameter. Apply the variational-asymptotic method to find the
asymptotes of the transition curves near the point μ = 1/4.

Solution. The variational equation corresponding to this damped Mathieu’s equa-
tion reads

δ
∫ T

0
[
1
2

ẋ2 − 1
2
(μ+ ε cost)x2]dt −

∫ T

0
εcẋδxdt = 0.

At the first step of the variational asymptotic procedure we put simply ε = 0 to get
from this equation

δ
∫ T

0
(

1
2

ẋ2 − 1
2
μx2)dt = 0.

The periodic extremal (with the period T = 2π/√μ) reads

x0(t) = Acos
√
μt +Bsin

√
μt.

Let μ = 1/4+ εμ1. Taking into account that the coefficients A and B are becoming
slightly dependent on time for ε �= 0, we introduce the slow time η = εt and seek
the corrections to the extremal at the second step in the two-timing fashion

x(t) = A(η)cos
1
2

t +B(η)sin
1
2

t + x1(t,η),

where x1(t,η) is a periodic function of the period T with respect to t and is much
smaller than x0(t,η) in the asymptotic sense. Substituting this Ansatz into the vari-
ational equation and proceeding similarly as in Section 6.1, we obtain for A and B
the following equations

A,η =− c
2

A+(μ1− 1
2
)B, B,η =− c

2
B− (μ1+

1
2
)A.

Thus, the last term in the variational equation contributes additional resonant terms.
The last equations are linear equations with constant coefficients which may be
solved by assuming a solution in the form A(η) = A0 exp(λη), B(η) = B0 exp(λη).
Nontrivial solutions exist if the following determinant vanishes
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∣∣∣∣−
c
2 −λ − 1

2 + μ1

− 1
2 − μ1 − c

2 −λ
∣∣∣∣= 0.

Thus,

λ =− c
2
±
√
−μ2

1 +
1
4
.

At the transition curve λ = 0, so

μ1 =±
√

1− c2

2
.

This gives the following expressions for the transition curves near μ = 1/4:

μ =
1
4
± ε

√
1− c2

2
.

This formula predicts that for a given value of c there is a minimum value of ε which
is required for instability to occur. The tongue, which, for c = 0, emanates from the
μ-axis, becomes detached from the μ-axis for c > 0.

EXERCISE 6.5. Non-linear parametric resonance. Consider the following equation

ẍ+ω2x+ ε cost x3 = 0,

with ε being a small parameter. Apply the variational-asymptotic method to study
the behavior of solutions near the frequency ω0 = 1/2.

Solution. The solution of the above equation is the extremal of the following action
functional ∫ T

0
[
1
2

ẋ2 − 1
2
ω2x2 − 1

4
ε costx4]dt.

It is convenient to change to the new variable τ = ω0t, in terms of which the action
functional takes the form

I[x(τ)] =
∫ 2π

0
[
1
2
ω2

0 x′2 − 1
2
ω2x2 − 1

4
ε cos

τ
ω0

x4]dτ.

At the first step of the variational-asymptotic method we put ε = 0 in this functional
to obtain ω = ω0 = 1/2 and

x(τ) = x0(τ) = Acosτ+Bsinτ.

At the second step we look for x(τ) and ω in the form

x(τ) = x0(τ,η)+ x1(τ,η), ω = ω0 +ω1,

where η = ετ and x0(τ,η) is given by the previous equation with A and B being
now the functions of η . We assume also that x1 is 2π-periodic in τ . Note that the
derivative of x equals
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x′ = x0,τ + εx0,η + x1,τ+ εx1,η .

We substitute these formulas into the action functional and keep the asymptotically
principal terms containing x1 and the principal cross terms between x0 and x1. The
functional becomes

I1[x1(τ)] =
∫ 2π

0
[
1
2
ω2

0 x2
1,τ +ω

2
0 x0,τx1,τ +ω2

0εx0,ηx1,τ

− 1
2
ω2

0 x2
1 −ω2

0 x0x1 − 2ω0ω1x0x1 − ε cos
τ
ω0

x3
0x1]dτ.

Integrating the cross terms containing x1,τ by parts and taking into account the 2π-
periodicity of x1 in τ and the equations for x0, we see that the underlined terms
are canceled out. Besides, with the TrigReduce command in Mathematica one can
show that the last term contributes two resonant terms, namely, − 1

2εA3 cosτx1 and
1
2εB3 sinτx1. Requiring that the resonant terms must vanish, we obtain for A(η) and
B(η) the equations

1
4
εA,η −ω1B+

1
2
εB3 = 0,

1
4
εB,η +ω1A+

1
2
εA3 = 0.

Dividing these equations by ε/4 and introducing k1 = 2ω1/ε , we rewrite them in
the form

A,η − 2k1B+ 2B3 = 0, B,η + 2k1A+ 2A3 = 0.

These equations have one fixed point (0,0) which is a stable center, and two other
fixed points

(0,
√

k1), (0,−
√

k1), (6.41)

provided k1 > 0, or
(
√
−k1,0), (−

√
−k1,0), (6.42)

provided k1 < 0. It is easy to check that the fixed points lying on the B- or A-axis
are saddle points.

EXERCISE 6.6. Solve the slow flow system (6.26) numerically for ε = 0.1, c = 0,
α = f̂ = 1 and for two detuning values k1 = 0 and k1 = −0.125, with the initial
conditions A(0) = 1 and B(0) = 0. Plot the curves a(τ) =

√
A2 +B2 together with

the numerical solutions shown in Figs. 6.8 and 6.9.

Solution. Remembering that the slow time η = εt, we rewrite equations (6.26) for
c = 0 in terms of the real time

A,t =−ω1B+
3
8
αεB(A2 +B2),

B,t = ω1A− 3
8
αεA(A2 +B2)+ ε

f̂
2
.
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This system of nonlinear first-order differential equations can be integrated numer-
ically by using the standard command NDSolve in Mathematica. Based on this
numerical integration function a(t) =

√
A2 +B2 can then be plotted. For ε = 0.1,

α = f̂ = 1 and ω1 = 0 the commands are

sol � NDSolve	
a'�t� �
3

8
Ε b�t� �a�t�^2 � b�t�^2�,

b'�t� � �
3

8
Ε a�t� �a�t�^2 � b�t�^2� � Ε f � 2,

a�0� � 1, b�0� � 0�, �a, b�, �t, 200��

Plot	
Evaluate	 �a�t� �. sol�^2 � �b�t� �. sol�^2 �,

Evaluate	� �a�t� �. sol�^2 � �b�t� �. sol�^2 ��,

�t, 0, 200�, PlotRange � All, PlotStyle � Black�

Here, in accordance with the recommendation of Mathematica, the lower case
letters for functions are used everywhere. The plot of a(t) =

√
A2 +B2 based on this

numerical integration is shown together with the solution of the forced Duffing’s
equation in Fig. 6.9.

The case ω = 0.9875 corresponding to the detuning value k1 = −0.125 can be
studied in a similar manner. The plot of a(t) =

√
A2 +B2 based on the numerical

integration is shown together with the solution of the forced Duffing’s equation in
Fig. 6.10. One can see that the solution is purely periodic which corresponds to the
constant amplitude a =

√
A2 +B2.

EXERCISE 6.7. Find the steady-state amplitude versus frequency curve of the forced
Duffing’s equation with the softening spring (α < 0). Discuss the jump phenomenon
and the hysteresis loop.

Solution. The plot of the amplitude-frequency curves according to the formula

ω = 1+
3
8
εαa2 ± 1

2
ε

√
f̂ 2

a2 − c2

is shown in Fig. 6.23 for ε = 0.1, α = −1, f̂ = 1, and c = 0.3. We see that, for
negative α the amplitude-frequency curves are bent to the left. There exists ωc < 1
such that for ω < ωc the amplitude a is a multi-valued function of the frequency.
However, if c > 0, then a is a multi-valued function of ω only in the range ω ∈
(1+ 3

8εα( f̂ /c)2,ωc). Imagine now that we can change the forcing frequency ω so
slowly that the steady-state response amplitude a can follow it after a short transient
period. Thus, if the forcing frequency is decreased starting from some value larger
than ωc, then the response amplitude follows first the stable upper branch OA up to
point A (it can be shown that the middle branch between points A and D contains
unstable solutions). After point A no solution of the upper branch is possible, so the
amplitude has to jump to the lower branch (this jump is marked by the vertical line
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AB) and then follows this stable branch down to point C. If the forcing frequency
were now to reverse its course (again quasistatically), then the amplitude would go
back along the lower branch CD, after which it jumps to the upper branch (the jump
is marked by the vertical line DE), and finally follows this upper curve down to
the end point O. This closed loop OABCDEO is called a hysteresis loop for the
Duffing’s oscillator with the softening spring.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
a

O

A

BC

D

E

c

Fig. 6.23 Amplitude-frequency curve and hysteresis

EXERCISE 6.8. Consider the forced oscillator with the quadratic damping described
by the equation

ẍ+ x+ εcẋ|ẋ|= ε f̂ cosωt,

where ε is small. Apply the variational-asymptotic method to find the amplitude
versus frequency curve near the 1:1 resonant frequency.

Solution. The above equation can be derived from the variational equation

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + ε f̂ cosωt x)dt −
∫ T

0
εc|ẋ|ẋδxdt = 0.

Introducing τ = ωt, we rewrite the latter in the form

δ
∫ 2π

0
(

1
2
ω2x′2 − 1

2
x2 + ε f̂ cosτ x)dτ−

∫ 2π

0
εcω2|x′|x′δxdτ = 0.

At the first step of the variational-asymptotic procedure we put ε = 0 which leads
to ω = 1 and

x = Acosτ+Bsinτ.

At the second step we introduce the slow time η = ετ and look for the solution and
correction to the frequency in the form

x(τ) = x0(τ,η)+ x1(τ,η), ω = 1+ω1,
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where
x0(τ,η) = A(η)cosτ+B(η)sinτ,

and x1 and ω1 are much smaller than x0 and 1, respectively. Substituting this into
the variational equation, one can reduce it to

δ
∫ 2π

0
[
1
2

x2
1,τ −

1
2

x2
1 +(2εA,η + 2ω1B)sinτ x1

+(−2εB,η + 2ω1A+ ε f̂ )cosτ x1 + nonresonant terms]dτ = 0.

Equating the resonant terms to zero, we obtain

2A,η + 2
ω1

ε
B = 0,

2B,η − 2
ω1

ε
A = f̂ .

The fixed point of this system, B = 0 and A =−ε f̂ /2ω1, corresponds to the steady-
state vibration. Thus, the steady-state amplitude is given by

a =
√

A2 +B2 = ε f̂/2|ω1|.

Taking into account that ω = 1+ω1, we get the following amplitude-frequency
relation

a =

⎧⎨
⎩

ε f̂
2(1−ω) for ω < 1 ,
ε f̂

2(ω−1) otherwise.

EXERCISE 6.9. Resonant excitation. Consider the forced Duffing’s oscillator de-
scribed by the equation

ẍ+ x+ εcẋ+ εαx3 = f̂ cosωt,

where ε is small, but f̂ is finite (sometimes called a “hard excitation”). Apply the
variational-asymptotic method to show that, to O(ε), the only resonant excitation
frequencies are 1,3, and 1/3.

Solution. The above differential equation can be derived from the variational equa-
tion

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 − 1
4
εαx4 + f̂ cosωt x)dt −

∫ T

0
εcẋδxdt = 0.

At the first step of the variational-asymptotic method we put ε = 0 to obtain

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + f̂ cosωt x)dt = 0.

The extremal of this functional satisfies the equation

ẍ+ x = f̂ cosωt
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yielding

x =
f̂

1−ω2 cosωt +Acost +Bsint.

We see that the resonance occurs at ω = 1. Consider now the case ω �= 1. At the
second step we introduce the slow time η = εt and look for the solution in the form

x(t) = x0(t,η)+ x1(t,η),

where

x0(t,η) =
f̂

1−ω2 cosωt +A(η)cost +B(η)sin t,

and x1 is much smaller than x0 in the asymptotic sense. We assume that x1 is 2π-
periodic with respect to t. We substitute x(t) into the above variational equation
for T = 2π and keep the asymptotically principal terms containing x1 and principal
cross terms between x0 and x1

δ
∫ 2π

0
(

1
2

ẋ2
1 + ẋ0ẋ1 − 1

2
x2

1 − x0x1 − εαx3
0x1 + f̂ cosωt x1 − εcẋ0x1)dt = 0.

Integrating the second term by part using the periodicity of x1, we see that the un-
derlined terms give 2ε(A,η sin t −B,η cost)x1. We expand the fifth term containing
x3

0 and transform the products of sine and cosine into the sum of harmonic functions.
As a result, we get among others the following terms

c1 cos3ωt x1 and [c3 cos(2−ω)t + c4 sin(2−ω)t]x1.

They become resonant if ω = 1/3 or ω = 3. Thus, we have, in addition to ω = 1,
two other resonant excitation frequencies ω = 1/3 and ω = 3.

EXERCISE 6.10. Study the excitation of 3:1 subharmonic resonance in the previous
exercise by settingω = 3+kε . Obtain a slow flow of the coefficients A(η) and B(η).
Then transform to the polar coordinates a(η) and ψ(η) and look for fixed points
of those equations. Eliminate ψ in order to find a relation between a2 and other
parameters. For ε = 0.1, α = c = f̂ = 1, k = 0 simulate the exact and approximate
solutions and compare them.

Solution. We continue the solution of the previous exercise by setting ω = 3+ kε
and write x0(t,η) in the form

x0(t,η) = λ cos(3t + kη)+A(η)cost +B(η)sin t, λ =
f̂

1−ω2 .

Substituting the Ansatz x(t) = x0(t,η)+ x1(t,η) into the variational equation and
keeping the asymptotically principal terms containing x1(t,η), we reduce it to

δ
∫ 2π

0
[
1
2

x2
1,t −

1
2

x2
1 +(. . .)sin t x1 +(. . .)cost x1 + nonresonant terms]dt = 0.
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The consistency condition requiring the vanishing resonant terms leads to

2A,η = α
[

3
4

B(A2 +B2)+
3
2

Bλ 2 − 3
4
λ (A2 −B2)sin kη− 3

2
λABcoskη

]
− cA,

2B,η =−α
[

3
4

A(A2 +B2)+
3
2

Aλ 2 +
3
4
λ (A2 −B2)coskη− 3

2
λABsinkη

]
− cB.

The obtained system of equations can be simplified by using polar coordinates a and
ψ according to

A = acosψ , B = asinψ .

Multiplying the first equation by A, the second one by B, and adding them, we obtain

a,η =−3
8
αλa2 sin(3ψ+ kη)− c

2
a.

Multiplying the first equation by B and subtracting it from the second multiplied by
A, we get, after some algebra,

ψ,η =−3
4
α(λ 2 +

1
2

a2)− 3
8
αλacos(3ψ+ kη).

To transform this system of equations into an autonomous system we introduce a
new unknown function ϕ = 3ψ+ kη and write

a,η =−3
8
αλa2 sinϕ− c

2
a,

ϕ,η = k− 9
4
α(λ 2 +

1
2

a2)− 9
8
αλacosϕ .

In terms of a and ϕ the approximate solution of the original equation, to the order
O(ε), reads

x(t) = λ cos(3t + kεt)+ a(εt)cos[t − 1
3
(ϕ− kεt)].

The steady-state vibrations due to the second term correspond to the fixed points
of the slow flow system for which

c
2

a =−3
8
αλa2 sinϕ ,

(k− 9
4
αλ 2)a− 9

8
αa3 =

9
8
αλa2 cosϕ .

Eliminating ϕ from this system, we obtain the frequency-amplitude equation
[

9
4

c2 +

(
k− 9

4
αλ 2 − 9

8
αa2

)2
]

a2 =
81
64
α2λ 2a4.
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Thus, either a = 0 or

9
4

c2 +

(
k− 9

4
αλ 2 − 9

8
αa2

)2

=
81
64
α2λ 2a2,

which is quadratic in a2. Its roots are

a2 = p±
√

p2 − q,

where

p =
8
9

k
α
− 3

2
λ 2, q =

64
81α2

[
9
4

c2 +

(
k− 9

4
αλ 2

)2
]
.
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Fig. 6.24 Simulation of the exact and approximate solution: a) exact solution of the forced
Duffing’s equation with hard excitation, b) approximate solution based on the slow flow
system

Fig. 6.24 represents the results of numerical simulation of the exact and approx-
imate solutions for ε = 0.1, α = c = f̂ = 1, k = 0 which shows a good agreement.
One can see that the steady-state amplitude a goes to zero as t goes to infinity in this
case. Note that q is always positive, and thus, non-trivial steady-state free-oscillation
amplitudes occur when p > 0 and p2 ≥ q.

EXERCISE 6.11. Solve the slow flow system (6.37) numerically for ε = 0.1, k1 =
0.2 and k1 = 0.5, with the initial conditions a(0) = 1 and ψ(0) = 0. Plot the curves
a(τ) together with the numerical solutions shown in Figs. 6.17 and 6.18.

Solution. The slow flow system

a,η =
a
8
(4− a2)+

f̂
2

sinψ ,

ψ,η = k1 +
f̂

2a
cosψ ,

can be solved numerically in Mathematica by the following commands
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sol � NDSolve	
a'�t� � Ε
a�t�
8
�4 � a�t�^2� �

f

2
Ε Sin�Ψ�t��,

Ψ'�t� � 0.2 Ε �
f

2 a�t�
Ε Cos�Ψ�t��, a�0� � 1, Ψ�0� � 0�, �a, Ψ�, �t, 500��

Plot��Evaluate�a�t� �. sol�, Evaluate��a�t� �. sol��, �t, 0, 500��

Since we want to plot a as function of the real time t, we use the relation d/dη =
(1/ε)d/dt and solve the above system multiplied by ε . The values of parameters
have been chosen as ε = 0.1, f = 1.06, and k1 = 0.2 (k1 = 0.5). The plotted curves
were shown together with the corresponding numerical solutions of equation (6.32)
in Figs. 6.17 and 6.18.

EXERCISE 6.12. Resonant excitation. Consider the forced van der Pol’s oscillator
described by the equation

ẍ+ x− ε(1− x2)ẋ = f̂ cosωt,

where ε is small, but f̂ is finite. Apply the variational-asymptotic method to show
that to O(ε), the only resonant excitation frequencies are 1,3, and 1/3.

Solution. The above differential equation can be derived from the variational
equation

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + f̂ cosωt x)dt +
∫ T

0
ε(1− x2)ẋδxdt = 0.

At the first step of the variational-asymptotic method we put ε = 0 to obtain

δ
∫ T

0
(

1
2

ẋ2 − 1
2

x2 + f̂ cosωt x)dt = 0.

The extremal of this functional reads

x =
f̂

1−ω2 cosωt +Acost +Bsint.

We see that the resonance occurs at ω = 1. Consider now the case ω �= 1. At the
second step we introduce the slow time η = εt and look for the solution in the form

x(t) = x0(t,η)+ x1(t,η),

where

x0(t,η) =
f̂

1−ω2 cosωt +A(η)cost +B(η)sin t,

and x1 is much smaller than x0 in the asymptotic sense. We assume that x1 is 2π-
periodic with respect to t. We substitute x(t) into the above variational equation for
T = 2π and keep the asymptotically principal terms containing x1 and the principal
cross terms between x0 and x1
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δ
∫ 2π

0
[
1
2

ẋ2
1 + ẋ0ẋ1 − 1

2
x2

1 − x0x1 + f̂ cosωt x1 + ε(1− x2
0)ẋ0x1]dt = 0.

Integrating the second term by parts using the periodicity of x1, we see that the
underlined terms give 2ε(A,η sin t −B,η cost)x1. Expanding the last term and trans-
forming products of sine and cosine into the harmonics, we obtain among others the
following terms

(c1 cos3ωt + c2 sin3ωt)x1 and [c3 cos(2−ω)t + c4 sin(2−ω)t]x1.

They become resonant if ω = 1/3 or ω = 3. Thus, we have, in addition to ω = 1,
two other resonant excitation frequencies ω = 1/3 and ω = 3.



Chapter 7
Coupled Oscillators

This chapter deals with finite amplitude vibrations of coupled oscillators having two
or more degrees of freedom. As a rule, the governing equations are not integrable
and can be solved only by numerical integration. The numerical solutions have to
be visualized by the Poincaré map. For mechanical systems with weak coupling
the variational-asymptotic method is applicable. This enables one to study, among
others, the bifurcation of nonlinear normal modes, KAM-theory for coupled conser-
vative oscillators, and synchronization of the coupled self-excited oscillators.

7.1 Conservative Oscillators

Differential Equations of Motion. To begin with, let us consider some simple non-
linear coupled conservative oscillators.

EXAMPLE 7.1. Nonlinear mass-spring oscillators. Two equal masses m move hor-
izontally under the action of three springs with cubic nonlinearity (see Fig. 7.1).
Derive the equations of motion for these oscillators.

x1 x2

x1+ x13 (x2-x1)3 x2+ x23

Fig. 7.1 Coupled oscillators with nonlinear springs

Let x1 and x2 be the displacements from the equilibrium positions of the point-
masses and let x = (x1,x2). The kinetic energy of the masses is given by

K(ẋ) =
1
2

m(ẋ2
1 + ẋ2

2).

We assume that all springs are nonlinear, but the connecting spring differs from the
anchor springs. We write the potential energy of the springs in the form
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U(x) =
1
2

k[x2
1 +

α
2l2

0

x4
1 + x2

2 +
α

2l2
0

x4
2 +

β
2l2

0

(x2 − x1)
4].

Thus, Lagrange’s equations are

mẍ1 + kx1 + k
α
l2
0

x3
1 − k

β
l2
0

(x2 − x1)
3 = 0,

mẍ2 + kx2 + k
α
l2
0

x3
2 + k

β
l2
0

(x2 − x1)
3 = 0.

Dividing these equations by kl0 and introducing the dimensionless quantities

t̄ = ω0t, x̄i =
xi

l0
, i = 1,2,

where ω0 =
√

k/m, we rewrite them as (the bar is dropped)

ẍ1 + x1 +αx3
1 −β (x2 − x1)

3 = 0,

ẍ2 + x2 +αx3
2 +β (x2 − x1)

3 = 0.
(7.1)

EXAMPLE 7.2. A spring pendulum. A point mass m is attached to a linear spring
of stiffness k that is swinging in the vertical plane as shown in Fig. 7.2. Derive the
equations of motion for this pendulum.

m

g
O

l+x

Fig. 7.2 Spring pendulum

Denoting the elongation of the spring from the equilib-
rium length l by x, we write the kinetic and potential en-
ergies of the pendulum as

K(q, q̇) =
1
2

m[ẋ2 +(l+ x)2ϕ̇2],

U(q) =
1
2

kx2 +mg(l+ x)(1− cosϕ)−mgx,

where q = (x,ϕ). Lagrange’s equations read

mẍ+ kx−m(l+ x)ϕ̇2 −mgcosϕ = 0,

m(l + x)2ϕ̈+mg(l+ x)sinϕ+ 2m(l+ x)ẋϕ̇ = 0.

Dividing the first equation by m and the second one by m(l + x)2, we obtain

ẍ+ω2
2 x− (l+ x)ϕ̇2 − gcosϕ = 0,

ϕ̈+
gsinϕ+ 2ẋϕ̇

l + x
= 0,

where ω2
2 = k/m.

Note that the linearization of the above equations leads to uncoupled equations
describing two independent modes of vibrations: a spring mode with a frequency
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ω2 and a pendulum mode with a frequency ω1 =
√

g/l. However, when ω2 ≈ 2ω1

the two modes are coupled causing the energy transfer between them.

EXAMPLE 7.3. Chain of nonlinear mass-spring oscillators. A chain of points of
equal mass m connected by identical nonlinear springs is constrained to move in
the longitudinal direction (see Fig. 7.3). Derive the equation of motion.

uj-1
uj uj+1

m

Fig. 7.3 Chain of nonlinear mass-spring oscillators

Denoting the displacement of the point-mass j from the equilibrium position by
u j(t) we write down the kinetic energy of the chain

K(u̇) =
1
2

m∑
j

u̇2
j .

The potential energy of the chain is the sum of energies of the springs. Considering
the springs with cubic nonlinearity, we take the potential energy in the form

U(u) =
1
2

k∑
j

[(u j − u j−1)
2 +

α
2l2

0

(u j − u j−1)
4],

where l0 is the original length of the spring which is equal to the spacing between
the point-masses in equilibrium. Here we assume that the ends of the chain are fixed:
u0 = un+1 = 0. So, the chain has n degrees of freedom. Lagrange’s equations of this
chain read

mü j + k[(u j − u j−1)+
α
l2
0

(u j − u j−1)
3]− k[(u j+1 − u j)+

α
l2
0

(u j+1 − u j)
3] = 0

for all j = 1, . . . ,n. Introducing the dimensionless quantities

t̄ = ω0t, ū j =
u j

l0
,

where ω0 =
√

k/m, we rewrite these equations in the form (the bar is dropped)

ü j +(u j − u j−1)+α(u j − u j−1)
3 − (u j+1 − u j)−α(u j+1 − u j)

3 = 0.

Hamilton’s Equations. The equations of motion derived in the previous paragraph
are differential equations of second order. As a rule they are not integrable and can
be solved only by numerical integration. For this purpose it is more convenient to



300 7 Coupled Oscillators

transform them from Lagrange’s to the equivalent Hamilton’s form.1 This transfor-
mation is quite straightforward. Let us do it in the most general case.

We take the differential of the Lagrange function as function of the generalized
coordinates q = (q1, . . . ,qn) and velocities q̇ = (q̇1, . . . , q̇n)

dL =
n

∑
j=1

(
∂L
∂q j

dq j +
∂L
∂ q̇ j

dq̇ j).

We introduce the generalized impulses as p = (p1, . . . , pn), where p j = ∂L/∂ q̇ j.
Then Lagrange’s equations becomes

ṗ j =
∂L
∂q j

.

Thus, the above differential can be written as

dL =
n

∑
j=1

(ṗ jdq j + p jdq̇ j).

Since the second term in the summand is equal to p jdq̇ j = d(p jq̇ j)− q̇ jd p j, we
present this equation in the form

d(
n

∑
j=1

p jq̇ j −L) =
n

∑
j=1

(− ṗ jdq j + q̇ jd p j). (7.2)

The expression in parentheses on the left-hand side represents energy of the sys-
tem; cf. (2.28). Expressing it in terms of the coordinates and impulses means doing
Legendre’s transform [5] of L(q, q̇) with respect to q̇. We call the result Hamilton
function

H(q, p) =
n

∑
j=1

p jq̇ j −L.

Equation (7.2) then implies

q̇ j =
∂H
∂ p j

, ṗ j =− ∂H
∂q j

, (7.3)

for all j = 1,2, . . . ,n. These are the equations of motion in Hamilton’s (or canoni-
cal) form. For any conservative mechanical system with n degrees of freedom this
system of 2n differential equations of first order replaces n differential equations of
second order. If the Hamilton function does not depend explicitly on time, then

1 Except the convenience for numerical integration Hamilton’s form of equations of motion
provides a number of advantages just as the representation of motion as a phase curve in
the phase space, the treatment of various theoretical questions of mechanics as well as the
links to physics and thermodynamics [5].
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d
dt

H =
n

∑
j=1

(
∂H
∂q j

q̇ j +
∂H
∂ p j

ṗ j) = 0,

so the conservation of the energy H(q, p) = E0 follows.
For the coupled oscillators in example 7.1 the dimensionless Hamilton’s function

reads

H(q, p) =
1
2
(p2

1 + p2
2)+

1
2
[q2

1 +
α
2

q4
1 + q2

2 +
α
2

q4
2 +

β
2
(q2 − q1)

4], (7.4)

where x1 = q1 and x2 = q2. Hamilton’s equations become

q̇1 = p1, ṗ1 =−q1 −αq3
1 +β (q2 − q1)

3,

q̇2 = p2, ṗ2 =−q2 −αq3
2 −β (q2 − q1)

3.
(7.5)

Phase Curves and Poincaré Map. Just as for single oscillators, the solutions of
Hamilton’s equations (7.3) for coupled oscillators may be drawn as phase curves
in the 2n-dimensional (q, p)-phase space. There is only one phase curve passing
through a given point of the phase space. Therefore, one may think of points in the
phase space as particles of some fluid which move in accordance with Hamilton’s
equations. This motion generates a flow with an interesting property that it conserves
volumes of the phase space (Liouville’s theorem). This means that if we draw all
phase curves that begin from points inside a region of volume V in the phase space
at time t = 0, then the end points of these phase curves at time t fill a region with the
same volume. Indeed, the velocity of this Hamilton’s flow, (q̇, ṗ), is divergent-free

div(q̇, ṗ) =
n

∑
j=1

(
∂ q̇ j

∂q j
+
∂ ṗ j

∂ p j

)
=

n

∑
j=1

(
∂ 2H
∂ p j∂q j

− ∂ 2H
∂q j∂ p j

)
= 0,

which implies Liouville’s theorem.
To see what the phase curves look like let us turn to example 7.1. Equations (7.5)

do not permit in general analytical solutions except perhaps, the case β = 0 for
which the oscillators become uncoupled. We analyze first this simple case. Since
now the oscillators are uncoupled, the energy of each of them is conserved

1
2

p2
j +

1
2

q2
j +

α
4

q4
j = E j0, j = 1,2.

This leads immediately to the solution in form of elliptic integrals obtained already
in Section 5.1

t = t0 ±
∫ q j

q j0

dx√
2E j0 − x2 − α

2 x4
.

Based on this solution we may express q j and p j as periodic functions of t with two
different periods
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Tj = 2
∫ q jM

q jm

dx√
2E j0 − x2 − α

2 x4
.

Note that the periods Tj as well as the corresponding frequenciesω j = 2π/Tj depend
on the initial energies of the oscillators. It turns out that for integrable systems there
exist always angle-action variables (ϕ , I), with ϕ = (ϕ1, . . . ,ϕn) and I = (I1, . . . , In),
in terms of which the Hamilton function becomes independent of ϕ : H = H(I)
(see [5]). The solution of Hamilton’s equations

ϕ̇ j =
∂H
∂ I j

= ω j(I j), İ j =− ∂H
∂ϕ j

= 0

Fig. 7.4 A phase curve on torus

is quite simple in these variables: ϕ j =ω jt+ϕ j0 and
I j = const. For our uncoupled oscillators the action
variables I j are computed as follows

I j =
1

2π

∮
p jdq j,

while the angle variables ϕ j correspond to the angu-
lar times. Topologically, each phase curve can then
be regarded as a curve on a 2-D torus shown in
Fig. 7.4. If the frequency ratio ω2/ω1 is a rational
number, then the phase curves are closed orbits on

the torus corresponding to the periodic motions. If this ratio is irrational, the phase
curves wind around endlessly on the torus and correspond to the quasiperiodic mo-
tions (cf. the Lissajous figures in exercise 2.5). The tori are called invariant because
each phase curve starting on some torus stays there forever. By changing the energy
of one of the oscillators, we get the one-parameter family of invariant tori which fill
the whole three-dimensional energy level surface.

As soon as β �= 0 we expect that Hamilton’s equations of these coupled oscillators
become non-integrable. KAM theory which will be considered in Section 7.3 pre-
dicts that for sufficiently small β most of invariant tori, corresponding to irrational
frequency ratios and called non-resonant tori, survive this small disturbance: they
are just slightly deformed. The resonant tori and maybe some of the non-resonant
tori are destroyed by the disturbance, resulting in layers of chaotic motion and filling
the space between preserved tori. However, the volume of the chaotic motion and
destroyed tori tends to zero as β → 0 (see Section 7.3).

Thus, from what is said above it is clear that, for β �= 0, the only way to obtain
the solution is to do numerical integration. Assume that we have found by numerical
integration a particular solution of (7.5) satisfying the initial conditions q(0) = q0

and p(0) = p0. Then the question arises: how can we visualize the phase curve
in the four-dimensional phase space? One circumstance makes this visualization
easier: due to the energy conservation the phase curve must lie on the 3-D energy
level surface

H(q1,q2, p1, p2) = E0, (7.6)



7.1 Conservative Oscillators 303

with E0 being the initial energy. However, it is still difficult for us to draw a curve
on a 3-D energy level surface given implicitly in this form. A great help came from
Poincaré, who introduced a fixed 2-D cut plane traverse to the flow. If we plot the
intersection of the phase curve with this plane, the generated map, called Poincaré
map, (cf. Fig. 6.8), enables one to follow the traces of the phase curve on this plane.

AB
C

Fig. 7.5 Poincaré map

The Poincaré map can be constructed numerically
as follows. First, we use the energy conservation to
find the initial velocity p1(0) from the randomly cho-
sen initial data for q1, q2, p2. Next, the numerical
integration generates trajectories lying on the three-
dimensional energy level surface. Finally, we pick out
points of intersection of trajectories crossing the cut
plane q1 = 0 with the positive velocity p1 > 0. In this
case the Poincaré section is defined by

Σ = {q1 = 0, p1 > 0}.

Note that an additional restriction on the sign of the ve-
locities at the intersecting points is posed. The reason
is that we want the Poincaré map to be orientation pre-
serving [20]. In Fig. 7.5 this is realized by counting only points A and C, but not
point B where the trajectory crosses the cut plane with a negative velocity.

Imposing condition (7.6) and q1 = 0 for the specific Hamilton’s function (7.4)
we obtain

p1 =±
√

2E0 − 1
2
(α+β )q4

2 − q2
2 − p2

2.

Together with (7.6) this defines the Poincaré map for the coupled mass-spring non-
linear oscillators. The points of the Poincaré map fill the interior of a region with
the boundary corresponding to the condition p1 = 0

2E0 =
1
2
(α+β )q4

2 + q2
2+ p2

2.

Numerical Simulations. Numerical simulations of the Poincaré maps require a
little bit more elaborated commands in Mathematica than those used in previous
Chapters to simulate the phase curves in the 2-D phase plane. We took here the code
originally written by E. Weisstein2 and slightly modified it to adapt to our particular
problem.

The Poincaré maps of the dynamical system (7.5) are shown in Fig. 7.6 for the
fixed energy level E0 = 0.4 and for α = 1 in two cases: a) β = 0.1 (left), and b)
β = 0.4 (right). Looking at these Poincaré maps we can recognize the qualitatively

2 This open source code, together with some explanations, can be found on the web-
site http://mathworld.wolfram.com/notebooks/DynamicalSystems/
SurfaceofSection.nb

http://mathworld.wolfram.com/notebooks/DynamicalSystems/SurfaceofSection.nb
http://mathworld.wolfram.com/notebooks/DynamicalSystems/SurfaceofSection.nb


304 7 Coupled Oscillators

- 0.5 0.5

- 0.5

0.5

- 0.6 - 0.4 - 0.2 0.2 0.4 0.6

- 0.5

0.5

q t2( )

p t2( )

a) b)

p t2( ) p t2( )

Fig. 7.6 Poincaré maps for E0 = 0.4 and α = 1: a) β = 0.1, b) β = 0.4

different behavior in case a) and b). In case b) there are two fixed points correspond-
ing to the periodic solutions3 with q2 = q1 and q2 =−q1. Such special periodic solu-
tions are called nonlinear normal modes. Both symmetric (q2 = q1) and antisymmet-
ric normal modes (q2 =−q1) are orbitally stable as they are surrounded by points of
intersections of trajectories on non-resonant invariant tori with the Poincaré section.
It turns out that the bifurcation occurs for β < 1/4. For these values of β the anti-
symmetric mode becomes unstable, whereas the two bifurcating modes are orbitally
stable. Note the closed loop starting and ending at the unstable saddle point and re-
sembling the separatrix in 2-D case (in fact, there are two such loops, but the second
one is difficult to observe as it is very near to the boundary curve of the plot). This
path is called a “homoclinic orbit” [49] and is formed by trajectories that approach
the saddle point after an infinite number of positive and negative iterations. The ho-
moclinic orbits are recognized as a mechanism for generation of chaotic motions in
weakly coupled oscillators.

It is interesting to note that this type of bifurcation for nonlinear coupled oscil-
lators is sensitive only to the ratio β/α = κ , called a coupling factor, as shown in
Fig. 7.7. In this case α = 0.1 while β = 0.01 and 0.04 so that the coupling factor
remains the same as in the previous simulations. In the next Section we will use
this fact to provide the asymptotic analysis of the variational problem containing
the small parameters α and β .

3 The proof of existence of at least n periodic solutions passing through each stable equilib-
rium state for conservative mechanical system having n degrees of freedom at any fixed
level of energy can be found in [34, 52].
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Fig. 7.7 Poincaré maps for E0 = 0.4 and α = 0.1: a) β = 0.01, b) β = 0.04

7.2 Bifurcation of Nonlinear Normal Modes

This Section analyzes the bifurcation of nonlinear normal modes observed by
numerical integration in the previous Section with the help of the variational-
asymptotic method.

Nonlinear Normal Modes and the Modal Equation. Let us turn back to La-
grange’s equations (7.1) for the nonlinear coupled oscillators and rewrite them in
the form

ẍ =−∂U
∂x

, ÿ =−∂U
∂y

, (7.7)

where x = x1, y = x2, and U(x,y) is the potential energy. As we know, the energy of
this system is conserved

1
2
(ẋ2 + ẏ2)+U(x,y) = E0.

We seek the nonlinear normal modes as periodic solutions by assuming y as a func-
tion of x, without direct reference to time t, and try to eliminate t in these equations.
Using the chain rule

ẏ = y′ẋ, ÿ = y′′ẋ2 + y′ẍ,

with prime denoting the derivative of y with respect to x, and substituting this into
the second of (7.7) to get

−∂U
∂y

= y′′ẋ2 − y′
∂U
∂x

. (7.8)
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Next, we substitute ẏ into the energy conservation

1
2

ẋ2(1+ y′2)+U(x,y) = E0.

Solving this equation with respect to ẋ and substituting into (7.8), we obtain finally

2(E0 −U)y′′+(1+ y′2)(
∂U
∂y

− y′
∂U
∂x

) = 0. (7.9)

This is the differential equation to determine the nonlinear normal modes, called a
modal equation.

The system of coupled oscillators in example 7.1, due to its symmetry, admits
quite simple nonlinear normal modes for which y = cx. Such normal modes are
called similar normal modes. Indeed, substituting this form of solution into (7.9)
and keeping in mind that

U(x,y) =
1
2
[x2 +

α
2

x4 + y2 +
α
2

y4 +
β
2
(y− x)4],

we obtain

∂U
∂y

− y′
∂U
∂x

= cx+αc3x3 +β (c− 1)3x3 − c[x+αx3−βx3(c− 1)3] = 0.

-8 -6 -4 -2 0
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c




Fig. 7.8 Bifurcation of normal modes

A simple algebra reduces this to

(c− 1)(c+ 1)[c+κ(c−1)2] = 0,

where κ = β/α is the coupling factor intro-
duced previously. This algebraic equation has
four roots

c = 1,−1,1− 1
2κ

± 1
κ
√

1/4−κ. (7.10)

The last two roots are real only if κ < 1/4.
Thus, for κ < 1/4 there are two additional
normal modes bifurcated out of the antisym-
metric mode y = −x (vibrations in counter-

phases) at κ = 1/4 as shown in Fig. 7.8, where the bold line denotes the stable
modes and the dashed line the unstable one. This confirms also our observation
with the Poincaré maps obtained previously by numerical integration.

Variational-Asymptotic Method. Since the normal symmetric and antisymmetric
modes and the bifurcating modes found above are sensitive only to the coupling
factor κ , we will consider the following variational problem: find the extremal of
the functional
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I[x(t),y(t)] =
1
2

∫ t1

t0
[ẋ2 + ẏ2 − x2 − ε

2
x4 − y2 − ε

2
y4 − εκ

2
(y− x)4]dt,

where ε is a small parameter and t0 and t1 are arbitrary time instants. We put for
short t0 = 0 and t1 = T . This action functional describes the coupled oscillators with
two weakly nonlinear anchor springs and the weak coupling through the connecting
nonlinear spring. It is convenient to change to the normal coordinates

u =
1
2
(x+ y), v =

1
2
(x− y).

Then the action functional becomes

I[u(t),v(t)] =
∫ T

0
[u̇2 + v̇2 − u2 − v2 − ε

4
(u+ v)4 − ε

4
(u− v)4− 4εκv4]dt. (7.11)

To apply the variational-asymptotic method we put at the first step ε = 0 to obtain

I0[u(t),v(t)] =
∫ T

0
(u̇2 + v̇2 − u2 − v2)dt.

This is the action functional describing vibrations of two uncoupled identical har-
monic oscillators. The extremal is

u0 = A1 cost +B1 sin t, v0 = A2 cost +B2 sin t, (7.12)

for which the frequencies coincide so that the period T is 2π as expected.
As soon as ε �= 0 the coefficients A1, B1, A2, B2 are becoming slightly dependent

on time. Besides, taken for granted the bifurcation of modes for κ near 1/4, we set
κ = 1/4− μ and look for the extremal at the second step in the two-timing fashion

u = A1(η)cos t +B1(η)sin t + u1(t,η),
v = A2(η)cos t +B2(η)sin t + v1(t,η),

where η = εt is the slow time. We assume that u1(t,η) and v1(t,η) are 2π-periodic
functions with respect to the fast time t and are much smaller than u0 and v0 in the
asymptotic sense. Note that the asymptotically principal terms of the time deriva-
tives of u and v are

u̇ = u0,t + εu0,η + u1,t , v̇ = v0,t + εv0,η+ v1,t ,

where the comma in indices denotes the partial derivatives. Substituting u, v and
their derivatives into functional (7.11) and keeping the principal terms of u1, v1 and
the principal cross terms between u0, v0 and u1, v1 we have
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I1[u1(t),v1(t)] =
∫ 2π

0
[u2

1,t + v2
1,t + 2u0,tu1,t + 2εu0,ηu1,t + 2v0,tv1,t + 2εv0,ηv1,t

− (u2
1 + v2

1 + 2u0u1 + 2v0v1)− ε(2u3
0u1 + 6u0v2

0u1 + 6u2
0v0v1

+ 2v3
0v1 + 16κv3

0v1)]dt.

Integrating the third up to sixth terms by parts using the periodicity of u1 and v1

with respect to t, we see that the underlined terms gives −4ε(u0,tηu1 + v0,tηv1).
Then, substituting the expressions for u0 and v0 into the functional and reducing the
products of sine and cosine to the sum of harmonic functions,4 we get the resonant
terms which should be removed in order to be consistent with the above asymptotic
expansion. The equations obtained for A1, B1, A2, B2 read

A1,η =
3
8

B1(A
2
1 +B2

1)+
3
8

B1(A
2
2 +B2

2)+
3
4

B2(A1A2 +B1B2),

B1,η = −3
8

A1(A
2
1 +B2

1)−
3
8

A1(A
2
2 +B2

2)−
3
4

A2(A1A2 +B1B2),

A2,η = (
3
8
+ 3κ)B2(A

2
2 +B2

2)+
3
8

B2(A
2
1 +B2

1)+
3
4

B1(A1A2 +B1B2),

B2,η = −(
3
8
+ 3κ)A2(A

2
2 +B2

2)−
3
8

A2(A
2
1 +B2

1)−
3
4

A1(A1A2 +B1B2).

The above equations can still be simplified in terms of the variables a1, a2, and ϕ
defined by

A1 = a1 cosφ1, B1 = a1 sinφ1,

A2 = a2 cosφ2, B2 = a2 sinφ2, (7.13)

ϕ = φ2 −φ1.

According to these formulas a1 and a2 are the amplitudes of u and v, respectively,
while ϕ is the phase difference modulo π . In terms of these new variables the equa-
tions of slow flow become (see exercise 7.7)

a1,η =
3
8

a1a2
2 sin 2ϕ ,

a2,η = −3
8

a2
1a2 sin2ϕ , (7.14)

ϕ,η = −3
8
(a2

1 + a2
2)+ 3μa2

2+
3
8
(a2

2 − a2
1)cos2ϕ .

The Slow Flow. It follows from the first two equations of (7.14) that

da1

da2
=−a2

a1
⇒ a2

1 + a2
2 = ρ

2,

4 Again, this can be done with the TrigReduce command in Mathematica.
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which means the conservation of the energy at this approximation, since terms of
the order ε2 and higher are neglected. This first integral enables one to reduce sys-
tem (7.14) to two differential equations. Indeed, let us introduce a new variable ψ
according to

a1 = ρ cosψ , a2 = ρ sinψ , (7.15)

with ρ being a constant in the above conservation law. Substituting these formulas
into the first and the last equations of (7.14) we obtain

ψ,η =−3ρ2

16
sin2ϕ sin2ψ ,

ϕ,η =−3ρ2

16
[8μ(cos2ψ− 1)+ 2+ 2cos2ψ cos2ϕ ].

(7.16)

The obtained system of equations represents a slow flow on a two-dimensional torus,
since the variables ψ and ϕ are modulo π .
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Fig. 7.9 Level curves of (7.17) for μ = 0.05

In contrast to the original system (7.1), equations (7.16) can be integrated exactly.
Indeed, by the straightforward differentiation we can easily verify that

−1
2

sin2 2ψ cos2ϕ+(1− 4μ)cos2ψ+ μ cos4ψ = k (7.17)

is the first integral of this slow flow, with k being a constant. The level curves of
equation (7.17) are shown in Fig. 7.9 for μ = 0.05. Each curve corresponds to a
fixed value k of the first integral, but all are on the same energy level ρ2. Due to the
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periodicity in ψ points lying on the lines ψ = 0 andψ = π have to be identified. The
same is true of ϕ . As a result, this figure represents the flow on the two-dimensional
torus. Observe the symmetry with respect to the dashed lines ϕ = π/2 and ψ = π/2.

As we know, the nonlinear normal modes (7.10) found from the modal equa-
tion correspond to the fixed points of this flow. Let us first consider the symmetric
normal mode for which x = y and v = 0. In this case A2 = B2 = 0 and a2 = 0,
a1 = ρ . Therefore ψ = 0 and the second equation of (7.16) implies that ϕ = π/2.
Thus, this symmetric mode corresponds to the fixed point (ψ ,ϕ) = (0,π/2) (or
(π ,π/2) denoted by S). We see that this mode is orbitally stable as the fixed point
is a center surrounded by closed curves that result as intersections of invariant tori
with the cut plane. For the antisymmetric normal mode we have x =−y and u = 0.
Therefore a1 = 0 and consequently ψ = π/2. The second equation of (7.16) im-
plies that ϕ = 1

2 arccos(1− 8μ). Thus, the antisymmetric normal mode is orbitally
unstable as it is represented by the saddle points (ψ ,ϕ) = (π/2, 1

2 arccos(1− 8μ))
(point A) and (ψ ,ϕ) = (π/2,π− 1

2 arccos(1− 8μ)). The homoclinic orbits are the
closed curves starting and ending at these saddle points.5 The bifurcating modes sat-
isfy the relations u = 1

2(1+ c)x and v = 1
2(1− c)x, so u and v are proportional and

the phase difference ϕ must be zero. It follows from the second equation of (7.16)
that ψ = 1

2 arccos 4μ−1
4μ+1 or ψ = π − 1

2 arccos 4μ−1
4μ+1 . We see that these bifurcating

modes are orbitally stable (since they appear as centers) and correspond to the fixed
points (ψ ,ϕ) = ( 1

2 arccos 4μ−1
4μ+1 ,0) (point B) and (ψ ,ϕ) = (π − 1

2 arccos 4μ−1
4μ+1 ,0),

respectively.
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Fig. 7.10 Poincaré map according to approximate theory for E0 = 0.4 and μ = 0.15

5 See the detailed analysis of the homoclinic motion in [49].
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Comparison with Numerical Simulations. The comparison with the Poincaré map
constructed numerically in the previous Section is possible if we express the results
obtained for u and v in terms of the “old” coordinates x and y

x = u+ v, y = u− v.

To compute the approximate Poincaré map we must set x = 0

x = u0 + v0 +O(ε) = 0,

so, taking into account (7.12) we have

tan t =−A2(η)+A1(η)
B2(η)+B1(η)

.

Finding from here sin t and cost and substituting into y = u0 − v0 we obtain

y =
2(B1A2 −A1B2)

(B2
2 + 2B1B2 +A2

2 + 2A1A2 +B2
1 +A2

1)
1/2

,

where the argument η from A1, B1, A2, B2 is omitted. The velocity ẏ, to the lowest
order of approximation in ε , is

ẏ = y,t =
B2

2 +A2
2 −B2

1 −A2
1

(B2
2 + 2B1B2 +A2

2 + 2A1A2 +B2
1 +A2

1)
1/2

.

In terms of the angles ϕ and ψ introduced in (7.13) and (7.15) the formulas for y
and ẏ read

y =
ρ sinϕ sin2ψ√
1+ cosϕ sin2ψ

, ẏ =
ρ cos2ψ√

1+ cosϕ sin2ψ
.

To construct the approximate Poincaré map we must use the first integral (7.17)
to find cos2ϕ for the given values of μ , k, ρ , and ψ . Then plugging the obtained
values of ϕ into the above formulas to evaluate y and ẏ and to plot the curve in
the cut plane. The total energy E0 of the system is related to ρ by the expression
E0 = ρ2. The approximate Poincaré map corresponding to the energy level E0 = 0.4
and to the coupling factor κ = 0.1 (μ = 0.15) is shown in Fig. 7.10. It is seen that
both maps in Fig. 7.7 (left) and Fig. 7.10 coincide qualitatively.

To show the quantitative agreement let us compute the Poincaré map for E0 = 0.4,
ε = 0.1, and μ = 0.15, and for a solution satisfying the following initial conditions

x(0) = 0, y(0) = 0, ẏ(0) =−0.65.

Then it is easy to find that k =−0.2519. The comparison of Poincaré maps obtained
by the numerical integration (points) and by the approximate theory (bold line) is
shown in Fig. 7.11 (see exercise 7.8). The agreement is really palpable, although
ε = 0.1 is not quite small.
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Fig. 7.11 Comparison of Poincaré maps for E0 = 0.4, ε = 0.1, and κ = 0.1

7.3 KAM Theory

The perturbation theory of quasiperiodic motions of conservative mechanical sys-
tems [5, 25] proposed by Kolmogorov, Arnold, and Moser, called for short KAM
theory, is perhaps one of the greatest achievements in mathematics and mechanics
of the 20th century. It has a lot of consequences and applications in dynamics and
also in statistical mechanics. Although the ideas upon which the theory is based
seem quite simple, the detailed proofs presented in the mathematical literature have
been for long time serious barriers for people with the engineering background. This
Section aims at explaining KAM theory with the variational-asymptotic method.

Variational Problem. Our starting point is Hamilton’s variational principle, ac-
cording to which motions of any conservative mechanical system correspond to
extremals of the action functional

I[q(t)] =
∫ t1

t0
L(q, q̇)dt, (7.18)

where q(t) = (q1(t), . . . ,qn(t)). As we know, this implies Lagrange’s equations

d
dt
∂L
∂ q̇ j

− ∂L
∂q j

= 0, j = 1, . . . ,n.

Suppose that the Lagrange function has the form

L(q, q̇) = L0(q, q̇)+ εL1(q, q̇),

where ε is a small parameter. Besides, we assume for simplicity that L(q, q̇) is an
analytic function and that the determinant detL,q̇q̇ is positive everywhere. The prob-
lem is to study the asymptotic behavior of the extremals depending on this small
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parameter ε . Note that the number n of degrees of freedom must be at least 2 since
systems with one degree of freedom are always integrable leading to the periodic
extremals for small energies.

First Step. Since the action functional (7.18) contains a small parameter, it is nat-
ural to use the variational-asymptotic method to analyze it. At the first step of the
variational-asymptotic method we neglect the small term εL1(q, q̇) and consider in-
stead the variational problem: find the extremal of the functional

I0[q(t)] =
∫ t1

t0
L0(q, q̇)dt.

This leads to Lagrange’s equations

d
dt
∂L0

∂ q̇ j
− ∂L0

∂q j
= 0. (7.19)

We assume that Lagrange’s equations (7.19) are integrable so that their solutions
can be found at this step. Such situation is met by the nonlinear coupled mass-
spring oscillators considered in example 7.1 if the coupling parameter β is set to be
zero. In this case the system reduces to two uncoupled nonlinear oscillators, each of
which has only one degree of freedom.

As equations (7.19) are integrable, there exist angle-action variables (ϕ , I) in
terms of which the unperturbed Hamilton function becomes independent of ϕ : H0 =
H0(I) (see Section 7.1 and [5]). The solution of Hamilton’s equations

ϕ̇ j =
∂H0

∂ I j
= ω j(I j), İ j =−∂H0

∂ϕ j
= 0,

which are equivalent to (7.19), is quite simple in these variables: ϕ j = ϕ j0+ω jt and
I j = const. Coming back to q(t), the solution of (7.19) can be presented in the form

q(t) = q0(t) = u0(ϕ0 +ωt),

where u0(ϕ) is the vector-valued function of ϕ = (ϕ1, . . . ,ϕn) which is periodic
in each variable ϕ j with the period 2π , and ω = (ω1, . . . ,ωn) are the constant fre-
quencies. Thus, every solution is now quasi-periodic in t: its frequency spectrum in
general does not consist of integer multiples of a single frequency as in the case with
periodic solutions, but rather of integer combinations of a finite number of different
frequencies.6 For fixed ϕ0 function u0(ϕ0 +ωt) describes a curve winding around
some invariant n-dimensional torus T n with winding numbers, ω = (ω1, . . . ,ωn).
Mention that u0(ϕ) is a differentiable one-to-one map which maps the invariant
torus onto itself. We shall use angle variables ϕ = (ϕ1, . . . ,ϕn), each is modulo 2π ,

6 In this sense, the asymptotic analysis provided here is multi-frequency analysis, which is
much more difficult than all previous asymptotic analyses due to the problem of small
divisors.
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as coordinates on the torus. All solutions with fixed I j belong to one torus, so that
the whole phase space is foliated into an n-parameter family of invariant tori.

The flow on each torus depends on the arithmetical properties of its frequencies
ω j. There are essentially two cases.

i) The frequencies ω j are non-resonant, i.e., k · ω �= 0 for all non-zero k =
(k1, . . . ,kn), with k j being integers (we write k ∈ Z

n). Then each orbit is dense on
this torus.

ii) The frequencies ω j are resonant, that is, there exist integer relations k ·ω = 0
for some non-zero k∈Z

n. In this case each orbit is dense on some lower dimensional
torus, but not in T n.

We assume that the unperturbed system is non-degenerate in the sense that

det

∣∣∣∣ ∂
2H0

∂ Ii∂ I j

∣∣∣∣ �= 0.

In this case the frequenciesω j depend on the amplitudes, so they vary with the torus.
This nonlinear frequency-amplitude relation is essential for the stability results of
the KAM theory. It follows that the subset of non-resonant tori as well as that of
resonant tori form dense subsets in phase space. Similar to the set of real numbers,
the resonant tori sit among the non-resonant ones like the rational numbers among
the irrational numbers.

Small Perturbations and KAM Theorem. Let us include now the small term
εL1(q, q̇) into the action functional and consider the perturbed variational problem.
The first result, obtained already by Poincaré, showed that the resonant tori are in
general destroyed by an arbitrarily small perturbation. In particular, out of a torus
with an n− 1-parameter family of periodic orbits, usually only finitely many peri-
odic orbits survive a small perturbation, while the others disintegrate and give way
to chaotic behavior. Since a set of resonant tori being destroyed by a small pertur-
bation is dense among all invariant tori, there seems to be no hope for other tori to
survive. In fact, until the middle of the 20th century it was a common belief that
arbitrarily small perturbations can turn an integrable system into an ergodic one on
each energy surface. By the way, it would not help if the non-degeneracy assumption
is dropped. There exists a counter-example showing that if H0 is too degenerate, the
motion may even become ergodic on each energy surface, thus destroying all tori.

Kolmogorov [25] was the first to observe that, for the non-degenerate case, the
converse is true: the majority of tori survives small perturbations. He gave the sketch
of the proof about the persistence of those tori, whose frequencies ω j are not only
non-resonant, but are strongly non-resonant in the sense that there exist constants
α > 0 and ν > 0 such that

|k ·ω | ≥ α
|k|ν (7.20)

for all non-zero k ∈ Z
n, where |k|= |k1|+ . . .+ |kn|. Condition (7.20) is called a dio-

phantine or small divisor condition. It turns out that the set of strongly non-resonant
frequencies for any fixed ν > n−1 has the full measure, in contrast to the set of re-
maining frequencies having zero measure. But although almost all frequencies are
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strongly non-resonant, it is not true that almost all tori survive a given perturbation
εL1, no matter how small ε is. In its precise formulation, KAM theorem states that
there exists a constant δ > 0 such that for the perturbations of size |ε| < δα2 the
strongly non-resonant tori of the unperturbed system persist, being only slightly de-
formed. Moreover, they depend continuously on ω and fill the phase space up to a
set of measure O(α). An immediate consequence of the KAM theorem, important
for the statistical mechanics, is that small perturbations of integrable systems do
not necessarily imply ergodicity, as the invariant tori form a set, which is neither of
full nor of zero measure. It has to be emphasized, however, that this invariant set,
although of large measure, is a Cantor set and thus has no interior points. It is there-
fore impossible to tell with finite precision whether a given initial condition falls
onto an invariant torus or into a gap between such tori. From a physical point of
view the KAM theorem rather makes a probabilistic statement: with overwhelming
probability of order 1−O(α) a randomly chosen orbit lies on an invariant torus and
thus stays there forever.

Variational Problem for Invariant Tori. Since for an invariant torus with fixed
frequenciesω the solution of Lagrange’s equations has the form q(t) = u(ϕ0 +ωt),
the generalized velocities may be written as

q̇ =
n

∑
j=1
ω j

∂
∂ϕ j

u = ∇u,

where ∇ denotes the linear first order partial differential operator with constant co-
efficients

∇=
n

∑
j=1
ω j

∂
∂ϕ j

.

Therefore it is convenient to consider the following variational problem for an in-
variant torus, first mentioned in [39]: find extremals of the functional

I[u(ϕ)] =
2π∫
0

. . .

2π∫
0

L(u,∇u)dϕ1 . . .dϕn =

∫
T n

L(u,∇u)dϕ (7.21)

among vector-valued functions u(ϕ) = (u1(ϕ), . . . ,un(ϕ)) which are 2π-periodic in
each variable ϕ j. Euler-Lagrange’s equations of this variational problem read

∇L,q̇(u,∇u)−L,q(u,∇u) = 0. (7.22)

Thus, instead of solving the ordinary differential equations, we have to deal now
with the nonlinear partial differential equations (7.22). Conversely, every solution
u(ϕ) of (7.22), 2π-periodic in each variable ϕ j, determines the flow on some in-
variant torus which satisfies original Lagrange’s equations. We shall therefore apply
the variational-asymptotic method to the variational problem (7.21). Then it is easy
to see that the first step of the variational-asymptotic procedure leads to the unper-
turbed problem
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∇L0,q̇(u,∇u)−L0,q(u,∇u) = 0,

and, consequently, to the flow on the unperturbed invariant torus induced by the
solution u0(ϕ) of this equation.

Second Step and Sketch of the Proof. In order to justify KAM theorem7 let us
proceed to the second step of the variational-asymptotic method. We fix the solution
of the unperturbed problem on some torus, u0(ϕ), and look for the extremal of (7.21)
in the form

u(ϕ) = u0(ϕ)+ u1(ϕ),

where u1(ϕ) is smaller than u0(ϕ) in the asymptotic sense. Substituting this into the
action functional (7.21), expanding the Lagrangian in the Taylor series, and keeping
the asymptotically principal terms containing u1, we obtain

I1[u1(ϕ)] =
∫

T n
[L,q|0 ·u1 +L,q̇|0 ·∇u1

+
1
2
(u1 ·L,qq|0u1 + u1 ·L,q̇q|0∇u1 +∇u1 ·L,qq̇|0u1 +∇u1 ·L,q̇q̇|0∇u1)]dϕ .

The vertical bar followed by index 0 means that the derivatives in front of it have
to be evaluated at (u0(ϕ),∇u0(ϕ)). Thus, these first and second derivatives become
functions of ϕ which are the coordinates on the torus. The obtained functional turns
out to be quadratic with respect to u1. Its Euler-Lagrange’s equation is linear and
can be presented in the form

E(u0)+ dE(u0)u1 = 0, (7.23)

where
E(u) = ∇L,q̇(u,∇u)−L,q(u,∇u), (7.24)

and

dE(u0)u1 = ∇(L,q̇q̇|0∇u1)+ (L,q̇q|0 −L,qq̇|0)∇u1 +(∇L,q̇q|0 −L,qq|0)u1. (7.25)

It is interesting to mention that

dE(u)v =
d

dλ
E(u+λv)|λ=0,

so equation (7.23) resembles Newton’s iteration method of finding the root of a tran-
scendental equation or the minimum of a function [41]. According to the variational-
asymptotic method we can also replace L in (7.25) by L0 which makes the error in
determining u1 of the order ε compared with 1. Since our aim is not computing u1,
but just proving the existence of the solution, we keep (7.25) to be exactly as in
Newton’s iteration procedure.

7 See the rigorous and detailed proof in [46].
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One of the difficulties in solving equation (7.23) comes from the linear operator∇
in (7.25). Due to the small divisors, entering the representation of this operator with
respect to the Fourier expansion of functions on the torus, its inverse is unbounded.
Indeed, let us consider an equation∇u = g, where functions u and g are 2π periodic
in each variable ϕ j and can therefore be presented in terms of the Fourier series

u(ϕ) = ∑
k∈Zn

ukeik·ϕ , g(ϕ) = ∑
k∈Zn

gkeik·ϕ .

Applying the operator ∇ to u, we get

∇u =
n

∑
j=1
ω j

∂
∂ϕ j

u = ∑
k∈Zn

i(k ·ω)ukeik·ϕ ,

so that the equation ∇u = g becomes

∑
k∈Zn

i(k ·ω)ukeik·ϕ = ∑
k∈Zn

gkeik·ϕ .

Even for non-resonant frequencies the combinations k ·ω may become arbitrar-
ily small leading to the unbounded coefficients uk of the series. The diophantine
condition (7.20) has been introduced to remove infinitely small divisors. Now it is
straightforward to show that for ω satisfying condition (7.20) and for every regular
function g(ϕ) with zero mean value, the equation∇u = g has a unique solution with
zero mean value. Indeed, since the Fourier series for g(ϕ) converges, the coefficients
gk satisfy the following conditions

|gk| ≤ aρ |k|

with some positive a and ρ < 1. Besides, g0 = 0 as g(ϕ) has the zero mean value.
Then u0 = 0, uk = gk/(ik ·ω) and the Fourier series

u(ϕ) = ∑
k �=0

gk

i(k ·ω)eik·ϕ

clearly converges on account of the diophantine condition (7.20). The norm of u(ϕ)
can be precisely estimated.

But there are still two more obstacles to solving equation (7.23). First, the terms
containing u1 and∇u1 in equation (7.25) have to be eliminated. Then, the remaining
second order partial differential equation requires a compatibility condition, namely
that the inhomogeneous term E(u0) be of zero mean value. Note that these obsta-
cles disappear in the special case when the identity map u0 = ϕ is an approximate
solution of E(u0) = 0. In this case it is easy to check that the coefficient matrices of
u1 and ∇u1 in (7.25) are small and can be neglected. Indeed, the coefficient matrix
of u1 is the Jacobian matrix of E(ϕ). For the estimation of the coefficient matrix of
∇u1 we refer to the subsequent formula (7.29)1. Therefore equation (7.23) can be
replaced by
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∇(L,q̇q̇|0∇u1) =−E(ϕ)

and, by the above arguments, it can be solved since the right-hand side must always
be of zero mean value. We conclude that, if the identity map u0 = ϕ is an approx-
imate solution of E(u0) = 0, then (7.23) admits an approximate solution u1 so that
the first step of the Newton iteration can be performed in this case.

Now the following idea allows us to reduce the general case to the one where u0 is
the identity map on the torus: let us try to change the Lagrangian so that the changed
Euler-Lagrange’s equation admits the identity map as solution. Consider the group
of one-to-one maps u(ϕ) of the torus which acts on the space of Lagrangians L
according to the rule

u∗L(ϕ ,ν) = L(u(ϕ),Uν),

where U(ϕ) = ∂u/∂ϕ denotes the Jacobian matrix of u and is therefore 2π-periodic
in each variable ϕ j. Here u∗L is regarded as a function of the formal arguments ϕ
and ν , with ν playing the role of the velocity. One verifies easily that

(u ◦ v)∗L = u∗(v∗L), id∗L = L,

where (u ◦ v)(ϕ) = u(v(ϕ)) corresponds to the composition of two maps and id is
the identity map id = ϕ . Functional (7.21) is compatible with this group action in
the sense that

IL[u ◦ v(ϕ)] = Iu∗L[v(ϕ)],

and, moreover, it is invariant under the subgroup of translations. Since the La-
grangian may change, we attach it as the index to the functional. Taking the variation
of the functionals standing on both sides, we find that

(U(v))T E(L,u ◦ v) = E(u∗L,v),

with E(L,u) being the expression (7.24) where the Lagrangian is indicated precisely.
Differentiating this equation with respect to v in the direction of a tangent vector w
to the group of maps at v = id, we obtain

UT dE(L,u)Uw = dE(u∗L, id)w− (dU ·w)T E(L,u) (7.26)

The previous equation with v = id reduces to

UT E(L,u) = E(u∗L, id). (7.27)

It now follows from (7.27) that whenever u is an approximate solution of E(L,u) = 0
then also E(u∗L, id) is small and hence the above considerations about the case u =
id show that there exists an approximate solution w of the equation dE(u∗L, id)w =
−E(u∗L, id). Combining this observation with the identities (7.26) and (7.27), we
conclude that equation (7.23) indeed has an approximate solution u1 = U0w in the
sense that errors of quadratic order are ignored.

The precise estimation for the approximate solution of the linearized equation
(7.23) are based on several formulas which are summarized below. First,
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UT dE(L,u)Uw = ∇(A∇w)+B∇w+Cw, (7.28)

where A, B, and C are the n× n matrix-valued functions on T n defined by

A =UT L,ννU, B =UT L,νϕ −LT
,νϕU, C =UT E,ϕ ,

and the following abbreviations are used

L,νϕ =
∂
∂ϕ

L,ν (u(ϕ),∇u(ϕ)), E,ϕ =
∂
∂ϕ

E(L,u), U =
∂u
∂ϕ

.

Formula (7.28) follows from equation (7.26) by inserting the expression (7.25) with
L and u1 replaced by u∗L and w, respectively. Then we have

∇B =C−CT ,∫
T n

Bdϕ = 0, (7.29)
∫

T n
UT E(L,u)dϕ = 0.

Formula (7.29)1 expresses the fact, well known in variational calculus, that the op-
erator

Mw = ∇(A∇w)+B∇w+Cw,

which represents the Hessian of the functional (7.21), is self-adjoint. Indeed, since
AT = A and BT =−B, the adjoint operator of M is given by

M∗w = ∇(AT∇w)−∇(BT w)+CT w = ∇(A∇w)+B∇w+(CT +∇B)w

so that M∗ = M if and only if CT +∇B =C.
The last two formulas reflect the fact that the functional I[u(ϕ)] defined by (7.21)

is invariant under the subgroup of translations of the torus T n (see exercise 7.9).
It follows from these formulas that if u is a solution of E(L,u) = 0 and the fre-

quency vector ω is rationally independent then C = 0 and B = 0. Indeed, since
∇B = 0 the function B(ϕ) is constant along the dense line ϕ = ωt. Hence it is con-
stant on T n and it follows from (7.29)2 that B = 0. As a consequence the linearized
operator is given by

UT dE(L,u)Uw = ∇(A∇w)

which is invertible.
Provided u1 can be found and the error we make can be estimated, we now replace

u0 by u0 + u1 and repeat the second step of the variational-asymptotic procedure to
find the next correction. This is the crucial idea of Newton’s iteration leading to the
fast convergence. It can simply be shown in the case of finding roots of transcen-
dental equations that if the initial error is ε , then the error after n iteration would be
of the order ε2n

. Such fast convergence, valid also for (7.23) as shown in [46], may
remove the errors induced by the small divisors at each iteration and guarantees the
convergence to the solution of variational problem (7.21).
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7.4 Coupled Self-excited Oscillators

As we know, a self-excited oscillator, such as van der Pol’s oscillator, may gen-
erate a limit cycle periodic vibration with a fixed frequency. What happens if two
slightly different self-excited oscillators are coupled? One may imagine for instance
two violins playing near each other and interacting through the sound wave, or two
Froude’s pendulums connected by a weak spring. Another example is two pendulum
clocks which move into the same swinging rhythm when they are hung near each
other on the wall. Although uncoupled oscillators have in general different frequen-
cies, the effect of the coupling may lead to a vibration which is phase and frequency
locked, or in another word, to synchronization.8

Two Weakly Coupled van der Pol’s Oscillators. We will study the synchronization
of two weakly coupled van der Pol’s oscillators, whose Lagrange function is given
by

L(x,y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2)− 1

2
[x2 +(1+ εα)y2 + εκ(x− y)2],

where ε is a small parameter, parameter α characterizes the difference in uncoupled
frequencies, while κ is a coupling factor. Since we are interested in the primary
resonance, we order the amplitude of the coupling to be the same as the damping
and non-linear term [10]. Thus, the dissipation function assumes the form

D(x,y, ẋ, ẏ) =
1
2
ε[(x2 − 1)ẋ2 +(y2 − 1)ẏ2].

Then x(t) and y(t) satisfy the variational equation

δ
∫ t1

t0
L(x,y, ẋ, ẏ)dt −

∫ t1

t0
(
∂D
∂ ẋ
δx+

∂D
∂ ẏ
δy)dt = 0.

Generalized Lagrange’s equations read [10]

ẍ+ x+ εκ(x− y)− ε(1− x2)ẋ = 0,

ÿ+(1+ εα)y− εκ(x− y)− ε(1− y2)ẏ = 0.
(7.30)

We need to find the asymptotic behavior of solution in the limit ε → 0.
When κ = 0 the system (7.30) is uncoupled and the two equations exhibit unsyn-

chronized limit cycle vibrations for x(t) and y(t) with different frequencies 1 and√
1+ εα. When κ is small, then we may expect by the continuity reasoning that the

vibrations are still unsynchronized. For finite κ we may have three states of a cou-
pled self-organized oscillator: strongly locked, weakly locked, and unlocked. The
vibration is said to be strongly locked (or strongly synchronized) if it is both fre-
quency and phase locked. If the vibration is frequency locked but the relative phase

8 The earliest known observation of synchronization was made by Huygens. He reported
that “two clocks, hanging side by side and separated by one or two feet, keep between
them a consonance so exact that the two pendula always strike together, never varying”.
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changes slowly with time, it is called weakly locked (or weakly synchronized). If the
frequencies of vibration are different, the system is said to be unlocked or drifting.

Numerical Solutions. The system of equations (7.30) does not admit exact analyt-
ical solutions. So, in order to observe the behavior of solutions and to illustrate the
difference between synchronized and unsynchronized vibrations let us first do some
numerical simulations.

t

xy

Fig. 7.12 Graph x(t)y(t) of coupled van der Pol’s oscillators for ε = 0.1, α = 1, and κ = 1.2

We take for example ε = 0.1, α = 1, and κ = 1.2 and find the solution to (7.30)
satisfying the initial conditions x(0) = 1, ẋ(0) = 0 and y(0) = 1, ẏ(0) = 0 by the
numerical integration with Mathematica. The plot of the product x(t)y(t) shown in
Fig. 7.12 exhibits obviously synchronization in this case. Indeed, since x(t) and y(t)
approach periodic (for small ε harmonic) functions with the same frequency and
constant phase difference, their product must have a steady-state character after a
short transient period.

t

xy

Fig. 7.13 Graph x(t)y(t) of coupled van der Pol’s oscillators for ε = 0.1, α = 1, and κ = 0.5

If we decrease the coupling factor while keeping all other parameters and ini-
tial data, the response may change drastically. For example, the plot of the product
x(t)y(t) for κ = 0.5 shown in Fig. 7.13 does not indicate vibrations of x(t) and y(t)
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with equal frequency and constant phase difference. Thus, in this case synchroniza-
tion does not occur, and the system is unlocked.

In the next paragraph we will use the variational-asymptotic method to estab-
lish the law of slow change of amplitudes and phases as function of the frequency
difference and the coupling parameter and to predict the synchronization.

Variational-Asymptotic Method. Let us introduce the frequency ω of vibration
precisely into the variational equation by multiplying it with ω and rewriting in
terms of the stretched angular time τ = ωt for one fix period 2π

δ
∫ τ0+2π

τ0

{1
2
ω2(x′2 + y′2)− 1

2
[x2 +(1+ εα)y2+ εκ(x− y)2]}dτ

+

∫ τ0+2π

τ0

εω [(1− x2)x′δx+(1− y2)y′δy]dτ = 0,

(7.31)

where prime denotes the derivative with respect to τ and τ0 is an arbitrary time
instant. We write for short τ0 = 0.

We put at the first step ε = 0 to obtain

δ
∫ 2π

0
[
1
2
ω2(x′2 + y′2)− 1

2
(x2 + y2)]dτ = 0.

The 2π-periodic extremal is

x0 = A1 cosτ+B1 sinτ, y0 = A2 cosτ+B2 sinτ, (7.32)

for which the frequency ω is equal to 1 as expected.
As soon as ε �= 0 the coefficients A1, B1, A2, B2 are becoming slightly dependent

on time and ω deviates from 1. Therefore we look for the extremal and for the
frequency at the second step in the form

x = A1(η)cosτ+B1(η)sinτ+ x1(τ,η),
y = A2(η)cosτ+B2(η)sinτ+ y1(τ,η), ω = 1+ω1,

where η = ετ is the slow time. We assume that x1(τ,η) and y1(τ,η) are 2π-periodic
functions with respect to the fast time τ and are much smaller than x0 and y0 in
the asymptotic sense, and ω1 is much smaller than 1. Note that the asymptotically
principal terms of the derivatives of x and y are

x′ = x0,τ + εx0,η + x1,τ , y′ = y0,τ + εy0,η + y1,τ ,

where the comma in indices denotes the partial derivatives. Substituting x, y together
with their derivatives into functional (7.31) and keeping the principal terms of x1, y1

and the principal cross terms between x0, y0 and x1, y1 we have
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δ
∫ 2π

0
{1

2
x2

1,τ +
1
2

y2
1,τ + x0,τx1,τ + εx0,ηx1,τ + 2ω1x0,τx1,τ + y0,τy1,τ + εy0,ηy1,τ

+ 2ω1y0,τy1,τ − (
1
2

x2
1 +

1
2

y2
1 + x0x1 + y0y1)− ε[αy0y1 +κ(x0 − y0)(x1 − y1)

− (1− x2
0)x0,τx1 − (1− y2

0)y0,τy1]}dτ = 0.

Integrating the third up to eighth terms by parts using the periodicity of x1 and y1

with respect to τ , we see that the underlined terms gives −2ε(x0,τηx1 + y0,τηy1)+
2ω1(x0x1+y0y1). Then, substituting the expressions for x0 and y0 into the functional
and reducing the products of sine and cosine to the sum of harmonic functions, we
get the resonant terms which should be removed in order to be consistent with the
above asymptotic expansion. This implies that ω1 must be of the order ε; let us
denote it by ω1 = εk1. The equations obtained for A1, B1, A2, B2 read9

2A1,η =−2k1B1 +A1 − A1

4
(A2

1 +B2
1)+κ(B1−B2),

2B1,η = 2k1A1 +B1 − B1

4
(A2

1 +B2
1)+κ(A2 −A1),

2A2,η =−2k1B2 +αB2 +A2 − A2

4
(A2

2 +B2
2)+κ(B2 −B1),

2B2,η = 2k1A2 −αA2 +B2 − B2

4
(A2

2 +B2
2)+κ(A1−A2).

This system of equations can still be simplified if we introduce the amplitudes and
phases of vibrations in accordance with

A1 = a1 cosφ1, B1 = a1 sinφ1,

A2 = a2 cosφ2, B2 = a2 sinφ2.

Thus, a1 and a2 characterize the amplitudes of x0 and y0, respectively, while φ1 and
φ2 are the corresponding phases.

In terms of the new variables the equations that result from the elimination of the
resonant terms can be written as

2a1,η = a1(1− a2
1

4
)+κa2 sin(φ1 −φ2),

2a2,η = a2(1− a2
2

4
)−κa1 sin(φ1 −φ2),

2φ1,η = 2k1 −κ+ κa2 cos(φ1 −φ2)

a1
,

2φ2,η = 2k1 −α−κ+ κa1 cos(φ1 −φ2)

a2
.

9 One may check this with the TrigReduce command in Mathematica.
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Introducing the phase difference ϕ = φ1 −φ2, we reduce this system further to three
differential equations governing the slow change of amplitudes and phase difference

2a1,η = a1(1− a2
1

4
)+κa2 sinϕ ,

2a2,η = a2(1− a2
2

4
)−κa1 sinϕ , (7.33)

2ϕ,η = α+κ cosϕ (
a2

a1
− a1

a2
).

After finding the amplitudes and phase difference from (7.33), we can find k1 from
the previous equation for φ1 by setting φ1 = 0. This is possible since the original
system is autonomous.

The Slow Flow. Let us seek fixed points of the slow flow (7.33) representing syn-
chronized vibrations of the coupled oscillators. We multiply the first equation of
(7.33) (with the zero left-hand side) by a1 and the second by a2 and add together to
get

a2
1 + a2

2 −
a4

1 + a4
2

4
= 0. (7.34)

Next, multiplying the first equation of (7.33) by a2 and the second by a1 and sub-
tracting them to obtain

sinϕ =
a1a2(a2

1 − a2
2)

4κ(a2
1 + a2

2)
.

From the third equation of (7.33) with ϕ,η = 0 on the left-hand side follows

cosϕ =
αa1a2

κ(a2
1 − a2

2)
.

Using the identity sin2+cos2 = 1 and setting

p = a2
1 + a2

2, q = a2
1 − a2

2,

we get from the two last equations

q6 − p2q4 +(16α2 + 64κ2)p2q2 − 16α2p4 = 0.

In terms of p, q, equation (7.34) becomes

q2 = 8p− p2.

Substituting this equation into the previous one, we obtain finally

p3 − 20p2+(16α2 + 32κ2+ 128)p− (64α2+ 256κ2+ 256) = 0. (7.35)

This cubic equation has either 1 or 3 positive roots for p. At bifurcation, there will
be a double root which appears if the derivative of (7.35) vanishes
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3p2 − 40p+ 16α2+ 32κ2+ 128 = 0. (7.36)

Eliminating p from (7.35) and (7.36) gives the condition for saddle-node bifurca-
tions as

α6 +(6κ2 + 2)α4 +(12κ4− 10κ2+ 1)α2 + 8κ6−κ4 = 0. (7.37)

Equation (7.37) plots as two curves intersecting as a cusp in the (α,κ)-plane (see
Fig. 7.14). At the cusp, a further degeneracy occurs and there is a triple root of
equation (7.35). Requiring the derivative of (7.36) to vanish yields p = 20/3 at the
cusp, which gives the location of the cusp as

α =
1√
27

≈ 0.1924, κ =
2√
27

≈ 0.3849.

SN

SN HOPF

Fig. 7.14 Saddle-node and Hopf’s bifurcation of coupled van der Pol’s oscillator

Next, we look for Hopf’s bifurcations of the slow flow (7.33). The presence of
a stable limit cycle surrounding an unstable fixed point, as occurs in a supercritical
Hopf’s bifurcation, means a weakly locked quasiperiodic motion of the original
system (7.30). Let (a10,a20,ϕ0) be a fixed point. The behavior of the system (7.33)
linearized in the neighborhood of this point is determined by the eigenvalues of the
Jacobian matrix

1
2

⎛
⎜⎜⎝

− 3a2
10−4
4 κ sinϕ0 κ cosϕ0a20

−κ sinϕ0 − 3a2
20−4
4 −κ cosϕ0a10

− κ cosϕ0(a
2
10+a2

20)

a2
10a20

κ cosϕ0(a
2
10+a2

20)

a10a2
20

− κ sinϕ0(a
2
20−a2

10)
a10a20

⎞
⎟⎟⎠ .
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Using the above relations between a1, a2, sinϕ , cosϕ and p, q, we can express the
elements of this matrix in terms of p. The eigenvalues of this matrix are the roots of
the cubic equation

λ 3 + c2λ 2 + c1λ + c0 = 0,

where

c2 =
p− 4

2
,

c1 =
7p3 − 112p2+(−16α2+ 512)p− 512

64p− 512
,

c0 =
p4 − 22p3+ 160p2− (32α2 + 384)p

128p− 1024
.

For a Hopf bifurcation to occur, the eigenvalues λ must include a pair of imaginary
roots, ±iβ , and a real eigenvalue, γ . This requires the characteristic equation to have
the form

λ 3 − γλ 2 +β 2λ −β 2γ = 0.

Comparing these cubic equations, we see that a necessary condition for Hopf’s bi-
furcation to occur is

c0 = c1c2 ⇒ 3p4 − 59p3+(−8α2 + 400)p2+(48α2 − 1088)p+ 1024= 0.

Eliminating p between this equation and (7.35) yields the condition for Hopf’s bi-
furcation as

49α8 +(266κ2+ 238)α6+(88κ4+ 758κ2+ 345)α4+(−1056κ6

+ 1099κ4+ 892κ2+ 172)α2 − 1152κ8− 2740κ6− 876κ4+ 16 = 0.

This equation plots as a curve in the (α,κ)-plane, which intersect the lower curve
of saddle node bifurcation at point P and touches the upper curve of saddle-node
bifurcation at point Q with the coordinates (see Fig. 7.15)

P: α ≈ 0.1918, κ ≈ 0.3846, Q: α ≈ 0.1899, κ ≈ 0.3837.

We see that the main features of saddle-node and Hopf’s bifurcations of a coupled
van der Pol’s oscillator are quite similar to those of forced van der Pol’s oscilla-
tor discussed in Section 6.3. Strong synchronization occurs everywhere in the first
quadrant of the (α,κ)-plane except in that region bounded by i) the lower curve
of saddle node bifurcations from the origin to point P, ii) the curve of Hopf bifur-
cation from point P to infinity, and iii) the α-axis. However, there is an additional
bifurcation here which did not occur in the forced problem. There is a homoclinic
bifurcation which occurs along a curve emanating from point Q. This involves the
destruction of the limit cycle which was born in the Hopf bifurcation. The limit cy-
cle grows in size until it gets so large that it hits a saddle, and disappears in a saddle
connection (see the details and further references in [10, 43]).
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P

Q

cusp

SN
SN

HOPF

Fig. 7.15 Blowup of cusp region

In summary, we see that the transition from strongly synchronized vibrations to
drifted vibrations involves an intermediate state in which the system is weakly syn-
chronized. In the three-dimensional slow flow space, we go from a stable fixed point
(strongly locked), to a stable limit cycle (weakly locked), and finally to a periodic
motion which is topologically distinct from the original limit cycle (unlocked). As
in the case of forced van der Pol’s oscillator, in order for the strong synchronization
to occur, we need either a small difference in uncoupled frequencies (small α) or a
strong interaction of oscillators guaranteed by a large coupling factor κ .

7.5 Exercises

EXERCISE 7.1. Derive the equations of nonlinear vibration of the double pendulum
considered in exercise 2.1.

Solution. Let us find the exact formula for the kinetic energy of the point-mass m2.
As seen from Fig. 2.14, the cartesian coordinates of this point-mass are

x2 = l1 cosϕ1 + l2 cosϕ2, y2 = l1 sinϕ1 + l2 sinϕ2.

Thus, the kinetic energy of m2 equals

K2 =
1
2

m2(ẋ
2
2 + ẏ2

2) =
1
2

m2[l
2
1 ϕ̇

2
1 + l2

2 ϕ̇
2
2 + 2l1l2 cos(ϕ1 −ϕ2)ϕ̇1ϕ̇2].

Taking the kinetic energy of m1 and the potential energy of the point-masses as in
the solution of the exercise 2.1, we obtain the exact Lagrange function in the form
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L =
1
2
(m1 +m2)l

2
1 ϕ̇

2
1 +

1
2

m2l2
2 ϕ̇

2
2 +m2l1l2 cos(ϕ1 −ϕ2)ϕ̇1ϕ̇2

+(m1 +m2)gl1 cosϕ1 +m2gl2 cosϕ2.

After some simple transformations we obtain from Lagrange’s equations

ϕ̈1 +α cos(ϕ1 −ϕ2)ϕ̈2 +α sin(ϕ1 −ϕ2)ϕ̇2
2 +

g
l1

sinϕ1 = 0,

ϕ̈2 +β cos(ϕ1 −ϕ2)ϕ̈1 −β sin(ϕ1 −ϕ2)ϕ̇2
1 +

g
l2

sinϕ2 = 0,

where

α =
m2l2

(m1 +m2)l1
, β =

l1
l2
.

EXERCISE 7.2. Hamilton-Jacobi equation. Let the action function S(q, t) be defined
as the integral

Sq0,t0(q, t) =
∫
γ

Ldt

along the extremal γ connecting the points (q0, t0) and (q, t). Show that S(q, t) sat-
isfies the Hamilton-Jacobi equation

∂S
∂ t

+H(q,
∂S
∂q

) = 0.

Solution. Let us first fix the time instant t and consider different extremals ending
at different points q. Calculating the variation of S we get

δS =
∂L
∂ q̇

·δq

∣∣∣∣
t

t0

+

∫ t

t0

(
∂L
∂q

− d
dt
∂L
∂ q̇

)
·δqdt = 0.

The second term vanishes because the variation is taken along the extremals satisfy-
ing Lagrange’s equations. The first term, evaluated at the lower limit t0 is also zero
because q0 is fixed. Replacing ∂L/∂ q̇ by p, we obtain

δS = p ·δq,

and, consequently
∂S
∂q

= p.

Now we let also t change. Then, it follows from the definition of S that its total time
derivative equals L

dS
dt

= L.

Using the chain rule of differentiation we have

dS
dt

=
∂S
∂ t

+
∂S
∂q

· q̇ =
∂S
∂ t

+ p · q̇.
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Thus,
∂S
∂ t

= L− p · q̇ =−H(q, p).

Substituting p = ∂S/∂q into the Hamilton function and bringing −H to the left-
hand side, we obtain the Hamilton-Jacobi equation.

EXERCISE 7.3. Find the action variable for the Duffing oscillator with

H(q, p) =
1
2
(p2 +U(q)), U =U(q) =

1
2

q2 +
1
4
αq4.

Solution. According to the definition of the action variable

I =
1

2π

∮
pdq.

We use the exact solution (5.12) of the Duffing equation to evaluate the contour
integral. Since p = q̇ and dq = q̇dt and since the phase curve is symmetric about the
q- and q̇-axes we have

∮
pdq = 4

∫ qM

0
pdq = 4

∫ T/4

0
q̇2dt.

Now we substitute the solution (5.12) into this integral. Since

q(t) = acn(bt,m), q̇ =−absn(bt,m)dn(bt,m),

where

b =
√

1+αa2, m =
αa2

2(1+αa2)
,

the integral becomes

∮
pdq = 4

∫ T/4

0
q̇2dt = 4a2b2

∫ T/4

0
sn2(bt,m)dn2(bt,m)dt.

Changing the variable t to u = bt and taking into account that bT/4 = K(m), we get

∮
pdq = 4a2b

∫ K(m)

0
sn2(u,m)dn2(u,m)du.

This integral of Jacobian elliptic functions can be computed analytically.10 The
result is ∮

pdq = 4a2b
(−1+ 2m)E(m)+ (1−m)K(m)

3m
,

where K(m) and E(m) are the complete elliptic integrals of the first and second kind,
respectively. Thus, the action variable equals

10 Use the formulas given in 5.13 of [3] or the symbolic integration with Mathematica.
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I =
2a2b
π

(−1+ 2m)E(m)+ (1−m)K(m)

3m
.

The total energy of the Duffing oscillator depends on the amplitude a as follows

H =
1
2

a2 +
1
4
αa4.

Using the properties of the complete elliptic integrals one can show that

dI
da

=
2abK(m)

π
.

Therefore

dH
dI

=
dH/da
dI/da

=
a(1+ a2)π
2abK(m)

=
πb

2K(m)
=

2π
T

= ω(a).

EXERCISE 7.4. Simulate numerically the Poincaré map for the Hénon-Heiles equa-
tions which can be obtained as Lagrange’s equation of the following Lagrange func-
tion

L =
1
2
(ẋ2 + ẏ2)− 1

2
(x2 + y2 + 2x2y− 2

3
y3).

Choose the cut plane x = 0 and the total energy i) E0 = 0.01 and ii) E0 = 1/8.
Observe the difference in cases i) and ii).

Solution. Let us derive the equations of motion of these coupled oscillators in the
Hamilton’s form. Denoting q1 = x, q2 = y and introducing p1 = q̇1, ṗ2 = q̇2, we
transform the above Lagrange function to the Hamilton function

H =
1
2
(p2

1 + p2
2)+

1
2
(q2

1 + q2
2 + 2q2

1q2 − 2
3

q3
2).

Hamilton’s equations are

q̇1 = p1, ṗ1 =−(q1 + 2q1q2),

q̇2 = p2, ṗ2 =−(q2 − q2
2 + q2

1).

This dynamical system has one stable fixed point at the origin (0,0) and three un-
stable fixed points given by

P1 : (0,1), P2 : (
√

3/2,−1/2), P3 : (−
√

3/2,−1/2).

The contour plot of the potential energy U(q) = 1
2 (q

2
1 +q2

2 +2q2
1q2 − 2

3 q3
2) is shown

in Fig. 7.16. The separatrices connecting the unstable fixed points are straight lines
and correspond to the energy level 1/6. All contours with the potential energies less
than 1/6 are inside the triangle P1P2P3.
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Fig. 7.16 Contour plot of the potential energy of Henon-Heiles oscillators

As the dynamical system of Henon-Heiles oscillators is conservative, the energy
conservation reads

H(q, p) = E0,

and the phase curves having the initial energy E0 must lie on some 3-D energy level
surface. We use this integral to find p1. Then the phase curves must be found in
some 3-D space of parameters q1,q2, p2. To follow the traces of these phase curves
we choose the cut plane q1 = 0 and plot the Poincaré map numerically using the code
written by Weinstein. The results are shown in Fig. 7.17 for the case E0 = 10−2 (left)
and E0 = 1/8 (right), respectively. For E0 = 10−2 we see four families of embedded
tories corresponding to ordered motion. For E0 = 1/8 one observes a chaotic see
surrounding small islands of ordered motion.
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Fig. 7.17 Poincaré maps of Henon-Heiles oscillators: a) E0 = 0.01, b) E0 = 1/8
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EXERCISE 7.5. Modal equation in a rotating frame. In the frame rotating with the
constant angular velocity ω , the presence of Coriolis and centripetal accelerations
changes the equations of motion (7.7) to

ẍ− 2ω ẏ−ω2x =−∂U
∂x

, ÿ+ 2ω ẋ−ω2y =−∂U
∂y

.

For this system, obtain a first integral and use it to derive a modal equation for the
orbits in the (x,y)-plane which does not involve time t.

Solution. The first integral can easily be obtained if we know the kinetic and poten-
tial energies. The absolute velocity of the point-mass equals

v = vl + vr,

where vl = ω × r = (−ωy,ωx) is the instantaneous velocity of the point-mass ro-
tating together with the frame about the z-axis and vr = (ẋ, ẏ) the relative velocity.
Thus,

v = (ẋ−ωy, ẏ+ωx),

and the kinetic energy for m = 1 becomes

K =
1
2
[(ẋ−ωy)2 +(ẏ+ωx)2].

Together with the potential energy U(x,y), the conservation of the total energy reads

1
2
[(ẋ−ωy)2 +(ẏ+ωx)2]+U(x,y) = E0.

We seek the nonlinear normal modes as periodic solutions by assuming y as a func-
tion of x, without direct reference to time t, and try to eliminate t in these equations.
Using the chain rule

ẏ = y′ẋ, ÿ = y′′ẋ2 + y′ẍ,

with prime denoting the derivative of y with respect to x, and substituting this into
the Lagrange equation for y to get

−∂U
∂y

= y′′ẋ2 + y′(2ωy′ẋ+ω2x− ∂U
∂x

)− 2ω ẋ−ω2y.

Next, we plug ẏ into the energy conservation

1
2
[ẋ2(1+ y′2)+ 2ω(xy′ − y)ẋ+ω2(x2 + y2)]+U(x,y) = E0.

Solving this equation with respect to ẋ, we obtain

ẋ =
−ω(xy′ − y)±√ω2(xy′ − y)2 − (1+ y′2)[ω2(x2 + y2)+ 2U(x,y)− 2E0]

1+ y′2
.
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Substituting this formula into the above equation, we derive the nonlinear modal
equation in terms of y(x).

EXERCISE 7.6. A rigid bar, connected with two linear springs of stiffnesses k1 and
k2, carries out a translational motion of its center of mass S in the vertical direction
and a rotation in the plane about S (see Fig. 7.18). The supports A and B can freely
move in the horizontal direction to keep the springs in the vertical position. Derive
the equations of motion for finite x and ϕ . Obtain a first integral and use it to derive
a modal equation.

S

k1k2

l1l2

x

A B

Fig. 7.18 Nonlinear model of vehicle

Solution. Let q = (x,ϕ) denote the generalized coordinates. We write down the
kinetic and potential energies of this system as follows

K(q̇) =
1
2

mẋ2 +
1
2

JSϕ̇2,

U(q) =
1
2

k1(xst + x+ l1 sinϕ)2 +
1
2

k2(xst + x− l2 sinϕ)2 +mgx

=
1
2

k1(x+ l1 sinϕ)2 +
1
2

k2(x− l2 sinϕ)2

+((k1 + k2)xst +mg)x+(k1l1 − k2l2)sinϕ+
1
2
(k1 + k2)x

2
st .

Taking the force and moment equilibrium

(k1 + k2)xst +mg = 0, (k1l1 − k2l2)xst = 0

into account and removing the last constant term in the potential energy, we can
represent it in the form

U(x,ϕ) =
1
2

k1(x+ l1 sinϕ)2 +
1
2

k2(x− l2 sinϕ)2.

It is now straightforward to derive Lagrange’s equations

mẍ+(k1 + k2)x+(k1l1 − k2l2)sinϕ = 0,

JSϕ̈+(k1l1 − k2l2)xcosϕ+
1
2
(k1l2

1 + k2l2
2)sin 2ϕ = 0.
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The first integral corresponding to the energy conservation follows

1
2

mẋ2 +
1
2

JSϕ̇2 +U(x,ϕ) = E0.

On the other hand, we can represent the equations of motion in the short form

mẍ =−∂U
∂x

, JSϕ̈ =−∂U
∂ϕ

.

To derive the modal equation, we assume ϕ as a function of x, without direct refer-
ence to time t, and try to eliminate t in these equations. That is, we assume ϕ = ϕ(x)
and compute its time derivatives according to the chain rule

ϕ̇ = ϕ ′(x)ẋ, ϕ̈ = ϕ ′′(x)ẋ2 +ϕ ′(x)ẍ,

with prime denoting the derivative of ϕ with respect to x. Using the first equation
of motion to compute the acceleration ẍ and substituting it into the second equation,
we get

JS[ϕ ′′(x)ẋ2 − 1
m
ϕ ′(x)

∂U
∂x

] =−∂U
∂ϕ

.

Next, we substitute ϕ̇ into the energy conservation and solve the latter with respect
to ẋ to find

ẋ2 =
2[E0 −U(x,ϕ)]
m+ JSϕ ′(x)2 .

The modal equation can finally be obtained by substituting this expression into the
above equation

JS

{
ϕ ′′(x)

2[E0 −U(x,ϕ)]
m+ JSϕ ′(x)2 − 1

m
ϕ ′(x)

∂U
∂x

}
=−∂U

∂ϕ
.

This last equation can be transformed to

2[E0 −U(x,ϕ)]ϕ ′′(x)+ [m+ JSϕ ′(x)2][
1
JS

∂U
∂ϕ

− 1
m
ϕ ′(x)

∂U
∂x

] = 0,

where

∂U
∂x

= (k1 + k2)x+(k1l1 − k2l2)sinϕ ,

∂U
∂ϕ

= (k1l1 − k2l2)xcosϕ+
1
2
(k1l2

1 + k2l2
2)sin 2ϕ .

EXERCISE 7.7. Derive equations (7.14).

Solution. We shall derive this system of equations from the equations of slow flow
for A1, B1, A2, B2 obtained in Section 7.2 by the variational asymptotic method
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A1,η =
3
8

B1(A
2
1 +B2

1)+
3
8

B1(A
2
2 +B2

2)+
3
4

B2(A1A2 +B1B2),

B1,η =−3
8

A1(A
2
1 +B2

1)−
3
8

A1(A
2
2 +B2

2)−
3
4

A2(A1A2 +B1B2),

A2,η = (
3
8
+ 3κ)B2(A

2
2 +B2

2)+
3
8

B2(A
2
1 +B2

1)+
3
4

B1(A1A2 +B1B2),

B2,η =−(
3
8
+ 3κ)A2(A

2
2 +B2

2)−
3
8

A2(A
2
1 +B2

1)−
3
4

A1(A1A2 +B1B2).

Multiplying the first equation by A1, the second by B1, and adding them together,
we obtain

A1A1,η +B1B1,η =
3
4
(A1A2 +B1B2)(A1B2 −A2B1).

Using the definitions of the amplitudes and the phase difference, it is easy to see that
the following identities

A1A1,η +B1B1,η =
1
2

d
dη

(A2
1 +B2

1) =
1
2

d
dη

a2
1,

A1A2 +B1B2 = a1a2 cos(φ2 −φ1) = a1a2 cosϕ ,
A1B2 −A2B1 = a1a2 sin(φ2 −φ1) = a1a2 sinϕ

hold true transforming the above equation to

a1a1,η =
3
8

a2
1a2

2 sin2ϕ ⇒ a1,η =
3
8

a1a2
2 sin2ϕ .

Thus, the first equation has been proved. The second equation for a2 can be derived
similarly. In this case we multiply the third and the fourth equations of the above
system by A2 and B2, respectively, and then add them together. The result is

1
2

d
dη

(A2
2 +B2

2) =
3
4
(A2B1 −A1B2)(A1A2 +B1B2).

With supplement of the following identity

A2B1 −A1B2 =−a1a2 sinϕ ,

we transform this equation to

a2a2,η =−3
8

a2
1a2

2 sin2ϕ ⇒ a2,η =−3
8

a2
1a2 sin2ϕ .

To derive the equation for the phase difference, we multiply the first equation by A2,
the second by B2, the third by A1, and the last by B1, and then add them together.
The latter, after some calculation, can be written as
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d
dη

(A1A2 +B1B2) = 3κ(A1B2 −A2B1)(A
2
2 +B2

2).

The derivative on the left-hand side of this equation can be expressed in terms of a1,
a2 and ϕ according to

d
dη

(a1a2 cosϕ) = (a1,ηa2 + a1a2,η)cosϕ− a1a2ϕ,η sinϕ

= (
3
8

a1a3
2 sin2ϕ− 3

8
a3

1a2 sin2ϕ)cosϕ− a1a2ϕ,η sinϕ

= [
3
4

a1a2(a
2
2 − a2

1)cos2ϕ− a1a2ϕ,η ]sinϕ ,

whereas the right-hand side is simply 3κa1a3
2 sinϕ . Plugging these into the above

equation and dividing both sides by a1a2 sinϕ , we obtain the evolution equation for
the phase difference

ϕ,η =
3
4
(a2

2 − a2
1)cos2ϕ− 3κa2

2,

which, by recalling cos2ϕ = (1+ cos2ϕ)/2, can be rewritten as

ϕ,η =−3
8
(a2

1 + a2
2)+ 3(

1
4
−κ)a2

2 +
3
8
(a2

2 − a2
1)cos2ϕ .

EXERCISE 7.8. Compute the approximate Poincaré map from the first integral
(7.17) numerically for the energy level E0 = 0.4 and for the parameter ε = 0.1,
κ = 0.1, and compare it with the Poincaré map obtained by the numerical integra-
tion of the exact equations (7.1).

Solution. In order to compute the Poincaré map of the exact equations (7.1) we
adapt the Mathematica code written by Weisstein to them. Such modified code is
shown below. There are two main functions: the first is used to produce surface of
section by condition x = 0 with the given initial conditions x(0) = x0, y(0) = y0

and ẏ(0) = ẏ0, whereas the second plots the result using the ListPlot command. The
initial velocity ẋ(0) should be computed through others by using the first integral

1
2

ẋ2 +
1
2

ẏ2 +
1
2
(x2 + y2)+

α
4
(x4 + y4)+

β
4
(y− x)4 = E0,

which implies

ẋ0 =

√
2E0 − ẏ2

0 − (x2
0 + y2

0)−
α
2
(x4

0 + y4
0)−

β
2
(y0 − x0)4.
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SurfaceOfSection��x0_, �y0_, dy0_�, e_, Α_, Β_�, tmax_� :�

Module	
dx0 � Sqrt	2 e � x02 � y02 �
Α

2
x04 �

Α

2
y04 �

Β

2
�y0 � x0�4 � dy02�, x, y, t�,

If�� � ��, ��, First���� &�Last�Reap�NDSolve��
x''�t� � �x�t� � Α x�t�^3 � Β �y�t� � x�t��^3,
y''�t� � �y�t� � Α y�t�^3 � Β �y�t� � x�t��^3,
y�0� � y0, y'�0� � dy0, x�0� � x0, x'�0� � dx0�,
�x, y�, �t, 0, tmax�, Method � �EventLocator, "Event" � x�t�,

"EventCondition" � �x'�t� 
 0.�, "EventAction" � Sow��y�t�, y'�t����
���

�
Internal`DeactivateMessages�ListPlot�

SurfaceOfSection��0., �0., �0.65�, 0.4, 0.1, 0.01�, 2000�,
PlotStyle � �PointSize�.005�, Black�,
AspectRatio � Automatic, AxesLabel �
 TraditionalForm �� �y�t�, y

��t� �,
ImageSize � 500��

The map obtained from the first integral (7.17) can be plotted with the Paramet-
ricPlot command. The comparison of these two maps was shown in Fig. 7.11.

EXERCISE 7.9. Prove the formulas (7.29)2,3.

Solution. Let us recall the definitions of matrices A, B, and C

A =UT L,vvU, B =UT L,vϕ −LT
,vϕU, C =UT E,ϕ ,

where the following abbreviations are used

L,vϕ =
∂
∂ϕ

L,v(u(ϕ),∇u(ϕ)), E,ϕ =
∂
∂ϕ

E(L,u), U =
∂u
∂ϕ

.

Consider first the matrix B with the elements

Bi j =UT
im[L,vϕ ]m j − [LT

,vϕ ]imUm j,

where the elements of matrices U and L,vϕ are given by

Uim =
∂ui

∂ϕm
, [L,vϕ ]m j =

∂
∂ϕ j

∂L
∂vm

.

Using these formulas for U and L,vϕ , we compute Bi j explicitly

Bi j =
∂um

∂ϕi

∂
∂ϕ j

∂L
∂vm

− ∂
∂ϕi

∂L
∂vm

∂um

∂ϕ j

=
∂
∂ϕi

(um
∂
∂ϕ j

∂L
∂vm

)− um
∂ 2

∂ϕi∂ϕ j

∂L
∂vm

− ∂
∂ϕ j

(um
∂
∂ϕi

∂L
∂vm

)+ um
∂ 2

∂ϕ j∂ϕi

∂L
∂vm

=
∂
∂ϕi

(um
∂
∂ϕ j

∂L
∂vm

)− ∂
∂ϕ j

(um
∂
ϕi

∂L
∂vm

),
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where the identity of mixed derivatives

∂ 2

∂ϕi∂ϕ j
(·) = ∂ 2

∂ϕ j∂ϕi
(·)

has been taken into account. Since um and vm are 2π-periodic in each variable ϕk,
so are the expressions in the above parentheses. Thus, it follows immediately that

∫
Tn

Bi j = 0.

Next, we turn to the vector Q =UT E(L,u), whose components are

Qi =UT
ik Ek(L,u) =

∂uk

∂ϕi
(∇
∂L
∂ q̇k

(u,∇u)− ∂
∂qk

L(u,∇u))

=
∂uk

∂ϕi
ω j

∂
∂ϕ j

∂L
∂vk

(u,∇u)− ∂uk

∂ϕi

∂L
∂uk

(u,∇u)

= ω j
∂
∂ϕ j

[
∂L
∂vk

(u,∇u)
∂uk

∂ϕi
]− ∂L

∂vk
(u,∇u)ω j

∂ 2uk

∂ϕ j∂ϕi
− ∂uk

∂ϕi

∂L
∂uk

(u,∇u).

Noticing that

ω j
∂ 2uk

∂ϕ j∂ϕi
=

∂
∂ϕi

∂uk

∂ϕ j

dϕ j

dt
=
∂vk

∂ϕi
,

the expression for Qi reduces to

Qi = ω j
∂
∂ϕ j

[
∂L
∂vk

(u,∇u)
∂uk

ϕi
]− ∂L

∂ϕi
.

Using the periodicity condition of u and v with respect to ϕ , we see that the integral
of Qi on the torus also vanishes

∫
T n

UT
ik Ek(L,u) = 0.

EXERCISE 7.10. Simulate numerically the solutions of equations (7.30) satisfying
the initial conditions x(0) = 1, ẋ(0) = 0 and y(0) = 1, ẏ(0) = 0 for ε = 0.1, α = 1,
and κ = 1.2. Plot the curves x(t), y(t), and x(t)y(t) and compare them with the cor-
responding curves obtained from the slow flow system (7.33). Explain why synchro-
nization leads to the stationary behavior of the amplitude modulation of x(t)y(t).

Solution. In order to compare the numerical solutions x(t), y(t) of the exact equa-
tions (7.30) and their amplitude modulations obeying the slow flow equations (7.33),
we need to refer (7.33) to the same time variable. Thus, it is necessary to solve the
slow flow equations in τ = ωt by changing from η to τ according to

d
dη

(·) = d
dτ

(·) dτ
dη

=
1
ε

d
dτ

(·).
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The following pieces of code in Mathematica provide the numerical solutions to the
systems (7.30) and (7.33). The curves x(t) and y(t) corresponding to the numerical
solution of (7.30) as well as their amplitude modulations are shown in Fig. 7.19.

sol � NDSolve
�x''�t� � x�t� � Ε Κ �x�t� � y�t�� � Ε �1 � x�t�2� x'�t� � 0,

y''�t� � �1 � Ε Α� y�t� � Ε Κ �x�t� � y�t�� � Ε �1 � y�t�2� y'�t� � 0,

x�0� � 1, x'�0� � 0, y�0� � 1, y'�0� � 0�, �x�t�, y�t��, �t, 0, 5 � 102��;

slow � NDSolve	

2

Ε
a1'�t� �� a1�t� 1 �

a1�t�2

4
� Κ a2�t� Sin���t��,

2

Ε
a2'�t� � a2�t� 1 �

a2�t�2

4
� Κ a1�t� Sin���t��,

2

Ε
�'�t� � Α � Κ Cos���t��

a2�t�
a1�t�

�
a1�t�
a2�t�

, a1�0� � 1, a2�0� � 1, ��0� � 0�,

�a1�t�, a2�t�, ��t��, �t, 0, 500��;

Based on the variational-asymptotic analysis we can present the asymptotic so-
lution (in the first approximation) to the equations of coupled oscillators in the form

x0(t,η) = a1(η)cos(ωt −φ1(η)), y0(t,η) = a2(η)cos(ωt −φ2(η)),

where η = ετ = εωt. Using the product rule of trigonometric functions, we compute
their product

z0(t,η) = x0(t,η)y0(t,η) =
1
2

a1(η)a2(η)[cos(2ωt −φ1(η)−φ2(η))+ cosϕ(η)].

In the expression in square brackets the first summand containing the fast variable t
describes the fast oscillating contribution to the product with the amplitude 1

2 a1a2,
while the second summand describes the slow oscillating contribution with the same
amplitude. Thus, the amplitude modulation of x(t)y(t) at large time can be described
asymptotically as

a(η) =
1
2

a1(η)a2(η)(1+ cosϕ(η)).

We see that if strong synchronization occurs, then a(η) must approach a constant
value. The curve x(t)y(t) corresponding to the numerical solution of (7.30) as well
as its amplitude modulation, shown in Fig. 7.20, indicates the occurrence of strong
synchronization and confirms the analysis provided in Section 7.4.

EXERCISE 7.11. Recheck the slow flow equations (7.33).

Solution. We recall the equations of slow flow for A j(η) and B j(η) obtained in
Section 7.4

2A1,η =−2k1B1 +A1 − A1

4
(A2

1 +B2
1)+κ(B1−B2),

2B1,η = 2k1A1 +B1 − B1

4
(A2

1 +B2
1)+κ(A2 −A1),
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Fig. 7.19 Curves x(t) and y(t) corresponding to the numerical solution of (7.30) (bold lines)
and their amplitude modulations in accordance with (7.33) (dashed lines)
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Fig. 7.20 Numerical simulation of the product x(t)y(t) (bold line) and its amplitude modula-
tion (dashed line)

2A2,η =−2k1B2 +αB2 +A2 − A2

4
(A2

2 +B2
2)+κ(B2 −B1),

2B2,η = 2k1A2 −αA2 +B2 − B2

4
(A2

2 +B2
2)+κ(A1−A2).

Multiplying the first equation by A1, the second by B1, and adding them, then per-
forming the similar operations for the third and the fourth equations, we obtain

2(A1A1,η +B1B1,η) = A2
1 +B2

1 −
1
4
(A2

1 +B2
1)

2 +κ(A2B1 −A1B2),

2(A2A2,η +B2B2,η) = A2
2 +B2

2 −
1
4
(A2

2 +B2
2)

2 −κ(A2B1 −A1B2).

Expressing A j and B j in terms of a1, a2 and φ1, φ2, this system can be rewritten as

2a1a1,η = a2
1 −

a4
1

4
+κa1a2 sin(φ1 −φ2),

2a2a2,η = a2
2 −

a4
2

4
−κa1a2 sin(φ1 −φ2),
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which is equivalent to

2a1,η = a1(1− a2
1

4
)+κa2 sinϕ ,

2a2,η = a2(1− a2
2

4
)−κa1 sinϕ ,

where ϕ = φ1 −φ2 is the phase difference.
Returning to the system of slow flow equations, we rewrite them in terms of a1,

a2, φ1, φ2 as follows

2(a1,η cosφ1 − a1 sinφ1φ1,η) =−2k1a1 sinφ1 + a1 cosφ1

− 1
4

a3
1 cosφ1 +κ(a1 sinφ1 − a2 sinφ2),

2(a1,η sinφ1 + a1 cosφ1φ1,η) = 2k1a1 cosφ1 + a1 sinφ1

− 1
4

a3
1 sinφ1 +κ(a2 cosφ2 − a1 cosφ1),

2(a2,η cosφ2 − a2 sinφ2φ2,η) =−2k1a2 sinφ2 +αa2 sinφ2 + a2 cosφ2

− 1
4

a3
2 cosφ2 +κ(a2 sinφ2 − a1 sinφ1),

2(a2,η sinφ2 + a2 cosφ2φ2,η) = 2k1a2 cosφ2 −αa2 cosφ2 + a2 sinφ2

− 1
4

a3
2 sinφ2 +κ(a1 cosφ1 − a2 cosφ2).

Multiplying the first equation by sinφ1, the second by cosφ1, subtracting the first
equation from the second one, and using the identity sin2 φ + cos2 φ = 1, we obtain

2φ1,η = 2k1 −κ+κ a2

a1
cos(φ1 −φ2).

In a similar manner, we multiply the third equation by sinφ2, the fourth by cosφ2

and subtract one from another to get

2φ2,η = 2k1 −α−κ+κ a1

a2
cos(φ1 −φ2).

The evolution equation for the phase difference ϕ = φ1 − φ2 is easily derived by
subtracting one from another of two equations just obtained yielding

2ϕ,η = α+(
a2

a1
− a1

a2
)cosϕ .

EXERCISE 7.12. Solve the slow flow system (7.33) numerically for α = 1, and κ =
1.2, with the initial conditions a1(0) = 1, a2(0) = 1, and ϕ(0) = 1. Plot the curves
a1(t), a2(t), and ϕ(t), and observe their behavior as t becomes large.
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Fig. 7.21 Amplitudes a1(t) and a2(t) of the weakly coupled van der Pol’s oscillators
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Fig. 7.22 The phase difference ϕ(t) of the weakly coupled van der Pol’s oscillators

Solution. The numerical solution of the system can be obtained via the NDSolve
command provided in Mathematica. The plotted curves of amplitudes a1(t) and
a2(t) are shown adjacent to each other in Fig. 7.21, where it can be seen that they
stay constant as time t tends to infinity. The next Figure 7.22 shows the plot of the
phase difference ϕ(t). Observe that the phase difference also approaches a constant
value as time goes to infinity. The figures illustrated here are generated using the
numerical solution obtained with the following piece of code.

slow � NDSolve	

2

Ε
a1'�t� �� a1�t� 1 �

a1�t�2

4
� Κ a2�t� Sin���t��,

2

Ε
a2'�t� � a2�t� 1 �

a2�t�2

4
� Κ a1�t� Sin���t��,

2

Ε
�'�t� � Α � Κ Cos���t��

a2�t�
a1�t�

�
a1�t�
a2�t�

, a1�0� � 1, a2�0� � 1, ��0� � 0�,

�a1�t�, a2�t�, ��t��, �t, 0, 500��;

The behavior of the amplitudes and of the phase difference indicates that, after
a short transient time of unsynchronized oscillations of the amplitudes, the steady-
state synchronized vibrations of the coupled oscillators occur. This is also confirmed
by the analysis of the coupled self-excited oscillators provided in Section 7.4 and
by Fig. 7.14.



Chapter 8
Nonlinear Waves

This Chapter studies several nonlinear equations of wave propagation which admit
the exact solutions by the inverse scattering transform. It analyzes also the amplitude
and slope modulations obtained by the variational-asymptotic method which may be
applied to non-integrable systems as well.

8.1 Solitary and Periodic Waves

Korteweg-de Vries Equation. Let us begin our study of nonlinear waves with the
Korteweg-de Vries (KdV) equation [26]

u,t + 6uu,x+ u,xxx = 0. (8.1)

This equation arose originally in the theory of shallow water waves, but it is now
widely used to describe dispersive waves in various nonlinear media.1 The constant
factor 6 in front of the nonlinear term is conventional but of no great significance.
The last term accounts for the dispersion. Due to the balanced effects of nonlinearity
and dispersion, waves may propagate without changing their shape. To demonstrate
this let us seek a particular solution of (8.1) in form of wave traveling with constant
velocity c

u = ϕ(ξ ), ξ = x− ct,

which is similar to d’Alembert’s solution for linear hyperbolic waves. Substitution
of this Ansatz into (8.1) gives

−cϕ ′+ 6ϕϕ ′+ϕ ′′′ = 0,

with prime denoting the derivative with respect to ξ . The integration yields

1 Particularly, Zabusky and Kruskal [54] have shown that the KdV equation is the continuum
limit of the equations governing the Fermi-Pasta-Ulam chain. Note that the original KdV
equation [53] differs from (8.1) but can be brought to this form by a simple transformation.
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ϕ ′′ =−3ϕ2 + cϕ− g,

where g is an integration constant. This resembles the equation of motion of mass-
spring oscillator with a unit mass and a nonlinear restoring force derivable from the
cubic potential energy U(ϕ) = ϕ3 − 1

2 cϕ2 + gϕ .

-

-

’

Fig. 8.1 Separatrix

The first integral of the above equation
is

1
2
ϕ ′2 =−ϕ3 +

1
2

cϕ2 − gϕ+ h.

In the special case when ϕ and its first
derivative tend to zero as ξ →±∞, we
may set g = h = 0. Then the first inte-
gral becomes

ϕ ′2 = ϕ2(c− 2ϕ).

The corresponding phase curve in the
(ϕ ,ϕ ′)-plane is the separatrix shown
in Fig. 8.1 for c = 1. It is seen that ϕ
increases from zero at ξ = −∞, rises
to a maximum ϕm = c/2 and then de-
creases to zero as ξ →∞. The solution
of the last equation can be found ex-
plicitly by quadrature and is given by

ϕ(ξ ) =
c
2

sech2(
ξ
√

c
2

).

This particular solution is called a soliton. Mention that the solution remains still
valid if ξ = x− ct − d, where d is any constant. Looking at this solution we can
observe that: i) the wave speed of the soliton is twice its amplitude, ii) the width
of the soliton is inversely proportional to the square root of the wave speed and
therefore taller solitons are narrower in width and move faster than shorter ones.
The shape of the solitary wave for c = 1 is shown in Fig. 8.2.

In general g and h differ from zero and

ϕ ′2 = p(ϕ),

where p(ϕ) is a cubic polynomial having three simple zeros. For bounded solutions
all zeros must be real, and the periodic solution must oscillate between two of them.
Let the zeros be b1, b2, b3, and we order them such that b1 > b2 > b3. Then

p(ϕ) =−2(ϕ− b1)(ϕ− b2)(ϕ− b3).
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Fig. 8.2 Solitary wave of KdV equation

Since p(ϕ) > 0 for ϕ ∈ (b2,b1), the solution oscillates between b2 and b1. So, let
us define a = b1−b2 as the amplitude of the wave. Comparing p(ϕ) with that in the
first integral, we find

c = 2(b1 + b2 + b3), g = b1b2 + b1b3 + b2b3, h = b1b2b3.

It can easily be checked that the solution of the first integral is expressed in terms of
Jacobian elliptic function cn as follows (see exercise 8.1)

ϕ(ξ ) = b2 +(b1 − b2)cn2(
√
(b1 − b3)/2ξ ,m), m =

b1 − b2

b1 − b3
.

Such periodic solutions are called cnoidal waves. As the period of cn2(u,m) in its
argument u is 2K(m), with K(m) being the complete elliptic integral of the first kind,
the wave length is

λ =
2K(m)√
(b1 − b3)/2

. (8.2)

The phase velocity of this periodic wave packet is c = 2(b1 +b2+b3). The solution
can also be presented in the form

ϕ(ξ ) = ψ(θ ) = ψ(kx−ωt),

where ψ(θ ) is the periodic function of period 2π . Since k = 2π/λ , we have for the
frequency

ω = ck = 2(b1 + b2 + b3)k.

From (8.2), b1 − b3 is a function of λ and a = b1 − b2. In the special case b2 = 0
the root b3 can be expressed through a and the dispersion relation for these periodic
waves takes the form

ω =Ω(k,a).

We see that the dispersion relation for nonlinear waves involves the amplitude, what
is quite similar to nonlinear vibrations where the frequency depends also on the
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amplitude. If the amplitude of the wave is small, a � 1 and m → 0 then 2K(m) �
π , so ω � 2b3k � −4 π

2

λ 2 k = −k3, and we recover the dispersion relation of the
linearized KdV equation

u,t + u,xxx = 0.

In contrary, if b3 → 0, m → 1, and a = b1 → c/2, then the wavelength λ tends to
infinity, and the solution approaches that of soliton.

Nonlinear Klein-Gordon Equation. We turn next to the nonlinear equation which
is derivable from the following Lagrangian

L =
1
2

u2
,t −

1
2

u2
,x −U(u).

Euler-Lagrange’s equation reads

u,tt − u,xx +U ′(u) = 0. (8.3)

This is the so-called non-linear Klein-Gordon equation which arises in various phys-
ical situations. This is especially true of the case U(u) = 1− cosu known as the
Sine-Gordon equation for which U ′(u) = sinu. It describes for instance free tor-
sional vibrations of an elastic rod along which rigid pendulums are attached at close
intervals. The pendulums cause additional restoring forces proportional to sin u. An-
other mechanical problem leading to this equation deals with the motion of dislo-
cations in crystals, where the sinu term occurs due to the periodic structure of the
crystal lattice. Besides, it is used in modeling Josephson junctions, laser pulses and
many other phenomena. The alternative choice U(u) = u2/2+αu4/4 arises in the
problem of free vibrations of a pre-stretched string along which nonlinear springs
with the cubic nonlinearity are attached at close intervals. Mention also that the
small amplitude expansion of the Sine-Gordon equation leads to this model with
α =−1/6.

1 2 3 4

- 3

- 2

- 1

1

2

ϕ

ϕ´

Fig. 8.3 Separatrix

We look first for the soliton travel-
ing with a constant velocity c < 1 in the
form: u = ϕ(ξ ), ξ = x− ct. Substitution
of this Ansatz into (8.3) gives

(1− c2)ϕ ′′ −U ′(ϕ) = 0.

This resembles the equation of motion
of mass-spring oscillator with a mass
m = 1 − c2 and a nonlinear restoring
force derivable from the potential energy
−U(ϕ). The first integral is

1
2

mϕ ′2 −U(ϕ) = h.
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If ϕ and its first derivative tend to zero as ξ →±∞, then h = 0. For definiteness we
consider U(ϕ) = ϕ2/2+αϕ4/4 with a negative α . The first integral with h = 0

ϕ ′2 =
1
m
ϕ2(1+αϕ2/2)

plots as the separatrix in the (ϕ ,ϕ ′)-plane shown in Fig. 8.3 for c = 1/2, α =−0.1.
Thus ϕ increases from zero at ξ =−∞, rises to a maximum ϕm =

√
2/|α| and then

decreases to zero as ξ →∞. The solution of the last equation can be found explicitly
by quadrature and is given by

ϕ(ξ ) =

√
2
|α|

2e−|ξ |/
√

1−c2

1+ e−2|ξ |/
√

1−c2
.

This solitary wave is shown in Fig. 8.4. Mention that the solution remains still valid
if ξ = x− ct − d, where d is any constant. We can observe that: i) the amplitude of
the soliton is constant and independent of the wave speed, ii) the width of the soliton
is proportional to

√
1− c2, so the narrower soliton moves faster than the wider one.
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Fig. 8.4 Solitary wave of Klein-Gordon equation

Let us find now the periodic solutions of Klein-Gordon equation. They are ob-
tained by taking u = ψ(θ ), with θ = kx−ωt, where we assume that ψ(θ ) is 2π-
periodic function. Substituting u = ψ(θ ) into (8.3), we get

(ω2 − k2)ψ ′′+U ′(ψ) = 0.

The finding of ψ(θ ) is equivalent to searching for the 2π-periodic extremal of the
following functional

I[ψ ] =
∫ θ0+2π

θ0

[
1
2
(ω2 − k2)ψ ′2 −U(ψ)]dθ , (8.4)

where θ0 may be set equal to zero without limiting the generality. The first integral
of Lagrange’s equation reads
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1
2
(ω2 − k2)ψ ′2 +U(ψ) = h.

Its solution can be found by the separation of variables. The result is

θ =

√
ω2 − k2
√

2

∫
dψ√

h−U(ψ)
.

If U(ψ) is either a cubic, a quartic, or a trigonometric function, then ψ(θ ) can be
expressed in terms of standard elliptic functions. Periodic solutions are obtained
when ψ oscillates between two simple zeros of h−U(ψ). At the zeros ψ ′(θ ) = 0,
and the solution has a maximum (crest) or a minimum (trough); these points occur
at finite values of θ since the above integral converges when the zeros are simple.
We denote the zeros by ψ1 and ψ2 and consider the case

ψ1 ≤ ψ ≤ ψ2, h−U(ψ)≥ 0, ω2 − k2 > 0.

As the period of ψ(θ ) is assumed to be 2π ,

2π =

√
ω2 − k2
√

2

∮
dψ√

h−U(ψ)
. (8.5)

The contour integral in this formula denotes the integral over a complete oscillation
of ψ from ψ1 up to ψ2 and back, so it is equal to twice the integral from ψ1 to ψ2

because the sign of the square root has to be changed appropriately in the two parts
of the contour. This integral may also be interpreted as the contour integral around
a cut from ψ1 to ψ2 in the complex ψ-plane.

In the linear case U(ψ) = 1
2ψ

2, and, as we know, the 2π-periodic solution is

ψ(θ ) = acosθ , h =
a2

2
,

so the amplitude a cancels out in the integral on the right-hand side of (8.5). Then
(8.5) becomes the linear dispersion relation

ω2 − k2 = 1,

obtained previously for the linear Klein-Gordon equation. This dispersion relation is
also the solvability condition of the variational problem (8.4). In the nonlinear case
the parameter h does not drop out of (8.5) and we have the typical dependence of the
dispersion relation on the amplitude. Consider for example the case U(ϕ) = ϕ2/2+
αϕ4/4 with small α . Then (8.4) is exactly the variational problem (5.4) studied by
the variational-asymptotic (or Lindstedt-Poincaré) method in Section 5.1, with ω2

replaced by ω2 − k2 and ε by α . Therefore the following asymptotic formulas

√
ω2 − k2 = 1+

3
8
αa2 ⇒ ω2 − k2 = 1+

3
4
αa2,
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and

ψ(θ ) = acosθ +α
a3

32
(cos3θ − cosθ )

follow at once.

u(x,t)

u(x,t)

u(x,t)

Fig. 8.5 2 traveling solitons

Behavior of Solitons. Through extensive
numerical simulations of the KdV equa-
tion2 the following remarkable behavior
of solitons was discovered. If we con-
sider two solitons traveling from left to
right with the taller one behind as shown
in Fig. 8.5, then since the taller soliton
moves faster than the shorter soliton, they
will collide. After a short collision time
of nonlinear interaction and overlapping
the solitons separate again, with the taller
one now ahead, and the amplitudes and
velocities regain their initial values. The
only effect of nonlinear interaction are
phase shifts, that is the centers of solitons
are slightly shifted from the places where
they should have been as if there had been
no interaction (see Fig. 8.6). This resem-
bles the collision of particles; so similar to particles the name soliton was given to
these special waves.

Fig. 8.6 Two-soliton solution of the KdV equation

This remarkable numerical discovery led to a series of first integrals of the KdV
equation. All these first integrals are of the form

2 First initiated by Zabusky and Kruskal in 1965 [54].
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I j =

∫ ∞

−∞
Pj(u,u,x, . . . ,

∂ ju
∂x j )dx = const,

where Pj are polynomials. For example, the first three integrals are (see exercise 8.3)

I−1 =

∫ ∞

−∞
udx, I0 =

∫ ∞

−∞
u2 dx, I1 =

∫ ∞

−∞
(u3 − 1

2
u2
,x)dx.

In searching for further first integrals of the KdV equation Miura discovered the
following transformation: if v is a solution of the modified KdV equation

v,t − 6v2v,x + v,xxx = 0,

then
u =−(v2 + v,x)

satisfies KdV equation. This is readily seen from the relation

u,t + 6uu,x+ u,xxx =−(2v+ ∂x)(v,t − 6v2v,x + v,xxx).

The equation u = −(v2 + v,x) may be viewed as Riccati’s equation for v in terms of
u. It can be transformed to a linear equation by substituting v = ψ,x/ψ . This yields

ψ,xx + uψ = 0.

Since the KdV equation is Galilean invariant, that is invariant under the transforma-
tion

(x, t,u(x, t))→ (x− ct, t,u(x, t)+
1
6

c),

it is natural to replace u by u−λ and consider the equation

ψ,xx + uψ = λψ .

This is nothing else but the stationary Schrödinger equation which has been studied
extensively in context of the scattering problem, where function −u(x, t) plays the
role of the scattering potential. The association of the Schrödinger equation with
the KdV equation led Gardner, Green, Kruskal, and Miura later [16] to the fruitful
development of a beautiful mathematical method called inverse scattering transform
which can be used to fully integrate a wide class of nonlinear partial differential
equations [1]. We consider this method in the next Section.

8.2 Inverse Scattering Transform

This Section presents the analytical solution of KdV equation based on the inverse
scattering transform.3

3 See the detailed derivations in [1].
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Lax Pair. Let us consider the KdV equation (8.1) subject to the initial condition

u(x,0) = u0(x),

where u0(x) decays sufficiently rapidly as |x| → ∞. Since the KdV equation is non-
linear, the Fourier transform cannot directly be applied to solve this initial-value
problem. However, as motivated in the previous Section, we can relate this equation
to the stationary Schrödinger equation

Lψ = λψ , (8.6)

where L is the linear operator defined by

Lψ = ψ,xx + u(x, t)ψ .

The idea is based on the following construction proposed by Lax [30]. Assume that
ψ evolves in time in accordance with

ψ,t = Aψ . (8.7)

Thus, A is the linear operator governing the time evolution of ψ . Now we calculate
the time derivative of equation (8.6)

L,tψ+Lψ,t = λ,tψ+λψ,t .

Taking into account (8.7) we transform the above equation to

(L,t +LA−AL)ψ = λ,tψ .

Thus, if λ,t = 0, then the so-called Lax equation

L,t +[L,A] = 0, [L,A] = LA−AL,

holds true. The problem reduces then to finding A so that Lax’s equation is compat-
ible with the KdV equation. It is easy to show by the direct inspection (see exercise
8.4) that Lax’s equation is compatible with the KdV equation if we choose A as
follows

Aψ = (γ+ u,x)ψ− (4λ + 2u)ψ,x, (8.8)

where γ is an arbitrary constant. The byproduct of Lax’s construction is that the
KdV equation possesses an infinite number of first integrals since all eigenvalues
of Lψ = λψ are such first integrals. The linear operators L and A, called Lax’s
pair, have been found later on for a wide class of nonlinear partial differential
equations, including the Sine-Gordon equation, the nonlinear Schrödinger
equation, the Kadomtsev-Petviashvili equation and many other equations of
mathematical physics.4

4 The list of fully integrable nonlinear equations can be found in [1].
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Inverse Scattering Transform. Based on the Lax representation we can now solve
the KdV equation, corresponding to u→ 0 as |x| →∞, in three steps sketched below.
The mathematical justification will be given in the next paragraph.

i) First step. At time t = 0 the initial condition u(x,0) = u0(x) is known. With
these given initial data we solve the direct scattering problem: find the eigenvalues
and the corresponding eigenfunctions of (8.6). One can show that the spectrum of
the Schrödinger equation with u(x, t)→ 0 as |x| → ∞ is discrete for λ > 0 and con-
tinuous for λ < 0. Denote the discrete eigenvalues by λ = κ2

n , n= 1,2, . . . ,N and the
continuous eigenvalues by λ =−k2. It turns out that the normalized eigenfunctions
corresponding to the discrete eigenvalues behave asymptotically as x→∞ according
to

ψn(x, t)∼ σn(t)e
−κnx,

with the normalization condition
∫ ∞

−∞
ψ2

n dx = 1.

For the continuous spectrum the asymptotic behaviors of the eigenfunctions are
described by

ψ(x, t)∼ e−ikx +ρ(k, t)eikx as x → ∞,
ψ(x, t)∼ τ(k, t)e−ikx as x →−∞,

where ρ(k, t) is the reflection coefficient and τ(k, t) the transmission coefficient. At
t = 0 the obtained scattering data

S(λ ,0) =
({κn,σn(0)}N

n=1,ρ(k,0),τ(k,0)
)

serve as the input data for the next step.
ii) Second step. We use now the evolution equation (8.7) with A from (8.8) to de-

termine the time dependence of the scattering data. We know that κn are unchanged.
It will be shown that, for n = 1,2, . . . ,N

σn(t) = σn(0)e4κ3
nt ,

and

τ(k, t) = τ(k,0),

ρ(k, t) = ρ(k,0)e8ik3t .

Thus, the scattering data at time t are given by

S(λ , t) =
({κn,σn(t)}N

n=1,ρ(k, t),τ(k, t)
)
.

We use this as the input data for the last step.
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iii) Third (last) step. At this final step we solve the inverse scattering problem:
reconstruct the potential u(x, t) which is the solution of the KdV equation from the
knowledge of the scattering data S(λ , t). The results may be summarized as follows.
From the scattering data we find the function

F(x, t) =
N

∑
n=1
σ2

n (t)e
−κnx +

1
2π

∫ ∞

−∞
ρ(k, t)eikxdk.

We then solve the linear integral equation

K(x,y, t)+F(x+ y, t)+
∫ ∞

x
K(x,z, t)F(z+ y, t)dz = 0, (8.9)

called Gelfand-Levitan equation. Finally we compute u(x, t) in accordance with

u(x, t) = 2
∂
∂x

[K(x,x, t)].

As we see, this method is conceptually quite similar to the Fourier transform used
for solving linear equations (cf. Chapter 4), except that the last step of solving the
inverse scattering problem is highly nontrivial. Schematically, the described steps
may be summarized in the following diagram

u(x,0)
direct scattering−→ S(λ ,0)⏐⏐*time evolution

u(x, t)
inverse scattering←− S(λ , t)

In this diagram the direct scattering plays the role of the Fourier transform, while the
inverse scattering the inverse Fourier transform. The time evolution of the scattering
data is similar to the multiplication of the Fourier image with function eiΩ(k)t which
accounts for the dispersion. Note that at each step we have to deal just with linear
problems which are “doable”.

Mathematical Justification. In this paragraph we present briefly the justification of
the above results based on the direct and inverse scattering problems.5 In the direct
scattering problem it is convenient to put λ =−k2 and write (8.6) as

ψ,xx +[u(x, t)+ k2]ψ = 0.

For a given k we let φ(x,k), φ̄ (x,k) and ψ(x,k), ψ̄(x,k) be the corresponding eigen-
functions which satisfy the following asymptotic behaviors

φ(x,k) ∼ eikx, φ̄(x,k) ∼ e−ikx as x → ∞,

ψ(x,k)∼ e−ikx, ψ̄(x,k)∼ eikx as x →−∞.
5 See the detailed expositions in [1].
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Equation (8.6) is a linear second order differential equation. Therefore, between
these eigenfunctions there are linear relationships

ψ(x,k) = a(k)φ̄ (x,k)+ b(k)φ(x,k),
ψ̄(x,k) =−ā(k)φ(x,k)+ b̄(k)φ̄ (x,k).

where a(k) and b(k) satisfy the following symmetry properties

ā(k) =−a(−k) =−a∗(k∗), b̄(k) = b(−k) = b∗(k∗).

Besides, the following identity holds true

a(k)ā(k)+ b(k)b̄(k) =−1.

This can easily be checked by computing the Wronskians giving

W (ψ(x,k), ψ̄(x,−k)) = [a(k)ā(k)+ b(k)b̄(k)]W (φ(x,k), φ̄ (x,k)).

We introduce τ(k) = 1/a(k) and ρ(k) = b(k)/a(k) as the transmission and reflection
coefficients, respectively and consider the normalized eigenfunctionψ(x,k)/a as in
the previous paragraph. It is easy to see that |ρ(k)|2 + |τ(k)|2 = 1.

We turn now to the time dependence of the scattering data. The evolution of
ψ(x,k, t) is described by (8.7), with A from (8.8). We introduce the modified eigen-
function N(x,k, t) such that

1
a
ψ(x,k, t) = N(x,k, t)e−ikx.

Then N satisfies the equation

N,t = (γ− 4ik3 + u,x + 2iku)N+(4k2 − 2u)N,x.

The asymptotic behavior of ψ(x,k, t) implies that

N(x,k, t)→ τ(k, t) as x →−∞,
N(x,k, t)→ 1+ρ(k, t)e2ik as x → ∞.

By considering the above equation for N(x,k, t) as x →−∞ and using the fact that
u and its first derivative tend to zero in this limit, we obtain

τ,t = (γ− 4ik3)τ.

Thus, the choice γ = 4ik3 makes the transmission coefficient τ(k) independent of t.
Then, in the other limit x → ∞ we get

ρ,t = 8ik3ρ ⇒ ρ(k, t) = ρ(k,0)e8ik3t .
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Concerning the discrete spectrum we know that the eigenvalues λ = κ2
n are posi-

tive and time independent. Denote by χn(x,κn, t) the eigenfunctions with the asymp-
totic behavior χn ∼ e−κnx as x→∞ and assume thatψn(x, t) =σn(t)χn(x,κn, t). With
(8.6) and (8.7) it is easy to check that

d
dt

∫ ∞

−∞
χ2

n dx =−8κ3
n

∫ ∞

−∞
χ2

n dx.

Taking into account the normalization condition we have

σ2
n (t) =

1∫ ∞
−∞ χ2

n dx
.

Thus,
σ2

n (t) = σ
2
n (0)e

8κ3
nt ⇒ σn(t) = σn(0)e4κ3

nt .

The rigorous derivation of the Gelfand-Levitan integral equation requires a
deeper insight into the spectral analysis [18] than that provided so far. Let us show
nevertheless how to obtain, at least formally, this equation by working with the
Schrödinger equation in an equivalent “time domain”. We consider equation (8.6)
as the Fourier transform of the “wave” equation

ϕ,xx −ϕ,θθ + uϕ = 0, (8.10)

where function ϕ(x,θ , t) is the Fourier image of ψ(x,k, t) with respect to k

ϕ(x,θ , t) =
∫ ∞

−∞
ψ(x,k, t)eikθdk.

We suppress at present the true time variable t. Consider an incident wave ϕ =
δ (x+θ ) from x = ∞ and let the reflected wave be F(x−θ ). Thus,

ϕ ∼ ϕ∞ = δ (x+θ )+F(x−θ ) as x → ∞.

We propose that the corresponding solution of (8.10) may be written

ϕ(x,θ ) = ϕ∞(x,θ )+
∫ ∞

x
K(x,z)ϕ∞(x,θ )dz,

what is equivalent to a crucial step in Gelfand-Levitan’s work. By direct substitution
in (8.10) we verify that there is such a solution provided

K,zz −K,xx + uK = 0, z > x,

u(x) = 2
d
dx

K(x,x),

K,K,z → 0 as x → ∞.

This is a well-posed problem, therefore K(x,z) exists. From the causality property
of the wave equation we know that ϕ must vanish for x+θ < 0. Therefore
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ϕ∞(x,θ )+
∫ ∞

x
K(x,z)ϕ∞(x,θ )dz = 0 for x+θ < 0.

Introducing the expression for ϕ∞(x,θ ) in this equation we get

K(x,−θ )+F(x−θ )+
∫ ∞

x
K(x,z)F(z−θ )dz = 0 for x+θ < 0.

With θ = −y this becomes Gelfand-Levitan equation (8.9). At a fixed time t, F is
determined from the direct scattering problem in terms of u(x, t) as

F(x−θ ) =
N

∑
n=1

σ2
n (t)e

−κn(x−θ) +
1

2π

∫ ∞

−∞
ρ(k, t)eik(x−θ)dk.

With θ = −y and with the scattering data at time t we obtain the expression for F
in the Gelfand-Levitan equation.

Reflectionless Potential. The solution of the Gelfand-Levitan equation simplifies
considerably if the reflection coefficient is zero. In this case we obtain the special
soliton solutions by the separation of variables. Indeed, if ρ(k, t) = 0, then we have
for function F(x, t)

F(x, t) =
N

∑
n=1
σ2

n (t)e
−κnx,

with σn(t) = σn(0)e4κ3
nt > 0 and distinct κn > 0, n = 1,2, . . . ,N. So the Gelfand-

Levitan equation becomes

K(x,y, t)+
N

∑
n=1

σ2
n (t)e

−κn(x+y) +

∫ ∞

x
K(x,z, t)

N

∑
n=1

σ2
n (t)e

−κn(z+y) dz = 0.

We seek the solution of this equation in the form

K(x,y, t) =
N

∑
n=1
σnvn(x)e

−κny.

Substituting this solution Ansatz into the integral equation we get for m= 1,2, . . . ,N

vm(x)+
N

∑
n=1

σm(t)σn(t)
κm +κn

e−(κm+κn)xvn(x) = σm(t)e
−κmx.

This is a system of N algebraic equations which can be written in the matrix form
as

(I+C)v = f, (8.11)

where v=(v1,v2, . . . ,vN)
T , f=( f1, f2, . . . , fN)

T with fm =σme−κmx, m= 1,2, . . . ,N,
I is the identity matrix and C is a symmetric N ×N matrix with elements
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Cmn =
σm(t)σn(t)
κm +κn

e−(κm+κn)x, m,n = 1,2, . . . ,N.

A sufficient condition for the system (8.11) to have a unique solution is that C is
positive definite. The latter holds true because the quadratic form

ξξξ ·Cξξξ =
N

∑
m=1

N

∑
n=1

σm(t)σn(t)ξmξn

κm +κn
e−(κm+κn)x =

∫ ∞

x

(
N

∑
n=1

σn(t)ξne−κnx

)2

dy

is clearly positive for an arbitrary ξξξ �= 0. The unique solution to the KdV equation
in this case is

u(x, t) = 2
∂ 2

∂x2 [lndet(I+C)]. (8.12)

Soliton Solutions. Consider first the simplest case N = 1 for which

C =
σ2

1 (t)
2κ1

e−2κ1x =
σ2

1 (0)
2κ1

e−2κ1x+8κ3
1 t .

Introducing ξ = x− ct − d, where

c = 4κ2
1 , d =− 1

κ1
ln
σ1(0)
2κ1

,

we may write C = e−2κ1ξ . Then

u(x, t) = 2
∂ 2

∂x2 [ln(1+C)] = 8κ2
1

C
(1+C)2 = 2κ2

1 sech2(κ1ξ )

coincides with the one soliton solution obtained in Section 8.1.
For N = 2 we have

Δ = det(I+C) = 1+ e−2κ1ξ1 + e−2κ2ξ2 + e−2κ1ξ1−2κ2ξ2+A12 ,

with

ξn = x− 4κ2
nt − dn, A12 = 2ln

(
κ1 −κ2

κ1 +κ2

)
.

This formula implies that the only effect of the interaction of two solitary waves is a
phase shift. Indeed, consider the trajectory ξ1 = const, and assume that κ1 > κ2 > 0.
Then

Δ ∼ 1+ e−2κ1ξ1 as t →−∞,
Δ ∼ e−2κ2ξ2 + e−2κ1ξ1−2κ2ξ2+A12 as t → ∞.
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Therefore, from (8.12) it follows that for fixed ξ1

u(x, t) = 2
∂ 2

∂x2 (lnΔ)∼ 2κ2
1 sech2(κ1ξ1 + δ±1 ) as t →±∞,

with

δ+1 =
1
2

A12, δ−1 = 0.

Similarly, for fixed ξ2

u(x, t)∼ 2κ2
2 sech2(κ2ξ2 + δ±2 ) as t →±∞,

with

δ+2 = 0, δ−2 =
1
2

A12.

Thus, for large negative time, the taller soliton is behind the shorter one, and vice-
versa for large positive time. The phase shifts of solitons are A12/2 and −A12/2,
respectively.

The calculations for N solitons show the similar behavior. If κ1 > κ2 > .. . >
κN > 0, then for fixed ξn

u(x, t)∼ 2κ2
n sech2(κnξn + δ±n ) as t →±∞,

where

δ+n =
N

∑
m=n+1

ln

(
κn −κm

κn +κm

)
, δ−n =

n−1

∑
m=1

ln

(
κm −κn

κm +κn

)
.

Therefore, the n-th soliton undergoes a phase shift given by

δn = δ+n − δ−n =
N

∑
m=n+1

ln

(
κn −κm

κn +κm

)
−

n−1

∑
m=1

ln

(
κm −κn

κm +κn

)
.

We see that the total phase shift is equal to the sum of phase shifts resulted from
pair interaction with every other soliton.

To illustrate the relationship between the initial condition and the number of soli-
tons, let us take the initial condition in the form

u(x,n) = N(N + 1)sech2x.

In this case the scattering problem, with λ = κ2, reads

ψ,xx +[N(N + 1)sech2x− k2]ψ = 0.

If we make the transformation μ = tanhx, then this equation becomes

(1− μ2)
d2ψ
dμ2 − 2μ

dψ
dμ

+[N(N + 1)− κ2

1− μ2 ]ψ = 0, (8.13)
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which is the associate Legendre equation (see [3]). Equation (8.13) has N distinct
eigenvalues κn = 1,2, . . . ,N and bounded eigenfunctions in terms of Legendre poly-
nomials

ψn(x) = γnPn
N(tanhx)∼ cne−nx as x → ∞,

where cn is determined from the normalization condition. The N-soliton solution of
the KdV equation is given by (8.12), where

Cmn =
cm + cn

m+ n
e−(m+n)x.

In particular, the two-soliton solution of the KdV equation satisfying the above
initial condition for N = 2 reads

u(x, t) = 12
3+ 4cosh(2x− 8t)+ cosh(4x− 64t)
[3cosh(x− 28t)+ cosh(3x− 36t)]2

.

If we introduce ξ1 = x− 16t and ξ2 = x− 4t, then the two-soliton solution can be
expressed as

u(x, t) = 12
3+ 4cosh(2ξ1 + 24t)+ cosh(4ξ1)

[3cosh(ξ1 − 12t)+ cosh(3ξ1 + 12t)]2
,

and, alternatively,

u(x, t) = 12
3+ 4cosh(2ξ2)+ cosh(4ξ2 − 48t)

[3cosh(ξ2 − 24t)+ cosh(3ξ2 − 24t)]2
.

Expanding these formulas, keeping ξ1 (alternatively ξ2) fixed, it is easy to see that
as t →±∞

u(x, t)∼ 2sech2(ξ2 ± 1
2

ln3)+ 8sech2(2ξ1 ∓ 1
2

ln3).

Thus, the phase shifts are ± ln3/2 in this case.

8.3 Energy Method

In this Section we are going to apply the variational-asymptotic method to general
variational problems of wave propagation.

Variational-Asymptotic Method. Consider the variational problem in form of
Hamilton’s variational principle: find the extremal of the action functional

I[ui(x, t)] =
∫∫
R

L(ui,ui,α ,ui,t)dxdt, (8.14)
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where R = V × (t0, t1) is any finite and fixed region in (d + 1)-dimensional space-
time. We assume that ui are prescribed at the boundary ∂R. We look for the extremal
of this variational problem in form of a slowly varying wave packet6

ui = ψi(θ ,x, t), (8.15)

where θ is a function of x and t, ψi are 2π-periodic functions with respect to θ .
Function θ plays the role of the phase, while θ,α and −θ,t correspond to the wave
vector kα and the frequency ω , respectively. As in the linear case we assume that
functions θ,α , θ,t and ψi(θ ,x, t)|θ=const change slowly in one wavelength λ and one
period τ . The latter are defined as the best constants in the inequalities

|θ,α | ≤ 2π
λ

, |θ,t | ≤ 2π
τ
. (8.16)

The characteristic length- and time-scales Λ and T of changes of the functions θ,α ,
θ,t and ψi(θ ,x, t)|θ=const are defined as the best constants in the inequalities

|θ,αβ | ≤
2π
λΛ

, |θ,αt | ≤ 2π
λT

, |θ,αt | ≤ 2π
τΛ

, |θ,tt | ≤ 2π
τT

,

|∂αψi| ≤ ψ̄i

Λ
, |∂tψi| ≤ ψ̄i

T
, |ψi,θ | ≤ ψ̄i, (8.17)

where ∂αψi = ∂ψi/∂xα with θ = const, and ∂tψi = ∂ψi/∂ t with θ = const. There-
fore it makes sense to call θ “fast” variable as opposed to the “slow” variables xα
and t. Thus, in this variational problem we have two small parameters λ/Λ and
τ/T .

We now calculate the derivatives ui,α and ui,t . According to (8.15)

ui,α = ∂αψi +ψi,θθ,α , ui,t = ∂tψi +ψi,θθ,t .

Because of (8.16) and (8.17) they can be approximately replaced by

ui,α = ψi,θ θ,α , ui,t = ψi,θθ,t .

Keeping in the action functional (8.14) the asymptotically principal terms, we obtain
in the first approximation

I0[ψi] =

∫∫
R

L(ψi,ψi,θ θ,α ,ψi,θθ,t)dxdt.

Similar to the linear case we decompose the domain R into the (d +1)-dimensional
strips bounded by the d-dimensional phase surfaces θ = 2πn, n = 0,±1,±2, . . ..
The integral over R can then be replaced by the sum of the integrals over the strips

6 The amplitudes ai appear later.
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∫∫
R

Ldxdt =∑
∫∫

L(ψi,ψi,θθ,α ,ψi,θ θ,t)κ dθ dζ , (8.18)

where ζα are the coordinates along the phase surface θ = const, and κ is the Jaco-
bian of transformation from xα , t to θ ,ζα . In the first approximation we may regard
κ , θ,α and θ,t in each strip as independent from θ . Therefore we obtain the same
problem in each strip at the first step of the variational-asymptotic procedure [8]:
find the extremal of the functional

Ī0[ψi] =

∫ 2π

0
L(ψi,ψi,θ θ,α ,ψi,θθ,t )dθ (8.19)

among 2π-periodic functions ψi(θ ). Since the quantities kα = θ,α and −ω = θ,t
change little within one strip, they are regarded as constants in the functional (8.19).
The Euler-Lagrange equation of this functional is a system of n nonlinear second-
order ordinary differential equations. Its solutions contain 2n arbitrary constants: n
of them is determined from the conditions that ψi(θ ) are 2π-periodic functions, the
other n conditions can be chosen by fixing the amplitudes ai as follows: maxψi =
|ai|, where ai are arbitrary real constants.7 We call this variational problem strip
problem.

Let us denote by 2π L̄ the value of the functional (8.19) at its extremal. The quan-
tity L̄ is a function of ai,θ,α and θ,t . The sum (8.18), as λ/Λ → 0 and τ/T → 0, can
again be replaced by the integral

∫∫
R

L̄(ai,θ,x,θ,t)dxdt. (8.20)

Euler-Lagrange’s equations of the average functional (8.20) read

∂ L̄
∂ai

= 0,
∂
∂ t
∂ L̄
∂θ,t

+
∂
∂xα

∂ L̄
∂θ,α

= 0. (8.21)

We will see that equations (8.21)1 express the solvability condition for the strip
problem leading to the nonlinear dispersion relation, while (8.21)2 is equivalent to
the equation of energy propagation.

Strip Problems. As an example let us consider the strip problem for the nonlinear
Klein-Gordon equation, whose Lagrangian is given by

L =
1
2

u2
,t −

1
2

u2
,x −U(u).

In this case the average Lagrangian must be calculated according to

7 This choice is dictated by the phase portrait of the strip problem. We will see later that, in
some cases, the constants must be chosen by fixing the slopes rather than the amplitudes.
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L̄ =
1

2π
min

maxψ=a

∫ 2π

0
[
1
2
(ω2 − k2)ψ ′2 −U(ψ)]dθ ,

where ω =−θ,t and k = θ,x are regarded as constants. We use the first integral

1
2
(ω2 − k2)ψ ′2 +U(ψ) =U(a) = h

to express L̄ in the form

L̄ =
1

2π

∫ 2π

0
(ω2 − k2)ψ ′2 dθ − h.

Changing the variable θ → ψ , we obtain finally

L̄ =
1

2π
(ω2−k2)

∫ 2π

0
ψ ′ dψ−h=

1
2π

√
2(ω2 − k2)

∮ √
h−U(ψ)dψ−h. (8.22)

The contour integral in (8.22) denotes the integral over a complete oscillation of ψ
from b, with U(b) =U(a), up to a and back, so it is equal to twice the integral from
b to a because the sign of the square root has to be changed appropriately in the two
parts of the contour. This integral may also be interpreted as the contour integral
around a cut from b to a in the complex ψ-plane, where ψ plays the role of the
variable of integration.

Now let us consider the average variational problem (8.20) in which L̄ is given
by (8.22) with h =U(a), ω =−θ,t , and k = θ,x. Euler-Lagrange’s equations of this
problem read

∂ L̄
∂h

dh
da

= 0, − ∂
∂ t
∂ L̄
∂ω

+
∂
∂xα

∂ L̄
∂k

= 0. (8.23)

It is easy to see that differentiation of L̄ with respect to h gives

∂ L̄
∂h

=
1

2π

√
ω2 − k2
√

2

∮
dψ√

h−U(ψ)
− 1.

Thus, the first equation of (8.23) is nothing else but the nonlinear dispersion relation
(8.5) for the nonlinear Klein-Gordon equation. Together with the kinematic relation

k,t +ω,x = 0, (8.24)

they form a system of nonlinear coupled equations describing the amplitude modu-
lations.

The strip problems for two or more unknown functions reduce to the problem
of finding the nonlinear normal modes already solved in Chapter 7. Consider for
example the wave equations which are Euler-Lagrange’s equations of the following
Lagrangian

L =
1
2
(u2

1,t + u2
2,t)−

1
2
(u2

1,x + u2
2,x)−U(u1,u2).
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This Lagrangian arises in the problem of coupled vibrations of two pre-stretched
strings along which nonlinear springs with the cubic nonlinearity are attached at
close intervals, where function U(u1,u2) describes the potential energy density of
the springs. The strip problem becomes: find the 2π-periodic functions ψ1 and ψ2

which minimize the following functional

I0[ψ1,ψ2] =

∫ 2π

0
[
1
2
(ω2 − k2)(ψ2

1,θ +ψ
2
2,θ )−U(ψ1,ψ2)]dθ .

Denotingω2−k2 =m, we write the corresponding Lagrange’s equations in the form

mψ1,θθ =− ∂U
∂ψ1

, mψ2,θθ =− ∂U
∂ψ2

.

This is nothing else but equations (7.7) studied in connection with the nonlinear
normal modes in Section 7.2. If we seek the nonlinear normal modes as 2π-periodic
solutions by assuming ψ2 as a function of ψ1, then the problem reduces to solving
the modal equation

2(h−U)ψ ′′
2 +(1+ψ ′2

2 )(
∂U
∂ψ2

−ψ ′
2
∂U
∂ψ1

) = 0,

which is the ordinary differential equation of second order, where the prime denotes
the derivative with respect to ψ1 and h is a constant in the first integral

1
2

mψ2
1,θ (1+ψ

′2
2 )+U(ψ1,ψ2) = h.

Particularly, if U(ψ1,ψ2) equals

U(ψ1,ψ2) =
1
2
[ψ2

1 +
α
2
ψ4

1 +ψ
2
2 +

α
2
ψ4

2 +
β
2
(ψ2 −ψ1)

4],

then the normal modes become similar modes ψ2 = cψ1, with

c = 1,−1,1− 1
2κ

± 1
κ
√

1/4−κ,

where κ = β/α is the coupling factor. The strip problem reduces then to the prob-
lem with one unknown function admitting the analytical solution (see exercise 8.7).
Thus, for κ < 1/4, there are two additional normal modes bifurcated out of the
antisymmetric mode ψ2 = −ψ1 (vibrations in counter-phases) at κ = 1/4. This in-
dicates the bifurcation of amplitude modulations in our original problem of wave
propagation.

Hamilton’s Equations for the Strip Problem. It is quite straightforward to trans-
form Lagrange’s equations of the strip problem to the equivalent Hamilton’s form.
We take the differential of the Lagrange function Λ(ψi,ψ ′

i ) = L(ψi,kαψ ′
i ,−ωψ ′

i )
as function of ψi and ψ ′

i = ψi,θ
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dΛ =
n

∑
i=1

(
∂Λ
∂ψi

dψi +
∂Λ
∂ψ ′

i
dψ ′

i ).

We introduce new variables pi = ∂Λ/∂ψ ′
i and the Hamilton function H(ψi, pi) as

Legendre’s transform of Λ(ψi,ψ ′
i ) with respect to ψ ′

i

H(ψi, pi) =
n

∑
i=1

piψ ′
i −Λ .

The Lagrange’s equations of the strip problem are equivalent to

ψ ′
i =

∂H
∂ pi

, p′i =− ∂H
∂ψi

,

for all i = 1,2, . . . ,n. These replace n differential equations of second order by the
system of 2n differential equations of first order. The functional (8.19) may now be
written as

Ī0[ψi, pi] =
∫ 2π

0
[

n

∑
i=1

piψ ′
i −H(ψi, pi)]dθ .

It is easy to check that the extremal of this functional among 2π-periodic functions
ψi(θ ) and pi(θ ) corresponds to the extremal of the functional (8.19). If the Hamilton
function does not depend explicitly on θ , then the first integral follows

H(ψi, pi) = h.

Adiabatic Invariants. If we consider wave propagation in weakly inhomogeneous
media or wave propagation under some external forces which change slowly in
space and time, then the Lagrangian depends explicitly on x and t. This is quite
similar to the vibrations of a non-autonomous mechanical system where one pa-
rameter of the system changes slowly in time.8 It turns out that some quantities,
called adiabatic invariants, remain constant in this situation. The finding of these
adiabatic invariants can be done by the variational-asymptotic method. For simplic-
ity let us consider a nonlinear oscillator with one degree of freedom q(t) and one
slowly varying parameter λ (t). Hamilton’s variational principle states that

δ
∫ t1

t0
L(q, q̇,λ )dt = 0.

We first calculate the average Lagrange function for the periodic motion with λ
held fixed. Since the period is T = 2π/ω , we have

L̄ =
ω
2π

∫ T

0
L(q, q̇,λ )dt.

8 For example, the vibration of a pendulum with slowly changing length.
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With λ = const the conservation of energy

q̇
∂L
∂ q̇

−L = h

holds true. This equation may be solved with respect to q̇ so that the generalized
momentum p = ∂L/∂ q̇ can be expressed as

p = p(q,h,λ ).

Using the same conservation of energy we may calculate the average Lagrange func-
tion as follows

L̄ =
ω
2π

∫ T

0
pq̇dt − h =

ω
2π

∮
p(q,h,λ )dq− h, (8.25)

where
∮

pdq means the integral over one complete period of vibration which corre-
sponds to the close orbit in the phase plane. We now allow a slow change of λ in
time, and consider the average variational problem obtained as the particular case
of (8.20)

δ
∫ t1

t0
L̄(a,θ,t ,λ )dt = 0.

Here θ,t = −ω , with ω being the frequency of vibration. Lagrange’s equations of
this variational problem read

∂ L̄
∂a

=
∂ L̄
∂h

dh
da

= 0,
∂
∂ t
∂ L̄
∂θ,t

=− ∂
∂ t
∂ L̄
∂ω

= 0. (8.26)

The first equation is nothing else but the frequency-amplitude equation of this non-
linear oscillator (see exercise 8.8). The second equation leads to the conservation of
the action variable

I(ω ,h) =
∂ L̄
∂ω

=
1

2π

∮
p(q,h,λ )dq = const,

which is just the classical result of the adiabatic invariant [5]. From (8.25) and (8.26)
the period is given by

T =
2π
ω

=
∂ I
∂h

,

which is also classical.
From this analysis we see that for waves the quantities ∂ L̄/∂ω and ∂ L̄/∂kα are

akin to the adiabatic invariants with respect to time and space. If the wave packet is
uniform in space but responding to changes of the medium in time, then we must
have

∂ L̄
∂ω

= const.
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Alternatively, for a wave packet of fixed frequency moving in a weakly inhomoge-
neous medium dependent only on one coordinate x, we have

∂ L̄
∂k

= const.

In general, modulations in space and time balance according to the equation

∂
∂ t
∂ L̄
∂ω

− ∂
∂xα

∂ L̄
∂kα

= 0,

which describes the propagation of the amplitude modulations.

Effect of Damping. If the medium in which waves propagate possesses some vis-
cosity, then the energy is not only transported by the waves, but also dissipated
during the process of wave propagation. The average equations of amplitude mod-
ulations can be obtained by the variational-asymptotic method for the case of small
dissipation. Let us illustrate this on the example of the nonlinear Klein-Gordon equa-
tion with a small resistance force

u,tt − u,xx +U ′(u) = f (u,u,t),

where f (u,u,t) =−∂D/∂u,t is a small term of the order (τ/T )u, with D(u,u,t) being
the dissipation function assumed as homogeneous of order 2 with respect to u,t . It
is easy to show that this equation can be obtained from the variational equation

δ
∫∫

[
1
2

u2
,t −

1
2

u2
,x −U(u)]dxdt +

∫∫
f (u,u,t)δudxdt = 0. (8.27)

In the first step of the variational-asymptotic method we neglect the last term in
(8.27) as small compared with other terms and seek for the solution in the form

u = u0(θ ,x, t),

where u0 and θ behave in the same way as in (8.15). So, the analysis provided in
the first paragraph of this Section leads to the following strip problem

min
maxu0=a

〈1
2
(ω2 − k2)u2

0,θ −U(u0)〉,

where 〈.〉 = 1
2π
∫ 2π

0 .dθ denotes the averaging over the strip, and where ω = −θ,t
and k = θ,x are treated as constants. Let L̄(a,ω ,k) be the minimum and u0 =ψ(a,θ )
the corresponding minimizer of this strip problem.

It can be shown that the second step brings correction of the order u1 � (τ/T )u0

in u and corrections of the order (τ/T )2u2
0 in the average Lagrangian and dissipation

causing no influence on the average equations for a and θ .
To find the average equations let us substitute u = ψ(a,θ ) into the original vari-

ational equation (8.27) and keep the asymptotically principal terms up to the order
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(τ/T )ψ2 of smallness. Replacing the sums over the strips by the integrals in the
limit λ/Λ → 0 and τ/T → 0, we obtain

δ
∫∫

L̄(a,−θ,t ,θx)dxdt +
∫∫

〈 f (ψ ,−ψ,θω)δψ(a,θ )〉dxdt = 0.

Substitution of δψ = ψ,aδa+ψ,θδθ into this equation yields

δ
∫∫

L̄(a,−θ,t ,θx)dxdt +
∫∫

〈 f (ψ ,−ψ,θω)(ψ,aδa+ψ,θδθ )〉dxdt = 0.

It is easy to see that the term containing δa in the second integral brings just a small
correction to the dispersion relation, so it can be neglected. Since the dissipation
function D(u,u,t) is a homogeneous function of second order with respect to u,t ,

〈 f (ψ ,−ψ,θω)ψ,θ δθ 〉= 2
ω
〈D(ψ ,−ψθω)〉δθ =

2
ω

D̄δθ ,

where D̄ is the average dissipation function. Thus, the average variational equation
reads

δ
∫∫

L̄(a,−θ,t ,θ,x)dxdt +
∫∫

2
ω

D̄δθ dxdt = 0. (8.28)

Varying equation (8.28) with respect to a, we obtain

∂ L̄
∂a

= 0,

which shows that the dispersion relation remains exactly the same as in the case
without dissipation. Varying (8.28) with respect to θ , we derive the following equa-
tion

∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

=− 2
ω

D̄.

This equation shows the loss in wave action due to dissipation. We see also that the
term on the right-hand side must be maintained because it is of the same order of
smallness as the terms standing on the left-hand side. The energy balance equation,
which can easily be obtained from here, reads

(ω L̄,ω − L̄),t − (ω L̄,k),x =−2D̄.

We see that some portion of energy is transported by the energy flux −ω L̄,k, and
some is simply dissipated against the resistance due to viscosity. To complete the
system of average equations of amplitude modulations we have to include also

k,t +ω,x = 0,

which is simply the kinematic relation. It is easy to generalize this result to higher
dimensions and more unknown functions.
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8.4 Amplitude and Slope Modulation

This Section studies the theory of amplitude (or slope) modulation of nonlinear
dispersive waves and presents some of its selected applications.9

The Near-Linear Case. As we know already from the previous Section, the ampli-
tude modulation in 1-D case is described by the equations

L̄,a = 0, k,t +ω,x = 0,

(L̄,ω ),t − (L̄,k),x = 0.
(8.29)

The first equation corresponds to the nonlinear dispersion relation. The near-linear
theory is obtained by expanding L̄ in powers of the amplitude. This expansion may
be taken as

L̄ = G(ω ,k)a2 +G2(ω ,k)a4 + . . . .

Computing L̄,a, we may solve (8.29)1 with respect to ω to have explicitly

ω =Ω(k,a) =Ω0(k)+Ω2(k)a
2 + . . . , (8.30)

where

G(Ω0,k) = 0, Ω2(k) =−2G2(Ω0(k),k)
G,ω(Ω0(k),k)

.

We see that the dispersion relation ω = Ω(k,a) couples the remaining equations
(8.29). With (8.30) equation (8.29)2 becomes

k,t +[Ω ′
0(k)+Ω

′
2(k)a

2]k,x +Ω2(k)(a
2),x = 0.

The important coupling term is Ω2(k)(a2),x because it leads to the correction O(a)
to the characteristic velocities. The other new term Ω ′

2(k)a
2k,x merely contributes

the correction of oder O(a2). Concerning (8.29)3 the inclusion of terms of order
a4 would provide corrections of order a2 to the existing terms. Therefore in the
first assessment of nonlinear effects we leave in the dispersion relation only one
additional term Ω2(k)a2 and consider

k,t +Ω ′
0(k)k,x +Ω2(k)(a

2),x = 0,

(a2),t +(Ω ′
0(k)a

2),x = 0.
(8.31)

This system of equations admits the characteristic form. To see this let us multiply
the first equation by p and the second by q and then add them together. The resulting
equation is

[pk,t +(pΩ ′
0 + qΩ ′′

0 a2)k,x]+ [q(a2),t +(pΩ2 + qΩ ′
0)(a

2),x] = 0.

9 Various applications of the theory of amplitude modulations to laser beams and water
waves can be found in [53].
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We want to choose p and q so that the expressions in the square brackets represent
full derivatives of k and a2 along the same characteristic curve. This is possible if

p
pΩ ′

0 + qΩ ′′
0 a2 =

q
pΩ2 + qΩ ′

0
⇒ p =±

√
Ω ′′

0 (k)

Ω2(k)
aq.

We may choose p = 1. Then, the characteristic form of (8.31) read

1
2

√
Ω ′′

0 (k)

Ω2(k)
(signΩ ′′

0 (k))dk± da = 0

on the characteristics

dx
dt

=Ω ′
0(k)±

√
Ω2(k)Ω ′′

0 (k)a. (8.32)

This simple near-linear version of the theory of amplitude modulation already shows
some interesting results. In the case Ω2(k)Ω ′′

0 (k) > 0, the characteristics are real
and the system is hyperbolic. The double characteristic velocity splits under the
nonlinear correction and we have the two velocities given by (8.32). In general, an
initial disturbance or modulating source will introduce disturbances on both families
of characteristics. If the initial disturbance is concentrated in a compact domain, it
will eventually split into two.

When Ω2(k)Ω ′′
0 (k)< 0, the characteristics are imaginary and the system is ellip-

tic. This leads to ill-posed problems in the wave propagation context. It means that
small perturbations will grow in time leading to the instability of the wave packet.
This case turns out to be not rare. For example, the Klein-Gordon equation with
U(ϕ) = ϕ2/2+αϕ4/4, α being small, gives

Ω0 =
√

1+ k2, Ω2 =
3
8
α/
√

1+ k2.

Thus, the sign of Ω2(k)Ω ′′
0 (k) coincides with the sign of α; the modulation equa-

tions are hyperbolic for α > 0 and elliptic for α < 0. For waves of small up to mod-
erate amplitudes, the Sine-Gordon equation has α = −1/6 > 0. Thus, the waves
of small amplitudes governed by the Sine-Gordon equation are unstable. This con-
sequence of the near-linear theory, already non-trivial, is not easy to obtain by the
direct stability analysis of the Sine-Gordon equation.

Characteristic Form of the Equations of Amplitude Modulation. Also the gov-
erning equations (8.29) of fully nonlinear theory of amplitude modulation admit
the characteristic form. This can be obtained by doing Legendre transform of the
average Lagrangian L̄(a,k,ω) with respect to ω

H(a,k, I) = ω L̄,ω − L̄ = ωI − L̄,
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where I = L̄,ω . Due to the property of Legendre transform we have

L̄,k =−H,k =−J, ω = H,I . (8.33)

Therefore equations (8.29)2,3 become

k,t +(H,I),x = 0,

I,t +(H,k),x = 0.

Recalling that L̄,a = −H,a = 0 due to the first equation of (8.29), we rewrite the
above equations in the vector form as

v,t +Mv,x = 0,

where

v =

(
k
I

)
, M =

(
H,Ik H,II

H,kk H,kI

)
.

Proceeding similarly as for equations (8.31) we get the characteristic equations
√

H,kkdk±√H,IIdI = 0

on the characteristics
dx
dt

= HIk ±
√

H,kkH,II .

If the characteristics are real, then the system (8.29) is hyperbolic. In the opposite
case the system is elliptic. The type of the equations depends thus on the sign of
H,kkH,II .

Slope Modulation of Waves Governed by Sine-Gordon Equation. The phase por-
trait of the strip problem for the Sine-Gordon equation

u,tt − u,xx = sin u (8.34)

exhibits in the subsonic regime quite different behavior than that of non-linear
Klein-Gordon equation with α > 0. This behavior dictates the fixing of slope rather
than amplitude for its solution. To see this, let us start from the variational formula-
tion of (8.34): find the extremal of the functional

I[u(x, t)] =
∫∫

[
1
2

u2
,t −

1
2

u2
,x − (1− cosu)]dxdt.

The variational asymptotic procedure using the multi-scale Ansatz u = ψ(θ ,x, t),
developed in the previous Section, leads to the following strip problem: find the
extremal of the functional

I0[ψ(θ )] =
1

2π

∫ 2π

0
[
1
2
(ω2 − k2)ψ2

,θ − (1− cosψ)]dθ
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among functions ψ(θ ) satisfying the conditions

ψ(2π) = ψ(0)+ 2π , ψ,θ (2π) = ψ,θ (0). (8.35)

In this strip problem, the wave number k = θ,x and the frequency ω = −θ,t are
regarded as constants. Since we are interested in the subsonic regime ω2 < k2, it
is convenient to change the sign of this functional which does not influence Euler-
Lagrange’s equation. Thus, we need to find the extremal of the functional

1
2π

∫ 2π

0
[
1
2

mψ2
,θ − (cosψ− 1)]dθ (8.36)

among functions ψ(θ ) satisfying the conditions (8.35), where m = k2 −ω2. Varia-
tional problem (8.36) possesses an obvious first integral

1
2

mψ2
,θ +(cosψ− 1) = h

resembling that of the mathematical pendulum in the upward position. The corre-
sponding phase portrait is plotted in Fig. 8.7. Looking at this phase portrait, we see
that the determination of the phase curves as extremals of (8.36) outside the separa-
trix requires, in addition to (8.35), the fixing of the maximal slope of ψ as follows:

max
θ

|ψ,θ |= p, (8.37)

where p is an arbitrary real and positive number.
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Fig. 8.7 Phase portrait of a pendulum with m = 1
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Let us denote by L̄ the average Lagrangian (extremum of functional (8.36)) which
is a function of p, k = θ,x, and ω =−θ,t . The sum of integrals over the strips, as the
wave length goes to zero, can again be replaced by the integral

Ī0[p,θ ] =
∫∫

L̄(p,θ,x,−θ,t)dxdt.

Euler-Lagrange’s equations of this average functional read

∂ L̄
∂ p

=
∂ L̄
∂h

∂h
∂ p

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0.

The first equation yields the nonlinear dispersion relation, while the second equation
is the equation of slope modulation.

Using the above integral, we find the solution in terms of elliptic functions and
then the average Lagrangian according to

L̄ =
1

2π

∫ 2π

0
mψ2

,θdθ − h =
1

2π

∫ 2π

0
mψ,θdψ− h.

Now, to find the explicit dependence of L̄ on p and m we use condition (8.37). Since
the maximal slope of ψ is achieved at θ = π (see Fig. 8.7), this condition implies
that 1

2 mp2 − 2 = h. We require h ≥ 0, so p ≥ 2/
√

m. Then, from the first integral it
follows

L̄(p,k,ω) =
√

2m
2π

f (h)− h, (8.38)

where f (h) is the function expressed in terms of the complete elliptic integral

f (h) =
∫ 2π

0

√
h− cosψ+ 1dψ = 2[

√
hE(−2/h)+

√
2+ hE(2/(2+ h))].

According to (8.38) the dispersion relation reads
√

2m
2π

f ′(h)− 1 = 0. (8.39)

Keeping in mind this dispersion relation, let us find the derivatives

∂ L̄
∂k

=

√
2

2π
m,k

2
√

m
f (h)+

(√
2m

2π
f ′(h)− 1

)
h,k =

√
2

2π
k√
m

f (h),

and
∂ L̄
∂ω

=

√
2

2π
m,ω

2
√

m
f (h)+

(√
2m

2π
f ′(h)− 1

)
h,ω =−

√
2

2π
ω√
m

f (h),

where the last terms in these formulas vanish due to (8.39). Now we substitute these
derivatives into the equation of slope modulation and compute the partial derivatives
with respect to x and t. After some algebra we get
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f (h)
m
√

m
I1(ω ,k)+

2π√
2m

q(k2k,x −2kωω,x −ω2ω,t)+
π√
2
(kq,x +ωq,t) = 0, (8.40)

where q = p2 and
I1(ω ,k) = k2ω,t −ω2k,x + 2kωω,x.

The equation of slope modulation in terms of θ is obtained if we replace in (8.40)
k = θ,x and ω =−θ,t . Equivalently, equation (8.40) can be solved together with the
consistency condition

ω,x + k,t = 0.

Asymptotic Solution to the Equation of Slope Modulation. From numerous nu-
merical simulations and n-soliton exact solutions of the Sine-Gordon equation we
know that, at large time, the solitons become non-interacting and propagating along
the straight lines x/t = const. Since the phase increases by 2π when one soliton is
passed, let us look for the phase in the following form

θ (x, t) = g(ξ (x, t)), ξ (x, t) = x/t.

According to this Ansatz we have

k = θ,x = g′(ξ )
1
t
, ω =−θ,t = g′(ξ )

x
t2 , k,x = g′′(ξ )

1
t2 , (8.41)

ω,x = g′′(ξ )
x
t3 + g′(ξ )

1
t2 , ω,t =−

(
g′′(ξ )

x2

t4 + 2g′(ξ )
x
t3

)
.

It is now straightforward to check that I1(ω ,k) = 0, so the equation of slope mod-
ulation takes the form

2qI2(ω ,k)+m(kq,x +ωq,t) = 0, (8.42)

where

I2(ω ,k) = k2k,x − 2kωω,x −ω2ω,t

= g′(ξ )2g′′(ξ )
(

t2 − x2

t4

)2

− 2g′(ξ )3 x
t5

(
t2 − x2

t2

)
,

and

m = k2 −ω2 = g′(ξ )2 t2 − x2

t4 . (8.43)

Substituting these formulas into (8.42), we obtain

2q[g′′(ξ )(t2 − x2)− 2g′(ξ )xt]+ g′(ξ )t2(tq,x + xq,t) = 0. (8.44)
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Equation (8.44) is the partial differential equation of first order which can be
solved by the method of characteristics. The characteristic curves are determined by
the equation

dx
dt

=
t
x
,

yielding
t2 − x2 = α > 0.

Along any characteristic curve (8.44) becomes an ordinary differential equation

dQα
dt

+ 2Aα(t)Qα(t) = 0, (8.45)

where α remains constant along each curve, Qα(t) = q(xα(t), t), and

Aα(t) =
α

xα(t)t2

g′′(ξα(t))
g′(ξα(t))

− 2
t
, ξα(t) =

xα(t)
t

, xα(t) =±
√

t2 −α.

A standard integration of (8.45) leads to

Qα(t) =C(α)2 t4

g′(ξα(t))2 ,

with C(α) being a function of α . Turning back to the original coordinates x and t,
we obtain

q(x, t) =C(t2 − x2)2 t4

g′(ξ (x, t))2 , ξ (x, t) =
x
t
,

and thus,

p(x, t) =
√

q(x, t) =C(t2 − x2)
t2

g′(ξ (x, t))
. (8.46)

As g(ξ ) describes the phase, function g′(ξ ) can be identified with 2πρ(ξ ), where
ρ(ξ ) is the density of solitons (or the number of solitons per unit length).

The unknown function C(t2−x2) should be determined from the dispersion rela-
tion (8.39). Using the solution given by (8.46) and formula (8.43) for m, we obtain

h =
1
2

mp2 − 2 =
1
2
(t2 − x2)C(t2 − x2)2 − 2.

Since m goes to zero as t goes to infinity, the dispersion relation is fulfilled at large
time if and only if h goes to zero. 10 Thus,

C(t2 − x2) =
2√

t2 − x2
,

and the final asymptotic formula for the slope reads

10 Strictly speaking, the exact fulfillment of the dispersion relation is warranted if h is of the
order m/2 as t → ∞, but this does not affect the asymptotically leading term for p.
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p(x, t) =
2t2

g′(ξ (x, t))
√

t2 − x2
. (8.47)

Comparison with the Exact Solution. Let us compare the asymptotic solution
(8.47) with the exact solution of Sine-Gordon equation obtained by the inverse scat-
tering transform. It turns out that the exact solution of Sine-Gordon equation is inti-
mately related to that of KdV equation. Note, however, that while the exact solution
of KdV equation is given explicitly, the solution of Sine-Gordon equation is only
obtainable through its slope u,x. It is convenient to solve the Sine-Gordon equation
in cone coordinates

X =
1
2
(x+ t), T =

1
2
(x− t). (8.48)

Knowing the solution in X and T , the solution in the physical coordinates x and t
can easily be found through a simple change of variables.

V1=-1/4 V2=-1/16 V3=-1/25

A1=4 A2=8 A3=12

-30 -25 -20 -15 -10 -5 0
X

4

8

12

v1=-3/5 v2=-15/17 v3=-12/13
a1=6 a2=4 a3=2

-110 -100 -90 -80 -70 -60 -50
x

2

4

6

u,X(X,T) u(x,t)

Fig. 8.8 3-soliton solution in physical coordinates (right) and its slope in cone coordinates
(left). The eigenvalues, velocities and amplitudes of solitons and their slope are presented in
the respective tables.

The solution reads (see [2])

1
4

(
∂u
∂X

)2

=
∂ 2

∂X2 ln [det(I+AA∗)] , (8.49)

where

Alm =

√
cl(T )c∗m(T )
ζl − ζ ∗m

exp [i(ζl − ζ ∗m)X ] ,

and cl(T ) = cl0 exp(−iT/2ζl). In the above formulas the asterisk is used to denote
complex conjugate, while I corresponds to the identity matrix. Constants cl0 charac-
terize the initial state of solitons, while ζl = iηl are different purely imaginary eigen-
values of the linear operator associated with the Sine-Gordon equation (see [1,2] for
the setting of the eigenvalue problem). Distinct types of solutions of this equation
are determined by different choices of pairs of eigenvalues ζl and ζm = ζ ∗l . We shall
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concentrate on the traveling solitons, so the discrete and distinct imaginary eigenval-
ues are henceforth sufficient for our comparison purpose. Fig. 8.8 shows a 3-soliton
solution (with solitons propagating to the left) together with its slope. By adding
three other solitons (dislocations) propagating to the right and having the negative
slope we may get the shape of the symmetrically propagating crack.

T � 112

-75 -60 -45 -30 -15 0
X

4

8

12

16

T � 176

-75 -60 -45 -30 -15 0
X

4

8

12

16

T � 240

-75 -60 -45 -30 -15 0
X

4

8

12

16

T � 304

-75 -60 -45 -30 -15 0
X

4

8

12

16

u,X(X,T) u,X(X,T)

u,X(X,T) u,X(X,T)

Fig. 8.9 Slope of 4-soliton solution in cone coordinates

As seen from Fig. 8.8 the slope of n-soliton solution to Sine-Gordon equation
is itself n solitons having different shape. For this reason it makes sense to denote
by Vj the velocities of solitons, which mark the velocities of points where maxima
are achieved (centers of solitons), and by A j the corresponding maxima. They are
computed according to the following formulas

Vj =− 1
(2η j)2 , A j = 4η j,

in which the minus sign indicates that the solitons travel to the left. The velocities
of the j-th soliton in real space-time can be obtained through the change of variable
(8.48)

v j =−1+Vj

1−Vj
.

In Fig. 8.9, several snap-shots at different time instants of the slope of 4-soliton solu-
tion constructed with the eigenvaluesη j = j, velocities Vj =−1/4 j2 and amplitudes
A j = 4 j are shown in cone coordinates.
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T�1000

-250 -200 -150 -100 -50 0
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15

20
u,X�X,T�

Fig. 8.10 Slope of 5-soliton in cone coordinates versus slope modulation: a) exact solution
u,X (bold line), b) asymptotic law 2

√
T/|X | (dashed line)

To compare with the asymptotic solution obtained in the previous paragraph we
note that for the slowly varying wave packet and to the first approximation,

u,X = u,x + u,t = ψ,θ (k−ω).

Since the maximum of ψ,θ in one wavelength is chosen to be p, we expect that
p(k−ω), with p being given by (8.47), should serve as the asymptotic envelope for
the exact slope of soliton solution. Using (8.41) and (8.48), this quantity is given in
cone coordinates by

p(k−ω) = 2
t − x√
t2 − x2

= 2

√
−T

X
(8.50)

Formula (8.50) holds true for solitons traveling to the left. For solitons traveling to
the right and having the negative slope, the signs inside and in front of the square
root should be changed. Note also that this asymptotic law which can be used to
predict, among others, the shape of the propagating crack regarded as the wave
packet of moving dislocations in crystals, is universal and does not depend on the
distribution of solitons. Fig. 8.10 shows the slope of the exact 5-soliton solution
and the graph of 2

√
T/|X | (see exercise 8.10). From this Figure it is seen that, at

large time, the curve 2
√

T/|X | can serve as the asymptotic envelope for the slope
of solitons.

8.5 Amplitude Modulations for KdV Equation

This last Section studies Whitham’s theory of amplitude modulations of waves gov-
erned by the KdV equation.

Derivation of Whitham’s Equations. In view of the exact analytical solution of
KdV equation by the inverse scattering transform, it is tempting to develop the
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theory of amplitude modulations for the KdV equation and to compare its asymp-
totic law with the exact solution. Unfortunately, in contrast to the Sine-Gordon equa-
tion the KdV equation does not admit a direct variational formulation. However,
keeping in mind that the KdV equation is derivable from the Boussinesq’s equa-
tion which admits a variational formulation, we may associate this equation with a
variational principle by substituting u = η,x into (8.1) to get the equation

η,xt + 6η,xη,xx +η,xxxx = 0.

The latter can be obtained from the stationarity of the following functional

I[η(x, t)] =
∫∫

(−1
2
η,tη,x −η3

,x +
1
2
η2
,xx)dxdt. (8.51)

We shall use this indirect variational formulation through η to derive the equations
of amplitude modulations for u. We look for the extremal of this variational problem
in form of slowly varying wave packet

η(x, t) = ϕ(θ ,x, t)+ χ(x, t),

with ϕ a function of fast variable θ and slow variables x and t. We assume that
ϕ is 2π-periodic with respect to θ . The fast variable θ , being itself a function of
slow variables x and t, plays the role of the phase, with θ,x and −θ,t corresponding
to the wave number k and the frequency ω , respectively. Besides, the derivative
β = χ,x accounts for the mean value of u over one θ -period. We calculate the partial
derivatives of η in accordance with this Ansatz

η,x = ϕ,θθ,x + ∂xϕ+ χ,x, η,t = ϕ,θθ,t + ∂tϕ+ χ,t ,

η,xx = ϕ,θθθ 2
,x +ϕ,θθ,xx + 2∂xϕ,θθ,x + ∂ 2

x ϕ+ χ,xx.

Based on the assumptions similar to those in (8.17), one recognizes immediately
that the underlined terms are negligibly small compared with their first respective
terms. Besides, the wave number and the frequency change slowly in one wave
length and one period. We assume further that the mean value β = χ,x changes also
slowly in one wavelength so that its derivative β,x = χ,xx can be neglected in the first
approximation. Taking all these circumstances into account, the derivatives of η can
approximately be replaced by

η,x = ϕ,θ θ,x + χ,x, η,t = ϕ,θθ,t + χ,t , η,xx = ϕ,θθ θ 2
,x,

where γ = −χ,t is assumed to change slowly in one period. Substituting these for-
mulas into (8.51), we obtain the functional

I0[ϕ ,θ ] =
∫∫

[−1
2
(ϕ,θθ,t + χ,t)(ϕ,θθ,x + χ,x)− (ϕ,θθ,x +β )2 +

1
2
θ 4
,xϕ2

,θθ ]dxdt.
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In accordance with the method developed in Section 8.3, we formulate the strip
problem as follows: find the extremal of the functional

1
2π

∫ 2π

0
[
1
2
(ωϕ,θ + γ)(kϕ,θ +β )− (kϕ,θ +β )3 +

1
2

k4ϕ2
,θθ ]dθ (8.52)

among functions ϕ(θ ) satisfying 2π-periodicity conditions

ϕ(2π) = ϕ(0), ϕ,θ (2π) = ϕ,θ (0), ϕ,θθ (2π) = ϕ,θθ (0).

In this strip problem k, ω , β , and γ are considered as constants. Let us denote by
c = ω/k the phase velocity.

To reduce the order of the resulting differential equations, let us make a change
of unknown function

φ = kϕ,θ +β .

It is natural to use this new unknown function in the strip problem because it repre-
sents the approximate solution of KdV equation. According to it we have

ϕ,θ =
φ −β

k
, φ,θ = kϕ,θθ .

As function ϕ(θ ) is 2π-periodic, the introduced new function φ(θ ) should satisfy
the constraint

1
2π

∫ 2π

0
φdθ =

1
2π

∫ 2π

0
(kϕ,θ +β )dθ = β . (8.53)

Thus, we replace the functional (8.52) by

1
2π

∫ 2π

0
[
1
2
(
φ −β

k
ω+ γ)φ −φ3 +

1
2

k2φ2
,θ ]dθ

=
1

2π

∫ 2π

0
[
1
2

cφ2 −φ3 +
1
2

k2φ2
,θ ]dθ +

1
2
(γ− cβ )β ,

which must be minimized among 2π-periodic functions φ(θ ) satisfying the con-
straint (8.53). To get rid of constraint (8.53) we introduce the Lagrange multiplier
and consider the following equivalent variational problem: find the extremal of the
functional

1
2π

∫ 2π

0
[
1
2

k2φ2
,θ +

1
2

cφ2 −φ3]dθ +
1
2
(γ− cβ )β −λ ( 1

2π

∫ 2π

0
φdθ −β )

=
1

2π

∫ 2π

0
[
1
2

k2φ2
,θ −U(φ ,c,λ )]dθ +

1
2
(γ− cβ )β +λβ

among λ and φ(θ ) satisfying the periodicity conditions

φ(2π) = φ(0), φ,θ (2π) = φ,θ (0),
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where the function of three arguments U(φ ,c,λ ) is given by

U(φ ,c,λ ) = φ3 − 1
2

cφ2 +λφ .

This variational problem leads to Lagrange’s equation of second order in terms of
φ(θ ), which possesses an obvious first integral

1
2

k2φ2
,θ +U(φ ,c,λ ) = h.

Using this formula and introducing an elliptic integral

W (c,λ ,h) =
1

2π

∮ √
2h− 2U(φ ,c,λ )dφ =

1
2π

∮ √
2h− 2λφ+ cφ2 − 2φ3dφ ,

we find the average Lagrangian as the minimum of the above functional in the form

L̄(λ ,β ,γ,h,k,ω) = kW (
ω
k
,λ ,h)+

1
2
(γ− ω

k
β )β +λβ − h.

Then the variational-asymptotic analysis leads to the following average varia-
tional problem

δ
∫∫

L̄(λ ,χ,x,−χ,t ,h,θ,x,−θ,t)dxdt = 0.

The Euler-Lagrange’s equations for λ and χ read

β =−kW,λ ,
1
2
β,t − (λ +

1
2
γ− cβ ),x = 0.

From the last equation and from the consistency condition β,t + γ,x = 0 it follows
that γ can be taken as γ = cβ − λ . Thus, β = −kW,λ , γ = −ckW,λ − λ , and the
consistency condition becomes

(kW,λ ),t +(ckW,λ +λ ),x = 0. (8.54)

For h and θ we have

kW,h = 1, (L̄,ω ),t − (L̄,k),x = 0.

Multiplying the last equation by k and using the chain rule of differentiation together
with the consistency condition k,t +ω,x = 0, we obtain

(kL̄,ω ),t − (kL̄,k),x + L̄,ωω,x + L̄,kk,x = 0. (8.55)

On the other hand, differentiation of the average Lagrangian L̄ with respect to x
gives

L̄,x = L̄,kk,x + L̄,ωω,x + L̄,ββ,x + L̄,γγ,x
= L̄,kk,x + L̄,ωω,x +(β L̄,β ),x −β (L̄,β ),x − (β L̄,γ),t +β (L̄,γ),t ,
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which implies

L̄,ωω,x + L̄,kk,x = L̄,x − (β L̄,β ),x +(β L̄,γ),t +β [(L̄,γ),t − (L̄,β ),x].

The last term vanishes due to the Lagrange’s equation for χ yielding

L̄,ωω,x + L̄,kk,x = L̄,x − (β L̄,β ),x +(β L̄,γ),t . (8.56)

Substituting (8.56) into (8.55), we obtain the so-called wave momentum equation

(kL̄,ω +β L̄,γ),t +(L̄− kL̄,k −β L̄,β ),x = 0,

which can replace the Lagrange’s equation for θ . In our case, this equation becomes

(kW,c),t +(ckW,c − h),x = 0. (8.57)

Again, the consistency condition

k,t +(ck),x = 0 (8.58)

has to be included. Equations (8.54), (8.57), and (8.58) may be viewed as three
equations for h, λ , and c, with k given by the dispersion relation k = 1/W,h. A more
symmetric equivalent form of this system is

D
Dt

(W,h) =W,hc,x,
D
Dt

(W,λ ) =−W,hλ,x,
D
Dt

(W,c) =W,hh,x, (8.59)

where
D
Dt

=
∂
∂ t

+ c
∂
∂x

.

In terms of these unknown functions the wave number, the frequency, and the mean
value of u, ū = β , are given by

k =
1

W,h
, ω =

c
W,h

, β =−W,λ

W,h
.

The amplitude is obtained by relating the zeros of the cubic polynomial in W to the
coefficients h, λ , and c.

The Characteristic Equations. It turns out that the system (8.59) is hyperbolic and
can be written in the characteristic form. If the zeros b1, b2, b3 of the cubic equation

φ3 − 1
2

cφ2 +λφ − h = 0 (8.60)

are used as new unknown functions instead of h, λ , c, Whitham’s equations may be
put in a simple characteristic form as
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D
Dt

r j +Vjr j,x = 0, j = 1,2,3, (no sum!)

where r1 = b2 +b3, V1 =W,h/(W,h),b1 , together with similar equations for r2 and r3

in cyclic permutation. In the following we sketch a brief proof for the first of these
equations. Let us factorize the cubic polynomial (8.60) as

φ3 − 1
2

cφ2 +λφ − h = (φ − b1)(φ − b2)(φ − b3).

According to this identity the unknowns c, λ , h are related to the zeros b1, b2, b3 by

c = 2(b1 + b2 + b3), λ = b1b2 + b1b3 + b2b3, h = b1b2b3.

Differentiating these relations with respect to x, we rewrite Whitham’s equations
(8.59) in terms of new unknown functions b j in the form

(W,h),b1

Db1

Dt
+(W,h),b2

Db2

Dt
+(W,h),b3

Db3

Dt
= 2W,h(b1,x + b2,x + b3,x),

(W,λ ),b1

Db1

Dt
+(W,λ ),b2

Db2

Dt
+(W,λ ),b3

Db3

Dt
=−W,h[(b2 + b3)b1,x (8.61)

+(b1 + b3)b2,x +(b1 + b2)b3,x],

(W,c),b1

Db1

Dt
+(W,c),b2

Db2

Dt
+(W,c),b3

Db3

Dt
=W,h(b2b3b1,x + b1b3b2,x + b1b2b3,x).

We introduce

f (φ) = 2h− 2λφ+ cφ2 − 2φ3 =−2(φ − b1)(φ − b2)(φ − b3),

and denote the elliptic integral as follows

W (c,λ ,h) =
1

2π

∮ √
2h− 2λφ+ cφ2 − 2φ3dφ =

1
2π

∮ √
f (φ)dφ .

With this notation at hand we compute W,h, W,λ , W,c

W,h =
1

2π

∮
dφ√
f (φ)

, W,λ =− 1
2π

∮ φdφ√
f (φ)

, W,c =
1

2π

∮ φ2dφ
2
√

f (φ)
.

Next, differentiating these formulas with respect to b1, we obtain

(W,h),b1 =
1

4π

∮
1

(φ − b1)
√

f (φ)
dφ ,

(W,λ ),b1 =− 1
4π

∮ φ
(φ − b1)

√
f (φ)

dφ ,

(W,c),b1 =
1

4π

∮ φ2

2(φ − b1)
√

f (φ)
dφ .
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Similar formulas hold true for the derivatives with respect to b2 and b3. Now the
trick comes to play at this step. We multiply the first equation of (8.61) by p, the
second by q, and the third by r, add them, and choose p, q, r in such a way that
the coefficient of b1,x on the right-hand side vanishes, while those of b2,x and b3,x

are equal. This leads to the two following conditions

2p− q(b2+ b3)+ rb2b3 = 0,

2p− q(b1+ b3)+ rb1b3 = 2p− q(b1+ b2)+ rb1b2.

The solution of the above system reads

q = rb1, p =
r
2
(b1b2 + b1b3 − b2b3),

in which r can be chosen arbitrarily. Let us choose r = 2 for convenience and obtain
the explicit expressions for q and p

r = 2, q = 2b1, p = b1b2 + b1b3 − b2b3.

With this choice, the right-hand side of the equation resulted from these operations
takes the form

RHS = [2(b1b2 + b1b3 − b2b3)− 2b1(b1 + b3)+ 2b1b3]W,h(b2 + b3),x

=−2(b1 − b2)(b1 − b3)W,h(b2 + b3),x. (8.62)

Let us turn now to the left-hand side and denote by K1, K2, and K3 the coefficients
of Db1/Dt, Db2/Dt, and Db3/Dt, respectively. Then we have

K1 = p(W,h),b1 + q(W,λ ),b1 + r(W,c),b1

=
1

4π

∮
b1b2 + b1b3 − b2b3 − 2b1φ +φ2

(φ − b1)
√

f (φ)
dφ ,

K2 = p(W,h),b2 + q(W,λ ),b2 + r(W,c),b2

=
1

4π

∮
b1b2 + b1b3 − b2b3 − 2b1φ +φ2

(φ − b2)
√

f (φ)
dφ ,

K3 = p(W,h),b3 + q(W,λ ),b3 + r(W,c),b3

=
1

4π

∮
b1b2 + b1b3 − b2b3 − 2b1φ +φ2

(φ − b3)
√

f (φ)
dφ .

One can prove the following identities (see exercise 8.11)

K1 = 0, K2 = K3. (8.63)
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Furthermore, we can rewrite the coefficients K2 and K3 as

K2 =−b1 − b2

2π

∮ φ − b3

(φ − b2)
√

f (φ)
dφ +

1
4π

∮ φ2 − 2b2φ + b1b2 + b2b3 − b1b3

(φ − b2)
√

f (φ)
dφ ,

K3 =−b1 − b3

2π

∮ φ − b2

(φ − b3)
√

f (φ)
dφ +

1
4π

∮ φ2 − 2b3φ + b1b3 + b2b3 − b1b2

(φ − b3)
√

f (φ)
dφ .

The last terms in K2 and K3 vanish because their integrands are again full differen-
tials. Thus,

K2 =−(b1 − b2)W,h − 2(b1 − b2)(b2 − b3)(W,h),b2 ,

K3 =−(b1 − b3)W,h − 2(b1 − b3)(b3 − b2)(W,h),b3 .

Equality K2 = K3 gives

W,h = 2[(b1 − b2)(W,h),b2 +(b1 − b3)(W,h),b3 ],

which implies

K2 = K3 =−2(b1 − b2)(b1 − b3)[(W,h),b2 +(W,h),b3 ].

Due to the identity

(W,h),b1 +(W,h),b2 +(W,h),b3 =
1

4π

∮
f ′(φ)

f 3/2(φ)
dφ = 0,

we can write the last formula in the form

K2 = K3 = 2(b1 − b2)(b1 − b3)(W,h),b1 . (8.64)

With (8.62) and (8.64) we get one of the Whitham’s equations in the characteristic
form

D
Dt

(b2 + b3)+
W,h

(W,h),b1

(b2 + b3),x = 0,

which shows that b2 +b3 is the Riemann’s invariant. The other two equations for r2

and r3 in cyclic permutations can be established in the same manner.

Alternative Representation of Whitham’s Equations. Whitham’s equations in-
volve three unknown functions, namely c, λ , and h. In order to find the amplitude
modulation in particular cases such as wave of small up to moderate amplitudes or
trains of solitons one have to relate them to the amplitude a = b1 − b2. Then, using
Whitham’s equation in the characteristic form, different types of solution can be
found. Here and below we consider an alternative but equivalent version of system
of equations which directly involves the amplitude. For this purpose let us define
the amplitude in a slightly different way
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a = maxφ .

Note that the amplitude defined in this way is nothing else but b1. Using this defini-
tion, we rewrite the average Lagrangian as follows

L̄ =
k
√

2
π

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ−U(a,c,λ )+λβ+

1
2
(γ−cβ )β , (8.65)

where the energy level h has been replaced by U(a,c,λ ), namely h = U(a,c,λ ).
Observe that the integrand in the above integral vanishes at three zeros a, b2, b3 due
to

U(a,c,λ )−U(φ ,c,λ ) = (a−φ)(φ − b2)(φ − b3).

This circumstance will be used later when one differentiates the average Lagrangian.
The Euler-Lagrange’s equations associated with this average Lagrangian read

∂ L̄
∂a

= 0,
∂
∂ t
∂ L̄
∂ω

− ∂
∂x
∂ L̄
∂k

= 0,

∂ L̄
∂λ

= 0,
∂
∂ t
∂ L̄
∂γ

− ∂
∂x
∂ L̄
∂β

= 0.

(8.66)

The first equation is nothing else but the dispersion relation, whereas the third equa-
tion is equivalent to the constraint (8.53). To express these equations in terms of a,
c, and λ let us compute the derivative of L̄ from (8.65) with respect to a and λ

∂ L̄
∂a

=
∂U
∂a

(a,c,λ )[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1],

∂ L̄
∂λ

=
∂U
∂λ

(a,c,λ )[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1]

− k
√

2
2π

∫ a

b2

φdφ√
U(a,c,λ )−U(φ ,c,λ )

+β .

Thus, the dispersion relation and the constraint associated with λ follow at once

k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1 = 0, (8.67)

k
√

2
2π

∫ a

b2

φdφ√
U(a,c,λ )−U(φ ,c,λ )

−β = 0. (8.68)

Let us turn now to the equation of amplitude modulation. First, we compute the
derivative of L̄ with respect to ω
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∂ L̄
∂ω

=
∂U
∂c

(a,c,λ )
∂c
∂ω

[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1]

+

√
2

4π
F(a,c,λ )− β 2

2k
=

√
2

4π
F(a,c,λ )− β 2

2k
,

where

F(a,c,λ ) =
∫ a

b2

φ2dφ√
U(a,c,λ )−U(φ ,c,λ )

.

Differentiation of L̄ with respect to k gives

∂ L̄
∂k

=

√
2
π

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ

+
∂U
∂c

(a,c,λ )
∂c
∂k

[
k
√

2
2π

∫ a

b2

dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1]

+
∂c
∂k

[
k
√

2
4π

∫ a

b2

φ2dφ√
U(a,c,λ )−U(φ ,c,λ )

− 1
2
β 2]

=

√
2
π

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ − c

∂ L̄
∂ω

.

Plugging these derivatives into (8.66)2, we obtain the Euler-Lagrange’s equation
for θ

√
2

4π
[
∂F
∂a

(a,t + ca,x)+
∂F
∂c

(c,t + cc,x)+
∂F
∂λ

(λ,t + cλ,x)]+
√

2
4π

F(a,c,λ )c,x

− 1
2
[(
β 2

k
),t +(c

β 2

k
),x]−

√
2
π

∂
∂x

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ = 0.

Further, using the dispersion relation (8.67) and constraint (8.68), we compute the
derivative

J =
∂
∂x

∫ a

b2

√
U(a,c,λ )−U(φ ,c,λ )dφ

=
π

k
√

2

∂U
∂a

(a,c,λ )a,x − 1
2
π

k
√

2
a2c,x +

π
k
√

2
aλ,x − π

k
√

2
βλ,x +

1
4

F(a,c,λ )c,x.

Finally, substituting this expression into the above equation and dividing the latter
by

√
2/4π , we obtain the equation of amplitude modulation in terms of a, c and λ

∂F
∂a

(a,t + ca,x)+
∂F
∂c

(c,t + cc,x)+
∂F
∂λ

(λ,t + cλ,x)

+
π
√

2
k

{a2c,x − 2∂aU(a,c,λ )a,x + 2(β − a)λ,x− k[(
β 2

k
),t +(c

β 2

k
),x]}= 0.

(8.69)
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As indicated in the previous paragraph, the equation for χ will be automatically
satisfied if the parameters are chosen such that

γ = cβ −λ . (8.70)

The four equations (8.67)-(8.70) constitute a system of differential equations which
is equivalent to (8.59) plus the dispersion relation kW,h = 1.

Trains of Solitons. In the limit λ → 0 and h → 0, the wave packet becomes a train
of solitary waves. For the wave packet consisting of n solitons we know that the
solitons cease to interact at large time in such a way that each of them propagates
with a constant velocity along the line x/t = const. Based on this observation we
look for the solution a = a(x, t) of (8.69) using the following Ansatz for θ and χ

θ (x, t) = q(ξ (x, t)), χ(x, t) = p(ξ (x, t)), ξ (x, t) = x/t.

Differentiating θ (x, t) and χ(x, t) in accordance with these Ansatz, we find k, ω , c,
β , and γ in the form

k =
1
t

q′(ξ ), ω =
x
t2 q′(ξ ), c =

x
t
,

β =
1
t

p′(ξ ), γ =
x
t2 p′(ξ ).

It is easy to see that β and γ from the last equations satisfy (8.70), provided λ = 0.
Besides, the following equation

(
β 2

k
),t +(c

β 2

k
),x = 0

is fulfilled identically. Furthermore, if the amplitude is searched among functions of
the form

a(x, t) = g(ξ (x, t)),

the term ∂F
∂a (a,t + ca,x) vanishes, so (8.69) reduces to

g(ξ )2 − 2∂aU(g(ξ ),ξ ,0)g′(ξ ) = 0,

where ∂aU(a,c,λ ) = 3a2 − ca+λ . The last equation can also be rewritten as

g(ξ )2 − (6g(ξ )2 − 2ξg(ξ ))g′(ξ ) = 0,

which is equivalent to

g(ξ )− (6g(ξ )− 2ξ )g′(ξ ) = 0. (8.71)

General solution of (8.71) contains one constant of integration that should be de-
termined from the dispersion relation. In the following we shall guess a particular
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solution of (8.71) and prove its validity by verifying the fulfillment of dispersion re-
lation at large time. Looking at this equation, we see that one of its possible solutions
is the linear function

g(ξ ) =C1ξ +C2.

Substituting this guess into (8.71) and equating the coefficient of first power of ξ
and the free one to zero, we find

C1 = 1/2, C2 = 0.

Thus, a simple particular solution of (8.69) reads

a(x, t) =
x
2t
. (8.72)

To see the fulfillment of the dispersion relation at large time we rewrite (8.67) in an
equivalent form

k =
π
√
(a− b2)/2
mK(m)

, m =

√
a− b2

a− b3
,

where K(m) is the complete elliptic integral. In the limit λ → 0, h → 0, the roots b2

and b3 go to 0, so m → 1. Provided the derivative q′(x/t) is finite, the left- and right-
hand sides of the dispersion relation tend to 0 as t → ∞, so the dispersion relation is
satisfied asymptotically at large time.

Recalling that a soliton of amplitude a moves with the velocity 2a, one can easily
recognize that (8.72) represents a large-time asymptotic envelope of a sequence of
solitons each retaining a constant amplitude and moving on the path x = 2at as
shown in Fig. 8.11. Another way of obtaining this amplitude modulation of soliton
solution is to derive the system of equations

k̄,t +(2ak̄),x = 0, a,t + 2aa,x = 0, k̄ =
k

2π
(8.73)

directly from the conservation laws of the KdV equation and integrate it. Note that,
due to the nonlinearity and hyperbolicity of the system (8.73), the shock wave will
develop sooner or later which violates the amplitude modulation. However, in this
case equations (8.73) can be used to justify the jump conditions at the shock waves
(see exercise 8.12).

Thus, we are now at the end of these lectures. Before closing, let us summarize
shortly. Looking back, one sees that we have learned a lot of things. Among them,
we would put on the first place Hamilton’s variational principle of least action and
its generalizations for the derivation of the equations of motion. We have studied
also various methods of solving these equations and finding laws of behavior of the
solutions. Some of the numerical methods, in particular finite element method, were
not touched at all. But fortunately there are other excellent courses where one can
learn those methods (see, for instance, [41, 55]). One thing is for sure: with numer-
ical methods alone one can hardly establish any behavioral law for the solutions.
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Fig. 8.11 A train of solitons (bold line) and the amplitude modulation (dashed line): a) at
small time, b) at large time

To establish such laws, which are often quite useful in engineering applications,
analytical skills have to be trained and cultivated. For those problems containing
small parameters, the variational-asymptotic method turns out quite effective, and it
is hoped that this course has helped students a little bit in mastering it. Last but not
least, one should not forget about the exercises. Just remember “Übung macht den
Meister” (practice makes perfect), as Germans say.

8.6 Exercises

EXERCISE 8.1. Use the identities for the Jacobian elliptic functions sn, cn, and dn
given in Section 5.1 to check that ϕ(ξ ) = acn2(

√
b/2ξ ,a/b), with ξ = x− ct, is

the periodic solution of the KdV equation (in this case b1 = a, b2 = 0, b3 = a− b).

Solution. In the special case

b1 = a, b2 = 0, b3 = a− b,

where a and b > a are two real and positive numbers, the first integral for the peri-
odic solution of the KdV equation reduces to

ϕ ′2 = 2(a−ϕ)ϕ(ϕ+ b− a).

Let us check that
ϕ(ξ ) = acn2(

√
b/2ξ ,a/b)

satisfies this equation. Differentiating ϕ with respect to ξ and using the formulas
for the Jacobian elliptic functions sn, cn, and dn given in Section 5.1, we get

ϕ ′ =−2a
√

b/2cn(
√

b/2ξ ,a/b)sn(
√

b/2ξ ,a/b)dn(
√

b/2ξ ,a/b).

Squaring both sides of this formula and using the identities sn2 = 1−cn2 and dn2 =
1−m+mcn2, with m = a/b, one can easily show that ϕ(ξ ) = acn2(

√
b/2ξ ,a/b)

satisfies the above equation.
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EXERCISE 8.2. Show that

u(x, t) = 4arctaneγ(x−ct),

with γ = 1/
√

1− c2 is the soliton solution of the Sine-Gordon equation.

Solution. Consider the Sine-Gordon equation

u,tt − u,xx + sinu = 0.

We look for the soliton solution in the form

u(x, t) = ϕ(x− ct),

with c being a constant. Substitution in the above equation gives

(c2 − 1)ϕ ′′+ sinϕ = 0,

where prime denotes the derivative with respect to ξ = x− ct. The last equation can
be presented in the form

mϕ ′′ −U ′(ϕ) = 0,

with
m = 1− c2, U(ϕ) = 1− cosϕ .

This resembles the equation of motion of mass-spring oscillator with a mass m =
1− c2 and a nonlinear restoring force derivable from the potential energy −U(ϕ).
The first integral is

1
2

mϕ ′2 −U(ϕ) = h.

If ϕ and its first derivative tend to zero as ξ →±∞, then h = 0. In this case

ϕ ′ =
2√
m

sin(ϕ/2).

Integrating this equation by separating the variables ξ and ϕ , we obtain

√
m ln[tan(ϕ/4)] = ξ , (8.74)

and, thus,
u(x, t) = ϕ(ξ ) = 4arctaneγ(x−ct).

EXERCISE 8.3. Use the conservation law of the KdV equation

u,t +(3u2 + u,xx),x = 0

to show that
I−1 =

∫ ∞

−∞
udx
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is the first integral. Show that the conservation laws of the KdV equation for I0 and
I1 are

(u2),t +(4u3 + 2uu,xx− u2
,x),x = 0,

(u3 − 1
2

u2
,x),t +(

9
2

u4 + 3u2u,xx − 6uu2
,x− u,xu,xxx +

1
2

u2
,xx),x = 0.

Solution. It is easy to see that the equation

u,t +(3u2 + u,xx),x = 0

follows at once from the KdV equation. Integrating this equation over x from −∞ to
∞ and taking into account the behavior of the solution at infinity, we obtain

d
dt

∫ ∞

−∞
udx = 0,

so I−1 is conserved. Differentiating the second equation, we have

2uu,t + 12u2u,x + 2u,xu,xx + 2uu,xxx − 2u,xu,xx = 0,

and it is again the consequence of the KdV equation. Integrating this conservation
law over x from −∞ to ∞, we can establish that I0 is conserved. To show that the
third conservation law also follows from the KdV equation, we differentiate the
expressions in the brackets to obtain

3u2u,t − u,xu,xt + 18u3u,x + 6uu,xu,xx + 3u2u,xxx

− 6u3
,x− 12uu,xu,xx − u,xxu,xxx − u,xu,xxxx + u,xxu,xxx = 0.

The underlined terms represent the product of u,x with the derivative of the KdV
equation with respect to x, taken with minus sign, while the remaining terms give
the product of 3u2 with the KdV equation. So, the third conservation law is also the
consequence of the KdV equation, and hence, I1 is conserved.

EXERCISE 8.4. With the Lax’s pair

Lψ = ψ,xx + u(x, t)ψ , Aψ = (γ+ u,x)ψ− (4λ + 2u)ψ,x,

show that the Lax equation L,t +[L,A] = 0 (which expresses the compatibility con-
dition between Lψ = λψ and ψ,t = Aψ) is satisfied if and only if the KdV equation
is fulfilled.

Solution. As shown in Section 8.2, the Lax equation is fulfilled if and only if λ,t = 0.
But if λ,t = 0, then the differentiation of the equation ψ,xx + uψ = λψ with respect
to t yields

ψ,xxt + uψ,t + u,tψ = λψ,t .

Replacing ψ,t in this equation by Aψ = (γ+ u,x)ψ− (4λ + 2u)ψ,x, we obtain
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ψ,xxt = [(λ − u)(γ+ u,x)− u,t ]ψ− (λ − u)(4λ + 2u)ψ,x.

On the other side, if we differentiate the evolution equation ψ,t = Aψ with respect
to x, then

ψ,tx = (γ+ u,x)ψ,x + u,xxψ− (4λ + 2u)ψ,xx − 2u,xψ,x.

Replacing ψ,xx by (λ − u)ψ , we obtain

ψ,tx = (γ+ u,x)ψ,x + u,xxψ− (4λ + 2u)(λ − u)ψ− 2u,xψ,x.

Differentiating this again with respect to x with the use of the condition ψ ,xx=
(λ − u)ψ leads to

ψ,txx = [(γ+ u,x)(λ − u)+ u,xxx+ 6uu,x]ψ− (λ − u)(4λ + 2u)ψ,x.

Thus, the two equations for ψ,xxt and ψ,txx are compatible (ψ,xxt = ψ,txx) if and only
if u satisfies KdV equation.

EXERCISE 8.5. Consider two linear equations

v,x = Xv, v,t = Tv,

where v is an n-dimensional vector and X and T are n× n matrices. Provided these
equations are compatible, that is v,xt = v,tx, show that X and T satisfy

X,t −T,x +[X,T] = 0.

The pair X and T is similar to Lax’s pair L and A, and the last equation may lead to
various interesting equations of mathematical physics [1].

Solution. Let us differentiate the first equation with respect to t

v,xt = X,tv+Xv,t .

Replacing v,t by Tv in accordance with the second equation, we obtain

v,xt = (X,t +XT)v.

Analogously, the differentiation of the second equation with respect to x leads to

v,tx = (T,x +TX)v.

Thus, the above equations are compatible (v,xt = v,tx) if

X,t −T,x +[X,T] = 0.

EXERCISE 8.6. Consider the two-soliton solution

u(x, t) = 12
3+ 4cosh(2x− 8t)+ cosh(4x− 64t)
[3cosh(x− 28t)+ cosh(3x− 36t)]2

.
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Fig. 8.12 Two solitons before, during, and after collision

Plot this function for the time instants before, during, and after the collision. Observe
the behavior of the amplitudes and phases.

Solution. After opening a notebook in Mathematica we first define function u(x, t)
given above representing the two-soliton solution. Then, by typing the following
command

Plot[u[x, -0.5], {x,−10,10}, PlotRange → All] ,
we plot this function at time instant t =−0.5. Doing the same for the time instants
t = −0.1 and t = 0.5, we obtain the sequence of graphs representing two solitons
moving to the right before, during, and after collision as shown in Fig. 8.12. One can
observe that the solitons maintain their original shapes after the collision. The only
change is the phase shift. The graph of this function in the (x, t)-plane was shown in
Fig. 8.6.

EXERCISE 8.7. Find the average Lagrangian by solving the minimization problem

L̄ =
1

2π
min
ψ1,ψ2

∫ 2π

0
[
1
2
(ω2 − k2)(ψ2

1,θ +ψ
2
2,θ )−U(ψ1,ψ2)]dθ ,
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where

U(ψ1,ψ2) =
1
2
[ψ2

1 +
α
2
ψ4

1 +ψ
2
2 +

α
2
ψ4

2 +
β
2
(ψ2 −ψ1)

4],

among 2π-periodic functions for which ψ2 = cψ1.

Solution. Let ψ1 = ψ . Substitute the relation ψ2 = cψ (which describes the similar
normal mode) into the above variational problem for the average Lagrangian, we
reduce it to

L̄ =
1

2π
min

maxψ=a

∫ 2π

0
[
1
2
(ω2 − k2)(1+ c2)ψ2

,θ −U1(ψ ,c)]dθ ,

where

U1(ψ ,c) =
1
2
[(1+ c2)ψ2 +

α
2
(1+ c4)ψ4 +

β
2
(1− c)4ψ4].

Let prime denote the derivative with respect to θ . We use the first integral

1
2
(ω2 − k2)(1+ c2)ψ ′2 +U1(ψ ,c) =U1(a,c) = h

to express L̄ in the form

L̄ =
1

2π

∫ 2π

0
(ω2 − k2)(1+ c2)ψ ′2 dθ − h.

Changing the variable θ → ψ , we obtain finally

L̄ =
1

2π
(ω2 − k2)(1+ c2)

∮
ψ ′ dψ− h

=
1

2π

√
2(ω2 − k2)(1+ c2)

∮ √
h−U1(ψ ,c)dψ− h.

The contour integral in this formula denotes the integral over a complete oscillation
of ψ from b, with U1(b,c) = U1(a,c), up to a and back, so it is equal to twice the
integral from b to a because the sign of the square root has to be changed appro-
priately in the two parts of the contour. This integral may also be interpreted as the
contour integral around a cut from b to a in the complex ψ-plane, where ψ plays
the role of the variable of integration.

EXERCISE 8.8. For the average Lagrange function

L̄ =
ω
2π

∫ T

0
pq̇dt − h =

ω
2π

∮
p(q,h,λ )dq− h

of an oscillator depending on the slowly changing parameter λ show that ∂ L̄/∂h= 0
coincides with the amplitude-frequency equation.

Solution. We use the conservation of energy
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1
2m

p2 +U(q,λ ) = h

to express the impulse p in terms of q

p =
√

2m
√

h−U(q,λ ).

Substitute this into the formula for the average Lagrange function to obtain

L̄ =
ω
2π

√
2m

∮ √
h−U(q,λ )dq− h.

Let us differentiate this average Lagrange function with respect to h

∂ L̄
∂h

=
ω
2π

√
m
2

∮
dq√

h−U(q,λ )
− 1.

Thus, the equation L̄,h = 0 is equivalent to

∮
dq√

2/m
√

h−U(q,λ )
=

2π
ω

= T.

The last equation is nothing else but the amplitude-frequency (or amplitude-period)
relation; cf. (5.3).

EXERCISE 8.9. Show that the Sine-Gordon equation in cone coordinates takes the
form

u,XT = sinu.

Develop the theory of slope modulation for this equation.

Solution. Using the cone-coordinates (8.48), we can establish, in our case, the fol-
lowing chain rule of differentiation

∂
∂ t

=
∂
∂X

∂X
∂ t

+
∂
∂T

∂T
∂ t

=
1
2
(
∂
∂X

− ∂
∂T

),

∂
∂x

=
∂
∂X

∂X
∂x

+
∂
∂T

∂T
∂ t

=
1
2
(
∂
∂X

+
∂
∂T

).

Then the second derivatives follow

∂ 2

∂ t2 =
1
4
(
∂ 2

∂X2 − 2
∂ 2

∂X∂T
+
∂ 2

∂T 2 ),
∂ 2

∂x2 =
1
4
(
∂ 2

∂X2 + 2
∂ 2

∂X∂T
+
∂ 2

∂T 2 ).

Thus, the left-hand side of Sine-Gordon can be replaced by

(
∂ 2

∂ t2 − ∂ 2

∂x2 )u =− ∂ 2

∂X∂T
u,

and consequently, the Sine-Gordon equation in cone coordinates reads
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−u,XT + sinu = 0 ⇒ u,XT = sinu.

The strip problem associated with this form of Sine-Gordon equation is stated as
follows: find the extremal of the functional

∫ 2π

0
[
1
2

kωψ2
,θ − (1− cosψ)]dθ (8.75)

among functions ψ(θ ) satisfying

ψ(2π) = ψ(0)+ 2π , ψ,θ (2π) = ψ,θ (0). (8.76)

The maximal slope of solution is defined as before: p = max |ψ,θ |, with p being an
arbitrary real and positive number. The construction of average Lagrangian as well
as the associated functional has been discussed in Section 8.4. However, there are
two modifications. Firstly, the first integral should read now

1
2

mψ2
,θ +(1− cosψ) = h, m = kω .

The phase portrait is shown in Fig. 8.13, where it can be seen that the maximal slope
is achieved at ψ = 0. This implies mp2/2 = h. Secondly, the average Lagrangian
need be slightly modified as follows

L̄(p,k,ω) =
√

2m
2π

f (h)− h,

�2 Π �Π 0 Π 2 Π
�4

�2

0
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4

Fig. 8.13 Phase portrait associated with the strip problem with m = 1
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where f (h) is the function expressed in terms of the complete elliptic integral.

f (h) =
∫ 2π

0

√
h− (1− cosψ)dψ .

The latter is nothing else but the time required for a pendulum with mass m = 2 and
unit length to complete its full circular motion in the gravitational field. Note that the
average Lagrangian does not change its form compared to (8.38), so the dispersion
relation remains unchanged in its form. To derive the equation of slope modulation
let us compute the derivatives

∂ L̄
∂k

=

√
2

2π
m,k

2
√

m
f (h)+ (

√
2m

2π
f ′(h)− 1)h,k =

√
2

4π
ω√
kω

f (h) =

√
2

4π
√

c f (h),

∂ L̄
∂ω

=

√
2

4π
m,ω

2
√

m
f (h)+ (

√
2m

2π
f ′(h)− 1)h,ω =

√
2

4π
k√
kω

f (h) =

√
2

4π
1√
c

f (h),

where c = ω/k and the dispersion relation (8.38) has been used in two steps. Next,
we compute their derivatives with respect to X and T

∂
∂X

∂ L̄
∂k

=

√
2

4π
[

c,X
2
√

c
f (h)+

√
c

2
f ′(h)(k,Xω+ω,Xk)p2 +

√
c

2
f ′(h)m(p2),X ],

∂
∂T

∂ L̄
∂ω

=

√
2

4π
[− c,T

2c
√

c
f (h)+

1
2
√

c
f ′(h)(k,Tω+ω,T k)p2 +

1
2
√

c
f ′(h)m(p2),T ].

Subtracting the second equation from the first one and dividing the result by the
common factor

√
2/4π , we get, after some algebra,

f (h)
2c
√

c
(c,T + cc,X)+

f ′(h)
2
√

c
q(k,X

ω2

k
+2ω,Xω−ω,T k)+

f ′(h)
2
√

c
(ω2q,X − kωq,T ) = 0,

where the square of maximal slope is denoted by q = p2.
We shall find only a particular solution to this equation using the Ansatz for the

phase as before: θ (X ,T ) = g(ξ (X ,T )), ξ (X ,T ) = X/T . With this Ansatz the above
equation reduces to

4[Tg′(ξ )+Xg′′(ξ )]q(X ,T )+Tg′(ξ )(Xq,X −Tq,T ) = 0.

The last equation is the partial differential equation of first order which can be solved
by the method of characteristics and whose solution is given by

q(X ,T ) =W (XT )2 T 4

g′(ξ (X ,T ))2 , ξ (X ,T ) =
X
T
,

and thus,

p(X ,T ) =
√

q(X ,T ) =W (XT )
T 2

g′(ξ (X ,T ))
. (8.77)
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The unknown function W (XT ) should be determined from the expression for h in
the limit h → 2, which corresponds to the separatrix in the phase portrait

h =
1
2

mp2 =
1
2

XT ×W (XT )2 ⇒ W (XT ) =
2√
XT

.

The final asymptotic formula for the slope reads

p(X ,T ) =
2T

√
T√|X |g′(ξ (X ,T ))

.

EXERCISE 8.10. Use the analytical soliton solution for the Sine-Gordon equation
given in cone coordinates by (8.49) to simulate the 5-soliton solution and compare
it with the asymptotic formula 2

√
T/|X | at large time.

Solution. We use formula (8.49) representing the exact analytical solution of the
Sine-Gordon equation. The Mathematica code which enables one to simulate this
solution is reproduced below.

createDelta�Η_, c0_� :� Block	�matrixC, Γ, num, m, k, n�, num � Length�Η�;

Γ � Table	Exp	��Η�k� � Η�n�� X �
T

4

1

Η�k�
�

1

Η�n�
�, �k, num�, �n, num��;

matrixC � Table�Null, �k, num�, �n, num��;
For	k � 1, k � num, k��,

For	n � 1, n � k, n��,

matrixC�k, n� ��
m�1

num
c0�m� c0�k� c0�n�

Γ�k, m� Γ�m, n�
�Η�k� � Η�m�� �Η�m� � Η�n��

;

matrixC�n, k� � matrixC�k, n���;
Return�Det�IdentityMatrix�num� � matrixC��;
�;

� � createDelta�Table�k, �k, 5��, Table�1, �5���;

du � Simplify	4
D��, �X, 2�� � � ��X��2

�2
� ;

To explain this code let us first consider elements of matrix C = AA∗. Since the
eigenvalues are purely imaginary, we have

ζk − ζ ∗n = i(ηk +ηn).

Therefore, function ck(T ) and, consequently, its conjugate, turn out to be real func-
tions

ck(T ) = ck0 exp(−T/2ηk), ck(T )
∗ = ck(T ).

It is now easy to write the elements of matrix A and A∗
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Akn =− i
√

ck0cn0

ηk +ηn
γkn(X ,T ), A∗

kn =
i
√

ck0cn0

ηk +ηn
γkn(X ,T ),

γkn(X ,T ) = exp

[
−(ηk +ηn)X − T

4
(

1
ηk

+
1
ηn

)

]
.

Thus,

Ckn =
N

∑
m=1

AkmA∗
mn =

N

∑
m=1

cm0
√

ck0cn0
γkm(X ,T )γmn(X ,T )
(ηk +ηm)(ηm +ηn)

.

Denoting Δ = det[I+C], we differentiate the right-hand side of the expression for
the slope solution to get

∂ 2

∂X2 lnΔ =
Δ∂ 2

XΔ − (∂XΔ)2

Δ2 ,

which implies further

∂u
∂X

= 2

√
Δ∂ 2

XΔ − (∂XΔ)2

Δ
.

The first piece of the above code is used to generate the determinant Δ = det[I+C],
while the next one is aimed at computing the slope ∂u/∂X . The graph of ∂u/∂X
is plotted with the usual Plot Command. Using this Mathematica code, one can
reproduce Fig. 8.10 shown at the end of Section 8.4.

EXERCISE 8.11. Prove the identities K1 = 0, K2 = K3.

Solution. Since K1 is given as an integral over a closed contour, K1 vanishes if its
integrand is a full differential of a function. To show that this is the case let us
compute the following derivative

D1 =
d

dφ

[
2

√
(φ − b2)(φ − b3)

b1 −φ

]

=

√
φ − b3

(φ − b2)(b1 −φ) +
√

φ − b2

(φ − b3)(b1 −φ) +
1

b1 −φ

√
(φ − b2)(φ − b3)

b1 −φ

=
1

φ − b1

√
2

f (φ)
[(φ − b3)(φ − b1)+ (φ − b2)(φ − b1)− (φ − b2)(φ − b3)]

=

√
2(φ2 − 2b1φ + b1b2 + b1b3 − b2b3)

(φ − b1)
√

f (φ)
,

where f (φ) is equal to

f (φ) = 2(b1 −φ)(φ − b2)(φ − b3).
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We see that D1/
√

2 is exactly the integrand standing in the integral of K1, which
implies that K1 vanishes.

Now, we prove that the difference K2−K3 also vanishes using the same argument.
Subtracting K3 from K2, we obtain

K2 −K3 =
b2 − b3

4π

∮ φ2 − 2b1φ + b1b2 + b1b3 − b2b3

(φ − b2)(φ − b3)
√

f (φ)
dφ .

Then we consider the following derivative

D2 =
d

dφ

[√
2(b1 −φ)

(φ − b2)(φ − b3)

]

=− 1√
f (φ)

− b1 −φ
(φ − b2)

√
f (φ)

− b1 −φ
(φ − b3)

√
f (φ)

.

=− (φ − b2)(φ − b3)+ (b1−φ)(φ − b2)+ (b1 −φ)(φ − b3)

(φ − b2)(φ − b3)
√

f (φ)

=
φ2 − 2b1φ + b1b2 + b1b3 − b2b3

(φ − b2)(φ − b3)
√

f (φ)
.

Thus, the integrand in the above formula for K2 −K3 is again the full differential
and consequently, the integral vanishes.

EXERCISE 8.12. Derive equations (8.73) directly from the conservation law of
KdV equation

u,t +(3u2+ u,xx),x = 0.

Find its solution.

Solution. Let us average the above equation over a unit length (having k̄ solitons) to
obtain

ū,t + 3(u2),x = 0.

Since there are k̄ solitons in a unit length, the average values should be

ū = k̄
∫ ∞

−∞
u1dx, u2 = k̄

∫ ∞

−∞
u2

1dx,

where u1 is a single soliton solution having the amplitude a, and the integrals are
computed approximately by extending the unit interval to the whole real axis. Now,
for the single soliton given by

u1 = asech2[
√

a/2(x− 2at)],

the integration yields

ū = 2
√

2 k̄
√

a, u2 =
4
√

2
3

k̄a3/2.
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The average equation becomes

(k̄
√

a),t +(2k̄a3/2),x = 0.

Keeping in mind that the phase velocity c, in case of solitons, is c = 2a, we obtain
from the kinematic condition k̄,t +(ck̄),x = 0 the following equation

k̄,t +(2ak̄),x = 0.

We rewrite the above equation as (k̄
√

a),t +(ck̄
√

a),x = 0, expand the derivatives
and factorize appropriately to obtain

√
a[k̄,t +(ck̄),x]+

k̄
2
√

a
(a,t + ca,x) = 0.

The second equation of (8.73) follows from the above equation plus the consistency
condition.

In this approximation the system is not strictly hyperbolic, but a may be found
by integration along the characteristics dx/dt = 2a. Along this curve, the amplitude
a remains constant, due to

da
dt

= a,t +
dx
dt

a,x = 0.

Thus,
dx
dt

= 2a = 2C ⇒ x
t
= 2C,

where C is a constant characterizing such a curve. By varying this constant, one can
obtain the solution a = a(x, t) spanned in the whole plane (x, t)

a(x, t) =
x
2t
.

With this solution the first equation, after some algebra, is reduced to

∂t(tk̄)+ xk̄,x = 0.

Changing the unknown function q = tk̄, we obtain

q,t +
x
t

q,x = 0,

which admits a simple solution q(x, t) = f (x/t), where f is an arbitrary function.
Thus, the average number of solitons is

k̄ =
1
t

f (
x
t
).
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However, to achieve the full agreement, solution a(x, t) = x/2t has to be cut off
at some leading solitary wave in the sequence. This is equivalent to posing jump
conditions on the shock waves. If we accept (8.73), the jump conditions have to be

−V [[k̄
√

a]]+ [[2k̄a3/2]] = 0,

−V [[k̄]]+ [[2ak̄]] = 0,

where V is the velocity of the discontinuity and [[·]] denotes the jump. A jump from
a = 0 to a nonzero value a(0) would therefore have V = 2a(0). This is the phase
velocity and the result indicates that the solution a(x, t) = x/2t may be cut off at a
leading solitary wave in the sequence.



Notation

Time t
Generalized coordinates q = (q1, . . . ,qn)
Generalized velocities q̇ = (q̇1, . . . , q̇n)
Generalized accelerations q̈ = (q̈1, . . . , q̈n)
Generalized impulses p = (p1, . . . , pn)
Kinetic energy K(q, q̇)
Potential energy U(q)
Lagrange function L(q, q̇) = K(q, q̇)−U(q)
Hamilton function H(q, p)
Dissipation function D(q, q̇)
Frequency ω
Period T
Amplitude a
Wave number k
Wavelength λ
Phase θ
Element of volume, area, and length dx, da, ds
Greek indices run through 1,2,3 and denote the cartesian components of vectors and
tensors
Latin indices run through 1,. . . ,n and numerate the degrees of freedom
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Index

absorber 64
acceleration 4
acoustics 127
action functional 65, 126
action-angle variables 302
adiabatic invariants 364
air resistance 4
amplitude 7, 183, 229, 233
amplitude modulation 50, 368
angular momentum 258
angular time 211
angular velocity 257
anti-resonance 62, 77
attractor 232
autonomous system 207
average Lagrangian 186, 361, 372, 380

bar 106
beam

Bernoulli-Euler 110
Timoshenko 127

beating 50, 276
bending moments 121
Bessel equation 118, 123
bifurcation 281

Hopf 281, 326
saddle-node 281

body
elastic 128
piezoelectric 128

Bogoliubov-Mitropolsky method 235
Brillouin zone 101

Cantor set 315

Cartesian coordinates 114
caustics 160
center 9
centrifugal energy 238
chain of oscillators 99
chaotic motion 302
characteristic equation 12, 71
characteristics 159
Chladni figures 125
clamped edge 120
collision 349
cone coordinates 375
conservation of energy 8, 66, 129, 209,

301
conservative system 65, 207, 300
consistency condition 212
coupling factor 55
crest 153

d’Alembert solution 152
damper 10
damping

exhaustive 55
permeating 55
proportional 55
turbulent 217
viscous 4

damping constant 10
decay rate 14, 58
degree of freedom 3, 65
determinant 49
diagonalization 51, 73
diophantine condition 314
dispersion relation 103, 161
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nonlinear 345, 372, 385
Rayleigh-Lamb 172

dissipation function 10, 68, 134, 226, 232,
320, 366

dissipative system 10, 68, 134, 215, 232,
366

divisor 317
Duffing equation 208
Duhamel formula 25

eigenfrequency 7
eigenfunction 108
eigenvalue 71
eigenvalue problem 70
eigenvector 49, 71
eikonal equation 159
Einstein summation convention 128
eliminator 62
elliptic function 213
elliptic integral 213
energy

internal 106
kinetic 4, 66
potential 4, 66
total 9, 66

energy balance 19, 26, 68, 180, 219, 227,
367

energy dissipation 20, 68, 367
energy flux 180
energy household 226
energy level 210
energy level surface 303
energy source 222
entrainment 276
envelope 14
equilibrium 67
ergodicity 315
Euler-Lagrange equation 129
excitation 20
extremal 4

fast variable 184, 360
first integral 209
fixed point 9, 272
Floquet theory 263
flow

Hamilton 301
slow 262

focus 18

force 4
external 69

forced Duffing equation 269
forced van der Pol equation 275
Fourier series 234
Fourier transform 101, 162
free edge 120
free-body diagram 4
frequency

cutoff 174
frequency-locked 276
friction 216

Gauss theorem 129
Gelfand-Levitan equation 353
generalized coordinate 65
generalized impulse 300
generalized velocity 65
geometrical optics 158
gravity 5

Hamilton equations 299, 363
Hamilton principle 65, 121, 126
Hamilton-Jacobi equation 328
harmonic excitation 76
Helmholtz equation 158
Hermitian operator 178
Hessian 319
Hill equation 264
holonomic constraint 209
homoclinic orbit 304
Huygens principle 159
hysteresis loop 275

impact 142
integrable system 302
invariant tori 302
inverse scattering transform 350

jump 236, 275, 289, 402

KAM theory 312
kinematic relation 167
Klein-Gordon equation 160
Korteweg-de Vries equation 343

linearized 160

Lagrange equation 66
Lagrange function 4, 66
Lagrangian 127
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Lamé constants 170
Laplace transform 23
Lax pair 351
Legendre equation 359
Legendre transform 300
Lehr damping ratio 19
Liénard theorem 227
limit cycle 226
Lindstedt-Poincaré method 213
linearization 256
Liouville theorem 301
Lissajous figure 87
logarithmic decrement 16

magnification factor 29
mass 4
mass density 120
Mathieu equation 256
matrix

damping 69
mass 67
modal 73, 75
stiffness 67
transmittance 63, 76

membrane
circular 118
rectangular 116

modal decomposition 75
modal equation 306
moment 5
moment of inertia 6
motion

aperiodic 16
fast 237
harmonic 7
limit 210
periodic 32
quasiperiodic 312
slow 229

multi-scale 370

Newton iteration 316
Newton rule 176
Newton second law 4
node 19
non-autonomous system 70, 255
nonlinear normal mode 304
normal mode 50, 73
normalization condition 112

numerical simulation 303

Onsager principle 55, 68
operator

damping 134
stiffness 130

orthogonality 132
oscillator

continuous 126
coupled 45, 297
damped 10
forced 21
harmonic 3
nonlinear 207
self-excited 222

oscillograph 15

parametric resonance 255
Parseval identity 102
pendulum 5
period 8

conditional 14
phase 29, 153, 161, 211, 373, 378

initial 7
phase curve 8
phase plane 8
phase portrait 8, 209, 217
phase shift 349, 358, 393
phase space 301
plate

circular 122
Kirchhoff 120
Reissner-Mindlin 127

Poincaré map 268, 303
Poincaré-Bendixson theorem 226
Poisson formula 157
Poisson ratio 171
polar coordinates 118, 278
power 31, 223

active 32
idle 32

propagating crack 376
pseudo-resonance 77

quasicontinuum 101
quasiperiodic function 263

ray 158
Rayleigh equation 226
Rayleigh quotient 73
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Rayleigh surface wave 197
reflection 154
reflection coefficient 154
refraction 154
relaxation oscillation 229
resonance 31, 77
resonance function 64
resonant (secular) term 213
rotating frame 238
Routh-Hurwitz criterion 56

saddle point 210
scattering data 354
Schrödinger equation 351
self-adjointness 132
separation of variables 123
separatrix 210
shock wave 402
signaling problem 179
Sine-Gordon equation 346
slope modulation 370
slow variables 184, 360
Snell law 154
soliton 344
solvability condition 186
spectral analysis 355
spectrum 132
spiral 18
spring

hardening 208
linear 4
nonlinear 207
softening 208
spiral 6

stability 257
stability analysis 230
stability chart 265
steady-state response 275
step function 22
strain 106
string 104
strip problem 185, 361, 370, 379
subharmonic resonance 292
supported edge 121
swing 257
switcher 222
synchronization 320

Taylor series 67

time
fast 237
slow 233

time scale 14
tongue of instability 263
torus 302

non-resonant 314
resonant 314

train of solitons 376, 387
transition curve 266
transport equation 159
trough 153
truncation 135
turning point 219
two-timing 233

unit step response 23

van der Pol equation 226
variation 65
variational-asymptotic method 183, 211,

233, 261, 270, 276, 305, 312, 359
velocity

group 164
phase 161

vibration
control 59
damped 14
elimination 62, 77
finite amplitude 207
flexural 111
forced 26
free 8
longitudinal 106
node 109
small 3
torsional 107

vorticity 217

wave
acoustic 152
backward 178
branch of 153
cnoidal 345
dispersive 160
hyperbolic 151
plane 153
spherical 157
water 343

wave number 103
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wave packet 167
wave vector 153, 161
wavefront 157
waveguide 169
wavelength 103
Whitham equations 377
Whitham method 185
winding numbers 313
WKB-method 158

work 26, 70
active 32
idle 32

Wronskian 265

Young modulus 107

zero level 6
zeros 15
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