
123

Cyrille Artho
Peter Csaba Ölveczky (Eds.)

Second International Workshop, FTSCS 2013
Queenstown, New Zealand, October 29–30, 2013
Revised Selected Papers

Formal Techniques for
Safety-Critical Systems

Communications in Computer and Information Science 419

Communications
in Computer and Information Science 419

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Cosenza, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜB _IITAK B _IILGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian Academy
of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Dominik Ślęzak
University of Warsaw and Infobright, Warsaw, Poland

Takashi Washio
Osaka University, Osaka, Japan

Xiaokang Yang
Shanghai Jiao Tong University, Shangai, China

For further volumes:
http://www.springer.com/series/7899

http://www.springer.com/series/7899

Cyrille Artho • Peter Csaba Ölveczky (Eds.)

Formal Techniques for
Safety-Critical Systems

Second International Workshop, FTSCS 2013
Queenstown, New Zealand, October 29–30, 2013
Revised Selected Papers

123

Editors
Cyrille Artho
Research Institute for Secure Systems
AIST
Amagasaki
Japan

Peter Csaba Ölveczky
Department of Informatics
University of Oslo
Oslo
Norway

ISSN 1865-0929 ISSN 1865-0937 (electronic)
ISBN 978-3-319-05415-5 ISBN 978-3-319-05416-2 (eBook)
DOI 10.1007/978-3-319-05416-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014935153

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the Second International Workshop of
Formal Techniques for Safety-Critical Systems (FTSCS 2013), held in scenic
Queenstown, New Zealand, during October 29–30, 2013, as a satellite event of the
ICFEM conference.

The aim of FTSCS is to bring together researchers and engineers who are interested
in the application of formal and semi-formal methods to improve the quality of safety-
critical computer systems. FTSCS strives to promote research and development of
formal methods and tools for industrial applications, and is particularly interested in
industrial applications of formal methods. Specific topics of the workshop include, but
are not limited to:

– Case studies and experience reports on the use of formal methods for analyzing
safety-critical systems, including avionics, automotive, medical, and other kinds of
safety-critical and QoS-critical systems;

– Methods, techniques, and tools to support automated analysis, certification,
debugging, etc., of complex safety/QoS-critical systems;

– Analysis methods that address the limitations of formal methods in industry
(usability, scalability, etc.);

– Formal analysis support for modeling languages used in industry, such as AADL,
Ptolemy, SysML, SCADE, Modelica, etc.;

– Code generation from validated models.

The first FTSCS was held in Kyoto in 2012, also as a satellite event of ICFEM that
year. The proceedings of FTSCS 2012 appeared as volume 105 of Electronic Pro-
ceedings in Theoretical Computer Science, and a special issue of the Science of
Computer Programming journal devoted to selected papers from that workshop is in
preparation.

FTSCS 2013 received 32 regular paper submissions and one position/work-in-
progress paper submission. Each submission was reviewed by three reviewers; based
on the reviews and extensive discussions, the Program Committee selected 17 of these
regular papers and the position/work-in-progress paper for presentation at the work-
shop. This volume contains revised versions of these 17 regular papers, as well as an
extended abstract of the invited talk by Ian Hayes. Extended versions of selected
papers from the workshop will also appear in a special issue of Science of Computer
Programming.

Many colleagues and friends have contributed to FTSCS 2013. First, we would like
to thank Kokichi Futatsugi and Hitoshi Ohsaki for encouraging us to start this series of
workshops in 2012. We thank Ian Hayes for accepting our invitation to give an invited
talk and the authors who submitted their work to FTSCS 2013 and who, through their
contributions, made this workshop an interesting event attracting more than 30 par-
ticipants. We are particularly grateful that so many well-known researchers agreed to

serve on the Program Committee, and that they all provided timely, insightful, and
detailed reviews.

We also thank the editors of Springer’s Communications in Computer and Infor-
mation Science (CCIS) for agreeing to publish the proceedings of FTSCS 2013, Bas
van Vlijmen for accepting our proposal to devote a special issue of Science of
Computer Programming to extended versions of selected papers from FTSCS 2013,
Jing Sun for his invaluable help with local arrangements, and Andrei Voronkov for the
excellent EasyChair conference systems.

January 2014 Cyrille Artho
Peter Csaba Ölveczky

VI Preface

Organization

Workshop Chair

Hitoshi Ohsaki AIST, Japan

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Musab AlTurki King Fahd University of Petroleum and Minerals,

Saudi Arabia
Toshiaki Aoki JAIST, Japan
Farhad Arbab Leiden University and CWI, The Netherlands
Cyrille Artho (Chair) AIST, Japan
Saddek Bensalem Verimag, France
Armin Biere Johannes Kepler University, Austria
Santiago Escobar Universidad Politécnica de Valencia, Spain
Ansgar Fehnker University of the South Pacific, Fiji
Mamoun Filali IRIT, France
Bernd Fischer Stellenbosch University, South Africa
Kokichi Futatsugi JAIST, Japan
Klaus Havelund NASA JPL/California Institute of Technology, USA
Marieke Huisman University of Twente, The Netherlands
Ralf Huuck NICTA/UNSW, Australia
Fuyuki Ishikawa National Institute of Informatics, Japan
Takashi Kitamura AIST, Japan
Alexander Knapp Augsburg University, Germany
Paddy Krishnan Oracle Labs Brisbane, Australia
Yang Liu Nanyang Technological University, Singapore
Robi Malik University of Waikato, New Zealand
César Muñoz NASA Langley, USA
Tang Nguyen Hanoi University of Industry, Vietnam
Thomas Noll RWTH Aachen University, Germany
Peter Ölveczky (Chair) University of Oslo, Norway
Paul Pettersson Mälardalen University, Sweden
Camilo Rocha Escuela Colombiana de Ingeniería, Colombia
Grigore Ros�u University of Illinois at Urbana-Champaign, USA
Neha Rungta NASA Ames, USA
Ralf Sasse ETH Zürich, Switzerland
Oleg Sokolsky University of Pennsylvania, USA
Sofiène Tahar Concordia University, Canada

Carolyn Talcott SRI International, USA
Tatsuhiro Tsuchiya Osaka University, Japan
Michael Whalen University of Minnesota, USA
Peng Wu Chinese Academy of Sciences, China

Additional Reviewers

Daghar, Alaeddine
Elleuch, Maissa
Enoiu, Eduard Paul
Helali, Ghassen
Jansen, Nils

Kong, Weiqiang
Meredith, Patrick
Rongjie, Yan
Santiago, Sonia

VIII Organization

Contents

Towards Structuring System Specifications with Time Bands
Using Layers of Rely-Guarantee Conditions. 1

Ian J. Hayes

With an Open Mind: How to Write Good Models 3
Cyrille Artho, Koji Hayamizu, Rudolf Ramler, and Yoriyuki Yamagata

Model-Based Testing from Controlled Natural Language Requirements 19
Gustavo Carvalho, Flávia Barros, Florian Lapschies,
Uwe Schulze, and Jan Peleska

An UPPAAL Framework for Model Checking Automotive Systems
with FlexRay Protocol. 36

Xiaoyun Guo, Hsin-Hung Lin, Kenro Yatake, and Toshiaki Aoki

Early Analysis of Soft Error Effects for Aerospace Applications
Using Probabilistic Model Checking . 54

Khaza Anuarul Hoque, Otmane Ait Mohamed,
Yvon Savaria, and Claude Thibeault

A Strand Space Approach to Provable Anonymity 71
Yongjian Li and Jun Pang

Counterexample Generation for Hybrid Automata. 88
Johanna Nellen, Erika Ábrahám, Xin Chen, and Pieter Collins

TTM/PAT: Specifying and Verifying Timed Transition Models 107
Jonathan S. Ostroff, Chen-Wei Wang, Simon Hudon,
Yang Liu, and Jun Sun

Formalizing and Verifying Function Blocks Using
Tabular Expressions and PVS. 125

Linna Pang, Chen-Wei Wang, Mark Lawford, and Alan Wassyng

Reflections on Verifying Software with Whiley . 142
David J. Pearce and Lindsay Groves

Compositional Nonblocking Verification with Always
Enabled Events and Selfloop-Only Events . 160

Colin Pilbrow and Robi Malik

http://dx.doi.org/10.1007/978-3-319-05416-2_1
http://dx.doi.org/10.1007/978-3-319-05416-2_1
http://dx.doi.org/10.1007/978-3-319-05416-2_2
http://dx.doi.org/10.1007/978-3-319-05416-2_3
http://dx.doi.org/10.1007/978-3-319-05416-2_4
http://dx.doi.org/10.1007/978-3-319-05416-2_4
http://dx.doi.org/10.1007/978-3-319-05416-2_5
http://dx.doi.org/10.1007/978-3-319-05416-2_5
http://dx.doi.org/10.1007/978-3-319-05416-2_6
http://dx.doi.org/10.1007/978-3-319-05416-2_7
http://dx.doi.org/10.1007/978-3-319-05416-2_8
http://dx.doi.org/10.1007/978-3-319-05416-2_9
http://dx.doi.org/10.1007/978-3-319-05416-2_9
http://dx.doi.org/10.1007/978-3-319-05416-2_10
http://dx.doi.org/10.1007/978-3-319-05416-2_11
http://dx.doi.org/10.1007/978-3-319-05416-2_11

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 178
Zeynab Sabahi-Kaviani, Ramtin Khosravi, Marjan Sirjani,
Peter Csaba Ölveczky, and Ehsan Khamespanah

On the Cloud-Enabled Refinement Checking of Railway
Signalling Interlockings . 195

Andrew Simpson and Jaco Jacobs

Parametric Schedulability Analysis of Fixed Priority Real-Time
Distributed Systems . 212

Youcheng Sun, Romain Soulat, Giuseppe Lipari,
Étienne André, and Laurent Fribourg

Wind Turbine System: An Industrial Case Study
in Formal Modeling and Verification . 229

Jagadish Suryadevara, Gaetana Sapienza, Cristina Seceleanu,
Tiberiu Seceleanu, Stein-Erik Ellevseth, and Paul Pettersson

Refinement Tree and Its Patterns: A Graphical Approach
for Event-B Modeling . 246

Kriangkrai Traichaiyaporn and Toshiaki Aoki

Precise Documentation and Validation of Requirements 262
Chen-Wei Wang, Jonathan S. Ostroff, and Simon Hudon

Certainly Unsupervisable States . 280
Simon Ware, Robi Malik, Sahar Mohajerani, and Martin Fabian

Author Index . 297

X Contents

http://dx.doi.org/10.1007/978-3-319-05416-2_12
http://dx.doi.org/10.1007/978-3-319-05416-2_13
http://dx.doi.org/10.1007/978-3-319-05416-2_13
http://dx.doi.org/10.1007/978-3-319-05416-2_14
http://dx.doi.org/10.1007/978-3-319-05416-2_14
http://dx.doi.org/10.1007/978-3-319-05416-2_15
http://dx.doi.org/10.1007/978-3-319-05416-2_15
http://dx.doi.org/10.1007/978-3-319-05416-2_16
http://dx.doi.org/10.1007/978-3-319-05416-2_16
http://dx.doi.org/10.1007/978-3-319-05416-2_17
http://dx.doi.org/10.1007/978-3-319-05416-2_18

Towards Structuring System Specifications
with Time Bands Using Layers of

Rely-Guarantee Conditions

Ian J. Hayes(B)

School of ITEE, The University of Queensland, Brisbane, Australia
Ian.Hayes@itee.uq.edu.au

Abstract. The overall specification of a cyber-physical system can be
given in terms of the desired behaviour of its physical components oper-
ating within the real world. The specification of its control software
can then be derived from the overall specification and the properties
of the real-world phenomena, including their relationship to the com-
puter system’s sensors and actuators. The control software specification
then becomes a combination of the guarantee it makes about the system
behaviour and the real-world assumptions it relies upon.

Such specifications can easily become complicated because the com-
plete system description deals with properties of phenomena at widely
different time granularities, as well as handling faults. To help manage
this complexity, we consider layering the specification within multiple
time bands, with the specification of each time band consisting of both
the rely and guarantee conditions for that band, both given in terms of
the phenomena of that band. The overall specification is then the combi-
nation of the multiple rely-guarantee pairs. Multiple rely-guarantee pairs
can also be used to handle faults.

Rely-Guarantee Specifications. Earlier research with Michael Jackson and Cliff
Jones [3,4] looked at specifying a real-time control system in terms of assump-
tions about the behaviour of the system’s environment – a rely condition – and
the behaviour to be ensured by the system – a guarantee condition – provided
its environment continues to satisfy the rely condition. Often the specification
of the system’s desired behaviour is best described in terms of the behaviour of
physical objects in the real-world that are to be controlled by the computer sys-
tem, in which case rely conditions are needed to link the real-world phenomena
(which may not be directly accessible to the computer) to the computer’s view
of the world, i.e. the computer’s sensors and actuators.

Multiple Rely-Guarantee Pairs. Our earlier work [4] allowed a specification to
be structured into multiple rely-guarantee pairs, where each guarantee is paired
with a rely condition expressing the assumptions about the behaviour of the
environment needed to be able to achieve that guarantee. This allows one to
give separate specifications of different aspects of the behaviour of a system. It
also allows one to separate the specification of “normal” behaviour of the system

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 1–2, 2014.
DOI: 10.1007/978-3-319-05416-2 1, c© Springer International Publishing Switzerland 2014

2 I.J. Hayes

when the environment is behaving correctly according to the normal rely, and
a fall-back or degraded mode of behaviour when the normal rely condition does
not hold but a weaker rely does hold.

The Time Bands Framework. Too often when describing a system’s specification
(or requirements), the basic operation of the system gets lost in a plethora of
low-level detail. For real-time systems it has been observed that it helps to view
the system at multiple time bands or scales [1,2]. The phenomena relevant at one
time band may be different to those at a finer-grained (lower) time band. The
behaviour of a system may be specified by describing aspects of the behaviour
separately for each time band in terms of the phenomena of that band. For
example, an “instantaneous” event at one time band may correspond to an
activity consisting of a set of events (occurring close together) at the next lower
time band. Events at the lower time band may be defined in terms of phenomena
only “visible” at that time band.

Rely-Guarantee for Each Time Band. The specification of the behaviour for
each time band can be given in terms of a rely condition giving the assumed
properties of the environment and a guarantee of the behaviour of the system,
both in terms of the phenomena of the time band. In this way the behaviour
of the overall system is described in terms of multiple rely-guarantee pairs (as
described above) with at least one rely-guarantee pair for each time band used
in structuring the description of the system behaviour.

Acknowledgements. The ideas presented here are based on joint research with Alan
Burns, Brijesh Dongol, Michael Jackson and Cliff Jones. The author’s research was
supported by Australian Research Council Grants DP0987452 and DP130102901.

References

1. Burns, A., Baxter, G.: Time bands in systems structure. In: Besnard, D., Gacek,
C., Jones, C.B. (eds.) Structure for Dependability: Computer-Based Systems from
an Interdisciplinary Perspective, pp. 74–90. Springer, Heidelberg (2006)

2. Burns, A., Hayes, I.J.: A timeband framework for modelling real-time systems. Real-
Time Syst. 45(1–2), 106–142 (2010)

3. Hayes, I.J., Jackson, M.A., Jones, C.B.: Determining the specification of a control
system from that of its environment. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)
FME 2003. LNCS, vol. 2805, pp. 154–169. Springer, Heidelberg (2003)

4. Jones, C.B., Hayes, I.J., Jackson, M.A.: Deriving specifications for systems that are
connected to the physical world. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 364–390. Springer,
Heidelberg (2007)

With an Open Mind: How to Write
Good Models

Cyrille Artho1(B), Koji Hayamizu1, Rudolf Ramler2, and Yoriyuki Yamagata1

1 RISEC, AIST, Amagasaki, Japan
c.artho@aist.go.jp

2 Software Competence Center Hagenberg, Hagenberg, Austria

Abstract. Writing effective models for systems and their environment
is a challenge. The task involves both mastering the modeling tool and
its notation, and faithfully translating all requirements and specifications
into a complete model. The former ability can be learned, while the latter
one is a continuous challenge requiring experience and tools supporting
the visualization and understanding of models. This paper describes our
experience with incomplete models, the types of changes that were made
later, and the defects that were found with the improved models.

Keywords: Model-based analysis · Model design · Model checking ·
Model-based testing

1 Introduction

Model-based techniques use abstract models to define many possible system
behaviors. In model-based testing, a test model gives rise to many concrete test
cases. In model checking, all possible behaviors of a given model are explored
to check if given properties hold. Both types of analysis have in common that
a model of the environment is needed, which represents possible stimuli to the
system under test (SUT). Analysis of the SUT involves exploring interactions
between the SUT (model) and the environment, and verifying if a set of stated
properties holds for all possible interactions (see Fig. 1).

When using testing (run-time verification), tests can be executed against the
implementation of the system. In model checking, a model of the SUT is needed;
that model may be written by an engineer, or a tool may derive the system model
from its implementation. In either case, the environment needs to be modeled
from requirements, which is a largely manual task.

The resulting model should reflect the requirements and capture all relevant
system behaviors. Creation of a good model is a challenge, both for modeling
the system and maybe even more so for modeling its environment.

If a property is violated by a given execution trace, then the trace is analyzed
to determine whether the model is incorrect or the SUT contains a defect. As
long as such counterexample traces are found, there is an inconsistency between
the stated properties and the possible state space, as determined by the model.

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 3–18, 2014.
DOI: 10.1007/978-3-319-05416-2 2, c© Springer International Publishing Switzerland 2014

4 C. Artho et al.

Full system

Environment,
usage, or test

model

System under test
(implementation or

system model)

drives Properties?

Fig. 1. Verification of a system in its environment.

Defect resolution may involve relaxing a property that is too strict, restricting
an environment model that is too general, or fixing a defect in the SUT. No
matter which artifact in the verification process is at fault, property violations
always show that development is not complete yet.

Unfortunately, it is a common fallacy to believe that if a model is analyzed
exhaustively, a system has been “proven correct” if no defects are found by the
analysis. There are many subtle ways in which a model may be too restrictive,
or a stated property too weak, to cover possible defects. This paper describes
our experience with this problem, and suggests steps to be taken to improve the
situation.

To highlight this issue, we label the right arrow in Fig. 1 with a question
mark. We think that the common notion of “system models properties” as a
verification goal is a good one. However, the notation is often thought of in the
reverse direction as “properties hold for the system” once verification is complete.
The danger in that notation lies in the fact that without validation of the model,
property verification guarantees little in terms of system correctness.

Good models are those that help to exhibit defects in the system under test.
What are the problems that restrict a model’s defect detection capability?

In this paper, we first describe various projects in which initial models were
insufficient to find certain defects. However, even small changes or additions to
these models uncovered many additional features. We identify factors that nega-
tively influenced the design of the original models, and propose both procedural
as well as technical remedies.

This paper is organized as follows: Section 2 describes related work. Our
experience with software test models is described in Sects. 3 and 4, while Sect. 5
shows a discrepancy between models and reality in hardware. Section 6 discusses
our findings, and Sect. 7 concludes and outlines future work.

2 Related Work

In hardware and software analysis, properties may be trivially fulfilled, because
not all relevant parts of a system have been analyzed, due to an incomplete
system or environment model.

In hardware analysis, the problem of properties being trivially true has been
well-known for two decades [4,5]. So-called vacuous properties include implica-
tions of type a → b, where the antecedent a is never true. Regardless of the value
of b, such a property holds. However, because the second part of the formula

With an Open Mind: How to Write Good Models 5

becomes irrelevant, this case of an “antecedent failure” is likely not what the
modeler intended [4].

For temporal logics, so-called zeno-timelocks describe cases where parts of a
model would have to execute infinitely fast (being subject to an infinite number
of transitions in a finite amount of time) for a property to hold [8]. Such timelocks
often relate to a problem in the way parts of a system are modeled [9].

More recently, a different case, parts of a property that are unsatisfiable
per se, has been investigated [20]. This property can be used to “debug” a
specification, i.e., to analyze why a specification does not hold. There is emerging
work in the field of diagnosing model checker specifications using scenarios to
analyze the model [17].

In software testing, modified condition/decision coverage (MC/DC) and sim-
ilar test coverage criteria try to ensure that each part of a complex conditional
statement is actually relevant for the outcome of a test suite [1,26]. For each loca-
tion in the software code where compound conditionals exist, MC/DC demands
that, among other criteria, each condition in a decision is shown to indepen-
dently affect the outcome of the decision [26]. If a condition has no effect on the
outcome of a decision, it is likely incorrect (too weak) or redundant. The appli-
cation of coverage criteria on the model level is emerging work, with only a few
relatively simple coverage criteria such as state, transition, and path coverage,
being commonly used so far [1].

Work investigating how human developers write test sequences has found
that there is a bias towards designing a test case up to a “critical” operation
that is expected to possibly fail, but not beyond [10,18]. In particular, test cases
are often designed to cover possible exceptions, but tend to stop at the first
exception. This bias was confirmed in our case studies for designing models for
network libraries [2,3] and is described in more depth below.

Finally, the problem of model validation is also well known in model-driven
engineering [6]. In that case, the model cannot be verified but only validated;
recent work suggests generating questions about model properties as a form of
sanity check [6].

3 Modeling the Java Network Library with Modbat

Even in widely used commercial software such as the Java platform [15], the
official specification and documentation is written in English and not available
as a fully rigorous formal document. This may give rise to ambiguities. In our
experience, the biggest challenge in using the given specification was that many
details are implicit, making it difficult to create a faithful model that also covers
all relevant behaviors.

3.1 Setting

This section concerns the use of Modbat, a model-based test tool [2], for veri-
fying a custom implementation of the java.nio network application program-
ming interface (API) [15]. This network library allows the use of non-blocking

6 C. Artho et al.

input/output (I/O) operations. Unlike blocking operations, which suspend the
current thread until the full result is obtained, non-blocking variants return a
result immediately; however, the result may be incomplete, requiring that the
operation be retried for completion.

The goal of this project was to test conformance of a custom version of the
java.nio library [3] w.r.t. the official documentation [15]. The custom implemen-
tation of the java.nio library is designed to run on Java PathFinder [25], which
requires a model implementation of code that interacts with the environment [3].
When using Modbat on this library, the model replaces the environment and
generates calls to the API of the SUT.

Modbat uses an extended finite state machine [23] as its underlying model.
State transitions are labeled with actions that are defined as program code
(functions implemented in Scala [14]). This program code can directly execute
the system under test (in our case, parts of the Java API). In addition to that,
Modbat also supports exception handling, by allowing a declaration of possible
exceptions that may result by (failed) actions. Finally, Modbat supports non-
blocking I/O by allowing the specification of alternative target states to cover
both the successful and the failed (incomplete) outcome of non-blocking I/O.

We have modeled the usage of the key classes ServerSocketChannel and
SocketChannel with Modbat (see Fig. 2 for the server case). Both APIs have
in common that a channel object first needs to be created by calling open.
Our models take the resulting state as the initial state. In the server case, the
created object represents the ability to accept incoming connections; the object
therefore also needs to be bound to a port and IP address before a connection
can be accepted. In the client case, the connection can be established directly by

open configureBlocking

bound

bind

err

accept:
NotYetBoundException

closed

closenon-bl. accept
(failed)

connected

bl. accept non-bl. accept
(successful) closeclose

 read

accept:
ClosedChannelException

 close

Fig. 2. Initial model for java.nio server API (Color figure online).

With an Open Mind: How to Write Good Models 7

supplying the IP address and port of the server as a function argument. However,
the client API is slightly more complex in general in the sense that finishing a
pending connection (after an unsuccessful non-blocking connect call) attempt
requires a different function than the initial attempt, viz., finishConnect. There
are also more possible exceptions [15].

In the figure, dashed transitions correspond to the successful (completed)
case of a non-blocking operation that would otherwise have to be repeated
(non-blocking accept). Red, accordingly labeled edges correspond to exceptions
resulting from actions that are not allowed in a given state. In these cases,
the edge label denotes the exception type. Some nodes have a self-transition
that denotes a possible switch from blocking to non-blocking mode using
configureBlocking. A self-loop may also denote a retry of a previously failed
non-blocking action; in the successful case, the dashed alternative transition is
taken to the connected state. Finally, there is a self-transition in the connected
state that reads from the newly connected channel before the connection is closed
again.

3.2 Weaknesses of the Initial Model

We first executed the test cases generated from the models against the standard
Java implementation, using it as a reference implementation. This ensures that
no false positives are reported by the test model when it is used as an oracle
against the reference implementation. We then used the given test model in a
second test run, against our network model for JPF. Using this approach, we
found a complex defect that was not covered with manually written tests [3].
However, several defects were not discovered by this initial model.

First, the initial model did not cover all possibilities of disallowed operations
in the closed state. In that state, only close is allowed, as its semantics is defined
to be idempotent in Java [15]. All other operations are expected to throw a
ClosedChannelException. This part of the semantics is trivial to model, because
most operations behave identically. However, the initial model missed several
possible alternatives, because they have to be enumerated by the modeler. As it
turned out, the implementation did not track its internal state correctly in all
cases, and the wrong type of exception was thrown for a particular sequence of
commands that included close and another operation after close. The challenge
is that the model has to cover a large number of possible transitions, and it is
easy to overlook some.

Second, it was difficult to express a property related to an end-of-file return
code correctly [2]. An older version of the model was using a precondition to avoid
reading from a stream where an end-of-file has been received. This meant that
sequences that attempt to read beyond the end of a file were never generated,
missing a defect in that case. A newer model included such sequences but its
property to be checked was a bit too lenient. The reason for this was that it is not
trivial to account for all possibilities of reading data in non-blocking mode. Even
for an input of very limited length (2), the state space of all possibly incomplete
read operations that eventually lead to the end-of-file is quite large (see Fig. 3).

8 C. Artho et al.

connected

read() == 0

read_1read() == 1

read() == 0

read_2read() == 1

read() == 0

eofread() == -1

read() == -1

Fig. 3. Model of end-of-file semantics; dashed transitions are incomplete reads.

Fig. 4. Unit test including the end-of-file property.

The property was initially written programmatically, and the code did not track
the internal state strictly enough under all possible circumstances; Fig. 4 shows
how a unit test that includes repeated calls to readByte and checks the result
in a case where the input has length 2. Most of the code, including a counter
and a flag, is devoted to expressing the property. As Fig. 3 shows, a finite-state
machine can express the property much more succinctly [2].

Third, the initial model was also limited in that it included an error state
for all cases where an exception has occurred [2]. This limits test cases to exe-
cute only up to a possible exception, but not beyond it. The reasoning behind
this is that a well-behaved user of a library never triggers an exception due
to incorrect use, of the types specified in the model. However, a component
(an object provided by the SUT) can usually survive an incorrect command
by refusing to execute it and throwing an exception instead. Because of this,
it is possible to continue a test beyond such a step, issuing more correct or
incorrect commands. This situation tends to be overlooked when modeling the
environment of a system. Earlier case studies have shown that this is a com-
mon human bias in testing [10,18], and this has also carried over to modeling.
While there indeed exist common cases where an object cannot be used after an
exception has been thrown, this is not the case for incorrect operations used on
communication channels.1 In the updated server model (see Fig. 5), a trace can

1 On the other hand, a communication channel is usually in an unrecoverable state
after an exception thrown due to an I/O failure.

With an Open Mind: How to Write Good Models 9

open configureBlocking accept:
 NotYetBoundException

bound

bind

closed

closenon-bl. accept
(failed)

connected

bl. accept non-bl. accept
(successful) closeclose

 read
 bind, accept, read,
 configureBlocking:
 ClosedChannelException

 close

Fig. 5. Improved model for java.nio server API.

include other operations (or the same one) after a given operation resulted in an
exception.

3.3 Summary

We found three problems with an initial model for a complex API in Java. The
first problem was caused by the model not including all possible alternatives.
The second problem was caused by a property that cannot be easily expressed
in code, but where a finite-state machine may capture its semantics succinctly.
Finally, the third problem stemmed from a human bias that tends to focus on
operations up to a “critical” operation throwing an exception, which lead to
the model being restricted by using an error state as a global target state for all
exceptions. Instead, a self-loop should have been used to allow traces to continue
beyond an exception.

4 Experiences with Models for Testing Collection Classes

4.1 Setting

In a series of experiments we studied the effectiveness of tool-supported test
case generation in comparison to humans developing unit tests [18,19]. The
experiment was based on a library of collection classes (i.e., containers such as
list, array, set, stack, and map) with manually seeded defects. The library we
used resembles the common Java collection classes. Thus, the study material had
the benefit of being well known by the study participants and did not require
additional background information or familiarization. The size of the library
was about 2,800 lines of Java code distributed to 34 classes and interfaces and
a total of 164 methods. Most classes showed high algorithmic complexity and
used object-oriented concepts such as interfaces, abstract classes, inheritance,
polymorphism and dynamic binding.

10 C. Artho et al.

In this context, we also briefly looked into the possibilities of model-based
approaches for unit testing [23] and developed some preliminary ideas about how
to construct models for our collection classes. However, model-based testing was
not part of one of our studies so far and, thus, the initial models have not been
evaluated further. In the following, we document our observations about some
of the challenges involved in constructing these initial models.

4.2 Modeling Test Scenarios

The starting point of our modeling attempts was the focus on developing unit
test suites for the collection classes. The main motivation was to reduce the
manual effort involved in implementing unit tests by automatically generating
some or all of the test cases. So our initial perspective on modeling was influenced
by the ideas and scenarios we wanted to explore in unit testing.

One of the first models was, thus, a generalization of a specific scenario that
can be implemented as simple unit test. The objective of this test was to add and
remove elements to/from a collection and to check the corresponding size of the
collection as well as that the removed elements were those that had previously
been added (Fig. 6).

This test implements one specific, representative case out of the many pos-
sible sequences in which elements may be added and removed. The model we
initially developed still focused on the particular scenario of adding and removing
elements (see Fig. 7).

Yet with the help of this model, we were able to generate a huge set of test
cases that covered a wide range of combinations in which elements were added
and removed, eventually including also all the combinations implemented in the
manually developed test cases. Several other scenarios (e.g., using iterators or
sorting) were modeled in the same way, again with the intention to explore them
more extensively with huge sets of generated tests.

Fig. 6. Exemplary unit test capturing a specific sequence of add/remove operations.

init main counter = 0

add(++counter)

remove() == counter--

Fig. 7. Simple model for generating arbitrary sequences of add/remove operations.

With an Open Mind: How to Write Good Models 11

A weakness all these initial models had in common was that no further defects
were revealed, other than those that already had been found by the manually
written unit tests. By simply transferring the unit test scenarios into test models,
the resulting models were inherently limited to the underlying scenarios. Since
in our case these scenarios were already sufficiently covered by a (small) set of
manually implemented unit test cases, the model-based testing approach was
not able to reveal new errors.

4.3 Modeling Actions on the System Under Test

To improve the initially generated test cases and to better unleash the potential
of the model-based testing approach, we tried to advance the models towards
more realistic usage patterns. For example, we added further actions to include
all methods exposed in the public interface of a collection class and we removed
the guards preventing invalid method calls to cover a broad range of interac-
tions in addition and in combination to adding and removing elements. We also
integrated the different small models into one large model. For example, we inte-
grated the model testing iterators to make sure several iterators were used as part
of a larger scenario where collections are modified concurrently. The advanced
models actually generated new fault-revealing test cases we were not thinking
about when manually writing tests. Eventually, thus, we reached the conclusion
that the most realistic results will be achieved by developing a model that resem-
bles the complete system under test as closely as possible in favor of developing
several more specific models that reflect only individual test scenarios.

So far we have not completed the development of a full model for the collec-
tion classes. Nevertheless, we found that partial models or models at a higher
level of abstraction are already capable of detecting some of the faults, although
they are not rigorous enough to detect all the faults. Incrementally developing
and refining the models provides the benefit of early defect detection and allows
to balance the invested modeling effort to the achieved test results.

When proceeding towards a more complete model, we encountered another
challenge that still remains an open issue. With the exponentially increasing
number of possible scenarios described by a large model, the probability to suf-
ficiently cover all the known interesting scenarios and critical corner cases tends
to decrease. For example, since add and remove are equally probable, the num-
ber of elements in a collection usually stays low and collections rarely grow to
the point where new memory is allocated. Another example is related to the
special cases when inserting and removing list elements; the first and the last
position of a filled list have to be treated differently and should to be covered by
dedicated test cases. Yet this knowledge is not part of the model. However, since
this knowledge is already available when creating the model, it would be useful
to include it at this point as an aid to guide test case generation in direction of
the relevant scenarios.

12 C. Artho et al.

4.4 Modeling Test Data

Models of collection classes usually exhibit only a small number of relevant states.
We found that an important aspect of the model relates to the test data, i.e.,
the data elements to be stored in the collections.

Our initial model concerning the add and remove operations used a counter
nrOfElements to keep track of the size of the collection and to compute its
state, i.e., empty or filled. When adding an element to the collection, we used
the counter as new integer object to be added. When removing an element, we
compared the obtained element with the counter to make sure the expected
element had been returned. Thus, this simple mechanism dynamically generated
reproducible test data. To avoid that the sequential order of the elements derived
from the counter created unbalanced sequences, e.g., new elements are always
added to the end of the collection, we used the counter as seed for a random
number generator.

A weakness of this first model was that it missed errors caused by mixing data
elements of different type. The containers TreeSet and TreeMap are sensitive to
such errors as are the operations for sorting and searching in collections. Thus,
the initial model did not find the related seeded defects since only comparable
data objects of type Integer were used.

We extended the initial model by creating numerous test data elements of
different types when setting up the model. The data elements were stored in
an array in arbitrary order. The counter we previously used in the model now
served as array index, which still allowed to determine the expected element to
be returned by a remove operation.

Only later we found a new fault that indicated that there is still room for
further improvement. The implementation of the collection classes was not able
to handle the case of a collection being added to itself. Some operations such as
toString would then lead to an unbounded recursion (see Fig. 8). We further
extended the model to dynamically add new data elements to the test data set
not only at startup but also while the model is executed. In future we plan to
extended the model to incorporate the idea of feedback-directed test genera-
tion [16].

A related issue is involved in using null values, since the implementation
of some container classes accept null as valid data elements whereas others
do not. This issue was found when we tried to reuse generic models for dif-
ferent container classes. This observation led us to the (ongoing) discussion to
what extent a model should reflect the behavior of the system under test versus
its environment, i.e., the allowable inputs from the anticipated usage. While
Utting et al. [24] classify this scope as a binary decision (input-only versus
input-output models), we found that our models always combined both sides

Fig. 8. Sequence revealing an unbound recursion in the implementation of Stack.

With an Open Mind: How to Write Good Models 13

since modeling the input side also required some knowledge about the expected
output.

4.5 Summary

We reported on work on modeling the behavior of Java container classes. Initial
models that were created from generalizations of existing unit tests ended up
not being effective at finding defects that were not already covered by unit
tests. When extending these models, we found that models that are convenient
to define (for example, using only numbers) end up not covering important
cases such as different data types or null values. Finally, creating modular and
reusable models is difficult, because small differences in components result in
pervasive differences in the allowable inputs requiring extra effort to adjust.

5 Industrial Project: Electric Circuit

5.1 Adapted Work Flow

As described in Sect. 2, various subtleties regarding the aspects of timed models
and the reachability of model and system states in hardware are known. To
avoid incorrect models, verification engineers validate their model with domain
experts, who design the circuit. In this project, we employed the following work
flow to eliminate false positives (spurious warnings) and false negatives (missed
defects):

1. For a set of given desired states, reachability of these states is checked. For
example, any terminal state in the system should be reachable.

2. The specification is negated and model checked. This means that the model
checker analyzes whether there exist paths in the model that fulfill the desired
property. In a correct model, correct execution paths should be generated.
These execution paths are generated as counterexamples by the model checker,
as the real property has been negated. Different counterexample paths are
subsequently reviewed together with domain experts to determine whether
they are correct and reflect the expected behavior of the system.

3. Properties that are trivially expected to hold are checked as well, as a form
of sanity check.

5.2 Problem Found

The work flow described above prevents many defects in the model. However,
despite this, a modeling problem was found in an industrial project on an electric
circuit. The problem is related to how time is modeled in a real system. The
system model uses discrete time, where the state of each component is updated
on the next model clock tick. However, in real hardware, components can change
their state almost immediately; the “slowness” introduced by discrete time gave
rise to a counter-example in this model (see Fig. 9). The problem in this model is

14 C. Artho et al.

Fig. 9. Part of a model transition describing an industrial circuit.

that gSet PT Voltage A01 is updated in the next state even though the voltage
change is immediate in real hardware.

After the counterexample was investigated together with domain experts, it
was considered to be spurious (a false positive). To fix the model, the first line
in the model was amended to gSet PT Voltage A01 := case (i.e., next was
removed). This eliminated the false positive.

6 Discussion

We have reported our experience from several modeling projects. In each project,
there were unexpected problems with creating a correct and sufficiently good
model to fulfill the purpose of model-based verification. In our opinion, it is
interesting that the problems were not caused by ambiguities of the requirements
or documentation. Where ambiguities caused problems, we were able to identify
them and clarify the open points by checking the reference implementation.

6.1 Model Design

In our projects, problems arose when requirements were transformed into a
model. We often failed to create a model that matches a wide range of all possible
behaviors stated in the requirements. All of the models were “correct” but failed
to cover certain behaviors of the system, some of which were even implemented
incorrectly. In the software projects, the uncovered behaviors resulted in missed
defects (false negatives); in the hardware project, it resulted in a spurious error
(false positive), which gives an indication of a mismatch between the model and
reality.

The lack of expressiveness in the models did not originate from unintended
errors or oversights, but from intentional abstractions or decisions that led to
elegant models. The resulting lack of coverage was therefore a side-effect of con-
scious design decisions. From this observation, we identify the right level of
abstraction and human bias [10] as the key problems.

Abstraction. A major problem of creating a good model is to choose the right
level of abstraction. This is a very difficult problem that takes years of experience
to solve well. Some people even claim that this skill may not be teachable but
an innate ability [12]. In the future, we expect (modeling/abstraction) teaching
methods, and design tools, to improve to make the task a bit less daunting.

With an Open Mind: How to Write Good Models 15

Human Bias. When choosing an abstraction, human bias also often exists in
that the model is designed for a narrower purpose than necessary. This leads
to the omission of certain behaviors in the model. Like abstraction, this is a
fundamentally difficult problem to overcome; it requires to attack the problem
from various angles to obtain a comprehensive solution. We think that involving
a team of people in modeling, and making an effort to avoid any preconception,
can at least mitigate this problem. Ideally, models are created with an open, fresh
mind, and no possibilities, regardless of being difficult or trivial to handle, should
be disregarded. In practice, this may require careful engineering of the model
w.r.t. code reuse, if one takes into account that many small subtle differences in
system components result in a large increase of different possible behaviors (and
thus models or parameterizations thereof).

6.2 Model Validation

Our experience shows that model-based verification has to be grounded in an
extensive validation of the model. Even though validation is in itself not a fully
mechanized activity, there exists tool support for tasks such as coverage analysis
and visualization, which contribute to validation. Furthermore, computer sup-
port can also be used in the modeling stage itself if certain artifacts such as a
reference implementation are available.

Machine Learning. Machine learning of models has the obvious advantage of
not missing system states due to a simple oversight. If a correct (reference)
implementation of a system exists, then a model can be derived from the existing
system using machine learning [13,21]. The resulting model may not be human-
readable but its verification verdict may confirm or refute the result obtained
from a model designed by a human.

This approach can even be used if it is not known if a given system is correct;
in that case, the model reflects its current (possibly not fully correct) behavior
and can be used in regression testing to see if the behavior of the system changes
in unexpected ways. Changes that violate a given property then would likely be
found by a model that reflects the semantics of an older (“known good”) version
of the system.

Diagnosis and Visualization. Some of the weaknesses observed in models arose
from the fact that they were generalizations of existing test scenarios. Therefore,
just lifting a set of execution traces to a grammar-based model is not guaran-
teed to add much value. It is also necessary to check whether the existing test
scenarios, and the derived model, are comprehensive enough.

We therefore advocate that model-based verification be combined with model
diagnosis and visualization, so possible flaws in a model learned from an incom-
plete set of tests, or a defective system, may be found. In our hardware project,
we already had adapted such a workflow by checking a sample of all possible
execution traces generated by the model checker.

Model Coverage and Mutation Analysis. It is important to analyze the cover-
age of the model in the real system; this can be done for software testing in a

16 C. Artho et al.

straightforward way [1,26]. However, coverage analysis on the final product gives
us limited information on the expressiveness of the model itself (in addition to
not being able to tell us whether all requirements are actually met). Hence, we
also advocate mutation operators for models to find mutants that still pass the
properties.

Mutating model properties is well-known [7] (and very similar to program
code [11]). However, work needs to be done on mutating the structure of the
model: a model could also be mutated by duplicating or deleting a transition, or
changing its source or target state. This reflects what we have learned from our
software model, where the model structure itself (and not just a given predicate
or property) restricted its behavior.

Combination of Model-Based and Model-Free Techniques. When analyzing the
implementation of a system, fully automated analysis techniques can comple-
ment human efforts. Unlike in the case where a model is designed by a human,
automated techniques have no test oracle that evaluates the output of the ana-
lyzed behaviors; instead, they serve as a “sanity check” for a wide range of
generic properties (accessed memory must be initialized, no deadlocks, etc.).

When using such “model-free” techniques, randomized testing [16] often finds
defects that humans miss [18]. Defects found by such tools may in turn spur an
improvement in a manually written model. A comparison of the states covered
by model-free techniques with the coverage of a manually written model, may
unveil weaknesses in the latter as well.

7 Conclusions and Future Work

Writing good models is a challenge. Models should not only be correct but suffi-
ciently expressive and inclusive to fulfill the purpose of finding defects or ensuring
their absence. Finding the right level of abstraction, and trying to avoid human
bias, or two of the key challenges in this process. A high level of abstraction
that allows an efficient encoding of a model (or reuse of existing model code)
may not cover enough details of all possible behaviors. Modeling languages and
tools should strive to improve this trade-off. Teaching engineers about commonly
encountered problems or human bias is also essential.

We have listed several non-trivial flaws that we found in existing model devel-
opment projects, and we have given suggestions how these may be avoided in
the future. Tool-supported analysis of the model itself will help to explore the
system behavior in its full breadth and may uncover missing model aspects that
human inspection misses. In this context, we advocate using model-free, auto-
mated approaches where possible, so that their coverage can be compared with
the coverage yielded by a model derived from the specification.

We believe that more case studies can also shed more light into why certain
properties tend to be forgotten, and what types of modeling challenges engineers
typically encounter. This may eventually lead to the creation of a body of knowl-
edge for modeling and its effective use in practice. Existing work tends to focus
on surveying approaches and tools, such as MCBOK, a body of knowledge on

With an Open Mind: How to Write Good Models 17

model checking for software development [22]; we hope that more fundamental
cognitive and process-level issues will also be covered in the future.

Acknowledgments. We would like to thank Takashi Kitamura and Kenji Taguchi
for their suggestions on this paper.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, New York (2008)

2. Artho, C., Biere, A., Hagiya, M., Platon, E., Seidl, M., Tanabe, Y., Yamamoto,
M.: Modbat: a model-based API tester for event-driven systems. In: Bertacco, V.,
Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 112–128. Springer, Heidelberg
(2013)

3. Artho, C., Hagiya, M., Potter, R., Tanabe, Y., Weitl, F., Yamamoto, M.: Software
model checking for distributed systems with selector-based, non-blocking commu-
nication. In: Proceedings of 28th International Conference on Automated Software
Engineering (ASE 2013), Palo Alto, USA (2013)

4. Beatty, D., Bryant, R.: Formally verifying a microprocessor using a simulation
methodology. In: Proceedings of 31st Conference on Design Automation (DAC
1994), San Diego, USA, pp. 596–602 (1994)

5. Beer, I., Ben-David, S., Eisner, C., Landver, A.: Rulebase: an industry-oriented
formal verification tool. In: Proceedings of 33rd Conference on Design Automation
(DAC 1996), Las Vegas, USA, pp. 655–660 (1996)

6. Bertolino, A., De Angelis, G., Di Sandro, A., Sabetta, A.: Is my model right? let
me ask the expert. J. Syst. Softw. 84(7), 1089–1099 (2011)

7. Black, P., Okun, V., Yesha, Y.: Mutation of model checker specifications for test
generation and evaluation. In: Wong, E. (ed.) Mutation Testing for the New Cen-
tury Ages, pp. 14–20. Kluwer Academic Publishers, Norwell (2001)

8. Bowman, H.: How to stop time stopping. Form. Asp. Comput. 18(4), 459–493
(2006)

9. Bowman, H., Faconti, G., Katoen, J-P., Latella, D., Massink, M.: Automatic veri-
fication of a lip synchronisation algorithm using UPPAAL. In: Proceedings of 3rd
International Workshop on Formal Methods for Industrial Critical Systems, CWI,
pp. 97–124 (1998)

10. Calikli, G., Bener, A.: Empirical analyses of the factors affecting confirmation
bias and the effects of confirmation bias on software developer/tester performance.
In: Proceedings of 6th International Conference on Predictive Models in Software
Engineering, PROMISE 2010, pp. 10:1–10:11. ACM, New York (2010)

11. Yue, J., Mark, H.: An analysis and survey of the development of mutation testing.
IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

12. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42
(2007)

13. Memon, A., Nguyen, B.: Advances in automated model-based system testing of
software applications with a GUI front-end. Adv. Comput. 80, 121–162 (2010)

14. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive
Step-by-Step Guide, 2nd edn. Artima Inc., Sunnyvale (2010)

15. Oracle. Java Platform Standard Edition 7 API Specification. http://docs.oracle.
com/javase/7/docs/api/ (2013)

http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/

18 C. Artho et al.

16. Pacheco, C., Lahiri, S., Ernst, M., Ball, T.: Feedback-directed random test gener-
ation. In: Proceedings of 29th International Conference on Software Engineering,
ICSE 2007, pp. 75–84. IEEE Computer Society, Washington, DC (2007)

17. Pill, I., Quaritsch, T.: Behavioral diagnosis of LTL specifications at operator level.
In: Proceedings of 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), Beijing, China. IJCAI/AAAI (2013)

18. Ramler, R., Winkler, D., Schmidt, M.: Random test case generation and manual
unit testing: substitute or complement in retrofitting tests for legacy code? In:
36th Conference on Software Engineering and Advanced Applications, pp. 286–
293. IEEE Computer Society (2012)

19. Ramler, R., Wolfmaier, K., Kopetzky, T.: A replicated study on random test case
generation and manual unit testing: How many bugs do professional developers
find? In: Proceedings of 37th Annual International Computer Software and Appli-
cations Conference, COMPSAC 2013, pp. 484–491. IEEE Computer Society, Wash-
ington, DC (2013)

20. Schuppan, V.: Towards a notion of unsatisfiable and unrealizable cores for LTL.
Sci. Comput. Program. 77(7–8), 908–939 (2012)

21. Steffen, B., Howar, F., Isberner, M.: Active automata learning: from DFAs to
interface programs and beyond. J. Mach. Learn. Res.-Proc. Track 21, 195–209
(2012)

22. Taguchi, K., Nishihara, H., Aoki, T., Kumeno, F., Hayamizu, K., Shinozaki, K.:
Building a body of knowledge on model checking for software development. In:
Proceedings of 37th Annual International Computer Software and Applications
Conference (COMPSAC 2013), Kyoto, Japan. IEEE (2013)

23. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2006)

24. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

25. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. J. 10(2), 203–232 (2003)

26. Yu, Y., Lau, M.: A comparison of MC/DC, MUMCUT and several other coverage
criteria for logical decisions. J. Syst. Softw. 79(5), 577–590 (2006)

Model-Based Testing from Controlled Natural
Language Requirements

Gustavo Carvalho1(B), Flávia Barros1, Florian Lapschies2, Uwe Schulze2,
and Jan Peleska2

1 Universidade Federal de Pernambuco - Centro de Informática,
50740-560 Recife, Brazil
{ghpc,fab}@cin.ufpe.br

2 Department of Mathematics and Computer Science, Universität Bremen,
28209 Bermen, Germany

{florian,uschulze,jp}@informatik.uni-bremen.de

Abstract. Model-Based Testing (MBT) techniques usually take as input
models that are not available in the very beginning of a development.
Therefore, its use is postponed. In this work we present an approach to
MBT that takes as input requirements described in a Controlled Natural
Language. Initially, the requirements are syntactically analyzed accord-
ing to a domain specific language for describing system requirements,
and their informal semantics is depicted based on the Case Grammar
theory. Then, the requirements semantics is automatically represented
as a Transition Relation, which provides formal basis for MBT, and test
cases are generated with the support of a solver. Our approach was evalu-
ated considering four examples from different domains. Within seconds,
our approach generated 94 % of the test vectors manually written by
specialists. Moreover, considering a mutant-based strength analysis, our
approach yielded a mutation score between 54 % and 98 %.

Keywords: Natural language · Case grammar · Solver · Test case

1 Introduction

During the last fifty years, we have witnessed a significant increase of embedded
HW-SW components in critical systems. Clearly, this trend goes along with
increased software size and complexity, and strongly impacts critical systems’
safety and reliability. Currently, many researchers are focusing on how to achieve
the safety and reliability levels required for these systems. Some approaches
to deal with such a problem rely on Model-Based Testing (MBT) techniques.
However, these techniques usually take as input models (e. g., state diagrams)
that are usually not yet available in the very beginning of the system development
project. In the initial phases, only high-level and textual requirement descriptions
are usually available. Therefore, the use of MBT is postponed.

To enable early MBT, we propose NAT2TESTIMR—an approach to gen-
erate test cases from requirements described in Controlled Natural Language

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 19–35, 2014.
DOI: 10.1007/978-3-319-05416-2 3, c© Springer International Publishing Switzerland 2014

20 G. Carvalho et al.

(CNL) based on the RT-Tester1 Internal Model Representation (IMR) [12]. The
requirements can describe temporal properties besides functional behaviour. We
opt for receiving textual requirements as input instead of a graphical notation
because the former is usually available first and in some industries it is required
to have textual descriptions for certification purposes.

Initially, our approach parses the textual system requirements to evaluate
their conformance with the CNL structure. Our CNL (the SysReq-CNL) is a
non-ambiguous and precise subset of the English language. After parsing, our
approach provides a semantic interpretation for the requirements, using verb
case frames as semantic representation [1]. This idea was first developed by the
authors in a previous work [5], and this paper extends our original ideas. From
the case frames, the requirements’ semantics are mapped into an internal model
representation whose formal semantics is given by means of a transition relation.
Based on this model, our approach generates test vectors with the support of
the RT-Tester and its SMT solver. This whole process is fully automated by
supporting tools. The tests generated by NAT2TESTIMR provide means for
early testing/simulation of models at design level.

To evaluate our proposal, we applied it to four examples from different
domains: (i) a Vending Machine (a toy example); (ii) a control system for Safety
Injection in a Nuclear Power Plant (publicly available [8]); (iii) one example
provided by Embraer2 (a Brazilian aircraft manufacturer); and (iv) part of the
Turn Indicator System [11] of today’s Mercedes vehicles (publicly available3).

The NAT2TESTIMR approach was evaluated from three perspective: (i) per-
formance; (ii) automatically generated versus manually written test vectors (by
Embraer); and (iii) mutant-based strength analysis. Within seconds, our app-
roach generated 94 % of the test vectors manually written by Embraer specialists.
Moreover, considering a mutant-based strength analysis, our approach yielded a
mutation score between 54 % and 98 %.

Therefore, the main contributions of this work are: (1) an MBT approach for
generating tests from textual requirements, (2) a formal representation of case
frames by means of a transition relation, and (3) empirical evaluations of our
approach considering four examples from different domains.

Section 2 describes how requirements are parsed and how verb case frames
are inferred. Section 3 explains how case frames are represented by means of
a transition relation, and how tests can be generated. Section 4 presents the
tool support for our approach. Section 5 analyzes empirical evidence. Section 6
addresses related work, and Sect. 7 presents conclusions and future work.

2 Syntactic / Semantic Analyses

Here, we use Natural Language Processing (NLP) for parsing each system require-
ment according to our CNL (SysReq-CNL). For each valid requirement, the
1 http://www.verified.de
2 http://www.embraer.com/en-us/pages/home.aspx
3 http://www.mbt-benchmarks.org

http://www.verified.de
http://www.embraer.com/en-us/pages/home.aspx
http://www.mbt-benchmarks.org

Model-Based Testing from Controlled Natural Language Requirements 21

parser returns the corresponding syntax tree (ST). As described later, case
frames give semantic meaning for each obtained ST.

2.1 The SysReq-CNL

A Controlled Natural Language is a subset of an existing natural language that
uses a restricted set of grammar rules and a predefined lexicon containing the
application domain vocabulary. In general, CNLs are specially designed to avoid
textual complexity and ambiguity. The SysReq-CNL was created for editing
unambiguous requirements for critical systems. It is defined by a CFG, and a
lexicon containing the application domain vocabulary.

The lexicon entries are classified into lexical classes (also known as Parts
Of Speech—POS [1]). In this work, we consider the following commonly used
lexical classes: determiners (DET), nouns (NSING for singular and NPLUR
for plural), adjectives (ADJ), adverbs (ADV), verb inflections (for example,
VBASE—base form, VPRE3RD—for 3rd person in present form), conjunctions
(CNJ), prepositions (PREP) and numbers (NUMBER).

The SysReq-CNL grammar (see Fig. 1) conveys the syntactic rules used by
the CNL-Parser to generate the requirements corresponding syntax trees. Words
in uppercase denote terminal symbols, and a “;” delimits the end of each pro-
duction. Here, terminal symbols correspond to lexical classes.

The grammar start symbol is Requirement, which is composed by a Con-
ditionalClause and an ActionClause. Thus, the requirements have the form of
action statements guarded by conditions. A ConditionalClause begins with a con-
junction, and then its structure is similar to a Conjunctive Normal Form (CNF).
The conjunctions are delimited by a COMMA and the AND keyword, whereas
the disjunctions are delimited by the OR keyword. An ActionClause begins with

Requirement → ConditionalClause COMMA ActionClause;

ConditionalClause → CONJ AndCondition;

AndCondition → AndCondition COMMA AND OrCondition | OrCondition;

OrCondition → OrCondition OR Condition| Condition;

Condition → NounPhrase V erbPhraseCondition;

ActionClause → NounPhrase V erbPhraseAction;

NounPhrase → DET? ADJ ∗ Noun+;

Noun → NSING | NPLUR;

V erbPhraseCondition → V erbCondition NOT?ComparativeTerm? V erbComplement;

V erbCondition → (VPRE3RD | VTOBE PRE3 | VTOBE PRE |
VTOBE PAST3 | VTOBE PAST);

ComparativeTerm → (COMP (OR NOT? COMP)?);

V erbPhraseAction → SHALL (V erbActionV erbComplement | COLON V erbAction
V erbComplement (COMMA V erbActionV erbComplement)+);

V erbAction → VBASE;

V erbComplement → V ariableState? PrepositionalPhrase∗;

V ariableState → (NounPhrase | ADV | ADJ | NUMBER);

PrepositionalPhrase → PREP V ariableState;

Fig. 1. Grammar for system requirements.

22 G. Carvalho et al.

a NounPhrase (nouns eventually preceded by a determiner and adjectives) fol-
lowed by a VerbPhraseAction, which describes action statements.

This concise grammar is able to represent requirements written using several
different sentence formations, and it is not restricted to one specific application
domain. We have successfully applied the SysReq-CNL in the different domains
considered in this work. The requirement REQ-007 is a typical requirement from
the Turn Indicator System adhering to the SysReq-CNL.
REQ-007: When the voltage is greater than 80, and the flashing timer is greater
than or equal to 220, and the left indication lights are off, and the right indication
lights are off, and the flashing mode is left flashing or the flashing mode is left tip
flashing, the lights controller component shall: assign ‘on’ to the left indication
lights, assign ‘off’ to the right indication lights, reset the flashing timer.

In the Embraer context, the requirements originally written by their Require-
ments Team are similar to the format imposed by the SysReq-CNL. In what
follows, we present a typical requirement written by Embraer Team, and the
corresponding form, rewritten to adhere to the SysReq-CNL.

Original: The Priority Logic Function shall assign value 0 (zero) to Command
In-Control output when: left Priority Button is not pressed AND right Priority
Button is not pressed AND left Command is on neutral position AND right
Command is on neutral position.

Rewritten: When the left priority button is not pressed, and the right priority
button is not pressed, and the left command is on neutral position, and the right
command is on neutral position, the Priority Logic Function shall assign 0 to
the Command-In-Control output.

2.2 The Case Frames Notation

We follow the Case Grammar linguistic theory [1] to represent Natural Language
(NL) semantic meaning. In this theory, a sentence is not analysed in terms of
the syntactic categories or grammatical functions, but in terms of the semantic
(thematic) roles played by each word/group of words in the sentence.

The obtained semantic representation is then mapped into an internal model
whose formal semantics is given by means of a transition relation. The thematic
roles semantic representation frees the process of generating the internal model
from depending upon the SysReq-CNL syntactic rules. Thus, if the CNL evolves
to capture new syntactic structures without changing the underlying semantics,
the process of generating the internal model will not change.

Within the Case Grammar theory, each verb is associated to specific thematic
roles (TR), which form the verb’s Case Frame (CF). Thus, a CF is a structure
with slots (representing thematic roles) to be filled in by sentence elements. Roles
may be obligatory or optional in a CF. In our work, each verb in the Lexicon
is associated to a CF. We consider 9 TRs4: (1) Action (ACT), the action that

4 The adopted nomenclature was inspired by [1].

Model-Based Testing from Controlled Natural Language Requirements 23

Table 1. Example of case frames.

Condition #1—Main Verb (CAC): is
CPT: the voltage CFV: - CMD: greater than CTV: 80
Condition #2—Main Verb (CAC): is
CPT: the flashing timer CFV: - CMD: greater than

or equal to
CTV: 220

Condition #3—Main Verb (CAC): is
CPT: the flashing mode CFV: - CMD: - CTV: left flashing
OR—Main Verb (CAC): is
CPT: the flashing mode CFV: - CMD: CTV: left tip flashing
Condition #4—Main Verb (CAC): are
CPT: the left

indication lights
CFV: - CMD: - CTV: off

Condition #5—Main Verb (CAC): are
CPT: the right

indication lights
CFV: - CMD: - CTV: off

Action #1—Main Verb (ACT): assign
AGT: the lights

controller component
TOV: on PAT: the left

indication lights
Action #2—Main Verb (ACT): assign
AGT: the lights

controller component
TOV: off PAT: the right

indication lights
Action #3—Main Verb (ACT): reset
AGT: the lights

controller component
TOV: - PAT: the flashing

timer

shall be performed if the conditions are satisfied. (2) Agent (AGT), entity who
performs the action. (3) Patient (PAT), entity who is affected by the action.
(4) To Value (TOV), the Patient value after action completion. (5) Condition
Action (CAC), the action that concerns each Condition Patient. (6) Condition
Patient (CPT), the element associated with each condition. (7) Condition From
Value (CFV), each Condition Patient previous value. (8) Condition To Value
(CTV), each Condition Patient value that satisfies the condition. (9) Condition
Modifier (CMD), some modifier related to the condition, e.g., a negation. The
TR Condition Modifier was defined by us, whereas the others are defined in the
related literature. Table 1 shows CFs corresponding to REQ-007.

The verb case frames are inferred from the syntax trees returned by the
parser. This is done by visiting the syntax trees searching for particular pat-
terns. For instance, the agent (AGT) always corresponds to the terminals of
the NounPhrase that is a child of an ActionClause. Sometimes the ST struc-
ture is insufficient, and the patterns are dependent on the verb being used. For
instance, consider the patient thematic role (PAT), and the verbs change and
assign. For the verb change, we might have the following sentence structure:
“. . . shall change something from old value to new value”. However, when the
verb assign is used, we have: “. . . shall assign new value to something”. In both
cases, the patient is something, but depending on the verb being used, this ele-
ment appears in different parts of the sentence and of the corresponding ST.
Thus, in this case, we need specific rules governed by each verb.

Currently, we consider the verbs: to add, to assign, to be, to become, to change,
to reset, and to subtract. It is worth mentioning that they are sufficient to write
all requirements (51 in total) of the examples considered in this work. These

24 G. Carvalho et al.

patterns were initially defined for the Embraer example, and then they were
applied without changes to the other three examples.

3 Generation of Test Vectors

In our approach, system behavior is internally modeled by state machines, cap-
tured in the RT-Tester Internal Model Representation (IMR). For generating test
cases with associated test data, the concurrent state machine semantics is rep-
resented by means of a transition relation Φ associating pre-states of locations,
variables and current time with post-states. Below we describe the IMR, how
state machines are inferred from the case frames, and how we use the transition
relation for generating concrete test data.

3.1 Internal Model Representation

The system model is arranged in hierarchical components c → C, so that a partial
function pC : C �⇒ C mapping each component but the root cr to its parent is
defined [12]. Each component may declare variables, and hierarchic scope rules
are applied in name resolution. Interfaces between Test Environment (TE) and
System Under Test (SUT) as well as global model variables are declared on the
level of cr. All variables are typed. When parsing the model the scope rules are
applied to all expressions and unique variable symbol names are used from then
on. Therefore we can assume that all variable names are unique and taken from
a symbol set V with pairwise disjoint subsets I,O, T ∗ V denoting TE ⇒ SUT
inputs, SUT ⇒ TE outputs and timers, respectively.

Each leaf component is associated with a state machine s → SM , where SM
denotes the set of all state machines which are part of the model. State machines
are composed of locations (also called control states) Σ → L(s) and transitions
(τ = (Σ, g, α, Σ≤) → Σ(s) ⊆ L(s) × G × A × L(s)) connecting source and target
locations Σ and Σ≤, respectively. Transition component g → Bexpr(V) denotes the
guard condition of τ , which is a Boolean expression over symbols from V . For
timer symbols t → T occurring in g we only allow Boolean conditions elapsed(t, c)
with constants c. Intuitively speaking, elapsed(t, c) evaluates to true if at least
c time units have passed since t’s most recent reset. Transition component α
denotes a set of value assignments to variables in V , according to expressions
formed by variables of V. A transition without assignments is associated with an
empty set α = ∅. For more detailed definitions, refer to the RT-Tester technical
report [12]. Code 1 presents the Turn Indicator System IMR (later described).

3.2 From Case Frames to State Machines

Concerning the internal model representation, we extract components and state
machines from the case frames. Recall that the Agent (AGT) role represents
who performs the action. Thus, for each different AGT we create a parallel

Model-Based Testing from Controlled Natural Language Requirements 25

Code 1. IMR of the Turn Indicator System.
1 SYSTEM { IMR { TOPLEVEL COMPONENT IMR {
2 ATTRIBUTES {
3 ATTRIBUTE o ld th e eme rg ency f l a sh i ng {SYMBOLTYPE: GlobalVar TYPE: in t }
4 . . .
5 ATTRIBUTE the emergency f l a sh ing {SYMBOLTYPE: InputVar TYPE: in t }
6 ATTRIBUTE the f l a sh ing mode {SYMBOLTYPE: OutputVar TYPE: in t }
7 ATTRIBUTE th e f l a s h i n g t ime r {SYMBOLTYPE: GlobalVar TYPE: c lock }
8 . . .
9 }

10 SUT COMPONENT IMR.SUT. the f lashing mode component { SC−LOCATIONS {
11 LOCATION NAME: I n i t i a l { EMANATING TRANSITIONS {
12 [0] [t rue] / . . . −−−> the f lashing mode component L0
13 }}
14 LOCATION NAME: the f lashing mode component L0 { EMANATING TRANSITIONS { . . . } }
15 }}
16 SUT COMPONENT IMR.SUT. th e l i g h t s c on t r o l l e r c omponen t { SC−LOCATIONS {
17 LOCATION NAME: I n i t i a l { EMANATING TRANSITIONS {
18 [3 3] [t rue] / . . . −−−> t h e l i gh t s c on t r o l l e r c omponen t L0
19 }}
20 LOCATION NAME: th e l i gh t s c on t r o l l e r c omponen t L0 { EMANATING TRANSITIONS {
21 . . .
22 [6 0] [((((((IMR. the vo l t ag e > 80) &&
23 ((t imeTick − IMR. t h e f l a s h i n g t ime r) >= 220)) &&
24 ((IMR. the f l a sh ing mode == 0) | | (IMR. the f l a sh ing mode == 4))) &&
25 (IMR. t h e l e f t i n d i c a t i o n l i g h t s == 0)) &&
26 (IMR. t h e r i g h t i n d i c a t i o n l i g h t s == 0)) &&
27 ((IMR. t h e l e f t i n d i c a t i o n l i g h t s != 1)
28 | | (IMR. t h e r i g h t i n d i c a t i o n l i g h t s != 0)))]
29 / . . . −−−> t h e l i gh t s c on t r o l l e r c omponen t L0
30 . . .
31 }}
32 }}
33 }}}

component. Each system component comprises a state machine with a single
location, and, based on the case frames, we infer self-transitions.

To illustrate this, consider the requirement REQ-007. We extract the tran-
sition: τ = (Σi, gi,j , αi,j , Σi), where Σi represents the location of the ith state
machine, which is the one corresponding to the the lights controller component.
The guard of this transition is [v > 80∧elapsed(ft, 220)∧ ll = 0∧ rl = 0∧ (fm =
0 ∨ fm = 4)], where v represents the voltage, ft the flashing timer, ll the left
indication lights, rl the right indication lights, and fm the flashing mode. Besides
that, off is represented as 0, on as 1, left flashing as 0, and left tip flashing as 4.
Moreover, the actions associated with this transition are {(ll , 1), (rl , 0), (ft , 0)}.
See Code 1—this transition is presented in lines 22–29.

This code is not human-readable since it is a hidden artefact, which is auto-
matically generated by our approach, whose purpose is to provide means for
generation of tests. Despite that, using the RT-Tester infrastructure it would be
possible to derive a readable UML model from it, but it is outside of the scope
of this work.

To extract transitions like the one just presented, and to create the IMR from
the case frames, we rely upon three main algorithms: (1) identify variables, (2)
identify transitions, and (3) create the internal model representation.

In the IMR, variables are of three possible kinds: input, output and global
variables (see Code 1, lines 2–9). Besides that, we support the following data
types: Integer, Floating point numbers, Boolean and Clock (timers). We consider

26 G. Carvalho et al.

Algorithm 1: Identify Variables
input : caseFrameList
output : varList

for cf ∈ caseFrameList do1
for andCond ∈ cf do2

for orCond ∈ andCond do3
varName = orCond.CPT;4
var = varList.find(varName);5
if var == null then6

var = new Var(varName);7
if “timer” ∈ varName then8
var.setKind(GLOBAL);
else var.setKind(INPUT);9
varList.add(var);10

value = orCond.CTV;11
var.addPossibleValue(value);12
action = orCond.CAC;13
if isPastTense(action) then14
var.hasOldVersion = true;

for action ∈ cf do15
varName = action.PAT;16
var = varList.find(varName);17
if var == null then18

var = new Var(varName);19
if “timer” ∈ varName then20
var.setKind(GLOBAL);
else var.setKind(OUTPUT);21
varList.add(var);22

else if var.kind == INPUT then23
var.setKind(OUTPUT);24

value = action.TOV;25
if “reset” ∈ action.ACT then value = 0;26
var.addPossibleValue(value);27

for var ∈ varList do28
if var.hasOldVersion then29

oldVarName = “ old” + var.name;30
oldVar = new Var(oldVarName);31
oldVar.setKind(GLOBAL);32
oldVar.setType(var.type);33
varList.add(oldVar);34

Algorithm 2: Identify Transitions
input : caseFrameList
output : transMap

for cf ∈ caseFrameList do1
guard = generateGuard(cf);2
stmtMap = generateStatements(cf);3
for stmtKey ∈ stmtMap.keys do4

transList = transMap.find(stmtKey);5
if transKey == null then6

init trans;7
trans.setGuard(guard);8
trans.addStmts(9

stmtMap[stmtKey]);
transList = new List();10
transList.add(trans);11
transMap.add(stmtKey,12

transList);

else13
hasSimilarTransition = false;14
for trans ∈ transList do15

if guard == trans.guard then16
trans.addStmts(17

stmtMap[stmtKey]);
hasSimilarTransition18

= true;
break;19

if !hasSimilarTransition then20
init trans;21
trans.setGuard(guard);22
trans.addStmts(23

stmtMap[stmtKey]);
transList.add(trans);24

Algorithm 3: Create the IMR
input : varList, transMap
output : topCmp

init topCmp;1
for var ∈ varList do topCmp.addVar(var);2
init SUT;3
topCmp.add(SUT);4
init TE;5
topCmp.add(TE);6
for transKey ∈ transMap.keys do7

init l0;8
for trans ∈ transMap[transKey] do9

specialGuard =10
avoidLivelock(trans.guard);

trans.setGuard(trans.guard ∧11
specialGuard);

l0.addTransition(l0, trans);12

cmp = new Component(transKey);13
cmp.addLocation(l0);14
SUT.add(cmp);15

inputs as variables provided to the SUT by the testing environment; their values
cannot be modified by the system. Thus, a variable is classified as an input if
and only if it appears only in conditions. All other variables, except the ones
whose type is a clock, are classified as outputs. Clock variables (timers) are
always classified as global variables. To distinguish between timers and others
variables, we require the former to have the word “timer” as a suffix.

Our algorithm for identifying variables (Algorithm 1) iterates over the list
of case frames (line 1) analyzing each condition (lines 2–3), which comprises a
conjunction of disjunctions, and each action (line 15). When analyzing condi-
tions, we extract variables from the Condition Patient (CPT) role. For example,
Table 1 shows that the voltage is the CPT of the first condition. Thus, if the
corresponding variable has not yet been identified (lines 5–6), we create a new

Model-Based Testing from Controlled Natural Language Requirements 27

variable considering the CPT content, besides replacing the white spaces by an
underscore (line 7). So, in this case, we create the variable the voltage, previously
illustrated as v. If the variable is a timer, it is created as a global variable (line
8). Otherwise, the variable described by the CPT role is created as an input (line
9). Then we add the created variable to the list of identified variables (line 10).

To infer the type of the variable we analyze the value associated with it in
the case frame, which is the content of the Condition To Value (CTV) role.
For instance, the variable the voltage is associated with the value 80 in the
first condition of REQ-007 (see Table 1). Thus, the algorithm extracts the CTV
content (line 11), and adds it to a list of values already identified (line 12).

The addPossibleValue is responsible for invoking the algorithm updateType
(omitted here due to space restrictions), which is responsible for inferring and
updating the variable type. Briefly speaking, variables associated with values
are classified as integers or floating point numbers. Variables whose possible
value is true or false are classified as Booleans. Variables related to other words
are classified as integers, considering the enumeration of possible values. For
example, the variable the left indication lights is associated with the values off,
on (see Table 1). In this case, this variable is classified as an integer where off is
mapped to 0, and on is mapped to 1.

Lines 13–14 inspect the Condition Action (CAC) role to identify conditions
referring to the old (previous) state of the variable. This occurs when a verb in
the past tense is used (e. g., the voltage was 80 describes the situation where
the voltage was 80 in the previous system state). To deal with this situation,
we create a special variable, named by adding the prefix old to the variable
name, which is responsible for storing the variable value in the previous system
state (lines 28–34). As “old variables” are neither inputs nor outputs, they are
always classified as global. For the previous example, we create the variable
old the voltage. Lines 15–27 behave analogously to the previous explanations.
The differences are: (1) the variables are identified from the Patient (PAT) role;
(2) if a variable was already identified as an input its kind is updated to output
due to the reason presented in the beginning of this subsection; and (3) the
variable value is the content of the To Value (TOV) role, excluding the case
when the reset verb is used (the TOV is empty and we shall consider the value
0 as the possible value—see the last action of Table 1).

From the case frames we also extract transitions (see Code 1, lines 11–14,
lines 17–31). They are associated with the respective Agent (AGT) roles repre-
senting system components (one component per agent—see Code 1, lines 10, 16).
The algorithm for identifying transitions (Algorithm 2) iterates over each case
frame (line 1) and returns a mapping of components to their self-transitions (out-
put transMap). For each case frame, the algorithm extracts a guard expression
(line 2) and statements (line 3). The generateGuard algorithm (not presented
here) transverses recursively the conjunction of disjunctions of each case frame
and returns the transition guard according to the IMR format. Besides iden-
tifying statements according to the IMR format, the algorithm generateState-
ments groups the identified statements by their respective agents. For example,

28 G. Carvalho et al.

all actions of the requirement REQ-007 are performed by the same agent—the
lights controller component (see Table 1). Thus, in this case all statements of
REQ-007 are grouped by the same agent.

For each different agent (line 4) we analyze if some transition has already been
identified with respect to this system component (lines 5–6). If it has not, we
create a new transition (line 7) considering the guard (line 8) and the respective
statements (line 9), we create a list of transitions for this component (line 10), we
add the created transition to this list (10), and we finally group this list by the
component being considered (line 12). If transitions have already been identified
to the component (line 13), we merge the actions of transitions whenever they
have the same guard (lines 14–19). Otherwise, we create a new transition, and
we add it to the list of transitions of this component (lines 20–24).

The third algorithm (Algorithm 3) is responsible for assembling the variables
and transitions into one IMR top component (output topCmp), which comprises
all parallel system components. First of all we initialize this top component (line
1), and add all variables to it (line 2). Then, we define that this top component
has two main subcomponents: the System Under Test (SUT) model (lines 3–4),
and the Testing Environment (TE) model (line 5–6). In this work, as we focus
on the SUT specification, the TE model is an empty component.

For each different agent (line 7), we create the single location l0 of the respec-
tive state machine (line 8). Then, we add the transitions associated to this agent
as self-transitions of this location (lines 9–12). Considering the semantics of the
IMR, which is detailed in Sect. 3.3, to avoid a livelock in the SUT specification
(the indefinite execution of transitions without time passing), we augment each
transition guard stating that it shall be performed if and only if the transition
has some side effect (it changes the value of some SUT variable—lines 10–11).
Finally, we create a system component (line 13), we add this single location to
the component state machine (line 14), and we define this component as a SUT
subcomponent (line 15). After performing these three algorithms we obtain a
model of our system requirements according to the IMR notation.

3.3 Transition Relation

For generating test cases with associated test data, the model behavior is for-
mally encoded by means of a transition relation Φ. We describe transition rela-
tions relating pre- and post-states by means of first order predicates over unprimed
and primed symbols from BCS ∪ V ∪ {t̂}, where BCS=def

⋃
s∈SM L(s) (“BCS”

stands for “basic control states”). The unprimed symbols refer to the symbol
value in the pre-state, and the primed symbols to post-state values. The vari-
ables with prefix “ old” are interpreted as unprimed symbols.

The transition relation distinguishes between discrete transitions ΦD and
timed transitions (also called delay transitions) ΦT , allowing the model execution
time t̂ to advance and inputs to change, while the basic configuration, internal
(excluding the special “old” variables) and output variables remain frozen. The
delay transition is also responsible for updating the variables with prefix “ old”.
Thus, before changing the value of inputs, it copies the current value of each

Model-Based Testing from Controlled Natural Language Requirements 29

variable, which has an old version, to its old version. Discrete transitions take
place whenever at least one state machine has an enabled transition.

If a discrete transition is enabled its effects may be described as follows.
(1) The current model execution time t̂ remains unchanged. (2) All input variable
values remain unchanged. (3) For every state machine possessing an enabled
transition τ , the transition’s effect becomes visible in the post-state. (5) All
variables that are not modified by any executed transition retain their old values.

Delay transitions are characterized as follows. (1) The model execution time
is advanced. (2) Inputs may change for the post-state of the delay transition,
and the old version (pre-state) of variables are accordingly updated, but all
other variables and basic control states remain unchanged. (3) The admissible
time shift is limited by the point in time when the next timer will elapse. Due to
space restrictions, we do not present here the formal definition of this transition
relation. The reader can find it in the RT-Tester technical report [12].

3.4 Symbolic Test Cases, Concrete Test Data

In MBT test cases may be expressed as logical constraints identifying model
computations that are suitable to investigate a given test objective. We use the
term symbolic test cases for these constraints to emphasize that at this stage no
concrete test data to stimulate a model computation satisfying them exists. As
external representation of these constraints we use LTL formulas of the type Fφ,
where the free variables in φ are model variables, basic control states (interpreted
as Booleans, true indicating that the machines currently resides in this location),
and model execution time. The utilization of the finally operator F is motivated
by the fact that to test a given objective φ, a computation prefix may have to be
executed in order to reach a model state from where φ can be fulfilled. Since test
cases need to be realized by finite model computation fragments, symbolic test
cases are internally represented as so-called bounded model checking instances

tc(c,G) ≡def

c−1∧

i=0

Φ(σi, σi+1) ∧ G(σ0, . . . , σc) (1)

In this formula σ0 represents the current model state and Φ the transition
relation, so any solution of 1 is a valid model computation fragment of length c.
The test objective φ is encoded in G(σ0, . . . , σc). For example 1, G(σ0, . . . , σc) =
G(σc) = ((

∨
i(Σi(σc) ∧ ψi(σc))) ∧ φ1(σc)). Intuitively speaking, tc(c,G) tries to

solve Fφ within c computation steps, starting in model pre-state σ0. To solve
constraints of type 1 we use an SMT solver. Thus, the solver result can be seen
as a test case (sequence of test vectors) where each test vector comprises the
value of inputs and the system state with respect to a particular time moment.

Table 2 shows an example of a test case generated for the Turn Indicator
System. The first line tests that no lights shall be turned on, even if, for instance,
the turn indicator is on the right position, if the car voltage is too low (below 81
volts). However, when the voltage is greater than 80 (line 2), the lights shall be

30 G. Carvalho et al.

Table 2. Example of test case.

TIME (ms) Voltage Emergency button Turn indicator Left lights Right lights

0 80 Off Right Off Off
7918 81 Off Left On Off
8258 81 Off Left Off Off
8478 81 Off Left On Off

turned on based on the turn indicator position (in this case, left position), and
the light shall remain on for 340 ms, and off for 220 ms, periodically.

Note that symbolic test cases are not necessarily satisfiable, since some goals
G(σ0, . . . , σc) in the bounded model checking instance (1) may not admit a solu-
tion, if they are generated by a purely syntactic evaluation of the IMR structure.

4 Tool Platform

The NAT2TESTIMR approach is fully supported by tools. The CNLParser is
the tool that receives the system requirements and, for each valid requirement
with respect to the SysReq-CNL, returns the corresponding ST. Next, the CF-
Generator tool provides a semantic interpretation for each ST, using verb case
frames (CF) as semantic representation. After that, the tool IMR-Generator
translates the case frames into the IMR.

Then, we use RT-Tester, a tool developed by Verified Systems International
GmbH in cooperation with the last author’s team at the University of Bre-
men, which operates on the IMR and outputs test cases with concrete test data.
Optionally, the tool also generates the test procedures executing these test cases
in software or system testing (hardware-in-the-loop) environments. To check the
SUT responses against the test model (IMR), RT-Tester generates test oracles
from the given model. These run concurrently with the SUT, permanently check-
ing SUT outputs against expected value changes and associated points in time.

5 Empirical Analyses

The NAT2TESTIMR approach was evaluated in four different examples. The
Vending Machine (VM) example is an adaptation of the Coffee Machine pre-
sented in [7]. The machine outputs weak coffee (within 10 and 30 s after the user
request) if the user selects coffee too quickly (i. e., within 30 s after inserting a
coin), otherwise it outputs strong coffee. This example is an interesting one since
its behavior is highly dependent on time constraints. The Nuclear Power Plant
Control (NPP) is a simplified version of a control system for safety injection in a
nuclear power plant (NPP) as described in [8]. The Priority Command Function
(PC) was provided by Embraer. It comprises a system that decides whether the
pilot or copilot will have priority in controlling the airplane side sticks based
on their position and on a priority button. The Turn Indicator System(TIS) is

Model-Based Testing from Controlled Natural Language Requirements 31

a simplification of the specification that is currently used by Daimler for auto-
matically deriving test cases, concrete test data and test procedures. In 2011,
Daimler allowed the publication of this specification to serve as a “real-world”
benchmark supporting research of MBT techniques. Our simplification results
in a size reduction of the original model presented in [11], but serves well as a
proof of concept, because it still represents a safety-critical system portion with
real-time and concurrent aspects. Considering these examples, we evaluated the
NAT2TESTIMR approach from three perspectives: (i) performance; (ii) auto-
matically generated versus manually written tests (only for the Embraer exam-
ple); and (iii) mutant-based strength analysis. All files related to the empirical
analyses (textual specification, case frames, IMR, test cases, and Java code) are
publicly available5, except for the files related to the Embraer example due to
disclosure restrictions.

5.1 Results and Analyses

Table 3 summarizes the data collected. As it can be seen, the TIS is the largest
example: 1,124 words and 21 requirements, which comprises 600 thematic roles,
whereas the other examples (VM, NPP, and PC) have an average of 320 words, 10
requirements, and 182 thematic roles. As a consequence of its complexity, more
symbolic test cases are identified to the TIS example (193) when compared to the
VM, NPP, and PC examples (62, 64, and 54 symbolic test cases, respectively).

The time measurements were done on an average configuration computer.
The figures indicate that the time required to process (parse) the requirements
and identify the thematic roles is linear with respect to the specification size.
Furthermore, these two tasks are performed in order of seconds. Differently, the
time required to generate the test cases from the obtained IMR had a sharper
increase with respect to the specification size. The most complex and larger spec-
ification (TIS) required about 92 s, whereas the three other examples needed no
more than a few seconds. Despite that, the total time required to apply the
NAT2TESTIMR strategy is within 2 min in the worst case (TIS). As the RT-
Tester infrastructure has already proven to scale up for the full TIS [11], we
believe our strategy might scale as well since it reuses the RT-Tester infrastruc-
ture and only adds a small overhead to process the requirements.

To evaluate the meaningfulness of the generated test vectors we compared the
vectors generated by our approach with the ones manually written by Embraer
specialists. This analysis was not done for the other examples since we did not
have access to test vectors manually written for them. Our strategy generated 16
of the 17 test vectors considered by the specialists (94.12 %). The single missing
vector exercises a system behavior that is already tested by other test vectors,
and the strategies of the RT-Tester solver did not consider it. To evaluate the
test cases (sequence of test vectors) strength (ability to detect errors) we use
mutation operators since it yields statistically trustworthy comparison of test
cases strength in a controlled and systematic way [2]. Therefore, we created a

5 http://www.mbt-benchmarks.org

http://www.mbt-benchmarks.org

32 G. Carvalho et al.

Table 3. Empirical results of NAT2TESTIMR.

VM NPP PC TIS

General information

Words: 353 331 276 1,124
Requirements: 11 11 8 21
Thematic roles: 191 184 172 600
Symbolic test cases: 62 64 54 193
Covered symbolic test

cases:
20 (32.26 %) 48 (75.00 %) 44 (81.48 %) 121 (62.69 %)

Time performance

Time to parse the
requirements

0.59 s 0.41 s 0.03 s 0.92 s

Time to identify
thematic roles:

0.02 s 0.03 s 0.02 s 0.05 s

Time to generate IMR
and test cases:

1.07 s 2.66 s 0.95 s 92.90 s

Total time: 1.68 s 3.10 s 1.00 s 93.87 s

Vector generation precision analysis

Generated × manual
vectors

- - 16 (94.12 %) -

Mutant-based strength analysis

Java (LOC): 57 46 34 226
Mutants generated: 364 317 144 1,126
Mutation score: 54.67 % 69.04 % 87.50 % 98.05 %

“correct” (at least with respect to our tests) Java implementation (224 non-
blank lines of code (LOC) in the largest case—TIS, and 34 LOC in the smallest
case—PC) for each example.

This implementation was created solely from the natural language require-
ments, and we avoided any design decision that could not be inferred from the
requirements. In other words, the abstract level of the Java specification is similar
to the requirements one. Furthermore, it is important to note that the Java code
was created with the purpose of assessing our strategy, and in a real environment
they would not be available yet, since we are generating test from initial and
high-level requirements. We used the μJava tool [9] considering 12 method-level
mutation operators for generating mutants. This tool created between 144, and
1,126 compiled mutants. Afterwards, we manually instrumented the Java code,
and ran the test cases generated by the NAT2TESTIMR approach. From these
mutants, 54.67 % were killed in the worst case (VM), whereas 98.05 % were killed
in the best case (TIS). It is worthy mentioning that the score obtained for the
test cases manually written by Embraer is 91.67 %—near the NAT2TESTIMR

score (87.50 %). We assumed a conservative approach [2] for analysis of large
numbers of mutants: we consider that all mutants are non-equivalent mutants.
Therefore, these figures might be higher if equivalent mutants are identified and
discarded.

Model-Based Testing from Controlled Natural Language Requirements 33

The mutation score variation is justified by the number and percentage of
symbolic test cases covered by the RT-Tester standard MC/DC coverage strat-
egy, which was considered in all examples. As described in Sect. 3.4, sometimes
only a small number of the automatically generated symbolic test cases are satis-
fiable, and thus a small number of test vectors are generated6. When it happens,
in this case it is necessary to write user-defined test objectives to guide the test
generation process, and thus generate more test vectors. As this approach is
dependent upon each example and user expertise, we did not consider it. As
shown in Table 3, the lowest mutation score is related to the lowest number/cov-
erage of symbolic test cases, and the symbolic test cases not covered are indeed
not satisfiable. Considering these results, the NAT2TESTIMR approach seems
to be a reasonable alternative for generating test cases from CNL requirements.
Despite the promising results, some threats to validity might apply to our analy-
ses. The main one concerns external validity: we considered few examples (small
to medium size), and thus we cannot generalize our results to other examples.

6 Related Work

Previous works [3,13,16] have already addressed the generation of tests from
NL specifications. Differently from this work, they do not impose a standard-
ized way of writing as our SysReq-CNL does. Moreover, these works require
user interaction during the process, whereas we do not. However, the strategy
proposed in [13] is capable of generating tests for more concrete specifications
(embedded with design decisions). We consider only high-level specifications. The
works [4,10,15] provide a standardize way of writing requirements, but they do
not deal with timed specifications and they generate non-executable test cases.
However, the test generation of [10] is proved sound, whereas ours is not. The
work [14] considers time but within more limited requirement structures. In [5]
(NAT2TESTSCR) we use a transformation from CNL to the SCR notation in
[5] and apply the T-VEC tool for generating tests. Differently, this paper uses a
novel semantic encoding of the CNL behavior in the form of a timed transition
relation. This new approach can handle time in a natural way, whereas in [5]
auxiliary construction based on counters had to be applied.

7 Conclusion

This paper presented NAT2TESTIMR: an MBT technique based on natural lan-
guage requirements. The requirements are syntactically analyzed according to
our CNL, and their informal semantics is captured based on the Case Gram-
mar theory. Then, the requirements semantics is automatically mapped into a
Transition Relation, which provides the formal basis for MBT. Concrete test
cases with associated data are generated with the support of an SMT solver.
6 In the tests described by Table 3, test data for all feasible symbolic test cases could

be generated in an automated way.

34 G. Carvalho et al.

Our approach was evaluated considering four examples from different domains.
Within seconds, it generated 94 % of the test vectors manually written by spe-
cialists. Moreover, considering a mutant-based strength analysis, our approach
yielded a mutation score between 54 % (worst case) and 98 % (best case). Despite
the promising results, our approach is tailored for generating tests for high-level
requirements of the form of action statements guarded by conditions, and thus
other MBT techniques should be considered when testing more concrete speci-
fications. Therefore, the tests generated by NAT2TESTIMR provide means for
early testing/simulation of models at design level. As future work we plan to
(1) create a hierarchical IMR instead of our current flat structure, in order to
enhance the performance of our approach (we plan to consider the results of
[6] for this purpose), and (2) extend of our approach for textual specification of
testing environments.

Acknowledgments. We thank Augusto Sampaio for his valuable advice. This work
has been partially funded by the EU FP7 COMPASS project (no.287829).

References

1. Allen, J.: Natural Language Understanding. Benjamin/Cummings, San Francisco
(1995)

2. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for
testing experiments? In: International Conference on Software Engineering, pp.
402–411. ACM, New York (2005)

3. Boddu, R., Guo, L., Mukhopadhyay, S., Cukic, B.: RETNA: from requirements to
testing in a natural way. In: International Requirements Engineering (2004)

4. Brottier, E., Baudry, B., Traon, Y.L., Touzet, D., Nicolas, B.: Producing a global
requirement model from multiple requirement specifications. In: International
Enterprise Distributed Object Computing Conference, pp. 390–404. USA (2007)

5. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Black-
burn, M.: Test case generation from natural language requirements based on SCR
specifications. In: ACM Symposium on Applied Computing (2013)

6. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. Softw. Eng. Notes 27(4), 112–122 (2002)

7. Larsen, K., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
UPPAAL: status and future work. In: Dagstuhl Seminar Proceedings volume
04371: Perspectives of Model-Based Testing (2004)

8. Leonard, E.I., Heitmeyer, C.L.: Program synthesis from formal requirements spec-
ifications using APTS. High. Order Symbol. Comput. 16, 63–92 (2003)

9. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: an automated class mutation system:
research articles. Softw. Test. Verif. Reliab. 15(2), 97–133 (2005)

10. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects Comput. 1, 1–50 (2012)

11. Peleska, J., Honisch, A., Lapschies, F., Löding, H., Schmid, H., Smuda, P., Vorobev,
E., Zahlten, C.: A real-world Benchmark model for testing concurrent real-time
systems in the automotive domain. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011)

Model-Based Testing from Controlled Natural Language Requirements 35

12. Peleska, J., Vorobev, E., Lapschies, F., Zahlten, C.: Automated model-based test-
ing with RT-Tester. Universität Bremen, Technical report (2011)

13. Jr Santiago, V., Vijaykumar, N.L.: Generating model-based test cases from natural
language requirements for space application software. Softw. Qual. J. 20, 77–143
(2012)

14. Schnelte, M.: Generating test cases for timed systems from controlled natural lan-
guage specifications. In: International Conference on System Integration and Reli-
ability Improvements, pp. 348–353 (2009)

15. Sinha, A., Suttan Jr., S.M., Paradkar, A.: Text2Test: automated inspection of nat-
ural language use cases. International Conference on Software Testing, Verification
and Validation, pp. 155–164. IEEE Computer Society, Washington (2010)

16. Sneed, H.: Testing against natural language requirements. In: International Con-
ference on Quality Software, pp. 380–387 (2007)

An UPPAAL Framework for Model Checking
Automotive Systems with FlexRay Protocol

Xiaoyun Guo1, Hsin-Hung Lin2(B), Kenro Yatake1, and Toshiaki Aoki1

1 School of Information Science,
Japan Advanced Institute of Science and Technology, Ishikawa, Japan

{xiaoyunguo,k-yatake,toshiaki}@jaist.ac.jp
2 School of Information Science and Electrical Engineering, Kyushu University,

Fukuoka, Japan
h-lin@ait.kyushu-u.ac.jp

Abstract. This paper introduces a method and a framework for veri-
fying automotive system designs using model checking. The framework
is based on UPPAAL, a timed model checker, and focuses on checking
automotive system designs with FlexRay communication protocol, a de
facto standard of automotive communication protocols. The framework
is composed of FlexRay model and application model where the former
is built by abstractions to the specifications of FlexRay protocol. In the
framework, FlexRay model is reusable for different application models
with appropriate parameter settings. To the best of our knowledge, the
framework is the first attempt on model checking automotive system
designs considering communication protocols. Checking of core proper-
ties including timing properties are conducted to evaluate the framework.

1 Introduction

Automotive systems mainly adopt electronic control units (ECUs) to realize
X-by-wire technology [10]. With the X-by-wire technology, requirements or func-
tionalities which were not mechanically realizable are possible. Generally, ECUs
in an automotive system follow communication protocols to communicate with
each other through one or multiple buses. Since communication protocols greatly
affect the performance of an automotive system, protocols which can support
high transmission rate while still having reliability are demanded. Recently,
FlexRay communication protocol is considered the de facto standard of automo-
tive communication protocols [1,13]. FlexRay supports high transmission rate
up to 10 Mbs while still having fault-tolerance abilities. These characteristics
make FlexRay especially suitable for safety critical systems.

Increasing requirements for safety, driving assistance, etc., result in more
complexity in the development of automotive systems. More ECUs are required
in automotive systems and hence the need for handling heavy communica-
tions. Therefore, validation and verification of automotive systems became much
harder. In industry, integration platform based solutions are proposed to support

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 36–53, 2014.
DOI: 10.1007/978-3-319-05416-2 4, c© Springer International Publishing Switzerland 2014

An UPPAAL Framework for Model Checking Automotive Systems 37

automotive system design processes [7,14,15]. Integration platforms provide vir-
tual simulation and testing for automotive system designs and implementations
and thus save the cost of testing on devices. Although integration platforms
can perform early phase analysis, behavioral analysis as well as verification of
design models is hard to conduct because simulation and testing only focus on
specific signals or nodes in a system. On the other hand, timed model checking
techniques are proven effective on verification of real time systems [2,9]. There-
fore, introducing timed model checking on verifying automotive system designs
is considered appropriate and necessary.

This paper proposes a method for verifying design models of automotive sys-
tems using timed model checking technique. The method considers automotive
systems with FlexRay protocol and focuses on communications between ECUs.
Based on the method, a framework is implemented on UPPAAL, a timed model
checker [3]. UPPAAL has a nice graphical user interface for precisely describing
time constrained behaviors and is widely used in verifying time critical sys-
tems. However, when considering automotive systems with FlexRay protocol,
it is recognized that the behaviors of FlexRay and tasks affect each other all
the time. This phenomena is difficult to be precisely modeled using primitive
channel synchronizations provided by UPPAAL. Therefore, we model an auto-
motive system as the combination of FlexRay model and application model,
where the former is reusable with different parameter settings of systems. Devel-
opers can build an automotive system design on application model and verify it
with FlexRay model plus proper parameter settings.

The proposed model will focus on verification of design models, especially
behavior and timing related to message transmissions. Three steps of abstrac-
tions are applied on the FlexRay communication protocol to remove parts and
behaviors not in focus, and then build FlexRay model. To evaluate the frame-
work, experiments on simple systems are demonstrated to examine if the frame-
work precisely models the behavior of normal transmissions in FlexRay protocol
and its ability of timing analysis for automotive system designs.

2 Related Work

Practically, automotive systems are tested and validated using integration plat-
form solutions in the industry [7,14,15]. Integration platforms provide virtual
environments for simulation and analysis of automotive systems. However, test-
ing or simulation can only focus on specific signals or nodes in a system so that
high level analyses such as behavioral analysis are difficult. Compared to inte-
grated platforms, our framework focuses on behavior analysis and verification
with time, which makes up the above deficiency. Also, to the best of our knowl-
edge, the framework is the first attempt for verification support of automotive
system designs considering communication protocol.

Another important issue of automotive systems is scheduling or performance
analysis which analyzes expected execution time of applications and sees whether
deadlines can be met or not. For FlexRay protocol, dealing with dynamic

38 X. Guo et al.

Fig. 1. An example automotive system with FlexRay

segments in FlexRay protocol is the most important as well as difficult issue
in approaches of scheduling analysis [8,11,16,17]. Though our work does not
explicitly consider scheduling analysis due to simplification on ECUs, the frame-
work is similar to model-based scheduling analysis which has been proved useful
on other platforms [4,5]. Therefore, we argue that scheduling analysis is also
possible using our framework with some improvements.

For FlexRay protocol itself, correctness of FlexRay protocol is verified in a
few aspects. M. Gerke et al. verified the physical layer of FlexRay and proved
the fault-tolerance guarantees in FlexRay [6]. J. Malinský and J. Novák verified
the start-up mechanism of FlexRay [12]. Based on the results of the above work,
our framework assumes the correctness of the physical layer, i.e. encoding and
decoding of frames, and the start-up of FlexRay. As a result, we did not imple-
ment physical layer and start up mechanism in FlexRay model and focus only
on the behavior of abstracted frame transmissions.

3 Automotive Systems with FlexRay Protocol

In the specification of FlexRay, the controller-host interface (CHI) is implemen-
tation dependent. For verification purpose, since different implementations need
different models, it is necessary to declare which implementation is considered
in this paper. In this section, an example of automotive system with FlexRay
shown in Fig. 1 is introduced for demonstration.

An UPPAAL Framework for Model Checking Automotive Systems 39

As Fig. 1(a) shows, an automotive system consists of numbers of nodes con-
nected to a bus for communications with each other. Each node consists of three
parts: an ECU, a controller-host interface (CHI), and a communication con-
troller (CC). In each node, tasks of applications are running on the ECU and
send/receive data to/from buffers of the CHI. A CHI contains several buffers
designated for specific data streams called frames in FlexRay. For every frame,
a sending and a receiving buffer are specified. The sending buffer of a frame is
implemented in the CHI where the ECU of same node has tasks designated to
send data by the frame. The receiving buffer of a frame is implemented in the
CHI where the ECU of same node has tasks designated to receive data by the
frame. When an automotive system is executing, the CC of a node counts the
time in each cycle and sends a frame from the corresponding buffer to the bus
at the designated time. The CC also receives a frame and writes to the corre-
sponding buffer if the frame is designated to be received by the node. Note that
only one frame is allowed to be sent and received at the same time. It should
also be noted that in a node, the status of the CC, i.e. current number of cycles,
current number of slots, etc., is accessible to tasks in the ECU through the CHI
and thus makes more complicated behaviors possible. In Fig. 1(a), The system
has three nodes, Node1, Node2, and Node3. Six frames are defined and sending
buffers are specified in the corresponding CHIs: m1 and m5 in CHI1, m2 and
m4 in CHI2, m3 and m6 in CHI3

1.
Figure 1(b) demonstrates a two cycle instance of communications of the

system shown in Fig. 1(a). Communications in FlexRay are performed based on
periodic cycles. A cycle contains two time intervals with different policies for
accessing the bus: static segment and dynamic segment2. The lengths of the two
segments are fixed in every cycle and the time in a cycle is counted using slots:
static slots and dynamic slots. A static slot has fixed length defined by global
configuration parameter gdStaticSlot as a common time unit called macrotick
(MT) for all nodes in a system and the length of a static segment of is defined
by global configuration parameter gNumberOfStaticSlots. On the other hand,
dynamic slots are flexible and composed of several minislots. A minislot is the
basic unit of a dynamic segment and its length is defined by global configuration
parameter gdMinislot as macroticks. The length of a dynamic segment is then
defined by global configuration parameter gNumberOfMinislots. The index of a
frame should be defined to map with a slot number therefore a frame will be
sent at designated time interval, i.e. slot, in a cycle.

In Fig. 1(b), the index of a frame is set to the same slot number for conve-
nience. Frame m1, m2, and m3 are set to static slots, slot 1, 2, and 3. Frame
m4, m5, and m6 are set to dynamic slots, slot 4, 5, and 6. In the static segment
of the first cycle, frame m1 and m3 are sent in slot 1 and slot 3. Though frame
m2 is not sent, the time interval of slot 2 is still elapsed with no transmission.

1 Receiving buffers are not shown in the figure.
2 Here we ignore symbol window (SW) and network idle time (NIT). The former is

optional and the latter is for adjustment of cycle length. Both SW and NIT do not
affect communications in automotive system designs.

40 X. Guo et al.

Fig. 2. The framework

In the dynamic segment of the first cycle, m4 and m6 are sent in slot 4 and slot
6. Frame m4 has the length of four minislots and m6 has the length of seven
minislots. Slot 5 is not sent in first cycle but still occupies the time interval
of one minislot. When the maximum slot number is reached but the maximum
minislot number is not, the time proceeds with no transmission till the end of the
dynamic segment. The second cycle is similar where only m2 and m5 are sent.

4 The Framework

Figure 2 shows the structure of the UPPAAL framework for verification of auto-
motive systems with FlexRay demonstrated in Sect. 3. The framework consists
of several parts: UPPAAL engine, FlexRay model, Application model, Config-
uration, and Properties. The parts of the framework are associated with three
layers: base, communication, and application layers. The foundation of the frame-
work is the UPPAAL model checker. FlexRay model which models the FlexRay
protocol is the main component of the communication layer. Application model
which represents the design model of an automotive system belongs to the appli-
cation layer. Configuration and Properties are associated to both communica-
tion and application layers: Configuration contains parameters relating to both
FlexRay and application models; Properties specify queries for verification of
both FlexRay and application models in UPPAAL. FlexRay model and applica-
tion model, which are the main components of the framework, will be described
in Sects. 4.1 and 4.2 separately. Configuration and Properties will be mentioned
within examples in Sects. 4.3 and 5.

4.1 FlexRay Model

The specifications of the FlexRay communication protocol include details of
implementations on hardwares irrelevant to verification of design models of
automotive systems. Therefore, to build FlexRay model in our framework,
abstractions are needed to trim off irrelevant parts and behaviors. Generally,
the abstractions are processes of modeling the specifications of the FlexRay
protocol based on our understanding of the FlexRay protocol and our knowl-
edge/experiences of using UPPAAL. We divide the processes of the abstractions

An UPPAAL Framework for Model Checking Automotive Systems 41

Fig. 3. The structure of FlexRay model

into three steps: (1) essential component selection, (2) functionality reduction,
and (3) state space reduction. Figure 3 shows the structure of the FlexRay model
after the abstraction. The details of the three steps abstraction are described
as follows.

Essential Component Selection. For the purpose of verifying the design
model of an automotive system, we only focus on functionalities relating to
sending and receiving frames when building FlexRay model. The first step is
then to select essential and necessary components providing frame transmission
functionalities. Since we only focus on design level verification, specifications
regarding low level behaviors such as clock synchronization and frame encod-
ing/decoding are out of focus. We also assume that there is no noise interference
in transmissions3. Therefore, we only need three components in FlexRay proto-
col: protocol operation control (POC), media access control (MAC), and frame
and symbol processing (FSP). POC monitors overall status of CC and manages
other components. MAC is responsible for sending frames in corresponding send-
ing buffers of CHI at specific times in each cycle. FSP is responsible for receiving
frames and storing data to receiving buffers in CHI for tasks in ECUs to read.
Besides POC, MAC, and FSP, we also need Timer which helps monitoring of
timing in each cycle and slot. Timer is not treated as a component in the spec-
ifications of the FlexRay protocol but we have to build it since timer is used
everywhere in almost all components of a CC. The bus is implemented as a
variable accessible to MAC and FSP. The sending/receiving of frames is then
represented by writing/reading data to/from the bus variable.

3 Generally, FlexRay only captures and throws errors. An application has the respon-
sibility to handle errors thrown by FlexRay. Though not in the scope of this paper,
if transmission errors are of interest, they can be modeled by adding error situa-
tions/states explicitly in FlexRay model.

42 X. Guo et al.

Functionality Reduction. After the first step of the abstractions, the selected
components POC, MAC, and FSP still have irrelevant behaviors which do not
participate in activities related to frame transmissions. Also, the irrelevant behav-
iors may still cooperate with components already removed in the first step of
the abstractions. Therefore, the second step is to remove the irrelevant behav-
iors and functionalities of the selected components. In the framework, we only
focus on regular transmissions of frames and therefore only the normal state of
POC is meaningful and other states are ignored. Furthermore, we consider that
the clock is synchronized between nodes and there is no external interference
in normal transmissions. This results that some functionalities of CC become
unnecessary for FlexRay model. For example, functionalities such as adjustments
for reactions on transmission errors, e.g. fault tolerance feature of the bus, can
be ignored. Also, similar functionalities mainly related to error managements in
other components and CHI are ignored. Note that our most priority of model-
ing the FlexRay protocol is to fulfill the need of timing analysis, which is not
required to consider situations with errors in the first place. Therefore, the mod-
eling process is more like picking up the traces of successful frame transmissions
but trimming off error processing behaviors.

State Space Reduction. After the above two steps of the abstractions, FlexRay
model looks simple considering the number of explicit states and transitions.
However, the complexity is still high and hardly acceptable since there are many
variables especially clocks in FlexRay model. In some cases even the size of an
application is not considered large, UPPAAL suffers from state explosion when
checking properties. Therefore, further abstraction is necessary to reduce the
state space while the behaviors of frame transmissions in the FlexRay protocol
is still precisely modeled. By reviewing the above two steps of abstractions, recall
that there are two assumptions of FlexRay model in the framework: (1) all nodes
are synchronized all the time; (2) there is no error during frame transmissions.
With (1), all nodes start a cycle at the same time; with (2) all nodes finish a
cycle at the same time. That is, no node is going to be late because of trans-
mission errors. Therefore, it is reasonable to conclude that we do not need a CC
for every node, i.e. one CC is enough. This helps us to remove the complicated
behaviors which only synchronize the clocks of nodes of a system. Furthermore,
we also cancel the process of counting minislots in dynamic segment and instead
calculating the number of minislots directly using lengths of dynamic frames
and related parameters. This helps avoiding small time zones not meaningful in
checking properties. Most properties concern the timing of the start and the end
of a frame transmission but not in the middle of a frame transmission.

FlexRay model constructed after three steps of abstraction is shown in Figs. 4
and 5, where MAC is separated into MAC static and MAC dynamic. An exam-
ple will be given in Sect. 4.3 for demonstrating how FlexRay model works in
cooperation with Application model explained in Sect. 4.2.

An UPPAAL Framework for Model Checking Automotive Systems 43

st
ar

t_
up

cy
cl

e_
st

ar
t!

w
ai

t_
fo

r_
cy

cl
e_

en
d

x<
=

st
ar

tu
p_

of
fs

et

vS
S

.v
C

yc
le

C
ou

nt
er

<
gC

yc
le

C
ou

nt
er

M
ax

x:
=

0
cy

cl
e_

en
d?

vS
S

.v
C

yc
le

C
ou

nt
er

=
1

cy
cl

e_
en

d?
vS

S
.v

C
yc

le
C

ou
nt

er
+

+
, x

=
0

vS
S

.v
C

yc
le

C
ou

nt
er

=
=

gC
yc

le
C

ou
nt

er
M

axvS
S

.v
C

yc
le

C
ou

nt
er

<
=

gC
yc

le
C

ou
nt

er
M

ax

x<
=

gd
N

IT
x=

=
gd

N
IT

cy
cl

e_
en

d!

N
IT

_s
ta

rt
?

vS
S

.v
S

lo
tC

ou
nt

er
:=

0,
x:

=
0

T
im

er
_A

ct
io

nP
oi

nt
in

iti
al

se
t_

tim
er

B
?

T
im

er
_S

lo
tB

ou
nd

ar
y

en
d

x<
=

tS
lo

tA
ct

io
nP

oi
nt

x:
=

0

x:
=

0

S
lo

tS
ta

rt
!

se
t_

tim
er

A
?

S
lo

tE
nd

!

x:
=

0

x<
=

tS
lo

tB
ou

nd
ar

y

x=
=

tS
lo

tA
ct

io
nP

oi
nt

x=
=

tS
lo

tB
ou

nd
ar

y

w
ai

t_
fo

r_
C

E
_s

ta
rt

go
?

w
ai

t_
fo

r_
C

H
IR

P

bu
s_

st
at

us
=

=
C

E
_s

ta
rt

re
ce

iv
e(

),
re

se
t_

bu
s_

fr
am

e(
)

go
?

go
?

ch
ec

k_
fr

am
e_

an
d_

up
da

te
_v

S
S

()

bu
s_

st
at

us
=

=
C

H
IR

P
 &

&
vS

S
.V

al
id

F
ra

m
e

bu
s_

st
at

us
=

=
C

H
IR

P
 &

&
!v

S
S

.V
al

id
F

ra
m

e
w

ai
t_

fo
r_

th
e_

st
at

ic
_s

lo
t_

bo
un

da
ry

w
ai

t_
fo

r_
th

e_
ac

tio
n_

po
in

t

S
lo

tE
nd

?

dy
n_

se
g_

st
ar

t!

S
lo

tS
ta

rt
?

x<
=

fr
am

e_
le

ng
th

w
ai

t_
cy

cl
e_

st
ar

t

w
ai

t_
fo

r_
th

e_
en

d_
of

_t
ra

ns
m

is
si

on

se
nd

_m
es

sa
ge

vS
S

.v
S

lo
tC

ou
nt

er
<

gN
um

be
rO

fS
ta

tic
S

lo
ts

x:
=

0

x:
=

0

tS
lo

tA
ct

io
nP

oi
nt

:=
gd

A
ct

io
nP

oi
nt

O
ffs

et
,

tS
lo

tB
ou

nd
ar

y:
=

gd
S

ta
tic

S
lo

t,
x:

=
0

vS
S

.v
S

lo
tC

ou
nt

er
=

1

se
t_

tim
er

A
!

cy
cl

e_
st

ar
t?

bu
s_

st
at

us
=

ID
LE

bu
s_

st
at

us
=

C
H

IR
P

bu
s_

st
at

us
=

C
E

_s
ta

rt
,

tr
an

sm
it(

)

vS
S

.v
S

lo
tC

ou
nt

er
+

+

B
uf

fe
rE

m
pt

y(
)

!B
uf

fe
rE

m
pt

y(
)

&
&

va
lid

_f
ra

m
e_

le
ng

th
()

x=
=

fr
am

e_
le

ng
th

vS
S

.v
S

lo
tC

ou
nt

er
>

=
gN

um
be

rO
fS

ta
tic

S
lo

ts

F
ig
.
4
.
F
le

x
R

ay
m

o
d
el

(P
O

C
,
N

IT
,
T

im
er

,
F
S
P
,
M

A
C

st
a
ti

c)

44 X. Guo et al.

w
ai

t_
fo

r_
th

e_
en

d_
of

_a
ct

iv
ity

1

w
ai

t_
fo

r_
th

e_
A

P
_t

ra
ns

m
is

si
on

_s
ta

rt

w
ai

t_
fo

r_
th

e_
en

d_
of

_d
yn

am
ic

_s
lo

t1
en

d_
of

_d
yn

am
ic

_s
lo

t

w
ai

t_
fo

r_
th

e_
en

d_
of

_d
yn

am
ic

_s
eg

m
en

t

N
IT

_s
ta

rt
!

se
t_

tim
er

B
!

se
t_

tim
er

B
!

se
t_

tim
er

B
!

S
lo

tE
nd

?

!B
uf

fe
rE

m
pt

y(
)

&
&

en
ou

gh
_m

in
is

lo
ts

()

zM
in

is
lo

t<
gN

um
be

rO
fM

in
is

lo
ts

vS
S

.v
S

lo
tC

ou
nt

er
=

=
gN

um
be

rO
fS

ta
tic

S
lo

ts
+

1
&

&
tA

ct
io

nP
oi

nt
>

tM
in

is
lo

tA
ct

io
nP

oi
nt

zM
in

is
lo

t=
=

gN
um

be
rO

fM
in

is
lo

ts

st
ar

t_
of

_d
yn

am
ic

_s
lo

t

en
d_

of
_d

yn
am

ic
_s

eg
m

en
t

vS
S

.v
S

lo
tC

ou
nt

er
=

=
cS

lo
tID

M
ax

gN
um

be
rO

fM
in

is
lo

ts
>

0

gN
um

be
rO

fM
in

is
lo

ts
=

=
0

vS
S

.v
S

lo
tC

ou
nt

er
<

cS
lo

tID
M

ax

bu
s_

st
at

us
=

ID
LE

tS
lo

tB
ou

nd
ar

y:
=

ad
A

ct
io

nP
oi

nt
D

iff
er

en
ce

zM
in

is
lo

t:=
0

vS
S

.v
S

lo
tC

ou
nt

er
+

+

tS
lo

tB
ou

nd
ar

y:
=

fr
am

e_
le

ng
th

bu
s_

st
at

us
=

C
E

_s
ta

rt
,

tr
an

sm
it(

)

tS
lo

tB
ou

nd
ar

y:
=

tM
in

is
lo

tA
ct

io
nP

oi
nt

,
zM

in
is

lo
t+

+

tS
lo

tB
ou

nd
ar

y:
=

gd
M

in
is

lo
t*

(g
N

um
be

rO
fM

in
is

lo
ts

−
zM

in
is

lo
t)

,
zM

in
is

lo
t:=

gN
um

be
rO

fM
in

is
lo

ts
bu

s_
st

at
us

=
C

H
IR

P

se
t_

tim
er

B
!

S
lo

tE
nd

?

S
lo

tE
nd

?

se
t_

tim
er

B
!

S
lo

tE
nd

?

tS
lo

tB
ou

nd
ar

y:
=

gd
M

in
is

lo
t,

zM
in

is
lo

t+
+

dy
n_

se
g_

st
ar

t?

tS
lo

tB
ou

nd
ar

y:
=

C
om

pu
te

M
ac

ro
tic

k(
),

zM
in

is
lo

t:=
C

om
pu

te
M

in
is

lo
t(

)

se
t_

tim
er

B
!

S
lo

tE
nd

?

N
IT

_s
ta

rt
!

vS
S

.v
S

lo
tC

ou
nt

er
+

+

zM
in

is
lo

t<
gN

um
be

rO
fM

in
is

lo
ts

vS
S

.v
S

lo
tC

ou
nt

er
>

gN
um

be
rO

fS
ta

tic
S

lo
ts

+
1

or
tA

ct
io

nP
oi

nt
<

=
tM

in
is

lo
tA

ct
io

nP
oi

nt

B
uf

fe
rE

m
pt

y(
)

or
!e

no
ug

h_
m

in
is

lo
ts

()
zM

in
is

lo
t=

=
gN

um
be

rO
fM

in
is

lo
ts

F
ig
.
5
.
F
le

x
R

ay
m

o
d
el

(M
A

C
d
y
n
a
m

ic
)

An UPPAAL Framework for Model Checking Automotive Systems 45

4.2 Application Model

Application model represents ECUs in an application and thus consists of mul-
tiple tasks. As shown in the upper part of Fig. 3, application model accesses
the buffers in CHIs to communicate with CCs for sending/receiving frames.
Since Application model tightly depends on actual automotive systems to be
designed by developers, we leave most of the jobs to developers in building Appli-
cation model and give only simple directions on how to use FlexRay model of the
framework.

Only One Task in an ECU. For simplicity, in this paper we build one module
in UPPAAL to represent one task and an ECU only has one task. Therefore we
can omit modeling of schedulers in ECUs. Developers have to build a scheduler
module when scheduling in an ECU is considered necessary.

Use of Functions to Access Buffers in CHIs. In an automotive system
with FlexRay protocol, tasks in different nodes cannot communicate directly but
through FlexRay protocol, i.e. FlexRay model of the framework. Therefore, when
sending data, a task has to write data to the corresponding sending buffer in
the CHI of the same node, and let the CC do the transmissions. When receiving
data, the process is similar but in the reverse order. To make things simple,
we prepare functions for reading and writing data from and to specified buffer.
Developers only need to put these functions as actions on transitions of tasks
and insert proper parameters. The functions are defined as follows:

void write_msg_to_CHI(t_msg_slot msg, int value, int len);

int read_msg_from_CHI(t_msg_slot msg);

void clean_send_buffer_CHI(t_msg_slot msg);

void clean_receive_buffer_CHI(t_msg_slot msg);

Since we do not focus on the contents of the data in a frame, the data is
represented simply by integer type and may be ignored. Note that msg of type
integer is the index of a frame as well as the index of the corresponding buffer;
len is the length of the frame in macroticks. Note that reading the data from
a buffer does not clean up the buffer so there are also functions for cleaning
buffers. Developers have to clean a buffer by themselves using buffer cleaning
functions.

4.3 Example

In this section, a simple sender/receiver example [18] will be demonstrated to
show how the design model of an automotive system built as Application model
looks like and how frames are transmitted by FlexRay model. This example
consists of tasks having simple behaviors so that we can focus on reading/writing
buffers, frame transmissions, and parameter settings of the system. Figure 6
shows the plan of assigning indexes of frames. There are ten messages/frames

46 X. Guo et al.

Fig. 6. Frame setting of the sender/receiver example (SR1)

indexed from 1 to 10. The frames are used in five ECUs/tasks, Sender1, Sender2,
Sender3, Sender4, and Receiver. Which task sends/receives which frame can be
easily recognized by directions of the arrows. For example, Sender1 is designed
to send frames 1, 3, and 5, and Receiver is designated to receive all frames.
Frames 1 to 6 are static frames and frames 7 to 10 are dynamic frames.

typedef int[1,cSlotIDMax] t_msg_slot;

const t_msg_slot msg1= 1;

...

const t_msg_slot msg10= 10;

As mentioned in Sect. 4.2, the indexes of frames are the same as the indexes
of buffers. Also, the indexes of frames indicate the slot numbers of the com-
munication cycles in FlexRay model. Below shows the major parameters of the
example. The unit of parameters is macrotick except the first four parameters.

int gCycleCounterMax=6; //max. number of cycle

int gNumberOfStaticSlots=6; //number of static segment slots

int gNumberOfMinislots=32; //number of dynamic segment minislots

int cSlotIDMax=10; //max. number of slot ID

int gdNIT=4; //period of NIT (in macrotick)

int gdActionPointOffset=2; //static offset

int gdStaticSlot=5; //number of macroticks in a static slot

int gdMinislotActionPointOffset=1; //offset of minislot

int gdMinislot=3; //number of macroticks in a minislot

Figure 7 shows modules of Sender1, Sender3, and Receiver in Application
model, where Sender2 and Sender4 are similar and skipped. Note that go? is
the reception of the urgent channel go. Urgent channel always sends a signal
immediately without delay when a transition with go? is fired. For example,
by using go?, Sender1 watches the status of related buffers and writes data to
a buffer immediately when the buffer is detected empty. On the other hand,
Sender3 sends dynamic frames whose length vary from 18 to 20 macroticks. In
the framework we define global variables to represent buffers (i.e. status of CHIs)
and slot status (i.e. status of CCs). Application model can access the status of
CHIs and CCs through global variables CHI Buffer send, CHI Buffer receive,
and vSS.

An UPPAAL Framework for Model Checking Automotive Systems 47

value: int[5,5] value: int[3,3]

value: int[1,1]

go g? o?

go?

CHI_Buffer_send[msg5].length == 0 CHI_Buffer_send[msg3].length == 0

CHI_Buffer_send[msg1].length == 0

write_msg_to_CHI(msg5, value, 2) write_msg_to_CHI(msg3, value, 2)

write_msg_to_CHI(msg1, value, 2)

len: int[18,20]

len: int[18,20]

go?

go?

CHI_Buffer_send[msg9].length == 0

CHI_Buffer_send[msg7].length == 0

write_msg_to_CHI(msg9, 59, len)

write_msg_to_CHI(msg7, 57, len)

go?
CHI_Buffer_receive[vSS.vSlotCounter].length>0

clean_receive_buffer_CHI(vSS.vSlotCounter)

wait_for_receiving

Fig. 7. Selected tasks of the sender/receiver example (SR1)

typedef struct {

int[0,MaxDataValue] data;

int[0,pPayloadLengthDynMax] length;

} Buffer;

Buffer CHI_Buffer_send[cSlotIDMax+1]; //sending buffers

Buffer CHI_Buffer_receive[cSlotIDMax+1]; //receiving buffers

typedef struct{

int[0,gCycleCounterMax] vCycleCounter; //current cycle

int[0,cSlotIDMax] vSlotCounter; //current slot

} T_SlotStatus;

T_SlotStatus vSS; //slot status of CC

In this system, sending buffers can be considered always filled for convenience.
Therefore we may focus on the flow of a static or dynamic frame transmission
in FlexRay model shown in Figs. 4 and 5. When the system starts, FlexRay
model starts from POC. Like the ordering of segments in a communication cycle
shown in Fig. 1(b), POC counts the number of cycles and activates MAC static
for transmitting static frames in the static segment. When the static segment

48 X. Guo et al.

ends, MAC static activates MAC dynamic to start transmitting dynamic frames
in the dynamic segment. When the dynamic segment ends, NIT is activated and
proceeds to the end of the current cycle, then POC takes control again to start
another cycle.

In the static segment, MAC static calls Timer to set the times of the start
and the end of a static slot. In dynamic segment, MAC dynamic has to see if
there is a dynamic frame to be sent to decide the number of minislots to proceed.
If there is a dynamic frame to be sent, the frame is sent by writing the data of
the frame, which is the content of the corresponding sending buffer, to the bus
variable. The slot counter vSS.vSlotCounter is increased by 1 and the minislot
counter zMinislot is computed according to the length of the frame. If there is
no dynamic frame to be sent, both zMinislot and vSS.vSlotCounter are just
increased by 1. When the maximum slot number is reached, the MAC dynamic
will just proceed the remaining minislots to the maximum number of minis-
lots, and then end the dynamic segment. Note that in both MAC static and
MAC dynamic, the bus status is set to EC start at the start of a frame trans-
mission and the bus is set to CHIRP when the transmission ends. As the receiving
side of frame transmissions, FSP monitors bus status all the time in a commu-
nication cycle and starts to receive a frame when CE start is detected. The end
of a frame transmission is at the point that CHIRP is detected by FSP and the
data of the received frame is written to the corresponding receiving buffer.

5 Evaluation of the Framework

In this section, the framework is evaluated by checking some properties on two
example applications [18]. Firstly, the sender/receiver example (SR1) demon-
strated in Sect. 4.3 is used to verify core properties related to frame transmissions
of FlexRay protocol to see whether the framework is built right on the scope of
frame transmissions. Then we introduce another sender/receiver example (SR2)
to illustrate possible usage of the framework for timing analysis. Both examples
are checked by using UPPAAL 4.1.14 on a machine of following specifications:
Windows 8 with Intel i5 2.3GHz and 8GM RAM. Memory usage and CPU times
in checking SR1 are listed in Table 14.

Table 1. CPU time/state space/memory usage in checking SR1

Query CPU time (s) States explored Memory usage (MB)

q1 1.8 343,821 27.5
q2 14.2 1,121,950 107.3
q3 14.5 1,118,872 112.1
q4 4.8 470,860 106.0
q5 7.2 470,860 106.7

4 We used verifyta in command-line with -u option.

An UPPAAL Framework for Model Checking Automotive Systems 49

Is the Framework Built Right? For SR1, we give and check some proper-
ties/queries based on the specifications of the FlexRay protocol relating to frame
transmissions. The results give the hints for evaluating whether FlexRay model
of the framework is built right, i.e. follows the specifications of the FlexRay
protocol in the scope of normal frame transmissions. Recall that the designs
of the tasks in SR1 make it reasonable for us to keep the focus on only frame
transmissions in FlexRay model. The checked queries are listed as follows:

q1. A<> forall (i:int[1,10]) (CHI_Buffer_send[i].length>0);

q2. (CHI_Buffer_send[1].length>0) --> (CHI_Buffer_send[1].length==0);

q3. (CHI_Buffer_send[1].length>0) --> (CHI_Buffer_receive[1].length>0);

q4. A[] forall (i:int[1,10]) ((CHI_Buffer_receive[i].length>0)

imply (vSS.vSlotCounter==i));

q5. A[] forall (i:int[1,10]) forall (j:int[1,10])

(CHI_Buffer_receive[i].length>0 && CHI_Buffer_receive[j].length>0)

imply (j==i);

Queries q1, q2, q3 check basic functionalities considering the buffers in the
CHI. q1 says all buffers in the system can be filled with data, which means the
tasks can successfully write messages to sending buffers. q2 says the data in a
sending buffer will be erased/sent eventually. q3 says for a sending buffer with
data, the corresponding receiving buffer will be filled, which means frames can
be correctly delivered by the CC. Since q1, q2, and q3 are all satisfied5, we
can confirm that the tasks do communicate through FlexRay model. That is,
frame transmissions are performed by FlexRay model as expected in the task
designs in Application model. Then we check queries q4 and q5 considering the
time of frame transmissions (slots). q4 says if a receiving buffer has data, the
communication cycle is in the interval of the corresponding slot, which means
frame transmissions are occurring in the right slot (time interval)6. q5 says there
is only one frame being sent in any slot. From the result that q4 and q5 are both
satisfied, we can confirm that FlexRay model does follow the specifications of the
FlexRay protocol regarding normal frame transmissions. Therefore, we conclude
that we built the framework right under the scope of normal frame transmissions
of the FlexRay protocol.

How to Check Timing Properties? One of the major characteristics of the
framework is the ability to describe behaviors with time constraints. Here we
introduce another sender/receiver example (SR2) shown in Fig. 8 [18]. In this
system, Sender sends a message periodically while Receiver receives a message
immediately when the receiving buffer is detected having data. Note that Sender
checks periodically if the sending buffer is filled and only writes data to the buffer
when the buffer is empty. The major parameter settings are as follows:

int gCycleCounterMax=6; //max. number of cycle

int gNumberOfStaticSlots=3; //number of static segment slots

int gNumberOfMinislots=30; //number of dynamic segment minislots

5 For q2 and q3, all ten messages of indexes 1 to 10 are checked.
6 Note that Receiver receives the data as soon as a receiving buffer is filled.

50 X. Guo et al.

x<=0 cycle_end
x<=cycle

x==0 x==cycle

x:=0wait_for_cycle

write_msg_to_CHI(msg1, 2, 5)

inital write_msg_to_CHI(msg1, 1, 5)

CHI_Buffer_send[msg1].length>0

CHI_Buffer_send[msg1].length==0

wait_for_receiving

CHI_Buffer_receive[msg1].length>0

receive!

go?

clean_receive_buffer_CHI(vSS.vSlotCounter)

initial

receive?

buffered sent

received

y=0

go?

x=0, y=0

go?

x=0, y=0

CHI_Buffer_send[msg1].length>0 CHI_Buffer_send[msg1].length==0

Fig. 8. Another sender/receiver example (SR2)

int cSlotIDMax=6; //maximum number of slot ID

int gdNIT=2; //period of NIT (in macrotick)

int gdActionPointOffset=2; //static offset

int gdStaticSlot=10; // number of macroticks in a static slot

int gdMinislotActionPointOffset=2; //offset of minislot

int gdMinislot=5; // number of macroticks in a minislot

Though there is only one frame to be sent/received, the system is defined
to have six slots including three static slots. Also, the only frame is set to slot
1, i.e. the first static slot, and the length of the cycle of Sender is set to 100
macroticks.

To write property of response time of msg1, we built Observer to monitor
changes in the sending buffer of msg1. Observer moves from the initial state to
state buffered once the sending buffer is written by Sender. Once the send-
ing buffer is cleaned by FlexRay model when the transmission starts, Observer
immediately moves to state sent and waits Receiver to send signal receive.
The signal receive indicates that the transmission is finished and the receiving
buffer is written with the data of the received frame. Note that Observer has two
clocks x and y where x starts counting at the time the sending buffer is written,
and y starts counting at the time the sending buffer is cleaned. Therefore, by
examining the value of clock x at state received of Observer, we can know the
response time (macrotick, MT) of msg1; by examining the value of clock y at
state received of Observer, we can know the frame transmission time of msg1.
Now we can write some queries about the response times of msg1.

An UPPAAL Framework for Model Checking Automotive Systems 51

q1[Y]. A[] (observer.received imply observer.y == 5)

q2[Y]. E<> (observer.received && observer.x == 6)

q3[N]. E<> (observer.received && observer.x < 6)

q4[Y]. E<> (observer.received && observer.x == 182)

q5[N]. E<> (observer.received && observer.x > 182)

Note that in each query, [Y] or [N] indicates the checking result of the query
as satisfied or not satisfied. The result of q1 shows that the frame transmission
time of msg1 is 5MT, which exactly matches the setting of the length of msg1.
The results of q2 and q3 show that the best case response time (BCRT) of msg1
is 6MT, which is the sum of the frame length (5MT) and the static slot offset
(1MT). The results of q4 and q5 show that the best case response time (WCRT)
of msg1 is 182MT, which is the sum of the lengths of the static segment (30MT),
the dynamic segment (150MT) and the NIT (2MT).

Discussions. In SR1, we focus on frame transmissions in FlexRay model and
checked some related properties. With the results, we conclude that the frame-
work is built right in the scope of normal frame transmissions of the FlexRay
protocol. With only a few properties checked, one may doubt that it is not suffi-
cient to confirm that FlexRay model of the framework conform to the specifica-
tions of the FlexRay protocol. For this issue, we argue that since we only focus
on normal frame transmissions of the FlexRay protocol, the checking results are
satisfiable at current status of the framework. Furthermore, since the structure
of the framework follows the structure of the specifications of the FlexRay proto-
col, when we want to extend the functionalities of FlexRay model, current status
of FlexRay model can be a base to implement the extensions.

In SR2, the checking of the response times shows that the framework is
able to check timing properties with the help of Observer. This is a common
technique for checking complex properties since UPPAAL only support simple
timed computational tree logic (TCTL) formulas. Also, to decide the value of
BCET and WCET to be filled in a query, currently we have to guess according
to the parameters of a system. This may result some trial and error, or we may
utilize some traditional timing analysis techniques.

For the feasibility of applying the framework in the industry, since in this
paper we only focus on building FlexRay model, the modeling of the tasks in
a system is left to developers. Therefore, developers have to be familiar with
the usage of UPPAAL. Also, it is necessary to have a methodology of modeling
tasks, which may be adopted from the experiences of the modeling on integrated
platforms. Another issue is the performance of the framework. From the results
shown in Table 1, the state space is quite large considering that the system
of SR1 is very simple. The performance issue would be a major problem when
applying the framework to industrial automotive system designs.

6 Conclusion and Future Work

In this paper, an UPPAAL framework for model checking automotive system
designs with FlexRay protocol is introduced and evaluated. The framework

52 X. Guo et al.

consists of FlexRay model and application model: the former is built by abstrac-
tions to the FlexRay protocol and can be reused for different applications with
proper parameter settings represented by global variables in UPPAAL. To the
best of our knowledge, the framework is the first attempt for model check-
ing automotive system designs considering communication protocols. To eval-
uate the framework, we demonstrated two simple systems and checked some
queries/properties. From the results, we conclude that the framework is built
right in accordance with normal frame transmissions of the FlexRay protocol
and is able to check timing properties.

In this paper, we showed that a reusable module on top of UPPAAL, i.e.
FlexRay model, could be realized for verification of applications with FlexRay
protocol. We argue that only providing a general purpose model checker is not
sufficient for verifying practical systems. Additional descriptions and mecha-
nisms such as scheduling of tasks and emulation of hardware devices are usually
needed to precisely model and verify the behavior of practical systems. Further-
more, these additional mechanisms are usually common for systems belonging
to a specific application domain and are possible to be provided as reusable
frameworks and libraries. Therefore, integrating such frameworks and libraries
is crucial for promoting practical applications of model checkers in the industry.

Currently, the framework can only support scheduling analysis in systems
that an ECU has only one task, or developers have to build scheduler modules,
which is not easy. Therefore, we plan to add scheduler modules to support general
scheduling analysis. We also plan to conduct more experiments on practical
automotive systems to discover more usages and possible improvements of the
framework.

References

1. Altran Technologies: FlexRay Specifications Version 3.0.1 (2010)
2. Bel Mokadem, H., Berard, B., Gourcuff, V., De Smet, O., Roussel, J.-M.: Verifi-

cation of a timed multitask system with UPPAAL. IEEE Trans. Autom. Sci. Eng.
7(4), 921–932 (2010)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool
suite for automatic verification of real-time systems. Hybrid Systems III. LNCS,
vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

4. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-
based schedulability analysis of safety critical hard real-time java programs. In:
Proceedings of the 6th International Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES’08), pp. 106–114 (2008)

5. David, A., Rasmussen, J.I., Larsen, K.G., Skou, A.: Model-based framework for
schedulability analysis using Uppaal 4.1. Model-Based Design for Embedded Sys-
tems. Computational Analysis, Synthesis, and Design of Dynamic Systems, pp.
93–119. CRC Press, Boca Raton (2009)

6. Gerke, M., Ehlers, R., Finkbeiner, B., Peter, H.-J.: Model checking the FlexRay
physical layer protocol. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS,
vol. 6371, pp. 132–147. Springer, Heidelberg (2010)

An UPPAAL Framework for Model Checking Automotive Systems 53

7. Giusto, P., Ferrari, A., Lavagno, L., Brunel, J.Y., Fourgeau, E., Sangiovanni-
Vincentelli, A.: Automotive virtual integration platforms: why’s, what’s, and how’s.
In: IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pp. 370–378 (2002)

8. Hagiescu, A., Bordoloi, U.D., Chakraborty, S., Sampath, P., Ganesan, P.V.V.,
Ramesh, S.: Performance analysis of FlexRay-based ECU networks. In: DAC’07,
pp. 284–289 (2007)

9. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

10. Hiraoka, T., Eto, S., Nishihara, O., Kumamoto, H.: Fault tolerant design for X-
by-wire vehicle. In: SICE’04 Annual Conference, vol. 3, pp. 1940–1945 (2004)

11. Jung, K.H., Song, M.G., Lee, D.I., Jin, S.H.: Priority-based scheduling of dynamic
segment in FlexRay network. In: International Conference on Control, Automation
and Systems (ICCAS’08), pp. 1036–1041 (2008)

12. Malinský, J., Novák, J.: Verification of FlexRay start-up mechanism by timed
automata. Metrol. Measur. Syst. 17(3), 461–480 (2010)

13. Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in automotive commu-
nication systems. Proc. IEEE 93(6), 1204–1223 (2005)

14. Qtronic GmbH, Germany: Virtual integration and test of automotive ECUs. In:
Automotive Testing Expo North America, ASAM Open Technology Forum (2011)

15. Sangiovanni-Vincentelli, A.: Electronic-system design in the automobile industry.
IEEE Micro 23(3), 8–18 (2003)

16. Tanasa, B., Bordoloi, U., Kosuch, S., Eles, P., Peng, Z.: Schedulability analysis
for the dynamic segment of FlexRay: a generalization to slot multiplexing. In:
IEEE 18th Real-Time and Embedded Technology and Applications Symposium
(RTAS’12), pp. 185–194 (2012)

17. Zeng, H., Ghosal, A., Di Natale, M.: Timing analysis and optimization of FlexRay
dynamic segment. In: IEEE 10th International Conference on Computer and Infor-
mation Technology (CIT’10), pp. 1932–1939 (2010)

18. UPPAAL models used in this paper: https://github.com/h-lin/FTSCS2013

https://github.com/h-lin/FTSCS2013

Early Analysis of Soft Error Effects
for Aerospace Applications

Using Probabilistic Model Checking

Khaza Anuarul Hoque1(B), Otmane Ait Mohamed1, Yvon Savaria2,
and Claude Thibeault3

1 Concordia University, Montreal, Canada
{k hoque,ait}@ece.concordia.ca

2 Polytechnique Montréal, Montreal, Canada
yvon.savaria@polymtl.ca

3 École de Technologie Supérieure, Montreal, Canada
claude.thibeault@etsmtl.ca

Abstract. SRAM-based FPGAs are increasingly popular in the
aerospace industry for their field programmability and low cost. How-
ever, they suffer from cosmic radiation induced Single Event Upsets
(SEUs), commonly known as soft errors. In safety-critical applications,
the dependability of the design is a prime concern since failures may have
catastrophic consequences. An early analysis of dependability and per-
formance of such safety-critical applications can reduce the design effort
and increases the confidence. This paper introduces a novel methodology
based on probabilistic model checking, to analyze the dependability and
performability properties of safety-critical systems for early design deci-
sions. Starting from a high-level description of a model, a Markov reward
model is constructed from the Control Data Flow Graph (CDFG) of the
system and a component characterization library targeting FPGAs. Such
an exhaustive model captures all the failures and repairs possible in the
system within the radiation environment. We present a case study based
on a benchmark circuit to illustrate the applicability of the proposed
approach and to demonstrate that a wide range of useful dependabil-
ity and performability properties can be analyzed using our proposed
methodology.

1 Introduction

Dependability and performability are major concerns in safety-critical and
mission-critical applications common in the aerospace industry. Electronic com-
ponents are exposed to more intense cosmic rays when flying at high altitude. It
has been reported that long-haul aircrafts flying at airplane altitudes experience
a neutron-flux roughly 500 times higher than that at ground level in the worst
case [13]. For space missions, the rate of single event effects can be much worse.
Due to field programmability, absence of non-recurring engineering costs, low

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 54–70, 2014.
DOI: 10.1007/978-3-319-05416-2 5, c© Springer International Publishing Switzerland 2014

Early Analysis of Soft Error Effects for Aerospace Applications 55

manufacturing costs and other advantages, SRAM-based FPGAs are increas-
ingly attractive. Unfortunately, a great disadvantage of these devices is their
sensitivity to radiation effects that can cause bit flips in memory elements and
ionisation induced transient faults in semiconductors, commonly known as soft
errors and soft faults [1,21]. Therefore, in aerospace industry, the possibility of
cosmic radiation induced soft error grows dramatically at higher altitudes. How-
ever, an early analysis of dependability and performance impacts of such errors
and faults on the design provides opportunities for the designer to develop more
reliable and efficient designs and may reduce the overall cost associated with the
design effort. Our work aims at achieving these goals.

This paper proposes a means by which formal verification methods can be
applied at early design stages to analyze the dependability and performability of
reconfigurable systems. In particular, the focus is on probabilistic model checking
[8]. Probabilistic model checking is used to verify the systems whose behavior is
stochastic in nature. It is mainly based on the construction and analysis of
a probabilistic model, typically a Markov chain or a Markov process. These
models are constructed in an exhaustive fashion. Indeed, the models explore all
possible states that might occur in a system. Probabilistic model checking can
be used to analyze a wide range of dependability and performability properties.
In contrast, in discrete-event simulations, approximate results are generated by
averaging results from large number of random samples. Probabilistic model
checking applies numerical computations to provide exact and accurate results.

To analyze a design at high level, we start from its Control Data Flow Graph
(CDFG) [17] representation, obtained from a high-level description of the design
expressed using a language such as C++. The possible implementation options
of the CDFG, with different sets of available components and their possible fail-
ures, fault recovery and repairs in the radiation environment are then modeled
with the PRISM modeling language [24]. The failure rate of the components are
obtained from a worst-case component characterization library. Since the FPGA
repair mechanism known as scrubbing [5] can be used in conjunction with other
forms of mitigation techniques such as TMR [6] to increase the reliability, we
demonstrate in this paper that rescheduling [4,16] could be a good alternative
candidate in some cases compared to a redundancy-based solution. In the pro-
posed methodology, we show how to use the PRISM model checker tool to model
and evaluate dependability, performability and area trade-offs between available
design options. Current work in this area either separates the dependability
analysis from performance/area analysis, or do not analyze such safety-critical
applications at early design stage. Commercial tools for reliability analysis, such
as Isograph [15], cannot be used for performance evaluation of such systems as
they do not support Markov reward models [27]. Since the probabilistic model
checker PRISM allows reward modeling, our work overcomes this limitation.
The motivation of the work, the application area, the fault model, considered
fault tolerance techniques and the use of probabilistic model checking for system
analysis, makes our work unique.

56 K.A. Hoque et al.

The remainder of the paper is organized as follows. Section 2 reviews moti-
vations and related works. Section 3 describes the background about soft error
effects, soft error mitigation techniques and probabilistic model checking. The
proposed methodology and modeling details are discussed in Sect. 4, and in
Sect. 5, we present a case study using our proposed methodology. Section 6 con-
cludes the paper with future research directions.

2 Motivation and Related Work

Consider the CDFG of a synchronous dataflow DSP application shown in Fig. 1.
Based on data dependencies, this application can be carried out in a minimum of
three control steps using the CDFG-1 shown in Fig. 2, with two adders and two
multipliers. Such implementation provides a throughput of 1/3 = 0.33. Another
alternative consists of implementing the application with only one multiplier and
two adders but in four control steps, as shown by CDFG-2 in Fig. 2. In that case
the throughput is 0.25. Based on the priority of throughput or area metric, the
appropriate CDFG is selected.

However, inclusion of a reliability metric based on a fault recovery mecha-
nism can make the case more complex and difficult to evaluate. When a resource
fails (due to a configuration bit flip), an alternative schedule can be derived to
continue the system operation using the remaining resources, most likely at a
lower throughput. For example, to maximize the throughput, CDFG-1 is imple-
mented. For a single component failure, e.g. a multiplier, the application can
be rescheduled to implement CDFG-2 with lower throughput. Such fault tol-
erance approach was introduced in [4,12,16] for fault-secure microarchitectures
and multiprocessors. For FPGA-based designs, such a fault recovery technique
can be adopted as well and we explore the dependability, area and performance
trade-offs for such systems. We must mention that the controller for reschedul-
ing the operations is assumed to be fault-free. This controller can be imple-
mented in a separate chip with proper fault-tolerance mechanisms. Considering
the example again, we observe that, if another multiplier fails, the CDFG cannot
be rescheduled and the system fails to continue its operation. For FPGA-based
safety-critical applications, systematic system failure at first occurrence of a soft-
error is not acceptable. Scrubbing with partial reconfiguration capability [5] can
repair bit-flips in the configuration memory without disrupting system opera-
tions. Scrubbing can be done at a specified rate meaning that there might be

Fig. 1. Sample CDFG

Early Analysis of Soft Error Effects for Aerospace Applications 57

Fig. 2. CDFGs scheduled over available resources

a period of time between the moment the upset occurs and the moment when
it is repaired. That is why another form of mitigation is required, such as a
redundancy-based solution [6]. In this work, we use probabilistic model checking
to evaluate the dependability and performability vs area trade-offs and demon-
strate that in some cases, a redundancy-based solution might not be the best
choice as one may expect. Alternatively, for those cases, rescheduling in conjunc-
tion with scrubbing can be a good option.

High-level synthesis algorithms such as forced-directed list scheduling [23]
can generate different CDFGs depending on components availability. Switching
to another CDFG allows recovering from a failure while a system can continue
its operation, possibly with a lower throughput. For many years, fault tolerance
techniques and reliability analysis of complex systems have been active research
area both in academia and industry. In [29], the authors proposed a reliability-
centric high-level synthesis approach to address soft errors. Their framework
uses reliability characterization to select the most reliable implementation for
each operation fulfilling latency and area constraints. In addition, researchers
dedicated lots of efforts in modeling the behavior of gracefully degradable large-
scale systems using continuous-time Markov reward models [3,14]. In [26], a
case study is presented to measure the performance of a multiprocessor system
using a continuous-time Markov reward model. An approach for analyzing per-
formance, area and reliability using a Markov reward model is presented in [19].
The authors used transistor lifetimes to model the reliability and performance,
hence the model is composed of non-repairable modules. Use of a non-formal
commercial tool makes their approach quite rigid in terms of analysis. Moreover,
in their proposed approach, the reward calculation is manual, as the traditional
commercial tools for reliability analysis do not support reward modeling.

Even though our model has similarities to performance analysis, our approach
is more flexible because we use probabilistic model checking. Our work focuses
on a different fault model: cosmic radiation induced configuration bit-flips in
FPGAs. Since scrubbing is possible in FPGA designs, we also add repair to our
Markov reward model. In consideration of the failure type, repair capability, use
of a characterization library to model the system, the application of our work and
our methodology is different from and novel when compared to all the related
works described above. To our knowledge, this is the first attempt to analyze the

58 K.A. Hoque et al.

dependability and performance to area trade-offs for such safety-critical systems
at early design stage using probabilistic model checking.

3 Background

3.1 Soft Errors

In SRAM-based FPGAs, the configuration bitstream determines the routing
and functionality of the design. However, a change in the value of one of the
SRAM cells can potentially modify the functionality of the design and can lead
to catastrophic consequences. The major reason for such inadvertent bit flips
in high-altitude is soft errors caused by cosmic radiation. When these parti-
cles impact a silicon substrate, they result in the generation of excess carriers,
which when deposited on the internal capacitances of a circuit node can result
in an upset to the data value stored. The lowering of supply voltages and nodal
capacitances with recent technologies have increased the possibility of observing
bit flips. Due to this increasing concern, there are several mitigation techniques
proposed for tackling the soft error problem.

A mainstream SEU repair technique in SRAM-based FPGAs is configura-
tion scrubbing [11]. Scrubbing refers to the periodic readback of the FPGA’s
configuration memory, comparing it to a known good copy, and writing back
any corrections required. By periodically scrubbing a device, maximum limits
may be placed on the period of time that a configuration error can be present
in a device. A variation to improve scrubbing is known as partial reconfiguration
[5]. This is beneficial as it allows a system to repair bit-flips in the configuration
memory without disrupting its operations. Configuration scrubbing prevents the
build-up of multiple configuration faults. Although scrubbing ensures that the
configuration bitstream can remain relatively free of errors, over the long run,
there is a period of time between the moment an upset occurs and the moment
when it is repaired in which the FPGA configuration is incorrect. Thus the
design may not function correctly during that time. To completely mitigate the
errors caused by SEUs, scrubbing is used in conjunction with another form of
mitigation that masks the faults in the bitstream.

A scrub rate describes how often a scrub cycle should occur. It is denoted by
either a unit of time between scrubs, or a percentage (scrub cycle time divided
by the time between scrubs). There are direct relationships between scrubbing
rate, device size, device reliability and device safety, hence the scrub rate should
be determined by the expected upset rate of the device for the given application.

3.2 Probabilistic Model Checking

Model checking [8] is a well established formal verification technique to verify
the correctness of finite-state systems. Given a formal model of the system to be
verified in terms of labelled state transitions and the properties to be verified in
terms of temporal logic, the model checking algorithm exhaustively and auto-
matically explores all the possible states in a system to verify if the property

Early Analysis of Soft Error Effects for Aerospace Applications 59

is satisfiable or not. If not, a counterexample is generated. Probabilistic model
checking deals with systems that exhibit stochastic behaviour, such as fault-
tolerant systems. Probabilistic model checking is based on the construction and
analysis of a probabilistic model of the system, typically a Markov chain. In this
paper, we focus on the continuous-time Markov chains (CTMCs) and Markov
reward models [27], widely used for reliability and performance analysis.

A CTMC comprises a set of states S and a transition rate matrix R : S×S →
R→0. The rate R(s, s∗) defines the delay before which a transition between states
s and s∗ takes place. If R(s, s∗) �= 0 then the probability that a transition between
the states s and s∗ might take place within time t can be defined as 1−e−R(s,s′)×t.
No transitions will take place if R(s, s∗) = 0. Exponentially distributed delays
are suitable for modelling component lifetimes and inter-arrival times.

In the model-checking approach to performance and dependability analysis,
a model of the system under consideration is required together with a desired
property or performance/dependability measure. In case of stochastic modelling,
such models are typically CTMCs, while properties are usually expressed in some
form of extended temporal logic such as Continuous Stochastic Logic (CSL) [2], a
stochastic variant of the well-known Computational Tree Logic (CTL) [8]. Below
are a number of illustrative examples with their natural language translation:

1. P→0.98[♦ complete] - “The probability of the system eventually completing
its execution successfully is at least 0.98”.

2. shutdown ⇒ P→0.95[¬ fail U≤200 up] - “Once a shutdown has occurred,
with probability 0.95 or greater, the system will successfully recover within 200 h
and without any further failures occurring”.

Additional properties can be specified by adding the notion of rewards. Each
state (and/or transition) of the model is assigned a real-valued reward, allowing
queries such as:

1. R = [♦ success] - “What is the expected reward accumulated before the
system successfully terminates?”

Rewards can be used to specify a wide range of measures of interest, for exam-
ple, the number of correctly delivered packets or the time that the system is
operational. Of course, conversely, the rewards can be considered as costs, such
as power consumption, expected number of failures, etc.

4 Proposed Methodology

In Fig. 3, we present the proposed methodology, which reuses some elements from
a methodology proposed in [28], namely the CDFG extraction and the concept
of using a characterization library (which was created with a different set of
tools). We start from the dataflow graph of the application. Different tools such
as GAUT [9], SUIF [10] etc. could be used to extract the dataflow graph from a

60 K.A. Hoque et al.

Fig. 3. Proposed methodology

high-level design description expressed using a language such as C++. As men-
tioned earlier, a CDFG can be implemented with different component allocations
(design options). We will refer to the term design options as configurations in the
rest of the paper. Upon a failure, if possible with available resources, the CDFG
is rescheduled for fault recovery and the system continues its operation -that
is reflected in the CTMC as the next states. For rescheduling the CDFG with
available components, a high-level synthesis algorithm, such as forced-directed
list scheduling [23] can be used. To analyze each configuration, we model them
with the PRISM modeling language. Such a model is described as a number of
modules, each of which corresponds to a component of the system. Each mod-
ule has a set of finite-ranged variables representing different types of resources.
The domain of the variables represent the number of available components of a
specific resource. The whole model is constructed as the parallel composition of
these modules. The behaviour of an individual module is specified by a set of
guarded commands. For a CTMC, as is the case here, it can be represented in
the following form:

[] <guard> → <rate> : <action> ;

The guard is a predicate over the variables of all the modules in the model. The
update comprises of rate and action. A rate is an expression which evaluates to
a positive real number. The term action describes a transition of the module in
terms of how its variables should be updated. The interpretation of the command
is that if the guard is satisfied, then the module can make the corresponding

Early Analysis of Soft Error Effects for Aerospace Applications 61

transition with that associated rate. A very simple command for a module with
only one variable z might be:

[] <z = 0> → 7.5 : <z’ = z + 1> ;

which states that, if z is equal to 0, then it will be incremented by one and
this action occurs with rate 7.5. For another example, consider an application
that requires 2 adders and 2 multipliers and such a configuration in the PRISM
modeling language can be described as follows:

module adder
a : [0.. num_A] init num_A;
[] (a > 0) -> a*lambda_A : (a’ = a - 1);
[] (a < num_A) -> miu : (a’ = num_A);

endmodule

module mult
m : [0.. num_M] init num_M;
[] (m > 0) -> m*lambda_M : (m’ = m - 1);
[] (m < num_M) -> miu : (m’ = num_M);

endmodule

In the PRISM code above, num A and num M represent the number of adders and
multipliers available in the initial state of the configuration. The lambda A and
the lambda M variable represents the associated failure rates of the adders and
multipliers whereas miu represents the repair rate. Each repair transition (scrub)
leads back to the initial state reflecting the scenario that the configuration bit
flips have been repaired. The value of lambda A and lambda M is obtained from
a component characterization library, that will be explained later in the paper.
PRISM then constructs, from this, the corresponding probabilistic model, in this
case a CTMC. The resulting CTMC for this configuration is shown in Fig. 4.
PRISM also computes the set of all states which are reachable from the initial
state and identifies any deadlock states (i.e. reachable states with no outgoing
transitions). PRISM then parses one or more temporal logic properties (e.g. in
CSL) and performs model checking, determining whether the model satisfies
each property.

4.1 Markov Model for Dependability

CTMC models are very commonly used for reliability and dependability mod-
eling. To analyze each configuration, a separate CTMC is built with the help
of the PRISM tool and a wide range of dependability properties are verified.
For the FIR application in Fig. 5, at a minimum, an adder and a multiplier
pair is required for successful operation, hence any state that does not fulfill the
minimum resource availability, is labeled as a failed state. At the end, the state
labeled as all fail represents a state where all the components in the system have

62 K.A. Hoque et al.

Fig. 4. Sample Markov model

failed due to soft errors one-by-one. The initial state of the configuration has the
maximum throughput and all the components are functional. The edges between
the states represent transition rates. The assumptions for our model are defined
as follows:

Assumption 1 : The time-to failure for a component due to a configuration bit
flip is exponentially distributed. Exponential distribution is commonly used to
model the reliability of systems where the failure rate is constant. The scrubbing
behavior is assumed to follow Saleh’s probabilistic model [25], e.g. scrubbing
interval is distributed exponentially with a rate 1/µ, where µ represents the
scrub rate.
Assumption 2 : Only one component can fail at a time due to a soft error. This
assumption is made to ensure the complexity in the Markov model is managable.
Assumption 3 : Cold spare components are used to provide redundancy and are
actived only when a same type of component fails. The cold spare components
are only error prone to cosmic radiation when they are active.
Assumption 4 : The reconfiguration and rescheduling times (i.e. the time taken
for the system to reschedule when a component fails and the time taken for
repair via partial reconfiguration) are extremely small compared to the times
between failures and repairs. The time required for rescheduling is at most few
clock cycles and the time required for scrubbing is only a few seconds, which is
significantly smaller than the failure and repair rate.
Assumption 5 : All the states in the CTMC model can be classified into three
types: operational, -where all the component are functional and the system has
the highest throughput; degraded, -where at least one of the components is
faulty; and failed, -where the number of remaining non-faulty components is
not sufficient to perform successful operation and hence has a throughput of 0.
In PRISM, a formula can be used to classify such states as follows:

formula operational = (a = num A) & (m = num M) ;

Early Analysis of Soft Error Effects for Aerospace Applications 63

4.2 Markov Reward Modeling

Markov chains can be augmented with rewards to specify additional qualita-
tive measures, known as a Markov Reward Model (MRM). In a Markov reward
model, a reward rate function or reward structure r(Xi) where X → R (R is
a set of real numbers) is associated with every state Xi such that r represents
the performance of the system when in state Xi. The transient performability is
defined as the expected value of a random variable defined in terms of a reward
structure :

E[X(t)] =
∑

Xi∈X

PXi
(t) ∗ r(Xi)

A steady-state accumulated mean reward is obtained by integrating this function
from start to an convergent time beyond which rewards are invariant. For per-
formance analysis, we use the throughput metric, hence each state in the MRM
is augmented with associated throughput (in a non-pipelined design, throughput
is the inverse of latency). The throughput reward at each state in the CTMC
is obtained using the forced-directed list scheduling algorithm and all the failed
states are augmented with a throughput reward of zero. In our MRM model, the
area that is required, to implement the design on the FPGA, is assumed to be
invariant between the states for a specific configuration. The reason is, once the
system is implemented on FPGA, the area is fixed and if a fault occurs, then
the system will be rescheduled. So only the control signals will change, not the
components. For overall reward calculation e.g. to evaluate the throughput-area
trade-offs for a configuration, we use the following equation:

Overall reward = (1/A) ∗ E[X]

In the above equation, A represent the area of the design and E[X] represents
the expected throughput. This equation is similar to [20] , however instead of
calculating the reward up to a specified time-step, we use the notion of steady-
state throughput. Such modeling can be considered as a direct optimization of
throughput, area and reliability. Rewards can be weighted based on designer’s
requirements. In the case study, the rewards are set to equal weight.

4.3 Characterization Library

The reliability of a particular device can be calculated by multiplying the esti-
mated nominal SEU failure rate that is expressed in failure-in-time per megabyte
(FIT/Mb) and the number of critical bits. A bit that is important for the func-
tionality of a design can be categorized as a critical bit. For the analysis of
critical bit, we follow the procedure from [7]. The components to be analyzed
are implemented on Virtex-5 xc5vlx50t device. According to Rosetta experiment
[21] and the recent device reliability report [30], a Virtex-5 device has a nominal
SEU failure rate of 165 FIT/Mb.

The above failure rate estimation was done for atmospheric environment. At
places with high elevation above the sea, the SEU rates can be three or four

64 K.A. Hoque et al.

Table 1. Characterization library

Component No. of LUTs No. of essential bits MTBF (years)

Wallace tree multiplier 722 133503 9.22
Booth multiplier 650 130781 9.41
Brant-Kung adder 120 29675 41
Kogge-Stone adder 183 41499 30

times higher than at the sea-level. Long-haul aircrafts flying at altitudes near
40,000 ft along flight paths above 60 ◦C latitude experience the greatest neutron
flux of all flights, roughly 500 times that of a ground-based observer in New
York City [13]. However, results from the Rosetta experiment [21] for different
altitude and latitude shows a worst-case derating factor of 561.70, and hence for
commercial avionics applications the worst-case derating factor should be used.

In order to build a characterization library for the first-order estimate of soft
error effects, we use the bitgen feature of Xilinx ISE tool to identify the essential
bits, also known as potentially critical bits. It is well known that the number
of critical bits is less than the number of potentially critical bits. More accurate
SEU susceptibility analysis can be performed using the fault injection techniques
[18,22], however, for first-order worst-case estimation, it is a valid assumption
that all the essential bits are considered as critical bits. This is important to
mention that we use the characterization library to obtain the failure rate of
the components for the CTMC model and the methodology is generic enough to
be used with a different characterization library with more precise and accurate
data, without any major changes.

Table 1 presents the first-order worst-case estimate of component failures
due to soft errors. We characterize different adder and multiplier components,
namely 32-bit Brent-kung adder, 32-bit Kogge-stone adder, 32-bit Wallace-tree
multiplier and 32-bit Booth multiplier. The Xilinx Synthesis Technology (XST)
tool is used to synthesize the components from their HDL codes and the number
of required LUTs to implement them is also obtained. We observe that a 32-bit
Wallace-tree multiplier has about 0.134 million bits that are sensitive to SEUs.
So this multiplier has a worst-case MTBF of 9.22 years for avionic applications.

5 Case Study

To illustrate the applicability of the proposed methodology for early design deci-
sion, this section presents a case study from a high-level synthesis benchmark.
Figure 5 shows the CDFG for a 16-point FIR Filter [16]. For the experiments,
we consider the 32-bit Kogge-stone adders and 32-bit Wallace tree multipliers
as available components from the characterization library. To achieve a schedule
with minimum number of control steps, the minimum allocation is two adders
and two multipliers for the FIR filter application. At a minimum a pair of one
adder and one multiplier is required for successful operation. The first part of the

Early Analysis of Soft Error Effects for Aerospace Applications 65

Fig. 5. FIR filter

case study presents the dependability analysis on different configurations. The
later part of the case study focuses on the performance-area trade-off analysis
using overall reward calculation.

Table 2 shows the statistics and model construction time in PRISM for four
different configurations. The first configuration consists of two adders and two
multipliers with no redundancy. The second and third configuration consists of
one spare multiplier and one spare adder respectively used as redundant compo-
nents (coldspare). Configuration 4 is equipped with full component-level redun-
dancy, with a spare of each type of components. All the four configurations have
approximately the same model generation time around 0.002 s. Configuration 4
has maximum number of states and and maximum number of transitions in the
generated Markov model.

Probabilistic model checking allows us to reason about the probability of
occurrence of an event or of reaching a state within a specific time period, or
at any point of time in the lifetime of the system. Such measures can be for-
malized using CSL as P = ? (F[t1, t2] “operational”), which must be read
as follows: “the probability that the system is operational within the specified

Table 2. Model construction statistics

Configuration No. of states No. of transitions Time (s)

2A 2M 9 24 0.002
2A 3M 12 34 0.002
3A 2M 12 34 0.002
3A 3M 16 48 0.002

66 K.A. Hoque et al.

Table 3. Configurations vs classes of states

Configurations Operational (days) Degraded (days) Failed (days)

2A 2M 3212.16 419.81 18.02
2A 3M 3212.16 434.64 3.20
3A 2M 3212.16 421.45 16.39
3A 3M 3212.16 436.28 1.55

time-bound where [t1, t2] ⊆ R”. In Table 3, we analyze the number of days the
design spends in different classes of states for a mission time of 10 years with a
scrub rate of 6 months. The first column of the table shows the different configu-
rations for evaluation. The second, third and fourth column presents the number
of days the design spends in different classes of states. All the configurations
spend approximately similar number of days in operational state (rounded to 2
decimal points). Configuration 1 spends around 18 days in failed state. Inter-
estingly, we observe that adding an extra adder as spare does not help much
whereas adding an extra multiplier as spare significantly reduces the number
days spent in failed state. In configuration 4, the added spares for both adder
and multiplier provide the best result in terms of dependability. This is obvious
but will cost more area on the FPGA. Configuration 1 spends the least number
of days in degraded state and configuration 4 spends the highest number of days
in degraded state. For many safety-critical applications, low performance for a
period of time is acceptable. For such systems the number of days spent in failed
state is a major concern and hence, configuration 4 and configuration 2 are the
two best candidates.

Choice of scrub rate affects the dependability of the system. Table 4 shows
the effects of different scrub rates on configuration 2 for a mission time of 10
years. From the experimental results, we observe that the increase in the scrub
rate increases the number of days spent in failed and degraded states. Thus, it
decreases the number of days spent in operational state. For a scrub rate of 10
months, the system spends around 10 days in failed state whereas for a scrub
rate of 4 months, the design spends only around 1 days in failed state. For a
scrub rate of 1 month, the system spend only around 1.5 h in failed state. Such
an analysis can help designers to choose an effective scrub rate best suited for
the application.

In Fig. 6 and Table 5, we compare the four available configurations with
respect to different scrub rates to calculate their failure probability for the same
mission time. The experimental results show that for configuration 1, the fail-
ure probability varies from 0.020 to 0.145. Configuration 2 has a lower failure
probability than configuration 3 for all the scrub rates. The failure probability of
configuration 4 for all different scrub rates shows the best result with associated
extra area overhead.

Steady state analysis of a design is useful to evaluate its dependability in the
long-run. The steady-state properties can be formalized using CSL as
S = ? [fail], which must be read as follows: “the long-run non-availability

Early Analysis of Soft Error Effects for Aerospace Applications 67

Fig. 6. Failure probability vs scrub rate (days)

Table 4. Scrub rate vs Classes of states

Scrub rate Operational Degraded Failed
(months) (days) (days) (days)

1 3567.06 82.87 0.06
4 3343.21 305.49 1.30
7 3151.41 494.09 4.49
10 2985.99 654.35 9.65

Table 5. Scrub rate vs configurations

Scrub rate (Months) 2A 2M 2A 3M 3A 2M 3A 3M

1 0.020 0.002 0.019 3.36E-4
4 0.071 0.011 0.066 0.004
7 0.111 0.022 0.104 0.011
10 0.145 0.035 0.135 0.020

of the system”, i.e. the steady-state probability that the system is in failed state.
The results of steady-state analysis is presented in Table 6 for a scrub rate of 4
months. From the results, we observe that configuration 2 is really an attractive
alternative to configuration 4. On the other hand, configuration 1 and configu-
ration 3 offer similar results (rounded to 2 decimal points) over the long-run.

For throughput-area trade-off analysis, Table 7 shows the long-run overall
reward calculation for the configurations with a scrub rate of 4 months. The
rewards are setup so that the area and expected throughput have equal weights.
For every configuration, the maximum throughput is used to normalize the
throughput for other states in the Markov reward model. Similarly, the max-
imum area is used to normalize the other area values among different configu-
rations. The normalized long-run expected throughput for each configuration is
shown in column 2. Column 3 shows the area of each configuration and their nor-
malized value is shown in column 4. Column 5 shows the overall area-throughput
reward for each configuration. The reward for each configuration is calculated

68 K.A. Hoque et al.

Table 6. Steady state analysis

Class 2A 2M 2A 3M 3A 2M 3A 3M

Fail 0.002 3.86E-4 0.002 1.58E-4
Degraded 0.084 0.086 0.084 0.086
Operational 0.913 0.913 0.913 0.913

Table 7. Overall reward calculation

Configurations Expected Area Normalized Overall
throughput area reward

2A 2M 0.983 1710 0.667 1.46
2A 3M 0.991 2432 0.948 1.04
3A 2M 0.990 1834 0.715 1.39
3A 3M 0.999 2565 1.000 0.99

by multiplying the value of column 2 with the reciprocal of the normalized area.
Based on the equal reward weighting, configuration 1, which has no redundancy
(spare components), shows the best throughput-area reward. This indicates that
the extra reliability provided by the redundancy is not always useful to suppress
the extra area overhead. However, rescheduling with scrubbing is good enough to
serve as a fault recovery and repair mechanism in such cases. Another important
observation is that adding a spare adder significantly improves the throughput-
area reward, much more than adding a spare multiplier. It clearly show, how the
inclusion of throughput-area metrics can influence design decisions toward solu-
tions that differs from those resulting from an analysis based on a dependability
metric alone, as in Table 3. Such an analysis, using the proposed methodology,
can be very useful at early design stages for designers of safety-critical applica-
tions concerned with dependability, performance and area constraints.

6 Conclusion

This paper illustrated how probabilistic model checking, a formal verification
technique which has already been applied to a wide range of domains, can be
used to analyze designs at early stage for avionic applications. The design options
are modeled using a Markov reward model that captures the possible failures,
recoveries and repairs possible in high-altitude radiation environments. After-
wards, a wide range of properties are verified to evaluate the design options, in
terms of throughput, area and dependability. Such analysis is useful to reduce
the overall design cost and effort. A FIR filter case study demonstrated how the
proposed methodology can be applied to drive the design process. Future works
include automation of the process to generate the PRISM code for a given con-
figuration and to analyze designs in the presence of other kinds of faults such as
Single-Event Functional Interrupts (SEFI).

Early Analysis of Soft Error Effects for Aerospace Applications 69

Acknowledgments. This research was performed as part of the AVIO-403 project
financially supported by the Consortium for Research and Innovation in Aerospace in
Quebec (CRIAQ), Fonds de Recherche du Québec - Nature et Technologies (FRQNT)
and the Natural Sciences and Engineering Research Council of Canada (NSERC). The
authors would also like to thank Bombardier Aerospace, MDA Space Missions and the
Canadian Space Agency (CSA) for their technical guidance and financial support.

References

1. Adell, P., Allen, G., Swift, G., McClure S.: Assessing and mitigating radiation
effects in Xilinx SRAM FPGAs. In: 2008 European Conference on Radiation and
its Effects on Components and Systems (RADECS), pp. 418–424 (2008)

2. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of
continuous-time Markov chains (extended abstract). In: Baeten, J.C.M., Mauw, S.
(eds.) CONCUR 1999. LNCS, vol. 1664, p. 146. Springer, Heidelberg (1999)

3. Beaudry, M.D.: Performance-related reliability measures for computing systems.
IEEE Trans. Comput. C–27(6), 540–547 (1978)

4. Borgerson, B.R., Freitas, R.F.: A reliability model for gracefully degrading and
standby-sparing systems. IEEE Trans. Comput. 24(5), 517–525 (1975)

5. Salazar, A., Carmichael, C., Caffrey, M.: Correcting single-event upsets through
virtex partial configuration (XAPP216 v1.0), Xilinx corporation (2010)

6. Carmichael, C.: Triple module redundancy design techniques for virtex FPGAs
(XAPP197 v1.0.1), Xilinx corporation (2006)

7. Chapman, K.: Virtex-5 SEU critical bit information: extending the capability of
the virtex-5 SEU controller, Xilinx corporation (2010)

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8, 244–263 (1986)

9. Coussy, P., Chavet, C., Bomel, P., Heller, D., Senn, E., Martin, E.: GAUT: a
high-level synthesis tool for dsp applications. In: Coussy, P., Morawiec, A. (eds.)
High-Level Synthesis, pp. 147–169. Springer, Netherlands (2008)

10. Aigner, G., et al.: The SUIF program representation. http://suif.stanford.edu/suif/
suif2/index.html, January 2010

11. Heiner, J., Sellers, B., Wirthlin, M., Kalb, J.: FPGA partial reconfiguration via
configuration scrubbing. In: International Conference on Field Programmable Logic
and Applications 2009, FPL 2009, pp. 99–104 (2009)

12. Hong, I., Potkonjak, M., Karri, R.: Heterogeneous BISR-approach using system
level synthesis flexibility. In: Proceedings of the Asia and South Pacific Design
Automation Conference 1998, ASP-DAC ’98, pp. 289–294 (1998)

13. Hu, C., Zain, S.: NSEU mitigation in avionics applications (XAPP1073 (v1.0) 17
May 2010), October 2011

14. Huslende, R.: A combined evaluation of performance and reliability for degradable
systems. In: Proceedings of the 1981 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, pp. 157–164. ACM (1981)

15. ISOGraph. http://www.isograph-software.com
16. Karri, R., Orailoglu, A.: High-level synthesis of fault-secure microarchitectures. In:

30th Conference on Design Automation 1993, pp. 429–433 (1993)
17. Kavi, K.M., Buckles, B.P., Narayan Bhat, U.: A formal definition of data flow

graph models. IEEE Trans. Comput. C–35(11), 940–948 (1986)

http://suif.stanford.edu/suif/suif2/index.html
http://suif.stanford.edu/suif/suif2/index.html
http://www.isograph-software.com

70 K.A. Hoque et al.

18. Kenterlis, P., Kranitis, N., Paschalis, A.M., Gizopoulos, D., Psarakis, M.: A low-
cost SEU fault emulation platform for SRAM-based FPGAs. In: IOLTS, pp. 235–
241 (2006)

19. Kumar, V.V., Verma, R., Lach, J., Bechta Dugan, J.: A markov reward model for
reliable synchronous dataflow system design. In: 2004 International Conference on
Dependable Systems and Networks, pp. 817–825 (2004)

20. Kumar, V.V., Lach, J.: IC modeling for yield-aware design with variable defect
rates. In: Proceedings of the Annual Reliability and Maintainability Symposium,
2005, pp. 489–495 (2005)

21. Lesea, A.: Continuing experiments of atmospheric neutron effects on deep submi-
cron integrated circuits (WP286 v1.1), October 2011

22. Mansour, W., Velazco, R.: SEU fault-injection in VHDL-based processors: a case
study. J. Electron. Test. 29(1), 87–94 (2013)

23. Paulin, P.G., Knight, J.P.: Force-directed scheduling for the behavioral synthesis of
asics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(6), 661–679 (1989)

24. PRISM. http://www.prismmodelchecker.org
25. Saleh, A.M., Serrano, J.J., Patel, J.H.: Reliability of scrubbing recovery-techniques

for memory systems. IEEE Trans. Reliab. 39(1), 114–122 (1990)
26. Smith, R.M., Trivedi, K.S., Ramesh, A.V.: Performability analysis: measures, an

algorithm, and a case study. IEEE Trans. Comput. 37(4), 406–417 (1988)
27. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-

ton University Press, Princeton (1994)
28. Thibeault, C., Hariri, Y., Hasan, S.R., Hobeika, C., Savaria, Y., Audet, Y., Tazi,

F.Z.: A library-based early soft error sensitivity analysis technique for SRAM-based
FPGA design. J. Electron. Test. 29(4), 457–471 (2013)

29. Tosun, S., Mansouri, N., Arvas, E., Xie, Y.: Reliability-centric high-level synthesis.
In: Proceedings of DATE (2005)

30. Device reliability report: Second quarter (UG116 v9.1), Xilinx corporation (2012)

http://www.prismmodelchecker.org

A Strand Space Approach
to Provable Anonymity

Yongjian Li1,3(B) and Jun Pang2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

lyj238@ios.ac.cn
2 Faculty of Science, Technology and Communication,
University of Luxembourg, Luxembourg, Luxembourg

3 College of Information Engineering, Capital Normal University, Beijing, China

Abstract. We formalize in the strand space theory the notion of prov-
able anonymity. Bundle in a strand space is used to formalize a session of
a protocol. Behaviors of an observer can then be formalized as extensions
of a bundle. Reinterpretation function can be naturally derived from the
mapping from one message term of an edge of a bundle in a strand
space to that in another strand space. We formally define observational
equivalence on bundles and use it to formalise anonymity properties. The
novelty of our theory lies in the observational model and the construc-
tion of reinterpretation functions in the strand space theory. We build
our theory in Isabelle/HOL to achieve a mechanical framework for the
analysis of anonymity protocols.

1 Introduction

Nowadays, people are getting used to carry out their daily activities through
networked distributed systems, e.g., online social networks, location-based appli-
cation, providing electronic services to users. In these systems, people become
more and more concerned about their privacy and how their personal informa-
tion have been used. Anonymity is one of the desired properties of such systems,
referring to the ability of a user to own some data or take some actions without
being tracked down. For example, a user wants to keep anonymous when visiting
a particular website or posting a message on a public bulletin board.

Due to its subtle nature, anonymity has been the subject of many research
paper. For instance, the proposed definitions aim to capture different aspects of
anonymity (either possibilistic [1–5] or probabilistic [6–11]). Formal verification
of anonymity has been applied to a number of application domains, including
electronic voting [12,13], electronic cash protocols [14], file sharing [15,16] and
electronic healthcare [17]. However, automatic approaches to the formal ver-
ification of anonymity have mostly focused on the model checking approach
on systems with fixed configurations [1,4,6,9], while theorem proving seems
to be a more suitable approach when dealing with systems of infinite state

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 71–87, 2014.
DOI: 10.1007/978-3-319-05416-2 6, c© Springer International Publishing Switzerland 2014

72 Y. Li and J. Pang

spaces [18]. In this paper, we extend our previous effort on formalising provable
anonymity in a powerful general-purpose theorem prover, Isabelle/HOL [19], to
semi-automatically verify anonymity properties.

In the epistemic framework of provable anonymity [3], the notion of obser-
vational equivalence of traces plays an important role. Essentially, two traces
are considered equivalent if an intruder cannot distinguish them. The distin-
guishing ability of the intruder is formalized as the ability to distinguish two
messages, which is in turn based on message structures and relations between
random looking messages. The notion of reinterpretation function is central in
the provable anonymity framework – proving two traces equivalent essentially is
boiled down to prove the existence of a reinterpretation function. Our formaliza-
tion [20] of provable anonymity in Isabelle/HOL relies on inductive definitions
of message distinguishability and observational equivalence on traces observed
by the intruder. This makes our theory differ from its original proposal.

Our main contribution of this paper is twofold: a proposal of formalizing
provable anonymity in the strand space theory [21–23] and its implementation
in a theorem prover. We briefly discuss the novelties of our work below:

– We define an observational model of a passive intruder, meaning that the
intruder does not actively modify the messages or inject new messages. The
intruder only analyzes or synthesizes new messages to tell the difference
between his observation on sessions. These analyzing and synthesizing actions
are naturally represented by extensions of a bundle by adding separation and
decryption (or concatenation and encryption) actions.

– We propose a notion of reinterpretation mapping, which can be naturally
derived from the mapping from one message term of an edge of a bundle in
a strand space to that in another strand space. Intuitively, a reinterpretation
mapping requires that the relation, composed of the corresponding message
pairs, should be single valued. Furthermore, such a reinterpretation mapping
should remain valid after applying the analyzing and synthesizing extension
operations of a bundle. Combining the concepts of reinterpretation mapping
with that of extensions of a bundle, we propose an (adapted) definition of
observational equivalence between two sessions, which are represented by a
bundle in two strand spaces. Thus in the framework, we naturally incorporate
the concept of reinterpretation function which is extensively used in [3].

– We proceed to formalize anonymity properties, i.e., sender anonymity and
unlinkability, in an epistemic framework as in [3]. We then define the semantics
of an anonymity protocol, e.g., Onion Routing [24,25], in the strand space
theory, and formally prove that the protocol realizes sender anonymity and
unlinkability.

– We build our theory in Isabelle/HOL [19] to have a mechanical framework
for the analysis of anonymity protocols. We illustrate the feasibility of the
mechanical framework through the case study on Onion Routing.

In this paper, we assume readers have some knowledge with Isabelle/HOL
syntax and present our formalization directly without elaborated explanation.

A Strand Space Approach to Provable Anonymity 73

Notably, a function in Isabelle/HOL syntax is usually defined in a curried form
instead of a tuple form, that is, we often use the notation f x y to stand for
f(x, y). We also use the notation [[A1;A2; ...;An]] =→ B to mean that with
assumptions A1, . . . , An, we can derive a conclusion B.

2 Preliminaries

The basic notations and terminologies are mainly taken from [23].

2.1 Messages

The set of messages is defined using the BNF notation:

h:: = Agent A | Nonce N | Key K | MPair h1 h2 | Crypt K h

where A is an element from a set of agents, N from a set of nonces, and K from
a set of keys. Here we use K−1 to denote the inverse key of K. MPair h1 h2 is
called a composed message. Crypt K h represents the encryption of message h
with K. We use the free encryption assumption, where Crypt K h = Crypt K → h→

if and only if K = K → and h = h→. The set of all messages is denoted by Messages.
Terms of the form Agent A, Nonce N , or Key K are said to be atomic. The set
of all atomic messages is denoted by Atoms. A message h is a text message if
h �= Key K for any K. The set of all atomic text messages is denoted by T.

In an asymmetric-key protocol model, an agent A has a public key pubK A,
which is known to all agents, and a private key priK A. pubK A is the inverse
key of priK A ((priK A)−1 = pubK A), and vice versa. In a symmetric-key model,
each agent A has a symmetric key shrK A. The inverse key of shrK A is itself
((shrK A)−1 = shrK A). We also assume that (1) asymmetric keys and symmetry
keys are disjoint; (2) the functions shrK, pubK and priK are injective, e.g., if
shrK A = shrK A→ then A = A→. The public key, private key, and shared key
of an agent are long-term because the agent holds them forever. In contrast,
some keys are created and used only in a session by some agents, and these
keys are short-term. In the following, we abbreviate Crypt K h as {| h |}K ,
and MPair h1 . . .MPair hn−1 hn as {| h1, . . . , hn−1, hn |}. Such abbreviations are
supported in Isabelle by syntax translation [19]. In order to reduce the number
of {| or |} for readability, we abbreviate Crypt K (MPair h1 . . .MPair hn−1 hn) as
{| h1, . . . , hn−1, hn |}K in this paper.

2.2 Strands and Strand Space

Actions. The set of actions that agents can take during an execution of a
protocol include send and receive actions. We denote send and receive actions
by a set of two signs Sign = {+,−}, respectively.

Events. An event is a pair (σ, t), where σ ⇒ Sign and t ⇒ Messages.

Strands and Strand Spaces. A protocol defines a sequence of events for each
agent’s role. A strand represents a sequence of an agent’s actions in a particular

74 Y. Li and J. Pang

protocol run, and is an instance of a role. A strand space is a mapping from a
strand set Σ to a trace SP : Σ → (Sign × Messages) list.

– A node is a pair (s, i), with s ⇒ Σ and 0 ∗ i < length (SP s). We use n ⇒
strand s to denote that a node n = (s, i) belongs to the strand s. The set of
all nodes in SP is denoted as Domain SP . Namely, Domain SP= {(s, i).s ⇒
Σ ⊆ i < length (SP s)}.

– If n = (s, i) and (SP s)!i = (σ, g), where (SP s)!i means the i-th element in
the strand s. Then we define strand SP n, index SP n, term SP n and sign n
to be the strand, index, term and sign of the node n respectively, namely
strand SP n = s, index SP n = i, term n SP = g and sign n = σ. A node is
positive if it has sign +, and negative if it has sign −.

– If n, n→ ⇒ Domain SP , the relation n →SP n→ holds between nodes n and n→

if n = (s, i) and n→ = (s, i + 1). This represents event occurring on n followed
by that occurring on n→.

– If n, n→ ⇒ Domain SP , the relation n ∧SP n→ holds for nodes n and n→ if
strand SP n �= strand SP n→, term SP n = term SP n→, sign SP n = + and
sign SP n→ = −. This represents that n sends a message and n→ receives the
message. Note that we place an additional restriction on the relation ∧ than
that in [21,22], we require strand SP n �= strand SP n→, i.e., n and n→ are in
different strands, which means that actions of sending or receiving a message
can only occur between different strands.

– A term g originates in a strand space from a node n ⇒ Domain SP iff
sign SP n = + and g ♦ term SP n, and whenever n→ precedes n on the
same strand, g �♦ term SP n→. We write it originate SP g n.

– A term g uniquely originates in a strand space from node n iff g originates
on a unique node n. Nonces and other freshly generated terms are usually
uniquely originated. We write it uniqOrig SP g n.

Bundles. A bundle b = (Nb, Eb) in a strand space SP is a finite subgraph of
the graph (Domain SP, (∧SP ∨ →SP)), representing a protocol execution under
some configuration. Nb is the set of nodes, and Eb is the set of the edges incident
with the nodes in Nb, and the following properties hold:

– b is an acyclic finite graph;
– If the sign of a node n is −, and n ⇒ Nb, then there is a unique positive node

n→ such that n→ ⇒ Nb, n→ ∧SP n and (n→, n) ⇒ Eb;
– If n→ →SP n and n ⇒ b, then n→ ⇒ Nb and (n→, n) ⇒ Eb.

The set of all the bundles in a strand space SP is denoted as bundles SP .
Causal Precedence. Let b be a graph, we define m ∪b n for (m,n) ⇒ E+

b , and
m ≡b n for (m,n) ⇒ E∗

b . ∪b and ≡b represent causal precedence between nodes.
From the definition of a bundle b in a strand space SP , we can derive that

it is a casually well-founded graph [21,22].

Lemma 1. For a bundle b in a strand space SP , b is casually well-founded
graph, and every non-empty subset of the nodes in it has ∪b-minimal members.

A Strand Space Approach to Provable Anonymity 75

2.3 Intruder Model

We discuss anonymity properties based on observations of the intruder. The
Dolev-Yao intruder model [26] is considered standard in the field of formal sym-
bolic analysis of security protocols – all messages sent on the network are read by
the intruder; all received messages on the network are created or forwarded by
the intruder; the intruder can also remove messages from the network. However,
in the analysis of anonymity protocols, often a weaker attacker model is assumed
– the intruder is passive in the sense that he observes all network traffic, but
does not actively modify the messages or inject new messages – the intruder
gets a message issued by an agent from the network, then stores it for traffic
analysing, and forwards it directly to its intended destination. In the strand
space model, the above behavior is typically modelled by a Tee strand. Fur-
thermore, the copied messages are only used internally for checking observation
equivalence between protocol sessions.

In the study of the anonymity, we are more interested in the observational
equivalence between sessions. A session is modeled by a bundle in a strand
space. Observational equivalence between two session bundles is modelled by
comparing the similarity between bundles which are extended from the above two
bundles by analyzing and synthesizing actions. The observational equivalence
holds if a one-to-one mapping always holds between the corresponding extended
bundles.

2.4 Protocol Modeling Using Strands

A protocol usually contains several roles, such as initiators, responders and
servers. The sequence of actions of each regular agent acting some role in a
protocol session is pre-defined by the protocol and represented as a parameter-
ized strand. Parameters usually include agent names and nonces. Informally, we
denote a parameter strand acting some role by role[parameter list]. The strands
of the legitimate agents are referred to as regular strands.

A bundle can also contain penetrator strands. We explain them in more
details in the next section. We now use the Onion Routing protocol [24,25]
(see Fig. 1) as an example to illustrate the modelling strategy using strands.
In this figure, we abbreviate Agent A as A, Nonce N as N , and pubK A as
PKA. This figure uses the case when the threshold k of the router is 2, i.e.,
when the router has received two messages, then it turns into the status of
forwarding messages after peeling the received messages. There are four roles in
this protocol: OnionInit1, OnionInit2, OnionRouter and OnionRecv. The strands
of these roles are defined below:

– OnionInit1 SP s A M Y N → N , if the agent acting the role is A and the trace
of s in the strand space SP is [(+, {| N →, Y, {| N |}pubK Y |}pubK M)].

– OnionInit2 SP s A M N , if the agent acting the role is A and the trace of s
in the strand space SP is [(+, {| N |}pubK M)].

76 Y. Li and J. Pang

Fig. 1. Onion routing with k = 2.

– OnionRouter SP s M k, if the agent acting the role is M and the trace of s
in the strand space SP satisfies:
(∀ i.0 ∗ i < k −∧ ((∃ N → N Y.term SP (s, i) = {| N →, Y, {| N |}pubK Y |}pubK M)
≈ (∃ N.term SP (s, i) = {| N |}pubK M))) ⊆
(∀i.k ∗ i < length (SP s) −∧ (∃ N N → Y j.(0 < j < k⊆ term SP (s, j) =
{| N →, Y, {| N |}pubK Y |}pubK M ⊆term SP (s, i) = {| N |}pubK Y))).

– OnionRecv SP s Y N , if the trace of s in the strand space SP is
[(−, {| N |}pubK Y)].

2.5 Penetrator

The symbol bad denotes the set of all penetrators. If an agent is not in the set bad,
then it is regular. The strands of the penetrators are referred to as penetrator
strands. If a strand is not a penetrator one, it is referred to as a regular strand.
We say a node is regular if it is at a regular strand.

There is a set of messages known to all penetrators initially, denoted as
initKP, containing agent names, public keys of all agents, private keys of all
penetrators, and symmetric keys initially shared between the penetrators and the
server.

In the classic strand space theory, a penetrator can intercept messages and
generate messages that are computable from its initial knowledge and the mes-
sages it intercepts. These actions are modeled by a set of penetrator strands,
and they represent atomic deductions. More complex deduction actions can be
formed by connecting several penetrator strands together.

Definition 1. A penetrator’ trace relative to initKP is one of the following,
where initKP is the initial knowledge of penetrator:

A Strand Space Approach to Provable Anonymity 77

– text message - M a: [(+, a)], where a ⇒ T and a ⇒ initKP.
– issuing known key - K K → : [(+,Key K →)], where Key K → ⇒ initKP.
– concatenation - C g h : [(−, g), (−, h), (+, {| g, h |})].
– separation - S g h: [(−, {| g, h |}), (+, g), (+, h)].
– encryption - E h K: [(−,Key K), (−, h), (+, {| h |}K)].
– decryption - D h K: [(−,Key K−1), (−, {| h |}K), (+, h)].
– Flush - F g: [(−, g)].
– Tee - T g: [(−, g) , (+, g) , (+, g)].

Roughly speaking, penetrator strands can represent two kinds of actions:
analyzing messages (a combination of K and D strands, or just a separation
strand); synthesizing messages (a combination of K and E strands, or just a
concatenation strand). Tee strand is just for copying a message.

A bundle can be extended by adding more penetrator actions to a new bundle.
The set of extended bundles of a bundle b in a strand space SP is inductively
defined in Isabelle/HOL below. Intuitively, a bundle in a strand space is a formal
representation of a protocol session. If a bundle b→ ⇒ extendByAnalz SP b (or
b→ ⇒ extendBySynth SP b), then b→ contains the same behaviors of regular agents
as those in session b. However, b→ contains more information which is revealed
by the penetrator’s analyzing (or synthesizing) actions.

In our framework, in order to check the observational equivalence between
two bundles, we not only need to compare the correspondence of messages in two
sessions, but also need to check the correspondence of messages in two sessions
which are extended from the original two sessions.

inductive set extendByAnalz:: strand space ⇒ graph ⇒ graph set

for SP::strand space and b::graph where

itSelf: b ∈ bundles SP =⇒ b ∈ extendByAnalz SP b;

| Add Decrypt: [[b’ ∈ extendByAnalz SP b;

Is K strand SP ks; (ks,0) /∈ (nodes b’);

Is D strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’); (s,2) /∈ (nodes b’);

(ks,0) → SP (s,0); n ∈ nodes b’; n → SP (s,1)]]
=⇒ extendGraphByAdd1 (extendGraphByAdd2 b’ ks)

s (ks,0) n ∈ extendByAnalz SP b

| Add SepOrTee: [[b’ ∈ extendByAnalz SP b;

Is Sep strand SP s ∨ Is Tee strand SP s;

(node sign SP n) = +; n ∈ (nodes b’);

n → SP (s,0); (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’); (s,2) /∈ (nodes b’)]]
=⇒ extendGraphByAdd3 b’ s n ∈ extendByAnalz SP b

78 Y. Li and J. Pang

inductive set extendBySynth:: strand space ⇒ graph ⇒ graph set

for SP::strand space and b::graph where

itSelf: b ∈ bundles SP =⇒ b ∈ extendBySynth SP b

| Add Encrypt: [[b’ ∈ extendBySynth SP b;

Is K strand SP ks; (ks,0) /∈ (nodes b’);

Is E strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’);(s,2) /∈ (nodes b’);

(ks,0) → SP (s,0); n ∈ nodes b’; n → SP (s,1)]]
=⇒ extendGraphByAdd1 (extendGraphByAdd2 b’ ks)

s (ks,0) n ∈ extendBySynth SP b

| Add Cat: [[b’ ∈ extendBySynth SP b;

Is Cat strand SP s; (s,0) /∈ (nodes b’);

(s,1) /∈ (nodes b’);(s,2) /∈ (nodes b’);

n ∈ nodes b’; n → SP (s,0); n’ ∈ nodes b’;

n’ → SP (s,1); n �= n’

]] =⇒ extendGraphByAdd1 b’ s (ks,0) n ∈ extendBySynth SP b

| Add Tee: [[b’ ∈ extendBySynth SP b;

Is Tee strand SP s; (node sign SP n) = +;

n ∈ (nodes b’); n → SP (s,0);

(s,0) /∈ (nodes b’); (s,1) /∈ (nodes b’);

(s,2) /∈ (nodes b’)]] =⇒ extendGraphByAdd3 b’ s n ∈ extendBySynth SP b

3 Message Reinterpretation and Observational
Equivalence on Bundles

We give a definition of message mapping from terms of a node set in a strand
space to those of nodes in another strand space as follows:

mapping:: strand space ⇒ strand space ⇒ (node set) ⇒ (msgPair set)

where mapping SP SP’ NodeSet

≡ {p. ∃n. n∈ NodeSet ∧ p= (term SP n, term SP’ n)}

Then we can naturally derive a definition from messages of a node set of
a bundle in a strand space to those in another strand space. A session which
is modeled by a bundle b in a strand space SP , is said to be reinterpreted to
another which is modeled by b in another strand space SP →, if the following
conditions hold:

– Let r = mapping SP SP → (nodes b), single valued r guarantees that an agent
cannot reinterpret any message differently.

– The casual relation of b in strand space SP is the same as that of b in SP →.
– For a message pair (m,m→) ⇒ r, if m is an atomic message, then m = m→. This

means that an agent can uniquely identify a plain-text message he observes.
An agent can only reinterpret the encrypted messages.

A Strand Space Approach to Provable Anonymity 79

The corresponding formalization of Reinterp in Isabelle/HOL is given below.
Reinterp::graph ⇒ strand space ⇒ strand space ⇒ bool where

Reinterp b SP SP’ ≡
let r= mapping SP SP’ (nodes b) in

single valued r ∧
(∀ n1 n2. (n1 → SP n2) −→ (n1 → SP’ n2)) ∧
(∀ n1 n2. (n1 ⇒ SP n2) −→ (n1 ⇒ SP’ n2)) ∧
(∀ n. n ∈ nodes b

−→ ofAgent SP (strand n)= ofAgent SP’ (strand n)) ∧
(∀ m m’. Is atom m −→ (m,m’) ∈ r −→ m = m’)

Next lemma says that b is also a bundle in SP → if b is a bundle in SP and
Reinterp b SP SP →.

Lemma 2. [[Reinterp b SP SP →; b ⇒ bundles SP]]=→ b ⇒ bundles SP →

With the concepts of reinterpretation and the extensions of bundles, we can
formalize the definition of observational equivalence between sessions as follows:

obsEquiv::graph ⇒ strand space ⇒ strand space ⇒ bool where

obsEquiv b SP SP’ ≡
∀ b’ b’’. b’ ∈ (extendByAnalz SP b) −→
b’’ ∈ (extendBySynth SP b’)−→
(b’ ∈ extendByAnalz SP’ b ∧
b’’ ∈ extendBySynth SP’ b’ ∧ Reinterp b’ SP SP’)

This definition obsEquiv means that for any extension b→ of the bundle b,
the reinterpretation relation will be kept between the two sessions which are
modelled by b→ in strand space SP and SP → respectively.

Remark 1. The intuition behind the above definition is that messages in two
sessions look the same to an agent if they are the same for the messages the
agent understands and if a message in one sequence looks like a random bit-
string to the agent, then the corresponding message in the other sequence also
looks like a random bit-string. In detail,

1. For a plain-text, if the agent observes it in an action of a session, then he
should observe the exact same message in the corresponding action of the
other session.

2. A message looks like a random bit-string if the decryption key is not possessed
by the agent. Then the corresponding message should also be like a random
bit-string, which means that it is also a message encrypted by a key whose
inverse key is not possessed by the observer.

3. The reinterpretation should be preserved by the synthesizing and analyzing
operations on the observed messages. In the strand space theory, these opera-
tions are modelled by the penetrator strands, thus the preservation is checked
by comparing the corresponding messages mapping from an extended session
to another extended session which are extended by the same similar penetra-
tor strand.

80 Y. Li and J. Pang

In the work of Garcia et al. [3], a reinterpretation function between two mes-
sage sequences is used as a underlining concept. In our work, the single-valued
requirement of the message mapping between two bundles gives a sufficient con-
dition for the existence of a reinterpretation function. Moreover, the bundle
extensions give a mechanical way to derive the reinterpretation function.

4 Anonymity Properties

Using the observational equivalence relations over a set of possible observation
equivalent bundles, we can formally introduce epistemic operators [3] as follows:

diamond :: graph ⇒ strand space set⇒ strand space

⇒ assertONBundle ⇒ bool where

diamond b SPS SP Assert ≡ ∃ SP’. SP’ ∈ SPS

∧ ((obsEquiv b SP SP’) ∧ Assert b SP’)

box :: graph ⇒ strand space set ⇒ strand space

⇒ assertONBundle ⇒ bool where

box b SPS SP Assert ≡
∀ SP’ ∈ SPS. (obsEquiv b SP SP’) −→ (Assert b SP’)

Intuitively, b |= � bs ϕ means that for any bundle b→ in bs, if b→ is obser-
vationally equivalent to b, then b→ satisfies the assertion ϕ. On the other hand,
b |= ♦ trs ϕ means that there is a bundle b→ in trs, b→ is observationally equiva-
lent to b and b→ satisfies the assertion ϕ. Now we can formulate some information
hiding properties in our epistemic language. We use the standard notion of an
anonymity set: it is a collection of agents among which a given agent is not
identifiable. The larger this set is, the more anonymous an agent is.

Suppose that b is a bundle of a protocol in which a message m is originated
by some agent. We say that b provides sender anonymity w.r.t. the anonymity
set AS and a set of possible runs if it satisfies:

origInBundle::agent ⇒ msg ⇒ graph ⇒ strand space ⇒ bool where

origInBundle A g b SP ≡
∃ n. n ∈ nodes b ∧ originate SP g n

senderAnonymity::agent set ⇒ msg ⇒ graph

⇒ strand space set⇒ strand space ⇒ bool where

senderAnonymity AS g b SPS SP ≡
(∀ X. X:AS −→ diamond b SPS SP (origInBundle X g))

Here, AS is the set of agents who are under consideration, and SPS is the set
of all the strand spaces where b represents a protocol session. Intuitively, this
definition means that each agent in AS can originate g in a session which is
represented by b in SP . Therefore, this means that B cannot be sure of anyone
who originates this message in the session.

A Strand Space Approach to Provable Anonymity 81

5 A Case Study: Onion Routing

Onion Routing [24,25] provides both sender and receiver anonymity for com-
munication over the Internet and servers as the basis of the Tor network [27].
Its main idea is based on Chaum’s mix cascades [28] that messages in Onion
Routing have a layered encryption (thus called onions) and travel from source
to destination via a sequence of proxies (called onion routers). Each onion
router can decrypt (or peel) one layer of a received message and forward the
remainder to the next onion router. To disguise the relations between incoming
and outgoing messages, an onion router collect incoming messages until it has
received k messages, permutes the messages and sends in batch to their intended
receivers.

5.1 Modeling Onion Routing

We model a simplified version of Onion Routing with only one onion router
as done in [3]. We assume a set of users AS and one router M , with M /⇒
AS. We also assume that each agent can send a message before the router
M launches a batch of forwarding process, and the router does not accept
any message when it is forwarding. We define its initiator and receiver and
router strands. For instance, we define the two kinds of an initiator strands as
follows:

is initiator1::strand space ⇒ sigma ⇒ agent ⇒ agent ⇒ nat

⇒ nat ⇒ bool where

is initiator1 SP s M Y N0 N ≡
(SP s)=[(+, (Crypt (pubEK M) {|(Nonce N0),(Agent Y),

Crypt (pubEK Y) (Nonce N)|}))]
∧uniqOrig (Nonce N) (s,0)

∧uniqOrig (Nonce N0) (s,0)

is initiator2::strand space ⇒ sigma ⇒ agent ⇒ nat ⇒ bool where

is initiator2 SP s M N ≡
(SP s)=[(+, Crypt (pubEK M) (Nonce N))]

∧uniqOrig (Nonce N) (s,0)

Next we define the strands in a strand space of onion protocol to be the union
of the above kinds strands and penetrator strands.

onionStrandSpec:: agent ⇒ strand space ⇒ bool where

onionStrandSpec M SP≡
∀ s. (Is penetrator strand SP s ∨
(∃ Y N0 N. is initiator1 SP s M Y N0 N) ∨
(∃ N. is initiator2 SP s M N) ∨
(∃ k. is router SP s M k ∧ (ofAgent SP s=M)) ∨
(∃ Y N. is recv SP s Y N)

onionStrandSpaces::agent ⇒ strand space set where

onionStrandSpaces M≡={SP. onionStrandSpec M SP}

82 Y. Li and J. Pang

5.2 An Overview of our Proof Strategy

In the following sections, we will formalize and prove the anonymity properties
of Onion Routing. Due to the complexity of the epistemic operators in property
definitions, the proof is rather envolved. We give an overview of our formalization
and the main proof steps.

We will formalize the sender anonymity of Onion Routing in the view of a
Spy for a session w.r.t. a set of honest agents and all possible equivalent bun-
dles. Consider a session, which is modelled by a bundle b in a strand space SP ,
according to the definitions of epistemic operators, which are used in the defini-
tion of sender anonymity, we need to construct another strand space SP → which
satisfies the following two conditions:

(1) SP → is still an Onion routing strand space.
(2) b in strand space SP is observationally equivalent to b in SP →. That is

to say, obsEquiv b SP SP →. In order to show this, by the definition of
obsEquiv, we need to prove that for any bundle b→ ⇒ extendByAnalz SP b,
b→→ ⇒ extendBySynth SP → b→ and Reinterp b→→ SP SP →.

Whether two sessions are observationally equivalent for a protocol depends on
the knowledge of the intruder after his observation of the two sessions. Therefore,
we need to discuss some secrecy upon on the intruder’s knowledge. We introduce
a new predicate:

nonLeakMsg g M ≡ ∀ B N0 N.(g = (Crypt (pubK M)
{| Nonce N0,Agent B,Crypt (pubK B)(Nonce N) |})) −∧ (B /⇒ bad ≈ N0 �= N)

Formally, nonLeakMsg m M specifies that if a message m has the form of
Crypt (pubK M) {| Nonce N0,Agent B,Crypt (pubK B)(Nonce N) |}, then either
B /⇒ bad or N0 �= N . This specifies a non-leakage condition of nonce part N0

in a message of the aforementioned form which is sent to the router even if its
nonce part N is forwarded to the intruder.

5.3 Message Swapping

In this section, we present a method for the construction of an observationally
equivalent session.

The swap Function. We define a function swapMsg g h msg, which swaps
g with h if either g or h occurs in msg. Then we extend the swap operation
naturally to events (applying to the message field of an event) and to strand
space (applying to the message field of every event in a strand).

A Strand Space Approach to Provable Anonymity 83

primrec swapMsg::msg ⇒ msg ⇒ msg ⇒ msg where

swapMsg g h (Nonce na) =

(if (g=(Nonce na)) then h else if (h=(Nonce na))

then g else (Nonce na)) |

swapMsg g h (Agent A) =

(if (g=(Agent A)) then h else if (h=(Agent A))

then g else (Agent A)) |

swapMsg g h (Crypt K m) =

(if (g= (Crypt K m)) then h else if (h= (Crypt K m))

then g else (Crypt K (swapMsg g h m)))

swapSignMsg::msg ⇒ msg ⇒ (Sign × msg) ⇒ (Sign × msg) where

swapSignMsg g h sMsg ≡ (fst sMsg, swapMsg g h (snd sMsg))

definition swapStrandSpace::msg ⇒ msg ⇒ strand space ⇒ strand space

where swapStrandSpace g h SP ≡(%s. if ((Is D strand SP s)

∧ (node term SP (s,1)=g ∨ node term SP (s,1)=h))

then [(-,node term SP (s,0)),

(-,swapMsg g h (node term SP (s,1))),

(+,plainTxt (swapMsg g h (node term SP (s,1))))]

else if ((Is E strand SP s)

∧ (node term SP (s,2)=g ∨ node term SP (s,2)=h))

then [(-,node term SP (s,0)),

(-,plainTxt (swapMsg g h (node term SP (s,2)))),

(+,swapMsg g h (node term SP (s,2)))]

else (map (swapSignMsg g h) (SP s)))

Here plainTxt g is a function which returns the plain text of g which is of an
encrypted form. E.g., plainTxt {| Nonce N |}pubK Y = Nonce N . We emphasize
that g and h are two messages of encrypted form when we use the definition
swapStrandSpace g h SP in this work.

In strand space SP , if message g(h) is uniquely originated in node n(n→), g(h)
is not a subterm of h(g), n(n→) is in Domain SP , then g(h) is uniquely originated
in node n→(n). Here we also assume that g(h) is an encrypted message.

Lemma 3. [[uniqOrig SP g n; ¬g ♦ h; ¬h ♦ g; uniqOrig SP h n→; ofEncryptForm
g; ofEncryptForm h; n ⇒ Domain SP ; n→ ⇒ Domain SP]]
=→ uniqOrig (swapStrandSpace g h SP) g n→

swap g h SP is an Onion Strand Space. This is stated as a lemma below.

Lemma 4. [[SP ⇒ onionStrandSpaces M ; term SP (s, 0) = g; term SP (s→, 0) =
h; is initiator M SP s g; is initiator M SP s→ h]]
=→ (swapStrandSpace g h SP) ⇒ onionStrandSpaces,
where is initiator M SP s g ≡ (∃Y N0 N. is initiator1 M SP s Y N0 N ⊆ g =
Crypt (pubK M){| Nonce N0,Agent B,Crypt (pubK B) (Nonce N) |})≈
(∃N. is initiator2 SP s M N ⊆ g = Crypt (pubEK M) (Nonce N).

84 Y. Li and J. Pang

Alignment Properties. Now we first define a predicate, initBundle SP b ≡
b ⇒ bundles SP ⊆ (∀s.(∃i.(s, i) ⇒ nodes b) −∧ is regular strand SP s≈Tee SP s).
We can show that the relation, r = mapping SP SP → nodes b, which is composed
of the corresponding message pairs of two sessions, which are modelled by b in
SP and b in swapStrandSpace g h SP respectively, is single valued. Here we also
assume that initBundle SP b.

Lemma 5. [[b ⇒ bundles SP ; SP ⇒ onionStrandSpaces M ; term SP (s, 0) = g;
term SP (s→, 0) = h; is initiator M SP s g; is initiator M SP s→ h; initBundle
SP b; SP → = swapStrandSpace g h SP ; r = mapping SP SP → (nodes b)]]
=→ Reinterp b SP SP →

After applying analyzing operations pairwise on b, we can extend b to b→, let
SP → = (swapStrandSpace g h SP), then we also have b→→ ⇒ extendsByAnalz b→SP →

and Reinterp b→→ SP SP →. After applying synthesizing operations pairwise on the
b→ in Lemma 5, we obtain another bundle b→→, let r = mapping SP SP → nodes b→, if
M is not in bad, and both nonLeakMsg g M and nonLeakMsg h M , then we also
have b→→ ⇒ extendsBySynth b→(swapStrandSpace g h SP) and Reinterp b→→ SP SP →.

Observational Equivalence Between b and swap g h b. Next we show
that b in SP is observationally equivalent to b in swap g h SP if the following
constraints are satisfied: g = {| Nonce n0,Agent Y, {|Nonce n |}pubK Y |}pubK M , g
is sent to the router, and h is also sent to the router M , and both g and h satisfy
the nonLeakMsg conditions.

Lemma 6. [[SP ⇒ onionStrandSpaces M ; b ⇒ bundles SP ; initBundle SP b;
g = Crypt (pubEK M){| (Nonce N0), (Agent Y), (Crypt (pubEK Y) (Nonce N)) |};
term SP n = g; n ⇒ nodes b; term SP n→ = h; n→ ⇒ nodes b; M /⇒ bad;
nonLeakMsg g M ; nonLeakMsg h M ; is initiator M SP (strand n) g; is initiator M
SP (strand n→) h]] =→ obsEquiv b SP (swap g h SP).

5.4 Proving Anonymity Properties

Let us give two preliminary definitions: the senders in a bundle, and a predicate
nonLeakBundle b M specifying that b is a bundle where each honest agent sends
a message m which satisfies nonLeakMsg m b.

sendersInBundle::strand space ⇒ graph ⇒ agent set

where sendersInBundle SP b ≡
{A.∃ s. ofAgent SP s= A ∧ (s,0) ∈ nodes b

((∃ Y n0 n. is initiator1 SP s M Y n0 n) ∨
(∃ n. is initiator2 SP s M n))}

nonLeakBundle::strand space ⇒ graph⇒ agent⇒bool

where nonLeakBundle SP b M ≡
∀ g n n’. ((n → SP n’) ∧ n’ ∈ nodes b ∧
ofAgent SP (strand n) /∈ bad) −→ nonLeakMsg g M

A Strand Space Approach to Provable Anonymity 85

Message g is forwarded to B by the router M , and is originated by some
honest agent, and the bundle in SP satisfies nonLeakBundle SP b M , then the
honest agent who originates g cannot be observed. Namely, the sender anonymity
holds for the intruder w.r.t. the honest agents who send messages to M in the
session modeled by b. This is summarized by the following theorem.

Theorem 1. [[SP ⇒ onionStrandSpaces M ; b ⇒ bundles SP ; g = Crypt (pubEK
B) (Nonce N); n ⇒ nodes b; sign SP n = − ; regularOrig (Nonce N) b SP ;
term SP n = g; nonLeakBundle SP b M ; M /⇒ bad]] =→ senderAnonymity
(sendersInBundle SP b − bad) (Nonce N) b (onionStrandSpaces M) SP .

6 Conclusion and Future Work

We presented a strand space approach to provable anonymity and formally imple-
mented it in the theorem prover Isabelle/HOL. In order to do this, we extended
the classical strand space theory. We built the concept of a protocol session based
on the notion of “bundle” in a strand space. In the classical strand space theory,
secrecy and authentication are studied by focusing individual sessions. However,
two protocol sessions are needed in order to decide observational equivalence
according to the adversary’s knowledge obtained in the two separate sessions –
in our extended strand space theory, they are represented by a similar bundle
in two different strand spaces. Moreover, an observer needs to compare corre-
sponding messages to decide the equivalence of two sessions based on his knowl-
edge. In the strand space theory, knowledge deduction actions are represented
by penetrator strands. Therefore, we proposed two kinds of bundle extensions:
analyzing and synthesizing extensions, which improve the deduction ability of an
observer. In the end, we proposed a natural definition on reinterpretation rela-
tion between two sessions. Essentially, the two compared sessions should have the
same topological relation, and the message mapping of the two sessions should
be single-valued. Combining reinterpretation relation and bundle extensions, we
arrived at the key concept of observational equivalence between sessions. Based
on this, we defined the semantics of anonymity properties in an epistemic frame-
work and formally proved sender anonymity for the Onion Routing protocol. In
the future, we plan to extend the whole theory to active intruders in the style
of Dolev-Yao [26], and perform more case studies.

Acknowledgments. The first author, Yongjian Li, was supported by a grant 61170073
from the National Natural Science Foundation of China.

References

1. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H.,
Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.
Springer, Heidelberg (1996)

86 Y. Li and J. Pang

2. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular
approach. J. Comput. Secur. 12(1), 3–36 (2004)

3. Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable anonymity. In:
Proceedings of the 3rd Workshop on Formal Methods in Security Engineering, pp.
63–72. ACM (2005)

4. Chothia, T., Orzan, S., Pang, J., Torabi Dashti, M.: A Framework for automatically
checking anonymity with µ CRL. In: Montanari, U., Sannella, D., Bruni, R. (eds.)
TGC 2006. LNCS, vol. 4661, pp. 301–318. Springer, Heidelberg (2007)

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.D.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proceedings of the 23rd IEEE Com-
puter Security Foundations Symposium, pp. 107–121. IEEE CS (2010)

6. Shmatikov, V.: Probabilistic model checking of an anonymity system. J. Comput.
Secur. 12(3/4), 355–377 (2004)

7. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. J. Comput. Secur. 13(3), 483–514 (2005)

8. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro,
L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg
(2005)

9. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proceedings
of the 3rd Workshop on Security Issues in Concurrency, vol. 180 of ENTCS, pp.
55–76 (2007)

10. Chen, X., Pang, J.: Measuring query privacy in location-based services. In: Pro-
ceedings of the 2nd ACM Conference on Data and Application Security and Pri-
vacy, pp. 49–60. ACM Press (2012)

11. Chen, X., Pang, J.: Protecting query privacy in location-based services. GeoInfor-
matica (2013, To appear)

12. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

13. Jonker, H.L., Mauw, S., Pang, J.: A formal framework for quantifying voter-
controlled privacy. J. Algorithm Cogn. Inf. Logic 64(2–3), 89–105 (2009)

14. Luo, Z., Cai, X., Pang, J., Deng, Y.: Analyzing an electronic cash protocol using
applied pi calculus. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
87–103. Springer, Heidelberg (2007)

15. Yan, L., Sere, K., Zhou, X., Pang, J.: Towards an integrated architecture for peer-
to-peer and ad hoc overlay network applications. In: Proceedings of the 10th Work-
shop on Future Trends in Distributed Computing Systems, pp. 312–318. IEEE CS
(2004)

16. Chothia, T.: Analysing the MUTE anonymous file-sharing system using the pi-
calculus. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE
2006. LNCS, vol. 4229, pp. 115–130. Springer, Heidelberg (2006)

17. Dong, N., Jonker, H., Pang, J.: Formal analysis of privacy in an eHealth protocol.
In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459,
pp. 325–342. Springer, Heidelberg (2012)

18. Kawabe, Y., Mano, K., Sakurada, H., Tsukada, Y.: Theorem-proving anonymity
of infinite state systems. Inform. Process. Lett. 101(1), 46–51 (2007)

19. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

20. Li, Y., Pang, J.: An inductive approach to provable anonymity. In: Proceedings of
the 6th Conference on Availability, Reliability and Security, pp. 454–459. IEEE CS
(2011)

A Strand Space Approach to Provable Anonymity 87

21. Javier Thayer, F., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security
protocol correct? In: Proceedings of the 19th IEEE Symposium on Security and
Privacy, pp. 96–109. IEEE CS (1998)

22. Thayer, J.F., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999)

23. Li, Y., Pang, J.: An inductive approach to strand spaces. Formal Aspects Comput.
25(4), 465–501 (2013)

24. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) Information Hiding. LNCS, vol. 1774, pp. 137–150. Springer,
Heidelberg (1996)

25. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Proceedings of the 18th IEEE Symposium on Security and Privacy,
pp. 44–54. IEEE (1997)

26. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(12), 198–208 (1983)

27. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320
(2004)

28. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

Counterexample Generation
for Hybrid Automata

Johanna Nellen1, Erika Ábrahám1(B), Xin Chen1, and Pieter Collins2

1 RWTH Aachen University, Aachen, Germany
{johanna.nellen,abraham}@cs.rwth-aachen.de,

pieter.collins@maastrichtuniversity.nl
2 Maastricht University, Maastricht, The Netherlands

Abstract. The last decade brought us a whole range of over-approxima-
tive algorithms for the reachability analysis of hybrid automata, a widely
used modeling language for systems with combined discrete-continuous
behavior. Besides theoretical results, there are also some tools available
for proving safety in the continuous time domain. However, if a given
set of critical states is found to be reachable, these tools do not provide
counterexamples for models beyond timed automata.

This paper investigates the question whether and how available tools
can be used to generate counterexamples, even if this functionality is
not directly supported. Using the tools SpaceEx and Flow*, we discuss
possibilities to solve our task with and without modifying the tools’
source code, report on the effort and the efficiency of implementation, and
propose a simulation-based approach for the validation of the resulting
(possibly spurious) counterexamples.

1 Introduction

Hybrid systems are systems that exhibit both continuous and discrete behavior.
Typical examples are physical systems regulated by discrete controllers, e.g.,
automotive control systems or controlled chemical plants. Hybrid systems are
often modeled as hybrid automata [1], for which the reachability problem is unde-
cidable. Despite undecidability and driven by the fact that most hybrid systems
in industrial context are safety-critical, a lot of effort was put into the devel-
opment of reachability analysis techniques for hybrid automata. State-of-the-art
tools like SpaceEx [2] and Flow* [3] try to compute an over-approximation of
the reachable state space and can therefore be used to prove safety, i.e., that
a given set of unsafe states cannot be reached from a set of initial states in a
given model. However, if the over-approximation of the reachable states contains
unsafe states then no conclusive answer can be given.

The original publication is available at http://www.springerlink.com.
This work is supported by the DFG research training group AlgoSyn and the DFG
research project HyPro.

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 88–106, 2014.
DOI: 10.1007/978-3-319-05416-2 7, c© Springer International Publishing Switzerland 2014

http://www.springerlink.com

Counterexample Generation for Hybrid Automata 89

Counterexamples in form of system runs leading to unsafe states would be
extremely valuable, even if they are spurious, i.e., if they were considered in the
analysis but are not possible in the given model. For safe models they could
help to reduce the approximation error in the analysis efficiently, whereas for
unsafe models they could provide important information about the source of
the critical system behavior. Counterexamples would enable the application of
counterexample-guided abstraction refinement (CEGAR) techniques and could
also play an important role in controller synthesis.

Unfortunately, none of the available tools for hybrid automata reachability
analysis with continuous time domain computes counterexamples. It is surprising
since internally they possess sufficient information to generate at least a coarse
over-approximation of a counterexample in form of a sequence of jumps (i.e.,
changes in the discrete part of the system state), augmented with time intervals
over-approximating the time durations between the jumps. In this paper we

1. examine whether it is possible to either use augmented system models or to
extract information from the output of the SpaceEx tool such that we can
synthesize over-approximations of counterexamples;

2. study how the efficiency can be improved by extending the functionality of
the Flow* tool internally, i.e., by making modifications to the source code;

3. develop a simulation-based approach to validate the counterexample over-
approximations, i.e., to determine unsafe paths in the over-approximation.

We have chosen SpaceEx and Flow* for our experiments because on the one
hand SpaceEx is one of the most popular hybrid automata reachability analysis
tools and on the other hand some of the authors belong to the implementation
team of Flow*, i.e., the modification of the source code of Flow* could be
done safely. Unfortunately, counterexample generation without tool extension is
unsatisfactory: we need either expensive additional analysis runs for enlarged
systems or parsing hidden information from debug output. The results demon-
strate the need to extend the functionality of available analysis tools to gener-
ate counterexamples internally. However, even if that task is done, the results
strongly over-approximate counterexamples, whose existence can be indicated
but not proven. Thus we need novel methods to refine and validate the results,
posing highly challenging problems in both theory and practice.

Related Work. In this paper we focus on reachability analysis techniques
for continuous-time hybrid automata that apply a fixed-point-based forward-
reachability iteration [1]. Such algorithms need two main ingredients: (a) A
technique to represent state sets and to compute certain operations on them like
union, intersection, Minkowski sum, etc. All the available tools work with over-
approximative representations and computations. Popular approaches use either
geometric objects like hyperrectangles [4], polyhedra [5–9], zonotopes [10,11],
orthogonal polyhedra [12] or ellipsoids [13], or symbolic representations like sup-
port functions [14,15] or Taylor models [16,17]. The choice of the representation
is crucial, as it strongly influences the approximation error and the efficiency
of the computations. (b) A method to compute one-step-successors of state sets

90 J. Nellen et al.

both for continuous flow and discrete jumps. A flowpipe is an over-approximation
of the states that are reachable from a given initial set of states by letting time
progress within a certain maximal time horizon. To compute a flowpipe, the
maximal time horizon is often divided into smaller intervals and the flowpipe is
represented as a (finite) union of state sets (flowpipe segments), each covering
one of the smaller intervals [5].

The analysis tools HyTech [6], PHAVer [7] and the Multi-Parametric Tool-
box [8] use convex polyhedra for the over-approximative representation of state
sets, SpaceEx [2] additionally allows the usage of support functions. In [18], the
state sets are over-approximated by level sets. The tool d/dt [19] uses grid paving
as over-approximations. MATISSE [20] over-approximates state sets by zono-
topes. The MATLAB Ellipsoidal Toolbox [21] supports the over-approximative
representation of sets by ellipsoids, Flow* by Taylor models. In Ariadne [22],
the state sets may be over-approximated by Taylor models or grid pavings. In
contrast to the other tools, Flow*, HyTech, PHAVer, Ariadne and d/dt also
support the analysis of non-linear hybrid automata (with non-linear differential
equations).

None of these tools supports the generation of counterexamples. There are
some works [23,24] related to counterexample generation for hybrid systems, but
they are mostly devoted to CEGAR approaches for restricted classes of hybrid
automata like, e.g., (initialized) rectangular automata.

Outline. After some preliminaries in Sect. 2, we describe in the Sects. 3 and 4
how we can compute over-approximations of counterexamples for unsafe models,
whose validation is discussed in Sect. 5. Section 6 concludes the paper.

2 Preliminaries

Fig. 1. The thermostat example

By N, Z and R we denote the set of all nat-
ural (with 0), integer and real numbers, respec-
tively, by R→0 the non-negative reals, and use
N>0 = N\{0}. For some n → N>0, let V ar =
{x1, . . ., xn} be an ordered set of variables over
R. We use the notation x = (x1, . . ., xn), and
denote by V ar ∗ and ˙V ar the renamed vari-
able sets {x∗

1, . . ., x
∗
n} and {ẋ1, . . ., ẋn}, respec-

tively. Given a real-arithmetic formula φ over
V ar, its satisfaction set is �φ� = {v →
R

n | φ[v/x] = true}; we call φ convex if �φ� is convex. Let Φ(V ar) be the set of all
quantifier-free convex real-arithmetic formulas (so-called predicates) over V ar. A
predicate is linear if it can be expressed in linear real arithmetic.

Definition 1 (Syntax of Hybrid Automata). A hybrid automaton (HA) is
a tuple H = (Loc, V ar,Edge,Dyn, Inv, Init) with the following components:

– Loc is a finite set of locations or modes.

Counterexample Generation for Hybrid Automata 91

– V ar = {x1, . . ., xn} is a finite ordered set of variables over R. A valuation
v = (v1, . . ., vn) → R

n defines for each i = 1, . . ., n the value vi for xi. A state
is a mode-valuation pair σ = (l, v) → Loc × R

n = Σ.
– Edge ⊆ Loc × Φ(V ar ⇒ V ar ∗) × Loc is a finite set of edges. For an edge

e = (l, φ, l∗) → Edge we call l (l∗) the source (target) mode of e and φ its
transition relation.

– Dyn : Loc ∗ Φ(V ar ⇒ ˙V ar) assigns a dynamics to each mode.
– Inv : Loc ∗ Φ(V ar) assigns an invariant to each mode.
– Init : Loc ∗ Φ(V ar) specifies the initial valuations for each mode.

Since we do not use the parallel composition of hybrid automata in this paper,
for simplicity we skipped composition-relevant parts in the above definition.

A toy example of a thermostat is depicted graphically in Fig. 1. The rectan-
gles represent modes; their names, dynamics and invariants are specified inside
the rectangle. Initial valuations are specified on an incoming edge of a given
mode without a source mode; a missing incoming edge stays for the initial con-
dition false. Figure 2 shows the navigation benchmark [25], used later for exper-
iments. It models an object moving in the R

2 plane. The velocity (v1, v2) of the
object depends on its position (x1, x2) in a grid. For some experiments we add
a parameter ε to the navigation benchmark to enlarge the satisfaction sets of
guards and invariants by replacing all upper bounds ub (lower bounds lb) by
ub + ε (lb − ε).

Definition 2 (Semantics of Hybrid Automata). The operational semantics
of a HA H = (Loc, V ar,Edge,Dyn, Inv, Init) with V ar = {x1, . . ., xn} is given by
the rules of Fig. 3. The first rule specifies time evolution (time steps), the second
one discrete mode changes (jumps).

Let ∗=
⋃

t≤R∈0

t∗ ⇒⋃
e≤Edge

e∗. A path of H is a (finite or infinite)
sequence (l0, v0) ∗ (l1, v1) ∗ For an initial path we additionally require
v0 → �Init(l0)�. A state (l, v) → Σ is called reachable in H if there is an initial
path (l0, v0) ∗ (l1, v1) ∗ . . . of H and an index i ⊆ 0 such that (li, vi) = (l, v).

Please note that each reachable state (l, v) of H can be reached via an initial

path of H of the form (l0, v0)
t0∗ (l0, v∗

0)
e0∗ . . .(ln−1, vn−1)

tn−1∗ (ln−1, v
∗
n−1)

en−1∗
(ln, vn) tn∗ (ln, v∗

n) = (l, v) with alternating time steps and jumps for some n → N.
In the following we consider only paths of this form.

A trace e0, e1, . . . describes a sequence of jumps with ei → Edge such that the
target mode of ei equals the source mode of ei+1 for all i → N. If we can assume
that there is at most one jump between each mode pair, we also identify traces
by the sequence l0, l1, . . . of modes visited. Such a trace represents the set of all

paths (l0, v0)
t∧∧
0∗ (l0, v∗

0)
e0∗ (l1, v1)

t∧∧
1∗ (l1, v∗

1)
e1∗ We say that those paths are

contained in the symbolic path.
A timed trace e0, [t0, t∗0], e1, [t1, t

∗
1], . . . annotates a trace e0, e1, . . . with time

intervals and represents the set of all paths (l0, v0)
t∧∧
0∗ (l0, v∗

0)
e0∗ (l1, v1)

t∧∧
1∗

(l1, v∗
1)

e1∗ . . . with t∗∗i → [ti, t∗i] for all i → N. We say that e0, [t0, t∗0], e1, [t1, t
∗
1], . . .

is a timed trace of the represented paths, which are contained in the timed trace.

92 J. Nellen et al.

Fig. 2. The navigation benchmark

Fig. 3. Operational semantics rules for hybrid automata

Given a HA H and a set B of unsafe states of H, the reachability problem
poses the question whether the intersection of B with the reachable state set
of H is empty, i.e., whether H is safe. If H is unsafe, a counterexample is an
initial path of H leading to an unsafe state from B. For models with weaker
expressivity, for example hybrid automata defined by linear predicates and con-
stant derivatives (i.e., dynamics of the form

∧
x≤V ar ẋ = cx with cx → Z for all

x → V ar), the bounded reachability problem is decidable and, for unsafe models,
counterexamples can be generated (e.g., by bounded model checking using SMT
solving with exact arithmetic). However, the computation of counterexamples
for general hybrid automata is hard. Theoretically, it could be done by (incom-

Counterexample Generation for Hybrid Automata 93

plete) under-approximative reachability computations, but currently there are
no techniques available for this task.

We propose an approach to generate and refine presumable counterexam-
ples, which are timed traces that might contain a counterexample; presumable
counterexamples that do not contain any counterexample are called spurious.

3 Generating Traces for Presumable Counterexamples

Existing hybrid automata analysis tools like SpaceEx offer as output options either
the computedover-approximation of the reachable state space, its intersectionwith
the unsafe states, or just the answer whether unsafe states are reachable or not (in
the over-approximation). However, in contrast to tools for discrete automata, none
of the tools for hybrid automata provides counterexamples.

In this section we show how a trace explaining the reachability of unsafe
states can be computed. We present three different approaches: The first app-
roach augments hybrid automata with auxiliary variables to make observations
about the computation history of the analysis. The second approach can be
used if the analysis tool outputs sufficient information about the paths that
have been processed during the analysis. The third approach suggests to imple-
ment some new functionalities efficiently in existing tools. In our experiments we
used SpaceEx v0.9.7c, VMware server, and the latest Flow* version but with
the proposed extensions.

3.1 Approach I: Model Augmentation

We extend the model with new variables to make book-keeping about traces
that lead to unsafe states in the reachability analysis. First we augment the
model and analyze the augmented system to observe the number of jumps until
an unsafe state is reached. Then we augment and analyze an unrolled model to
observe unsafe traces.

Determining the Counterexample Length. We augment the model and analyze
it to gain information about the length of paths leading to unsafe states. We
introduce a counter tr with initial value 0, define ṫr=0 in each mode, and let
each jump increase the counter value by one.

However, the unboundedness of tr would render the fixed-point analysis to
be non-terminating. To bound tr from above, we define a constant maxtr and
either extend the invariants or the edge guards to forbid higher values.

The value of maxtr should be guessed, and in case the analysis of the aug-
mented model reports safety, increased. A possible guess could be the number of
iterations during the fixed-point analysis of the original model, which is reported
by SpaceEx and specifies how many times the tool computed a (time+jump) suc-
cessor of a state set. To get a smaller value (and thus shorter counterexamples
with less computational effort), the reachability analysis could be stopped when
an unsafe state is reached. Unfortunately, SpaceEx does not offer this option.

94 J. Nellen et al.

Fig. 4. The guard (left) and the invariant (right) augmentation of the thermostat model

Definition 3. (Guard and Invariant Augmentation). Let H = (Loc, V ar,
Edge, Dyn, Inv, Init) be a HA and maxtr → N. The guard augmentation of H is
the HA Hguard = (Loc, V ar ⇒ {tr},Edge∗,Dyn∗, Inv, Init ∗) with

– Edge∗ = {(l, (φ ∧ tr ∨ maxtr − 1 ∧ tr∗=tr+1), l∗) | (l, φ, l∗) → Edge};
– Dyn∗(l) = (Dyn(l) ∧ ṫr=0) for each l → Loc;
– Init ∗(l) = (Init(l) ∧ tr=0) for each l → Loc.

The invariant augmentation of H is the HA Hinv = (Loc, V ar ⇒ {tr},Edge∗∗,
Dyn∗, Inv ∗∗, Init ∗) with Dyn∗ and Init ∗ as above and

– Edge∗∗ = {(l, (φ ∧ tr∗=tr+1), l∗) | (l, φ, l∗) → Edge};
– Inv ∗∗(l) = (Inv(l) ∧ tr ∨ maxtr) for each l → Loc.

Figure 4 illustrates the augmentation on the thermostat example. Note that,
apart from restricting the number of jumps, the above augmentation does not
modify the original system behavior. The size of the state space is increased
by the factor maxtr+1, since the value domain of tr is [0,maxtr] ⊆ N for the
constant maxtr.

When we analyze the augmented model, SpaceEx returns for each mode in
the over-approximated set of reachable unsafe states an over-approximation [l, u]
for the values of tr.

Since tr takes integer values only, the lower and upper bounds are not approx-
imated, i.e., during analysis both after l and after u (over-approximative) jump
computations unsafe states were reached, but we do not have any information
about the values in between. Therefore we fix the number k, describing the length
of counterexamples we want to generate, to be either l or u.

We made some experiments for the thermostat example with unsafe states t ∨
19, and for the navigation benchmark with unsafe states (x1, x2) → [1, 2] × [0, 1].
Table 1 compares for different maxtr values the number of SpaceEx iterations, the
running times, and the resulting tr values for the original models, the guard and
the invariant augmentations. For the same number of iterations, the augmented
models need in average some more (but still comparable) time for the analysis
than the original models; the invariant and guard augmentations seem to be
similar in terms of running time.

Trace Encoding. In order to observe the traces leading to unsafe states, we need
to remember the jumps in the order of their occurrences. We achieve this by

Counterexample Generation for Hybrid Automata 95

Table 1. Evaluation of the guard and invariant augmentations with a sampling time
of 0.1 and a time horizon of 30

Model Augment. maxtr #iter. Fixed point Running time [s] tr

Thermostat none - 5/11/31 no/no/no 0.11/0.24/0.69 -

example guard 4/10/30 5/11/31 yes/yes/yes 0.25/0.65/2.15 [1, 4]/[1, 10]/[1, 30]

invar. 4/10/30 5/11/31 yes/yes/yes 0.30/0.78/2.53 [1, 4]/[1, 10]/[1, 30]

Navigation none - 29/168/3645 no/no/no 1.54/8.63/1598.63 -

benchmark guard 4/10/30 29/168/3645 yes/yes/yes 1.92/12.25/2088.88 [4, 4]/[4, 10]/[4, 30]

invar. 4/10/30 29/168/3160 yes/yes/yes 2.06/13.02/1466.08 [4, 4]/[4, 10]/[4, 30]

Navigation2 none - 32/524 no/no 7.55/254.91 -

benchmark, guard 4/10 32/524 yes/yes 7.55/284.19 [4, 4]/[4, 10]

ε = 0.1 invar. 4/10 32/524 yes/yes 7.35/293.88 [4, 4]/[4, 10]

unrolling the transition relation of the original model k times, where k is the
counterexample length determined in the previous step.

We could define the unrolling by copying each mode k + 1 and each edge k
times, and let the ith copy of an edge connect the ith-copy of the source mode
with the (i + 1)st copy of the target mode. To remember the jumps taken, we
introduce k auxiliary variables tr1, . . ., trk and store on the ith copy of an edge
the edge’s identity in tri. Such an unrolling would cause a polynomial increase
in the size of the model.

However, in such an unrolling there might be different traces leading to
the same mode. SpaceEx would over-approximate these trace sets by a mode-
wise closure, such that we cannot extract them from the result. E.g., for two
traces l1, l2, l4, l5, l7 and l1, l3, l4, l6, l7, resp., also the trace l1, l2, l4, l6, l7 would
be included in the over-approximation. Therefore, we copy each mode as many
times as the number of different traces of length up to k leading to it. This yields
an exponential growth in k for the number of locations and transitions.

We augment the unrolled model to observe the traces to unsafe states. In a
naive encoding, we identify edges e1, . . ., ed by numbers 1, . . ., d, and introduce
new variables tri for i=1, . . ., k to store the edges taken.

We also define an advanced encoding which needs less auxiliary variables. If
the domain of a variable includes [0, |Edge|n] for some n → N then we can use
it to store a sequence of n edges: Each time an edge is taken, we multiply the
current value by |Edge| and add the identity of the taken edge. This way we need⌈
k
n

⌉
auxiliary variables to encode a path of length k.

Definition 4 (k-unrolling, Trace Encoding). Assume a HA H = (Loc, V ar,
Edge,Dyn, Inv, Init) with an ordered set {e1, . . ., ed} of edges. The k-unrolling of
H is the HA Hu = (Locu, V aru,Edgeu,Dynu, Invu, Initu) with

– Locu =
⋃

i=1,...,k+1 Loci;
– V aru = V ar;
– Edgeu = {((l1, . . ., li), φ, (l1, . . ., li, li+1)) | 1 ∨ i ∨ k ∧ (li, φ, li+1) → Edge};
– Dynu(l1, . . ., li) = Dyn(li) for all (l1, . . ., li) → Locu;
– Invu(l1, . . ., li) = Inv(li) for all (l1, . . ., li) → Locu;
– Initu(l1, . . ., li) = Init(li) for i = 1 and false otherwise, for all (l1, . . ., li) →

Locu.

96 J. Nellen et al.

Fig. 5. Naive trace encoding of the thermostat example with depth 3

Table 2. Evaluation of the naive and advanced trace encodings for the thermostat
example and the navigation benchmark (k = 4, time step 0.1, time horizon 30) using
π1=l14, l13, l9, l6, l2, π2=l14, l10, l7, l6, l2, π3=l14, l10, l7, l3, l2 and π4=l14, l10, l9, l6, l2

Model Trace #locs #trans #vars n Time [s] Solutions

Thermostat none 2 2 1 - 0.136 -
example naive 5 4 5 4 0.312 on, off, on, off, on

adv. 5 4 2 4 0.147 on, off, on, off, on
Navigation none 14 36 5 - 1.372 -
benchmark naive 81 80 9 3 1.777 π1; π2; π3; π4

adv. 81 80 7 3 1.503 π1; π2; π3; π4

The naive trace encoding of H with depth k is the HA H1 = (Locu, V ar1,Edge1,
Dyn1, Invu, Init1) with

– V ar1 = V ar ⇒ {tr1, . . ., trk};
– Edge1 = {((l1, . . ., li), φ ∧ tr∗

i=j, (l1, . . ., li, li+1)) | 1 ∨ i ∨ k∧ej=(li, φ, li+1)
→ Edge};

– Dyn1(l1, . . ., li) = Dynu(l1, . . ., li) ∧ ∧k
j=1 ṫrj = 0 for all (l1, . . ., li) → Locu;

– Init1(l1, . . ., li) = Initu(l1, . . ., li) ∧ ∧k
j=1 trj = 0 for all (l1, . . ., li) → Locu.

Let n → N>0 such that [0, dn] is included in the domain of each tri and let
z=∪ k

n≡. The advanced trace encoding of H with depth k is the HA H2 =
(Locu, V ar2,Edge2,Dyn2, Invu, Init2) with

– V ar2 = V ar ⇒ {tr1, . . ., trz};
– Edge2 = {((l1, . . ., li), φ ∧ tr∗

∈i/n◦=tr∈i/n◦ · d+j, (l1, . . ., li, li+1)) | 1 ∨ i ∨
k ∧ ej=(li, φ, li+1) → Edge;

– Dyn2(l1, . . ., li) = Dynu(l1, . . ., li) ∧ ∧z
j=1 ṫrj = 0 for all (l1, . . ., li) → Locu;

– Init2(l1, . . ., li) = Initu(l1, . . ., li) ∧ ∧z
j=1 trj = 0 for all (l1, . . ., li) → Locu.

An example unrolled model for the thermostat with naive trace encoding
is shown in Fig. 5. Note that depending on the chosen trace encoding, up to k
auxiliary variables are added to the system.

Using our implementation for the proposed trace encodings, in Table 2 we
compare the model sizes and the analysis running times for the thermostat exam-
ple and the navigation benchmark. Compared to the original model, the analysis
running times for the trace encodings increase only slightly. The last column lists
the computed traces, which are (as expected) the same for both encodings.

Counterexample Generation for Hybrid Automata 97

3.2 Approach II: Parsing the Output of SpaceEx

The approach introduced above does not scale for large systems, since the
unrolling blow up the models too strongly. If the verification tool offers enough
information about the analyzed system traces, it is perhaps also possible to
extract from the tool’s output the same information we gathered by system aug-
mentation and additional analysis runs. We are interested in determining traces
that lead to unsafe states during the analysis, since they are candidates for pre-
sumable counterexamples. Without loss of generality, we assume that unsafe
states are restricted to a single mode.

Fig. 6. SpaceEx search tree

SpaceEx stores in a FIFO list a
sequence of symbolic states, each of
them consisting of a mode and a state
set, whose successors still have to be
computed in the forward reachabil-
ity analysis algorithm. This so-called
waiting list contains initially each
mode with its initial valuation set
(if not empty). In each iteration, the
next element from the list is taken.
Its flowpipe for a user-defined time
horizon and all possible (non-empty)
jump successors of the flowpipe seg-
ments are computed and those that were not yet processed are added to the list.
As illustrated in Fig. 6, this computation hierarchy corresponds to a tree whose
nodes are processed in a breadth-first manner. Each node corresponds to a mode
and a set of valuations, which was found to be reachable. The upper indices on
the nodes show the number of computed successor sets, whereas gray nodes in
the figure represent successors that are contained in another already processed
set in the same mode and are therefore not added to the tree.

SpaceEx does not output the structure of this tree. However, using debug
level 2, we can make use of more verbose console outputs to get additional
informations.

– When an iteration starts, SpaceEx outputs a text from which we can extract
the iteration number i (“Iteration 5...”).

– SpaceEx starts the flowpipe computation and outputs the mode of the current
symbolic state (“applying time elapse in location loc()==l14”).

– The computation of jump successors follows, which is edge-wise. For each
edge, whose source is the current mode, its label, source, target is printed
(“applying discrete post of transition with label navigation.trans

from location loc()==l14 to location loc()==l13”).
– SpaceEx determines, which of the previously computed flowpipe segments

intersect with the guard (“found 1 intervals intersecting with guard”).
– The jump successors for the intersecting flowpipe segments are computed

and, if not yet processed, put to the waiting list. Before switching to the next

98 J. Nellen et al.

outgoing edge, some information on the computation time is given (“Discrete
post done after 0.098s, cumul 0.098s”).

– When all outgoing edges are handled, the iteration is done, and the following
output gives us the total number of processed symbolic states and the current
size of the waiting list (“1 sym states passed, 2 waiting”).

– After termination of the analysis some general analysis results are printed,
e.g., the number of iterations, whether a fixed point was found or not, the
analysis time, and whether unsafe states were reached.

If we would succeed to re-construct the search tree (or at least the involved
mode components and their hierarchy) using the above information, we could
extract traces that lead to unsafe states in the tree.

The good news is that from the above outputs we can extract quite some
information regarding the search tree, such that in some cases we can construct
counterexamples. The bad news is that it is not sufficient to reconstruct all
details. E.g., since the waiting list size is reported after each iteration, we can
determine the number of new waiting list elements added during the last iteration
(the new list size minus the old list size minus 1). If this number equals the
total number of all intersecting intervals over all analyzed edges then we can
determine the mode components of the waiting list elements. However, if some
of the successors are already processed and therefore not added to the queue
then we cannot know for sure which sets were added. For example, if out of two
sets having the same mode component only one was added to the queue, then
we cannot know which of them. To avoid wrong guesses, those cases are skipped
and not considered further in our implementation.

Without model augmentation, it is not possible to restrict the SpaceEx search
to paths of a given length, therefore we cannot directly compare this method
to the results of Table 2. We made experiments with the navigation benchmark
using the debug output D2 of SpaceEx. For 50 iterations, with a computation
time of 32.28 s we found 11 traces leading to unsafe states in l2. When considering
only 25 iterations, the computation time is 12.69 s and only 4 traces are found.
The increase of running time for using SpaceEx with debug level D2 instead of
the default value medium was negligible in our experiments.

A single analysis run suffices to extract traces of counterexamples thus this
method seems to be superior to the augmentation approaches if the analysis tool
communicates enough information about the system traces. However, if not all
relevant details are accessible, not all traces can be rebuilt safely.

3.3 Approach III: Extending the Functionality of Flow∗

Extracting information from the textual output of a tool is an overhead, since
the information was already computed during analysis. Moreover, it might be
imprecise if we do not have access to all needed information.

Instead, we could generate counterexample traces on-the-fly by attaching to
each symbolic state in the waiting queue the trace that lead to it during the
search. The waiting queue initially contains initial symbolic states, to which we

Counterexample Generation for Hybrid Automata 99

Table 3. Trace generation using Flow* (k = 4, time step 0.1, time horizon 30,
π1=l14, l13, l9, l6, l2, π2=l14, l10, l7, l6, l2 and π3=l14, l10, l7, l3, l2)

Model Running time [s] Solutions

Thermostat example 0.23 on, off, on, off, on
Navigation benchmark 8.37 π1, π2, π3

attach themselves. If we add a new symbolic state with location l as a successor
of another symbolic state, then we attach to the new state the path of the
predecessor state extended with the jump whose successor the new state is. The
reachability computation will stop when the tree is complete till depth k (the
maximal jump depth). Next, Flow* intersects each tree node with the unsafe
set. If a non-empty intersection is detected, the tool dumps the trace attached
to the unsafe node.

To implement the above functionality, only minor changes had to be made
in Flow*, but it saves us the time of augmenting the system or parsing tool
output. We made experiments in line with Table 2 for the thermostat example
and the navigation benchmark. The results are shown in Table 3. Please note
that Flow* does not compute the trace l14, l10, l9, l6, l2, which is spurious.
We additionally analyzed the navigation benchmark with k = 8, where Flow*
generated 8 traces to unsafe states in l2 with initial valuation x1 → [3, 3.5],
x2 → [3, 4], v1 → [−0.1, 0.1] and v2 → [−0.8,−0.5].

4 Generating a Presumable Counterexample

In this section we show how we can generate presumable counterexamples by
extending the previously computed traces to timed traces. Given a trace, we
compute a reduced model that has the jumps of the trace only. This model is
augmented with a clock timer and variables tstampi, i = 1, . . ., k, one for each
jump in the trace. The clock is initialized to 0 and has derivative 1. Whenever
a jump is taken, the clock value is stored in the timestamp of the jump and the
clock is reset to 0. Figure 7 illustrates the above transformation.

Definition 5 (Trace Model). Given a hybrid automaton H = (Loc, V ar,Edge,
Dyn, Inv, Init) and a finite trace e1, . . ., ek of H with ei = (li, φi, li+1), the trace
model of H for e1, . . ., ek is the HA H∗ = (Loc∗, V ar∗,Edge∗,Dyn∗, Inv∗, Init∗) with

– Loc∗ = {(l1, 0), . . . , (lk, k), (lk+1, k + 1)};
– V ar∗ = V ar ⇒ {timer, tstamp1, . . ., tstampk};
– Edge∗ = {((li, i), φi ∧ tstamp∗

i = timer ∧ timer∗ = 0, (li+1, i + 1)) | i →
{1, . . ., k}};

– Dyn∗(l, i) = Dyn(l) ∧ ˙timer = 1 ∧ ∧
i=1,...,k

˙tstampi = 0 for all (l, i) → Loc∗;
– Inv∗(l, i) = Inv(l) for all (l, i) → Loc∗;
– Init∗(l, i) = Init(l) ∧ timer = 0 for all (l, i) → Loc∗.

100 J. Nellen et al.

Fig. 7. Trace model of the thermostat example for k = 3

Table 4. Comparison of the timed traces for the navigation benchmark computed by
SpaceEx and Flow* (k = 4, time step 0.1, time horizon 30, traces from Table 2 and 3)

Initial states: l14, x1 ∈ [3.0, 3.8], x2 ∈ [3.0, 4.0], v1 ∈ [−0.1, 0.1], v2 ∈ [−0.8, −0.5]

SpaceEx result in 6.46s:
π1 : l14, [0.0, 0.6], l13, [0.0,1.4], l9, [1.5,1.8], l6, [2.3, 2.5], l2
π2 : l14, [0.0, 1.9], l10, [1.5, 1.9], l7, [0.2, 2.5], l6, [0.0, 2.4], l2
π3 : l14, [0.0, 1.9], l10, [1.5, 1.9], l7, [2.3, 2.5], l3, [0.0, 1.0], l2
π4 : l14, [0.0, 1.9], l10, [0.0, 0.6], l9, [0.9, 1.4], l6, [0.0, 0.0], l2

Flow* result in 8.37s:
π1 : l14, [0.000,0.566], l13, [0.000, 1.420], l9, [1.531, 1.880], l6, [2.421,2.422], l2
π2 : l14, [0.000,1.854], l10, [1.534,1.836], l7, [0.310,2.371], l6, [0.000,2.385], l2
π3 : l14, [0.000,1.854], l10, [1.534,1.836], l7, [2.415,2.416], l3, [0.000,0.912], l2

Another method to get timing information is as follows. Both in SpaceEx
and in Flow*, the time horizon [0, T] of a flowpipe is divided into smaller time
intervals [0, δ], [δ, 2δ], . . ., [(n−1)δ, nδ] with nδ = T . The flowpipe is computed as
a union of flowpipe segments, one for each smaller interval. Thus the tools have
internal information about the timestamps of the symbolic states in the waiting
list. We make use of this fact and label the symbolic states in Flow* with the
timed traces which lead to them. This way we get the timing information for
free. Please note that this would also be possible for SpaceEx. In Flow* an
additional backward refinement of the time intervals of the timed trace would
be also possible, which we cannot describe here due to space limitations.

Table 4 shows some experimental results for the navigation benchmark. We
compute timed extensions of the previously computed counterexample traces to
build presumable counterexamples. The running times include for Flow* a com-
plete reachability analysis up to jump depth 4, and for SpaceEx the generation of
the traces with Approach II and extracting timing information by building and
analyzing the trace models. Both tools have their advantages: SpaceEx computes
the results faster, Flow* gives sometimes better refinements.

Counterexample Generation for Hybrid Automata 101

5 Simulation

To gain counterexamples, we identifying some suitable candidate initial states
(CIS) from the initial state set and refine the timed trace separately for each
CIS by restricting the timing informations.

Then we apply simulation to each CIS to find concrete counterexamples
starting in the given CIS and being contained in the corresponding refined timed
trace. Based on the refined timed trace of a CIS, each jump can take place
within a bounded but dense time interval. We let the simulation branch on a
finite set of jump time points chosen from those intervals. The choice is guided
by the invariant and guard satisfaction and uses a heuristics, which iteratively
discretizes time intervals with dynamic step sizes to drive the selection towards
hitting conditions, e.g., in the presence of strict equations. Furthermore, the
heuristics tries to abort simulation paths that do not lead to a counterexample
as early as possible.

Finding Candidate Initial States. The task of identifying CISs for simulation
is non-trivial, since the timed traces over-approximate counterexamples, such
that not all initial states lead to unsafe states within the given time bounds.
W. l. o. g., we assume that the initial set is given as a hyperrectangle (otherwise
we over-approximate the initial set by a hyperrectangle and use in the following
the conjunction of the hyperrectangle with the initial set). We obtain CISs by
applying a binary search on the initial set combined with a reachability analysis
run to check whether the unsafe states are still reachable. As long as unsafe
states are detected to be reachable from a hyperrectangle, the corner points of
the hyperrectangle are added to the set of CISs. If in at least one dimension the
width of the hyperrectangle is larger than a specified parameter ε, the interval
is splitted (in this dimension) in the middle and both halves are analyzed again.
The binary search stops if either the specified number of CISs are computed or
if all hyperrectangles reach the minimal width in each dimension.

The user can choose between a depth- (DFS) and a breadth-first search
(BFS) to generate CISs. DFS computes closely lying points fast, BFS searches
for widely spread points at a higher computation time.

For the trace l14, l10, l7, l6, l2 of the navigation benchmark, our implementa-
tion needs 19ms to create the trace model. For the DFS, SpaceEx has to be run
42 times until 10 CISs are computed from which the unsafe state l2 is reach-
able in the SpaceEx over-approximation. The corresponding computation time is
7.14 s. The BFS finds the first 10 CISs within 29.90 s and with 133 SpaceEx calls.

For each selected CIS we determine a refined timed trace using the same
method as before for computing presumable counterexamples, but now restricted
to the given CIS as initial state.

Simulating the Dynamics. For linear differential equations the initial value prob-
lem is solvable, i.e., we can compute for each state the (unique) state reachable
from it in time t. Thus, for linear differential equations we use the matrix expo-
nential (e.g. in the homogeneous case, ẋ = Ax is solved by x(t) = x0e

At, where
t is the time and x0 is the initial value of x), whereas for non-linear differential

102 J. Nellen et al.

Fig. 8. Simulation: (1) Checking the invariant for [0, t∧
0]; (2) Taking the enabled edges

within [t0, t
∧∧
0] to l1; (3) Expanding the next level

equations numerical methods (e.g. Runge-Kutta) can be used. However, since
either exponential function values must be determined or numerical methods
are used, the computation is not exact.

Checking Invariants. Along a simulated timed trace, time can pass in a location
only as long as the location’s invariant is satisfied. The timed trace provides us
for each location li a time interval [ti, t∗i], within which a jump to a successor
location should be taken. We have to assure that the invariant is constantly
fulfilled from the time where a location was entered till the time point where the
jump is taken. Therefore, we compute the time successors for a set of sample
time points homogeneously distributed (with a user-defined distance δ) within
the time interval [0, t∗i]. We check the invariant for those sample time points in
an increasing order. If the invariant is violated at a sample time point t → [0, t∗i],
no further time can elapse in the current location. Thus all simulation paths via
time points from [t, t∗i] are cut off and the time interval for jumps is restricted
to [ti, t∗∗i], where t∗∗i is the time point before t.

Dynamic Search for Suitable Jump Time Points. Non-determinism (at which
time point a jump is taken) is handled by branching the simulation for those
previously selected sample time points that lie inside [ti, t∗i]. If the edge’s guard
is fulfilled at a given sample, the jump successor is computed and the corre-

Counterexample Generation for Hybrid Automata 103

Fig. 9. Adaptive-step-size simulation

sponding simulation branch is explored in a depth-first search. The first steps of
a simulation are shown in Fig. 8.

The naive discretization of the dense time intervals has sometimes problems
to hit guard conditions. Especially hard for the simulation are guards containing
equations. To allow simulation for guards defined by equations, we enlarge the
model behavior be replacing the guard equations by inequations, allowing values
from a small box around a point instead of hitting the point exactly.

However, even with such an enlarging it can happen that the guard is not
fulfilled at any of the selected sample time points, or from the states after the
jump no counterexamples can be simulated. In this case we dynamically deter-
mine new sample time points for the jump as follows. We use two parameters, an
offset and a step size, specifying a set {ti +offset+ j · stepsize → [ti, t∗i] | j → N} of
sample points. Initially (as described above), the offset is 0 and the step size has
the value δ. If the simulation for these sample time points does not succeed, we
set the offset to δ/2 and let the step size unchanged. If those points are also not
successful, we iteratively half both parameter values. This adaption terminates
if either the target location of the timed trace is reached (i.e., a counterexample
is found) or the step size reaches some predefined lower bound. The dynamic
step-size-adaption is visualized in Fig. 9.

If a single counterexample suffices, the simulation can be stopped as soon as
the unsafe location was reached. However, by heuristically searching for further
counterexamples, it is also possible to provide additional information about a
counterexample: Instead of the time points of the jumps along the simulation
path, the biggest time intervals can be computed, such that the unsafe state is
still reachable.

Table 5 shows the simulation results for some timed traces, each with a single
initial state. Note that we find counterexamples (i.e., we reach the maximal jump
depth) only in the two middle cases. We additionally run SpaceEx analyses with
the given initial point for the first trace and could not reach the bad state with
a time step of 0.001, i.e., the first timed trace is spurious. The last trace was not
computed by Flow* and is therefore also spurious.

104 J. Nellen et al.

Table 5. Simulation results for the navigation benchmark with ε-enlarging
π1 = l14, [0.0, 0.2], l13, [0.0, 0.4], l9, [1.5, 1.6], l6, [2.4, 2.5], l2

with initial state (3.0084472656250005, 3.21875, −0.1, −0.8)
π2 = l14, [1.834, 1.835], l10, [1.779, 1.78], l7, [1.934, 1.936], l6, [0.511, 0.514], l2

with initial state (3.2, 4.0, 0.1, −0.5)
π3 = l14, [0.000, 0.001], l10, [1.569, 1.570], l7, [2.429, 2.431], l3, [0.514, 0.517], l2

with initial state (3.8, 3.0, −0.1, −0.8)
π4 = l14, [0.0, 0.1], l10, [0.0, 0.5], l9, [1.0, 1.3], l6, [2.3, 2.5], l2

with initial state (3.0125, 3.0, −0.1, −0.8)

Timed
trace

Step size ε Reached
jump depth

Simulated
paths

Unsafe Time [s]

π1 0.0005 0.0005 2 128 · 108 0 20.91
0.05 0.5 3 128 0 04.26

π2 0.0005 0.5 4 964 >50 14.82
π3 0.0005 0.05 4 96 >50 14.44

0.0005 0.0005 4 96 50 10.51
π4 0.0005 0.0005 2 480 · 108 0 15.46

0.05 0.05 3 480 0 07.88

6 Conclusion and Future Work

In this paper we described an approach to find presumable counterexamples for
hybrid automata based on existing reachability tools. Next we plan to improve
our method by (1) a backward refinement of the time intervals on timed paths,
(2) a rigorous simulation technique for hybrid automata, (3) giving a better
heuristics to select the initial points for simulation and (4) use several tools
and take the best results to minimize the overestimation in a presumable coun-
terexample. Preliminary results suggest that the function calculus of the tool
Ariadne can be used to validate counterexamples.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138, 3–34 (1995)

2. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011)

3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

4. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable
sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol.
2623, pp. 482–497. Springer, Heidelberg (2003)

Counterexample Generation for Hybrid Automata 105

5. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes
for dynamic systems. In: Proceedings of CDC’98, vol. 2, pp. 2089–2094. IEEE Press
(1998)

6. Henzinger, T.A., Ho, P., Wong-Toi, H.: HyTech: a model checker for hybrid sys-
tems. Softw. Tools Technol. Transfer 1, 110–122 (1997)

7. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

8. Kvasnica, M., Grieder, P., Baotić, M.: Multi-parametric toolbox (MPT). http://
control.ee.ethz.ch/∼mpt/ (2004)

9. Chen, X., Ábrahám, E.: Choice of directions for the approximation of reachable sets
for hybrid systems. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.)
EUROCAST 2011, Part I. LNCS, vol. 6927, pp. 535–542. Springer, Heidelberg
(2012)

10. Kühn, W.: Zonotope dynamics in numerical quality control. In: Hege, H.-C., Polth-
ier, K. (eds.) Mathematical Visualization: Algorithms, Applications and Numerics,
pp. 125–134. Springer, Heidelberg (1998)

11. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

12. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: representation and com-
putation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol.
1569, pp. 46–60. Springer, Heidelberg (1999)

13. Kurzhanski, A.B., Varaiya, P.: On ellipsoidal techniques for reachability analysis.
Optim. Meth. Softw. 17, 177–237 (2000)

14. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous
dynamics. Ph.D. thesis, Université Joseph Fourier (2009)

15. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009)

16. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of RTSS’12, pp. 183–192. IEEE
Computer Society (2012)

17. Collins, P., Bresolin, D., Geretti, L., Villa, T.: Computing the evolution of hybrid
systems using rigorous function calculus. In: Proceedings of ADHS’12, IFAC-
PapersOnLine (2012)

18. Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323.
Springer, Heidelberg (2000)

19. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

20. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Autom. Control 52, 782–798 (2007)

21. Kurzhanskiy, A., Varaiya, P.: Ellipsoidal toolbox. Technical report, EECS, UC
Berkeley (2006)

22. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: A framework for reachability analysis of hybrid
automata. In: Proceedings of MTNS’06 (2006)

http://control.ee.ethz.ch/~mpt/
http://control.ee.ethz.ch/~mpt/

106 J. Nellen et al.

23. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J.,
Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg
(2013)

24. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: Proceedings of
ICCPS’11, pp. 22–31. IEEE (2011)

25. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

TTM/PAT: Specifying and Verifying Timed
Transition Models

Jonathan S. Ostroff1, Chen-Wei Wang1(B), Simon Hudon1, Yang Liu2,
and Jun Sun3

1 Department of Electrical Engineering and Computer Science, York University,
Toronto, Canada

jackie@cse.yorku.ca
2 School of Computer Engineering, Nanyang Technological University,

Singapore, Singapore
3 Singapore University of Technology and Design,

Singapore, Singapore

Abstract. Timed Transition Models (TTMs) are event-based descrip-
tions for specifying real-time systems in a discrete setting. We propose
a convenient and expressive event-based textual syntax for TTMs and
a corresponding operational semantics using labelled transition systems.
A system is specified as a composition of module instances. Each module
has a clean interface for declaring input, output, and shared variables.
Events in a module can be specified, individually, as spontaneous, fair or
real-time. An event action specifies a before-after predicate by a set of
(possibly non-deterministic) assignments and nested conditionals. The
TTM assertion language, linear-time temporal logic (LTL), allows ref-
erences to event occurrences, including clock ticks (thus allowing for a
check that the behaviour is non-Zeno). We implemented a model checker
for the TTM notation (using the PAT framework) that includes an editor
with static type checking, a graphical simulator, and a LTL verifier. The
tool automatically derives the tick transition and implicit event clocks,
removing the burden of manual encoding them. The TTM tool performs
significantly better on a nuclear shutdown system than the manually
encoded versions analyzed in [6].

Keywords: Real-time systems · Specification · Verification · Timed
transition models · Fairness · Model checking

1 Introduction

Checking the correctness of real-time systems is both challenging and important
for industrial applications. In [6], the authors find it convenient to use a Timed
Transition Model (TTM) to describe and verify a nuclear reactor shutdown sys-
tem. A graphical statechart-based model checker for TTMs developed in [7] is
no longer supported.

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 107–124, 2014.
DOI: 10.1007/978-3-319-05416-2 8, c© Springer International Publishing Switzerland 2014

108 J.S. Ostroff et al.

To verify the correctness of the shutdown system, authors of [6] manually
translate TTMs into timed automata and discrete transition systems, and per-
form the real-time verification using, respectively, the Uppaal [5] and SAL [3]
model checkers. Real-time models of substantial systems tend to be complex.
The manual translation of a TTM to other formats (as in [6]) is time consum-
ing and error prone, may introduce extra states or transitions in the process,
and makes it hard to trace the generated counterexamples back to the original
model.

In this paper, we develop a new and convenient event-based notation for
TTMs consisting of a textual syntax and formal operational semantics. The
one-step semantics allows us to use the PAT toolset [9,10] to develop an explicit
state model checker for the new notation. The resulting model checker performs
significantly better than the manually encoded model using other tools, at the
same time bypassing the need to do manual translation. The new model checker
has good support for type checking, visual simulation, and convenient counter-
example traceability back to the model.

The event-based syntax also makes the language amenable to formal rea-
soning using theorem proving in the spirit of Event-B [1] and compositional
reasoning. This provides a timed extension to the Event-B notation (although,
in this paper, we do not consider refinement).

Outline and Contributions. This paper presents three main contributions. First,
our new TTM notation allows for the description of a variety of discrete reac-
tive systems (see Sect. 2 for a pacemaker example) by cooperating modules that
contain variables and events. Events have implicit clocks for imposing lower and
upper time bounds on their occurrences. Our notation also supports sponta-
neous, fair, and timed behaviours at both the event level and the system level.
Timers are explicit clocks that may be used to constrain system behaviour.
Second, we develop a formal operational semantics with digitization (see Sect. 3)
that is amenable to automated tool support. Third, we implement the TTM/PAT
tool for specifying and verifying TTMs (see Sect. 4 for its evaluation). System
properties can be expressed in the linear-time temporal logic (LTL) and may
refer to timers and event occurrences (see Sect. 3 for representing event occur-
rences as state predicates). The properties language directly supports healthiness
checks such as non-Zeno behaviour1 and the monotonicity of timers. More details
on the tool and experimental data are discussed in an extended report [8], and
the grammar of TTM textual syntax and the tool are available at https://wiki.
eecs.yorku.ca/project/ttm/.

1 In TTM/PAT we consider a discrete time domain, where there is an explicit transi-
tion for the tick of a global clock. Zeno behaviour then denotes executions in which
the tick transition does not occur infinitely often (i.e., at some point, time stops).

https://wiki.eecs.yorku.ca/project/ttm/
https://wiki.eecs.yorku.ca/project/ttm/

TTM/PAT: Specifying and Verifying Timed Transition Models 109

2 A Small Pacemaker Example

We use a small pacemaker example (similar to the one in [4]) to illustrate the real-
time features of TTMs. A cardiac pacemaker is an electronic device implanted
into the body to regulate the heart beat by delivering electrical stimuli (called
paces) over leads with electrodes that are in contact with the heart. The pace-
maker may also detect (or sense) natural cardiac stimulations.

A pacemaker in the VVI mode operates in a timing cycle that begins with
a ventricular pacing or sensing. The basis of the timing cycle is the lower rate
interval (LRI = 1000ms): the maximum amount of time between two consecutive
ventricular sensing. If the LRI elapses and no sensing has occurred since the
beginning of the cycle, a pace is delivered and the cycle is reset. On the other
hand, if a heart beat is sensed, the cycle is reset without delivering a pace.

At the beginning of each cycle, there is a ventricular refractory period (VRP =
400ms): chaotic electrical activity that immediately follows a heart beat, and
may lead to spurious sensing that interferes with future pacing. Sensing is there-
fore disabled during the VRP period. Once the VRP period is over, a ventricular
sensing inhibits the pacing and resets the LRI, starting a new timing cycle.

In the VVI mode, hysteresis pacing can be enabled to delay pacing beyond
the LRI in order to give the heart a chance to resume the normal operation. In
that case, the timing cycle is set to a larger value, namely the hysteresis rate
interval (HRI = 1200ms). It becomes enabled after a natural heart beat has been
sensed. In [4], hysteresis pacing is enabled after a ventricular sense is received,
and disabled after a pacing signal is sent.

Using the textual syntax of TTM, we define constants and a timer t for the
cardiac cycle as follows:

#define VRP 400;
#define LRI 1000;
#define HRI 1200;

timers
t: 0..(HRI+1)

enabledinit
end

share initialization
sense: BOOL = false
pace: BOOL = false

end

Timer t has a range from zero to HRI + 1, and it is initially zero and enabled.
When the value of t reaches one beyond HRI + 1, it stops counting up and its
monotonicity predicate, mono(t), becomes false. This predicate holds so long
as that timer t is ticking in synch with a tick of a global clock, and that it is
not stopped or restarted (see Sect. 3). The tick transition is an implicit tran-
sition (i.e., it is not given by the text of a TTM) representing the ticking of a
global clock. The tick transition increments timers and implicit clocks associ-
ated with events. We also defined shared variables sense and pace to represent,
respectively, a ventricular sensing or pacing.

We declare a module template for the heart as follows:

110 J.S. Ostroff et al.

module HEART
interface
pace: share BOOL
sense: share BOOL

local
ri : INT = HRI
last ri: INT = HRI
pc: INT = 0

events
hbn[VRP, ⇒] // natural heart beat
when !pace && pc==0
do sense := true,

ri := HRI,
last ri:=ri,
pc := 1

end

hbp[0,0] // paced heart beat
when pace && VRP <= t && pc==0
do pace := false,

ri := LRI ,
last ri := ri,
pc := 1

end

new cycle[0,0] // restart a new cycle
when pc==1
start t
do pc := 0
end

The interface of module template HEART declares the access to shared vari-
ables sense and pace. The local variable ri (rate interval) is either HRI or LRI
depending on whether hysteresis pacing is enabled. Likewise last ri records the
last value of the rate interval. They are auxiliary variables: they annotate the sys-
tem state without affecting2 the behaviours and are used in LTL specifications.
Variable pc (program counter) is used as a sequencing mechanism for events.

The heart module has a natural heartbeat (event hbn) and a paced heartbeat
(event hbp). If there is a natural heart beat, then the sense flag is set, ri is set to
HRI, and the last rate interval is also recorded in last ri. After the VRP period,
it is also possible for a paced heart beat to occur if the pace flag is set. Thus
pace → VRP ≤ t is part of the guard of the urgent event hbp[0, 0]. After either a
natural or paced heart beat, the timer t is restarted by the new cycle event and
the cardiac cycle begins again.

A natural heart beat might occur at any time after the ventricle refractory
delay VRP, or it might never occur. Thus the lower time bound of hbn is VRP
and the upper time bound is ⇒ (i.e ∗). If the upper time bound is ⇒ then we have
a spontaneous event (i.e., an event that is not urgent or forced to occur). We
can thus accommodate a variety of fairness assumptions (discussed further in
Sect. 3), including spontaneous events, just or compassionate events, and real-
time events that must occur between their lower and upper time bounds. An
urgent event e[0, 0] is one that must occur before the next tick of the global
clock (provided its guard continuously remains true).

We formulate the requirements using linear time temporal logic (LTL) solely
in terms of the phenomena of the environment (i.e., the heart) as follows:

2 Variables ri and last ri are used in neither event guards nor the right hand side of
assignments to non-auxiliary variables.

TTM/PAT: Specifying and Verifying Timed Transition Models 111

R1: ♦♦((H.hbn ⊆ H.hbp) → (V RP ≤ t ≤ HRI)).3 Infinitely often, a natural or
paced heart beat occurs between VRP and HRI time units from each other.

R2: ♦(H.hbn ∧ (VRP ≤ t ≤ H.last ri)). A natural heartbeat occurs only
in the closed interval [VRP, H.last ri] in the cardiac cycle. H.last ri records
the required rate interval in the heart for the last complete cycle, either LRI
or HRI, depending upon whether hysteresis pacing has been properly enabled.
Thus, ♦((H.last ri=LRI) ⊆ (H.last ri=HRI)) also holds.

R3: ♦(H.hbp ∧ (t = H.last ri)). A paced heart beat occurs only if the timer
t is at the relevant rate interval. The ventricle controller will have to estimate
H.ri (which, as opposed to H.last ri, relates to the current cycle) in order to
ensure that the heart paces according to this requirement.

There is a concern that some event (either in the heart module or elsewhere)
might illegally set the timer t to a value that makes the specification trivially
true. Of course, in a small system, inspection of the TTMs (or timed automata
in the case of Uppaal) might re-assure us that all is well. Nevertheless, it would
be advantageous to check that timers tick monotonically and uninterruptedly.
Thus each TTM timer t must be equipped with a corresponding monotonicity
predicate mono(t) that holds so long as timer t is not stopped or restarted (see
Sect. 3). We may thus check (♦♦H.new cycle) → ♦(H.new cycle ∧ t = 0) and
♦(H.new cycle ∧ mono(t)U((H.hbn ⊆ H.hbp) → (V RP ≤ t ≤ HRI))), which
guarantee that there is an appropriate heart beat in each cardiac cycle.

When using events with upper time bound 0, we must provide a way of
checking Zeno behaviour [7]. We can directly check that time always progresses
with the LTL formula ♦♦tick. The tick event is implicit. That is, it is automat-
ically constructed by the tool with the precise semantics described in Sect. 3.
The ability to refer to the occurrences of events in the TTM assertions makes it
possible to specify the required behaviour more directly than in other tools, e.g.
Uppaal. We now devise a ventricle controller whose cooperation with the heart
will satisfy requirements R1 to R3.

module VENTRICLE CONTROLLER
interface
pace : share BOOL
sense: share BOOL

local
ri : INT = HRI; pc: INT = 0

events
vpace[0,0]
when pc==0 && !sense && t==ri
do ri := LRI, pace := true, pc:= 1
end

vsense[0,0]
when pc==0 && sense
do ri := HRI, sense := false, pc :=1
end

compute delay[1,1]
when pc==1
do pc:= 0
end

end

3 H.hbn designates the event hbn in module instance H. The same syntax works for
local variables as well.

112 J.S. Ostroff et al.

The controller maintains its own estimate VC.ri of the heart’s rate interval H.ri,
where VC and H are module instances that we construct below. We may now
compose the heart together with the controller as follows:

instances
H = HEART

(share pace, share sense)
VC = VENTRICLE CONTROLLER

(share pace, share sense)
end
composition
System = H || VC

end

#define rt (t=H.last ri);
#define t0 (t=0);
#define wr VRP <= t && t <= HRI;
#assert System |= [](H.hbp −> rt);
#assert System |= []<>(H.new cycle && t0);
#assert System |=

[](H.new cycle && t0 −>
mono(t) U ((H.hbn || H.hbp) && wr));

#assert System |= []<>tick;

The above syntax is accepted by the TTM/PAT tool, and all the requirements
are verified in a few seconds. The syntax also allows us to compose an indexed
set of instances. For example, in Fischer’s mutual exclusion algorithm (Sect. 4.2),
we write:

composition fischer = || i: 1..n @ PROCESS(share x, share c, in i) end

More details on this example is discussed in an extended report [8].

3 TTM Syntax and Semantics

Section 2 provides an example of the new concrete textual syntax for TTMs. In
this section, we provide a one-step operational semantics for TTMs.

3.1 Abstract Syntax

Following [7] and using the mathematical conventions of Event-B [1], we define
the abstract syntax of a TTM module instance M as a 5-tuple, i.e., M =
(V, s0, T, t0, E) where (1) V is a set of variable identifiers, declared local or in a
module interface; (2) T is a set of timer identifiers; (3) E is a set of events that
may change the state; (4) s0 ∨ STATE is the initial variable assignment, with
STATE � V ∧ VALUE; and (5) t0 ∨ TIME is the initial timer assignment,
with TIME � T ∧ N.

We use an 8-tuple (id, l, u, fair, grd, start, stop, action) to define the abstract
syntax of an event e, and we use the dot notation “.” to access the fields, as shown
on the right of Fig. 1. The string identifier of an event e is written as e.id. The
guard of event e, i.e., e.grd, is any Boolean expression in V and T . For example,
on the left of Fig. 1, we have V = {v1, v2, v3, · · · } and T = {t1, t2, t3, t4, · · · }.
Functions boundt ∨ T ∧N and type ∨ T ∧P(N) provide, respectively, the upper
bound and the type of each timer. For example, if timer t1 is declared in the
TTM as t1 : 0..5, then boundt(t1) = 5 and type(t1) = {0..6}. As will be detailed

TTM/PAT: Specifying and Verifying Timed Transition Models 113

Fig. 1. Concrete and abstract syntax of TTM events

below, timers count up to one beyond the specified bound at which point they
remain fixed until they are restarted.

An event e must be taken between its lower time bound e.l and upper time
bound e.u, provided that its guard e.grd remains true. The event action involves
simultaneous assignments to v1, v2, · · · . The notation v3 :: 1..4 is an example of a
demonic assignment in which v3 takes any value from 1 to 4. All the assignments
in the event action are applied simultaneously in one step.

In an assignment y := exp, the expression on the right may use primed (e.g.
x→) and unprimed (e.g. x) state variables as well as the initial value of timers. A
variable with a prime refers to the variable’s value in the next state and a variable
without prime refers to its value in the current state. The use of primed vari-
ables in expressions allows for simpler and more expressive descriptions of state
changes. The state changes effected by an event e is described in the abstract
syntax by a before-after predicate e.action. The concrete syntax also allows for
assignments to be embedded in (possibly nested) conditional statements.4

3.2 Formal Semantics

We provide a one-step operational semantics of a TTM module instance M in
LTS (Labelled Transition Systems).
Definition: LTS: Given a TTM module instance M, an LTS (Labelled Tran-
sition System) is a 4-tuple L = (Π, π0,T,∧) where (1) Π is a set of system
configurations; (2) π0 ∨ Π is an initial configuration; (3) T is a set of transitions
names; and (4) ∧ ∪ Π × T × Π is a transition relation.

We now describe the LTS semantics of TTMs. Let Eid � {e ∨ E • e.id}
be the set of event names (identifiers). A configuration π ∨ Π is defined by a
6-tuple (s, t,m, c, x, p). We explain each of the six components as follows:

4 With all the complexity of structures allowed by the syntax of actions, sequential
composition is not allowed. This is in an effort to make actions into specifications
rather than implementations. This would allow us to generalize TTMs to allow an
Event-B style of symbolic reasoning.

114 J.S. Ostroff et al.

• s ∨, is a value assignment for all the variables of the system. The state can be
read and changed by any transition corresponding to an event in E.
• t ∨ TIME is a value assignment for the timers of the system. Events (and
hence their corresponding transitions) may only start, stop and read timers. As
will be discussed below, we introduce a special transition, called tick, which also
changes the timers. Timers ti that are stopped have values boundt(ti) + 1.
• m ∨ T∧BOOL records the status of monotonicity of each timer. Suppose event
e1 in a TTM starts t1. In LTL we might write ♦(e1 → t1 = 0 ∧ ♦(q → t1 ≤ 4))
(note that t1 = 0 is redundant) to specify that q becomes true within 4 time
units of event e1 occurring. However, other events might stop or restart t1 before
q is satisfied hence breaking the synchronicity between t1 and a global clock.5

Instead, we express the intended property as ♦(e1→t1 = 0 ∧ m(t1) U (q→t1 ≤
4)). The expression m(t1) (standing for monotonicity of t1) holds in any state
where t1 is not stopped or being reset. We explain monotonicity further below.
• c ∨ Eid ∧ N ≡ {−1} is a value assignment for a clock implicitly associated
with each event. These clocks are used to decide whether an event has been
enabled for long enough and whether it is urgent. An event e ∨ E is enabled
when its clock’s value is between the event’s lower time bound (i.e., e.l) and
its upper time bound (i.e., e.u). Furthermore, the type (or range) of c(e.id) is
{−1, 0, ...e.u}. When an event’s clock is disabled, as opposed to the convention
used with timers, the clock’s value is −1.
• x ∨ Eid ≡ {∀} is used as a sequencing mechanism to ensure that each tran-
sition e is immediately preceded by an e# transition whose only function is
to update the monotonicity record m. For example, in the following execution
· · · e1∧ π1

x=∗
e2#∧ π2

x=e2

e2∧ π3
x=∗

∧ · · · , suppose in π1 the value of timer t2 is 3 and

that e2 restarts t2. Then, in π2, we have x = e2 → t2 = 3 → m(t2) = false. In
π3, we have x = ∀ → t2 = 0 → m(t2) = true. In order to record the breaking
of monotonicity, the e2# transition sets m(t2) to false, which gets set back to
true in the next execution step. The precise effect of these transitions will be
described below.
• p ∨ Eid ≡ {tick,∀} holds the name of the last event to be taken at each
configuration. It is ∀ in the initial configuration as no event has yet occurred. It
allows us to refer to events in LTL formulas in order to state that they have just
occurred. For instance, in the formula above, (s, t,m, p) � e1 → t1 = 0 (which
reads: the configuration satisfies the formula) evaluates to p = e1 → t(t1) = 0.

Given a flattened module instance M, the transitions of its corresponding
LTS are given as T = Eid ≡ E# ≡ {tick}. As explained above, for each event
e ∨ E, we introduce a monotonicity breaking transition e.id#. We thus define
E# � {e ∨ E • e.id#}. The tick transition represents one tick of a global
clock. Explicit timers and event lower and upper time bounds are described with
5 Suppose that event e2 also starts t1, that e3 establishes q and events occur in the

following order: π0
e1∈ π1

t1=0

tick3∈ π4
t1=3

e2∈ π5
t1=0

tick2∈ π7
t1=2

e3∈ π8
t1=2 ∧ q

· · · . This execution

satisfies the first LTL formula but does not satisfy the intended specification: when
q becomes true, t1 = 2 but it is 5 ticks away from the last occurrence of e1.

TTM/PAT: Specifying and Verifying Timed Transition Models 115

respect to this tick transition. We define the enabling condition of event e ∨ E as
e.en � e.grd → e.l ≤ e.c ≤ e.u, where e.c evaluates to c(e.id) in a configuration
whose clock component is c. Thus an event is enabled in a configuration that
satisfies its guard and where the event’s implicit clock is between its lower and
upper time bound.

The initial configuration is defined as π0 = (s0, t0,m0, c0,∀,∀), where s0
and t0 come from the abstract syntax of the TTM. m0 and c0 are given by:

m0(ti) ∃ t0(ti) = 0

c0(ei.id) =

{
0 (s0, t0) � ei.grd

−1 (s0, t0) ∅ ei.grd

for each ti ∨ T and ei ∨ E. It is implicit in the above formula that m0(ti)
depends only on whether or not ti is initially enabled (specified using the keyword
enabledinit or disabledinit). If the keyword enabledinit is specified, t0(ti)=0;
otherwise, if the keyword disabledinit is specified, t0(ti) = boundt(ti) + 1.

An execution σ of the LTS is an infinite sequence, alternating between con-
figurations and transitions, written as π0

τ1∧ π1
τ2∧ π2 ∧ · · · where τi ∨ T and

πi ∨ Π. Below, we provide constraints on each one-step relation (π e∧ π→) in
an execution. If an execution σ satisfies all these constraints then we call σ a
legal execution. We let ΣL denote the set of all legal executions of the labelled
transition system L. The set ΣL provides a precise and complete definition of
the behaviour of L. If a state-formula q holds in a configuration π, then we write
π � q. In some formulas, such as guards, all the components of a configuration
are not necessary. We express this by dropping some components of the config-
uration on the left of the double turnstile (�), as in (s0, t0) � e.grd. Given a
temporal logic property ϕ and an LTS L, we write L � ϕ iff ≈σ ∨ ΣL • σ � ϕ.
The three possible transition steps are:

(s, t,m, c,∀, p)
e#∧ (s, t,m→, c, e, p) (3.1)

(s, t,m, c, e, p) e∧ (s→, t→,m→, c→,∀, e) (3.2)

(s, t,m, c,∀, p) tick∧ (s, t→,m→, c→,∀, tick) (3.3)

Each of the above transitions has side conditions which we now enumerate.

3.2.1 Taking e#
The monotonicity breaking transition e#, specified in Eq. 3.1 (p. 115), is taken
only if (s, t, c) � e.en and the x-component of the configuration is ∀. For each
t ∨ T , m→(t) ∃ t /∨ e.start → m(t). This ensures that, for timer t, just before it
is (re)started, m(t) = false. It is set back to true by the immediately following
event, e, and it remains true as long as t is not restarted and has not reached
its upper bound. Transition e# modifies only m and x in the configuration, and
thus maintains the truth of (s, t, c) � e.en.

116 J.S. Ostroff et al.

3.2.2 Taking e
The transition e, specified in Eq. 3.2 (p. 115), is taken only if (s, t, c) � e.en
and the x-component of the configuration is e. The component s→ of the next
configuration in an execution is determined nondeterministically by e.action,
which is a relation rather than a function. This means that any next config-
uration that satisfies the relation can be part of a valid execution, i.e., s→ is
only constrained by (s, t, s→) ∨ e.action. The other components are constrained
deterministically. The following function tables specify the updates to m, t and
c upon occurrence of transition e.

For each timer ti ∨ T m→(ti) t→(ti)

ti ∨ e.start
ti ∨ e.stop impossible
ti /∨ e.stop true 0

ti /∨ e.start
ti ∨ e.stop false boundt(ti) + 1
ti /∨ e.stop m(ti) t(ti)

For each event ei ∨ E c→(ei.id)
(s→, t→) �|= ei.grd -1

(s→, t→) |= ei.grd
(s, t) |= ei.grd → ¬ei = e c(ei.id)
(s, t) �|= ei.grd ⊆ ei = e 0

In the above, we start and stop the implicit clock of ei as a consequence of
executing e, according to whether ei.grd becomes true, is false (i.e., becomes or
remains false) or remains true. Since event ei becomes enabled ei.l units after
its guard becomes true, this allows us to know when to consider ei as enabled,
i.e., ready to be taken. As a special case, the implicit clock of event e (under
consideration) is restarted when e.grd remains true.

3.2.3 Taking tick

The tick transition, specified in Eq. 3.3 (p. 115), is taken only if ≈e ∨ E • c(e.id) <
e.u and the x-component of the configuration is ∀ (thus preventing tick from
intervening between any e# and e pair). For any timer ti ∨ T , the updates to
t→, m→ and c→ are:

t∼(ti) = (t(ti) → boundt(ti)) + 1

m∼(ti) ∨ ¬ (t(ti) = boundt(ti)+1)

For each event e ∈ E c∼(e.id)

(s∼, t∼) ≡|= e.grd -1

(s∼, t∼) |= e.grd
(s, t) ≡|= e.grd 0
(s, t) |= e.grd c(e.id) + 1

Thus, tick increments timers and implicit clocks to their upper bounds. Transi-
tion tick also marks timers as non-monotonic when they reach their upper bound
and reset clocks when the corresponding events are disabled.

3.2.4 Scheduling
So far, we have made no mention of scheduling: we constrained executions so
that the state changes in controlled ways, but a given execution may still make

TTM/PAT: Specifying and Verifying Timed Transition Models 117

no progress. To make progress, we need to assume fairness. In the current imple-
mentation of TTM/PAT, the possible scheduling assumptions6 on TTM events
are restricted to the following four:

1. Spontaneous event. Even when it is enabled, the event might never be taken.
This is assumed when no fairness keyword is given and the upper time bound is
* or unspecified.

2. Just event scheduling (also known as weak fairness [10]). For any execution
σ ∨ ΣL, if an event e eventually becomes continuously enabled, it has to occur
infinitely many times, that is σ � ♦♦e.en ∧ ♦♦e. This is assumed when
the keyword just is given next to the event and the upper time bound is * or
unspecified. We use e.en and not e.grd in the fairness formula as the event can
only be taken e.l units after its guard became true.

3. Compassionate event scheduling (also known as strong fairness [10]). For any
execution σ ∨ ΣL, if an event e becomes enabled infinitely many times, it has
to occur infinitely many times, that is σ � ♦♦e.en ∧ ♦♦e. This is assumed
when the keyword compassionate is given next to the event and the upper
time bound is * or unspecified.

4. Real-time event scheduling. The (finite) upper time bound (u) of the event e
is taken as a deadline: if the event’s guard is true for u units of time, it has to
occur within u units of after the guard becomes true or after the last occurrence
of e. To achieve this effect, the event e is treated as just. Since tick will not occur
as long as e is urgent (i.e., e.c = e.u), transition e will be forced to occur (unless
some other event occurs and disables it).

To accurately model time, the tick transition is treated as compassionate in
the LTS. This ensures that time progresses except in cases of Zeno-behaviors (dis-
cussed below). Spontaneous events cannot be used to establish liveness proper-
ties. Justice and compassion are strong enough assumptions to establish liveness
properties but not real-time properties. Finally, real-time events can establish
both liveness and real-time properties.

The above semantics allows for Zeno behaviours which occur when there are
loops involving events with zero upper time bound (i.e., e[0, 0]). We could ban
e[0, 0] events altogether, but that would eliminate behaviours that are feasible
and useful, e.g., where we describe a finite sequence of immediately urgent events
(not in a loop). We can check that the system is non-Zeno by checking that the
system satisfies ♦♦tick.

The abstract TTM semantics provided above can be (and has been) imple-
mented efficiently. For example, in the abstract semantics every event e is pre-
ceded by a breaker of monotonicity e#. Most of the e# events do not change the
configuration monotonicity component m and can thus be safely omitted from
the reachability graph thereby shrinking it.
6 The scheduling assumptions are taken care of by the model-checking algorithms [10].

118 J.S. Ostroff et al.

3.3 Semantics of Module Composition

We have specified so far the semantics of individual TTM machines. However,
the TTM notation includes a composition operator which was not discussed
so far. The semantics of systems comprising many machines is defined through
flattening, i.e. by providing a single machine which, by definition, has the same
semantics as the whole system.

Instantiation. When integrating modules in a system, they first have to be instan-
tiated. This means that the interface variables of the module must be linked to
variables of the system it will be a part of. For example if we had a Phil module
with two shared variables, left fork and right fork , and two global fork variables
f1 and f2, we could instantiate them as:

instances p1 = Phil(share f1, share f2) ; p2 = Phil(share f2, share f1) end

This makes f1 the left fork of p1 and the right fork of p1, and makes f2 the left
fork of p2 and the right fork of p1. Philosopher p1 is therefore equivalent to the
module Phil with its references to left fork substituted by f1 and its references
to right fork substituted by f2.

Composition. The composition m1||m2 is an associative and commutative func-
tion of two module instances. Before flattening the composition, we rename the
local variables and the events so that the name of each local variable will be
unique across the whole system. The renaming is done in the variable declara-
tions, in the expressions in events, and on the left-hand sides of assignments. This
is strictly a syntactic change and does not affect the semantics of the instances.

We then proceed to creating the composite machine. Its local variables will
be the (disjoint) union of the local variables of the two instances. Its interface
variables will be the (possibly non-disjoint) union of the interface variables of
both instances with their mode (in, out, share) adjusted. The set of the events
of the composition is the union of the set of events of both machines.

Iterated Composition. Iterated composition is the mechanism that allows us to
compose a number of similar instances without specifying each individually.
For example, in the case of a network of processes, we may want to specify
the processes once and instantiate them many times with a different process
identifier.

system = || pid : PID @ Process(in pid)

where PID is the set of process identifiers. It allows us to change the number
of processes by just changing that set. In this case, if PID = 1..3, the above is
equivalent to:

instances p1 = Process(in 1) ; p2 = Process(in 2) ; p3 = Process(in 3) end
composition system = p1 || p2 || p3 end

TTM/PAT: Specifying and Verifying Timed Transition Models 119

Nuclear Reactor

Pressure
Power Trip Relay

DRT Shutdown Computer

Fig. 2. DRT system: context diagram and transition diagram of controller

4 Evaluation

In Sect. 4.1, we report on the performance of our new TTM model checker in
comparison with the manual encoding in Uppaal and SAL in [6]. If the system
was implemented directly in Uppaal (as opposed to using the manual encod-
ing from a TTM), the Uppaal results would likely have been much better. This
section merely shows that if a designer finds the TTM notation more conve-
nient to use, then our new tool (1) saves the designer from the effort of manual
translation; and (2) performs better than the manually encoded version in other
formats.

In Sect. 4.2, we address the current limitation of TTM/PAT, implemented
using digitization, by reporting on its performance on the Fischers mutual exclu-
sion algorithm, in comparison with the symbolic model checkers Uppaal and
RTS. Experiments were conducted on a 64-bit Windows 7 PC with Intel(R)
Core(TM) i7 CPU 860 @ 2.80 GHz (16.0 GB RAM).

4.1 Delayed Reactor Trip System

The DRT (delayed reactor trip) shutdown system, analyzed in [6], is illustrated
in Fig. 2. The old implementation of the DRT used timers, comparators and logic
gates as shown on the left of Fig. 2. The new DRT system is to be implemented
on a microprocessor system with a cycle time of 100 ms. The system samples
the inputs and passes through a block of control code every 0.1 s. A high-level
state/event description (SPEC) of the code that replaces the analogue system is
shown on the right of Fig. 2 ([6]). When the reactor pressure and power exceed
acceptable safety limits in a specified way, we want the DRT control system to
shut down the reactor. Otherwise, we want the control system to be reset to its
initial monitoring state.

In [6], the SPEC level TTM description of the controller is refined into
a lower level PROG description that is closer to implemented code (in a cyclic
executive). Translations to PVS are used to show that PROG refines SPEC. The

120 J.S. Ostroff et al.

Table 1. TTM/PAT vs. Uppaal vs. SAL: delayed reactor trip system

Property Controller Model
TTM: ♦♦ tick

(s) Result

TTM/PAT

(s)

Uppaal

(s)
SAL
(s)

Fres:

System
Response

SPEC 11 × 11 13 25
PROG 31 × 32 24 407
SPECr 5 × 3 12 15
PROGr 14 × 9 21 330

Fires:

Initialized
System
Response

SPEC .5 � .4 .9 11
PROG 1 � 1 1 20
SPECr .3 � .2 .4 7
PROGr .8 � .6 1 13

SPECr1||SPECr2 16 � 11 62 235
PROGr1||PROGr2 109 � 70 76 >1h

Frec:

System
Recovery

SPEC .3 × .08 .1 6
PROG .8 × .2 .3 7
SPECr .1 � .07 .2 4
PROGr .3 � .07 .6 5

SPECr1||SPECr2 22 × .06 145 18
PROGr1||PROGr2 142 × .1 11 >1h

reactor itself is represented by a TTM that can change the power and pressure
levels arbitrarily every 0.1 s (1 tick of the clock), by using a demonic assignment
setting them to either low or high. The system thus consists of the controller
(either SPEC or PROG) executing in parallel with plant (the reactor). The
system must satisfy two essential properties:

Response Formula Fres. Henceforth, if Power and Pressure simultaneously
exceed their threshold values for at least 2 clock ticks, and 30 ticks later Power
exceeds its threshold for another 2 ticks, then within 30 to 32 ticks, open the
reactor relay for at least 20 ticks.
Recovery Formula Frec. Henceforth, if the relay is open for 20 ticks, and after
the 20th tick the power is low for at least 2 ticks, then the relay is closed before
the 22nd tick.

With an observer and timers, the response formula Fres is represented in
LTL by a liveness property ♦p ∧ ♦q where p and q use timers to capture the
timed response (see [6] for the details). Likewise, the recovery formula Frec can
be reduced to a safety property ♦¬(Tw = 2 → relay = open) where Tw is a
timer describing a state in which the power has returned to normal for 2 ticks
of the clock, but the relay is still open. Both SPEC and PROG did not satisfy
Fres due to an error in the observer. Thus, verification of Fres should produce
counterexamples in any model checker. Also, it was discovered that there was an
error in the controller (in both SPEC and PROG) as the recovery property was
not satisfied. The revised and corrected descriptions of the controller are SPECr

and PROGr, respectively, whose response property is referred to as Fires.
To generate large reachability graphs, multiple controllers were run in paral-

lel. For example, in checking the response property Fires on PROGr1||PROGr2,

TTM/PAT: Specifying and Verifying Timed Transition Models 121

Table 2. TTM/PAT vs. RTS/PAT vs. Uppaal: Fischer’s algorithm

Property Result n Uppaal

(s)

PAT/RTS
TTM/PAT

(s)
clock zone

(s)

digitization

(s)

non-zenoness:
♦♦ tick �

4

not directly supported

.5
5 4
6 31
7 230
8 >1h

P1 mutual exclusion:
♦ (c ∃ 1)

�

4 .04 .12 .08 .26
5 .1 .2 .4 1.9
6 .8 2 3 14
7 14 21 28 104
8 563 250 244 768
9 >1h 2918 >1h >1h

P2 liveness:
♦(request ∈ ♦wait) �

4 .06 .07 .1 .3
5 .2 .3 .8 3
6 4 3 6 24
7 181 29 58 177
8 >1h 307 >1h >1h

P3 liveness:
♦(request ∈ ♦cs) ×

4 .2 .06 .09 .01
5 .2 .3 .9 .01
6 .3 3 19 .03
7 .2 70 942 .04
8 .2 2277 >1h .03

the TTM tool explored 421,442 states and 821,121 transitions (in 70 s). These
systems and their LTL specifications (some valid and some invalid) provide a
rich set of examples to test the performance of the various model checkers. In
[6], the TTMs were manually encoded into the Uppaal and SAL model checkers.
The authors of [6] show that, in general, Uppaal performed better than SAL
given its real-time features.

The manual encoding of TTMs into Uppaal and SAL is a time-consuming
process. This is where the new TTM/PAT tool is useful as the encoding is
automatic. What about performance? In Table 1, we compare TTM/PAT to the
encodings in SAL and Uppaal for response and recovery, and for the various ver-
sions of the controller. The 4th column labelled “Result” has a checkmark where
the LTL property is valid; otherwise, the model checker produces a counterexam-
ple. The 3rd column provides the time it takes to check for non-Zeno behaviour
in the TTM tool (not supported in the other tools). In general, TTM/PAT sig-
nificantly outperforms both encodings in SAL and in Uppaal. There is only one
exception in the second row for Fres. TTM/PAT finds the formula invalid in 9 s
versus 18 s for Uppaal (not shown in the table) where a counterexample is not
requested. However, it takes TTM/PAT 32 s to find the counterexample versus
24 s for Uppaal.

122 J.S. Ostroff et al.

Table 3. TTM vs. Uppaal: language of assertions

Assertion TCTL of Uppaal LTL of TTM/PAT

Henceforth p S � A♦ p S � ♦ p
Eventually p S � A♦ p S � ♦ p
Whenever p, eventually q S � p −∈ q S � ♦ (p ∈ (♦ q))
Infinitely often p S � true −∈ p S � ♦♦ p
Referring to a state M.state pc = state
Non-Zenoness × S � ♦♦ tick
p until q × S � p U q
q releases p × S � q R p
Nesting of temporal operators × e.g., ♦ (♦ p ∈ (pUq))
Referring to occurrences of event e × e
Timer t has increased monotonically × mono (t)
Eventually henceforth p × S � ♦♦ p
S possibly maintains p S � E♦ p inverse of S � ♦ (¬p)
S possibly reaches p S � E♦ p S reaches p
Nesting of path quantifiers × ×
∧♦ ∧♦ p × ×

4.2 Fischer’s Mutual Exclusion Algorithm

TTM/PAT is an explicit state tool for discrete systems. The expectation was
that it would perform well in the category of explicit state model checkers. Nev-
ertheless, it was expected that symbolic checkers (using timed automata) such as
Uppaal would outperform it. In addition, Uppaal is continuous time (although
timing constants in Uppaal are integers) whereas TTMs are discrete time. Nev-
ertheless, the assertion notation of TTMs is more expressive than Uppaal (see
Sect. 5 and Table 3) and its event-based syntax is amenable to formal reasoning
and compositional reasoning.

A comparison was performed in [9] between RTS (a PAT plugin) and Uppaal
using the Fischer’s mutual exclusion algorithm. We compare the performance of
the TTM/PAT tool to RTS and Uppaal using the same example. For a proper
comparison of the three tools, many more examples would be needed.

Our experiment shows that, in determining that properties P1 (a safety
property) and P2 (a liveness property stating that a process requesting access
to its critical section leads it to wait) are valid, the clock zone mode of RTS
is faster than Uppaal (see Table 2). The speed of TTM/PAT is within a fac-
tor between 3 and 4 of the digitization mode of RTS. TTM/PAT is almost as
fast as Uppaal in producing counterexamples for property P3 (expressing the
starvation freedom property). Results in Table 2 (with n the number of processes
put in parallel) suggest that the techniques used in clock zones of RTS
and those of Uppaal would provide enhancements for more efficient verification
of TTMs.

TTM/PAT: Specifying and Verifying Timed Transition Models 123

5 Conclusion

We introduce a convenient, expressive textual syntax for event-based TTMs, and
its operational semantics for building the TTM/PAT tool in the PAT framework.
The TTM assertion language, linear-time temporal logic (LTL), allows references
to event occurrences, including clock ticks (thus allowing for checking non-Zeno
behaviours). The tool supports type checking, graphical simulation, and LTL
verification. The tool performs significantly better on a nuclear shutdown system
than the manually encoded versions in Uppaal and SAL.

The TTM tool is an explicit state model checker (with a discrete time
domain) that has comparable performance to the digitization mode of RTS [9]
(see end of Sect. 4). We can improve the performance of the tool by consider-
ing a continuous time domain and using symbolic analysis, e.g., the clock zone
algorithms of RTS or the timed automata of Uppaal. In either case, this would
come at the cost of expressiveness. Table 3 shows that Uppaal’s TCTL asser-
tion language is less expressive than that of TTM notation. There are temporal
properties such as ♦♦p that can be specified and verified in TTM/PAT but not
in Uppaal. Also, non-Zenoness and timer monotonicity can be checked directly
in the TTM assertion language. In RTS, the construct “P within [l, u]”, which
forces process P to terminate between l and u units of time, is not supported
by the clock zone algorithms; the lower time bound is the problematic part to
implement. Also, RTS does not allow explicit timers which are important for
verifying global timing properties.

The TTM/PAT tool already supports an assume-guarantee style of compo-
sitional reasoning (discussed in an extended report [8]). The use of LTL better
supports compositional reasoning than branching time logic [11]. Event actions
specified as before-after predicates allow us, in the future, to enhance composi-
tional reasoning using axiomatic methods (as in [2]). We intend to explore the
clock zone algorithms of RTS as these are already directly available in the PAT
toolset. We also intend to explore the use of SMT solvers for axiomatic reasoning
about TTMs. We expect that the use of before-after predicates, for specifying
the semantics of events in TTMs, will facilitate this type of formal reasoning.

Acknowledgments. The authors would like to thank NSERC and ORF for their
generous financial support.

References

1. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Chandy, K.M., Misra, J.: Parallel Program Design—a Foundation. Addison-Wesley,

Reading (1989)
3. de Moura, L., Owre, S., Ruess, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:

SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

124 J.S. Ostroff et al.

4. Jee, E., Lee, I., Sokolsky, O.: Assurance cases in model-driven development of the
pacemaker software. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS,
vol. 6416, pp. 343–356. Springer, Heidelberg (2010)

5. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

6. Lawford, M., Pantelic, V., Zhang, H.: Towards integrated verification of timed
transition models. Fund. Inform. 70(1–2), 75–110 (2006)

7. Ostroff, J.S.: Composition and refinement of discrete real-time systems. ACM
Trans. Softw. Eng. Methodol. 8(1), 1–48 (1999)

8. Ostroff, J.S., Wang, C.-W., Hudon, S.: TTM/PAT: a tool for modelling and ver-
ifying timed transition models. Technical Report CSE-2013-05, York University
(2013)

9. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, É.: Modeling and verifying
hierarchical real-time systems using stateful timed CSP. ACM Trans. Softw. Eng.
Methodol. 22(1), 3:1–3:29 (2013)

10. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

11. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

Formalizing and Verifying Function Blocks
Using Tabular Expressions and PVS

Linna Pang(B), Chen-Wei Wang, Mark Lawford, and Alan Wassyng

McMaster Centre for Software Certification, McMaster University,
Hamilton L8S 4K1, Canada

{pangl,wangcw,lawford,wassyng}@mcmaster.ca

Abstract. Many industrial control systems use programmable logic con-
trollers (PLCs) since they provide a highly reliable, off-the-shelf hardware
platform. On the programming side, function blocks (FBs) are reusable
components provided by the PLC supplier that can be combined to
implement the required system behaviour. A higher quality system may
be realized if the FBs are pre-certified to be compliant with an inter-
national standard such as IEC 61131-3. We present an approach to for-
malizing FB requirements using tabular expressions, and to verifying the
correctness of the FBs implementations in the PVS proof environment.
We applied our approach to the example FBs of IEC 61131-3 and identi-
fied issues in the standard: ambiguous behavioural descriptions, missing
assumptions, and erroneous implementations.

Keywords: Critical systems · Formal specification · Formal verifica-
tion · Function blocks · Tabular expressions · IEC 61131-3 · PVS

1 Introduction

Many industrial control systems have replaced traditional analog equipment
by components that are based upon programmable logic controllers (PLCs) to
address increasing market demands for high quality [1]. Function blocks (FBs)
are basic design units that implement the behaviour of a PLC, where each FB is a
reusable component for building new, more sophisticated components or systems.
The search for higher quality may be realized if the FBs are pre-certified with
respect to an international standard such as IEC 61131-3 [8,9]. Standards such
as DO-178C (in the aviation domain) and IEEE 7-4.3.2 (in the nuclear domain)
list acceptance criteria of mission- or safety-critical systems for practitioners to
comply with. Two important criteria are that (1) the system requirements are
precise and complete; and that (2) the system implementation exhibits behav-
iour that conforms to these requirements. In one of its supplements, DO-178C
advocates the use of formal methods to construct, develop, and reason about
the mathematical models of system behaviours.

Tabular expressions [20,21] are a way to document system requirements that
have proven to be both practical and effective in industry [13,25]. PVS [18]

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 125–141, 2014.
DOI: 10.1007/978-3-319-05416-2 9, c© Springer International Publishing Switzerland 2014

126 L. Pang et al.

Fig. 1. Framework

is a non-commercial theorem prover, and provides an integrated environment
with mechanized support for writing specifications using tabular expressions and
(higher-order) predicates, and for (interactively) proving that implementations
satisfy the tabular requirements using sequent-style deductions. In this paper we
report on using tabular expressions to formalize the requirements of FBs and on
using PVS to verify their correctness (with respect to tabular requirements).

As a case study, we have formalized1 23 of 29 FBs listed in IEC 61131-3 [8,9],
an important standard with over 20 years of use on critical systems running on
PLCs. There are two compelling reasons for formalizing the existing behavioural
descriptions of FBs supplied by IEC 61131-3. First, formal descriptions such as
tabular expressions force tool vendors and users of FBs to have the same inter-
pretations of the expected system behaviours. Second, formal descriptions are
amenable to mechanized support such as PVS to verify the conformance of can-
didate implementations to the high-level, input-output requirements. Currently
IEC 61131-3 lacks an adequate, formal language for describing the behaviours
of FBs and for arguing about their correctness. Unfortunately, IEC 61131-3 uses
FB descriptions that are too close to the level of hardware implementations.
For the purpose of this paper, we focus on FBs that are described in the more
commonly used languages of structured text (ST) and function block diagrams
(FBDs). Note that two versions of IEC 61131-3 are cited here. The earlier ver-
sion [8] has been in use since 2003. Most of the work reported on in this paper
relates to this version. When the new version [9] was issued, we expected to find
that the problems we had discovered in the earlier version had been corrected.
However, we found that many of the example FBs had been removed from the
standard and the remaining FBs are still problematic.

We now summarize our approach and contributions with reference to Fig. 1.
As shown on the left, a function block will typically have a natural language
description of the block behaviour accompanied by a detailed implementation in
the ST or FBD description, or in some cases both. Based upon all of this infor-
mation we create a black box tabular requirements specification in PVS for the

1 PVS files are available at http://www.cas.mcmaster.ca/∼lawford/papers/
FTSCS2013. All verifications are conducted using PVS 5.0.

http://www.cas.mcmaster.ca/~lawford/papers/FTSCS2013
http://www.cas.mcmaster.ca/~lawford/papers/FTSCS2013

Formalizing and Verifying Function Blocks 127

behaviour of the FB as described in Sect. 3.2. The ST and FBD implementations
are formalized as predicates in PVS, again making use of tables, as described in
Sect. 3.1. In the case when there are two implementations for an FB, one in FBD
and the other in ST, we attempt to prove their (functional) equivalence in PVS.
For any implementation we attempt to prove the correctness and consistency
with respect to the FB requirements in PVS (Sect. 4).

Using our approach, we have identified a number of issues in IEC 61131-3
and suggested resolutions (Sect. 5), which are summarized below:

1. The behaviour of the pulse timer is characterized through a timing diagram
with at least two scenarios unspecified.

2. The description of the sr block (a set-dominant latch) lacks an explicit time
delay on the intermediate values being computed and fed back. By introducing
a delay FB, we verified the correctness of sr.

3. The description of the up-down counter ctud permits unintuitive behaviours.
We eliminate them by incorporating a relation on its three inputs (i. e., low
limit, high limit, and preset value) in the tabular requirement of ctud.

4. The description of the limits alarm block allows the low limit and high limit
alarms to be tripped simultaneously. We resolve this by explicitly constraining
the two hysteresis zones to be both disjoint and ordered.

5. The ST and FBD implementations for the stack int block (stack of integers)
failed the equivalence proof. We identified a missing FB in the FBD imple-
mentation, and then discharged the proof.

We will discuss issues (1), (2), and (3) in further detail in Sect. 5. Details of
the remaining issues that we omit are available in an extended report [19]. In
the next section we discuss background materials: the IEC 61131-3 Standard,
tabular expressions, and PVS.

2 Preliminaries

2.1 IEC 61131-3 Standard Function Blocks

Programmable logic controllers (PLCs) are digital computers that are widely
utilized in real-time and embedded control systems. In the light of unifying the
syntax and semantics of programming languages for PLCs, the International
Electrotechnical Committee (IEC) first published IEC 61131-3 in 1993 with
revisions in 2003 [8] and 2013 [9]. The issues of ambiguous behaviours, miss-
ing assumptions, and erroneous behavioural descriptions that we found have not
been resolved in the latest edition.

We applied our methodology to the standard functions and function blocks
listed in Annex F of IEC 61131-3 (1993). FBs are more flexible than standard
functions in that they allow internal states, feedback paths and time-dependent
behaviours. We distinguish between basic and composite FBs: the former consist
of standard functions only, while the latter can be constructed from standard
functions and any other pre-developed basic or composite FBs. We focus on two

128 L. Pang et al.

Fig. 2. Limits alarm standard declaration and FBD implementation [8]

programming languages that are covered in IEC 61131-3 for writing behavioural
descriptions of FBs: structured text (ST) and function block diagrams (FBDs).
ST syntax is block structured and resembles that of Pascal, while FBDs visualize
inter-connections or data flows between inputs and outputs of block components.

Figure 2 shows the FBD of the limits alarm block, consisting of declarations
of inputs and outputs, and the definition of computation. An alarm monitors
the quantity of some variable x, subject to a low limit l and a high limit h,
with the hysteresis band of size eps. The body definition visualizes how ultimate
and intermediate outputs are computed, e. g., output ql is obtained by comput-
ing HYSTERESIS(l + (eps/2.0), x, eps/2.0). There are five internal component
blocks of limits alarm: addition (+), subtraction(−), division (/), logical disjunc-
tion (→ 1), and the hysteresis effect (hysteresis). The internal connectives are w1,
w2 and w3. Section 3.2 presents the precise input-output tabular requirement.

2.2 Tabular Expressions

Tabular expressions [20,21] (a. k. a. function tables) are an effective approach to
describing conditionals and relations, thus ideal for documenting many system
requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Tabular expressions have well-defined
formal semantics (e. g., [10]), and they are useful both in inspections and in test-
ing and verification [25]. For our purpose of capturing the input-output require-
ments of function blocks in IEC 61131-3, the tabular structure in Fig. 3 suffices:
the input domain and the output range are partitioned into rows of, respec-
tively, the first column (for input conditions) and the second column (for output
results). The input column may be sub-divided to specify sub-conditions.

We may interpret the above tabular structure as a list of “if-then-else” pred-
icates or logical implications. Each row defines the input circumstances under

Formalizing and Verifying Function Blocks 129

Fig. 3. Semantics of horizontal condition table (HCT)

which the output f is bound to a particular result value. For example, the first
row corresponds to the predicate (C1 ∧ C1.1 ⇒ f = res1), and so on. In docu-
menting input-output behaviours using horizontal condition tables (HCTs), we
need to reason about their completeness and disjointness. Suppose there is no
sub-condition, completeness ensures that at least one row is applicable to every
input, i. e., (C1 ∗ C2 ∗ · · · ∗ Cn ⊆ True). Disjointness ensures that the rows do
not overlap, e. g., (i ∧= j ⇒ ¬(Ci ∧ Cj)). Similar constraints apply to the sub-
conditions, if any. These properties can often be easily checked automatically
using SMT solvers or a theorem prover such as PVS [6].

2.3 PVS

Prototype Verification System (PVS) [18] is an interactive environment for writ-
ing specifications and performing proofs. The PVS specification language is based
on classical higher-order logic. The syntactic constructs that we use the most
are “if-then-else” predicates and tables, which we will explain as we use them.
An example of using tabular expressions to specify and verify the Darlington
Nuclear Shutdown System (SDS) in PVS can be found in [13].

PVS has a powerful interactive proof checker to perform sequent-style deduc-
tions. The completeness and disjointness properties are generated automatically
as Type Correctness Conditions (TCCs) to be discharged. We will discuss a
found issue (Sect. 5) where the ST implementation supplied by IEC 61131-3 is
formalized as a PVS table but its disjointness TCC failed to be discharged. In
this paper we omit proof details that are available in an extended report [19].

As PLCs are commonly used in real-time systems, time modelling is a critical
aspect in our formalization. We consider a discrete-time model in which a time
series consists of equally spaced sample times or “ticks” in PVS:

Constant delta t is a positive real number. Here time is the set of non-
negative real numbers, and tick is the set of time samples [7].

130 L. Pang et al.

3 Formalizing Function Blocks Using Tabular Expressions

Below we present a formal approach to defining standard functions and function
blocks in IEC 61131-3 using tabular expressions.

3.1 Formalizing IEC 61131-3 Function Block Implementations

We perform formalization at levels of standard functions, basic function blocks
(FBs), and composite FBs. Similar to [4], we formulate each standard function
or function block as a predicate, characterizing its input-output relation.

Standard Functions. IEC 61131-3 defines eight groups of standard functions,
including: (1) data type conversion; (2) numerical; (3) arithmetic; (4) bit-string;
(5) selection and comparison; (6) character string; (7) time and date types; and
(8) enumerated data types. In general, we formalize the behaviour of a standard
function f as a Boolean function:

f(i1, i2, . . . , im, o1, o2, . . . , on) : bool ⊆ R(i1, i2, . . . , im, o1, o2, . . . , on)

where predicate R characterizes the precise relation on the m inputs and the
n outputs of standard function f . Our formalization covers both timed and
untimed behaviours of standard functions. As an example of a timed function,
consider function move that takes as inputs an enabling condition en and an
integer in, and that outputs an integer out. The behaviour of move is time-
dependent: at the very first clock tick, out is initialized to zero; otherwise, at
time instant t (t > 0), out is either equal to in at time t, if condition en holds
at t, or otherwise out is equal to in at time t−α ∨ δ (α = 1, 2, . . .) where en was
last enabled (i. e., a case of “no change” for out). More precisely, we translate
the input-output relation of function move into PVS:

We characterize the temporal relation between in and out as a universal quan-
tification over discrete time instants. Functions [tick->bool] and [tick->int]

capture the input and output values at different time instants. The behaviour
at each time instant t is expressed as an IF...THEN...ELSE...ENDIF state-
ment. Construct TABLE...ENDTABLE that appears in the ELSE branch exempli-
fies the use of tabular expressions as part of a predicate. The main advantage of

Formalizing and Verifying Function Blocks 131

embedding tables in predicates is that the PVS prover will generate proof oblig-
ations for completeness and disjointness accordingly.

Untimed behaviour, on the other hand, abstracts from the input-output rela-
tion at the current time instant, which makes first-order logic suffice for the for-
malization. For example, consider the standard function add that is used as an
internal component of the FB limits alarm (see Fig. 2), which has the obvious
formalization: add(in1, in2, out : int) : bool ⊆ out = in1 + in2. Incorporating
the output value out as part of the function parameters makes it possible to
formalize basic FBs with internal states, or composite FBs. For basic FBs with
no internal states, we formalize them as function compositions of their internal
blocks. As a result, we also support a version of add that returns an integer
value: add(in1, in2 : int) : int = in1 + in2.

Basic Function Blocks. A basic function block (FB) is an abstraction com-
ponent that consists of standard functions. When all internal components of a
basic FB are functions, and there are no intermediate values to be stored, we
formalize the output as the result of a functional composition of the internal
functions. For example, given FB weigh, which takes as inputs a gross weight
gw and a tare weight tw and returns the net weight nw, we formalize weigh by
defining the output nw as nw = int2bcd(subtract(bcd2int(gross), tare)), where
int2bcdandbcd2int are standard conversion functions between binary-coded dec-
imals and integers. On the other hand, to formalize a basic FB that has internal
states to be stored, we take the conjunction of the predicates that formalize its
internal functions. We formalize composite FBs in a similar manner.

Composite Function Block. Each composite FB contains as components
standard functions, basic FBs, or other pre-developed composite FBs. For exam-
ple, limits alarm (Sect. 2) is a composite FB consisting of standard functions and
two instances of the pre-developed composite FB hysteresis. Our formalization
of each component as a predicate results in compositionality : a predicate that
formalizes a composite FB is obtained by taking the conjunction of those that
formalize its components. IEC 61131-3 uses ST and FBD to describe compos-
ite FBs.

Remark. Predicates that formalize basic or composite FBs represent their black-
box input-output relations. Since we use function tables in PVS to specify these
predicates, their behaviours are deterministic. This allows us to easily compose
their behaviours using logical conjunction. The conjunction of deterministic com-
ponents is functionally deterministic.

Formalizing Composite FB Implementation: ST. We translate an ST
implementation supplied by IEC 61131-3 into its equivalent expression in PVS.
We illustrate (parts of2) our ST-to-PVS translation using concrete examples.

2 Other translation patterns can be found in [19].

132 L. Pang et al.

Pattern 1 illustrates that we transform sequential compositions (;) into log-
ical conjunctions (&). We write a−1 to denote the value of variable a at the
previous time tick (i. e., before the current function block is executed). In gen-
eral, we constrain the relationship between each variable v and v−1 to formalize
the effect of its containing function block.

Pattern 2 illustrates that we reconstruct conditional statement by taking the
conjunction of the assignment effect of each variable; each variable assignment
is formalized via a tabular expression. How variables are used in the tables is
used to derive the order of evaluation. For example, b is evaluated before c to
compute c = a + b.

For the above example, an “if-then-else” conditional that returns the conjunc-
tion of the variable update predicates more closely correspond to the original
ST implementation may instead be used. In general though when assignment
conditions become more complicated, we feel it is clearer to isolate the update
of each variable.

Pattern 3 illustrates that we translate each invocation of a function block FB

into an instantiation of its formalizing predicate FB REQ, where the return value
of FB (i. e., FB.output) is incorporated as an argument of FB REQ.

Formalizing Composite FB Implementation: FBD. To illustrate the case
of formalizing a FBD implementation supplied by IEC 61131-3, let us consider
the following FBD of a composite FB and its formalizing predicate in Fig. 4:

Formalizing and Verifying Function Blocks 133

Fig. 4. Composite FB implementation in FBD and its formalizing predicate

Figure 4 consists of four internal blocks, B1, B2, B3, and B4, that are already for-
malized (i. e., their formalizing predicates B1 REQ,. . . ,B4 REQexist). The high-
level requirement (as opposed to the implementation supplied by IEC 61131-3)
for each internal FB constrains upon its inputs and outputs, documented by tab-
ular expressions (see Sect. 3.2). To describe the overall behaviour of the above
composite FB, we take advantage of our formalization being compositional. In
other words, we formalize a composite FB by existentially quantifying over the
list of its inter-connectives (i. e., w1, w2 and w3), such that the conjunction of
predicates that formalize the internal components hold.

For example, we formalize the FBD implementation of block limits alarm
(Sect. 2) as a predicate LIMITS ALARM IMPL in PVS:

We observe that predicate LIMITS ALARM IMPL, as well as those for the internal
components, all take a time instant t ∪ tick as a parameter. This is to account
for the time-dependent behaviour, similar to how we formalized the standard
function move in the beginning of this section.

The above predicates that formalize the internal components, e. g., predicate
HYSTERESIS req tab, do not denote those translated from the ST implementa-
tion of IEC 61131-3. Instead, as one of our contributions, we provide high-level,
input-output requirements that are missing from IEC 61131-3 (to be discussed
in the next section). Such formal, compositional requirement are developed for
the purpose of formalizing and verifying sophisticated, composite FBs.

3.2 Formalizing Requirements of Function Blocks

As stated, IEC 61131-3 supplies low-level, implementation-oriented ST or FBD
descriptions for function blocks. For the purpose of verifying the correctness of

134 L. Pang et al.

Fig. 5. Limits alarm requirement in tabular expression

the supplied implementation, it is necessary to obtain requirements for FBs that
are both complete (on the input domain) and disjoint (on producing the out-
put). Tabular expressions (in PVS) are an excellent notation for describing such
requirements. Our method for deriving the tabular, input-output requirement
for each FB is to partition its input domain into equivalence classes, and for
each such input condition, we consider what the corresponding output from the
FB should be.

As an example, we consider the requirement for function block limits alarm
(Sect. 2). The expected input-output behaviour and its tabular requirement
(which constrains the relation between inputs x, h, l, eps and outputs q, qh,
ql) is depicted in Fig. 5. We use “NC” to denote “No Change”, i. e., the value
of variable qh is equal to the value at previous time tick qh−1. Our formaliza-
tion process revealed the need for two missing assumptions from IEC 61131-3:
eps > 0 and l + eps < h − eps. They allow us to ensure that the two hysteresis
zones [l, l + eps] and [h − eps, h] are non-empty, disjoint and ordered [19].

Let predicates f qh, f ql, and f q be those that formalize, respectively, the
table for qh, ql and q, we then translate the above requirement into PVS as:

By using the function definitions of q, qh and ql, we can verify the correctness
of the FBD implementation of limits alarm, formalized as the predicate above.
This process can be generalized to verify other FBDs in IEC 61131-3.

Formalizing and Verifying Function Blocks 135

4 Verifying Function Blocks in PVS

We now present the two kinds of verification we perform.

4.1 Verifying the Correctness of an Implementation

Given an implementation predicate I, our correctness theorem states that, if I
holds for all possible inputs and outputs, then the corresponding requirement
predicate R also holds. This corresponds to the proofs of correctness shown in
Fig. 1. For example, to prove that the FBD implementation of block limits alarm
in Sec. 3.1 is correct with respect to its requirement in Sec. 3.2, we must prove
the following in PVS:

≡ ∀h, x, l, eps • ∀qh, q, ql • limits alrm impl(h, x, l, eps, qh, q, ql) ⇒
limits alrm req(h, x, l, eps, qh, q, ql) (1)

Furthermore, we also need to ensure that the implementation is consistent
or feasible, i. e., for each input list, there exists at least one corresponding list
of outputs, such that I holds. Otherwise, the implementation trivially satisfies
any requirements. This is shown in Fig. 1 as proofs of consistency. In the case of
limits alarm, we must prove the following in PVS:

≡ ∀h, x, l, eps • ∃qh, q, ql • limits alrm impl(h, x, l, eps, qh, q, ql) (2)

4.2 Verifying the Equivalence of Implementations

In IEC 61131-3, block limits alarm is supplied with ST only. In theory, when both
ST and FBD implementations are supplied for the same FB (e. g., stack int), it
may suffice to verify that each of the implementations is correct with respect to
the requirement. However, as the behaviour of FBs is intended to be deterministic
in most cases, it would be worth proving that the implementations (if they are
given at the same level of abstraction) are equivalent, and generate scenarios, if
any, where they are not. This is also labelled in Fig. 1 as proofs of equivalence.

In Sect. 3.1 we discussed how to obtain, for a given FB, a predicate for its ST
description (say FB st impl) and one for its FBD description (say FB fbd impl).
Both predicates share the same input list i1, . . . , im and output list o1, . . . , on.
Consequently, to verify that the two supplied implementations are equivalent,
we must prove the following in PVS:

≡ ∀i1, . . . , im • ∀o1, . . . , on •
FB st impl(i1, . . . , im, o1, . . . , on) ⊆ FB fbd impl(i1, . . . , im, o1, . . . , on) (3)

However, the verification of block stack int is an exception. Its ST and FBD
implementations are at different levels of abstraction: the FBD description is
closer to the hardware level as it declares additional, auxiliary variables to indi-
cate system errors (Appendix E of IEC 61131-3) and thus cause interrupts. Con-
sequently, we are only able to prove a refinement (i. e., implication) relationship
instead (i. e., the FBD implementation implies the ST implementation).

136 L. Pang et al.

Although IEC 61131-3 (2003) had been in use for almost 10 years, while
performing this verification on stack int, we found an error (of a missing FB in
the FBD implementation) that made the above implication unprovable [19].

5 Case Study: Issues Found in Standard IEC 61131-3

To justify the value of our approach (Sects. 3 and 4), we have formalized and
verified 23 of 29 FBs from IEC 61131-3. Our coverage so far has revealed a
number of issues that are listed in the introduction. We briefly discuss the first
three and our reactions to them. The complete discussion is available in [19].

5.1 Ambiguous Behaviour: Pulse Timer in Timing Diagrams

Block pulse is a timer defined in IEC 61131-3, whose graphical declaration is
shown on the LHS of Fig. 6. It takes two inputs (a boolean condition in and
a length pt of time period) and produces two outputs (a boolean value q and
a length et of time period). It acts as a pulse generator: as soon as the input
condition in is detected to hold, it generates a pulse to let output q remain true
for a constant pt of time units. The elapsed time that q has remained true can
also be monitored via output et. IEC 61131-3 presents a timing diagram3 as
depicted on the RHS of Fig. 6, where the horizontal time axis is labelled with
time instants ti (i ∪ 0..5), to specify (an incomplete set of) the behaviour of
block pulse.

Fig. 6. pulse timer declaration and definition in timing diagram

The above timing diagram suggests that when a rising edge of the input
condition in is detected at time t, another rising edge that occurs before time
t+ pt may not be detected, e. g., the rising edge occurring at t3 might be missed
as t3 < t2 + pt.

The use of timing diagrams to specify behaviour is limited to a small number
of use cases; subtle or critical boundary cases are likely to be missing. We for-
malize the pulse timer using tabular expressions that ensure both completeness
and disjointness. We found that there are at least two scenarios that are not
covered by the above timing diagram supplied by IEC 61131-3. First, if a rising

3 For presenting our found issues, it suffices to show just the parts of in and q.

Formalizing and Verifying Function Blocks 137

Fig. 7. Requirement of pulse timer using tabular expressions

edge of condition in occurred at t2 + pt, should there be a pulse generated to
let output q remain true for another pt time units? If so, there would be two
connected pulses: from t2 to t2 + pt and from t2 + pt to t2 + 2pt. Second, if the
rising edge that occurred at t3 stays high until some time tk, (t2 + pt ≈ tk ≈ t4),
should the output et be default to 0 at time t2 + pt or at time tk?

We use the three tables in Fig. 7 to formalize the behaviour of the pulse timer,
where outputs q and et and the internal variable pulse start time are initialized
to, respectively, false, 0, and 0. The tables have their obvious equivalents in
PVS. To make the timing behaviour precise, we define two auxiliary predicates
Held For and Held For ts which are based on the work presented in [7]:

Predicate Held For(P, duration) holds when the input predicate P holds for
at least duration units of time. Predicate Held For ts(P, duration, ts) is more
restricted, insisting that the starting time of duration is ts. As a result, we make
explicit assumptions to disambiguate the above two scenarios. Scenario 1 would
match the condition row (in bold) in the upper-left table for output q, where
q at the previous time tick holds (i. e., q−1) and q has already held for pt time
units, so the problematic rising edge that occurred at t2 + pt would be missed.
Due to our resolution to Scenario 1, at time t2+pt, Scenario 2 would match the
condition row (in bold) in the lower table for output et, where q at the current
time tick does not hold (i. e., ¬q), condition in has held for more than pt time
units, so the value of et remains as pt without further increasing.

As pulse timer is not supplied with implementation, there are no correctness
and consistency proofs to be conducted. Nonetheless, obtaining a precise, com-
plete, and disjoint requirement is valuable for future concrete implementations.

138 L. Pang et al.

5.2 Ambiguous Behaviour: Implicit Delay Unit

PLC applications often use feedback loops: outputs of a FB are connected as
inputs of either another FB or the FB itself. IEC 61131-3 specifies feedback
loops through either a connecting line or shared names of inputs and outputs.
However, feedback values (or of intermediate output values) cannot be computed
instantaneously in reality. We address this issue by introducing a delay block Z−1

and its formalization below:

Fig. 8. Block sr implementation in FBD and its formalizing predicate

There is an explicit, one-tick delay between the input and output of block
Z−1, making it suitable for denoting feedback values as output values produced
in the previous execution cycle. The types of i and o must match. For example,
block sr creates a set-dominant latch (a. k. a. flip-flop), takes as inputs a boolean
set flag s1 and a boolean reset flag r, and returns a boolean output q1. The value
of q1 is fed back as another input of block sr. Value of q1 remains true as long
as the set flag s1 is enabled, and q1 is reset to false only when both flags are
disabled. There should be a delay between the value of q1 is computed and passed
to the next execution cycle. We formalize this by adding the explicit delay block
Z−1 and conjoining predicates for the internal blocks (as shown in Fig. 8). Blocks
B1 (formalized by predicate neg), B2 (conj), B3 (disj), and B4 (Z−1) in Fig. 8
denote the FB of, respectively, logical negation, conjunction, disjunction, and
delay. Arrows w1, w2, and w3 are internal connectives. Adding an explicit delay
block Z−1 to formalize feedback loops led us to discharge the correctness and
consistency theorems (Sect. 4) of the FBD implementation in Fig. 8.

5.3 Missing Assumption: Limit on Counters FBs

An up-down counter (ctud) in IEC 61131-3 is composed of an up counter (ctu)
and a down counter (ctd). The output counter value cv is incremented (using
the up counter) if a rising edge is detected on an input condition cu, or cv is
decremented (using the down counter) if a rising edge is detected on the input
cd. Actions of increment and decrement are subject to, respectively, a high limit

Formalizing and Verifying Function Blocks 139

PVmax and a low limit PVmin. The value of cv is loaded to a preset value pv if
a load flag ld is true; and it is default to 0 if a reset condition r is enabled. Two
Boolean outputs are produced to reflect the change on cv : qu ⊆ (cv > pv) and
qd ⊆ (cv <= 0).

As we attempted to formalize and verify the correctness of the ST implemen-
tation of block ctud supplied by IEC 61131-3, we found two missing assumptions.

Fig. 9. Tabular requirement of ctud

First, the relationship between
the high and low limits is not stated.
Let PVmin be 10 and PVmax be 1,
then the counter can only increment
when cv < 1, decrement when cv >
10 (disabled when 1 ≈ cv ≈ 10). This
contradicts with our intuition about
how low and high limits are used to
constrain the behaviour of a counter.
Consequently, we introduce a new
assumption4: PVmin < PVmax.

Second, the range of the preset
value pv, with respect to the limits
PVmin and PVmax, is not clear. If
cv is loaded by the value of pv, such
that pv > PVmax, the output qu can never be true, as the counter increments
when cv < PVmax. Similarly, if pv is such that pv < PVmin and pv = 1, the
output qd can never be true, as the counter decrements when cv > PVmin. As
a result, we introduce another assumption: PVmin < pv < PVmax. Our tabular
requirement for the up-down counter that incorporates the missing assumption
is shown in Fig. 9. Similarly, we added pv < PVmax and PVmin < pv as assump-
tions for, respectively, the up and down counters.

6 Related Work

There are many works on formalizing and verifying PLC programs specified
by programming languages covered in IEC 61131-3, such as sequential func-
tion charts (SFCs). Some approaches choose the environment of model checking:
e. g., to formalize a subset of the language of instruction lists (ILs) using timed
automata, and to verify real-time properties in Uppaal [15]; to automatically
transform SFC programs into the synchronous data flow language of Lustre,
amenable to mechanized support for checking properties [12]; to transform FBD
specifications to Uppaal formal models to verify safety applications in the indus-
trial automation domain [23]; to provide the formal operational semantics of ILs
which is encoded into the symbolic model checker Cadence SMV, and to verify
rich behavioural properties written in linear temporal logic (LTL) [5]; and to
provide the formal verification of a safety procedure in a nuclear power plant

4 If the less intuitive interpretation is intended, we fix the assumption accordingly.

140 L. Pang et al.

(NPP) in which a verified Coloured Petri Net (CPN) model is derived by rein-
terpretation from the FBD description [17]. There is also an integration of SMV
and Uppaal to handle, respectively, untimed and timed SFC programs [2].

Some other approaches adopt the verification environment of a theorem
prover: e. g., to check the correctness of SFC programs, automatically gener-
ated from a graphical front-end, in Coq [3]; and to formalize PLC programs
using higher-order logic and to discharge safety properties in HOL [24]. These
works are similar to ours in that PLC programs are formalized and supported
for mechanized verifications of implementations. An algebra approach for PLC
programs verification is presented in [22]. In [14], a trace function method (TFM)
based approach is presented to solve the same problem as ours.

Our work is inspired by [16] in that the overall system behaviour is defined by
taking the conjunction of those of internal components (circuits in [16] or FBs in
our case). Our resolutions to the timing issues of the pulse timer are consistent
with [11]. However, our approach is novel in that (1) we also obtain tabular
requirements to be checked against, instead of writing properties directly for the
chosen theorem prover or model checker; and (2) our formalization makes it easier
to comprehend and to reason about properties of disjointness and completeness.

7 Conclusion and Future Work

We present an approach to formalizing and verifying function blocks (FBs) using
tabular expressions and PVS. We identified issues concerning ambiguity, missing
assumptions, and erroneous implementations in the IEC 61131-3 standard of
FBs. As future work, we will apply the same approach to the remaining FBs in
IEC 61131, and possibly to IEC 61499 that fits well with distributed systems.

References

1. Bakhmach, E., Siora, O., Tokarev, V., Reshetytskyi, S., Kharchenko, V., Bezsalyi,
V.: FPGA - based technology and systems for I&C of existing and advanced reac-
tors. International Atomic Energy Agency, p. 173 (2009), IAEA-CN-164-7S04

2. Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M.,
Stursberg, O.: Verification of PLC programs given as sequential function charts.
In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E.,
Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 517–540. Springer, Heidel-
berg (2004)

3. Blech, J.O., Biha, S.O.: On formal reasoning on the semantics of PLC using Coq.
CoRR abs/1301.3047 (2013)

4. Camilleri, A., Gordon, M., Melham, T.: Hardware verification using higher-order
logic. Technical Report UCAM-CL-TR-91, Cambridge University Computer Lab
(1986)

5. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the auto-
matic verification of PLC programs written in instruction list. In: IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pp. 2449–2454 (2000)

Formalizing and Verifying Function Blocks 141

6. Eles, C., Lawford, M.: A tabular expression toolbox for Matlab/Simulink. In:
NASA Formal Methods, pp. 494–499 (2011)

7. Hu, X., Lawford, M., Wassyng, A.: Formal verification of the implementability of
timing requirements. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol.
5596, pp. 119–134. Springer, Heidelberg (2009)

8. IEC: 61131–3 Ed. 2.0 en:2003: Programmable Controllers – Part 3: Programming
Languages. International Electrotechnical Commission (2003)

9. IEC: 61131–3 Ed. 3.0 en:2013: Programmable Controllers – Part 3: Programming
Languages. International Electrotechnical Commission (2013)

10. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions.
Sci. Comput. Program. 75(11), 980–1000 (2010)

11. John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation
Systems Concepts and Programming Languages, Requirements for Programming
Systems, Decision-Making Aids, 2nd edn. Springer, Heidelberg (2010)

12. Kabra, A., Bhattacharjee, A., Karmakar, G., Wakankar, A.: Formalization of
sequential function chart as synchronous model in Lustre. In: NCETACS, pp. 115–
120 (2012)

13. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the specification and verification of safety critical
software. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, p. 73. Springer, Hei-
delberg (2000)

14. Liu, Z., Parnas, D., Widemann, B.: Documenting and verifying systems assembled
from components. Front. Comput. Sci. China 4(2), 151–161 (2010)

15. Mader, A., Wupper, H.: Timed automaton models for simple programmable logic
controllers. In: ECRTS, pp. 114–122. IEEE (1999)

16. Melham, T.: Abstraction mechanisms for hardware verification. VLSI Specifica-
tion, Verification and Synthesis, pp. 129–157. Kluwer Academic Publishers, Boston
(1987)

17. Németh, E., Bartha, T.: Formal verification of safety functions by reinterpretation
of functional block based specifications. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 199–214. Springer, Heidelberg (2009)

18. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

19. Pang, L., Wang, C.W., Lawford, M., Wassyng, A.: Formalizing and verifying func-
tion blocks using tabular expressions and PVS. Technical Report 11, McSCert,
Aug 2013

20. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

21. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Softw. Eng. 20, 948–976 (1994)

22. Roussel, J.M., Faure, J.: An algebraic approach for PLC programs verification. In:
6th International Workshop on Discrete Event Systems, pp. 303–308 (2002)

23. Soliman, D., Thramboulidis, K., Frey, G.: Transformation of function block dia-
grams to Uppaal timed automata for the verification of safety applications. Ann.
Rev. Control 36, 338–345 (2012)

24. Völker, N., Krämer, B.J.: Automated verification of function block-based industrial
control systems. Sci. Comput. Program. 42(1), 101–113 (2002)

25. Wassyng, A., Janicki, R.: Tabular expressions in software engineering. In: Proceed-
ings of ICSSEA’03, Paris, France, vol. 4, pp. 1–46 (2003)

Reflections on Verifying Software with Whiley

David J. Pearce(B) and Lindsay Groves

Victoria University of Wellington, Wellington, New Zealand
{djp,lindsay}@ecs.vuw.ac.nz

Abstract. An ongoing challenge for computer science is the develop-
ment of a tool which automatically verifies that programs meet their
specifications, and are free from runtime errors such as divide-by-zero,
array out-of-bounds and null dereferences. Several impressive systems
have been developed to this end, such as ESC/Java and Spec#, which
build on existing programming languages (e.g. Java, C#). Unfortunately,
such languages were not designed for this purpose and this significantly
hinders the development of practical verification tools for them. For
example, soundness of verification in these tools is compromised (e.g.
arithmetic overflow is ignored). We have developed a programming lan-
guage specifically designed for verification, called Whiley, and an accom-
panying verifying compiler. In this paper, we reflect on a number of
challenges we have encountered in developing a practical system.

1 Introduction

The idea of verifying that a program meets a given specification for all possi-
ble inputs has been studied for a long time. Hoare’s Verifying Compiler Grand
Challenge was an attempt to spur new efforts in this area to develop practical
tools [1]. A verifying compiler “uses automated mathematical and logical reason-
ing to check the correctness of the programs that it compiles”. Hoare’s intention
was that verifying compilers should fit into the existing development tool chain,
“to achieve any desired degree of confidence in the structural soundness of the
system and the total correctness of its more critical components”. For example,
commonly occurring errors could be automatically eliminated, such as: division-
by-zero, integer overflow, buffer overruns and null dereferences.

The first systems that could be reasonably considered as verifying compilers
were developed some time ago, and include that of King [2], Deutsch [3], the
Gypsy Verification Environment [4] and the Stanford Pascal Verifier [5]. Follow-
ing on from these, was the Extended Static Checker for Modula-3 [6]. Later, this
became the Extended Static Checker for Java (ESC/Java) — a widely acclaimed
and influential work in this area [7]. Building on this success was the Java Mod-
eling Language (and its associated tooling) which provided a standard notation
for specifying functions in Java [8,9]. More recently, the Spec# language [10–12]
was developed on top of C#, whilst Dafny was developed from scratch to simplify
verification [13,14].

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 142–159, 2014.
DOI: 10.1007/978-3-319-05416-2 10, c© Springer International Publishing Switzerland 2014

Reflections on Verifying Software with Whiley 143

Continuing this line of work, we are developing a verifying compiler for
the Whiley programming language [15–18]. Whiley is an imperative language
designed to simplify verification and to be suitable for safety-critical systems.
For example, Whiley uses unbounded integer and rational arithmetic in place of
e.g. IEEE 754 floating point (which is notoriously difficult to reason about [19]).
Likewise, pure (i.e. mathematical) functions are distinguished from those which
may have side-effects. Our goal is to develop a verifying compiler which can
automatically establish a Whiley program as: correct with respect to its declared
specifications; and, free from runtime error (e.g. divide-by-zero, array index-
out-of-bounds, etc.). More complex properties, such as establishing termina-
tion, are not considered (although would be interesting future work). Finally,
the Whiley verifying compiler is released under an open source license (BSD),
can be downloaded from http://whiley.org and forked at http://github.com/
DavePearce/Whiley/. Note that development of the language and compiler is
ongoing and should be considered a work-in-progress.

Contribution. The seminal works by Floyd [20], Hoare [21], Dijkstra [22], and
others provide a foundation upon which to develop tools for verifying software.
However, in developing a verifying compiler for Whiley, we have encountered
some gaps between theory and practice. In this paper, we reflect on our experi-
ences using Whiley to verify programs and, in particular, highlight a number of
challenges we encountered.

2 Language Overview

We begin by exploring the Whiley language and highlighting some of the choices
made in its design. For now, we stick to the basic issues of syntax, semantics
and typing and, in the following section, we will focus more specifically on using
Whiley for verification. Perhaps one of our most important goals was to make
the system as accessible as possible. To that end, the language was designed
to superficially resemble modern imperative languages (e.g. Python), and this
decision has significantly affected our choices.

Overview. Languages like Java and C# permit arbitrary side-effects within meth-
ods and statements. This presents a challenge when such methods may be used
within specifications. Systems like JML and Spec# require that methods used in
specifications are pure (i.e. side-effect free). An important challenge here is the
process of checking that a function is indeed pure. A significant body of research
exists on checking functional purity in object-oriented languages (e.g. [23,24]).
Much of this relies on interprocedural analysis, which is too costly for a verifying
compiler. To address this, Whiley is a hybrid object-oriented and functional lan-
guage which divides into a functional core and an imperative outer layer. Every-
thing in the functional core can be modularly checked as being side-effect free.

http://whiley.org
http://github.com/DavePearce/Whiley/
http://github.com/DavePearce/Whiley/

144 D.J. Pearce and L. Groves

Value Semantics. The prevalence of pointers — or references — in modern pro-
gramming languages (e.g. Java, C++, C#) has been a major hindrance in the
development of verifying compilers. Indeed, Mycroft recently argued that (unre-
stricted) pointers should be “considered harmful” in the same way that Dijkstra
considered goto harmful [25]. To address this, all compound structures in Whiley
(e.g. lists, sets, and records) have value semantics. This means they are passed
and returned by-value (as in Pascal, MATLAB or most functional languages).
But, unlike functional languages (and like Pascal), values of compound types can
be updated in place. Whilst this latter point may seem unimportant, it serves a
critical purpose: to give Whiley the appearance of a modern imperative language
when, in fact, the functional core of Whiley is pure. This goes towards our goal
of making the language as accessible as possible.

Value semantics implies that updates to a variable only affect that variable,
and that information can only flow out of a function through its return value.
Consider:

int f([int] xs):
ys = xs
xs[0] = 1
...

Here, [int] represents a list of ints (i.e. a variable-length array). The semantics
of Whiley dictate that, having assigned xs to ys as above, the subsequent update
to xs does not affect ys. Arguments are also passed by value, hence xs is updated
inside f() and this does not affect f’s caller. That is, xs is not a reference to a
list of int; rather, it is a list of ints and assignments to it do not affect state
visible outside of f().

Unbounded Arithmetic. Modern languages typically provide fixed-width numeric
types, such as 32 bit twos-complement integers, or 64-bit IEEE 754 floating point
numbers. Such data types are notoriously difficult for an automated theorem
prover to reason about [19]. Systems like JML and Spec# assume (unsoundly)
that numeric types do not overflow or suffer from rounding. To address this,
Whiley employs unbounded integers and rationals in place of their fixed-width
alternatives and, hence, does not suffer the limitations of soundness discussed
above.

Flow Typing & Unions. An unusual feature of Whiley is the use of a flow typing
system (see e.g. [18,26,27]) coupled with union types (see e.g. [28,29]). This gives
Whiley the look-and-feel of a dynamically typed language (e.g. Python). For
example, local variables are never explicitly declared; rather, they are declared
by assignment. To illustrate, we consider null references. These have been a
significant source of error in languages like Java and C#. The issue is that, in
such languages, one can treat nullable references as though they are non-null
references [30] (Hoare calls this his billion dollar mistake [31]). Although many
approaches have been proposed (e.g. [32–36]), Whiley’s type system provides an
elegant solution:

Reflections on Verifying Software with Whiley 145

int|null indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
// idx has type null|int
if idx is int:

// idx now has type int
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
// idx now has type null
return [str]

Here, indexOf() returns the first index of a character in the string, or null

if there is none. The type int|null is a union type, meaning it is either an
int or null. After the assignment “idx = indexOf(str,c)” variable idx has
type int|null. The system ensures null is never dereferenced because the type
int|null cannot be treated as an int. Instead, one must first check it is an
int using e.g. “idx is int” (similar to instanceof in Java). Furthermore,
Whiley’s flow type system automatically retypes variables through such con-
ditionals. In the example above, the variable idx is automatically retyped by
“idx is int” to have type int on the true branch, and type null on the false
branch. This prevents the needs for explicit casts after a type test (as required
in e.g. Java).

As another example, we consider unions of the same kind (e.g. a union of
record types, or a union of list types). These expose commonality and are called
effective unions (e.g. an effective record type). In the case of a union of records,
fields common to all records are exposed:

define Circle as { int x, int y, int radius }
define Rectangle as { int x, int y, int width, int height }
define Shape as Circle | Rectangle

A Shape is either a Rectangle or a Circle (which are both record types).
Any variable of type Shape exposes fields x and y because these are common to
all cases. Finally, it’s interesting to note that the notion of an effective record
type is similar, in some ways, to that of the common initial sequence found in
C [37].

Recursive Data Types. Whiley provides recursive types which are similar to the
abstract data types found in functional languages (e.g. Haskell, ML, etc.). For
example:

define LinkedList as null | {int data, LinkedList next}

int length (LinkedList l):
if l is null:

// l now has type null
return 0

146 D.J. Pearce and L. Groves

else:
// l now has type {int data, LinkedList next}
return 1 + length (l.next)

Here, we again see how flow typing gives an elegant solution. More specifically,
on the false branch of the type test “l is null”, variable l is automatically
retyped to {int data, LinkedList next} — thus ensuring the subsequent
dereference of l.next is safe. No casts are required as would be needed for a
conventional imperative language (e.g. Java). Finally, like all compound struc-
tures, the semantics of Whiley dictates that recursive data types are passed by
value (or, at least, appear to be from the programmer’s perspective).

Performance. Many of our choices (e.g. value semantics and unbounded arith-
metic) have a potentially detrimental effect on performance. Whilst this is a
trade-off we accept, there are existing techniques which can help. For example,
we can use reference counting to minimise unnecessary cloning of compound
structures (see e.g. [38]). Furthermore, we can exploit the specifications that are
an integral part of Whiley programs. That is, when the compiler can prove an
integer will remain within certain bounds, it is free to use a fixed-width type
(e.g. a 32 bit int).

3 Verification

A key goal of the Whiley project is to develop an open framework for research in
automated software verification. As such, we now explore verification in Whiley.

Example 1 — Preconditions and Postconditions. The following Whiley code
defines a function accepting a positive integer and returning a non-negative
integer (i.e. natural number):

int f(int x) requires x > 0, ensures $ >= 0 && $!= x:
return x-1

Here, the function f() includes a requires and ensures clause which cor-
respond (respectively) to its precondition and postcondition. In this context, $
represents the return value, and must only be used in the ensures clause. The
Whiley compiler statically verifies that this function meets its specification.

A slightly more unusual example is the following:

int f(int x) requires x >= 0, ensures 2*$ >= $:
return x

In this case, we have two alternative (and completely equivalent) definitions
for a natural number. We can see that the precondition is equivalent to the
postcondition by subtracting $ from both sides. The Whiley compiler is able
to reason that these are equivalent and statically verifies that this function is
correct.

Reflections on Verifying Software with Whiley 147

Example 2 — Conditionals. Variables in Whiley are described by their under-
lying type and those constraints which are shown to hold. As the automated
theorem prover learns more about a variable, it automatically takes this into
consideration when checking constraints are satisfied. For example:

int abs (int x) ensures $ >= 0:
if x >= 0:

return x
else:

return -x

The Whiley compiler statically verifies that this function always returns a non-
negative integer. This relies on the compiler to reason correctly about the implicit
constraints implied by the conditional. A similar, but slightly more complex
example is that for computing the maximum of two integers:

int max(int x, int y)
ensures $ >= x && $ >= y && ($==x || $==y):

if x > y:
return x

else:
return y

Again, the Whiley compiler statically verifies this function meets its specifica-
tion. Here, the body of the function is almost completely determined by the
specification — however, in general, this it not the case.

Example 3 — Bounds Checking. An interesting example which tests the auto-
mated theorem prover more thoroughly is the following:

null|int indexOf (string str, char c):
for i in 0..|str|:

if str[i] == c:
return i

return null

The access str[i] must be shown as within the bounds of the list str. Here,
the range constructor X..Y returns a list of consecutive integers from X upto,
but not including Y (and, futhermore, if X >= Y then the empty list is returned).
Hence, this function cannot cause an out-of-bounds error and the Whiley com-
piler statically verifies this.

In fact, the specification for indexOf() could be made more precise as fol-
lows:

null|int indexOf (string str, char c)
ensures $ == null || (0 <= $ && $ < |str|):
...

In this case, we are additionally requiring that, when the return value is an int,
then it is a valid index into str. Again, the Whiley compiler statically verifies
this is the case.

148 D.J. Pearce and L. Groves

Example 4 — Loop Invariants. Another example illustrates the use of loop invari-
ants in Whiley:

int sum([int] list)
requires all { item in list | item >= 0 },
ensures $ >= 0:

r = 0
for v in list where r >= 0:

r = r + v
return r

Here, a bounded quantifier is used to enforce that sum() accepts a list of natural
numbers. Also, an explicit loop invariant has been given through a where clause.
The key constraint is that summing a list of natural numbers yields a natural
number (recall arithmetic is unbounded and does not overflow in Whiley). The
Whiley compiler statically verifies that sum() does indeed meet this specifica-
tion. The loop invariant is necessary to help the compiler generate a sufficiently
powerful verification condition to prove the function meets the post condition
(more on this later).

Example 5 — Recursive Structures. The Whiley language supports invariants
over recursive structures, as the following illustrates:

define Tree as null | Node

define Node as { int data, Tree lhs, Tree rhs } where
(lhs == null || lhs.data < data) &&
(rhs == null || rhs.data > data)

This defines something approximating the notion of an unbalanced binary search
tree. Unfortunately, the invariant permits e.g. data < lhs.rhs.data for a given
tree node and, thus, is not sufficient to properly characterise binary search trees.
Whilst our focus so far has been primarily on array programs and loop invariants,
in the future we plan to place more emphasis on handling recursive structures,
such as binary search trees.

4 Hoare Logic

We now briefly review Hoare logic [21] and Dijkstra’s predicate transformers [22],
before examining in Sect. 5 a number of challenges we encountered putting them
into practice. Hoare logic provides some important background to understanding
how the Whiley verifying compiler works, and why certain difficulties manifest
themselves. Our discussion here is necessarily brief and we refer to Frade and
Pinto for an excellent survey [39].

4.1 Overview

The rules of Hoare logic are presented as judgements involving triples of the
form:

{
p
}
s

{
q
}
. Here, p is the precondition, s the statement to be executed

Reflections on Verifying Software with Whiley 149

and q is the postcondition. Figure 1 presents the rules of Hoare Logic which,
following Whiley, we have extended to include explicit loop invariants. To better
understand these rules, consider the following example:

{
x → 0

}
x = x + 1

{
x > 0

}

Here we see that, if x → 0 holds immediately before the assignment then, as
expected, it follows that x > 0 holds afterwards. However, whilst this is intu-
itively true, it is not so obvious how this triple satisfies the rules of Fig. 1.
For example, as presented it does not immediately satisfy H-Assign. However,
rewriting the triple is helpful here:

{
x + 1 > 0

}
x = x + 1

{
x > 0

}

The above triple clearly satisfies H-Assign and, furthermore, we can obtain
the original triple from it via H-Consequence (i.e. since x+1 > 0 =⇒ x → 0).
The following illustrates a more complex example:

int f(int i) requires i >= 0, ensures $ >= 10:{
i ≥ 0

}

while i < 10 where i >= 0:{
i < 10 ∧ i ≥ 0

}

i = i + 1{
i ≥ 0

}
{
i ≥ 10 ∧ i ≥ 0

}

return i

Here, we have provided the intermediate assertions which tie the Hoare triples
together (note, these are not part of Whiley syntax). These assertions reflect
the internal information a verifying compiler might use when establishing this
function is correct.

4.2 Verification Condition Generation

Automatic program verification is normally done with a verification condition
generator [7]. This converts the program source into a series of logical conditions
— called verification conditions — to be checked by the automated theorem
prover. There are two basic approaches: propagate forward from the precondi-
tion; or, propagate backwards from the postcondition. We now briefly examine
these in more detail.

Weakest Preconditions. Perhaps the most common way to generated verifica-
tion conditions is via the weakest precondition transformer [22]. This determines
the weakest precondition (written wp(s,q)) that ensures a statement s meets a
given postcondition q. Roughly speaking, this corresponds to propagating the
postcondition backwards through the statement. For example, consider verifying
this triple:

150 D.J. Pearce and L. Groves

Fig. 1. Hoare logic.

{
x → 0

}
x = x + 1

{
x > 0

}

Propagating x > 0 backwards through x = x + 1 gives x + 1 > 0 via H-Assign.
From this, we can generate a verification condition to check that the given pre-
condition implies this calculated weakest precondition (i.e. x → 0 =⇒ x + 1 > 0).
To understand this process better, let’s consider verifying a Whiley function:

int f(int x) requires x >= 0, ensures $ >= 0:
x = x - 1
return x

The implementation of this function does not satisfy its specification. Using
weakest preconditions to determine this corresponds to the following chain of
reasoning:

x → 0 =⇒ wp(x = x − 1, x → 0)
Φ⇒ x → 0 =⇒ x − 1 → 0
Φ⇒ false

Here, the generated verification condition is x → 0 =⇒ wp(x = x − 1, x → 0).
This is then reduced to a contradiction (e.g. by the automated theorem prover)
which indicates the original program did not meet its specification.

Strongest Postconditions. By exploiting Floyd’s rule for assignment [20], an
alternative formulation of Hoare logic can be developed which propagates in a
forward direction and, thus, gives a strongest postcondition transformer [39,40].
This determines the strong postcondition (written sp(p,s)) that holds after a
given statement s with pre-condition p. For example, propagating x = 0 forwards
through x = x + 1 yields x = 1. Using strongest postconditions to verify func-
tions is similar to using weakest preconditions, except operating in the opposite
direction. Thus, for a triple {p} s {q}, we generate the verification condition
sp(p, s) =⇒ q. For example, consider:

{
x = 0

}
x = x + 1

{
x > 0

}

Reflections on Verifying Software with Whiley 151

In this case, the generated verification condition will be x = 1 =⇒ x > 0, which
can be trivially established by an automated theorem prover.

5 Experiences

In the previous section, we outlined the process of automatic verification using
Hoare logic and Dijkstra’s predicate transformers. This was the starting point
for developing our verifying compiler for Whiley. However, whilst Hoare logic
provides an excellent foundation for reasoning about programs, there remain a
number of hurdles to overcome in developing a practical tool. We now reflect
on our experiences in this endeavour using examples based on those we have
encountered in practice.

5.1 Loop Invariants

The general problem of automatically determining loop invariants is a hard algo-
rithmic challenge (see e.g. [41–43]). However, we want to cover as many simple
cases as possible to reduce programmer burden. We now examine a range of
simple cases that, in our experience, appear to occur frequently.

Challenge 1 — Loop Invariant Variables. From the perspective of a practical
verification tool, the rule H-While from Fig. 1 presents something of a hur-
dle. This is because it relies on the programmer to completely specify the loop
invariant even in cases where this appears unnecessary. For example, consider
the following Whiley program:

int f(int x) requires x > 0, ensures $ >= 10:
i = 0
while i < 10 where i >= 0:

i = i + x
return i

Intuitively, we can see this program satisfies its specification. Unfortunately, this
program cannot be shown as correct under the rules of Fig. 1 because the loop
invariant is too weak. Unfortunately, rule H-While only considers those facts
given in the loop condition and the declared loop invariant — hence, all infor-
mation about x is discarded. Thus, under H-While, the verifier must assume
that x could be negative within the loop body — which may seem surprising
because x is not modified by the loop!

We refer to x in the example above as a loop invariant variable. To verify
this program under rule H-While, the loop invariant must be strengthened as
follows:

int f(int x) requires x > 0, ensures $ >= 10:
i = 0
while i < 10 where i >= 0 && x >= 0:

i = i + x
return i

152 D.J. Pearce and L. Groves

Now, one may say the programmer made a mistake here in not specifying
the loop invariant well enough; however, our goal in developing a practical tool
is to reduce programmer effort as much as possible. Therefore, in the Whiley
verifying compiler, loop invariant variables are identified automatically so that
the programmer does not need to respecify their invariants.

Challenge 2 — Simple Synthesis. As mentioned above, generating loop invariants
in the general case is hard. However, there are situations where loop invariants
can easily be determined. The following illustrates an interesting example:

int sum([int] xs)
requires all { x in xs | x >= 0 }, ensures $ >= 0:

i = 0
r = 0
while i < |xs| where r >= 0:

r = r + xs[i]
i = i + 1

return r

This function computes the sum of a list of natural numbers, and returns
a natural number. The question to consider is: did the programmer specify the
loop invariant properly? Unfortunately, the answer again is: no. In fact, the loop
invariant needs to be strengthened as follows:

...
while i < |xs| where r >= 0 && i >= 0:

r = r + xs[i]
i = i + 1

return r

The need for this is frustrating as, intuitively, it is trivial to see that i >= 0

holds throughout. In the future, we aim to automatically synthesize simple loop
invariants such as this.

Observation. The Whiley language also supports the notion of a constrained type
as follows:

define nat as int where $ >= 0

Here, the define statement includes a where clause constraining the per-
missible values for the type ($ represents the variable whose type this will be).
Thus, nat defines the type of non-negative integers (i.e. the natural numbers).

An interesting aspect of Whiley’s design is that local variables are not explic-
itly declared. This gives Whiley the look-and-feel of a dynamically typed lan-
guage and goes towards our goal of making the language accessible. In fact,
permitting variable declarations would provide an alternative solution to the
above issue with sum():

int sum([int] xs)
requires all { x in xs | x >= 0 }, ensures $ >= 0:

nat i = 0
nat r = 0

Reflections on Verifying Software with Whiley 153

while i < |xs|:
r = r + xs[i]
i = i + 1

return r

Here, variable declarations are used to restrict the permitted values of vari-
ables i and r throughout the function. Unfortunately, Whiley does currently not
permit local variable declarations and, hence, the above is invalid. In the future,
we plan to support them for this purpose, although care is needed to integrate
them with flow typing.

Challenge 3 — Loop Invariant Properties. Whilst our verifying compiler easily
handles loop invariant variables, there remain situations when invariants need
to be needlessly respecified. Consider the following:

[int] add([int] v1, [int] v2)
requires |v1| == |v2|, ensures |$| == |v1|:

i = 0
while i < |v1| where i >= 0:

v1[i] = v1[i] + v2[i]
i = i + 1

return v1

This example adds two vectors of equal size. Unfortunately, this again does
not verify under the rule H-While because the loop invariant is too weak. The
key problem is that v1 is modified in the loop and, hence, our above solution
for loop invariant variables does not apply. Following rule H-While, the ver-
ifying compiler can only reason about what is specified in the loop condition
and invariant. Hence, it knows nothing about the size of v1 after the loop. This
means, for example, it cannot establish that |v1| == |v2| holds after the loop.
Likewise (and more importantly in this case), it cannot establish that the size
of v1 is unchanged by the loop (which we refer to as a loop invariant property).
Thus, it cannot establish that the size of the returned vector equals that held in
v1 on entry, and reports the function does not meet its postcondition.

In fact, it is possible to specify a loop invariant which allows the above
function to be verified by our compiler. Since v2 is a loop invariant variable and
|v1| == |v2| held on entry, we can use i >= 0 && |v1| == |v2| as the loop
invariant.

Observation. The example above presents an interesting challenge that, by coin-
cidence, can be resolved by exploiting a loop invariant variable. However, it
raises a more general question: how can we specify that the size of a list is loop
invariant? Unfortunately, this is impossible in the Whiley language developed
thus far because it requires some notion of a variable’s value before and after the
loop body is executed. To illustrate, consider the following hypothetical syntax
in Whiley:

...
while i < |v1| where i >= 0 && |v1‘| == |v1|:

v1[i] = v1[i] + v2[i]

154 D.J. Pearce and L. Groves

i = i + 1
return v1

Here, v1‘ represents the value of v1 on the previous iteration. Unfortunately,
this syntax is not yet supported in Whiley and, furthermore, its semantics are
unclear. For example, on entry to the loop it’s unclear how |v1‘| == |v1|

should be interpreted.

Challenge 4 — Overriding Invariants. In most cases, the loop condition and
invariant are used independently to increase knowledge. However, in some cases,
they need to be used in concert. The following illustrates:

[int] create(int count, int value)
requires count >= 0, ensures |$| == count:

r = []
i = 0
while i < count:

r = r + [value]
i = i + 1

return r

This example uses the list append operator (i.e. r + [value]) and is sur-
prisingly challenging. An obvious approach is to connect the size of r with i as
follows:

...
while i < count where |r| == i:

r = r + [value]
i = i + 1

return r

Unfortunately, this is insufficient under the rule H-While from Fig. 1. This
is because, after the loop is complete, the rule establishes the invariant and the
negated condition. Thus, after the loop, we have i → count ∗ |r| == i, but this
is insufficient to establish that |r| == count. In fact, we can resolve this by using
an overriding loop invariant as follows:

...
while i < count where i <= count && |r| == i:

r = r + [value]
i = i + 1

return r

In this case, i → count ∗ i ⊆ count ∗ |r| == i holds after the loop, and the
automated theorem prover will trivially establish that |r| == count. We say
that the loop invariant overrides the loop condition because i <= count implies
i < count.

5.2 Error Reporting

Error reporting is an important practical consideration for any verification tool,
as we want error messages which are as meaningful, and precise, as possible. We

Reflections on Verifying Software with Whiley 155

now consider how the two approaches to verification condition generation affect
this.

Weakest Preconditions. An unfortunate side-effect of operating in a backwards
direction, as wp(s, q) does, is that reporting useful errors in the source program
is more difficult. For example, consider this example which performs an integer
division:

int f(int x) requires x > 0, ensures $ > 0:
x = 1 / (x - 1)
return x

This function contains a bug which can cause a division-by-zero failure (i.e. if
x==1 on entry). Using wp(s, q), a single verification condition is generated for
this example:

x > 0 =⇒ (x − 1 ∧= 0 ∗ 1
x − 1

> 0) (1)

A modern automated theorem prover (e.g. [44,45]) will quickly establish this
condition does not hold. At this point, the verifying compiler should report a
helpful error message. Unfortunately, during the weakest precondition transform,
information about where exactly the error arose was lost. To identify where the
error occurred, there are two intrinsic questions we need to answer: where exactly
in the program code does the error arise? and, which execution path(s) give rise
to the error? The wp(s, q) transform fails to answer both because it generates a
single verification condition for the entire function which is either shown to hold,
or not [46,47]. One strategy for resolving this issue is to embed attributes in the
verification condition identifying where in the original source program particular
components originated [7]. Unfortunately, this requires specific support from the
automated theorem prover (which is not always available).

Strongest Postconditions. Instead of operating in a backwards direction, our
experience suggests it is inherently more practical to generate verification con-
ditions in a forwards direction (and there is anecdotal evidence to support
this [39]). Recall that this corresponds to generating strongest postconditions,
rather than weakest preconditions. The key advantage is that verification con-
ditions can be emitted at the specific points where failures may occur. In the
above example, there are two potential failures: (1) 1/(x-1) should not cause
division-by-zero; (2) the postcondition $ > 0 must be met. A forward propa-
gating verification condition generator can generate separate conditions for each
potential failure. For example, it can emit the following verification conditions:

x > 0 =⇒ x − 1 ∧= 0 (2)

x > 0 =⇒ 1

x − 1
> 0 (3)

Each of these can be associated with the specific program point where it
originated and, in the case it cannot be shown, an error can be reported at that

156 D.J. Pearce and L. Groves

point. For example, since the first verification condition above does not hold, an
error can be reported for the statement x = 1/(x − 1). When generating verifica-
tion conditions based on wp(s, q), it is hard to report errors at the specific point
they arise because, at each point, only the weakest precondition for subsequent
statements is known.

6 Related Work

Hoare provided the foundation for formalising work in this area with his seminal
paper introducing Hoare Logic [21]. This provides a framework for proving that
a sequence of statements meets its postcondition given its precondition. Unfor-
tunately Hoare logic does not tell us how to construct such a proof; rather, it
gives a mechanism for checking a proof is correct. Therefore, to actually ver-
ify a program is correct, we need to construct proofs which satisfy the rules of
Hoare logic.

The most common way to automate the process of verifying a program is
with a verification condition generator. As discussed in Sect. 4.2, such algorithms
propagate information in either a forwards or backwards direction. However, the
rules of Hoare logic lend themselves more naturally to the latter [39]. Perhaps
for this reason, many tools choose to use the weakest precondition transformer.
For example, the widely acclaimed ESC/Java tool computes weakest precondi-
tions [7], as does the Why platform [48], Spec# [49], LOOP [50], JACK [51]
and SnuggleBug [52]. This is surprising given that it leads to fewer verification
conditions and, hence, makes it harder to generate useful error messages (recall
our discusion from Sect. 4.2). To workaround this, Burdy et al. embed path
information in verification conditions to improve error reporting [51]. A similar
approach is taken in ESC/Java, but requires support from the underlying auto-
mated theorem prover [45]. Denney and Fischer extend Hoare logic to formalise
the embedding of information within verification conditions [53]. Again, their
objective is to provide useful error messages.

The Dafny language has been developed with similar goals in mind to Whiley
[14]. In particular, Dafny was designed to simplify verification and, to this end,
makes similar choices to Whiley. For example, all arithmetic is unbounded and
a strong division is made between functional and imperative constructs. Here,
pure functions are supported for use in specifications and directly as code, whilst
methods may have side-effects and can describe pointer-based algorithms. These
two aspects are comparable (respectively) to Whiley’s functional core and imper-
ativer outer layer. Finally, Dafny supports explicit pre- and post-conditions for
functions and methods which are discharged using Z3 [44].

7 Conclusion

In this paper, we reflected on our experiences using the Whiley verifying com-
piler. In particular, we identified a number of practical considerations for any
verifying compiler which are not immediately obvious from the underlying the-
oretical foundations.

Reflections on Verifying Software with Whiley 157

Acknowledgements. This work is supported by the Marsden Fund, administered by
the Royal Society of New Zealand.

References

1. Hoare, C.A.R.: The verifying compiler: a grand challenge for computing research.
JACM 50(1), 63–69 (2003)

2. King, S.: A program verifier. Ph.D. thesis, Carnegie-Mellon University (1969)
3. Peter Deutsch, L.: An interactive program verifier. Ph.D. thesis, University of

California (1973)
4. Good, D.I.: Mechanical proofs about computer programs. In: Hoare, C.A.R., Shep-

herdson, J.C. (eds.) Mathematical Logic and Programming Languages, pp. 55–75.
Prentice Hall, Englewood Cliffs (1985)

5. Luckham, D.C., German, S.M., von Henke, F.W., Karp, R.A., Milne, P.W., Oppen,
D.C., Polak, W., Scherlis, W.L.: Stanford pascal verifier user manual. Techni-
cal report CS-TR-79-731, Department of Computer Science, Stanford University
(1979)

6. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking.
SRC Research report 159, Compaq Systems Research Center (1998)

7. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Proceedings of PLDI, pp. 234–245 (2002)

8. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. Sci.
Comput. Program. 55(1–3), 185–208 (2005)

9. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

10. Barnett, M., Rustan, K., Leino, M., Schulte, W.: The Spec# programming system:
an overview. Technical report, Microsoft Research (2004)

11. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. J. Object Technol. 3(6), 27–56 (2004)

12. Barnett, M., Evan Chang, B.-Y., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
a modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

13. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

14. Rustan, K., Leino, M.: Developing verified programs with Dafny. In: Joshi, R.,
Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, p. 82. Springer,
Heidelberg (2012)

15. The whiley programming language. http://whiley.org
16. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.

In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238–248. Springer, Heidelberg (2013)

17. Pearce, D., Noble, J.: Implementing a language with flow-sensitive and structural
typing on the JVM. Electron. Notes Theoret. Comput. Sci. 279(1), 47–59 (2011)

18. Pearce, D.J.: Sound and complete flow typing with unions, intersections and nega-
tions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 335–354. Springer, Heidelberg (2013)

http://whiley.org

158 D.J. Pearce and L. Groves

19. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

20. Floyd, R.W.: Assigning meaning to programs. In: Proceedings AMS, vol. 19, pp.
19–31. American Mathematical Society (1967)

21. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12, 576–580
(1969)

22. Dijkstra, E.W.: Guarded commands, nondeterminancy and formal derivation of
programs. CACM 18, 453–457 (1975)

23. Rountev, A.: Precise identification of side-effect-free methods in Java. In: Proceed-
ings of ICSM, pp. 82–91. IEEE Computer Society (2004)

24. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

25. Mycroft, A.: Programming language design and analysis motivated by hardware
evolution. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
18–33. Springer, Heidelberg (2007)

26. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: Pro-
ceedings of ICFP, pp. 117–128 (2010)

27. Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing local control and state using flow
analysis. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 256–275. Springer,
Heidelberg (2011)

28. Barbanera, F., Dezani-Cian Caglini, M.: Intersection and union types. In: Proceed-
ings of the TACS, pp. 651–674 (1991)

29. Igarashi, A., Nagira, H.: Union types for object-oriented programming. J. Object
Technol. 6(2), 31–52 (2007)

30. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
31. Hoare, T.: Null references: The billion dollar mistake, presentation at QCon (2009)
32. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-

oriented language. In: Proceedings of the OOPSLA, pp. 302–312. ACM Press
(2003)

33. Ekman, T., Hedin, G.: Pluggable checking and inferencing of non-null types for
Java. J. Object Technol. 6(9), 455–475 (2007)

34. Chalin, P., James, P.R.: Non-null references by default in Java: alleviating the
nullity annotation burden. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp.
227–247. Springer, Heidelberg (2007)

35. Male, C., Pearce, D.J., Potanin, A., Dymnikov, C.: Java bytecode verification for
@NonNull types. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 229–244.
Springer, Heidelberg (2008)

36. Hubert, L.: A non-null annotation inference for Java bytecode. In: Proceedings of
the PASTE, pp. 36–42. ACM (2008)

37. ISO/IEC. international standard ISO/IEC 9899, programming languages – C
(1990)

38. Lameed, N., Hendren, L.: Staged static techniques to efficiently implement array
copy semantics in a MATLAB JIT compiler. In: Knoop, J. (ed.) CC 2011. LNCS,
vol. 6601, pp. 22–41. Springer, Heidelberg (2011)

39. Frade, M.J., Pinto, J.S.: Verification conditions for source-level imperative pro-
grams. Comput. Sci. Rev. 5(3), 252–277 (2011)

40. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, History of Computing,
pp. 101–121. Springer, London (2010)

Reflections on Verifying Software with Whiley 159

41. Chadha, R., Plaisted, D.A.: On the mechanical derivation of loop invariants. J.
Symbolic Comput. 15(5 & 6), 705–744 (1993)

42. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) APLAS
2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)

43. Furia, C.A., Meyer, B.: Inferring loop invariants using postconditions. CoRR,
abs/0909.0884 (2009)

44. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the
TACAS, pp. 337–340, (2008)

45. Detlefs, D.L., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. JACM 52, 365–473 (2005)

46. Leino, K.R.M., Millstein, T.D., Saxe, J.B.: Generating error traces from
verification-condition counterexamples. Sci. Comput. Program. 55(1–3), 209–226
(2005)

47. Jager, I., Brumley, D.: Efficient directionless weakest preconditions. Technical
Report CMU-CyLab-10-002, Carnegie Mellon University (2010)

48. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007)

49. Barnett, M., Rustan M. Leino, K.: Weakest-precondition of unstructured programs.
In: Proceedings of the PASTE, pp. 82–87. ACM Press (2005)

50. Jacobs, B.: Weakest pre-condition reasoning for Java programs with JML annota-
tions. JLAP 58(1–2), 61–88 (2004)

51. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: a developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol.
2805, pp. 422–439. Springer, Heidelberg (2003)

52. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weakest
preconditions. In: Proceedings of the PLDI, pp. 363–374. ACM Press (2009)

53. Denney, E., Fischer, B.: Explaining verification conditions. In: Meseguer, J., Roşu,
G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 145–159. Springer, Heidelberg (2008)

Compositional Nonblocking Verification
with Always Enabled Events
and Selfloop-Only Events

Colin Pilbrow and Robi Malik(B)

Department of Computer Science, University of Waikato, Hamilton, New Zealand
colinpilbrow@gmail.com, robi@waikato.ac.nz

Abstract. This paper proposes to improve compositional nonblocking
verification through the use of always enabled and selfloop-only events.
Compositional verification involves abstraction to simplify parts of a sys-
tem during verification. Normally, this abstraction is based on the set of
events not used in the remainder of the system, i.e., in the part of the
system not being simplified. Here, it is proposed to exploit more knowl-
edge about the system and abstract events even though they are used
in the remainder of the system. Abstraction rules from previous work
are generalised, and experimental results demonstrate the applicability
of the resulting algorithm to verify several industrial-scale discrete event
system models, while achieving better state-space reduction than before.

1 Introduction

The nonblocking property is a weak liveness property commonly used in supervi-
sory control theory of discrete event systems to express the absence of livelocks
or deadlocks [6,22]. This is a crucial property of safety-critical control systems,
and with the increasing size and complexity of these systems, there is an increas-
ing need to verify the nonblocking property automatically. The standard method
to check whether a system is nonblocking involves the explicit composition of
all the automata involved, and is limited by the well-known state-space explo-
sion problem. Symbolic model checking has been used successfully to reduce the
amount of memory required by representing the state space symbolically rather
than enumerating it explicitly [2].

Compositional verification [10,27] is an effective alternative that can be used
independently of or in combination with symbolic methods. Compositional veri-
fication works by simplifying individual automata of a large synchronous compo-
sition, gradually reducing the state space of the system and allowing much larger
systems to be verified in the end. When applied to the nonblocking property,
compositional verification requires very specific abstraction methods [9,17]. A
suitable theory is laid out in [18], where it is argued that abstractions used in
nonblocking verification should preserve a process-algebraic equivalence called
conflict equivalence. Various abstraction rules preserving conflict equivalence
have been proposed and implemented [9,17,20,25].

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 160–177, 2014.
DOI: 10.1007/978-3-319-05416-2 11, c© Springer International Publishing Switzerland 2014

Compositional Nonblocking Verification 161

Conflict equivalence is the most general process equivalence for use in compo-
sitional nonblocking verification [18]. If a part of a system is replaced by a conflict
equivalent abstraction, the nonblocking property is guaranteed to be preserved
independently of the other system components. While this is easy to understand
and implement, more simplification is possible by considering the other system
components. This paper proposes simplification rules that take into account that
certain events are always enabled or only selfloops in the rest of the system, and
shows how this additional information can achieve further state-space reduction.

In the following, Sect. 2 introduces the background of nondeterministic auto-
mata, the nonblocking property, and conflict equivalence. Next, Sect. 3 describes
compositional verification and always enabled and selfloop-only events. Section 4
presents simplification rules that exploit such events, and Sect. 5 shows how these
events are found algorithmically. Afterwards, Sect. 6 presents the experimental
results, and Sect. 7 adds concluding remarks. Further details and formal proofs
of technical results can be found in [21].

2 Preliminaries

2.1 Events and Languages

Event sequences and languages are a simple means to describe discrete system
behaviours [6,22]. Their basic building blocks are events, which are taken from
a finite alphabet A. In addition, two special events are used, the silent event τ
and the termination event ω. These are never included in an alphabet A unless
mentioned explicitly using notation such as Aτ = A → {τ}, Aω = A → {ω}, and
Aτ,ω = A → {τ, ω}.

A→ denotes the set of all finite traces of the form σ1σ2 · · · σn of events from A,
including the empty trace ε. The concatenation of two traces s, t ∈ A→ is written
as st. A subset L ⇒ A→ is called a language. The natural projection P : A→

τ,ω ∗
A→

ω is the operation that deletes all silent (τ) events from traces.

2.2 Nondeterministic Automata

System behaviours are modelled using finite automata. Typically, system models
are deterministic, but abstraction may result in nondeterminism.

Definition 1. A (nondeterministic) finite automaton is a tuple G = ⊆A, Q,∗,
Q∗∧ where A is a finite set of events, Q is a finite set of states, ∗ ⇒ Q×Aτ,ω ×Q
is the state transition relation, and Q∗ ⇒ Q is the set of initial states.

The transition relation is written in infix notation x
σ∗ y, and is extended

to traces s ∈ A→
τ,ω in the standard way. For state sets X,Y ⇒ Q, the notation

X
s∗ Y means x

s∗ y for some x ∈ X and y ∈ Y , and X
s∗ y means x

s∗ y
for some x ∈ X. Also, X

s∗ for a state or state set X denotes the existence of a
state y ∈ Q such that X

s∗ y.

162 C. Pilbrow and R. Malik

The termination event ω /∈ A denotes completion of a task and does not
appear anywhere else but to mark such completions. It is required that states
reached by ω do not have any outgoing transitions, i.e., if x

ω∗ y then there does
not exist σ ∈ Aτ,ω such that y

σ∗. This ensures that the termination event, if
it occurs, is always the final event of any trace. The traditional set of terminal
states is Qω = {x ∈ Q | x

ω∗} in this notation. For graphical simplicity, states
in Qω are shown shaded in the figures of this paper instead of explicitly showing
ω-transitions.

To support silent events, another transition relation ∨ ⇒ Q × A→
ω × Q is

introduced, where x
s∨ y denotes the existence of a trace t ∈ A→

τ,ω such that

P (t) = s and x
t∗ y. That is, x

s∗ y denotes a path with exactly the events
in s, while x

s∨ y denotes a path with an arbitrary number of τ events shuffled
with the events of s. Notations such as X

s∨ Y and x
s∨ are defined analogously

to ∗.

Definition 2. Let G = ⊆AG, QG,∗G, Q∗
G∧ and H = ⊆AH , QH ,∗H , Q∗

H∧ be
two automata. The synchronous composition of G and H is

G ∪ H = ⊆AG → AH , QG × QH ,∗, Q∗
H × Q∗

H∧, (1)

where

– (xG, xH) σ∗ (yG, yH) if σ ∈ (AG ≡ AH) → {ω}, xG
σ∗G yG, and xH

σ∗H yH ;
– (xG, xH) σ∗ (yG, xH) if σ ∈ (AG \ AH) → {τ} and xG

σ∗G yG;
– (xG, xH) σ∗ (xG, yH) if σ ∈ (AH \ AG) → {τ} and xH

σ∗H yH .

Automata are synchronised using lock-step synchronisation [12]. Shared
events (including ω) must be executed by all automata synchronously, while
other events (including τ) are executed independently.

2.3 The Nonblocking Property

The key liveness property in supervisory control theory is the nonblocking prop-
erty. An automaton is nonblocking if, from every reachable state, a terminal
state can be reached; otherwise it is blocking. When more than one automaton
is involved, it also is common to use the terms nonconflicting and conflicting.

Definition 3. [18] An automaton G = ⊆A, Q,∗, Q∗∧ is nonblocking if, for every
state x ∈ Q and every trace s ∈ A→ such that Q∗ s∨ x, there exists a trace
t ∈ A→ such that x

tω∨. Two automata G and H are nonconflicting if G ∪ H is
nonblocking.

To reason about conflicts in a compositional way, the notion of conflict equiv-
alence is developed in [18]. According to process-algebraic testing theory, two
automata are considered as equivalent if they both respond in the same way
to tests [7]. For conflict equivalence, a test is an arbitrary automaton, and the
response is the observation whether the test composed with the automaton in
question is nonblocking or not.

Compositional Nonblocking Verification 163

Definition 4. [18] Two automata G and H are conflict equivalent, written
G ∀conf H, if, for any automaton T , G ∪ T is nonblocking if and only if H ∪ T is
nonblocking.

3 Compositional Verification

When verifying whether a composed system of automata

G1 ∪ G2 ∪ · · · ∪ Gn , (2)

is nonblocking, compositional methods [9,17] avoid building the full synchronous
composition immediately. Instead, individual automata Gi are simplified and
replaced by smaller conflict equivalent automata Hi ∀conf Gi. If no simplification
is possible, a subsystem of automata (Gj)j≤J is selected and replaced by its
synchronous composition, which then may be simplified.

The soundness of this approach is justified by the congruence properties [18]
of conflict equivalence. For example, if G1 in (2) is replaced by H1 ∀conf G1, then
by considering T = G2 ∪ · · · ∪ Gn in Definition 4, it follows that the abstracted
system H1 ∪ T = H1 ∪ G2 ∪ · · · ∪ Gn is nonblocking if and only if the original
system (2) is.

Previous approaches for compositional nonblocking verification [9,17] are
based on local events. A component G1 in a system such as (2) typically contains
some events that appear only in G1 and not in the remainder T = G2 ∪ · · · ∪ Gn

of the system. These events are called local and are abstracted using hiding,
i.e., they are replaced by the silent event τ . Conflict equivalence uses τ as a
placeholder for events not used elsewhere, and in this setting is the coarsest
conflict-preserving abstraction [18].

Yet, in practice, the remainder T = G2∪· · ·∪Gn is known. This paper proposes
ways to use additional information about T to inform the simplification of G1

and produce better abstractions. In addition to using the τ events, it can be
examined how other events are used by T . There are two kinds of events that
are easy to detect: always enabled events and selfloop-only events.

Definition 5. Let G = ⊆A, Q,∗, Q∗∧ be an automaton. An event σ ∈ A is
always enabled in G, if for every state x ∈ Q it holds that x

σ∨.

An event is always enabled in an automaton if it can be executed from every
state—possibly after some silent events. If during compositional verification, an
event is found to be always enabled in every automaton except the one being
simplified, this event has similar properties to a silent event. Several abstraction
methods that exploit silent events to simplify automata can be generalised to
exploit always enabled events also.

Definition 6. Let G = ⊆A, Q,∗, Q∗∧ be an automaton. An event σ ∈ A is
selfloop-only in G, if for every transition x

σ∗ y it holds that x = y.

164 C. Pilbrow and R. Malik

Fig. 1. Two automata G and H such that G �{η},∅ H but not G �conf H.

Selfloops are transitions that have the same start and end states. An event
is selfloop-only if it only appears on selfloop transitions. As the presence of self-
loops does not affect the nonblocking property, the knowledge that an event is
selfloop-only can help to simplify the system beyond standard conflict equiva-
lence. In the following definition, conflict equivalence is generalised by consider-
ing sets E and S of events that are always enabled or selfloop-only in the rest of
the system, i.e., in the test T .

Definition 7. Let G and H be two automata, and let E and S be two sets
of events. G and H are conflict equivalent with respect to E and S, written
G ∀E,S H, if for every automaton T such that E is a set of always enabled
events in T and S is a set of selfloop-only events in T , it holds that G ∪ T is
nonblocking if and only if H ∪ T is nonblocking.

Clearly, standard conflict equivalence implies conflict equivalence with respect
to E and S, as the latter considers fewer tests T . Yet, both equivalences have the
same useful properties for compositional nonblocking verification. The following
results are immediate from the definition.

Proposition 1. Let G and H be two automata.

(i) G ∀conf H if and only if G ∀∈,∈ H.
(ii) If E ⇒ E◦ and S ⇒ S◦ then G ∀E,S H implies G ∀E′,S′ H.

Proposition 2. Let G1, . . . , Gn and H1 be automata such that G1 ∀E,S H1,
where E and S are sets of events that respectively are always enabled and
selfloop-only for G2 ∪ · · · ∪ Gn. Then G1 ∪ · · · ∪ Gn is nonblocking if and only
if H1 ∪ G2 ∪ · · · ∪ Gn is nonblocking.

Proposition 1 confirms that conflict equivalence with respect to E and S
is coarser than standard conflict equivalence and considers more automata as
equivalent. Thus, the modified equivalence has the potential to achieve better
abstraction. At the same time, Proposition 2 shows that the modified equivalence
can be used in the same way as standard conflict equivalence to replace automata
in compositional verification, provided that suitable event sets E and S can be
determined.

Example 1. Automata G and H in Fig. 1 are not conflict equivalent as demon-
strated by the test automaton T . On the one hand, G ∪ T is blocking because
the state (1, 0) is reachable by τ from the initial state (0, 0), and (1, 0) is a dead-
lock state, because G disables event α in state 1 and T disables events β and η
in state 0. On the other hand, H ∪ T is nonblocking.

Compositional Nonblocking Verification 165

Note that η is not always enabled in T since 0
η∨T does not hold. In com-

position with a test T that has η always enabled, G will be able to continue
from state 1, and H will be able to continue from state 01. It follows from
Proposition 4 below that G ∀{η},∈ H.

4 Simplification Rules

To exploit conflict equivalence in compositional verification, it is necessary to
algorithmically compute a conflict equivalent abstraction of a given automaton.
Several abstraction rules are known for standard conflict equivalence [9,17]. This
section generalises some of these and proposes four computationally feasible rules
to simplify automata under the assumption of always enabled and selfloop-only
events. Before that, Subsect. 4.1 introduces general terminology to describe all
abstractions.

4.1 Automaton Abstraction

A common method to simplify an automaton is to construct its quotient modulo
an equivalence relation. The following definitions are standard.

An equivalence relation is a binary relation that is reflexive, symmetric and
transitive. Given an equivalence relation ∃ on a set Q, the equivalence class of
x ∈ Q with respect to ∃, denoted [x], is defined as [x] = {x◦ ∈ Q | x◦ ∃ x }. An
equivalence relation on a set Q partitions Q into the set Q/∃ = { [x] | x ∈ Q }
of its equivalence classes.

Definition 8. Let G = ⊆A, Q,∗, Q∗∧ be an automaton, and let ∃⇒ Q × Q be
an equivalence relation. The quotient automaton G/∃ of G with respect to ∃
is G/∃ = ⊆A, Q/∃ ,∗/∃ , Q̃∗∧, where Q̃∗ = { [x∗] | x∗ ∈ Q∗ } and ∗/∃ =
{ ([x], σ, [y]) | x

σ∗ y }.

When constructing a quotient automaton, classes of equivalent states in the
original automaton are combined or merged into a single state. A common equiv-
alence relation to construct quotient automata is observation equivalence or weak
bisimulation [19].

Definition 9. [19] Let G = ⊆A, Q,∗, Q∗∧ be an automaton. A relation
≈ ⇒ Q×Q is an observation equivalence relation on G if, for all states x1, x2 ∈ Q
such that x1 ≈ x2 and all traces s ∈ A→

ω the following conditions hold:

(i) if x1
s∨ y1 for some y1 ∈ Q, then there exists y2 ∈ Q such that y1 ≈ y2 and

x2
s∨ y2;

(ii) if x2
s∨ y2 for some y2 ∈ Q, then there exists y1 ∈ Q such that y1 ≈ y2 and

x1
s∨ y1.

Two states are observation equivalent if they have got exactly the same
sequences of enabled events, leading to equivalent successor states. Observation
equivalence is a well-known equivalence with efficient algorithms that preserves

166 C. Pilbrow and R. Malik

all temporal logic properties [5]. In particular, an observation equivalent abstrac-
tion is conflict equivalent to the original automaton.

Proposition 3. [17] Let G be an automaton, and let ≈ be an observation equiv-
alence relation on G. Then G ∀conf G/≈.

A special case of observation equivalence-based abstraction is τ -loop removal.
If two states are mutually connected by sequences of τ -transitions, it follows from
Definition 9 that these states are observation equivalent, so by Proposition 3 they
can be merged preserving conflict equivalence. This simple abstraction results
in a τ -loop free automaton, i.e., an automaton that does not contain any proper
cycles of τ -transitions.

Definition 10. Let G = ⊆A, Q,∗, Q∗∧ be an automaton. G is τ -loop free, if for
every path x

t∗ x with t ∈ {τ}→ it holds that t = ε.

While τ -loop removal and observation equivalence are easy to compute and
produce good abstractions, there are conflict equivalent automata that are not
observation equivalent. Several other relations are considered for conflict equiv-
alence [9,17].

Definition 11. [9] Let G = ⊆A, Q,∗, Q∗∧ be an automaton. The incoming
equivalence relation ∃inc ⇒ Q × Q is defined such that x ∃inc y if,

(i) Q∗ ε∨ x if and only if Q∗ ε∨ y;
(ii) for all states w ∈ Q and all events σ ∈ A it holds that w

σ∨ x if and only if
w

σ∨ y.

Two states are incoming equivalent if they have got the same incoming transi-
tions from the exactly same source states. (This is different from reverse observa-
tion equivalence, which accepts equivalent rather than identical states.) Incoming
equivalence alone is not enough for conflict-preserving abstraction. It is combined
with other conditions in the following.

4.2 Enabled Continuation Rule

The Enabled Continuation Rule is a generalisation of the Silent Continuation
Rule [9], which allows to merge incoming equivalent states in a τ -loop free
automaton provided they have both have an outgoing τ -transition. The reason
for this is that, if a state has an outgoing τ -transition, then the other outgo-
ing transitions are “optional” [9] for a test that is to be nonblocking with this
automaton. Only continuations from states without further τ -transitions must be
present in the test. Using always enabled events, the condition on τ -transitions
can be relaxed: it also becomes possible to merge incoming equivalent states if
they have outgoing always enabled transitions instead of τ .

Rule 1 (Enabled Continuation Rule). In a τ -loop free automaton, two
states that are incoming equivalent and both have an outgoing always enabled
or τ -transition are conflict equivalent and can be merged.

Compositional Nonblocking Verification 167

Example 2. Consider automaton G in Fig. 1 with E = {η}. States 0 and 1 are
both “initial” since they both can be reached silently from the initial state 0.
This is enough to satisfy ∃inc in this case, since neither state is reachable by
any event other than τ . Moreover, G has no τ -loops, state 0 has an outgoing
τ -transition, and state 1 has an outgoing always enabled event η. Thus, by the
Enabled Continuation Rule, states 0 and 1 in G are conflict equivalent and can
be merged into state 01 as shown in H.

Note that states 0 and 1 are not observation equivalent because 0 α∗ 2 while
state 1 has no outgoing α-transition. The Silent Continuation Rule [9] also is not
applicable because state 1 has no outgoing τ -transition. Only with the additional
information that η is always enabled, it becomes possible to merge states 0 and 1.

Proposition 4. Let G = ⊆A, Q,∗G, Q∗∧ be a τ -loop free automaton, let E ⇒
A, and let ∃ ⇒ Q×Q be an equivalence relation such that ∃ ⇒ ∃inc, and for all
x, y ∈ Q such that x ∃ y it holds that either x = y, or x

η1∨ and y
η2∨ for some

events η1, η2 ∈ E → {τ}. Then G ∀E,∈ G/∃.

Proposition 4 confirms that the nonblocking property of the system is pre-
served under the Enabled Continuation Rule, provided that E is a set of always
enabled events for the remainder of the system.

4.3 Only Silent Incoming Rule

The Only Silent Incoming Rule [9] is a combination of observation equivalence and
the Silent Continuation Rule. Since the Silent Continuation Rule has been gener-
alised to use always enabled events, the Only Silent Incoming Rule can as well.

The original Only Silent Incoming Rule [9] makes it possible to remove a
state with only τ -transitions incoming and merge it into its predecessors, pro-
vided that the removed state has got at least one outgoing τ -transition. Again,
the requirement for an outgoing τ -transition can be relaxed to allow an always
enabled transition also.

Rule 2 (Only Silent Incoming Rule). If a τ -loop free automaton has a
state q with only τ -transitions entering it, and an always enabled or τ -transition
outgoing from state q, then all transitions outgoing from q can be copied to
originate from the states with τ -transitions to q. Afterwards, the τ -transitions
to q can be removed.

Example 3. In Fig. 2 it holds that G ∀{η},∈ H. State 3 in G has only
τ -transitions incoming and the always enabled event η outgoing. This state can
be removed in two steps. First, state 3 is split into two observation equivalent
states 3a and 3b in G◦, and afterwards the Silent Continuation Rule is applied to
merge these states into their incoming equivalent predecessors, resulting in H.
Note that states 1, 2, and 3 are not observation equivalent because of the β- and
γ-transitions from states 1 and 2.

168 C. Pilbrow and R. Malik

Fig. 2. Only silent incoming rule. Fig. 3. Limited certain conflicts
rule.

Proposition 5. Let G = ⊆A, Q,∗G, Q∗∧ be a τ -loop free automaton, and let
E ⇒ A. Let q ∈ Q such that q

η∗G for some η ∈ E→ {τ}, and for each transition
x

σ∗G q it holds that σ = τ . Further, let H = ⊆A, Q,∗H , Q∗∧ with

∗H = { (x, σ, y) | x
σ∗G y and y �= q } → { (x, σ, y) | x

τ∗G q
σ∗G y } . (3)

Then G ∀E,∈ H.

It is shown in [9] that the Only Silent Incoming Rule can be expressed as
a combination of observation equivalence and the Silent Continuation Rule as
suggested in Example 3. The same argument can be used to prove Proposition 5.

4.4 Limited Certain Conflicts Rule

If an automaton contains blocking states, i.e., states from where no state with an
ω-transition can be reached, then a lot of simplification is possible. Once a block-
ing state is reached, all further transitions are irrelevant. Therefore, all blocking
states can be merged into a single state, and all their outgoing transitions can
be deleted [16].

In fact, this rule does not only apply to blocking states. For example, consider
state 3 in automaton G in Fig. 3. Despite the fact that state 3 is a terminal state,
if this state is ever reached, the composed system is necessarily blocking, as
nothing can prevent it from executing the silent transition 3 τ∗ 2 to the blocking
state 2. State 3 is a state of certain conflicts, and such states can be treated like
blocking states for the purpose of abstraction.

It is possible to calculate all states of certain conflicts, but the algorithm to do
this is exponential in the number of states of the automaton to be simplified [16].
To reduce the complexity, the Limited Certain Conflicts Rule [9] approximates
the set of certain conflicts. If a state has a τ -transition to a blocking state, then
the source state also is a state of certain conflicts. This can be extended to
include always enabled events, because if an always enabled transition takes an
automaton to a blocking state, then nothing can disable this transition and the
composed system is necessarily blocking.

Rule 3 (Limited Certain Conflicts Rule). If an automaton contains an
always enabled or τ -transition to a blocking state, then the source state of this
transition is a state of certain conflicts, and all its outgoing transitions can be
deleted.

Compositional Nonblocking Verification 169

Example 4. Consider automaton G in Fig. 3 with E = {η}. States 1, 2, and 3
are states of certain conflicts. State 2 is already blocking, and states 1 and 3
have a τ - or an always enabled η-transition to the blocking state 2. All outgoing
transitions from these states are removed, including the ω-transitions from states
1 and 3. This results in automaton H. Now state 3 is unreachable and can be
removed, and states 1 and 2 can be merged using observation equivalence to
create H ◦. It holds that G ∀{η},∈ H ∀conf H ◦.

Proposition 6. Let G = ⊆A, Q,∗G, Q∗∧ be an automaton and E ⇒ A, let
q ∈ Q be a blocking state, and let p

η∗ q for some η ∈ E→ {τ}. Furthermore, let
H = ⊆A, Q,∗H , Q∗∧ where ∗H = { (x, σ, y) ∈ ∗ | x �= p }. Then G ∀E,∈ H.

Proposition 6 confirms that a state with a τ - or always enabled transitions
to some other blocking state can also be made blocking, by deleting all outgoing
transitions (including ω) from it. The Limited Certain Conflicts Rule should be
applied repeatedly, as the deletion of transitions may introduce new blocking
states and thus new certain conflicts.

4.5 Selfloop Removal Rule

The final abstraction rule concerns selfloop-only events. To verify nonblocking,
it is enough to check if every state in the final synchronous composition of all
automata can reach a terminal state. Selfloops in the final synchronous composi-
tion have no effect on the blocking nature of the system, since any path between
two states still passes the same states when all selfloops are removed from the
path. So the final synchronous composition is nonblocking if and only if it is
nonblocking with all selfloops removed.

Based on this observation, if an event is known to be selfloop-only in all
automata except the one being simplified, then selfloops with that event can be
added or removed freely to the automaton being simplified.

Rule 4 (Selfloop Removal Rule). If an event λ is selfloop-only in all other
automata, then selfloop transitions q

λ∗ q can be added to or removed from any
state q.

This rule can be used to remove selfloops and save memory, sometimes reduc-
ing the amount of shared events or allowing other rules to be used. If an event
only appears on selfloops in all automata, then it can be removed entirely. Fur-
thermore, the addition of selfloops to certain states may also be beneficial.

Example 5. Figure 4 shows a sequence of conflict-preserving changes to an
automaton containing the selfloop-only event λ. First, the λ-selfloop in G1 is
removed to create G2. In G2, states 0 and 1 are close to observation equivalent,
as they both have a β-transition to state 2; however 0 has a λ-transition to 1
and 1 does not. Yet, it is possible to add a λ-selfloop to state 1 and create G3.
Now states 0 and 1 are observation equivalent and can be merged to create G4.
Finally, the λ-selfloop in G4 is removed to create G5.

170 C. Pilbrow and R. Malik

Fig. 4. Removal and addition of selfloops.

Proposition 7. Let G = ⊆A, Q,∗G, Q∗∧ and H = ⊆A, Q,∗H , Q∗∧ be auto-
mata with ∗H = ∗G → {(q, λ, q)} for some λ ∈ A. Then G ∀∈,{λ} H.

Proposition 7 shows that the addition of a single selfloop preserves conflict
equivalence. It can be applied in reverse to remove selfloops, and it can be applied
repeatedly to add or remove several selfloops in an automaton or in the entire
system.

The implementation in Sect. 6 uses selfloop removal whenever applicable to
delete as many selfloops as possible. In addition, observation equivalence has
been modified to assume the presence of selfloops for all selfloop-only events in
all states, so as to achieve the best possible state-space reduction.

5 Finding Always Enabled and Selfloop-Only Events

While the simplification rules in Sect. 4 are straightforward extensions of known
rules for standard conflict equivalence [9], their application requires the knowl-
edge about always enabled and selfloop-only events. Assume the system (2)
encountered during compositional verification is

G1 ∪ G2 ∪ · · · ∪ Gn , (4)

and automaton G1 is to be simplified. Then it is necessary to know always
enabled and selfloop-only events in T = G2 ∪ · · · ∪ Gn. For each component
automaton Gi, such events are easy to detect based on Definitions 5 and 6. It
also is a direct consequence of the definitions that these properties carry over to
the synchronous product.

Proposition 8. Let G1 and G2 be two automata. If an event σ is always enabled
(or selfloop-only) in G1 and G2, then σ is always enabled (or selfloop-only) in
G1 ∪ G2.

Given Proposition 8, an event can be considered as always enabled or
selfloop-only if it has this property for every automaton in (4) except the automa-
ton being simplified. When checking the individual automata, selfloop-only events
are easily found by checking whether an event in question only appears on self-
loop transitions. For always enabled events, it is checked whether the event in
question is enabled in every state, but additional considerations can help to find
more always enabled events.

Compositional Nonblocking Verification 171

Fig. 5. Finding an always enabled event.

Example 6. Consider automaton G in Fig. 5. It clearly holds that 0
η∗, and

1 τ∗ 0
η∗ and thus 1

η∨. Although η is not enabled in state ⊥, this state is a
blocking state and the set of enabled events for blocking states is irrelevant—it
is known [16] that G is conflict equivalent to G◦. Then η can be considered as
always enabled in G◦ and thus also in G.

By definition, an always enabled event η must be possible in every state of
the environment T , except for blocking states according to Example 6. However,
this condition is stronger than necessary, as η typically is not always possible in
the automaton G being simplified. This observation leads to conditionally always
enabled events.

Definition 12. Let G = ⊆A, QG,∗G, Q∗
G∧ and T = ⊆A, QT ,∗T , Q∗

T ∧ be two
automata. An event σ ∈ A is conditionally always enabled for G in T , if for all
s ∈ A→ such that Q∗

G
sσ∨G and all states xT ∈ QT such that Q∗

T
s∨T xT , it holds

that xT
σ∨T .

An event is conditionally always enabled if the environment T enables it in
all states where it is possible in the automaton G to be simplified. The following
Proposition 9 shows that the result of compositional nonblocking verification is
also preserved with events that are only conditionally always enabled.

Proposition 9. Let G, H, and T be automata, and let E and S be event sets
such that G ∀E,S H, and E is a set of conditionally always enabled events for G
in T , and S is a set of selfloop-only events for T . Then G ∪ T is nonblocking if
and only if H ∪ T is nonblocking.

Conditionally always enabled events can be used like general always
enabled events, but they are more difficult to find. To check the condition of
Definition 12, it is necessary to explore the state space of G ∪ T , which has the
same complexity as a nonblocking check. Yet, the condition is similar to control-
lability [6], which can often be verified quickly by an incremental controllability
check [4]. The incremental algorithm gradually composes some of the automata
of the system (4) until it can be ascertained whether or not a given event is con-
ditionally always enabled. In many cases, it gives a positive or negative answer
after composing only a few automata.

By running the incremental controllability check for a short time, some condi-
tionally always enabled events can be found, while for others the status remains
inconclusive. Fortunately, it is not necessary to find all always enabled events.
If the status of an event is not known, it can be assumed that this event is

172 C. Pilbrow and R. Malik

not always enabled. The result of nonblocking verification will still be correct,
although it may not use the best possible abstractions. It is enough to only con-
sider events as always enabled or selfloop-only, if this property can be established
easily.

6 Experimental Results

The compositional nonblocking verification algorithm has been implemented in
the discrete event systems tool Waters/Supremica [1], which is freely available
for download [26]. The software is further developed from [17] to support always
enabled and selfloop-only events.

The new implementation has been applied to all models used for evaluation
in [17] with at least 5 · 108 reachable states. The test suite includes complex
industrial models and case studies from various application areas such as man-
ufacturing systems, communication protocols, and automotive electronics. The
following list gives some details about these models.

aip Model of the automated manufacturing system of the Atelier Inter-établisse-
ment de Productique [3]. The tests consider two early versions (aip0) based
on [14], and a more detailed version (aip1) according to [24], which has been
modified for a parameterisable number of pallets.

profisafe PROFIsafe field bus protocol model [15]. The task considered here
is to verify nonblocking of the communication partners and the network in
input-slave configuration with sequence numbers ranging up to 4, 5, and 6.

tbed Model of a toy railroad system [13] in three different designs.
tip3 Model of the interaction between a mobile client and event-based servers

of a Tourist Information System [11].
verriegel Car central locking system, originally from the KorSys project [23].
6link Models of a cluster tool for wafer processing [28].

Compositional verification repeatedly chooses a small set of automata,
composes them, applies abstraction rules to the synchronous composition, and
replaces the composed automata with the result. This is repeated until the
remaining automata are considered too large, or there are only two automata
left. The last two automata are not simplified, because it is easier to check the
nonblocking property directly by explicitly constructing and exploring the syn-
chronous composition.

A key aspect for a compositional verification algorithm is the way how auto-
mata are selected to be composed. The implementation considered here follows
a two-step approach [9]. In the first step, some candidate sets of automata are
formed, and in the second a most promising candidate is selected. For each
event σ in the model, a candidate is formed consisting of all automata with σ
in their alphabet. Among these candidates, the candidate with the smallest esti-
mated number of states after abstraction is selected. The estimate is obtained
by multiplying the product of the state numbers of the automata forming the

Compositional Nonblocking Verification 173

candidate with the ratio of the numbers of events in the synchronous composi-
tion of the candidate after and before removing any local events. This strategy
is called MustL/MinS [9,17].

After identification of a candidate, its automata are composed, and
then a sequence of abstraction rules is applied to simplify it. First, τ -loops
(Definition 10) and observation equivalent redundant transitions [8] are removed
from the automaton. This is followed by the Only Silent Incoming Rule (Propo-
sition 5), the Only Silent Outgoing Rule [9], the Limited Certain Conflicts Rule
(Proposition 6), Observation Equivalence (Proposition 3), the Non-α Determin-
isation Rule [17], the Active Events Rule [9], and the Silent Continuation Rule
(Proposition 4).

During simplification, all selfloops with selfloop-only events are deleted, and
observation equivalence and the removal of observation equivalent redundant
transitions exploit selfloop-only events for further simplification. Furthermore,
the Only Silent Incoming Rule, the Limited Certain Conflicts Rule, and the Silent
Continuation Rule take always enabled events into account. For the experiments,
the detection of always enabled events and selfloop-only events can be turned
on and off separately, producing four strategies None (no special events), SL
(selfloop-only events), AE (always enabled events), and SL/AE (selfloop-only
and always enabled events).

The strategies AE and SL/AE consider events as always enabled if they are
always enabled in every automaton except the one being simplified. Two further
strategies SL/AE ⊆200∧ and SL/AE ⊆1000∧ also search for events that are
conditionally always enabled (Definition 12). This is done using an incremental
controllability check [4] that tries to compose an increasing part of the model
until it is known whether or not an event is always enabled, or until a state limit
of 200 or 1000 states is exceeded; in the latter case, the check is abandoned and
the event is assumed to be not always enabled.

The results of the experiments are shown in Table 1 and Fig. 6. The table
shows for each model the total number of reachable states in the synchronous
composition (Size) if known, and whether or not the model is nonblocking (Res).
Then it shows for each strategy, the number of states in the largest automaton
encountered during abstraction (Peak States), the number of states in the syn-
chronous composition explored after abstraction (Final States), and the total
verification time (Time). The best result in each category is highlighted in bold
in the table. Figure 6 displays the final state numbers and runtimes for six rep-
resentative experiments graphically.

In some cases, compositional nonblocking verification terminates early, either
because all reachable states of all automata are known to be terminal, or because
some automaton has no reachable terminal states left. In these cases, the final
synchronous composition is not constructed and the final states number is shown
as 0 in the table.

All experiments are run on a standard desktop computer using a single core
3.3 GHz CPU and 8 GB of RAM. The experiments are controlled by state limits.
If during abstraction the synchronous composition of a candidate has more than

174 C. Pilbrow and R. Malik

aip0tough

1
9
7
8
1
7
0
2

1
6
9
8
9
7
5
4

1
9
7
8
1
7
0
2

1
6
9
8
9
7
5
4

aip1efa 3

1
8
7
8
7
0
8

1
7
2
6
1
2
7

1
7
0
7
9
0
5

profisafe i5
O
u
t
o
f
m
em

or
y

5
7
8
8
8

O
u
t
o
f
m
em

or
y

1
2
0
7
0

profisafe i6

O
u
t
o
f
m
em

or
y

1
4
8
2
8
4

O
u
t
o
f
m
em

or
y

6
2
8
1
3
1

tbed valid

3
8
3
9

3
5
8
0

2
7
2
2

2
6
2
1

tip3

1
7
3

1
5
3

1
4
9

F
in
a
l
st
a
te
s

aip0tough

8
0
.3

s
4
7
.3

s
7
5
.6

s
4
5
.2

s
4
7
.7

s
1
0
8
.8

s

aip1efa 3

1
3
.1

s
1
3
.4

s
1
3
.3

s
1
3
.5

s
1
7
.6

s
4
0
.9

s

profisafe i5

O
u
t
o
f
m
em

or
y

6
6
.9

s
O
u
t
o
f
m
em

or
y

7
0
.6

s
1
1
5
2
.7
s

2
9
1
1
.1

s

profisafe i6

O
u
t
o
f
m
em

or
y

4
8
.8

s
O
u
t
o
f
m
em

or
y

8
0
.8

s
1
8
3
5
.0

s
4
2
3
8
.9

s

tbed valid

9
.5

s
9
.6

s
1
0
.7

s
1
0
.7

s 1
5
.0

s
3
0
.7

s

tip3

4
.0

s
4
.1

s
5
.2

s
5
.3

s
6
.7

s
7
.2

s

T
o
ta
l
ru
n
ti
m
e

None

SL

AE

SL/AE

SL/AE 200

SL/AE 1000

Fig. 6. Final state numbers and runtimes for representative experiments.

100,000 states, it is discarded and another candidate is chosen instead. The state
limit for the final synchronous composition after abstraction is 108 states. If this
limit is exceeded, the run is aborted and the corresponding table entries are left
blank.

The experiments show that compositional verification can check the non-
blocking property of systems with up to 1014 states in a matter of seconds. The
exploitation of always enabled and selfloop-only events reduces the peak or final
state numbers in many cases. This is important as these numbers are the limiting
factors in compositional verification.

The runtimes tend to increase slightly when always enabled or selfloop-only
events are used, because the smaller state numbers are outweighed by the effort
to find the special events. The search has to be repeated after each abstraction
step, because each abstraction can produce new always enabled or selfloop-only
events, and the cost increases with the number of steps and events. Conditionally
always enabled events can produce better abstractions, but as shown in Fig. 6,
it takes a lot of time to find them.

There are also cases where the state numbers increase with always enabled
and selfloop-only events. A decrease in the final state number after simplification
can come at the expense of increase in the peak state number during simplifica-
tion. With more powerful simplification algorithms, originally larger automata
may fall under the state limits. Also, different abstractions may trigger differ-
ent candidate selections in following steps, which are not always optimal, and
in some cases, the merging of states may prevent observation equivalence from
becoming applicable in later steps.

Compositional Nonblocking Verification 175

Table 1. Experimental results.

None SL AE
Peak Final Time Peak Final Time Peak Final Time

Model Size Res states states [s] states states [s] states states [s]

aip0aip 1.02 ·109 yes 1090 5 1.4 1090 5 1.4 1090 5 1.4
aip0tough 1.02 ·1010 no 96049 19781702 80.3 96049 16989754 47.3 96049 19781702 75.6
aip1efa 3 6.88 ·108 yes 40290 1878708 13.1 40290 1878708 13.4 40290 1878708 13.3
aip1efa 16 9.50 ·1012 no 65520 13799628 22.2 65520 13799628 22.2 65520 13799628 22.9
aip1efa 24 1.83 ·1013 no 6384 13846773 18.4 6384 13846773 18.6 6384 13846773 18.7
profisafe i4 yes 74088 409 82.3
profisafe i5 yes 98304 57888 66.9
profisafe i6 yes 55296 148284 48.8
tbed ctct 3.94 ·1013 no 43825 0 14.5 43825 0 14.8 43825 0 16.6
tbed hisc 5.99 ·1012 yes 1757 33 2.7 1757 33 2.7 1705 33 2.8
tbed valid 3.01 ·1012 yes 50105 3839 9.5 50105 3580 9.6 50105 2722 10.7
tip3 2.27 ·1011 yes 6399 173 4.0 6399 173 4.1 12303 153 5.2
tip3 bad 5.25 ·1010 no 1176 14 1.0 1032 14 1.0 1176 0 1.1
verriegel3 9.68 ·108 yes 3303 2 2.0 3303 2 1.7 3349 2 1.8
verriegel3b 1.32 ·109 no 1764 0 1.2 1764 0 1.3 1795 0 1.2
verriegel4 4.59 ·1010 yes 2609 2 1.4 2609 2 1.5 2644 2 1.7
verriegel4b 6.26 ·1010 no 1764 0 1.4 1764 0 1.4 1795 0 1.4
6linka 2.45 ·1014 no 64 0 0.4 64 0 0.4 64 0 0.5
6linki 2.75 ·1014 no 61 0 0.3 61 0 0.3 61 0 0.3
6linkp 4.43 ·1014 no 32 0 0.3 32 0 0.3 32 0 0.3
6linkre 6.21 ·1013 no 118 12 0.5 118 12 0.5 106 0 0.5

SL/AE SL/AE 200 SL/AE 1000
Peak Final Time Peak Final Time Peak Final Time

Model Size Res states states [s] states states [s] states states [s]

aip0aip 1.02 ·109 yes 1090 5 1.4 892 5 24.5 892 5 32.0
aip0tough 1.02 ·1010 no 96049 16989754 45.2 96049 16989754 47.7 96049 16989754 108.8
aip1efa 3 6.88 ·108 yes 40290 1878708 13.5 32980 1726127 17.6 31960 1707905 40.9
aip1efa 16 9.50 ·1012 no 65520 13799628 22.9 65520 13799628 28.6 65520 13799628 47.5
aip1efa 24 1.83 ·1013 no 6384 13846773 19.2 5313 13846773 24.0 5292 13846773 41.9
profisafe i4 yes 49152 9864 61.6 49152 9864 638.4 49152 9864 2848.9
profisafe i5 yes 98304 12070 70.6 98304 12070 1152.7 98304 12070 2911.1
profisafe i6 yes 52224 628131 80.8 52224 628131 1835.0 52224 628131 4238.9
tbed ctct 3.94 ·1013 no 43825 0 16.4 43825 0 20.9 43825 0 43.7
tbed hisc 5.99 ·1012 yes 1705 33 3.0 1705 33 24.5 1705 138 81.5
tbed valid 3.01 ·1012 yes 50105 2621 10.7 50105 2621 15.0 50105 2621 30.7
tip3 2.27 ·1011 yes 12303 153 5.3 12303 153 6.7 12303 149 7.2
tip3 bad 5.25 ·1010 no 1096 0 1.1 1096 0 2.9 1096 0 3.8
verriegel3 9.68 ·108 yes 3349 2 1.5 2644 2 6.0 2644 2 9.6
verriegel3b 1.32 ·109 no 1795 0 1.3 1795 0 5.8 1795 0 8.3
verriegel4 4.59 ·1010 yes 2644 2 1.6 2644 2 8.6 2644 2 17.3
verriegel4b 6.26 ·1010 no 1795 0 1.4 1795 0 8.1 1795 0 13.6
6linka 2.45 ·1014 no 64 0 0.5 64 0 2.2 64 0 2.7
6linki 2.75 ·1014 no 61 0 0.3 61 0 1.7 61 0 2.0
6linkp 4.43 ·1014 no 32 0 0.3 32 0 1.6 32 0 2.0
6linkre 6.21 ·1013 no 106 0 0.5 106 0 2.3 106 0 2.8

Yet, the large PROFIsafe models [15] can only be verified compositionally
with selfloop-only events. By adding always enabled and selfloop-only events to
the available tools, it becomes possible to solve problems that are not solvable
otherwise.

176 C. Pilbrow and R. Malik

7 Conclusions

It has been shown how conflict-preserving abstraction can be enhanced by taking
into account additional information about the context in which an automaton
to be abstracted is used. Specifically, always enabled and selfloop-only events are
easy to discover and help to produce simpler abstractions. Experimental results
demonstrate that these special events can make it possible to verify the non-
blocking property of more complex discrete event systems. In future work, it is
of interest whether the algorithms to detect and use always enabled and selfloop-
only events can be improved, and whether other conflict-preserving abstraction
methods can also be generalised.

References

1. Åkesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica—an integrated envi-
ronment for verification, synthesis and simulation of discrete event systems.
In: Proceedings of the 8th International Workshop on Discrete Event Systems,
WODES ’06, Ann Arbor, MI, USA, pp. 384–385 (2006)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Brandin, B., Charbonnier, F.: The supervisory control of the automated man-
ufacturing system of the AIP. In: Proceedings of Rensselaer’s 4th International
Conference on Computer Integrated Manufacturing and Automation Technology,
Troy, NY, USA, pp. 319–324 (1994)

4. Brandin, B.A., Malik, R., Malik, P.: Incremental verification and synthesis of
discrete-event systems guided by counter-examples. IEEE Trans. Control Syst.
Technol. 12(3), 387–401 (2004)

5. Brookes, S.D., Rounds, W.C.: Behavioural equivalence relations induced by pro-
gramming logics. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 97–108.
Springer, Heidelberg (1983)

6. Cassandras, C.G., Lafortune, S. (eds.): Introduction to Discrete Event Systems,
2nd edn. Springer, Heidelberg (2008)

7. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theor. Com-
put. Sci. 34(1–2), 83–133 (1984)

8. Eloranta, J.: Minimizing the number of transitions with respect to observation
equivalence. BIT 31(4), 397–419 (1991)

9. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J.
Control Optim. 48(3), 1914–1938 (2009)

10. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Clarke,
E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–6. Springer, Hei-
delberg (1991)

11. Hinze, A., Malik, P., Malik, R.: Interaction design for a mobile context-aware sys-
tem using discrete event modelling. In: Proceedings of the 29th Australasian Com-
puter Science Conference, ACSC ’06, pp. 257–266. Australian Computer Society,
Hobart (2006)

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

Compositional Nonblocking Verification 177

13. Leduc, R.J.: PLC implementation of a DES supervisor for a manufacturing testbed:
an implementation perspective. Master’s thesis. Department of Electrical Engi-
neering, University of Toronto, ON, Canada. http://www.cas.mcmaster.ca/∼leduc
(1996)

14. Leduc, R.J.: Hierarchical interface-based supervisory control. Ph.D. thesis, Depart-
ment of Electrical Engineering, University of Toronto, ON, Canada. http://www.
cas.mcmaster.ca/∼leduc (2002)

15. Malik, R., Mühlfeld, R.: A case study in verification of UML statecharts: the
PROFIsafe protocol. J. Univ. Comput. Sci. 9(2), 138–151 (2003)

16. Malik, R.: The language of certain conflicts of a nondeterministic process. Working
Paper 05/2010, Department of Computer Science, University of Waikato, Hamil-
ton, New Zealand. http://hdl.handle.net/10289/4108 (2010)

17. Malik, R., Leduc, R.: Compositional nonblocking verification using generalised non-
blocking abstractions. IEEE Trans. Autom. Control 58(8), 1–13 (2013)

18. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Int. J. Found. Com-
put. Sci. 17(4), 797–813 (2006)

19. Milner, R.: Communication and Concurrency. Series in Computer Science.
Prentice-Hall, Upper Saddle River (1989)

20. Pena, P.N., Cury, J.E.R., Lafortune, S.: Verification of nonconflict of supervisors
using abstractions. IEEE Trans. Autom. Control 54(12), 2803–2815 (2009)

21. Pilbrow, C.: Compositional nonblocking verification with always enabled and
selfloop-only events. Working Paper 07/2013, Department of Computer Science,
University of Waikato, Hamilton, New Zealand. http://hdl.handle.net/10289/8187
(2013)

22. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc.
IEEE 77(1), 81–98 (1989)

23. KorSys Project. http://www4.in.tum.de/proj/korsys/
24. Song, R.: Symbolic synthesis and verification of hierarchical interface-based super-

visory control. Master’s thesis, Department of Computing and Software, McMaster
University, Hamilton, ON, Canada. http://www.cas.mcmaster.ca/∼leduc (2006)

25. Su, R., van Schuppen, J.H., Rooda, J.E., Hofkamp, A.T.: Nonconflict check by
using sequential automaton abstractions based on weak observation equivalence.
Automatica 46(6), 968–978 (2010)

26. Supremica. http://www.supremica.org
27. Valmari, A.: Compositionality in state space verification methods. In: Billington,

J., Reisig, W. (eds.) Application and Theory of Petri Nets 1996. LNCS, vol. 1091,
pp. 29–56. Springer, Heidelberg (1996)

28. Yi, J., Ding, S., Zhang, M.T., van der Meulen, P.: Throughput analysis of linear
cluster tools. In: Proceedings of the 3rd International Conference on Automation
Science and Engineering, CASE 2007, Scottsdale, AZ, USA, pp. 1063–1068 (2007)

http://www.cas.mcmaster.ca/~leduc
http://www.cas.mcmaster.ca/~leduc
http://www.cas.mcmaster.ca/~leduc
http://hdl.handle.net/10289/4108
http://hdl.handle.net/10289/8187
http://www4.in.tum.de/proj/korsys/
http://www.cas.mcmaster.ca/~leduc
http://www.supremica.org

Formal Semantics and Analysis
of Timed Rebeca in Real-Time Maude

Zeynab Sabahi-Kaviani1, Ramtin Khosravi1(B), Marjan Sirjani1,2,
Peter Csaba Ölveczky3, and Ehsan Khamespanah1

1 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
r.khosravi@ut.ac.ir

2 School of Computer Science, Reykjavik University, Reykjavik, Iceland
3 Department of Informatics, University of Oslo, Oslo, Norway

Abstract. The actor model is one of the main models for distributed
computation. Timed Rebeca is a timed extension of the actor-based
modeling language Rebeca. Although Rebeca is supported by a rich
verification toolset, Timed Rebeca has not had an executable formal
semantics, and has therefore had limited support for formal analysis.
In this paper, we provide a formal semantics of Timed Rebeca in Real-
Time Maude. We have automated the translation from Timed Rebeca
to Real-Time Maude, allowing Timed Rebeca models to be automati-
cally analyzed using Real-Time Maude’s reachability analysis tool and
timed CTL model checker. This enables a formal model-based method-
ology which combines the convenience of intuitive modeling in Timed
Rebeca with formal verification in Real-Time Maude. We illustrate this
methodology with a collision avoidance protocol for wireless networks.

1 Introduction

The importance of formal modeling and analysis for ensuring the dependability
and correctness of safety-critical systems has long been acknowledged. How-
ever, the lack of formal modeling languages close to programming and modeling
languages used by practitioners has limited the use of formal methods. Timed
Rebeca [1] is an actor-based [2] modeling language that extends the Rebeca lan-
guage [17] to support the modeling of distributed real-time systems. Because
of its Java-like syntax and its simple and intuitive message-driven and object-
based computational model, Timed Rebeca is an easy-to-learn language for sys-
tem developers, thereby bridging the gap between formal methods and practical
software engineering.

Although Rebeca is supported by a rich model checking toolset [15], model
checking of Timed Rebeca models has not been supported until now. Even
though Timed Rebeca has an SOS semantics, it lacks an executable formal
semantics that would enable automated analysis methods such as simulation
and temporal logic model checking.

However, providing an executable formal semantics for Timed Rebeca is quite
challenging. For example, since Timed Rebeca has a rich expression/statement

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 178–194, 2014.
DOI: 10.1007/978-3-319-05416-2 12, c© Springer International Publishing Switzerland 2014

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 179

language that allows the values of state variables to grow beyond any bound,
and since the message queues can become arbitrarily long, Timed Rebeca cannot
be translated into popular real-time formalisms such as, e.g., timed automata.

In this paper, we provide a formal Real-Time Maude semantics for Timed
Rebeca. Real-Time Maude [12] is a specification formalism and analysis tool for
real-time systems based on rewriting logic [11]. With its natural time model and
expressive formalism, which is particularly suitable for formally specifying dis-
tributed real-time systems in an object-oriented way, Real-Time Maude should
be ideally suited for this challenging task. Real-Time Maude is supported by a
high-performance toolset providing a spectrum of analysis methods, including
simulation through timed rewriting, reachability analysis, and (untimed) linear
temporal logic model checking as well as timed CTL model checking.

We have automated the translation from Timed Rebeca to Real-Time Maude,
so that the user gets Real-Time Maude simulation and model checking of his/her
Timed Rebeca model for free. Furthermore, such formal analysis is being inte-
grated into the Rebeca toolset. This would of course not be very useful if the
user would need to understand the Real-Time Maude representation of his/her
Timed Rebeca model, and/or would need to define state properties in Real-Time
Maude, in order to model check his/her Timed Rebeca model. We have therefore
taken advantage of Real-Time Maude’s support for parametric state propositions
to predefine useful generic state propositions, so that the user can define his/her
(possibly timed) temporal logic properties without having to know Real-Time
Maude or understand how the mapping from Timed Rebeca works.

Altogether, this enables a formal model-engineering methodology that com-
bines the convenience of modeling in an intuitive actor language with Java-like
syntax with formal verification in Real-Time Maude. We illustrate this method-
ology with a collision avoidance protocol case study.

The rest of the paper is structured as follows. Section 2 briefly introduces
Timed Rebeca and Real-Time Maude. Section 3 explains the Real-Time Maude
formalization of the Timed Rebeca semantics. Section 4 defines some useful
generic atomic state propositions that allows the user to easily define his/her
temporal logic formulas without knowing Real-Time Maude. Section 5 illustrates
our methodology on a collision avoidance protocol. Finally, Section 6 discusses
related work and Sect. 7 gives some concluding remarks.

2 Preliminaries

2.1 Timed Rebeca

Since Timed Rebeca is an extension of the Rebeca modeling language, we first
introduce Rebeca and then explain Timed Rebeca in more detail.

Rebeca [17] is a pure actor-based modeling language suitable for specifying
distributed systems. Rebeca is supported by a rich model checking toolset [15].

A Rebeca model consists of a set of actors (called rebecs) that communicate
asynchronously by message passing. Each actor maintains a queue of messages

180 Z. Sabahi-Kaviani et al.

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs Vars Constr MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;

Constr ::= className methodName(〈type v〉∗) { Stmt∗ }
MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; | v =?(e1, . . . , en) | Send ; | if (e) { Stmt∗ } [else { Stmt∗ }] |
delay(e); | for (Stmt1; e; Stmt2) { Stmt∗ }

Send ::= rebecName.methodName(〈e〉∗) [after(e)] [deadline(e)]

Fig. 1. Abstract syntax of Timed Rebeca. Angle brackets 〈...〉 are used as meta paren-
thesis. Identifiers className, rebecName, methodName, v, literal , and type denote class
name, rebec name, method name, variable, literal, and type, respectively; and e denotes
an (arithmetic or boolean) expression. In for loops, Stmt1 is the initialization state-
ment, e2 is a boolean expression (the loop execution condition), and Stmt2 is the update
statement (executed after each iteration).

that it has received but not yet processed. An actor repeatedly takes a mes-
sage from the beginning of its queue and executes the corresponding message
server, which may involve sending messages to other actors and changing the
actor’s local state. Execution is non-preemptive: the actor does not take the next
message from its queue before the running message server is finished.

A Rebeca specification defines a number of reactive classes and a main block.
A reactive class defines an actor type and its behavior as well as its relationship
to other actors. The body of a reactive class definition has three sections: known
rebecs, state variables, and message servers. A rebec can only send messages to
its known rebecs. The local state of a rebec is given by the values of its state
variables. The type of state variables can be integer types, Boolean, and arrays.

The message servers specify how the rebecs respond to incoming messages.
They may have parameters and may define local variables. The body of a message
server consists of a number of statements, including assignments, conditionals,
loops, and sending messages. The expressions contains common arithmetic and
logical operators. The nondeterministic assignment v =?(e1, . . . , ek) nondeter-
ministically assigns (the current evaluation of) one of the expressions ei to the
variable v. Each class has a constructor (with the same name as the class) which
initializes the state variables of its instances.

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 181

Timed Rebeca [1] is a timed extension of Rebeca whose abstract syntax is
given in Fig. 1. The following timed features have been added for specifying
distributed real-time systems:

– delay is a statement used to model computation times. Since we assume that
the execution times of the other statements to be zero, the computation time
must be specified by the modeler using the delay statement.

– after is a time tag attached to a message and defines the earliest time the
message can be served, relative to the time when the message was sent.

– deadline is a time tag attached to a message which determines the expiration
time of the messages, relative to the time when the message was sent.

When a message with tag after t is sent, it is added to the set of undelivered
messages and resides there until t time units have elapsed. Then, it is delivered,
i.e., appended to the receiving rebec’s message queue. The messages in a rebec’s
queue are therefore ordered according to their delivery time (if the delivery
time of two messages are the same, the order in which they are delivered is
selected nondeterministically). If the deadline of a message is reached, regardless
of whether it is delivered or not, the message is purged. A rebec takes a message
from its queue as soon as it can (i.e., when it has finished processing the previous
message, and there are some messages in the queue).

Figure 2 shows a Timed Rebeca model of a simple thermostat system com-
posed of two actors t and h of reactive classes Thermostat and Heater, respec-
tively. The actors are instantiated in the main block; e.g., Heater h(t):();
creates an instance h of Heater, passing t as its known rebec, and invoking
its constructor (with empty parameter list). The goal of the system is to keep
the temperature between 25 and 30 degrees. The Thermostat actor checks the
temperature every 5 time units, by sending a checkTemp message to itself (line
19). If the temperature is not in the acceptable range, it sends the Heater actor
h the proper on or off message, which expires after 20 time units (lines 16 and
18). It takes two time units for the heater to turn itself on or off. The heater
also models the change in the environment by nondeterministically changing the
temperature by 1 to 3 degrees every 10 time units (lines 47–49), and sending the
delta to the heater (line 50).

2.2 Real-Time Maude

Real-Time Maude [12,13] extends the rewriting-logic-based Maude language and
tool [5] to support the formal specification and analysis of real-time systems. A
Real-Time Maude timed module is a tuple (Σ,E , IR,TR), where:

– (Σ,E) is a membership equational logic [5] theory where Σ is an algebraic
signature, declaring the sorts, subsorts, and functions of the system, and E
a set of confluent and terminating conditional equations. (Σ,E) specifies the
system’s states as an algebraic data type, and must contain a specification of
a sort Time modeling the (discrete or dense) time domain.

182 Z. Sabahi-Kaviani et al.

1 reactiveclass Thermostat {

2 knownrebecs {

3 Heater heater;

4 }

5 statevars {

6 int period;

7 int temp;

8 }

9 Thermostat() {

10 period = 5;

11 temp = 25;

12 self.checkTemp();

13 }

14 msgsrv checkTemp() {

15 if (temp >= 30)

16 heater.off() deadline(20);

17 if (temp <= 25)

18 heater.on() deadline(20);

19 self.checkTemp()

after(period);

20 }

21 msgsrv changeTemp(int delta) {

22 temp = temp + delta;

23 }

24 }

26 reactiveclass Heater {

27 knownrebecs {

28 Thermostat thermostat;

29 }

30 statevars {

31 boolean on;

32 int delta;

33 }

34 Heater() {

35 on = false;

36 self.run();

37 }

38 msgsrv on() {

39 delay(2);

40 on = true;

41 }

42 msgsrv off() {

43 delay(2);

44 on = false;

45 }

46 msgsrv run(){

47 delta = ?(1,2,3);

48 if (on == false)

49 delta = -1 * delta;

50 thermostat.changeTemp(delta);

51 self.run() after(10);

52 }

53 }

55 main {

56 Thermostat t(h):();

57 Heater h(t):();

58 }

Fig. 2. The Timed Rebeca model for a simple thermostat/heater system.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules specify-
ing the system’s instantaneous (i.e., zero-time) local transitions, written with
syntax rl [l] : u => v, where l is a label. Such a rule specifies a one-step
transition from an instance of the term u to the corresponding instance of the
term v. The rules are applied modulo the equations E.

– TR is a set of (usually conditional) tick rules, written with syntax crl [l] : {t}
=> {t→} in Time τ if cond, that model time elapse. { } is a built-in constructor
of sort GlobalSystem, and τ is a term of sort Time that denotes the duration
of the rewrite.

The initial state must be a ground term of sort GlobalSystem and must be
reducible to a term of the form {u} using the equations in the specification.

The Real-Time Maude syntax is fairly intuitive. A function symbol f in Σ is
declared with the syntax op f : s1 ... sn -> s, where s1...sn are the sorts of its
arguments, and s is its result sort. Equations are written with syntax eq u = v,
and ceq u = v if cond for conditional equations. The mathematical variables
in such statements are declared with the keywords var and vars. An equation

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 183

f(ti, . . . , tn) = t with the owise (for “otherwise”) attribute can be applied to a
subterm f(. . .) only if no other equation with left-hand side f(u1, . . . , un) can
be applied.

A class declaration class C | att1 : s1 , ... , attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn, respectively. An object of class C
is represented as a term < O :C | att1 : val1 ,..., attn : valn > where O, of
sort Oid is the object’s identifier, and where val1 to valn are the current values
of the attributes att1 to attn. The state is a term of sort Configuration, and has
the structure of a multiset of objects and messages, with multiset union denoted
by a juxtaposition operator that is declared associative and commutative, so
that rewriting is multiset rewriting.

The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] :

m(O,W)

< O : C | a1 : X, a2 : O’, a3 : Z >

=>

< O : C | a1 : X + W, a2 : O’, a3 : Z >

dly(m’(O’),X) .

defines a parameterized family of transitions in which a message m, with para-
meters O and W, is read and consumed by an object O of class C. The transitions
change the attribute a1 of the object O and send a new message m’(O’) with
delay X.

Formal Analysis. The Real-Time Maude tool provides a spectrum of analysis
methods, including:

– timed rewriting that simulates one behavior of the system up to certain dura-
tion from an initial state;

– timed search analyzes whether a state matching a state pattern is reachable
from the initial state within a certain time interval;

– model checking to check whether each possible behavior from the initial state
satisfies a temporal logic formula. Real-Time Maude extends Maude’s linear
temporal logic model checker. State proposition are terms of sort Prop, and
their semantics should be given by (possibly conditional) equations of the
form {statePattern} |= prop = b, for a b a term of sort Bool, which defines the
state proposition prop to hold in a state {t} if {t} |= prop evaluates to true.
A temporal logic formula is constructed by state propositions and temporal
logic operators such as True, False, ∼ (negation), /\, \/, -> (implication),
[] (“always”), <> (“eventually”), and U (“until”). The time-bounded model
checking command has the syntax mc {t} |=t ϕ in time <= τ . for initial
state {t} and temporal logic formula ϕ. Real-Time Maude has also recently
been equipped with a model checker for timed computation tree logic (TCTL)
properties [10].

184 Z. Sabahi-Kaviani et al.

3 Real-Time Maude Semantics of Timed Rebeca

This section explains how we have formalized the semantics of Timed Rebeca in
Real-Time Maude in an object-oriented style.

Specifying the Static Parts. In the Real-Time Maude semantics of a Timed
Rebeca model we need to keep track of (i) the declarations of the (message servers
of the) reactive classes; (ii) the rebecs in their current states; and
(iii) the set of as-yet undelivered messages.

Since the message servers do not change dynamically, we do not need to carry
them around in the state. Instead, the message servers are modeled by a function

op msgServer : ClassName MsgHeader -> Statements .

where msgServer(c,m) defines the code to be executed by a rebec of reactive
class c when it treats a message with header m. The sort Statements is a
straight-forward representation of the body of a message server. For example, in
our thermostat example, msgServer(Thermostat, Thermostat) equals

(period := 5) ; (temp := 25) ;

(sendSelf checkTemp with noArg deadline INF after 0)

and msgServer(Thermostat, checkTemp) equals

(if(temp >= 30) then (send off with noArg to "heater" deadline 20 after 0)) ;

(if(temp <= 25) then (send on with noArg to "heater" deadline 20 after 0)) ;

(sendSelf checkTemp with noArg deadline INF after 5)

We also have a function formalParams such that formalParams(c,m) returns
the list of the formal parameters of the message server for m in reactive class c.

We mostly omit the details of how basic Rebeca statements (e.g., assignments
and evaluation of expressions) are formalized in Real-Time Maude, and refer
to [3] for a thorough treatment of the Real-Time Maude formalization of the
evaluation of expressions in a fairly sophisticated language. The only expression
we mention is due to the possibility of having nondeterministic assignments. We
formalize the expression list ? (e1, e2, . . . , en) in a nondeterministic assignment
as a list e1 ? e2 ? . . . ? en using the following list data type:

sort NDExpr . subsort Expr < NDExpr .

op nil : -> NDExpr .

op _?_ : NDExpr NDExpr -> NDExpr [assoc id: nil] .

Since nil is the identity element for lists, Maude considers l and nil ? l and
l ? nil to be identical lists. In particular, a single expression e is considered by
Maude to be identical to the lists nil ? e and e ? nil and nil ? e ? nil.

The state of the Real-Time Maude representation of a Timed Rebeca model
is a multiset consisting of one Rebec object for each rebec in the system and one
message for each message in the set of undelivered messages.

A rebec is modeled by an object instance of the following class Rebec:

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 185

class Rebec | stateVars : Valuation, queue : MsgList,

classId : ClassName, toExecute : Statements,

knownRebecs : KnownList .

where stateVars represents the state variables of the rebec and the formal para-
meters of the message server being treated, together with their current values,
as a set of terms of the form var-name |-> value; queue is a ‘::’-separated list
of messages representing the message queue of the rebec; classId is the name
of the reactive class of the rebec; toExecute denotes the remaining statements
the rebec has to execute (and is noStatements if the rebec is not executing a
message server); and knownRebecs denotes the “known rebecs” of the rebec.

For example, the following term models the rebec "t" of class Thermostat
right after completing its constructor. Its state variables have the values 5 and
25, there is only one message in its queue (sent by itself), and the rebec is not
executing any message server.

< "t" : Rebec | stateVars : (’period |-> 5) (’temp |-> 25),

queue : (checkTemp with noArg from "t" to "t" deadline INF),

classId : Thermostat,

toExecute : noStatements,

knownRebecs : (Heater heater --> "h") >

Communication between rebecs takes place when a rebec sends a message
to another rebec (or to itself). The message is put into the multiset of undeliv-
ered messages until its message delay ends. It is then delivered to the receiver’s
message queue. Delivered messages are modeled using the constructor

msg _with_from_to_deadline_ : MsgHeader Valuation Oid Oid TimeInf -> Msg .

A delivered message therefore contains a header (the message name), its argu-
ments, the id of the sender rebec, the id of the receiver, and the time remaining
until the expiration (deadline) of the message. Delayed messages have the form
dly(m, t), where m is a message as above and t is the remaining delay of the
message, and where dly(m, 0) is considered to be identical to m [12].

Instantaneous Transitions. We next formalize the instantaneous actions of a
Timed Rebeca rebec using rewrite rules. We show 9 of the 16 rewrite rules that
define our semantics of the Timed Rebeca.

In the following rule, an idle rebec takes the first message from its queue and
starts executing the statements in the corresponding message server by putting
those statements into its toExecute attribute. Some additional bookkeeping is
also required: the formal parameters of the message server must be initialized to
the values in the message and added to the state variables; to clean up at the
end of the execution, we add a new statement removeVars to execute after the
statements in the message server have been executed:1

1 In this paper we follow the Maude convention that variables are written with (only)
capital letters, and do not show the variable declarations.

186 Z. Sabahi-Kaviani et al.

rl [takeMessage] :

< O : Rebec | stateVars : SVARS,

queue : (M with VAL from O’ deadline DL) :: MSGLIST,

classId : C, toExecute : noStatements >

=>

< O : Rebec | stateVars : SVARS VAL (’sender |-> O’),

queue : MSGLIST,

toExecute : msgServer(C, M) ; removeVars(VAL (’sender |-> O’)) > .

Because of the possibility of having nondeterministic assignments, the rewrite
rule modeling (both deterministic and nondeterministic) assignment is interest-
ing. The following rule uses pattern matching and the fact that the list con-
catenation operator ? is declared to be associate and to have identity nil to
nondeterministically select any possibly expression EX from a list of expressions.
This rule also covers deterministic assignment, since the list variables LIST1 and
LIST2 may both match the empty list nil. In addition, the rebec updates its
toExecute attribute to only execute the remaining statements:

rl [detAndNondetAssignment] :

< O : Rebec | stateVars : (VAR |-> VAL) SVARS,

toExecute : (VAR := LIST1 ? EX ? LIST2) ; STMTLIST >

=>

< O : Rebec | stateVars : (VAR |-> evalExp(EX, (VAR |-> VAL) SVARS)) SVARS,

toExecute : STMTLIST > .

We next describe the semantics of loops for (init; cond; update){body},
where init is a statement executed once in the beginning, cond is a Boolean
expression that must be true to continue the iterations, update is a statement
executed after each iteration, and body is a statement list executed in each iter-
ation. The semantics of loops is formalized in a standard “unfolding” style:

rl [forLoop] :

< O : Rebec | toExecute : for(INIT, COND, UPDATE, BODY) ; STMTLIST >

=>

< O : Rebec | toExecute : INIT ; iterate(COND, UPDATE, BODY) ; STMTLIST > .

rl [iterate] :

< O : Rebec | stateVars : SVARS,

toExecute : iterate(COND, UPDATE, BODY) ; STMTLIST >

=>

< O : Rebec | toExecute : if evalBoolExp(COND, SVARS) then

BODY ; UPDATE ; iterate(COND, UPDATE, BODY) ; STMTLIST

else STMTLIST fi > .

If the first statement is a send statement, the rebec creates a delayed message
which is added to the undelivered message soup.

rl [sendMessage] :

< O : Rebec | stateVars : SVARS,

toExecute : (send M with ARGS to REC deadline DL after AFT)

; STMTLIST , knownRebecs : (CN NK --> RCVR) NL >

=>

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 187

< O : Rebec | toExecute : STMTLIST >

dly(M with getVals(ARGS, SVARS, formalParams(CN,M)) from O to RCVR

deadline evalIntExp(DL,SVARS),

evalIntExp(AFT,SVARS)) .

Both DL and AFT are expressions evaluated using evalIntExp in the context
of the current variable assignment SVARS. The created message is added to the
system configuration; when its remaining delay becomes 0, the message becomes
“undelayed” as explained above, and can be received by the intended recipient,
which puts the message into its message queue:

rl [readMessage] :

(M with ARGS from O to O’ deadline DL)

< O’ : Rebec | queue : MSGLIST >

=>

< O’ : Rebec | queue : MSGLIST :: (M with ARGS from O deadline DL) > .

Another interesting case is the execution of a delay statement, which is
treated as follows: When the rebec encounters the delay statement, it evaluates
the delay expression using the current values of the variables. Once it has done
that, it leaves the delay statement in the beginning of its toExecute attribute
until the remaining delay becomes 0, when the rebec just continues with the next
statement. Decreasing the remaining delay is done by the tick rule below. The
following rules then, respectively, evaluate the delay expression at the beginning
of the delay, and finish the delay when the remaining delay is 0:

crl [evaluateDelayExpression] :

< O : Rebec | stateVars : SVARS, toExecute : delay(EX) ; STMTLIST >

=>

< O : Rebec | toExecute : delay(evalIntExp(EX, SVARS)) ; STMTLIST >

if not (EX :: Int) .

rl [endDelay] :

< O : Rebec | toExecute : delay(0) ; STMTLIST >

=>

< O : Rebec | toExecute : STMTLIST > .

Timed Behavior. The following “standard” object-oriented tick rule [12] is
used to model time advance until the next time when something must “happen”:

var SYSTEM : Configuration .

crl [tick] : {SYSTEM} => {elapsedTime(SYSTEM, mte(SYSTEM))} in time mte(SYSTEM)

if mte(SYSTEM) > 0 .

The variable SYSTEM matches the entire state of the system. The function mte
(maximal t ime elapse) determines how much time can advance in a given state.
If an instantaneous rule is enabled, it must be executed immediately; therefore,
mte of a state must be zero when an instantaneous rule is enabled in that state.

The function mte is the minimum of the mte of each rebec and each message
in the soup. As mentioned above, the mte must be 0 when the rebec has a

188 Z. Sabahi-Kaviani et al.

statement to execute which does not have the form delay(i), for an integer i;
in the latter case, the mte equals i. If there are no statements to be executed,
the mte equals 0 if the rebec has a message in its queue, and equals the infinity
value INF if the message queue is empty:

op mte : Configuration -> TimeInf [frozen (1)] .

eq mte(none) = INF.

eq mte(dly(M, T) CONF) = min(T, mte(CONF)) .

ceq mte(OBJECT CONF) = min(mte(OBJECT), mte(CONF)) if CONF =/= none .

eq mte(< O : Rebec | toExecute : noStatements, queue : empty >) = INF .

eq mte(< O : Rebec | toExecute : delay(T) ; STMTLIST >) = T .

eq mte(< O : Rebec | >) = 0 [owise] .

The function elapsedTime models the effect of time elapse on a state as
follows: The effect of time elapse on a rebec is that the remaining time until
the message deadline is decreased according to the elapsed time for each mes-
sage in the queue. Furthermore, the remaining delay of a delay statement being
executed is also decreased according to the elapsed time. For messages traveling
between rebecs, their remaining delays and deadline are decreased according to
the elapsed time. In both cases, if the deadline expires before the message is
treated, the message is purged (i.e., becomes the empty configuration none):

op elapsedTime : Configuration Time -> Configuration [frozen (1)] .

eq elapsedTime(none, T) = none .

eq elapsedTime(dly(M with ARGS from O to O’ deadline T1, T2) CONF, T)

= (if T2 <= T1 then dly(M with ARGS from O to O’ deadline (T1 - T), T2 - T)

else none fi) elapsedTime(CONF, T) .

eq elapsedTime(< O : Rebec | toExecute : STMTLIST, queue : MSGLIST > CONF, T)

= < O : Rebec | toExecute : decreaseDelay(STMTLIST, T),

queue : decreaseDeadline(MSGLIST, T) > elapsedTime(CONF, T) .

op decreaseDelay : StatementList Time -> StatementList .

eq decreaseDelay(delay(T1) ; STMTLIST, T) = delay(T1 - T) ; STMTLIST .

eq decreaseDelay(STMTLIST, T) = STMTLIST [owise] .

op decreaseDeadlines : MsgList Time -> MsgList .

eq decreaseDeadlines(nil, T) = nil .

eq decreaseDeadlines((M with ARGS from O to O’ deadline T1) :: MSGLIST, T)

= (if T <= T1 then (M with ARGS from O to O’ deadline T1 - T) else none fi)

decreaseDeadlines(MSGLIST, T) .

4 Formal Analysis of Timed Rebeca Models

We have automated the translation of Timed Rebeca models to Real-Time
Maude. The translator is currently being integrated into RMC (Rebeca Model
Checker) [15] to support Real-Time Maude simulation, reachability analysis,
and untimed LTL and timed CTL model checking of Timed Rebeca models
from within the Rebeca toolset. To allow the Timed Rebeca modeler to define
his/her LTL and TCTL formulas without having to know anything about the
Real-Time Maude representation of his/her model, and without having to know
how to define atomic state propositions in Real-Time Maude, we have predefined

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 189

a number of useful generic atomic propositions. LTL and TCTL formulas can
then be defined using these propositions and the usual logical operators such
as ~ (not), /\ (conjunction), etc., linear temporal logic operators such as []
(always), <> (eventually), etc., and timed CTL operators such as AG (always),
AF[<= than t] (always reachable within time t), etc.

We have defined atomic propositions on the state variables of the rebecs.
The value of a state variable can be compared to constants of the same type
using common relational operators such as is (equality) and <= . For example,
the proposition variable of rebec <= value holds if the current value of the state
variable variable in the rebec rebec is less than or equal to value:

ops _of_is_ _of_<=_ _of_<_ ... : IntVar Oid Int -> Prop .

eq {CONF < O : Rebec | stateVars : (V |-> I) VAL >} |= V of O is J = I == J .

eq {CONF < O : Rebec | stateVars : (V |-> I) VAL >} |= V of O <= J = I <= J .

As an example, temp of "h" <= 30 is true if the temp state variable of the
rebec h is less than or equal to 30.

Likewise, we have defined generic propositions o hasSent m to o→, denoting
that rebec o has sent a message with header m to the rebec o→ and that the
message is still in the network; and o hasReceived m from o→ (the message with
header m is already in o’s queue), and the more generic o hasReceived m:

ops _hasSent_to_ _hasReceived_from_ : Oid MsgHeader Oid -> Prop .

eq {CONF dly((MN with VAL from O to O’ deadline T), T’)}

|= O hasSent MN to O’ = true .

eq {CONF < O : Rebec | queue : ML1 :: (MN with VAL from O’ to O deadline T) :: ML2 >}

|= O hasReceived MN from O’ = true .

op _hasReceived_ : Oid MsgHeader -> Prop [ctor] .

eq {CONF < O : Rebec | queue : ML1 :: (MN with VAL from O’ to O deadline T) :: ML2 >}

|= O hasReceived MN = true .

We can now easily define temporal logic properties of our Timed Rebeca models:

[] ((temp of "t" >= 30) -> <> (on of "h" is false))

5 Case Study: A Collision Avoidance Protocol

This section illustrates our modeling and verification methodology on the IEEE
802.11 RTS/CTS protocol for collision avoidance in wireless networks [7]. When
a node decides to send data to another node, it sends a Request to Send (RTS)
message to the destination node, which is expected to reply with a Clear to Send
(CTS) message. Other nodes in the network which receive RTS or CTS messages
wait for a certain amount of time, making the medium free for the two communi-
cating nodes. This mechanism also solves the hidden node problem, which occurs
when two nodes want to send data to the same node. The destination node is
in the range of both senders, but the senders are out of the range of each other
(hence, unaware of each other’s decision to send a message). In the protocol, the
destination node sends a CTS message to only one of the senders. The other
sender waits for a random amount of time, and then sends an RTS message to

190 Z. Sabahi-Kaviani et al.

the destination node. Furthermore, this protocol solves the exposed node problem
as well, where two adjacent nodes send data to two different destination nodes,
so that the interference of data transfer of adjacent senders results in message
collision. The problem is solved by preventing the senders from sending data
after receiving the CTS message from other sender nodes.

We have analyzed the following properties of our Timed Rebeca model:

– Collision freedom: there are not data messages from two different senders at
the same time.

– Starvation avoidance: A node that wants to send data to any destination will
eventually be able to do so.

– Delivery time bound: There must be an upper time bound on the data transfer
to a node that is not in the radio transmission range of the sender; this time
bound depends on the network topology and delays.

Our model uses the reactive classes Node and RadioTransfer. Each Node
knows a RadioTransfer rebec, which is responsible for broadcasting its messages
to all nodes in the node’s transmission range. To transmit data, the sender sends
an RTS message to the receiver (through its RadioTransfer rebec) and waits
for the response. When an RTS message is delivered, the receiver checks wether
the network is busy. If so, it sends an RTS message to itself after a random
backOff (modeled by a nondeterministic choice among the values {2, 3, 4}). If
the receiver is not the target of the message, it marks the status of the network
as busy. Otherwise, it sends a CTS message to the sender. Receiving an RTS
message is handled by the following message server:

msgsrv rcvRTS(byte sndr, byte rcvr) {

if (rcvr == id)

if (channelIdle) radioTransfer.passCTS(id, sndr);

else self.rcvRTS(sndr,rcvr) after(backOff);

else

channelIdle = false;

}

When a node receives a CTS message, it checks whether it is the target of the
message. If so, it sends its data. If not, it sets the network status to idle:

msgsrv rcvCTS(byte sndr,byte rcvr) {

if (rcvr == id) self.sendData();

else channelIdle = true;

}

We have performed the analysis on a 2.53 GHz Intel processor with 2 GB
RAM, running Ubuntu 10.10. The case examined has four nodes in a ring topol-
ogy (each node has two adjacent nodes in its communication range). We have
analyzed different transmission topologies to also analyze the hidden node and
the exposed node problems.

To verify collision freedom, we must ensure that no two messages with differ-
ent senders exist in radio transfer range, which can be verified for all behaviors
up to time 1000 using the following model checking command:

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 191

(mc initState |=t

[] ~ ((("node1" hasSent passData) /\ ("node2" hasSent passData))

\/ (("node2" hasSent passData) /\ ("node3" hasSent passData))

\/ (("node3" hasSent passData) /\ ("node4" hasSent passData))

\/ (("node4" hasSent passData) /\ ("node1" hasSent passData)))

in time <= 1000 .)

The model checking result reported by Real-Time Maude in 5 min was true.
To analyze starvation freedom we use the following command, which states

that each node will eventually (within time 1000) be able to send a data message:

(mc initState |=t (<> ("node1" hasSent passData to "radioTransfer1")) /\

(<> ("node2" hasSent passData to "radioTransfer2")) /\

(<> ("node3" hasSent passData to "radioTransfer3")) /\

(<> ("node4" hasSent passData to "radioTransfer4")) in time <= 1000 .)

This model checking command returns a counterexample, since the protocol
suffers from starvation.

To analyze whether the upper time bound for a transmission from node 1
to node 3 via node 2 is less than t, we can use the TCTL formula ∀♦(s12 →
∀♦∗tr32), where s12 is true if node 1 has just sent a message to node 2, and r32
is true if node 3 has just received the message from node 2. This can be verified
using the following command for t = 6:

(mc-tctl initState |= AG (("node1" hasSent passData to "node2") implies

(AF[<= than 6] ("node3" hasRcv rcvData from "node2"))) .)

The protocol fails to satisfy this property, because of the starvation. But changing
AF to EF makes the property hold; i.e., for all possible behaviors from the initial
state, there exists a path where the transmission can take place in less than 6
time units. Model checking this property took around 20 hours.

6 Related Work

Timed Actor Models. Although there are some actor-based modeling languages
for real-time systems, their lack of effective analysis tools is a significant obstacle
to applying formal verification to real systems. In some cases, assertion-based
verification is suggested to analyze invariance and other safety properties. How-
ever, there is need for more general verification methods, such as model checking
liveness properties and other (timed or untimed) temporal logic properties.

One real-time actor-based modeling language is RTSynchronizer [16]. The
formalism specifies the model in terms of a number of actors and a global
synchronizer which simulates the timed behavior of the actors. Each actor is
extended with timing assumptions which are used by the synchronizer to figure
out the ready-to-execute messages of the actor. In contrast with the “pure”
actor language Timed Rebeca, the computation in RTSynchronizer takes place
through interactions between the synchronizer and the actors. RTSynchronizer
provides limited verification by placing the desired invariant properties in the

192 Z. Sabahi-Kaviani et al.

body of the actors, but this approach does not support the model checking of
more general temporal logic properties. (See also below.)

Creol is an actor-based language for modeling concurrent objects enriched by
synchronization patterns and type system [8]. Jaghouri et al. add timing features
to Creol in [4], where they also develop a schedulability analysis technique, but,
again, there is no support for temporal logic verification of such models.

Work on Timed Rebeca. Aceto et al. in [1] suggested a mapping from Timed
Rebeca models to Erlang for simulation (but not further formal analysis) pur-
poses. A semantics based on floating-time transition system was recently pro-
posed for Timed Rebeca [9]. Schedulability and deadlock-freedom can be checked
efficiently using this semantics, but no state-based property can be verified.

Real-Time Maude as a Semantic Framework. Because of its expressiveness and
natural object-oriented model of distributed real-time systems, Real-Time Maude
has proved to be a suitable semantic framework in which a number of formal
modeling languages have been given a formal semantics. Examples of such mod-
eling languages include Ptolemy II discrete-event models, the Orc web orches-
tration language, subsets and synchronous versions of the avionics modeling
standard AADL, timed model transformation frameworks, and so on (see [14]
for an overview). However, the only work on Real-Time Maude semantics for
timed actor languages is the work by Ding et al. [6] on the above-mentioned
quite different RTSynchronizer model. Unfortunately, no details about the Real-
Time Maude semantics are given in [6], and it seems that their work does not
define the semantics for the entire language, but only for the case study of a
Simplex architecture modeled using RTSynchronizer. Furthermore, no attempts
at temporal logic model checking were performed in [6].

7 Conclusion

Using Real-Time Maude, we have defined the first executable formal seman-
tics of Timed Rebeca. This enables a wide range of formal analysis methods
for Timed Rebeca models, including simulation, reachability analysis, and both
timed and untimed temporal logic model checking. We have integrated such
Real-Time Maude analysis of Timed Rebeca models into the Rebeca toolset,
and have defined a number of useful atomic propositions, allowing the Timed
Rebeca user to define her desired properties without knowing Real-Time Maude.
We illustrated such verification of Timed Rebeca models on a collision avoid-
ance protocol.

Since Timed Rebeca, with its Java-like syntax and simple and intuitive actor-
based communication model, should be easy to learn and use for people unfa-
miliar with formal methods, our work bridges the gap between practitioners and
formal methods, since it enables a model-engineering methodology that com-
bines the convenience of Timed Rebeca modeling with powerful formal analysis
in Real-Time Maude.

Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude 193

We have focused on providing a clean and intuitive semantics. If states
encountered during the execution of a message server do not matter for the
properties we are interested in, we could significantly optimize the semantics
by executing together, in one step, all the statements in a message server. This
would significantly reduce the number of interleavings and would drastically
improve the model checking performance. Finally, although the counterexam-
ples from the Real-Time Maude analyses should be fairly easy to understand,
we should nevertheless provide them in terms of the Timed Rebeca model.

References

1. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sir-
jani, M.: Modelling and simulation of asynchronous real-time systems using Timed
Rebeca. In: Proceedings of the FOCLASA’11. EPTCS, vol. 58 (2011)

2. Agha, G.: ACTORS - A Model of Concurrent Computation in Distributed Systems.
MIT Press series in artificial intelligence. MIT Press, Cambridge (1990)

3. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical
Ptolemy II discrete-event models using Real-Time Maude. Sci. Comput. Program.
77(12), 1235–1271 (2012)

4. de Boer, F., Chothia, T., Jaghoori, M.M.: Modular schedulability analysis of con-
current objects in Creol. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol.
5961, pp. 212–227. Springer, Heidelberg (2010)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Ding, H., Zheng, C., Agha, G., Sha, L.: Automated verification of the dependability
of object-oriented real-time systems. In: Proceedings of the WORDS Fall. IEEE
(2003)

7. IEEE Standard for Information Technology - Specific Requirements Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY). IEEE Std
802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff 2003)) (2005)

8. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6(1), 39–58 (2007)

9. Khamespanah, E., Sabahi, Z., Khosravi, R., Sirjani, M., Izadi, M.: Timed-rebeca
schedulability and deadlock-freedom analysis using floating-time transition system.
In: AGERE!’12, SPLASH Workshops. ACM (2012)

10. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Timed CTL model checking in Real-Time
Maude. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 182–200. Springer,
Heidelberg (2012)

11. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

12. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
High.-Order Symbolic Comput. 20(1–2), 161–196 (2007)

13. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008)

14. Ölveczky, P.C.: Semantics, simulation, and formal analysis of modeling languages
for embedded systems in Real-Time Maude. In: Agha, G., Danvy, O., Meseguer,
J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol.
7000, pp. 368–402. Springer, Heidelberg (2011)

194 Z. Sabahi-Kaviani et al.

15. Rebeca Language Home Page. http://www.rebeca-lang.org
16. Ren, S., Agha, G.: RTsynchronizer: language support for real-time specifications

in distributed systems. In: Proceedings of the LCT-RTS’95. ACM (1995)
17. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of

reactive systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

http://www.rebeca-lang.org

On the Cloud-Enabled Refinement Checking
of Railway Signalling Interlockings

Andrew Simpson(B) and Jaco Jacobs

Department of Computer Science, University of Oxford, Wolfson Building,
Parks Road, Oxford OX1 3QD, UK

Andrew.Simpson@cs.ox.ac.uk

Abstract. Railway signalling systems have received a great deal of atten-
tion from the formal methods community. One reason for this is that the
domain is relatively accessible; another is that the safety analyses to be
undertaken are often highly parallelizable. In this paper we describe a
‘cloud interface’ for the refinement checker, Failures Divergences Refine-
ment (FDR), which has been motivated and validated by an approach to
the modelling and analysis of railway signalling interlockings.

1 Introduction

Railway signalling systems have received a great deal of attention from the
formal methods community. Early contributions include those of Hansen [1],
Morley [2], and Haxthausen and Peleska [3]. More recent contributions include
those of Kanso et al. [4], James and Roggenbach [5], and Haxthausen et al. [6].
In many ways, this level of attention is unsurprising. First, the domain is rela-
tively accessible, enabling researchers to comprehend the problem at hand, and
communicate their intentions and solutions to a receptive audience. Another rea-
son for this is the fact that the safety-criticality of the domain is attractive to
formal methods researchers [7]. The body of work is substantial: one only has
to consider the FMERail contributions from the late 1990s,1 the fact that such
applications are considered a success story for the formal methods community
(see, for example, [8]), and the forthcoming 2013 Workshop on a Formal Methods
Body of Knowledge for Railway Control and Safety Systems.2 We would argue
that another reason for this relative success is that the safety analyses that can
be undertaken are — depending on the model and the approach used — often
highly parallelizable. To this end, decomposition approaches have been proposed
by Winter and Robinson [9] and Simpson et al. [10], as well as others.

In this paper we revisit the contribution of [10] — which utilised Communi-
cating Sequential Processes (CSP) [11,12] and the associated refinement checker
Failures Divergences Refinement (FDR) [13,14] — as a means of motivating
and validating a cloud-enabled approach to refinement checking. Specifically,
1 See http://www2.imm.dtu.dk/∼dibj/fmerail/fmerail/.
2 See http://ssfmgroup.wordpress.com/.

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 195–211, 2014.
DOI: 10.1007/978-3-319-05416-2 13, c© Springer International Publishing Switzerland 2014

http://www2.imm.dtu.dk/~{}dibj/fmerail/fmerail/
http://ssfmgroup.wordpress.com/

196 A. Simpson and J. Jacobs

we utilise the open source Eucalyptus framework [15] to demonstrate how the
theoretical decomposition approach described in [10] can be made practical —
enabling the checking of systems consisting of billions of states in a matter of
minutes.

The structure of the remainder of this paper is as follows. In Sect. 2 we
provide necessarily brief introductions to CSP, FDR, and our case study. Then,
in Sect. 3, we discuss our cloud-enabled interface for FDR. We present our case
study in Sect. 4. Finally, in Sect. 5, we summarise our contribution, and outline
our plans for future work in this area.

2 On CSP, FDR, and GDL

2.1 CSP and FDR

The language of CSP is a notation for describing the behaviour of concurrently-
evolving objects, or processes, in terms of their interaction with their environ-
ment. This interaction is modelled in terms of events: abstract, instantaneous,
synchronisations that may be shared between several processes. We denote the
set of all events within a given context as Σ; we can also give consideration to
the alphabet of a process — the events that it can perform.

We use compound events to represent communication. The event name c.x
may represent the communication of a value x on a channel named c. At the
event level, no distinction is made between input and output : the willingness
to engage in a variety of similar events — the readiness to accept input — is
modelled at the process level; the same is true of output, which corresponds to
an insistence upon a particular event from a range of possibilities.

A process describes the pattern of availability of certain events. The prefix
process e → P is ready to engage in event e; should this event occur, the
subsequent behaviour is that of the process P .

An external (or deterministic) choice of processes P � Q is resolved through
interaction with the environment — the first event to occur will determine the
subsequent behaviour. If this event was possible for only one of the two alterna-
tives, then the choice will go on to behave as that process. If it was possible for
both, then the choice becomes non-deterministic. This form of choice exists in
an indexed form: � i : I • P(i) is an external choice between processes P(i),
where i ranges over the (finite) indexing set I .

We may denote input in one of two ways. The process c?x → P is willing
initially to accept any value (of the appropriate type) on channel c. Alternatively,
if we wish to restrict the set of possible input values to a subset of the type
associated with the channel c, then we may write � x : X • c.x → P .

There are various flavours of parallel combinations, but in this paper we limit
ourselves to only one: we write P ‖ Q to denote that the component processes
P and Q cooperate upon the events appearing in the alphabets of both P and
Q , with the events falling outside the intersection occurring independently.

On the Cloud-Enabled Refinement Checking 197

The standard notion of refinement for CSP processes, which is defined in [16],
is based upon the failures/divergences model of CSP. In this model, each process
is associated with a set of behaviours: tuples of sequences and sets that record
the occurrence and availability of events.

The traces of a process P , denoted traces [P], are finite sequences of events
in which P may participate in that order ; the failures of P , denoted failures [P],
are pairs of the form (tr ,X), such that tr is a trace of P and X is a set of events
which may be refused by P after the trace tr has been observed. (We shall not
concern ourselves with divergences.)

We write P ⇒M Q when the process Q refines the process P under the model
M : Q is ‘at least as good as’ P . With respect to failures, the formal definition
is as follows:

P ⇒F Q ∗ traces [[Q]] ⊆ traces [[P]] ∧ failures [[Q]] ⊆ failures [[P]]

It is the relationship that exists between refinement and parallel composition
that makes the combination of CSP and FDR an attractive choice for the task
at hand: namely, it allows us to decompose large problems into a larger number
of smaller ones. In the following, we rely upon the fact that, if we know that
P ⇒F Q holds, then — provided that R has nothing to say about the events of
P (that is to say, that its alphabet doesn’t contain any of those events) — we
can conclude that P ⇒F Q ‖ R holds also.

The refinement checker FDR — which utilises the machine-readable dialect
of CSP, CSPM (see, for example, [17]) — uses this theory of refinement to
investigate whether a potential design meets its specification.

2.2 Solid State Interlocking

Given the safety-critical nature of railway interlockings, it is important to be
able to guarantee a range of safety properties. The complexity of automating
this task is characterised by Ferrari et al. thus:

“It is a well known fact that interlocking systems, due to their inherent
complexity related to the high number of variables involved, are not
amenable to automatic verification, typically incurring the state space
explosion problem.” [18]

Following [10], we consider Solid State Interlocking (SSI) [19] as a case study.
SSI is a computer-based control system, the software of which can be divided into
generic and specific components. The latter (our concern) varies between loca-
tions and describes the signalling functions for that particular instance. We shall
use the simple junction of Fig. 1 to illustrate a manageable (but still meaningful)
subset of the components of interest.

The track is divided into segments by track circuits (TAA, etc.), with each
circuit being fitted with a detection device that informs the interlocking if a
specific segment is occupied (o) or clear (c). Sets of points help trains navigate
junctions and can be either controlled normal (cn) or controlled reverse (cr).

198 A. Simpson and J. Jacobs

TAE

TAD

TAC

TAB

TAA

TAK

TAJ

TAH

TAG

TAF

P202

P203

P201

P204

S10
S11

S12

S14

S13

S15

S20
S21

S22

S24

S25

S23

TBA

TCA

Fig. 1. The Open Alvey interlocking

As an example (and with respect to Fig. 1), if a train is travelling over track
circuit TAK towards track circuit TAJ and points P204 are in controlled reverse
position, then the train will follow the section of track covering track circuit
TCA. Conversely, if points P204 are in the controlled normal position, the train
will continue along track circuit TAJ towards TAH. Boolean checks may be
performed on a set of points: these checks indicate whether it is free to move
into the controlled normal (free to go normal) or controlled reverse (free to go
reverse) directions. A set of points is controlled free to go normal (cfn) if it
is free to go normal or if it is already in controlled normal; a set of points is
controlled free to go reverse (cfr) if it is free to go reverse or if it is already in
controlled reverse. A signal grants a requesting train entry onto the particular
section of track that is under its control. Signal S11, for example, is concerned
with track circuits TAD, TAC and TBA. A route is a section of track between
two signals: route R13 is the section of track between the entry signal S13 and
the exit signal S21, running over three track circuits (TAB, TAA and TAK) and
one set of points (P201). A route can be requested (req), set (s), or unset (xs).
Subroutes are sections of routes associated with track circuits; there may exist
several subroutes over a particular track circuit. Track circuit TAB, for example,
has three entry/exit points (TAA, TAC and TBA), which are labelled clockwise
from a 12:00 position. Entry (or exit) from (or to) circuit TBA is labelled A,
entry (exit) from (to) TAC is labelled B, and C is associated with entry (exit)
from (to) TAA. Subroute UAB AC is associated with track circuit TAB, with
entry from track circuit TBA and exit at track circuit TAA. A subroute can
either be locked (l) or free (f).

The Geographic Data Language (GDL) [20] describes conditions for setting
routes, releasing subroutes, etc. We restrict ourselves to a subset of GDL in the
following.

On the Cloud-Enabled Refinement Checking 199

As an example, route R14 runs from signal S14 over track circuits TAD and
TAE and points P202. The condition for setting this route is written

Q14 if P202 cfn UAE AB f UAD AB f
then R14 s P202 cn UAD BA l UAE BA l

This tests if points P202 are controlled free to go normal and if subroutes
UAE AB and UAD AB are free. If they are, the route can be set: points P202
are set to controlled normal, and subroutes UAD BA and UAE BA are locked.

Our second type of conditional check pertains to subroutes becoming free.
Consider again route R14. When this route is set, subroutes UAD BA and
UAE BA are both locked. The condition for releasing UAE BA is written

UAE BA f if TAE c UAD BA f UAD CA f

Here, UAE BA becomes free when track circuit TAE is clear, and subroutes
UAD BA and UAD CA are both free.

There are minor variations on this pattern. For example, for UAD BA to
become free, track circuit TAD must be clear and route R14 must be unset:

UAD BA f if TAD c R14 xs

In [21] a number of safety invariants are listed, including:

1. If a route is set, then all of its subroutes are locked.
2. For every track circuit, at most one of subroutes passing over it should be

locked for a route at any time.
3. If a subroute over a track circuit containing points is locked for a route, then

the points are correctly aligned with that subroute.
4. If a track circuit containing points are occupied, then the points are locked.
5. If a subroute is locked for a route, then all subroutes ahead of it on that route

are also locked.

In [10,21] an approach to the modelling, decomposition and analysis of GDL
representations is described. By taking advantage of the relationship that exists
between refinement and process composition in the failures model of CSP (as
outlined in Sect. 2.1), it is shown how safety checks of potentially billions of
states might be decomposed into hundreds of thousands of checks of hundreds
or thousands of states — giving rise to the potential for a parallelized refinement-
checking process. In the following, we show how that largely theoretical process
has been made practical via a cloud-enabled interface for FDR.

3 A Cloud-Enabled FDR

3.1 Eucalyptus

Cloud computing — an aggregate of multi-core, multi-processor, distributed
compute nodes — enables access to a range of configurable and reliable comput-
ing resources that can scale on demand, which, from an automated verification

200 A. Simpson and J. Jacobs

perspective, is extremely desirable. The nature of such activity is bursty: large
quantities of computing resources, particularly memory and processing power,
are required only when checks are being executed. It follows that the notion
of having significant quantities of resources available ‘on demand’ sits comfort-
ably with automated verification: it provides a viable approach to alleviate the
state space explosion problem and has the potential to increase throughput. The
notion of computing resources as a utility that can be provisioned and relin-
quished as needed is a powerful one: it creates the illusion of infinite computing
resources, available on-demand, with no prior commitment as to how long they
are used. Moreover, when the computing resources are no longer required, they
can be released without incurring any penalties.

Cloud computing provision is typically characterised as one of Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). The first of these is our concern, with the core idea being that com-
puting resources should behave like physical hardware. Users select, control and
configure an entire virtualised server, consisting of the operating system ker-
nel, plus all required applications and data; administrative tasks are typically
automated. By having computing instances at such a low level we place few
limitations on the software that can ultimately be deployed in this context.

Eucalyptus is an open source cloud computing platform that provides an
API for provisioning, managing and relinquishing virtual machines in an IaaS
cloud [15]. A virtual machine, or instance, runs on top of a hypervisor, which
provides the capabilities necessary in order to provide an isolated computing
environment. When a user wishes to start a new instance in the Eucalyptus cloud,
they do so using a pre-defined machine image, which includes the operating
system and any other pre-built software required. It is possible to customise
these, create a new image, and then launch the instance using the custom image;
this is a Eucalyptus Machine Image (EMI).

Eucalyptus is composed of several components that interact through SOAP
interfaces. These components are: node controllers (NC in Fig. 2), which control
VM-related activities on a compute node; cluster controllers (CC), which manage
the node controllers within their clusters; storage controllers (SC), which can be
attached to an instance file system as a volume; Walrus, a service that provides
a mechanism for cloud-based persistent storage; and the cloud controller (CLC),
which facilitates the management of the cloud as a whole.

3.2 A Cloud Interface for FDR

Parallel model checking techniques typically partition the state space. Our app-
roach involves partitioning the problem not at the level of the state space, but,
rather, at the level of the model. Conceptually, we have a CSP model, with a
requirement being that the model is such that it allows for checks (expressed
as refinements) to be broken down into several, smaller refinements. Once this
partitioning is achieved, the refinement checks can then be allocated to a farm
of processors to be either confirmed or refuted. (We readily acknowledge that

On the Cloud-Enabled Refinement Checking 201

SERVER 1C

CLC

CC

SC

Walrus

SERVER 2

NC

VM VM

VM VM

Fig. 2. Eucalyptus set-up

only certain classes of problem will be amenable to such an approach. In par-
ticular, its relevance is limited to safety properties; liveness properties could not
be checked in this way.)

Thus, our process is as follows.

1. Take as input a text file containing a CSP problem description.
2. Automatically derive process definitions from the input file.
3. Automatically extract appropriate process definitions and generate refine-

ment checks by composing the process definitions relevant to the particular
refinement check.

4. Distribute the refinement checks to compute nodes (each running a server
version of FDR).

5. Collect the results and display the end result.

Our case study is characteristic of a problem that can be decomposed into
independent refinement checks and then distributed to various processing nodes:
input to the model checker is a text file representing data for a particular railway
interlocking; the CSP model is then automatically derived (along with refinement
checks) to assert various safety conditions. These checks can then be distributed
to the various processing nodes.

Eucalyptus is used to provide the private infrastructure as a service cloud.3

The set-up of Fig. 2 consists of two physical machines: the first server is config-
ured as the cloud controller, cluster controller, Walrus and storage controller; the
second is configured as a node controller capable of booting virtual instances.
While this is a relatively straightforward set-up, the approach can be scaled to
incorporate as many node controllers as necessary.

The node controllers host the virtual instances which boot the machine image
containing the FDR binary. Sitting above FDR is the software used to coordinate
the scheduling of refinement checks and the processing of results. We utilise a
single master node and several slave nodes. The role of the master node is to dis-
tribute refinements to, and collect results from, slaves. Additionally, the master
3 We use the Ubuntu Enterprise Cloud, which uses KVM as the default hypervisor.

202 A. Simpson and J. Jacobs

node is responsible for processing the input file, deriving suitable process defin-
itions, and then extracting the relevant processes in order to form refinements;
these are then distributed to the slave nodes.

A job consists of the relevant CSP code and a refinement to check; jobs are
stored in a jobqueue. The available pool of slaves are stored in a slavepool — a
circular list of slaves, keeping a record of whether the slave has been allocated a
job. The master node cycles through the list of slaves in a round-robin fashion. If
a slave has been previously allocated a job, it checks whether the job is complete.
If it is, the result is saved and the slave’s state is marked as idle; if it is not, the
slave is simply added to the back of the list, to be checked on the next cycle.
Alternatively, if a slave is free and there are jobs in the job queue, the slave is
allocated the next available job, and its state is set to busy. A slave node simply
waits for a job from the master. Additionally, it responds to periodic status
requests (from the master) as to whether a refinement check is complete or not.

The basic pseudocode executed on the master node is shown below.

while (length(jobQueue) > 0)
{

slave = slavepool.pop()
if (slave.isBusy()) /*refinement check assigned*/

{
refinement = slave.getRefinement()
if (refinement.complete())

{
result = refinement.getResult()
resultQueue.append(result)
slave.reset()
slavepool.append(slave)

}
else

{
/*not done*/
slavepool.append(slave)

}
}

else /*slave is idle*/
{

if (length(jobQueue>0))
{

job = jobQueue.pop()
slave.assignJob(job)

}
}

}

Four types of data are of interest to us: application data (the binary of the
model checker, and any other associated applications or scripts); input data

On the Cloud-Enabled Refinement Checking 203

(CSPM scripts describing concurrent interactions of processes along with refine-
ments we wish to prove or refute); non-persistent application-generated data
(data required only for as long as the CSPM script is loaded and a refinement
check is executed); and persistent application-generated data (the result of a
refinement check (and, if appropriate, counter-examples)).

4 The Case Study

We have used the approach of Sect. 3 to model various interlockings; as a means
of illustration, we consider the model of [21] and the example of Fig. 1.

4.1 Translating GDL into CSP

To translate (ASCII-based) GDL models to CSPM , we have used the lexical
analyser and parser generator PLY (a lex–yacc parsing tool for Python).4

During the parsing phase, we record semantic information regarding the
GDL: this is used to construct process definitions and to decide which processes
need to be combined for a particular refinement check. In particular, we record:
the set of track circuits, Circuit ; the set of sets of points, Points; the set of
routes, Route; and the set of subroutes, Subroute. In addition, we build a syntax
tree that relates the various interlocking components; we also construct various
functions that relate different interlocking components. For example, the follow-
ing functions relate track circuits to the subroutes associated with them, return
the set of all sets of points associated with a given route, and map each route to
its constituent sequence of subroutes, respectively:

subroutesOfCircuit : Circuit →PSubroute
pointsOfRoute : Route →PPoints
subroutesOfRoute : Route → seq Subroute

The translation tool reads the whole file and then translates it, which involves
building tree structures. Once all the input is parsed we can then transform this
into corresponding CSP process definitions.

4.2 The CSP Model

The components involved in setting route R14 are the subroutes UAE AB,
UAD AB, UAD BA and UAE BA, and points P202. The process R14true
characterises the preconditions for setting route R14: points P202 should be
controlled free to go normal, and subroutes UAD AB and UAE AB should be
free. If any of the conditions necessary to set the route becomes false, then
the process state is updated and the process subsequently behaves as R14false.
Should there be a request to set the route, points P202 are locked in the con-
trolled normal position, UAD BA and UAE BA are both locked, and route R14
4 See http://www.dabeaz.com/ply.

http://www.dabeaz.com/ply

204 A. Simpson and J. Jacobs

is set. The process R14false models when it is not possible to set route R14, i. e.
when one or more of the conditional checks evaluates to false. The variable x
represents the state of points P202 (controlled free to go normal or not); y and
z are concerned with the states of subroutes UAE AB and UAD AB (free or
locked). Changes in state for P202, UAE AB and UAD AB may be observed.
Once all conditions are met, the process behaves as R14true.

R14true =
routeState.R14.req → pointPosition.P202.cn →

subrouteState.UAD BA.l → subrouteState.UAE BA.l →
routeState.R14.s → R14true

�

pointState.P202.cfn.false → R14false(false, f , f)
�

subrouteState.UAE AB .l → R14false(true, l , f)
�

subrouteState.UAD AB .l → R14false(true, f , l)

R14false(x , y , z) =
if x = true ∧ y = f ∧ z = f then R14true
else (pointState.P202.cfn?i → R14false(i , y , z)

�

subrouteState.UAE AB?i → R14false(x , i , z)
�

subrouteState.UAD AB?i → R14false(x , y , i))

In the process UAE BAlocked , variable x represents the state of track circuit
TAE, and y and z represent the states of UAD BA and UAD CA respectively.
If the conditions are met, the subroute can be freed and the process then behaves
as UAE BAfree. The process also allows changes to the relevant components,
updating the relevant variable accordingly.

UAE BAlocked(x , y , z) =
if x = c ∧ y = f ∧ z = f then

subrouteState.UAE BA.f → UAE BAfree(x , y , z)
else (circuitState.TAE?i → UAE BAlocked(i , y , z)

�

subrouteState.UAD BA?i → UAE BAlocked(x , i , z)
�

subrouteState.UAD CA?i → UAE BAlocked(x , y , i))

On the Cloud-Enabled Refinement Checking 205

UAE BAfree(x , y , z) =
subrouteState.UAE BA.l → UAE BAlocked(x , y , z)
�

circuitState.TAE?i → UAE BAfree(i , y , z)
�

subrouteState.UAD BA?i → UAE BAfree(x , i , z)
�

subrouteState.UAD CA?i → UAE BAfree(x , y , i)

Subroute-release data depending on a route rather than subroutes (which is
usually the case for the first subroute of a route) are modelled slightly differently.
For example, in the case of subroute UAD BA we have the following:

UAD BAlocked(x , y) =

if x = c ∧ y = xs then

subrouteState.UAD BA.f → UAD BAfree(x , y)

else (circuitState.TAD?i → UAD BAlocked(i , y)
�

� i : {req , xs} • routeState.R14.i → UAD BAlocked(x , i))

UAD BAfree(x , y) =

subrouteState.UAD BA.l → UAD BAlocked(x , y)

�

circuitState.TAD?i → UAD BAfree(i , y)

�

� i : {req , xs} • routeState.R14.i → UAD BAfree(x , i)

4.3 Decomposing the Problem

We now consider how our model can be decomposed into a series of independent
checks by considering the second of our safety invariants: “For every track circuit,
at most one of subroutes passing over it should be locked for a route at any time.”

A subroute becomes locked when a route passing over it is set. Given a track
circuit, t , we need take into account only the route-setting data for those routes
which may lock subroutes over running it. As an example, four routes travel
over track circuit TAK: R13, R15, R22, and R24, with the route-setting data for
these routes being as follows.

206 A. Simpson and J. Jacobs

Q13 if P201 cfr UAA BA f UAB CA f
then R13 s P201 cr UAB AC l UAA AB l UAK AB l

Q15 if P201 cfn UAA BA f UAB CB f
then R15 s P201 cn UAB BC l UAA AB l UAK AB l

Q22 if P204 cfr UAJ CB f UAK AB f
then R22 s P204 cr UAJ BC l UAK BA l UAA BA l

Q24 if P204 cfn UAJ CA f UAK AB f
then R24 s P204 cn UAJ AC l UAK BA l UAA BA l

Only routes R22 and R24 can lock subroute UAK BA, and, before this sub-
route can be locked by either, subroute UAK AB must be free. As such, we need
take no other processes into account in ensuring that UAK AB and then UAK BA
cannot be locked: if subroute UAK AB is locked, then neither route R22 nor route
R24 can be set, and, therefore, subroute UAK BA cannot be locked.

Examining the conditions for routes R13 and R15 to be set, we see that before
either route can be set, subroute UAA BA must be free. The subroute-release
data for this subroute is given by

UAA BA f if TAA c UAK BA f

It follows that we need take into account only processes representing route-
setting data for routes R13 and R15, and subroute-release data for subroute
UAA BA to ensure that UAK BA and then UAK AB cannot be locked.

In this case, then, only five processes need to be considered to ensure that
safety invariant 1 holds for track circuit TAK. The justification for this is based
upon the fact that the events with which we are concerned can only ever occur
with the co-operation of processes representing route-setting data for routes
R13, R15, R22 and R24. Composition with further processes will only serve to
reduce the set of possible behaviours for these components, while expanding
the state space of the check to be performed. Thus, the task of checking this
safety invariant reduces to one of tractable size — as shown in Table 1. (Track
circuits TAE and TAF do not appear as they are both associated with exactly

Table 1. The complexity of verifying invariant 2 for our simple interlocking

Track circuit States

TAA 14592
TAB 3532
TAC 232
TAD 3312
TAG 3312
TAH 232
TAJ 3532
TAK 14592
TBA 232
TCA 232

On the Cloud-Enabled Refinement Checking 207

one route.) The automation of this dependency-establishing process is at the
heart of our approach.

4.4 Safety Invariants in CSP

We now demonstrate how we can model safety invariants. We illustrate this via
the first of our invariants: if a route is set, then all of its subroutes are locked.

For any route r , we define

U = {u : Subroute | u ∨ set(subroutesOfRoute(r))}

where set converts a sequence into a set.
We represent the invariant as a process thus:

S1(r ,U , locked) =

if locked = U then

� u : locked • subrouteState.u.f → S1(r ,U , locked \ {u})

�

� routeState.r .s → routeState.r .xs → S1(r ,U , locked)

else

� u : U \ locked • subrouteState.u.l → S1(r ,U , locked ∪ {u})

�

� u : locked • subrouteState.u.f → S1(r ,U , locked \ {u})

It is clear that we can only set a route r when all the subroutes along that route
are locked; we also require the route to become unset before any associated
subroutes can become free.

With respect to our CSP model, we need to derive a suitable implementa-
tion process, which, as per the previous subsection, involves extracting relevant
process descriptions from the GDL and then combining them using parallel com-
position. The following determines the necessary processes to be composed for
r ∨ Route.

1. Include the processes representing route-setting data for r .
2. Consider all processes related to subroute-release data for each subroute along

r , i. e. for each element in the set set(subroutesOfRoute(r)).
3. The process Train(r , subroutesOfRoute(r), pointsOfRoute(r)) models a train

moving along route r .

It is the first of these steps — “include the processes representing route setting
data for r” — that allows us to decompose the checking of safety invariant 1
into smaller, independent checks. Consider, for example, route R10A, where

set (subroutesOfRoute (R10A)) = {UAB CA,UBA BA}

208 A. Simpson and J. Jacobs

Combining the above, we have

I1 (R10A) =
R10A ‖ UAB CA ‖ UBA BA ‖ Train(R10A, ≡TAB ,TBA∀, {P201})

as the implementation process for safety invariant 1 and route R10A. Via FDR,
we can verify

S1 (R10A, {UAB CA,UBA BA}, {UAB CA,UBA BA}) ⇒F I1 (R10A)

Crucially, as all of the relevant communications are present, it follows that

S1 (R10A, {UAB CA,UBA BA}, {UAB CA,UBA BA}) ⇒F System

By verifying similar refinements for the other routes, we can assert that safety
invariant 1 holds for that interlocking. The proof of this relies on the fact that all
relevant behaviours relevant to the verification of the safety invariant for route
r can be observed in the implementation process I1 (r) (see [21]).

The round-trip execution times for checking each of the 16 routes of Fig. 1
are typically in the range 3–5 s; this results in a cumulative time of under 1 min
to check this safety invariant for the example interlocking, which consists of
4.84662992 × 1022 states;5 the cumulative times for the other safety invariants
are of a similar order.

5 Conclusions

We have described how a cloud-enabled interface for FDR gives rise to a means
of parallelized safety checks on railway interlockings. For the sake of readabil-
ity, we have based our account on a relatively simple scenario; [21] shows how
the theoretical approach — which we have now made practical — is scalable
to ‘real-life’ interlockings. We have concentrated on CSP and FDR, rather than
other approaches, as the relationship between parallel composition and refine-
ment means that it is feasible to decompose large problems into smaller ones in
an elegant fashion — making it an exceptional candidate for a cloud computing
style approach.

One of the biggest challenges of model checking in a practical setting is
handling the enumeration of the state space in an efficient manner. Various
approaches to alleviate the state space explosion problem are known from the
literature: partial order reduction techniques (see, for example, [22]) are one app-
roach; the local search approach proposed by Roscoe et al. [23], whereby states
spaces are partitioned into ‘blocks’, is another. An experimental parallel imple-
mentation of FDR is described in [24]: states are randomly allocated between
different computing nodes using a hash function; the state space is explored using
a breadth-first search algorithm, and at the end of each level successor states are
5 12 track circuits, 4 points, 16 routes and 30 subroutes, giving rise to 212×44×316×230

states.

On the Cloud-Enabled Refinement Checking 209

exchanged between the compute nodes. An alternative approach is that taken by
FDR Explorer [25], whereby an API “makes possible to create optimised CSP
code to perform refinement checks that are more space or time efficient, enabling
the analysis of more complex and data-intensive specifications.”

Our approach involves partitioning the problem not at the level of the state
space, but at the level of the CSP model — which means it is applicable only
in certain contexts, with one being the scenario considered in this paper. All
of the refinement checks are generated automatically and subsequently sent to
slave nodes for processing. There are clearly limitations, though. Crucially, we
rely upon the existence of models being of a form that can be decomposed into
smaller subproblems; once this partitioning is done, the refinement checks can
then be allocated to a farm of processors to either be confirmed or refuted. While
deconstructing the problem at the model level in the way that we have done can
work for safety properties, it is of no use when considering liveness properties,
for example.

The initial prototype implementation of the software that schedules the
checks between processing nodes can be extended in several ways. At the moment,
there is a single point of failure: should the master node die, there would be no
way to schedule more refinement checks or to collect the results. Another point
to consider would be the costing model used by the cloud provider: given that
virtual instances are priced per hour, if many of the refinement checks are sim-
ilar (as per the case study of this paper), we can try and optimise the cost
by considering the execution time of a single check. The most pressing item of
future work, however, is the consideration of further case studies — with a view
to identifying other classes of problems that may benefit from this approach.
Initial ares of interest in this respect are asynchronous hardware circuits and
automatic test case generation.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments and constructive criticisms.

References

1. Hansen, K.M.: Validation of a railway interlocking model. In: Naftalin, M., Denvir,
T., Bertran, M. (eds.) FME 1994. LNCS, vol. 873, pp. 582–601. Springer, Heidel-
berg (1994)

2. Morley, M.J.: Safety in railway signalling data: a behavioural analysis. In: Joyce,
J., Seger, C. (eds.) HUG 1993. LNCS, vol. 780, pp. 465–474. Springer, Heidelberg
(1994)

3. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

4. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles in
railway interlocking systems. Electron. Notes Theoret. Comput. Sci. 250(2), 19–31
(2009)

5. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
SAT-based model checking. In: Proceedings of the 10th International Workshop

210 A. Simpson and J. Jacobs

on Automated Verification of Critical Systems (AVoCS 2010), Electronic Commu-
nication of the European Association of Software, Science and Technology, vol. 35
(2010)

6. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Form. Asp. Comput. 23(2), 191–219
(2011)

7. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applica-
tions to railway signalling. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for
Industrial Critical Systems: A Survey of Applications, pp. 63–82. Wiley, Hoboken
(2013)

8. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A story about formal
methods adoption by a railway signaling manufacturer. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 179–189. Springer, Heidelberg
(2006)

9. Winter, K., Robinson, N.J.: Modelling large interlocking systems and model check-
ing small ones. In: Oudshoorn, M. (ed.) Proceedings of the 26th Australasian
Computer Science Conference (ACSC 2003), Australian Computer Science, Com-
munications, vol. 16, pp. 309–316 (2003)

10. Simpson, A.C., Woodcock, J.C.P., Davies, J.W.M.: The mechanical verification of
solid state interlocking geographic data. In: Groves, L., Reeves, S. (eds.) Proceed-
ings of Formal Methods Pacific 1997, pp. 223–242. Springer, Wellington (1997)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, London (1985)
12. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010)
13. Roscoe, A.W.: Model checking CSP. In: Roscoe, A.W. (ed.) A Classical Mind:

Essays in Honour of C.A.R. Hoare. Prentice Hall, London (1994)
14. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,

Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995)

15. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Pro-
ceedings of the 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID 2009), pp. 124–131 (2009)

16. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating
processes. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) NSF-SERC 1985.
LNCS, vol. 197, pp. 281–305. Springer, Heidelberg (1985)

17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, London
(1997)

18. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlock-
ing control tables. In: Schnieder, E., Tarnai, G. (eds.) Proceedings of Formal
Methods for Automation and Safety in Railway and Automotive Systems 2010
(FORMS/FORMAT 2010), pp. 107–115. Springer, Heidelberg (2011)

19. Cribbens, A.: Solid state interlocking (SSI): an integrated electronic signalling sys-
tem for mainline railways. IEE Proc. 134(3), 148–158 (1987)

20. British Rail Research: SSI data preparation guide. Published by British Railways
Board. ELS-DOC-3080, Issue K of SSI8003-INT and supplements (1990)

21. Simpson, A.C.: Safety through security. DPhil thesis, Oxford University Computing
Laboratory (1996)

On the Cloud-Enabled Refinement Checking 211

22. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidel-
berg (1996)

23. Roscoe, A.W., Armstrong, P.J., Pragyesh, : Local Search in Model Checking. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 22–38. Springer,
Heidelberg (2009)

24. Goldsmith, M.H., Martin, J.M.R.: The parallelisation of FDR. In: Proceedings of
Workshop on Parallel and Distributed Model Checking (PDMC 2002) (2002)

25. Freitas, L., Woodcock, J.C.P.: FDR explorer. Form. Asp. Comput. 21(1–2), 133–
154 (2009)

Parametric Schedulability Analysis of Fixed
Priority Real-Time Distributed Systems

Youcheng Sun1, Romain Soulat2, Giuseppe Lipari1,2, Étienne André3(B),
and Laurent Fribourg2

1 Scuola Superiore Sant’Anna, Pisa, Italy
2 LSV, ENS Cachan & CNRS, Cachan Cedex, France

3 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, Villetaneuse, France
Etienne.Andre@univ-paris13.fr

Abstract. In this paper, we address the problem of parametric schedu-
lability analysis of distributed real-time systems scheduled by fixed pri-
ority. We propose two different approaches to parametric analysis. The
first one is a novel analytic technique that extends single-processor sen-
sitivity analysis to the case of distributed systems. The second approach
is based on model checking of Parametric Stopwatch Automata (PSA):
we generate a PSA model from a high-level description of the system,
and then we apply the Inverse Method to obtain all possible behaviours
of the system. Both techniques have been implemented in two software
tools, and they have been compared with classical holistic analysis on
two meaningful test cases. The results show that the analytic method
provides results similar to classical holistic analysis in a very efficient
way, whereas the PSA approach is slower but covers the entire space of
solutions.

1 Introduction and Motivation

Designing and analysing distributed real-time systems is a very challenging task.
The main source of complexity arises from the large number of parameters to con-
sider: tasks priorities, computation times and deadlines, synchronisation, prece-
dence and communication constraints, etc. Finding the optimal values for the
parameters is not easy and often a small change in one parameter may com-
pletely change the behaviour of the system and even compromise its correctness.
For these reasons, designers are looking for analysis methodologies that allow
incremental design and exploration of the parameter space.

Task computation times are particularly important parameters. In modern
processor architectures, it is very difficult to precisely compute worst-case com-
putation times of tasks, thus estimations derived by previous executions are often
used in the analysis. However, estimations may turn out to be optimistic, hence
an error in the estimation of a worst-case execution time may compromise the
schedulability of the entire system.

In this paper we investigate the problem of doing parametric analysis of real-
time distributed systems scheduled by fixed priority. We consider an application

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 212–228, 2014.
DOI: 10.1007/978-3-319-05416-2 14, c© Springer International Publishing Switzerland 2014

Parametric Schedulability Analysis 213

modelled by a set of pipelines (also called transactions in [19]), where each
pipeline is a sequence of periodic tasks to be executed in order, and all tasks
in a pipeline must complete before an end-to-end deadline. We consider that all
processors in the distributed system are connected by one or more CAN bus [13],
a network standard used in automotive applications.

The first contribution of the paper (Sect. 4) is to propose a new method
for doing parametric analysis of the system, using the worst-case computation
times of the tasks as parameters. The method extends the sensitivity analysis
proposed by Bini et al. [9] by considering distributed systems and non-preemptive
scheduling.

The proposed analytical method is not exact, as it sometimes overestimates
the interference of higher priority tasks and of previous tasks in the pipeline
on the response time of a task. Therefore, the second contribution of the paper
(Sect. 5) is to propose also an exact schedulability analysis by modelling a dis-
tributed real-time system as a set of parametric timed automata; then we apply
a model checking methodology using the Inverse Method [7,14].

Finally, in Sect. 6 we compare these two approaches with the Mast tool
[16], a state-of the art tool for classical schedulability analysis. Comparison is
performed on two case studies from the research literature on which we measured
run-time and effectiveness of the three analyses. Results show that the analytical
approach can very efficiently compute the feasible space of parameters with a
good precision.

2 Related Work

Many research papers have already addressed the problem of parametric schedu-
lability analysis, especially on single processor systems. Bini and Buttazzo [9]
proposed an analysis of fixed priority single processor systems, which is used as
a basis for this paper.

Parameter sensitivity can also be carried out by repeatedly applying classical
schedulability tests, like the holistic analysis [19]. One example of this approach
is used in the Mast tool, in which it is possible to compute the slack (i.e. the
percentage of variation) with respect to one parameter for single processor and
for distributed systems by applying binary search in that parameter space [19].

A similar approach is followed by the SymTA/S tool [17], which is based
on the event-stream model [20]. Another interesting approach is the Modular
Performance Analysis (MPA) [23], which is based on Real-Time Calculus. In
both cases, the analysis is compositional, therefore less complex than the holistic
analysis. Nevertheless, these approaches are not fully parametric, in the sense
that it is necessary to repeat the analysis for every combination of parameter
values in order to obtain the schedulability region.

Model checking of parametric timed automata (PTA) or parametric stop-
watch automata (PSA) can be used for parametric schedulability analysis [12].
In particular, thanks to generality of the PTA and PSA modelling language, it is
possible to model a larger class of constraints, and perform parametric analysis

214 Y. Sun et al.

on many different variables, for example task offsets. This approach has been
recently extended to distributed real-time systems [18].

Also grounded on PTA and PSA is the Inverse Method [7], applied in par-
ticular to schedulability analysis [14]. This method is very general because it
permits to perform analysis on any system parameter. However, this generality
may be paid in terms of complexity of the analysis.

In this paper, we aim at performing fully parametric analysis of real-time
distributed systems. We first present extensions of the methods proposed in [9] to
the case of distributed real-time systems. We also present a model of a distributed
real-time systems using PSA, and compare the two approaches against classical
analysis in Mast.

3 System Model

We consider distributed real-time systems consisting of several computational
nodes, each one hosting one single processor, which are connected by one or
more shared networks. Without loss of generality, from now on we will use the
term task to denote both tasks and messages, and the term processor to denote
both processors and networks.

A distributed real-time system consists of a set of task pipelines {P1, . . . ,Pn}
to be executed on a set of processors. A pipeline is a chain of tasks Pj =
{τ j

1 , . . . , τ j
n} to be executed in order, and each task is allocated on one (pos-

sibly different) processor. In order to simplify the notation, in the following we
sometimes drop the pipeline superscript when there is no possibility of misinter-
pretation.

A pipeline is assigned two fixed parameters: T j is the pipeline period and
Dj

e2e is the end-to-end deadline. This means that all tasks of the pipeline are
activated together every T j units of time; and all tasks should be completed
within a time interval of Dj

e2e.
A task in the pipeline can be a piece of code to be executed on a processor

or a message to be sent over a network. More precisely, a real-time periodic task
is a tuple τi = (Ci, Ti,Di, Ri, qi, pi, Ji).

This task model contains the following fixed parameters:

– Ti is the task period. All tasks in the same pipeline have period equal to the
pipeline period T ;

– Di is the task relative deadline;
– qi is the task priority; the larger qi, the higher the priority;
– pi is the index of the processor (or network) on which the task executes.

Also, a task is characterised by the following free parameters (variables):

– Ci is the worst-case computation time (or worst-case transmission time, in
case it models a message). It is the worst-case time the task needs to com-
plete one periodic instance when executed alone on a dedicated processor (or
network). In this paper we want to characterise the schedulability of a distrib-
uted system in the space of the computation times, so Ci is a free parameter.

Parametric Schedulability Analysis 215

– Ri is the task worst-case response time, i.e. the worst case finishing time of
any task instance relative to the activation of its pipeline.

– Ji is the task worst-case activation jitter, i.e. the greatest time since its activa-
tion that a task must wait for all preceding tasks to complete their execution.

Every task activation is an instance (or job) of the task. We denote the kth
instance of task τi as τi,k. An instance τi,k of a task in the pipeline can start
executing only after the corresponding instance of the preceding task τi−1,k has
completed. Finally, the last task in the pipeline must complete every instance
before De2e units of time from its pipeline’s activation. For a job τi,k we define
the following notation:

– ai,k is τi,k’s arrival time (coincident with the activation time of the pipeline).
– si,k is the start time of the instance, i.e. the first time the instance executes

on the processor.
– fi,k is the job’s finishing time.
– ri,k the task release time. The first task of a pipeline is released immediately at

the time of its arrival r0,k = a0,k; successive tasks are released at the finishing
time of the preceding tasks: ri,k = fi−1,k. The following relationship holds:
→i, k a0,k = ai,k ≤ ri,k ≤ si,k < fi,k.

– The maximum difference between arrival and release time is the worst-case
activation jitter of the task: Ji = maxk(ri,k − ai,k).

– The maximum difference between finishing time and arrival time is the worst-
case response time of the task: Ri = maxk(fi,k − ai,k).

Parameters Ri and Ji depend on the other tasks parameters and on the schedul-
ing policy according to a complex set of equations. Of course, they cannot be
considered parameters that the programmer can modify: nevertheless, for our
purposes it is useful to consider them as variables to help us write the set of
constraints that define the schedulability space (the exact role of such variables
will be detailed in Sect. 4.3).

A scheduling algorithm is fully preemptive if the execution of a lower priority
job can be suspended at any instant by the release of a higher priority job,
which is then executed in its place. A scheduling algorithm is non-preemptive if
a lower priority job, once it has started executing, can complete its execution
regardless of the release of higher priority jobs. In this paper, we consider fully
preemptive fixed priority scheduling for processors, and non-preemptive fixed
priority scheduling for networks.

4 Analytic Method

In this section we present a novel method for parametric analysis of distributed
system. The method extends the sensitivity analysis by Bini et al. [9,21] to
include jitter and deadline parameters.

In Sects. 4.1 and 4.2, we only consider the scheduling of independent peri-
odic tasks in a single processor. Then, in Sect. 4.3, we extend the schedulability
analysis to distributed systems.

216 Y. Sun et al.

4.1 Preemptive Tasks with Constrained Deadlines

There are many ways to test the schedulability of a set of real-time periodic
tasks scheduled by fixed priority on a single processor. In the following, we will
use the test proposed by Seto et al. [21] because it is amenable to parametric
analysis of computation times, jitters and deadlines.

The original theorem was formulated for tasks with deadlines equal to peri-
ods. For the moment, we generalise it to tasks with constrained deadlines (i.e.
Di ≤ T), while in Sect. 4.2 we deal with unconstrained deadlines, jitter and
non-preemptive scheduling.

Definition 1. The set of scheduling points P
i−1(t) for a task τi is the set of all

vectors corresponding to multiples of the period of any task τj with priority higher
than τi, until the maximum possible value of the deadline. It can be computed as
follows. Let ηj(t) =

⌈
t

Tj

⌉
, and let ηi−1(t) be the corresponding vector of i − 1

elements with j = 0, . . . , i − 1. Then:

P
i−1(t) = {ηi−1(t)} ⇒ {ηi−1(kTh) | 0 < kTh < t, h < i} (1)

Theorem 1 ([21]). Consider a system of periodic tasks {τ1, . . . , τn} with con-
strained deadlines and zero jitter, executed on a single processor by a fixed pri-
ority preemptive scheduler. Assume all tasks are ordered in decreasing order of
priorities, with τ1 being the highest priority task.

Task τi is schedulable if and only if:

∗n ⊆ P
i−1(Di)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci +
i−1∑

j=1

njCj ≤ nkTk →k = 1, . . . , i − 1

Ci +
i−1∑

j=1

njCj ≤ Ri

Ri ≤ Di

(2)

where n is a vector of i−1 integers, and P
i−1(Di) is the set of scheduling points.

Notice that, with respect to the original formulation, we have separated the case
of k = i from the rest of the inequalities and we introduced variable Ri.

The theorem allows us to only consider sets of linear inequalities, because
the non-linearity has been encoded in the variables nj . Each vector n defines
a convex region (maybe empty) with variables C1, . . . , Ci and R1, . . . , Ri. The
“exists” quantifier means that the region for each task τi is the union of convex
regions, hence it may be non-convex. Since we have to check the schedulability of
all tasks, we must intersect all such regions to obtain the final region of schedu-
lable parameters. The resulting system is a disjunction of sets of conjunctions of
inequalities. Geometrically, this corresponds to a non-convex polyhedron in the
space of the variables C and R of tasks.

It is worth to note that, using this formulation, we can compute the response
time of a task by simply minimising the corresponding variable Ri under the

Parametric Schedulability Analysis 217

constraints of Eq. (2). As an example, consider the following task set (the same
as in [10]): τ1 = (C = 1, T = 3), τ2 = (C = 2, T = 8), τ3 = (C = 4, T = 20),
in decreasing order of priority, to be scheduled by preemptive fixed priority
scheduling on a single processor.

We consider the response time R3 as a parameter and set up the system of
inequalities according to Eq. (2). After reduction of the non-useful constraints,
we obtain 12 ≤ R3 ≤ 20. Therefore, the response time is R3 = 12, which is the
same that can be obtained by classical response time analysis.

4.2 Extensions to the Model

We now extend Seto’s test to unconstrained deadlines and variable jitters, and
non-preemptive scheduling. Non-preemptive scheduling can be modelled by con-
sidering an initial blocking time, due to the fact that a task cannot preempt
lower-priority executing tasks.

The worst case response time for a non preemptive task τi can be found in
its longest i-level active period [11]. An i-level active period Li is an interval
[a, b) such that the amount of processing that needs to be performed due to
jobs with priority higher than or equal to τi (including τi itself) is larger than
0 for all t ⊆ (a, b), and equal to 0 at instants a and b. The longest Li can be
found by computing the lowest fixed point of a recursive function. Notice that,
by considering non-preemption and tasks with deadline greater than periods, the
worst-case response time may be found in any instance of the active period, not
necessarily in the first one (as with the classical model of constrained deadline
preemptive tasks).

Unfortunately, the longest busy period cannot be computed when tasks have
parametric worst-case computation times. However, under the assumption that
there is at least an idle-time in the hyperperiod (i.e. its utilisation is strictly less
than 100 %) a sufficient feasibility test can be derived by computing the worst-
case response time for every instance of the task set in the hyperperiod Hn.
Therefore, we can extend our model as follows.

Theorem 2. A non preemptive task τi is schedulable if →h = 1, . . . , Hn

Ti
, ∗n ⊆

P
i−1((h − 1)Ti + Di) such that

– Bi + (h − 1)Ci +
i−1∑

j=1

njCj ≤ nlTl − Jl →l = 1, . . . , i − 1;

– Bi + (h − 1)Ci +
i−1∑

j=1

njCj ≤ (h − 1)Ti + Ri − Ci − Ji;

– Ri ≤ Di and Bi ≤ Cj − 1 for all j > i.

Proof 1. See [22].

Term Bi is an additional internal variable used to model the blocking time that
a task suffers from lower priority tasks. It is possible to avoid the introduction
of this additional variable by substituting it in the inequalities with a simple
Fourier-Motzkin elimination.

218 Y. Sun et al.

Notice that the introduction of unconstrained deadlines adds a great amount
of complexity to the problem. In particular, the number of non-convex regions to
intersect is now O(

∑n
i=1

Hn

Ti
), which is dominated by O(nHn). So, the proposed

problem representation is pseudo-polynomial in the size of the hyperperiod. How-
ever, in real applications, we expect the periods to have “nice” relationships: for
example, in many cases engineers choose periods that are multiples of each oth-
ers. Therefore, we expect the set of inequalities to have manageable size for
realistic problems.

4.3 Distributed Systems

Until now, we have considered the parametric analysis of independent tasks on
single processor systems, with computation times, response times, blocking times
and jitters as free variables.

One key observation is that a precedence constraint between two consecutive
tasks τi and τi+1 in the same pipeline can be expressed as Ri ≤ Ji+1. This
relationship derives directly from the definition of response time and jitter in
Sect. 3. Using this elementary property, we can now build the parametric space
for a distributed system as follows.

1. For each processor and network, we build the constraint system of Theorem 2.
Notice that the set of constraints for the individual single processor systems
are independent of each other (because they are constraints on different tasks).

2. For each pipeline Pa:
– two successive tasks τa

i and τa
i+1 must fulfil the constraint Ra

i ≤ Ja
i+1;

– for the initial task we impose Ja
1 = 0.

Such pipeline constraints must intersect the combined system to produce
the final system of constraints. However, simply adding the above precedence
constraints can lead to pessimistic solutions. In fact, if two tasks from the same
pipeline are assigned to the same processor, the interference they may cause on
each other and on the other tasks may be limited.

Suppose τa
i and τa

j are allocated to the same processor and qa
i > qa

j . Then,
τa
i can at most interfere with the execution of a job from τa

j a number of times

equal to ξ =
⌈
max{0,Da

e2e−Ta}
Ta

⌉
. So, we impose that →n ⊆ P

j−1, ni ≤ ξ.
The analytic method proposed in this section has been implemented in a

software tool, called RTScan, which is based on the PPL (Parma Polyhedra
Library) [8], a library specifically designed and optimised to represent and oper-
ate on polyhedra. The library efficiently operates on rational numbers with arbi-
trary precision: therefore, in this work we make the assumption that all variables
(computations times, response times and jitter) are defined in the domain of
rationals (rather than reals).

We observed that the complexity of the methodology for generating the para-
meter space strongly depends on the number of free parameters considered in
the analysis. Therefore, as a preliminary step, the tool requires the user to select
a subset of the computation times on which the analysis will be performed,

Parametric Schedulability Analysis 219

whereas the other parameters will be assigned fixed values. During construction
of the polyhedron we have to keep Ri, Ji and Bi for each task as variables.
Therefore, the number of variables to be managed is nV = 4 · N + F , where N
is the number of tasks and F is the number of variables to analyse. At the end,
we can eliminate the Ri, Ji and Bi variables, hence the final space consists of
F dimensions. An evaluation of this tool and of the run-time complexity of the
analysis will be presented in Sect. 6.

The analytic method described so far is not exact. In fact, when dealing with
pipelines in a distributed system we may sometimes overestimate the interference
of higher priority-tasks on lower priority ones. For this reason, we now present
an exact parametric analysis based on PSA and model checking.

5 The Inverse Method Approach

5.1 Parametric Timed Automata with Stopwatches

Timed automata are finite-state automata augmented with clocks, i.e., real-
valued variables increasing uniformly, that are compared within guards and
invariants with timing delays [3]. Parametric timed automata (PTA) [4] extend
timed automata with parameters, i.e., unknown constants, that can be used in
guards and invariants. We will use here an extension of PTA with stopwatches [2],
where clocks can be stopped in some control states of the automaton.

Given a set X of clocks and a set U of parameters, a constraint C over X
and U is a conjunction of linear inequalities on X and U1. Given a parameter
valuation (or point) π, we write π |= C when the constraint where all parameters
within C have been replaced by their value as in π is satisfied by a non-empty
set of clock valuations.

Definition 2. A parametric timed automaton with stopwatches (PSA) A is
(Σ,Q, q0,X, U,K, I, slope,∧) with Σ a finite set of actions, Q a finite set of
locations, q0 ⊆ Q the initial location, X a set of h clocks, U a set of parameters,
K a constraint over U , I the invariant assigning to every q ⊆ Q a constraint
over X and U , slope : Q ∧ {0, 1}h assigns a constant slope to every location, and
∧ a step relation consisting of elements (q, g, a, ρ, q→), where q, q→ ⊆ Q, a ⊆ Σ,
ρ ∨ X is the set of clocks to be reset, and the guard g is a constraint over X
and U .

The semantics of a PSA A is defined in terms of states, i.e., pairs (q, C)
where q ⊆ Q and C is a constraint over X and U . Given a point π, we say
that a state (q, C) is π-compatible if π |= C. Runs are alternating sequences of
states and actions, and traces are time-abstract runs, i.e., alternating sequences
of locations and actions. The trace set of A corresponds to the traces associated
with all the runs of A. Given A and π, we denote by A[π] the (non-parametric)
1 Note that this is a more general form than the strict original definition of PTA [4];

since most problems for PTA are undecidable anyway, this has no practical incidence,
and increases the expressiveness of the formalism.

220 Y. Sun et al.

timed stopwatch automaton where each occurrence of a parameter has been
replaced by its constant value as in π. Details can be found in, e.g., [7].

The Inverse Method for PSA [7] exploits the knowledge of a reference point of
timing values for which the good behaviour of the system is known. The method
synthesises automatically a dense space of points around the reference point, for
which the discrete behaviour of the system, that is the set of all the admissible
sequences of interleaving events, is guaranteed to be the same.

The Inverse Method IM proceeds by exploring iteratively longer runs from
the initial state. When a π-incompatible state is met (that is a state (q, C) such
that π ∪|= C), a π-incompatible inequality J is selected within the projection
of C onto U . This inequality is then negated, and the analysis restarts with a
model further constrained by ¬J . When a fixpoint is reached, that is when no
π-incompatible state is found and all states have their successors within the set
of reachable states, the intersection of all the constraints onto the parameters is
returned.

Although the principle of IM shares similarities with sensitivity analysis, IM
proceeds by iterative state space exploration. Furthermore, its result comes under
the form of a fully parametric constraint, in contrast to sensitivity analysis. By
repeatedly applying the method, we are able to decompose the parameter space
into a covering set of “tiles”, which ensure a uniform behaviour of the system:
it is sufficient to test only one point of the tile in order to know whether or not
the system behaves correctly on the whole tile. This is known as the behavioural
cartography [5].

5.2 Modelling the System Using Parametric Stopwatch Automata

Timed Automata with Stopwatches have been used for modelling scheduling
problems in the past. Our model technique is similar to [1,2], except that we
model pipelines of tasks, and that we use PSA for obtaining the space of feasible
computation times. In the current implementation, we only model pipelines with
end-to-end deadlines no larger than their periods. This allows us to simplify the
model and reduce the complexity of the analysis. The extension to deadlines
larger than the period is discussed at the end of the section.

We illustrate our model with the help of an example of two pipelines P1,P2

with P1 = {τ1, τ2}, P2 = {τ3, τ4}, p(τ1) = p(τ4) = p1, p(τ2) = p(τ3)
= p2, p1 being a preemptive processor and p2 being non-preemptive. We have
that q1 > q4 and q3 > q2.

Figure 1 shows the PSA model of a pipeline. A pipeline is a sequence of tasks
that are to be executed in order: when a task completes its instance, it instantly
releases the next task in the pipeline. Since we assume constrained deadlines,
once every task in the pipeline has completed, the pipeline waits for the next
period to start. This PSA contains one local clock xP1 , one parameter T1 (the
pipeline’s period), and synchronises on 5 actions: “τ1 release”, “τ1 completed”,
“τ2 release”, “τ2 completed”, and “P1 restart”. The order of these events imposes
that task τ1 must be entirely executed before task τ2. The initialisation of the
pipeline’s local clock xP1 and the invariant xP1 ≤ T1 ensure that the pipeline’s

Parametric Schedulability Analysis 221

τ1 waiting
urgent τ1 released

τ2 waiting
urgent

τ2 released
P1 complete

xP1 ≤ T1

τ1 release

τ1 completed

τ2 release

τ2 completed

xP1 == T1
P1 restart
xP1 := 0

Fig. 1. PSA modelling a pipeline P1 with two tasks π1, π2

Idle
xτ1 ,xτ4 stopped

τ1 running
xτ4 stopped

τ4 running
xτ1 stopped

τ1 running
τ4 released

xτ4 stopped
Deadline missed

τ1 release

τ4 release

xτ1 == C1
τ1 completed

xτ1 := 0

τ4 release

xP1 > D1
e2e

Deadline miss

xτ4 == C4
τ4 completed

xτ4 := 0

τ1 release

xP2 > D2
e2e

Deadline miss

xτ1 == C1
τ1 completed

xτ1 := 0

xP1 > D1
e2e

or xP2 > D2
e2e

Deadline miss

Fig. 2. PSA modelling a preemptive processor with two tasks π1, π4

execution terminates within its period T1. The guard xP1 == T1 ensures that
the pipeline restarts after exactly T1 units of time.

Figure 2 shows the model of a preemptive processor with 2 tasks τ1 and τ4,
where task τ1 has higher priority over task τ4. The processor starts by being
idle, waiting for a task release. As soon as a request has been received (e.g.
action “τ4 release”), it moves to one of the states where the corresponding task
is running (“τ4 running”). If it receives another release request (“τ1 release”),
it moves to the state corresponding to the higher priority task running (“τ1
release, τ4 released”). The fact that τ1 does not execute anymore is modelled by
the blocking of the clock xτ4 corresponding to task τ4. Moreover, while a task
executes, the scheduler automaton checks if the corresponding pipeline misses
its deadline (e.g. guard xP1 > D1

e2e, where D1
e2e is τ1’s deadline). In the case of a

deadline miss, the processor moves to a special failure state (“deadline missed”)
and stops any further computation.

The model of a non-preemptive processor is very similar to the model of
preemptive processor: the central state in Fig. 2 which accounts for the fact that
τ4 is stopped when τ1 is released, in the non-preemptive case must not stop τ4,
but simply remember that τ1 has been released, so that we can move to the top
state when τ4 completes its instance.

We use the Imitator software tool [6] implementing the behavioural car-
tography, to perform the analysis of the PSA. The tool takes as input a textual
description of the PSA and an interval of values for each parameter, which can

222 Y. Sun et al.

be seen as a hypercube in |U | dimensions, with |U | the number of parameters.
Then, it explores the hypercube of values using IM , and it outputs a set of tiles.

For each tile, Imitator derives whether the corresponding system behaviour
is valid (i.e. no deadline miss is present), which corresponds to a good tile,
or invalid (at least one deadline miss has been found), which corresponds to
a bad tile. Every behaviour can be regarded as a set of traces of the system.
Although deadline misses are timed behaviours, they are reduced to (untimed)
traces thanks to the “deadline miss” location of the processor PSA. All points
inside one particular tile are values of the parameters that generate equivalent
behaviours (they correspond to the same trace set).

The result of the behavioural cartography is a set of tiles that covers “almost”2

the entire hypercube. The region of space we are looking for is the union of all
the good tiles.

The proposed model can be extended to deal with deadlines greater than
periods by changing the automaton in Fig. 1. In particular, we must take into
account that each task can have up to

⌈
De2e

T

⌉
pending instances that have not

completed yet. However, the number of locations increases with
⌈

De2e
T

⌉
and thus

the complexity of the analysis.

6 Evaluation

In this section we evaluate the effectiveness and the running time of the two
proposed tools on two case studies. As a baseline comparison, we choose to also
run the same kind of analysis on the same case studies using Mast.

In order to simplify the visualisation of the results, for each test case we
present the 2D region generated for two parameters only. However, all three
methods are general and can be applied to any number of parameters. In Sect. 6.3
we will present the execution times of the three tools on the test-cases.

Mast [15] is a software tool implemented and maintained by the CTR group
at the Universidad de Cantabria that allows to perform schedulability analysis
for distributed real-time systems. It provides the user with several different kinds
of analysis. For our purposes, we have selected the “Offset Based analysis” [19],
an improvement over classical holistic analysis that takes into account some of
the relationships between tasks belonging to the same pipeline.

6.1 Test Case 1

The first test case (TC1) has been adapted from [19] (we reduced the computa-
tion times of some tasks to position the system in a more interesting schedula-
bility region). It consists of three simple periodic tasks and one pipeline, running
on two processors (p1 and p3), connected by a CAN bus (p2). The parameters

2 Technically, a part might be non-covered in some cases at the border between the
good and the bad subspace; this part has a width of at most ε, where ε is an input
of the tool; of course, the smaller ε, the more costly the analysis (see [5,7]).

Parametric Schedulability Analysis 223

Table 1. Test case 1; all numbers in “ticks”

Pipeline/Task T De2e Tasks C q p

π1 20 20 – Free 9 1
P 1 150 150 π1

1 Free 3 1
π1
2 10 9 2

π1
3 8 5 3

π1
4 15 2 2

π1
5 25 2 1

π2 30 30 – 6 9 3
π3 200 200 – 40 2 3

Fig. 3. TC1: Schedulability regions produced by RTScan (hatched), Mast (dark blue,
below), and Imitator (light green, above) (Color figure online)

are listed in Table 1. The pipeline models a remote procedure call from processor
1 to processor 3. All tasks have deadlines equal to periods, and also the pipeline
has end-to-end deadline equal to its period. Only two messages are sent on the
network, and according to our optimisation rule for building parametric space, if
the pipeline is schedulable, they cannot interfere with each other. We performed
parametric schedulability analysis with respect to C1 and C1

1 .
The resulting regions of schedulability from the three tools are reported in

Fig. 3. In this particular test, RTScan dominates Mast. After some debugging,
we discovered that the analysis algorithm currently implemented in Mast does
not consider the fact that the two messages τ1

2 and τ1
4 cannot interfere with each

other, and instead considers a non-null blocking time on the network.
As expected, the region computed by Imitator dominates the other two

tools. This means that there is much space for improvement in the analysis even
for such simple systems.3

3 By zooming in the figure, it looks like in some very small areas, the region produced
by RTScan goes over the region produced by Imitator. However, remember that
both tools only deal with integer numbers; that small region does not contain any
integer point.

224 Y. Sun et al.

Table 2. Test case 2: periods and deadlines are in milliseconds, computation times in
micro-seconds.

Pipeline T De2e Tasks C q p

P 1 200 (30) 200 π1
1 4,546 10 1

π1
2 445 10 2

π1
3 9,091 10 4

π1
4 445 9 2

π1
5 Free 9 1

P 2 3,000 1,000 π2
1 Free 9 4

π2
2 889 8 2

π2
3 44,248 10 3

π2
4 889 7 2

π2
5 22,728 8 1

Fig. 4. Schedulability regions for test case 2a, produced by RTScan (hatched), Mast
(dark blue, below), and Imitator (light green, above) (Color figure online)

6.2 Test Case 2

The second test case is taken from [23]. It consists of two pipelines on 3 proces-
sors (with id 1, 3 and 4) and one network (with id 2). We actually consider two
versions of this test case: in the first version (a) pipeline P 1 is periodic with
period 200ms and end-to-end deadline equal to the period. In the second ver-
sion (b), the period of the first pipeline is reduced to 30ms (as in the original
specification in [23]). The full set of parameters is reported in Table 2, where
all values are expressed in microseconds. We perform parametric analysis on C1

5

and C2
1 .

For version (a) we run all tools and we report the regions of schedulability in
Fig. 4. Once again Imitator dominates the other two. Also, Mast dominated
RTScan. The reason is due to the offset-based analysis methodology used in
Mast, which reduces the interference on one task from other tasks belonging to
the same pipeline.

For version (b) we run only RTScan and Mast, because in the current
version we only model constrained deadline systems with Imitator. The results

Parametric Schedulability Analysis 225

Fig. 5. Schedulability regions for test case 2b, produced by RTScan (grey, below) and
Mast (dark blue, above) (Color figure online)

Table 3. Execution times of the tools

Test case RTScan Mast Imitator

1 0.27s 7s 19min42
2a 0.47s 40min13 2h08
2b 1min11 33min19 –

for version (b) are reported in Fig. 5. In this case, Mast dominates RTScan.
Again, this is due to the fact that Mast implements the offset-based analysis.

6.3 Execution Times

Before looking at the execution times of the three tools in the three different
test cases, it is worth to discuss some details about their implementation.

Imitator produces a disjunction of convex regions. However, these regions
are typically small and disjoints. Moreover, to produce a region, Imitator needs
to start from a candidate point on which to call IM , and then move to close-by
regions. One key factor here is how this search is performed. Currently, Imita-
tor searches for a candidate point in the neighbourhood of the current region.
This is a very general strategy that works for any kind of PSA. However, the
particular structure of schedulability problems would probably require an ad-hoc
exploration algorithm.

Mast can perform sensitivity analysis on one parameter (called slack compu-
tation in the tool), using binary search on a possible interval of values. Therefore,
to run the experiments, we performed a cycle on all values of one parameter (with
a predefined step) and we asked Mast to compute the interval of feasible values
for the other parameter.

All experiments have been performed on an Intel Core I7 quad-core processor
(800 MHz per processor) with 8 GiB of RAM. The execution times of the tools
in the three test cases are reported in Table 3. RTScan is the fastest method
in all test-cases. In test case 2b, the execution time of RTScan is much larger
than the one obtained from test case 2a. This is due to the fact that in test

226 Y. Sun et al.

case 2b one pipeline has end-to-end deadline greater than the period, and there-
fore RTScan needs to compute many more inequalities (for all points in the
hyperperiod). Finally, Imitator is the slowest of the three and does not scale
well with the size of the problem. We observed that the tool spends a few sec-
onds for computing the schedulability region around each point. However, the
regions are quite small, and there are many of them: for example, in test case 2a
Imitator analysed 257 regions. Also, the tool spends a large amount of time in
searching for neighbourhood points. We believe that some improvement in the
computation time of Imitator can be achieved by coming up with a different
exploration strategy more specialised to our problem.

We also evaluated the scalability of RTScan with respect to the number of
parameters. To do this, we run the tool on test case 2b with a varying number
of parameters. The computation time went from 1min11 for F = 2 parameters,
up to 20min15 for the case of F = 6. With F = 6, the memory used by our
program took a peak utilisation of 7.2 GiB, close to the memory limit of our
PC. However, we believe that 6 parameters are sufficient for many practical
engineering uses.

7 Conclusions and Future Work

In this paper we presented two different approaches to perform parametric analy-
sis of distributed real-time systems: one based on analytic methods of classic
schedulability analysis; the other one based on model checking of PSA. We com-
pared the two approached with classical holistic analysis.

The results are promising, and we plan to extend this work along different
directions. Regarding the analytic method, we want to enhance the analysis
including static and dynamic offsets, following the approach of [19]. Also, we
want to test the scalability of our approach on industrial test-cases.

As of Imitator, we plan to improve the algorithm to explore the parame-
ters space: a promising idea is to use the analytic method to find an initial
approximation of the feasible space, and then extend the border of the space
using PSA.

Acknowledgements. We would like to express our gratitude to Michael González
Harbour and Juan M. Rivas, from the Universidad de Cantabria, for their support to
installing and using the Mast tool.

The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 246556.

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoret.
Comput. Sci. 354(2), 272–300 (2006)

2. Abdeddäım, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch
automata. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 113–126. Springer, Heidelberg (2002)

Parametric Schedulability Analysis 227

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

4. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

5. André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010)

6. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012)

7. André, É., Soulat, R.: The Inverse Method. FOCUS Series in Computer Engineer-
ing and Information Technology. ISTE/Wiley, London/New York (2013)

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

9. Bini, E.: The design domain of real-time systems. Ph.D. thesis, Scuola Superiore
Sant’Anna (2004)

10. Bini, E., Buttazzo, G.C.: Schedulability analysis of periodic fixed priority systems.
IEEE Trans. Comput. 53(11), 1462–1473 (2004)

11. Bril, R.J., Lukkien, J.J. , Verhaegh, W.F.J.: Worst-case response time analysis of
real-time tasks under fixed-priority scheduling with deferred preemption revisited.
In: ECRTS, pp. 269–279. IEEE Computer Society (2007)

12. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability
regions using parametric timed automata. In: RTSS, pp. 80–89 (2008)

13. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (CAN)
schedulability analysis: refuted, revisited and revised. Real-Time Syst. 35, 239–272
(2007)

14. Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling
problems using the inverse method. In: TIME, pp. 73–80. IEEE Computer Society
Press (2012)

15. Gonzalez Harbour, M., Gutierrez Garcia, J.J., Palencia Gutierrez, J.C., Drake
Moyano, J.M.: Mast: modeling and analysis suite for real time applications. In:
ECRTS, pp. 125–134 (2001)

16. Grupo de Computadores y Tiempo Real, Universidad de Cantabria. MAST: Mod-
eling and analysis suite for real-time applications. http://mast.unican.es/

17. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level
performance analysis – the SymTA/S approach. IEE Proc. Comput. Dig. Tech.
152(2), 148–166 (2005)

18. Le, T.T.H., Palopoli, L., Passerone, R., Ramadian, Y.: Timed-automata based
schedulability analysis for distributed firm real-time systems: a case study. Int. J.
Softw. Tools Technol. Transfer 15(3), 211–228 (2013)

19. Palencia, J.C., Gonzalez Harbour, M.: Schedulability analysis for tasks with static
and dynamic offsets. In: RTSS, pp. 26–37 (1998)

20. Richter, K., Ernst, R.: Event model interfaces for heterogeneous system analysis.
In: DATE, pp. 506–513. IEEE Computer Society (2002)

21. Seto, D., Lehoczky, D.P., Sha, L.: Task period selection and schedulability in real-
time systems. In: RTSS (1998)

http://mast.unican.es/

228 Y. Sun et al.

22. Sun, Y., Soulat, R., Lipari, G., André, É, Fribourg, L.: Parametric schedulability
analysis of fixed priority real-time distributed systems. Research report LSV-13-03,
Laboratoire Spécification et Vérification, ENS Cachan, France (2013)

23. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation
using modular performance analysis: a case study. Int. J. Softw. Tools Technol.
Transfer 8(6), 649–667 (2006)

Wind Turbine System: An Industrial Case Study
in Formal Modeling and Verification

Jagadish Suryadevara1(B), Gaetana Sapienza2, Cristina Seceleanu1,
Tiberiu Seceleanu2, Stein-Erik Ellevseth2, and Paul Pettersson1

1 Mälardalen Real-Time Research Centre, Mälardalen University, Väster̊as, Sweden
{jagadish.suryadevara,cristina.seceleanu,paul.pettersson}@mdh.se

2 ABB Corporate Research, Billingstad, Norway
{gaetana.sapienza,tiberiu.seceleanu}@se.abb.com,

stein-erik.ellevseth@no.abb.com

Abstract. In the development of embedded systems, the formal analy-
sis of system artifacts, such as structural and behavioral models, helps
the system engineers to understand the overall functional and timing
behavior of the system. In this case study paper, we present our experi-
ence in applying formal verification and validation (V&V) techniques, we
had earlier proposed, for an industrial wind turbine system (WTS). We
demonstrate the complementary benefits of formal verification in the con-
text of existing V&V practices largely based on simulation and testing.
We also discuss some modeling trade-offs and challenges we have identi-
fied with the case-study, which are worth being emphasized. One issue is
related, for instance, to the expressiveness of the system artifacts, in view
of the known limitations of rigorous verification, e.g. model-checking, of
industrial systems.

Keywords: Industrial case-study · Wind turbine system · MARTE/
CCSL · EAST-ADL · Verification · Model checking · UPPAAL

1 Introduction

The increasing complexity and criticality of real-time embedded systems (RTES),
in domains such as industrial automation, automotive and avionics, stresses the
need for applying systematic design phases, combined with rigorous verification
and validation (V&V) techniques, during system development [3]. A well-defined
design process with necessary tool support leads to ensuring system predictabil-
ity, w.r.t intended functional and timing behavior. Nevertheless, meeting such
a clear objective has several challenges. One of pre-requisites is well-defined
system artifacts representing system structure as well as behavior with reac-
tive, continuous, discrete, and real-time features, or a combination thereof, at
suitable levels-of-abstraction. For complex industrial systems, the above design
by-products, while necessary, may lead to additional issues such as ensuring
traceability, analyzability as well as reusability of the system artifacts. In this

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 229–245, 2014.
DOI: 10.1007/978-3-319-05416-2 15, c© Springer International Publishing Switzerland 2014

230 J. Suryadevara et al.

context, model-based development approaches, which enable continuous V&V
throughout the development process, have become a feasible solution to tackle
some of the challenges. However, formal verification techniques such as model
checking, while useful for the exhaustive analysis of system behavior, are chal-
lenging to apply for complex system models. A related issue is choosing a suitable
level of granularity and expressiveness for system artifacts, given the well-known
limitations of model-checking, such as the state-space explosion problem. In this
paper, we address some of these challenges in the context of applying model-
ing and formal verification techniques using a wind turbine system case-study, a
complex industrial RTES.

The Unified Modeling Language (UML) provides a modeling profile called
MARTE (Modeling and Analysis of Real-Time and Embedded systems) [7] to
support the performance and schedulability analysis of system models. MARTE
also includes CCSL – a time model and a clock constraint specification lan-
guage [1] for specifying logical and chronometric constraints for system mod-
els. On the other hand, East-ADL [2], an emerging standard for automotive
systems, provides an integrated model-based development for RTES, through
well-defined phases, as well as support for traceability. Recently, EAST-ADL
has been integrated with model-checking support for component-based designs,
e.g. the ViTAL tool [4] based on the timed automata technology for verification
[5,10,11].

In this paper, we target the verification of functionality and timing behavior
of a wind turbine system developed in the context of the iFEST (industrial
Framework for Embedded Systems Tools), an ARTEMISIA project. In Sect. 2.2,
we overview a simplified version of the wind turbine system (WTS), and describe
its functionality and timing behavior. Rest of the paper is organized as follows:
In Sect. 3, we briefly recall CCSL and timed automata. In Sect. 4, we describe a
modeling methodology for the WTS to enable verification using model checking.
The analysis results of simulating, as well as model checking the WTS model
are presented in Sect. 5. In Sect. 6, we discuss our experience with the case study
with respect to the challenges and limitations in applying formal techniques to
complex industrial systems. We conclude the paper in Sect. 7.

2 Windturbine System (WTS) : An Overview

Wind energy sources are fast-growing and in line with the technological advance-
ment. Modern wind turbine systems require sophisticated and effective control
functionalities in order to fulfill performance, safety, and maintainability require-
ments. The main purpose of a wind turbine system is to convert the rotational
mechanical energy of the rotor blades (i.e. mechanical components of a wind
turbine) caused by the wind into electrical energy to be redistributed via a
power grid. Given the system’s complexity, the iFEST (industrial Framework for
Embedded Systems Tools) project1 aims at providing a model-based approach

1 http://www.artemis-ifest.eu/

http://www.artemis-ifest.eu/

Wind Turbine System: An Industrial Case Study 231

for system development, to ensure the system predictability w.r.t the specified
functional and timing behavior.

2.1 Development Process and Environment

In the iFEST project, we have carried out the system development by adopting
the V-model based software development approach, as follows:

During Requirement and Analysis phase, we have documented the WTS
requirements, both functional and extra-functional including timing behavior. For
the Design phase, we have combined component- and model-based approaches,
keeping in view the overall system analyzability and reusability requirements. Dur-
ing the Implementation phase, we have applied automatic code generation tech-
nologies. Subsequently, the implemented system, a combined FPGA and CPU
solution, has been deployed on a heterogenous hardware platform (XilinX ZynQ
7000 product family). For the Verification and Validation (V&V), we have used
model-based techniques as follows: (i) simulation of the WTS functionality using
Simulink and related toolboxes, and (ii) automatic model-based test-case gen-
eration with MaTeLo tool. However, the above techniques are not sufficient to
ensure system predictability w.r.t to all possible system executions, hence formal
verification is desirable to complement the current analysis methods. To address
the above open issue, in this paper, we present a verification technique towards
enhanced system validation. And, our contributions are as below:

– As enhanced system validation, we apply verification technique to establish
system properties, (partially) based on simulation results of Simulink-based
system models.

– We are able to verify safety requirements that involve timing behavior (e.g.
“the wind turbine moves to Park mode, within 30 s of detecting that the wind
speed has crossed the upper limit of 20 m/s”).

2.2 The Wind Turbine System Model

The wind turbine system is modeled as a closed-loop control system, as shown in
Fig. 1. The key components are the Plant and the Controller subsystems. The
Controller dynamically regulates the rotor blades of the wind turbine w.r.t the
specified wind profile, to maximize the generation of electrical energy and also to
avoid damage to the plant in case of turbulent wind scenarios. It automatically
changes the Controller Output signal to regulate the plant, based on the wind
and the plant’s actual conditions, which are received by the Controller via the
Sensor Input signals. The Wind Profile and the Resistive Load are used to
simulate and test the behavior of the plant and the controller, under specific
wind and resistive load conditions. Further details of the plant and controller
subsystems are described below.

232 J. Suryadevara et al.

Fig. 1. Wind turbine system model

2.2.1 Plant Model
As shown in Fig. 2 (in Sect. 4), it consists of three main components; Servo,
Rotor, and Generator. The pitch of the turbine, determined by the Controller
(described below), is actuated by the Servo. The Rotor produces the required
torque to maximize the angular speed of the Generator (which produces the final
voltage), based on the pitch value as well as the current wind speed (we assume
a fixed resistive load). The Rotor optimizes the produced torque value based on
the current angular speed of the Generator.

2.2.2 Controller Model
As shown in Fig. 3 (in Sect. 4), it consists of four main components: the Filter, the
Main Controller, the Pitch Controller, and the Park and Brake Controller. The
Filter Subsystem is responsible for transducing, filtering and scaling the wind
signal and plant signal (for instance the rotational speed of the turbine), which
are used by the Main Controller and the Pitch Controller. Based on the inputs
received through the Filter, the Main Controller directs the overall control. It
oversees the performance and operations of the turbine in order to maximize the
energy production and prevent any damage to the plant. Based on the wind and
plant state, the controller determines the operational mode (i.e. park, start-up,
generating, or brake) of the turbine. The Pitch Control calculates the proper
pitch i.e. angle to steer the rotor blades when the turbine starts up or generates
power. The Pitch and Brake controller determines if the turbine needs to brake
or park, to ensure the safety of the wind turbine, for instance, during wind
turbulences.

3 Preliminaries

In this section, we present an overview of the preliminaries needed for modeling
of the wind turbine system. We have used East-ADL modeling framework for
structural modeling of the WTS. The timed causality behavior of the system is
specified using CCSL. To provide the verification using the Uppaal, a model

Wind Turbine System: An Industrial Case Study 233

checking tool, we have developed the timed automata based semantic models
of the system, based on the corresponding East-ADL models and the CCSL
specifications.

3.1 EAST-ADL

The modeling process in East-ADL framework, developed in the context of
the EAST-EEA project, is structured into different abstraction levels such as
feature level, analysis level, design level etc. At both analysis and design levels,
the system is described by a FunctionalArchitecture that consists of a number
of inter-connected FunctionPrototypes (instantiation of FunctionType compo-
nents). FunctionProtoype components are either event- or time-triggered. The
execution semantics of the East-ADL components is as follows; components
interact through single buffer, rewritable, non-consumable ports, and execute
in read-execute-write phases in run-to-completion fashion. The detailed timing
behavior as well as timing constraints for an East-ADL model can be specified
using TADL2, the Timing Augmented Description Language (ver 2), currently
being integrated with East-ADL framework [8]. In related works, we have pro-
posed verification techniques for TADL2-based East-ADL models [5,10,11].

3.2 CCSL

CCSL is used to specify the constraints imposed on the logical clocks (activation
conditions) of a model. A CCSL clock is defined as a sequence of instants (event
occurrences). CCSL constraints are of three kinds: (i) Synchronous constraints
rely on the notion of coincidence. For example, the constraint “a coincidesWith
b”, denoted by a = b, specifies that each instant of a coincides with the cor-
responding instant of b. Another example of a synchronous constraint is “a
isPeriodicOn bperiod n”, which specifies the subclock a whose ‘ticks’ corre-
spond to every nth ‘tick’ of b. (ii) Asynchronous constraints are based on instant
precedence; the constraint “a isFasterThan b” (denoted by a → b) specifies
that clock a is (non-strictly) faster than clock b. (iii) Mixed constraints combine
coincidence and precedence; the constraint “c = a delayedFor n on b” specifies
that c ‘ticks’ synchronously with the nth ‘tick’ of b following a ‘tick’.

3.3 Timed Automata

A timed automaton is a tuple < L, l0, C,A,E, I >, where L is a set of locations,
l0 ∈ L is the initial location, C is the set of clocks, A is the set of actions, syn-
chronization actions and the internal τ -action, E ⇒ L × A × B(C) × 2C × L is
a set of edges between locations with an action, a guard, a set of clocks to be
reset, and I : L ∗ B(C) assigns clock invariants to locations. A location can
be marked urgent (u) or committed (c) to indicate that the time is not allowed
to progress in the specified location(s), the latter being a stricter form indicat-
ing further that the next transition can only be taken from the corresponding

234 J. Suryadevara et al.

location(s) only. Also, synchronization between two automata is modeled via
channels (e.g., x! and x?) with rendezvous or broadcast semantics.

The Uppaal model-checker extends the timed automata language with a
number of features such as global and local (bounded) integer variables, arith-
metic operations, arrays, and a C-like programming language. The tool consists
of three parts: a graphical editor for modeling timed automata, a simulator for
trace generation, and a verifier for the verification of a system modeled as a
network of timed automata. A subset of CTL (computation tree logic) is used
as the input language for the verifier. For further details, we refer to Uppaal
tutorial [6].

4 WTS: Formal Specification and Modeling

In this section, we present a formal specification and modeling approach for
WTS, an aposteriori modeling technique, that is, the specification and modeling
artifacts are based on existing design artifacts such as Simulink models, require-
ments documents etc. However, we apply an abstraction strategy to obtain the
corresponding real-time semantic models that represent the system functional-
ity as well as the timing behavior. Further, the strategy attempts to preserve
the models’ tractability to make the exhaustive verification feasible. The overall
modeling strategy, based on design principles such as separation-of-concerns and
correctness-by-construction, captures the underlying model-of-computation and
the execution behavior of the WTS. Below, we outline some generic views/as-
sumptions on which we base our formal modeling:

– Plant models and Instantaneous executions. A Plant model represents
physical devices such as sensors and actuators with the corresponding model-
of-computation based on reactivity and instantaneity.

– Controller models and Timed executions. Controllers contain software
components based on timed model-of-computation, with explicit timing
aspects, such as delay, execution time, end-to-end deadline etc., to be for-
mally specified and modeled.

– Time and event triggering. The activation or triggering of RTES compo-
nents is generally based on specific time or event2 occurrences. Plant com-
ponents are event-triggered (i.e. in response to occurrence of input data),
whereas controller components are time- or event-triggered, this primarily
being a design-choice.

– Run-to-completion. RTES components execute in run-to-completion steps,
that is, in terms of read-execute-write cycles.

– Data and value semantics. Due to the associated models-of-computation,
as described above, a data entity at a given ‘instant’, in the Plant or Con-
troller, may correspond to two distinct value instants.

– Real-time features. The structural and behavioral models of RTES often
fail to model real-time features, such as urgency, priority, and synchrony
(explained later) w.r.t to the underlying execution model.

2 While time is also an ‘event’, we differentiate this in this paper explicitly.

Wind Turbine System: An Industrial Case Study 235

– Environment modeling. An environment is external to the system, repre-
senting physical parameters such as temperature, pressure, wind speed etc. To
support formal verification, a modeling strategy based on non-determinism
as well as the properties to be verified, is needed.

To obtain an expressive and verifiable semantic model of the WTS, we employ
a component-based modeling approach, based on real-time formalisms such as
CCSL and timed automata. The overall modeling approach is as follows:

– Data and event representations are made based on the structural models.
– The timed causality behavior of the system components, w.r.t the associated
model-of-computation, is formally specified using CCSL constraints.

– The functional behavior of the components is modeled using an abstract finite-
state-machine notation, and transformed into timed automata.

– The CCSL constraints are transformed into timed automata, and composed
using the notion of synchronization product (described later).

Finally, a real-time semantic model of the overall system is obtained as a network
(i.e., a parallel composition) of timed automata described above.

Fig. 2. Structural modeling: a plant model for the WTS.

In Fig. 2, we present the structural model of plant and controller for the WTS
(based on the corresponding Simulink models), using the East-ADL modeling
framework (in MetaEdit+3). The main components of the plant, that is SERVO,
ROTOR, and GENERATOR are modeled as FunctionalDevice prototypes in
East-ADL. In Fig. 3, we present the structural model of the Controller. It
models the three sub-controllers MainControl, PitchRegulation, and ParkBrake,
modeled as AnalysisFunctionTypes. For further details of the functionality of
these components, we refer to Sect. 2.2. We demonstrate the overall modeling
approach for WTS, using the ROTOR and the MainControl components, below.
We will also discuss some related modeling issues.

4.1 Data and Events

As shown in Fig. 2, the ROTOR prototype, denoted by RT, receives input pitch
(theta), turbine speed (omega), and wind speed (ws) and produces the corre-
sponding torque value as the output. Hence, we define the local variables thetal,
3 www.metacase.com

www.metacase.com

236 J. Suryadevara et al.

Fig. 3. Structural modeling: a controller model of the WTS.

omegal, and wsl and the corresponding global variables wsg, omegag, thetag.
The local variables are updated at the activation of the RT using the corre-
sponding global values. This is consistent with the data semantics discussed
previously.

1 CCSLclock RT in ; // read (input) i n s t an t s
CCSLclock RT out ; // wr i t e (output) i n s t an t s

3 CCSLclock RT omega ; // a c t i v a t i o n (t r i g g e r) i n s t an t s

5 CCSLconstraint
RT omega = RT in ; // RT omega coincidesWith RT in

7 RT in = RT out ; // RT in coincidesWith RT out

Listing 1.1. CCSL specification of ROTOR component.

4.2 Specification of Timed Causality Behavior

The timed causality behavior of real-time components, w.r.t the corresponding
model-of-computation, can be specified precisely using CCSL logical clocks and
CCSL constraints. We use CCSL (logical) clocks to represent events correspond-
ing to ‘read’, ‘execute’, and ‘write’ instants of a component. In Listing 1.1 and
Listing 1.2, we present the CCSL specification of ROTOR (RT) and MainCon-
trol (MC) prototypes, respectively. The constraints specify the timed causality
behavior of the components w.r.t to the corresponding model-of-computation. For
instance, the CCSL constraints for RT specify the reactivity and instantaneity
behavior of RT execution within the Plant model. On the other hand, the CCSL
constraints for MC specify the time-triggered behavior of the controller execu-
tion. The timing attributes of the controller components are given in Table 1. The
CCSL specifications provide a basis for constructing real-time semantic models
e.g. timed automata based models, as well as observers to establish the system
properties, as presented later in this section.

1 CCSLclock MC in // read (input) i n s t an t s
CCSLclock MC out // wr i t e (output) i n s t an t s

3

CCSLconstraint
5 MC in delayedFor 10 on SysClk � MC out //Minimum execut ion time

MC out � MC in delayedFor 15 on SysClk //Maximum execut ion time
7 MC in isPeriodicWith period 100 on SysClk //Time t r i g g e r i n g

Listing 1.2. CCSL specification of MainControl component.

Wind Turbine System: An Industrial Case Study 237

Table 1. Timing attributes of Controller components.

Component Period
(ms)

Min.
execution time
(ms)

Max.
execution time
(ms)

MainControl 100 10 15

PitchRegulation 50 35 45

ParkBrake 50 15 20

Filter – 20 25

Park

Start

Brake

Generate[g1]
[g5]

[g3]

[g2] [g4]

[g6]

H

R-T-C

Fig. 4. Functional behavior of the MainControl component.

4.3 Modeling Functional Behavior of Real-Time Components

In Fig. 4, we present the behavior modeling for the MainControl protoype (based
on the corresponding Simulink model). The behavior is specified using a finite-
state-machine (FSM) notation. It represents the overall system behavior (state-
ful) in terms of control states PARK, START, BRAKE, and GENERATE. The
states represent the operational modes of the WTS, based on the wind speed and
the turbine speed ; the mode transitions corresponding to mode-change behavior
are triggered by boolean conditions (guards) g1, g2, .. etc. Further, we simply
annotate the behavior model to denote the execution semantics such as run-
to-completion (R-T-C) and history (denoted by the control node H). The func-
tionality of other components in the WTS are stateless computations, that is
partial functions between input and corresponding output values, for instance
as represented by the writeTorque() function of the ROTOR.
4.4 Formal Modeling of Plant Components

In this subsection, we present formal modeling approach, based on CCSL, for the
plant components of the WTS. We had earlier proposed, in a previous work [10],
transformation of CCSL constraints into timed automata. The transformations
can be used to derive timed automata based models that represent the timed
causality behavior of the system. For instance, in Fig. 5(a) and (b), we present the
timed automata semantics of CCSL constraints that specify the timed causality
behavior of ROTOR executions (see Listing 1.1), using events RT in and RT out
representing component activation and termination respectively. Note that an
event e.g. RT in is modeled using synchronization channels i.e. send/receive sig-
nals RT in! and RT out!. Also note that the synchronous occurrence of event

238 J. Suryadevara et al.

Fig. 5. Timed automata modeling: (a) RT omega = RT in (b) RT in = RT out (c)
Computation RT.

(a) (b)

Fig. 6. Timed automata model for (event-triggered) ROTOR.

signals, e.g. GR out? and RT in! in Fig. 5(a), is specified using committed loca-
tions. A committed location indicates that the corresponding enabled transitions
from the location are ‘forced’ before time can progress. This facilitates precise
modeling of overall timing behavior of the system.

The above automata can be composed, using the notion of synchroniza-
tion product (based on common labels or synchronization signals), as shown
in Fig. 6(a). For instance, locations B and C in the automata in Fig. 5(a) and (b)
respectively, are mapped to the location BC in Fig. 6(a), due to the synchroniza-
tion of signals RT in! and RT in?.

It can be noted that the composed location ‘BD’ is not possible in the syn-
chronized product automaton, as the location is non-reachable due to the syn-
chronization at B and C, leading to location AD (i.e. location A, and D simul-
taneously in resp. automata) in the synchronized product, instead. Further, as
shown in Fig. 6(a), we associate the transitions corresponding to component acti-
vation, with data updates and the corresponding computation; the RT in event
denotes input as well as execution of the corresponding functionality, during
a transition from location BC to location AD. However, to make the overall
automata model of the WTS system tractable (time-wise), and hence formally
verifiable, we need to relax the notion of instantaneity for the automata models
of the Plant components. This can be done by introducing a minimum time delay
for each component, if not specified already. This is done by assigning a timing
invariant, the delay of one time unit, for instance at location AD in Fig. 6(b).

4.5 Formal Modeling of Controller Components

In this subsection, we describe the timed automata modeling of the Controller
components for the WTS. In Fig. 7, we present the timed automata semantics

Wind Turbine System: An Industrial Case Study 239

Fig. 7. Semantic modeling: (a) Periodic triggering (b) Min. exec. time (c) Max.
exec. time

of the CCSL constraints (Listing 1.2) that specify the time-triggered execu-
tion behavior of the MainControl (MC) prototype. We have composed these
automata, as shown in Fig. 8(a), based on the notion of synchronization prod-
uct (as described in the previous subsection). This consists of following steps;
we have composed the automata in Fig. 7(b) and (c), and then finally with the
automaton in Fig. 7(a) (note the invariant y ⊆ 100 at every location in the
product automaton).

Fig. 8. Timed automata modeling of MainControl: (a) time-triggering (b) functional
behavior.

As shown in Fig. 8(b), we have also transformed the behavior (functional)
model of the MainControl (Fig. 4) component into corresponding timed automa-
ton, following the mapping techniques proposed previously [9]. We briefly outline
the transformation as follows; we have mapped the control states to automaton
locations. Further, using additional locations Init and Final and the history vari-
able ‘h’, we have modeled the execution semantics, that is, run-to-completion,
and preserving the history. For model readability, we have not shown the data
updates for the transitions; also, the boolean guards of the form ‘eij’ correspond
to actual expression (¬gi && ¬gj). It can be noted that all the locations of the
transformed automaton are marked ’urgent’ indicating the behavior model does
not consume time, which has been separately modeled using the timed causality
model discussed above. Finally, we ‘connect’ the transformed behavior model
of the MainControl prototype, as described above, with the automata model
of the corresponding timing behavior (Fig. 8(b)), using synchronization channel
‘execute’.

240 J. Suryadevara et al.

4.6 Modeling the WTS System

Following the modeling strategy presented in the previous subsections, we can
obtain the timed automata models for all the WTS components, and form a
network (parallel composition) of these automata to obtain a timed automata
based semantic model for the complete system. However, some issues exist as
discussed below:

Modeling the Environment: The plant model described previously, models the
components such as sensors and actuators constituting an environment model for
the WTS controller. However, this is not sufficient to obtain a ‘closed’ model of
the system that is necessary to enable exhaustive verification of the WTS model.
For instance, modeling external parameters such as WindSpeed, while necessary,
is not feasible using timed automata. In view of this, as well as the hybrid
nature of the plant components e.g. ROTOR, GENERATOR etc., we choose to
integrate the simulation data of the corresponding Simulink models, to construct
the partial functions that represent the computations of the components.

Modeling ‘observer’ automata: The formal specification of complex properties
of the system, while possible using CTL (the property specification formalism
of Uppaal), may not be directly verifiable. Instead, these can be intuitively
modeled as observer automata, (parallel) composed with the main system model,
and can be efficiently verified.

5 WTS Analysis

In this section, we present both simulation as well as the verification results
for the WTS, and their correlation in verifying functional and safety-critical
properties w.r.t the overall timing behavior of the system.

5.1 Simulation

The main purpose of simulating the WTS, using the MathWorks Simulink and
StateFlow4, is to analyze the system behavior under normal operating condi-
tions, and to validate the system (in particular the Controller) when the wind
speed exceeds the designed limit. The simulation results are presented in Fig. 9.

The simulation time is step-wise incremented from 0 up to 80 s, with a fixed
sample time equal to 1 ms. For the simulation, a specific wind speed profile has
been created. According to this, the system is simulated for normal operating
limits, i.e., 5–20 m/s up to 30 s, then up to 30 m/s above 43 s. The simulation
results are analyzed w.r.t the turbine control states representing the operational
modes (i.e. 0:park, 1:start, 2:generate, 3:brake).

While the simulation provides rich data representing the computation and
control of the WTS w.r.t complex environment behavior, system properties how-
ever can not be established without analyzing the data. In the next subsection,
4 http://www.mathworks.se/products/stateflow/

http://www.mathworks.se/products/stateflow/

Wind Turbine System: An Industrial Case Study 241

0 10 20 30 40 50 60 70 80
0

20
40

Wind Speed

m
/s

ec

0 10 20 30 40 50 60 70 80
-2
0
2

Rotor Torque

N
m

0 10 20 30 40 50 60 70 80
0

20
40

Rotor Speed

ra
d

/s
ec

0 10 20 30 40 50 60 70 80
-100

0
100

Servo Motor Angle

D
eg

0 10 20 30 40 50 60 70 80
-100

0
100

Pitch

D
eg

0 10 20 30 40 50 60 70 80
0
2
4

Turbine State

Time (sec)

S
ta

te

Fig. 9. Simulation results

we present a verification technique to ‘exhaustively’ analyze the simulation data,
w.r.t the overall system timing and causality behavior, towards establishing the
system properties. Below, we describe some verification results for the WTS
system.

5.2 Verification

For WTS, a formal modeling of the corresponding plant and the environment
parameters is not possible. Hence, we use simulation data and construct par-
tial functions (input to output values) that represent the computations of the
plant components, for instance ROTOR. Also, we use simulation values corre-
sponding to the environment parameters e.g. wind-profile of the WTS. In the
next section, we will discuss some aspects about the construction of the relevant
partial functions.

Verification of functional properties: Verification of functional properties gives
insight into the overall system (architectural) design. For instance, in the WTS
case, it is useful to verify the following property: “if the wind speed is within
the prescribed limits, the controller eventually moves to Generate mode”. The
property can be formulated as a liveness property or leads to property (denoted
by �, implemented as --> in Uppaal), as below.

242 J. Suryadevara et al.

(ws>=5 && ws<=20) --> state==2 (1)

Verification of safety-critical properties: One of the safety-critical requirements
for the WTS is to fulfill the following property: “the wind turbine moves to
Park mode, within 30 s from detecting that the wind speed has crossed the
upper limit of 20 m/s”. To verify the property (w.r.t to simulation data), we
construct an observer automata for the property as shown in Fig. 10, compose
the observer with the system model, and verify that the corresponding invariant,
the Property (2), holds for the composed model. Note that the urgent channel
‘U!’ forces the transition from location B to A without any further delay, when
the corresponding transition is enabled.

A� obs.B implies x <= 30 (2)

x =0

x =0 BA

U!state==3

ws> 2 0

Fig. 10. An observer automata to verify the safety-property: A[] obs.B implies

x<=30

Verifying reachability properties: We can verify reachability of specific control
states or computation. For instance, using the Property 3, a reachability prop-
erty, we can verify that the control state ‘Park’ (Fig. 8(b)) has been reached (at
least once) during the simulation of the WTS. While this may be easily vali-
dated using the simulation trace, we can use similar properties to verify specific
‘error’ states e.g. by extending the behavior model with special ‘locations’ that
are reached if the corresponding ‘error’ is detected. The presence of these error
locations in the simulation data can then be ‘exhaustively’ verified.

∧ <> MC.Park (3)

Verifying deadlock-freeness: Using the Property 4, we can verify that the system
is deadlock-free, w.r.t overall timed causality behavior of the WTS, as modeled
by the corresponding timed automata model. The property is an important
validation of the system, which can not be achieved using simulation only, as
the corresponding Simulink model does not represent the timing behavior of
the system explicitly. Also, the property, when satisfied, verifies the correctness
(i.e. consistency) of the timing attributes (Table 1) associated with the system
(architectural) design.

A� (not deadlock) (4)

Wind Turbine System: An Industrial Case Study 243

6 Discussion and Lessons-Learned

In this paper, we have presented a formal modeling and verification approach for
an industrial system, namely a wind turbine system. The main goal of the work
has been to provide formal verification as a complementary analysis method to
existing validation techniques based primarily on simulation. We have success-
fully addressed the following challenges:

– Abstract but expressive system models: Using real-time formalisms such as
CCSL and timed automata, we were able to construct intuitive system mod-
els amenable for exhaustive verification (w.r.t to timing). With the separation
of timing and functional modeling, the technique is scalable to complex sys-
tem models.

– Verification as complementary analysis to simulation: The verification is based
on ‘exhaustively’ analyzing the simulation data w.r.t the timing behavior of
the system. While verification models are expressive in terms of system struc-
ture and precise timing behavior, simulation models are suitable to specify
plant and the environment, e.g. ‘wind profile’ modeling in the case of WTS
simulation. Thus, the verification approach provides an enhanced simulation-
based validation.

The formal modeling approach for the wind turbine system considers the cor-
responding simulation results to model a suitable abstraction of the plant model.
It facilitates constructing a formal model of the WTS, including the plant behav-
ior. This was primarily one of the obstacles in earlier efforts to achieve formal
verification of the system. Besides, the formal models were only possible due
to expressiveness of real-time semantic formalisms such as CCSL and modeling
flexibility in timed automata, as demonstrated in this paper. Further, we believe
that the modeling approach is scalable to large complex systems, due to parallel
composition of semantic models (timed automata) representing system compo-
nents. For the verification results, we have considered only the control properties
of the system with respect to the overall timed causality behavior. However, we
can also consider the data values in the verification, due to timed automata
variables. Thus, we have combined the expressiveness of CCSL with modeling
capabilities of timed automata.

However, some limitations of our approach do exist. The exhaustiveness of the
verification is limited to partial functions constructed using specific instance(s) of
simulation. Hence, the approach may be similar to testing-based analysis (albeit
model-based). Hence, we need strategies, e.g. choosing suitable simulation step
and data profiles, to generate simulation data w.r.t the system properties to
be verified. Further, it may be noted that the simulation-extended verification
approach presented above may be suitable for data-intensive control systems
(e.g. hybrid systems), such as the wind turbine system case study presented in
the paper. On the other hand, control-intensive systems may be exhaustively
modeled and verifiable using model-checking independent of simulation.

244 J. Suryadevara et al.

7 Conclusion

In this paper, we have presented a formal modeling and verification approach
for an industrial case-study, namely an example wind turbine system. The archi-
tectural and behavioral modeling, partially based on the existing system arti-
facts such as Simulink-models, additionally captures precise timing behavior of
the system. The modeling approach, based on the real-time formalisms such
as CCSL and timed automata, also integrates simulation data to model plant
and environment behavior. Based on this, the proposed verification technique
using model-checking, enhances the simulation-based system validation. Besides
verifying functional properties that validate correctness of the system design,
safety-critical properties w.r.t the overall system timing behavior can also be
verified. This is clearly an important analysis step forward within existing val-
idation approaches for industrial applications. Thus the paper addresses V&V
challenges in the industrial context, by combining both simulation and verifica-
tion techniques, paving the way towards scalable application of model-checking
for an enhanced validation process. As future work, we intend to investigate
requirement-driven strategies to derive the simulation criteria for generating rel-
evant partial functions. This leads to enhanced validation process that can verify
useful classes of system properties.

Acknowledgment. This work was partially funded by Swedish Research Council
(project ARROWS), Mälardalen University (Sweden), and ARTEMISIA project iFEST.

References

1. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573.
Springer, Heidelberg (2007)

2. ATESST (Advancing Traffic Efficiency through Software Technology): East-ADL2
specification. http://www.atesst.org (2008)

3. Bouyssounouse, B., Sifakis, J.: Embedded Systems Design: The ARTIST Roadmap
for Research and Development. LNCS. Springer, Heidelberg (2005)

4. Enoiu, E.P., Marinescu, R., Seceleanu, C., Pettersson, P.: Vital : a verification tool
for east-adl models using uppaal port. In: ICECCS’12, July 2012 (2012)

5. Goknil, A., Suryadevara, J., Peraldi-Frati, M.A., Mallet, F.: Analysis support for
TADL2 timing constraints on EAST-ADL models. In: Drira, K. (ed.) ECSA 2013.
LNCS, vol. 7957, pp. 89–105. Springer, Heidelberg (2013)

6. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. J. Softw. Tools
Technol. Transfer 1(1–2), 134–152 (1997)

7. OMG: UML Profile for MARTE, v1.0. Object Management Group, formal/2009-
11-02 (November 2009)

8. Peraldi-Frati, M.A., Goknil, A., Deantoni, J., Nordlander, J.: A timing model for
specifying multi clock automotive systems: the timing augmented description lan-
guage V2. In: ICECCS 2012, pp. 230–239 (2012)

http://www.atesst.org

Wind Turbine System: An Industrial Case Study 245

9. Slutej, D., H̊akansson, J., Suryadevara, J., Seceleanu, C., Pettersson, P.:Analyzing
a pattern-based model of a real-time turntable system. In: Jens Happe, B.Z. (ed.)
6th International Workshop on Formal Engineering approaches to Software Com-
ponents and Architectures (FESCA), ETAPS’09, York, UK, March 2009. Elec-
tronic Notes in Theoretical Computer Science (ENTCS), vol. 253, pp. 161–178.
Elsevier (2009)

10. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL
mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013)

11. Suryadevara, J.: Validating EAST-ADL timing constraints using UPPAAL. In:
39th Euromicro Conference on Software Engineering and Advanced Applications,
SEAA 2013 (2013)

Refinement Tree and Its Patterns: A Graphical
Approach for Event-B Modeling

Kriangkrai Traichaiyaporn(B) and Toshiaki Aoki

School of Information Science, Japan Advanced Institute of Science and Technology
(JAIST), Ishikawa, Japan

{kriangkrai.tr,toshiaki}@jaist.ac.jp

Abstract. Event-B is a famous formal approach for verifying the
requirements specification of safety-critical systems. Even though Event-
B is a good formal approach which is successful in applying to several
practical case studies, we think that additional methods are needed to
apply it to the safety critical systems. Once we identify the require-
ments, Event-B allows us to formally describe the requirements. However,
Event-B does not explicitly support analysing and elaborating require-
ments themselves. Although refinement mechanisms provided by Event-
B is useful to stepwise model concrete requirements from abstract ones,
guideline of the refinements is not provided. This paper aims to pro-
pose a refinement tree diagram and its refinement patterns to provide
the requirements analysis and elaboration, and the guideline for Event-
B. The diagram and the patterns are partially derived from the KAOS
method, a goal-oriented requirements engineering method. The utility of
the diagram and the patterns is successfully shown by applying them to
three practical case studies.

1 Introduction

In the development of safety-critical systems, most of the typical approaches,
to guarantee that the systems are sufficiently safe, start from ensuring the cor-
rectness of requirements specifications. Formal methods are recommended for
verifying the correctness by the functional safety standards such as ISO26262
[8]. It is common that the requirements specifications are too complex to be
formally verified all at once. Thus, refinement techniques are applied to reduced
the complexity by stepwise transforming an abstract specification into a concrete
specification. Among the refinement techniques, the refinement mechanism pro-
vided by Event-B is a more flexible one comparing to the related languages such
as Z [15] and VDM [9].

Event-B [3] is a formal specification language for modeling and verifying
system requirements through the refinement mechanism. Event-B has been suc-
cessfully applied to several practical safety-critical systems. Some examples are a
train controller system [16], hybrid systems [17], and a metro system [14]. Event-
B can be regarded as a method for correct-by-construction system development.

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 246–261, 2014.
DOI: 10.1007/978-3-319-05416-2 16, c© Springer International Publishing Switzerland 2014

Refinement Tree and Its Patterns 247

Even though Event-B is a good formal approach which is successful in apply-
ing to several practical case studies, it lacks some methods, which are necessary
for the practical development of the safety-critical systems. This paper focuses
on dealing with two issues in Event-B. Firstly, Event-B provides no method for
analyzing and elaborating requirements specifications. The method is needed to
specify essential information of the safety-critical systems. Without sufficiently
specifying the information, it is impossible to justify that a system is safe. Sec-
ondly, there is no guideline for using the refinement mechanism in Event-B effec-
tively. Given that a complicated system is being modeled in Event-B, designers
and developers of the system might have no idea how to organize the refinement
steps which is a source of difficulty in the usage of refinement [2].

In this paper, we aim to fulfil what Event-B lacks by proposing a refinement
tree diagram and its refinement patterns. The refinement tree diagram is to
graphically show the steps of refinement of the modeled specification in the form
of tree structure. The diagram is designed in a way that it can be easily trans-
formed into the Event-B specification. The refinement patterns are proposed in
addition to the diagram to guide the refinement of the Event-B specification.
The diagram along with the patterns are created by adapting the concepts from
the goal model and the goal refinement patterns of the KAOS method [19].

The KAOS method is a goal-oriented requirements engineering method for
analyzing and elaborating requirements. Its core model, the goal model, is cre-
ated through the notion of goal refinement. The goal refinement provides a nearer
way to how human stepwise refines requirements and is, thus, easy to understand.
The KAOS method includes a set of goal refinement patterns to efficiently refine
goals by following the frequently-used refinement tactics. Seeing that the KAOS
method provides what we need to fulfil Event-B, we apply the KAOS method to
Event-B. However, the formal semantics of the KAOS method and the formal
specification of Event-B are different. Their notions of refinement are different
as well. Consequently, instead of directly using the goal model, we propose the
refinement tree diagram and the refinement patterns based on the goal model
and the goal refinement patterns.

The refinement tree diagram and the refinement patterns are applied to
model three practical safety-critical case studies. From the case studies, we find
that we can specify the necessary information, such as behavior, inputs, and
output, through the refinement tree diagram in a similar manner to the KAOS
method. Furthermore, the refinement patterns can guide the way to stepwise
refine the specifications of the case studies well. Therefore, we conclude that the
refinement tree and the refinement patterns can complement Event-B.

The remainder of this paper is organized as follows. Section 2 overviews
Event-B and the KAOS method. Section 3 explains the motivation behind the
creation of the refinement tree diagram. Sections 4 and 5 describe the refinement
tree diagram and its patterns respectively. Section 6 briefly demonstrates the
application of our diagram and patterns on three case studies, and the results.
Relevant issues from the results are discussed in Sect. 7. Related works are dis-
cussed in Sect. 8. Finally, Sect. 9 concludes this paper.

248 K. Traichaiyaporn and T. Aoki

2 Background

This section provides a short overview of Event-B and the KAOS method.

2.1 Event-B

Event-B [3] is a formal specification language for modeling specification of sys-
tems. The language is based on first-order predicate logic and discrete transition
systems. The main feature of Event-B is its refinement mechanism to incremen-
tally constructing a specification from an abstract one into a concrete one.

A specification described in Event-B may be divided into a static part called
the context, and a dynamic part called the machine. In this paper, we simply
assume that there is some context and do not mention it explicitly. Machines are
for describing behavioral properties of the specifications. Machines contain all of
the state variables. Types and properties of the variables are declared through
invariants in a form of the predicate. The values of the variables can be changed
by the execution of events.

From an abstract machine containing a collection of variables, invariants, and
events, the refinement mechanism of Event-B allows us to refine the abstract
machine into a concrete machine by adding new variables, adding new events,
rewriting events description to handle new variables, strengthening the guards,
and so on. To explicitly associate the abstract machine and the concrete machine,
a term ‘refines’ following with the name of the abstract machine is written in the
description of the concrete machine. Even though there are many ways to refine
a machine, they are restricted by the syntactic rules and the proof obligations
of Event-B. This is for preventing the description of the concrete machine from
contradicting the description of the abstract machine.

Describing a specification in Event-B is always in a top-down style. The
Event-B specification always start from describing the most abstract machine
called ‘initial machine’. Then, the initial machine is gradually refined into the
first refinement, the second refinement, and so on.

An event in a machine can be represented by the following form:

evt =̂ refines a evt any p when G with W then S end

where a evt is the name of the abstract event, p denotes internal parameters
of the event, G is a predicate denoting guards, and S denotes the actions that
update some variables and can be executed only when G holds. When we refine
an abstract event, some variables of that event might be disappeared in its
concrete event. W denotes witnesses that are additional elements in the concrete
event for indicating the disappeared variables and their values. Again, the term
‘refines’ is written in the description of the concrete event to explicitly associate
it with the corresponding abstract event. In the semantics of Event-B, if an
event does not have the term ‘refines’ in its description, it means that the event
implicitly refine an event named skip, which is a blank event.

Refinement Tree and Its Patterns 249

2.2 The KAOS Method

KAOS (‘Knowledge Acquisition in autOmated Specification’ or ‘Keep All Objects
Satisfied’) [19] is a goal-oriented requirements engineering method with several
UML-like models. The central model of the KAOS method is the goal model to
show relationships among goals of a system in a tree structure.

The goal model consists of a refinement graph expressing how higher-level
goals are refined into lower-level ones and, conversely, how lower-level goals
contribute to higher-level goals. The higher-level goals are in general strategic
and coarse-grained whereas lower-level goals are technical and fine-grained. In a
refinement graph, a node represents a goal, and an AND-refinement link relates
a parent goal to a set of sub-goals. A parent goal must be satisfied when all of
its sub-goals are satisfied. The relationship between a parent goal and the set of
its sub-goals is called goal refinement. The process of goal refinement is intuitive
and can drive the analysis and elaboration of requirements. Formally, all goals
can be represented in linear temporal logic.

An effective way to construct a goal model is by reusing goal refinement
patterns [6]. The goal refinement patterns are frequently used patterns for
refining a goal into sub-goals. Each pattern suggests specific refinements for
instantiation to the specifics of the modeled system. For examples, the milestone-
driven refinement pattern is for establishing a necessary intermediate step (a
milestone condition) for reaching a target condition from a current condition,
and the decomposition-by-case refinement pattern is to introduce different cases
for reaching a target condition. This pattern also checks that all possible cases
are determined in the decomposition, and they are disjoint. The two examples
refinement patterns are shown in Fig. 1. Parameters are used in each pattern for
representing conditions. Ones can instantiate a pattern by replacing each para-
meter with a corresponding condition from the modeled system. The patterns
are proved to be complete and consistent in term of the linear temporal logic.

In the context of the KAOS method, the pattern:

Achieve[TargetCondition (If CurrentCondition)]

prescribes goals where some target properties must be eventually satisfied in the
future after a current condition is satisfied. The current condition can sometimes
be omitted in the pattern.

Fig. 1. KAOS goal refinement patterns

250 K. Traichaiyaporn and T. Aoki

3 Motivation

The motivation behind this work comes from what we find in the existing works
applying Event-B to practical case studies. An example is the work describing in
[1], which is about the formalization of hybrid systems in Event-B. The hybrid
systems are very important in the development of embedded systems where a
piece of software, the controller, is supposed to manage an external situation,
the environment. It is usual to find that most safety-critical systems are related
to the hybrid systems. One hybrid system described in the article is about a
system controlling trains to provide safe moves of the trains. A preliminary study
is performed before the system is modeled in Event-B. From the preliminary
study, some necessary invariants of the system are found, and the information
needed for deciding the current acceleration of a train is specified. Without
the preliminary study, those necessary information cannot be specified. This can
potentially cause the system to be unsafe. The preliminary study is undoubtedly
crucial, but no systematical way for the preliminary study has been proposed
for Event-B.

Another notice from [1] is that even though the work focused on the hybrid
systems, all of its examples have distinct ways to refine the system specifications
in Event-B. The advantage of the refinement mechanism is that it provide a
lot of (but limited) ways to refine an Event-B machine for widely supporting
various kinds of systems. Unfortunately, the refinement mechanism is usually
poorly used because it is not easy to decide how to organize the construction
steps [2]. A guideline for the refinement is needed.

We find that the KAOS method provides the goal model to analyze and
elaborate requirements through the intuitive notions of refinement, i.e. the goal
refinement. Besides, we think the requirements analysis and elaboration can be
regarded as the preliminary study. Therefore, we plan to apply the goal model
to fulfil what Event-B lacks, that is, the systematical preliminary study and the
guideline for using Event-B refinement.

Ideally, the most straightforward way to apply the goal model to Event-
B is by using the goal model to model a system and then directly create an
Event-B specification based on the goal model. However, the logic behind the
two approaches are different, i.e. the linear temporal logic and the first-order
predicate logic. In addition, their semantics of refinement are different. Goal
refinement means that when all sub-goals are satisfied, then their parent goal
is satisfied. The refinement mechanism is that a concrete machine preserves the
properties described in the abstract machine. Thus, it is difficult to directly
apply the goal model to Event-B. As a result, we rather propose the refinement
tree diagram to assist constructing and refining Event-B machines. The refine-
ment tree diagram is similar to the goal model, but it can be transformed into
Event-B specification. Then, we propose a set of refinement patterns to help
users to efficiently construct a refinement tree diagram similar to how the goal
refinement patterns of KAOS guide the construction of the goal model. Some of
our refinement patterns are derived from the goal refinement patterns.

Refinement Tree and Its Patterns 251

4 The Refinement Tree Diagram

Refinement tree diagram is a diagram showing refinements of event from a
sequence of refinements of Event-B machines in the form of tree. We design
the refinement tree diagram in a way that it can graphically support:

– Demonstrating the refinements of events
– Justifying new events and invariants of a machine
– Separation of steps of refinement
– Transformation to Event-B specification

Each node of the refinement tree diagram represents either an event or an
invariant. Arrows represent refinements of events and are used for separating
steps of refinement. Lines among the nodes represent associations among the
components. An example of the refinement tree is shown in Fig. 2. Through
this example, all the details about the refinement tree diagram are gradually
explained in the following subsections.

Fig. 2. An example refinement tree diagram

4.1 Nodes

In the refinement tree diagram, a parallelogram represents an Event-B event,
a trapezoid represents an Event-B invariant. Note that the description written
in the parallelogram strictly follows the way the event is described in Event-B
specification as explained in Sect. 2.1.

Each node representing either an event or an invariant is described by using
natural language. The natural language acts as identifiers for formal descriptions
in Event-B. Even if it acts only as the identifiers, the meaning of the natural
language should correspond to the formal specification. Therefore, the natural
language that can be used in the diagram is limited to what the first-order
predicate logic of Event-B can describe. For examples, if a predicate in Event-B
is written as (P = TRUE ∧ Q = TRUE) ⇒ R = FALSE where P , Q, R are

252 K. Traichaiyaporn and T. Aoki

Boolean variables, one possible identifier of this predicate in the natural language
is “If P and Q become true then R becomes false”. This is up to what P , Q, R
represent in the specification.

From Fig. 2, the event skip acts as the root of the refinement tree diagram
and it is always the root of all refinement tree diagrams. Excluding the root,
the example has five events; Evt1, Evt2, Evt1 1, Evt1 2, and Evt2; and an
invariant. Note that there are two events written with the same descriptions.
Both of them have the same name: Evt2.

4.2 Refinements of Events

A refinement of event is represented by an arrow with a small circle. The circle is
for linking all concrete events refining the same abstract event. Here, we specify
that ‘refinement of event’ means there are some changes in the description of a
concrete event comparing to its abstract event. If the description of a concrete
event is the same with its abstract event, we regard it as a ‘copy’ of the abstract
event. In this case, the arrow directly links two events to show the copy. Because
abstract events belong to an abstract machine and concrete events belong to a
concrete machine, the arrow can separate level of the refinement tree diagram.

The level of the refinement tree diagram containing only the root is called
the zeroth level. The zeroth level acts only as a root and is not necessary to
be transformed into Event-B specification. The subsequents levels are called the
first level, the second level, and so on. They respectively correspond to the initial
machine, the first refinement, and so on in Event-B.

From Fig. 2, the first level contains the events Evt1 and Evt2, where Evt1
refines the root. The events of the first level must always refine the root, except
the event which can be linked with another event by some kinds of relationship.
In the bottom level, Evt2 is a copy of Evt2 from the higher level, so their
descriptions are the same. Evt1 1 and Evt1 2 refine Evt1. The bottom level
also contains an invariant.

Both the refinement and the copy of event can be written into Event-B spec-
ification as ‘refines’ relationships between abstract events and concrete events.
Each event in an upper level must be pointed by at least one arrow from the
subsequent level, since Event-B does not allow any abstract events to be missing
in the concrete machine.

4.3 Relationships among Events and Invariants

Here, we clearly separate the links showing relationships between events and the
links showing relationships between events and invariants. They are represented
by plain lines and dashed lines respectively. In facts, these relationships are not
shown in the original Event-B. We define the relationships to support justifying
new events and invariants of a machine in the refinement tree diagram. The
events and invariants which are linked by the plain lines and the dashed lines
must be only in the same level of the refinement tree diagram.

Refinement Tree and Its Patterns 253

In the context of this paper, ‘new’ events mean the events added to a concrete
machine without explicitly refining an event from the abstract event. When the
new events are added to a machine, it might be unclear how the new events
interact with other events. The plain lines, linking two or more events, are defined
for the refinement tree diagram to show the interaction among new events and
others. The types of the relationship should also be written on the lines. For
example, Evt2 and Evt1 in Fig. 2 are linked by a ‘before’ relationship, which
means that Evt2 is necessary to be executed before Evt1. This is because the
actions of Evt2 can trigger the guards of Evt1. Another type of relationship
used in this paper is the ‘parallel’ relationship. The events linked by the parallel
relationship means that they can interleave each other in the execution.

Invariants are needed for restricting possible values of variables. Thus, invari-
ants also restrict the possible results of events. Conversely, events might provide
us some ideas about important invariants needed to be include in a specification.
These relationships between events and invariants can be shown in a refinement
tree diagram through dashed lines between them as seen in Fig. 2, which con-
tains a link from an invariant to the event Evt1 2. For convention, if an invariant
is related to a set of concrete events which refines the same abstract event, it
should link with the small circle representing the refinement rather than linking
with all the related events.

4.4 Transformation to Event-B Specification

Since we allow using natural language to be identifiers of the Event-B descrip-
tions for events and invariants and the descriptions always contain variables, so
we need to know all variables and data structure which can represent data and
artifacts of a modeled system. In this paper, we assume that all needed variables
have been specified before creating a refinement tree diagram. Some approaches
that can be used for specifying the variables are the class diagram of KAOS [19]
and the UML-B [13].

Regardless of how variables and data structures are specified, the transfor-
mation from a refinement tree diagram into Event-B specifications can be done
through the following principles:

– All events and invariants within the same level of a tree must be written in
the description of the same Event-B machine.

– Two consecutive levels of a refinement tree diagram means that the lower level
is a concrete machine refines the abstract machine from the upper level. This
refinement relationship must be written in the concrete machine as the clause
refines followed by the abstract machine’s name.

– An event in a refinement tree diagram contains the terms any, when, with, and
then. Since these terms are directly derived from how an event is described
in Event-B. Each term written in a parallelogram can directly map to the
corresponding terms of an event in Event-B.

– Each arrow from an abstract event to a concrete event can be represented in
Event-B specification through the term refines followed by the name of the
abstract event.

254 K. Traichaiyaporn and T. Aoki

The example in Fig. 2 can be easily transformed into two Event-B machines.
We assume that the variables P , Q, and R are Boolean variables. The followings
are parts of the machines which are derived from the example.

Initial machine:

Evt2 =̂ when P = TRUE then Q := TRUE end

Evt1 =̂ when Q = TRUE then R := TRUE end

First refinement:

Evt2 =̂ refines Evt2
when P = TRUE then Q := TRUE end

Evt1 1 =̂ refines Evt1
when Q = TRUE ∧ P = TRUE then R := TRUE end

Evt1 2 =̂ refines Evt1
when Q = TRUE then R := TRUE ∧ P := FALSE end

Invariant:R = TRUE ∧ P = FALSE ⇒ Q = TRUE

5 The Refinement Patterns

An efficient way to create a goal model is by using the goal refinement patterns.
We follow this concept by creating a set of refinement patterns for the refine-
ment tree diagram. The refinement patterns are generic patterns to refine an
abstract event into a set of concrete events with some invariants. Some refine-
ment patterns are derived from the frequent ways to refine a machine found
in the existing Event-B specifications created by others. Some refinement pat-
terns are derived from the goal refinement patterns, since they are intuitive
and complete. At the moment, we have 4 patterns in total. Our original pat-
terns are phase-decomposition refinement pattern and event-forking refinement
pattern. The KAOS-based patterns are derived from the milestone-driven refine-
ment pattern and the decomposition-by-case pattern as described in Sect. 2.2.
The descriptions of each pattern can be found in the following subsections.

5.1 The Phase-Decomposition Refinement Pattern

The phase-decomposition refinement pattern (Fig. 3) divides abstract behavior
of a system into two or more phases. One phase is represented by one event.
Only the transition from one phase to another is described in each event. The
flow of transitions is in the form of a cycle for iterative behavior of the system.
This pattern is applicable for modeling an initial specification in Event-B. The
possible phases used for dividing behavior of a system are: input phase and
decision phase. The input phase is for monitoring inputs of the system. The
decision phase is for making a decision based on the inputs.

Refinement Tree and Its Patterns 255

Fig. 3. The phase-decomposition-refinement pattern

Fig. 4. The event-forking refinement pattern

5.2 The Event-Forking Refinement Pattern

This pattern (Fig. 4) is for describing environmental behavior which is usually
non-deterministic and can behave in an arbitrary order. Inputs of a system can be
regarded as this kind of behavior. Thus, this pattern is applicable to describe the
input phase of the system. We call the creation of a group of arbitrarily ordering
events as event forking. One event denotes one input. The event forking can be
introduced to Event-B at both the higher level through the parallel relationship,
and the lower level through the refinements without changing the guards.

5.3 The Milestone-Driven Refinement Pattern

This pattern is for decomposing an abstract event into the sequences of two or
more concrete events. The decomposition is done by introducing intermediate
steps (milestones) between the guard and action of the abstract event. Figure 5
shows the simplified form of the pattern, introducing just one intermediate step
to an abstract event. An invariants appearing in the pattern is to ensure that
after one event is executed, its action can trigger the next event to form a
sequence of events.

5.4 The Decomposition-by-Case Refinement Pattern

This pattern is for refining an abstract into two or more concrete events for
dealing with all possible cases of states of variables. One concrete event is sup-
posed to deal with one case. This is to determine that which actions should be
executed for each of the cases. Thus, this pattern is usually used in the decision
phase. It can also be used in the input phase, if there are some restrictions on
inputs which needs to be determine case-by-case. An invariant included in the

256 K. Traichaiyaporn and T. Aoki

Fig. 5. The milestone-driven refinement pattern

Fig. 6. The decomposition-by-case refinement pattern

pattern is to ensure that all possible cases are determined, and they are disjoint.
Figure 6 shows a simplified form of this pattern which contains only two cases.

6 Case Studies

Since our objective of this research is about the practical usage of Event-B, we
utilized our model in action on three examples derived from a real-world context.
The examples can show the practical utility of the refinement tree diagram along
with its patterns. The examples varied on their size and types of systems in order
to increase confidence in the utility of our approach.

Our approach was applied to a powered sliding door, an automatic gate
controller, and Electrical Power Steering (EPS) system. The powered sliding
door is derived from part 10 of ISO26262 [8]. The powered sliding door is a
sliding door of a vehicle which a user can request the door to be opened or
closed. The safety goal of the powered sliding door is “not to open the door
while the vehicle speed is higher than 15 km/h”. The automatic gate controller
is derived from [20]. The goal of this system is to allow only authorized persons
to enter a building through the automatic gate. Lastly, the EPS system, for
controlling the electric steering of cars, was developed in collaboration with a
company. The part of the EPS system which is used in this case study is the
part regarding the transition to a manual steering mode. This mode is to stop
the EPS system when a failure of the system is detected, and then, let the driver
manually control the steering of the car. Due to limitations of space, only the
simplified refinement tree diagram of the powered sliding door is shown in this

Refinement Tree and Its Patterns 257

Fig. 7. The simplified refinement tree diagram of the powered sliding door

paper. If you are interested in the full diagrams of the three case studies, they
can be found in the appendixes of [18].

Figure 7 shows the simplified refinement tree diagram of the powered sliding
door. We modeled the first level of the refinement tree diagram of the system
by, firstly, dividing the system into two phases, i.e. the input phase and the
decision phase, with the phase-decomposition pattern. a Boolean variable named
input was used to represent two phases. Then, the next level of the tree was
constructed by introducing the speed of vehicle, opening request, and the door.
The event-forking pattern was applied to introduce the speed and the request
to the diagram as two inputs of the system. The decomposition-by-case pattern
was used for determining that the door is opened or closed depending on the
speed and the request. It is trivial in the figure that all cases are determined, so
we omit the invariant of the pattern. We can extend the simplified diagram with
another level by introducing a switch. The door will be opened only when the
switch is on. The milestone-driven refinement pattern was applied to introduce
the step of turning the switch on before opening the door as shown in Fig. 8.

We created the refinement tree diagrams for the other two case studies in
a similar way. Roughly, we started with dividing the systems with the phase-
decomposition pattern. Then, we applied our refinement patterns to gradually
introduce new inputs and concepts into subsequent levels of their trees. However,
some nodes in some levels of their diagrams had to be determined manually. Most
of the manual events are the events which the variables in their descriptions are
replaced by new variables.

Fig. 8. Turning the switch on to open the door

258 K. Traichaiyaporn and T. Aoki

Table 1. Number of events from the case studies according to sources of creation

Case study Manual Patterns Total

Powered sliding door 0 (0 %) 19 (100 %) 19
Automatic gate controller 8 (34.8 %) 15 (65.2 %) 23
EPS system 18 (32.7 %) 37 (67.3 %) 55

The full refinement tree diagrams of the powered sliding door, the automatic
gate controller, and the EPS system have 4 levels, 5 levels, and 8 levels respec-
tively. To discuss about the results, we counted the total number of events from
all levels of each resulted diagram. Those number are presented in Table 1. Here,
we divided the events into two types according to their sources. ‘Manual’ means
that the events are obtained manually, whereas ‘Patterns’ refers to the events
that are derived from the refinement patterns. Note that the number of the
copying events are omitted here. This is because the copying events are easily
derived and, thus, are irrelevant to the difficulty of the refinement.

7 Discussion

From Table 1, we found that, at least, around two-thirds of the events in the
resulted refinement tree diagrams can be derived from our proposed refinement
patterns. The ‘Manual’ events were mostly for the replacement of variables with
the new ones. This kind of refinement can be regarded as vertical refinement for
enriching the structure of a model to bring it closer to an implementation struc-
ture [5]. Seeing that our approach focuses on specifying necessary information
for the safety requirements specification and the vertical refinement is just a sup-
plement to the identified necessary information. Thus, it was acceptable that the
patterns cannot handle the vertical refinement at the moment. Therefore, we can
conclude that the patterns are sufficient for modeling requirements specification
of the safety-critical systems. Besides, the applicability of the patterns did not
decrease when the specification was bigger. This fact can be discussed from the
percentage of the pattern-derived events of the automatic gate controller and
the EPS system that did not decrease much, even if the EPS system was a lot
larger. As a result, the patterns are scalable.

In our experience modeling the case studies, we found that it was easy to
justify and structure Event-B specifications by using the refinement tree diagram.
This was because the relationships among components of the specifications were
graphically shown. The concepts of the requirements analysis and elaboration
and how to structurally stepwise refine the specifications were also provided by
the patterns, which were sufficient and scalable. We conclude that the refinement
tree diagram and its patterns can fulfil what Event-B lacks as described in Sect. 3.

Since the mechanism of the goal refinement is designed for decomposing a goal
into two or more sub-goals, one-to-one refinement, i.e. a goal is decomposed into
a single sub-goal, rarely occurs in KAOS. However, the one-to-one refinement

Refinement Tree and Its Patterns 259

is possible in Event-B, e.g. we can just adding guards and/or actions into an
event for dealing with new variables of a concrete specification. Consequently, the
notations of the refinement tree diagram cannot handle the one-to-one refinement
well. This leads to the difficulty to create refinement patterns for the one-to-one
refinement in the form of the refinement tree. The incompetency to well handle
the one-to-one refinement is the current limitation of our approach. Actually,
the vertical refinement are often the one-to-one refinement.

8 Related Work

There are many approaches aiming to use the capabilities of the KAOS method
to guide Event-B modeling. All of them focus on the direct application of the
goal model to Event-B, whereas our approach presents a new diagram based
on the goal model. The approach in [11] directly applied the goal refinement
patterns of KAOS to model a specification in Event-B. A way to describe and
prove the KAOS goal refinement patterns in Event-B was defined. However, due
to the differences between KAOS and Event-B, it is not possible to represent
and prove all the goal refinement patterns in Event-B. This approach limits the
creation of a goal model to the application of only the compatible goal refinement
patterns. Rather, our approach provides a wider way to use patterns to guide
the refinement by allowing the adaptation of the goal refinement patterns and
the creation of new patterns for Event-B itself. The approaches described in
[4,12] avoided the differences between the two frameworks by using only the leaf
goals of the goal model for modeling an initial specification in Event-B. This
can be done by regarding one leaf achieve goal as an event and/or an invariant.
Then, developers have to use other approaches to refine the initial specification
further. From this, the goal refinement does not relate to Event-B refinement.
While, our approach uses the whole proposed diagram to model an initial Event-
B specification along with the subsequent refinement steps.

We defined the refinement patterns of the refinement tree diagram for assist-
ing the Event-B modeling. In [7], Hoang, Furst, and Abrial proposed that it is
possible to create design patterns for Event-B. They proved this fact by propos-
ing provably-correct design pattern for a synchronous communication protocol
and applied it to model another synchronous communication protocol. The pur-
pose of the creation of their design patterns is to efficiently model a specification
in Event-B by reusing the existing Event-B specifications, which is similar to
our purposes. Hence, this work supports the creation of our refinement patterns.
Nonetheless, the refinements in their patterns are mostly the vertical refinement
which are different from the refinements in our refinement patterns.

In 2012, Kobayashi and Honiden [10] proposed an approach to plan what
models are constructed in each abstraction level of Event-B. The advantage of
this approach is that it can calculate how well a plan can mitigate the complexity
of a specification. This calculation is useful for selecting a plan from a set of
plans. However, to make a set of plans, their approach needs that all details of
a system, such as behavior, are already identified before the calculation. Our

260 K. Traichaiyaporn and T. Aoki

approach lacks such calculation, but it is able to identify the necessary details,
together with the guideline for Event-B refinement. Thus, their work and our
approach can complement each other.

9 Conclusion

By observing the applications of Event-B in modeling specification of the safety-
critical systems, we found that Event-B lacks the requirements analysis and
elaboration, and the guideline for its refinement mechanism. To deal with the
issues, we adapted the concepts of the goal model and the goal refinement pat-
terns from the KAOS method to create the refinement tree diagram and the
refinement patterns. The refinement tree diagram can graphically demonstrate
the relationships among components of an Event-B specification. Thus, it is eas-
ier to understand and justify the specification. The diagram was useful because
it can be directly transformed into Event-B specifications. The refinement pat-
terns were capable to guide how to stepwise refine Event-B specifications. Then,
we successfully applied the refinement tree diagram and the patterns to three
case studies to model and verify them in Event-B. Therefore, the refinement
tree diagram and the refinement patterns can complement Event-B. We believe
that the approach described in this paper can encourage the use of the formal
methods like Event-B in the practical development of the safety-critical systems.

References

1. Abrial, J.-R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In: Der-
rick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene,
E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg (2012)

2. Abrial, J.R.: Formal methods in industry: achievements, problems, future. In: Pro-
ceedings of the 28th International Conference on Software Engineering, pp. 761–
768. ACM (2006)

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

4. Aziz, B., Arenas, A., Bicarregui, J., Ponsard, C., Massonet, P.: From goal-oriented
requirements to Event-B specifications. In: First NASA Formal Method Sympo-
sium (NFM 2009), Moffett Field, CA, USA, April 2009

5. Damchoom, K., Butler, M.: Applying event and machine decomposition to a flash-
based filestore in Event-B. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 134–152. Springer, Heidelberg (2009)

6. Darimont, R., Van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. ACM SIGSOFT Softw. Eng. Notes 21(6), 179–190
(1996)

7. Hoang, T.S., Furst, A., Abrial, J.-R.: Event-B patterns and their tool support.
In: Software Engineering and Formal Methods, 2009 Seventh IEEE International
Conference on, pp. 210–219. IEEE (2009)

8. CD ISO. 26262, Road vehicles-functional safety (2011)
9. Jones, C.B.: Systematic Software Development Using VDM, vol. 2. Prentice Hall,

Englewood Cliffs (1990)

Refinement Tree and Its Patterns 261

10. Kobayashi, T., Honiden, S.: Towards refinement strategy planning for Event-B.
arXiv preprint arXiv:1210.7036 (2012)

11. Matoussi, A., Gervais, F., Laleau, R.: A goal-based approach to guide the design of
an abstract Event-B specification. In: Engineering of Complex Computer Systems
(ICECCS), 2011 16th IEEE International Conference on, pp. 139–148. IEEE (2011)

12. Ponsard, C., Devroey, X.: Generating high-level Event-B system models from
KAOS requirements models. In: Actes du XXIIéme Congrés INFORSID, pp. 317–
332, Lille, France (2011)

13. Said, M.Y., Butler, M., Snook, C.: Language and tool support for class and state
machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009)

14. Silva, R.: Lessons learned/sharing the experience of developing a metro system
case study. arXiv preprint arXiv:1210.7030 (2012)

15. Michael Spivey, J.: The Z Notation, vol. 1992. Prentice Hall, New York (1989)
16. Su, W., Abrial, J.-R., Huang, R., Zhu, H.: From requirements to development:

methodology and example. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol.
6991, pp. 437–455. Springer, Heidelberg (2011)

17. Su, W., Abrial, J.-R., Zhu, H.: Complementary methodologies for developing
hybrid systems with Event-B. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS,
vol. 7635, pp. 230–248. Springer, Heidelberg (2012)

18. Traichaiyaporn, K.: Modeling correct safety requirements using KAOS and Event-
B. Master’s thesis, School of Information Science, Japan Advanced Institute of
Science and Technology (JAIST). http://hdl.handle.net/10119/11496 (2013)

19. Van Lamsweerde, A.: Requirements Engineering: from System Goals to UML Mod-
els to Software Specifications, vol. 3. Wiley, New York (2009)

20. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and
correctness in requirements evolution. Inf. Softw. Technol. 45(14), 993–1009 (2003)

http://hdl.handle.net/10119/11496

Precise Documentation and Validation
of Requirements

Chen-Wei Wang(B), Jonathan S. Ostroff, and Simon Hudon

Department of Electronic Engineering & Computer Science, York University,
Toronto, Canada

{jackie,jonathan,simon}@cse.yorku.ca

Abstract. Precise documentation of requirements is important for devel-
oping and certifying mission critical software. We specify cyber-physical
systems via an Event-B-like machine which declar es the monitored and
controlled variables and their initial condition. A machine event models
the joint action of the plant and the controller. Embedded in the event
action is a function table that specifies the input-output behaviour of the
controller, as monitored variables are periodically updated by the plant.
We extend the Event-B notation with queries and modules. The result-
ing machine provides us with a mathematical description of the overall
system behaviour, thus allowing us to validate the requirements by prov-
ing that (1) the input-output specification of the controller is complete,
disjoint and well-defined, and that (2) the machine satisfies system-wide
consistency invariants elicited from domain experts. A biomedical device
is used as a case study, and we mechanize proofs via a SMT solver.

Keywords: Certification · Requirements documentation and validation ·
Model contracts · Well-definedness · Tabular expressions

1 Introduction

The central task of system development is to design the system such that its
overall behaviour satisfies the requirements. But this assumes that the require-
ments are precise and complete, while problems in the requirements phase will
negatively impact the subsequent phases of design and implementation.

Requirements are often stated informally using natural languages, which tend
to be imprecise and incomplete. It is rather difficult to reliably check that English
narratives, or even semi-formal models such as use cases, address all scenarios
relevant to the task at hand. Nevertheless, precise documentation of requirements
is important for validating, verifying and certifying mission critical software in
medical, automotive, nuclear and avionic systems [13].

Industrial standards such as IEEE 7-4.3.2 (nuclear), ISO 26262 (automotive)
and DO-178C (avionics) recommend the use of formal methods. But formal
methods alone do not guarantee that requirements will be complete. Tabular

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 262–279, 2014.
DOI: 10.1007/978-3-319-05416-2 17, c© Springer International Publishing Switzerland 2014

Precise Documentation and Validation of Requirements 263

expressions [20] (a.k.a. function tables) describe computer controllers as math-
ematical functions relating system stimuli and responses. Tabular expressions
have been adopted in the nuclear domain to ensure that specifications are com-
plete and disjoint [11,21,22].

Outline. We provide a small example to illustrate the use of tabular expres-
sions (Sect. 1.1). The example is used to motivate our methods and contribu-
tions. The overall behaviour of a system is composed of the behaviour of the
environment (the plant) together with a computer controller. We model the sys-
tem behaviour with an Event-B machine extended with modules and embedded
tabular expressions (Sect. 1.2). Our method produces documentation that is pre-
sented modularly, and it can be used to determine the completeness, disjointness
and well-definedness (Sect. 2) of specifications for an important class of systems.
Mathematically precise documents of requirements are essential: domain experts
review them for correctness; programmers use them for design and coding; and
regulatory authorities are assured that the software will not exhibit unintended
behaviour. Our method also allows for the validation of requirements via proofs
of system invariants. We report on a case study (Sect. 3) using our methods for
precise documentation and validation of requirements. Section 3 shows not only
that our methods are applicable to software products, but also that our methods
can be applied to improve the completeness, disjointness and well-definedness of
industry standards. Section 4 presents related work and conclusions.

1.1 A Small Example

Consider a computer controller embedded in a larger environment as shown in
the context diagram in Fig. 1(a). In [21], stimuli from the plant (environment)
are referred to as monitored variables and responses referred to as controlled
variables. A variable such as z (in Fig. 1(a)) represents the current value of a
monitored variable and z-1 refers to its value in the previous state. The system
behaviour is modelled as a finite state machine. At discrete points in time, the
system detects the current values of all monitored variables, and it uses the
current state (and, possibly, the past states) of the machine to generate the
current values of the controlled variables and the next state of the machine.
Figure 1(b) provides an artificial example of a function table for our small system.

Fig. 1. Specification of a small system using the method in [21]

264 C-W. Wang et al.

For example, if the current value of z is non-negative (z → 0), then output x is
described by the before-after predicate x = sqrt(z)∗x-1 + y, i.e., the predicate
expresses how the current value of output x depends on the current values of y
and input z and the previous value of x.

Periodically, the plant generates a new value, say z ⇒ R, which is monitored
by the controller. In response, the controller generates a new value for the con-
trolled variables x, y ⇒ R based on the monitored variables and the past state.
Of course, a real system will have many more monitored and controlled variables
than shown in Fig. 1(a).

The above system description is an idealized view of the system behaviour
that is suitable for a requirements document: outputs are generated instanta-
neously once inputs are received. In later refinements, accuracy and timing tol-
erances must be taken into account [23]. Also, we are dealing with systems where
we do not have a detailed model of the plant. Our knowledge of the plant is lim-
ited to monitored and controlled variables and constraints on these variables.

In most useful systems it will not be possible to describe the controller behav-
iour using a single function. Instead, the requirements will include a number of
interacting functions, which themselves are represented by function tables. As
stated in [11,20–22], the function tables must be complete and disjoint as formal-
ized in Fig. 3 (p. 265). Completeness ensures that all possible inputs are covered.
Disjointness ensures that there are no conflicts in the outputs.

1.2 Our Method and Contributions

Figure 2(a) describes an Event-B [1] machine system with event execute that
models the joint action of the plant and the controller. The machine declares
the monitored and controlled variables as well as their initial condition. The
plant periodically generates new values for the monitored variable z (using the
any construct to non-deterministically assign a value to parameter r ⇒ R).
The function table describing the input-output behaviour of the controller is
embedded in the action of the event. The Event-B notation is extended with

Fig. 2. Description of system consisting of plant and controller

Precise Documentation and Validation of Requirements 265

queries and modules. The resulting machine provides us with a mathematical
description of the overall system behaviour, thus allowing us to validate the
requirements by proving system invariants.

Fig. 3. Completeness, Disjointness and Well-definedness of tabular expressions

Queries (with pre/post conditions) such as sqrt in Fig. 2(b) are not directly
supported by function tables (usually based on total functions) and Event-B. It
is convenient to allow the use of partial functions (specified with preconditions).
The precondition of a partial function captures in one place where the function
can be applied meaningfully, thus providing a logical firewall between the spec-
ifier and the client so that functions are not misused on meaningless inputs (see
the discussion on design-by-contract in [14]).

Our contributions are as follows:

1. Description of system behaviour via function tables embedded in a machine.
As described, the machine event execute in Fig. 2(a) provides a precise descrip-
tion of the system behaviour involving the joint action of the plant and the
controller. The event action refers to a function table that can be shown as
complete and disjoint. This allows us to validate the requirements (see Item 4).

2. Queries and well-definedness. We provide a method for introducing queries
defined via pre/post conditions, such as sqrt in Fig. 2(b). Queries facilitate the
construction of complex expressions in events, invariants and function tables.
A query introduces the possibility of its result being undefined if it is used in
a context that does not satisfy its precondition. We thus develop a theory of
well-definedness to ensure that the expressions (in function tables, guards and
invariants) that involve queries are well-defined. See Sect. 2 for more details.

3. Decomposition into modules and types. We allow variables and associated
queries to be collected in modules. This is particularly useful when describing
complex systems. If a module does not declare variables, then we call it a type
(e.g. type MATH in Fig. 2(b)). Only a machine, e.g. system, may declare events.
Modules do not declare any events, but only related variables, queries and invari-
ants. If module m2 uses module m1, then the queries and invariants of m2 may
use the variables and queries of m1. In a large system, we partition the state

266 C-W. Wang et al.

into modules so as to allow a separation of concerns. We may always flatten a
machine, as well as modules that it uses, into a single, larger machine.

4. Validation of requirements via proofs of invariants. To our knowledge, the
literature does not discuss the proof of invariants in systems specified by func-
tion tables. These invariants may describe important system safety requirements.
Using our calculus of well-definedness, we can prove these invariants in the frame-
work developed above. Suppose we would like to prove the invariant J(v) where v
is the state variables of the system. As in Event-B, the proof obligation is J(v-1)∗
Gexecute(v-1) ∗ BAexecute(v-1, v) ⊆ J(v), where Gexecute is the event guard and
BAexecute is the before-after predicate of the event action specified by the function
table.

5. E/R descriptions. In the case study, we retain informal English descrip-
tions of system requirements (R-descriptions) and of relevant phenomena and
constraints on the environment (E-descriptions). Our queries and function tables
can be traced back to these descriptions.

As mentioned above in the first contribution, we embed the black-box func-
tion table describing the controller in event execute (see Fig. 2(a)). The domain
experts may advise that there is an environmental constraint (−42.3 ∧ z) on the
monitored variable z, which we document as an E-description. We can constrain
the system behaviour accordingly via a guard (−42.3 ∧ r) for event execute.
When analyzing the function table in Fig. 1(b) for completeness and disjoint-
ness, we may add an assume clause with the relevant constraint on z.

Event execute defines the system behaviour as follows. The action of the plant
is modelled with an any construct. The event generates an arbitrary value for
parameter r constrained only by its guard. Because of the assignment z := r,
the event guard places constraint (−42.3 ∧ z) on the plant monitored variable z.
Instantaneously, the event updates the controlled variables x and y (modelling
the action of the controller) as specified by the function table in Fig. 1(b).

The domain experts might specify that given the controller specification, a
system safety property (0 ∧ x ∗ 0 ∧ y) holds in all states. We document
this requirement as an R-description and express it as an invariant J(x, y, z) �
(0 ∧ x ∗ 0 ∧ y). The event guard is Gexecute � −43.2 ∧ z and the before-
after predicate is BAexecute � Gexecute ⊆ β, where β is the BA derived from
the table in Fig. 1(b): β � (z ⇒ 0 ∈ x = Sqrt(z)→x−1 + y) ∨ (−43.2 ≤ z <

0 ∈ x = x−1) ∨ (y−1→x−1 ≤ y). The proof obligation is thus (0 ∧ x-1 ∗ 0 ∧
y-1) ∗ Gexecute ∗ β ⊆ (0 ∧ x ∗ 0 ∧ y). In [18], we provide a calculational proof
and show how it can be discharged automatically using the Z3 SMT solver [3].
For further details and the Event-B notations used in this paper, refer to [18].

2 Well-Definedness of Expressions Involving Partial
Functions

It is often useful to have queries whose values are not defined for all inputs. For
example, the sqrt query shown in Fig. 2(b) has no meaningful results for negative
numbers. This raises the question of what status to give to expressions like

Precise Documentation and Validation of Requirements 267

sqrt(−1). In classical tabular expressions [19], all partial functions are totalized
by extending their ranges with a special value of undefinedness. This creates
various problems when using standard theorem provers, which assume that all
functions are total [18]. For example, in the Z3 SMT solver [3], the expression
1/x = 1/x is a theorem, even though the expression is not well-defined if x = 0.

Given an expression exp, our extended report [17] provides a recursive def-
inition of the predicate D(exp) which holds when exp is well-defined (based on
[10]). The well-definedness of a query application q(x) with the precondition
Cq(x) is defined as D(q(x)) � Cq(x). For example, D(1/x = 1/x) ∨ (x ∪= 0).
As shown in [17], whenever we are asked to prove predicate βq holds, where βq

involves a query q, we need to discharge two proof obligations. First, we must
show that D(βq) holds (this is usually relatively simple). Second, we must show
that βq holds. Both proofs can be conducted using a standard theorem prover
that treats all functions as total. In our framework, D(x/0 = x/0) is not a the-
orem, and thus x/0 = x/0 cannot be proved. The D operator is used in Fig. 3
(p4) to ensure that a function table using queries is well-defined.

Pulse Software

IEEE-181
Pulse

Standard

blood cuff
measuring

instruments
and filters

Patient

Plant

controlled
variables

monitored
variables

report,
error message,

warning message

swf

(sampled waveform)

Pulse Software
swf e_msg

duration, durationp, durationn,
y10, y50, y90,
t10p, t50p, t90p,
t10n, t50n, t90n

report

w_msg

Fig. 4. The pulse software: system boundary, inputs and outputs

268 C-W. Wang et al.

Table 1. Abbreviations for pulse and transition parameters

Pulse Abb.

pulse duration duration
10% level y10
50% level y50
90% level y90

Pos. Tran. Abb.

duration durationp
10% instant t10p
50% instant t50p
90% instant t90p

Neg. Tran. Abb.

transition duration durationn
10% instant t10n
50% instant t50n
90% instant t90n

3 Case Study: A Biomedical Device

We report on our recent work with an industrial partner. They provided code
taken from the software for a biomedical device that monitors blood pressure
via a cuff. Figure 4(a) identifies the boundary of the pulse software (controller)
and its operating environment (the plant). A reading from the device arrives as
a sampled pulse representing blood pressure over time. Given the input pulse,
the software is required to calculate parameters (see Fig. 4(c)) as defined by the
IEEE-181 Standard on Transitions, Pulses, and Related Waveforms [7].

The input pulse swf ⇒ SEQ[R] is a sequence of real numbers, represent-
ing pressure levels (vertical y axis) versus time instants (horizontal x axis). In
Fig. 4(b), given a sampled pulse, the software is required to produce three out-
puts: (1) a report listing parameters values that are well-defined; (2) an appro-
priate error message, if any; and (3) an appropriate warning message, if any. For
output (1), the software calculates pulse parameters (see queries inside the box
of Fig. 4(b)) such as pulse and transition durations as defined by IEEE-181. A
warning or an error is reported on parameters whose values are not well-defined.

In the IEEE-181 standard, a single positive pulse (see Fig. 4(c)) is divided
into a positive-going transition (one whose terminating level s2 is more positive
than its originating level s1), and into a negative-going transition (one whose
terminating level is more negative than its originating level). The standard spec-
ifies that linear interpolation is used to obtain levels that occur in-between the
sampled time instants. For each input pulse swf , the software must calculate
the pulse duration, as well as the 10 %, 50 % and 90 % levels. Moreover, for each
(positive or negative) transition of the pulse, the software must calculate its
duration, as well as the 10 %, 50 % and 90 % instants. Table 1 summarizes the
abbreviations that we adopt for these parameters.

Our industrial partner was faced with various questions about their developed
code. They wanted to know how to increase confidence that their code was
correct and at least satisfied the IEEE-181 standard. Pulses from ill patients
(e.g. Fig. 4(d)) show significant variance from the classical shape (Fig. 4(c)). They
found it difficult to write their code to deal with such variances, and to flag
that the signal does not really represent a legitimate pulse (in some cases their
code produced spurious results). They wanted to know how they could argue to
certifying agencies, e.g. the FDA, that their code is safe and fit for use.

The IEEE-181 standard itself is ambiguous, thus sometimes leading to spuri-
ous calculations. For example, where there are multiple 10 % and 90 % instants,
the standard specifies that we take the 10 % and 90 % instants that are closest

Precise Documentation and Validation of Requirements 269

to the 50 % instant of the standard.1 However, for some pulses this would result
in an ordering t90p < t50p < t10p which gives a negative duration (t90p − t10p)
for the positive-going transition. The linear interpolation formula in the stan-
dard, besides being overly-complicated, does not include a description of its
limitations: it includes a division, whose denominator expression might be zero,
without specifying what to do in cases where it is.2 More ambiguities and limi-
tations both in our industrial partner’s code and in the IEEE-181 standard are
discussed in an extended report [17].

Our proposed methods help address the above issues. Precise documentation
of requirements that is complete, disjoint and well-defined rules out issues of
ambiguities and well-definedness (e.g. division by zero). For example, the limita-
tions of the interpolation formula in IEEE-181 could have been addressed using
preconditions of queries. Our version of the interpolation formula is total (see our
abstract data type RFUN in Sect. 3.3). Given that the standard was not always
clear, we recorded what we thought are relevant assumptions as E-descriptions
(Sect. 3.1), which differentiate between valid and invalid signals, thus helping
to remove ambiguities. R-descriptions (Sect. 3.2) describe the required calcula-
tion of parameters for valid pulses and the errors or warnings for invalid pulses.
The complete specification is less than two pages (Fig. 6, p. 273 in Sect. 3.4 and
Table 2, p.274 in Sect. 3.5). Specifying and proving a system invariant such as
t90p < t50p < t10p effectively validates the consistency of the requirements (see
Sect. 3.7).

3.1 Atomic E-Descriptions

E-descriptions document environmental assumptions and constraints on moni-
tored variables. An atomic description consists of two parts: (1) the description
number (e.g. ENV1) allowing for traceability in the design, the code, and accep-
tance tests; and (2) an informal English statement.

ENV1 A valid pulse consists of at least 3 samples, has a unique maximum and
each transition has at least one 50% instant.

ENV2 The unique maximum partitions the waveform into a positive transition
and a negative transition. The 10%, 50% and 90% levels are the same for
both the positive and negative transitions.

1 Section 5.3.3.2 of IEEE-181: “If there is more than one reference level instant, the
reference level closest to the 50% reference level instance (see 5.3.3.1) is used, unless
otherwise specified.” Obviously t90p − t10p < 0 represents an unusual waveform.
Nevertheless, the software must deal with all inputs, however unusual.

2 Equations 5 and 6 on page 20 of IEEE-181 provide the interpolation formulas.

270 C-W. Wang et al.

3.2 Atomic R-Descriptions

Having defined what a valid input pulse is (ENV1), we now document the
required system input-output behaviour by considering three cases (ok, warning
and error) each as an atomic R-description:

REQ3 ok: If the input pulse is valid and the 10% levels of both transitions exist
then output all the following parameters: (a) For the waveform: 10%, 50%
and 90% levels. (b) For each transition: 10%, 50% and 90% instants. (c)
For each transition: the transition duration (i.e. time from the 10% instant
to the 90% instant). (d) The pulse duration (time from the 50% instant
of the positive transition to the 50% instant of the negative transition).

REQ4 Warning: If the input pulse is valid and at least one of the 10% levels is
missing, output all the parameters except for the missing 10% levels and
instants (and associated transition duration) and issue a warning.

REQ5 Error: If the input pulse is invalid then no parameters are calculated and
appropriate error messages are printed.

Furthermore, there may be multiple 50 % instants, and IEEE-181 specifies
that the first one must be selected. This is appropriate for the positive transition
but not for the negative transition, in which case the last 50 % seems more
appropriate (if the two transitions were meant to be treated symmetrically).
The 10 % and 90 % will then be defined accordingly.

REQ6 When multiple 50% instants are present in the positive transition (respec-
tively, negative transition), the first (respectively, the last) 50% instant is
selected.

REQ7 Output the 10% and 90% instants closest to the 50% instants

Finally, we document an important system inavariant about transitions:

REQ8 - For positive transition: t10p < t50p < t90p
- For negative transition: t90n < t50n < t10n

Precise Documentation and Validation of Requirements 271

3.3 Type RFUN for Linear Interpolation

As mentioned earlier, the linear interpolation formulas in IEEE-181 are not well-
defined for all inputs. We could add a precondition to the formulas. However,
we can do better. We can improve the standard by making the formulas total.
We provide a re-usable type RFUN (Fig. 5) that can be used to transform the
sampled input swf : SEQ[R] into a total, real-valued function wf : RFUN (see
module waveform in Fig. 6, p. 273) that agrees with swf on its sampled domain,
and interpolates elsewhere.

Fig. 5. Abstract data type for real-valued functions RFUN

In Fig. 5, by writing RFUN � (
⋃

x, y : R |x ∧ y • [x, y] ≡ R), we introduce
a new data type RFUN that is synonymous with the set of total functions,
each of which has the real-valued closed interval [x, y] as its domain, and the set
of real numbers as its range. The new type RFUN supports a query seq2rfun
that converts from a finite sequence of real numbers (e.g. swf : SEQ[R]) to
a continuous function. A real-valued instant in the domain of seq2rfun(swf)
is projected to a value that is calculated using an improved version of linear
interpolation3 that is free from division-by-zero and avoids the need for case
analysis. Given an RFUN (e.g. transformed from a sampled pulse sequence)
as the first argument, queries first and last calculate, respectively, the first
and last instants where a given level y occurs within some given closed interval
[x1, x2]. Symbols ∀ and ∃ are the minimum and maximum operators, respectively,
extended into quantifiers.

3 See the post-condition of query seq2rfun. Given a real t and a natural number n,
≡t + n∃ = ≡t∃ + n. Thus ≡t + 1∃ = ≡t∃ + 1. In the definition of seq2rfun(s)(t) the
coefficients always add up to one, i.e. (≡t+1∃− t)+(t−≡t∃) = 1. This eliminates the
possibility of division by zero and avoids the case analysis in the IEEE-181 standard.
Both swf and seq2rfun(swf) agree on their projected levels from the integer domain
of swf , i.e. swf = N � seq2rfun(swf).

272 C-W. Wang et al.

3.4 The Machine and Its Modules

Similar to Sect. 1.1, Fig. 6 (p. 273) describes a machine system with an event
execute that models the joint action of the plant and the controller. The machine
declares a monitored variable (i.e., swf) and three controlled variables (e.g. vari-
able report : S ≈≡ R containing the pulse and transition parameters, etc.).

The plant periodically generates a new value for the monitored variable swf ,
and the controlled variables, e.g. report, are updated instantaneously according
to the embedded function table (« Table 2 on page 274 ») describing the con-
troller behaviour. We organize queries used in the function table into modules
as follows:

system pulse

pos_trans

neg_trans

waveform signal
RFUN

SEQ[R]

The two rounded boxes denote abstract data types SEQ[G]4 and RFUN . The
square box with a thick border denotes a machine and other square boxes denote
modules. Each arrow corresponds to a use clause in Fig. 6 (p. 273). We distribute
queries that calculate the pulse and transition parameters into modules that
system uses, e.g. duration in the pulse module, t10p in the pos trans module,
etc. In those modules we also declare queries that calculate the intermediate
results, e.g. ymax in the signal module. The result of each query is precisely
defined either by an equality expression (� . . .) or by a post-condition (an
ensure clause). A module or a machine has access to variables and queries of all
modules it directly or indirectly uses. Consequently, machine system has access
to the monitored variable swf declared in module signal, and its embedded
function table (i.e. Table 2) has access to querie t10p in module pos trans.

A query may only be used in a context where its precondition (the require
clause) holds; otherwise, its result is not well-defined. For example, queries ymax
and t50p are only well-defined when, respectively, s3 and t50p? hold. We also use
a require clause at the module level to specify constraint that is to be included
as part of the preconditions of all queries. For example, in the waveform module,
each query should include the constraint s3 ∗ um as part of its precondition.

3.5 Using Module Queries in Function Tables

Function Table 2 specifies the black-box relation between the outputs of the
controller (the report of pulse parameters, error and warning messages) and its
input (the sampled pulse swf). As Table 2 is embedded as part of the action
of event execute in machine system its specification is facilitated by queries
declared in modules that system uses. The table is complete, disjoint, and well-
defined for any arbitrary pulse input.

4 For the complete definition of type SEQ[G] � (
⋃

n : N • 1..n ∧ G) that supports
the standard queries count, has, head, and tail, see our extended report [18].

Precise Documentation and Validation of Requirements 273

Fig. 6. System specification: machine, modules, variables, queries, invariants

274 C-W. Wang et al.

Table 2. Requirements (see Table 4 for conditions and Table 5 for messages)

This table is used in the context of machine system in Fig. 6 on page 273.

conditions on input e msg : 0..3 w msg : 0..2 report : S ∀∧ R

s3 um t50? t10? 0 0 format �− S1 �− S2

¬t10? ¬t10p? 0 1 format �− S2

¬t10n? 0 2 format �− S1

¬t50? 1 0 ∅

¬um 2 0
¬s3 3 0

where S1 = {“t10p∧∧ ∀∧ t10p, “durationp∧∧ ∀∧ durationp}; similarly for S2 on neg. trans.

Table 3. Formatting pulse and transition parameters (“t10p” and “t10n” left out)

p “duration” “y10” “y50” “y90” “t50p” “t90p” “t50n” “t90n”

format(p) duration y10 y50 y90 t50p t90p t50n t90n

Table 4. Conditions

Ab. Meaning

s3 Are there at least 3 samples?
um Is there a unique maximum?
t50? Do both t50 % instants exist?
t10? Do both t10% instants exist?
t10p? Does t10p (positive transition instant for level y10) exist?
t10n? Does t10n (negative transition instant for level y10) exist?

Table 5. Errors/warnings

Error

0 No error
1 No 50% instant
2 No unique maximum level
3 Input lacks 3 finite floats

Warning
0 No warning
1 No t10p instant, durationp
2 No t10n instant, durationn

The first row of Table 2 specifies the report for the ok condition of REQ3
where the input is a valid pulse and all the pulse parameters can be calcu-
lated and reported. There are no errors or warnings to be reported. In this case
report = ((format �− S1) �− S2), where both report and format are partial
functions of type S ≈≡ R and “�−” is the operator of function override. Func-
tion format is defined in Table 3, and its domain equals to names of parameters

Precise Documentation and Validation of Requirements 275

whose values are well-defined where there is no error (i.e. s3∗um∗t50? holds). In
the first row, parameters t10p, durationp, t10n, and durationn are well-defined
and are thus added to the report. The two grey rows deal with the warning case
of REQ4. The remaining rows deal with the error case of REQ5.

The first invariant in module pulse (Fig. 6, p. 273) ensures that the boolean
conditions ok, warning, and error are complete and disjoint. The second invari-
ant ensures that where there are no errors or warnings, all the parameters are
well-defined. The third invariant states the system safety property in REQ8 to
ensure the consistency of duration calculations.

3.6 Traceability

The informal E-descriptions (Sect. 3.1) and R-descriptions (Sect. 3.2) are formal-
ized as module queries and invariants (Fig. 6, p. 273), and entries in the tabular
specification (Sect. 3.5). We discuss a number of examples. For more details, see
our extended report [18].

E-descriptions. For ENV1, in the pulse module, we define a Boolean query
ok whose definition corresponds to what qualify as a valid input pulse. Further-
more, the last two invariants in module pulse specify that if the input pulse
is valid, then all queries that calculate the pulse and transition parameters are
well-defined and the various instants appear in the right orders. For ENV2, in
the waveform module, we define real-valued queries y10, y50, and y90 whose
definitions are accessible by modules pos trans and neg trans.

R-descriptions. For REQ1, we declare queries t50p and t50n in module
waveform and all other parameters as queries in modules pos trans, neg trans,
and pulse. For REQ4, in the waveform module, query t50p (and t50n) is defined
to return the first (and the last) 50 % instant. For REQ5, in the pos trans mod-
ule, query t10p calculates the last, and hence the closest, instant with 10 % level
before the 50 % instant t50p. Similarly, query t90p calculates the 90 % instant
that is closest to t50p by selecting the first one. Symmetric calculations apply to
queries t10n and t90n in the neg trans module.

3.7 Validating Tabular Expressions via Proofs

The process of decomposing queries into modules revealed the need to introduce
REQ8 (on p. 270) asserting that where two 10 % (or 90 %) instants are equally
close to t50, e.g. the first instant occurs before t50 and the second occurs after
t50, the appropriate instant should be chosen on the basis that the 10 %, 50 % and
90 % instants must be in different orders for positive and negative transitions.
The atomic requirement REQ8 is declared as the invariant ok ⊆ (t10p < t50p <
t90p) ∗ (t90n < t50n < t10n) in the pulse module (Fig. 6 on p. 273).

Tabular expressions (e.g. Table 2) and atomic requirements (e.g. REQ8) play
different roles. The tabular expression ensures that the input-output black-box
relation is completely specified. However, it is not obvious from the tabular
expression that REQ8 holds as a global safety property. The modular specifica-
tion in Fig. 6 (p. 273) is used to prove that REQ8 holds as a logical consequence

276 C-W. Wang et al.

of Table 2. This demonstrates the consistency between the modular specification
and the atomic description REQ8, thus an important component of require-
ments validation. This proof follows from the invariants declared in the modules
pos trans and neg trans. For example, in the positive transition module we have
the invariant durationp? ⊆ t10p < t50p < t90p. Part of the proof of the above
invariant declared in the pos trans module is presented in Fig. 7.
Remark. In the small system of Sect. 1.1, the new state depends on previous
states. In the pulse case study, the new state depends upon only new values of
the monitored and controlled variables. The invariant proof obligation thus can
be discharged using axioms defining the queries.

3.8 Using a SMT Solver to Discharge Proof Obligations

SMT solvers such as Z3 [3] allow us to check the satisfiability of first-order
predicates involving real numbers. When proving the predicate P (x) ⊆ Q(x) as
a theorem, we check that there are no witnesses that satisfy the negation of the
predicate, i.e. there are no assignments to x that make P (x) ∗ ¬Q(x) true. Z3
will answer unsat if the negation of the predicate has no witnesses, meaning
that P ⊆ Q is a theorem; sat if a counterexample is found; or unknown if no
conclusions can be reached.

Using the Z3 SMT solver, we mechanized and discharged the invariant proof
in Fig. 7 (p. 276) by checking the validity of each step. We represent steps
in the proof structure like Fig. 7 as S0, S1, . . . , Sn. Each step formula Si is
formed by Fi Ri Fi+1, where i → 0, Fi and Fi+1 are predicates, and Ri is

Fig. 7. Proving a property of module positive that also validates REQ8

Precise Documentation and Validation of Requirements 277

either an implication or an equivalence. We check that all steps are valid and
they hold together to entail H � P . For example, in Fig. 7, S0 is (t10p <

t50p) ≡ (wf.last(1, t50p, y10) < t50p), and the theorem we aim to prove is (t50p?∨
durationp?) � (t10p < t50p). The following proof tree structure is encoded in Z3:

S0 ∨ S1 ∨ · · · ∨ Sn−1 � P

H, S0 ∨ S1 ∨ · · · ∨ Sn−1 � P
mon

H � S0 H � S1 . . . H � Sn−1

H � S0 ∨ S1 ∨ · · · ∨ Sn−1

split

H � P
cut

We use three deduction rules: CUT introduces and proves a new assumption,
MON(otonicity) drops some hypotheses, and SPLIT divides the proof of a con-
junction into the proofs of its constituents. The bottom sequent in the proof tree
is the target theorem. The leaves are sequents stating that the steps establish
the goal, and that the steps with their justifications are valid. We can ensure
that the goal and the steps are well-defined by checking the sufficient condition:
D(P)∗D(F0)∗D(F1)∗· · ·∗D(Fn). See [18] for the Z3 script for proof in Fig. 7.

4 Conclusion and Related Work

In this paper we present a method for specifying an important class of systems.
The overall behaviour of a system is composed of the behaviour of the envi-
ronment (the plant) together with a computer controller. The informal require-
ments are given by E/R-descriptions. The E/R-descriptions are formalized via
an Event-B-like machine that contains: (1) a set of system invariants obtained
from the R-descriptions; and (2) a function table specifying the input-output
behaviour of the controller. The function table uses queries organized in mod-
ules. Embedding function tables in an event system, and using queries organized
in modules, allow our framework to describe the system behaviour in a way
that supports precise documentation and validation of requirements. The formal
requirements are validated by proving that (a) the invariants are preserved; and
(b) the controller specification is complete, disjoint, and well-defined, leveraging
its tabular structure. Once validated, the tabular specification serves as the basis
for further design and implementation of the controller.

Using our method, the formal requirements for the biomedical device in the
case study is less than two pages (Fig. 6 on p. 273 and Table 2 on p. 274).
The IEEE-181 standard can also be improved using our method of precise
documentation.

Our method adopts well-established software engineering principles: the sep-
aration between the controller and its operating environment using context
diagrams [9], the identification of monitored and controlled variables [5,8,16],
and the use of tabular expressions to capture black-box, input-output rela-
tions [11,20]. The theorem prover PVS has been used to provide tool support
for tabular expressions [4,11,22]. In PVS, partial functions are converted into
total functions using predicate subtyping which generates type checking proof
obligations.

278 C-W. Wang et al.

Our calculus of well-definedness (Sect. 2 and [17]) extends Abrial’s work on
model queries [2] to the specification context of tabular expressions. Authors of
[12] also extend [2] to apply to equivalence rewriting. However, while our main
focus is on supporting (formal) human reasoning (possibly validated by auto-
mated tools), authors of [12] target more automated reasoning. More precisely,
authors of [12] create a new syntactic category, a (one-directional) rewrite rule,
in order to allow users to create theories and specify identities in the context
of those theories. This means that identities specified outside of such a theory
(e.g., in a machine invariant or a guard) is not amenable to the same treatment
as those of the rewrite rules. To combine rewrite rules with logical inference
rules, authors of [12] provide a meta-theoretical justification. On the other hand,
by basing our rewrite rules on a logical operator (i.e., the logical equivalence),
rewriting is just one of the available inference rules. While substantial progress
has been made in mechanizing proofs, there are still many challenges [6].

Since our focus is on documentation, rather than on breaking new ground on
the semantics, we have not gone beyond the set of properties that can be proved
in Event-B. For more expressive temporal properties, such as liveness, we may
apply our method within the UNITY framework [15].

Acknowledgments. The authors would like to thank NSERC and ORF for their
generous financial support.

References

1. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press, New York (2010)
2. Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In:

Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002.
LNCS, vol. 2272, pp. 242–269. Springer, Heidelberg (2002)

3. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

4. Eles, C., Lawford, M.: A tabular expression toolbox for matlab/simulink. In:
Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 494–499. Springer, Heidelberg (2011)

5. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A reference model for require-
ments and specifications. IEEE Softw. 17(3), 37–43 (2000)

6. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012)

7. IEEE: IEEE standard for transitions, pulses, and related waveforms. IEEE Std
181-2011 (Revision of IEEE Std 181-2003), pp. 1–71 (2011)

8. Jackson, M.: Software Requirements Specifications: A Lexicon of Practice, Princi-
ples and Prejudices. Addison-Wesley, New York (1995)

9. Jackson, M.: The operational principle and problem frames. Reflections on the
Work of C. A. R. Hoare. Springer, London (2010)

10. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions.
Sci. Comput. Program. 75(11), 980–1000 (2010)

Precise Documentation and Validation of Requirements 279

11. Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the speci-
fication and verification of a nuclear reactor shutdown system. Formal Meth. Syst.
Des. (2000). http://www.cas.mcmaster.ca/˜lawford/papers/FMSD.html

12. Maamria, I., Butler, M.: Rewriting and well-definedness within a proof system.
EPTCS 43, 49–64 (2010)

13. Maibaum, T.S.E., Wassyng, A.: A product-focused approach to software certifica-
tion. IEEE Comput. 41(2), 91–93 (2008)

14. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, New Jersey
(1997)

15. Misra, J.: A Discipline of Multiprogramming: Programming Theory for Distributed
Applications. Springer, New York (2001)

16. Ostroff, J.S., Paige, R.F.: The logic of software design. Proc. IEE - Softw. 147(3),
72–80 (2000)

17. Ostroff, J.S., Wang, C.-W., Hudon, S.: Precise documentation of requirements and
executable specifications. Technical Report CSE-2012-03, York University (2012)

18. Ostroff, J.S., Wang, C.-W., Hudon, S.: Precise documentation and validation of
requirements. Technical Report CSE-2013-08, York University (2013)

19. Parnas, D.L.: Predicate logic for software engineering. IEEE Trans. Softw. Eng.
19(9), 856–862 (1993)

20. Parnas, D.L., Madey, J.: Functional documentation for computer systems. Sci.
Comput. Prog. 25, 41–61 (1995)

21. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In: FME, pp. 133–153 (2003)

22. Wassyng, A., Lawford, M.: Software tools for safety-critical software development.
STTT 8(4–5), 337–354 (2006)

23. Wassyng, A., Lawford, M., Hu, X.: Timing tolerances in safety-critical software.
In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
157–172. Springer, Heidelberg (2005)

http://www.cas.mcmaster.ca/~lawford/papers/FMSD.html

Certainly Unsupervisable States

Simon Ware1, Robi Malik1(B), Sahar Mohajerani2, and Martin Fabian2

1 Department of Computer Science, University of Waikato, Hamilton, New Zealand
{siw4,robi}@waikato.ac.nz

2 Department of Signals and Systems, Chalmers University of Technology,
Gothenburg, Sweden

{mohajera,fabian}@chalmers.se

Abstract. This paper proposes an abstraction method for composi-
tional synthesis. Synthesis is a method to automatically compute a
control program or supervisor that restricts the behaviour of a given sys-
tem to ensure safety and liveness. Compositional synthesis uses repeated
abstraction and simplification to combat the state-space explosion prob-
lem for large systems. The abstraction method proposed in this paper
finds and removes the so-called certainly unsupervisable states. By remov-
ing these states at an early stage, the final state space can be reduced
substantially. The paper describes an algorithm with cubic time complex-
ity to compute the largest possible set of removable states. A practical
example demonstrates the feasibility of the method to solve real-world
problems.

1 Introduction

Reactive systems are used extensively to control safety-critical applications,
where a small error can result in huge financial or human losses. With their
size and complexity continuously increasing, there is an increasing demand for
formal modelling and analysis. Model checking [4] has been used successfully to
automatically detect errors in reactive systems. In some cases, it is possible to
go further and synthesise, i.e., automatically compute a controlling agent that
removes certain kinds of errors from a system.

The controller synthesis problem has been studied by several researchers in
computing and control. The synthesis of a stand-alone controller from a tempo-
ral logic specification is studied in [7,19]. Synthesis has been generalised to the
extraction of an environment to interact with a given software interface [1], and
to the construction controllers interacting with a given environment or plant
[2,5]. Supervisory control theory [21] of discrete event systems provides a frame-
work to synthesise a supervisor that restricts the behaviour of a given plant as
little as possible while ensuring the safety and liveness properties of controlla-
bility and nonblocking.

Straightforward synthesis algorithms explore the complete monolithic state
space of the system, and are therefore limited by the well-known state-space

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 280–296, 2014.
DOI: 10.1007/978-3-319-05416-2 18, c© Springer International Publishing Switzerland 2014

Certainly Unsupervisable States 281

explosion problem. The sheer size of the supervisor also makes it humanly incom-
prehensible, which hinders acceptance of the synthesis approach in industrial
settings. These problems are addressed by compositional methods [3,8]. If a
temporal logic specification is the conjunction of several requirements, it is pos-
sible to synthesise separate controller components for each requirement [5,7].
Compositional approaches in supervisory control [9,16] exploit the structure of
the model of the plant to be controlled, which typically consists of several inter-
acting components. These approaches avoid constructing the full state space by
first simplifying individual components, then applying synchronous composition
step by step, and simplifying the intermediate results again.

This kind of compositional synthesis requires specific abstraction methods to
guarantee a least restrictive, controllable, and nonblocking final synthesis result.
Supervision equivalence [9] and synthesis abstraction [16] have been proposed for
this purpose, and several abstraction methods to simplify automata preserving
these properties are known.

This paper proposes another abstraction method that can be used in com-
positional synthesis frameworks such as [9,16]. The proposed method finds all
the states that will certainly be removed by any supervisor. Removing these so-
called certainly unsupervisable states at an early stage reduces the state space
substantially. Previously, halfway synthesis [9] was used for this purpose, which
approximates the removable states. The set of certainly unsupervisable states is
the largest possible set of removable states, and it can be computed in the same
cubic complexity as halfway synthesis.

This paper is organised as follows. Section 2 introduces the terminology of
supervisory control theory [21] and the framework of compositional synthesis
[9,16]. Next, Sect. 3 explains the ideas of compositional synthesis with certainly
unsupervisable states using the example of a manufacturing system. Section 4
presents the results of this paper: it defines the set of certainly unsupervisable
states, gives an algorithm to compute it, performs complexity analysis, and com-
pares certainly unsupervisable states to halfway synthesis. Finally, Sect. 5 adds
some concluding remarks.

2 Preliminaries

2.1 Events and Languages

Discrete event systems [21] are modelled using events and languages. Events
represent incidents that cause transitions from one state to another and are taken
from a finite alphabet Σ. For the purpose of supervisory control, the alphabet
is partitioned into two disjoint subsets, the set Σc of controllable events and
the set Σu of uncontrollable events. Controllable events can be disabled by a
supervising agent, while uncontrollable events occur spontaneously. In addition,
the silent controllable event τc → Σc and the silent uncontrollable event τu → Σu

denote transitions that are not taken by any component other than the one
being considered. The set of all finite traces of events from Σ, including the

282 S. Ware et al.

Fig. 1. Simple manufacturing system. Events fetch1 and get1 are controllable, while
!put1 is uncontrollable.

empty trace ε, is denoted by Σ→. A subset L ⊆ Σ→ is called a language. The
concatenation of two traces s, t → Σ→ is written as st.

2.2 Nondeterministic Automata

System behaviours are typically modelled by deterministic automata, but non-
deterministic automata may arise as intermediate results during abstraction.

Definition 1. A (nondeterministic) finite automaton is a tuple G = ⇒Σ, Q,
−∗, Q∗, Qω⊆, where Σ is a finite set of events, Q is a finite set of states, ∗ ⊆
Q× (Σ∧{τu, τc})×Q is the state transition relation, Q∗ ⊆ Q is the set of initial
states, and Qω ⊆ Q is the set of accepting states.

The transition relation is written in infix notation x
σ−∗ y, and is extended

to traces and languages in the standard way. For example, x
τ∗
u σ−−∗ y means that

there exists a possibly empty sequence of τu-transitions followed by a σ-transition
that leads from state x to y. Furthermore, x

s−∗ means x
s−∗ y for some y → Q,

and x −∗ y means x
s−∗ y for some s → Σ→. These notations also apply to state

sets and to automata: X
s−∗ Y for X,Y ⊆ Q means x

s−∗ y for some x → X and
y → Y , and G

s−∗ x means Q∗ s−∗ x.

Example 1. Figure 1 shows an automata model of a simple manufacturing sys-
tem consisting of a handler H1 and a buffer B1. The handler fetches a work-
piece (fetch1) and then puts it into the buffer (!put1). The event !put1 also
increases the number of workpieces in the buffer by 1. Afterwards the buffer can
release the workpiece (get1), reducing the number of workpieces in the buffer
by 1. The buffer can store only two workpieces, adding more workpieces causes
overflow as represented by the state ∨.

Definition 2. Let G1 = ⇒Σ1, Q1,−∗1, Q
∗
1, Q

ω
1 ⊆ and G2 = ⇒Σ2, Q2,−∗2, Q

∗
2, Q

ω
2 ⊆

be two automata. The synchronous composition of G1 and G2 is

G1 ∪ G2 = ⇒Σ1 ∧ Σ2, Q1 × Q2,∗, Q∗
1 × Q∗

2, Q
ω
1 × Qω

2 ⊆ (1)

Certainly Unsupervisable States 283

where

(x1, x2)
σ−∗ (y1, y2), if σ → (Σ1 ≡ Σ2) \ {τu, τc}, x1

σ−∗1 y1, and x2
σ−∗2 y2 ;

(2)

(x1, x2)
σ−∗ (y1, x2), if σ → (Σ1 \ Σ2) ∧ {τu, τc} and x1

σ−∗1 y1 ; (3)

(x1, x2)
σ−∗ (x1, y2), if σ → (Σ2 \ Σ1) ∧ {τu, τc} and x2

σ−∗2 y2 . (4)

Automata are synchronised in lock-step synchronisation [11]. Shared events
must be executed by all automata together, while events used by only one
automaton (and the silent events τu and τc) are executed by only that automaton.
Figure 1 shows the synchronous composition H1 ∪B1 of the automata mentioned
in Example 1.

Another common operation in compositional synthesis is hiding, which
removes the identity of certain events and in general produces a nondeterministic
automaton.

Definition 3. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton and Υ ⊆ Σ. The
result of controllability preserving hiding of Υ from G is G \! Υ = ⇒Σ \ Υ, Q,∗!,

Q∗, Qω⊆, where ∗! is obtained from −∗ by replacing each transition x
σ−∗ y

such that σ → Υ by x
τc−∗ y if σ → Σc or by x

τu−∗ y if σ → Σu.

2.3 Supervisory Control Theory

Supervisory control theory [21] provides a means to automatically compute a
so-called supervisor that controls a given system to perform some desired func-
tionality. Given an automata model of the possible behaviour of a physical sys-
tem, called the plant, a supervisor is sought to restrict the behaviour in such a
way that only a certain subset of the state space is reachable. The supervisor is
implemented as a control function [21]

Φ: Q ∗ 2Σ×Q (5)

that assigns to each state x → Q the set Φ(x) of transitions to be enabled in this
state. That is, a transition x

σ−∗ y with σ → Σc will only be possible under the
control of supervisor Φ if (σ, y) → Φ(x). Uncontrollable events cannot be disabled,
so it is required that Σu × Q ⊆ Φ(x) for all x → Q. Controllable transitions
can be disabled individually, i.e., if a nondeterministic system contains multiple
outgoing controllable transitions from a state x, then the supervisor may disable
some of them while leaving others enabled [9]. If the plant is modelled by a
nondeterministic automaton, then such a supervisor can be represented as a
subautomaton.

Definition 4. [9] Let G = ⇒Σ, QG,−∗G, Q∗
G, Qω

G⊆ and K = ⇒Σ, QK ,−∗K , Q∗
K ,

Qω
K⊆ be two automata. K is a subautomaton of G, written K ⊆ G, if QK ⊆ QG,

∗K ⊆ ∗G, Q∗
K ⊆ Q∗

G, and Qω
K ⊆ Qω

G.

284 S. Ware et al.

A subautomaton K of G contains a subset of the states and transitions of G.
It represents a supervisor that enables only those transitions present in K, i.e.,
it implements the control function

ΦK(x) = (Σu × Q) ∧ { (σ, y) → Σc × Q | x
σ−∗K y } . (6)

As uncontrollable events cannot be disabled, the control function includes all
possible uncontrollable transitions. Not every subautomaton of G can be imple-
mented through control—the property of controllability [21] characterises those
behaviours than can be implemented.

Definition 5. [9] Let G = ⇒Σ, QG,−∗G, Q∗
G, Qω

G⊆ and K = ⇒Σ, QK ,−∗K , Q∗
K ,

Qω
K⊆ such that K ⊆ G. Then K is called controllable in G if, for all states

x → QK and y → QG and for every uncontrollable event υ → Σu such that
x

υ−∗G y, it also holds that x
υ−∗K y.

If a subautomaton K is controllable in G, then every uncontrollable transition
possible in G is also contained in K. In Fig. 1, automaton S is controllable
in H1 ∪ B1. However, if state 5 was to be included in S, then because of the

uncontrollable transition 5
!put1−−−∗ 6, state 6 would also have to be included for S

to be controllable. Controllability ensures that the control function (6) can be
implemented without disabling any uncontrollable events.

In addition to controllability, the supervised behaviour is typically required
to be nonblocking.

Definition 6. [15] Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. G is called
nonblocking if for every state x → Q such that Q∗ −∗ x it holds that x −∗ Qω.

In a nonblocking automaton, termination is possible from every reachable
state. The nonblocking property, also referred to as weak termination [17], ensures
the absence of livelocks and deadlocks. Combined with controllability, the require-
ment to be nonblocking can express arbitrary safety properties [9]. For example,
the buffer model B1 in Fig. 1 contains the !put1-transition to the blocking state ∨
to specify a supervised behaviour that does not allow a third workpiece to be
placed into the buffer when it already contains two workpieces, i.e., it requests
a supervisor that prevents buffer overflow.

Given a plant automaton G, the objective of supervisor synthesis [21] is to
compute a subautomaton K ⊆ G, which is controllable and nonblocking and
restricts the behaviour of G as little as possible. The set of subautomata of G
forms a lattice [6], and the upper bound of a set of controllable and nonblocking
subautomata in this lattice is again controllable and nonblocking.

Theorem 1. [9] Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. There exists a
unique subautomaton supC (G) ⊆ G such that supC (G) is nonblocking and
controllable in G, and such that for every subautomaton S ⊆ G that is also
nonblocking and controllable in G, it holds that S ⊆ supC (G).

Certainly Unsupervisable States 285

The subautomaton supC (G) is the unique least restrictive sub-behaviour
of G that can be achieved by any possible supervisor. It can be computed using
a fixpoint iteration [9], by iteratively removing blocking states and states leading
to blocking states via uncontrollable events, until a fixpoint is reached.

Definition 7. [9] Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. The restriction
of G to X ⊆ Q is G|X = ⇒Σ,X,∗|X , Q∗ ≡X,Qω ≡X⊆, where ∗|X = { (x, σ, y) →
∗| x, y → X }.

Definition 8. [9] Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. The synthesis
step operator ΘG : 2Q ∗ 2Q for G is defined as ΘG(X) = Θcont

G (X) ≡ Θcont
G (X),

where

Θcont
G (X) = { x ⇒ X | for all transitions x

υ−∈ y with υ ⇒ Σu it holds that y ⇒ X } ;
(7)

Θnonb
G (X) = { x ⇒ X | x ∈|X Qω } . (8)

Given a state set X ⊆ Q, the operator Θcont
G removes from X any states

that have an uncontrollable successor not contained in X, and Θnonb
G removes

any states from where it is not possible to reach an accepting state via transi-
tions contained in X. Thus, Θcont

G captures controllability and Θnonb
G captures

nonblocking. Both operators and their combination ΘG are monotonic, and it
follows by the Knaster-Tarski theorem [20] that they have greatest fixpoints.
The least restrictive synthesis result supC (G) is obtained by restricting G to
the greatest fixpoint of ΘG.

Theorem 2. [9] Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆. The synthesis step operator ΘG

has a greatest fixpoint gfpΘG = Θ̂G ⊆ Q, such that G|Θ̂G
is the greatest subau-

tomaton of G that is both controllable in G and nonblocking, i.e.,

supC (G) = G|Θ̂G
. (9)

Example 2. The automaton H1 ∪ B1 in Fig. 1 is blocking, because the trace
fetch1!put1fetch1!put1fetch1!put1 leads to state 6, from where no accepting state is
reachable. To prevent this blocking situation, event !put1 needs to be disabled in
state 5. However, !put1 is an uncontrollable event that cannot be disabled by the
supervisor, so the best feasible solution is to disable the controllable event fetch1

in state 3. Figure 1 shows the least restrictive supervisor S = supC (H1 ∪ B1).

In the finite-state case, the state set of the least restrictive supervisor can
be calculated as the limit of the sequence X0 = Q, Xi+1 = ΘG(Xi). This iter-
ation converges in at most |Q| iterations, and the worst-case time complexity
is O(|Q||∗|) = O(|Σ||Q|3), where |Σ|, |Q|, and |∗| are the numbers of events,
states, and transitions of the plant automaton G. However, often the behav-
iour of the system is specified by a large number of synchronised automata,
and when measured by the number of components, the synthesis problem is
NP-complete [10].

286 S. Ware et al.

2.4 Compositional Synthesis

Many discrete event systems are modular in that they consist of a large number
of interacting components. This modularity allows to simplify individual com-
ponents before composing them, in many cases avoiding state-space explosion.
This idea has been used successfully for verification [8] and synthesis [9,16] of
large discrete event systems.

Given a system of concurrent plant automata

G = G1 ∪ G2 ∪ · · · ∪ Gn , (10)

the objective of synthesis is to find a least restrictive supervisor, which ensures
nonblocking without disabling uncontrollable events. The standard solution [21]
to this problem is to calculate a finite-state representation of the synchronous
composition (10) and use a synthesis iteration to calculate supC (G) = supC (G1∪
· · · ∪ Gn).

A compositional algorithm tries to find the same result without explicitly
calculating the synchronous composition (10). It seeks to abstract individual
automata Gi by removing some states or transitions, and replace them by
abstracted versions G̃i. If no more abstraction is possible, synchronous com-
position is computed step by step, abstracting the intermediate results again.

The individual automata Gi typically contain some events that do not appear
in any other automata Gj . These events are called local events, denoted by the
set Υ in the following. After hiding the local events, the automaton Gi is replaced
by Gi \! Υ, which increases the possibility of further abstraction.

Eventually, the procedure leads to a single automaton G̃, the abstract descrip-
tion of the system G . After abstraction, the automaton of G̃ has less states and
transitions compared to (10). Once G̃ is found, the final step is to use it instead
of the original system, to obtain a synthesis result supC (G̃) = supC (G).

The abstraction steps to simplify the individual automata Gi must satisfy
certain conditions to guarantee that the synthesis result obtained from the final
abstraction is a correct supervisor for the original system.

Definition 9. Let G and H be two automata with alphabet Σ. Then G is
synthesis equivalent to H, written G ∀synth H if, for every automaton T , it
holds that supC (G ∪ T) = supC (H ∪ T).

Definition 9 is a special case of synthesis abstraction [16]. Synthesis equiva-
lence requires that the abstracted automaton H yields the same supervisor as
the original automaton G, no matter what the remainder of the system T is.

3 Manufacturing System Example

This section demonstrates compositional synthesis using a modified version of
a manufacturing system previously studied in [13]. The manufacturing system
consists of two machines (M1 and M2) and four pairs of handlers (Hi) and

Certainly Unsupervisable States 287

Fig. 2. Manufacturing system overview.

Fig. 3. Automata for manufacturing system model. Uncontrollable events are prefixed
by !.

Fig. 4. Automata encountered during compositional synthesis of manufacturing system
example.

buffers (Bi) for transferring workpieces between the machines. Figure 2 gives an
overview of the system.

The manufacturing system can produce two types of workpieces. Type I
workpieces are first processed by machine M1 (input1). Then they are fetched by
handler H1 (fetch1) and placed into buffer B1 (!put1). Next, they are processed
by M2 (get1), fetched by H4 (fetch4) and placed into B4 (!put4). Finally, they are
processed by M1 once more (get4), and released (!output1). Using a switch W1,
users can request to suspend (!sus) or resume (!res) production of M1, provided
that the switch has been unlocked (unlock) by the system. Type II workpieces

288 S. Ware et al.

are first processed by M2, passed through H3 and B3, further processed by M1,
passed through H2 and B2, processed a second time by M2, and released. The
handlers and buffers are modelled as in Fig. 1, and Fig. 3 shows the rest of the
automata model of the system. Automata W1 and Produce use the blocking
states ∨ to model requirements for the synthesised supervisor to prevent output
from M1 in suspend mode and to produce exactly two Type I workpieces.

In the following, compositional synthesis is used to synthesise a supervisor
subject to these requirements. Initially, the system is

G = M1 ∪ M2 ∪ W1 ∪ Lock ∪ Produce ∪ H1 ∪ B1 ∪ · · · ∪ H4 ∪ B4 . (11)

In the first step, H1 and B1 are composed, so that event !put1 becomes an
uncontrollable local event and can be hidden. Thus, H1 and B1 are replaced
by HB1 = (H1 ∪ B1) \! {!put1} shown in Fig. 4, where for graphical simplicity
the two blocking states from Fig. 1 are replaced by the state ∨. Clearly, such
blocking states must be avoided, and since the silent uncontrollable transition
5 τu−∗ ∨ cannot be disabled by the supervisor or by any plant, state 5 must also be
avoided. States 5 and ∨ are certainly unsupervisable states and are crossed out in
Fig. 4. Automaton HB1 is replaced by the synthesis equivalent abstraction ˜HB1

with 5 states, which is obtained by deleting states 5 and ∨. The same abstraction
is applied to the other buffers and handlers.

After composition of W1, Produce, and Lock, events !sus, !res, !lock, and
unlock are local and can be hidden. Figure 4 shows the result W = (W1 ∪
Produce∪Lock)\!{!sus, !res, !lock, unlock}. Clearly, states ∨1 and ∨2 are blocking
states. Moreover, the only way to reach an accepting state from state 1 is via the

transition 1
!output1−−−−−∗ 5. However, 1 τu−∗ 2

!output1−−−−−∗ ∨1, and since neither the super-
visor nor any other plant can disable τu, a supervisor that enables event !output1
in state 1, inevitably permits the blocking state ∨1. State 1 is a certainly unsu-
pervisable state, and similar arguments hold for states 2, 3, 5, 6, and 7. Deleting
these states from W results in the synthesis equivalent automaton W̃ . Next,
M1 and W̃ are composed, which results in !output1 becoming a local event. The
composed automaton, MW, has 28 states. Applying certain unsupervisability
results in ˜MW with 20 states. Replacing W1, Produce, and Lock by ˜MW gives
the final abstracted system G̃ = ˜MW ∪ M2 ∪ ˜HB1 ∪ ˜HB2 ∪ ˜HB3 ∪ ˜HB4.

Finally, the components of G̃ are composed to calculate a supervisor. This
requires the exploration of the synchronous composition G̃ with 48400 states, in
contrast to the state space of the original system G with 1.3 × 106 states. The
final supervisors calculated from G and G̃ are identical and have 4374 states.

4 Certain Unsupervisability

4.1 Certainly Unsupervisable States and Transitions

The above example shows that some states of an automaton G must be avoided
by synthesis in every possible context. That is, no matter what other automata
are later composed with G, it is clear that these states are unsafe. Blocking
states are examples of such states, but there are more states with this property.

Certainly Unsupervisable States 289

Definition 10. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. The certainly
unsupervisable state set of G is

Û(G) = {x → Q | for every automaton T = ⇒Σ, QT ,−∗T , Q∗
T , Qω

T ⊆ and every
state xT → QT it holds that (x, xT) /→ Θ̂G≤T }.

(12)

A state x of G is certainly unsupervisable, if there exists no other automa-
ton T such that the state x is present in the least restrictive synthesis result Θ̂G≤T .
If a state is certainly unsupervisable, it is known that this state will be removed
by every synthesis. If such states are encountered in an automaton during compo-
sitional synthesis, they can be removed before composing this automaton further.

Example 3. Consider again automaton HB1 in Fig. 4. Clearly, the blocking
state ∨ is certainly unsupervisable. In addition, state 5 is also certainly unsuper-
visable, because of the local uncontrollable transition 5 τu−∗ ∨. As this transition
is silent, no other component disables it, and as it is uncontrollable, the super-
visor cannot disable it. Therefore, if the automaton ever enters state 5, blocking
is unavoidable. It holds that Û(HB1) = {5,∨}.

In addition to states, it is worth considering transitions as certainly unsu-
pervisable. If an uncontrollable event υ can take a state x to a certainly unsu-
pervisable state, then all υ-transitions from x are certainly unsupervisable. Such
transitions can be removed because it is clear that no supervisor will allow state x
to be entered while υ is possible in the plant.

Definition 11. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. A transition

x
υ−∗ y with υ → Σu is a certainly unsupervisable transition if x

τ∗
u υ−−∗ Û(G).

Example 4. Consider automaton W in Fig. 4. States ∨1, ∨2, and ∨3 are block-

ing and therefore certainly unsupervisable. The transition 5
!output1−−−−−∗ 9 is certainly

unsupervisable, because !output1 is uncontrollable and 5 τu−∗ 6
!output1−−−−−∗ ∨2 →

Û(W). The uncontrollable event !output1 cannot be allowed in state 5, because
if it was possible, blocking in state ∨2 would be unavoidable.

Further, as every path from state 5 to an accepting state must take the cer-
tainly unsupervisable transition, it follows that state 5 is certainly unsupervis-
able. By similar arguments, it is established that Û(W) = {1, 2, 3, 5, 6, 7,∨1,∨2,
∨3}.

If the certainly unsupervisable states and transitions are known, they can be
used to simplify an automaton to form a synthesis equivalent abstraction.

Definition 12. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. The result of
unsupervisability removal from G is the automaton

unsupC (G) = ⇒Σ, Q,∗unsup, Q∗ \ Û(G), Qω \ Û(G)⊆ , (13)

290 S. Ware et al.

where

∗unsup = { (x, σ, y) →∗| σ → Σc and x, y /→ Û(G) } ∧ (14)

{ (x, υ, y) →∗| υ → Σu, x /→ Û(G), and y → Û(G) } ∧ (15)

{ (x, υ, y) →∗| υ → Σu, x /→ Û(G), and x
τ∗
u υ−−∗ Û(G) does not hold }.

(16)

The automaton resulting from unsupervisability removal has the same state
set as the original automaton G, only the initial and accepting state sets are
reduced by removing certainly unsupervisable states. All controllable transi-
tions to certainly unsupervisable states are removed (14), as these transitions
can always be disabled by the supervisor and therefore never appear in the final
synthesis result. Uncontrollable transitions to certainly unsupervisable states,
however, are retained (15), because they are needed to inform future synthesis
steps. If another component disables these events, they may disappear in syn-
chronous composition with that component, otherwise the source state may have
to be removed in synthesis. Uncontrollable transitions to other states are deleted
if they are certainly unsupervisable (16).

Example 5. When applied to automaton W in Fig. 4, unsupervisability removal
deletes all transitions linked to the crossed out states. While state ∨3 is certainly
unsupervisable, the shared uncontrollable !output1-transitions to this state are
retained. They are needed in the following steps of compositional synthesis. If
some other component disables !output1 while in state 10 or 11, then these states
may be retained, otherwise they will be removed at a later stage.

The following theorem confirms that unsupervisability removal results in
a synthesis equivalent automaton. Therefore, the abstraction can be used to
replace an automaton during compositional synthesis without affecting the final
synthesis result.

Theorem 3. Let G be an automaton. Then G ∀synth unsupC (G).

Unsupervisability removal by definition only removes transitions and no
states. Yet, states may become unreachable as a result of transition removal,
and unreachable states can always be removed. Furthermore, it is possible to
combine all remaining unsupervisable states, which have no outgoing transitions,
into a single state [16].

4.2 Iterative Characterisation

The following definition provides an alternative characterisation of the certainly
unsupervisable states through an iteration. It forms the basis for an algorithm
to compute the set of certainly unsupervisable states.

Certainly Unsupervisable States 291

Definition 13. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. Define the set U(G)
inductively as follows.

U0(G) = → ; (17)

Uk+1(G) ={ x ⇒ Q | for all paths x = x0
σ1−∈ · · · σn−−∈ xn ⇒ Qω

there exists i = 0, . . . , n such that xi
τ∗
u−∈ Uk(G) or i > 0

and σi ⇒ Σuand xi−1
τ∗
uσiτ∗

u−−−−−∈ Uk(G)}; (18)

U(G) =
⋃
k≥0

Uk(G) . (19)

The set Uk(G) contains unsupervisable states of level k. There are no unsu-
pervisable states of level 0, and the unsupervisable states of level 1 are the
blocking states, i.e., those states from where it is not possible to ever reach an
accepting state. Unsupervisable states at a higher level are states from where
every path to an accepting state is known to pass through an unsupervisable
state or an unsupervisable transition of a lower level.

Example 6. Consider automaton W in Fig. 4. It holds that U0(W) = ∃, and
U1(W) = {∨1,∨2,∨3} contains the three blocking states. Next, it can be seen
that 1 → U2(W), because every path from 1 to an accepting state includes

the transition 1
!output1−−−−−∗ 5 with !output1 → Σu and 1 τu−∗ 2

!output1−−−−−∗ ∨1 →
U1(W). Likewise, it holds that 2, 3, 5, 6, 7 → U2(W). No further states are
contained in U2(W) or in Uk(W) for k > 2, so that U(W) = U2(W) =
{1, 2, 3, 5, 6, 7,∨1,∨2,∨3} = Û(W).

The following Theorem 4 confirms that the iteration Uk(G) reaches the set
of certainly unsupervisable states.

Theorem 4. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. Then U(G) = Û(G).

To determine whether some state x is contained in the set Uk+1(G) of unsu-
pervisable states of a new level, the definition (18) considers all paths from state x
to an accepting state. Such a condition is difficult to implement directly. It is
more feasible to search backwards from the accepting states using the following
secondary iteration.

Definition 14. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. Define the sets of
supervisable states Sk(G) for k ≈ 1 inductively as follows.

Sk+1
0 (G) = {x → Qω | x

τ∗
u−∗ Uk(G) does not hold }; (20)

Sk+1
j+1 (G) = {x → Q | x

σ−∗ Sk+1
j (G), and x

τ∗
u−∗ Uk(G) does not hold,

and if σ → Σu then x
τ∗
u στ∗

u−−−−∗ Uk(G) does not hold }; (21)

Sk+1(G) =
⋃

j∈0

Sk+1
j (G) . (22)

292 S. Ware et al.

Given the set Uk(G) of unsupervisable states at level k, the iteration Sk+1
j (G)

computes a set of supervisable states, i.e., states from where a supervisor can
reach an accepting state while avoiding the unsupervisable states in Uk(G). The
process starts as a backwards search from those accepting states from where it is
not possible to reach a known unsupervisable state using only τu-transitions (20).
Then transitions leading to the states already found are explored backwards (21).
However, source states x that can reach a known unsupervisable state using only

τu-transitions (x
τ∗
u−∗ Uk(G)), and known unsupervisable transitions (x

τ∗
u στ∗

u−−−−∗
Uk(G)) are excluded.

Example 7. As shown in Example 6, the first iteration for unsupervisable states
of automaton W in Fig. 4 gives the blocking states, U1(W) = {∨1,∨2,∨3}. Then
the first set of supervisable states for the next level contains the two accepting

states, S2
0(W) = {8, 9} according to (20). Then 4

!output1−−−−−∗ 8 → S2
0(W) and

8 τu−∗ 9 → S2
0(W) and 10 τu−∗ 9 → S2

0(W), and it does not hold that 4
τ∗
u−∗ U1(W)

or 4
τ∗
u !output1τ∗

u−−−−−−−−∗ U1(W) or 8
τ∗
u−∗ U1(W) or 10

τ∗
u−∗ U1(W). Therefore, S2

1(W) =
{4, 8, 10} according to (21). Note that 5 /→ S2

1(W) because despite the transition

5
!output1−−−−−∗ 9 it holds that 5 τu−∗ 6

!output1−−−−−∗ ∨2 → U1(W). The next iteration gives
S2

2(W) = {0, 4, 9, 11}, and following iterations do not add any further states.
The result is S2(W) = {0, 4, 8, 9, 10, 11} = Q \ U2(W).

The following theorem confirms that the iteration Sk+1
j (G) converges against

the complement of the next level of unsupervisable states, Uk+1(G).

Theorem 5. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆ be an automaton. For all k ≈ 1 it holds
that Sk(G) = Q \ Uk(G).

4.3 Algorithm

Algorithm 1 is an implementation of the iterations in Definitions 13 and 14 to
compute the set of certainly unsupervisable states for a given automaton G.
First, the sets of certainly unsupervisable states U and certainly unsupervisable
transitions UT are initialised in lines 2 and 3. Then the loop in lines 4–28
performs the iterations for Uk(G).

The first step is to compute the supervisable states Sk+1(G), which are stored
in S. In line 5, this variable is initialised to the set Sk+1

0 (G) containing the
accepting states that are not yet known to be unsupervisable. Then the loop
in lines 7–15 uses a stack to perform a backwards search over the transition
relation, avoiding known unsupervisable source states and known unsupervis-
able transitions. Upon termination, the variable S contains the set Sk+1(G) of
supervisable state for the next level.

Then the loop in lines 17–27 updates the sets U and UT . For every state that
was not added to S, it explores the predecessor states reachable by sequences of
τu-transitions, and adds any states found to U, if not yet included. By adding the
τu-predecessors to the set U immediately, the reachability tests in (20) and (21)

Certainly Unsupervisable States 293

Algorithm 1. Calculate U(G)
1: input G = ∨Σ, Q,−∈, Q◦, Qω〉
2: U ≡ →
3: UT ≡ →
4: repeat
5: S ≡ { x ⇒ Qω | x /⇒ U }
6: stack .init(S)
7: while stack not empty do
8: x ≡ stack .pop()
9: for all w

σ−∈ x do
10: if w /⇒ S and w /⇒ U and (w, σ) /⇒ UT then
11: S ≡ S ∃ {w}
12: stack .push(w)
13: end if
14: end for
15: end while
16: done ≡ true

17: for all x
τ∗
u−∈ Q \ S do

18: if x /⇒ U then
19: U ≡ U ∃ {x}
20: done ≡ false
21: for all υ ⇒ Σu \ {τu} do

22: for all w
τ∗
uυ−−∈ x do

23: UT ≡ UT ∃ {(w, υ)}
24: end for
25: end for
26: end if
27: end for
28: until done
29: return U

can be replaced by the direct membership tests in line 10. Next, for any new
unsupervisable state x, the loop in lines 21–25, searches for possible uncon-
trollable transitions followed by sequences of τu and adds such combinations
of source states and uncontrollable events to the set certainly unsupervisable
transitions UT .

The algorithm terminates if no new unsupervisable states are found during
execution of the loop in lines 17–27, in which case the flag done retains its true
value. At this point, the set U contains all certainly unsupervisable states.

4.4 Complexity

This section gives an estimate for the time complexity of Algorithm 1. Each
iteration of the main loop in lines 4–28, except the last, adds at least one state
to U, which gives at most |Q| + 1 iterations. During each of these iterations, the
loop in lines 7–15 visits each transition at most once, giving up to |∗| iterations,

294 S. Ware et al.

and the loop in lines 17–27 visits up to |Q| predecessors of each state, which gives
another |Q|2 iterations. Assuming that the transitive closure of τu-transitions is
calculated in advance, these iterations can be executed without overhead. The
inner loop in lines 21–25 has another |Q|2 iterations, again assuming that the
closure of τu-transitions is calculated in advance. However, the inner loop is not
executed more than once per state during the entire algorithm. The complexity
to compute the τu-closure in advance is O(|Q|3) [18].

Summing up these computation costs, the worst-case time complexity of
Algorithm 1 is found to be:

O((|Q| + 1) · (|∗| + |Q|2) + |Q| · |Q|2 + |Q|3) = O(|Σ||Q|3) . (23)

Thus, the set of certainly unsupervisable states can be computed in polynomial
time. This is surprising given the nondeterministic nature of similar problems,
which require subset construction [12]. For example, the set of certain con-
flicts [14], which is the equivalent of the set of certainly unsupervisable states in
nonblocking verification, can only be computed in exponential time. In synthe-
sis, the assumption of a supervisor with the capability of full observation of the
plant makes it possible to distinguish states and avoid subset construction.

4.5 Halfway Synthesis

This section introduces halfway synthesis [9], which has been used previously
[9,16] to remove unsupervisable states in compositional synthesis, and compares
it with the set of certainly unsupervisable states. It is shown that in general
more states can be removed by taking certain unsupervisability into account.

Definition 15. Let G = ⇒Σ, Q,−∗, Q∗, Qω⊆, and let Θ̂G,τu be the greatest fix-
point of the synthesis step operator according to Definition 8, but computed
under the assumption that Σu = {τu}. The halfway synthesis result for G is

hsupC (G) = ⇒Σ, Q,∗hsup , Q∗ ≡ Θ̂G,τu , Q
ω ≡ Θ̂G,τu⊆ , (24)

where

∗hsup = { (x, σ, y) →∗| x, y → Θ̂G,τu } ∧ (25)

{ (x, υ, y) →∗| x → Θ̂G,τu , υ → Σu \ {τu}, and y /→ Θ̂G,τu } (26)

The idea of halfway synthesis is to use standard synthesis, but treating
only the silent uncontrollable event τu as uncontrollable. All other events are
assumed to be controllable, because other plant components may yet disable
shared uncontrollable events, so it is not guaranteed that these events cause
controllability problems [9]. After computing the synthesis fixpoint Θ̂G,τu , the
abstraction is obtained by removing controllable transitions to states not con-
tained in Θ̂G,τu , while uncontrollable transitions are retained for the same reasons
as in Definition 12.

Certainly Unsupervisable States 295

Theorem 6. Let G be an automaton. Then unsupC (G) ⊆ hsupC (G).

Example 8. When applied to automaton HB1 in Fig. 4, halfway synthesis
removes the crossed out states and produces the same result as unsupervis-
ability removal. However, it only considers states ∨1, ∨2, and ∨3 of W in Fig. 4
as unsupervisable, because the shared uncontrollable event !output1 is treated
as a controllable event. This automaton is left unchanged by halfway synthesis.

Halfway synthesis only removes those unsupervisable states that can reach a
blocking state via local uncontrollable τu-transitions, but it does not take into
account certainly unsupervisable transitions. Theorem6 confirms that unsuper-
visability removal achieves all the simplification achieved by halfway synthesis,
and Example 8 shows that there are cases where unsupervisability removal can
do more. On the other hand, the complexity of halfway synthesis is the same as
for standard synthesis, O(|Σ||Q|3), which is the same as found above for certain
unsupervisability (23).

5 Conclusions

The set of certainly unsupervisable states of an automaton comprises all the
states that must be avoided during synthesis of a controllable and nonblocking
supervisor, in every possible context. In compositional synthesis, the removal
of certainly unsupervisable states gives rise to a better abstraction than the
previously used halfway synthesis, while maintaining the same cubic complexity.

The results of this paper are not intended to be used in isolation. In future
work, the authors will integrate the removal of certainly unsupervisable states
with their compositional synthesis framework [16]. It will be investigated in
what order to apply unsupervisability removal and other abstraction methods,
and how to group automata together for best performance.

Certainly unsupervisable states are also of crucial importance to determine
whether two states of an automaton can be treated as equivalent for synthe-
sis purposes. The results of this paper can be extended to develop abstraction
methods that identify and merge equivalent states in compositional synthesis.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 9th ACM
SIGSOFT International Symposium on Foundations of Software Engineering 2001,
pp. 109–120, Vienna, Austria (2001)

2. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and
timed systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS
1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

3. Aziz, A., Singhal, V., Swamy, G.M., Brayton, R.K.: Minimizing interacting finite
state machines: a compositional approach to language containment. In: Proceedings
of the IEEE International Conference on Computer Design: VLSI in Computers
and Processors, ICCD ’94, pp. 255–261 (1994)

296 S. Ware et al.

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Baier, C., Klein, J., Klüppelholz, S.: A compositional framework for controller
synthesis. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
512–527. Springer, Heidelberg (2011)

6. Fabian, M.: On object oriented nondeterministic supervisory control. Ph.D. thesis,
Chalmers University of Technology, Göteborg, Sweden. https://publications.lib.
chalmers.se/cpl/record/index.xsql?pubid=1126 (1995)

7. Filiot, E., Jin, N., Raskin, J.-F.: Compositional algorithms for LTL synthesis. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127.
Springer, Heidelberg (2010)

8. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J.
Control Opt. 48(3), 1914–1938 (2009)

9. Flordal, H., Malik, R., Fabian, M., Åkesson, K.: Compositional synthesis of max-
imally permissive supervisors using supervision equivalence. Discrete Event Dyn.
Syst. 17(4), 475–504 (2007)

10. Gohari, P., Wonham, W.M.: On the complexity of supervisory control design in
the RW framework. IEEE Trans. Syst. Man Cybern. 30(5), 643–652 (2000)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Boston (2001)

13. Lin, F., Wonham, W.M.: Decentralized control and coordination of discrete-event
systems with partial observation. IEEE Trans. Autom. Control 35(12), 1330–1337
(1990)

14. Malik, R.: The language of certain conflicts of a nondeterministic process. Working
Paper 05/2010, Dept. of Computer Science, University of Waikato, Hamilton, New
Zealand. http://hdl.handle.net/10289/4108 (2010)

15. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Int. J. Found. Com-
put. Sci. 17(4), 797–813 (2006)

16. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional synthesis
of modular nonblocking supervisors. IEEE Trans. Autom. Control. 59(1), 150–162
(2014)

17. Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for
service replaceability. J. Logic Algebr. Program. 79(3–5), 233–244 (2010)

18. Nuutila, E.: Efficient transitive closure computation in large digraphs. Acta Poly-
technica Scandinavica, Mathematics and Computing in Engineering Series, vol. 74.
Finnish Academy of Technology, Helsinki (1995)

19. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
the 16th ACM Symposium on Principles of Programming Languages, pp. 179–190
(1989)

20. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math. 5(2), 285–309 (1955)

21. Wonham, W.M.: On the control of discrete-event systems. In: Nijmeijer, H., Schu-
macher, J.M. (eds.) Three Decades of Mathematical System Theory. LNCIS, vol.
135, pp. 542–562. Springer, Heidelberg (1989)

https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=1126
https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=1126
http://hdl.handle.net/10289/4108

Author Index

Ábrahám, Erika 88
Ait Mohamed, Otmane 54
André, Étienne 212
Aoki, Toshiaki 36, 246
Artho, Cyrille 3

Barros, Flávia 19

Carvalho, Gustavo 19
Chen, Xin 88
Collins, Pieter 88

Ellevseth, Stein-Erik 229

Fabian, Martin 280
Fribourg, Laurent 212

Groves, Lindsay 142
Guo, Xiaoyun 36

Hayamizu, Koji 3
Hayes, Ian J. 1
Hoque, Khaza Anuarul 54
Hudon, Simon 107, 262

Jacobs, Jaco 195

Khamespanah, Ehsan 178
Khosravi, Ramtin 178

Lapschies, Florian 19
Lawford, Mark 125
Li, Yongjian 71
Lin, Hsin-Hung 36
Lipari, Giuseppe 212
Liu, Yang 107

Malik, Robi 160
Mohajerani, Sahar 280

Nellen, Johanna 88

Ölveczky, Peter Csaba 178
Ostroff, Jonathan S. 107, 262

Pang, Jun 71
Pang, Linna 125
Pearce, David J. 142
Peleska, Jan 19
Pettersson, Paul 229
Pilbrow, Colin 160

Ramler, Rudolf 3

Sabahi-Kaviani, Zeynab 178
Sapienza, Gaetana 229
Savaria, Yvon 54
Schulze, Uwe 19
Seceleanu, Cristina 229
Seceleanu, Tiberiu 229
Simpson, Andrew 195
Sirjani, Marjan 178
Soulat, Romain 212
Sun, Jun 107
Sun, Youcheng 212
Suryadevara, Jagadish 229

Thibeault, Claude 54
Traichaiyaporn, Kriangkrai 246

Wang, Chen-Wei 107, 125, 262
Ware, Simon 280
Wassyng, Alan 125

Yamagata, Yoriyuki 3
Yatake, Kenro 36

	Preface
	Organization
	Contents
	Towards Structuring System Specifications with Time Bands Using Layers of Rely-Guarantee Conditions
	References

	With an Open Mind: How to Write Good Models
	1 Introduction
	2 Related Work
	3 Modeling the Java Network Library with Modbat
	3.1 Setting
	3.2 Weaknesses of the Initial Model
	3.3 Summary

	4 Experiences with Models for Testing Collection Classes
	4.1 Setting
	4.2 Modeling Test Scenarios
	4.3 Modeling Actions on the System Under Test
	4.4 Modeling Test Data
	4.5 Summary

	5 Industrial Project: Electric Circuit
	5.1 Adapted Work Flow
	5.2 Problem Found

	6 Discussion
	6.1 Model Design
	6.2 Model Validation

	7 Conclusions and Future Work
	References

	Model-Based Testing from Controlled Natural Language Requirements
	1 Introduction
	2 Syntactic / Semantic Analyses
	2.1 The SysReq-CNL
	2.2 The Case Frames Notation

	3 Generation of Test Vectors
	3.1 Internal Model Representation
	3.2 From Case Frames to State Machines
	3.3 Transition Relation
	3.4 Symbolic Test Cases, Concrete Test Data

	4 Tool Platform
	5 Empirical Analyses
	5.1 Results and Analyses

	6 Related Work
	7 Conclusion
	References

	An UPPAAL Framework for Model Checking Automotive Systems with FlexRay Protocol
	1 Introduction
	2 Related Work
	3 Automotive Systems with FlexRay Protocol
	4 The Framework
	4.1 FlexRay Model
	4.2 Application Model
	4.3 Example

	5 Evaluation of the Framework
	6 Conclusion and Future Work
	References

	Early Analysis of Soft Error Effects for Aerospace Applications Using Probabilistic Model Checking
	1 Introduction
	2 Motivation and Related Work
	3 Background
	3.1 Soft Errors
	3.2 Probabilistic Model Checking

	4 Proposed Methodology
	4.1 Markov Model for Dependability
	4.2 Markov Reward Modeling
	4.3 Characterization Library

	5 Case Study
	6 Conclusion
	References

	A Strand Space Approach to Provable Anonymity
	1 Introduction
	2 Preliminaries
	2.1 Messages
	2.2 Strands and Strand Space
	2.3 Intruder Model
	2.4 Protocol Modeling Using Strands
	2.5 Penetrator

	3 Message Reinterpretation and Observational Equivalence on Bundles
	4 Anonymity Properties
	5 A Case Study: Onion Routing
	5.1 Modeling Onion Routing
	5.2 An Overview of our Proof Strategy
	5.3 Message Swapping
	5.4 Proving Anonymity Properties

	6 Conclusion and Future Work
	References

	Counterexample Generation for Hybrid Automata
	1 Introduction
	2 Preliminaries
	3 Generating Traces for Presumable Counterexamples
	3.1 Approach I: Model Augmentation
	3.2 Approach II: Parsing the Output of SpaceEx
	3.3 Approach III: Extending the Functionality of Flow

	4 Generating a Presumable Counterexample
	5 Simulation
	6 Conclusion and Future Work
	References

	TTM/PAT: Specifying and Verifying Timed Transition Models
	1 Introduction
	2 A Small Pacemaker Example
	3 TTM Syntax and Semantics
	3.1 Abstract Syntax
	3.2 Formal Semantics
	3.3 Semantics of Module Composition

	4 Evaluation
	4.1 Delayed Reactor Trip System
	4.2 Fischer's Mutual Exclusion Algorithm

	5 Conclusion
	References

	Formalizing and Verifying Function Blocks Using Tabular Expressions and PVS
	1 Introduction
	2 Preliminaries
	2.1 IEC 61131-3 Standard Function Blocks
	2.2 Tabular Expressions
	2.3 PVS

	3 Formalizing Function Blocks Using Tabular Expressions
	3.1 Formalizing IEC 61131-3 Function Block Implementations
	3.2 Formalizing Requirements of Function Blocks

	4 Verifying Function Blocks in PVS
	4.1 Verifying the Correctness of an Implementation
	4.2 Verifying the Equivalence of Implementations

	5 Case Study: Issues Found in Standard IEC 61131-3
	5.1 Ambiguous Behaviour: Pulse Timer in Timing Diagrams
	5.2 Ambiguous Behaviour: Implicit Delay Unit
	5.3 Missing Assumption: Limit on Counters FBs

	6 Related Work
	7 Conclusion and Future Work
	References

	Reflections on Verifying Software with Whiley
	1 Introduction
	2 Language Overview
	3 Verification
	4 Hoare Logic
	4.1 Overview
	4.2 Verification Condition Generation

	5 Experiences
	5.1 Loop Invariants
	5.2 Error Reporting

	6 Related Work
	7 Conclusion
	References

	Compositional Nonblocking Verification with Always Enabled Events and Selfloop-Only Events
	1 Introduction
	2 Preliminaries
	2.1 Events and Languages
	2.2 Nondeterministic Automata
	2.3 The Nonblocking Property

	3 Compositional Verification
	4 Simplification Rules
	4.1 Automaton Abstraction
	4.2 Enabled Continuation Rule
	4.3 Only Silent Incoming Rule
	4.4 Limited Certain Conflicts Rule
	4.5 Selfloop Removal Rule

	5 Finding Always Enabled and Selfloop-Only Events
	6 Experimental Results
	7 Conclusions
	References

	Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude
	1 Introduction
	2 Preliminaries
	2.1 Timed Rebeca
	2.2 Real-Time Maude

	3 Real-Time Maude Semantics of Timed Rebeca
	4 Formal Analysis of Timed Rebeca Models
	5 Case Study: A Collision Avoidance Protocol
	6 Related Work
	7 Conclusion
	References

	On the Cloud-Enabled Refinement Checking of Railway Signalling Interlockings
	1 Introduction
	2 On CSP, FDR, and GDL
	2.1 CSP and FDR
	2.2 Solid State Interlocking

	3 A Cloud-Enabled FDR
	3.1 Eucalyptus
	3.2 A Cloud Interface for FDR

	4 The Case Study
	4.1 Translating GDL into CSP
	4.2 The CSP Model
	4.3 Decomposing the Problem
	4.4 Safety Invariants in CSP

	5 Conclusions
	References

	Parametric Schedulability Analysis of Fixed Priority Real-Time Distributed Systems
	1 Introduction and Motivation
	2 Related Work
	3 System Model
	4 Analytic Method
	4.1 Preemptive Tasks with Constrained Deadlines
	4.2 Extensions to the Model
	4.3 Distributed Systems

	5 The Inverse Method Approach
	5.1 Parametric Timed Automata with Stopwatches
	5.2 Modelling the System Using Parametric Stopwatch Automata

	6 Evaluation
	6.1 Test Case 1
	6.2 Test Case 2
	6.3 Execution Times

	7 Conclusions and Future Work
	References

	Wind Turbine System: An Industrial Case Study in Formal Modeling and Verification
	1 Introduction
	2 Windturbine System (WTS) : An Overview
	2.1 Development Process and Environment
	2.2 The Wind Turbine System Model

	3 Preliminaries
	3.1 EAST-ADL
	3.2 CCSL
	3.3 Timed Automata

	4 WTS: Formal Specification and Modeling
	4.1 Data and Events
	4.2 Specification of Timed Causality Behavior
	4.3 Modeling Functional Behavior of Real-Time Components
	4.4 Formal Modeling of Plant Components
	4.5 Formal Modeling of Controller Components
	4.6 Modeling the WTS System

	5 WTS Analysis
	5.1 Simulation
	5.2 Verification

	6 Discussion and Lessons-Learned
	7 Conclusion
	References

	Refinement Tree and Its Patterns: A Graphical Approach for Event-B Modeling
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 The KAOS Method

	3 Motivation
	4 The Refinement Tree Diagram
	4.1 Nodes
	4.2 Refinements of Events
	4.3 Relationships among Events and Invariants
	4.4 Transformation to Event-B Specification

	5 The Refinement Patterns
	5.1 The Phase-Decomposition Refinement Pattern
	5.2 The Event-Forking Refinement Pattern
	5.3 The Milestone-Driven Refinement Pattern
	5.4 The Decomposition-by-Case Refinement Pattern

	6 Case Studies
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Precise Documentation and Validation of Requirements
	1 Introduction
	1.1 A Small Example
	1.2 Our Method and Contributions

	2 Well-Definedness of Expressions Involving Partial Functions
	3 Case Study: A Biomedical Device
	3.1 Atomic E-Descriptions
	3.2 Atomic R-Descriptions
	3.3 Type RFUN for Linear Interpolation
	3.4 The Machine and Its Modules
	3.5 Using Module Queries in Function Tables
	3.6 Traceability
	3.7 Validating Tabular Expressions via Proofs
	3.8 Using a SMT Solver to Discharge Proof Obligations

	4 Conclusion and Related Work
	References

	Certainly Unsupervisable States
	1 Introduction
	2 Preliminaries
	2.1 Events and Languages
	2.2 Nondeterministic Automata
	2.3 Supervisory Control Theory
	2.4 Compositional Synthesis

	3 Manufacturing System Example
	4 Certain Unsupervisability
	4.1 Certainly Unsupervisable States and Transitions
	4.2 Iterative Characterisation
	4.3 Algorithm
	4.4 Complexity
	4.5 Halfway Synthesis

	5 Conclusions
	References

	Author Index

