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Abstract Let X be a compact Kihler holomorphic-symplectic manifold, which
is deformation equivalent to the Hilbert scheme of length n subschemes of a K3
surface. Let . be a nef line-bundle on X, such that the top power ¢ (.£)*" vanishes
and ¢ (%) is primitive. Assume that the two dimensional subspace H*°(X) @
H%2(X) of H*(X,C) intersects H?(X, Z) trivially. We prove that the linear system
of .Z is base point free and it induces a Lagrangian fibration on X . In particular, the
line-bundle .Z is effective. A determination of the semi-group of effective divisor
classes on X follows, when X is projective. For a generic such pair (X, .%), not
necessarily projective, we show that X is bimeromorphic to a Tate-Shafarevich twist
of a moduli space of stable torsion sheaves, each with pure one dimensional support,
on a projective K3 surface.
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1 Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact
Kihler manifold such that H%(X, A2T*X) is generated by an everywhere non-
degenerate holomorphic 2-form [4]. A compact Kéhler manifold X is said to
be of K3I-type, if it is deformation equivalent to the Hilbert scheme Sl of
length n subschemes of a K3 surface S. Any manifold of K3!"l-type is irreducible
holomorphic symplectic [4]. The second integral cohomology of an irreducible
holomorphic symplectic manifold X admits a natural symmetric non-degenerate
integral bilinear pairing (e, ®) of signature (3,b,(X) — 3), called the Beauville-
Bogomolov-Fujiki pairing. The Beauville-Bogomolov-Fujiki pairing is monodromy
invariant, and is thus an invariant of the deformation class of X .

Definition 1.1. An irreducible holomorphic symplectic manifold X is said to be
special, if the intersection in H*(X,C) of H*(X,Z) and H>*(X) ® H*?(X) is a
non-zero subgroup.

The locus of special periods forms a countable union of real analytic subvarieties
of half the dimension in the corresponding moduli space.

Definition 1.2. Let X be a 2n-dimensional irreducible holomorphic symplectic
manifold and .Z a line bundle on X . We say that .Z induces a Lagrangian fibration,
if it satisfies the following two conditions.

LAX,L)=n+1.
2. The linear system |.Z| is base point free, and the generic fiber of the morphism
w: X — |&Z|" is a connected Lagrangian subvariety.

A line bundle .Z on a holomorphic symplectic manifold X is said to be nef,
if ¢1(Z) belongs to the closure in H (X, R) of the Kihler cone of X.

Theorem 1.3. Let X be an irreducible holomorphic symplectic manifold of K 3/"-
type and L a nef line-bundle, such that ¢, (L) is primitive and isotropic with respect
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to the Beauville-Bogomolov-Fujiki pairing. Assume that X is non-special. Then the
line bundle % induces a Lagrangian fibration w : X — |.Z|".

See Theorem 6.3 for a variant of Theorem 1.3 dropping the assumption that . is
nef. Theorem 1.3 is proven in Sect. 6. The proof relies on Verbitsky’s Global Torelli
Theorem [14, 40], on the determination of the monodromy group of X [21, 22],
and on a result of Matsushita that Lagrangian fibrations form an open subset in the
moduli space of pairs (X, £) [27]. Let us sketch the three main new ingredients in
the proof of Theorem 1.3.

(1) We associate to the pair (X,.Z) in Theorem 1.3 a projective K3 surface S

with a nef line bundle & of degree 2’(’;2, where d = gcd{(c1(Z), 1)
A € H?*(X,Z7)}. The sub-lattice c¢; (%) orthogonal to ¢;(#) in H(S,Z)
is Hodge-isometric to ¢|(.£)*/Zci(.£). The construction realizes the period
domain §2,¢ of the pairs (X, %) as an affine line bundle over a period domain
£2)9 of semi-polarized K3 surfaces (Sect. 4).

(2) The bundle map q : §2,0 — $2)9 is invariant with respect to a subgroup Q of
the monodromy group (Lemma 5.3). The group Q is isomorphic to ¢ (2)*. Q
acts on the fiber of ¢ over the period of a semi-polarized K3 surface (S, %).
Similarly, the lattice ¢;(%)* projects to a subgroup of H%2(S), which acts on
H%2(S) by translations. There exists an isomorphism, of the fiber of ¢ with
H%2(S), which is equivariant with respect to the two actions (Lemma 5.4).

(3) The fiber of g over the period of a semi-polarized K3 surface (S, %) contains
the period of a moduli space of sheaves on S with pure one-dimensional support
in the linear system |%“| (Sect.5.1). Each such moduli space of sheaves is
known to be a Lagrangian fibration [34].

The assumption that X is non-special in Theorem 1.3 is probably not necessary.
Unfortunately, our proof will rely on it. When X is non-special the Q-orbit, of
every point in the fiber of g through the period of X, is a dense subset of the fiber
(Lemma 5.4). This density will have a central role in this paper due to the following
elementary observation.

Observation 1.4. Let T be a topological space and Q a group acting on T. Assume
that the Q-orbit of every point of T is dense in T. Then any nonempty Q-invariant
open subset of T must be the whole of T'.

The above observation will be used in an essential way in three different proofs
(Theorem 6.1, Proposition 7.7, and Theorem 7.11).

The statement of the next result requires the notion of a Tate-Shafarevich twist,
which we now recall. Let M be a complex manifold and  : M — B a proper
map with connected fibers of pure dimension n. Assume that the generic fiber of
7 is a smooth abelian variety. Let {U;} be an open covering of B in the analytic
topology. Set U := U; N U; and M;; := 7~ (Uy). Assume given a 1-co-cycle g;;
of automorphisms of Mj;, satisfying 7 o g;; = m, and acting by translations on the
smooth fibers of 7. We can re-glue the open covering { M; } of M using the co-cycle
{gij} to get a complex manifold M’ and a proper map 7’ : M’ — B, whose fibers
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are isomorphic to those of . We refer to (M, nr’) as the Tate-Shafarevich twist of
(M, ) associated to the co-cycle {g;;}. Tate-Shafarevich twists are standard in the
study of elliptic fibrations [10, 17].

Let . be a semi-ample line bundle on a K3 surface S with an indivisible
class ¢;(£). Given an ample line bundle H on S and an integer y, denote by
My (0, k7% x) the moduli space of H -stable coherent sheaves on S of rank zero,
determinant .2, and Euler characteristic y. Assume that d and y are relatively
prime. For a generic polarization H , the moduli space My (0, £, y) is smooth and
projective and it admits a Lagrangian fibration over the linear system || [34].

Let X be an irreducible holomorphic symplectic manifold of K3/-type and 7 :
X — P" a Lagrangian fibration. Set « := 7*c|(Opn(1)). The divisibility of («, e)
is the positive integer d := gcd{(a, A) : A € H*(X,Z)}. The integer d? divides
n — 1 (Lemma 2.5).

Theorem 1.5. Assume that X is non-special and the intersection H"'(X,7) N at
is Za. There exists a K3 surface S, a semi-ample line bundle £ on S of degree
2'(’1;2 with an indivisible class ¢1(£), an integer y relatively prime to d, and a
polarization H on S, such that X is bimeromorphic to a Tate-Shafarevich twist
of the Lagrangian fibration My (0, ¢, y) — |.Z4|.

Theorem 1.5 is proven in Sect.7. The semi-polarized K3 surface (S,.%) in
Theorem 1.5 is the one mentioned already above, which is associated to (X, «)
in Sect. 4.1. The equality H"'(X,Z) N at = Za« is equivalent to the statement that
Pic(S) is cyclic generated by .. This condition is relaxed in Theorem 7.13, which
strengthens Theorem 1.5.

A reduced and irreducible divisor on X is called prime exceptional, if it has
negative Beauville-Bogomolov-Fujiki degree. A divisor D on X is called movable,
if the base locus of the linear system |D| has co-dimension > 2 in X. The
movable cone .#Vx of X is the cone in N'(X) := H"!(X,Z) ®z R generated by
classes of movable divisors. Assume that X is a projective irreducible holomorphic
symplectic manifold of K3["-type andlet 7 € N'(X) be an ample class. Denote by
Pexy C HV(X,Z) the set of classes of prime exceptional divisors. The set Pexy
is determined in [24, Theorem 1.11 and Sec. 1.5]. The closure of the movable cone
in N'(X) is determined as follows:

MYV y ={c € NI(X) :(c,¢)>0, (c,h) >0, and (c,e) >0, forall e € Pexy},

by a result of Boucksom [6,23, Prop. 5.6 and Lemma 6.22].!

Corollary 1.6. Let X be a projective irreducible holomorphic symplectic manifold
of K3WM-type. The semi-group of effective divisor classes on X is generated by

Prop. 5.6 and Lemma 6.22 in the last reference [23]. The same convention will be used throughout
the paper for all citations with multiple references.
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the classes of prime exceptional divisors and integral points in the closure of the
movable cone in N'(X).

Corollary 1.6 was shown to follow from Theorem 1.3 in [23, Paragraph following
Question 10.11].

We classify the deformation types of pairs (X, %), consisting of an irreducible
holomorphic symplectic manifold X of K3"-type, n > 2, and a line bundle .%
on X with a primitive and isotropic first Chern class, such that (¢;(%),x) > 0,
for some Kihler class x. The following proposition is proven in Sect. 4.3, using
monodromy invariants introduced in Lemma 2.5.

Proposition 1.7. Let d be a positive integer, such that d* dividesn — 1. If 1 < d <
4, then there exists a unique deformation type of pairs (X, %), with ¢, (L) primitive
and isotropic, such that (¢ (£), ®) has divisibility d. For d > 5, let v(d) be half the
number of multiplicative units in the ring Z./dZ. Then there are v(d) deformation
types of pairs (X, L) as above, with (c1(.£), ®) of divisibility d.

A generalized Kummer variety of dimension 2n is the fiber of the Albanese
map ST — S from the Hilbert scheme of length n subschemes of an abelian
surface S to S itself [4]. We expect all of the above results to have analogues
for X an irreducible holomorphic-symplectic manifold deformation equivalent to a
generalized Kummer variety. Yoshioka proved Theorem 1.3 for those X associated
to a moduli space of sheaves on an abelian surface [43]. Let the pair (X,.%)
consist of X, deformation equivalent to a generalized Kummer, and a line bundle .#
with a primitive and isotropic first Chern class. The basic construction of Sect. 4.1
associates to the pair (X, %), with dim(X) = 2n, n > 2, and with (¢;(£), ) of
divisibility d, two dual pairs (Sy, ;) and (S3, «;), each consisting of an abelian
surface S; and a class ¢; in the Neron-Severi group of S; of self intersection 2’:;2'2,
such that S, =~ S} and the natural isometry H*(S1,Z) =~ H?(S,,Z) maps o,
to ay. A conjectural determination of the monodromy group of generalized Kummer
varieties was suggested in the comment after [25, Prop. 4.8]. Assuming that the
monodromy group is as conjectured, we expect that the proofs of all the results
above can be adapted to this deformation type.

A version of Theorem 1.3 has been conjectured for irreducible holomorphic sym-
plectic manifolds of all deformation types [5, 26,39, Conjecture 2]. Markushevich,
Sawon, and Yoshioka proved a version of Theorem 1.3, when X is the Hilbert
scheme of n points on a K3 surface and (c;(-Z), ®) has divisibility 1 [26, Cor.
4.4] and [39] (the regularity of the fibration, in Sect. 5 of [39], is due to Yoshioka).
Bayer and Macri recently proved a strong version of Theorem 1.3 for moduli spaces
of sheaves on a projective K3 surface [3].

Remark 1.8 (Added in the final revision). Let Xy be an irreducible holomorphic
symplectic manifold and % a nef line bundle on Xy, such that ¢ (%) is primitive
and isotropic with respect to the Beauville-Bogomolov-Fujiki pairing. Matsushita
proved that if .4 induces a Lagrangian fibration, then so does .Z for every
pair (X,.Z) deformation equivalent to (Xo, %), with X irreducible holomorpic
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symplectic and . nef (preprint posted very recently [28], announced earlier in his
talk [31]). It follows that Theorem 1.3 above holds also without the assumption
that X is non-special, since a pair (X,.Z) with X special is a deformation of a
pair (Xo, %) with X, non-special. In fact, this stronger version of Theorem 1.3,
dropping the non-speciality, follows already from the combination of Matsushita’s
result and Example 3.1 below, since Example 3.1 exhibits a pair (Xy, %)), with a
line bundle %) inducing a Lagrangian fibration, in each deformation class of pairs
(X,.%) with X of K3/"-type and ¢, (%) primitive, isotropic, and on the boundary
of the positive cone. Matsushita’s result does not seem to provide an alternative
proof of Theorem 1.5 and the only proof we know is presented in Sect. 7 and relies
on the preceding sections.

2 C(lassification of Primitive-Isotropic Classes

A lattice, in this note, is a finitely generated free abelian group with a symmetric
bilinear pairing (e, ®) : L ®7 L — Z. The pairing may be degenerate. The isometry
group O(L) is the group of automorphisms of L preserving the bilinear pairing.

Definition 2.1. Two pairs (L;,v;), i = 1,2, each consisting of a lattice L; and an
element v; € L;, are said to be isometric, if there exists an isometry g : L — L,
such that g(vy) = v,.

Let X be an irreducible holomorphic symplectic manifold of K3"-type, n > 2.
Set A := H?(X,Z). We will refer to A as the K3I"-latrice. Let A be the Mukai
lattice, i.e., the orthogonal direct sum of two copies of the negative definite Eg(—1)
lattice and four copies of the even unimodular rank two lattice with signature

(1,-1).

Theorem 2.2 ([22], Theorem 1.10). X comes with a natural O(A)-orbit 5%
of primitive isometric embeddings 1 : H*(X,Z) — A.

Choose a primitive isometric embedding ¢ : A < A in the canonical O(A)-orbit
tx provided by Theorem 2.2. Choose a generator v € A of the rank 1 sub-lattice
orthogonal to ¢(A). We say that an isometry g € O(A) stabilizes the O(A)-orbit
Ly, if given a representative isometric embedding ¢ in the orbit ty, there exists an
isometry § € O(A) satisfying ¢ o g = g o «. Note that g necessarily maps v to %v.

Set Ag := A ®z R. Let € C Ag be the positive cone {x € Ag : (x,x) > 0}.
Then HX(¢,Z) is isomorphic to Z and is a natural character of the isometry group
O(A) [23, Lemma 4.1]. Denote by O (A) the kernel of this orientation character.
Isometries in O (A) are said to be orientation preserving.

Definition 2.3. Let X, X, and X, be irreducible holomorphic symplectic mani-
folds. An isometry g : H?(X|,Z) — H?(X,,7) is a parallel transport operator,
if there exists a family 7 : 2~ — B (which may depend on g) of irreducible
holomorphic symplectic manifolds, points b; and b, in B, isomorphisms X; = Z},,
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where 2}, is the fiber over b;, i = 1,2, and a continuous path y from b; to b,, such
that parallel transport along y in the local system R’m,Z induces the isometry g.
When X = X; = X,, we call g a monodromy operator. The monodromy group
Mon?(X) of X is the subgroup, of the isometry group of H?(X,Z), generated by
monodromy operators.

Theorem 2.4 ([22], Theorem 1.2 and Lemma 4.2). The subgroup Mon?>(X)
of O(A) consists of orientation preserving isometries stabilizing the orbit tx.

Given a lattice L, let I,(L) C L be the subset of primitive classes v with (v, v) =
2n—2. Notice that the orbit set /,,(L)/O (L) parametrizes the set of isometry classes
of pairs (L', V'), such that L’ is isometric to L and V' is a primitive class in L’ with
(V',v') =2n —2[23, Lemma9.14].

Let 1 be an integer > 2, let A be the K3"l-lattice, and let @ € A be a primitive
isotropic class. Let div(c, ®) be the largest positive integer, such that («, ) /div(c, @)
is an integral class of A*. Set d := div(«, @) and

B = ().

Let L C A be the saturation of spany{f, v}. Clearly, the isometry class of (L,v)
depends only on « and the O(A)-orbit of . Consequently, the isometry class of
(L, v) depends only on «, as the O(A)-orbit ty of ¢ is natural, by Theorem 2.2. We
denote by [L, v](«) the isometry class of the pair (L, v) associated to «.

Lemma 2.5. (1) d? dividesn — 1.

(2) L is isometric to the lattice L, 4 with Gram matrix 2’:1;2 ((1) 8) .

(3) Let d > 1 be an integer, such that d* divides n — 1. The map a +— [L,v](c)
induces a one-to-one correspondence between the set of Mon®(X)-orbits,
of primitive isotropic classes o with div(x,e) = d, and the set of isometry
classes 1,(Ly4)/ O(Ly.a)-

(4) There exists an integer b, such that (B — bv)/d is an integral class of L. The
isometry class [L,v](«) is represented by (L, 4, (d, b)), for any such integer b.

Proof. Part (1): There exists a class § € A, such that (6,§) = 2 — 2n and
the sub-lattice 8j— of A, orthogonal to §, is a unimodular lattice isometric to the
K 3-lattice. The sub-lattice [t (8*)];: of A, which is the saturation of span{t(8), v},
is unimodular, hence isometric to the unimodular hyperbolic plane U with Gram

matrix ( 01 _01 ) . We may further assume thatv = (1, 1 —n) and ¢(§) = (1,n—1),

under this isomorphism. If X is the Hilbert scheme S of a K3-surface and §
is half the class of the big diagonal, then § satisfies the above properties. Write

2The saturation of a sublattice L’ of A is the maximal sublattice L of A, of the same rank as L/,
which contains L’.
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a = af + bd, where £ is a primitive class of the K3-lattice 8t a > 0, and
gcd(a,b) = 1. We get

0= (a.a) = a’( &) — (2n —2)b?,

and (£,§) is even. Hence, a® divides n — 1. Furthermore, div(§,e) = 2n — 2,
div(€, ) = 1, since §+ is unimodular, and div(c, ®) = ged(div(a&, o), div(h§, e)) =
gcd(a, (2n —2)b) = a. Thus, a = d = div(w, o).

Part (2): Note that ((§) —v = (2n — 2)e, where e is a primitive isotropic class
of A. Sety = %(,3 — bv)ﬂ = 1§ + @e. We claim that the lattice L :=
span,{v, y} is saturated in A. Indeed, choose 7 € §+, such that (£,77) = 1. Then
((v,e) o, n)) _ (—1 0)

(v.e) (r.m) 0 1)

Let G be the Gram matrix of L in the basis {v, y}. Then

2n—2( d? —bd 2n—-2 ( d
G=—— =7 )
d? (—bd b? ) d? (—b)(d ?)
Choose a 2 x 2 invertible matrix A, with integer coefficients, such that A ( db) =

((1)) Then AGA' is the Gram matrix of L, 4.

Part (3): Assume given two primitive isotropic classes «; and o, in A =
H*(X, Z) and let (L;, v;) be the pair associated to ¢; as above, fori = 1,2. In other
words, t; : A — Aisa primitive embedding in the orbit ¢y, v; generates the sub-
lattice of A orthogonal to the image of ¢;, and L; is the saturation of span,{t(c;), v;}.

Let us check that the map o > [L, v](e) is constant on Mon? (X )-orbits. Assume
that there exists an element . € Mon*(X), such that z1(ct;) = . Then there exists
an isometry ji € O(A), satisfying ji o t; = 15 o y, by Theorem 2.4. We get that
(L1) = Ly and fi(v)) = vy, or fi(vi) = —v,. So, the isometry i or —ji from L,
onto L, provides an isometry of the pairs (L;,v;),i = 1,2.

We show next that the map « + [L,v](«) is injective, i.e., that the isometry
class of the pair (L, v) determines the Mon?(X )-orbit of . Assume that there exists
as isometry f : Ly — Lo, such that f(v;) = v,. Then there exists an isometry
f € O(A), such that f(Ll) = L, and the restriction of f to Ly is f, by ([36],
Proposition 1.17.1 and Theorem 1.14.4, see also [21], Lemma 8.1 for more details).
In particular, f (vi) = v2. There exists a unique isometry 1 € O(A) satisfying
tp0h = fou;. There exists an isometry ¢ € O(A) such that oty = 11, since both ;
belong to the same O (A)-orbit 1y . We get the equality (;0h = $oiyoh = (qbof)on.
If 1 is orientation preserving, then & belongs to Mon?(X), otherwise, —h does, by
Theorem 2.4. Let u = h, if it is orientation preserving. Otherwise, set p := —h.
Then j is a monodromy operator and t>(u(a1)) = £ (h(ar)) = £ f (11(er)). The
class t; (1) spans the null space of L, and f restricts to an isometry from L; to
L,. Hence, t;(p(a1)) spans the null space of L,. Hence, (o)) = £as.
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Finally we show that a; and —a; belong to the same Mon? (X )-orbit. There exists
an element t € A satisfying (7, 7) = 2, and (7, a) = 0. The isometry p, € O(A),
given by p; (1) = —A + (A, 7)1, belongs to Mon?(X), by ([21], Corollary 1.8), and
it sends o, to —a;.

It remains to prove that the map o +— [L,v](®) is surjective. Assume given a
primitive class v € L, 4 with (v,v) = 2n — 2. There exists a primitive isometric
embedding f : L,q4 — A, by ([36], Proposition 1.17.1). The lattice f(v)j:,

orthogonal to f(v) in A, is isometric to the K3/"-lattice A. Choose such an
isometry i : f (v)i: — A, with the property that 7~' : A <> A belongs to
the O(A)-orbit 1y. Such a choice exists, since O(A) acts transitively on the orbit
space O(A, A)/O(A), by ([22], Lemma 4.3). Above, O(A, A) denotes the set of
primitive isometric embeddings of A in A. Denote by B € L, 4 a generator of the
null space of L, 4. Set o := h(f(B)). Then « is a class in A, such that [L, v](«) is
represented by (L, 4, v).

Part (4): The existence of such an integer » was established in the course of
proving part (1). The rest of the statement follows from Lemma 2.6. O

Ifd =2,setv(d) := 1.1f d > 2, let v(d) be half the number of multiplicative
units in the ring Z/d Z.

Lemma 2.6. A vector (x,y) € L, 4 is primitive of degree 2n — 2, if and only
ifl = d and ged(d, y) = 1. Two primitive vectors (d, y), (d, z) belong to the same
O(Ly q)-orbit, if and only if y = z modulo d, or y = —z modulo d. Consequently,
v(d) is equal to the number of O (L, 4)-orbits of primitive vectors in L, 4 of degree
2n —2.

Proof. The isometry group of L,, ;4 consists of matrices of the form ( +1 :Sl ) The
c

orbit O(L, 4)(d, y) consists of vectors of the form (+d,cd £ y). Consequently,
the number of O (L, 4)-orbits of primitive vectors in L, 4 of degree 2n — 2 is equal
to the number of orbits in {y : 0 < y < d and gcd(y,d) = 1} under the action
y + d — y. The latter number is v(d). O

3 An Example of a Lagrangian Fibration for Each Value
of the Monodromy Invariants

Let S be a projective K3 surface, K(S) its topological K-group, generated by
classes of complex vector bundles, and H* (S, Z) its integral cohomology ring. Let
dg =1+ % be the Todd class of S and +/tdg = 1 + % its square root.
The homomorphism v : K(S) — H*(S,Z), given by v(x) = ch(x)«/tds is an
isomorphism of free abelian groups. Given a coherent sheaf £ on S, the class v(E)
is called the Mukai vector of E. Given integers r and s andaclassc € H 2(S,7Z), we
will denote by (r, ¢, s) the class of H*(S, Z), whose graded summand in H°(S, Z)
is r times the class Poincare dual to S, its graded summand in H 2(S ,Z) is ¢, and
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its graded summand in H*(S, Z) is s times the class Poincare dual to a point. We
endow H *(S, Z) with the Mukai pairing

((r,c,s),(r',c',s")) = (c,c')y—rs' —7r's,

where (¢, ¢) := [, Uc’. Then (v(x),v(y)) = —x(x ® y), where y : K(S) —
Z is the Euler characteristic [35]. H*(S, Z), endowed with the Mukai pairing, is
called the Mukai lattice. The Mukai lattice is an even unimodular lattice of rank 24,
which is isometric to the orthogonal direct sum of two copies of the negative definite
Eg(—1) lattice and four copies of the even unimodular rank 2 hyperbolic lattice U .

Let v € K(S) be the class with Mukai vector (0, d£, s) in H*(S,Z), such that
£ a primitive effective class in H"!(S,7Z), (£,£) > 0, d is a positive integer, and
ged(d,s) = 1. There is a system of hyperplanes in the ample cone of S, called
v-walls, that is countable but locally finite [15, Ch. 4C]. An ample class is called
v-generic, if it does not belong to any v-wall. Choose a v-generic ample class H . Let
My (v) be the moduli space of H -stable sheaves on the K3 surface S with class v.
My (v) is a smooth projective irreducible holomorphic symplectic variety of K 3!
type, with n = (”%4'2 = dz(s’f) *2 This is a special case of a result, which is due
to several people, including Huybrechts, Mukai, O’Grady [38], and Yoshioka [44].
It can be found in its final form in [44].

Over S x My (v) there exists a universal sheaf .7, possibly twisted with respect to
a non-trivial Brauer class pulled-back from My (v). Associated to .% is a class [.F]
in K(S x My (v)) ([20], Definition 26). Let 7r; be the projection from S x My (v)
onto the i-th factor. Denote by v the sub-lattice in H*(S, Z) orthogonal to v. The
second integral cohomology H?*(My (v),Z), its Hodge structure, and its Beauville-
Bogomolov-Fujiki pairing, are all described by Mukai’s Hodge-isometry

0 : vt — HMy®»),7Z), (3.1)

given by 0(x) := ¢ (m{m](x") ® [F]}) (see [44]).

We provide next an example of a moduli space My (v) and a primitive isotropic
class o € H"'(My(v),Z), such that [L, v](«) is represented by (L, 4. (d, b)), for
every integer n > 2, for every positive integer d, such that d? divides n — 1, and for
every integer b satisfying ged(b,d) = 1.

Example 3.1. Let d be a positive integer, such that d? divides n — 1. Let S be a
K3 surface with a nef line bundle .Z of degree 2’;2. Let A be the class ¢;(.Z) in
H?(S,7Z). Fix an integer b satisfying gcd(b,d) = 1. Setv := (0,dA,s), where s
is an integer satisfying sb = 1 (modulo d). Then v is a primitive Mukai vector and
(v,v) = 2n — 2. Choose a v-generic ample line bundle H. A sheaf F of class v is
H -stable, if and only if it is H -semi-stable. The moduli space M (v), of H -stable
sheaves of class v, is smooth, projective, holomorphic symplectic, and of K 3/"]-type.
Set o := 6((0,0,1)). Let t : H>(My(v),Z) — H*(S,Z) be the composition of
6~! with the inclusion of v into H*(S,Z). A Mukai vector (r, c, t) belongs to v+,
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if and only if rs = d(c, A). It follows that d divides r, since ged(d,s) = 1. Thus,
div(a, @) = d. Now

() — by = (0, —bdA, 1 — bs)

is divisible by d, by our assumption on s. Hence, the monodromy invariant [L, v](c)
is equal to the isometry class of (L, 4, (d,b)), by Lemma 2.5. The cohomology
H'(S,£%) vanishes, since . is a nef divisor of positive degree [32, Prop. 1].
Thus, the vector space H°(S,.#¢) has dimension y(.Z¢) = n + 1. The support
morphism 77 : My (v) — |£?] realizes My (v) as a completely integrable system.
The equality 77*¢1(0) 4a|(1)) = « is easily verified.

4 Period Domains and Period Maps

4.1 A Projective K3 Surface Associated to an Isotropic Class

Let X be an irreducible holomorphic symplectic manifold of K3!"-type, n > 2.
Assume that there exists a non-zero primitive isotropic class « € H"!(X,Z). Let A
be the Mukai lattice. Choose a primitive isometric embedding ¢ : H 2(X,Z) — Ain
the canonical O(A)-orbit 1y of Theorem 2.2. Set A¢ := A ®7 C. Endow Ac with
the weight 2 Hodge structure, so that A20 = ((H*°(X)). Set B := t(a). Then B

belongs to /iéfl. Set

B;/LB

and endow A3 with the induced Hodge structure. Let U be the even unimodular
rank 2 lattice of signature (1, 1), and Eg(—1) the negative definite Ejg lattice. Then
Ay is isometric to the K3 lattice, which is the orthogonal direct sum of two copies
of Es(—1) and three copies of U. Indeed, this is clear if B is a class in a direct
summand of A isometric to U. It follows in general, since the isometry group of A
acts transitively on the set of primitive isotropic classes in A. The induced Hodge
structure on A3 is the weight 2 Hodge structure of some K3 surface S(«), by the
surjectivity of the period map.

Let v be a generator of the rank 1 sub-lattice of A orthogonal to the image of .
Then v is of Hodge-type (1,1). Set A := H?(X,Z). Then v* is isometric to A. We
claim that (v,v) = 2n — 2. Indeed, the pairing induces an isomorphism of the two
discriminant groups (Zv)*/Zv and A*/ A, since Zv and A are a pair of primitive
sublattices, which are orthogonal complements in the unimodular lattice A. We
conclude that the order |(v, v)| of (Zv)*/Zv is equal to the order 2n — 2 of A*/ A.
Finally, (v, v) > 0, by comparing the signatures of A and A.

Let v be the coset v + ZB in Ags. Then v is of Hodge-type (1, 1) and (v, V) =
2n — 2. Hence S(w) is a projective K3 surface (even if X is not projective). We
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may further choose the Hodge isometry n : H?(S(),Z) — Ay, so that that
v corresponds to a class in the positive cone of S(«), possibly after replacing
v by —v. We may further assume that v corresponds to a nef class of S(),
possibly after replacing n with n o w, where w is an element of the subgroup
W C OT(H?*(S(x),Z)), generated by reflections by classes of smooth rational
curves on S(«) [19, Prop. 1.9].

4.2 A Period Domain as an Affine Line Bundle Over Another

Keep the notation of Sect.4.1. Set A := H*(X,Z). Setd := div(c, e). Let aj be
the (degenerate) lattice orthogonal to @ in A. Set QO := aj /Zo.

Lemma 4.1. Q, is isometric to the sub-lattice yt of Axs and both are isometric to
the orthogonal direct sum

Es(—1)® Esg(-1)pU U & ZA,
where (A, L) = 2;#.
Proof. The K3 lattice Ax; := [,le:]/Z,B is isometric to Eg(—1) @ Eg(—1) ® U &
U @ U. Let L be the saturation of span;{v, 8} in A. Then L is contained in ,Bj: and

the image of L in Ay is spanned by a class & of self-intersection 2’;—32, such that

v =d§, by Lemma 2.5.
It remains to prove that Q, is isometric to Ej—“. Consider the following
commutative diagram.

0—> ZB — ﬁA% - Az —0

=1 T T
0— ZB — L% —>L§/Zﬁ -0

=~ =1 Tt

0—> Zoa — aj— — Q4 —0.

The lower vertical arrow ¢ in the rightmost column is evidently an isomorphism. The
image of the upper one j is precisely S/Jsz' O

Let £24 be the period domain
Q4 :={LeP[H*(X,C)] : (£,£) =0and (£,{) > 0}. 4.1
Set

2,0 ={eR2,y: (L,a) =0} 4.2)



Lagrangian Fibrations of Holomorphic-Symplectic Varieties of K 3["-Type 253
Then £2,,.1 is an affine line-bundle over the period domain

R0, = {£LeP[Qy®2C] : (£,£) =0and (¢,{) > 0}.

Given a point of §2¢,, corresponding to a one-dimensional subspace £ of Q, ®z
C, we get a two dimensional subspace V; of H?(X,C) orthogonal to o and
containing «. The line in £2,, 1, over the point £ of £2¢,,, is P[V;]\{P[C«]}. Denote by

q: Ry — S0, (4.3)

the bundle map. A semi-polarized K3 surface of degree k is a pair consisting of
a K3 surface together with a nef line bundle of degree k (also known as weak
algebraic polarization of degree k in [33, Section 5]). Note that each component of
£, is isomorphic to the period domain of the moduli space of semi-polarized K3

surfaces of degree 2’:1;2.

Definition 4.2. Fibers of ¢ will be called Tate-Shafarevich lines for reasons that
will become apparent in Sect. 7.

Tate-Shafarevich lines are limits of twistor lines, as will be explained in
Remark 4.6.

4.3 The Period Map

Given a period { € 24, set AV, Z) := {A € A : (A, {) = 0}. Define
0L1(q(0), Z) similarly. We get the short exact sequence

00— Za — [on‘ N Al'l(ﬁ,Z)] — Q;’l(q(ﬁ),Z) — 0.

£2,1 has two connected components, since §2p, has two connected components.
Indeed, Q, has signature (2,5,(X) — 4), and a period £ comes with an oriented
positive definite plane [£ & £] N [Ag], which, in turn, determines the orientation of
the positive cone in @, ®z R.

The positive cone ‘JZA in A is the cone

Cp={x € Ag : (x,x) > 0} (4.4)

The cohomology group H 2(‘€~A, Z) is isomorphic to Z and an orientation of G
is the choice of one of the two generator of H 2(‘€~A, 7). An orientation of ‘65,1
determines an orientation of every positive definite three dimensional subspace of
Ag [23, Lemma 4.1]. A choice of an orientation of ‘65,1 determines a choice of a
component of 2,1 as follows. A period £ € £2,4 determines the subspace A" (£, R)
and the cone ¢} := {x € A" (£,R) : (x,x) > 0} in A"'(¢,R) has two connected
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components. A choice of a connected component of % is equivalent to a choice of
an orientation of the positive cone of ‘JZA. Indeed, a non-zero element o € £ and
an element @ € %, determine a basis {Re(0),Im(c), w}, hence an orientation,
of a positive definite three dimensional subspace of Ag, and the corresponding
orientation of ‘JZA is independent of the choice of o and w. Thus, the choice of
the orientation of the positive cone %, determines a connected component %; of
(fé, called the positive cone (for the orientation). If £ belongs to §2,1, then the class
a belongs to A1 (£, R) and « is in the closure of precisely one of the two connected
components of €. The connected component of £2,1, compatible with the chosen
orientation of €y, is the one for which « belongs to the boundary of the positive
cone %y for the chosen orientation.

A marked pair (Y, ) consists of an irreducible holomorphic symplectic mani-
fold Y and an isometry ¥ from H?(Y, Z) onto a fixed lattice. The moduli space of
isomorphism classes of marked pairs is a non-Hausdorff complex manifold [13]. Let
MY be a connected component of the moduli space of marked pairs of K 3l-type,
where the fixed lattice is A. The period map

P()IDJI%-).QA

sends a marked pair (Y, ¥) to the point ¥ (H?>°(Y)) of £24. Py is a holomorphic map
and a local homeomorphism [4]. The positive cone 6y is the connected component
of the cone {x € H"!'(Y,R) : (x,x) > 0} containing the Kihler cone. Hence,
the positive cone in H?(Y,R) comes with a canonical orientation and the marking
Y determines an orientation of the positive cone in %a. We conclude that Sm(/)‘
determines an orientation of the positive cone ‘65,1 [23, Sec. 4]. Let

2 (4.5)

be the connected component of §2,,1, inducing the same orientation of G4 as 93?%.
Let

m, (4.6)

be the inverse image Py ' (22)).

Theorem 4.3 (The Global Torelli Theorem [14, 40]). The period map Py
Dﬁ([)‘ — §2 4 is surjective. Any two points in the same fiber of Py are inseparable. If
(X1, m) and (X2, n2) correspond to two inseparable points in Dﬁ%, then X and X,
are bimeromorphic. If the Kiihler cone of X is equal to its positive cone and (X, 1)
corresponds to a point of 93?91, then this point is separated.

Lemma 4.4. i)ﬁg | is path-connected.

Proof. The statement follows from the Global Torelli Theorem 4.3 and the fact that
Q;‘J_ is connected. The proof is similar to that of [24, Proposition 5.11]. O
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Proposition 4.5. Let X| and X, be two irreducible holomorphic symplectic man-
ifolds of K3")-type and n; : Hz(Xj,Z) — A, j = 1,2, isometries. The marked
pairs (X1,n1) and (X2, n,) belong to the same connected moduli space Sﬁgr
provided the following conditions hold.

(1) The O(A) orbits lx; © n;l, J = 1,2, are equal. Above y; is the canonical
O(A)-orbit of primitive isometric embeddings of H?(X;,Z) into A mentioned
in Theorem 2.2.

(2) nytomi 1 HX(X1,Z) — H*(X»,Z) is orientation preserving.

(3) n;l(a) is of Hodge type (1,1) and it belongs to the boundary of the positive
cone ‘KXI. in Hl’l(Xj,R),forj =1,2.

Proof. Conditions 1 and 2 imply that 772_1 o 1 is a parallel-transport operator, by
Theorem 2.4. Hence, the two marked pairs belong to the same connected component
Sm% of M 4. Condition 3 implies that both belong to Dﬁg 1, and the latter is
connected, by Lemma 4.4. O

Proof (of Proposition 1.7). Lemma 2.5 introduced the monodromy invariant
[L,v](c1(:Z)) of the pair (X,.Z). The claimed number of deformation types
in the statement of the proposition is equal to the number of values of the
monodromy invariant [L,v](e) for fixed n and d, by Lemma 2.6. Assume
given another pair (X’,.#¢’) as above, such that the monodromy invariants
[L,v](c1(:£")) and [L,v](c1(:Z)) are equal. Choose a parallel transport operator
g : H*(X',Z) — H?*(X,Z). We do not assume that g(c;(.#")) is of Hodge
type (1,1). Set @ := ¢;(&) and o' = ¢;(&’). The monodromy invariant
[L,v](g(a)) is equal to [L, v](«') and hence also to [L, v](«). Hence, there exists
a monodromy operator f € Mon?(X), such that fg(a’) = o, by Lemma 2.5.
Choose a marking  : H*>(X,Z) — A.Then f := no f o g is a marking of X’
satisfying n(«) = n'(¢’). Hence, the triples (X, «, 1) and (X, &', ') both belong to
the moduli space Sm?] (@)L by Proposition 4.5. Sm?] (@t is connected, by Lemma 4.4.
Hence, (X, %) and (X', .¢’) are deformation equivalent. O

Remark 4.6. Tate-Shafarevich lines (Definition 4.2) are limits of twistor lines in
the following sense. Let £ be a point of §£24 and w a class in the positive cone %,
in A"(£,R). Assume that w is not orthogonal to any class in A"!(¢,Z). Then
there exists a marked pair (X, 7) in each connected component ‘Dﬁ% of the moduli
space of marked pairs, such that P(X,n) = £ and n~'(w) is a Kihler class of X
[13, Cor. 5.7]. Set W' := £ & £ & Cw. P(W') N 24 is a twistor line for (X, n); it
admits a canonical lift to a smooth rational curve in smg containing the point (X, 1)
[13, Cor. 5.8]. This lift corresponds to an action of the quaternions H on the real
tangent bundle of the differentiable manifold X, such that the unit quaternions act
as integrable complex structures, one of which is the complex structure of X. Let
a € A be the primitive isotropic class as above. Assume that £ belongs to .Q;l.

Consider the three dimensional subspace W := £ @ { @ Caof H 2(X,C). Then
W is a limit of a sequence of three dimensional subspaces W/, associated to some
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sequence of classes w; as above, since « belongs to the boundary of the positive
cone %;. Now W is contained in a*, and so P(W) N 2,1 = P(W) N £24. In this
degenerate case, the conic P(W) N £24 consists of two irreducible components, the
Tate-Shafarevich line P[{ @ Ca] \ {P[C«]} in .Q and the line P[{ & Ca] \ {P[Ca]}
in the other connected component §2_, of Qal. Theorem 7.11 will provide a lift of
a generic Tate-Shafarevich line in the period domain to a line in the moduli space of
marked pairs.

A summary of notation related to lattices and period domains

U The rank 2 even unimodular lattice of signature (1, 1)

Eg(—1) The root lattice of type Eg with a negative definite pairing

A The Mukai lattice; the orthogonal direct sum U ®* @ Eg(—1)®?

A The K3"-lattice; the orthogonal direct sum U®* @ Eg(—1)®2 & (2 — 2n),
where (2 — 2n) is the rank 1 lattice generated by a class of self-intersection 2 — 2n

o A primitive isotropic class in A

Qo The subquotient ' /Za

t A primitive embedding of A in A

B The primitive isotropic class t(«) in A

A The subquotient - /Zg, which is isomorphic to the K3 lattice U®? @ Eg(—1)®?2

v A generator of the rank 1 sublattice of A orthogonal to ¢(A)

v The coset v + Zf in A

d The divisibility of («, ®) in A*; d := ged{(a,A) : A € A}

& The integral element (1/d)v of A;. We have (§,§) = z;jl_;z

24 The period domain given in (4.1)

%”NA The positive cone given in (4.4)

.Q/T The connected component of £24 determined by the orientation of Gy

2,1 The hyperplane section of £2, given in (4.2)

.Qat The connected component of §2,1 given in (4.5)

29, The period domain of the lattice Q,

q The fibration g : §2,1. — £2¢, by Tate-Shafarevich lines given in (4.3)

mo A connected component of the moduli space of marked pairs

Py The period map Py : MY — .QA+

93?2 1 The inverse image of .Qat in MY via Py

[L,v](e) The monodromy invariant associated to the class « in Lemma 2.5 (4)

5 Density of Periods of Relative Compactified Jacobians

We keep the notation of Sect.4. In Sect.5.1 we construct a section 7 : .Q+ —
Qi, given in (5.2), of the fibration ¢ : .Q — .Q+ by Tate- Shafarev1ch hnes

We then show that maps a period £, of a semi- polanzed K3 surface (S, %) in
the period domain ‘QQu’ to the period 7(£) of a moduli space M of sheaves on S
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with pure one-dimensional support in the linear system |%?|. The moduli space
M admits a Lagrangian fibration over |%8?|. In Sect. 5.2 we construct an injective
homomorphism g : Q, — O(A), whose image is contained in the subgroup of
the monodromy group which stabilizes «. We get an action of Q, on the period
domain 9;, which lifts to an action on connected components Dﬁg . of the moduli
space of marked pairs given in Eq. (4.6). We then show that the fibration ¢ by Tate-
Shafarevich lines is g(Q)-invariant. In Sect. 5.3 we prove that the g(Q,)-orbit of
every point in a non-special Tate-Shafarevich line is dense in that line. Consequently,
the non-special Tate-Shafarevich line ¢! (£) contains the dense orbit g(Q,)7(£) of
periods of marked pairs in Sﬁg | admitting a Lagrangian fibration.

Conventions: The discussion in the current Sect. 5 concerns only period domains,
so we are free to choose the embedding ¢. When we consider in subsequent sections
a component SJI% of the moduli space of marked pairs (X, ) of K3M-type, together
with such an embedding ¢t : A — A, we will always assume that ¢ is chosen so
that ¢ o 1 belongs to the canonical O(A)-orbit 1y of Theorem 2.2, for all (X, 7) in
93?91. We choose the orientation of the positive cone %, of A, so that « belongs
to the boundary of the positive cone in A"!(£,R), for every £ € 9;. We choose
the orientation of the positive cone ‘JZA“, so that v belongs to the positive cone

in A}ﬂl (£, R), for every £ € .Q;l Note that the composition aj— N ,Bj: — A3

induces an isometry from Q, := a+/Za onto ﬁjkz, by Lemma 4.1. The choice of
orientation of the positive cone of A3 determines an orientation of the positive cone

of Q.

5.1 A Period of a Lagrangian Fibration in Each
Tate-Shafarevich Line

Choose a class y in A satisfying (y, ) = —1 and (y,y) = 0. Note that 8 and y
span a unimodular sub-lattice of A of signature (1, 1). We construct next a section
of the affine bundle ¢ : £2,1. — £2p,, given in Eq. (4.3), in terms of y. We have the
following split short exact sequence.

0 7B B Lo Ay 0.
A 5.1
e/ \& o

Above, 0,(x) = —(x,y)B, and 7,(y) = y + (¥, y)B, where y is any element of
,31: satisfying j(7) = y. One sees that 7, is well defined as follows. If y; and
satisfy j(yx) = y, then the difference [y; + (y1,y)B] — [V2 + (V2, ¥)B] belongs to
the kernel of j and is sent to 0 via o,, so the difference is equal to 0. Note that 7, is
an isometric embedding and its image is precisely {f, y}j:.
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We regard 2 Ziy as the period domain for semi- polarized K3 surfaces, with a nef
2n—2
2112 E
o 7, induces an isometric embeddmg of O, in af. We get a

line bundle of degree
1

via the isomorphism v+ A = Qo of Lemma 4.1. The

homomorphism ¢~
section

T, 1 Q4 - 28 (5.2)
of g : Q;’L — Q(j)'u. Following is an explicit description of 7,. Let £ be a period in
.an. Choose a period £ in .onl satisfying ¢(¢) = £. Let x be a non-zero element
of the line £ in f ® C. Then

7, (£) = spanc{x + (¢1(x), y)o}. (5.3)

We see that y belongs to A"! (t,(£)), for every £ in .Q'Q"d.

Fix a period £ in £2 Z?lw We construct next a marked pair (Mg (1), n;) with period
7,(£), such that 7y («) induces a Lagrangian fibration. Let S be a K3 surface and
n : H*(S,Z) — Ay a marking, such that the period n(H?>°(S)) is £. Such a
marked pair (S, n) exists, by the surjectivity of the period map. Extend 7 to the
Hodge isometry

i H*S.Z)— A,

given by 7((0,0,1)) = B, 7((1,0,0)) = y, and 7 restricts to H?*(S,Z) as %, o 1.
We have the equality v = o0, (v) + 7, (v) = —=(y,v)B + 7, (v). Seta := —(y,v) and

= (0,77'(¥),a). Then #(u) = v. We may choose the marking 7 so that the class
n~!(v) is nef, possibly after replacing n by 47 o w, where w is an element of the
group of isometries of H?(S, Z), generated by reflections by —2 curves [2, Ch. VIII
Prop. 3.9]. Choose a u-generic polarization H of S. Then My (1) is a projective
irreducible holomorphic symplectic manifold. Let

0 :ut - H*My(u),7)

be Mukai’s isometry, given in Eq. (3.1). We get the commutative diagram:

A : S —— |
mT TIzT T 5.4
~1
HAX(My(u),Z) 2 u* — S~ H*(S,Z

where 7, is the restriction of 7 and ; = t~' o1, 06~". Note that n,(6(0,0, 1)) = .
Let L be the saturation in H*(S, Z) of the sub-lattice spanned by (0,0, 1) and u.
Let b be an integer satisfying ab = 1 (modulo ). The monodromy invariant
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[L,u](6(0,0,1)) of Lemma 2.5 is the isometry class of the pair (L, 4, (d, b)), by
the commutativity of the above diagram. Furthermore, 1; is a Hodge isometry with
respect to the Hodge structure on A induced by 7, ({). In particular, (Mg (1), n1)
is a marked pair with period 7, (£). Example 3.1 exhibits (0,0, 1) as the class
7*¢1(0) ga|(1)), for a Lagrangian fibration 7 : My (u) — |24 |, where .Z is the
line bundle over S with class 7! (£).

Remark 5.1. The isometry 1, is compatible with the orientations of the positive
cones, the canonical one of H?(M (1), Z) and the chosen one of A. Indeed, it maps
the class (0, 0, 1), on the boundary of the positive cone of H'!'(My (1), R), to the
class « on the boundary of the positive cone of A"!(z,(£),R). The composition
ii o 8~ in Diagram (5.4) belongs to the canonical orbit ¢ My ) of Theorem 2.2, by
[22, Theorem 1.14]. The commutativity of the Diagram implies that the isometric
embedding ¢ o 77; also belongs to the orbit ¢, ().

5.2 Monodromy Equivariance of the Fibration
by Tate-Shafarevich Lines

Denote by O(A);v the subgroup of O(A)* stabilizing both f and v. Following is
a natural homomorphism

h: O(A)f, — O(Aks)s. (5.5)

If ¥ belongs to O(A);v, then ¥ (B) = B and ,le: is ¥-invariant. Thus v induces an
isometry h(Y) of Az 1= ,Bj: /7Z,B. We construct next a large subgroup in the kernel
of h.

Given an element z of A, orthogonal to B and v, define the map g : A—> A by

.00 = x—(x,ﬂ)z+[(x,z)—%(x,m(z,z)} .

Lemma 5.2. The map g, is the unique isometry in O(/i)ﬁ,v, which sends y to an
element of A congruent to y + z modulo 7B and belongs to the kernel of h. The
isometry g, is orientation preserving.

Proof. We first define an isometry f with the above property, then prove its unique-
ness, and finally prove that it is equal to g.. Set y1 1=y + z + [(1,2) + 1(z. 2)] B-
Then (y1,71) = 0, (y1, 8) = —1, and y, is the unique element of A satisfying the
above equalities and congruent to y + z modulo Zf. Define 6, : A— 7B + Zy
by 6, (x) := —(x, B)y — (x,y)B. We get the commutative diagram with split short
exact rows:
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Oy Ty
0—>7ZB+7Zy A—To A 0
l J{f iid
0——=ZB+7Zn A Az 0

Above 7, and j are the homomorphisms given in Eq. (5.1), J(x) = j(x+(x, B)y),
and 6,,, 7,,, and fl are defined similarly, replacing y by y,. The map f is defined
by f(B) =B, f(y) =yi,and f(7,(y)) = T),(y). Then f is clearly an isometry.

The isometry f can be extended to an isometry of Ay and we can continuously
deform z to 0 in {8, v}* ®7z R, resulting in a continuous deformation of f to the
identity. Hence, f is orientation preserving.

Note the equalities 6, (v) = —(v, )8 = —(v, y1)B = 0y, (v), where the middle
one follows from that fact that both z and f are orthogonal to v. We get the equality

Z,(0) =v—56,00) =v—25, () = T, (/).

Thus f(v) = vand f belongs to O(A)Eiv. Let x be an element of ,BJ-. Then f(x) =
j(x) = ji(x). Set y := j(x). Now 7,(y) = 7,(y) modulo Zg, by definition of
both. Hence, /(f) is the identity isometry of A;.

Let f’ be another isometry of A satisfying the assumptions of the Lemma. Then
f'(y) = 1, by the characterization of y; mentioned above. Set e := f~!o f/.
Then e(B) = B, e(y) = y, e(v) = v,and h(e) = id. Given x € B+, we get that
e(x) = x modulo ZB. Now (e(x),y) = (e(x),e(y)) = (x,y). Thus, e restricts to
the identity on S1. We conclude that e is the identity of A, as the latter is spanned
by y and B+. Thus f' = f.

It remains to prove the equality f = g,. We already know that f(y) = y; =
g.(y)and f(B) = B = g.(B). Given y € Ay, we have

&G0 =5,0) + @().28 =5, (y) = f(T, ).

Hence, g, = f. O
Let

g:ax — O(A)],

be the map sending z to g,;). Denote by Mon*(A, 1) the subgroup of OF(A) of
isometries stabilizing the orbit O(A).. Note that 0(/1)3’ is conjugated via ¢ onto
Monz(A, t), if n = 2, and to an index 2 subgroup of Monz(A, ), ifn > 2 [21,
Lemma 4.10]. Let Mon*(A, 1), be the subgroup of Mon*(A, ) stabilizing a.
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Lemma 5.3. (1) The map g is a group homomorphism with kernel Zo. It thus
factors through an injective homomorphism

g 04 — Mon*(A, ).
(2) Let z be an element of a7 and [7] its coset in Qy. Then gy : ot — at
x eattox + (x,2)a.
(3) The map q : .Q;_ — .qu is Mon® (A, 1)4-equivariant and it is invariant with
respect to the image g(Qy) C Mon*(A,1)g of .
(4) The image of g is equal to the kernel of the homomorphism h, given in Eq. (5.5).

sends

Proof. Part (1) follows from the characterization of g, in Lemma 5.2. Part (2) is
straightforward as is the Mon?(A , t)-equivariance of ¢. The g(Q,)-invariance of ¢
follows from part (2). Part (3) is thus proven.

Part (4): The image of g is contained in the kernel of /2, by Lemma 5.2. Let f €
O(A)ﬁ,v belong to the kernel of /. Set y; := f(y) andz := y; — y. Then (y;, B) =
(f).B) = (f(¥), f(B)) = (v.p) and similarly (y1,v) = (y,v). Hence, (z, B) =
0 and (z,v) = 0. The isometry g, is thus well defined and it is equal to f, by
Lemma 5.2. O

5.3 Density

A period £ in £24,, is said to be special, if it satisfies the condition analogous to the
one in Definition 1.1. We identify £2p, as a submanifold of §2,,,, via Lemma 4.1.
Note that a period £ € £2,.1 is special, if and only if the period ¢ () is.

Lemma 5.4. 1. g(Q.) has a dense orbit in g~ (£), if and only if £ is non-special.
2. If g(Qy) has a dense orbit in g~ (£), then every g(Qg)-orbit in g~ (£) is dense.

Proof. Part 2 follows from the description of the action in Lemma 5.3 part 2. We
prove part 1. Fix a period £ such that g(£) = £ and choose a non-zero element ¢ of
the line £ in aj ®z C. Then ¢! (£) = P[Ca + Ct] \ {P[Ce]} and gpj(ac + 1) =
(a + (t.z))a + t, by Lemma 5.3 part 2. The fiber ¢! (£) has a dense g(Q,)-orbit,
if and only if the image of

(t,0): Oy —> C (5.6)

is dense in C. B

Suppose first that £ is special. Set V := [{ €] N [Q, ®7z R]. Let A be a non-zero
elementin V' N Q. There exists an element ¢ € £, such that A = ¢ + 7. Given an
elementz € Qy, then2Re(z,t) = (z,1)+(z, 1) = (z, A) is an integer. Thus, Re(z, 1)
belongs to the discrete subgroup %Z of R. Hence, the image of the homomorphism
(5.6) is not dense in C.
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Assume next that £ is non-special. Denote by ©(£) C Q, the lattice orthogonal
to the kernel of the homomorphism (5.6). ©(£) is the transcendental lattice of the
K 3-surface with period £. We know that & (£) has rank at least two, and if the rank
of ®({) is 2, then the Hodge decomposition is defined over QQ and so £ is special.
Thus, the rank of ®({) is at least three. Let G C ©(£) be a co-rank 1 subgroup.
We claim that the image (¢, G), of G via the homomorphism (5.6), spans C as a
2-dimensional real vector space. The latter statement is equivalent to the statement
that the image of G in V*, under the map z > (z, ®) which has real values on V,
spans V' *. The equivalence is clear considering the following isomorphisms of two
dimensional real vector spaces:

5

C <2 Homg(¢,C) —~ Homp (£,R) —— Homg(V,R) = V*,

where ev, is evaluation at 7, Re takes (z, ®) to its real part Re(z,®), and p* is
pullback via the projection p : ¥V — £ on the (2,0) part. Assume that the
image of G in V* spans a one-dimensional subspace W. Let U be the subspace
of V' annihilated by W, and hence also by (z,®), z € G. Then the kernel of the
homomorphism Ag; — U*, given by z > (z, ®), has co-rank 1 in Agsz. It follows
that the decomposition Ax3 @z R = U @ U+ is defined over Q. Thus, U N Ags
is non-trivial and £ is special. A contradiction. Thus, indeed, the image (¢, G) of G
spans C. Let Z C C be the image (¢, ©@({)) of ®(£) via the homomorphism (5.6).
We have established that Z satisfies the hypothesis of Lemma 5.5 below, which
implies that the image of the homomorphism (5.6) is dense in C. O

Lemma 5.5. Let Z C R? be a free additive subgroup of rank > 3. Assume that any
co-rank 1 subgroup of Z spans R? as a real vector space. Then Z is dense in R2.

Proof. Let X be the set of all bases of R2, consisting of elements of Z. Given a
basis B € X, B = {z1, 22}, set |B| = k1| + ko|. Set I = inf{|f : B € X}. Note
that the closed parallelogram Pg with vertices {0, z, 22, 21 + z2} has diameter < |§|.
Furthermore, every point of the plane belongs to a translate of Pg by an element of
the subset spany{z;, 22} of Z. Hence, it suffices to prove that / = 0.

The proof is by contradiction. Assume that / > 0. Let 8 = {z;,z,} be a basis
satisfying I < |f| < %I . We may assume, without loss of generality, that [j| > [z

We prove next that there exists an element w € Z, such that w = ¢jz1 + 222,
where the coefficients ¢; are irrational. Set r := rank(Z). Let z3, . .., 7, be elements
of Z completing {z;,z>} to a subset, which is linearly independent over Q. Write
Zj = ¢j121 + ¢jp2, for 3 < j < r. Assume that c; are rational, for 3 <
Jj =< r. Then there exists a positive integer N, such that Nc; are integers, for
all 3 < j <r.Then

{z2,Nz3 — Nc3 121, - .., Nz, — Neyazi}

spans a co-rank 1 subgroup of Z, which lies on Rz,. This contradicts the assumption
on Z. Hence, there exists an element w € Z, such that w = c1z; + ¢222, where the
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coefficient ¢, is irrational. Repeating the above argument for c,, we get the desired
conclusion.

Choose an element w as above. By adding vectors in span,{zi, 22}, and possibly
after changing the signs of z; or z, we may assume that w = cjz; + 222, with
0<c < % and0 < ¢; < % Then w belongs to the parallelogram %Pﬁ with vertices
HUE # }.1If ¢ and ¢, are both larger thim % replace w by z; +2z,—2w. We may

thus assume further, that at least one ¢; is < 3. In particular, MW <cikil+cakd <

3 k| . Consider the new basis B := {w. z,} of R%. Then ‘5) =W+kd < 2kil+kd =
1Bl — % kil < % |8] < 1. We obtain the desired contradiction. O

Denote by J, C £2,. the union of all the g(Q,) translates of the section T,
constructed in Eq. (5.2) above.

Joi= U & ] (28,)]

y€0Qq

One easily checks that g o T, = 75, where § 1= y + 1(2) + (y,1(2)) 8 + @,B, for
allz € aj, and so J, is independent of the choice of y.

Proposition 5.6. (1) J, is a dense subset of .Q:l.

(2) If V is a g(Qq)-invariant open subset of .Q:' , which contains J,, then V
contains every non-special period in .Q:L.

(3) For every £ € J,, there exists a marked pair (M, n), consisting of a smooth
projective irreducible holomorphic symplectic manifold M of K3U-type and
a marking n : H>(M,Z) — A with period { satisfying the following
properties.

(a) The compositionion : HX(M,7) — A belongs to the canonical O(A)-orbit
ty of Theorem 2.2.

(b) There exists a Lagrangian fibration & : M — P", such that the class n~! ()
is equal to w*c 1 (Opn (1)).

Proof.

(1) The density of J, follows from Lemma 5.4.

(2) V intersects every non-special fiber ¢~!(£) in a non-empty open g(Qq)-
equivariant subset of the latter. The complement ¢~'(£) \ V is thus a closed
g(Qy)-equivariant proper subset of the fiber. But any g(Q,)-orbit in the non-
special fiber ¢! (£) is dense in ¢! (£), by Lemma 5.4. Hence, the complement
g~ '(¢) \ V must be empty.

(3) If £y belongs to the section t, (‘Qa)’ then such a pair (M, n) := (Myu (w), n1)
was constructed in Diagram (5.4) as mentioned in Remark 5.1. If £ = g,({o),
z€ay,set (M,n) = (My(u),g.om). o
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6 Primitive Isotropic Classes and Lagrangian Fibrations

We prove Theorem 1.3 in this section using the geometry of the moduli space
9312 | given in Eq. (4.6). Recall that 9312 | is a connected component of the moduli
space of marked pairs (X,n) with X of K3I-type and such that n~!(a) is a
primitive isotropic class of Hodge type (1, 1) in the boundary of the positive cone
in H'1(X,R).

Fix a connected moduli space ﬁﬁg 1 as in Eq. (4.6). Denote by .Z -1, the line
bundle on X with ¢;(£) = n~'(). Let V be the subset of MY | consisting of all
pairs (X, 1), such that £ -1, induces a Lagrangian fibration.

Theorem 6.1. The image of V via the period map contains every non-special
period in .Q:l.

Proof. Let (X,n) be a marked pair in 9312 . The property that n~!(a) is the
first Chern class of a line-bundle . on X, which induces a Lagrangian fibration
X — |£]*, is an open property in the moduli space of marked pairs, by a result of
Matsushita [27]. V' is thus an open subset.

Choose a primitive embedding ¢t : A — A with the property that ¢ o
belongs to the canonical O(A)-orbit tx of Theorem 2.2, for all (X, ) in MY, Let
Mon*(A, 1) and its subgroup Mon*(A, 1), be the subgroups of O (A) introduced
in Lemma 5.3. The component smg of the moduli space of marked pairs is invariant
under Mon?(A, 1), by Theorem 2.4. The subset Dﬁg . of MY is invariant under

the subgroup Mon*(A,t),. Hence, the subset V is Mon*(A,t), invariant. The
construction in Sect. 5.1 yields a marked pair (M (1), n1) with period in the image
of the section 7, : 525 — .Q;_, given in Eq. (5.2). Furthermore, the class 17" (@)
induces a Lagrangian fibration of My (u). The marked pair (Mg (1), ;) belongs to
sma |, by Proposition 4.5 (Remark 5.1 verifies the conditions of Proposition 4.5).

Hence, (My(u),n1) belongs to V' and the image of the section 7, : an —
.Q;'J_ is thus contained in the image of V via the period map. The period map

Py is Mon*(A, ), equivariant and a local homeomorphism, by the Local Torelli
Theorem [4]. Hence, the image Py(V) is an open and Mon?(A, t), invariant subset
of .Q;l. Any Mon*(A, 1), invariant subset, which contains the section r),(.Qé'a),
contains also the dense subset J, of Proposition 5.6. Py(V') thus contains every
non-special period in .Q;l , by Proposition 5.6 (2). O

We will need the following criterion of Kawamata for a line bundle to be semi-
ample. Let X be a smooth projective variety and D a divisor class on X. Set
v(X, D) := max{e : D° # 0}, where = denotes numerical equivalence. If D = 0,
we set V(X, D) = 0. Denote by ®;p : X -> |kD|" the rational map, defined
whenever the linear system is non-empty. Set (X, D) := max{dim ®p(X)

k > 0}, if |k D] is non-empty for some positive integer k, and (X, D) := —oo,
otherwise.
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Theorem 6.2 (A special case of [16, Theorem 6.1]). Let X be a smooth projective
variety with a trivial canonical bundle and D a nef divisor. Assume that v(X, D) =
k(X,D)andk(X, D) > 0. Then D is semi-ample, i.e., there exists a positive integer
k such that the linear system |k D | is base point free.

An alternate proof of Kawamata’s Theorem is provided in [11]. A reduced and
irreducible divisor E on X is called prime-exceptional, if the class e € H*(X,Z)
of E satisfies (e,e) < 0. Consider the reflection Rg : H*(X,Z) — H*(X,Z),
given by

2(x,e)
.0 e.

It is known that the reflection Rg by the class of a prime exceptional divisor E
is a monodromy operator, and in particular an integral isometry [24, Cor. 3.6]. Let
W(X) C O(H?(X,Z)) be the subgroup generated by reflections Rg by classes
of prime exceptional divisors £ C X. Elements of W(X) preserve the Hodge
structure, hence W(X) acts on H'!(X,Z).

Let Pexy C H'!(X,Z) be the set of classes of prime exceptional divisors. The
Sfundamental exceptional chamber of the positive cone % is the set

Re(x) =x—

FE = laeCy : (a,e) >0, foralle € Pexy}.

The closure of % & in €y is a fundamental domain for the action of W(X) [23,
Theorem 6.18]. Let f : X -» Y be a bimeromorphic map to an irreducible
holomorphic symplectic manifold Y and J#y the Kihler cone of Y. Then f*.¢y
is an open subset of .# & . Furthermore, the union of f*.#y, as f and Y vary over
all such pairs, is a dense open subset of .F &y, by a result of Boucksom [6] (see also
[23, Theorem 1.5]).

Proof (of Theorem 1.3). Step 1: Keep the notation in the opening paragraph of
Sect.5. Choose a marking n : H?*(X,Z) — A, such that ¢ o 5 belongs to the
canonical O(A)-orbit ty. Set o := 5(c1(.Z)). Then (X, ) belongs to a component
Dﬁg |, of the moduli space of marked pairs of K3/")-type considered in Theorem 6.1.
We use here the assumption that % is nef in order to deduce that n™' («) belongs to
the boundary of the positive cone of X, used in Theorem 6.1.

The period Py(X, n) is non-special, by assumption. There exists a marked pair
(Y, y) in M satisfying Po(Y,¥) = Po(X,n), such that the class ¢~ ()
induces a Lagrangian fibration, by Theorem 6.1. The marked pairs (X,7) and
(Y, ¥) correspond to inseparable points in the moduli space Dﬁg |, by the Global
Torelli Theorem 4.3. Hence, there exists an analytic correspondence Z C X x Y,
Z = Zf:o Z; in X x Y, of pure dimension 27, with the following properties, by
results of Huybrechts [13, Theorem 4.3] (see also [23, Sec. 3.2]).
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(1) The homomorphism Z, : H*(X,Z) — H*(Y,Z) is a Hodge isometry, which
is equal to 1! o 7. The irreducible component Z, of the correspondence is the
graph of a bimeromorphicmap f : X -> Y.

(2) The images in X and Y of all other components Z;, i > 0, are of positive
co-dimension.

Step 2: We prove next that the line bundle . over X is semi-ample. We consider
separately the projective and non-algebraic cases.

Step 2.1: Assume that X is not projective.’ We claim that fi(c1(Z)) = v (a).
The Neron-Severi group NS(X') does not contain any positive class, by Huybrechts
projectivity criterion [13]. Hence, the Beauville-Bogomolov-Fujiki pairing restricts
to NS(X) as a non-positive pairing with a rank one null sub-lattice spanned by
the class ¢1(-¢). Similarly, the Beauville-Bogomolov-Fujiki pairing restricts to
NS(Y) with a rank one null space spanned by ¥ ~'(a). Hence, fx(ci(Z£)) =
+v (o). Now ¥ ~! () is semi-ample and hence belongs to the closure of .7 &Y.
The class ¢;(¥) is assumed nef, and hence belongs to the closure of .Z &Y.
The bimeromorphic map f induces a Hodge-isometry fi : H*(X,Z) — H*(Y,Z),
which maps .7 &y onto . &y [6]. Hence, f«(c1(-£)) belongs to ZEy as well. We
conclude the equality fx(c1(Z)) = v (a).

Let .% be the line bundle with ¢;(%) = ¥~ !(«). The bimeromorphic map
f : X -> Y is holomorphic in co-dimension one, and so induces an isomorphism
fi 1 | = || of the two linear systems. Denote by @, : Y — |%|" the
Lagrangian fibration induced by .%,. We conclude that |.#| is n dimensional and the
meromorphicmap @¢ : X -» |.Z|" is an algebraic reduction of X (see [8]). By def-
inition, an algebraic reduction of X is a dominant meromorphicmap  : X -> B to
a normal projective variety B, such that 7* induces an isomorphism of the function
fields of meromorphic functions [8]. Only the birational class of B is determined by
X . Fibers of the algebraic reduction 7 are defined via a resolution of indeterminacy,
and are closed connected analytic subsets of X. In our case, the generic fiber of
@ » is bimeromorphic to the generic fiber of @,. The generic fiber of @4, is a
complex torus, and hence algebraic, by [7, Prop. 2.1]. Hence, the generic fiber of
@ has algebraic dimension n. It follows that the line bundle . is semi-ample, it
is the pullback of an ample line-bundle over B, via a holomorphic reduction map
m : X — B which is a regular morphism, by [8, Theorems 1.5 and 3.1].

Step 2.2: When X is projective there exists an element w € W(X), such that
Huybrecht’s birational map f : X -» Y satisfies f*oy ' on = w, by [23, Theorem
1.6]. Set ay := n~ () and ary := ¥~ (a). We get the equality w(ay) = f*(ay).

Let ﬁx be the closure of the fundamental exceptional chamber .#&x in
H''(X,R). The class oy is nef, by assumption, and it thus belongs to .Z & x. We
already know that oy is the class of a line bundle, which induces a Lagrangian

31 thank K. Oguiso and S. Rollenske for pointing out to me that in the non-algebraic case the result
should follow from the above via the results of Ref. [8].
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fibration. Hence, f*(ay) belongs to .# & x. The class w(ox) thus belongs to the
intersection w (355;() NZEy.
Let J be the subset of Pexy givenby J = {e € Pexy : (e,ay) = 0}. Denote

by W; the subgroup of W(X) generated by reflections R,, for all e € J. Then W;
is equal to

{(we W(X) : way) € FEyx),

by a general property of crystalographic hyperbolic reflection groups [12, Lecture 3,
Proposition on page 15]. We conclude that w(ox) = oy and

ax = f"(ay). 6.1)

We are ready to prove* that . is semi-ample. The rational map f is regular in
co-dimension one. The map f thus induces an isomorphism f,, : [.£"| — |.£}"],
for every integer m. Hence, k (X, %) = «(Y,%,) = n. Any non-zero isotropic
divisor class D on a 2n dimensional irreducible holomorphic symplectic manifold
satisfies v(X, D) = n, by a result of Verbitsky [41]. Hence, v(X,.Z) = n. The line
bundle .Z is assumed to be nef. Hence, . is semi-ample, by Theorem 6.2.

Step 3: We return to the general case, where X may or may not be projective.
In both cases we have seen that there exists a positive integer m, such that the linear
system |.Z"| is base point free and @ m is a regular morphism. Furthermore, the
bimeromorphic map f : X -» Y is regular in co-dimension one and thus induces
an isomorphism f; : |.Z*| — |.$2k|, for every positive integer k. Denote by f* :
|-Z5 1" — |.£%|" the transpose of fi. We get the equality @y = f* o ® i o f. for
all k. Let V, : | 4|" — |£4"|™ be the Veronese embedding. We get the equalities

Vo (ff) " o®y =Vyobgyof =Cgpof=(f)"oPym (62

Now, V,, o (/)7 : |.L]" — |-£"|" is a closed immersion and the morphism
on the right hand side of (6.2) is regular. Hence, the rational map @« is a regular
morphism. The base locus of the linear system |.Z| is thus either empty, or a divisor.
The latter is impossible, since f is regular in co-dimension one and |-%5| is base
point free. Hence, |-Z| is base point free. O

Let X and .Z be as in Theorem 1.3, except that we drop the assumption that .#
is nef and assume only that ¢;(.Z’) belongs to the boundary of the positive cone.
Assume that X is projective.

4] thank C. Lehn for Ref.[18, Prop. 2.4], used in an earlier argument, and T. Peternell and Y.
Kawamata for suggesting the current more direct argument.
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Theorem 6.3. There exists an element w € W(X), a projective irreducible
holomorphic symplectic manifold Y, a birational map f : X -> Y, and a
Lagrangian fibration w : Y — P", such that w(&) = f*n* Opn (1).

Proof. Let (Y,y) be the marked pair constructed in Step 1 of the proof of
Theorem 1.3. Then Y admits a Lagrangian fibration 7 : ¥ — P" and the class
¥ c1(Opn (1)) was denoted ay in that proof. In step 2.2 of that proof we showed the
existence of a birational map f : X -» Y and an element w € W(X), such that
w(c1 (X)) = f*(ay) (see Equality (6.1)). O

7 Tate-Shafarevich Lines and Twists

7.1 The Geometry of the Universal Curve

Let S be a projective K3 surface, d a positive integer, and .Z a nef line bundle on S
of positive degree, such that the class ¢, () is indivisible. Set n := 1 + w.
Let € C S x |.2“| be the universal curve, 7; the projection from § x |.£¢| to the
i-th factor,i = 1,2, and p; the restriction of 77; to ¥’. We assume in this section the

following assumptions about the line bundle .Z.

Assumption 7.1. (1) The linear system |.£?| is base point free.

(2) The locus in |.L%|, consisting of divisors which are non-reduced, or reducible
having a singularity which is not an ordinary double point, has co-dimension
at least 2.

Remark 7.2. Assumption 7.1 holds whenever Pic(S) is cyclic generated by .. The
base point freeness Assumption 7.1 (1) follows from [32, Prop. 1]. Assumption 7.1
(2) is verified as follows. If a+b = d,a > 1,b > 1, then the image of |.£*| x |$b|
in |.Z?| has co-dimension 2ab (”d;zl) — 1. The co-dimension is at least two, except
in the case (n,d) = (5,2). In the latter case |.#| = P?, |.#?| = PP° and the generic
curve in the image of |.Z| x |.Z| in |.£?| is the union of two smooth curves of genus
2 meeting transversely at two points. Hence, Assumption 7.1 (2) holds in this case
as well.

The morphism p; : ¥ — S is a projective hyperplane sub-bundle of the trivial
bundle over S with fiber |.Z“|, by the base point freeness Assumption 7.1 (1).
Assumption 7.1 (2) will be used in the proof of Lemma 7.9. Consider the exponential
short exact sequence over ¢

0—>2Z— Og— Oy — 0.

We get the exact sequence of sheaves of abelian groups over |.£|

d
O—>R1p2*Z—>R1p2*ﬁ<g—>Rlpz*ﬁ(;ﬁ)Rzpz*Z—>O, (7.1)
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where we work in the complex analytic category. Note that deg above is sur-
jective, since R?p,, Oy vanishes. Set 11 := H'(|.Z?|,R'p,, 0F) and 11 :=
HY(|Z|, R p», Og). Set Br'(S) :== H*(S, 0%) and Br'(¢) := H* (¥, 0%).

Lemma 7.3. (1) There is a natural isomorphism

R'py, Oy = T*| 29| @c H*(S)*.

(2) 101 is naturally isomorphic to H%*(%). Consequently, 11 is one dimensional.
(3) H*(€,7) decomposes as a direct sum

H*(¢.Z) = pfH*(S.Z) ® py H*(|.£"|. Z).
The groups H' (€, Z) vanish for odd i. The Dolbeault cohomologies H (%)
vanish, if |p — q| > 2.
(4) The pullback homomorphism p} : H*(S,0%) — H?(¢,0%) is an isomor-
phism. The Leray spectral sequence yields an isomorphism

b: HX(%.05) — H'(Z2|. R p». 67).

Consequently, we have the isomorphisms

[

BY(S) —s BF (%) —2s 1IL.

14
14

Let .Z be a sheaf of abelian groups over €. Let FPHX(¥,.7) be the
Leray filtration associated to the morphism p, : ¥ — |.Z9| and EL! :=
FPHPY(G, F)/FPTYHPY(E, F) its graded pieces. Recall that the E3“
terms are EJY = HP(| L, Rip,,.7) and the differential at this step is
dy: EPY — EJTRN
Proof. (1) We have the isomorphism O ya|(¢) = L @ny O\ 4)(1). Apply

the functor R, to the short exact sequence 0 — Oy pi| —> Ogypa|(€) —
O (%) — 0 to obtain the Euler sequence of the tangent bundle.

0= Olga) > H(S. L) ®c O)44)(1) > T|L4| — 0.

Now 0% (%) ®@c H?>?(S) is isomorphic to the relative dualizing sheaf w,,. We
get the isomorphisms

R'py, O¢ = [Rps, 04 (€) @c H*(S)]* = [R° p2, O (€)]* ®c H*(5)*
~ T*|.2% @c H*(S)*.

(2) R?p,, Oy vanishes, since p, has one-dimensional fibers. H?(|.£|, p1, O)
vanishes, since py, Oy = 0| ga). The latter isomorphism follow from the
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fact that p, has connected fibers. We conclude that H?(%, Oy) is isomor-
phic to the E ! graded summand of its Leray filtration. The differential

: H'(|.Z7), R1 D2, ﬁw) — H3(|.$d| pz* Oy ) vanishes, since H%3(].27|)
vanlshes Hence, the E1 term 101 := H'! (27|, R p,, Oy) is isomorphic to
H*(€, Og).

(3) The statement is topological and so it suffices to prove it in the case where
Pic(S) is cyclic generated by .Z. In this case .Z is ample, and so the line bundle
AN F SN | 4| (1) is ample. The Lefschetz Theorem on Hyperplane sections
implies that the restriction homomorphism H2(S x |.£¢|,Z) — H*(¢.Z) is
an isomorphism.

% is the projectivization of a rank n vector bundle F over S. Hence,
H*(%,7) is the quotient of H*(S,Z)[x], with x of degree 2, by the ideal
generated by Z:’;LOI ¢;(F)x'. The image of x in H*(%,Z) corresponds to the
class ¥ := ¢1(0%(1)) of Hodge type (1, 1). In particular, H*(%,Z) is a free
H*(S,7Z)-module of rank n generated by 1, X, ..., X

(4) The vanishing of H3(S,Z) and H*(%, Z) yields the commutative diagram with
exact rows:

0 —— H*(S,Z)/NS(S) —— H?(S,O5) —— H*(S,0}) —=0

|k
0 —— H?*(¢,Z)/NS(¢) — H* (¥, 0g) — H*(%,0%) —=0
Part (3) of the Lemma implies that the left and middle vertical homomorphism
are isomorphisms. It follows that the right vertical homomorphism is an
isomorphism as well.
The sheaf R?p,, 0 vanishes, by the exactness of R*p,, Oy — R>p>, O} —

R3 p,,7 and the vanishing of the left and right sheaves due to the fact that p, has
one-dimensional fibers. The sheaf p,, 07 is isomorphic to & since p, has

1R

|z
connected complete fibers. Thus, H?(%, 07%) is isomorphic to the kernel of the
differential

dy : Ell_ H (|$d| R pz*ﬁ%)%Eﬂ) H- (|$d| ﬁ|fd|) (7.2)

We prove next that d, vanishes. The co-kernel of d, is equal to F*H*(%, 07}). Now
F3H?3(%, 0%) is equal to the image of p5 : H3 (%4, 0%,,) — H(¥, 0%). We
have a commutative diagram

|24

H(%,0%) H(€,7)

pET p}‘T

H3 (29,07 ,,) — H*(1.29),2).

)
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The horizontal homomorphisms, induced by the connecting homomorphism of the
exponential sequence, are isomorphisms, since 1%3(%) = h%3(|.£?|) = 0 and
ho4(%) = h%*(29|) = 0. The right vertical homomorphism is injective. We
conclude that the left vertical homomorphism is injective. Hence the differential d,
in (7.2) vanishes and H2(¢, %) is isomorphism to H'(|-£4|, R' p,, 0%), yielding
the isomorphism b. O

Let ¥ C H?(S,Z) be the sub-lattice generated by classes of irreducible
components of divisors in the linear system |.Z?|. Denote by X1 the sub-lattice
of H?(S,Z) orthogonal to X.

Lemma 7.4. (1) The Leray filtration of H*(€ ,7) associated to p, is identified as
follows:

F*H*(¢.Z) = py H*(|.£“, 2),
F'HX¢.2) = psH*(.2].2) ® p} =™

(2) EVT = E& if (p,q) = (2,0), or (1, 1). Consequently, we get the following
isomorphisms.

B3 = HX (12|, po2) = py H*(|£7). ),
Ey = HY (1LY, R pp,7) = pr 5+,

(3) If the sub-lattice X is saturated in H*(S,Z), then H*(|.£?|, R' p»,7Z) van-
ishes.

Proof. (1), (2) The sheaf p,, Z is the constant sheaf Z, since p, has connected fibers.
Then E;° = H3(|.29],Z) = 0, and so EL} = E}' = H'(Z7], R p. Z).
EF? := H?(|.%£“|, p».Z) has rank 1 and it maps injectively into H2(%,Z), with
image equal to p* H2(|.£9|, Z). Thus, E;° = E2% and EL := F'H*(¢,2)/ E%®
is isomorphic to F'H*(¢,7)/ p3 H*(|-£?|, Z). Finally, Eg’z is the kernel of

dr s HY(|.L|, R p2, Z) — H*(|.L"|, R p». 7).

Thus, F'H?(%.,Z) is the kernel of the homomorphism H?*(¢,Z) —
H°(|.£?|, R*p», 7). The latter kernel is equal to pf X+ @ pyH*(|.£4|,Z), by
Lemma 7.3 (3). We conclude that F'H?(¢,Z)/p3 H*(|£“|,Z) is isomorphic to
both H'(|.£4|, R' p2,7Z) and p} Z+.

(3) The composition H*(¢,Z) — H°(R?’p,,7Z) < X* factors through
H?(S,7Z). If ¥ is saturated, then the composition is surjective, since H?(S,Z)
is unimodular. Thus, d2(),2 : HO(R?py,7Z) — H?*(R'p,,7Z) vanishes. The sheaf
P2, 7 is the trivial local system and the homomorphism H*(|.Z%|, p»,7) =
H*(|£,Z) — H*(¢,Z) is the injective pull-back homomorphism p}. Thus
the differential d22 1 HYX(R'p>,7Z) — H*(p,,7) vanishes. We conclude that
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E}' := H*(R'p,,7) is isomorphic to EZ'. Now EZ! vanishes, since H*(¢,Z)
vanishes. O

Let <7 be the kernel of the homomorphism deg, given in (7.1). Then </° is a
subsheaf of R! p, 0 and we get the short exact sequences

de
0—> o° — R'p,, 0F —> R2py, 7. —> 0, (7.3)
0— R'py,Z — R'py, Op — &/° — 0, 7.4)

and the long exact
o= HY(ZLY, R p2,2) — H' (1L, R p2, Og) —> H' (|L], %) — -+

Lemma 7.5. The group H°(|.Z?|, &°) is isomorphic to NS(S) N L. The com-
posite homomorphism
’

HA(S.Z) — H%(S) 55 HO2(%) = T — H'(|.2"|, &)

factors through an injective homomorphism from H*(S,7)/[Z+ + NS(S)] into the
kernel of the homomorphism H'(|.£?|, </°) — TIL

Proof. The space H°(|.Z“|,R'p,,Oy¢) vanishes, by Lemma 7.3 (1). Hence,
H(|£?], /%) is the kernel of the homomorphism H'(|.£?|.R'py,Z) —
I =~ H%%*(S). Compose the above homomorphism with the isomorphism
YLt =~ H'Y(|Z?,R'p,),Z) of Lemma 7.4 in order to get the isomorphism
H°(|.£%|, /%) = NS(S)n X+,

We have a commutative diagram with short exact rows

1 =~ J
0 NS(?)NEL il ker[H' (/) = H*(R' p2,2)] —0
i l 2.5
2
0 ——= 55— H2(5,05) H(8,05) 0

The top row is obtained from the long exact sequence of sheaf cohomologies
associated to the short exact sequence (7.4). The left vertical homomorphism
is injective and the right vertical homomorphism is surjective. The co-kernel of
the former is isomorphic to the kernel of the latter and both are isomorphic to
H?(S,7)/[Z+ + NS(S)]. Setting

II° := ker[H'(«°) — H*(R'p»,7)], (7.6)

we see that the right vertical homomorphism fits in the short exact sequence



Lagrangian Fibrations of Holomorphic-Symplectic Varieties of K 3["-Type 273

H*(S,7) 0
s 2 O — T —> 0. (7.7)
L+ NS(S)

The statement of the Lemma follows. ]

Let I1I° be the group given in Eq. (7.6). Classes of I1I represent torsors for the
relative Picard group scheme, while classes of I1I° represent torsors for the relative
Pic® group scheme. This comment will be illustrated in Example 7.8 below.

7.2 A Universal Family of Tate-Shafarevich Twists

Let S be the marked K3 surface in Diagram (5.4) and My («) the moduli space of
H -stable sheaves of pure one-dimensional support on S in that Diagram. Recall that
c1(u) is the first Chern class of .Z 4 for a nef line-bundle . on S, and the support
map 7 : My (u) — |£¢| is a Lagrangian fibration.

Let o be a section of R' p,, (02) over an open subset U of |24 |. Assume that &
is the image of a section & of R! p,, (0) over U. Then o lifts to an automorphism
of the open subset 7~ (U) of My (). This is seen as follows. Fix a point ¢ € |.£¢|
and denote by C; the corresponding divisor in S. Denote by o (¢) the image of o
in HI(C,, ﬁa) and by L, the line-bundle over C; with class o(f). A sheaf F
over C; is H-stable, if and only if F ® L, is H-stable, since tensorization by
L) induces a one-to-one correspondence between the set of subsheaves, which is
slope-preserving, since L, ;) belongs to the identity component of the Picard group
of C;.

Let s be an element of ITI°. We can choose a Cech 1-co-cycle o := {0y} for the
sheaf .7° representing s in ITI°, with respect to an open covering {U; } of |.£“|, such
that each o;; is the image of a section G;; of R! ps, (€y), since the homomorphism
R'p), (Og) — &/ is surjective. The co-cycle {o;;} may be used to re-glue the open
covering 7~ (U;) of My (u) to obtain a separated complex manifold M, together
with a proper map 7, : M, — |.Z?|. The latter is independent of the choice of the
co-cycle, by the following Lemma, so we denote it by

s My — |.£4). (7.8)

Lemma 7.6. Let 0 := {o;} and o' := {o}} be two co-cycles representing the
same class in 111°. Then there exists an isomorphism h : M, — M, satisfying the
equation 7ty o h = 1,. If the lattice X of Lemma 7.4 has finite index in NS(S), then
h depends canonically on o and ¢’.

Proof. There exists a co-chain & := {h;} in C°({U;}, &/°), such that h;0;; = ai/jh]"
possibly after refining the covering and restricting the co-cycles o and o’ to the
refinement. Each #; is the image of a section h; of R! p,, Oy, possibly after further
refinement of the covering, since the sheaf homomorphism R'p,, 0y — &7 is
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surjective. Hence, A; lifts canonically to an automorphism of 7! (U;). The co-chain
{h;} of automorphisms glues to a global isomorphism from M, to M,, by the
equality h;05 = ojh;.

If ' := {h!} is another co-chain satisfying the equality §(h) = o(o’)7",
then h~'A’ is a global section of .z7°. The assumption that X has finite index in
NS(S) implies that H°(.7?) vanishes, by Lemma 7.5. Hence & = h’ and the above
refinements are not needed. O

In the relative setting the above construction gives rise to a natural proper family
R A1 8% |24,

which restricts over {0} x |.Z%| to 7 : My(u) — |-Z%|, and over § € I to
i) - Mg — |.Z?|. Indeed, let ({Ui},0) be a Cech co-cycle representing a
non-zero class & in H'(|.-Z¢|, R p«Oy). Let

.11 - C (7.9)

be the function satisfying t(x)c = x. Then ({ﬁ x U}, exp(t6y)) is a global
co-cycle representing the desired family. Let

f -1

be the composition of 7 with the projection to .

Proposition 7.7. If the weight 2 Hodge structure of S is non-special, then M; is
Kdhler, for all s € T11°.

Proof. There is an open neighborhood of the origin in I, over which the fibers
of f are Kihler, by the stability of Kahler manifolds [42, Theorem 9.3.3]. Let j :

I — III° be the homomorphism given in Eq. (7.5) The kernel ker( ) is isomorphic
to the group [X+ 4+ NS(S)]/NS(S), by Lemma 7.5. As a subgroup of the base III
of the family f, the kernel ker(j) acts on the base. Let z be an element of ker(;)
and § an element of I11. The fibers M5 and M5, of f are both isomorphic to M
by Lemma 7.6. Let V' C III be the subset consisting of points over which the fiber
of f is Kihler. Then V' is an open and ker(j)-invariant subset of III. Note that
ker(j) is a finite index subgroup of H 2(S,7Z)/NS(S). The kernel ker(j) is a dense
subgroup of I, if and only if the image of H?(S,Z)/NS(S) is dense in H%%(S), by
Lemma 7.3 (4). This is indeed the case, by the assumption that the weight 2 Hodge
structure of S is non-special, and Lemmas 5.4 and 5.5. The complement V< of V'
in | I is ker(j) invariant. If non-empty, then V¢ is dense and closed and so equal to
I1I. But we know that V is non- -empty. Hence, V = 1. O

Example 7.8. Consider the case where d = 1 and Pic(S) is cyclic generated by
the line bundle .# of degree 2n — 2, n > 2. Then H?*(|.£?|, R p»,Z) vanishes, by
Lemma 7.4 (3), and I1I° = H!(</°). The linear system || consists of integral
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curves, and so we can find an open covering {U; } of |.Z|, and sections {; : U; — ¥,
such that p; o {; is the identity. Set D; := ¢;(U;). We get the line bundle
o ;! ;) (Di), which restricts to a line bundle of degree 1 on fibers of p; over points
of U;. Let h; be the section of R! p,, 07 over U; corresponding to ﬁpz—l(Ui)(Di) and
denote by & := {h;} the corresponding co-chain in C°({U;}, R' p>, ).

Consider the Lagrangian fibrations 7y : M£(0,.Z,y) — |Z| and m
My(0, %, x + 1) — |.Z|, for some integer y. The push-forward of every rank
1 torsion free sheaf on a curve in the linear system |.Z| is an .#-stable sheaf
on S, since the curve is integral. Hence, the section /; induces an isomorphism
hi : 7y (U) — n7'(U;). The co-boundary (8h); := h;h;! is a co-cycle in
Z'({U;}, o/°) representing a class s € III° mapping to the identity in III. The
Lagrangian fibration 7y : My — |.Z|, associated to the class s in Eq. (7.8) with
u= (0,242, x), coincides with 7; : M (0, Z, x+1) — |-Z|, by the commutativity
of the following diagram.

’lhj B

h;

1y | (U)) <—— 1y ' (Usy) — my ' (Uyy) —— 75 (U))

| g

17 (U)) <2 m (Uy) —4> 17 (U) — 77 (Uy).

The moduli spaces M (0,7, y) and M (0, %, x + 1) are not isomorphic for
generic (S, .Z), since their weight 2 Hodge structures are not Hodge isometric.

The kernel of IT1I° — III is cyclic of order 2n — 2, by the exactness of the
sequence (7.7). The class s constructed above generates the kernel. This is seen as
follows. The sheaf R? p,,Z is trivial, in our case, and the homomorphism deg, given
in (7.3), maps the 0-co-chain & to a global section of R?p,,Z, which generates
H°(R?p,,7). Hence, §h generates the image of the connecting homomorphism
H(R?p,,7) — H'(27°) associated to the short exact sequence (7.3). The latter
image is precisely the kernel of 111 — III.

7.3 The Period Map of the Universal Family is Etale

Denote by T, := ker[dm, : TM; — 7} T|£?|] the relative tangent sheaf of 7, :
M, — |.Z7.

Lemma 7.9. The vertical tangent sheaf Ty, is isomorphic to n*T*|.Z|.

Proof. Let sing(7y) be the support of the co-kernel of the differential d 7, : TM; —
7*T|.Z?|. We use Assumption 7.1 to prove that the co-dimension of sing(r;) in M,

is > 2. The generic fiber of m; is smooth, since M; is smooth. All fibers of 75 have
pure dimension 7 [29]. Hence, the only way sing(sr;) could contain a divisor is if 7
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has fibers with a non-reduced irreducible component over some divisor in |.£¢|. The
generic divisor in the linear system |.#*?| is a smooth curve, by Assumption 7.1 (1)
and [32, Prop. 1]. The fiber of 75, over a reduced divisor C € |.Z d |, is isomorphic to
the compactified Picard of C, consisting of .#-stable sheaves of Euler characteristic
x with pure one-dimensional support C, which are the push forward of rank 1
torsion free sheaves over C. If C is an integral curve, then the moduli space of
rank 1 torsion free sheaves over C with a fixed Euler characteristic is irreducible
and reduced [1]. If C is reduced (possibly reducible) with at worst ordinary double
point singularities, then the compactified Picard is reduced, by a result of Oda and
Seshadri [37]. Assumption 7.1 (2) thus implies that sing(7y) has co-dimension > 2
in M.

Let U be the complement of sing(sy) in M. The isomorphism TM; — T* M,
induced by a non-degenerate global holomorphic 2-form, maps the restriction of T,
to U isomorphically onto the restriction of 7*7*|.#“|. The isomorphism TM, —
T* M, must map T, as a subsheaf of the locally free 7*T|.#?|, by the fact that
sing(7ry) has codimension > 2. But T, is a saturated subsheaf of 7M. Hence, the
image of Ty, is also saturated in 7* My, and is thus equal to *T*|.£4|. |

When the K3 surface S is non-special, the fibers of the family f are irreducible
holomorphic symplectic manifolds, by Proposition 7.7 and the fact that Kéhler
deformations of an irreducible holomorphic symplectic manifold remain such [4].
Denote by

n: R2AZ — (A (7.10)

the trivialization, which restricts to the marking 7, in Diagram (5.4) over the point

0 € III. Let Py : IIT — 27 be the period map of the family f and the marking
S o

n.LetdPs : T:11 — H*°(M,)* ® H"!(M;) be the differential at § of the period

map.

Lemma 7.10. The differential dPy is injective, for all § in I, and its image is
equal to H**(M)* @ w* H"'(|.£7)).

Proof Let ¥ : H>(M)* ® H'(|Z¢.T*|£¢)) — H'(M,,T,,) be the
composition of

1@m} H> (M) *@H ' (|.£), T*|.£"))—H"(M;, NTM)® H' (M, 7 T*|.2))

with the contraction homogorphism HO(MS, /\2TMS) ® H'(M,, JTS*T*LZ”’ ) —
H'(M,, Ty,). Let k5 @ T;1I — Hl(MS, TM) be the Kodaira-Spencer map. We
have the commutative diagram.
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17
T
HZ’O(My)* ®H1(|$d‘,T*|$d|) ]}m %HZ,O(MJ* ®H1’1(My)
v o

H' My, Ty,) ——— H' (M,, TM,).

Above, the right vertical homomorphism is induced by the sheaf homomorphism
T™M; — T*M,, associated to a holomorphic 2-form, and y is induced by the
inclusion of the relative tangent sheaf 77 as a subsheaf of 7M. The homomorphism
v is defined as follows. A tangent Vector ¢ at a class § of I is represented by a
co-cycle of infinitesimal automorphisms — tangent vector fields — which are vertical,
being a limit of translations by local sections of the image of R! p», O in R' p,, ;.
So £ corresponds to an element v () in H'(M;, Ty,).

The top right triangle commutes, by Griffiths’ identification of the differential of
the period map [9]. The middle triangle commutes, by definition of the family f.
The commutativity of the outer polygon is easily verified. The top horizontal
homomorphism 1 ® 7 is injective, with image equal to the tangent line to the fiber
of g. Hence, it suffices to prove that ¥ and v have the same image in H'(M;, Ty,).
The latter statement would follow once we prove that v is an isomorphism.

The homomorphism v is induced by the pullback

nFH'Y(1ZY, R pa2, Op) — H (M, ¥R pa, Op),

followed by the homomorphism of sheaf cohomologies induced by an injective
sheaf homomorphism

~ 1
VR pr,Op — Ty,

The domain of ¥ is isomorphic to 7*7*|.#?|, by Lemma 7.3, and its target is
isomorphic to 7*T*|.Z“|, by Lemma 7.9. Hence, ¥ is an isomorphism. It remains
to prove that H'(My, n* T*|.Z?|) is one dimensional. We have the exact sequence

0— H'(| L, my,n*T*| L) - H' (M, ¥ T*|.2%))
— HY(|2. T*|2¢| ® R'm,, On,).

The left hand space is one-dimensional. It remains to prove that the right hand
one vanishes. It suffices to prove that R'7,, Oy, is isomorphic to 7*|.Z¢|, since
T*|.2? ® T*|.£¢| does not have any non-zero global sections.

When s = 0 and My = Mpy(u), then M, is projective and R'mo, Oy,
is isomorphic to T*|.Z“|, by [30, Theorem 1.3]. Let us show that the sheaves
R'7,, Oy, are naturally isomorphic to R! 7o, Owu,, for all s in I11. The fibrations 7
agree, by definition, over the open sets in a Cech covering of |.2%|, and the gluing
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transformations for the co-cycle representing the class s do not change the induced
sheaf transition functions for the sheaves R'm,, Oy, as we show next. The gluing
transformations glue locally free sheaves, so it suffices to prove that they agree
with those of 7y over a dense open subset of |.Z¢|. Indeed, if the fiber of M (1)
over t € |.£9| is a smooth and projective Pic?(C,), then an automorphism
of an abelian variety Pic?(C,), acting by translation, acts trivially on the fiber
H'(Pic’ (C)). Opieac,)) of R 7 Orty - O

7.4 The Tate-Shafarevich Line as the Base
of the Universal Family

Letgq : Q;‘J_ — Qé‘a be the morphism given in Eq. (4.3).

Theorem 7.11. Assume that the weight 2 Hodge structure of S is non-special
and Assumption 7.1 holds. Then the period map P of the family f maps 111
isomorphically onto the fiber of the morphism q through the period of My (u).

Proof. We already know that Py is non-constant, by Lemma 7.10. The statement
implies that P is an affine linear isomorphism of one-dimensional complex affine
spaces. It suffices to prove the statement for a dense subset in moduli, since the
condition of being affine linear is closed. We may thus assume that Pic(S) is cyclic
generated by .Z. Then H°(|.£?|, </°) is trivial, by Lemma 7.5.

Set I' := ¢;(£)*. Note that NS(S) = Zc () and I' has finite index in
H?(S,7Z)/NS(S). Let

e: I — 101

be the composition of the projection I' — H 02(S) with the isomorphisms
H®*(S) = H"*(%¢) = I of Lemma 7.3. Then e is injective and its image is
dense in III, by Lemma Si

Given an element x € 111, we get a marked pair (M, 1), as above. My (u) will
be denoted by M), it being the fiber of f over the origin in III. We associate next
to an element y € I" a canonical isomorphism

hy : M() — Me(y).

Let 7 : III — C be the function given in (7.9), which was used in the construction
of the family f. Let 6 := {6;;} be the co-cycle used in that construction. Let a be
the 1-co-cycle given by a;; := exp(z(e(y))d;;). Then M, is the Tate-Shafarevich
twist of M, with respect to the co-cycle a. The 1-co-cycle a is a co-boundary in
Z'({U;}, <7°), by Lemma 7.5 and the definition of I". Thus, there exists a 0-co-
chain & := {h;} in C°({U;}, &°), satistying §h = a. The co-chain / is unique,
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since H"(27) is trivial, by our assumption on S. The co-chain & determines the
isomorphism £, : My — M,(,) (Lemma 7.6).

We define next a monodromy representation associated to the family f. Denote
by hy, : H*(My, Z) — H?(M,(y), Z) the isomorphism induced by &,. Let

w I — Mon*(My)

be given by the composition jt, := 77(?1 ©1e(y)©hy, of the parallel-transport operator
Mo © Ne(y) and the isomorphism £, .

Claim 7.12. The map p is a group homomorphism.

Proof. Let y1, y2 be elements of I" and set y3 := y; + y». Let the topological space
B be the quotient of III obtained by identifying the four points 0, e(y1), e(y2),
e(ys). The family f descends to a family f : .# — B by identifying the fiber
My, with My via the isomorphisms £,,, 1 <i < 3. Then u,, is the monodromy
operator corresponding to any loop in B, which is the image of some continuous
path from O to e(y;) in III. Let O € B be the i image of 0 € III. The statement now
follows from the fact that the monodromy representation of 7y (B, 0) in H?*(M,, Z)

is a group homomorphism. O

The image of I via the period map is contained in the fiber of g, since the
differential of the morphism g o P vanishes, by Lemma 7.10. It follows that the
variation of Hodge structures of the local system R? f,Z over I is the pullback
of the one over the fiber of g via the period map P;. Let n be the trivialization
of R?f,Z given in Eq.(7.10). Given a point x € III, set oy := 5, '(«). Then
oy = 17 (c1(0)»a4((1))) and the sub-quotient variation of Hodge structures af; /Loy
is trivial.

The vertical tangent sheaf 7}, is naturally isomorphic to Ty, as we saw in the
last paragraph of the proof of Lemma 7.10. The 2-form w, induces an isomorphism

Ty T, o |-£4|, by Lemma 7.9. We get the composite isomorphism 7o, T, =
Ty T, = T*|.£%|. Let w, be the unique holomorphic 2-form, for which the

composite isomorphism is equal to o, Tr, = T*|.#4|. Such a form w, exists,
since the endomorphism algebra of T*|.#“| is one dimensional.

We show next that the class of w, is the (2,0) part of the flat deformation of
the class of wy in the local system R>f,C. It suffices to prove the local version
of that statement. Let xo be a point of III. There is a differentiable trivialization
of f : M — ITI, over an open analytic neighborhood U of xy, and a C*
family of complex structures J,, x € U, such that (My,, J) is biholomorphic
to M. Furthermore, the complex structures Jy, and J, restrict to the same complex
structure on each fiber of m,, and m,, is holomorphic with respect to both. Both
complex structures induce the same complex structure on Hom (Tj,x0 s Te L d |)
and the two forms w,, and w, induce the same section in the complex1ﬁcat10n of that
bundle. Hence, the difference wy, — wy is a closed 2-form in 7 /\ZTD{ |.2?| @ C.

Being closed, the latter 2-form must be the pull-back of a closed 2-form 6 on |.Z d [,



280 E. Markman

since fibers of 7, are connected. Now the cohomology class of 7 6 is of type (1, 1)
with respect to all complex structures, since H!(|.24|) = H?*(|.£“|,C). Hence,
the class of w, is the (2,0) part of the class of w,, with respect to the complex
structure J.

There exists a constant ¢, € C, such that the equality

nx(wx) = no(wo) + cr

holds in Ac, by the characterization of , in the above paragraph. The function ¢ :
IIT — C defined above is equivalent to the period map P and is thus holomorphic
and its derivative is no-where vanishing, by Lemma 7.10. If x = e(y), we get
Mo ey We(y)) = Wo + Cey)@0, Now Ay, (o) = We(y), by definition of wy, x € 111,
and the construction of /,,. We get the equality

Hy (Wo) = wo + Ceyy 0. (7.11)

The composition c oe : I' — C is a group homomorphism,

cle(yr) +e(y2) = cle(y1) + cle(y2)),

by Eq.(7.11) and Claim 7.12. The image e(I") is dense in I and so e(I')xe(I)
is dense in 111 x II1. We conclude that ¢ is a group homomorphism, ¢(x; + x2) =
c(xy) + c(xy), for all (x;,xy) € TIT x I1I. Continuity of ¢ implies that it is a linear
transformation of real vector spaces. Indeed, given xi, x; in Hl clax) + bxy) =
ac(x1) + be(x,), forall a, b € Z, hence also for all a, b € Q, and continuity implies
that the equality holds also for all @, € R. The map ¢ is holomorphic, hence it
is a linear transformation of one-dimensional complex vector spaces, which is an
isomorphism, since ¢ is non-constant. This completes the proof of Theorem 7.11.
O

Let X be an irreducible holomorphic symplectic manifold of K3["-type and
7 : X — P" a Lagrangian fibration. Set ¢ := m*c1(Op:(1)). Let d be the
divisibility of («,e). Let (S,.%) be the semi-polarized K3 surface associated to
(X, «) in Diagram (5.4) and y the Euler characteristic of the Mukai vector « in that
diagram. Choose a u-generic polarization H on S.

Theorem 7.13. Assume that X is non-special and (S, £) satisfies Assumption 7.1.
Then X is bimeromorphic to a Tate-Shafarevich twist of the Lagrangian fibration
MH(vadv X) g |$d|

Proof. Fix a marking n : H?*(X,Z) — A. Starting with the period of (X,7),
Theorem 7.11 exhibits a marked triple (X', «’, '), with ' (') = n(«), in the same
connected component Sﬁ;;'(a) | as the triple (X, o, ), such that the class o is semi-
ample as well and the periods P(X,n) and P(X',n’) are equal. Furthermore, the

Lagrangian fibration 7/ : X’ — |.£?| induced by &' is a Tate-Shafarevich twist
of mo : My (0,24, y) — |£%|. Step 1 of the proof of Theorem 1.3 yields a
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bimeromorphic map f : X -> X’, which is shown in Step 2 of that proof to satisfy
f* () = a (see Eq.(6.1)). O

Proof (of Theorem 1.5). The condition that NS(X) N ot is cyclic generated by
« implies that the semi-polarized K3 surface (S, %), associated to (X, «), has a
cyclic Picard group generated by .. Assumption 7.1 thus holds, by Remark 7.2.
Theorem 1.5 thus follows from Theorem 7.13. O
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