
An UPPAAL Framework for Model Checking
Automotive Systems with FlexRay Protocol

Xiaoyun Guo1, Hsin-Hung Lin2(B), Kenro Yatake1, and Toshiaki Aoki1

1 School of Information Science,
Japan Advanced Institute of Science and Technology, Ishikawa, Japan

{xiaoyunguo,k-yatake,toshiaki}@jaist.ac.jp
2 School of Information Science and Electrical Engineering, Kyushu University,

Fukuoka, Japan
h-lin@ait.kyushu-u.ac.jp

Abstract. This paper introduces a method and a framework for veri-
fying automotive system designs using model checking. The framework
is based on UPPAAL, a timed model checker, and focuses on checking
automotive system designs with FlexRay communication protocol, a de
facto standard of automotive communication protocols. The framework
is composed of FlexRay model and application model where the former
is built by abstractions to the specifications of FlexRay protocol. In the
framework, FlexRay model is reusable for different application models
with appropriate parameter settings. To the best of our knowledge, the
framework is the first attempt on model checking automotive system
designs considering communication protocols. Checking of core proper-
ties including timing properties are conducted to evaluate the framework.

1 Introduction

Automotive systems mainly adopt electronic control units (ECUs) to realize
X-by-wire technology [10]. With the X-by-wire technology, requirements or func-
tionalities which were not mechanically realizable are possible. Generally, ECUs
in an automotive system follow communication protocols to communicate with
each other through one or multiple buses. Since communication protocols greatly
affect the performance of an automotive system, protocols which can support
high transmission rate while still having reliability are demanded. Recently,
FlexRay communication protocol is considered the de facto standard of automo-
tive communication protocols [1,13]. FlexRay supports high transmission rate
up to 10 Mbs while still having fault-tolerance abilities. These characteristics
make FlexRay especially suitable for safety critical systems.

Increasing requirements for safety, driving assistance, etc., result in more
complexity in the development of automotive systems. More ECUs are required
in automotive systems and hence the need for handling heavy communica-
tions. Therefore, validation and verification of automotive systems became much
harder. In industry, integration platform based solutions are proposed to support

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 36–53, 2014.
DOI: 10.1007/978-3-319-05416-2 4, c© Springer International Publishing Switzerland 2014



An UPPAAL Framework for Model Checking Automotive Systems 37

automotive system design processes [7,14,15]. Integration platforms provide vir-
tual simulation and testing for automotive system designs and implementations
and thus save the cost of testing on devices. Although integration platforms
can perform early phase analysis, behavioral analysis as well as verification of
design models is hard to conduct because simulation and testing only focus on
specific signals or nodes in a system. On the other hand, timed model checking
techniques are proven effective on verification of real time systems [2,9]. There-
fore, introducing timed model checking on verifying automotive system designs
is considered appropriate and necessary.

This paper proposes a method for verifying design models of automotive sys-
tems using timed model checking technique. The method considers automotive
systems with FlexRay protocol and focuses on communications between ECUs.
Based on the method, a framework is implemented on UPPAAL, a timed model
checker [3]. UPPAAL has a nice graphical user interface for precisely describing
time constrained behaviors and is widely used in verifying time critical sys-
tems. However, when considering automotive systems with FlexRay protocol,
it is recognized that the behaviors of FlexRay and tasks affect each other all
the time. This phenomena is difficult to be precisely modeled using primitive
channel synchronizations provided by UPPAAL. Therefore, we model an auto-
motive system as the combination of FlexRay model and application model,
where the former is reusable with different parameter settings of systems. Devel-
opers can build an automotive system design on application model and verify it
with FlexRay model plus proper parameter settings.

The proposed model will focus on verification of design models, especially
behavior and timing related to message transmissions. Three steps of abstrac-
tions are applied on the FlexRay communication protocol to remove parts and
behaviors not in focus, and then build FlexRay model. To evaluate the frame-
work, experiments on simple systems are demonstrated to examine if the frame-
work precisely models the behavior of normal transmissions in FlexRay protocol
and its ability of timing analysis for automotive system designs.

2 Related Work

Practically, automotive systems are tested and validated using integration plat-
form solutions in the industry [7,14,15]. Integration platforms provide virtual
environments for simulation and analysis of automotive systems. However, test-
ing or simulation can only focus on specific signals or nodes in a system so that
high level analyses such as behavioral analysis are difficult. Compared to inte-
grated platforms, our framework focuses on behavior analysis and verification
with time, which makes up the above deficiency. Also, to the best of our knowl-
edge, the framework is the first attempt for verification support of automotive
system designs considering communication protocol.

Another important issue of automotive systems is scheduling or performance
analysis which analyzes expected execution time of applications and sees whether
deadlines can be met or not. For FlexRay protocol, dealing with dynamic



38 X. Guo et al.

Fig. 1. An example automotive system with FlexRay

segments in FlexRay protocol is the most important as well as difficult issue
in approaches of scheduling analysis [8,11,16,17]. Though our work does not
explicitly consider scheduling analysis due to simplification on ECUs, the frame-
work is similar to model-based scheduling analysis which has been proved useful
on other platforms [4,5]. Therefore, we argue that scheduling analysis is also
possible using our framework with some improvements.

For FlexRay protocol itself, correctness of FlexRay protocol is verified in a
few aspects. M. Gerke et al. verified the physical layer of FlexRay and proved
the fault-tolerance guarantees in FlexRay [6]. J. Malinský and J. Novák verified
the start-up mechanism of FlexRay [12]. Based on the results of the above work,
our framework assumes the correctness of the physical layer, i.e. encoding and
decoding of frames, and the start-up of FlexRay. As a result, we did not imple-
ment physical layer and start up mechanism in FlexRay model and focus only
on the behavior of abstracted frame transmissions.

3 Automotive Systems with FlexRay Protocol

In the specification of FlexRay, the controller-host interface (CHI) is implemen-
tation dependent. For verification purpose, since different implementations need
different models, it is necessary to declare which implementation is considered
in this paper. In this section, an example of automotive system with FlexRay
shown in Fig. 1 is introduced for demonstration.



An UPPAAL Framework for Model Checking Automotive Systems 39

As Fig. 1(a) shows, an automotive system consists of numbers of nodes con-
nected to a bus for communications with each other. Each node consists of three
parts: an ECU, a controller-host interface (CHI), and a communication con-
troller (CC). In each node, tasks of applications are running on the ECU and
send/receive data to/from buffers of the CHI. A CHI contains several buffers
designated for specific data streams called frames in FlexRay. For every frame,
a sending and a receiving buffer are specified. The sending buffer of a frame is
implemented in the CHI where the ECU of same node has tasks designated to
send data by the frame. The receiving buffer of a frame is implemented in the
CHI where the ECU of same node has tasks designated to receive data by the
frame. When an automotive system is executing, the CC of a node counts the
time in each cycle and sends a frame from the corresponding buffer to the bus
at the designated time. The CC also receives a frame and writes to the corre-
sponding buffer if the frame is designated to be received by the node. Note that
only one frame is allowed to be sent and received at the same time. It should
also be noted that in a node, the status of the CC, i.e. current number of cycles,
current number of slots, etc., is accessible to tasks in the ECU through the CHI
and thus makes more complicated behaviors possible. In Fig. 1(a), The system
has three nodes, Node1, Node2, and Node3. Six frames are defined and sending
buffers are specified in the corresponding CHIs: m1 and m5 in CHI1, m2 and
m4 in CHI2, m3 and m6 in CHI3

1.
Figure 1(b) demonstrates a two cycle instance of communications of the

system shown in Fig. 1(a). Communications in FlexRay are performed based on
periodic cycles. A cycle contains two time intervals with different policies for
accessing the bus: static segment and dynamic segment2. The lengths of the two
segments are fixed in every cycle and the time in a cycle is counted using slots:
static slots and dynamic slots. A static slot has fixed length defined by global
configuration parameter gdStaticSlot as a common time unit called macrotick
(MT) for all nodes in a system and the length of a static segment of is defined
by global configuration parameter gNumberOfStaticSlots. On the other hand,
dynamic slots are flexible and composed of several minislots. A minislot is the
basic unit of a dynamic segment and its length is defined by global configuration
parameter gdMinislot as macroticks. The length of a dynamic segment is then
defined by global configuration parameter gNumberOfMinislots. The index of a
frame should be defined to map with a slot number therefore a frame will be
sent at designated time interval, i.e. slot, in a cycle.

In Fig. 1(b), the index of a frame is set to the same slot number for conve-
nience. Frame m1, m2, and m3 are set to static slots, slot 1, 2, and 3. Frame
m4, m5, and m6 are set to dynamic slots, slot 4, 5, and 6. In the static segment
of the first cycle, frame m1 and m3 are sent in slot 1 and slot 3. Though frame
m2 is not sent, the time interval of slot 2 is still elapsed with no transmission.

1 Receiving buffers are not shown in the figure.
2 Here we ignore symbol window (SW) and network idle time (NIT). The former is

optional and the latter is for adjustment of cycle length. Both SW and NIT do not
affect communications in automotive system designs.



40 X. Guo et al.

Fig. 2. The framework

In the dynamic segment of the first cycle, m4 and m6 are sent in slot 4 and slot
6. Frame m4 has the length of four minislots and m6 has the length of seven
minislots. Slot 5 is not sent in first cycle but still occupies the time interval
of one minislot. When the maximum slot number is reached but the maximum
minislot number is not, the time proceeds with no transmission till the end of the
dynamic segment. The second cycle is similar where only m2 and m5 are sent.

4 The Framework

Figure 2 shows the structure of the UPPAAL framework for verification of auto-
motive systems with FlexRay demonstrated in Sect. 3. The framework consists
of several parts: UPPAAL engine, FlexRay model, Application model, Config-
uration, and Properties. The parts of the framework are associated with three
layers: base, communication, and application layers. The foundation of the frame-
work is the UPPAAL model checker. FlexRay model which models the FlexRay
protocol is the main component of the communication layer. Application model
which represents the design model of an automotive system belongs to the appli-
cation layer. Configuration and Properties are associated to both communica-
tion and application layers: Configuration contains parameters relating to both
FlexRay and application models; Properties specify queries for verification of
both FlexRay and application models in UPPAAL. FlexRay model and applica-
tion model, which are the main components of the framework, will be described
in Sects. 4.1 and 4.2 separately. Configuration and Properties will be mentioned
within examples in Sects. 4.3 and 5.

4.1 FlexRay Model

The specifications of the FlexRay communication protocol include details of
implementations on hardwares irrelevant to verification of design models of
automotive systems. Therefore, to build FlexRay model in our framework,
abstractions are needed to trim off irrelevant parts and behaviors. Generally,
the abstractions are processes of modeling the specifications of the FlexRay
protocol based on our understanding of the FlexRay protocol and our knowl-
edge/experiences of using UPPAAL. We divide the processes of the abstractions



An UPPAAL Framework for Model Checking Automotive Systems 41

Fig. 3. The structure of FlexRay model

into three steps: (1) essential component selection, (2) functionality reduction,
and (3) state space reduction. Figure 3 shows the structure of the FlexRay model
after the abstraction. The details of the three steps abstraction are described
as follows.

Essential Component Selection. For the purpose of verifying the design
model of an automotive system, we only focus on functionalities relating to
sending and receiving frames when building FlexRay model. The first step is
then to select essential and necessary components providing frame transmission
functionalities. Since we only focus on design level verification, specifications
regarding low level behaviors such as clock synchronization and frame encod-
ing/decoding are out of focus. We also assume that there is no noise interference
in transmissions3. Therefore, we only need three components in FlexRay proto-
col: protocol operation control (POC), media access control (MAC), and frame
and symbol processing (FSP). POC monitors overall status of CC and manages
other components. MAC is responsible for sending frames in corresponding send-
ing buffers of CHI at specific times in each cycle. FSP is responsible for receiving
frames and storing data to receiving buffers in CHI for tasks in ECUs to read.
Besides POC, MAC, and FSP, we also need Timer which helps monitoring of
timing in each cycle and slot. Timer is not treated as a component in the spec-
ifications of the FlexRay protocol but we have to build it since timer is used
everywhere in almost all components of a CC. The bus is implemented as a
variable accessible to MAC and FSP. The sending/receiving of frames is then
represented by writing/reading data to/from the bus variable.

3 Generally, FlexRay only captures and throws errors. An application has the respon-
sibility to handle errors thrown by FlexRay. Though not in the scope of this paper,
if transmission errors are of interest, they can be modeled by adding error situa-
tions/states explicitly in FlexRay model.



42 X. Guo et al.

Functionality Reduction. After the first step of the abstractions, the selected
components POC, MAC, and FSP still have irrelevant behaviors which do not
participate in activities related to frame transmissions. Also, the irrelevant behav-
iors may still cooperate with components already removed in the first step of
the abstractions. Therefore, the second step is to remove the irrelevant behav-
iors and functionalities of the selected components. In the framework, we only
focus on regular transmissions of frames and therefore only the normal state of
POC is meaningful and other states are ignored. Furthermore, we consider that
the clock is synchronized between nodes and there is no external interference
in normal transmissions. This results that some functionalities of CC become
unnecessary for FlexRay model. For example, functionalities such as adjustments
for reactions on transmission errors, e.g. fault tolerance feature of the bus, can
be ignored. Also, similar functionalities mainly related to error managements in
other components and CHI are ignored. Note that our most priority of model-
ing the FlexRay protocol is to fulfill the need of timing analysis, which is not
required to consider situations with errors in the first place. Therefore, the mod-
eling process is more like picking up the traces of successful frame transmissions
but trimming off error processing behaviors.

State Space Reduction. After the above two steps of the abstractions, FlexRay
model looks simple considering the number of explicit states and transitions.
However, the complexity is still high and hardly acceptable since there are many
variables especially clocks in FlexRay model. In some cases even the size of an
application is not considered large, UPPAAL suffers from state explosion when
checking properties. Therefore, further abstraction is necessary to reduce the
state space while the behaviors of frame transmissions in the FlexRay protocol
is still precisely modeled. By reviewing the above two steps of abstractions, recall
that there are two assumptions of FlexRay model in the framework: (1) all nodes
are synchronized all the time; (2) there is no error during frame transmissions.
With (1), all nodes start a cycle at the same time; with (2) all nodes finish a
cycle at the same time. That is, no node is going to be late because of trans-
mission errors. Therefore, it is reasonable to conclude that we do not need a CC
for every node, i.e. one CC is enough. This helps us to remove the complicated
behaviors which only synchronize the clocks of nodes of a system. Furthermore,
we also cancel the process of counting minislots in dynamic segment and instead
calculating the number of minislots directly using lengths of dynamic frames
and related parameters. This helps avoiding small time zones not meaningful in
checking properties. Most properties concern the timing of the start and the end
of a frame transmission but not in the middle of a frame transmission.

FlexRay model constructed after three steps of abstraction is shown in Figs. 4
and 5, where MAC is separated into MAC static and MAC dynamic. An exam-
ple will be given in Sect. 4.3 for demonstrating how FlexRay model works in
cooperation with Application model explained in Sect. 4.2.



An UPPAAL Framework for Model Checking Automotive Systems 43

st
ar

t_
up

cy
cl

e_
st

ar
t!

w
ai

t_
fo

r_
cy

cl
e_

en
d

x<
=

st
ar

tu
p_

of
fs

et

vS
S

.v
C

yc
le

C
ou

nt
er

<
gC

yc
le

C
ou

nt
er

M
ax

x:
=

0
cy

cl
e_

en
d?

vS
S

.v
C

yc
le

C
ou

nt
er

=
1

cy
cl

e_
en

d?
vS

S
.v

C
yc

le
C

ou
nt

er
+

+
, x

=
0

vS
S

.v
C

yc
le

C
ou

nt
er

=
=

gC
yc

le
C

ou
nt

er
M

axvS
S

.v
C

yc
le

C
ou

nt
er

<
=

gC
yc

le
C

ou
nt

er
M

ax

x<
=

gd
N

IT
x=

=
gd

N
IT

cy
cl

e_
en

d!

N
IT

_s
ta

rt
?

vS
S

.v
S

lo
tC

ou
nt

er
:=

0,
x:

=
0

T
im

er
_A

ct
io

nP
oi

nt
in

iti
al

se
t_

tim
er

B
?

T
im

er
_S

lo
tB

ou
nd

ar
y

en
d

x<
=

tS
lo

tA
ct

io
nP

oi
nt

x:
=

0

x:
=

0

S
lo

tS
ta

rt
!

se
t_

tim
er

A
?

S
lo

tE
nd

!

x:
=

0

x<
=

tS
lo

tB
ou

nd
ar

y

x=
=

tS
lo

tA
ct

io
nP

oi
nt

x=
=

tS
lo

tB
ou

nd
ar

y

w
ai

t_
fo

r_
C

E
_s

ta
rt

go
?

w
ai

t_
fo

r_
C

H
IR

P

bu
s_

st
at

us
=

=
C

E
_s

ta
rt

re
ce

iv
e(

),
re

se
t_

bu
s_

fr
am

e(
)

go
?

go
?

ch
ec

k_
fr

am
e_

an
d_

up
da

te
_v

S
S

()

bu
s_

st
at

us
=

=
C

H
IR

P
 &

&
vS

S
.V

al
id

F
ra

m
e

bu
s_

st
at

us
=

=
C

H
IR

P
 &

&
!v

S
S

.V
al

id
F

ra
m

e
w

ai
t_

fo
r_

th
e_

st
at

ic
_s

lo
t_

bo
un

da
ry

w
ai

t_
fo

r_
th

e_
ac

tio
n_

po
in

t

S
lo

tE
nd

?

dy
n_

se
g_

st
ar

t!

S
lo

tS
ta

rt
?

x<
=

fr
am

e_
le

ng
th

w
ai

t_
cy

cl
e_

st
ar

t

w
ai

t_
fo

r_
th

e_
en

d_
of

_t
ra

ns
m

is
si

on

se
nd

_m
es

sa
ge

vS
S

.v
S

lo
tC

ou
nt

er
<

gN
um

be
rO

fS
ta

tic
S

lo
ts

x:
=

0

x:
=

0

tS
lo

tA
ct

io
nP

oi
nt

:=
gd

A
ct

io
nP

oi
nt

O
ffs

et
,

tS
lo

tB
ou

nd
ar

y:
=

gd
S

ta
tic

S
lo

t,
x:

=
0

vS
S

.v
S

lo
tC

ou
nt

er
=

1

se
t_

tim
er

A
!

cy
cl

e_
st

ar
t?

bu
s_

st
at

us
=

ID
LE

bu
s_

st
at

us
=

C
H

IR
P

bu
s_

st
at

us
=

C
E

_s
ta

rt
,

tr
an

sm
it(

)

vS
S

.v
S

lo
tC

ou
nt

er
+

+

B
uf

fe
rE

m
pt

y(
)

!B
uf

fe
rE

m
pt

y(
) 

&
&

va
lid

_f
ra

m
e_

le
ng

th
()

x=
=

fr
am

e_
le

ng
th

vS
S

.v
S

lo
tC

ou
nt

er
>

=
gN

um
be

rO
fS

ta
tic

S
lo

ts

F
ig
.
4
.
F
le

x
R

ay
m

o
d
el

(P
O

C
,
N

IT
,
T

im
er

,
F
S
P
,
M

A
C

st
a
ti

c)



44 X. Guo et al.

w
ai

t_
fo

r_
th

e_
en

d_
of

_a
ct

iv
ity

1

w
ai

t_
fo

r_
th

e_
A

P
_t

ra
ns

m
is

si
on

_s
ta

rt

w
ai

t_
fo

r_
th

e_
en

d_
of

_d
yn

am
ic

_s
lo

t1
en

d_
of

_d
yn

am
ic

_s
lo

t

w
ai

t_
fo

r_
th

e_
en

d_
of

_d
yn

am
ic

_s
eg

m
en

t

N
IT

_s
ta

rt
!

se
t_

tim
er

B
!

se
t_

tim
er

B
!

se
t_

tim
er

B
!

S
lo

tE
nd

?

!B
uf

fe
rE

m
pt

y(
) 

&
&

en
ou

gh
_m

in
is

lo
ts

()

zM
in

is
lo

t<
gN

um
be

rO
fM

in
is

lo
ts

vS
S

.v
S

lo
tC

ou
nt

er
=

=
gN

um
be

rO
fS

ta
tic

S
lo

ts
+

1 
&

&
tA

ct
io

nP
oi

nt
>

tM
in

is
lo

tA
ct

io
nP

oi
nt

zM
in

is
lo

t=
=

gN
um

be
rO

fM
in

is
lo

ts

st
ar

t_
of

_d
yn

am
ic

_s
lo

t

en
d_

of
_d

yn
am

ic
_s

eg
m

en
t

vS
S

.v
S

lo
tC

ou
nt

er
=

=
cS

lo
tID

M
ax

gN
um

be
rO

fM
in

is
lo

ts
>

0

gN
um

be
rO

fM
in

is
lo

ts
=

=
0

vS
S

.v
S

lo
tC

ou
nt

er
<

cS
lo

tID
M

ax

bu
s_

st
at

us
=

ID
LE

tS
lo

tB
ou

nd
ar

y:
=

ad
A

ct
io

nP
oi

nt
D

iff
er

en
ce

zM
in

is
lo

t:=
0

vS
S

.v
S

lo
tC

ou
nt

er
+

+

tS
lo

tB
ou

nd
ar

y:
=

fr
am

e_
le

ng
th

bu
s_

st
at

us
=

C
E

_s
ta

rt
,

tr
an

sm
it(

)

tS
lo

tB
ou

nd
ar

y:
=

tM
in

is
lo

tA
ct

io
nP

oi
nt

,
zM

in
is

lo
t+

+

tS
lo

tB
ou

nd
ar

y:
=

gd
M

in
is

lo
t*

(g
N

um
be

rO
fM

in
is

lo
ts

−
zM

in
is

lo
t)

,
zM

in
is

lo
t:=

gN
um

be
rO

fM
in

is
lo

ts
bu

s_
st

at
us

=
C

H
IR

P

se
t_

tim
er

B
!

S
lo

tE
nd

?

S
lo

tE
nd

?

se
t_

tim
er

B
!

S
lo

tE
nd

?

tS
lo

tB
ou

nd
ar

y:
=

gd
M

in
is

lo
t,

zM
in

is
lo

t+
+

dy
n_

se
g_

st
ar

t?

tS
lo

tB
ou

nd
ar

y:
=

C
om

pu
te

M
ac

ro
tic

k(
),

zM
in

is
lo

t:=
C

om
pu

te
M

in
is

lo
t(

)

se
t_

tim
er

B
!

S
lo

tE
nd

?

N
IT

_s
ta

rt
!

vS
S

.v
S

lo
tC

ou
nt

er
+

+

zM
in

is
lo

t<
gN

um
be

rO
fM

in
is

lo
ts

vS
S

.v
S

lo
tC

ou
nt

er
>

gN
um

be
rO

fS
ta

tic
S

lo
ts

+
1 

or
tA

ct
io

nP
oi

nt
<

=
tM

in
is

lo
tA

ct
io

nP
oi

nt

B
uf

fe
rE

m
pt

y(
) 

or
!e

no
ug

h_
m

in
is

lo
ts

()
zM

in
is

lo
t=

=
gN

um
be

rO
fM

in
is

lo
ts

F
ig
.
5
.
F
le

x
R

ay
m

o
d
el

(M
A

C
d
y
n
a
m

ic
)



An UPPAAL Framework for Model Checking Automotive Systems 45

4.2 Application Model

Application model represents ECUs in an application and thus consists of mul-
tiple tasks. As shown in the upper part of Fig. 3, application model accesses
the buffers in CHIs to communicate with CCs for sending/receiving frames.
Since Application model tightly depends on actual automotive systems to be
designed by developers, we leave most of the jobs to developers in building Appli-
cation model and give only simple directions on how to use FlexRay model of the
framework.

Only One Task in an ECU. For simplicity, in this paper we build one module
in UPPAAL to represent one task and an ECU only has one task. Therefore we
can omit modeling of schedulers in ECUs. Developers have to build a scheduler
module when scheduling in an ECU is considered necessary.

Use of Functions to Access Buffers in CHIs. In an automotive system
with FlexRay protocol, tasks in different nodes cannot communicate directly but
through FlexRay protocol, i.e. FlexRay model of the framework. Therefore, when
sending data, a task has to write data to the corresponding sending buffer in
the CHI of the same node, and let the CC do the transmissions. When receiving
data, the process is similar but in the reverse order. To make things simple,
we prepare functions for reading and writing data from and to specified buffer.
Developers only need to put these functions as actions on transitions of tasks
and insert proper parameters. The functions are defined as follows:

void write_msg_to_CHI(t_msg_slot msg, int value, int len);

int read_msg_from_CHI(t_msg_slot msg);

void clean_send_buffer_CHI(t_msg_slot msg);

void clean_receive_buffer_CHI(t_msg_slot msg);

Since we do not focus on the contents of the data in a frame, the data is
represented simply by integer type and may be ignored. Note that msg of type
integer is the index of a frame as well as the index of the corresponding buffer;
len is the length of the frame in macroticks. Note that reading the data from
a buffer does not clean up the buffer so there are also functions for cleaning
buffers. Developers have to clean a buffer by themselves using buffer cleaning
functions.

4.3 Example

In this section, a simple sender/receiver example [18] will be demonstrated to
show how the design model of an automotive system built as Application model
looks like and how frames are transmitted by FlexRay model. This example
consists of tasks having simple behaviors so that we can focus on reading/writing
buffers, frame transmissions, and parameter settings of the system. Figure 6
shows the plan of assigning indexes of frames. There are ten messages/frames



46 X. Guo et al.

Fig. 6. Frame setting of the sender/receiver example (SR1)

indexed from 1 to 10. The frames are used in five ECUs/tasks, Sender1, Sender2,
Sender3, Sender4, and Receiver. Which task sends/receives which frame can be
easily recognized by directions of the arrows. For example, Sender1 is designed
to send frames 1, 3, and 5, and Receiver is designated to receive all frames.
Frames 1 to 6 are static frames and frames 7 to 10 are dynamic frames.

typedef int[1,cSlotIDMax] t_msg_slot;

const t_msg_slot msg1= 1;

...

const t_msg_slot msg10= 10;

As mentioned in Sect. 4.2, the indexes of frames are the same as the indexes
of buffers. Also, the indexes of frames indicate the slot numbers of the com-
munication cycles in FlexRay model. Below shows the major parameters of the
example. The unit of parameters is macrotick except the first four parameters.

int gCycleCounterMax=6; //max. number of cycle

int gNumberOfStaticSlots=6; //number of static segment slots

int gNumberOfMinislots=32; //number of dynamic segment minislots

int cSlotIDMax=10; //max. number of slot ID

int gdNIT=4; //period of NIT (in macrotick)

int gdActionPointOffset=2; //static offset

int gdStaticSlot=5; //number of macroticks in a static slot

int gdMinislotActionPointOffset=1; //offset of minislot

int gdMinislot=3; //number of macroticks in a minislot

Figure 7 shows modules of Sender1, Sender3, and Receiver in Application
model, where Sender2 and Sender4 are similar and skipped. Note that go? is
the reception of the urgent channel go. Urgent channel always sends a signal
immediately without delay when a transition with go? is fired. For example,
by using go?, Sender1 watches the status of related buffers and writes data to
a buffer immediately when the buffer is detected empty. On the other hand,
Sender3 sends dynamic frames whose length vary from 18 to 20 macroticks. In
the framework we define global variables to represent buffers (i.e. status of CHIs)
and slot status (i.e. status of CCs). Application model can access the status of
CHIs and CCs through global variables CHI Buffer send, CHI Buffer receive,
and vSS.



An UPPAAL Framework for Model Checking Automotive Systems 47

value: int[5,5] value: int[3,3]

value: int[1,1]

go g? o?

go?

CHI_Buffer_send[msg5].length == 0 CHI_Buffer_send[msg3].length == 0

CHI_Buffer_send[msg1].length == 0

write_msg_to_CHI(msg5, value, 2) write_msg_to_CHI(msg3, value, 2)

write_msg_to_CHI(msg1, value, 2)

len: int[18,20]

len: int[18,20]

go?

go?

CHI_Buffer_send[msg9].length == 0

CHI_Buffer_send[msg7].length == 0

write_msg_to_CHI(msg9, 59, len)

write_msg_to_CHI(msg7, 57, len)

go?
CHI_Buffer_receive[vSS.vSlotCounter].length>0

clean_receive_buffer_CHI(vSS.vSlotCounter)

wait_for_receiving

Fig. 7. Selected tasks of the sender/receiver example (SR1)

typedef struct {

int[0,MaxDataValue] data;

int[0,pPayloadLengthDynMax] length;

} Buffer;

Buffer CHI_Buffer_send[cSlotIDMax+1]; //sending buffers

Buffer CHI_Buffer_receive[cSlotIDMax+1]; //receiving buffers

typedef struct{

int[0,gCycleCounterMax] vCycleCounter; //current cycle

int[0,cSlotIDMax] vSlotCounter; //current slot

} T_SlotStatus;

T_SlotStatus vSS; //slot status of CC

In this system, sending buffers can be considered always filled for convenience.
Therefore we may focus on the flow of a static or dynamic frame transmission
in FlexRay model shown in Figs. 4 and 5. When the system starts, FlexRay
model starts from POC. Like the ordering of segments in a communication cycle
shown in Fig. 1(b), POC counts the number of cycles and activates MAC static
for transmitting static frames in the static segment. When the static segment



48 X. Guo et al.

ends, MAC static activates MAC dynamic to start transmitting dynamic frames
in the dynamic segment. When the dynamic segment ends, NIT is activated and
proceeds to the end of the current cycle, then POC takes control again to start
another cycle.

In the static segment, MAC static calls Timer to set the times of the start
and the end of a static slot. In dynamic segment, MAC dynamic has to see if
there is a dynamic frame to be sent to decide the number of minislots to proceed.
If there is a dynamic frame to be sent, the frame is sent by writing the data of
the frame, which is the content of the corresponding sending buffer, to the bus
variable. The slot counter vSS.vSlotCounter is increased by 1 and the minislot
counter zMinislot is computed according to the length of the frame. If there is
no dynamic frame to be sent, both zMinislot and vSS.vSlotCounter are just
increased by 1. When the maximum slot number is reached, the MAC dynamic
will just proceed the remaining minislots to the maximum number of minis-
lots, and then end the dynamic segment. Note that in both MAC static and
MAC dynamic, the bus status is set to EC start at the start of a frame trans-
mission and the bus is set to CHIRP when the transmission ends. As the receiving
side of frame transmissions, FSP monitors bus status all the time in a commu-
nication cycle and starts to receive a frame when CE start is detected. The end
of a frame transmission is at the point that CHIRP is detected by FSP and the
data of the received frame is written to the corresponding receiving buffer.

5 Evaluation of the Framework

In this section, the framework is evaluated by checking some properties on two
example applications [18]. Firstly, the sender/receiver example (SR1) demon-
strated in Sect. 4.3 is used to verify core properties related to frame transmissions
of FlexRay protocol to see whether the framework is built right on the scope of
frame transmissions. Then we introduce another sender/receiver example (SR2)
to illustrate possible usage of the framework for timing analysis. Both examples
are checked by using UPPAAL 4.1.14 on a machine of following specifications:
Windows 8 with Intel i5 2.3GHz and 8GM RAM. Memory usage and CPU times
in checking SR1 are listed in Table 14.

Table 1. CPU time/state space/memory usage in checking SR1

Query CPU time (s) States explored Memory usage (MB)

q1 1.8 343,821 27.5
q2 14.2 1,121,950 107.3
q3 14.5 1,118,872 112.1
q4 4.8 470,860 106.0
q5 7.2 470,860 106.7

4 We used verifyta in command-line with -u option.



An UPPAAL Framework for Model Checking Automotive Systems 49

Is the Framework Built Right? For SR1, we give and check some proper-
ties/queries based on the specifications of the FlexRay protocol relating to frame
transmissions. The results give the hints for evaluating whether FlexRay model
of the framework is built right, i.e. follows the specifications of the FlexRay
protocol in the scope of normal frame transmissions. Recall that the designs
of the tasks in SR1 make it reasonable for us to keep the focus on only frame
transmissions in FlexRay model. The checked queries are listed as follows:

q1. A<> forall (i:int[1,10]) (CHI_Buffer_send[i].length>0);

q2. (CHI_Buffer_send[1].length>0) --> (CHI_Buffer_send[1].length==0);

q3. (CHI_Buffer_send[1].length>0) --> (CHI_Buffer_receive[1].length>0);

q4. A[] forall (i:int[1,10]) ((CHI_Buffer_receive[i].length>0)

imply (vSS.vSlotCounter==i ));

q5. A[] forall (i:int[1,10]) forall (j:int[1,10])

(CHI_Buffer_receive[i].length>0 && CHI_Buffer_receive[j].length>0)

imply (j==i);

Queries q1, q2, q3 check basic functionalities considering the buffers in the
CHI. q1 says all buffers in the system can be filled with data, which means the
tasks can successfully write messages to sending buffers. q2 says the data in a
sending buffer will be erased/sent eventually. q3 says for a sending buffer with
data, the corresponding receiving buffer will be filled, which means frames can
be correctly delivered by the CC. Since q1, q2, and q3 are all satisfied5, we
can confirm that the tasks do communicate through FlexRay model. That is,
frame transmissions are performed by FlexRay model as expected in the task
designs in Application model. Then we check queries q4 and q5 considering the
time of frame transmissions (slots). q4 says if a receiving buffer has data, the
communication cycle is in the interval of the corresponding slot, which means
frame transmissions are occurring in the right slot (time interval)6. q5 says there
is only one frame being sent in any slot. From the result that q4 and q5 are both
satisfied, we can confirm that FlexRay model does follow the specifications of the
FlexRay protocol regarding normal frame transmissions. Therefore, we conclude
that we built the framework right under the scope of normal frame transmissions
of the FlexRay protocol.

How to Check Timing Properties? One of the major characteristics of the
framework is the ability to describe behaviors with time constraints. Here we
introduce another sender/receiver example (SR2) shown in Fig. 8 [18]. In this
system, Sender sends a message periodically while Receiver receives a message
immediately when the receiving buffer is detected having data. Note that Sender
checks periodically if the sending buffer is filled and only writes data to the buffer
when the buffer is empty. The major parameter settings are as follows:

int gCycleCounterMax=6; //max. number of cycle

int gNumberOfStaticSlots=3; //number of static segment slots

int gNumberOfMinislots=30; //number of dynamic segment minislots

5 For q2 and q3, all ten messages of indexes 1 to 10 are checked.
6 Note that Receiver receives the data as soon as a receiving buffer is filled.



50 X. Guo et al.

x<=0 cycle_end
x<=cycle

x==0 x==cycle

x:=0wait_for_cycle

write_msg_to_CHI(msg1, 2, 5)

inital write_msg_to_CHI(msg1, 1, 5)

CHI_Buffer_send[msg1].length>0

CHI_Buffer_send[msg1].length==0

wait_for_receiving

CHI_Buffer_receive[msg1].length>0

receive!

go?

clean_receive_buffer_CHI(vSS.vSlotCounter)

initial

receive?

buffered sent

received

y=0

go?

x=0, y=0

go?

x=0, y=0

CHI_Buffer_send[msg1].length>0 CHI_Buffer_send[msg1].length==0

Fig. 8. Another sender/receiver example (SR2)

int cSlotIDMax=6; //maximum number of slot ID

int gdNIT=2; //period of NIT (in macrotick)

int gdActionPointOffset=2; //static offset

int gdStaticSlot=10; // number of macroticks in a static slot

int gdMinislotActionPointOffset=2; //offset of minislot

int gdMinislot=5; // number of macroticks in a minislot

Though there is only one frame to be sent/received, the system is defined
to have six slots including three static slots. Also, the only frame is set to slot
1, i.e. the first static slot, and the length of the cycle of Sender is set to 100
macroticks.

To write property of response time of msg1, we built Observer to monitor
changes in the sending buffer of msg1. Observer moves from the initial state to
state buffered once the sending buffer is written by Sender. Once the send-
ing buffer is cleaned by FlexRay model when the transmission starts, Observer
immediately moves to state sent and waits Receiver to send signal receive.
The signal receive indicates that the transmission is finished and the receiving
buffer is written with the data of the received frame. Note that Observer has two
clocks x and y where x starts counting at the time the sending buffer is written,
and y starts counting at the time the sending buffer is cleaned. Therefore, by
examining the value of clock x at state received of Observer, we can know the
response time (macrotick, MT) of msg1; by examining the value of clock y at
state received of Observer, we can know the frame transmission time of msg1.
Now we can write some queries about the response times of msg1.



An UPPAAL Framework for Model Checking Automotive Systems 51

q1[Y]. A[] (observer.received imply observer.y == 5)

q2[Y]. E<> (observer.received && observer.x == 6)

q3[N]. E<> (observer.received && observer.x < 6)

q4[Y]. E<> (observer.received && observer.x == 182)

q5[N]. E<> (observer.received && observer.x > 182)

Note that in each query, [Y] or [N] indicates the checking result of the query
as satisfied or not satisfied. The result of q1 shows that the frame transmission
time of msg1 is 5MT, which exactly matches the setting of the length of msg1.
The results of q2 and q3 show that the best case response time (BCRT) of msg1
is 6MT, which is the sum of the frame length (5MT) and the static slot offset
(1MT). The results of q4 and q5 show that the best case response time (WCRT)
of msg1 is 182MT, which is the sum of the lengths of the static segment (30MT),
the dynamic segment (150MT) and the NIT (2MT).

Discussions. In SR1, we focus on frame transmissions in FlexRay model and
checked some related properties. With the results, we conclude that the frame-
work is built right in the scope of normal frame transmissions of the FlexRay
protocol. With only a few properties checked, one may doubt that it is not suffi-
cient to confirm that FlexRay model of the framework conform to the specifica-
tions of the FlexRay protocol. For this issue, we argue that since we only focus
on normal frame transmissions of the FlexRay protocol, the checking results are
satisfiable at current status of the framework. Furthermore, since the structure
of the framework follows the structure of the specifications of the FlexRay proto-
col, when we want to extend the functionalities of FlexRay model, current status
of FlexRay model can be a base to implement the extensions.

In SR2, the checking of the response times shows that the framework is
able to check timing properties with the help of Observer. This is a common
technique for checking complex properties since UPPAAL only support simple
timed computational tree logic (TCTL) formulas. Also, to decide the value of
BCET and WCET to be filled in a query, currently we have to guess according
to the parameters of a system. This may result some trial and error, or we may
utilize some traditional timing analysis techniques.

For the feasibility of applying the framework in the industry, since in this
paper we only focus on building FlexRay model, the modeling of the tasks in
a system is left to developers. Therefore, developers have to be familiar with
the usage of UPPAAL. Also, it is necessary to have a methodology of modeling
tasks, which may be adopted from the experiences of the modeling on integrated
platforms. Another issue is the performance of the framework. From the results
shown in Table 1, the state space is quite large considering that the system
of SR1 is very simple. The performance issue would be a major problem when
applying the framework to industrial automotive system designs.

6 Conclusion and Future Work

In this paper, an UPPAAL framework for model checking automotive system
designs with FlexRay protocol is introduced and evaluated. The framework



52 X. Guo et al.

consists of FlexRay model and application model: the former is built by abstrac-
tions to the FlexRay protocol and can be reused for different applications with
proper parameter settings represented by global variables in UPPAAL. To the
best of our knowledge, the framework is the first attempt for model check-
ing automotive system designs considering communication protocols. To eval-
uate the framework, we demonstrated two simple systems and checked some
queries/properties. From the results, we conclude that the framework is built
right in accordance with normal frame transmissions of the FlexRay protocol
and is able to check timing properties.

In this paper, we showed that a reusable module on top of UPPAAL, i.e.
FlexRay model, could be realized for verification of applications with FlexRay
protocol. We argue that only providing a general purpose model checker is not
sufficient for verifying practical systems. Additional descriptions and mecha-
nisms such as scheduling of tasks and emulation of hardware devices are usually
needed to precisely model and verify the behavior of practical systems. Further-
more, these additional mechanisms are usually common for systems belonging
to a specific application domain and are possible to be provided as reusable
frameworks and libraries. Therefore, integrating such frameworks and libraries
is crucial for promoting practical applications of model checkers in the industry.

Currently, the framework can only support scheduling analysis in systems
that an ECU has only one task, or developers have to build scheduler modules,
which is not easy. Therefore, we plan to add scheduler modules to support general
scheduling analysis. We also plan to conduct more experiments on practical
automotive systems to discover more usages and possible improvements of the
framework.

References

1. Altran Technologies: FlexRay Specifications Version 3.0.1 (2010)
2. Bel Mokadem, H., Berard, B., Gourcuff, V., De Smet, O., Roussel, J.-M.: Verifi-

cation of a timed multitask system with UPPAAL. IEEE Trans. Autom. Sci. Eng.
7(4), 921–932 (2010)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool
suite for automatic verification of real-time systems. Hybrid Systems III. LNCS,
vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

4. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-
based schedulability analysis of safety critical hard real-time java programs. In:
Proceedings of the 6th International Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES’08), pp. 106–114 (2008)

5. David, A., Rasmussen, J.I., Larsen, K.G., Skou, A.: Model-based framework for
schedulability analysis using Uppaal 4.1. Model-Based Design for Embedded Sys-
tems. Computational Analysis, Synthesis, and Design of Dynamic Systems, pp.
93–119. CRC Press, Boca Raton (2009)

6. Gerke, M., Ehlers, R., Finkbeiner, B., Peter, H.-J.: Model checking the FlexRay
physical layer protocol. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS,
vol. 6371, pp. 132–147. Springer, Heidelberg (2010)



An UPPAAL Framework for Model Checking Automotive Systems 53

7. Giusto, P., Ferrari, A., Lavagno, L., Brunel, J.Y., Fourgeau, E., Sangiovanni-
Vincentelli, A.: Automotive virtual integration platforms: why’s, what’s, and how’s.
In: IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pp. 370–378 (2002)

8. Hagiescu, A., Bordoloi, U.D., Chakraborty, S., Sampath, P., Ganesan, P.V.V.,
Ramesh, S.: Performance analysis of FlexRay-based ECU networks. In: DAC’07,
pp. 284–289 (2007)

9. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

10. Hiraoka, T., Eto, S., Nishihara, O., Kumamoto, H.: Fault tolerant design for X-
by-wire vehicle. In: SICE’04 Annual Conference, vol. 3, pp. 1940–1945 (2004)

11. Jung, K.H., Song, M.G., Lee, D.I., Jin, S.H.: Priority-based scheduling of dynamic
segment in FlexRay network. In: International Conference on Control, Automation
and Systems (ICCAS’08), pp. 1036–1041 (2008)

12. Malinský, J., Novák, J.: Verification of FlexRay start-up mechanism by timed
automata. Metrol. Measur. Syst. 17(3), 461–480 (2010)

13. Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in automotive commu-
nication systems. Proc. IEEE 93(6), 1204–1223 (2005)

14. Qtronic GmbH, Germany: Virtual integration and test of automotive ECUs. In:
Automotive Testing Expo North America, ASAM Open Technology Forum (2011)

15. Sangiovanni-Vincentelli, A.: Electronic-system design in the automobile industry.
IEEE Micro 23(3), 8–18 (2003)

16. Tanasa, B., Bordoloi, U., Kosuch, S., Eles, P., Peng, Z.: Schedulability analysis
for the dynamic segment of FlexRay: a generalization to slot multiplexing. In:
IEEE 18th Real-Time and Embedded Technology and Applications Symposium
(RTAS’12), pp. 185–194 (2012)

17. Zeng, H., Ghosal, A., Di Natale, M.: Timing analysis and optimization of FlexRay
dynamic segment. In: IEEE 10th International Conference on Computer and Infor-
mation Technology (CIT’10), pp. 1932–1939 (2010)

18. UPPAAL models used in this paper: https://github.com/h-lin/FTSCS2013

https://github.com/h-lin/FTSCS2013

	An UPPAAL Framework for Model Checking Automotive Systems with FlexRay Protocol
	1 Introduction
	2 Related Work
	3 Automotive Systems with FlexRay Protocol
	4 The Framework
	4.1 FlexRay Model
	4.2 Application Model
	4.3 Example

	5 Evaluation of the Framework
	6 Conclusion and Future Work
	References


