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Preface

This volume of PROMS grew out of the international conference on “Algebraic and
Complex Geometry”, which took place at Leibniz Universität Hannover during the
week of September 10 through 14, 2012. The event was organised on the occasion
of Klaus Hulek’s 60th birthday; it is with great pleasure that we dedicate this volume
to him.

We would like to thank the members of the Scientific Advisory Board of the
conference, David Eisenbud, Nigel Hitchin and Thomas Peternell, for their crucial
input in setting up the program. The conference would have been impossible without
the generous support from the following institutions:

• Deutsche Forschungsgemeinschaft
• MWK Niedersachsen
• Foundation Compositio
• GRK 1463 “Analysis, Geometry and String Theory”
• Many other institutions at Leibniz Universität Hannover

Especially, we would like to express our gratitude to all members of the Institute
of Algebraic Geometry at LUH for all the helping hands before and during the
conference, in particular to our secretaries Nicole Rottländer and Simone Reimann.

Our thanks go to all the authors contributing to this volume, and to the referees
for the thorough job they have done. Matthias Freise took care of the compilation of
this volume, and we thank him very much.

Hannover, Germany Anne Frühbis-Krüger
Berlin, Germany Remke Kloosterman
Hannover, Germany Matthias Schütt
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Introduction

The following paragraphs are meant to give a brief outline of the topics of the
conference “Algebraic and Complex Geometry” and the content of this PROMS
volume. Algebraic and complex geometry are exceptionally active areas of research
in pure mathematics which have seen many novel developments in recent years,
influencing numerous other areas such as differential geometry, number theory,
representation theory, and mathematical physics. Many of these interesting aspects
will be reflected in what follows.

1 Topic of the Conference

The program of the conference was designed to review the latest achievements and
innovations in algebraic and complex geometry. The program featured 23 lectures
from various subfields, allowing a broad scope, but putting specific emphasis on two
subjects of spectacular recent and ongoing progress: geometry of moduli spaces and
irreducible symplectic manifolds (Hyperkähler manifolds).

Geometry of Moduli Spaces

Moduli spaces are a key object of study in algebraic and complex geometry.
Originally introduced by Riemann in the case of curves, moduli spaces turned out
to be interesting both for their own sake and for the numerous implications to other
fields such as e.g. number theory (arithmetic geometry) and mathematical physics
(string theory).

Recently, there has been a particular interest in establishing the geometric and
topological properties of moduli spaces. In particular, newly developed techniques
yield results on the Kodaira dimension and on the cohomology of several moduli

ix



x Introduction

spaces. Most of the recent results are for moduli spaces of curves, of abelian varieties
and of K3 surfaces.

K3 surfaces are a special case of holomorphic symplectic manifolds, which
brings us to the second central topic of the conference.

Irreducible Symplectic Manifolds (Hyperkähler Manifolds)

Irreducible symplectic manifolds (or Hyperkähler manifolds, defined by the exis-
tence of an everywhere non-degenerate holomorphic 2-form) behave in many ways
similar to abelian varieties and K3 surfaces. Yet they remain quite mysterious
objects.

As an illustration, there are only a few known constructions of irreducible
symplectic manifolds due to Beauville, Huybrechts, Beauville-Donagi, Debarre-
Voisin, and O’Grady. It is still unclear whether there might be any more. The moduli
spaces of irreducible symplectic manifolds are conjectured to be locally symmetric
varieties, as in the case of K3 surfaces.

The conference program highlighted several important aspects of moduli spaces
and irreducible holomorphic symplectic manifolds.

For the reader’s information, we decided to include a full list of speakers with
titles and abstracts in the Appendix “Complete List of Talks”.

At the same time, this volume reflects the broad diversity of lectures at the
conference beyond the above focal topics. We continue with a short tour of the
content of this book.

2 Tour of Content of This Volume

This volume comprises 11 papers on current research from different areas of
algebraic and complex geometry. Reflecting the diversity of topics at the conference,
we sorted the article in alphabetic order by the first author instead of grouping them
by topic. Below we give a brief survey of the content.

The general topic of the paper by Barja and Stoppino concerns the rela-
tion between stability conditions and positivity in algebraic geometry. Given a
1-parameter family of polarized varieties, the authors study three different methods,
all of them involving stability conditions, to prove the positivity of a natural
numerical invariant associated to the family.

Beauville studies a problem related with the algebraic topology of algebraic
varieties. The author expresses the second quotient of the lower central series
of the fundamental group of a topological space X in terms of the homology
and cohomology of X . As an application, the author considers the Fano surface
parametrizing lines in a cubic threefold, where he recovers a result due to Collino.

Blume’s contribution extends the classical McKay correspondence for finite
subgroups G of SL.2;C/ to non-algebraically closed fields. More precisely,
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Blume constructs for arbitrary fields K of characteristic zero a bijection between
isomorphism classes of nontrivial irreducible representations of G � SL.2;K/ and
the irreducible components of the exceptional divisor in the minimal resolution of
the quotient singularity A2K=G.

The paper by Caporaso studies the interplay between the theory of linear series
on algebraic curves and on graphs. To this end, the author introduces the notion
of d -gonality for weighted graphs using harmonic indexed morphisms. Then a
combinatorial locus of the moduli space of curves contains a d -gonal curve if the
corresponding graph is d -gonal and of Hurwitz type. Conversely the dual graph of
a d -gonal stable curve is equivalent to a d -gonal graph of Hurwitz type. A detailed
study of the hyperelliptic case is included.

A classical problem is the subject of Catanese’s considerations. He proves for a
plane curveC that the map fromC to its caustic is a birational map and he concludes
with similar results for matrix projections.

The starting point for the extensive work of Ciliberto and Dedieu are degenera-
tions of complex K3 surfaces. Given a degeneration of complex K3 surfaces, they
investigate the limits of the corresponding Severi varieties parametrizing irreducible
ı-nodal plane sections of the K3 surfaces. Applications include counting plane nodal
curves through base points in special position, the irreducibility of Severi varieties
of a general quartic surface, and the monodromy of the universal family of rational
curves on quartic K3 surfaces.

Fujino and Gongyo consider the behaviour of divisors under smooth morphisms
between smooth complex projective varieties with a special view towards nefness.
Their arguments lead to a Hodge theoretic proof of the fact that nefness of the anti-
canonical divisor of the source space implies the same for the target space. Previous
proof of these results had been derived using positive characteristic arguments. The
present work relies on a generalization of Viehweg’s weak positivity theorem due to
Campana.

Haydys introduced the notion of the hyperholomorphic line bundle on a hyper-
kähler manifold with an S1-action of a certain type. Previous descriptions involved
twistor spaces and gauge theory, illustrating the relevance for physics. The paper
by Hitchin gives examples and more general results with a more geometrical
flavour.

Hollborn and Müller-Stach start from a local system V induced by a family of
Calabi-Yau threefolds over a smooth quasi-projective curve S . Using Higgs coho-
mology, they determine the Hodge numbers of the cohomology groupH1

L2
.S;V/ D

H1. NS; j�V/. This generalizes previous work to the case of quasi-unipotent local
monodromies at infinity and has applications to Rohde’s families of Calabi-Yau
3-folds without maximally unipotent degenerations.

Compact Kähler holomorphic-symplectic manifolds, which are deformation
equivalent to the Hilbert scheme of length n subschemes of a K3 surface, are the
subject of Markman’s contribution. Motivated by the K3 case, Markman investigates
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criteria when the linear system associated with a nef line-bundle is base point free
and when this linear system induces a Lagrangian fibration.

The concluding paper by Peternell and Schrack studies complex compact Kähler
manifolds X carrying a contact structure (which is in some sense the opposite of a
foliation). If X is almost homogeneous and b2.X/ � 2, then they show that X is
a projectivised tangent bundle. Moreover, any global projective deformation of the
projectivised tangent bundle over a projective space is again of this type unless it is
the projectivisation of a special unstable bundle over a projective space.



Stability Conditions and Positivity of Invariants
of Fibrations

M.A. Barja and L. Stoppino

Abstract We study three methods that prove the positivity of a natural numerical
invariant associated to 1-parameter families of polarized varieties. All these methods
involve different stability conditions. In dimension 2 we prove that there is a
natural connection between them, related to a yet another stability condition, the
linear stability. Finally we make some speculations and prove new results in higher
dimension.

1 Introduction

The general topic of this paper regards how stability conditions in algebraic geome-
try imply positivity. One of the first results in this direction is due to Hartshorne [25]:
a�-semistable vector bundle of positive degree over a curve is ample. Other seminal
results are Bogomolov Instability Theorem [15] and Miyaoka’s Theorem on the nef
cone of projective bundles over a curve [37]. These theorems – not accidentally –
are recalled and used in this paper (Theorems 8 and 4).
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2 M.A. Barja and L. Stoppino

An important example of this kind of result is provided by the various proofs
of the so-called slope inequality for a non-locally trivial relatively minimal fibred
surface f WS �! B , with general fibre F of genus g � 2:

K2
f � 4

g � 1
g

�f :

There are at least three different proofs of this result. One is due to Cornalba
and Harris for the Deligne-Mumford non-hyperelliptic stable case [18] (generalized
to the general case by the second author [50]), and uses the Hilbert stability of
the canonical morphism of the general fibre of f . In [16] Bost proves a similar
result assuming Chow stability. Although the proofs of Cornalba-Harris and Bost
are different, the results are almost identical, being Chow and Hilbert stability very
close (Remark 15). Another proof of the slope inequality, due to Xiao [52], uses the
Clifford Theorem on the canonical system of the general fibre combined with the
Harder-Narashiman filtration of the vector bundle f�!f . A third approach has been
introduced more recently by Moriwaki in [39]; this method uses the �-stability of
the kernel of the relative evaluation map f �f�!f �! !f restricted on the general
fibres. In [3] there is a good account of the last two proofs. Miyaoka’s Theorem is
a key tool in the proof of Xiao, and Bogomolov Theorem is the main ingredient
of Moriwaki’s approach. So we see at least two stabilities conditions involved in
the proof of the slope inequality for fibred surfaces: Hilbert (or Chow) stability and
�-stability.

In this paper we study these three methods in a general setting. Firstly we present
them with arbitrary line bundles – instead of the relative canonical one – and in
arbitrary dimension, when possible. Then we make a comparison between them,
finding that in dimension 2 there is a yet another stability condition, the linear
stability, that connects them. Finally we make some speculations about the higher
dimensional case, and we prove a couple of new applications.

Let us describe in more detail the contents of the paper. We consider the following
setting. Let f WX �! B a fibred variety, L a line bundle on X , and let G � f�L
be a subsheaf of rank r . A great deal of the results presented in the paper are in
a more general setting, but let us assume here for the sake of simplicity that the
general fibre of G is generating and that L is nef. Following [18], we consider the
number e.L ;G / D rLn � n deg G .LjF /n�1, which is an invariant of the fibration
(Remark 1). We introduce the following notation (Definition 3): we say that .L ;G /
is f -positive when e.L ;G / � 0. In the case n D 2, choosing L D !f , the slope
inequality is equivalent to f -positivity of .!f ; f�!f /.

The structure of the paper is the following. In Sect. 2, after giving the first
definitions, we make some useful computations via the Grothendieck-Riemann-
Roch Theorem (Theorem 2 and Propositions 2 and 3): the number e.L ;G / appears
as the leading term of a polynomial expression associated to the relative Noether
morphism
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�hWSymhG �! f�L �h; for h� 0:

We then give a new elementary proof of a consequence of Miyaoka’s result
(Theorem 3): if L is nef and G is sheaf semistable, then .L ;G / is f -positive.
This is the first case we see where a stability condition implies f -positivity.

In Sect. 3 we describe the three methods, adding here and there some new
contribution. As an illustration we re-prove along the way the slope inequality
for fibred surfaces via the three methods (Examples 2, 3, and 5). The neat idea
would be to extend them so that they all give as an output f -positivity of the
couple .L ;G /, under some suitable assumptions. The Cornalba-Harris and Bost
methods are originally stated in the general setting; we present them providing a
slight generalization of the first one. They prove f -stability with the assumption
that the fibre over general t 2 B is Hilbert or Chow semistable together with the
morphism defined by the fibre Gt WD G � C.t/ (Theorems 6 and 7).

After discussing these methods, we make in Sect. 3.2 a digression on some
applications that are specific to the Cornalba-Harris method. In particular we give
in Proposition 4 a bound on the canonical slope of the fibred surfaces such that the
k-th Hilbert point of .F; !F / is semistable for fixed k. This suggests a possible
meaningful stratification of the moduli space of curves Mg.

The method of Xiao was extended in higher dimensions by Konno [30] and Ohno
[45]. We give a general compact version (Proposition 5). Xiao’s method does not
provide in general f -positivity; it gives an inequality between the invariantsLn and
deg G that has to be interpreted case by case.

Moriwaki’s method is described in Sect. 3.4. It only works in dimension 2, and
it gives f -positivity if the restriction of the kernel sheaf ker.f �G �! L / is �-
semistable on the general fibres. We also provide a new condition for f -positivity,
independent from the one of the theorem of Moriwaki (Theorem 10).

It is natural to try and make a comparison between these results, and between
their assumptions: in particular, in the case of fibred surfaces all the three methods
work because the canonical system enjoys many different properties or is there a red
thread binding the three approaches? In Sect. 4 we study the 2-dimensional case. It
turns out that there is a yet another stability concept, the linear stability, playing a
central role in all three methods. Indeed, we observe the following:

• Section 4.1: linear (semi-)stability can be assumed as hypothesis in the Cornalba
Harris method, as it implies Chow (semi-)stability (Mumford and others).

• Section 4.2: linear (semi-)stability is the key assumptions that assures that the
method of Xiao produces f -positivity.

• Section 4.3: linear (semi-)stability is implied by the stability assumption needed
in Moriwaki’s method and in a large class of cases is equivalent to it (Mistretta-
Stoppino).
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So the picture goes as follows:

In Sect. 4.2 we also prove some positivity results that can be proved via Xiao’s
method with weaker assumptions.

Finally in Sect. 5 we consider the higher dimensional case. At this state of art,
there is no hope to reproduce in higher dimension the beautiful connection between
the three methods described for dimension 2. First of all, the method of Moriwaki
seemingly can not even be extended to dimension higher than 2 (Remark 21).
However, we provide some results regarding the other two methods. Firstly we
prove that the hypothesis of linear stability still implies a positivity result via
Xiao’s method (Proposition 11). In Sect. 5.2, using known stability results, we can
prove new inequalities for families of abelian varieties and of K3 surfaces via the
Cornalba-Harris and Bost methods. Moreover, we conjecture a higher-dimensional
slope inequality to hold for fibred varieties whose relative canonical sheaf is
relatively nef and ample (Conjecture 1). We end the paper with an application of the
(conjectured) slope inequality in higher dimension: using the techniques of Pardini
[47] it is possible to derive from the slope inequality a sharp Severi inequality
Kn
X � 2nŠ�.!X/ for n-dimensional varieties with maximal Albanese dimension

(Proposition 14). It is worth noticing that in [4] the first author proves this Severi
inequality, and Severi type inequalities for any nef line bundle, independently of
such conjectured slope inequality.

2 First Results

2.1 First Definitions and Motivation

We work over the complex field. All varieties, unless differently specified, will be
normal and projective. Given a line bundle L on a varietyX , we callL any (Cartier)
divisor associated. It is possible to develop the major part of the theory for reflexive
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sheaves associated to Weil Q-Cartier divisors, but in order to avoid cumbersome
arguments, we will stitch to this setting.

Let X be a variety of dimension n, and B a smooth projective curve. Let
f WX �! B be a flat proper morphism with connected fibres. Throughout the paper
we shall call this data f WX �! B a fibred variety.

Let L be a line bundle on X . The pushforward f�L is a torsion free coherent
sheaf on the base B , hence it is locally free because B is smooth 1-dimensional. Let
G � f�L be a subsheaf of rank r . The sheaf G defines a family of r-dimensional
linear systems on the fibres of f ,

Gt WD G � C.t/ � H0.F;LjF /;

where t 2 B and F D f �.t/. Let us recall that the evaluation morphism

evWf �G �! L

is surjective at every point of X if and only if it induces a morphism ' from X to
the relative projective bundle P WD PB.G / over B

such that L D '�.OP.1//. We will denote the surjectivity condition for ev by
saying that the sheaf G is generating for L . If ev is only generically surjective, it
defines a rational map 'WX Ü P. In this case, letD be the unique effective divisor
such that f �G �! L .�D/ is surjective in codimension 1. The divisorD is called
the fixed locus of G in X . Clearly the evaluation morphism f �G �! L .�D/ is
surjective in codimension 1.

Moreover, by Hironaka’s Theorem, there exist a desingularization �W QX �! X

and a morphism Q'W QX �! P such that Q' D ' ı �, and an effective �-exceptional
divisor E on QX such that

Q'�.OP.1// Š ��.L .�D//� O QX.�E/:

See [45, Lemma 1.1] for a detailed proof of these facts. Define M WD Q'�OP.1/ �
��L ; following [45] we call this the moving part of the couple .L ;G /, and we
define the fixed part of .L ;G / on QX to be Z WD ��.D/C E . Call Qf WD f ı � the
induced fibration. Clearly the evaluation homomorphism Qf �G �!M is surjective
at every point of QX , i.e. G is generating for M on QX .

Example 1. Let f WS �! B be a fibred surface, assuming for simplicity that S is
smooth. Let !f D !S � f �!�1

B be the relative dualizing sheaf of f . Let g be the
(arithmetic) genus of the fibres. The general fibres are smooth curves of genus g.
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Let us assume that g � 2: then the restriction of !f on the general fibres is ample.
Hence the base divisor D is vertical with respect to f . Moreover, the line bundle
!f has negative degree only on the .�1/�curves contained in the fibres. So, all
the vertical .�1/�curves of S are contained in D. It is possible to contract these
curves preserving the fibration, and obtaining a unique relatively minimal fibration
associated whose relative dualizing sheaf is f -nef. However, there could still be a
divisorial fixed locus, as we see now for the case of nodal fibrations.

Let us suppose that f is a nodal fibration, i.e. that any fibre of f is a reduced
curve with only nodes as singularities. We now describe explicitly the moving and
the fixed part of .!f ; f�!f /. Let us first recall the following simple result, that can
be found in [39, Prop. 2.1.3]. If C is a nodal curve, the base locus of !C is given
by all the disconnecting nodes and all the smooth rational components of C that are
attached to the rest of the fibre only by disconnecting nodes; following [39] we call
these components of socket type.

The fixed locus of .!f ; f�!f / is the union D of all components of socket type.
Indeed, by what observed above the evaluation homomorphism evWf �f�!f �!
!f factors through !f .�D/. On the other hand, it is easy to verify that the
restriction of !f .�D/ on any fibre is well defined except that on the disconnecting
nodes not lying on components of socket type, so f �f�!f .�D/ �! !f .�D/ is
surjective in codimension one.

Let �W QS �! S be the blow up of all the base points of the map induced by
f�!f .�D/; call E the exceptional divisor, and Qf D f ı � the induced fibration
on QS . Then we have that all the components of E are of socket type for the
corresponding fibre, and that the union of all the components of socket type of the
fibres of Qf is QD C E , where QD is the inverse image of D. Thus QD C E is the fixed
part of .! Qf ; Qf�! Qf /, and the evaluation homomorphism

Qf � Qf�! Qf .� QD � E/ �! ! Qf .� QD � E/

is surjective at every point. Noting that ! Qf Š ��.!f / � O QS .E/ (see for instance
[10, Chap. 1, Theorem 9.1]), we have that

! Qf .� QD � E/ Š ��.!f /� O QS .� QD/ Š ��.!f .�D//� O QS .�E/:

So the moving part of .!f ; f�!f / is M Š ��.!f .�D//� O QS.�E/.
Let us now come to the definition of the main characters of the play.

Definition 1. With the above notation, define the Cornalba-Harris invariant

e.L ;G / WD rLn � n deg G .LjF /n�1;

where L is a divisor such that L Š OX.L/, and F is a general fibre.

Remark 1. The number e.L ;G / is indeed invariant by twists of line bundles from
the base curve B . Indeed, if A is a line bundle on B we have
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rank.G � A / D rankG D r; deg.G � A / D deg G C r deg A ;

.LC f �A/n D Ln C n deg A Ln�1
jF ; .L � f �A /jF Š LjF :

It is therefore immediate to verify that e.L � f �A ;G � A / D e.L ;G /.

Remark 2. There is another significant incarnation of the C-H invariant: the number
rn�1e.L ;G / is the top self-intersection of the divisor rL � deg GF .

Let us now consider again a fibred surface f WS �! B as in Example 1. Let g �
2 be the genus of the fibres and b the genus of the base curve B . The main relative
invariants for f areK2

f D K2
S�8.b�1/.g�1/ and �f D �.OS /��.OB/�.OF / D

�.OS /� .g � 1/.b � 1/. By Leray’s spectral sequence and Riemann-Roch one sees
that �f D degf�!f . The canonical slope sf of the fibration is defined as the ratio
between K2

f and �f . The slope sf have been extensively studied in the literature
(see [3, 6, 52]).

In a more general setting, given a line bundle L onX and a subsheaf G � f�L ,
one can consider, when possible, the ratio between Ln and deg G , as follows.

Definition 2. With the same notation as above, let us suppose moreover that
deg G > 0. We define the slope of the couple .L ;G / as

sf .L ;G / WD Ln

degG
:

When G D f�L , we shall use the notation sf .L /.

There is a rich literature about the search of lower bounds for the slope, in particular
about the canonical one. The most general result is the following (see [5]).

Proposition 1. Assume that L and f�L are nef. Then sf .L / � 1.

This bound is attained by a projective bundle on B and its tautological line bundle.

Remark 3. The slope is not invariant by twists of line bundles. Indeed, let F D
f �.t/ be a general fibre, and Gt WD G � C.t/ � H0.F;LjF /. Attached to the
triple .f;G ;L / a natural ratio appears, which depends on the geometry of the triple
.F;Gt ;LjF /. Indeed, consider the line bundle L .kF / obtained by “perturbing”
L with kF for k 2 N, and the corresponding perturbed sheaf G � OB.kt/ �
f�.L .kF// Š f�L � OB.kt/. Then we have that

sf .L ;G /.k/ WD sf .L .kF/;G � OB.kt// D .LC kF/n

deg G � OB.kt/
D Ln C kn.LjF /

n�1

deg.G /C k rankG
:

Hence

lim
k!1 sf .L ;G /.k/ D n.LjF /n�1

rankG
:
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This asymptotic ratio is related to e.L ;G / as follows; we have that

sf .L ;G / � n.LjF /n�1

rankG
” e.L ;G / � 0: (1)

The positivity of the Cornalba-Harris invariant thus coincides with this natural
bound on sf .L ;G /.

Remark 4. Let us consider inequality (1) in the case of a fibred surface f WS �! B

of genus g � 1. It becomes

K2
f � 2

deg!F
rankf�!f

degf�!f D 4g � 1
g

�f :

This bound is the famous slope inequality for fibred surfaces mentioned in the
introduction. It holds true for non locally trivial relatively minimal fibred surfaces
of genus g � 2 ([18] and [39, 50, 52]).

The case of surfaces allows us to single out some positivity conditions on the
family that seem to be necessary in general.

• The genus g of the fibration is �2 ” !f is ample on the general fibres of f ;
• f is non-locally trivial ” �f > 0;
• f is relatively minimal ” the divisor Kf is nef (Arakelov).

In particular, if the fibration is not relatively minimal, the slope inequality is easily
seen to be false. We see that indeed in order to prove the positivity of e.L ;G /
we will often need similar conditions, in particular the relative nefness of L . In
Sect. 5.2 we conjecture and discuss a natural slope inequality in higher dimension.

By now we have seen how the condition of positivity of e.L ;G / is very natural
and produces significant bounds for the geometry of the fibration. We shall thus give
a name to this phenomenon:

Definition 3. The couple .L ;G / is said to be f -positive (resp. strictly f -positive)
if e.L ;G / � 0 (resp. > 0).

2.2 Some Intersection Theoretic Computations

As above, let f WX �! B be a fibred variety over a curveB . Let L be a line bundle
onX and G � f�L a subsheaf of rank r . Consider the natural morphism of sheaves

�hWSymhG �! f�L �h;

for h � 1. The fibres of this morphism on general t 2 B are just the multiplication
maps
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�h � C.t/WSymhGt D H0.Pr�1;OPr�1 .h// �! H0.F;L �h
jF /;

where F D f �.t/ and Gt D G � C.t/ � H0.F;LjF /. Call Gh the image sheaf,
and Kh the kernel of �h. If G is relatively ample then for h � 0 we have that
Gh D f�L �h and that Kh is just IX=P.h/, the ideal sheaf of the image of X in the
relative projective space P twisted by OP.h/.

Remark 5. Suppose now that G is generating. Let X WD '.X/
j
,! P be the image

of X , let f WX �! B the induced fibration, and let L D j �.OP.1//. Then if
˛WX ! X is the restriction of ', we have that L D ˛�L . Clearly, for h � 0 the

sheaf Gh coincides with f �L
�h

, and Kh with IX=P.h/.

Let us recall that the slope1 of a vector bundle F on a smooth curve C is the
following rational number �.F / D deg F=rank.F /.

Remark 6. Note that f -positivity is equivalent to an upper bound on the slope of
the sheaf G , namely

�.G / � Ln

n.LjF /n�1 :

We can now prove a simple condition for f -positivity.

Theorem 1. Suppose that there exists an integer m � 1 such that

(i) The couple .L �m;Gm/ is f -positive;
(ii) m�.G / � �.Gm/.
Then .L ;G / is f -positive.

Proof. Assumption .i/ tells us that

�.Gm/ � mLn

nLn�1
jF

:

which, combined with .ii/, gives the desired inequality.

We see below that the C-H class appears naturally as the leading term of the
expression

r deg Gh � h deg G rankGh

when computed as a polynomial in h. This produces the following condition for
f -positivity in terms of the slope of G and of the one of Gh.

1Unfortunately this crash of terminology seems unavoidable, as both the notations are well
established.
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Theorem 2. With the above notation, suppose that the sheaf G � f�L is
generating and such that the morphism ' it induces is generically finite on its image.

Then the following implications hold

1. If �.Gh/ � h�.G / for infinitely many h > 0, then .L ;G / is f -positive.
2. If .L ;G / is strictly f -positive, then �.Gh/ � h�.G / for h� 0.

Proof. As in Remark 5, let X WD '.X/ j
,! P be the image ofX , let f WX �! B be

the induced fibration, and let L D j �.OP.1//. As observed in the remark, the sheaf

Gh coincides with f �L
�h

for h � 0. By Grothendieck-Riemann-Roch theorem
we have that

deg Gh D degf �L
�h D hn .L/

n

nŠ
C
X

i�1
.�1/iC1 degRif �L

�h C O.hn�1/;

and that

rankGh D rankf �L
�h D h0.F;L �h

jF / D

D hn�1 .LjF /n�1

.n � 1/Š �
X

i�1
.�1/ihi .F;L �h

jF /C O.hn�2/:

Moreover, G is relatively very ample as a subsheaf of f �L , and so by Serre’s

vanishing theorem degRif �L
�h D 0 and hi .F;L

�h

jF / D 0 for h� 0, and i � 1.

By the assumption, the map ˛WX �! X is generically finite of degree say d . Hence

Ln D .˛�L/n D d.L/n and .LjF /n�1 D .˛�LjF /n�1 D d.LjF /n�1:

Putting all together, we have

rankG deg Gh � h deg G rankGh D hn

d.nŠ/

�
rankGLn � n deg GLn�1

jF
�
C O.hn�1/ D

D hn

d.nŠ/
e.L ;G /C O.hn�1/:

(2)

So, if we have that �.Gh/ � h�.G / for infinitely many h > 0, then the leading
term of rankG deg Gh � h deg G rankGh as a polynomial in h must be non-negative
(in particular inequality �.Gh/ � �.G / is satisfied for h � 0). Vice-versa, if the
leading term is strictly positive, then �.Gh/ � h�.G / for h� 0.

Remark 7. If we have that e.L ;G / is zero, then of course we cannot conclude that

rankG deg Gh � h deg G rankGh � 0 for h� 0:
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However, we can in this case consider the term in hn�1, which is

hn�1

.n � 1/Š
�
.n � 1/ deg GLn�2

jF KF � Ln�1Kf rankG
�
:

Using the equality rankGLn D n deg GLn�1
jF , this term becomes

rhn�1

.n � 1/Š

 
n � 1
n

Ln�2
jF KF

Ln�1
jF

Ln � Ln�1Kf

!
:

Note that in case L D !f we obtain � 1
n
Kn
f , so that we can observe that ifKn

f > 0

and !f is ample on the general fibres, then if �.Gh/ � h�.G / for infinitely many
h > 0, .!f ; f�!f / is strictly f -positive.

Remark 8. We can observe the following. Consider the function .h/ WD �.Gh/=h,
and assume the same hypothesis as Theorem 2. Then, by the very same computa-
tions contained in the proof of Theorem 2, we see that

lim
h!1 .h/ D Ln

n.Ln�1
jF /

:

Moreover observe that, for any h � 1

.L �h;Gh/ is f -positive ”  .h/ � Ln

n.Ln�1
jF /

:

Theorem 2 can thus be rephrased as the following behavior of the function  .

(1) If  .h/ �  .1/ for infinitely many h, then  .1/ � Ln=.nLn�1
jF /.

(2) If  .1/ < Ln=.nLn�1
jF /, then  .h/ �  .1/ for h� 0.

We state now a couple of results along the lines of Theorem 2, when we weaken
as much as possible the assumptions needed in order to obtain f -positivity.

Proposition 2. With the same notation as above, suppose that the line bundle L is
nef on X and that the base locus of G is concentrated on fibres.

If �.Gh/ � h�.G / for infinitely many h, then .L ;G / is f -positive.

Proof. If the map ' induced by G is not generically finite on its image then
e.L ;G / D 0, hence f -positivity is trivially satisfied. If on the contrary ' is finite
on its image, we can apply Theorem 2 using, instead of L , the moving part of
.L ;G /

M D ��.L .�D//� O QX.�E/;
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where we follow the notation of Sect. 2. Let M be a divisor associated to M . By
Theorem 2, we have that the assumption �.Gh/ � h�.G / for h � 0 implies that
.M ;G / is f -positive, so that Mn � n�.G /.MjF /n�1. By the assumption on the
base locus of G , we have that MjF � LjF . Moreover, as L and M are nef and
M is L minus an effective divisor, we have that Ln � Mn. Summing up, we have
Ln � n�.G /Ln�1

jF �Mn � n�.G /.MjF /n�1 � 0, and so we are done.

Remark 9. It is worth noticing that in the statement of Proposition 2 above, we
could replace the assumption of L being nef with L being relatively nef. Indeed, as
e.L ;G / is invariant by twists with pullback of line bundles on the base (Remark 1),
we can always replace a relatively nef line bundle with a nef one, by twisting with
the pullback of a sufficiently ample line bundle on B .

Proposition 3. With the same notation as above, suppose that

(?) for h � 0 and i � 1 degRif�L �h D O.hn�1/ and hi .F;L �h
jF / D

O.hn�2/.

Suppose moreover that one of the following conditions hold

(a) The sheaf G � f�L is normally generated for general t 2 B;
(b) The sheaf f�L �h is nef for h� 0.

Then if �.Gh/ � h�.G / for infinitely many h > 0, then .L ;G / is f -positive.

Proof. Suppose that condition .a/ holds: then for h � 0 the sheaf Gh generically
coincides with (and is contained in) f�L �h. Hence, as we are on a smooth curve,
deg Gh � degf�L �h for h� 0. The same inequality holds true if condition .b/ is
satisfied.

By Grothendieck-Riemann-Roch theorem as in Theorem 2 we have that

degf�L �h D hnL
n

nŠ
C
X

i�1
.�1/iC1 degRif�L �h C O.hn�1/;

rankf�L �h D h0.F;L �h
jF / D hn�1 .LjF /n�1

.n � 1/Š C
X

i�1
.�1/ihi .F;L �h

jF /CO.hn�2/:

Putting all together and using assumption .?/ we have

rankG deg Gh � h deg G rankGh � hn

nŠ

�
rankGLn � deg GLn�1

jF
�
C O.hn�1/ D

D hn

nŠ
e.L ;G /C O.hn�1/;

(3)

and the conclusion follows as in the above theorem.
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Remark 10. Note that if we drop assumption .?/, we still obtain an inequality,
involving a correction term due to the higher direct image sheaves.

The results above are generalizations of a computation contained in the proof of
the main theorem of [18] (see also [50] and [7, sec.2]), where it is treated the case
where the general fibre of G is very ample.

2.3 Stability and f -Positivity: First Results

Let us recall that a vector bundle F over a smooth curve B is said to be �-stable
(resp. �-semistable) if for any proper subbundle S � F we have �.S / < �.F /

(resp. �). This is equivalent to asking that for any quotient bundle F !! Q we
have �.Q/ > �.F / (resp. �).

Let us now consider as usual a fibred variety f WX �! B over a curveB . Let L
be a line bundle on X and G � f�L a generating subsheaf of rank r . We see here
that �-semistability of G implies f -positivity. This is the first case we encounter
where a stability condition implies the positivity of the C-H invariant. However,
�-semistability on the base is quite a restrictive condition to ask (see Remark 12).
In Sect. 3.3, we will see a method due to Xiao that uses vector bundle techniques
on G to prove some positivity results, but does not need to assume �-semistability.
However, we will see in Sect. 4.2 that, in order to give f -positivity as a result, Xiao’s
method needs another stability condition on the general fibres, the so-called linear
stability.

We will need the following simple remark.

Remark 11. Let F be a vector bundle of rank r on a smooth curveB . Observe that,
if h is any integer � 1, we have the following equalities:

deg.SymhF / D
 
hC r � 1

r

!
deg F ; rank.SymhF / D

 
hC r � 1
r � 1

!
:

We thus easily deduce the following.

�.SymhF / D h�.F /: (4)

Theorem 3. With the notation above, let us suppose that G is generating, or that
the assumptions of Proposition 2 or of Proposition 3 hold. Then the following holds:
if the sheaf G is �-semistable, then .L ;G / is f -positive.

Proof. If G is �-semistable then SymhG is �-semistable for any h, so that we have
that the inequality �.SymhG / � �.Gh/ is satisfied. But �.SymhG / D h�.G / by
formula (4) above.

Then if the conditions in Proposition 2 or in Proposition 3 are satisfied, we are
done.
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Let us now suppose that G is generating. If the morphism ' it induces is not
generically finite on its image then e.L ;G / D 0. If on the contrary ' is generically
finite on its image, by what we have seen above, we are in the conditions to apply
Theorem 2.

Remark 12. From the above argument, we see that the �-stability of G is much
more than we need to prove f -positivity: indeed, in order to assure f -positivity, we
just need that for infinitely many h > 0 the sheaf Gh is not destabilizing for SymhG ,
and this condition is almost necessary (Theorem 2). The condition of �-stability of
SymhG implies instead that this sheaf does not have any destabilizing quotient.

Indeed, it seems that the �-stability of G is an extremely restrictive condition to
ask. In order to illustrate this, consider any variety fibred over P1, and consider the
relative canonical sheaf !f . If the sheaf f�!f is �-semistable, then necessarily its
rank has to divide its degree, so that h0.F;KF / necessarily divides degf�!f . Any
fibred variety violating this numerical condition cannot have f�!f �-semistable.
Moreover, let us recall Fujita’s decomposition theorem for the pushforward of the
relative canonical sheaf. Given a fibration f WX �! B , we have that

f�!f D A � .�qf OB/; (5)

where qf WD h1.B; f�!X/, and H0.B;A �/ D 0. From this result we see that
f�!f fails to be semistable as soon as qf > 0. For instance, for any fibred surface
f WS �! B with q.S/ > b, the pushforward of the relative canonical sheaf needs
to be �-unstable. See [52] (in particular Theorem 3) for some related results.

A weaker version of Theorem 3 can be proved as a corollary of a beautiful result
due to Miyaoka, as we see below.

Let us first define the setting of Miyaoka’s Theorem. Let F be a vector bundle
over a smooth curveB . Let �WP WD PB.F / �! B be the relative projective bundle,
and letH be a tautological divisor on P, i.e. OP.H/ Š OP.1/, and let˙ be a general
fibre of � .

Theorem 4 (Miyaoka [37]). Using the above notations, the sheaf F is �-
semistable if and only if the Q-divisor

H � �.F /˙

is nef.

Applying Theorem 4 to our situation we can deduce the following

Corollary 1. Let L be a nef line bundle, f WX �! B a fibration and G � f�L
has base locus vertical with respect to f . If the sheaf G is �-semistable, then the
couple .L ;G / is f -positive.

Proof. With the notations of Sect. 2, let us observe that

Q'�.H � �.G /˙/ D ��.L �D/ � E � �.G /F:
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Recalling that Q' is a morphism, by Theorem 4 the divisor ��.L�D/�E ��.G /F
is nef. This divisor therefore has non-negative top self-intersection, and so the result
follows using the same computations of Proposition 2 and Remark 2.

3 The Three Methods

3.1 Cornalba-Harris and Bost: Hilbert and Chow Stability

We now present the method of Cornalba and Harris [18], in the generalized setting
introduced in [50]. Let us start with a definition. Let X be a variety, with a linear
system V � H0.X;D/, for some line bundle D on X . Fix h � 1 and call Gh the
image of the natural homomorphism

SymhV
'h��! H0.X;D�h/:

Set Nh D dimGh and take exterior powers

Nĥ

SymhV
^Nh'h��!

Nĥ

Gh D detGh: (6)

The map ^Nh'h defines uniquely an element
�^Nh'h

� 2 P.^NhSymhV _/ which we
call the generalized h-th Hilbert point associated to the couple .X; V /.

Definition 4. With the above notation, we say that the couple .X; V / is Hilbert
(semi)stable if its generalized h-th Hilbert points are GIT (semi)stable for infinite
h 2 N.

Remark 13. Let .X; V / be as above. Consider the factorization of the induced map
through the image

Set D D j �.OPr .1// and let V � H0.X;D/ be the linear systems associated to j .
The homomorphism (6) factors as follows:

SymhV Š SymhV
'h�! H0.X;D

�h
/ ,! H0.X;D�h/;

where the homomorphism 'h is the h-th Hilbert point of the embedding j ; notice
that, by Serre’s vanishing theorem, this homomorphism is onto (and, in particular,

Gh D H0.X;D
�h
/) for large enough h. The generalized h-th Hilbert point of

.X; V / is therefore naturally identified with the h-th Hilbert point of .X; V /, and the
generalized Hilbert stability of .X; V / coincides with the classical Hilbert stability
of the embedding j .
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Now consider a fibred variety f WX �! Y , where the base Y is smooth but not
necessarily of dimension 1. Let L be a line bundle on X , and let G � f�L be a
subsheaf of rank r . Consider the homomorphism of sheaves SymhG �! f�L �h

and, as usual, call Gh its image.

Theorem 5 (Cornalba-Harris). With the above notation, suppose that for general
y 2 Y the h-th generalized Hilbert point of the fibre Gy WD G � C.y/ �
H0.F;LjF / is semistable.

Then the line bundle

Lh WD det.Gh/�r � .det G /��hrankGh

is pseudo-effective.

The above result is the key point of the proof of [18, Theorem 1.1]. In particular,
when the base Y is a smooth curve, we obtain the following inequality

rankG deg Gh � h deg G rankGh � 0; (7)

In the general case with base of arbitrary dimension it is possible, under some
assumptions, to compute the first Chern class of Lh as a polynomial in h with
coefficients in CH1.Y /Q and to conclude that its leading term is a pseudoeffective
class ([18, Theorem 1.1] and [50, Corollary 1.6]).

Applying the results of Sect. 2, we obtain the following condition for f -
positivity, which provides an improvement of Theorem 1.1 of [18] in the case of
1-dimensional base.

Theorem 6. With the notation above, suppose that the base Y D B is a curve.
Suppose that the sheaf G is either generating, or it satisfies the conditions of
Proposition 2 or 3. Suppose moreover that for general t 2 B the fibre Gt �
H0.F;LjF / is Hilbert semistable. Then .L ;G / is f -positive.

Proof. Apply Theorem 5 above, and Theorem 2 and Propositions 2 and 3.

Bost’s Result: Chow Stability

We now describe a result of Bost, which is almost equivalent to the one of Cornalba-
Harris, except that it uses as assumption the Chow stability on the general fibres.
Moreover it has to be mentioned that Bost’s result holds in positive characteristic.

Let us first recall some definitions. Let X be an n-dimensional variety together
with a finite morphism of degree a in the projective space 'WX �! Pr associated
to a linear system V � H0.X;D/. Consider

Z.X/ WD fn � spaces � of V j Ann.�/ \ '.X/ 6D ;g � Gr.n; V /:



Stability Conditions and Positivity of Invariants of Fibrations 17

The set Z.X/ is an hypersurface of degree d D deg'=a, in the grassmanian
Gr.n; V /. The homogeneous polynomial FX 2 H0.Gr.n; V /;OGr.n;V /.d // repre-
sentingZ.X/ is the Chow form of .X; V / and the Chow point of .X; V / is the class
of FX in P.H0.Gr.n; V /;OGr.n;V /.d ///.

The couple .X; V / is Chow (semi)stable if its Chow point is GIT (semi)stable
with respect to the natural SL.V / action.

Remark 14. Note that X is Chow (semi)stable if and only if the cycle mX is, for
any integer m: see for instance [16], proof of Proposition 4.2. So, in particular, the
Chow (semi)stability of .X; V / as above coincides with the Chow (semi)stability of
the cycle image '�.X/ together with the linear system of the immersion induced by
'. This fact should be compared with the behavior of the Hilbert stability described
in Remark 13.

Remark 15. In [40, Corollary 3.5], it is proven that Chow stability implies Hilbert
stability, while for semistability, the arrows are reversed. In [13] some examples are
given of curves Hilbert unstable and Chow (strictly) semistable. However, the two
concepts asymptotically coincide (see Sect. 3.2 below).

Hence, we can apply Theorem 6 if we replace the assumption of Hilbert semistabil-
ity with Chow stability, but we can not assume Chow semistability.

In [16], Bost has proven an arithmetic analogue to the theorem of Cornalba and
Harris, assuming the Chow semistability of the maps on the general fibres. The
geometric counterpart of Bost’s result in the case when the base is 1-dimensional
is the following. Consider as usual a fibred variety f WX �! B . Let L be a line
bundle on X , and let G � f�L be a subsheaf of rank r .

Theorem 7 ([16] Theorem 3.3). With the above notation, suppose that

1. For t 2 B general, the fibre Gt WD G � C.t/ � H0.F;LjF / is base-point free;
2. If ˛WF �! Pr is the morphism induced, the cycle ˛�.F / 2 Zp.Pr / is Chow

semi-stable;
3. The line bundle L is relatively nef.

Then the couple .L ;G / is f -positive.

Example 2. Let us prove the slope inequality for fibred surfaces via these methods.
Let f WS �! B be a relatively minimal fibred surface of genus g � 2. Recall
that the relative dualizing sheaf !f is nef [11]. The slope inequality for relatively
minimal fibred surfaces now follows right away from Proposition 2, using the fact
that the restriction of !f to the general smooth fibre is Hilbert and Chow semistable
(Sect. 3.2 above), and base-point free. An alternative proof can be obtained using
Proposition 3, by proving, as in [18], that condition .?/ holds.

Let us now refine the computation in the case of a relatively minimal nodal
fibred surface. In this case we have given in Example 1 an explicit description
of the moving and the fixed part of .!f ; f�!f /. Recall that the moving part is
M Š ��!f .�D/� O QS .�E/, whereD is the union of all socket type components,
�W QS �! S is the blow up of S in the disconnecting nodes of the fibres of f that
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do not belong to a socket type component and E is the exceptional divisor of �. Let
Qf D � ı f be the induced fibration. From the proof of Proposition 2, we can derive

the following inequality:

0 �M2 � 2�. Qf�! Qf / deg!j QF D K2
f CD2 C E2 � 2Kf D � 4.g � 1/

g
degf�!f :

Let us compute explicitly the term D2 C E2 � 2Kf D. Let n be the total number
of disconnecting nodes contained in the fibres, k the number of nodes lying on a
socket type component and l D n � k D �E2. Let r be the number of connected
components of socket type in the fibres, so that D D D1 C : : :CDr with the Di ’s
connected and disjoint. Then we have that KfD D �2r C k, so that D2 C E2 �
2KfD D 3k � 4r C l . Note that the condition of relative minimality is equivalent
to 2r � k, so we obtain inequality

K2
f � 4

g � 1
g

�f C n:2 (8)

In particular any fibred surface satisfying the slope equality necessarily has all
fibres free from disconnecting nodes. It is interesting to compare this result with the
inequalities obtained via Xiao’s method (Example 3) and with Moriwaki’s method
(Example 5).

3.2 Some Remarks on GIT Stabilities and Applications

It comes out the interest in understanding when a variety, endowed with a map in
a projective space, is Hilbert or Chow semistable. The following is a (without any
doubt non-complete) list of cases where Hilbert (or Chow) semistability is known.
In this list any time we use the term “stability” without specification, we mean that
both the Hilbert and the Chow (semi)stabilities are known to coincide.

• Homogeneous spaces embedded by complete linear systems are semistable;
abelian varieties embedded by complete linear systems are semistable [28].

• Linear systems on curves: if C is a smooth curve of genus g � 2, the canonical
embedding is Chow semistable, and it is Chow stable as soon as C is non-
hyperelliptic. Any line bundle of degree d � 2g C 1 induces a Chow stable
embedding [42]. Deligne-Mumford stable curves are semistable for the linear
system induced by the m-th power of the dualizing sheaf for m � 5 ([22, 42],
[23, Chap.4, Sec.C]). See [26, 48] for curves Chow stable with respect to lower
powers of the dualizing sheaf.

2For the reader familiar with the moduli space of curves M g , this inequality means that the divisor
g�1 � 4.g� 1/	�gPi>0 ıi � .8gC 4/	�gı0 � 2gPi>0 ıi is nef outside the boundary @M g .
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• Morrison in [40] studies the Chow stability of ruled surfaces in connection with
the �-stability of the associated rank 2 vector bundle: he proves that if E is a
stable rank 2 bundle on a smooth curve C then the ruled surface �WP.E / �! C

is Chow stable with respect to the polarisation OP.E /.1/� ��OC .k/ for k � 0.
Seyyedali in [49] extends the results of Morrison to higher rank vector bundles
and to higher dimensional bases. See also [27] for another generalization.

• General K3 surfaces: a K3 surface with Picard number 1 and degree at least 12
is Hilbert semistable [41].

• Hypersurfaces: in [43, Prop. 4.2] it is proven that smooth hypersurfaces of Pn of
degree �3 are stable. In [42] it is studied the stability of (singular) plane curves
and surfaces in P3. A hypersurface F � Pr of degree d � r C 2 and only log
terminal singularities is Hilbert semistable [51].

• Higher codimensional varieties: Lee [32] proved that a subvariety F � Pr of
degree d is Chow semistable as far as the log canonical threshold of its Chow
form is greater or equal to rC1

d
(resp. > for stability). In [13] both the Chow and

the Hilbert stability of curves of degree d and arithmetic genus g in P
d�g are

studied.

A lot of remarkable results – due to Gieseker, Viehweg and many others – are known
regarding asymptotic stability: given a line bundle D and a linear subsystem V �
H0.X;D/, this is the stability of the couple .D�h; Vh/, for high enough h, where

Vh WD Im.SymhV �! H0.X;D�h//:

In this case Hilbert and Chow stability have been proved to be equivalent by
Fogarty [21] and Mabuchi [33]. There are beautiful results due to Donaldson,
Ross, Thomas and many others relating asymptotic Chow stability to differential
geometry properties, such that the existence of a constant scalar curvature metric.
Unfortunately, if a bound is not known on the power of the line bundle, the
Cornalba-Harris theorem does not give interesting consequences: if a couple .G ;L /

is asymptotically semistable on a general fibre, then the Cornalba-Harris theorem
implies that Ln � 0.

On the other hand, it has come out recently, also in relation with the minimal
model program for the moduli space of curves initiated in [26], the interest in the
stability of the h-th Hilbert point for fixed h. The main result obtained in this topic is
that general canonical and bicanonical curves have the h-th Hilbert point semistable
for h � 2 [1].

The Cornalba-Harris method can be applied with this kind of assumption. For
instance we can prove the following result (cf. [20] for h D 2).

Proposition 4. Let f WS �! B be a relatively minimal non-hyperelliptic fibred
surface of genus g � 2. Suppose that the h-th Hilbert point of a general fibre F
with its canonical sheaf is semistable (with h � 2). Then the following inequality
holds
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K2
f � 2

2.g � 1/h2 C .1 � g/h � g
gh.h� 1/ �f : (9)

Proof. With the usual notation, we choose L D !f and G D f�!f . Then by the
assumption, using Theorem 5, we have that rankG deg Gh�h deg G rankGh � 0. By
Riemann-Roch, rankGh D .2h� 1/.g � 1/, and deg Gh D h.h�1/

2
K2
f C �f , and the

computation is immediate.

The computations with higher powers of the relative canonical sheaf gives worse
inequalities than the slope one.

Remark 16. By a result of Fedorchuck and Jensen [20] (that improves the result in
[1]), the best inequality in Eq. (9), reached for h D 2, holds for relatively minimal
fibred surfaces whose general fibres are non-hyperelliptic curves of genus g whose
canonical image does not lie on a quadric of rank 3 or less. In particular this is
the case for fibred surfaces of even genus whose general fibres are trigonal with
Maroni invariant 0 (ibidem. and [7]). It is quite interesting to notice that this very
same bound is obtained by Konno in [29, Lemma 2.5] under the assumption that the
pushforward sheaf f�!f is �-semistable.

From the above proposition we can derive a new proof of the following result
(cf. [18, Theorem. 4.12] and [50, Prop. 2.4]). The same result follows from the
computation contained in Remark 7.

Corollary 2. If a relatively minimal non-locally trivial fibred surface of genus g �
2 reaches the slope inequality, then it is hyperelliptic.

Proof. Observe that the function of h appearing in inequality (9) is strictly
decreasing and – of course – it tends to the ratio of the slope inequality 4.g � 1/=g
for h 7! 1. So, for any non-hyperelliptic fibration in the conditions of the theorem,
a strictly stronger bound than the slope one is satisfied.

A New Stratification of Mg

It is widely believed (see for instance [7, 31]) that there should exist a lower bound
for the slope of fibred surfaces increasing with the gonality of the general fibres
(under some genericity assumption). This conjecture, however, is only proved for
some step: hyperelliptic fibrations (the slope inequality), trigonal fibrations [7, 19]
and fibrations with general gonality [24, 31]. Recently Beorchia and Zucconi [12]
have proved some results also on fourgonal fibred surfaces.

Let us consider the following open subsets of Mg

Sh WD
˚
ŒC � 2Mg such that the k-th Hilbert point is semistable for k � h� :

Clearly Si � Sj for i � j , and for some m 2 N the sequence becomes
stationary, i.e. Si D Sj for every i; j � m (cf. [22]). If we consider the subsets
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S2;S3 n S2; : : : ;Sm n Sm�1, it seems possible that these provide an alternative
stratification of Mg minus the hyperelliptic locus. For such a stratification, a lower
bound for the slope increasing with the dimension of the strata would be provided
by Proposition 4. However, it does not seem clear, at least to the authors, to give a
geometrical characterization of the curves lying in Si n Si�1, and an estimate on
the codimensions of these strata.

3.3 Xiao’s Method: The Harder-Narashiman Filtration

As we have seen in the previous section, �-semistability of G implies f -positivity.
What about the case when the sheaf G is not semistable as a vector bundle? We
describe here a method based on Miyaoka’s Theorem 4, which exploits the Harder-
Narashimann filtration of the sheaf G .

The main idea is given by Xiao in [52], where he uses the method in the case of
fibred surfaces. Later on, Ohno [45] and Konno [30] extended the method to higher
dimensional fibred varieties over curves. We present here a compact version of the
general formula (see Proposition 5 below).

We need to recall the definition of the Harder-Narashimann filtration of a vector
bundle G over a curve B: it is the unique filtration of subbundles

0 D G0 � G1 � : : : � Gl D G

satisfying the following assumptions

• For any i D 0; : : : l the sheaf Gi =Gi�1 is �-semistable;
• If we set �i WD �.Gi =Gi�1/, we have that �i > �i�1.

Note that �1 > �.E / > �l , unless G is �-semistable, in which case 1 D l and
these numbers are equal. If H is a divisor associated to the tautological line bundle
of P.G / and ˙ is a general fibre then an R-line bundle H � x˙ is pseudoeffective
if and only if x � �1 [44, Cor. 3.7] and it is nef if and only if x � �l [37].

As usual, consider an n-dimensional fibred variety f WX �! B and be a line
bundle L on X . Let F be a general smooth fibre of f . Consider G � f�L a
subbundle, and its corresponding Harder-Narashiman filtration as above. Set ri D
rankGi .

For each i D 1; : : : ; l , we consider the pair .L ;Gi / as in Sect. 2.1 and a common
resolution of indeterminacies � W QX �! X . Let Mi be the moving part of .L ;Gi /,
and letNi DMi��iF . By Miyaoka’s theorem 4 we have thatNi is a nefQ�divisor
(not necessarily effective). The linear system Pi WD Ni j QF is free from base points

and induces a map 
i W QF �! P
ri�1. By construction we have Pl � Pl�1 � : : : �

P2 � P1. Define alC1 D 0 and NlC1 D Nl . Then, we can state the generalized
Xiao’s inequality as follows. We refer to [30] for proofs.
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For any set of indexes I D fi1; : : : ; img � f1; 2; : : : ; lg, define imC1 D l C 1 and
consider the partition of I given by

Is D fik j k D 1; : : : ; m such that dim
ik . OF / D s g:

Define now bn D l C 1 and decreasingly

bs D
�

minIs if Is ¤ ;
bsC1 otherwise:

Proposition 5 (Xiao, Konno). With the above notation, assume the L and G are
nef. Then the following inequality holds

Ln D .��L/n � Nn
lC1 �

0

@
1X

sDn�1
.
Y

n�1�k>s
Pbk /

X

j2Is
.

sX

rD0
P s�r
j P r

jC1/

1

A .�j ��jC1/:

(10)

Remark 17. As we see Xiao’s method does not give as a result f -positivity, but an
inequality for the top self-intersection Ln that has to be interpreted case by case.
On the other hand, it basically only has one hypothesis: the nefness of L and of G .
However, as we will see in Sect. 4.2 we can derive results on G D f�L even if it
is not a nef vector bundle. One of the contributions of this article is to frame Xiao’s
result in a more general setting, and to prove that with the right stability condition
in the couple .F;GjF /, for F general, Xiao’s method produces f -positivity, at least
in the case of dimension 2.

Example 3. Let us describe how inequality (10) implies the slope inequality in the
case of fibred surfaces. We use the above formula for n D 2, L D !f , G D f�!f
and the sets of indexes I D f1; : : : ; lg and I 0 D f1; lg. If we call di D degPi
inequality (10) becomes, respectively

K2
f �

lX

iD1
.di C diC1/.�i � �iC1/;

K2
f � .d1 C dl/.�1 � �l/C 2dl�l � dl.�1 C �l/ D .2g � 2/.�1 C �l/:

Let us note that by Cifford’s theorem we have inequality di � 2ri � 2. Observing
now that riC1 � riC1, and that degf�!f DPl

iD1 ri .�i��iC1/, we obtain straight
away the slope inequality

K2
f � 4

g � 1
g

degf�!f :
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In fact, the above proof gives an inequality for N2
l . In the case of nodal fibrations,

using the same notations as in Example 2, since Nl D ��.Kf .�D//.�E/, we
obtain the inequality N2

l � K2
f � n, which gives the very same inequality (8)

obtained via the Cornalba-Harris method.

Example 4. It could be interesting to have explicitly written the case n D 3 for the
complete set of indexes f1; : : : ; lg. Assume that Nl induces a generically finite map
on the surface F . Hence we have I2 ¤ ; and so

L3 � 3P 2
l �l C .P 2

l C PlPl�1 C P2
l�1/.�l�1 � �l/C : : :

: : :C .P 2
b2C1 C Pb2C1Pb2 C P2

b2
/.�b2 � �b2C1/C

CPb2 Œ.Pb2 C Pb2�1/.�b2�1 � �b2/C : : :C .Pb1C1 C Pb1/.�b1C1 � �b1/�:

Observe that b1 D 1 except for the case r1 D 1 where b1 D 2.
Since the linear systems induced by Pi for i D b1; : : : ; b2�1map F onto curves

Ci , we have a chain of projections between these curves in such a way that the
fibration part of the Stein factorization of the maps F �! Ci are the same. Hence
we have a fibration

� W F �! C:

Call D the general fibre, and let Qi be base point free linear systems on C such
that Pi D ��Qi of rank h0.C;Qi/ � ri D rankGi and degrees which we call di .
Writing this information and using that for all j

P k
jC1P l

j � Pk�1
jC1P lC1

j ;

since Pj � PjC1 and they are nef, we obtain a simplified (and weaker) version of
the previous inequality:

L3 � 3.P 2
l �l C P2

l�1.�l�1 � �l/C : : :C P2
b2
.�b2 � �b2C1//C

C2	.db2�1.�b2�1 � �b2/C : : :C db1.�b1 � �b1C1//; (11)

where 	 D DPb2 .

3.4 Moriwaki’s Method: �-Stability on the Fibres

In this paragraph we shall restrict ourselves to the case n D 2; see Remark 21 below
for a discussion on higher-dimensional results. Let X D S be a smooth surface.
We need the following fundamental result due to Bogomolov, which can be found
in [15].
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Definition 5. Let E be a torsion free sheaf over S . The class

�.E / WD 2 rankE c2.E /� .rankE � 1/c21.E / 2 A2Q.S/

is the discriminant of the vector bundle E . Let ı.E / denote its degree.

Theorem 8 (Bogomolov Instability Theorem). With the above notation, if
ı.E / < 0 then there exists a saturated subsheaf F � E such that the class

D D �rankF c1.E /C rankE c1.F /

belongs to the positive cone KC.S/ of PicQ.S/.

Recall that the positive coneKC is defined as follows: consider the (double) cone

K.S/ D fA 2 N1.S/Q j A2 > 0g � N1.S/Q:

The coneKC.S/ is the connected component of K.S/ containing the ample cone.

Remark 18. Recall the definition of semistable sheaf in higher dimension: if X is
a variety of dimension n and F a locally free sheaf on X , let H be an ample
line bundle on X . We say that F is H -(semi)stable if for any proper subsheaf
0 6D R �F

c1.R/ 	Hn�1

rankR
� c1.F / 	Hn�1

rankF
.resp. </;

where H is the class of H . In particular from the strong instability condition
provided by the theorem above, we have that if E is H -semistable with respect
to any ample line bundle H on S , then ı.E / � 0.

The argument of Moriwaki relies on two key observations. The first is the
following: if the surface S carries a fibration, then, in order to ensure the non-
negativity of ı.E / for a vector bundle E , one can assume that E is semistable on the
general fibres of f .

Proposition 6 ([39] Theorem 2.2.1). Let us consider a fibred surface f WS �! B .
Let E be a sheaf on S such that the restriction of E on a general fibre of f is a
�-semistable sheaf. Then ı.E / � 0.

Proof. Suppose by contradiction that ı.E / < 0. Then by the Bogomolov Instability
Theorem there exists a saturated subsheaf F � E such that the divisor D D
rankF c1.E /� rankE c1.F / satisfies thatD2 > 0. As a fibre F is nef, and F 2 D 0,
by the Hodge Index Theorem [10, sec.IV, Cor. 2.16], we have that

0 < D 	 F D rankE deg FjF � rankF deg EjF :

So FjF is a destabilizing subsheaf of EjF , against the assumption.
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Remark 19. It is worth noticing that the hypothesis of the above proposition that
the restriction EjF is �-semistable on the general fibres F does not imply, neither
is implied, by some semistability of the sheaf E on S . Indeed, we can say only the
following:

• Let H be an ample line bundle on S and C be a general curve in jH �d j with
d � 1. Suppose that EjC is �-semistable, then E is H -semistable. Indeed if F
would be an H -destabilizing subsheaf of E , then FjC would be destabilizing
for EjC , because

�.FjC / D deg FjC
rankFjC

D d deg.c1.F / 	H/
rankF

> d
deg.c1.E / 	H/

rankE

D deg EjC
rankEjC

D �.EjC /

• If E is H -semistable with respect to some ample line bundle H , and C is a
general curve in jH �mj, for sufficiently largem, then EjC is �-semistable [34].

Note that as a fibre F of any fibration f WS �! B satisfies F 2 D 0, it cannot be
ample. However, if the fibration is rational (i.e. B Š P

1), the conditions above can
hold true after some blow down of sections of the fibration.

Let us consider now a fibred surface f WS �! B , a line bundle L and a
rank r subsheaf G � f�L . The second point of Moriwaki’s argument, using our
terminology, relates ı.E / to e.L ;G /, for a suitably chosen vector bundle E , as
follows.

Let M be the kernel of the evaluation morphism f �G � f �f�L �! L . The
following is a generalization of a computation contained in [39].

Proposition 7. With the above notation, if either

(a) The sheaf G is generating in codimension 2, or
(b) The line bundle L is f -nef, and G has base locus vertical with respect to f ,

then

ı.M / � e.L ;G /:

Proof. Let us call K the image of the evaluation morphism, so that we have the
following exact sequence

0 �!M �! f �G
'�! K �! 0:

Note that, with the notations of Sect. 2.1, c1.K / D c1.L .�D//, where D is the
fixed locus of G , and c WD c2.K / D �E2 � 0, where E is as in Sect. 2.1. Indeed,
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c2.K / is the length of the isolated base points of the variable part (with natural
scheme structure) [3]. So we have

• c1.M / D f �c1.G /� c1.L .�D//;
• c2.M / D �c1.M /c1.L .�D// � c.

Hence deg c2.M / D .L � D/2 � deg G .L � D/F � c. Let r D rankG , so that
rankM D r � 1. We can make the following computation

ı.M / D 2.r � 1/ �.L �D/2 � deg G .L �D/F � c�C
�.r � 2/ �.L �D/2 � 2 degG .L �D/F � D
D r.L �D/2 � 2 deg G .L�D/F � 2.r � 1/c:

In case (a) D D 0 and we thus obtain ı.M / D e.L ;G / � 2.r � 1/c � e.L ;G /.
In case assumption (b) holds, observe that .L � D/2 D L2 � 2LD C D2 � L2;
indeed being D effective and vertical, we have D2 � 0 by Zariski’s Lemma, and
LD � 0 because L is supposed to be f -nef. On the other hand, .L �D/F D LF
again because D is vertical. Hence, we still obtain the desired inequality, and the
proof is concluded.

Combining Propositions 6 and 7 we get immediately the following result

Theorem 9. With the notation above, suppose that the restriction MjF to a general
fibre F is a semistable sheaf on it. Suppose moreover that one of the following
conditions holds.

• The sheaf G is generating in codimension 2;
• The line bundle L is f -nef, and G has base locus vertical with respect to f .

Then the couple .L ;G / is f -positive.

Example 5. Let f WS �! B be a relatively minimal non-locally trivial fibred
surface. Let us prove the slope inequality via Moriwaki’s method. Let us consider
the couple .!f ; f�!f /, and let M be the kernel sheaf of the evaluation morphism
f �f�!f �! !f . The hypotheses of the above theorem are satisfied. Indeed,
the assumption that MjF is a semistable sheaf has been proved by Pranjape
and Ramanan in [46]. The evaluation morphism f �f�!f �! !f can fail to
be surjective on some vertical divisor, so that Theorem 9 can be applied with
assumption (b) holding, and leads to the slope inequality (see also [3]).

In case f is a nodal fibration, we can obtain a finer inequality, as follows. From
the computations of Proposition 7, using the results contained in Example 1, we
have that

0 � ı.E / D gK2
f � 4.g � 1/�f � g.3k � 4r/� 2.g � 1/l;

where, as in Example 2, k is the number of disconnecting nodes lying on
components of socket type of the fibres, l is the number of the others disconnecting
nodes, and r is the number of components of socket type. So, we get
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K2
f � 4

g � 1
g

�f C k C 2g � 1
g

l:

Note that this inequality is slightly better than the one obtained in Examples 2 and 3
using respectively the Cornalba-Harris and the Xiao methods.

Remark 20. Moriwaki in [39] uses, for nodal fibred surfaces S �! B , as line
bundle L on S an ad hoc modification of the relative canonical bundle !f on the
singular fibres, and as G the whole f�L . The result is an inequality, involving some
contributions due to the singular fibres, stronger than the one obtained in Example 5.

From Proposition 7, combining it with Remark 18, we can straightforwardly
deduce the following condition for f -positivity.

Theorem 10. With the notations above, if the kernel of the evaluation morphism

f �G �! L

is H -semistable with respect to an ample line bundle H on S , then .L ;G / is
f -positive.

This result is not implied by Moriwaki’s Theorem 9, by what observed in
Remark 19.

Remark 21. It would be nice to be able to extend Moriwaki’s method to higher
dimensions. Thanks to Mumford-Metha-Ramanathan’s restriction theorem [34], it
is possible to obtain the following Bogomolov-type result. Let X be a variety of
dimension n, and E a vector bundle on X . Let H be an ample line bundle on S .
Define

ı.E / WD deg
�
2 rankE c2.E /H

n�2 � .rankE � 1/c21.E /Hn�2	 :

Then, if E is H -semistable, then ı.E / � 0. Unfortunately, this beautiful result
does not imply f -positivity in dimension greater than 2. One should consult also
the paper [38], of Moriwaki himself, for other inequalities along the same lines.

4 Linear Stability: A Thread Binding the Methods for n D 2

In this section we introduce the linear stability, for curves together with a linear
series. We see that in the case of fibred surfaces linear stability represents a link
between the three methods described in the previous section, that are from all other
aspects extremely different.

Let us start by recalling the notion of linear stability for a curve and a linear series
on it [50]. This is a straightforward generalization in the case of curves of the one
given by Mumford in [42].
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Let C be a smooth curve, and let 'WC �! Pr�1 be a non-degenerate morphism.
This corresponds to a globally generated line bundle L on C , and a base-point
free linear subsystem V � H0.C;L / of dimension r such that ' is induced from
the linear series jV j. Let d be the degree of L (i.e. jV j is a gr�1d on C ). Linear
stability gives a lower bound on the slope between the degree and the dimension of
any projections, depending on the degree and dimension of the given linear series
as follows.

Definition 6. With the above notation, we say that the couple .C; V /, is linearly
semistable (resp. stable) if any linear series of degree d 0 and dimension r 0 � 1
contained in jV j satisfies

d 0

r 0 � 1 �
d

r � 1 .resp. >/

In case V D H0.L /, we shall talk of the stability of the couple .C;L /. It is
easy to see that it is sufficient to verify that the inequality of the definition holds for
any complete linear series in jV j.
Example 6. Some of the known results are the following.

1. The canonical system on a curve of genus �2 is linearly semistable and it is
stable if and only if the curve is non-hyperelliptic. This follows from Clifford’s
Theorem and Riemann-Roch Theorem (see [2, chap.14, sec.3]).

2. It is immediate to check that a plane curve of degree d is linearly semistable
(with respect to its immersion in P2) if and only if it has points of multiplicity at
most d=2.

3. Using Riemann-Roch Theorem, it is easy to check that the morphism induced
on a curve of genus g by a line bundle of degree �2g C 1 is linearly stable (see
[42]).

4. For a non-hyperelliptic curve of genus �2, generic projections of low codimen-
sion from the canonical embedding are linearly stable [6].

5. Given a base-point free linear system V � H0.C;L / on a curve C of genus
g, if deg L � 2g, and the codimension of V in H0.C;L / is less or equal than
.deg L � 2g/=2, then .C; V / is linearly semistable [35].

4.1 Linear Stability and the Cornalba-Harris Method

Mumford introduced the concept of linear stability in order to find a more treatable
notion that the ones of GIT stability. The importance of linear stability from this
point of view lies indeed in the following result [42, Theorem 4.12]

Theorem 11 (Mumford). If .C;L / is linearly (semi-)stable and L is very ample,
then .C;L / is Chow (semi-)stable.
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In [2] it is proved the following result ([2, Theorem (2.2)])

Theorem 12. If .C;L / is linearly stable and L is very ample, then .C;L / is
Hilbert stable.

By Morrison’s result [40, Corollary 3.5], we see that Theorem 11 implies
Theorem 12. The arguments of [2, Theorem (2.2)] cannot be pushed through to
the semistable case, so at present it is not known if linear strict semistability implies
Hilbert strict semistability (through the authors would be surprised if it doesn’t).

It is easy to extend the proof of both Mumford’s Theorem 11, and [2, Theorem
(2.2)] to the case of a very ample non necessarily complete linear system (see e.g.
the second author’s Ph.D. Thesis).

Remark 22. Let V be a base-point free linear system on C inducing a morphism
'WC �! Pr of positive degree on the image. It is immediate to see that the linear
(semi)stability of V is equivalent to the linear stability of the image '.C / with its
embedding in Pr (compare with Remarks 13 and 14).

Using the results of Sect. 3.1 we can thus state the following results.

Theorem 13. Let f WS �! B be a fibred surface, L a line bundle on S and
G � f�L a subsheaf. Suppose that for general t 2 B the couple .F;Gt / is linearly
semistable. Suppose moreover that we are in one of the following situations:

(i) The couple .F;Gt / is strictly linearly stable, and the sheaf G is either
generating, or it satisfies the conditions of Proposition 2 or 3;

(ii) For t 2 B general, the fibre Gt � H0.F;LjF / is base-point free and the line
bundle L is relatively nef.

Then the couple .L ;G / is f -positive (via the Cornalba-Harris method).

4.2 Linear Stability and Xiao’s Method

We verify here that the method of Xiao gives as a result the f -positivity under the
assumption of linear stability.

Theorem 14. Let f WS �! B a fibred surface, F a general fibre, L a nef line
bundle on S and G � f�L a nef rank r subsheaf. Assume that the linear system
on F induced by G is linearly semistable. Then .L ;G / is f -positive (via Xiao’s
method).

Proof. Following the description of Xiao’s method given in Sect. 3.3, consider the
linear systems Pi induced on F by the pieces of the Harder-Narashiman filtration of
G , of rank ri . Let di D degPi , and observe that dl D degLjF DW d . Linear stability
condition implies

di

ri � 1 �
dl

rl � 1 D
dl

r � 1 DW a for any i D 1; : : : ; l:
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Observe that if r1 D 1 then d1 D 0 and the above inequality should be read as
d1 � ar1 and still holds. Consider now the sets of indexes I D f1; : : : ; lg and
I 0 D f1; lg. Then we have

L2 �
lX

iD1
.di C diC1/.�i � �iC1/

and

L2 � .d1 C dl /.�1 � �l/C 2dl�l � dl.�1 C �l/:

Use now that di � a.ri � 1/ for i D 1; : : : ; l (dlC1 D dl ) and that riC1 � ri C 1.
Observe that degG DPl

iD1 ri .�i � �iC1/ to get

L2 � 2adegG � a.�1 C �l/;

which finally proves

L2 � 2adl
aC dl degG D 2d

r
degG :

Remark 23. The fact that we used Clifford’s theorem in the proof of the slope
inequality via Xiao’s method in Example 3 can thus be rephrased in the following
way: Clifford’s theorem implies the linear semistability of the general fibres of f
together with their canonical systems.

We can make the following improvement for the complete case.

Proposition 8. With the notations above, assume that L is nef and that LjF is
linearly semistable. Then .L ; f�L / if f -positive, i.e.

L2 � 2d
r

degf�L :

Proof. Take G to be the biggest piece of the Harder-Narashiman filtration of f�L
such that �i � 0. It is nef and we have that di

ri�1 � d
r�1 by linear semistability and

that degG � degf�L . Then apply the same method as in the proof of Theorem 14.

Remark 24. From the proof of the Theorem 14 we get an inequality even if we do
not assume linear semistability condition on fibres. Indeed, observe that, if the linear
subsystems of P , the one induced by G , verify

di

ri � 1 � a for any i D 1; : : : ; l

for some constant a, then we obtain the following inequality for the slope
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L2 � 2ad

aC d degG :

where d D degP .
Take G as in the proof of the previous proposition. Observe that 2ad1

aCd1 � 2ad2
aCd2

if d1 � d2. Hence we can conclude that if L is nef and induces a base point free
linear system on F of degree d , such that all its linear subsystems verify

di

ri � 1 � a;

then

L2 � 2ad

aC d degf�L :

This remark allows us to give a general result for a nef line bundle L depending
of its degree of subcanonicity (compare with [4]).

Proposition 9. Let f W S �! B be a fibred surface with general fibre F of genus
g � 2 and let L be a nef line bundle on S . Let d be the degree of the moving part
of LjF . Then

(i) If LjF is subcanonical then

L2 � 4d

d C 2degf�L :

(ii) If d � 2gC 1 then

L2 � 2d

d � g C 2degf�L :

Proof. (i) Just take a D 2 in the previous remark using Clifford’s theorem.
(ii) If d � 2g C 1 then the linear system LjL is linearly semistable and hence we

can take, by Riemann-Roch theorem on F ,

a D d

r � 1 D
d

d C 1 � g :

4.3 Linear Stability and Moriwaki’s Method

Let C be a curve, L a line bundle on C , and V � H0.C;L / a linear subsystem
of degree d and dimension r . We now compare the concept of linear stability for a
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couple .C; V / with the stability needed for the application of Moriwaki’s method.
We call

ML ;V WD ker.V � OC �! L /;

the dual span bundle (DSB) of the line bundle L with respect to the generating
subspace V � H0.C;L /. This is a vector bundle of rank r � 1 and degree �d .
When V D H0.C;L / we denote it ML .3

Remark 25. An interesting geometric interpretation of this sheaf is the following.
Consider the Euler sequence on Pn:

0 �! ˝1
Pn
.1/ �! O

�.nC1/
Pn

�! OPn.1/ �! 0:

Applying the pullback of ' we obtain

0 �! '�.˝1
Pn
.1// �! V � OC �! L �! 0:

Hence the kernel of the evaluation morphism coincides with the restriction of the
cotangent bundle of the projective space Pn to the curve C .

The �-stability of the DSB is the stability condition assumed to hold on the
general fibres for the method of Moriwaki.

Proposition 10. With the above notation, if the DSB sheafML ;V is �-(semi)stable,
then the couple .C; V / is linearly (semi)stable.

Proof. Let us consider any gr
0�1
d 0 in jV j. Let V 0 be the associated subspace of V .

Consider the evaluation morphism V 0
� OC �! L , which is not surjective unless

d 0 D d , and let G be its kernel. Then G is a vector subbundle of ML ;V with
deg G D �d 0, rankG D r 0 � 1. So from the stability condition on ML ;V we obtain
that d 0=.r 0 � 1/ � d=.r � 1/.
Remark 26. Note that any G �ML ;V as in the above theorem fits into the diagram

where L � L is the image of the evaluation morphism V 0
� OC �! L .

3Note that we make here, as in [36], an abuse of notation: properly speaking the dual span bundle
is the dual bundle of MV;L , which is indeed spanned by V �.
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The converse implication is studied in [36]. Let us now briefly discuss the
question. Consider a linearly semistable couple .C; V /. Let us consider a proper
saturated subsheaf G �ML ;V . We have that G � is generated by its global sections.
Consider the image of the natural morphism W � WD im.V � ! H0.C;G �//. The
evaluation morphism W �

� OC �! G � is surjective. We thus have the following
commutative diagram (cf. [17])

(12)

where F is a vector bundle without trivial summands (this follows from the choice
of W ). Note that the morphism ˛ is non-zero, because W � OC is not contained in
the image ofML ;V in V �OC . Let us suppose that G is destabilizing: if the sheaf F
is a line bundle, then we would be in the situation described in Remark 26, and we
could easily deduce from the linear (semi)stability of .C; V / the �-(semi)stability
of ML ;V . But we cannot exclude that a destabilizing subsheaf exists which is not
the transform of a line bundle contained in L .

In [36] the second author and E. C. Mistretta prove that indeed this is the case in
the following cases, which depend on the Clifford index Cliff.C / of the curve C .

Theorem 15 ([36] Theorem 1.1). Let L be a globally generated line bundle on
C , and V � H0.C;L / a generating space of global sections such that

deg L � 2.dimV � 1/ 6 Cliff.C /:

Then linear (semi)stability of .C; V / is equivalent to �-(semi)stability of MV;L in
the following cases:

1. V D H0.L /;
2. deg L 6 2g � Cliff.C /C 1;
3. codimH0.L /V < h1.L /C g=.dimV � 2/;
4. deg L > 2g, and codimH0.L /V 6 .deg L � 2g/=2.

5 Results in Higher Dimensions

5.1 Linear Stability in Higher Dimensions and Xiao’s Method

Mumford’s original definition of linear stability is in any dimension, as follows.

Definition 7 ([42], Definition 2.16). Anm-dimensional variety of degree d in Pr�1
is linearly semistable (resp. linearly stable) if for any projection �WPr�1 Ü Ps�1
such that the image of X is still of dimensionm, the following inequality holds:
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deg.��.X//
s �m � d

r �m .resp: >/;

where ��.X/ denotes the image cycle of X in Ps .

For example, it easy to verify that a K3 surface with Picard number 1 is linearly
semistable. However, as Mumford himself remarks some lines after the definition,
this condition in dimension higher than 1 seems to be difficult to handle. Moreover,
it does not imply anymore Hilbert or Chow stability.

It seems that there is no sensible connection between linear stability and the
method of Cornalba-Harris.

The relation of linear semistability with f -positivity via Xiao’s method appears
clear enough when all the induced maps of the Harder-Narashiman pieces are
generically finite onto its image. More concretely, we obtain an inequality very close
to f -positivity (it is possible to get something slightly better with much more effort).

Proposition 11. Let f W X �! B be a fibration with general fibre F , n D dimX
and L a nef line bundle. Let G � f�L be a nef subbundle. Assume that all the
induced maps on F by the Harder-Narashimann pieces of G are generically finite
and that the one induced by G is (Mumford-)linearly semistable. Then

Ln � n d

r C .n � 1/2 degG :

Proof. A similar argument as in Theorem 14 applies. Let a D d=.r�nC1/, where
d and r are the degree and rank of the base-point free linear map induced on (a
suitable blow-up of) F by G . By Xiao’s inequality, using that all the induced maps
on fibres are generically finite onto their images and that Pk

iC1P r�1�k
i � P r�1

i for
all i , we obtain

Ln � n.
X

i

P n�1
i .�i � �iC1// �

X

i

.nari � n.n � 1/a/.�i � �iC1/

D nadegG � n.n � 1/a�1:

Since L � �1F is pseudoeffective and L is nef we have that Ln�1.L � �1F / � 0
and so

Ln � �1d;

which finally gives

Ln � n d

r C .n � 1/2 degG :

Clearly, the argument above does not work in general for dimX � 3, due
to the presence of induced map on fibres which are not generically finite. In
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some situations, however, it is possible to control such maps and conclude again
f -positivity. In [9] we do this analysis for families of K3 surfaces, obtaining a
significant generalization of Proposition 13 below.

5.2 New Inequalities and Conjectures via the C-H Method

We now state a couple of new results obtained via the CH method, using known sta-
bility results in dimension�2, and make some speculation and natural conjectures.

Families of Abelian Varieties

Let us consider a fibred variety f WX �! B of dimension n such that the general
fibre is an abelian variety. Suppose that L is a line bundle on X such that f�L is
either generating, or it satisfies the conditions of Proposition 2 or 3.

Proposition 12. Under the above assumption, suppose that L is very ample on the
general fibre. Then .L ;G / is f -positive, i.e.

Ln � nŠ degf�L : (13)

Proof. We can apply Theorem 6 because the immersion induced by LjF on the
general fibre F is Hilbert semistable by Kempf’s result [28]. Observe then that as F
is abelian, and L is very ample, we have that h0.F;LjF / D �.LjF / D Ln�1

jF =.n�
1/Š, and so f -positivity translates in formula (13).

Families of K3 Surfaces

Let f WT �! B be a fibred threefold such that the general fibre is a K3 surface
of genus g. Let L be a line bundle on T such that f�L is either generating, or
it satisfies the conditions of Proposition 2 or 3. The following result follows right
away from Theorem 6 applying Morrison’s result [41].

Proposition 13. In the above situation, suppose that the general fibres F have
Picard number 1, that LjF is the primitive divisor class, and that its degree is at
least 12. Then L is f -positive, i.e. the following inequality holds:

L3 � 6 g � 1
g C 1 degf�L :

Remark 27. It is interesting to notice that the bound 6.g � 1/=.gC 1/ appearing in
the inequality of Proposition 13 coincides with the one obtained in [31] and in [24]
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for the canonical slope of fibred surfaces of odd degree g whose general fibre is of
maximal gonality.

Moreover, it is easy to prove that the canonical slope of a family of curves
contained in a fixed K3 surface is indeed bounded from below by 6.g� 1/=.gC 1/.

A Conjecture on the Slope Inequality in Higher Dimension

Let f WX �! B be an n-dimensional fibred variety. It is natural to define as a
possible canonical slope the ratio between Kn

f and degf�!f , another possibility
being to use the relative characteristic �f : in higher dimension the values degf�!f
and �f are not equal, but it holds an inequality between them [5, 45].

A natural slope inequality in higher dimension would be the following

Kn
f � n

Kn�1
F

h0.F; !F /
degf�!f ; (14)

which is equivalent to the f -positivity of !f . From the Cornalba-Harris and Bost
method we can derive inequality (14) any time we have a Hilbert-Chow semistable
canonical map on the general fibres. Although there are not much general results, it
seems natural in the framework of GIT to conjecture that the stability of a variety
has a connection with its singularities: a stable or asymptotically stable variety has
mild singularities and it seems that also a vice-versa to this statement should hold.
In consideration of this fact, and in analogy with the case of curves, it seems natural
to state the following conjecture. See also Remark 4 for an account the natural
positivity conditions on !f .

Conjecture 1. Let f WX �! B be a fibred n-dimensional variety whose relative
canonical sheaf !f is relatively nef and ample on the general fibres, and whose
general fibres have sufficiently mild singularities (e.g. they are log canonical, or
semi-log-canonical). Then the fibration satisfies the slope inequality (14).

Almost nothing is known about this conjecture in dimension higher than 2. In [8]
we prove this inequality for families of hypersurfaces whose general fibres satisfy
a very weak singularity condition expressed in terms of its log canonical threshold
and depending upon the degree of the hypersurfaces (see [32]).

Remark 28. Recall that the Severi inequality for surfaces S of maximal Albanese
dimension K2

X � 4�.OX/ has been proved in full generality by Pardini in [47].
In [4] the first author proves that higher dimensional Severi inequalities of the form
Ln � 2nŠ�.L / hold n arbitrary dimensions for any nef line bundle L . The classical
proof of Severi inequality for surfaces and L D !S given by Pardini makes use of
the slope inequality for fibred surfaces. We prove now that her argument can be
generalized, assuming that Conjecture 1 holds.

Proposition 14. Let m > 0 be an integer. Suppose that slope inequality (14) holds
for all varieties of dimension � m that have maximal Albanese dimension and are
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fibred over P1. Then for any variety X of dimension n � m with maximal Albanese
dimension it holds the following sharp Severi inequality:

Kn
X � 2nŠ�.!X/: (15)

Proof. We proceed by induction on n D dimX . For n D 1 inequality (15) is trivially
true. Take now n � 2. First of all observe that from the slope inequality we can
deduce a stronger result for maximal Albanese dimensional varieties with fibrations
f WX �! P1. Indeed, consider an étale Galois cover of X of degree r , and the
induced fibration Qf . Then, applying inequality (14) we obtain

rKn
f D Kn

Qf � n
rKn�1

F

r�.!F /C �1 .r�f C �2/;

where �1 D .h1.F; !F /� : : :C .�1/n�2hn�1.F; !F // and �2 D .degR1f�!f � : : :
: : :C .�1/n�2Rn�1f�!f /. Since the inequality holds for all r we obtain

Kn
F C 2nKn�1

F D Kn
f � n

Kn�1
F

�.!F /
.�.!X/C 2�.!F //:

Applying induction hypothesis for F (which is clearly of maximal Albanese
dimension), we deduce the inequality

Kn
F C 2nKn�1

F � 2nŠ.�.!X/C 2�.!F //: (16)

Now we can “eliminate the contribution due to F ” just mimetizing Pardini’s
argument in [47], which we sketch here.

Consider the following cartesian diagram

where aWX �! A is the Albanese map, and the maps � are multiplication by d in
A and so are Galois étale maps of degree d2q . Fix a very ample line bundle H on
A and let M D a�.H / and QM D Qa�.H /. By [14, Ch2. Prop.3.5] we have that

QM 
 1

d2
��.M/ (numerical equivalence).

Take general elements F;F 0 2 j QM j and perform a blow-up Y �! X to obtain a
fibration f W Y �! P1. Then we apply (16) to f and obtain

Kn
Y C 2nKn�1

F � 2nŠ.�.!Y /C 2�.!F //:
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Now an easy computation through the blow-up and the étale cover � shows that

• Kn
Y D d2qKn

X C O.d 2q�4/.
• Kn�1

F D Kn�1
QX
QM C .n � 1/Kn�2

QX
QM D O.d 2q�2/.

• �.!Y / D �.! QX/ D d2q�.!X/.
• �.!F / D O.d 2q�2/ by Riemann-Roch theorem on QX .

Since these equalities holds for any d we conclude that

Kn
X � 2nŠ�.!X/:
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On the Second Lower Quotient
of the Fundamental Group

Arnaud Beauville

Dedicated to Klaus Hulek on his 60th birthday

Abstract Let X be a topological space, G D �1.X/ and D D .G;G/. We express
the second quotient D=.D;G/ of the lower central series of G in terms of the
homology and cohomology of X . As an example, we recover the isomorphism
D=.D;G/ Š Z=2 (due to Collino) when X is the Fano surface parametrizing lines
in a cubic threefold.

1 Introduction

Let X be a connected topological space. The group G WD �1.X/ admits a lower
central series

G � D WD .G;G/ � .D;G/ � : : :

The first quotient G=D is the homology group H1.X;Z/. We consider in this note
the second quotient D=.D;G/. In particular when H1.X;Z/ is torsion free, we
obtain a description of D=.D;G/ in terms of the homology and cohomology of
X (see Corollary 2 below).

As an example, we recover in the last section the isomorphismD=.D;G/ Š Z=2

(due to Collino) for the Fano surface parametrizing the lines contained in a cubic
threefold.
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2 The Main Result

Proposition 1. Let X be a connected space homotopic to a CW-complex, with
H1.X;Z/ finitely generated. Let G D �1.X/,D D .G;G/ its derived subgroup, QD
the subgroup of elements of G which are torsion in G=D. The group D=. QD;G/ is
canonically isomorphic to the cokernel of the map

� W H2.X;Z/! Alt2.H1.X;Z// given by �.
/.˛; ˇ/ D 
 _ .˛ ^ ˇ/ ;

where Alt2.H1.X;Z// is the group of skew-symmetric integral bilinear forms on
H1.X;Z/.

Proof. Let H be the quotient of H1.X;Z/ by its torsion subgroup; we put V WD
H �Z R and T WD V=H . The quotient map � W V ! T is the universal covering of
the real torus T .

Consider the surjective homomorphism ˛ W �1.X/! H . Since T is a K.H; 1/,
there is a continuous map a W X ! T , well defined up to homotopy, inducing ˛
on the fundamental groups. Let � W X 0 ! X be the pull back by a of the étale
covering � W V ! T , so that X 0 WD X �T V and � is the covering associated to the
homomorphism ˛.

Our key ingredient will be the map f W X � V ! T defined by f .x; v/ D
a.x/� �.v/. It is a locally trivial fibration, with fibers isomorphic to X 0. Indeed the
diagram

where g..x; v/;w/ D .x; v � w/, is cartesian.
It follows from this diagram that the monodromy action of �1.T / D H on

H1.X
0;Z/ is induced by the action of H on X 0; it is deduced from the action of

�1.X/ on �1.X 0/ by conjugation in the exact sequence

1! �1.X
0/

���! �1.X/! H ! 1 : (1)

The homology spectral sequence of the fibration f (see for instance [5]) gives
rise in low degree to a five terms exact sequence

H2.X;Z/
a��! H2.T;Z/ �! H1.X

0;Z/H
���! H1.X;Z/ �! H1.T;Z/ �! 0 ;

(2)

whereH1.X
0;Z/H denote the coinvariants of H1.X

0;Z/ under the action of H .
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The exact sequence (1) identifies �1.X
0/ with QD, hence H1.X

0;Z/ with
QD=. QD; QD/, the action of H being deduced from the action of G by conjugation.

The group of coinvariants is the largest quotient of this group on which G acts
trivially, that is, the quotient QD=. QD;G/.

The exact sequence (2) gives an isomorphism Ker �� ��! Cokera�. The map
�� W H1.X

0;Z/H ! H1.X;Z/ is identified with the natural map QD=. QD;G/ !
G=D deduced from the inclusions QD � G and . QD;G/ � D. Therefore its kernel is
D=. QD;G/. On the other hand since T is a torus we have canonical isomorphisms

H2.T;Z/
��! Hom.H2.T;Z/;Z/

��! Alt2.H1.T;Z//
��! Alt2.H1.X;Z// ;

through which a� corresponds to �, hence the Proposition. ut
Corollary 1. 1. There is a canonical surjective map D=.D;G/ ! Coker� with

finite kernel.
2. There are canonical exact sequences

H2.X;Q/
�Q�! Alt2.H1.X;Q// �! D=.D;G/ � Q! 0

0! Hom.D=.D;G/;Q/ �! ^2H1.X;Q/
cQ�! H2.X;Q/ ;

where c
Q

is the cup-product map.

Proof. (2) follows from (1), and from the fact that the transpose of �
Q

is c
Q

.
Therefore in view of the Proposition, it suffices to prove that the kernel of the
natural map D=.D;G/ ! D=. QD;G/, that is, . QD;G/=.D;G/, is finite. Consider
the surjective homomorphism

G=D �G=D ! D=.D;G/

deduced from .x; y/ 7! xyx�1y�1. It maps QD=D � G=D onto . QD;G/=.D;G/;
since QD=D is finite and G=D finitely generated, the result follows. ut
Corollary 2. Assume that H1.X;Z/ is torsion free.

1. The second quotient D=.D;G/ of the lower central series of G is canonically
isomorphic to Coker�.

2. For every ringR the group Hom.D=.D;G/;R/ is canonically isomorphic to the
kernel of the cup-product map cR W ^2H1.X;R/! H2.X;R/.

Proof. We have QD D D in that case, so (1) follows immediately from the Propo-
sition. Since H1.X;Z/ is torsion free, the universal coefficient theorem provides
an isomorphismH2.X;R/

��! Hom.H2.X;Z/; R/, hence applying Hom.�; R/ to
the exact sequence

H2.X;Z/! Alt2.H1.X;Z//! D=.D;G/! 0

gives (2). ut



44 A. Beauville

Remark 1. The Proposition and its Corollaries hold (with the same proofs) under
weaker assumptions on X , for instance for a connected space X which is paracom-
pact, admits a universal cover and is such that H1.X;Z/ is finitely generated. We
leave the details to the reader.

Remark 2. For compact Kähler manifolds, the isomorphism Hom.D=.D;G/;Q/ Š
Ker c

Q
(Corollary 1) is usually deduced from Sullivan’s theory of minimal models

(see [1], ch. 3); it can be used to prove that certain manifolds, for instance
Lagrangian submanifolds of an abelian variety, have a non-abelian fundamental
group.

3 Example: The Fano Surface

Let V � P4 be a smooth cubic threefold. The Fano surface F of V parametrizes the
lines contained in V . It is a smooth connected surface, which has been thoroughly
studied in [2]. Its Albanese variety A is canonically isomorphic to the intermediate
Jacobian JV of V , and the Albanese map a W F ! A is an embedding. Recall that
A D JV carries a principal polarization � 2 H2.A;Z/; for each integer k the class
�k

kŠ
belongs toH2k.A;Z/. The class of F inH6.A;Z/ is

�3

3Š
([2], Proposition 13.1).

Proposition 2. The maps a� W H2.A;Z/ ! H2.F;Z/ and a� W H2.F;Z/ !
H2.A;Z/ are injective and their images have index 2.

Proof. We first recall that if u W M ! N is a homomorphism between two free
Z-modules of the same rank, the integer j det uj is well-defined: it is equal to the
absolute value of the determinant of the matrix of u for any choice of bases for M
and N . If it is nonzero, it is equal to the index of Im u in N .

Poincaré duality identifies a� with the Gysin map a� W H2.F;Z/ ! H8.A;Z/,
and also to the transpose of a�. The composition

f W H2.A;Z/
a�

�! H2.F;Z/
a��! H8.A;Z/

is the cup-product with the class ŒF � D �3

3Š
	We have j deta�j D j deta�j ¤ 0 ([2],

10.14), so it suffices to show that j detf j D 4.
The principal polarization defines a unimodular skew-symmetric form on

H1.A;Z/; we choose a symplectic basis ."i ; ıj / of H1.A;Z/. Then

� D
X

i

"i ^ ıi and
�3

3Š
D

X

i<j<k

."i ^ ıi / ^ ."j ^ ıj / ^ ."k ^ ık/ :

If we identify by Poincaré duality H8.A;Z/ with the dual of H2.A;Z/, and
H10.A;Z/ with Z, f is the homomorphism associated to the bilinear symmetric
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form b W .˛; ˇ/ 7! ˛^ˇ^ �
3

3Š
, hence j detf j is the absolute value of the discriminant

of b. Let us writeH2.A;Z/ D M �N , whereM is spanned by the vectors "i ^ "j ,
ıi ^ ıj and "i ^ ıj for i ¤ j , and N by the vectors "i ^ ıi . The decomposition is
orthogonal with respect to b; the restriction of b to M is unimodular, because the
dual basis of ."i ^ "j ; ıi ^ ıj ; "i ^ ıj / is .�ıi ^ ıj ;�"i ^ "j ;�"j ^ ıi /. On N the
matrix of b with respect to the basis ."i ^ ıi / is E� I , whereE is the 5-by-5 matrix
with all entries equal to 1. Since E has rank 1 we have ^kE D 0 for k � 2, hence

det.E � I / D � det.I � E/ D �I C TrE D 4 I
hence j detf j D 4. ut
Corollary 3. Set G D �1.F / and D D .G;G/. The group D=.D;G/ is cyclic of
order 2.

IndeedH1.F;Z/ is torsion free [3], hence the result follows from Corollary 2. ut
Remark 3. The deeper topological study of [3] gives actually the stronger result that
D is generated as a normal subgroup by an element 
 of order 2 (see [3], and the
correction in [4], Remark 4.1). Since every conjugate of 
 is equivalent to 
 modulo
.D;G/, this implies Corollary 3.

Remark 4. Choose a line ` 2 F , and let C � F be the curve of lines incident to
`. Let d W H2.F;Z/ ! Z=2 be the homomorphism given by d.˛/ D .˛ 	 ŒC �/
.mod: 2/. We claim that the image of a� W H2.A;Z/! H2.F;Z/ is Kerd . Indeed
we have .C 2/ D 5 (the number of lines incident to two given skew lines on a
cubic surface), hence d.ŒC �/ D 1, so that Kerd has index 2; thus it suffices to prove
d ıa� D 0. For ˛ 2 H2.A;Z/, we have d.a�˛/ D .a�˛ 	ŒC �/ D .˛ 	a�ŒC �/mod: 2;

this is 0 because the class a�ŒC � 2 H8.A;Z/ is equal to 2
�4

4Š
([2], Lemma 11.5),

hence is divisible by 2.
We can identify a� with the cup-product map c; thus we have an exact sequence

0! ^2H1.F;Z/
c�! H2.F;Z/

d�! Z=2! 0 with d.˛/ D .˛ 	 ŒC �/ .mod: 2/ :
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McKay Correspondence over Non Algebraically
Closed Fields

Mark Blume

Abstract The classical McKay correspondence for finite subgroupsG of SL.2;C/
gives a bijection between isomorphism classes of nontrivial irreducible represen-
tations of G and irreducible components of the exceptional divisor in the minimal
resolution of the quotient singularity A2

C=G. Over non algebraically closed fields
K there may exist representations irreducible overK which split overK . The same
is true for irreducible components of the exceptional divisor. In this paper we show
that these two phenomena are related and that there is a bijection between nontrivial
irreducible representations and irreducible components of the exceptional divisor
over non algebraically closed fields K of characteristic 0 as well.

1 Introduction

LetG be a finite group operating on a smooth varietyM over C, e.g.M D An
C and

a linear operation of a finite subgroup G � SL.n;C/. Usually the quotient M=G
is singular and one considers resolutions of singularities Y ! M=G with some
minimality property. A method to construct resolutions of quotient singularities is
the G-Hilbert scheme G-HilbM introduced in [10, 11]. Under some conditions the
G-Hilbert scheme is irreducible, nonsingular and G-HilbM ! M=G a crepant
resolution [6]. In particular, this applies to the operation of finite subgroups G �
SL.n;C/ on An

C for n � 3. For G � SL.2;C/ there are also other methods to show
that the G-Hilbert scheme is the minimal resolution, see [10, 11].

The McKay correspondence in general describes the resolution Y in terms of the
representation theory of the group G, see [16, 17] for expositions of this subject.
Part of the correspondence for G � SL.2;C/ is a bijection between irreducible
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components of the exceptional divisor E and isomorphism classes of nontrivial
irreducible representations of the groupG and moreover an isomorphism of graphs
between the intersection graph of components of E and the representation graph of
G, both being graphs of ADE type. This was the observation of McKay [14].

The new contribution in this paper is to consider McKay correspondence over
non algebraically closed fields. We will work over a field K that is not assumed
to be algebraically closed but always of characteristic 0 and extend the McKay
correspondence to this slightly more general situation. Over non algebraically
closed K it is natural to consider finite group schemes instead of simply finite
groups. In comparison with the situation over algebraically closed fields there may
exist both representations of G and components of E that are irreducible over K
but split over the algebraic closure. We will see that these two kinds of splitting
that arise by extending the ground field are related by investigating the operation
of the Galois group. For this we introduce Galois-conjugate representations and
consider the Galois operation on the G-Hilbert scheme. The following McKay
correspondence over arbitrary fields K of characteristic 0 will be consequence of
more detailed theorems in Sect. 5.

Theorem 1. Let K be any field of characteristic 0 and G � SL.2;K/ a
finite subgroup scheme. Then there is a bijection between the set of irreducible
components of the exceptional divisor E and the set of isomorphism classes of
nontrivial irreducible representations of G and moreover an isomorphism between
the intersection graph of the irreducible components of Ered and the representation
graph of G.

Examples are discussed in Sect. 5.5, the possible graphs can be found in Sect. 4.4.
As already observed in [13], considering the rational double points over non
algebraically closed fields one finds the remaining Dynkin diagrams of types .Bn/,
.Cn/, .F4/, .G2/. The methods of this paper should also apply to other situations, in
particular to the McKay correspondence for finite small subgroups of GL.2;C/ and
give a similar generalisation as in the SL-case.

This paper is organised as follows. Section 2 shortly summarises some tech-
niques used in this paper, namely G-sheaves for group schemes G and G-Hilbert
schemes. Section 3 is concerned with the relations between Galois operations and
decompositions into irreducible components both of schemes and representations.
We introduce the notion of Galois-conjugate representations and G-sheaves and we
describe the Galois operation onG-Hilbert schemes. In Sect. 4 we collect some data
of the finite subgroup schemes of SL.2;K/ and list possible representation graphs.
In addition we investigate under what conditions a finite subgroup of SL.2; C /,
C the algebraic closure of K , is realisable as a subgroup of SL.2;K/. Section 5
contains the theorems of McKay correspondence over non algebraically closed
fields. We consider two constructions, the stratification of theG-Hilbert scheme and
the tautological sheaves, originating from [10] and [8] respectively, that are known
to give a McKay correspondence over C and formulate them for not necessarily
algebraically closed K .
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Notations. In general we write a lower index for base extensions, for example
if X; T are S -schemes then XT denotes the T -scheme X �S T or if V is a
representation over a field K then VL denotes the representation V �K L over the
extension field L. Likewise, if 'WX ! Y is a morphism of S -schemes, we write
'T WXT ! YT for its base extension with respect to T ! S .

2 Preliminaries

2.1 G-Sheaves

Let K be a field. Let G be a group scheme over K with pWG ! SpecK the
projection, eWSpecK ! G the unit, and mWG �K G ! G the multiplication. For
affine G D SpecA, A has the structure of a Hopf algebra over K , the coalgebra
structure being equivalent to the group structure of G.

Let X be a G-scheme over K , that is a K-scheme with an operation sX WG �K
X ! X of the group scheme G over K . We have to use a more general notion of
a G-sheaf than in [6], we adopt the definition of [15]: a (quasicoherent, coherent)
G-sheaf on X is a (quasicoherent, coherent) OX -module F with an isomorphism
	F W s�

XF
��! p�

XF of OG�KX -modules satisfying the conditions (i) the restriction
of 	F to the unit in GX is the identity, i.e. e�

X	
F W e�

Xs
�
XF ! e�

Xp
�
XF identifies

with idF WF ! F , and (ii) .m � idX/�	F D p�
23	

F ı .idG � sX/�	F , where
p23WG �K G �K X ! G �K X is the projection to the factors 2 and 3.

Remark 1. We summarise relevant properties of G-sheaves.

1. There is the canonical notion of G-equivariant homomorphisms between
G-sheaves F ;G onX , the set of these is denoted by HomG

X.F ;G /. Kernels and
co-kernels of G-equivariant homomorphisms have natural G-sheaf structures.

2. Assume G D SpecA affine and let X be a G-scheme with trivial G-operation,
i.e. sX D pX . Then the G-sheaf structure of a G-sheaf F is equivalent to a
homomorphism of OX -modules %WF ! A�KF satisfying the usual conditions
of a comodule. This relation can be constructed using the adjunction .pX�; pX�/.
Further, notions such as “subcomodule”, “homomorphism of comodules”, etc.
correspond to “G-subsheaf”, “equivariant homomorphism”, etc. TheG-invariant
part FG � F is defined by FG.U / WD ff 2 F .U / j %.f / D 1� f g for open
U � X .

3. For an A-comodule F on X a decomposition of A into a direct sum A DLi Ai
of subcoalgebras Ai determines a direct sum decomposition F D L

i Fi into
subcomodules (take preimages %�1.Ai �K F /), where the comodule structure
of Fi reduces to an Ai -comodule structure.

4. A G-sheaf on X D SpecK (or an extension field of K) we also call a
representation. Dualisation of an A-comodule V over K leads to a KG-module
V _, where KG D A_ D HomK.A;K/ with algebra structure dual to the
coalgebra structure of A.
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5. For quasicoherentG-sheaves F ;G with F finitely presented the sheaf HomOX

.F ;G / carries a natural G-sheaf structure. For locally free F one defines the
dual G-sheaf by F_ D HomOX .F ;OX/. In the case of trivial G-operation
on X there is the component HomG

OX
.F ;G / of HomOX .F ;G /, the sheaf

of equivariant homomorphisms, that can either be described as G-invariant
part .HomOX .F ;G //G � HomOX .F ;G / or by HomG

OX
.F ;G /.U / D

HomG
U .F jU ;G jU / for open U � X .

6. Functors for sheaves like �; f �; : : : as well have analogues for G-sheaves,
e.g. for equivariant f WY ! X and a G-sheaf F on X the sheaf f �F has a
natural G-sheaf structure.

7. Natural isomorphisms for sheaves lead to isomorphisms for G-sheaves,
e.g. under some conditions there is an isomorphism f �HomOX .F ;G / Š
HomOY .f

�F ; f �G / and this isomorphism becomes an isomorphism of
G-sheaves provided that f is equivariant and F ;G are G-sheaves. Other
examples aref �.F �OX G / Š f �F �OY f

�G , HomOX .F �OX E ;G / Š
HomOX .F ;E _

�OX G /.
8. Base extension K ! L makes out of a G-scheme X over K a scheme XL with

a G-scheme or a GL-scheme structure, the operation given by sXL D .sX/L. A
G-sheaf F on aG-schemeX gives rise to aG-sheaf FL D F �KL D f �F on
XL, where f WXL ! X . FL can be considered as a GL-sheaf on theGL-scheme
XL over L.

2.2 G-Hilbert Schemes

Let G D SpecA be a finite group scheme over a field K , assume that its Hopf
algebra A is cosemisimple (that is, A is sum of its simple subcoalgebras, see [20,
Ch. XIV] and Sect. 3.1 below).

For us the G-Hilbert scheme G-HilbKX of a G-scheme X over K will be by
definition the moduli space of G-clusters, i.e. parametrising G-stable finite closed
subschemes Z � XL, L an extension field of K , with H0.Z;OZ/ isomorphic
to the regular representation of G over L. We recall its construction (a variation
of the Quot scheme construction of [9]), for a detailed discussion including
the generalisation to finite group schemes with cosemisimple Hopf algebra over
arbitrary base fields see [1].

Let X be a G-scheme algebraic over K , assume that a geometric quotient
�WX ! X=G, � affine, exists. Then the G-Hilbert functor G-HilbKX W
.K-schemes/ı ! .sets/, given by

G-HilbKX.T /WD
8
<

:

QuotientG-sheaves Œ0! I ! OXT ! OZ ! 0� on XT ;
Z finite flat over T ; for t 2 T : H0.Zt ;OZt / isomorphic
to the regular representation

9
=

;
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for K-schemes T , is represented by an algebraic K-scheme G-HilbKX . Here we
write Œ0 ! I ! OXT ! OZ ! 0� for an exact sequence 0 ! I !
OXT ! OZ ! 0 of quasicoherent G-sheaves on XT with I ;OZ specified up to
isomorphism, that is either a quasicoherentG-subsheaf I � OXT or an equivalence
class ŒOXT ! OZ� of surjective equivariant homomorphisms of quasicoherent
G-sheaves with two of them equivalent if their kernels coincide.

There is the natural morphism � WG-HilbKX ! X=G, which is projective and as
a map of points takes G-clusters to the corresponding orbits.

In this paper we are interested in the case G � SL.2;K/ operating on X D A2
K

over fieldsK of characteristic 0.

Proposition 1. The G-Hilbert scheme G-HilbKA2
K is irreducible and nonsingular.

The morphism � WG-HilbKA2
K ! A2

K=G is birational and the minimal resolution
of A2

K=G.

Proof. This is known for algebraically closed fields of characteristic 0 [6, 10,
11]. From this the statements about irreducibility and nonsingularity for not
necessarily algebraically closed K follow, use that for C the algebraic closure
.G-HilbKA2

K/C Š GC -HilbCA2
C (see [1]). The morphism � WG-HilbKA2

K !
A2
K=G is known to be birational. The base extension .G-HilbKA2

K/C ! .A2
K=G/C

identifies with the natural morphism GC -HilbCA2
C ! A2

C =GC (follows directly
from the functorial definition of � , see e.g. [1]). So the statement about minimality
as well follows from the same statement for algebraically closed fields. ut

3 Galois Operation and Irreducibility

3.1 (Co)semisimple (Co)algebras and Galois Extensions

Let K be a field and K ! L a Galois extension, � WD AutK.L/. As reference
for simple and semisimple algebras we use [3, Algébre, Ch. VIII], for coalgebras
and comodules [20]. Note that for aK-vector space V (maybe with some additional
structure) � operates on the base extension VL D V �K L via the second factor.

Proposition 2. Let F be a simple K-algebra. Assume that FL is semisimple, let
FL D Lr

iD1 FL;i be its decomposition into simple components. Then � permutes
the simple summandsFL;i and the operation on the set fFL;1; : : : ; FL;r g is transitive.

Proof. The FL;i are the minimal two-sided ideals of FL. Since any � 2 � is an
automorphism of FL as a K-algebra or ring, the FL;i are permuted by � .

Let U DP�2� �FL;1 and V the sum over the remaining FL;i . Then FL D U �

V , U and V are � -stable and thus U D U 0
L, V D V 0

L forK-subspaces U 0; V 0 � F
by [2, Algebra II, Ch. V, § 10.4], since K ! L is a Galois extension. It follows
that F D U 0

� V 0 with U 0; V 0 two-sided ideals of F . Since F is simple, V 0 D 0,
U D FL and the operation is transitive. ut
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A coalgebra C ¤ 0 is called simple, if it has no subcoalgebras except f0g and C .
A coalgebra is called cosemisimple, if it is the sum of its simple subcoalgebras, in
which case this sum is direct. For cosemisimple C the simple subcoalgebras are the
isotypic components of C as a C -comodule (left or right), so they correspond to the
isomorphism classes of simple representations of G overK .

Proposition 3. Let C be a finite dimensional coalgebra overK . Then C is cosemi-
simple if and only if CL is cosemisimple.

Proof. This is equivalent to the dual statement for finite dimensional semisimple
K-algebras [3, Algébre, Ch. VIII, § 7.6, Thm. 3, Cor. 4]. ut

For simple coalgebras there is a result similar to Proposition 2 and proven
analogously, note that simple coalgebras are finite dimensional.

Proposition 4. Let C be a simple coalgebra overK . Then CL is cosemisimple, and
if CL D L

i CL;i is its decomposition into simple components, then � transitively
permutes the simple summands CL;i .

Corollary 1. LetC be a cosemisimple coalgebra overK . ThenCL is cosemisimple,
and if C D L

j Cj resp. CL D L
i CL;i are the decompositions into simple

subcoalgebras, then:

(i) The decomposition CL ŠL
i CL;i is a refinement of the decomposition CL ŠL

j .Cj /L.
(ii) � transitively permutes the summands CL;i of .Cj /L for any j .

Therefore .Cj /L DP�2� �CL;i , if CL;i is a summand of .Cj /L.

This applies to the situation considered in this paper. Assume that the field
K is of characteristic 0 and let G D SpecA be a finite group scheme over K ,
jGj WD dimK A. Define KG to be the K-vector space A_ D HomK.A;K/ with
algebra structure dual to the coalgebra structure of A. In this situation the algebra
A is always reduced and for a suitable algebraic extension field L of K the group
scheme GL is discrete. Then G.L/ is a finite group of order jGj and the algebra
LG D .KG/L is isomorphic to the group algebra of the group G.L/ over L. By
semisimplicity of group algebras for finite groups over fields of characteristic 0 and
Proposition 3 one obtains:

Proposition 5. Let G D SpecA be a finite group scheme over a field K of
characteristic 0. Then the Hopf algebra A is cosemisimple and so are its base
extensions AL with respect to field extensionsK ! L.

3.2 Irreducible Components of Schemes and Galois Extensions

Let X be a K-scheme. For an extension field L of K the group � D AutK.L/
operates on XL D X �K SpecL by automorphisms of K-schemes via the
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second factor. For simplicity we denote the morphisms SpecL ! SpecL, XL !
XL coming from � WL! L by � as well.

A point of X may decompose over L, this way a point x 2 X corresponds to a
set of points of XL, the preimage of x with respect to the projection XL ! X . In
particular this applies to closed points and to irreducible components. These sets are
known to be exactly the � -orbits.

Proposition 6. Let X be an algebraic K-scheme and K ! L be a Galois
extension, � WD AutK.L/. Then points of X correspond to � -orbits of points of
XL, the � -orbits are finite.

Proof. Taking fibers, the proposition reduces to the following statement:
Let F be the quotient field of a commutative integral K-algebra of finite type.

Then FL D F �K L has only finitely many prime ideals and they are � -conjugate.
Proof. FL is integral over F because this property is stable under base extension

[5, Commutative Algebra, Ch. V, § 1.1, Prop. 5]. It is clear that every prime ideal of
FL lies above the prime ideal .0/ of F . There are no inclusions between the prime
ideals of FL [5, Commutative Algebra, Ch. V, § 2.1, Proposition 1, Corollary 1].
Since every prime ideal of FL is a maximal ideal and FL is noetherian (a localisation
of an L-algebra of finite type), FL is artinian, it has only finitely many prime ideals
Q1; : : : ;Qr .
FL has trivial radical [3, Algébre, Ch. VIII, § 7.3, Thm. 1, also § 7.5 and § 7.6,

Cor. 3]. Being an artinian ring without radical, i.e. semisimple [3, Algébre, Ch. VIII,
§ 6.4, Thm. 4, Cor. 2 and Prop. 9], FL decomposes as a L-algebra into a direct sum

FL ŠLr
iD1 FL;i

of fields FL;i Š FL=Qi (this can easily be seen directly, however, it is part of
the general theory of semisimple algebras developed in [3, Algébre, Ch. VIII] that
contains the representation theory of finite groups schemes with cosemisimple Hopf
algebra as another special case).
� operates on FL, it permutes the Qi and the simple components FL;i of FL

transitively by Proposition 2. ut

3.3 Galois Operation on G-Hilbert Schemes

Let Y be a K-scheme, L an extension field of K and � D AutK.L/.
For an L-scheme f WT ! SpecL and � 2 � define the L-scheme ��T to be the

scheme T with structure morphism � ıf . For a morphism ˛WT 0 ! T ofL-schemes
let ��˛ be the same morphism ˛ considered as an L-morphism ��T 0 ! ��T .

For a morphism ˛WYL ! Y 0
L of L-schemes and � 2 � define the conjugate

morphism ˛� by ˛� WD � ı .��˛/ ı ��1, which again is a morphism of L-schemes.
Here � W ��YL ! YL is a morphism over L.
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Let T be an L-scheme defined over K , that is T D T 0
L for some K-scheme T 0.

The group � operates on the set YL.T / of morphisms T ! YL over L by

� W YL.T / ! YL.T /

˛ 7! ˛� D � ı .��˛/ ı ��1

Consider the case of G-Hilbert schemes. Let G be a finite group scheme over K ,
X be a G-scheme over K and assume that the G-Hilbert functor is represented
by a K-scheme G-HilbKX . There is the canonical isomorphism of L-schemes
.G-HilbKX/L Š GL-HilbLXL (see [1]), obtained by identifying X �K T D
XL �L T for L-schemes T .

Proposition 7. Let T be an L-scheme defined over K . Then, for a morphism
˛WT ! GL-HilbLXL of L-schemes corresponding to a quotient Œ0 ! I !
OXT ! OZ ! 0� and for � 2 � , the � -conjugate morphism ˛� corresponds
to the quotient Œ0! ��I ! OXT ! O�Z ! 0�.

Proof. For a morphism of L-schemes ˛WT ! GL-HilbLXL Š .G-HilbKX/ �K
SpecL consider the commutative diagram of L-morphisms

The morphism ˛ is given by a quotient Œ0 ! I ! OXT ! OZ ! 0� on
XT D XL �L T . Under the identification GL-HilbLXL D .G-HilbKXK/L the T -
valued point ˛ corresponds to a morphism T ! G-HilbKX ofK-schemes, that is a
quotient Œ0! I ! OX�KT ! OZ ! 0� on X �K T , and the structure morphism
f WT ! SpecL. We have the correspondences

˛  !
�
Œ0! I ! OX�KT ! OZ ! 0�

f WT ! SpecL

� ı .��˛/  !
�
Œ0! I ! OX�K��T ! OZ ! 0�

� ı .��f /W ��T ! SpecL

˛� D � ı .��˛/ ı ��1  !
�
Œ0! ��1�

I ! OX�KT ! ��1�
OZ ! 0�

f D � ı .��f / ı ��1WT ! SpecL

 !
�
Œ0! ��I ! OX�KT ! O�Z ! 0�

f D � ı .��f / ı ��1WT ! SpecL
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Under the identification .G-HilbKX/L D GL-HilbLXL the last morphism corre-
sponds to the quotient Œ0! ��I ! OXT ! O�Z ! 0� on XT D XL �L T . ut

In particular, in the case X D A2
K the � -conjugate of an L-valued point given by

an ideal I � LŒx1; x2� or a GL-cluster Z � A2
L is given by the � -conjugate ideal

��1I � LŒx1; x2� or the � -conjugateGL-cluster �Z � A2
L.

Every point x of the L-scheme GL-HilbLA2
L such that �.x/ D L corresponds

to a unique L-valued point ˛WSpecL ! GL-HilbLA2
L. The � -conjugate point �x

corresponds to the � -conjugateL-valued point ˛� WSpecL! GL-HilbLA2
L.

Corollary 2. Let x be a closed point of GL-HilbLA2
L such that �.x/ D

L,˛WSpecL ! GL-HilbLA2
L the corresponding L-valued point given by an

ideal I � LŒx1; x2�. Then for � 2 � the conjugate point �x corresponds to
the � -conjugate L-valued point ˛� WSpecL ! GL-HilbLA2

L, which is given by the
ideal ��1I � LŒx1; x2�.

3.4 Conjugate G-Sheaves

Let G D SpecA be a group scheme over a field K , X be a G-scheme over K ,
let K ! L be a field extension and � D AutK.L/. Again, � operates on XL
by automorphisms � WXL ! XL over K , these are equivariant with respect to the
G-scheme structure of XL defined in Remark 1(8).

Proposition–Definition 1 Let F be aGL-sheaf onXL. For � 2 � the OXL -module
��F has a naturalGL-sheaf structure given by

This GL-sheaf ��F is called the � -conjugate GL-sheaf of F . For a morphism
of GL-sheaves 'WF ! G the morphism ��'W ��F ! ��G is a morphism
of GL-sheaves between the sheaves ��F and ��G with � -conjugate GL-sheaf
structure.

Remark 2. This way functors �� are defined, similarly one may define functors ��,
then �� and .��1/� are isomorphic. In the case of trivial operation they preserve
trivial G-sheaf structures.

The functors �� commute with functors f �
L ; fL� for equivariant morphisms f

and with bifunctors like Hom and �:
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Lemma 1. There are the following natural isomorphisms of GL-sheaves:

(i) For GL-sheaves F ;G on XL W ��.F �OXL
G / Š ��F �OXL

��G .
(ii) Let f WY ! X be an equivariant morphism of G-schemes over K and F a

GL-sheaf on XL. Then ��f �
L F Š f �

L ��F .
(iii) For quasicoherent GL-sheaves F ;G on XL with F finitely presented:��H

omOXL
.F ;G / Š HomOXL

.��F ; ��G /. If the G-operation on X is trivial, it

follows that ��.HomGL
OXL

.F ;G // ŠHomGL
OXL

.��F ; ��G /.

Remark 3. If F Š F 0
L for some G-sheaf F 0 on X , then there are maps (not L-

linear) � WF ! F resp. isomorphisms of GL-sheaves � WF ! ��F on XL. For a
subsheaf G � F the above isomorphisms of GL-sheaves restrict to isomorphisms
of GL-sheaves � W ��1G ! ��G .

3.5 Conjugate Comodules and Representations

Let G D SpecA be an affine group scheme over a field K , X be a G-scheme over
K , let K ! L be a field extension and � D AutK.L/.

Remark 4. For � 2 � there are maps � WAL ! AL. Taking the canonically defined
conjugate Hopf algebra structure on the target, these maps become isomorphisms
� WAL ! ��AL of Hopf algebras over L. They correspond to isomorphisms
� W ��GL ! GL of group schemes over L.

Proposition 8. Let F be a GL-sheaf on XL, X with trivial G-operation, the GL-
sheaf structure equivalent to an AL-comodule structure %F WF ! AL �L F . Then
for � 2 � the GL-sheaf structure of the � -conjugate GL-sheaf ��F is equivalent
to the comodule structure %��F W ��F ! AL�L ��F determined by commutativity
of the diagram

Proof. Apply the construction mentioned in Remark 1(2) to diagram (1). ut
In the special case of representations the definition of conjugateG-sheaves leads

to the notion of a conjugate representation: Instead of a sheaf ��F one has an
L-vector space ��V , the vector space structure given by .l; v/ 7! �.l/v using
the original structure. The choice of a K-structure V D V 0

L gives an isomorphism
� WV ! ��V of L-vector spaces and leads to the diagram
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for definition of the � -conjugate AL-comodule structure .%V /� on V—this
definition is made, such that � W .V; .%V /� / ! .��V; %��V / is an isomorphism
of AL-comodules. We write V � for V with the conjugate AL-comodule structure.

Remark 5. Let V 0 be an A-comodule over K and V D V 0
L. Then as a special

case of Remark 3 there are maps � WV ! V resp. isomorphisms of AL-comodules
� WV ! ��V . For any AL-subcomodule U � V these restrict to isomorphisms of
AL-comodules ��1U ��! ��U Š U � .

3.6 Decomposition into Isotypic Components and Galois
Extensions

Let G D SpecA be an affine group scheme over a field K , let K ! L be a Galois
extension, � D AutK.L/. Assume that A;AL are cosemisimple.

Recall the relations between the Galois operation onAL given by maps � WAL !
AL resp. isomorphisms � WAL ! ��AL of Hopf algebras or of AL-comodules (see
Remarks 4 or 5) and the decompositions A D L

j2J Aj and AL D L
i2I AL;i

into simple subcoalgebras described in Corollary 1. We relate this to conjugation
of representations. The subcoalgebras AL;i are the isotypic components of AL as a
left-(or right-)comodule, let Vi be the isomorphism class of simple AL-comodules
corresponding to AL;i . Define an operation of � on the index set I by V�.i/ D V

�
i .

Using Remark 5 one obtains:

Lemma 2. ��1AL;i D AL;�.i/.
The decomposition of A into simple subcoalgebras A D L

j Aj gives decom-
positions of representations and more generally of G-sheaves on G-schemes
with trivial G-operation into isotypic components corresponding to the Aj (see
Remark 1(3)). After base extension one has decompositions of GL-sheaves, we
compare it with the decompositions coming from the decomposition of AL into
simple subcoalgebras.

Proposition 9. Let X be a G-scheme with trivial operation, F a G-sheaf on X
and let
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F DLj Fj ; FL DLi FL;i

be the decompositions into isotypic components as a G-sheaf resp. GL-sheaf.
Then:

(i) FL DLi FL;i is a refinement of FL DLj .Fj /L.
(ii) The operation of � on FL (see Remark 3) permutes the isotypic components

FL;i of FL. It is ��1FL;i D FL;�.i/, if V�.i/ D V �
i .

(iii) .Fj /L DP�2� �FL;i , if FL;i is a summand of .Fj /L.

Proof (Sketch of proof). Combine Remark 3, Proposition 8 and Lemma 2 with
Corollary 1. ut
Corollary 3. � operates by Vi 7! V

�
i on the set fVi ji 2 I g of isomorphism classes

of irreducible representations of GL. The subsets of fVi j i 2 I g, which occur by
decomposing irreducible representations of G over K as representations over L,
are exactly the � -orbits.

For similar results in the representation theory of finite groups see e.g. [7, Vol. I,
§ 7B].

4 The Finite Subgroup Schemes of SL.2 ; K/:
Representations and Graphs

In this section K denotes a field of characteristic 0.

4.1 The Finite Subgroups of SL.2 ; C /

By the well known classification any finite subgroup G � SL.2; C /, C an
algebraically closed field of characteristic 0, is isomorphic to one of the following
groups (presentations and character tables are listed in Sect. 6).

Z=nZ (cyclic group of order n), n � 1
BDn (binary dihedral group of order 4n), n � 2
BT (binary tetrahedral group)
BO (binary octahedral group)
BI (binary icosahedral group).

4.2 Representation Graphs

In the following definition we will introduce the (extended) representation graph
as an in general directed graph. A loop is defined to be an edge emanating from
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and terminating at the same vertex. In addition we will attach a natural number
called multiplicity to any vertex, and for homomorphisms of graphs in addition
we will require, that for any vertex of the target its multiplicity is the sum of the
multiplicities of its preimages.

Definition 1. The extended representation graph Graph.G; V / associated to a finite
subgroup scheme G of GL.n;K/, V the given n-dimensional representation, is
defined as the following directed graph:

– Vertices. A vertex of multiplicity n for each irreducible representation of G
over K which decomposes over the algebraic closure of K into n irreducible
representations.

– Edges. Vertices Vi and Vj are connected by dimK HomG
K.Vi ; V �K Vj / directed

edges from Vi to Vj . In particular any vertex Vi has dimK HomG
K.Vi ; V �K Vi /

directed loops.

Define the representation graph to be the graph, which arises by leaving out
the trivial representation and all edges emanating from or terminating at the trivial
representation.

We say that a graph is undirected, if between any two different vertices the
numbers of directed edges of both directions coincide and for any vertex the number
of directed loops is even.

Then one can form a graph having only undirected edges by defining (number of
undirected edges between Vi and Vj ) WD (number of directed edges from Vi to Vj )D
(number of directed edges from Vj to Vi ) for different vertices Vi ; Vj and (number
of undirected loops of Vi ) WD 1

2
(number of directed loops of Vi ) for any vertex Vi .

Remark 6. 1. ForG � SL.2;K/ the (extended) representation graph is undirected.
There is the isomorphism HomG

K.Vi �K V; Vj / Š HomG
K.Vi ; V �K Vj /, which

follows from the isomorphism HomG
K.Vi �K V; Vj / Š HomG

K.Vi ; V
_

�K

Vj / and the fact that the 2-dimensional representation V given by inclusion
G ! SL.2;K/ is self-dual. Further, that the number of directed loops of any
vertex is even, follows from the fact that over the algebraic closure C one has
dimC HomG

C .Ui ; VC �C Ui / D 0 for irreducible Ui over C .
2. There is a definition of (extended) representation graph with another description

of the edges: vertices Vi and Vj are connected by aij edges from Vi to Vj ,
where V �K Vj D aij Vi � other summands. The two definitions coincide over
algebraically closed fields, always one has aij � dimK HomG

K.Vi ; V �K Vj /,
inequality comes from the presence of nontrivial automorphisms.

Definition 2. For a finite subgroup scheme G � SL.2;K/, V the given
2-dimen-sional representation, define a Z-bilinear form h	; 	i on the representation
ring of G by

˝
Vi ; Vj

˛ WD dimK HomG
K.Vi ; V �K Vj / � 2 dimK HomG

K.Vi ; Vj /
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Remark 7. The form h	; 	i determines and is determined by the extended represen-
tation graph (the second equation follows from the fact, that dimK HomG

K.Vi ; Vi / D
multiplicity of Vi ):

˝
Vi ; Vj

˛ D ˝Vj ; Vi
˛ D number of undirected edges between Vi and Vj ; if Vi 6Š Vj

1
2
hVi ; Vii D number of undirected loops of Vi � multiplicity of Vi

4.3 Representation Graphs and Field Extensions

Let K ! L be a Galois extension, � D AutK.L/ and let G be a finite subgroup
scheme of SL.2;K/.

An irreducible representation W of G over K decomposes as a representation
of GL over L into isotypic components W D L

i Ui which are � -conjugate
by Proposition 9. Every Ui decomposes into irreducible components Ui D V �m

i

(the same m for all i because of � -conjugacy). In the following we will write
m.W;L=K/ for this number. It is related to the Schur index in the representation
theory of finite groups (see e.g. [7, Vol. II, § 74]).

Proposition 10. For finite subgroup schemesG of SL.2;K/ it ism.Wj ;L=K/ D 1
for every irreducible representation Wj of G. It follows that Wj decomposes over
L into a direct sum .Wj /L ŠL

i Vi of � -conjugate irreducible representations Vi
of GL nonisomorphic to each other.

Proof. We may assume L algebraically closed. Further we may assume that G
is not cyclic. The natural 2-dimensional representation W given by inclusion
G � SL.2;K/ does satisfy m.W;L=K/ D 1, because it is irreducible over
L. Following the discussion below without using this proposition one obtains the
graphs in Sect. 4.4 without multiplicities of vertices and edges but one knows which
vertices over the algebraic closure may form a vertex overK and which vertices are
connected. Argue that if an irreducible representationWi satisfiesm.Wi; L=K/ D 1,
then any irreducible Wj connected to Wi in the representation graph has to satisfy
this property as well. ut

There is a morphism of graphs Graph.GL;WL/ ! Graph.G;W / (resp. of the
nonextended graphs, the following applies to them as well). For Wj an irreducible
representation of G the base extension .Wj /L is a sum .Wj /L D L

i Vi of
irreducible representations of GL nonisomorphic to each other by Proposition 10.
The morphism Graph.GL;WL/ ! Graph.G;W / maps components of .Wj /L to
Wj , thereby their multiplicities are added. Further, for irreducible representations
Wj ;Wj 0 of G there is a bijection between the set of edges betweenWj andWj 0 and
the union of the sets of edges between the irreducible components of .Wj /L and
.Wj 0/L, again using Proposition 10 .Wj /L and .Wj 0/L are sums .Wj /L D L

i Vi ,
.Wj 0/L DLi 0 Vi 0 of irreducible representations ofGL nonisomorphic to each other
and one has
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dimK HomG
K.Wj �K W;Wj 0/ D dimL.HomG

K.Wj �K W;Wj 0/�K L/

D dimL HomG
L..Wj /L �L WL; .Wj 0/L/

D dimL HomG
L.
L

i Vi �L WL;
L

i 0 Vi 0/

DP
i;i 0 dimL HomG

L.Vi �L WL; Vi 0/

The Galois group � operates on Graph.GL;WL/ by graph automorphisms. Irre-
ducible representations are mapped to conjugate representations and equivariant
homomorphisms to the conjugate homomorphisms. The vertices of Graph.G;W /

correspond to � -orbits of vertices of Graph.GL;WL/ by Corollary 3.

Proposition 11. The (extended) representation graph of G arises by identifying
the elements of � -orbits of vertices of the (extended) representation graph of GL,
adding multiplicities. The edges between vertices Wj and Wj 0 are in bijection with
the edges between the isomorphism classes of irreducible components of .Wj /L and
.Wj 0/L.

4.4 The Representation Graphs of the Finite Subgroup
Schemes of SL.2 ; K/

As extended representation graph of a finite subgroup scheme of SL.2;K/ with
respect to the natural 2-dimensional representation the following graphs can occur.
We list the extended representation graphs Graph.G; V / of the finite subgroups
of SL.2; C / for C algebraically closed, their groups of automorphisms leaving
the trivial representation fixed and the possible extended representation graphs for
finite subgroup schemes over non algebraically closed K , which after suitable base
extension become the graph Graph.G; V /. We use the symbol ı for the trivial
representation.

Cyclic Groups
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Binary dihedral groups.
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Binary tetrahedral group.

Binary octahedral group.

Binary icosahedral group.

Remark 8. Taking 2
�hV;V iV for the isomorphism classes of irreducible representa-

tions V as simple roots one can form the Dynkin diagram with respect to the form
� h	; 	i (see e.g. [5, Groupes et algèbres de Lie]). Between (extended) representation
graphs and (extended) Dynkin diagrams there is the correspondence

.An/ .A2/
0 .A2nC1/0 .A2nC2/0 .Dn/ .Dn/

0 .D4/
00 .E6/ .E6/0 .E7/ .E8/

.An/ .C1/ D .A1/ .CnC1/ .CnC1/ .Dn/ .Bn�1/ .G2/ .E6/ .F4/ .E7/ .E8/

A long time ago, the occurrence of the remaining Dynkin diagrams of types .Bn/,
.Cn/, .F4/, .G2/ as resolution graphs had been observed in [13] with a slightly
different assignment of the non extended diagrams to the resolutions of these
singularities, see also [19].

4.5 Finite Subgroups of SL.2 ; K/

Given a field K of characteristic 0, it is a natural question, which of the finite
subgroups G � SL.2; C /, C the algebraic closure of K , are realisable over the
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subfieldK as subgroups (not just as subgroup schemes), that is, there is an injective
representation of the groupG in SL.2;K/.

For a finite subgroup G of SL.2; C / to occur as a subgroup of SL.2;K/ it is
necessary and sufficient that the given 2-dimensional representation in SL.2; C / is
realisable over K . This is easy to show using the classification and the irreducible
representations of the individual groups. If a representation of a group G over C is
realisable overK , necessarily its character has values in K . For the finite subgroups
of SL.2; C / and the natural representation given by inclusion this means:

Z=nZ: � C ��1 2 K , � 2 C a primitive n-th root of unity.
BDn: � C ��1 2 K , � 2 C a primitive 2n-th root of unity.
BT: no condition. BO:

p
2 2 K . BI:

p
5 2 K .

To formulate sufficient conditions, we introduce the following notation:

Definition 3 ([18, Part I, Chapter III, § 1]). For a field K the Hilbert symbol
..	; 	//K is the map K� � K� ! f�1; 1g defined by ..a; b//K D 1, if the equation
z2 � ax2 � by2 D 0 has a solution .x; y; z/ 2 K3 n f.0; 0; 0/g, and ..a; b//K D �1
otherwise.

Remark 9. It is ..�1; b//K D 1 if and only if x2 � by2 D �1 has a solution
.x; y/ 2 K2.

Theorem 2. Let G be a finite subgroup of SL.2; C / such that the values of the
character of the natural representation given by inclusion are contained in K .
Then:

(i) If G Š Z=nZ, then G is realisable over K .
(ii) IfG Š BDn, let � 2 C be a primitive 2n-th root of unity and c WD 1

2
.�C ��1/.

ThenG is isomorphic to a subgroup of SL.2;K/ if and only if ..�1; c2�1//K D
1.

(iii) If G Š BT;BO or BI, then G is isomorphic to a subgroup of SL.2;K/ if and
only if ..�1;�1//K D 1.

Proof. (i) For n � 3 let � be a primitive n-th root of unity and c WD 1
2
.�C��1/. By

assumption c 2 K . Then Z=nZ is realisable overK , there is the representation

Z=nZ! SL.2;K/; 1 7!


0 �1
1 2c

�

(ii) Let G D BDn D
˝

; � j �2 D 
n D .�
/2˛ (then the element �2 D 
n D

.�
/2 has order 2) and let � be a primitive 2n-th root of unity. Then G is
realisable as a subgroup of SL.2;K/ if and only if the representation given by


 7!


� 0

0 ��1
�
; � 7!



0 �1
1 0

�
(1)

is realisable overK .
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The representation (1) is realisable over K if and only if there is a 2 � 2-
matrix M� overK having the properties

det.M�/ D 1; ord.M�/ D 4; .M�M
/
2 D �1;

where M
 D
�
0 �1
1 2c

	
; c D 1

2
.� C ��1/:

(2)

If the representation (1) is realisable over K , then with respect to a suitable
basis it maps 
 7! M
 and the image of � is a matrix satisfying the
properties (2).

On the other hand, ifM� is a matrix having these properties, then 
 7!M
 ,
� 7! M� is a representation of G in SL.2;K/, which is easily seen to be
isomorphic to the representation (1).

There is a 2 � 2-matrix M� over K having the properties (2) if and only if
the equation

x2 C y2 � 2cxyC 1 D 0 (3)

has a solution .x; y/ 2 K2.

A matrix M� D
�
˛ ˇ
� ı

�
satisfies the conditions (2) if and only if

.˛; ˇ; �; ı/ 2 K4 is a solution of ˛ı�ˇ��1 D 0; ˛Cı D 0; ˇC2cı�� D
0. Such an element of K4 exists if and only if there exists a solution
.x; y/ 2 K2 of Eq. (3).

Equation (3) has a solution .x; y/ 2 K2 if and only if ..�1; c2 � 1//K D 1.
We write the equation x2Cy2�2cxyC1 D 0 as .x; y/

�
1 �c�c 1

	 �
x
y

	 D �1.
After diagonalisation .x; y/

�
1 0
0 1�c2

	 �
x
y

	 D �1 or x2 C .1 � c2/y2 C 1 D 0.
This equation has a solution .x; y/ 2 K2 if and only if ..�1; c2 � 1//K D 1.

(iii) Let G D BT;BO or BI, that is G D ˝a; b j a3 D bk D .ab/2˛ for k 2 f3; 4; 5g.
Let � be a primitive 2k-th root of unity and c D 1

2
.� C ��1/. As in (ii), using

the subgroup hbi instead of h
i, we obtain:
G is isomorphic to a subgroup of SL.2;K/ if and only if there is a solution
.x; y/ 2 K2 of the equation

x2 C y2 � 2cxy � x C 2cy C 1 D 0 (4)

Next we show:
Equation (4) has a solution .x; y/ 2 K2 if and only if ..�1; .2c/2�
3//KD1.

Equation (4) has a solution if and only if .x; y; z/



1 �c �1=2

�c 1 c�1=2 c 1

��
x
y
z

�
D 0

has a solution .x; y; z/ 2 K3 with z ¤ 0. The existence of a solution with
z ¤ 0 is equivalent to the existence of a solution .x; y; z/ 2 K3 n f.0; 0; 0/g
(if .x; y; 0/ is a solution, then .x; y; x � 2cy/ as well). After diagonalisation:
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.x; y; z/



1 0 0
0 1 0
0 0 3�.2c/2

��
x
y
z

�
D 0. The existence of a solution .x; y; z/ 2 K3 n

f.0; 0; 0/g for this equation is equivalent to ..�1; .2c/2 � 3//K D 1.
For the individual groups we obtain:

BT: c D 1
2
, ..�1;�2//K D 1.

BO: c D 1p
2
, ..�1;�1//K D 1.

BI: c D 1
4
.1˙p5/, ..�1; 1

2
.�3˙p5///K D 1.

Each of these conditions is equivalent to ..�1;�1//K D 1. For BI : 1
2
.3˙p5/ D

. 1
2
.1˙p5//2. For BT one has maps between solutions .x; y/ for x2 C y2 D �1

corresponding to ..�1;�1//K and .x0; y0/ for x02 C 2y02 D �1 corresponding to
..�1;�2//K given by x D x0C1

2y0 $ x0 D xCy
x�y , y D x0�1

2y0 $ y0 D 1
x�y for x ¤ y

resp. y0 ¤ 0 and by .x; x/ 7! .0; x/, .x0; 0/ � .x0; 0/. ut

5 McKay Correspondence for G � SL.2 ; K/

LetG be a finite subgroup scheme of SL.2;K/,K a field of characteristic 0, and C
the algebraic closure of K . There is the geometric quotient �WA2

K ! A2
K=G and

the natural morphism � WG-HilbKA2
K ! A2

K=G, which is the minimal resolution of
this quotient singularity.

5.1 The Exceptional Divisor and the Intersection Graph

We define the exceptional divisor E by E WD ��1.O/ where O D �.O/, O the
origin of A2

K . In general E is not reduced, denote by Ered the underlying reduced
subscheme.

Definition 4. The intersection graph of Ered is defined as the following undirected
graph:

– Vertices. A vertex of multiplicity n for each irreducible component .Ered/i
of Ered which decomposes over the algebraic closure of K into n irreducible
components.

– Edges. Different .Ered/i and .Ered/j are connected by .Ered/i 	 .Ered/j undirected
edges. .Ered/i has 1

2
.Ered/i 	 .Ered/i C multiplicity of .Ered/i loops.

If K is algebraically closed, then the .Ered/i are isomorphic to P1K and the self-
intersection of each .Ered/i is �2, because the resolution is crepant.

LetK ! L be a Galois extension,� D AutK.L/. � operates on the intersection
graph of .Ered/L by graph automorphisms. The irreducible components .Ered/i
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of Ered correspond to � -orbits of irreducible components .Ered/L;k of .Ered/L by
Proposition 6. For the intersection form one has

.Ered/i 	 .Ered/j D ..Ered/i /L 	 ..Ered/j /L DPkl .Ered/L;k 	 .Ered/L;l

where indices k and l run through the irreducible components of ..Ered/i /L and
..Ered/j /L respectively. Thus for the intersection graph there is a proposition similar
to Proposition 11 for representation graphs.

Proposition 12. The intersection graph ofEred arises by identifying the elements of
� -orbits of vertices of the intersection graph of .Ered/L, adding multiplicities. The
edges between vertices .Ered/i and .Ered/j are in bijection with the edges between
the irreducible components of ..Ered/i /L and ..Ered/j /L.

5.2 Irreducible Components of E and Irreducible
Representations of G

The basic statement of McKay correspondence is a bijection between the set of
irreducible components of the exceptional divisor E and the set of isomorphism
classes of nontrivial irreducible representations of the group scheme G.

Theorem 3. There are bijections for intermediate fields K � L � C between the
set Irr.EL/ of irreducible components of EL and the set Irr.GL/ of isomorphism
classes of nontrivial irreducible representations of GL having the property that for
K � L � L0 � C , if the bijection Irr.EL/ ! Irr.GL/ for L maps Ei 7! Vi , then
the bijection Irr.EL0/! Irr.GL0/ for L0 maps irreducible components of .Ei/L0 to
irreducible components of .Vi /L0 .

Proof. As described earlier, the Galois group� D AutL.C / of the Galois extension
L ! C , operates on the sets Irr.GC / and Irr.EC /. In both cases elements of
Irr.GL/ and Irr.EL/ correspond to � -orbits of elements of Irr.GC / and Irr.EC /
by Corollary 3 and Proposition 6 respectively. This way a given bijection between
the sets Irr.GC / and Irr.EC / defines a bijection between Irr.GL/ and Irr.EL/ on
condition that the bijection is equivariant with respect to the operations of � .
Checking this for the bijection of McKay correspondence over the algebraically
closed field C constructed via stratification or via tautological sheaves will give
bijections over intermediate fields L having the property of the theorem. This will
be done in the process of proving Theorems 5 or 6. ut

Moreover, in the situation of the theorem the Galois group � D AutL.C /
operates on the representation graph ofGC and on the intersection graph of .Ered/C .
Then in both cases the graphs overL arise by identifying the elements of � -orbits of
vertices of the graphs over C by Propositions 11 and 12. Therefore an isomorphism
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of the graphs over C , the bijection between the sets of vertices being � -equivariant,
defines an isomorphism of the graphs over L.

For the algebraically closed field C this is the classical McKay correspondence
for subgroups of SL.2; C / [8,11,14]. The statement, that there is a bijection of edges
between given vertices .Ered/L;i $ Vi and .Ered/L;j $ Vj , can be formulated
equivalently in terms of the intersection form as .Ered/L;i :.Ered/L;j D

˝
Vi ; Vj

˛
.

Theorem 4. The bijectionsEi $ Vi of Theorem 3 between irreducible components
of EL and isomorphism classes of nontrivial irreducible representations of GL can
be constructed such that .Ered/i 	 .Ered/j D

˝
Vi ; Vj

˛
or equivalently that these

bijections define isomorphisms of graphs between the intersection graph of .Ered/L
and the representation graph of GL.

We will consider two ways to construct bijections between nontrivial irreducible
representations and irreducible components with the properties of Theorems 3
and 4: A stratification of G-HilbKA2

K [10, 11] and the tautological sheaves on
G-HilbKA2

K [8, 12].

5.3 Stratification of G-HilbKA2
K

Let S WD KŒx1; x2�, let O 2 A2
K be the origin, m � S the corresponding maximal

ideal, O WD �.O/ 2 A2
K=G with corresponding maximal ideal n � SG , let

S WD S=nS with maximal ideal m. An L-valued point of the fiber E D ��1.O/
corresponds to a G-cluster defined by an ideal I � SL such that nL � I or
equivalently an ideal I � SL D SL=nLSL. For such an ideal I define the
representation V.I / over L by

V.I / WD I=mLI

Lemma 3. For � 2 AutK.L/: V.��1I / Š V.I /� .

Proof. As an AL-comodule I D I 0 � mLI , where I 0 Š I=mLI . Then ��1I D
��1I 0�mL.�

�1I / and V.��1I / D ��1I=mL.�
�1I / Š ��1I 0 Š I �0 Š V.I /� by

Remark 5 applied to I 0 � SL. ut
Theorem 5. There is a bijection Ej $ Vj between the set Irr.E/ of irreducible
components ofE and the set Irr.G/ of isomorphism classes of nontrivial irreducible
representations of G such that for any closed point y 2 E: If I � S�.y/ is an ideal
defining a �.y/-valued point of the scheme fyg � E , then

HomG
�.y/.V .I /; .Vj /�.y// ¤ 0 ” y 2 Ej

and V.I / is either irreducible or consists of two irreducible representations not
isomorphic to each other. Applied to the situation after base extension K ! L, L
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an algebraic extension of K , one obtains bijections Irr.EL/ $ Irr.GL/ having the
properties of Theorems 3 and 4.

Proof. In the case of algebraically closed K the theorem follows from [11].
In the general case denote byUi the isomorphism classes of nontrivial irreducible

representations of GC over the algebraic closure C . Over C the theorem is valid, let
EC;i be the component corresponding to Ui .

We show that this bijection is equivariant with respect to the operations of � D
AutK.C /. Let x 2 EC;i be a closed point such that x 62 EC;i 0 for i 0 ¤ i . Then
for the corresponding C -valued point ˛WSpecC ! EC;i given by an ideal I � SC
one has V.I / Š Ui . By Corollary 2 the C -valued point corresponding to �x is ˛�

given by the ideal ��1I � SC . By Lemma 3 V.��1I / Š U�.i/, where U�.i/ D U �
i .

Therefore �x 2 E�.i/ and �Ei D E�.i/.
For an irrreducible representation Vj of G define Ej to be the component of E ,

which decomposes over C into the irreducible components EC;i satisfying Ui �
.Vj /C . This method, applied to the situation after base extension K ! L, leads to
bijections having the properties of Theorems 3 and 4.

We show that this bijection is given by the condition in the theorem. Let y be
a closed point of E and ˛ a �.y/-valued point of the scheme fyg � E given by
an ideal I � S�.y/. K ! �.y/ is an algebraic extension, embed �.y/ into C .
After base extension �.y/ ! C one has the C -valued point ˛C WSpecC ! fygC
given by IC � SC . Then V.I /C Š V.IC / and IC corresponds to a closed point
z 2 fygC � EC . Therefore

y 2 Ej ” z 2 EC;i for some i satisfying Ui � .Vj /C
” HomG

C .V .IC /; Ui/ ¤ 0 for some i satisfying Ui � .Vj /C
” HomG

�.y/.V .I /; .Vj /�.y// ¤ 0

ut

5.4 Tautological Sheaves

Let 0 ! I ! OA2
Y
! OZ ! 0 be the universal quotient of Y WD G-HilbKA2

K .
The projection pWZ ! Y is a finite flat morphism, p�OZ is a locally free G-sheaf
on Y with fibers p�OZ�OY �.y/ isomorphic to the regular representation over �.y/.

Let V0; : : : ; Vs the isomorphism classes of irreducible representations of G, V0
the trivial representation. The G-sheaf G WD p�OZ on Y decomposes into isotypic
components (see Remark 1(3) and Sect. 3.6)

G ŠLs
jD0 Gj

where Gj is the component for Vj .
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Definition 5. For any isomorphism class Vj of irreducible representations of G
overK define the sheaf Fj on Y D G-HilbKA2

K by

Fj WDHomG
OY
.Vj �K OY ;Gj / DHomG

OY
.Vj �K OY ;G /

For a field extensionK ! L denote by FL;i the sheaf HomGL
OYL
.Ui �LOYL ;GL/ on

YL, Ui an irreducible representation of GL over L.

Remark 10. 1. For K D C the sheaves Fj were studied in [8, 12], they may be
defined as well as Fj D ��HomG

A2
K=G

.Vj �K OA2
K=G

; ��OA2
K
/=.OY -torsion/ or

.p�q�.OA2
K

�K V
_
j //

G using the canonical morphisms in the diagram

2. Fj is a locally free sheaf of rank dimK Vj .
3. For each j there is the natural isomorphism of G-sheaves Fj �EndGK.Vj /

Vj
��!

Gj .

Let K ! L be a Galois extension and U0; : : : ; Ur be the isomorphism classes of
irreducible representations ofGL overL. Then a decomposition .Vj /L DLi2Ij Ui
over L of an irreducible representation Vj of G over K gives a decomposition of
the corresponding tautological sheaf

.Fj /L D HomG
OY
.Vj �K OY ;G /L Š HomGL

OYL
..Vj �K OY /L;GL/

Š HomGL
OYL
.
L

i2Ij
Ui �L OYL ;GL/ Š

L
i2Ij

HomGL
OYL
.Ui �L OYL;GL/ D

L
i2Ij

FL;i

We have used the fact that the Ui occur with multiplicity 1 as it is the case for finite
subgroup schemes of SL.2;K/, see Proposition 10.

The tautological sheaves Fj can be used to establish a bijection between the set
of irreducible components of Ered and the set of isomorphism classes of nontrivial
irreducible representations of G by considering intersections Lj 	 .Ered/j 0 , i.e. the
degrees of restrictions of the line bundles Lj WD VrkFj Fj to the curves .Ered/j 0 .

Theorem 6. There is a bijection Ej $ Vj between the set Irr.E/ of irreducible
components ofE and the set Irr.G/ of isomorphism classes of nontrivial irreducible
representations of G such that

Lj 	 .Ered/j 0 D dimK HomG
K.Vj ; Vj 0/

where Lj D VrkFj Fj .
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Applied to the situation after base extension K ! L, L an algebraic extension
field of K , one obtains bijections Irr.EL/ $ Irr.GL/ having the properties of
Theorems 3 and 4.

Proof. In the case of algebraically closed K the theorem follows from [8].
In the general case denote by U0; : : : ; Ur the isomorphism classes of irreducible

representations of GC over the algebraic closure C , U0 the trivial one. Over C the
theorem is valid, let EC;i be the component corresponding to Ui , what means that
LC;i :.Ered/C;i 0 D ıi i 0 , where LC;i DVrkFC;i FC;i .

To show that the bijection over C is equivariant with respect to the operations of
� D AutK.C /, one has to show that ��LC;i Š LC;�.i/, where U�.i/ D U

�
i . Then

LC;i 	EC;i 0 D ��LC;i 	 �EC;i 0 D LC;�.i/ 	 �EC;i 0 and therefore �EC;i 0 D EC;�.i 0/. It
is ��LC;i Š LC;�.i/, because using Lemma 1 and Remark 3

��FC;i ŠHomGC
OYC

.��.Ui�COYC /; ��GC / ŠHomGC
OYC

.U
�
i �COYC ;GC / D FC;�.i/

Since the bijection overC is equivariant with respect to the � -operations on Irr.GC /
and Irr.EC /, one can define a bijection Irr.G/ $ Irr.E/: For Vj 2 Irr.G/ let Ej
be the element of Irr.E/ such that .Vj /C D L

i2Ij Ui and .Ej /C D S
i2Ij EC;i

for the same subset Ij � f1; : : : ; rg. This method applied to the situation after base
extensionK ! L leads to bijections having the properties of Theorems 3 and 4.

We show that this bijection is given by the construction of the theorem. It is
.Fj /C DLi2Ij FC;i and therefore

Lj 	 .Ered/j 0 D .Lj /C 	 ..Ered/j 0/C D
�N

i2Ij LC;i

	
:
�P

i 02Ij 0
.Ered/C;i 0

	

D P
i;i 0 LC;i 	 .Ered/C;i 0 D P

i;i 0 dimC HomGC
C .Ui ; Ui 0/

D dimC HomGC
C ..Vj /C ; .Vj 0/C / D dimK HomG

K.Vj ; Vj 0/

ut

5.5 Examples

Finite subgroups of SL.2 ; K/. In the case of subgroups G � SL.2;K/ the
representation graph can be read off from the table of characters of the group G
over an algebraically closed field, since in this case representations are conjugate if
and only if the values of their characters are. We have the following graphs for the
finite subgroups of SL.2;K/:

– Cyclic group Z=nZ, n � 1. It is � C ��1 2 K , � a primitive n-th root of unity.
Diagram .An�1/ if � 2 K , otherwise .An�1/0.
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– Binary dihedral group BDn, n � 2. It is c D 1
2
.�C��1/ 2 K , � a primitive 2n-th

root of unity, and ..�1; c2 � 1//K D 1. Diagram .DnC2/ if n even or
p�1 2 K ,

otherwise .DnC2/0.
– Binary tetrahedral group BT. It is ..�1;�1//K D 1. Diagram .E6/ if K contains

a primitive 3rd root of unity, otherwise .E6/0.
– Binary octahedral group BO. It is ..�1;�1//K D 1 and

p
2 2 K . Diagram .E7/.

– Binary icosahedral group BI. It is ..�1;�1//K D 1 and
p
5 2 K . Diagram .E8/.

Examples for the graphs .An/0, .D2mC1/0, .E6/0:

.An/
0 Z=.nC 1/Z over Q.� C ��1/, � a primitive .nC 1/-th root of unity.

.D2mC1/0 BD2m�1 over Q.�/, � a primitve 2.2m� 1/-th root of unity.

.E6/
0 BT over Q.

p�1/.
Abelian subgroup schemes. In the case of abelian subgroup schemes of SL.2;K/
the graphs .An/ and .An/0 occur.

– The cyclic groupG D Z=nZ is realisable as the subgroup of SL.2;K/ generated

by g WD
�
0 �1
1 �C��1

�
, if the field K contains � C ��1 for � a primitive n-th root of

unity. If K does not contain �, then there are 1-dimensional representations over
the algebraic closure that are not realisable overK , one has diagram .An�1/0.

– For the subgroup scheme G D �n � SL.2;K/ the Hopf algebra KŒy�= hyni
decomposes into a direct sum of simple subcoalgebras

˝
yj
˛
K

corresponding to
1-dimensional representations of G. Thus one has diagram .An�1/.

The graph .D2m/0. Let n � 2, " a primitive 4n-th root of unity and � D "2. Put
K D Q."C "�1/, C D Q."/ and � D AutK.C / D fid; �g. One has the injective
representation of BDn D

˝

; � j �2 D 
n D .�
/2˛ in SL.2; C / given by


 7!


� 0

0 ��1
�
; � 7!



0 �"
"�1 0

�

We will identify BDn with its image in SL.2; C / and regard it as a subgroup scheme
of SL.2; C /.
� operates on SL.2; C /, the K-automorphism � 2 � , � W " 7! "�1 of order

2 operates nontrivially on the closed points of BDn by 
 7! 
�1, � 7! �
 . The
subgroup scheme BDn � SL.2; C / is defined over K , let G � SL.2;K/ such that
GC D BDn. The closed points ofG correspond to � -orbits of closed points of BDn,
they have the form fidg, f�idg, f
k; 
�kg, f�
k; �
�kC1g.

The automorphism � operates on the characters of BDn trivially except that for
even n it permutes two of the irreducible 1-dimensional representations. One has
the graph .DnC2/0 for n even and the graph .DnC2/ for n odd.
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6 Finite Subgroups of SL.2 ; C /: Presentations
and Character Tables

6.1 Cyclic Groups

The irreducible representations are �j WZ=nZ! C �, i 7! � ji for j2f0; : : : ; n�1g,
where � is a primitive n-th root of unity.

Binary dihedral groups. BDn D
˝

; � j �2 D 
n D .�
/2˛, �id WD .�
/2.

BDn, n odd BDn, n even

id �id 
k � �


1 1 1 1 1 1

10 1 1 1 �1 �1
100 1 �1 .�1/k i �i
1000 1 �1 .�1/k �i i

2j 2 .�1/j 2 �kj C ��kj 0 0

id �id 
k � �


1 1 1 1 1 1

10 1 1 1 �1 �1
100 1 1 .�1/k 1 �1
1000 1 1 .�1/k �1 1

2j 2 .�1/j 2 �kj C ��kj 0 0

� a primitive 2n-th root of unity and j D 1; : : : ; n � 1
Binary tetrahedral group. BT D ˝a; b j a3 D b3 D .ab/2

˛
, �id WD .ab/2.

id �id a �a b �b ab

1 1 1 1 1 1 1 1 1

10 1 1 ! ! !2 !2 1 Z=3Z

100 1 1 !2 !2 ! ! 1 Z=3Z

3 3 3 0 0 0 0 �1 A4

2 2 �2 1 �1 1 �1 0 BT
20 2 �2 ! �! !2 �!2 0 BT
200 2 �2 !2 �!2 ! �! 0 BT

1 1 4 4 4 4 6

! a primitive 3rd root of unity

Binary octahedral group. BO D ˝a; b j a3 D b4 D .ab/2
˛
, �id WD .ab/2.

id �id ab a �a b �b b2

1 1 1 1 1 1 1 1 1 1

10 1 1 �1 1 1 �1 �1 1 Z=2Z

2000 2 2 0 �1 �1 0 0 2 S3
3 3 3 1 0 0 �1 �1 �1 S4

30 3 3 �1 0 0 1 1 �1 S4
2 2 �2 0 1 �1 p

2 �p2 0 BO
20 2 �2 0 1 �1 �p2 p

2 0 BO
4 4 �4 0 �1 1 0 0 0 BO

1 1 12 8 8 6 6 6
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Binary icosahedral group. BI D ˝
a; b j a3 D b5 D .ab/2˛, �id WD .ab/2.

id �id a �a b �b b2 �b2 ab

1 1 1 1 1 1 1 1 1 1 1

3 3 3 0 0 �C �C �� �� �1 A5
30 3 3 0 0 �� �� �C �C �1 A5
40 4 4 1 1 �1 �1 �1 �1 0 A5

5 5 5 �1 �1 0 0 0 0 0 A5
2 2 �2 1 �1 �C ��C ��� �� 0 BI
20 2 �2 1 �1 �� ��� ��C �C 0 BI
4 4 �4 �1 1 1 �1 �1 1 0 BI
6 6 �6 0 0 �1 1 1 �1 0 BI

1 1 20 20 12 12 12 12 30

�C WD 1
2
.1Cp5/, �� WD 1

2
.1 �p5/

Acknowledgements The suggestion to investigate McKay correspondence over non algebraically
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References

1. M. Blume, Construction of G-Hilbert schemes. Math. Nachr. 284, 953–959 (2011).
arXiv:math/0607577

2. N. Bourbaki, Elements of mathematics, Algebra II, ch. 4–7 (Springer, Berlin, 2003)
3. N. Bourbaki, Éléments de mathématique, Algèbra, ch. 8 (Hermann, Paris, 1973)
4. N. Bourbaki, Elements of mathematics, Commutative Algebra, ch 1–7 (Springer, 1989)
5. N. Bourbaki, Éléments de mathématique,Groupes et algèbres de Lie, ch. 4–6 (Hermann, Paris,

1968)
6. T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived

categories. J. Am. Math. Soc. 14, 535–554 (2001). arXiv:math/9908027
7. C. Curtis, I. Reiner, Methods of Representation Theory, vol. I, II (Wiley-Interscience,

New York, 1981, 1987)
8. G. Gonzalez-Sprinberg, J.-L. Verdier, Construction géométrique de la correspondance

de McKay. Ann. Sci. École Norm. Sup. 16, 409–449 (1983)
9. A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique

IV: Les schémas de Hilbert, Séminaire Bourbaki 1960/61, No. 221
10. Y. Ito, I. Nakamura, McKay correspondence and Hilbert schemes. Proc. Jpn. Acad. Ser.

A 72(7), 135–138 (1996)
11. Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, in New trends in algebraic

geometry (Cambridge University Press, Cambridge, 1999), pp. 151–233
12. M. Kapranov, E. Vasserot, Kleinian singularities, derived categories and Hall algebras. Math.

Ann. 316, 565–576 (2000). arXiv:math/9812016
13. J. Lipman, Rational singularities with applications to algebraic surfaces and unique factoriza-

tion. Publ. Math. IHES 36, 195–279 (1969)
14. J. McKay, Graphs, singularities and finite groups, in The Santa Cruz Conference on Finite

Groups. Proc. Symp. Pure Math. 37, 183–186 (1980)
15. D. Mumford, Geometric Invariant Theory (Springer, Berlin/New York, 1965)



McKay Correspondence over Non Algebraically Closed Fields 75

16. M. Reid, McKay correspondence, in Proceedings Of Algebraic Geometry Symposium,
Kinosaki, Nov 1996, pp. 14–41. arXiv:alg-geom/9702016

17. M. Reid, La correspondance de McKay, Séminaire Bourbaki, vol. 1999/2000, Exposés 865–
879, Société Mathématique de France, Astérisque 276, 53–72 (2002). arXiv:math/9911165

18. J.P. Serre, A Course in Arithmetic. Graduate Texts in Mathematics, vol. 7 (Springer, New York,
1973)

19. P. Slodowy, Simple Singularities and Simple Algebraic Groups. Lecture Notes in Mathematics,
vol. 815 (Springer, Berlin/New York, 1980)

20. M.E. Sweedler, Hopf Algebras (Benjamin, New York, 1969)



Gonality of Algebraic Curves and Graphs

Lucia Caporaso

Abstract We define d -gonal weighted graphs using “harmonic indexed” mor-
phisms, and prove that a combinatorial locus of Mg contains a d -gonal curve if
the corresponding graph is d -gonal and of Hurwitz type. Conversely the dual graph
of a d -gonal stable curve is equivalent to a d -gonal graph of Hurwitz type. The
hyperelliptic case is studied in detail. For r � 1, we show that the dual graph of a
.d; r/-gonal stable is the underlying graph of a tropical curve admitting a degree-d
divisor of rank at least r .

1 Introduction and Preliminaries

1.1 Introduction

In this paper we study the interplay between the theory of linear series on algebraic
curves, and the theory of linear series on graphs.

A smooth curve C is d -gonal if it admits a linear series of degree d and rank 1;
more generally, C is .d; r/-gonal if it admits a linear series of degree d and rank r .
A stable, or singular, curve is defined to be .d; r/-gonal, if it is the specialization of
a family of smooth .d; r/-gonal curves. This rather unwieldy definition is due to the
fact that the divisor theory of singular curves is quite complex; for example, every
reducible curve admits infinitely many divisors of degree d and rank r , for every
d and r � 0. Moreover characterizing .d; r/-gonal curves is a well known difficult
problem.
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On the other hand, the moduli space of Deligne-Mumford stable curves, Mg,
has a natural stratification into “combinatorial” loci, parametrizing curves having a
certain weighted graph as dual graph; see [13]. It is thus natural to ask whether the
existence in a combinatorial locus of a .d; r/-gonal curve can be detected uniquely
from the corresponding graph and its divisor theory.

In fact, in recent times a theory for divisors on graphs has been set-up and
developed in a purely combinatorial way, revealing some remarkable analogies
with the algebro-geometric case; see [4, 6, 7] for example. One of the goals of this
paper is to contribute to this development; we give a new definition for morphisms
between graphs, which we call indexed morphisms, and then introduce harmonic
indexed morphisms. Our definition is inspired by the theory of admissible coverings
developed by J. Harris and D. Mumford in [16], and generalizes the combinatorial
definition of harmonic morphisms given by M. Baker, S. Norine and H. Urakawa
in [7] and [20] for weightless graphs; this is why we use the word “harmonic”.
Harmonic indexed morphisms have a well defined degree, and satisfy the Riemann-
Hurwitz formula with an effective ramification divisors.

We say that a graph is d -gonal if it admits a non-degenerate harmonic indexed
morphism, 
, of degree d to a tree; furthermore we say that it is of Hurwitz type if
the Hurwitz existence problem naturally associated to 
 has a positive solution; see
Definition 6 for details. In particular, if d � 3 every d -gonal graph is of Hurwitz
type. Then we prove the following:

Theorem 1. If .G;w/ is a d -gonal weighted stable graph of Hurwitz type, there
exists a (stable) d -gonal curve whose dual graph is .G;w/. Conversely, the dual
graph of a stable d -gonal curve is equivalent to a d -gonal graph of Hurwitz type.

This Theorem follows immediately from the more general Theorem 2, whose
proof combines the theory of admissible coverings with properties of harmonic
indexed morphisms.

Next, for all r � 1 we prove Theorem 3, which, in particular, states that the dual
graph of a .d; r/-gonal curve admits a refinement admitting a divisor of rank r and
degree d .

The proof of this theorem uses different methods than the previous one: the
theory of stable curves, and a generalization, from [1], of Baker’s specialization
lemma [5, Lemma 2.8].

Testing whether a graph admits a divisor of given degree and rank involves only
a finite number of steps, and can be done by a computer; hence Theorem 3 yields a
handy necessary condition for a curve to be .d; r/-gonal.

This theorem has also consequences on tropical curves. In fact the moduli space
of tropical curves of genus g, M trop

g , has a stratification indexed by stable weighted
graphs exactly asMg. Using our results we obtain that if a combinatorial stratum of
Mg contains a .d; r/-gonal curve, so does the corresponding stratum of M trop

g ; see
Sect. 3.1 for more details. The connections between the divisor theories of algebraic
and tropical curves have been object of much interest in recent years; in fact some
closely related issues are currently being investigated, under a completely different
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perspective, in a joint project of O. Amini, M. Baker, E. Brugallé and J. Rabinoff.
We refer also to [8, 10–12] and [17] for some recent work on the relation between
algebraic and tropical geometry.

The paper is organized in four sections; the first recalls definitions and results
from algebraic geometry and graph theory needed in the sequel, mostly from
[3, 6, 16] and [1]. In Sect. 2 we study the case r D 1 and prove Theorem 2 (and
Theorem 1). The next section studies the case r � 1 and extends the analysis to
tropical curves; the main result here is Theorem 3. In Sect. 4 we concentrate on the
hyperelliptic case, and develop the basic theory by extending some of the results
of [7]. It turns out that for this case the analogies between the algebraic and the
combinatorial setting are stronger; see Theorem 4.

I wish to thank M. Baker, E. Brugallé, M. Chan, R Guralnick, and F. Viviani for
enlightening discussions related to the topics in this paper. I am grateful to S. Payne
for pointing out an error in the first version of Theorem 2.

1.2 Graphs and Dual Graphs of Curves

Details about the forthcoming topics may be found in [3] and [11].
Unless we specify otherwise, by the word “curve” we mean reduced, projective

algebraic variety of dimension one over the field of complex numbers; we always
assume that our curves have at most nodes as singularities. The genus of a curve is
the arithmetic genus.

The graphs we consider, usually denoted by a “G” with some decorations, are
connected graphs (no metric) admitting loops and multiple edges, unless differently
stated. For the reader’s convenience we recall some basic terminology from graph
theory. Our conventions are chosen to fit both the combinatorial and algebro-
geometric set up. For a graphG we denote by V.G/ the set of its vertices, by E.G/
the set of its edges and by H.G/ the set of its half-edges. The set of half-edges
comes with a fixed-point-free involution whose orbits, written fh; hg, bijectively
correspond to E.G/, and with a surjective endpoint map � W H.G/ ! V.G/. For
e 2 E.G/ corresponding to the half-edges h; h we often write e D Œh; h�.

A loop-edge is an edge e D Œh; h� such that �.h/ D �.h/.
A leaf is a pair, .v; e/, of a vertex and an edge, where e is not a loop-edge and is

the unique edge adjacent to v. We say that e is a leaf-edge and v is a leaf-vertex.
A bridge is an edge e such that G X e is disconnected.
Let v 2 V.G/; we denote by Ev.G/ � E.G/, respectively by Hv.G/ � H.G/,

the set of edges, resp. of half-edges, adjacent to v.
In some cases we will need to consider graphs endowed with legs, then we will

explicitly speak about graphs with legs. A leg of a graph G is a one-dimensional
open simplex having exactly one endpoint v 2 V.G/. We denote by L.G/ the set of
legs of G, and by Lv.G/ the set of legs having v as endpoint.
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The valency, val.v/, of a vertex v 2 V.G/ is defined as follows

val.v/ WD jHv.G/j C jLv.G/j: (1)

Let nowX be a curve (having at most nodes as singularities), and letGX be its so-
called dual graph. So, the vertices of GX correspond to the irreducible components
of X , and we write X D [v2V.GX /Cv with Cv irreducible curve. The edges of GX
correspond to the nodes of X , and we denote the set of nodes of X by Xsing D
fNe; e 2 E.GX/g. The endpoints of the edge e correspond to the components of
X glued at the node Ne . Finally, the set of half-edges H.GX/ is identified with
the set of points of the normalization of X lying over the nodes, so that a pair
fh; hg � H.GX/ corresponding to the edge e 2 E.GX/ is identified with a pair
of points ph; ph on the normalization of X in such a way that, denoting by v; v the
endpoints of e, with h adjacent to v and h adjacent to v, we have that ph lies on
the normalization of Cv and ph on the normalization of Cv. This yields a handy
description of X :

X D tv2V.GX /C �
v

fph D ph; 8h 2 H.GX/g
(2)

where C�
v denotes the normalization of Cv.

Next, let .X I x1; : : : ; xb/ be a pointed curve, i.e. X is a curve and x1; : : : ; xb are
nonsingular points of X . To .X I x1; : : : ; xb/ we associate a graph with legs, written

G.X Ix1;:::;xb /;

by adding to the dual graph GX described above one leg `i for each marked point
xi , so that the endpoint of `i is the vertex v such that xi 2 Cv.

A weighted graph is a pair .G;w/ where G is a graph (possibly with legs) and w
a weight function w W V.G/! Z�0. The genus of a weighted graph is

g.G;w/ WD b1.G/C
X

v2V.G/
w.v/:

A tree is a connected graph of genus zero (hence weights equal zero).
A weighted graph .G;w/ with legs is stable (respectively semistable), if for every

vertex v we have

w.v/C val.v/ � 3 (resp. � 2).

Definition 1. Let .G;w/ be a weighted graph of genus at least 2. Its stabilization
is the stable graph obtained by removing from .G;w/ all leaves .v; e/ such that
w.v/ D 0 and all 2-valent vertices of weight zero (see below). We say that two
graphs are (stably) equivalent if they have the same stabilization.
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The stabilization does not change the genus.
As in the previous definition, we shall often speak about graphs obtained by

“removing” a 2-valent vertex, v, from a given graph, G. By this we mean that after
removing v, the topological space of the so-obtained graph is the same as that of G,
but the sets of vertices and edges are different. The operation opposite to removing
a 2-valent vertex is that of “inserting” a vertex (necessarily 2-valent) in the interior
of an edge.

A refinement of a weighted graph .G;w/ is a weighted graph obtained by
inserting some weight zero vertices in the interior of some edges of G.

Let nowX be a curve as before. The (weighted) dual graph ofX is the weighted
graph .GX;wX/, with GX as defined above, and for v 2 V.GX/ the value wX.v/ is
equal to the genus of the normalization of Cv.

It is easy to see that the genus of X is equal to the genus of .GX;wX/.
The (weighted) dual graph of a pointed curve .X I x1; : : : ; xb/ is the graph with

legs .G.X Ix1;:::;xb/;wX/.

Remark 1. A pointed curve .X I x1; : : : ; xb/ is stable, or semistable, if and only if
so is .G.X Ix1;:::;xb /;wX/.

A curve X is rational (i.e. it has genus zero) if and only if .GX;wX/ is a tree.

Remark 2. LetX be a curve of genus� 2 and .GX;wX/ its dual graph. There exists
a unique stable curve Xs of genus g with a surjective map 
 W X ! Xs , such that

 is birational away from some smooth rational components that get contracted to a
point. Xs is called the stabilization of X . The dual graph of Xs is the stabilization
of .GX;wX/; see Definition 1.

For a stable graph .G;w/ of genus g, we denote by M alg.G;w/ � Mg the locus
of curves whose dual graph is .G;w/, and we refer to it as a combinatorial locus
of Mg (the superscript “alg” stands for algebraic, versus tropical, see Sect. 3.1). Of
course, we have

Mg D
G

.G;w/ stable, genus g

M alg.G;w/: (3)

1.3 Admissible Coverings

Details about this subsection may be found in [15,16] and [3]. LetMg be the moduli
space of stable curves of genus g � 2 and Mg � Mg its open subset parametrizing
smooth curves. We denote by Mr

g;d the closure in Mg of the locus,Mr
g;d , of smooth

curves admitting a divisor of degree d and rank r ; in symbols:

Mr
g;d WD fŒX� 2 Mg W W r

d .X/ ¤ ;g (4)
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where W r
d .X/ is the set of linear equivalence classes of divisors D on X such that

h0.X;D/ � r C 1.
The case of hyperelliptic curves, r D 1 and d D 2, has traditionally a simpler

notation: one denotes by Hg � Mg the locus of hyperelliptic curves and by Hg its

closure in Mg. So, Hg DM1
g;2.

Definition 2. Let X be a connected curve of genus g � 2.
If X is stable, then X is hyperelliptic if ŒX� 2 Hg; more generally X is .d; r/-

gonal, respectively d -gonal, if ŒX� 2 Mr
g;d , resp. if ŒX� 2M1

d;g.
If X is arbitrary, we say X is hyperelliptic, .d; r/-gonal, or d -gonal if so is its

stabilization.
A connected curve of genus g � 1 is d -gonal for all d � 2.

We recall the definition of admissible covering, due to J. Harris and D. Mumford
[16, Sect. 4], and introduce some useful generalizations.

Definition 3. Let Y be a connected nodal curve of genus zero, and y1; : : : ; yb be
nonsingular points of Y ; let X be a connected nodal curve.

(A) A covering (of Y ) is a regular map ˛ W X ! Y such that the following
conditions hold:

a. ˛�1.Ysing/ D Xsing:

b. ˛ is unramified away from Xsing and away from y1; : : : ; yb .
c. ˛ has simple ramification (i.e. a single point with ramification index

equals 2) over y1; : : : ; yb .
d. For every N 2 Xsing the ramification indices of ˛ at the two branches of N

coincide.

(B) A covering is called semi-admissible (resp. admissible) if the pointed curve
.Y Iy1; : : : ; yb/ is semistable (resp. stable), i.e. for every irreducible component
D of Y we have

jD \ Y XDj C jD \ fy1; : : : ; ybgj � 2 .resp. � 3/: (5)

We shall write ˛ W X ! .Y Iy1; : : : ; yb/ for a covering as above, and sometimes just
˛ W X ! Y . In fact the definition of a covering (without its being semi-admissible)
does not need the points y1; : : : ; yb , as conditions (Ab) and (Ac) may be replaced
by imposing that ˛ has ordinary ramification away from Xsing. The following are
simple consequences of the definition.

Remark 3. Let ˛ W X ! Y be a covering.

(A) There exists an integer d such that for every irreducible componentD � Y the
degree of ˛jD W ˛�1.D/! D is d . We say that d is the degree of ˛.

(B) Every irreducible component of X is nonsingular.
(C) If ˛ is admissible of degree 2, then X is semistable.
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In [16] the authors construct the moduli space Hd;b for admissible coverings, as
a projective irreducible variety compactifiying the Hurwitz scheme (parametrizing
admissible coverings having smooth range and target), and show that it has a natural
morphism

Hd;b �!MgI Œ˛ W X ! Y � 7! ŒXs� (6)

where Xs is the stabilization of X and g is its genus, so that b D 2d C 2g � 2. For
example, if d D 2 we have H2;2gC2 �!Mg.

Moreover, the image of H2;2gC2 coincides with the locus of hyperelliptic stable
curves,Hg , and more generally the image of (6) is the closure in Mg of the locus of

d -gonal curves, here denoted byM1
g;d .

The description of an explicit admissible covering is in Example 3.

1.4 Divisors on Graphs

For any graph G, or any weighted graph .G;w/, its divisor group, DivG, or
Div.G;w/, is defined as the free abelian group generated by the vertices of G. We
use the following notation for a divisorD on .G;w/

D D
X

v2V.G/
D.v/v (7)

where D.v/ 2 Z. For loopless and weightless graphs we use the divisor theory
developed in [6]. If G is a weighted graph with loops, we extend this theory as
in [1]. We begin with a definition.

Definition 4. Let .G;w/ be a weighted graph.
We denote by G0 the loopless graph obtained from G by inserting a vertex in

the interior of every loop-edge, and by .G0;w0/ the weighted graph such that w0

extends w and is equal to zero on all vertices in V.G0/ X V.G/.
We denote by Gw the weightless, loopless graph obtained from G0 by adding

w.v/ loops based at v for every v 2 V.G/ and then inserting a vertex in the interior
of every loop-edge.

Notice that .G;w/, .G0;w0/ andGw have the same genus, and that .G0/w
0 D Gw.

For every D 2 Div.G;w/ its rank, r.G;w/.D/, is set equal to rGw .D/. Linearly
equivalent divisors have the same rank. A weighted graph .G;w/ of genus g has a
canonical divisor K.G;w/ D P

v2V.G/.2w.v/ � 2 C val.v//v of degree 2g � 2 such
that the following Riemann-Roch formula holds [1, Thm. 3.8]

r.G;w/.D/ � r.G;w/.K.G;w/ �D/ D degD � g C 1:
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Remark 4. A consequence of the Riemann-Roch formula is the fact that if g � 1
then for any divisor D of degree d � 0 we have r.G;w/.D/ D d � g.

For a weighted graph .G;w/ we denote by Jacd .G;w/ the set of linear equiva-
lence classes of degree-d divisors, and set

W r
d .G;w/ WD fŒD� 2 Jacd .G;w/ W r.G;w/.D/ � rg:

Definition 5. We say that a graph .G;w/ is divisorially d -gonal if it admits a
divisor of degree d and rank at least 1, that is if W 1

d .G;w/ ¤ ;:
A hyperelliptic graph is a divisorially 2-gonal graph.

Example 1. Consider the following graph G with n � 2.

G = •
v1

en

v2

e2

e1

•

G is obviously hyperelliptic, as rG.v1 C v2/ D 1. Notice also that

rG.2v1/ D
(
1 if n D 2
0 if n � 3.

Now fix on G the weight function given by w.v1/ D 0 and w.v2/ D 1. Here is the
picture of Gw (drawing weight-zero vertices by a “ı”)

Gw = ◦
v1

en

v2

e2

e1

◦ u◦

We have r.G;w/.v1 C v2/ D r.G;w/.uC v1/ D r.G;w/.uC v2/ D 0 for every n � 2.
On the other hand

r.G;w/.2v1/ D
(
1 if n D 2
0 if n � 3

and the same holds for 2v2 � 2u. Therefore .G;w/ is hyperelliptic if and only if
n D 2 (in fact n � 2). This example is generalized in Corollary 3
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2 Admissible Coverings and Harmonic Morphisms

2.1 Harmonic Morphisms of Graphs

Let 
 W G ! G0 be a morphism; we denote by 
V W V.G/ ! V.G0/ the map
induced by 
 on the vertices. 
 is a homomorphism if 
.E.G// � E.G0/; in this
case we denote by 
E W E.G/! E.G0/ and by 
H W H.G/! H.G0/ the induced
maps on edges and half-edges. A morphism between weighted graphs .G;w/ and
.G0;w0/ is defined as a morphism of the underlying graphs, so we write either G !
G0 or .G;w/! .G0;w0/ depending on the situation.

In the next definition, extending the one in [7, Subsect. 2.1], we introduce some
extra structure on morphisms between graphs.

Definition 6. Let .G;w/ and .G0;w0/ be loopless weighted graphs.

(A) An indexed morphism is a morphism 
 W .G;w/ ! .G0;w0/ enriched by the
assignment, for every e 2 E.G/, of a non-negative integer, the index of 
 at e,
written r
.e/, such that r
.e/ D 0 if and only if 
.e/ is a point. An indexed
morphism is simple if r
.e/ � 1 for every e 2 E.G/. Let e D Œh; h� with
h; h 2 H.G/; we set r
.h/ D r
.h/ D r
.e/.

(B) An indexed morphism is pseudo-harmonic if for every v 2 V.G/ there exists
a number, m
.v/, such that for every e0 2 E
V .v/.G0/ (and, redundantly for
convenience, every h0 2 H
V .v/.G

0/) we have

m
.v/ D
X

e2Ev.G/W
.e/De0

r
.e/ D
X

h2Hv.G/W
.h/Dh0

r
.h/: (8)

(C) A pseudo-harmonic indexed morphism is non-degenerate if m
.v/ � 1 for
every v 2 V.G/.

(D) A pseudo-harmonic indexed morphism is harmonic if for every v 2 V.G/ we
have, writing v0 D 
.v/,

X

e2Ev.G/

.r
.e/� 1/ � 2
�
m
.v/� 1C w.v/�m
.v/w

0.v0/
�
: (9)

In the sequel, all graph morphisms will be indexed morphisms, hence we shall
usually omit the word “indexed”.

For later use, let us observe that if w0 D 0 (i.e. G0 is weightless) condition (9)
simplifies as follows

X

e2Ev.G/

.r
.e/� 1/ � 2.m
.v/� 1C w.v//: (10)
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Remark 5. Suppose that 
 contracts a leaf-edge e whose leaf-vertex v has w.v/D 0.
Then r
.e/ D m
.v/ D 0 and condition (9) is not satisfied on v. So, loosely
speaking, a harmonic morphism contracts no weight-zero leaves.

Remark 6 (Relation with harmonic morphisms of [7]). For simple morphisms of
weightless graphs our definition of harmonic morphism coincides with the one given
in [7, Sec. 2.1] for morphisms which contract no leaves. Indeed, it is clear that any
simple pseudo-harmonic morphism is harmonic in the sense of [7]. Conversely, a
harmonic morphism in the sense of [7] satisfies (10) (with w.v/ D 0) if and only if

 contracts no leaves; see the previous remark.

Lemma – Definition 1 Let 
 W .G;w/ ! .G0;w0/ be a pseudo-harmonic mor-
phism. Then for every e0 2 E.G0/ and v0 2 V.G0/ we can define the degree of 
 as
follows

deg
 D
X

e2E.G/W
.e/De0

r
.e/ D
X

v2
�1.v0/

m
.v/ (11)

(i.e. the above summations are independent of the choice of e0 and v0).

Proof. Trivial extension of the proof of [7, Lm. 2.2 and Lm. 2.3].

Let 
 W .G;w/! .G0;w0/ be a pseudo-harmonic morphism. As in [7, Subs. 2.3] we
define a pull-back homomorphism 
� W Div.G0;w0/ ! Div.G;w/ as follows: for
every v0 2 V.G0/


�v0 D
X

v2
�1.v0/

m
.v/v (12)

and we extend this linearly to all of Div.G0;w0/. By (11) we have

degD D deg
 degD0: (13)

For a pseudo-harmonic morphism 
 the ramification divisor R
 is defined as
follows.

R
 D
X

v2V.G/

�
2
�
m
.v/ � 1C w.v/ �m
.v/w

0.v0/
	�

X

e2Ev.G/

.r
.e/� 1/
�

v: (14)

The next result, generalizing the analog in [7], implies that harmonic morphisms are
characterized, among pseudo-harmonic morphisms, by a Riemann-Hurwitz formula
with effective ramification divisor.

Proposition 1 (Riemann-Hurwitz). Let 
 W .G;w/ ! .G0w0/ be a pseudo-
harmonic morphism of weighted graphs of genus g and g0 respectively. Then

K.G;w/ D 
�K.G0;w0/ CR
: (15)


 is harmonic if and only if R
 � 0 (equivalently 2g � 2 � deg
.2g0 � 2/).
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Proof. We write K D K.G;w/ and K 0 D K.G0;w0/. For every v 2 V.G/ we have
K.v/ D 2w.v/ � 2C val.v/ (notation in (7)). Hence, writing v0 D 
.v/, by (12) we
have

K.v/� 
�K 0.v/ D 2w.v/� 2C val.v/�m
.v/
�
2w.v0/� 2C val.v0/

�

D 2
�
m
.v/� 1C w.v/ �m
.v/w.v0/

�
C val.v/ �m
.v/ val.v0/:

On the other hand by (11)

X

e2Ev.G/

.r
.e/� 1/ D
X

e2Ev.G/

r
.e/� val.v/ D m
.v/ val.v0/� val.v/:

The two above identities implyK.v/ � 
�K 0.v/ D R
.v/, so (15) is proved.
By definition, 
 is harmonic if and only if its ramificationR
 divisor is effective.

The equivalence in parenthesis follows from (13).

Remark 7. Other results proved in [7] for simple harmonic morphisms extend. In
particular, if D0 and E 0 are linearly equivalent divisors on .G0;w0/, their pull-backs

�D0 and 
�E 0 under a pseudo-harmonic morphisms 
 are linearly equivalent.

2.2 The Hurwitz Existence Problem

Our goal is to use harmonic morphisms to characterize graphs that are dual graphs
of d -gonal curves. This brings up the “Hurwitz existence problem”, about the
existence of branched coverings of P1 with prescribed ramification profiles; to state
it precisely we need some terminology.

Let d � 1 be an integer and let P D fP1; : : : ; Pbg be a set of partitions of d , so
that we write Pi D fr1i ; : : : ; rnii g with rji 2 Z�1 and

Pni
jD1 r

j
i D d .

We say that P is a Hurwitz partition set, or that P is of Hurwitz type, if
the following condition holds. There exist b permutations 
1; : : : ; 
b 2 Sd (Sd the
symmetric group) whose product is equal to the identity, such that 
i is the
product of ni disjoint cycles of lengths given by Pi , and such that the subgroup
< 
1; : : : ; 
b > is transitive.

Notice that if P is of Hurwitz type and we add to it the trivial partition
f1; 1; : : : ; 1g, the resulting partition set is again of Hurwitz type.

Remark 8. By the Riemann existence theorem, P is a Hurwitz partition set if and
only if there exists a degree-d connected covering ˛ W C ! P1 with q1; : : : ; qb 2 P1

such that ˛ is unramified away from q1; : : : ; qb and such that for all i D 1; : : : ; b

we have ˛�.qi / D Pni
jD1 r

j
i p

j
i . The genus g of C is determined by the Riemann-

Hurwitz formula:
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2g � 2 D �2d C
bX

iD1

niX

jD1
.r
j
i � 1/; (16)

so that we shall also say that P is a Hurwitz partition set of genus g and degree d .

Remark 9. It is a fact that a partition set P satisfying (16) is not necessarily
of Hurwitz type. Indeed, the so-called Hurwitz existence problem can be stated
as follows: characterize Hurwitz partition sets among all P satisfying (16). This
problem turns out to be very difficult and is open in general. Easy cases in which
every P satisfying (16) is of Hurwitz type are Pi D .2; 1; : : : ; 1/ for every i , or
d � 3, or b � 2.

On the other hand if d D 4 the partition set P D f.3; 1/I .2; 2/I .2; 2/g is not of
Hurwitz type, but the Riemann-Hurwitz formula (16) holds with g D 0; see [19] for
this and other results on the Hurwitz existence problem.

Let now 
 W .G;w/ ! T be a non-degenerate pseudo-harmonic morphism,
where T is a tree; let v 2 V.G/. For any half-edge h0 2 H.T / in the image of some
half-edge adjacent to v we define, using (8), a partition of m
.v/:

Ph0.
; v/ WD fr
.h/; 8h 2 Hv.G/ W 
.h/ D h0g:
Now we associate to v and 
 the following partition set:

P .
; v/ D fPh0.
; v/; 8h0 2 
H.Hv.G//g: (17)

In the next definition we use the terminology of Remark 8.

Definition 7. (A) Let .G;w/ be a loopless weighted graph. We say that .G;w/
is d -gonal if it admits a non-degenerate, degree-d harmonic morphism 
 W
.G;w/! T where T is a tree.

If such a 
 has the property that for every v 2 V.G/ the partition set
P .
; v/ is contained in a Hurwitz partition set of genus w.v/, we say that 
 is a
morphism of Hurwitz type, and that .G;w/ is a d -gonal graph of Hurwitz type.

(B) Let .G;w/ be any graph. We say that it is d -gonal, or of Hurwitz type, if so is
.G0;w0/, with .G0;w0/ as in Definition 4.

Example 2. A harmonic morphism with indices at most equal to 2 is of Hurwitz
type. Hence if d � 3 a d -gonal graph is always of Hurwitz type.

The following is one of the principal results of this paper, of which Theorem 1 is a
special case. Recall the terminology introduced in Definition 1.

Theorem 2. Let .G;w/ be a d -gonal graph of Hurwitz type; then there exists a
d -gonal curve whose dual graph is .G;w/.

Conversely, let X be a d -gonal curve; then its dual graph is equivalent to a
d -gonal graph of Hurwitz type.

The proof of the first part of the theorem will be given in Sect. 2.4. The converse
is easier, and will be proved earlier, in Corollary 1.
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2.3 The Dual Graph-Map of a Covering

To prove Theorem 2 we shall associate to any covering ˛ W X ! Y an indexed
morphism of graphs, called the dual graph-map of ˛, and denoted by


˛ W .GX;wX/ �! GY :

As all components of Y have genus zero, we omit the weight function for Y . We
sometimes write just GX ! GY for simplicity.

We use the notation of Sect. 1.2; denote by

Y D [u2V.GY /Du

the irreducible component decomposition of Y . For any v 2 V.GX/ we have that
˛.Cv/ is an irreducible component of Y , hence there is a unique u 2 V.GY / such
that ˛.Cv/ D Du; this defines a map 
˛;V W V.GX/! V.GY / mapping v to u.

Next, E.GX/ and E.GY / are identified with the set of nodes of X and Y . To
define 
˛;E W E.GX/ ! E.GY / let e 2 E.GX/; then e corresponds to the node
Ne of X . The image ˛.Ne/ is a node of Y , corresponding to a unique edge of GY ,
which we set to be the image of e under 
˛;E .

It is trivial to check that the pair .
˛;V ; 
˛;E/ defines a morphism of graphs,

˛ W GX ! GY .

Let us now define the indices of 
˛. For any e 2 E.G/ let Ne be the correspond-
ing node of X . By Definition 3, the restriction of ˛ to each of the two branches of
Ne has the form u D xr and v D yr where x and y are local coordinate at the
branches of Ne, and u, v are local coordinates at the branches of ˛.Ne/ (which is a
node of Y ). We set r
˛.e/ D r .

If we need to keep track of the branch points of ˛ W X ! .Y Iy1; : : : ; yb/, we
endow the dual graph of Y with b legs, in the obvious way, and write 
˛ W GX !
G.Y Iy1;:::;yb/:

Example 3 (Dual graph-map for the admissible covering of an irreducible hyper-
elliptic curve). Let X 2 Hg be an irreducible singular hyperelliptic curve. Such
curves are completely characterized; we here choose X irreducible with g nodes,
so that its normalization is P1. Let us describe an admissible covering ˛ W Z ! Y

which maps to X under the map (6). As we noticed in Remark 3,Z cannot be equal
to X . In fact, Z is the “blow-up” of X at its g nodes, so that Z D [giD0Ci is the
union of gC1 copies of P1, with one copy,C0, corresponding to the normalization of
X , and the remaining copies corresponding to the “exceptional” components. Hence
jCi \ C0j D 2 and jCi \ Cj j D 0 for all i; j ¤ 0. Now, since X is hyperelliptic,
its normalization C0 has a two-to-one map to P1, written ˛0 W C0 ! D0 Š P1, such
that ˛0.pi / D ˛0.qi / D ti 2 D0 for every pair pi ; qi 2 C0 of points lying over the
i -th node of X . Let y0; y1 2 D0 be the two branch points of ˛0.

We assume that in X the component C0 is glued to Ci along the pair pi ; qi . For
i � 1 we pick a two-to-one map ˛i W Ci ! Di Š P1 such that the two points of
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Ci glued to X have the same image, si , under ˛i . Let y2i ; y2iC1 2 Di be the two
branch points of ˛i .

We define Y as the following nodal curve Y WD tgiD0Di=ftiDsi ; 8iD1;:::;gg: Now,
.Y Iy2i ; y2iC1; 8i D 0; : : : g/ is stable, and it is clear that the ˛i glue to an
admissible covering ˛ W Z ! Y . The dual graphs and graph-map are in the
following picture, where g D 3.

◦

GX = ◦ GZ = ◦ ◦ ◦

◦

G(Y,y1,...,yb) = ◦ ◦ ◦

Lemma 1. Let ˛ W X ! Y be a covering and 
˛ W .GX;wX/ ! GY the dual
graph-map defined above. Then 
˛ is a harmonic homomorphism of Hurwitz type.

If deg˛ D 2 and X has no separating nodes, then 
˛ is simple.

Proof. It is clear thatGY has no loops. By Remark 3 (B), every componentCv of X
is nonsingular, hence GX has no loops.

Since ˛ is a covering, we have that 
˛;V and 
˛;E are surjective, and 
˛ does not
contract any edge of GX ; hence 
˛ is a homomorphism. We shall abuse notation by
writing 
˛ for 
˛;V , 
˛;H and 
˛;E .

Let now v 2 V.GX/ and h0 2 H
.v/.GY /, so that h0 corresponds to a point in the
image of Cv via ˛, i.e. to a point in D
.v/ � Y . Consider the restriction of ˛ to Cv:

˛jCv W Cv �! D
.v/:

This is a finite morphism, and it is clear that for every h0 2 H
.v/.GY /

X

h2Hv.GX /W
.h/Dh0

r
˛.h/ D deg˛jCv :

The right hand side above does not depend on h0, hence we may set

m
˛.v/ WD deg˛jCv : (18)
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Therefore 
˛ is pseudo-harmonic. To prove that 
˛ is harmonic we must prove that
for every v 2 V.GX/ we have

X

e2Ev.GX /

.r
˛.e/� 1/ � 2.m
˛.v/ � 1C wX.v//: (19)

Let R 2 Div.Cv/ be the ramification divisor of the map ˛jCv above. Then, by the
Riemann-Hurwitz formula applied to ˛jCv we have,

degR D 2.m
˛.v/� 1C wX.v//:

On the other hand the map ˛jCv has ramification index r
˛ .h/ at all ph 2 Hv.GX/,
hence we must have

R �
X

h2Hv.GX /

.r
˛.h/ � 1/ph � 0

from which (19) follows. The fact that 
˛ is of Hurwitz type follows immediately
from Remark 8.

Assume deg˛ D 2 andX free from separating nodes. We must prove the indices
of 
 are all equal to one, i.e. that ˛Cv does not ramify at the points ph, for every
h 2 H.GX/. By contradiction, suppose ˛jCv is ramified at ph; hence, as deg˛ D 2,
it is totally ramified at ph, so that ˛�1.˛.ph//\ Cv D ph. Since ˛ is an admissible
covering, we have exactly the same situation at the other branch of Ne , i.e. at ph.
Therefore

˛�1.˛.Ne// D fNeg:

Now ˛.Ne/ is a node of Y , and hence it is a separating node. So, the above identity
implies that Ne is a separating node of X ; a contradiction.

Corollary 1. The second part of Theorem 2 holds.

Proof. Let X be a d -gonal curve; we must prove that the dual graph of X is
equivalent to a d -gonal graph of Hurwitz type. By hypothesis there exists an
admissible covering OX ! Y of degree d such that the stabilization of OX is the
same as the stabilization of X ; see the end of Sect. 1.3. Therefore the dual graph
of OX is equivalent to the dual graph of X . By Lemma 1 the dual graph of OX is of
Hurwitz type, hence we are done.

The proof of the first part of Theorem 2 will be based on the next Proposition, which
is a converse to Lemma 1.

Proposition 2. Let .G;w/ be a weighted graph of genus � 2 and let T be a tree.
Let 
 W .G;w/ ! T be a harmonic homomorphism of Hurwitz type. Then there
exists a covering ˛ W X ! Y whose dual graph map is 
.
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Proof. As 
 is harmonic, for every v 2 V.G/ condition (10) holds.
We will abuse notation and write 
 also for the maps V.G/! V.T /, H.G/ !

H.T / and E.G/ ! E.T / induced by 
. We begin by constructing two curves X
and Y whose dual graphs are .G;w/ and T .

For every u 2 V.T / we pick a pointed curve .Du;Qu/ with Du Š P1, and such
that the (distinct) points in Qu are indexed by the half-edges adjacent to u:

Qu D fqh; 8h 2 Hu.T /g:

We have an obvious identification [u2V.T /Qu D H.T /: To glue the curves Du

to a connected nodal curve Y we proceed as in Sect. 2.3, getting

Y D tu2V.T /Du

fqh D qh; 8h 2 H.T /g
:

By construction, T is the dual graph of Y .
Now to construct X we begin by finding its irreducible components Cv with

their gluing point sets Pv. Pick v 2 V.G/ and u D 
.v/ 2 V.T /. By hypothesis,
m
.v/ � 1; we claim that there exists a morphism from a smooth curve Cv of genus
w.v/ to Du

˛v W Cv �! Du (20)

of degree equal tom
.v/ such that for every h0 2 Hu.T / the pull-back of the divisor
qh0 has the form

˛�
v qh0 D

X


H .h/Dh0

r
.h/ph

for some points fph; h 2 H.G/g � Cv; we set Pv D fph; h 2 H.G/g.
Indeed, the degree of the ramification divisor of a degree-m morphism from a

curve of genus w.v/ to P1 of is equal to 2.m�1Cw.v//. Therefore assumption (10)
guarantees that the ramification conditions we are imposing are compatible; now as

 is of Hurwitz type, the Riemann Existence theorem yields that such an ˛v exists;
see Remark 8. Observe that ˛v may have other ramification, in which case we can
easily impose that any extra ramification and branch point lie Cv X Pv, respectively
in Du XQu, and that they are all simple.

Now that we have the pointed curves .Cv; Pv/ for every v 2 V.G/ such that Cv

is a smooth curve of genus w.v/ we can define X :

X WD tv2V.G/Cv

fph D ph; 8h 2 H.G/g
;

so, .G;w/ is the dual graph of X .
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Let us prove that the morphisms f˛v; 8v 2 V.G/g glue to a morphism ˛ W
X ! Y . It suffices to check that for every pair .ph; ph/ we have ˛v.ph/ D ˛v.ph/,
where ph 2 Cv and ph 2 Cv. We have ˛v.ph/ D q
.h/ and ˛v.ph/ D q
.h/. Now,

looking at the involution of H.T / (see Sect. 1.2), we have 
.h/ D .
.h//, and
hence ˛ W X ! Y is well defined.

We now show that ˛ is a covering. It is obvious that ˛�1.Ysing/ D Xsing: Next,
for every node Ne of X , the ramification indices at the two branches, ph; ph where
Œh; h� D e, are equal, as they are equal to r
.h/ and r
.h/. As we have imposed that
˛v has only ordinary ramification points away from the nodes of X , condition (0c)
of Definition 3 is satisfied. Therefore the map ˛ W X ! Y is a covering; obviously
˛ has 
 as dual graph-map.

To deduce Theorem 2 from the previous Proposition we will need to construct a
suitable homomorphism from a given morphism of Hurwitz type, which is done in
the next Lemma.

Lemma 2. Let 
 W .G;w/ ! T be a degree-d morphism of Hurwitz type. Then
there exists a degree-d homomorphism O
 W . OG; Ow/! OT of Hurwitz type fitting in a
commutative diagram

̂G
̂φ

̂T

G
φ

T (21)

whose vertical arrows are edge contractions, and such that . OG; Ow/ is equivalent to
.G;w/.

Proof. The picture after the proof illustrates the forthcoming construction. Since
.G0;w0/ is equivalent to .G;w/ we can assume G loopless. Consider the set of
“vertical” edges of 
:

Ever

 .G/ WD fe 2 E.G/ W 
.e/ 2 V.G0/g

and set Ehor

 .G/ WD E.G/XEver


 .G/. Of course, if Ever

 .G/ D ; there is nothing to

prove. So, let e 2 Ever

 .G/ and v1; v2 be its endpoints. We set u D 
.v1/ D 
.v2/ D


.e/ and write


�1
V .u/ D fv1; v2; : : : ; vng (22)

with n � 2 and the vi distinct. Set mi WD m
.vi / for i D 1; : : : ; n.
We begin by constructing OG. First, we insert a weight zero vertex Ove in the interior

of e, and denote by Oe1; Oe2 the two edges adjacent to it. Next, we attachm1�1 leaves
at v1, m2 � 1 leaves at v2, and mi leaves at vi for all i � 3; all these leaf-vertices
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are given weight zero. We denote the j -th leaf-edge attached to vi by l .i/
e;j .i/

and its

leaf-vertex by w.i/
e;j .i/

, with j .i/ D 1; : : : ; mi � 1 if i D 1; 2 and j .i/ D 1; : : : ; mi if
i � 3.

We repeat this construction for every e 2 Ever

 .G/, and we denote the so obtained

graph by OG. We have identifications

E. OG/ D Ehor

 .G/ t fOe1; Oe2; 8e 2 Ever


 .G/g t fl .i/e;j .i/ 8e 2 Ever

 .G/;8i;8j .i/g

and

V. OG/ D V.G/ t fOve; 8e 2 Ever

 .G/g t fw.i/e;j .i/ 8e 2 Ever


 .G/;8i;8j .i/g:

There is a contraction OG ! G given by contracting, for every e 2 Ever

 .G/, the

edge Oe1 and all leaf edges l .i/
e;j .i/

. It is clear that G and OG are equivalent.

Let us now construct OT ; for every e 2 Ever.G/ we add to T a leaf based at
u D 
.e/; we denote by Ole, and Owe the edge and vertex of this leaf. We let OT be
the tree obtained after repeating this process for every e 2 Ever


 .G/. There is a

contraction OT ! T given by contracting all leaf edges Ole .
Let G0 WD G � Ever


 .G/, so that G0 is also a subgraph of OG. Denote by 
0 W
G0 ! T the restriction of 
 to G0; observe that 
0 is a harmonic homomorphism.
To construct O
 W OG ! OT we extend 
0 as follows. For every e 2 Ever


 .G/ we set,
with the above notations,

O
. Oe1/ D O
. Oe2/ D O
.l.i/e;j .i/ / D Ole

and

O
.Ove/ D O
.w.i/e;j .i/ / D Owe

for every i and j .i/. Finally, we define the indices of O


r O
. Oe/ D
(
r
. Oe/ if Oe 2 Ehor


 .G/

1 otherwise.

It is clear that O
 is a homomorphism and that diagram (21) is commutative.
Let us check that O
 is pseudo-harmonic. Pick e 2 Ever.G/. Consider a leaf vertex

w.i/
e;j .i/

of OG. Then it is clear that condition (8) holds with m O
.w
.i/

e;j .i/
/ D 1. Next,

consider a vertex Ove . It is again clear that condition (8) holds with m O
.Ove/ D 2.

Finally, consider the vertices v1; : : : ; vn introduced in (22). Recall that O
.vi / D

.vi / D u and condition (8) holds for any edge in E.T / � E. OT / adjacent to u with
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m O
.vi / D mi . We need to check that the same holds for the leaf-edges Ole 2 E. OT /.
For v1 and any leaf Ole adjacent to O
.v1/ we have

X

Oe2Ev1 .
OG/W O
.Oe/DOle

r O
. Oe/ D
m1�1X

j .1/D1
r O
.l

.1/

e;j .1/
/C r O
. Oe1/ D m1 � 1C 1 D m1;

(as r O
.l
.1/

e;j .1/
/ D r O
. Oe1/ D 1) Similarly for v2. Next, for vi with i D 3; : : : ; n we

have

X

Oe2Evi .
OG/W O
.e/DOle

r O
. Oe/ D
miX

j .i/D1
r O
.l

.i/

e;j .i/
/ D mi:

Since 
0 is pseudo-harmonic there is nothing else to check; hence O
 is pseudo-
harmonic. Now, to prove that O
 is harmonic we must check that condition (10)
holds; since 
0 is harmonic, this follows immediately from the fact that the index of
O
 at each of the new edges is 1.

Finally, to prove that O
 is of Hurwitz type, pick a vertex of OG; if this vertex
is of type Ove or w.i/

e;j .i/
then the associated partition set contains only the trivial

partition, and hence it is obviously contained in some partition set of Hurwitz type.
The remaining case is that of a vertex v of G. Then either P .
; v/ D P . O
; v/ (if v
is not adjacent to e 2 Ever), or P. O
; v/ is obtained by adding the trivial partition to
P.
; v/; in both cases, since by hypothesis P .
; v/ is contained in a partition set of
Hurwitz type, so is P. O
; v/.
The following picture illustrates O
 for a 3-gonal morphism 
. All indices of 
 are
set equal to 1, with the exception of the vertical edge e for which r
.e/ D 0.

◦
le

G = •
v1
•

e

• ̂G = • • •
◦v̂e

•
v2
• • •

φ ̂φ

◦
ŵe

T = ◦
u
◦ ◦ ̂T = ◦ ◦

̂le

◦
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2.4 Proof of Theorem 2

By Corollary 1 we need only prove the first part of the Theorem. We first assume
that G is free from loops.

By hypothesis we have a non-degenerate, degree-d , harmonic morphism 
 W
G ! T of Hurwitz type, where T is a tree. We let O
 W OG ! OT be a degree-d ,
harmonic homomorphism associated to 
 by Lemma 2. Now O
 W OG ! OT satisfies
all the assumptions of Proposition 2, hence there exists a covering ˛ W OX ! OY
whose dual graph-map is O
 W OG ! OT . We denote by y1; : : : ; yb 2 Y the smooth
branch points of ˛.

Suppose now that .G;w/ is stable; we claim that ˛ is admissible, i.e. that
.Y Iy1; : : : ; yb/ is stable. We write Y D [Ou2V. OT /DOu as usual. For every branch

point yi we attach a leg to OT , having endpoint Ou 2 V. OT / such that yi 2 DOu. We
must prove that the graph OT with these b legs has no vertex of valency less than 3.
Pick a vertex of OT . There are two cases, either it is a vertex u 2 V.T / or it is a leaf
vertex Owe .

In the first case the preimage of u via O
 is made of vertices of the original graph
G. So, pick v 2 V.G/ with 
.v/ D u. The map ˛v W Cv ! Du has degree m
.v/. If
m
.v/ D 1, then, of course, Cv Š P1 and we have val.u/ � val.v/; and val.v/ � 3
as G is stable; hence val.u/ � 3 as wanted. Notice that this is the only place where
we use that .G;w/ is stable, the rest of the proof works for any d -gonal graph. If
m
.v/ � 2 then the map ˛v has at least two branch points, each of which corresponds
to a leg adjacent to u. If ˛v has more than two branch points, then u has more than
two legs adjacent to it, hence we are done; if ˛v has exactly two branch points, then,
by Riemann-Hurwitz, Cv Š P1 and hence Cv ¨ X as X has genus � 2. Therefore
Cv \ X X Cv ¤ ;, and hence there is at least one edge of T adjacent to u, hence
val.u/ � 3.

Now consider a vertex of type Owe . By construction, its preimage contains the
vertex Ove , for which m O
.Ove/ D 2; hence the corresponding component of OX maps
two-to-one to the component corresponding to Owe , and hence there are at least 2 legs
attached to Owe (corresponding to the two branch points). There is also at least one
edge because, as before, Owe is not an isolated vertex of OT . So, val. Owe/ � 3. This
proves that ˛ is an admissible covering.

Now, OX is a curve whose dual graph is . OG; Ow/. Its stabilization is a stable curve,
X , whose dual graph is clearly the original .G;w/. As we already mentioned, the
fact that X is d -gonal follows from [16, Sect 4], observing that X is the image of
the admissible covering ˛ W OX ! .Y Iy1; : : : ; yb/ under the morphism (6). This
concludes the proof in case .G;w/ is stable and loopless.

Now let us drop the stability assumption on .G;w/. If ˛ is admissible, the
previous argument yields that the stabilization of OX is d -gonal. But the stabilization
of OX is the same as the stabilization of X , hence we are done.

Suppose ˛ is not admissible; then there are two cases. First case: OT has a vertex
u of valency 1. By the previous part of the proof this can happen only if every vertex
v 2 
�1

V .u/ has valency 1 and ˛ induces an isomorphismCv Š P1; such components
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of OX are called rational tails. We now remove the componentDu from OY , and all the
rational tails mapping to Du from OX . Observe that this operation does not change
the stabilization of OX . This corresponds to removing one leaf from OT and all its
preimages (all leaves) under 
. We repeat this process until there are no 1-valent
vertices left.

Second case, OT has a vertex u of valency 2. Again by the previous part this
happens only if every v 2 
�1

V .u/ has valency 2 and ˛ induces an isomorphism
Cv Š P1. We collapse the componentDu of OY and all the exceptional components
of OX mapping to Du. Again, this operation does not change the stabilization of OX .
We repeat this process until there are no 2-valent vertices left.

In this way we arrive at two curves X 0 and .Y 0Iy1; : : : ; yb/, the latter being
stable, endowed with a covering ˛0 W X 0 ! Y 0 induced by ˛, by construction;
indeed the process did not touch the branch points y1; : : : ; yb , which are now the
smooth branch points of ˛0. The covering ˛0 is admissible, hence the stabilization of
X 0 is d -gonal (as before). Since the stabilization of X 0 is equal to the stabilization
of X we are done. The loopless case is now proved.

We now suppose that G has some loop; let .G0;w0/ be its loopless model. By
Definition 7, .G0;w0/ is d -gonal. The previous part yields that there exists a curve
X0 whose dual graph is .G0;w0/ and whose stabilization is d -gonal. Since the
stabilization of X is equal to the stabilization of X0 we are done. Theorem 2 is
proved. �

Remark 10 (Hyperelliptic and 2-gonal graphs). It is easy to construct hyperelliptic
(i.e. divisorially 2-gonal) graphs that are not 2-gonal; for example the weightless
graph G in Example 1 for n � 3.

On the other hand every 2-gonal stable graph is hyperelliptic, by Theorem 2 and
Proposition 4; see also Theorem 4. More generally, using Remark 7 one can prove
directly that if a graph admits a pseudo-harmonic morphism of degree 2 to a tree,
then it is hyperelliptic. We omit the details.

Example 4 (A 3-gonal graph which is not divisorially 3-gonal). In the following
picture we have a pseudo-harmonic morphism 
 of degree 3 from a weightless graph
G of genus 5. There is one edge, joining v2 and v3, where the index is 2, and all other
edges have index 1. The graph G is easily seen to be 3-gonal, but not divisorially
3-gonal, i.e. W 1

3 .G/ D ;. We omit the details.
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Example 5 (A divisorially 3-gonal graph which is not 3-gonal). In the graph G
below, weightless of genus 5, we have

3v1 � 3v2 � �v2 C 2v0 C 2v3 � 3v3 � v0 C v2 C v3 � 3v4

so the graph is divisorially 3-gonal.

Let us show thatG does not admit a non-degenerate pseudo-harmonic morphism
of degree 3 to a tree. By contradiction, let 
 W G ! T be such a morphism. Then
the edges adjacent to v1 cannot get contracted (if one of them is contracted, all
of them will be contracted, for T has no loops; but if all of them get contracted
then m
.v1/ D 0, which is not possible). Therefore the three edges adjacent to
v1 are all mapped to the unique edge, e0

1, joining 
.v1/ with 
.v2/. Similarly, the
edges adjacent to v4 are all mapped to the unique edge e0

2 joining 
.v4/ with 
.v3/.
Therefore, as 
 as degree 3, all edges between v1 and v2, and all edges between v3
and v4 have index 1, hencem
.v1/ D m
.v2/ D m
.v3/ D m
.v4/ D 3.

Now, if 
.v2/ D 
.v3/ then one easily checks that e0 is contracted and e2, e3 are
mapped to the same edge e0

3 of T , which is different from e0
1 and e0

2. Therefore we
have 1 � r
.ei / � 2 for i D 1; 2. But then by (8) we have

m
.v2/ D
X

e2Ev2 .G/W
.e/De0
3

r
.e/ D r
.e2/ � 2

and this is a contradiction.
It remains to consider the case 
.v2/ ¤ 
.v3/, let e0

0 D 
.e0/. Then v0 is either
mapped to 
.v2/ by contracting e2, or to 
.v3/ by contracting e3 (for otherwise T
would not be a tree). With no loss of generality, set 
.v2/ D 
.v0/ so that r
.e2/D 0.
Now, since 
.e3/ D 
.e0/ D e0

0 we have r
.e0/ � 2. Hence

m
.v2/ D
X

e2Ev2 .G/W
.e/De0
0

r
.e/ D r
.e0/ � 2

and this is a contradiction.
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3 Higher Gonality and Applications to Tropical Curves

3.1 Basics on Tropical Curves

A (weighted) tropical curve is a weighted metric graph � D .G;w; `/ where .G;w/
is a weighted graph and ` W E.G/ ! R>0. The divisor group Div.� / is, as usual,
the free abelian group generated by the points of � (viewed as a metric space). The
weightless case has been carefully studied in [14], for example; the general case has
been recently treated in [1], to which we refer for the definition of the rank r� .D/
of any D 2 Div.� / and its basic properties. Here we just need the following facts.
Given � D .G;w; `/ we introduce the tropical curve � w D .Gw; 0; `w/ such that
Gw is as in Definition 4, the weight function is zero (hence denoted by 0), and `w is
the extension of ` such that `w.e/ D 1 for every e 2 E.Gw/ X E.G0/. We have a
natural commutative diagram

Div(G;w) Div(Gw)

Div( ) Div( w) (23)

the above injections will be viewed as inclusions in the sequel. Then, for any D 2
Div.� / we have, by [1, Sect. 5]

r� .D/ D r� w.D/: (24)

So, the horizontal arrows of the above diagram preserve the rank. If the length
functions on � and � w are identically equal to 1, then, by [18, Thm 1.3], also
the vertical arrows of the diagram preserve the rank.

For a tropical curve � we denote by W r
d .� / the set of equivalence classes

of divisors of degree d and rank at least r ; we say that � is .d; r/-gonal if
W r
d .� / ¤ ;.
The moduli space of equivalence classes of tropical curves of genus g is denoted

by M trop
g , and the locus in it of curves whose underlying weighted graph is .G;w/

is denoted byM trop.G;w/. This gives a partition

M trop
g D tM trop.G;w/

indexed by all stable graphs .G;w/ of genus g.
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3.2 From Algebraic Gonality to Combinatorial and Tropical
Gonality

Theorem 3. Let X 2Mr
g;d and let .G;w/ be the dual graph of X . Then

(A) There exists a refinement . OG; Ow/ of .G;w/, such that W r
d .
OG; Ow/ ¤ ;;

(B) There exists a tropical curve � 2M trop.G;w/ such that W r
d .� / ¤ ;.

Proof. By hypothesis there exists a family of curves, f WX ! B , with B smooth,
connected, of dimension one, such that there is a point b0 2 B over which the fiber
of f is isomorphic to X , and the fiber over any other point of B is a smooth curve
whose W r

d is not empty. In the sequel we will work up to replacing B by an open
neighborhood of b0, or by an étale covering. Therefore we will also assume that f
has a section.

For every b 2 B� D BXfb0gwe haveW r
d .Xb/ ¤ 0 (Xb is the fiber of f over b).

Write f � WX � ! B� for the smooth family obtained by restricting f to X XX0.
Recall that as b varies in B� theW r

d .Xb/ form a family ([2, Sect. 2] or [3, Ch. 21]),
i.e. there exists a morphism of schemes

W r
d;f � ! B� (25)

whose fiber over b is W r
d .Xb/.

Up to replacing B by a finite covering possibly ramified only over b0, we may
assume that the base change of the morphism (25) has a section. The base change
of f to this covering may be singular (or even non normal) over b0, but will still
have smooth fiber away from b0. Let h W Z ! B be the desingularization of the
normalization of this base change of f . Then the fiber of h over b0 is a semistable
curveZ0 whose stabilization isX ; all remaining fibers are isomorphic to the original
fibers of f . By construction, the morphism

W r
d;h� ! B� (26)

has a section, 
 . By our initial assumption h W Z ! B is endowed with a section,
hence, by [9, Prop. 8.4], 
 corresponds to a line bundle L � 2 Pic Z �. Since Z
is nonsingular L � extends to some line bundle L on Z , and we have, for every
b 2 B:

r.Zb;LjZb / � r:

Let . OG; Ow/ be the dual graph of Z0. We can apply the weighted specialization
Lemma [1, Thm 4.9] to Z ! B with respect to the line bundle L . This gives,
viewing the multidegree deg LjZ0 as a divisor on OG,

r. OG; Ow/.deg LjZ0/ � r.Zb;LjZb / � r

and thereforeW r
d .
OG; Ow/ ¤ ;:
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Now, by construction . OG; Ow/ a refinement of .G;w/ (the dual graph ofX ). Hence
the first part is proved.

For the next part, consider the tropical curve O� D . OG; Ow; Ò/ with Ò.e/ D 1

for every e 2 E. OG/. Let D 2 W r
d .
OG; Ow/. Then D is also a divisor on O� (cf.

Diagram (23)). We claim that r O� .D/ � r .
We have, by definition,

r � r. OG; Ow/.D/ D r OG Ow.D/:

Let O� Ow D . OG Ow; 0; ÒOw/ be the tropical curve such that Ò Ow.e/ D 1 for every e 2
E.� Ow/; so D is also a divisor on O� Ow. By [18, Thm 1.3], we have

r OG Ow.D/ D r O� Ow.D/:

Now, as we noticed in (24) we have

r O� Ow.D/ D r O� .D/:

The claim is proved; thereforeW r
d .
O� / ¤ ;:

The supporting graph . OG; Ow/ of O� is not necessarily stable; its stabilization,
obtained by removing every 2-valent vertex of weight zero, is the original .G;w/,
so that O� is tropically equivalent to a curve � 2 M trop

g .G;w/. Since the underlying
metric spaces of � and O� coincide, we have

W r
d .� / D W r

d .
O� / ¤ ;:

The statement is proved.

Corollary 2. Every d -gonal stable weighted graph admits a divisorially d -gonal
refinement.

Proof. Let .G;w/ be a d -gonal stable graph. By Theorem 2 there exists X 2 M1
g;d

whose dual graph is .G;w/. By Theorem 3 we are done.

The proof of Theorem 3 gives a more precise result, to state which we need some
further terminology.

Let X be any curve. A one-parameter smoothing of X is a morphism f WX !
.B; b0/, where B is smooth connected with dimB D 1, b0 is a point of B such that
f �1.b0/ D X , and all other fibers of f are smooth curves. By definition, X is a
surface having only singularities of type An at the nodes of X . To f we associate
the following length function `f on GX :

`f W E.GX/ �! R>0I e 7! n.e/
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where n.e/ is the integer defined by the fact that X has a singularity of typeAn.e/�1
at the node of X corresponding to e. In particular, if X is nonsingular, then `f is
constant equal to one. This defines the following tropical curve associated to f :

�f D .GX;wX ; `f /:

Similarly, we define a refinement of the dual graph ofX by inserting n.e/�1 vertices
of weight zero in e, for every e 2 E.GX/; we denote this refinement by .Gf ;wf /.
Now, if Z ! X is the minimal resolution of singularities and h W Z ! B the
composition with f , then .Gf ;wf / is the dual graph of the fiber of h over b0; we
denote by Xf this fiber.

For example, the surface X is nonsingular if and only if X D Xf , if and only if
.GX;wX/ D .Gf ;wf /

The following is a consequence the proof of Theorem 3, where Xf corresponds
to the curve Z0, while .Gf ;wf / D . OG; Ow/, and �f D �:
Proposition 3. Let f W X ! .B; b0/ be a one-parameter smoothing of the curve
X . If the general fiber of f is .d; r/-gonal (i.e. if W r

d .f
�1.b// ¤ ; for every

b ¤ b0) then the following facts hold.

1. W r
d .Gf ;wf / ¤ ;.

2. W r
d .�f / ¤ ;.

3. W r
d .Xf / ¤ ;.

Remark 11. The tropical curve �f may be interpreted as a Berkovich skeleton of
the generic fiber XK of X ! B , where K is the function field of B (note that �f
depends on X ). Then the theorem says that the Berkovich skeleton of a .d; r/-gonal
smooth algebraic curve overK is a .d; r/-gonal tropical curve.

4 The Hyperelliptic Case

4.1 Hyperelliptic Weighted Graphs

Recall that a graph is hyperelliptic if it has a divisor of degree 2 and rank 1.
Hyperelliptic graphs free from loops and weights have been thoroughly studied in
[7]. In this subsection we extend some of their results to weighted graphs admitting
loops.

Recall the notation of Definition 4. We will use the following terminology.
A 2-valent vertex of is said to be special if its removal creates a loop. For example,
given .G;w/, every vertex in V.Gw/ X V.G/ is special.
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Lemma 3. Let .G;w/ be a weighted graph of genus g. Then .G;w/ is hyperelliptic
if and only if so is Gw if and only if so is .G0;w0/.

Proof. By Remark 4 we can assume g � 2. By definition, if G is hyperelliptic so
is Gw. Conversely, assume Gw hyperelliptic and let D 2 Div.Gw/ be an effective
divisor of degree 2 and rank 1. If SuppD � V.G/ we are done, as r.G;w/.D/ D
rGw.D/. Otherwise, supposeD D uCu0 with u 2 V.Gw/XV.G/. So, u is a special
vertex whose removal creates a loop based at a vertex v ofG. As rGw.uCu0/ D 1, it
is clear that u0 ¤ v (e.g. by [1, Lm. 2.5(4)]), and a trivial direct checking yields that
u0 D u. Moreover, we have 2u � 2v and hence rGw.2v/ D 1, by [1, Lm. 2.5(3)].

As .G0/w
0 D Gw, the second double implication follows the first.

Let e be a non-loop edge of a weighted graph .G;w/ and let v1; v2 2 V.G/ be
its endpoints. Recall that the (weighted) contraction of e is defined as the graph
.Ge;we/ such that e is contracted to a vertex v of Ge , and we.v/ D w.v1/C w.v2/,
whereas we is equal to w on every remaining vertex of Ge .

We denote by .G;w/ the 2-edge-connected weighted graph obtained by contract-
ing every bridge of G as described above.

By [7, Cor 5.11] a weightless, loopless graph is hyperelliptic if and only if so is
G. The following Lemma extends this fact to the weighted case.

Lemma 4. Let .G;w/ be a loopless weighted graph of genus at least 2. Then .G;w/
is hyperelliptic if and only if so is .G;w/.

Proof. By Lemma 3, .G;w/ is hyperelliptic if and only if so is Gw. Similarly,

.G;w/ is hyperelliptic if and only if so is G
w

. Now, G
w

is obtained from Gw

by contracting all of its bridges (indeed, the bridges of G and Gw are in natural

bijection). Therefore, as we said above, Gw is hyperelliptic if and only if so is G
w

.
So we are done.

Recall, from [7], that a loopless, 2-edge-connected, weightless graph G is
hyperelliptic if and only if it has an involution � such thatG=� is a tree. IfG has genus
at least 2, this involution is unique and will be called the hyperelliptic involution.
Furthermore, the quotient map G ! G=� is a non-degenerate harmonic morphism,
unless jV.G/j D 2; see [7, Thm 5.12 and Cor 5.15]. We are going to generalize this
to the weighted case.

Remark 12. LetG be a loopless, 2-edge-connected hyperelliptic graph of genus�2
and � its hyperelliptic involution. Let v 2 V.G/ be a special vertex whose removal
creates a loop based at the vertex u. Then �.v/ D v, �.u/ D u and � swaps the two
edges adjacent to v.

Indeed, G=� is a tree, hence the two edges adjacent to v are mapped to the same
edge by G ! G=�. As v has valency 2 and u has valency at least 3 (G has genus at
least 2), � cannot swap v and u. Hence �.v/ D v and �.u/ D u.

Lemma 5. Let .G;w/ be a loopless, 2-edge-connected weighted graph of genus
at least 2. Then .G;w/ is hyperelliptic if and only if G has an involution �, the
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hyperelliptic involution, fixing every vertex of positive weight and such that G=� is
a tree.
� is unique and, if jV.G/j � 3, then the quotient G ! G=� is a non-degenerate

harmonic morphism of degree 2.

Proof. Assume that G has an involution as in the statement; then we extend � to an
involution �w ofGw by requiring that �w fix all the (special) vertices in V.Gw/XV.G/
and swap the two edges adjacent to them. It is clear that Gw=�w is the tree obtained
by adding w.v/ leaves to the vertex ofG=� corresponding to every vertex v 2 V.G/.
Hence Gw is hyperelliptic, and hence so is .G;w/ by Lemma 3.

Conversely, suppose Gw hyperelliptic and let �w be its hyperelliptic involution.
Let v 2 V.G/ � V.Gw/ have positive weight. Then there is a 2-cycle inGw attached
at v; let eC and e� be its two edges, and u its special vertex. By Remark 12 we know
that �w fixes v and u and swaps eC and e�. Notice that the image in Gw=�w of every
such 2-cycle is a leaf.

We obtain that the restriction of �w to G is an involution ofG, written �, fixing all
vertices of positive weight. Finally, the quotientG=� is the tree obtained fromGw=�w

by removing all the above leaves, so we are done.
As G is 2-edge-connected, by Remark 6 we can apply some results from [7]. In

particular, the uniqueness of � follows from Corollary 5.14. Next, if jV.G/j � 3

then G ! G=� is harmonic and non-degenerate by Theorem 5.14 and Lemma 5.6.

Corollary 3. Let .G;w/ be a loopless, 2-edge-connected graph of genus at least
2, having exactly two vertices, v1 and v2. Then .G;w/ is hyperelliptic if and only if
either jE.G/j D 2, or jE.G/j � 3 and w.v1/ D w.v2/ D 0.

Proof. Assume .G;w/ hyperelliptic. Let jE.G/j � 3; by contradiction, suppose
w.v1/ � 1. By Lemma 5 the hyperelliptic involution fixes v1, and hence it fixes also
v2; therefore G=� has two vertices. Since there are at least three edges between v1
and v2, such edges fall into at least two orbits under �, and each such orbit is an edge
of the quotient G=�, which therefore cannot be a tree. This is a contradiction. The
other implication is trivial; see Example 1.

4.2 Relating Hyperelliptic Curves and Graphs

Proposition 4. LetX be a hyperelliptic stable curve. Then its dual graph .GX;wX/
is hyperelliptic.

Proof. We write .G;w/ D .GX;wX/ for simplicity. By Theorem 3, there exists
a hyperelliptic refinement, . OG; Ow/, of .G;w/. Then the weightless graph OG Ow is
hyperelliptic. By Lemma 3 it is enough to prove that the weightless graph Gw

is hyperelliptic. Now, one easily checks that Gw is obtained from OG Ow by removing
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every non-special 2-valent vertex of weight zero, and possibly some special vertex
of weight zero. On the other hand, by Lemma 3, the removal of any special vertex
of weight zero does not alter being hyperelliptic. ThereforeGw is hyperelliptic if so
is the graph obtained by removing every 2-valent vertex of weight zero from OG Ow.
This follows from the following Lemma 6.

Lemma 6. Let . OG; Ow/ be hyperelliptic of genus at least 2 and let .G;w/ be the
graph obtained from OG by removing every 2-valent vertex of weight zero. Then G is
hyperelliptic.

Proof. By Lemma 4, contracting bridges does not alter being hyperelliptic, hence
we may assume that OG is 2-edge-connected. By Lemma 3 up to inserting some
special vertices of weight zero we can also assume that OG has no loops. Finally, we
can assume that OG has at least three vertices, for otherwise the result is trivial.

It suffices to prove that the loopless model .G0;w0/ (see Definition 7) of .G;w/
admits an involution � fixing every vertex of positive weight and such that G0=�

is a tree, by Lemma 5. As . OG; Ow/ is hyperelliptic, it admits such an involution,
denoted by O�. Recall that the quotient map OG ! OG=O� is a non-degenerate harmonic
morphism.

Observe that G0 is obtained from OG by removing all the non-special 2-valent
vertices of weight zero. Let Ov 2 V. OG/ be such a vertex and write Oe1; Oe2 for the edges
of OG adjacent to Ov. To prove our result it suffices to show that if one removes from a
hyperelliptic graph either a non-special 2-valent vertex of weight zero fixed by the
hyperelliptic involution, or a pair of non-special 2-valent vertices swapped by the
hyperelliptic involution, then the resulting graph is hyperelliptic.

First, let O�.Ov/ D Ov and let .G0;w0/ be the graph obtained by removing Ov. We have
O�. Oe1/ D Oe2 (as OG ! OG=O� is non-degenerate), and Ov is mapped to a leaf of OG=O�.
Now, V.G0/ D V. OG/ X fOvg, and E.G0/ D feg [ E. OG/ X fOe1; Oe2g where e is the
edge created by removing Ov. We define the involution �0 of G0 by restricting O� on
V.G0/ and on E. OG/ X fOe1; Oe2g, and by setting �0.e/ D e. Since �0 swaps the two
endpoints of e (because so does O�), we have that e is contracted to a point by the
quotient G0 ! G0=�0. Therefore G0=�0 is the tree obtained from OG=O� by removing
the leaf corresponding to Ov. It is clear that �0 fixes all vertices of positive weight,
hence .G0;w0/ is hyperelliptic.

Next, let O�.Ov/ D Ov0 ¤ Ov; with Ov and Ov0 non-special and 2-valent, then the vertex
of OG=O� corresponding to fOv; Ov0g is 2-valent as well. Moreover, Ov and Ov0 have weight
zero, by Lemma 5. Let us show that the graph .G00;w00/ obtained by removing Ov
and Ov0 is hyperelliptic. Now O� maps Oe1; Oe2 to the two edges adjacent to Ov0. We denote
by e and e0 the new edges of G00. We define �00 on V.G00/ D V. OG/ X fOv; Ov0g by
restricting O�; next, we define �00 on E.G00/ so that �00.e/ D e0 and �00 coincides with
O� on the remaining edges. It is clear that �00 is an involution fixing positive weight
vertices and such that the quotientG00=�00 is the tree obtained from OG=O� by removing
the 2-valent vertex corresponding to fOv; Ov0g. We have thus proved that .G00;w00/ is
hyperelliptic. The proof is now complete.



106 L. Caporaso

Theorem 4. Let .G;w/ be a stable graph of genus g � 2. Then the following are
equivalent.

(A) M alg.G;w/ contains a hyperelliptic curve.
(B) .G;w/ is hyperelliptic and for every v 2 V.G/ the number of bridges of G

adjacent to v is at most 2w.v/C 2.
(C) Assume jV.G/j ¤ 2; the graph .G;w/ is 2-gonal.

Proof of the Lemma. (C)) (A) by Theorem 2 and Example 2.
(A)) (B). Let X be a hyperelliptic curve such that .GX;wX/ D .G;w/. Then,

by Proposition 4, .G;w/ is hyperelliptic. Let ˛ W OX ! Y be an admissible covering
corresponding to X ; by Remark 3 (C), OX is semistable. Therefore the dual graph of
OX , written . OG; Ow/, is a refinement of .G;w/ (as X is the stabilization of OX ).

Let v 2 V.G/ � V. OG/ and Cv � OX be the component corresponding to v, recall
that Cv is nonsingular (by Remark 3) of genus w.v/. Now let Oe 2 E. OG/ be a bridge
of OG adjacent to v. Then the corresponding nodeN Oe of OX is a separating node of OX ,
and hence ˛�1.˛.N Oe// D N Oe . This implies that the restriction of ˛ to Cv ramifies
at the point corresponding to N Oe. By the Riemann-Hurwitz formula, the number of
ramification points of ˛jCv is at most 2w.v/C 2, therefore the number of bridges of
OG adjacent to v is at most 2w.v/C 2.

Now, by construction, we have a natural identification Ev. OG/ D Ev.G/ which
identifies bridges with bridges. Hence also the number of bridges of G adjacent to
v is at most 2w.v/C 2, and we are done.

(B) ) (C) assuming jV.G/j ¤ 2. We can assume jV.G/j � 3 for the case
jV.G/j D 1 is clear; see Example 3. Let us first assume that G has no loops. By
Lemma 4, the 2-edge-connected graph .G;w/ is hyperelliptic.

Suppose jV.G/j > 2. By Lemma 5, G has an involution � such that


 W G �! T WD G=�

is a non-degenerate harmonic morphism of degree 2, with T a tree. Let us show
that 
 corresponds to a non-degenerate pseudo-harmonic morphism of degree 2,

 W G ! T , with T a tree, such that r
.e/ D 2 for every bridge e. Suppose that G
has a unique bridge e, which is contracted to the vertex v ofG; let u D 
.v/ 2 V.T /.
Let T be the tree obtained from T by replacing the vertex u by a bridge e0 and its
two endpoints in such a way that there exists a morphism 
 W G ! T mapping e to
e0 fitting in a commutative diagram

G

φ

G

φ

T T (27)

where the horizontal arrows are the maps contracting e and e0 (it is trivial to check
that such a 
 exists). To make 
 into an indexed morphism of degree 2 we set
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r
.e/ D 2 and we set all other indices to be equal to 1. Since 
 was harmonic and
non-degenerate, we have that 
 is pseudo-harmonic and non-degenerate.

If G has any number of bridges, we iterate this construction one bridge at the
time. This clearly yields a pseudo-harmonic, degree 2, non-degenerate morphism

 W G ! T where T is a tree.

We claim that condition (10) holds. Indeed, we have r
.e/ D 2 if and only if
e is a bridge. Therefore (10) needs only be verified at the vertices of G that are
adjacent to some bridge; notice that for any such vertex v we have m
.v/ D 2.
Writing brdg.v/ for the number of bridges adjacent to v, we have, as by hypothesis,
brdg.v/ � 2w.v/C 2,

X

e2Ev.G/\Ehor

 .G/

.r
.e/ � 1/ � brdg.v/ � 2w.v/C 2 D 2.w.v/Cm
.v/ � 1/:

This proves that (10) holds, that is, .G;w/ is a 2-gonal graph. So we are done.
Suppose jV.G/j D 2, hence the bridges of G are leaf-edges. By Corollary 3, if

jE.G/j � 3, then all the weights are zero, hence, as G is stable, G D G, which
is excluded. If jE.G/j D 2, then the vertices must be fixed by the hyperelliptic
involution (for otherwise they would have weight zero by Lemma 5, contradicting
that the genus be at least 2). But then G has clearly an involution � swapping its
two edges and fixing the two vertices, whose quotient is a non-degenerate harmonic
morphism of degree 2 to a tree, as in the previous part of the proof, which therefore
applies also in the present case.

Suppose jV.G/j D 1. Then G is a tree, hence the identity map G ! G with all
indices equal to 2 is a pseudo-harmonic morphism, 
, of degree 2. Arguing as in the
previous part we get 
 is harmonic; so we are done.

Finally, suppose G admits some loops. Let .G0;w0/ be the loopless model; then
jV.G0/j � 3. By the previous part we have that .G0;w0/ is 2-gonal, hence so is
.G;w/.

(B)) (A) assuming jV.G/j D 2. If G has loops, then jV.G0/j � 3 and we can
use the previous implications (B)) (C)) (A). So we assumeG loopless. By [16],
hyperelliptic curves with two components are easy to describe. Let X D C1 [ C2
with Ci smooth, hyperelliptic of genus w.vi / and such that X 2 M alg.G;w/. If
jE.G/j D 1 for X to be hyperelliptic it suffices to glue p1 2 C1 to p2 2 C2 with pi
Weierstrass point of Ci for i D 1; 2.

If jE.G/j D 2 forX to be hyperelliptic it suffices to glue p1; q1 2 C1 to p2; q2 2
C2 with h0.Ci ; pi C qi / � 2 for i D 1; 2.

If jE.G/j � 3, by Corollary 3 all weights are zero. For X to be hyperelliptic
it suffices to pick two copies of the same rational curve with jE.G/j marked
points, and glue the two copies at the corresponding marked points. The theorem is
proved.
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Caustics of Plane Curves, Their Birationality
and Matrix Projections

Fabrizio Catanese

Dedicated to Klaus Hulek on the occasion of his 60th birthday.

Abstract After recalling the notion of caustics of plane curves and their basic
equations, we first show the birationality of the caustic map for a general source
point S in the plane. Then we prove more generally a theorem for curves D in the
projective space of 3 � 3 symmetric matrices B . For a general 3 � 1 vector S the
projection to the plane given by B ! BS is birational on D, unlessD is not a line
andD is contained in a plane of the formDeltav WD fBjBv D 0g.

1 Introduction and Setup

Given a plane curve C and a point S , a source of light (which could also lie at
infinity, as the sun), the light rays LP originating in S , and hitting the curve C in
a point P , are reflected by the curve, and the caustic C of C is the envelope of the
family of reflected rays�P .

Our first Theorem 3 says that the correspondence between the curve C and the
caustic curve C is birational, i.e., it is generically one to one, if the light source point
S is chosen to be a general point.
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We learnt about this problem in [4], to which we refer for an account of the
history of the theory of caustics and for references to the earlier works of von
Tschirnhausen, Quetelet, Dandelin, Chasles, and more modern ones (as [2, 3]).

Our methods are from algebraic geometry, so we got interested in a generaliza-
tion of this result, in which the special form of a certain curve D plays no role: we
achieve this goal in Theorem 4.

Let us now describe the mathematical set up for the description of caustics.
Let P2 D P2

C
and let C � P2 be a plane irreducible algebraic curve, whose

normalization shall be denoted by C 0.
Choose an orthogonality structure in the plane, i.e. two points, called classically

the cyclic points, and let P11 be the line (‘at infinity’) joining them.
The two cyclic points determine a unique involution � on P11 for which the cyclic

points are fixed, hence an involution, called orthogonality, on the pencils of lines
passing through a given point of the affine plane P2 n P11.

Without loss of generality, we choose appropriate projective coordinates such
that

� W .x; y; 0/ 7! .�y; x; 0/; F ix.�/ D f.1;˙p�1; 0/g:

Let S 2 P2 be a light source point, and to each point P 2 P2 n fSg associate the
line LP WD PS . In the case where P 2 C , we define �P , the reflected light ray,
as the element of the pencil of lines through P determined by the condition that the
cross ratio

CR.NP ; TP ;LP ;�P / D �1;

ensuring the existence of a symmetry with centre P leaving the tangent line TP to
C at P and the normal line NP WD �.TP / fixed, and exchanging the incoming light
ray LP with the reflected light ray �P .

We thus obtain a rational map of the algebraic curve C to the dual projective
plane:

� W C Ü .P2/_:

Definition 1. The Caustic C of C is defined as the envelope of the family of lines
f�P g: in other words, setting � WD �.C/, C D � _.

Remark 1. since the biduality map � Ü � _ is birational (cf. [7], pages 151–
152), the map C Ü C is birational iff � W C Ü � is birational. Moreover, by
the biduality theorem, the class of the caustic C is the degree of � , and the degree
of C is the class of � .

We shall quickly see in the next section the basic calculations which give the
class of C , i.e. the degree of � , in the case where C and S are general (more
precise Plücker type formulae which show how the singularities of the curve C
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and the special position of S make these numbers decrease are to be found in [4]
and [5]).

In Sect. 3 we show our fist result, that � is birational onto its image for general
choice of the source point S , if C is not a line (in this case � is a line, and the caustic
is a point). The next section recalls a well known lemma about lines contained in
the determinantal variety � which is the secant variety of the Veronese surface V .

This lemma plays a crucial role in the proof of our main result, which says the
following (see Theorem 4 for more details):

Theorem 1. Let D � P WD P.Sym2.C3// be a curve.
Then, for general S 2 P2, the projection �S W P D P.Sym2.C3// Ü P2 given

by �S.B/ WD BS has the property that its restriction to D, �S jD , is birational
onto its image, unless (and this is indeed an exception) D is a curve contained
in a plane �.S 0/ D fBj BS0 D 0g (contained in the determinantal hypersurface
� D fBj det.B/ D 0g) and D is not a line.

This result suggests the investigation of a more general situation concerning the
birationality of linear projections given by matrix multiplications.

Problem 1. Given a linear space P of matrices B , and a linear space P0 of
matrices S , consider the matrix multiplication �S.B/ D BS . For which algebraic
subvarietiesD � P is the restriction of the projection �S jD birational onto its image
for a general choice of S 2 P0?

2 Equations in Coordinates

Let f .x0; x1; x2/ D 0 be the equation of C in the appropriate system of homoge-
neous coordinates, let d WD deg.f /, and let F WD .f0.x/; f1.x// be the first part of
the gradient of f . For a point x D .x0; x1; x2/ we define

.F; x/ WD f0.x/x0 C f1.x/x1; fF ^ xg WD f0.x/x1 � f1.x/x0:

Then the tangent line TP at a point P with coordinates x is the transpose of the
row vector .f0.x/; f1.x/; f2.x//.

The normal line NP is orthogonal to the tangent line, hence it has the form
NP D t .�f1.x/; f0.x/; f3.x//, and the condition that P 2 NP forces the unknown
rational function f3.x/ to fulfill �f1.x/x0 C f0.x/x1 C f3.x/x2 
 0, thus

tNP is the row vector

tNP D .�x2f1.x/; x2f0.x/;�fF ^ xg/:

We find now the line LP as the line in the pencil spanned by TP and NP passing
through S : as such the line LP is a column vector which is a linear combination



112 F. Catanese

	TPC�NP ; the condition that S 2 LP then determines 	 D �tNP 	S;� Dt TP 	S ,
where S is the transpose of the vector .s0; s1; s2/.

Hence we get

LP .S/ D A.P /S; A.P / WD �TP tNP CNP tTP ;

in particular the matrix A.P / is skew symmetric.
To obtain the reflected ray�.P / it is sufficient, by definition, to change the sign

of 	, and we get therefore:

�P .S/ D B.P /S; B.P / WD TP tNP CNP tTP :

Remark 2. (1) The matrices A.P / and B.P / are functions which are defined for
all general points P of the plane.

(2) The matrix B.P / is symmetric and has rank at most two, since its image is
generated by NP and TP ; moreover we have

B.P /P D 0;A.P /P D 0; 8P 2 C:

(3) Assume that C is not a line passing through a cyclic point: then the matrix
B.P / has precisely rank two on the non empty open set where f 2

1 C f 2
0 ¤ 0

and x2 ¤ 0; the former condition clearly holds for a general point P 2 C ,
otherwise the dual curve of C would be contained in a line y0 D ˙

p�1y1.
(4) The entries of the matrix B.x/ are given by polynomials of degree 2d � 1.

By the preceding remark follows easily the classical theorem asserting that

Theorem 2. The class of the caustic, i.e., the degree of � , equals d.2d � 1/, for a
general curve C and a general choice of S .

In fact C has degree d , and B.x/S is given by polynomials of degree 2d � 1 in
x, which have no base points on a general curve C .

3 Birationality of the Caustic Map

Theorem 3. If C is not a line, then the caustic map C Ü C is birational, for
general choice of S .

Proof. As already remarked, the caustic map is birational iff the map � W C Ü �

is birational. Observe that � defines a morhism C 0 ! � which we also denote
by �.

The matrix B , whose entries are polynomials of degree 2d � 1, yields a map

B W C 0 ! D � P
5 D P.Sym2.C3//:
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Lemma 1. B W C 0 ! D WD ˚.C / is birational.

Proof. It suffices to recall Remark 2: for a general point P 2 C , B.P / has rank
exactly two, and B.P /P D 0. Hence P D ker.B.P //, and the matrix B.P /
determines the point P 2 P2. �

We have now a projection P.Sym2.C3// Ü P2 given by

�S.B/ WD BS:

Consider the linear subspace

W WD fBjB0;0 CB1;1 D 0g:

We observe preliminarily that the curve D is contained in the linear subspace
W since, setting for convenience fi WD fi .x/, the matrix B.x/ has the following
entries:

B0;0 D �2x2f0f1; B1;1 D 2x2f0f1:

Then our main result follows from the next assertion, that, for a general choice
of S 2 P2, the projection �S yields a birational map of D onto � WD �S.D/.

In order to prove this, we set up the following notation:

�S WD fBjBS D 0g; � WD fBj det.B/ D 0g D [S�S:

Observe that� is the secant variety of the Veronese surface

V WD fBj rank.B/ D 1g:

Observe that the curve D is contained in the linear subspace W , is contained in
� but not contained in the Veronese surface V .

We are working inside the subspaceW , and we observe first of all that the centre
of the projection �S restricted to W is the linear space

WS WD �S \W:

Observe moreover that � \W D [SWS :

Now, the projection �S is not birational onD if and only if, for a generalB 2 D,
there exists another B 0 2 D; B ¤ B 0, such that the chord (i.e., secant line) B 
 B 0
intersects WS in a point B 00 (observe that the general point B 2 D does not lie in
the line WS ).

There are two possible cases:

Case I: B 00 is independent of the point B 2 D.
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Case II: B 00 moves as a rational function of the point B 2 D, hence the points
B 00 sweep the line WS .

Lemma 2. The assumption that case I holds for each S 2P2 leads to a contradic-
tion.

Proof of the Lemma. Under our assumption, for each S there is a point B 00.S/ such
that infinitely many chords of D meet WS in B 00.S/.

Let us see what happens if we specialize S to be a general point P 2 C .
The first alternative is
(I-1) B 00.P / D B.P /: in this case, for each point B1 2 D there is B2 2 D such

that B.P /; B1; B2 are collinear. Since this happens for each choice of B.P /; B1,
every secant is a trisecant, hence, by the well known trisecant lemma (cf. [1],
page 110),D is a plane curve of order at least three.

Take now a general S 2 P2: since B 00.S/ is on a secant to D, B 00.S/ belongs
to the secant variety ˙ of D (here a plane ˘ ), but we claim that it is not in D. In
fact, if there were a point P 2 C 0 such that B 00.S/ D B.P /, then B.P /S D 0

contradicting that S is a general point. Hence we obtain that the plane ˘ intersects
� in a bigger locus thanD: since� is a cubic hypersurface, it follows that ˘ � �.

By Proposition 1 it follows that either there is a point S 0 such that S 0 2
ker.B/;8B 2 ˘ , or there is a line L 2 P2 such that ker.B/ 2 L;8B 2 ˘ :
both cases imply that the curve C must be contained in a line, a contradiction.

The second alternative is
(I-2) B 00 WD B 00.P / ¤ B.P /. Then there is a point B 0 2 D (possibly infinitely

near) such that B 0 is a linear combination of B 00 and B WD B.P /.
However, since BP D 0; B 00P D 0; and B ¤ B 00, then also for their linear

combination B 0 we have B 0P D 0. The consequence is, since B 0P D B 0P 0 D 0,
that B 0 has rank one. Therefore, if B 0 is not infinitely near, B 0 cannot be a general
point of D, hence B 0 is independent of P : but then C � ker.B 0/, and since we
assume that C is not a line, we obtain B 0 D 0, a contradiction.

If P 0 is infinitely near to the point P 2 C , i.e., P;P 0 span the tangent line to C
at P , and B;B 0 span the tangent line to D at B D B.P /, we work over the ring of
tangent vectors CŒ��=.�2/, and we observe that

.B C �B 0/.P C �P 0/ D 0) BP0 D 0:

For P 2 C general this is a contradiction, since BP0 D 0;BP D 0 imply that
B D B.P / has rank one. �

Lemma 3. The assumption that case II holds for general S 2 P2 leads to a
contradiction.

Proof of the Lemma. As we already observed, for general S ,B 00 moves as a rational
function of the point B 2 D, hence the points B 00 sweep the line WS . Therefore the
line WS is contained in the secant variety ˙ of the curve D. As this happens for
general S , and � \ W D [SWS ; it follows that the threefold � \W is contained
in the secant variety ˙ .
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Since ˙ is irreducible, and has dimension at most three, it follows that we have
equality

� \W D ˙:

We conclude that, for P1; P2 general points of C , the line joining B.P1/ and
B.P2/ is contained in �.

By Proposition 1, and since ker.B.P1// D P1; ker.B.P2// D P2, we have
that the matrices in the pencil 	1B.P1/ C 	2B.P2/ send the span of P1; P2 to its
orthogonal subspace.

This condition is equivalent to

tP1.B.P2//P1 D 0 8P1; P2 2 C

(tP2.B.P1//P2 D 0 follows in fact since P1; P2 are general).
Fix now a general point P2: then we have a quadratic equation for C , hence C is

contained in a conic.
A little bit more of attention: the matrix B.P2/ has rank two, hence the quadratic

equation defines a reducible conic, and, C being irreducible, C is a line, a
contradiction. �

4 Linear Subspaces Contained in the Determinantal Cubic
� WD fBj det.B/ D 0g

Proposition 1. Let 	B0 C �B1 be a line contained in the determinantal hypersur-
face � of the projective space of symmetric 3 � 3 matrices.

Then the line is contained in a maximal projective subspace contained in �,
which is either of the type

�S WD fBjBS D 0g;

for some S 2 P2, or of the type

�.L/ WD fBjBL � L?g D fBjBjL 
 0g;

for some line L � P2.

Proof. A pencil of reducible conics either has at most one (non infinitely near) base
point S 2 P2, or it has a line L as fixed component.

In the first case the pencil is � �S , in the second case it is contained in the
subspace�.L/ consisting of the conics of the formLCL0, whereL0 is an arbitrary
line in the plane. �
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Remark 3. Even if the result above follows right away from the classification of
pencils of conics, it is useful to recall the arguments which will be used in the sequel.

For instance, we observe that the hyperplane sections of the Veronese surface V
are smooth conics, hence no line is contained in V .

5 Birationality of Certain Matrix Projections of Curves

In this final section we want to show the validity of a much more general statement:

Theorem 4. Let D � P WD P.Sym2.C3// be a curve and B W C 0 ! D � P be its
normalization.

Then, for general S 2 P2, the projection �S W P D P.Sym2.C3// Ü P2 given
by �S .B/ WD BS has the property that its restriction to D, �S jD is birational onto
its image, unlessD is a curve contained in a plane�.S 0/ and is not a line.

In the latter case, each projection �S jD has as image the line .S 0/? and is not
birational.

Proof. Let G WD Gr.1;P/ be the Grassmann variety of lines � � P: G has
dimension 8.

Define, for S 2 P2, GS WD f� 2 G j� \ �S ¤ ;g: Indeed, these 6-
dimensional submanifolds of G are the fibres of the second projection of the
incidence correspondence

I � G � P
2; I WD f.�; S/j�\�S ¤ ;g:

In turn I is the projection of the correspondence

J � G �� � P
2; J WD f.�;B; S/jB 2 �; BS D 0g:

Recall further that � n V has a fibre bundle structure

K W � n V ! P
2

such that K .B/ WD ker.B/, and with fibre over S equal to �S n V .

Remark 4. 1. Observe that for matrices B 2 V we can write them in the form
B D x tx, for a suitable vector x, and in this case ker.B/ D x?, Im.B/ D hhxii.

2. In any case, since the matrices B are symmetric, we have always

Im.B/ D ker.B/?:

Consider now the fibres of I ! G : for a general line �, its fibre S .�/ is

1. If � \� ¤ �;�\� � � n V , then S .�/ consists of at most three points;
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2. If �\� ¤ �; .�\ V / ¤ ;, then S .�/ consists of a line x? and at most one
further point;

3. If � � � is of the form � � �S , then S .�/ consists of one or two lines
containing S ;

4. If � � � is of the form� � �.L/, S .�/ consists of the line L.
Since, if � � �.L/, the conics in� consist of L plus a line L0 moving in the

pencil of lines through a given point P .

We let

U � G � P; U WD f.�;B/jB 2 �g

be the universal tautological P1-bundle, and we denote by p W U ! P the second
projection.

Recall now that the secant variety ˙ of D is defined as follows: we have a
rational map  W C 0 � C 0 Ü G associating to the pair .s; t/ the line B.s/ 
 B.t/
joining the two image points B.s/; B.t/.

Then one denotes by U 0 the pull back of the universal bundle, and defines ˙ as
the closure of the image p.U 0/.

The condition that for each S 2 P2 the projection�S is not birational onD means
that, if Y is the closure of the image of  , then Y \ GS has positive dimension.

This implies that the correspondence

ID WD f.�y; S/jy 2 Y; �y \�S ¤ ;g � Y � P
2

has dimension at least three and surjects onto P2.
Projecting ID on the irreducible surface Y , we obtain that all the fibres have

positive dimension, and we infer that each secant line �y has a fibre S .�y/ of
positive dimension.

There are two alternatives:

(i) A general secant �y is not contained in �, but intersects the Veronese
surface V .

(ii) Each secant line �y � �.

Step (I): the theorem holds true if D � V .

Proof of step I.
In this case any element of D is of the form B.t/ D x.t/tx.t/, and

�S.B.t// D x.t/Œt x.t/S� D .x.t/; S/x.t/ D x.t/:

Hence, for each S , the projection �S is the inverse of the isomorphism


 W x 2 P
2 ! V; 
.x/ D x tx:

�
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We may therefore assume in the sequel that D is not contained in V .

Step (II): the theorem holds in case (i).

Proof of step II.
Observe preliminarly that, in case (i), D 6� �; else we could take two smooth

points B1;B1 2 D \ .� n V /, and the secant line B1 
 B2 could not fulfill (i).
Choose then a point B0 2 D;B0 2 P n�, hence w.l.o.g. we may assume that B0

is the identity matrix I .
Since any other pointB.t/ 2 D is on the line joiningB0 with a point x.t/t x.t/ 2

V , we may write locally around a point of C 0

B.t/ D I C �.t/t �.t/;

where �.t/ is a vector valued holomorphic function.
Now, for each s; t , the secant line B.t/ 
 B.s/ meets the Veronese surface V .
Since B.t/ cannot have rank equal to 1, there exists 	 such that

	B.t/CB.s/ D 	.I C �.t/t �.t//C .I C �.s/t �.s//

has rank equal to 1, i.e.,

K	 WD ker.	B.t/C B.s// D fvjŒ	.I C �.t/t �.t//C .I C �.s/t �.s//�v D 0g D

fvj.	C 1/vC 	�.t/.�.t/; v/C �.s/.�.s/; v/ D 0g

has dimension 2.
Let us now make the assumption:
(**) two general points �.t/; �.s/ are linearly independent.
The above formula shows however that, under assumption (**), it must be that

v is a linear combination of �.t/; �.s/. This is clear if 	 C 1 ¤ 0, otherwise v is
orthogonal to the span of �.t/; �.s/, contradicting that the kernel has dimension 2.

Hence K	 D hh�.t/; �.s/ii and the condition that �.t/ 2 K	 yields

.	C 1/�.t/C 	�.t/.�.t/; �.t//C �.s/.�.s/; �.t// D 0

and implies

.
 
 
/ 8s; t .�.s/; �.t// D 0:

(***) says that K	 D hh�.t/; �.s/ii is an isotropic subspace, which can have at
most dimension 1.

Hence assumption (**) is contradicted, and we conclude that it must be:

.
 
 

/ �.t/ D f .t/u;

where u is an isotropic vector and f .t/ is a scalar function.
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Even if this situation can indeed occur, we are done since in this case the matrix
in V is unique, utu, each secant �y contains utu, hence S .�y/ D u? [ Ty where
Ty is a finite set. Therefore, for general S , the fibre fyj�y \ �S ¤ ;g is a finite
set. �

Step III: the theorem holds true in case (ii).

Proof of Step III.
Consider the general secant line �y . We have two treat two distinct cases.

Case (3): �y � � is of the form �y � �S (then S .�y/ consists of one or two
lines containing S ).

Case (4): �y � � is of the form�y � �.L/ (then S .�y/ consists of the lineL).

In case (3), this means that two general matrices B.s/; B.t/ have a common
kernel S.s; t/. Since the general matrix B.t/ is in � n V , its rank equals 2 and
S.s; t/ D S.t/ 8s.

Hence the curveD is contained in a plane�S . In this case however ImB.t/ � S?
and every projection�S 0.B.t// D B.t/S 0 lands in the line S?, so that the projection
cannot be birational, unless our curveD is a line.

In case (4) for two general matrices B.s/; B.t/ there exists a line L D L.s; t/

such that B.s/; B.t/ 2 �.L/.
Since two such general matrices have rank equal to 2, and B.t/L � L?;

B.s/L � L?; if v.t/ 2 kerB.t/ it follows that v.t/ 2 L (since kerB.t/ \ L ¤ ;).
Therefore, if B.t/ ¤ B.s/, then L.t; s/ D hhv.t/; v.s/ii.

However, the above conditionsB.t/L � L?; B.s/L � L? are then equivalent to

.B.t/v.s/; v.s// Dt v.s/B.t/v.s/ D 0; 8t; s:

Fixing t this is a quadratic equation in v.s/, but, since the curveD is irreducible,
andB.t/ has rank equal to 2, we see that the vectors v.s/ belong to a line. Therefore
the line L D L.s; t/ is independent of s; t and the conclusion is that the curve D is
contained in the plane �.L/.

In suitable coordinates for P2, we may assume that L D hhe2; e3ii and L? D
hhe1ii.

Choosing then S D e1, we obtain an isomorphic projection, since for a matrix

B D
0

@
a b c

b 0 0

c 0 0

1

A

we have

B.e1/ D
0

@
a

b

c

1

A :

�
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Remark 5. The referee suggested some arguments to simplify the proofs.
For Theorem 3, this is the proposal:

(a) Firstly, in the case of the caustic, the curveD parametrizes the reducible conics
of the form TP C NP , where TP is the tangent to the curve C at P , and NP is
the normal.

If S is a general point in P2, then the degree ofD equals the number of such
conics passing through S , hence, if � is the degree of the curve N of normal
lines, � is the degree of C 0 ! N , then

deg.D/ D deg.C_/C ��:

The above formula shows that deg.D/ � 4 if C is not a line.
In fact, then deg.C_/ � 2, while in general � � 1 (the normal NP contains

P ). But, if � D 1, then the dual curve of N , the evolute, is a point, so C is a
circle, but in this case � D 2.

(b) Therefore, if one shows that D is contained in a plane � , then the plane � is
contained in the cubic hypersurface�, hence we can apply Proposition 1.

(c) In turn, to show that D is a plane curve, it is necessary and sufficient to show
that two general tangent lines to D meet, which follows if one proves that:

(d) For each secant line there is a cone over D and with vertex a point B 00, such
that the secant line passes through B 00

(since then the two tangent lines are coplanar).
In case (I), (d) follows since then, for each general S , there is a pointB 00.S/ such

that a curve of secants passes throughB 00.S/, and we get a cone overD with vertex
B 00.S/. Varying S , the point B 00.S/ must vary, since B 00.S/S D 0; hence the cone
varies, and we get that for each secant (d) holds true.

In case (II), as we have shown, the secant variety of D equals W \ �, which is
the secant variety of the rational normal quartic W \ V : but the singular locus of
the secant variety of W \ V equalsW \ V and containsD, hence W \ V D D, a
contradiction.

The argument suggested for Theorem 4 requires some delicate verification, so
we do not sketch it here.

Acknowledgements I would like to thank Alfrederic Josse and Francoise Pène for stimulating
email correspondence and for spotting a mistake in my first naive attempt to prove birationality
of the caustic map for general source S , thus pushing me to find the proof of Theorem 3, which I
announced to them in an e-mail on December 20, 2012.

At the moment of writing up the references for the present article, I became aware, by searching
on the arXiv, that they have written an independent and different proof of birationality of the caustic
map for general source, in [6].
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Limits of Pluri–Tangent Planes to Quartic
Surfaces

Ciro Ciliberto and Thomas Dedieu

Abstract We describe, for various degenerations S ! � of quartic K3 surfaces
over the complex unit disk (e.g., to the union of four general planes, and to a general
Kummer surface), the limits as t 2 �� tends to 0 of the Severi varieties Vı.St /,
parametrizing irreducible ı-nodal plane sections of St . We give applications of this
to (i) the counting of plane nodal curves through base points in special position,
(ii) the irreducibility of Severi varieties of a general quartic surface, and (iii) the
monodromy of the universal family of rational curves on quartic K3 surfaces.

1 Introduction

Our objective in this paper is to study the following:

Question 1. Let f W S ! � be a projective family of surfaces of degree d
in P3, with S a smooth threefold, and � the complex unit disc (usually called a
degeneration of the general St WD f �1.t/, for t ¤ 0, which is a smooth surface,
to the central fibre S0, which is in general supposed to be singular). What are the
limits of tangent, bitangent, and tritangent planes to St , for t ¤ 0, as t tends to 0?

Similar questions make sense also for degenerations of plane curves, and
we refer to [24, pp. 134–135] for a glimpse on this subject. For surfaces, our
contribution is based on foundational investigations by Caporaso and Harris [9,10],
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and independently by Ran [30–32], which were both aimed at the study of the so-
called Severi varieties, i.e. the families of irreducible plane nodal curves of a given
degree. We have the same kind of motivation for our study; the link with Question 1
resides in the fact that nodal plane sections of a surface St in P3 are cut out by those
planes that are tangent to St .

Ultimately, our interest resides in the study of Severi varieties of nodal curves
on K3 surfaces. The first interesting instance of this is the one of plane sections of
smooth quartics in P3, the latter being primitive K3 surfaces of genus 3. For this
reason, we concentrate here on the case d D 4. We consider a couple of interesting
degenerations of such surfaces to quite singular degree 4 surfaces, and we answer
Question 1 in these cases.

The present paper is of an explorative nature, and hopefully shows, in a way
we believe to be useful and instructive, how to apply some general techniques for
answering some specific questions. On the way, a few related problems will be
raised, which we feel can be attacked with the same techniques. Some of them we
solve (see below), and the other ones we plan to make the object of future research.

Coming to the technical core of the paper, we start from the following key
observation due to Caporaso and Harris, and Ran (see Sect. 3.4 for a complete
statement). Assume the central fibre S0 is the transverse union of two smooth
surfaces, intersecting along a smooth curveR. Then the limiting plane of a family of
tangent planes to the general fibre St , for t ¤ 0, is: (i) either a plane that is tangent
to S0 at a smooth point, or (ii) a tangent plane to R. Furthermore, the limit has to be
counted with multiplicity 2 in case (ii).

Obviously, this is not enough to deal directly with all possible degenerations of
surfaces. Typically, one overcomes this by applying a series of base changes and
blow–ups to S ! �, thus producing a semistable model QS ! � of the initial
family, such that it is possible to provide a complete answer to Question 1 for S !
� by applying a suitable extended version of the above observation to QS ! �. We
say that S ! � is well behaved when it is possible to do so, and QS ! � is then
said to be a good model of S ! �.

We give in Sect. 3.4 a rather restrictive criterion to ensure that a given semistable
model is a good model, which nevertheless provides the inspiration for constructing
a good model for a given family. We conjecture that there are suitable assumptions,
under which a family is well behaved. We do not seek such a general statement here,
but rather prove various incarnations of this principle, thus providing a complete
answer to Question 1 for the degenerations we consider. Specifically, we obtain:

Theorem 1. Let f W S ! � be a family of general quartic surfaces in P3

degenerating to a tetrahedron S0, i.e. the union of four independent planes. The
singularities of S consist in four ordinary double points on each edge of S0. The
limits in jOS0.1/j of ı-tangent planes to St , for t ¤ 0, are:

.ı D 1/ the 24 webs of planes passing through a singular point of S , plus the 4
webs of planes passing through a vertex of S0, the latter counted with
multiplicity 3;
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.ı D 2/ the 240 pencils of planes passing through two double points of the total
space S that do not belong to an edge of S0, plus the 48 pencils of planes
passing through a vertex of S0 and a double point of S that do not belong
to a common edge of S0 (with multiplicity 3), plus the 6 pencils of planes
containing an edge of S0 (with multiplicity 16);

.ı D 3/ the 1;024 planes containing three double points of S but no edge of S0,
plus the 192 planes containing a vertex of S0 and two double points of
S , but no edge of S0 (with multiplicity 3), plus the 24 planes containing
an edge of S0 and a double point of S not on this edge (with multiplicity
16), plus the 4 faces of S0 (with multiplicity 304).

Theorem 2. Let f W S ! � be a family of general quartic surfaces degenerating
to a general Kummer surface S0. The limits in jOS0.1/j of ı-tangent planes to St ,
for t ¤ 0, are:

.ı D 1/ the dual surface LS0 to the Kummer (which is itself a Kummer surface),
plus the 16 webs of planes containing a node of S0 (with multiplicity 2);

.ı D 2/ the 120 pencils of planes containing two nodes of S0, each counted with
multiplicity 4;

.ı D 3/ the 16 planes tangent to S0 along a contact conic (with multiplicity 80),
plus the 240 planes containing exactly three nodes ofS0 (with multiplicity
8).

We could also answer Question 1 for degenerations to a general union of two
smooth quadrics, as well as to a general union of a smooth cubic and a plane;
once the much more involved degeneration to a tetrahedron is understood, this
is an exercise. We do not dwell on this here, and we encourage the interested
reader to treat these cases on his own, and to look for the relations between these
various degenerations. However, a mention to the degeneration to a double quadric
is needed, and we treat this in Sect. 6.

Apparent in the statements of Theorems 1 and 2 is the strong enumerative flavour
of Question 1, and actually we need information of this kind (see Proposition 4) to
prove that the two families under consideration are well behaved. Still, we hope to
find a direct proof in the future.

As a matter of fact, Caporaso and Harris’ main goal in [9,10] is the computation
of the degrees of Severi varieties of irreducible nodal plane curves of a given degree,
which they achieve by providing a recursive formula. Applying the same strategy,
we are able to derive the following statement (see Sect. 9):

Theorem 3. Let a; b; c be three independent lines in the projective plane, and
consider a degree 12 divisor Z cut out on a C b C c by a general quartic
curve. The sub–linear system V of jOP2 .4/j parametrizing curves containingZ has
dimension 3.

For 1 6 ı 6 3, we let Vı be the Zariski closure in V of the locally closed subset
parametrizing irreducible ı-nodal curves. Then Vı has codimension ı in V , and
degree 21 for ı D 1, degree 132 for ı D 2, degree 304 for ı D 3.
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Remarkably, one first proves a weaker version of this (in Sect. 9), which is
required for the proof of Theorem 1, given in Sect. 5. Then, Theorem 3 is a corollary
of Theorem 1.

It has to be noted that Theorems 1 and 2 display a rather coarse picture of the
situation. Indeed, in describing the good models of the degenerations, we interpret
all limits of nodal curves as elements of the limit O.1/ of jOSt .1/j, for t ¤ 0,
inside the relative Hilbert scheme of curves in S . We call O.1/ the limit linear
system of jOSt .1/j, for t ¤ 0 (see Sect. 3.2), which in general is no longer a P3,
but rather a degeneration of it. While in jOS0.1/j, which is also a limit of jOSt .1/j,
for t ¤ 0, there are in general elements which do not correspond to curves (think
of the plane section of the tetrahedron with one of its faces), all elements in O.1/
do correspond to curves, and this is the right ambient to locate the limits of nodal
curves. So, for instance, each face appearing with multiplicity 304 in Theorem 1 is
much better understood once interpreted as the contribution given by the 304 curves
in V3 appearing in Theorem 3.

It should also be stressed that the analysis of a semistable model of S ! �

encodes information about several flat limits of the St ’s in P3, as t 2 �� tends to 0
(each flat limit corresponds to an irreducible component of the limit linear system
O.1/), and an answer to Question 1 for such a semistable model would provide
answers for all these flat limits at the same time. Thus, in studying Question 1
for degenerations of quartic surfaces to a tetrahedron, we study simultaneously
degenerations to certain rational quartic surfaces, e.g., to certain monoid quartic
surfaces that are projective models of the faces of the tetrahedron, and to sums of
a self–dual cubic surface plus a suitable plane. For degenerations to a Kummer, we
see simultaneously degenerations to double quadratic cones, to sums of a smooth
quadric and a double plane (the latter corresponding to the projection of the Kummer
from one of its nodes), etc.

Though we apply the general theory (introduced in Sect. 3) to the specific case of
degenerations of singular plane sections of general quartics, it is clear that, with
some more work, the same ideas can be applied to attack similar problems for
different situations, e.g., degenerations of singular plane sections of general surfaces
of degree d > 4, or even singular higher degree sections of (general or not) surfaces
of higher degree. For example, we obtain Theorem 3 thinking of the curves in V
as cut out by quartic surfaces on a plane embedded in P3, and letting this plane
degenerate. By the way, this is the first of a series of results regarding no longer
triangles, but general configurations of lines, which can be proved, we think, by
using the ideas in this paper. On the other hand, for general primitiveK3 surfaces of
any genus g > 2, there is a whole series of known enumerative results [3,6,29,35],
yet leaving some open space for further questions, which also can be attacked in the
same way.

Another application of our analysis of Question 1 is to the irreducibility of
families of singular curves on a given surface. This was indeed Ran’s main
motivation in [30–32], since he applied these ideas to give an alternative proof to
Harris’ one [22, 24] of the irreducibility of Severi varieties of plane curves. The
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analogous question for the family of irreducible ı–nodal curves in jOS .n/j, for S a
general primitiveK3 surface of genus g > 3 is widely open.

In [11] one proves that for any non negative ı 6 g, with 3 6 g 6 11 and g ¤ 10,
the universal Severi variety V n;ı

g , parametrizing ı–nodal members of jOS .n/j, with
S varying in the moduli space Bg of primitive K3 surfaces of genus g in Pg , is
irreducible for n D 1. One may conjecture that all universal Severi varieties V n;ı

g

are irreducible (see [13]), and we believe it is possible to obtain further results in
this direction using the general techniques presented in this paper. For instance, the
irreducibility of V 1;ı

3 , 0 < ı 6 3, which is well known and easy to prove (see
Proposition 32), could also be deduced with the degeneration arguments developed
here.

Note the obvious surjective morphism p W V n;ı
g ! Bg . For S 2 Bg general,

one can consider V n;ı
g .S/ the Severi variety of ı–nodal curves in jOS.n/j (i.e. the

fibre of p over S 2 Bg), which has dimension g � ı (see [11, 15]). Note that the
irreducibility of V n;ı

g does not imply the one of the Severi varieties V n;ı.S/ for a
general S 2 Bg; by the way, this is certainly not true for ı D g, since V n;g.S/ has
dimension 0 and degree bigger than 1, see [3,35]. Of course, V 1;1.S/ is isomorphic
to the dual variety LS � LPg, hence it is irreducible. Generally speaking, the smaller
ı is with respect to g, the easier it is to prove the irreducibility of V n;ı.S/: partial
results along this line can be found in [26] and [27, Appendix A]. To the other
extreme, the curve V 1;g�1.S/ is not known to be irreducible for S 2 Bg general. In
the simplest case g D 3, this amounts to proving the irreducibility of V 1;2.S/ for
a general quartic S in P3, which is the nodal locus of LS . This has been commonly
accepted as a known fact, but we have not been able to find any proof of this in the
current literature. We give one with our methods (see Theorem 4).

Finally, in Sect. 10.2, we give some information about the monodromy group of
the finite covering V 1;3

3 ! B3, by showing that it contains some geometrically
interesting subgroups. Note that a remarkable open question is whether the mon-
odromy group of V

1;g
g !Bg is the full symmetric group for all g > 2.

The paper is organized as follows. In Sect. 3, we set up the machinery: we give
general definitions, introduce limit linear systems, state our refined versions of
Caporaso and Harris’ and Ran’s results, introduce limit Severi varieties. In Sect. 4,
we state some known results for proper reference, mostly about the degrees of
the singular loci of the dual to a projective variety. In Sects. 5 and 8, we give
a complete description of limit Severi varieties relative to general degenerations
of quartic surfaces to tetrahedra and Kummer surfaces respectively; Theorems 1
and 2 are proved in Sects. 5.8 and 8.4 respectively. In Sect. 6 we briefly treat other
degenerations of quartics. Section 7 contains some classical material concerning
Kummer quartic surfaces, as well as a few results on the monodromy action on
their nodes (probably known to the experts but for which we could not find any
proper reference): they are required for our proof of Theorem 4 and of the results in
Sect. 10.2. Section 9 contains the proof of a preliminary version of Theorem 3; it is
useful for Sect. 5, and required for Sect. 10. Section 10 contains Theorem 4 and the
aforementioned results on the monodromy.
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2 Conventions

We will work over the field C of complex numbers. We denote the linear equivalence
on a varietyX by�X , or simply by�when no confusion is likely. LetG be a group;
we write H � G when H is a subgroup of G.

We use the classical notation for projective spaces: if V is a vector space, then
PV is the space of lines in V , and if E is a locally free sheaf on some varietyX , we
let P.E / be Proj .Sym E _/. We denote by LPn the projective space dual to Pn, and if
X is a closed subvariety of Pn, we let LX be its dual variety, i.e. the Zariski closure
in LPn of the set of those hyperplanes in Pn that are tangent to the smooth locus ofX .

By a node, we always mean an ordinary double point. Let ı > 0 be an integer.
A nodal (resp. ı-nodal) variety is a variety having nodes as its only possible
singularities (resp. precisely ı nodes and otherwise smooth). Given a smooth surface
S together with an effective line bundle L on it, we define the Severi variety
Vı.S;L/ as the Zariski closure in the linear system jLj of the locally closed
subscheme parametrizing irreducible ı-nodal curves.

We usually letH be the line divisor class on P2; when Fn D P.OP1 � OP1 .n// is
a Hirzebruch surface, we let F be the divisor class of its ruling over P1, we let E be
an irreducible effective divisor with self-intersection�n (which is unique if n > 0),
and we let H be the divisor class of F C nE.

When convenient (and if there is no danger of confusion), we will adopt the
following abuse of notation: let " W Y ! X be a birational morphism, and C (resp.
D) a divisor (resp. a divisor class) on X ; we use the same symbol C (resp. D) to
denote the proper transform ."�/�1.C / (resp. the pull-back "�.D/) on Y .

For example, let L be a line in P2, and H the divisor class of L. We consider
the blow-up "1 W X1 ! P2 at a point on L, and call E1 the exceptional divisor. The
divisor class H on X1 is "�

1 .H/, and L on X1 is linearly equivalent to H � E1.
Let then "2 W X2 ! X1 be the blow-up of X1 at the point L \ E1, and E2 be
the exceptional divisor. The divisor E1 (resp. L) on X2 is linearly equivalent to
"�
2 .E1/ �E2 (resp. to H � 2E1 � E2).

In figures depicting series of blow–ups, we indicate with a big black dot those
points that have been blown up.

3 Limit Linear Systems and Limit Severi Varieties

In this section we explain the general theory upon which this paper relies. We build
on foundational work by Caporaso and Harris [9,10] and Ran [30–32], as reinvesti-
gated by Galati ([17, 18]), see also the detailed discussion in [Galati-Knutsen].
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3.1 Setting

In this paper we will consider flat, proper families of surfaces f W S ! �, where
� � C is a disc centered at the origin. We will denote by St the (schematic) fibre
of f over t 2 �. We will usually consider the case in which the total space S is a
smooth threefold, f is smooth over�� D ��f0g, and St is irreducible for t 2 ��.
The central fibre S0 may be singular, but we will usually consider the case in which
S0 is reduced and with local normal crossing singularities. In this case the family is
called semistable.

Another family of surfaces f 0 W S 0 ! � as above is said to be a model of
f W S ! � if there is a commutative diagram

S′

f ′

S̄′ p
S̄ S

f

td′ ←t t�→td

where the two squares marked with a ‘�’ are Cartesian, and p is a birational
map, which is an isomorphism over ��. The family f 0 W S 0 ! �, if semistable,
is a semistable model of f W S ! � if in addition d 0 D 1 and p is a morphism.
The semistable reduction theorem of [28] asserts that f W S ! � always has a
semistable model.

Example 1 (Families of surfaces in P3). Consider a linear pencil of degree k
surfaces in P3, generated by a general surface S1 and a special one S0. This pencil
gives rise to a flat, proper family ' W S ! P1, with S a hypersurface of type .k; 1/
in P3 � P1, isomorphic to the blow–up of P3 along the base locus S0 \ S1 of the
pencil, and S0; S1 as fibres over 0;1 2 P1, respectively.

We will usually consider the case in which S0 is reduced, its various compo-
nents may have isolated singularities, but meet transversely along smooth curves
contained in their respective smooth loci. Thus S0 has local normal crossing
singularities, except for finitely many isolated extra singularities belonging to one,
and only one, component of S0.

We shall study the family f W S ! � obtained by restricting S to a disk
� � P1 centered at 0, such that St is smooth for all t 2 ��, and we will consider
a semistable model of f W S ! �. To do so, we resolve the singularities of S
which occur in the central fibre of f , at the points mapped by S0 ! S0 � P3 to the
intersection points of S1 with the double curves of S0 (they are the singular points
of the curve S0 \ S1). These are ordinary double points of S , i.e. singularities
analytically equivalent to the one at the origin of the hypersurface xy D zt in A4.
Such a singularity is resolved by a single blow–up, which produces an exceptional
divisor F Š P1 � P1, and then it is possible to contract F in the direction of either
one of its rulings without introducing any singularity: the result is called a small
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resolution of the ordinary double point. If S0 has no extra singularities, the small
resolution process provides a semistable model. Otherwise we will have to deal
with the extra singularities, which are in any case smooth points of the total space.
We will do this when needed.

Let Qf W QS ! � be the semistable model thus obtained. One has QSt Š St for t 2
��. If S0 has irreducible components Q1; : : : ;Qr , then QS0 consists of irreducible
components QQ1; : : : ; QQr which are suitable blow–ups of Q1; : : : ;Qr , respectively.
If q is the number of ordinary double points of the original total space S , we will
denote by E1; : : : ; Eq the exceptional curves on QQ1; : : : ; QQr arising from the small
resolution process.

Going back to the general case, we will say that f W S ! � is quasi–semistable
if S0 is reduced, with local normal crossing singularities, except for finitely many
isolated extra singularities belonging to one, and only one, component of S0, as in
Example 1.

Assume then that S0 has irreducible components Q1; : : : ;Qr , intersecting
transversally along the double curves R1; : : : ; Rp , which are Cartier divisors on the
corresponding components.

Lemma 1 (Triple Point Formula, [8, 16]). Assume f W S ! � is quasi–
semistable. LetQ;Q0 be irreducible components of S0 intersecting along the double
curve R. Then

deg.NRjQ/C deg.NRjQ0/C Card

�
triple points of S0

along Rs

�
D 0;

where a triple point is the intersection R\Q00 with a componentQ00 of S0 different
from Q;Q0.

Remark 1 (See [8, 16]). There is a version of the Triple Point Formula for the case
in which the central fibre is not reduced, but its support has local normal crossings.
Then, if the multiplicities of Q;Q0 are m;m0 respectively, one has

m0 deg.NRjQ/Cm deg.NRjQ0/C Card

�
triple points of S0

along Rs

�
D 0;

where each triple point R \Q00 has to be counted with the multiplicity m00 of Q00
in S0.

3.2 Limit Linear Systems

Let us consider a quasi–semistable family f W S ! � as in Sect. 3.1. Suppose there
is a fixed component free line bundle L on the total space S , restricting to a line
bundle Lt on each fibre St , t 2 �. We assume L to be ample, with h0.St ;Lt /
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constant for t 2 �. If W is an effective divisor supported on the central fibre S0,
we may consider the line bundle L .�W /, which is said to be obtained from L by
twisting by W . For t 2 ��, its restriction to St is the same as Lt , but in general
this is not the case for S0; any such a line bundle L .�W /jS0 is called a limit line
bundle of Lt for t 2 ��.

Remark 2. Since Pic.�/ is trivial, the divisor S0 � S is linearly equivalent to 0. So
ifW is a divisor supported on S0, one has L .�W / Š L .mS0�W / for all integers
m. In particular if W CW 0 D S0 then L .�W / Š L .W 0/.

Consider the subscheme Hilb.L / of the relative Hilbert scheme of curves of S
over �, which is the Zariski closure of the set of all curves C 2 jLt j, for t 2 ��.
We assume that Hilb.L / is a component of the relative Hilbert scheme, a condition
satisfied if Pic.St / has no torsion, which will always be the case in our applications.
One has a natural projection morphism ' W Hilb.L / ! �, which is a projective
bundle over ��; actually Hilb.L / is isomorphic to P WD P.f�.L // over ��. We
call the fibre of ' over 0 the limit linear system of jLt j as t 2 �� tends to 0, and we
denote it by L.

Remark 3. In general, the limit linear system is not a linear system. One would be
tempted to say that L is nothing but jL0j; this is the case if S0 is irreducible, but
it is in general no longer true when S0 is reducible. In the latter case, there may be
non–zero sections of L0 whose zero–locus contains some irreducible component of
S0, and accordingly points of jL0j which do not correspond to points in the Hilbert
scheme of curves (see, e.g., Example 2 below).

In any event, Hilb.L / is a birational modification of P, and L is a suitable
degeneration of the projective space jLt j, t 2 ��. One has:

Lemma 2. Let P0 ! � be a flat and proper morphism, isomorphic to P.f�.L //

over ��, and such that P0 is a Zariski closed subset of the relative Hilbert scheme
of curves of S over�. Then P0 D Hilb.L /.

Proof. The two Zariski closed subsets P0 and Hilb.L / are irreducible, and coincide
over��. ut

In passing from P.f�.L // to Hilb.L /, one has to perform a series of blow–ups
along smooth centres contained in the central fibre, which correspond to spaces
of non–trivial sections of some (twisted) line bundles which vanish on divisors
contained in the central fibre. The exceptional divisors one gets in this way give rise
to components of L, and may be identified with birational modifications of sublinear
systems of twisted linear systems restricted to S0, as follows from Lemma 3 below.
We will see examples of this later (the first one in Example 2).

Lemma 3. (i) Let X be a connected variety, L a line bundle on X , and 
 a non
zero global section of L defining a subscheme Z of X . Then the projectivized
tangent space to PH0.X;L / at h
i canonically identifies with the restricted linear
system
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P Im
�
H0.X;L /! H0.Z; L jZ/

	
;

also called the trace of jL j onZ (which in general is not the complete linear system
jL � OZ j).

(ii) More generally, let l be a linear subspace of PH0.X;L / with fixed locus
scheme F defined by the system of equations f
 D 0gh
i2l. Then the projectivized
normal bundle of l in PH0.X;L / canonically identifies with

l � P Im
�
H0.X;L /! H0.F; L jF /

	
:

Proof. Assertion (i) comes from the identification of the tangent space of
PH0.X;L / at h
i with the cokernel of the injection H0.X;OX/ ! H0.X;L /,
given by the multiplication by 
 . As for (ii), note that the normal bundle of l in
PH0.X;L / splits as a direct sum of copies of Ol.1/, hence the associated projective
bundle is trivial. Then the proof is similar to that of (i). ut
Example 2 (See [20]). Consider a family of degree k surfaces f W S ! � arising,
as in Example 1, from a pencil generated by a general surface S1 and by S0 D
F [ P , where P is a plane and F a general surface of degree k � 1. One has
a semistable model Qf W QS ! � of this family, as described in Example 1, with
QS0 D F [ QP , where QP ! P is the blow–up of P at the k.k�1/ intersection points

of S1 with the smooth degree k � 1 plane curve R WD F \ P (with exceptional
divisors Ei , for 1 6 i 6 k.k � 1/).

We let L WD O QS .1/ be the pull–back by QS ! S of OS .1/, obtained by pulling
back OP3.1/ via the map S ! P3. The component Hilb.L / of the Hilbert scheme
is gotten from the projective bundle P.f�.O QS .1///, by blowing up the point of
the central fibre jOS0.1/j corresponding to the 1–dimensional space of non–zero
sections vanishing on the plane P . The limit linear system L is the union of L1, the
blown–up jOS0.1/j, and of the exceptional divisor L2 Š P3, identified as the twisted
linear system jOS0.1/� OS0.�P/j. The corresponding twisted line bundle restricts
to the trivial linear system on F , and to jO QP .k/� O QP .�

Pk.k�1/
iD1 Ei/j on QP .

The components L1 and L2 of L meet along the exceptional divisor E Š P2 of
the morphism L1 ! jOS0.1/j. Lemma 3 shows that the elements of E � L1 identify
as the points of jOR.1/j Š jOP .1/j, whereas the plane E � L2 is the set of elements
� 2 jO QP .k/�O QP .�

Pk.k�1/
iD1 Ei /j containing the proper transform OR Š R of R on

QP . The corresponding element of jOR.1/j is cut out on OR by the further component
of � , which is the pull–back to QP of a line in P .

3.3 Severi Varieties and Their Limits

Let f W S ! � be a semistable family as in Sect. 3.1, and L be a line bundle on
S as in Sect. 3.2. We fix a non–negative integer ı, and consider the locally closed
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subset VVı.S;L / of Hilb.L / formed by all curves D 2 jLt j, for t 2 ��, such
that D is irreducible, nodal, and has exactly ı nodes. We define Vı.S;L / (resp.

V cr
ı .S;L /) as the Zariski closure of VVı.S;L / in Hilb.L / (resp. in P.f�.L //).

This is the relative Severi variety (resp. the crude relative Severi variety). We may

write VVı, Vı, and V cr
ı , rather than VVı.S;L /, Vı.S;L /, and V cr

ı .S;L /, respectively.
We have a natural map fı W Vı ! �. If t 2 ��, the fibre Vı;t of fı over t is the

Severi variety Vı.St ;Lt / of ı–nodal curves in the linear system jLt j on St , whose
degree, independent on t 2 ��, we denote by dı.L / (or simply by dı). We let
Vı.S;L / (or simply Vı) be the central fibre of fı W Vı ! �; it is the limit Severi
variety of Vı.St ;Lt / as t 2 �� tends to 0. This is a subscheme of the limit linear
system L, which, as we said, has been studied by various authors. In particular, one
can describe in a number of situations its various irreducible components, with their
multiplicities (see Sect. 3.4 below). This is what we will do for several families of
quartic surfaces in P3.

In a similar way, one defines the crude limit Severi variety Vcr
ı .S;L / (or Vcr

ı ),
sitting in jL0j.
Remark 4. For t 2 ��, the expected dimension of the Severi variety Vı.St ;Lt / is
dim.jLt j/ � ı. We will always assume that the dimension of (all components of)
Vı.St ;Lt / equals the expected one for all t 2 ��. This is a strong assumption,
which will be satisfied in all our applications.

Notation 1. Let f W S ! � be a family of degree k surfaces in P3 as in Example 1,
and let Qf W QS ! � be a semistable model of f W S ! �. We consider the line
bundle OS .1/, defined as the pull–back of OP3 .1/ via the natural map S ! P3, and
let O QS .1/ be its pull–back on QS . We denote by Vn;ı. QS/ (resp. Vn;ı.S/), or simply
Vn;ı, the limit Severi variety Vı. QS;O QS .n// (resp. Vı.S;OS .n//). Similar notation
Vcr
n;ı.
QS/ (resp. Vcr

n;ı.S/), or Vcr
n;ı, will be used for the crude limit.

3.4 Description of the Limit Severi Variety

Let again f W S ! � be a semistable family as in Sect. 3.1, and L a line
bundle on S as in Sect. 3.2. The local machinery developed in ([17, 18, Galati-
Knutsen]) enables us to identify the components of the limit Severi variety, with
their multiplicities. As usual, we will suppose that S0 has irreducible components
Q1; : : : ;Qr , intersecting transversally along the double curvesR1; : : : ; Rp. We will
also assume that there are q exceptional curves E1; : : : ; Eq on S0, arising from
a small resolution of an original family with singular total space, as discussed in
Sect. 3.1.

Notation 2. Let N be the set of sequences � D .�m/m>2 of non–negative integers
with only finitely many non–vanishing terms. We define two maps �; � W N ! N
as follows:
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� .�/ D
X

m>2
�m 	 .m � 1/; and � .�/ D

Y
m>2

m�m:

Given a p-tuple � D .�1; : : : ; �p/ 2 Np , we set

�.�/ D �.�1/C 	 	 	 C �.�p/; and �.�/ D �.�1/ 	 	 	�.�p/;
thus defining two maps �; � W Np ! N. Given ı D .ı1; : : : ; ır/ 2 Nr , we set

jıj WD ı1 C 	 	 	 C ır :
Given a subset I � f1; : : : ; qg, jI j will denote its cardinality.

Definition 1. Consider a divisor W on S , supported on the central fibre S0, i.e. a
linear combination of Q1; : : : ;Qr . Fix ı 2 Nr , � 2 Np , and I � f1; : : : ; rg. We let
VV .W; ı; I;�/ be the Zariski locally closed subset in jL .�W /�OS0 j parametrizing

curvesD such that:

(i) D neither contains any curve Rl , with l 2 f1; : : : ; pg, nor passes through any
triple point of S0;

(ii) D contains the exceptional divisorEi , with multiplicity 1, if and only if i 2 I ,
and has a node on it;

(iii) D �Pi2I Ei has ıs nodes on Qs , for s 2 f1; : : : ; rg, off the singular locus of
S0, and is otherwise smooth;

(iv) For every l 2 f1; : : : ; pg and m > 2, there are exactly �l;m points on Rl , off
the intersections with

P
i2I Ei , at which D has an m-tacnode (see below for

the definition), with reduced tangent cone equal to the tangent line of Rl there.

We let V.W; ı; I;�/ be the Zariski closure of VV .W; ı; I;�/ in jL .�W /�OX0 j.
Recall that anm-tacnode is an A2m�1-double point, i.e. a plane curve singularity

locally analytically isomorphic to the hypersurface of C2 defined by the equation
y2 D x2m at the origin. Condition (iv) above requires that D is a divisor having
�l;m m–th order tangency points with the curve Rl , at points of Rl which are not
triple points of S0.

Notation 3. In practice, we shall not use the notation V.W; ı; I;�/, but rather a
more expressive one like, e.g., V.W; ıQ1 D 2;E1; �R1;2 D 1/ for the variety
parametrizing curves in jL .�W /�OS0 j, with two nodes onQ1, one simple tacnode
along R1, and containing the exceptional curve E1.

Proposition 1. ([17,18, Galati-Knutsen]). LetW; ı; I;� be as above, and set jıjC
jI j C �.�/ D ı. Let V be an irreducible component of V.W; ı; I;�/. If

(i) The linear system jL .�W /�OX0 j has the same dimension as jLt j for t 2 ��,
and

(ii) V has (the expected) codimension ı in jL .�W /� OX0 j,
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then V is an irreducible component of multiplicity �.V / WD �.�/ of the limit Severi
variety Vı.S;L /.

Remark 5. Same assumptions as in Proposition 1. If there is at most one tacnode
(i.e. all �l;m but possibly one vanish, and this is equal to 1), the relative Severi variety
Vı is smooth at the general point of V (see [17, 18, Galati-Knutsen]), and thus V
belongs to only one irreducible component of Vı . There are other cases in which
such a smoothness property holds (see [9]).

If Vı is smooth at the general point D 2 V , the multiplicity of V in the limit
Severi variety Vı is the minimal integer m such that there are local analytic m–
multisections of Vı ! �, i.e. analytic smooth curves in Vı, passing throughD and
intersecting the general fibre Vı;t , t 2 ��, at m distinct points.

Proposition 1 still does not provide a complete picture of the limit Severi variety.
For instance, curves passing through a triple point of S0 could play a role in this
limit. It would be desirable to know that one can always obtain a semistable model
of the original family, where every irreducible component of the limit Severi variety
is realized as a family of curves of the kind stated in Definition 1.

Definition 2. Let f W S ! � be a semistable family as in Sect. 3.1, L a line
bundle on S as in Sect. 3.2, and ı a positive integer. The regular part of the limit
Severi variety Vı.S;L / is the cycle in the limit linear system L � Hilb.L /

V
reg
ı .S;L / WD

X

W

X

jıjCjI jC�.�/Dı
�.�/ 	

 
X

V 2Irrı.V .W;ı;I;�//

V

!
(1)

(sometimes simply denoted by V
reg
ı ), where:

(i) W varies among all effective divisors on S supported on the central fibre S0,
such that h0.L0.�W // D h0.Lt / for t 2 ��;

(ii) Irrı.Z/ denotes the set of all codimension ı irreducible components of a scheme
Z.

Proposition 1 asserts that the cycleZ.Vı/�Vreg
ı is effective, with support disjoint

in codimension 1 from that of Vreg
ı (here, Z.Vı/ is the cycle associated to Vı). We

call the irreducible components of the support of Vreg
ı the regular components of the

limit Severi variety.
Let Qf W QS ! � be a semistable model of f W S ! �, and QL the pull–back on
QS of L . There is a natural map Hilb. QL / ! Hilb.L /, which induces a morphism

 W QL! jL0j.
Definition 3. The semistable model Qf W QS ! � is a ı–good model of f W S ! �

(or simply good model, if it is clear which ı we are referring at), if the following
equality of cycles holds


�
�
V

reg
ı .
QS; QL /

	 D Vcr
ı .S;L /:
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Note that the cycle Vcr
ı .S;L / � 
�

�
V

reg
ı .
QS; QL /

	
is effective. The family f W

S ! � is said to be ı–well behaved (or simply well behaved) if it has a ı-good
model. A semistable model Qf W QS ! � of f W S ! � as above is said to
be ı–absolutely good if Vı. QS; QL / D V

reg
ı .
QS; QL / as cycles in the relative Hilbert

scheme. It is then a ı–good model both of itself, and of f W S ! �.
Theorems 1 and 2 will be proved by showing that the corresponding families of

quartic surfaces are well behaved.

Remark 6. Suppose that f W S ! � is ı–well behaved, with ı–good model
Qf W QS ! �. It is possible that some components in V

reg
ı .
QS; QL / are contracted by

Hilb. QL / ! jL0j to varieties of smaller dimension, and therefore that their push–
forwards are zero. Hence these components of Vı. QS/ are not visible in Vcr

ı .S/.
They are however usually visible in the crude limit Severi variety of another model
f 0 W S 0 ! �, obtained from QS via an appropriate twist of L . The central fibre S 0

0

is then a flat limit of St , as t 2 �� tends to 0, different from S0.

Conjecture 1. Let f W S ! � be a semistable family of surfaces, endowed with a
line bundle L as above, and ı a positive integer. Then:

(Weak version) Under suitable assumptions (to be discovered), f W S ! � is
ı–well behaved.

(Strong version) Under suitable assumptions (to be discovered), f W S ! � has
a ı–absolutely good semistable model.

The local computations in [18] provide a criterion for absolute goodness:

Proposition 2. Assume there is a semistable model Qf W QS ! � of f W S ! �,
with a limit linear system QL free in codimension ı C 1 of curves of the following
types:

(i) Curves containing double curves of QS0;
(ii) Curves passing through a triple point of QS0;

(iii) Non–reduced curves.

If in addition, for W; ı; I;� as in Definition 1, every irreducible component of
V.W; ı; I;�/ has the expected codimension in jL0.�W /j, then Qf W QS ! � is
ı–absolutely good, which implies that f W S ! � is ı–well behaved.

Unfortunately, in the cases we shall consider conditions (i)–(iii) in Proposition 2
are violated (see Propositions 15 and 23), which indicates that further investiga-
tion is needed to prove the above conjectures. The components of the various
V.W; ı; I;�/ have nevertheless the expected codimension, and we are able to prove
that our examples are well–behaved, using additional enumerative information.

Absolute goodness seems to be a property hard to prove, except when the
dimension of the Severi varieties under consideration is 0, equal to the expected one
(and even in this case, we will need extra enumerative information for the proof).
We note in particular that the ı–absolute goodness of Qf W QS ! � implies that it
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is a ı–good model of every model f 0 W S 0 ! �, obtained from QS via a twist of QL
corresponding to an irreducible component of the limit linear system QL.

3.5 An Enumerative Application

Among the applications of the theory described above, there are the ones to
enumerative problems, in particular to the computation of the degree dı of Severi
varieties Vı.St ;Lt /, for the general member St of a family f W S ! � as in
Sect. 3.1, with L a line bundle on S as in Sect. 3.2.

Let t 2 �� be general, and let mı be the dimension of Vı.St ;Lt /, which we
assume to be mı D dim.jLt j/ � ı. Then dı is the number of points in common of
Vı.St ;Lt / with mı sufficiently general hyperplanes of jLt j. Given x 2 St ,

Hx WD fŒD� 2 jLt j s.t. x 2 Dg

is a plane in jLt j. It is well known, and easy to check (we leave this to the reader),
that if x1; : : : ; xmı are general points of St , then Hx1; : : : ;Hxmı

are sufficiently
general planes of jLt j with respect to Vı.St ;Lt /. Thus dı is the number of ı–nodal
curves in jLt j passing throughmı general points of St .

Definition 4. In the above setting, let V be an irreducible component of the limit
Severi variety Vı.S;L /, endowed with its reduced structure. We let Q1; : : : ;Qr

be the irreducible components of S0, and n D .n1; : : : ; nr / 2 Nr be such that
jnj WD n1 C 	 	 	 C nr D mı. Fix a collection Z of n1; : : : ; nr general points on
Q1; : : : ;Qr respectively. The n–degree of V is the number degn.V / of points in V
corresponding to curves passing through the points in Z.

Note that in casemı D 0, the above definition is somehow pointless: in this case,
degn.V / is simply the number of points in V . By contrast, when V has positive
dimension, it is possible that degn.V / be zero for various n’s. This is related to the
phenomenon described in Remark 6 above. We will see examples of this below.

By flatness, the following result is clear:

Proposition 3. Let Qf W QS ! � be a semistable model, and name P1; : : : ; PQr
the irreducible components of QS0, in such a way that P1; : : : ; Pr are the proper
transforms of Q1; : : : ;Qr respectively.

(i) For every Qn D .n1; : : : ; nr ; 0; : : : ; 0/ 2 NQr such that j Qnj D mı , one has

dı >
X

V 2Irr.V
reg
ı . QS; QL //

�.V / 	 degQn.V / (2)

(recall the definition of �.V / in Proposition 1).
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(ii) If equality holds in (2) for every Qn as above, then Qf W QS ! � is a ı–good model
of f W S ! � endowed with L .

4 Auxiliary Results

In this section we collect a few results which we will use later.
First of all, for a general surface S of degree k in P3, we know from classical

projective geometry the degrees dı;k of the Severi varieties Vı.S;OS.1//, for 1 6
ı 6 3. For K3 surfaces, this fits in a more general framework of known numbers
(see [3, 6, 29, 35]). One has:

Proposition 4 ([33, 34]). Let S be a general degree k hypersurface in P3. Then

d1;k Dk.k � 1/2;

d2;k D1
2
k.k � 1/.k � 2/.k3 � k2 C k � 12/;

d3;k D1
6
k.k � 2/.k7 � 4k6 C 7k5 � 45k4 C 114k3 � 111k2 C 548k � 960/:

For k D 4, these numbers are 36, 480, 3;200 respectively.

Note that V1.S;OS .1// identifies with the dual surface LS � LP3. The following is
an extension of the computation of d1;k for surfaces with certain singularities. This
is well–known and the details can be left to the reader.

Proposition 5. Let S be a degree k hypersurface in P3, having � and � double
points of type A1 and A2 respectively as its only singularities. Then

deg. LS/ D k.k � 1/2 � 2� � 3�:

The following topological formula is well-known (see, e.g., [2, Lemme VI.4]).

Lemma 4. Let p W S ! B be a surjective morphism of a smooth projective surface
onto a smooth curve. One has

�top.S/ D �top.Fgen/�top.B/C
X

b2Disc.p/

�
�top.Fb/� �top.Fgen/

	
;

where Fgen and Fb respectively denote the fibres of p over the generic point of B
and a closed point b 2 B , and Disc.p/ is the set of points above which p is not
smooth.

As a side remark, note that it is possible to give a proof of the Proposition 5 based
on Lemma 4. This can be left to the reader.
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Propositions 4 and 5 are sort of Plücker formulae for surfaces in P3. The next
proposition provides analogous formulae for curves in a projective space of any
dimension.

Proposition 6. Let C � PN be an irreducible, non–degenerate curve of degree d
and of genus g, the normalization morphism of which is unramified. Let � 6 N be
a non-negative integer, and assume 2� < d . Then the Zariski closure of the locally
closed subset of LPN parametrizing �–tangent hyperplanes to C (i.e. planes tangent
to C at � distinct points) has degree equal to the coefficient of u�vd�2� in

.1C 4uC v/g.1C 2uC v/d���g:

Proof. Let � W NC ! C be the normalization of C , and let g be the gN� on NC defined

as the pull–back on NC of the hyperplane linear series onC . Since � is unramified, the
degree of the subvariety of LPN parametrizing �-tangent hyperplanes to C is equal to
the number of divisors having � double points in a general sublinear series g�� of g.
This number is computed by a particular instance of de Jonquières’ formula, see [1,
p. 359]. ut

The last result we shall need is:

Lemma 5. Consider a smooth, irreducible curve R, contained in a smooth surface
S in P3. Let LRS be the irreducible curve in LP3 parametrizing planes tangent to S
along R. Then the dual varieties LS and LR both contain LRS , and do not intersect
transversely at its general point.

Proof. Clearly LRS is contained in LS \ LR. If either LS or LR are singular at the general
point of LRS , there is nothing to prove. Assume that LS and LR are both smooth at the
general point of LRS . We have to show that they are tangent there. Let x 2 R be
general. Let H be the tangent plane to S at x. Then H 2 LRS is the general point.
Now, the biduality theorem (see, e.g., [23, Example 16.20]) says that the tangent
plane to LS and of LR at H both coincide with the set of planes in P3 containing x,
hence the assertion. ut

5 Degeneration to a Tetrahedron

We consider a family f W S ! � of surfaces in P3, induced (as in Example 1 and in
Sect. 3.2) by a pencil generated by a general quartic surface S1 and a tetrahedron S0
(i.e. S0 is the union of four independent planes, called the faces of the tetrahedron),
together with the pull-back OS .1/ of OP3.1/. We will prove that it is ı–well behaved
for 1 6 ı 6 3 by constructing a suitable good model.

The plan is as follows. We construct the good model in Sect. 5.1, and complete
its description in Sect. 5.2. We then construct the corresponding limit linear system:
the core of this is Sects. 5.3–5.6, are devoted to the study of the geometry of the
exceptional components of the limit linear system (alternatively, of the geometry of
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the corresponding flat limits of the smooth quartic surfaces St , t 2 ��); eventually,
we complete the description in Sect. 5.7. We then identify the limit Severi varieties
in Sect. 5.8.

5.1 A Good Model

The outline of the construction is as follows:

(I) We first make a small resolution of the singularities of S as in Example 1;
(II) Then we perform a degree 6 base change;

(III) Next we resolve the singularities of the total space arisen with the base change,
thus obtaining a new semistable family � W X ! �;

(IV) Finally we will flop certain double curves in the central fibre X0, thus
obtaining a new semistable family $ W NX ! �.

The central fibre of the intermediate family � W X ! � is pictured in Fig. 1 (p. 143;
we provide a cylindrical projection of a real picture ofX0, the dual graph of which is
topologically an S2 sphere), and the flops are described in Fig. 2 (p. 144). The reason
why we need to make the degree 6 base change is, intuitively, the following: a degree
3 base change is needed to understand the contribution to the limit Severi variety
of curves passing through a vertex (i.e. a triple point) of the tetrahedron, while an
additional degree 2 base change enables one to understand the contributions due to
the edges (i.e. the double lines) of the tetrahedron.

Steps (I) and (II)

The singularities of the initial total space S consist of four ordinary double points on
each edge of S0. We consider (cf. Example 1) the small resolution QS ! S obtained
by arranging for every edge the four .�1/–curves two by two on the two adjacent
faces. We call Qf W QS ! � the new family.

Let p1; : : : ; p4 be the triple points of QS0. For each i 2 f1; : : : ; 4g, we let Pi be
the irreducible component of QS0 which is opposite to the vertex pi : it is a plane
blown-up at six points. For distinct i; j 2 f1; : : : ; 4g, we let EC

ij and E�

ij be the two
.�1/-curves contained in Pi and meeting Pj . We call zC

ij and z�

ij the two points cut
out on Pi by EC

ji and E�

ji respectively.

Let now Nf W NS ! � be the family obtained from Qf W QS ! � by the base change
t 2 � 7! t6 2 �. The central fibre NS0 is isomorphic to QS0, so we will keep the
above notation for it.

Step (III)

As a first step in the desingularization of NS , we perform the following sequence of
operations for all i 2 f1; : : : ; 4g. The total space NS around pi is locally analytically
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isomorphic to the hypersurface of C4 defined by the equation xyz D t6 at the origin.
We blow-up NS at pi . The blown–up total space locally sits in C4 � P3. Let .� W � W
� W #/ be the homogeneous coordinates in P3. Then the new total space is locally
defined in C4 � P3 by the equations

�4�� D #6x3; ��4� D #6y3; ���4 D #6z3; and ��� D #3t3: (3)

The equation of the exceptional divisor (in the exceptional P3 of the blow–up of C4)
is ��� D 0, hence this is the union of three planes meeting transversely at a point
p0
i in P3. For i; j distinct in f1; : : : ; 4g, we call Aij the exceptional planes meeting

the proper transform of Pj (which, according to our conventions, we still denote by
Pj , see Sect. 2).

The equation of the new family around the point p0
i given by

T
j¤i Aij is ��� D

t3 (which sits in the affine chart # D 1). Next we blow-up the points p0
i , for i 2

f1; : : : ; 4g. The new exceptional divisor T i at each point p0
i is isomorphic to the

cubic surface with equation ��� D t3 in the P3 with coordinates .� W � W � W t/. Note
that T i has three A2–double points, at the vertices of the triangle t D 0; ��� D 0.

Next we have to get rid of the singularities of the total space along the double
curves of the central fibre. First we take care of the curves Chk WD Ph \ Pk , for
h; k distinct in f1; : : : ; 4g. The model we constructed so far is defined along such
a curve by an equation of the type �� D #6z3, (as it follows, e.g., from the third
equation in (3) by setting � D 1). The curve Chk is defined by � D � D # D 0.
If i 2 f1; : : : ; 4g � fh; kg, the intersection point phki WD Chk \ Aih \ Aik is cut
out on Chk by the hyperplane with equation z D 0. Away from the phki ’s, with
i 2 f1; : : : ; 4g � fh; kg, the points of Chk are double points of type A5 for the total
space. We blow–up along this curve: this introduces new homogeneous coordinates
.�1 W �1 W #1/, with new equations for the blow–up

�51�1 D #61 �4z3; �1�
5
1 D #61�4z3; and �1�1 D #21#4z3:

The exceptional divisor is defined by �1�1 D 0, and is the transverse union of two
ruled surfaces: we call W 0

hk the one that meets Ph, and W 0
kh the other. The affine

chart we are interested in is #1 D 1, where the equation is �1�1 D #4z3. We then
blow–up along the curve �1 D �1 D # D 0, which gives in a similar way the new
equation �2�2 D #2z3 with the new coordinates .�2 W �2 W #2/. The exceptional
divisor consists of two ruled surfaces, and we call W 00

hk (resp. W 00
kh) the one that

meets W 0
hk (resp. W 0

kh). Finally, by blowing-up along the curve �2 D �2 D # D 0,
we obtain a new equation �3�3 D #23 z3, with new coordinates .�3 W �3 W #3/. The
exceptional divisor is a ruled surface, with two A2–double points at its intersection
points with the curvesC i

hk WD Aih\Aik , with i 2 f1; : : : ; 4g�fh; kg. We call it either
Whk or Wkh, with no ambiguity.

The final step of our desingularization process consists in blowing–up along the
12 curves C i

hk, with pairwise distinct h; k; i 2 f1; : : : ; 4g. The total space is given
along each of these curves by an equation of the type �� D #3t3 in the variables
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.�; �; �; t/, obtained from the last equation in (3) by setting � D 1. The curve C i
hk is

defined by the local equations � D � D t D 0, which shows that they consist of A2–
double points for the total space. They also contain an A2–double point of Whk and
T i respectively. A computation similar to the above shows that the blow–up along
these curves resolves all singularities in a single move. The exceptional divisor over
C i

hk is the union of two transverse ruled surfaces: we call V i
hk the one that meets Aih,

and V i
kh the other.

At this point, we have a semistable family � W X ! �, whose central fibre is
depicted in Fig. 1: for each double curve we indicate its self–intersections in the two
components of the central fibre it belongs to. This is obtained by applying the Triple
Point Formula (see Lemma 1).

Step (IV)

For our purposes, we need to further blow-up the total space along the 12 curves
� i

hk WD V i
hk \ V i

kh. This has the drawback of introducing components with
multiplicity two in the central fibre, namely the corresponding exceptional divisors.
To circumvent this, we will flop these curves as follows.

Let O� W OX ! � be the family obtained by blowing-upX along the � i
hk’s. We call

W i
hk (or, unambiguously, W i

kh) the corresponding exceptional divisors: they appear
with multiplicity two in the central fibre OX0. By applying the Triple Point Formula
as in Remark 1, one checks that the surfaces W i

kh are all isomorphic to P1 � P1.
Moreover, it is possible to contract W i

hk in the direction of the ruling cut out by V i
hk

and V i
kh, as indicated on Fig. 2. We call OX ! NX the contraction of the 12 divisors

W i
hk in this way, and $ W NX ! � the corresponding semistable family of surfaces.
Even though NX Ü X is only a birational map, we have a birational morphism
NX ! NS over�.

5.2 Identification of the Components of the Central Fibre

Summarizing, the irreducible components of the central fibre NX0 are the following:

(i) The 4 surfaces Pi , with 1 6 i 6 4.

Each Pi is a plane blown–up at 6C 3 points, and H (i.e. the pull-back of a general
line in the plane, recall our conventions in Sect. 2) is the restriction class of O NX.1/
on Pi . For j; k 2 f1; : : : ; 4g � fig, we set

Lij WD Pi \W 0
ij and Gk

i WD Pi \ Aki ;

as indicated in Fig. 3. In addition to the three .�1/–curvesGk
i , we have on Pi the six

exceptional curves EC

ij ; E
�

ij , for all j 2 f1; : : : ; 4g � fig, with EC

ij ; E
�

ij intersecting
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Fig. 1 Planisphere of the model X0 of the degeneration into four planes

Lij at one point. Moreover, for j 2 f1; : : : ; 4g�fig, we have onLij the two points z˙

ji

defined as the strict transform of the intersection E˙

ji \ Lij in QS . We will denote by
Zi the 0–dimensional scheme of length 6 given by

P
j¤i .z

C

ji C z�

ji /. We let IZi �
OPi be its defining sheaf of ideals.
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Fig. 2 One elementary flop of the birational transformation X Ü NX

Fig. 3 Notations for Pi � NX0

(ii) The 24 surfacesW 0
ij ;W

00
ij , with i; j 2 f1; : : : ; 4g distinct.

Each of them is isomorphic to F1. We denote by jF j the ruling. Note that the divisor
class F corresponds to the restriction of O NX.1/.

(iii) The 6 surfacesWij, with i; j 2 f1; : : : ; 4g distinct.

For each k 2 f1; : : : ; 4g � fi; j g, we set
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Fig. 4 Notations for Wij � NX0

�ij WD W 00
ij \Wij; Gk

ij WD Wij \ Aki ; F k
ij D Wij \ V k

ij ; Dk
ij D Wij \ T k;

and define similarly�ji, Gk
ji , F

k
ji (Dk

ij may be calledDk
ji without ambiguity). This is

indicated in Fig. 4.
A good way of thinking to the surfacesWij is to consider them as (non–minimal)

rational ruled surfaces, for which the two curves �ji and �ij are sections which do
not meet, and the two rational chains

Gk
ji C F k

ji C 2Dk
ij C F k

ij CGk
ij ; k 2 f1; : : : ; 4g � fi; j g;

are two disjoint reducible fibres of the ruling jF j. One has furthermore OWij.F / D
O NX.1/� OWij .

The surface Wij has the length 12 anticanonical cycle

�ji CGk
ji C F k

ji CDk
ij C F k

ij CGk
ij C�ij CGh

ij C F h
ij CDh

ij C F h
ji CGh

ji (4)

cut out by NX0 � Wij, where we fixed k and h such that fi; j; k; hg D f1; : : : ; 4g.
It therefore identifies with a plane blown–up as indicated in Fig. 5: consider a
general triangleL1;L2; L3 in P2, with vertices a1; a2; a3, where a1 is opposite toL1,
etc.; then blow–up the three vertices as , and call Es the corresponding exceptional
divisors; eventually blow–up the six points Lr \ Es , r ¤ s, and call Ers the
corresponding exceptional divisors. The obtained surface has the anticanonical cycle

L1 C E13 C E1 C E23 C L2 C E21 C E1 CE31 C L3 C E32 C E2 C E12; (5)

which we identify term-by-term and in this order with the anticanonical cycle (4)
of Wij.



146 C. Ciliberto and T. Dedieu

Fig. 5 Wij and T k as blown–up planes

Fig. 6 Notations for T k � NX0

We let H be, as usual, (the transform of) a general line in the plane

H �Wij �ji C
X

k 62fi;j g.2G
k
ji C F k

ji CDk
ji /: (6)

The ruling jF j is the strict transform of the pencil of lines through the point a1,
hence

jF j D ˇ̌H � .�ij CGk
ij CGh

ij/
ˇ̌
; with f1; : : : ; 4g D fi; j; k; hg: (7)

(iv) The 4 surfaces T k , with 1 6 k 6 4.

Here we set � k
i D T k \Aki for i 2 f1; : : : ; 4g � fkg, and F ij

k D T k \ V k
ij for i; j 2

f1; : : : ; 4g�fkg distinct. Also recall thatDk
ij D T k \Wij for i; j 2 f1; : : : ; 4g�fkg

distinct. This is indicated in Fig. 6.
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Fig. 7 Akj as a blown-up plane

Each T k identifies with a plane blown–up as indicated in Fig. 5, as in the case of
the Wij’s: it has the length 12 anticanonical cycle

F
js
k CDk

sj C F sj
k C � k

s C F si
k CDk

is C F is
k C � k

i C F ij
k CDk

ij C F ji
k C � k

j (8)

(where we fixed indices s; i; j such that fs; i; j; kg D f1; : : : ; 4g) cut out by NX0�T k
on T k , which we identify term-by-term and in this order with the anticanonical
cycle (5). This yields

H �T k F js
k C .2Dk

sj C F sj
k C � k

s /C .2� k
j C F ji

k CDk
ij /: (9)

We have on T k the proper transform of a pencil of (bitangent) conics that meet
the curves � k

s andDk
ij in one point respectively, and do not meet any other curve in

the anticanonical cycle (8): we call this pencil j˚k
s j, and we have

ˇ̌
˚k
s

ˇ̌ D ˇ̌2H � .F sj
k CDk

sj C 2� k
s /� .F ji

k C � k
j C 2Dk

ij /
ˇ̌
:

The restriction of O NX.1/ on T k is trivial.

(v) The 12 surfaces Aki , with i; k 2 f1; : : : ; 4g distinct.

Each of them identifies with a blown–up plane as indicated in Fig. 7. It is equipped
with the ruling jH � � k

i j, the members of which meet the curves Gk
i and � k

i at
one point respectively, and do not meet any other curve in the length 8 anticanonical
cycle cut out by NX0 �Aki on Aki . The restriction of O NX.1/ on Aki is trivial.

(vi) The 24 surfaces V k
ij with i; j; k 2 f1; : : : 4g distinct.

These are all copies of P2, on which the restriction of O NX.1/ is trivial.

5.3 The Limit Linear System, I: Construction

According with the general principles stated in Sect. 3.2, we shall now describe the
limit linear system of jO NXt .1/j as t 2 �� tends to 0. This will suffice for the proof,
presented in Sect. 5.7, that $ W NX ! � is a ı–good model for 1 6 ı 6 3.
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We start with P WD P.$�.O NX.1///, which is a P3–bundle over �, whose fibre
at t 2 � is jO NXt .1/j. We set L D O NX.1/, and jO NXt .1/j D jLt j; note that jL0j Š
jOS0.1/j. We will often use the same notation to denote a divisor (or a divisor class)
on the central fibre and its restriction to a component of the central fibre, if this does
not cause any confusion.

We will proceed as follows:

(I) We first blow–up P at the points �i corresponding to the irreducible com-
ponents Pi of S0, for i 2 f1; : : : ; 4g (the new central fibre then consists of
jOS0.1/j Š P3 blown–up at four independent points, plus the four exceptional
P3’s);

(II) Next, we blow–up the total space along the proper transforms `ij of the six
lines of jOS0.1/j joining two distinct points �i ; �j , with i; j 2 f1; : : : ; 4g,
corresponding to pencils of planes with base locus an edge of S0 (the
new central fibre is the proper transform of the previous one, plus the six
exceptional P

�
OP1 � OP1 .1/

�2
	
’s);

(III) Finally, we further blow–up along the proper transforms of the planes ˘k

corresponding to the webs of planes passing through the vertices pk of S0, for
k 2 f1; : : : ; 4g (this adds four more exceptional divisors to the central fibre,
for a total of 15 irreducible components).

In other words, we successively blow–up P along all the cells of the tetrahedron
dual to S0 in P0, by increasing order of dimension.

Each of these blow–ups will be interpreted in terms of suitable twisted linear
systems as indicated in Remark 3. It will then become apparent that every point
in the central fibre of the obtained birational modification of P corresponds to a
curve in NX0 (see Sect. 5.7), and hence that this modification is indeed the limit linear
system L.

Step (I)

In H0. NX0;O NX0.1// there is for each i 2 f1; : : : ; 4g the 1–dimensional subspace
of sections vanishing on Pi , which corresponds to the sections of H0.S0;OS0.1//

vanishing on the plane Pi . As indicated in Remark 3, in order to construct the
limit linear system, we have to blow up the corresponding points �i 2 jL0j. Let
P0 ! P be this blow–up, and call QLi , 1 6 i 6 4, the exceptional divisors.
Each QLi is a P3, and can be interpreted as the trace of the linear system

ˇ̌
L0.�Pi /

ˇ̌

on X0 (see Lemma 3 and Example 2). However, any section of H0. NX0;L0.�Pi //
still vanishes on components of NX0 different from Pi . By subtracting all of them
with the appropriate multiplicities (this computation is tedious but not difficult and
can be left to the reader), one sees that QLi can be identified as the linear system
Li WD

ˇ̌
L0.�Mi/

ˇ̌
, where
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Mi WD 6Pi C
X

j¤i
.5W 0

ij C 4W 00
ij C 3Wij C 2W 00

ji CW 0
ji/C

C
X

k¤i

 
2T kC4Aki C

X

j…fi;kg

�
3V k

ij C 2V k
ji CAkj

�
C

X

fj< N|g\fi;kgD;

�
V k
j N| C V kN|j

�!
:

(10)

With the notation introduced in Sect. 5.2, one has:

Lemma 6. The restriction class of L0.�Mi/ to the irreducible components of NX0
is as follows:

(i) On Pi , we find 4H �Pj¤i .E
C

ij C E�

ij /;

(ii) On Pj , j ¤ i , we find EC

ji C E�

ji ;
(iii) For each j ¤ i , we find 2F on each of the surfaces W 0

ij , W
00

ij , Wij, W 00
ji , W 0

ji .
(iv) On the remaining components the restriction is trivial.

Proof. This is a tedious but standard computation. As a typical sample we
prove (iii), and leave the remaining cases to the reader. Set fh; kg D f1; : : : ; 4g �
fi; j g. Then, recalling (6) and (7), we see that the restriction of L0.�Mi/ to Wij is
the line bundle determined by the divisor class

F C
�
W 00

ji �W 00
ij C

X

k 62fi;j g

�
2Akj C V k

ji C T k � Aki
	�ˇ̌ˇ̌

Wij

� F C�ji ��ij C .2Gk
ji C F k

ji CDk
ij �Gk

ij /C .2Gh
ji C F h

ji CDh
ij �Gh

ij /

D F C ��ji C .2Gk
ji C F k

ji CDk
ij /C .2Gh

ji C F h
ji CDh

ij/
	

� .�ij CGk
ij CGh

ij/

D 2F:
ut

From this, we deduce that Li identifies with its restriction to Pi :

Proposition 7. There is a natural isomorphism

Li Š
ˇ̌
ˇOPi

�
4H �

X
j¤i .E

C

ij C E�

ij /
�

� IZi

ˇ̌
ˇ: (11)

Proof. For each j ¤ i , the restriction of Li to Pj hasEC

ji CE�

ji as its only member.
This implies that its restriction to W 0

ji has only one member as well, which is the
sum of the two curves in jF j intersecting EC

ji and E�

ji respectively. On W 00
ji , we

then only have the sum of the two curves in jF j intersecting the two curves on W 0
ji

respectively, and so onWij,W 00
ij , andW 0

ij . Now the two curves onW 0
ij impose the two
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base points zC

ji and z�

ji to the restriction of Li to Pi . The right hand side in (11) being
3–dimensional, this ends the proof with (i) of Lemma 6. ut

Step (II)

Next, we consider the blow–up P00 ! P0 along the proper transforms `ij of
the six lines of jL0j joining two distinct points �i ; �j , with i; j 2 f1; : : : ; 4g,
corresponding to the pencils of planes in jOS0.1/j respectively containing the lines
Pi \ Pj . The exceptional divisors are isomorphic to P.OP1 � OP1 .1/

�2/; we call
them QLij, 1 6 i < j 6 4. Arguing as in Step (I) and leaving the details to the reader,
we see that QLij is in a natural way a birational modification (see Sect. 5.5 below) of
the complete linear system Lij WD

ˇ̌
L0.�Mij/

ˇ̌
, where

Mij WD 3Wij C .2W 00
ji CW 0

ji/C .2W 00
ij CW 0

ij/C

C
X

k 62fi;j g

 
2T k C

X

s¤k
Aks C 2

�
V k

ji C V k
ij

	C
X

s2fi;j g
r 62fi;j;kg

�
V k
sr C V k

rs

	
!
: (12)

We will denote by k < h the two indices in f1; : : : ; 4g � fi; j g, and go on using
the notations introduced in Sect. 5.2.

Lemma 7. The restriction class of L0.�Mij/ to the irreducible components of NX0
is as follows:

(i) On Pk (resp. Ph) we find H �Gh
k (resp. H �Gk

h );
(ii) On each of the surfacesW 0

kh, W
00
kh, Wkh, W 00

hk, and W 0
hk, we find F ;

(iii) On Akh (resp. Ahk) we find H � � k
h (resp. H � � h

k );
(iv) On T k (resp. T h), we find ˚k

h (resp. ˚h
k );

(v) On Pi (resp. Pj ), we find EC

ij C E�

ij (resp. EC

ji C E�

ji );
(vi) On W 0

ij ;W
00

ij ;W
00

ji ;W
0

ji , we find 2F ;
(vii) On Wij, with H as in (6), we find

4H � 2 ��ij CGk
ij CGh

ij

	 � �F k
ji CGk

ji CDk
ij

	

� �F h
ji CGh

ji CDh
ij

	 �Dk
ij �Dh

ij I

(viii) On the remaining components the restriction is trivial.

Proof. As for Lemma 6, this is a tedious but not difficult computation. Again we
make a sample verification, proving (vii) above. The restriction class is

F C
�
W 00

ji C
X

lDk;h

�
2Alj C V l

ji C T l C V l
ij C 2Ali

�
CW 00

ij jWij

�ˇ̌
ˇ̌
Wij
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� F C�ji C
X

lDk;h

�
2Gl

ji C F l
ji CDl

ij C F l
ij C 2Gl

ij

	C�ij

which, by taking into account the identification of Fig. 5, i.e. with (6) and (7), is
easily seen to be equivalent to the required class. ut

Let w˙

ij 2 Wij be the two points cut out on Wij by the two connected chains
of curves in jF jW 0

ij
� jF jW 00

ij
meeting E˙

ij respectively. We let w˙

ji 2 Wij be the

two points defined in a similar fashion by starting with E˙

ji . Define the 0-cycle
Zij D wC

ij C w�

ij C wC

ji C w�

ji on Wij, and let IZij � OWij be its defining sheaf of
ideals.

Proposition 8. There is a natural isomorphism between Lij and its restriction to
Wij, which is the 3–dimensional linear system

ˇ̌
ˇOWij

�
4H � 2 ��ij CGk

ij CGh
ij

	 � �F k
ji CGk

ji CDk
ij

	

� �F h
ji CGh

ji CDh
ij

	 �Dk
ij �Dh

ij

�
� IZij

ˇ̌
ˇ; (13)

where we set f1; : : : ; 4g D fi; j; h; kg, andH as in (6).

Proof. Consider a triangle L1;L2; L3 in P2, with vertices a1; a2; a3, where a1 is
opposite to L1, etc. Consider the linear system W of quartics with a double point at
a1, two simple base points infinitely near to a1 not on L2 and L3, two base points
at a2 and a3 with two infinitely near base points along L3 and L2 respectively,
two more base points along L1. There is a birational transformation of Wij to the
plane (see Fig. 5) mapping (13) to a linear system of type W . One sees that two
independent conditions are needed to impose to the curves of W to contain the
three lines L1;L2; L3 and the residual system consists of the pencil of lines through
a1. This proves the dimensionality assertion (see Sect. 5.5 below for a more detailed
discussion).

Consider then the restriction of Lij to the chain of surfaces

Pj CW 0
ji CW 00

ji CWij CW 00
ij CW 0

ij C Pi :

By taking into account (v)–(vii), of Lemma 7, we see that each divisor C of this
system determines, and is determined, by its restriction C 0 on Wij, since C consists
of C 0 plus four rational tails matching it.

The remaining components of NX0 on which Lij is non–trivial, all sit in the chain

T k C Akh C Ph CW 0
lk CW 00

lk CWhk CW 00
kh CW 0

kh C Pk C Ahk C T h: (14)

The restrictions of Lij to each irreducible component of this chain is a base point free
pencil of rational curves, hence Lij restricts on (14) to the 1–dimensional system of



152 C. Ciliberto and T. Dedieu

connected chains of rational curves in these pencils: we call it Nkh. Given a curve
in Lij, it cuts T k and T h in one point each, and there is a unique chain of rational
curves in Nkh matching these two points. ut

Step (III)

Finally, we consider the blow-up P000 ! P00 along the proper transforms of the
three planes that are strict transforms of the webs of planes in jOS0.1/j containing
a vertex pk , with 1 6 k 6 4. For each k, the exceptional divisor QLk is a birational
modification (see Sect. 5.6 below) of the complete linear system Lk WD ˇ̌L0.�Mk/

ˇ̌
,

where

Mk WD 2T k C
X

s¤k
Aks C

X

fs<rg63k

�
V k

sr C V k
rs

	
:

Lemma 8. The restriction class of L0.�Mk/ to the irreducible components of NX0
is as follows:

(i) On Pi , i ¤ k, we findH �Gk
i ;

(ii) On Aki , i ¤ k, we findH � � k
i ;

(iii) On Pk , as well as on the chainsW 0
ikCW 00

ik CWikCW 00
ki CW 0

ki , i ¤ k, we find
the restriction class of L0;

(iv) On T k , we find

3H � .F sj
k CDk

sj C 2� k
s / � .F ji

k CDk
ij C 2� k

j /� .F is
k CDk

is C 2� k
i /;

with fs; i; j; kg D f1; : : : ; 4g, andH as in (9);
(v) On the remaining components it is trivial.

Proof. We limit ourselves to a brief outline of how things work for T k . The
restriction class is

�X

r¤k
Akr C

X

fr<r 0g63k

�
V k
rr 0 C 2Wrr0 C V k

r 0r

	�ˇ̌ˇ̌
T k

which is seen to be equal to the required class with the identification of Figs. 5 and 6,
i.e. with H as in (9). ut
Proposition 9. There is a natural isomorphism between Lk and its restriction to
T k , which is the 3–dimensional linear system

ˇ̌
3H � .F sj

k CDk
sj C 2� k

s / � .F ji
k CDk

ij C 2� k
j / � .F is

k CDk
is C 2� k

i /
ˇ̌
;

where we set fs; i; j; kg D f1; : : : ; 4g, andH as in (9).
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Proof. This is similar (in fact, easier) to the proof of Proposition 8, so we will be
sketchy here. The dimensionality assertion will be discussed in Sect. 5.6 below.

For each i ¤ k, the restriction of Lk to each irreducible component of the chain

Aki C Pi CW 0
ik CW 00

ik CWik CW 00
ki CW 0

ki (15)

is a base point free pencil of rational curves, and Lk restricts on (15) to the 1–
dimensional system of connected chains of rational curves in these pencils, that we
will call Nk

i .
Now the general member of Lk consists of a curve in Lk

ˇ̌
T k

, which uniquely
determines three chains of rational curves in Nk

i , i ¤ k, which in turn determine a
unique line in jOPk .H/j. ut

5.4 The Linear Systems Li

Let a; b; c be three independent lines in P2, and consider a 0–dimensional scheme
Z cut out on a C b C c by a general quartic curve. Consider the linear system
P of plane quartics containing Z. This is a linear system of dimension 3. Indeed
containing the union of the three lines a; b; c is one condition for the curves in P
and the residual system is the 2–dimensional complete linear system of all lines in
the plane.

Proposition 7 shows that Li can be identified with a system of type P . We denote
by 
i W Pi Ü P3 (or simply by 
) the rational map determined by Li and by Y its
image, which is the same as the image of the plane via the rational map determined
by the linear system P .

Proposition 10. The map 
 W Pi Ü Y is birational, and Y is a monoid quartic
surface, with a triple point p with tangent cone consisting of a triple of independent
planes through p, and with no other singularity.

Proof. The triple point p 2 Y is the image of the curve C D P3
iDj .2D

j
i C Lij/

(alternatively, of the sides of the triangle a; b; c). By subtracting C to Li one gets a
homaloidal net, mapping to the net of lines in the plane. This proves the assertion.

ut
Remark 7. The image of NX by the complete linear system jL .�Mi/j provides a
model f 0 W S 0 ! � of the initial family f W S ! �, such that the corresponding
flat limit of S 0

t Š St6 with t ¤ 0, is S 0
0 D Y the quartic monoid image of the

face Pi of the tetrahedron via 
 . The map NX0 ! S 0
0 contracts all other irreducible

components of NX0 to the triple point of the monoid.

Remark 8. Theorem 3 says that the degree of the dual surface of the monoid Y is 21.
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The strict transform of QLi in P000
0 (which we still denote by QLi , see Sect. 2) can be

identified as a blow–up of Li ŠP: first blow–up the three points corresponding to
the three non–reduced curves 2aCbCc, 2bCaCc, 2cCaCb. Then blow–up the
proper transforms of the three pencils of lines with centres at A;B;C plus the fixed
part aC b C c. We will interpret this geometrically in Sect. 5.7, using Lemma 3.

5.5 The Linear Systems Lij

Next, we need to study some of the geometric properties of the linear systems
Lij as in Proposition 8. Consider the rational map 'ij W Wij Ü P3 (or simply ')
determined by Lij. Alternatively, one may consider the rational map, with the same
imageW (up to projective transformations), determined by the planar linear system
W of quartics considered in the proof of Proposition 8.

Proposition 11. The map ' is birational onto its image, which is a quartic surface
W � P3, with a double line D, and two triple points on D.

Proof. First we get rid of the four base points in Zij by blowing them up and taking
the proper transform NLij of the system. Let u W NW ! Wij be this blow–up, and let
I˙

ij (resp. I˙

ji ) be the two .�1/–curves that meet �ij (resp. �ji).

The strict transform NLij WD u�.Lij/ �
�
IC

ij C I�

ij C IC

ji C I�

ij

�
, has self–

intersection 4. Set, as usual, f1; : : : ; 4g D fi; j; h; kg and consider the curves

Cji WD �ji C .2Gk
ji C F k

ji /C .2Gh
ji C F h

ji /

and Cij WD �ij C .2Gk
ij C F k

ij /C .2Gh
ij C F h

ij /:
(16)

One has

NLij 	 Cs D 0; pa.Cs/ D 0; C 2
s D �3; for s 2 f.ij /; .j i/g:

By mapping NW to Wij, and this to the plane as in Fig. 5 with (4) and (5) identified,
one sees that Cji goes to the line L1 and Cij to the union of the two lines L2;L3.
The considerations in the proof of Proposition 8 show that NLij has no base points on
Cji[Cij (i.e., W has only the prescribed base points along the triangleL1CL2CL3).
On the other hand, the same considerations show that the base points of NLij may only
lie on Cji [Cij. This shows that NLij is base points free, and the associated morphism
N' W NW ! P3 contracts Cji and Cij to points c1 and c2 respectively.

The points c1 and c2 are distinct, since subtracting the line L1 from the planar
linear system W does not force subtracting the whole triangle L1 C L2 C L3 to
the system. By subtracting Cji from NLij, the residual linear system is a linear system
of rational curves with self–intersection 1, mapping Wij birationally to the plane.
Indeed, this residual linear system corresponds to the residual linear system of L1
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with respect to W , which is the linear system of plane cubics, with a double point
at a1, two simple base points infinitely near to a1 not on L2 and L3, two base points
at a2 and a3, and this is a homaloidal system. This shows that c1 is a triple point of
W and that N' is birational. The same for c2. Finally N' maps (the proper transforms
of)Dk

ij and Dh
ij both to the unique line D containing c1 and c2. ut

Remark 9. The subpencil of Lij corresponding to planes in P3 that contain the line
D corresponds to the subpencil of curves in W with the triangleL1CL2CL3 as its
fixed part, plus the pencil of lines through a1. In this subpencil we have two special
curves, namely L1 C 2L2 C L3 and L1 C L2 C 2L3. This shows that the tangent
cone to W at the general point of D is fixed, formed by two planes.

Remark 10. The image of NX via the complete linear system jL .�Mij/j provides a
model f 0 W S 0 ! � of the initial family f W S ! �, such that the corresponding
flat limit of S 0

t Š St6 with t ¤ 0, is S 0
0 D W the image of Wij via '. The map

NX0 ! S 0
0 contracts the chain (14) to the double line of W , and the two connected

components of NX0 �Wij minus the chain (14) (cf. Fig. 1) to the two triple points of
W respectively.

Corollary 1. The exceptional divisor QLij of P00 ! P0 is naturally isomorphic
to the blow–up of the complete linear system NLij Š jOW .1/j along its subpencil
corresponding to planes in P3 containing the line D.

Proof. This is a reformulation of the description of P00 ! P0 (cf. Step (II) in
Sect. 5.3 above), taking into account Propositions 8 and 11. ut

The divisor QLij � P00
0 is a P.OP1.1/

�2
�OP1 /, and its structure of P2–bundle over

P1 is the minimal resolution of indeterminacies of the rational map Lij Ü jOD.1/j,
which sends a general divisor C 2 Lij to its intersection point with D. The next
Proposition provides an identification of the general fibres of QLij over jOD.1/j D P1

as certain linear systems.

Proposition 12. The projection of W from a general point of D is a double cover
of the plane, branched over a sextic B which is the union

B D B0 C B1 C B2
of a quartic B0 with a node p, and of its tangent cone B1 C B2 at p, such that the
two branches of B0 at p both have a flex there (see Fig. 8; the intersection Bi \ B0
is concentrated at the double point p, for 1 6 i 6 2).

Proof. Let us consider a double cover of the plane as in the statement. It is singular.
Following [7, §4], we may obtain a resolution of singularities as a double cover
of a blown–up plane with non–singular branch curve. We will then observe that
it identifies with NW blown–up at two general conjugate points on Dk

ij and Dh
ij

respectively (here conjugate means that the two points are mapped to the same
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Fig. 8 Desingularization of the branch curve of the projection of Wij

point x of D by N'). We will denote by QW the surface NW blown–up at two such
points, and by I 0

x; I
00
x the two exceptional divisors.

First note that our double plane is rational, because it has a pencil of rational
curves, namely the pull-back of the pencil of lines passing through p (eventually
this will correspond to the pencil of conics cut out on W by the planes throughD).

In order to resolve the singularities of the branch curve (see Fig. 8), we first blow–
up p, pull–back the double cover and normalize it. Since p has multiplicity 4, which
is even, the exceptional divisor E of the blow–up does not belong to the branch
curve of the new double cover, which is the proper transform B (still denoted by B
according to our general convention). Next we blow–up the two double points of B
which lie on E , and repeat the process. Again, the two exceptional divisors E1;E2
do not belong to the branch curve. Finally we blow–up the two double points of B
(which lie one on E1 one on E2, offE), and repeat the process. Once more, the two
exceptional divisors E 0

1; E
0
2 do not belong to the branch curve which is the union

of B0, B1 and B2 (which denote here the proper transforms of the curves with the
same names on the plane). This curve is smooth, so the corresponding double cover
is smooth.

The final double cover has the following configuration of negative curves: B1
(resp. B2) is contained in the branch divisor, so over it we find a .�1/-curve; E 0

1

(resp. E 0
2) meets the branch divisor at two points, so its pull-back is a .�2/-curve;

E1 (resp. E2) does not meet the branch divisor, so its pull-back is the sum of two
disjoint .�2/-curves; similarly, the pull-back of E is the sum of two disjoint .�3/-
curves. In addition, there are four lines through p tangent to B0 and distinct fromB1
and B2. After the resolution, they are curves with self-intersection 0 and meet the
branch divisor at exactly one point with multiplicity 2. The pull-back of any such a
curve is the transverse union of two .�1/-curves, each of which meets transversely
one component of the pull-back of E .

This configuration is precisely the one we have on QW , after the contraction of the
four .�1/-curves Gk

ji , G
k
ij , G

h
ji , and Gh

ij . Moreover, the pull-back of the line class of

P2 is the pull–back to QW of Lij.�.I 0
x C I 00

x //. ut
Corollary 2. In the general fibre of the generic P2 bundle structure of QLij, the Severi
variety of 1–nodal (resp. 2–nodal) irreducible curves is an irreducible curve of
degree 10 (resp. the union of 16 distinct points).
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Proof. This follows from the fact that the above mentioned Severi varieties are
respectively the dual curve LB0 of a plane quartic as in Proposition 12, and the set of
ordinary double points of LB0. One computes the degrees using Plücker formulae.

ut

5.6 The Linear Systems Lk

Here we study some geometric properties of the linear systems Lk appearing in the
third step of Sect. 5.3.

Consider a triangle L1;L2; L3 in P2, with vertices a1; a2; a3, where a1 is
opposite to L1, etc. Consider the linear system T of cubics through a1; a2; a3
and tangent there to L3;L1; L2 respectively. By Proposition 9, there is a birational
transformation of T k to the plane (see Fig. 5) mapping Lk to T . We consider
the rational map 
k W T k Ü P3 (or simply 
) determined by the linear system
Lk , or, alternatively, the rational map, with the same image T (up to projective
transformations), determined by the planar linear system T . The usual notation is
f1; : : : ; 4g D fi; j; s; kg.
Proposition 13. The map 
 W T k ! T � P3 is a birational morphism, and T
is a cubic surface with three double points of type A2 as its only singularities.
The minimal resolution of T is the blow–down of T k contracting the .�1/–curves
Dk

ij ;D
k
is;D

k
js. This cubic contains exactly three lines, each of them containing two of

the double points.

Proof. The linear system T is a system of plane cubics with six simple base points,
whose general member is clearly irreducible. This implies that 
 W T k ! T � P3 is
a birational morphism and T is a cubic surface. The linear system Lk contracts the
three chains of rational curves

C1 D F js
k C 2Dk

sj C F sj
k ; C2 D F si

k C 2Dk
is C F is

k ; C3 D F ij
k C 2Dk

ij C F ji
k ;

which map in the plane to the sides of the triangle L1;L2; L3. By contracting the
.�1/–curves Dk

ij , D
k
is, D

k
js, the three curves C1; C2; C3 are mapped to three .�2/–

cycles contracted by 
 to double points of type A2.
The rest follows from the classification of cubic hypersurfaces in P3 (see, e.g.,

[5]). The three lines on T are the images via 
 of the three exceptional divisors
� k
i ; �

k
j ; �

k
s ;. ut

Remark 11. We now see that the image of NX by the complete linear system
jL .�Mk/j provides a model f 0 W S 0 ! � of the initial family f W S ! �,
such that the corresponding flat limit of S 0

t Š St6 with t ¤ 0, is S 0
0 D T C P ,

where T is the image of T k via 
, and P is the plane in P3 through the three lines
contained in T , image of Pk by the map associated to Lk . The three other faces of
the initial tetrahedron S0 are contracted to the three lines in T respectively.
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Proposition 14. The dual surface LT � LP3 to T is itself a cubic hypersurface with
three double points of type A2 as its only singularities. Indeed, the Gauss map �T
fits into the commutative diagram

T k

φ φ̌

T
γT

Ť

where L
 is the morphism associated to the linear system

ˇ̌
3H � .F sj

k C � k
s C 2Dk

sj/ � .F ji
k C � k

j C 2Dk
ij/ � .F is

k C � k
i C 2Dk

is/
ˇ̌
;

which is mapped to the linear system T 0 of cubics through a1; a2; a3 and tangent
there to L2;L3; L1 respectively, by the birational map T k Ü P2 identifying Lk

with T .

Proof. The dual hypersurface LT has degree 3 by Proposition 5. Let p be a double
point of T . The tangent cone to T at p is a rank 2 quadric, with vertex a line Lp . A
local computation shows that the limits of all tangent planes to T at smooth points
tending to p are planes through Lp . This means that �T is not well defined on
the minimal resolution of T , which is the blow–down of T k contracting the .�1/–
curves Dk

ij ;D
k
is;D

k
js, its indeterminacy points being exactly the three points images

of these curves. The same local computation also shows that �T is well defined on
T k , hence �T fits in the diagram as stated.

In T there are the three curves 2L1CL3; 2L2CL1; 2L3CL2, which implies that
for any given line ` � T there is a plane˘` in P3 tangent to T at the general point of
` (actually one has˘`\T D 3`). Then �T contracts each of the three lines contained
in T to three different points, equivalently L
 contracts to three different points the
three curves � k

i ; �
k
j ; �

k
s . Being LT a (weak) Del Pezzo surface, this implies that L


must contract the three chains of rational curves F sj
k C2� k

s CF si
k , F is

k C2� k
i CF ij

k ,

and F ji
k C2� k

j CF js
j , because they have 0 intersection with the anticanonical system,

and the rest of the assertion follows. ut
Recalling the description of P000 ! P, one can realize QLk as a birational

modification of Lk Š jOT .1/j: first blow–up the point corresponding to the plane
containing the three lines of T , then blow–up the strict transforms of the three lines
in jOT .1/j corresponding to the three pencils of planes respectively containing the
three lines of T . Notice that QLk has a structure of P1–bundle on the blow–up of P2

at three non–coplanar points, as required.
Alternatively, we have in T the four curves C0 D L1 C L2 C L3; C1 D 2L1 C

L3; C2 D 2L2 C L1; C3 D 2L3 C L2, corresponding to four independent points
c0 : : : ; c3 of T . Then QLk is the blow–up of T at c0, further blown–up along the
proper transforms of the lines hc0; c1i, hc0; c2i, and hc0; c3i. Via the map QLk ! T ,
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the projection of the P1–bundle structure corresponds to the projection of T from
c0 to the plane spanned by c1; c2; c3.

This will be interpreted using Lemma 3 in Sect. 5.7 below.

5.7 The Limit Linear System, II: Description

We are now ready to prove:

Proposition 15. The limit linear system of jLt j D jO NXt .1/j as t 2 �� tends to 0 is
P000
0 .

Proof. The identification of P000 as Hilb.L / will follow from the fact that every
point in P000

0 corresponds to a curve in NX0 (see Lemma 2). Having the results of
Sects. 5.3–5.6 at hand, we are thus left with the task of describing how the various
components of the limit linear system intersect each other. We carry this out by
analyzing, with Lemma 3, the birational modifications operated on the components
P0, QLi , QLij, and QLk , during the various steps of the construction of P000 (see
Sect. 5.3).

(I) In P0
0, the strict transform of P0 (which we shall go on calling P0, according

to the conventions set in Sect. 2) is the blow up of jL0j Š jOS0.1/j at the four
points corresponding to the faces of S0. For each i 2 f1; : : : ; 4g, the corresponding
exceptional plane is the intersection P0\ QLi , and it identifies with the subsystem of
Li consisting of curves

LC
X

j¤i
fi;j;k;hgDf1;:::;4g

.Lij CGh
i CGk

i /; L 2 jOPi .H/j;

together with six rational tails respectively joining E˙

ji to z˙

ji , j ¤ i .
(II) For each fi ¤ j g � f1; : : : ; 4g, the intersection P0 \ QLij � P00

0 identifies as
the exceptional P1 � P1 of both the blow–up of P0 � P0

0 along the line `ij, and the
blow–up QLij ! NLij described in Corollary 1. As a consequence, it parametrizes the
curves

C C ˚ CDk
ij CDh

ij C Cji C Cij (17)

(fi; j; k; hg D f1; : : : ; 4g; Cji and Cij as in (16)), where C is a chain in Nkh, and
˚ 2 jF jWij is the proper transform by 'ij of a conic through the two triple points
of W (cf. Proposition 11), together with four rational tails respectively joining E˙

ij

and E˙

ji to w˙

ij and w˙

ji . The two components C and ˚ are independent one from
another, and respectively move in a 1–dimensional linear system.

The intersection QLij\ QLi � P00
0 is a P2. In QLij, it identifies as the proper transform

via QLij ! NLij of the linear system of curves
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Cij C C; C 2 jL0.�Mij/� OWij.�Cij/j; and Cij as in (16); (18)

while in QLi it is the exceptional divisor of the blow–up of QLi � P0
0 at the point

corresponding to the curve

2.LijCGh
i CGk

i /C.LihCGj
i CGk

i /C.LikCGj
i CGh

i /; fi; j; k; hg D f1; : : : ; 4g:

It follows that it parametrizes sums of a curve as in (18), plus the special member
of Nkh consisting of double curves of NX0 and joining the two points Dk

ij \ F k
ij and

Dh
ij \ F h

ij .

(III) For each k 2 f1; : : : ; 4g, the intersection ˘k D QLk \ P0 is a P2 blown
up at three non colinear points. Seen in P0, it identifies as the blow–up of the web
of planes in jL0j Š jOS0.1/j passing through the vertex k of S0, at the three points
corresponding to the faces of S0 containing this very vertex. In QLk on the other hand,
it is the strict transform of the exceptional P2 of the blow–up QT ! T Š Lk at the
point ŒaC b C c�. It therefore parametrizes the curves

LC
X

i¤k

�
� k
i C

X

j 62fi;kg
.F

ij
k CDk

ij /
�
; (19)

whereL is a line inPk , together with three rational tails joining respectivelyL\Lki
to � k

i , i ¤ k.
For i ¤ k, QLk \ QLi is a P1 � P1, identified as the exceptional divisor of both

the blow–up QLk ! QT along the strict transform of the line parametrizing planes in
T Š jOT .1/j containing the line 
k.� k

i /, and the blow–up of QLi � P00
0 along the

strict transform of the line parametrizing curves

LCGk
i C

X

j¤i
fi;j;k;hgDf1;:::;4g

.Lij CGh
i CGk

i /; L 2 jOPi .H �Gk
i /j: (20)

It therefore parametrizes sums of

˚ C
�
� k
i C

X

j 62fi;kg

�
F

ij
k C 2Dk

ij C F ji
k

	C C
�

(21)

(where ˚ 2 Nk
i , and the second summand is a member of Lk

ˇ̌
T k

), plus the fixed

part LkiCEC

ki CE�

ki C
P

j 62fi;kg.G
j

k C˚j /, where ˚j is the special member of Nk
j

consisting of double curves of NX0 and joining the two points Gj

k \ Lk N| on Pk and

F
N|j
k \� kN| on T k , for each j 62 fi; kg, with N| such that fi; k; j; N|g D f1; : : : ; 4g. The

two curves ˚ and C are independent one from another, and respectively move in a
1–dimensional linear system.
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For each j 62 fk; ig, QLk \ QLij is an F1, and identifies as the blow–up of the
plane in Lk corresponding to divisors in jOT .1/j passing through the double point

k.� k

i /\ 
k.� k
j /, at the point

�P
i¤k 
k.� k

i /
�
; it also identifies as the exceptional

divisor of the blow–up of QLij � P00
0 along the P1 corresponding to the curves as

in (17), with ˚ the only member of jF jWij containingDk
ij . We only need to identify

the curves parametrized by the exceptional curve of this F1; they are as in (19), with
L corresponding to a line in the pencil jOPk .H �Gs

k/j, s 62 fi; j; kg.
In conclusion, P000 is an irreducible Zariski closed subset of the relative Hilbert

scheme of NX over�, and this proves the assertion. ut

5.8 The Limit Severi Varieties

We shall now identify the regular parts of the limit Severi varieties V1;ı. NX/ D
Vı. NX;L / for 1 6 ı 6 3 (see Definition 2). To formulate the subsequent statements,
we use Notation 3 and the notion of n–degree introduced in Sect. 3.5.

We will be interested in those n that correspond to a choice of 3� ı general base
points on the faces Pi of S0, with 1 � i � 4. These choices can be identified with
4–tuples n D .n1; n2; n3; n4/ 2 N4 with jnj D 3 � ı (by choosing ni general points
on Pi ). The vector n is non–zero only if 1 6 ı 6 2. For ı D 1 (resp. for ı D 2), to
give n is equivalent to give two indices i; j 2 f1; : : : ; 4g2 (resp. an i 2 f1; : : : ; 4g):
we let ni;j (resp. ni ) be the 4–tuple corresponding to the choice of general base
points on Pi and Pj respectively if i ¤ j , and of two general base points on Pi if
i D j (resp. a general base point on Pi ).

Proposition 16 (Limits of 1-nodal curves). The regular components of the limit
Severi variety V1;1. NX/ are the following (they all appear with multiplicity 1):

(i) The proper transforms of the 24 planes V.E/ � jOS0.1/j, where E is any one
of the .�1/–curves E˙

ij , for 1 6 i; j 6 4 and i ¤ j . The nhk–degree is 1 if
h ¤ k; when h D k, it is 1 if h 62 fi; j g, and 0 otherwise;

(ii) The proper transforms of the four degree 3 surfaces V.Mk; ıT k D 1/ � Lk ,
1 6 k 6 4. The nij–degree is 3 if i ¤ j ; when i D j , it is 3 if k D i , and 0
otherwise;

(iii) The proper transforms of the four degree 21 surfaces V.Mi; ıPi D 1/ � Li ,
1 6 i 6 4. The nhk–degree is 21 if h D k D i , and 0 otherwise;

(iv) The proper transforms of the six surfaces in V.Mij; ıWij D 1/ � Lij, 1 6 i <

j 6 4. They have nhk–degree 0 for every h; k 2 f1; : : : ; 4g2.
Proof. This follows from (1), and from Propositions 14 and 29. Proposition 29 tells
us that V.Mi; ıPi D 1/ has degree at least 21 in Li for 1 6 i 6 4; the computations
in Remark 12 (a) below yield that it cannot be strictly larger than 21 (see also
the proof of Corollary 4), which proves Theorem 3 for ı D 1. The nhk–degree
computation is straightforward. ut
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Remark 12. (a) The degree of the dual of a smooth surface of degree 4 in P3 is
36. It is instructive to identify, in the above setting, the 36 limiting curves passing
through two general points on the proper transform of S0 in NX . This requires the
nhk–degree information in Proposition 16. If we choose the two points on different
planes, 24 of the 36 limiting curves through them come from (i), and 4 more, each
with multiplicity 3, come from (ii). If the two points are chosen in the same plane,
then we have 12 contributions from (i), only one contribution, with multiplicity 3,
from (ii), and 21 more contributions form (iii). No contribution ever comes from (iv)
if we choose points on the faces of the tetrahedron.

(b) We have here an illustration of Remark 6: the components V.Mi ; ıPi D 1/

are mapped to points in jOS0.1/j, hence they do not appear in the crude limit Vcr
1;1.S/

(see Corollary 3 below); they are however visible in the crude limit Severi variety
of the degeneration to the quartic monoid corresponding to the face Pi . In a similar
fashion, to see the component V.Mij; ıWij D 1/ one should consider the flat limit of
the St , t 2 ��, given by the surface W described in Proposition 11.

Corollary 3 (Theorem 1 for ı D 1). Consider a family f W S ! � of general
quartic surfaces in P3 degenerating to a tetrahedron S0. The singularities of the
total space S consist in 24 ordinary double points, four on each edge of S0 (see
Sect. 3.1). It is 1–well behaved, with good model$ W NX ! �. The limit in jOS0.1/j
of the dual surfaces LSt , t 2 �� (which is the crude limit Severi variety Vcr

1;1.S/),
consists in the union of the 24 webs of planes passing through a singular point of
S , and of the 4 webs of planes passing through a vertex of S0, each counted with
multiplicity 3.

Proof. The only components of Vreg
1;1.
NX/ which are not contracted to lower dimen-

sional varieties by the morphism P000 ! P are the ones in (i) and in (ii) of
Proposition 16. Their push–forward in P0 Š jOS0.1/j has total degree 36. The
assertion follows. ut
Corollary 4. Consider a family f 0 W S 0 ! � of general quartic surfaces in P3,
degenerating to a monoid quartic surface Y with tangent cone at its triple point p
consisting of a triple of independent planes (see Remark 7). This family is 1–well
behaved, with good model $ W NX ! �. The crude limit Severi variety Vcr

1;1.S
0/

consists in the surface LY (which has degree 21), plus the plane Lp counted with
multiplicity 15.

Proof. We have a morphism P000 ! P
�
$�
�
L .�Mi/

		 Š P
�
f 0�
�
OS 0.1/

		
. The

push–forward by this map of the regular components of V1;1. NX/ are LY for
V.Mi; ıPi D 1/, 3 	 Lp for V.M i; ıT i D 1/, Lp for each of the 12 V.E/ corresponding
to a .�1/–curveE˙

hk with i 2 fh; kg, and 0 otherwise. The degree of V.Mi; ıPi D 1/
in Li is at least 21 by Proposition 29, so the total degree of the push–forward in
jOS 0

0
.1/j of the regular components of V1;1. NX/ is at least 36. The assertion follows.

ut
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Proposition 17 (Limits of 2-nodal curves). The regular components of the limit
Severi variety V1;2. NX/ are the following (they all appear with multiplicity 1):

(i) V.E;E 0/ for each set of two curves E;E 0 2 fE˙

ij ; 1 6 i; j 6 4; i ¤ j g that
do not meet the same edge of the tetrahedron S0. The nh–degree is 1 if Ph � S0
does not contain the two edges met by E;E 0, and 0 otherwise;

(ii) V.Mk; ıT k D 1;E/ for k D 1; : : : ; 4 and E 2 ˚E˙

ij ; 1 6 i; j 6 4; i ¤ j; k 2
fi; j g�, which is a degree 3 curve in Lk . The nh–degree is 3 if Ph does not
contain both the edge met by E and the vertex corresponding to T k , it is 0
otherwise;

(iii) V.Mij; ıWij D 2/ for 1 6 i < j 6 4, which has nh-degree 16 for h 62 fi; j g,
and 0 otherwise;

(iv) V.Mi; ıPi D 2/ for 1 6 i 6 4, which has nh-degree 132 for h D i , and 0
otherwise;

(v) V.Mij; ıWij D 1;E/ for 1 6 i < j 6 4, and E 2
n
E˙N{ N| ; fN{; N|g [ fi; j g D

f1; : : : ; 4gg, which is a curve of nh-degree 0 for 1 6 h 6 4.

Proof. It goes as the proof of Proposition 16. Again, Proposition 30 asserts that
V.Mi; ıPi D 2/ has degree at least 132 in Li , but it follows from the computations
in Remark 13 (a) below that it is exactly 132, which proves Theorem 3 for ı D 2.

ut
Remark 13. (a) The degree of the Severi variety V2.˙;O˙.1// for a general quartic
surface ˙ is 480 (see Proposition 4). Hence if we fix a general point x on one of
the componentsPh of S0 we should be able to see the 480 points of the limit Severi
variety V1;2 through x. The nh–degree information in Proposition 17 tells us this.

For each choice of two distinct edges of S0 spanning a plane distinct from Ph,
and of two .�1/-curves E and E 0 meeting these edges, we have a curve containing
x in each of the items of type (i) . This amounts to a total of 192 such curves.

For each choice of a vertex and an edge of S0, such that they span a plane distinct
fromPh, there are 3 curves containing x in each of the four corresponding items (ii).
This amounts to a total of 108 such curves.

For each choice of an edge of S0 not contained in Ph, there are 16 curves
containing x in the corresponding item (ii). This gives a contribution of 48 curves.

Finally, there are 132 plane quartics containing x in the item (ii) for i D h.
Adding up, one finds the right number 480.

(b) Considerations similar to the ones in Remark 12 (b) could be made here, but
we do not dwell on this.

Corollary 5 (Theorem 1 for ı D 2). Same setting as in Corollary 3. The family
f W S ! � is 2–well behaved, with good model $ W NX ! �. The crude limit
Severi variety Vcr

1;2.S/ consists of the image in jOS0.1/j of:

(i) The 240 components in (i) of Proposition 17, which map to as many lines in
jOS0.1/j;
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(ii) The 48 components in (ii) of Proposition 17, each mapping 3 W 1 to as many
lines in jOS0.1/j;

(iii) The 6 components in (ii) of Proposition 17, respectively mapping 16 W 1 to the
dual lines of the edges of S0.

Proof. The components in question are the only ones not contracted to points by the
morphism P000

0 ! jOS0.1/j, and their push–forward sum up to a degree 480 curve.
ut

Corollary 6. Same setting as in Corollary 4; the family f 0 W S 0 ! � is 2–well
behaved, with good model $ W NX ! �. The crude limit Severi variety Vcr

1;2.S
0/

consists of the ordinary double curve of the surface LY , which has degree 132, plus
a sum (with multiplicities) of lines contained in the dual plane Lp of the vertex of Y .

Proof. It is similar to that of Corollary 4. The lines of Vcr
1;2.S

0/ contained in Lp are
the push–forward by P000

0 ! jOY .1/j of the regular components of V1;2. NX/ listed
in Remark 13 (a), with the exception of V.Mi ; ıPi D 2/. They sum up (with their
respective multiplicities) to a degree 348 curve, while V.Mi; ıPi D 2/ has degree at
least 132 in Li by Proposition 30. ut
Proposition 18 (Limits of 3-nodal curves). The family $ W NX ! � is absolutely
3–good, and the limit Severi variety V1;3. NX/ is reduced, consisting of:

(i) The 1;024 points V.E;E 0; E 00/, for E;E 0; E 00 2 fE˙

ij ; 1 6 i < j 6 4g such
that the span of the three corresponding double points of S is not contained in
a face of S0;

(ii) The 192 schemes V.Mk; ıT k D 1;E;E 0/, for 1 6 k 6 4 and E;E 0 2
fE˙

ij ; 1 6 i < j 6 4g, such that the two double points of S corresponding
to E andE 0 and the vertex with index k span a plane which is not a face of S0.
They each consist of 3 points;

(iii) The 24 schemes V.Mij; ıWij D 2;E/, for 1 6 i < j 6 4, and E 2 fE˙

ij ; 1 6
i < j 6 4g, such that the double point of S corresponding to E does not lie
on the edge Pi \ Pj of S0, and that these two together do not span a face of
S0. They each consist of 16 points;

(iv) The 4 schemes V.Mi; ıPi D 3/, each consisting of 304 points.

Proof. The list in the statement enumerates all regular components of the limit
Severi variety V1;3. NX/ with their degrees (as before, Corollary 14 only gives 304 as
a lower bound for the degree of (iv)). They therefore add up to a total of at least 3;200
points, which implies, by Proposition 18, that V1;3. NX/ has no component besides
the regular ones, and that those in (iv) have degree exactly 304. Reducedness then
follows from Remark 21, (b). ut

In conclusion, all the above degenerations of quartic surfaces constructed from
NX ! � with a twist of L are 3–well behaved, with NX as a good model.

In particular:
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Corollary 7 (Theorem 1 for ı D 3). Same setting as in Corollary 3. The limits in
jOS0.1/j of 3-tangent planes to St , for t 2 ��, consist of:

(i) The 1;024 planes (each with multiplicity 1) containing three double points of
S but no edge of S0;

(ii) The 192 planes (each with multiplicity 3) containing a vertex of S0 and two
double points of S , but no edge of S0;

(iii) The 24 planes (each with multiplicity 16) containing an edge of S0 and a
double point of S on the opposite edge;

(iv) The 4 faces of S0 (each with multiplicity 304).

6 Other Degenerations

The degeneration of a general quartic we considered in Sect. 5 is, in a sense, one of
the most intricate. There are milder ones, e.g. to:

(i) A general union of a cubic and a plane;
(ii) A general union of two quadrics (this is an incarnation of a well known

degeneration of K3 surfaces described in [12]).

Though we encourage the reader to study in detail the instructive cases of degen-
erations (i) and (ii), we will not dwell on this here, and only make the following
observation about degeneration (ii). Let f W S ! � be such a degeneration, with
central fibre S0 D Q1 [Q2, whereQ1;Q2 are two general quadrics meeting along
a smooth quartic elliptic curveR. Then the limit linear system of jOSt .1/j as t 2 ��
tends to 0 is just jOS0.1/j, so that f W S ! � endowed with OS.1/ is absolutely
good.

On the other hand, there are also degenerations to special singular irreducible
surfaces, as the one we will consider in Sect. 7 below. In the subsequent sub–section,
we will consider for further purposes another degeneration, the central fibre of which
is still a (smooth)K3 surface.

6.1 Degeneration to a Double Quadric

Let Q � P3 be a smooth quadric and let B be a general curve of type .4; 4/ on
Q. We consider the double cover p W S0 ! Q branched along B . This is a K3
surface and there is a smooth family f W S ! � with general fibre a general quartic
surface and central fibre S0. The pull–back to S0 of plane sections of Q which are
bitangent to B fill up a component V of multiplicity 1 of the crude limit Severi
variety Vcr

2 . Note that Vcr
2 naturally sits in jOS0.1/j Š LP3 in this case, hence one can
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unambiguously talk about its degree. Although it makes sense to conjecture that V
is irreducible, we will only prove the following weaker statement:

Proposition 19. The curve V contains an irreducible component of degree at least
36.

We point out the following immediate consequence, which will be needed in
Sect. 10.1 below:

Corollary 8. If X is a general quartic surface in P3, then the Severi variety
V2.X;OX.1// (which naturally sits in jOX.1/j Š LP3) has an irreducible component
of degree at least 36.

To prove Proposition 19 we make a further degeneration to the case in which B
splits as B D D CH , where D is a general curve of type .3; 3/ on Q, and H is a
general curve of type .1; 1/, i.e. a general plane section of Q � P3. Then the limit
of V contains the curve W WDWD;H in LP3 parametrizing those planes in P3 tangent
to both H and D (i.e., W is the intersection curve of the dual surfaces LH and LD).
Note that LH is the quadric cone circumscribed to the quadric LQ and with vertex
the point LP orthogonal to the plane P cutting out H on Q, while LD is a surface
scroll, the degree of which is 18 by Proposition 6, hence deg.W/ D 36. To prove
Proposition 19, it suffices to prove that:

Lemma 9. The curve W is irreducible.

To show this, we need a preliminary information. Let us consider the irreducible,
locally closed subvariety U � jOQ.4/j of dimension 18, consisting of all curves
B D D C H , where D is a smooth, irreducible curve of type .3; 3/, and H is a
plane section of Q which is not tangent to D. Consider I � U � LP3 the Zariski
closure of the set of all pairs .DCH;˘/ such that the plane˘ is tangent to bothD
andH , i.e. L̆ 2 LH \ LD. We have the projections p1 W I ! U and p2 W I ! LP3.
The curve W is a general fibre of p1.

Lemma 10. The variety I contains a unique irreducible component J of dimen-
sion 19 which dominates LP3 via the map p2.

Proof. Let ˘ be a general plane of P3. Consider the conic � WD ˘ \ Q, and fix
distinct points q1; : : : ; q6 on � . There is a plane P tangent to � at q1, and a cubic
surface F passing through q3; : : : ; q6 and tangent to � at q2; moreover P and F
can be chosen general enough for D CH to belong to U , where H D P \Q and
D D F \Q. Then .D CH;˘/ 2 I , which proves that p2 is dominant.

Let F˘ be the fibre of p2 over ˘ . The above argument shows that there is a
dominant map F˘ Ü � 2 � Sym4.� / whose general fibre is an open subset of
P1 � P9: precisely, if ..q1; q2/; q3 C : : :C q6/ 2 � 2 � Sym4.� / is a general point,
the P1 is the linear system of plane sections of Q tangent to � at q1, and the P9 is
the linear subsystem of jOQ.3/j consisting of curves passing through q3; : : : ; q6 and
tangent to � at q2. The existence and unicity of J follow. ut
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Now we consider the commutative diagram

(22)

where � is the normalization of J , and f ı p0 is the Stein factorization of p1 ı � W
J 0 ! U . The morphism f W U 0 ! U is finite of degree h, equal to the number
of irreducible components of the general fibre of p1, which is W. The irreduciblity
of J implies that the monodromy group of f W U 0 ! U acts transitively on the
set of components of W.

Proof (of Lemma 9). We need to prove that h D 1. To do this, fix a general D 2
jOQ.3/j, and consider the curve W DWD;H , with H general, which consists of h
components. We can move H to be a section of Q by a general tangent plane Z.
Then the quadric cone LH degenerates to the tangent plane T LQ;z to LQ at z WD LZ,
counted with multiplicity 2.

We claim that, for z 2 LQ general, the intersection of T LQ;z with LD is irreducible.

Indeed, since LD is a scroll, a plane section of LD is reducible if and only if it contains
a ruling, i.e. if and only if it is a tangent plane section of LD. Since LD ¤ LQ, the
biduality theorem implies the claim.

The above assertion implies h 6 2. If equality holds, the general curve W
consists of two curves which, by transitivity of the monodromy action of f , are
both unisecant to the lines of the ruling of LD.

To see that this is impossible, let us degenerate D as D1 C D2, where D1 is a
general curve of type .2; 1/ and D2 is a general curve of type .1; 2/ on Q. Then
LD accordingly degenerates and its limit contains as irreducible components LD1 and
LD2, which are both scrolls of degree 4 (though we will not use it, we note that
D1 	 D2 D 5 and the (crude) limit of LD in the above degeneration consists of the
union of LD1, LD2, and of the five planes dual to the points of D1 \D2, each of the
latter counted with multiplicity 2). We denote by D either one of the curvesD1;D2.

Let again H be a general plane section of Q. We claim that the intersection of
LD with LH does not contain any unisecant curve to the lines of the ruling of LD. This

clearly implies that the general curve W cannot split into two unisecant curves to
the lines of the ruling of LD, thus proving that h D 1.

To prove the claim, it suffices to do it for specific D, Q and H . For D we take
the rational normal cubic with affine parametric equations x D t; y D t2; z D t3,
with t 2 C. For Q we take the quadric with affine equation x2 C y2 � xz � y D
0, and for H the intersection of Q with the plane z D 0. Let .p; q; r/ be affine
coordinates in the dual space, so that .p; q; r/ corresponds to the plane with equation
px C qy C rz C 1 D 0 (i.e., we take as plane at infinity in the dual space the
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orthogonal to the origin). Then the affine equation of LD is gotten by eliminating t in
the system

ptC qt2 C rt3 C 1 D 0; p C 2qtC 3rt2 D 0; (23)

which defines the ruling �t of LD orthogonal to the tangent line to D at the point with
coordinates .t; t2; t3/, t 2 C. The affine equation of LH is gotten by imposing that
the system

pxC qyC qzC 1 D 0; x2 C y2 � xz� y D 0; z D 0;

has one solution with multiplicity 2; the resulting equation is p2 � 4q � 4 D 0.
Adding this to (23) means intersecting LH with �t ; for t ¤ 0, the resulting system
can be written as

p2t2 C 8pt � 4.t2 � 3/ D 0; q D p2

4
� 1; r D 4 � p2

6t
� p

3t2
:

For a general t 2 C, the first equation gives two values of p and the remaining
equations the corresponding values of q and r , i.e., we get the coordinates .p; q; r/
of the two intersection points of LH and �t . Now we note that the discriminant of
p2t2 C 8pt � 4.t2 � 3/ as a polynomial in p is 16t2.t2 C 1/, which has the two
simple solutions ˙i . This implies that the projection on D Š P1 of the curve cut
out by LH on LD has two simple ramification points. In particular LH \ LD is locally
irreducible at these points, and it cannot split as two unisecant curves to the lines of
the ruling. This proves the claim and ends the proof of the Lemma. ut

7 Kummer Quartic Surfaces in P3

This section is devoted to the description of some properties of quartic Kummer
surfaces in P3. They are quartic surfaces with 16 ordinary double points p1; : : : ; p16
as their only singularities. Alternatively a Kummer surface X is the image of
the Jacobian J.C / of a smooth genus 2 curve C , via the degree 2 morphism
# W J.C / ! X � P3 determined by the complete linear system j2C j, where
C � J.C / is the Abel–Jacobi embedding, so that .J.C /; C / is a principally
polarised abelian surface (see, e.g., [4, Chap. 10]). Since # is composed with the
˙ involution on J.C /, the 16 nodes of X are the images of the 16 points of order
2 of J.C /. By projecting from a node, Kummer surfaces can be realised as double
covers of the plane, branched along the union of six distinct lines tangent to one
single conic (see, e.g., [2, Chap. VIII, Exercises]). We refer to the classical book
[25] for a thorough description of these surfaces (see also [14, Chap. 10]).
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7.1 The 166 Configuration and Self–Duality

An important feature of Kummer surfaces is that they carry a so-called 166–
configuration (see [19], as well as the above listed references). Let X be such
a surface. There are exactly 16 distinct planes ˘i tangent to X along a contact
conic �i , for 1 6 i 6 16. The contact conics are the images of the 16 symmetric
theta divisors C1; : : : ; C16 on J.C /. Each of them contains exactly 6 nodes of X ,
coinciding with the branch points of the map #jCi W Ci Š C ! �i Š P1 determined
by the canonical g12 on C .

Two conics �i ; �j , i ¤ j , intersect at exactly two points, which are double
points of X : they are the nodes corresponding to the two order 2 points of J.C /
where Ci and Cj meet. Since the restriction map Pic0.J.C // ! Pic0.C / is an
isomorphism, there is no pair of points of J.C / contained in three different theta
divisors. This implies that, given a pair of nodes of X , there are exactly two contact
conics containing both of them. In other words, if we fix an i 2 f1; : : : ; 16g, the map
from f1; : : : ; 16g � fig to the set of pairs of distinct nodes of X on �i , which maps
j to �i \ �j , is bijective. This yields that each node of X is contained in exactly
6 conics �i . The configuration of 16 nodes and 16 conics with the above described
incidence property is called a 166–configuration.

Let QX be the minimal smooth model of X , E1; : : : ; E16 the .�2/-curves over the
nodes p1; : : : ; p16 of X respectively, and Di the proper transform of the conic �i ,
for 1 6 i 6 16. Since QX is a K3 surface and the Di ’s are rational curves, the latter
are .�2/-curves. The 166–configuration can be described in terms of the existence
of the two sets

E D fE1; : : : ; E16g and D D fD1; : : : ;D16g

of 16 pairwise disjoint .�2/–curves, enjoying the further property that each curve
of a given set meets exactly six curves of the other set, transversely at a single point.

Proposition 20. Let X be a Kummer surface. Then its dual LX � LP3 is also a
Kummer surface.

Proof. By Proposition 5, we have deg. LX/ D 4. Because of the singularities on X ,
the Gauss map �X W X Ü LX is not a morphism. However we get an elimination of
indeterminacies

X̃
f g

X
γX

X̌

by considering the minimal smooth model QX of X . The morphism f is the
contraction of the 16 curves in E , and g maps each Ei to a conic which is the
dual of the tangent cone to X at the node corresponding to Ei . On the other hand,
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since �X contracts each of the curves �1; : : : ; �16 to a point, then g contracts the
curves in D to as many ordinary double points of LX . The assertion follows. ut

7.2 The Monodromy Action on the Nodes

Let K ı be the locally closed subset of jOP3.4/j whose points correspond to
Kummer surfaces and let � W X ! K ı be the universal family: over x 2 K ı,
we have the corresponding Kummer surface X D ��1.x/. We have a subscheme
N � X such that p WD �jN W N ! K ı is a finite morphism of degree 16: the
fibre p�1.x/ over x 2 K ı consists of the nodes of X . We denote by G16;6 � S16

the monodromy group of p W N ! K ı
There is in addition another degree 16 finite covering q W G ! K ı: for x 2 K ı,

the fibre q�1.x/ consists of the set of the contact conics onX . Proposition 20 implies
that the monodromy group of this covering is isomorphic to G16;6. Then we can
consider the commutative square

(24)

where J is the incidence correspondence between nodes and conics. Note that
p0; q0 are both finite of degree 6, with isomorphic monodromy groups (see again
Proposition 20).

Here, we collect some results on the monodromy groups of the coverings
appearing in (24). They are probably well known to the experts, but we could not
find any reference for them.

Lemma 11. The monodromy group of q0 W J ! N and of p0 W J ! G is the
full symmetric group S6.

Proof. It suffices to prove only one of the two assertions, e.g. the one about p0.
Let X be a general Kummer surface and let e be a node of X . As we noticed, by
projecting from e, we realise X as a double cover of P2 branched along 6 lines
tangent to a conic E , which is the image of the .�2/–curve over e. These 6 lines
are the images of the six contact conics through e, i.e. the fibre over q0. Since X is
general, these 6 tangent lines are general. The assertion follows. ut
Corollary 9. The group G16;6 acts transitively, so G and N are irreducible.

Proof. It suffices to prove that the monodromy of p W N ! K ı is transitive. This
follows from Lemma 11 and from the fact that any two nodes of a Kummer surface
lie on some contact conic. ut
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It is also possible to deduce the transitivity of the monodromy action of p and
q from the irreducibility of the Igusa quartic solid, which parametrizes quartic
Kummer surfaces with one marked node (see, e.g., [14, Chap. 10]). The following
is stronger:

Proposition 21. The group G16;6 acts 2–transitively.

Proof. Again, it suffices to prove the assertion for p W N ! K ı. By Corollary 9,
proving that the monodromy is 2–transitive is equivalent to showing that the
stabilizer of a point in the general fibre of p acts transitively on the remaining points
of the fibre. Let X be a general Kummer surface and e 2 X a node. Consider the
projection from e, which realizes X as a double cover of P2 branched along 6 lines
tangent to a conicE . The 15 nodes onX different from e correspond to the pairwise
intersections of the 6 lines. Moving the tangent lines to E one leaves the node e
fixed, while acting transitively on the others. ut

Look now at the pull back q�.N /. Of course J is a component of q�.N /. We
set W D q�.N / �J , and the morphism p0 W W ! G which is finite of degree
10. We let H16;6 � S10 be the monodromy of this covering.

Lemma 12. The groupH16;6 acts transitively, i.e. W is irreducible.

Proof. Let a; b 2 X be two nodes not lying on the contact conic � . There is a
contact conic � 0 that contains both a and b; it meets � transversely in two points,
distinct from a and b, that we shall call c and d . Now a monodromy transformation
that fixes � 0 and fixes c and d necessarily fixes � . It therefore suffices to find a
monodromy transformation fixing � 0 which fixes c and d , and sends a to b. Such a
transformation exists by Lemma 11. ut
Proposition 22. Let X be a general Kummer surface. Then:

(i) G16;6 acts transitively the set of unordered triples of distinct nodes belonging to
a contact conic;

(ii) The action of G16;6 on the set of unordered triples of distinct nodes not
belonging to a contact conic has at most two orbits.

To prove this, we need to consider degenerations of Kummer surfaces when the
principally polarised abelian surface .J.C /; C / becomes non–simple, e.g., when
C degenerates to the union of two elliptic curves E1;E2 transversally meeting at a
point. In this case the linear system j2.E1CE2/j on the abelian surfaceA D E1�E2,
is still base point free, but it determines a degree 4 morphism # W A ! Q Š
P1 � P1 � P3 (where Q � P3 is a smooth quadric), factoring through the product
Kummer surface X D A=˙, and a double cover X! Q branched along a curve of
bidegree .4; 4/ which is a union of 8 lines; the lines in question are L1a D P1 � fag
(resp.L2b D fbg�P1) where a (resp. b) ranges among the four branch points of the
morphism E1 ! .E1=˙/ Š P1 (resp. E2 ! .E2=˙/ Š P1). We call the former
horizontal lines, and the latter vertical lines. Each of them has four marked points:
on a lineL1a (resp.L2b), these are the four pointsL2b\L1a where b (resp. a) varies
as above. One thus gets 16 points, which are the limits on X of the 16 nodes of a



172 C. Ciliberto and T. Dedieu

a b

Fig. 9 Limits in a product Kummer surface of three double points not on a double conic

general Kummer surface X . The limits on X of the 16 contact conics on a general
Kummer surface X are the 16 curves L1a C L2b . On such a curve, the limits of
the six double points on a contact conic on a general Kummer surface are the six
marked points on L1a and L2b that are distinct from L1a \ L2b .
Proof (of Proposition 22). Part (i) follows from Lemma 11. As for part (ii), consider
three distinct nodes a, a0 and a00 (resp. b, b0 and b00) ofX that do not lie on a common
conic of the 166 configuration on X . We look at their limits a, a0 and a00 (resp. b, b0
and b00) on the product Kummer surface X; they are in one of the two configurations
(a) and (b) described in Fig. 9.

The result follows from the fact that the monodromy of the family of product
Kummer surfaces acts as the full symmetric group S4 on the two sets of vertical
and horizontal lines respectively. Hence the triples in configuration (a) (resp. in
configuration (b)) are certainly in one and the same orbit. ut

8 Degeneration to a Kummer Surface

We consider a family f W S ! � of surfaces in P3 induced (as explained in
Sect. 3.1) by a pencil generated by a general quartic surface S1 and a general
Kummer surface S0. We will describe a related ı-good model $ W NX ! � for
1 � ı � 3.

8.1 The Good Model

Our construction is as follows:

(I) We first perform a degree 2 base change on f W S ! �;
(II) Then we resolve the singularities of the new family;

(III) We blow–up the proper transforms of the 16 contact conics on S0.
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The base change is useful to analyze the contribution of curves passing through a
node of S0.

Steps (I) and (II)

The total space S is smooth, analytically–locally given by the equation

x2 C y2 C z2 D t

around each of the double points of S0. We perform a degree 2 base change on f ,
and call Nf W NS ! � the resulting family. The total space NS has 16 ordinary double
points at the preimages of the nodes of S0.

We let "1 W X ! NS be the resolution of these 16 points, gotten by a simple
blow–up at each point. We have the new family � W X ! �, with � D Nf ı "1.
The new central fibre X0 consists of the minimal smooth model QS0 of S0, plus the
exceptional divisors Q1; : : : ;Q16. These are all isomorphic to a smooth quadric
Q Š P1 � P1 � P3. We let E1; : : : ; E16 be the exceptional divisors of QS0 ! S0.
Each Qi meets QS0 transversely along the curve Ei , and two distinct Qi;Qj do not
meet.

Step (III)

As in Sect. 7.1, we letD1; : : : ;D16 be the proper transforms of the 16 contact conics
�1; : : : ; �16 on S0: they are pairwise disjoint .�2/-curves in X0. We consider the
blow-up "2 W NX ! X of X along them. The surface QS0 is isomorphic to its strict
transform on NX0. Let W1; : : : ;W16 be the exceptional divisors of "2. Each Wi meets
QS0 transversely along the (strict transform of the) curveDi . Note that, by the Triple

Point Formula 1, one has deg.NDi jWi / D � deg.NDi j QS0/� 6 D �4, so that Wi is an
F4–Hirzebruch surface, andDi is the negative section on it.

We call QQ1; : : : ; QQ16 the strict transforms of Q1; : : : ;Q16 respectively. They
respectively meet QS0 transversely along (the strict transforms of) E1; : : : ; E16. For
1 6 i 6 16, there are exactly six curves among the Dj ’s that meet Ei : we call
themDi

1; : : : ;D
i
6. The surface QQi is the blow-up ofQi at the six intersection points

of Ei with Di
1; : : : ;D

i
6: we call 0Gi

1; : : : ;
0Gi

6 respectively the six corresponding
.�1/-curves on QQi . Accordingly, QQi meets transversely six Wj ’s, that we denote
by W 1

i ; : : : ;W
6
i , along 0Gi

1; : : : ;
0Gi

6 respectively. The surface QQi is disjoint from
the remainingWj ’s.

For 1 6 j 6 16, we denote by E1
j ; : : : ; E

6
j the six Ei ’s that meet Dj . There

are correspondingly six QQi ’s that meet Wj : we denote them by QQ1
j ; : : : ;

QQ6
j , and

let G1
j ; : : : ; G

6
j be their respective intersection curves with Wj . Note the equality of

sets
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˚0Gi
s ; 1 6 i 6 16; 1 6 s 6 6

� D
n
Gs
j ; 1 6 j 6 16; 1 6 s 6 6

o
:

We shall furthermore use the following notation (cf. Sect. 2). For 1 6 j 6 16,
we let FWj (or simply F ) be the divisor class of the ruling on Wj , and HWj (or
simply H ) the divisor class Dj C 4FWj . Note that Gs

j �Wj F and 0Gs
i �W s

i
F , for

1 6 i; j 6 16 and 1 6 s 6 6. We write H0 for the pull-back to QS0 of the plane
section class of S0 � P3. For 1 6 i 6 16, we let L0

i and L00
i be the two rulings of

Qi , andHQi (or simplyH ) be the divisor class L0
i CL00

i ; we use the same symbols
for their respective pull-backs in QQi . When designing one of these surfaces by QQs

j ,
we use the obvious notation Lsj

0 and Lsj
00.

8.2 The Limit Linear System

We shall now describe the limit linear system of jO NXt .1/j as t 2 �� tends to 0,
and from this we will see that NX is a good model of S over �. We start with P D
P.$�.O NX.1///, which is a P3–bundle over�, whose fibre at t 2 � is jO NXt .1/j; we
set L D O NX.1/, and jO NXt .1/j D jLt j for t 2 �. Note that jL0j Š jOS0.1/j.

We will proceed as follows:

(I) We first blow–up P at the points of P0 Š jL0j corresponding to planes in
P3 containing at least three distinct nodes of S0 (i.e. either planes containing
exactly three nodes, or planes in the 166 configuration);

(II) Then we blow–up the resulting variety along the proper transforms of the lines
of jL0j corresponding to pencils of planes in P3 containing two distinct nodes
of S0;

(III) Finally we blow–up along the proper transforms of the planes of jL0j
corresponding to webs of planes in P3 containing a node of S0.

The description of these steps parallels the one in Sect. 5.3, so we will be sketchy
here.

Step (Ia)

The
�
16
3

	 � 16�6
3

	 D 240 planes in P3 containing exactly three distinct nodes of S0
correspond to the 0-dimensional subsystems

ˇ̌
H0 � Es0 � Es00 �Es000

ˇ̌
QS0 (25)

of jH0j Š jL0j, where fs0; s00; s000g ranges through all subsets of cardinality 3 of
f1; : : : ; 16g such that the nodes ps0 ; ps00 ; ps000 corresponding to the .�2/–curves
Es0 ; Es00 ; Es000 do not lie in a plane of the 166 configuration of S0. We denote by
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Cs0s00s000 the unique curve in the system (25) and we set Hs0s00s000 D Cs0s00s000 C Es0 C
Es00 C Es000 , which lies in jH0j.

The exceptional component QLs0s00s000 of the blow-up of P at the point correspond-
ing to Hs0s00s000 can be identified with the 3–dimensional complete linear system

Ls0s00s000 WD
ˇ̌
L0.� QQs0 � QQs00 � QQs000/

ˇ̌
;

which is isomorphic to the projectivization of the kernel of the surjective map

f W
 

M

s2fs0;s00;s000g
H0
� QQs;O QQs

.H/
	
!

� H0
� QS0;O QS0 .Cs0s00s000/

	

�!
M

s2fs0;s00 ;s000g
H0
�
OEs .�Es/

	 Š H0
�
P1;OP1 .2/

	�3

mapping .& 0; & 00; & 000; &/ to .& 0 � &; & 00 � &; & 000 � &/.
The typical element of Ls0s00s000 consists of

(i) The curve Cs0s00s000 on QS0, plus
(ii) One curve in jO QQs

.H/j for each s 2 fs0; s00; s000g, matching Cs0s00s000 along Es ,
plus

(iii) Two rulings in eachWj (i.e. a member of jOWj .2F /j D jL0�OWj j), 1 6 j 6
16, matching along the divisorDj , while

(iv) The restriction to QQs is trivial for every s 2 f1; : : : ; 16g � fs0; s00; s000g.
The strict transform of P0 is isomorphic to the blow–up of jH0j at the point

corresponding to Hs0s00s000 . By Lemma 3, the exceptional divisor Hs0s00s000 Š P2

of this blow-up identifies with the pull–back linear series on Hs0s00s000 of the 2-
dimensional linear system of lines in the plane spanned by ps0 ; ps00 ; ps000 (note that in
this linear series there are three linear subseries corresponding to sections vanishing
on the curves Es0 ; Es00 ; Es000 which are components of Hs0 ;s00;s000 ).

The divisor Hs0s00s000 is cut out on the strict transform of jH0j by QLs0s00s000 , along
the plane ˘ � Ls0s00s000 given by the equation & D 0 in the above notation. The
identification of Hs0s00s000 with ˘ is not immediate. It would become more apparent
by blowing up the curves Cs0s00s000 in the central fibre; we will not do this here,
because we do not need it, and we leave it to the reader (see Step (Ib) for a
similar argument). However, we note that ker.f/ \ f& D 0g coincides with the C3

spanned by three non–zero sections .&s0 ; 0; 0; 0/; .0; &s00; 0; 0/; .0; 0; &s000; 0/; where
&s vanishes exactly on Es for each s 2 fs0; s00; s000g. These three sections correspond
to three points �s0 ; �s00 ; �s000 in˘ . In the identification of˘ with Hs0s00s000 the points
�s0 ; �s00 ; �s000 are mapped to the respective pull–backs on Hs0s00s000 of the three lines
`s00s000 D hps00 ; ps000i; `s0s000 D hps0 ; ps000i; `s0s00 D hps0; ps00i.
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Step (Ib)

The 16 planes of the 166 configuration correspond to the 0-dimensional subsystems

ˇ̌
H0 �E1

j � 	 	 	 � E6
j

ˇ̌
QS0 �

ˇ̌
H0

ˇ̌ Š ˇ̌L0

ˇ̌
.1 6 j 6 16/;

consisting of the only curve 2Dj . The blow-up of P at these points introduces 16
new components QLj , 1 6 j 6 16, in the central fibre, respectively isomorphic to
the linear systems

Lj WD ˇ̌L0.�2Wj � QQ1
j � 	 	 	 � QQ6

j /
ˇ̌
:

The corresponding line bundles restrict to the trivial bundle on all components of
NX0 but Wj and QQs

j , for 1 6 s 6 6, where the restriction is to OWj .2H/ and to
O QQs

j
.H � 2Gs

j /, respectively.

For each s 2 f1; : : : ; 16g, the complete linear system jH � 2Gs
j j QQs

j
is 0-

dimensional, its only divisor is the strict transform in QQs
j of the unique curve

in jH jQs
j

that is singular at the point Dj \ Qs
j . This is the union of the proper

transforms of the two curves in jLsj 0jQs
j

and jLsj 00jQs
j

throughDj \Qs
j , and it cuts

out a 0-cycle Zs
j of degree 2 on Gs

j . We conclude that

Lj Š ˇ̌OWj .2H/� IZj

ˇ̌
; for 1 6 j 6 16; (26)

where IZj � OWj is the defining sheaf of ideals of the 0-cycleZj WD Z1
jC	 	 	CZ6

j

supported on the six fibres G1
j ; : : : ; G

6
j of the ruling of Wj . We shall later study the

rational map determined by this linear system on Wj (see Proposition 24).
For each j , the glueing of QLj with the strict transform of jH0j is as follows: the

exceptional plane H j on the strict transform of jH0j identifies with jODj .H0/j Š
jOP1.2/j by Lemma 3, and the latter naturally identifies as the 2-dimensional linear
subsystem of

ˇ̌
OWj .2H/� IZj

ˇ̌
consisting of divisors of the form

2Dj CG1
j C 	 	 	 CG6

j C ˚; ˚ 2 jOWj .2F /j:

Step (II)

Let P0 be the blow-up of P at the 240C16 distinct points described in the preceding
step. The next operation is the blow-up P00 ! P0 along the

�
16

2

	
pairwise disjoint

respective strict transforms of the pencils

ˇ̌
H0 � Es0 � Es00

ˇ̌
QS0 ; 1 6 s0 < s00 6 16: (27)
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To describe the exceptional divisor QLs0s00 of P00 ! P0 on the proper transform
of (27), consider the 3–dimensional linear system Ls0s00 WD

ˇ̌
L0.� QQs0 � QQs00/

ˇ̌
,

isomorphic to the projectivization of the kernel of the surjective map

 
M

s2fs0;s00g
H0
� QQs;O QQs

.H/
	
!

� H0
� QS0;O QS0.H0 � Es0 �Es00/

	

!
M

s2fs0;s00g
H0
�
Es;OEs .�Es/

	
(28)

mapping .& 0; & 00; &/ to .& 0�&; & 00�&/. Then QLs0s00 identifies as the blow–up of Ls0s00
along the line defined by & D 0 in the above notation; in particular it is isomorphic
to P

�
OP1 � OP1.1/

�2
	
, with P2–bundle structure

�s0s00 W QLs0s00 !
ˇ̌
H0 � Es0 �Es00

ˇ̌
QS0

induced by the projection of the left-hand side of (28) on its last summand, as
follows from Lemma 3. The typical element of QLs0s00 consists of

(i) A member C of jH0 �Es0 �Es00 j QS0 , plus
(ii) Two curves in jH j QQ0

s
and jH j QQ0

s
respectively, matching C along Es0 and Es00 ,

together with
(iii) Rational tails on the Wj ’s (two on those Wj meeting neither QQs0 nor QQs00 , one

on thoseWj meeting exactly one component among QQs0 and QQs00 , and none on
the two Wj ’s meeting both QQs0 and QQs00) matching C alongDj .

The image by �s0s00 of such a curve is the point corresponding to its component (i).

Remark 14. The image of NX via the complete linear system jL .� QQs0 � QQs00/j
provides a model f 0 W S 0 ! � of the initial family f W S ! �, with central fibre
the transverse union of two double planes ˘s0 and ˘s00 . For s 2 fs0; s00g, the plane
˘s is the projection of QQs from the point pNs corresponding to the direction of the
line `s;s0 in jO QQs

.H/j_ Š jL0.� QQs/j_, where fs; Nsg D fs0; s00g; there is a marked
conic on˘s , corresponding to the branch locus of this projection. The restriction to
Es of the morphism QQs ! ˘s is a degree 2 covering Es ! ˘s0 \ ˘s00 DW Ls0s00 .
The two marked conics on ˘s0 and ˘s00 intersect at two points on the line Ls0s00 ,
which are the two branch points of both the double coverings Es0 ! Ls0s00 and
Es0 ! Ls0s00 . These points correspond to the two points cut out on Es0 (resp. Es00)
by the two curvesDj that correspond to the two double conics of S0 passing through
ps0 and ps00 . There are in addition six distinguished points on Ls0s00 , corresponding
to the six pairs of points cut out on Es0 (resp. Es00) by the six curves Cs0s00s000
on QS0.
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Step (III)

The last operation is the blow-up P000 ! P00 along the 16 disjoint surfaces that are
the strict transforms of the 2-dimensional linear systems

ˇ̌
H0 �Es

ˇ̌
QS0 ; 1 6 s 6 16:

We want to understand the exceptional divisor QLs . Consider the linear system
Ls WD

ˇ̌
L0.� QQs/

ˇ̌
; which identifies with the projectivization of the kernel of the

surjective map

fs W H0
� QQs;O QQs

.H/
	
� H0

� QS0;O QS0 .H0 � Es/
	! H0

�
Es;OEs .�Es/

	

.& 0; &/ 7! .& 0 � &/

(itself isomorphic to H0. QQs;O QQs
.H//, by the way). Blow–up Ls at the point �

corresponding to & D 0; one thus gets a P1–bundle over the plane jH0 � Esj QS0 .
Then QLs is obtained by further blowing–up along the proper transforms of the lines

joining � with the 6C
h�
15
2

	 � 6�5
2

	i D 51 points of jH0�Esjwe blew–up in Step (I).

The typical member of QLs consists of two members of jH0 � Esj QS0 and jH j QQs

respectively, matching along Es , together with rational tails on the surfaces Wj .

Remark 15. The image of NX by the complete linear system jL .� QQs/j provides
a model f 0 W S 0 ! � of the initial family f W S ! �, with central fibre the
transverse union of a smooth quadric Q, and a double plane ˘ branched along six
lines tangent to the conic � WD ˘ \Q (i.e. the projection of S0 from the node ps).
There are 15 marked points on ˘ , namely the intersection points of the six branch
lines of the double covering S0 ! ˘ .

Conclusion

We shall now describe the curves parametrized by the intersections of the various
components of P000

0 , thus proving:

Proposition 23. The central fibre P000
0 is the limit linear system of jLt j D jO NXt j as

t 2 �� tends to 0.

Proof. We analyze step by step the effect on the central fibre of the birational
modifications operated on P in the above construction, each time using Lemma 3
without further notification.

(I) At this step, recall (cf. Sect. 2) that P0 � P0 denotes the proper transform
of P0 � P in the blow–up P0 ! P. For each fs0; s00; s000g � f1; : : : ; 16g such that
hp0; p00; p000i is a plane that does not belong to the 166 configuration, the intersection



Limits of Pluri–Tangent Planes to Quartic Surfaces 179

QLs0s00s000 \ P0 � P0 is the exceptional P2 of the blow–up of jL0j Š jOS0.1/j at
the point corresponding to Hs0s00s000 . Its points, but those lying on one of the three
lines joining two points among �s0 ; �s00 ; �s000 which also have been blown–up (the
notation is that of Step (Ia)), correspond to the trace of the pull–back of jOS0.1/j on
Cs0s00s000 C Es0 C Es00 C Es000 .

For each j 2 f1; : : : ; 16g, the intersection QLj \ P0 � P0 is a plane, the points
of which correspond to curves 2Dj CG1

j C 	 	 	 CG6
j C˚ of NX0, ˚ 2 jOWj .2F /j,

except for those points on the six lines corresponding to the cases when ˚ contains
one of the six curvesG1

j ; : : : ; G
6
j .

(II) Let fs0 ¤ s00g � f1; : : : ; 16g. The intersection QLs0s00 \P0 � P00 is a P1 �P1;
the first factor is isomorphic to the proper transform of the line jH0 � Es0 � Es00 j QS0
in P0, while the second is isomorphic to the line f& D 0g � Ls0s00 in the notation
of Step (II) above. Then the points in QLs0s00 \P0 � P00 correspond to curves C C
Es0 CEs00 in NX0, with C 2 jH0 �Es0 �Es00 j QS0 , exception made for the points with
second coordinate Œ&s0 W 0 W 0� or Œ0 W &s00 W 0� in Ls0s00 , where &s 2 H0.O QQs

.H//

vanishes on Es for each s 2 fs0; s00g.
Let s000 62 fs0; s00g be such that hp0; p00; p000i is a plane outside the 166

configuration. The intersection QLs0s00\ QLs0s00s000 � P00 is the P2 preimage of the point
corresponding to Cs0s00s000 in jH0 � Es0 � Es00 j QS0 via �s0s00 , and parametrizes curves
Cs0s00s000 C Es000 C C 0 C C 00 C rational tails, with C 0 2 jH j QQs0

and C 00 2 jH j QQs00

matching Cs0s00s000 along Es0 and Es00 respectively.
On the other hand, for s000 62 fs0; s00g such that hp0; p00; p000i belongs to the 166

configuration, let j 2 f1; : : : ; 16g be such that 2Dj is cut out on S0 by hp0; p00; p000i,
and set QQs0 D QQ1

j and QQs00 D QQ2
j ; then QLs0s00 \ QLs0s00s000 � P00 is the preimage by

�s0s00 of the point corresponding to Dj in jH0 � Es0 � Es00 j QS0 , and parametrizes the
curves

2Dj C
�
G1
j C C 0	C �G2

j C C 00	C
X6

sD3
�
Gs
j C Es

j

	
;

where C 0 2 jH � G1
j j QQs0

is the proper transform by QQs0 ! Qs0 of a member of
jH jQs0

tangent to Es0 at Dj \ Es0 , and similarly for C 00.
(III) Let s 2 f1; : : : ; 16g. The intersection QLs \ P0 � P000 is isomorphic to

the plane jH0 � Esj QS0 blown–up at the 51 points corresponding to the intersection
of at least two lines among the 15 jH0 � Es � Es0 j, s0 ¤ s. Each point of the
non–exceptional locus of this surface corresponds to a curve C C Es � NX0, with
C 2 jH0 �Esj QS0 .

Let s0 2 f1; : : : ; 16g�fsg. The intersection QLs \ QLss0 � P000 is an F1, isomorphic
to the blow–up at � of the plane in Ls projectivization of the kernel of the restriction
of fs to H0

�
O QQs

.H/
	
�H0

�
O QS0.H0�Es �Es0/

	
. It has the structure of a P1–bundle

over jH0�Es�Es0 j, and its points correspond to curvesCCEs0CCsCrational tails,
with Cs 2 jH j QQs

matching with C 2 jH0�Es �Es0 j along Es; note that the points
on the exceptional section correspond to the curves C C Es0 C Es C rational tails.
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Let s00 2 f1; : : : ; 16g � fs; s0g, and assume the plane hp0; p00; p000i is outside the
166 configuration. Then QLs \ QLss0s00 � P000 is a P1 � P1, the two factors of which
are respectively isomorphic to the projectivization of the kernel of the restriction of
fs to H0

�
O QQs

.H/
	
� H0

�
O QS0.H0 � Es � Es0 � Es00/

	
, and to the line h�s0 ; �s00i in

Lss0s00 (with the notations of Step (Ib)). It therefore parametrizes the curves

Css0s00 C Es0 C Es00 C C C rational tails;

where C 2 jH j QQs
matches Css0s00 along Es.

Let j 2 f1; : : : ; 16g be such that Wj intersects QQs, and set QQ1
j D QQs . Then

QLs \ QLj � P000 is a P1 � P1, the two factors of which are respectively isomorphic
to the pencil of pull–backs to QQs of members of jH jQs tangent to Es at the point
Dj \ Es , and to the subpencil 2Dj C 2G1

j C G2
j C 	 	 	 C G6

j C jF jWj of Lj . It
parametrizes curves

2Dj C
�
G1
j C C

	C
X6

sD2
�
Gs
j C Es

j

	
;

where C 2 jH � G1
j j QQs

is the proper transform of a curve on Qs tangent to Es at
Dj \ Es .

It follows from the above analysis that the points of P000
0 all correspond in a

canonical way to curves on NX0, which implies our assertion by Lemma 2. ut

8.3 The Linear System Lj

In this section, we study the rational map 'j (or simply ') determined by the linear
system Lj D ˇ̌OWj .2H/� IZj

ˇ̌
on Wj , for 1 6 j 6 16.

Let uj W NWj ! Wj be the blow–up at the 12 points in the support of Zj . For
1 6 s 6 6, we denote by OGs

j the strict transform of the ruling Gs
j , and by I sj

0; I sj
00

the two exceptional curves of uj meeting OGs
j . Then the pull–back via uj induces a

natural isomorphism

ˇ̌
OWj .2H/� IZj

ˇ̌ Š
ˇ̌
ˇO NWj

�
2H �

6X

sD1
.I sj

0 C I sj 00
/
	ˇ̌
ˇI

we denote by NLj the right hand side linear system.

Proposition 24. The linear system NLj determines a 2 W 1 morphism

N' W NWj ! ˙ � P3;
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where ˙ is a quadric cone. The divisor QDj WD Dj C OF 1
j C 	 	 	 C OF 6

j is contracted
by N' to the vertex of ˙ . The branch curve B of N' is irreducible, cut out on ˙ by a
quartic surface; it is rational, with an ordinary six–fold point at the vertex of ˙ .

Before the proof, let us point out the following corollary, which we will later
need.

Corollary 10. The Severi variety of irreducible ı–nodal curves inˇ̌
OWj .2H/ � IZj

ˇ̌
is isomorphic to the subvariety of LP3 parametrizing ı–tangent

planes to B , for ı D 1; : : : ; 3. They have degree 14, 60, and 80, respectively.

For the proof of Proposition 24 we need two preliminary lemmas.

Lemma 13. The linear system jOWj .2H/� IZj j � j2HWj j has dimension 3.

Proof. The 0-cycleZj is cut out on G1
j C 	 	 	 CG6

j by a general curve in j2H j. Let
then


 2
6M

sD1
H0.Gs

j ;OGsj
.2H// Š H0.P1;OP1 .2//

�6

be a non–zero section vanishing atZj . Then H0.Wj ;OWj .2H/�IZj / Š r�1.h
i/
where

r W H0.Wj ;OWj .2H//!
6M

sD1
H0.Gs

j ;OGsj
.2H// Š H0.P1;OP1.2//

�6

is the restriction map. The assertion now follows from the restriction exact sequence,
since

h0.Wj ;OWj .2H/� IZj / D 1C h0.Wj ;OWj .2H � 6F // D 4:

ut
Lemma 14. The rational map 'j has degree 2 onto its image, and its restriction to
any line of the ruling jFWj j but the six Gs

j , 1 6 s 6 6, has degree 2 as well.

Proof. Let x 2 Wj be a general point and let Fx be the line of the ruling containing
x. One can find a divisor D 2 jOWj .2H/ � IZj j containing x but not containing
Fx . Let xCx0 be the length two scheme cut out byD on Fx . By an argument similar
to the one in the proof of Lemma 13, one has dim

�jOWj .2H/�IZj �IxCx0 j	 D 2.
This shows that x and x0 are mapped to the same point by '. Then, considering the
sublinear system

2Dj CG1
j C 	 	 	 CG6

j C Fx C ˚; ˚ 2 jOWj .F /j;
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of Lj , with fixed divisor 2Dj CG1
j C	 	 	CG6

j CFx , the assertion follows from the
base point freeness of jOWj .F /j. ut
Proof (of Proposition 24). First we prove that Lj has no fixed components, hence
that the same holds for NLj . Suppose ˚ is such a fixed component. By Lemma 14,
˚ 	 F D 0, hence ˚ should consist of curves contained in rulings. The argument of
the proof of Lemma 13 shows that no such a curve may occur in ˚ , a contradiction.

Let D 2 NLj be a general element. By Lemmas 13 and 14, D is irreducible and
hyperelliptic, sinceD 	F D 2. MoreoverD2 D 4 and pa.D/ D 3. This implies that
D is smooth and that NLj is base point free. Moreover the image ˙ of ' has degree
2. Since D 	 QDj D 0 and QD2

j D �4, the connected divisor QDj is contracted to a
double point v of ˙ , which is therefore a cone.

SinceD is mapped 2 W 1 to a general plane section of˙ , which is a conic, we see
that deg.B/ D 8. Let˚ 2 jF jWj be general, and ` its image via ', which is a ruling
of˙ . The restriction 'j˚ W ˚ ! ` is a degree 2 morphism, which is ramified at the
intersection point of ˚ with Dj . This implies that ` meets B at one single point off
the vertex v of˙ . Hence B has a unique irreducible componentB0 which meets the
general ruling ` in one point off v. We claim that B D B0. If not, B �B0 consists of
rulings `1; : : : ; `n, corresponding to rulingsF1; : : : ; Fn, clearly all different from the
Gs
j , with 1 6 s 6 6. Then the restrictions 'jFi W Fi ! `i would be isomorphisms,

for 1 6 i 6 n, which is clearly impossible. Hence B is irreducible, rational, sits
in jO˙.4/j. Finally, taking a plane section of ˙ consisting of two general rulings,
we see that it has only two intersection points with B off v. Hence B has a point of
multipilicity 6 at v and the assertion follows. ut
Remark 16. Each of the curves OGs

j C I sj 0C I sj 00 2 jF j NWj , for 1 6 s 6 6, is mapped
by N' to a ruling `s of ˙ , and this ruling has no intersection point with B off v. This
implies that v is an ordinary 6–tuple point for B and that the tangent cone to B at v
consists of the rulings `1; : : : ; `6 of ˙ .

Remark 17. Let S 0 ! � be the image of NX ! � via the map defined by the linear
system jL .�2Wj �Ps

QQs
j /j. One has S 0

t Š St2 for t ¤ 0, and the new central
fibre S 0

0 is a double quadratic cone ˙ in P3.

8.4 The Limit Severi Varieties

In this section we describe the regular components of the limit Severi varieties
V1;ı. NX/ for 1 6 ı 6 3. The discussion here parallels the one in Sect. 5.8, therefore
we will be sketchy, leaving to the reader most of the straightforward verifications,
based on the description of the limit linear system in Sect. 8.2.

Proposition 25 (Limits of 1-nodal curves). The regular components of the limit
Severi variety V1;1. NX/ are the following (they all appear with multiplicity 1, but the
ones in (iii) which appear with multiplicity 2):
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(i) V
�
ı QS0 D 1

	
, which is isomorphic to the Kummer quartic surface LS0 �

jOS0.1/j Š LP3;
(ii) V

� QQs; ı QQs
D 1	, which is isomorphic to the smooth quadric LQs � jOQs .1/j Š

LP3, for 1 6 s 6 16;
(iii) V. QQs; �Es;2 D 1/, which is isomorphic to a quadric cone in jOQs.1/j, for 1 6

s 6 16;
(iv) V

� QQs0 C QQs00 ; ı QQs0
D 1

	
, which is isomorphic to LQs � jOQs.1/j Š LP3, for

1 6 s0 < s00 6 16;
(v) V

� QQs0 C QQs00 C QQs000 ; ı QQs0
D 1

	
, for 1 6 s0; s00; s000 6 16 such that

QQs0 ; QQs00 ; QQs000 are pairwise distinct and do not meet a commonWj : it is again
isomorphic to LQs � jOQs .1/j Š LP3;

(vi) V
�
2Wj C QQ1

j C 	 	 	 C QQ6
j ; ıWj D 1

	
, which is isomorphic to the degree 14

surface LB � jOB.1/j Š LP3, for 1 6 j 6 16.

Corollary 11 (Theorem 2 for ı D 1). The family f W S ! � of general quartic
surfaces degenerating to a Kummer surface S0 we started with, with smooth total
space S , and endowed with the line bundle OS .1/, is 1–well behaved, with good
model $ W NX ! �. The limit in jOS0.1/j of the dual surfaces LSt , t 2 ��, consists
in the union of the dual LS0 of S0 (which is again a Kummer surface), plus the 16
planes of the 166 configuration of LS0, each counted with multiplicity 2.

Proof. The push–forward by the morphism P000
0 ! P0 Š jOS0.1/j of the regular

components of V1;1 with their respective multiplicities in V
reg
1;1 is LS0 in case (i), 2 	 Lps

in case (ii), and 0 otherwise. The push-forward of Vreg
1;1.
NX/ has thus total degree 36,

and is therefore the crude limit Severi variety Vcr
1;1.S/ by Proposition 4. ut

Remark 18. (a) Similar arguments show that $ W NX ! � is a 1–good model for
the degenerations of general quartic surfaces obtained from NX ! � via the line
bundles L .�2Wj � QQ1

j � 	 	 	 � QQ6
j / and L .� QQs/ respectively (see Remarks 17

and 15 for a description of these degenerations).
To see this in the former case, let us consider two general points on a given Wj ,

and enumerate the regular members of V1;1 that contain them. There are 2 curves
in (i) (indeed, the two points on Wj project to two general points on Dj Š �j �
S0 � P3, which span a line ` � LP3; the limiting curves in S0 passing through the
two original points on Wj correspond to the intersection points of L̀ with LS0; now
L̀meets LS0 with multiplicity 2 at the double point which is the image of �j via the
Gauss map, and only the two remaining intersection points are relevant). There are
in addition 2 limiting curves in each of the 10 components of type (ii) corresponding
to the QQs’s that do not meet Wj , and 14 in the relevant component of type (vi).

In this case, the crude limit Severi variety therefore consists, in the notation of
Remark 17, of the degree 14 surface LB , plus the plane Lv with multiplicity 22 (this
has degree 36 as required).

For the degeneration given by L .� QQs/, the crude limit Severi variety consists,
in the notation of Remark 15, of the dual to the smooth quadric Q, plus the dual to
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the conic � with multiplicity 2, plus the 15 planes Lp with multiplicity 2, where p
ranges among the 15 marked points on the double plane ˘ .

(b) One can see that$ W NX ! � is not a 1–good model for the degeneration to a
union of two double planes obtained via the line bundle L .� QQs0 � QQs00/ described
in Remark 14. In addition (see Step (Ia)) the line bundles L .� QQs0 � QQs00 � QQs000/,
though corresponding to 3–dimensional components of the limit linear system, do
not provide suitable degenerations of surfaces. Despite all this, it seems plausible
that one can obtain a good model by making further modifications of NX ! �. The
first thing to do would be to blow–up the curves Cs0s00s000 .

Proposition 26 (Limits of 2-nodal curves). The regular components of the limit
Severi variety V1;2. NX/ are the following (they all appear with multiplicity 1, except
the ones in (ii) appearing with multiplicity 2):

(i) V
� QQs0 C QQs00 ; ı QQs0

D ı QQs00
D 1

	
for s0 ¤ s00, proper transform of the

intersection of two smooth quadrics in Ls0s00;
(ii) V

� QQs0 C QQs00 ; ı QQs0
D 1; �Es00 ;2 D 1

	
for s0 ¤ s00, proper transform of the

intersection of a smooth quadric and a quadric cone in Ls0s00 ;
(iii) V

� QQs0 C QQs00 C QQs000 ; ı QQs0
D ı QQs00

D 1
	

for 1 6 s0; s00; s000 6 16 such that
QQs0 ; QQs00 ; QQs000 are pairwise distinct and do not meet a common Wj , proper

transform of the intersection of two smooth quadrics in Ls0s00s000;
(iv) V

�
2WjC QQ1

jC	 	 	C QQ6
j ; ıWj D 2

	
for each j 2 f1; : : : ; 16g, proper transform

of a degree 60 curve in Lj .

Proof. Again, one checks that the components listed in the above statement are the
only ones provided by Proposition 1, taking the following points into account:

(a) The condition ı QS0 D 2 is impossible to fulfil, because there is no plane of P3

tangent to S0 at exactly two points (see Proposition 20);
(b) The condition ı QS0 D ı QQi

D 1 is also impossible to fulfil, because there is
no plane in P3 tangent to S0 at exactly one point, and passing through one of
its double points. Indeed, let pi be a double point of S0, the dual plane Lpi is
everywhere tangent to LS0 along the contact conic Gauss image of Ei ;

(c) The condition ı QQs
D �Es;2 D 1 imposes to a member of jH j QQs

to be the sum of
two rulings intersecting at a point on Es , and such a curve does not belong to
the limit Severi variety:

(d) The condition �Es0 ;2 D �Es00 ;2 D 1 imposes to contain one of the two curvesDj

intersecting both Es0 and Es00 , which violates condition (i) of Definition 1.
ut

Remark 19. As in Remark 13, we can enumerate the 480 limits of 2–nodal curves
passing through a general point in certain irreducible components of NX0:
(a) For a general point on QS0, we find 4 limit curves in each of the

�
16
2

	 D 120

components in (i) of Proposition 26;
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(b) For a general point on a given Wj , we find 60 limit curves in the appropriate
component in (iv), and 4 in each of the

�
16

2

	 � �6
2

	 D 105 different components
of type (i) such that QQs0 and QQs00 do not both meet Wj .

This shows that NX ! � is a 2–good model for the degenerations of quartics
corresponding to the line bundles L and L .�2Wj � QQ1

j � 	 	 	� QQ6
j /. In particular,

it implies Corollary 12 below.

Corollary 12 (Theorem 2 for ı D 2). Same setting as in Corollary 11. The crude
limit Severi variety Vcr

1;2.S/ consists of the images in jOS0.1/j of the 120 irreducible
curves listed in case (a) of Remark 19. Each of them projects 4 W 1 onto a pencil of
planes containing two double points of S0.

Proposition 27 (Limits of 3-nodal curves). The family NX ! � is absolutely 3–
good, and the limit Severi variety V1;3 is reduced, consisting of:

(i) Eight distinct points in each V
�� QQs0 � QQs00 � QQs000 ; ı QQs0

D ı QQs00
D ı QQs000

D 1	,
where 1 6 s0; s00; s000 6 16 are such that hps0 ; ps00 ; ps000i is a plane that does not
belong to the 166 configuration of S0;

(ii) The 80 distinct points in each V
�
2WjC QQ1

jC	 	 	C QQ6
j ; ıWj D 3

	
, corresponding

to the triple points of the double curve of LB � jOB.1/j Š LP3 that are also triple
points of LB .

Proof. There are 240 unordered triples fs0; s00; s000g such that the corresponding
double points of S0 do not lie on a common Dj , so V

reg
1;3 has degree 3;200, which

fits with Proposition 4. ut
Corollary 13 (Theorem 2 for ı D 3). Same setting as in Corollary 11. The crude
limit Severi variety Vcr

1;3.S/ � jOS0.1/j consists of:

(i) The 240 points corresponding to a plane through three nodes of S0, but not
member of the 166 configuration, each counted with multiplicity 8;

(ii) The 16 points corresponding to a member of the 166 configuration, each
counted with multiplicity 80.

9 Plane Quartics Curves Through Points in Special Position

In this section we prove the key result needed for the proof of Theorem 3, itself given
in Sect. 5.8. We believe this result, independently predicted with tropical methods
by E. Brugallé and G. Mikhalkin (private communication), is interesting on its own.
Its proof shows once again the usefulness of constructing (relative) good models.

The general framework is the same as that of Sects. 5 and 8, and we are going to
be sketchy here.
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Fig. 10 Degeneration of base
points on a triangle

9.1 The Degeneration and Its Good Model

We start with the trivial family f W S WD P2 ��! �, together with flatly varying
data for t 2 � of three independent lines at ; bt ; ct lying in St , and of a 0-dimensional
scheme Zt of degree 12 cut out on at C bt C ct by a quartic curve �t in St , which
is general for t 2 ��. We denote by OS .1/ the pull–back line bundle of OP2 .1/ via
the projection S ! P2.

We blow–up S along the line c0. This produces a new family Y ! �, the central
fibre Y0 of which is the transverse union of a plane P (the proper transform of S0,
which we may identify with P ) and of an F1 surface W (the exceptional divisor).
The curve E WD P \W is the line c0 in P , and the .�1/–section in W . The limit
on Y0 of the three lines at ; bt ; ct on the fibre Yt Š P2, for t 2 ��, consists of:

(i) Two general lines a; b in P plus the curves a0; b0 2 jF jW matching them on E;
(ii) A curve c 2 jH jW D jF C EjW on W .

We denote by OY .1/ the pull–back of OS .1/ and we set L \ D OY .4/ �

OY .�W /. One has L
\
t Š OP2 .4/ for t 2 ��, whereas L

\
0 restrict to OP .3H/

and OW .4F C E/ Š OW .4H � 3E/ respectively. We may assume that the quartic
curve �t 2 jL \

t j cutting Zt on at C bt C ct for t 2 �� tends, for t ! 0, to
a general curve �0 2 jL \

0 j. Then �0 D �P C �W , where �P is a general cubic
in P and �Q 2 j4H � 3EjW , with �P and �W matching along E . Accordingly
Z0 D ZP CZW , whereZP has length 6 consisting of 3 points on a and 3 on b, and
ZW consists of 1 point on both a0 and b0, and 4 points on c (see Fig. 10).

Next we consider the blow–up " W X ! Y along the curve Z in Y described
by Zt , for t 2 �, and thus obtain a new family � W X ! �, where each Xt is
the blow–up of Yt along Zt . We call EZ the exceptional divisor of ". The fibre of
"jEZ W EZ ! � at t 2 � consists of the 12 .�1/–curves of the blow–up of Yt at
Zt . The central fibre X0 is the transverse union of QP and QW , respectively the blow–
ups of P and W along ZP and ZW ; we denote by EP and EW the corresponding
exceptional divisors.

We let L WD "�L \
� OX.�EZ/. Recall from Sect. 5.4 that the fibre of

P.��.L // over t 2 �� has dimension 3. We will see that X ! �, endowed
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with L , is well behaved and we will describe the crude limit Severi variety Vcr
ı for

1 6 ı 6 3. This analysis will prove Theorem 3.

Remark 20. We shall need a detailed description of the linear system jL0j. The
vector space H0.X0;L0/ is the subspace of H0. QW ;O QW .4H � 3E � EW // �
H0. QP ;O QP .3H � EP // which is the fibred product corresponding to the Cartesian
diagram

(29)

where rP ; rW are restriction maps. The map rW is injective, whereas rP has a 1-
dimensional kernel generated by a section s vanishing on the proper transforms
of a C b C c. Since h0.X0;L0/ > 4 by semicontinuity, one has Im.rP / D
Im.rW /, and therefore H0.X0;L0/ Š H0. QP ;O QP .3H � EP // has also dimension
4. Geometrically, for a general curve CP 2 j3H � EP j, there is a unique curve
CW 2 j4H�3E�EW jmatching it alongE andCPCCW 2 jL0j. On the other hand
.0; s/ 2 H0.X0;L0/ is the only non–trivial section (up to a constant) identically
vanishing on a component of the central fibre (namely QW ), and H0.X0;L0/=.s/ Š
H0. QW ;O QW .4H�3E�EW //. Therefore, if we denote byD the point corresponding
to .0; s/ in jL0j, a line through D parametrizes the pencil consisting of a fixed
divisor in j4H � 3E �EW j on QW plus all divisors in j3H �EP j matching it on E .

We will denote by R the g23 on E given by jIm.rP /j D jIm.rW /j.
To get a good model, we first blow–up the proper transform of a in QP , and then

we blow–up the proper transform of b on the strict transform of QP . We thus obtain
a new family $ W NX ! �. The general fibre NXt , t 2 ��, is isomorphic to Xt . The
central fibre NX0 has four components (see Fig. 11):

(i) The proper transform of QP , which is isomorphic to QP ;
(ii) The proper transform NW of QW , which is isomorphic to the blow–up of QW at

the two points a \ E; b \E , with exceptional divisors Ea and Eb;
(iii) The exceptional divisorWb of the last blow–up, which is isomorphic to F0;
(iv) The proper transformWa of the exceptional divisor over a, which is the blow–

up of an F0–surface, at the point corresponding to a \ b (which is a general
point of F0) with exceptional divisor Eab .

As usual, we go on calling L the pull–back to NX of the line bundle L on X .

9.2 The Limit Linear System

We shall now describe the limit linear system L associated to L . As usual, we
start with P WD P.$�.L //, and we consider the blow–up P0 ! P at the point
D 2 P0 Š jL0j. The central fibre of P0 ! � is, as we will see, the limit linear
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Fig. 11 Good model for plane quartics through 12 points

system L. It consists of only two components: the proper transform L1 of jL0j and
the exceptional divisor L2 Š P3. Let us describe these two components in terms of
twisted linear systems on the central fibre.

Since the map rW in (29) is injective, it is clear that L2 Š jL0.� NW �Wa�Wb/j.
The line bundle L0.� NW � Wa � Wb/ is trivial on QP and restricts to O NW .4H �
2E�3Ea�3Eb�EW /;OWa.H �Eab/;OWb .H/ on NW ;Wa;Wb respectively. Once
chosen CW 2

ˇ̌
O NW .4H �2E�3Ea�3Eb�EW /

ˇ̌
, there is only one possible choice

of two curves Ca and Cb in
ˇ̌
OWa.H �Eab/

ˇ̌
and

ˇ̌
OWb .H/

ˇ̌
respectively, that match

with CW along Ea;Eb respectively. They automatically match along Eab .
In conclusion, by mapping NW to P2 (via jH j NW ), we have:

Proposition 28. The component L2 Š jL0.� NW �Wa �Wb/j of P0
0 is isomorphic

to a 3-dimensional linear system of plane quartics with an imposed double point x,
prescribed tangent lines t1; t2 at x, and six further base points, two of which general
on t1; t2 and the remaining four on a general line.

To identifyL1 as the blow–up of jL0j atD, we take into account Lemma 3, which
tells us that the exceptional divisor E � L1 identifies with R. Since E D L1\L2, the
linear system E identifies with a sublinear system of codimension 1 in L2, namely
that of curves

aC b C E C C; C 2 ˇ̌4H � 3E � 3Ea � 3Eb � EW
ˇ̌
W

(in the setting of Proposition 28, C corresponds to a quartic plane curve with a triple
point at x passing through the six simple base points).
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It follows from this analysis that L is the limit as t ! 0 of the linear systems
jLt j, t 2 ��, in the sense of Sect. 3.2.

9.3 The Limit Severi Varieties

We will use the notion of n–degree introduced in Definition 4. However we will
restrict our attention to the case in which we fix 1 or 2 points only on QP . Hence,
if we agree to set QP D Q1, then we call P –degree of a component V of Vı its
n–degree with n D .3 � ı; 0; 0; 0/; we denote it by degP .V /.

Proposition 29 (Limits of 1-nodal curves). The regular components of the limit
Severi variety V1. NX;L / are the following, all appearing with multiplicity 1,
except (iii), which has multiplicity 2:

(i) V.ı QP D 1/, with P –degree 9;
(ii) V.ı NW D 1/, with P –degree 4;

(iii) V.�E;2 D 1/, with P –degree 4;
(iv) V. NW CWa CWb; ı NW D 1/, with P –degree 0.

Proof. The list is an application of Proposition 1. The only things to prove are the
degree assertions. Since L2 is trivial on QP , case (iv) is trivial. Case (i) follows from
Proposition 5, because the P –degree of V.ı QP D 1/ is the degree 9 of the dual
surface of the image XP of QP via the linear system j3H � EP j, which is a cubic
surface with an A2 double point (see Proposition 5).

As for (ii), note that nodal curves in j4H �3E�EW j on NW consist of a ruling in
jF j plus a curve C in j4H �F � 3E �EW j. If F does not intersect one of the four
exceptional curves inEW meeting c0, then C D c0Ca0Cb0 and the matching curve
on QP contains the proper transform of a and b, which is not allowed. So F has to
contain one of the four exceptional curves in EW meeting c0. This gives rise to four
pencils of singular curves in j4H �3E�EW j, which produce (see Remark 20) four
2–dimensional linear subsystems in jL0j, and this implies the degree assertion.

The degree assertion in (iii) follows from the fact that a g13 on E has 4
ramification points. ut
Proposition 30 (Limits of 2-nodal curves). The regular components of the limit
Severi variety V2. NX;L / are the following, all appearing with multiplicity 1,
except (iv) and (v), which have multiplicity 2, and (vi), which has multiplicity 3:

(i) V.ı QP D 2/, with P -degree 9;
(ii) V.ı NW D 2/, with P -degree 6;

(iii) V.ı QP D ı NW D 1/, with P -degree 36;
(iv) V.ı QP D �E;2 D 1/, with P -degree 28;
(v) V.ı NW D �E;2 D 1/, with P -degree 8;

(vi) V.�E;3 D 1/, with P -degree 3;
(vii) V. NW CWa CWb; ı NW D 2/, with P –degree 0.
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Proof. Again, the list is an immediate application of Proposition 1, and the only
things to prove are the degree assertions. Once more case (vii) is clear.

In case (i) the degree equals the number of lines on XP (the cubic surface image
of QP ), that do not contain the double point; this is 9.

In case (ii), we have to consider the binodal curves in j4H � 3E � EW j not
containingE . Such curves split into a sum ˚1 C ˚2 C C , where ˚1 and ˚2 are the
strict transforms of two curves in jF jW . They are uniquely determined by the choice
of two curves in EW meeting c0: these fix the two rulings in jF j containing them,
and there is a unique curve in j2H � Ej containing the remaining curves in EW .
This shows that the degree is 6.

Next, the limit curves of type (iii) consist of a nodal cubic in j3H �EP j QP and a
nodal curve in j4H � 3E � EW j NW ; a ruling necessarily splits from the latter curve.
Again, the splitting rulings F are the ones containing one of the four curves in EW
meeting c0. The curves in j3H � 2Ej NW containing the remaining curves in EW ,
fill up a pencil. Let F0 be one of these four rulings. The number of nodal curves in
j3H � EP j QP passing through the base point F0 \ E and through a fixed general
point on QP equals the degree of the dual surface of XP , which is 9. For each such
curve, there is a unique curve in the aforementioned pencil on QW matching it. This
shows that the degree is 36.

The general limit curve of type (iv) can be identified with the general plane of
P3 D j3H � EP j_QP which is tangent to both XP and the curve CE (image of E in
XP ), at different points. The required degree is the number of such planes passing
through a general point p of XP . The planes in question are parametrized in LP3 by
a component �1 of LXP \ LCE : one needs to remove from LXP \ LCE the component
�2, the general point of which corresponds to a plane which is tangent to XP at a
general point of CE . The latter appears with multiplicity 2 in LXP \ LCE by Lemma 5.
Moreover, LXP and LCE have respective degrees 9 and 4 by Proposition 5. Thus we
have

degP
�
V.ı QP D �E;2 D 1/

	 D 36 � 2 deg.�2/:

To compute deg.�2/, take a general point q D .q0 W : : : W q3/ 2 P3, and let Pq.XP /
be the first polar of XP with respect to q, i.e. the surface of homogeneous equation

q0
@f

@x0
C 	 	 	 C q0 @f

@x3
D 0;

where f D 0 is the homogeneous equation ofXP . The number of planes containing
q and tangent to XP at a point of CE is then equal to the number of points of
Pq.XP /\CE , distinct from the singular point v ofXP . A local computation, which
can be left to the reader, shows that v appears with multiplicity 2 in Pp.XP / \ CE ,
which shows that deg.�2/ D 4, whence degP

�
V.ı QP D �E;2 D 1/

	 D 28.
In case (v), we have to determine the curves in j4H � 3E � EW j with one node

(so that some ruling splits) that are also tangent to E . As usual, the splitting rulings
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are the one containing one of the four curves in EW meeting c0. Inside the residual
pencil there are two tangent curves at E . This yields the degree 8 assertion.

Finally, in case (vi), the degree equals the number of flexes of CE , which is a
nodal plane cubic: this is 3. ut
Proposition 31 (Limits of 3-nodal curves). The regular components of the limit
Severi variety V3. NX;L / are the following 0–dimensional varieties, all appearing
with multiplicity 1, except the ones in (iv) and (v) appearing with multiplicity 2,
and (vi) with multiplicity 3:

(i) V.ı QP D 3/, which consists of 6 points;
(ii) V.ı QP D 2; ı NW D 1/, which consists of 36 points;

(iii) V.ı QP D 1; ı NW D 2/, which consists of 54 points;
(iv) V.ı QP D 2; �E;2 D 1/, which consists of 18 points;
(v) V.ı QP D ı NW D �E;2 D 1/, which consists of 56 points;

(vi) V.ı QP D �E;3 D 1/, which consists of 18 points;
(vii) V. NW CWa CWb; ı NW D 3/, which consists of 6 points.

In the course of the proof, we will need the following lemma.

Lemma 15. Let p; q be general points on E .

(i) The pencil l � j3H � EP j of curves containing q, and tangent to E at p,
contains exactly 7 irreducible nodal curves not singular at p.

(ii) The pencil m � j3H � EP j of curves with a contact of order 3 with E at p
contains exactly 6 irreducible nodal curves not singular at p.

Proof. First note that l and m are indeed pencils by Remark 20. LetPpq ! QP be the
blow-up at p and q, with exceptional curvesEp and Eq above p and q respectively.
Let P 0

pq ! Ppq be the blow-up at the point E \ Ep, with exceptional divisor E 0
p .

Then l pulls back to the linear system
ˇ̌
3H �EP �Ep �Eq � 2E 0

p

ˇ̌
, which induces

an elliptic fibration P 0
pq ! P1, with singular fibres in number of 12 (each counted

with its multiplicity) by Lemma 4. Among them are: (i) the proper transform of
a C b C E , which has 3 nodes, hence multiplicity 3 as a singular fibre; (ii) the
unique curve of l containing the .�2/-curveEp, which has 2 nodes alongEp , hence
multiplicity 2 as a singular fibre. The remaining seven singular fibres are the ones
we want to count.

The proof of (ii) is similar and can be left to the reader. ut
Proof (of Proposition 31). There is no member of L1 with 3 nodes on NW , because
every such curve contains one of the curves a0; b0; c0.

There is no member of L1 with two nodes on NW and a tacnode on E either.
Indeed, the component on NW of such a curve would be the proper transform of a
curve ofW consisting of two rulings plus a curve in j2H�Ej, altogether containing
ZW . Each of the two lines passes through one of the points ofZW on c0. The curve in
j2H �Ejmust contain the remaining points ofZW , hence it is uniquely determined
and cannot be tangent to E .
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Then the list covers all remaining possible cases, and we only have to prove the
assertion about the cardinality of the various sets.

The limiting curves of type (i) are in one-to-one correspondence with the
unordered triples of lines distinct from a and b in P , the union of which contains
the six points of ZP . There are 6 such triples.

The limiting curves of type (ii) consist of the proper transform CP in QP of the
union of a conic and a line on P containing ZP , plus the union CW of the proper
transforms in NW of a curve in jF j and one in j3H � 2Ej altogether containing
ZW , with CP and CW matching along E . We have 9 possible pencils for CP ,
corresponding to the choice of two points on ZP , one on a and one on b; each such
pencil determines by restriction on E a line l � R. There are 4 possible pencils for
CW , corresponding to the choice of one of the points of ZW on c0: there is a unique
ruling containing this point, and a pencil of curves in j3H � 2Ej containing the five
remaining points in ZW ; each such pencil defines a line m � R. For each of the
above choices, the lines l and m intersect at one point, whence the order 36.

We know from the proof of Proposition 30 that there are six 2–nodal curves in
j4H � 3E � EW j. For each such curve, there is a pencil of matching curves in
j3H � EP j. This pencil contains deg. LXP / D 9 nodal curves, whence the number
54 of limiting curves of type (iii).

The component on QP of a limiting curve of type (iv) is the proper transform of
the union of a conic and a line on P , containingEP . As above, there are 9 possible
choices for the line. For each such choice, there is a pencil of conics containing the
4 points ofZP not on the line. This pencil cuts out a g12 onE , and therefore contains
2 curves tangent to E . It follows that there are 18 limiting curves of type (iv).

The component on NW of a limiting curve of type (v) is the proper transform of
a ruling of W plus a curve in j3H � 2Ej tangent to E , altogether passing through
ZW . The line necessarily contains one of the four points ofZW on c0. There is then
a pencil of curves in j3H � 2Ej containing the five remaining points of ZW . It cuts
out a g12 on E , hence contains 2 curves tangent to E . For any such curve CW on
NW , there is a pencil of curves on the QP –side matching it. By Lemma 15, this pencil

contains 7 curves, the union of which with CW is a limiting curve of type (v). This
proves that there are 56 such limiting curves.

As for (vi), there are 3 members of R that are triple points (see the proof of
Proposition 30). Each of them determines a pencil of curves on the QP –side, which
contains six 1-nodal curves by Lemma 15. This implies that there are 18 limiting
curves of type (vi).

Finally we have to count the members of V. NW CWa CWb; ı NW D 3/. They are
in one–to–one correspondence with their components on NW , which decompose into
the proper transform of unions Ca [ Cb of two curves Ca 2 j2H �E � 2Ea �Ebj
and Cb 2 j2H �E�Ea�2Ebj, altogether containingZW . The curves Ca; Cb must
contain the two base points on b0; a0 respectively. We conclude that each limiting
curve of type (vii) corresponds to a partition of the 4 points of ZW on c0 in two
disjoint sets of two points, and the assertion follows. ut
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In conclusion, the following is an immediate consequence of Propositions 29–31,
together with the formula (2).

Corollary 14 (preliminary version of Theorem 3). Let a; b; c be three indepen-
dent lines in the projective plane, and Z be a degree 12 divisor on a C b C c cut
out by a general quartic curve. We consider the 3–dimensional sub–linear system
V of jOP2 .4/j parametrizing curves containingZ, and we let, for 1 6 ı 6 3, Vı be
the Zariski closure in V of the codimension ı locally closed subset parametrizing
irreducible ı–nodal curves. One has

deg.V1/ > 21; deg.V2/ > 132; and deg.V3/ > 304: (30)

Remark 21. (a) (Theorem 3) The three inequalities in (30) above are actually
equalities. This is proved in Sect. 5.8, by using both (30) and the degrees of the
Severi varieties of a general quartic surface, given by Proposition 4.

Incidentally, this proves that $ W NX ! � is a good model for the family Of W
OS ! � obtained by blowing–up S D P2 � � along Z, and endowed with the

appropriate subline bundle of O OS .1/.
(b) In particular, we have V3 D V

reg
3 . It then follows from Remark 5 that the

relative Severi variety V3. NX;L / is smooth at the points of V3. This implies that the
general fibre of V3. NX;L / is reduced. Therefore, in the setting of Corollary 14, if
aC b C c and Z are sufficiently general, then V3 consists of 304 distinct points.

10 Application to the Irreducibility of Severi Varieties
and to the Monodromy Action

Set B D jOP3.4/j. We have the universal family p W P ! B, such that the fibre
of p over S 2 B is the linear system jOS .1/j. The variety P is a component of
the flag Hilbert scheme, namely the one parametrizing pairs .C; S/, where C is a
plane quartic curve in P3 and S 2 B contains C . So P � B �W , where W is the
component of the Hilbert scheme of curves in P3 whose general point corresponds
to a plane quartic. The map p is the projection to the first factor; we let q be the
projection to the second factor.

Denote by U � B the open subset parametrizing smooth surfaces, and set
PU D p�1.U /. Inside PU we have the universal Severi varieties V ı

ı , 1 6 ı 6 3,
such that for all S 2 U , the fibre of V ı

ı over S is the Severi variety Vı.S;OS.1//.
Since S is a K3 surface, we know that for all irreducible components V of
Vı.S;OS .1//, we have dim.V / D 3 � ı, so that all components of V ı

ı have
codimension ı in PU . We then let Vı be the Zariski closure of V ı

ı in P; we will
call it universal Severi variety as well.

The following is immediate (and it is a special case of a more general result,
see [11]):
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Proposition 32. The universal Severi varieties Vı are irreducible for 1 6 ı 6 3.

Proof. It suffices to consider the projection q W Vı ! W , and notice that its image
is the irreducible variety whose general point corresponds to a quartic curve with ı
nodes (cf. [22, 24]), and that the fibres are all irreducible of the same dimension 20.

ut
Note that the irreducibility of V1 also follows from the fact that for all S 2 U ,

we have V1.S;OS .1// Š LS . To the other extreme, p W V ı
3 ! U is a finite cover

of degree 3,200. We will denote by G4;3 � S3;200 the monodromy group of this
covering, which acts transitively because V3 is irreducible.

10.1 The Irreducibility of the Family of Binodal Plane Sections
of a General Quartic Surface

In the middle we have p W V ı
2 ! U . Though V2 is irreducible, we cannot deduce

from this that for the general S 2 U , the Severi variety V2.S;OS.1// (i.e., the
curve of binodal plane sections of S ) is irreducible. Though commonly accepted as
a known fact, we have not been able to find any proof of this in the current literature.
It is the purpose of this paragraph to provide a proof of this fact.

In any event, we have a commutative diagram similar to the one in (22)

where � is the normalization of V ı
2 , and f ı p0 is the Stein factorization of p ı � W

V 0
2 ! U . The morphism f W U 0 ! U is finite, of degree h equal to the number

of irreducible components of V2.S;OS .1// for general S 2 U . The monodromy
group of this covering acts transitively. This ensures that, for general S 2 U , all
irreducible components of V2.S;OS .1// have the same degree, which we denote by
n. By Proposition 19, we have n > 36.

Theorem 4. If S � P3 is a general quartic surface, then the curve
V2.S;OS.1// is irreducible.

Proof. Let S0 be a general quartic Kummer surface, and f W S ! � a family
of surfaces induced as in Example 1 by a pencil generated by S0 and a general
quartic S1. Given two distinct nodes p and q of S0, we denote by lpq the pencil of
plane sections of S0 passing through p and q. Corollary 12 asserts that the union
of these lines, each counted with multiplicity 4, is the crude limit Severi variety
Vcr
2 .S ;OS .1//.
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Fig. 12 How to obtain three double points on a double conic

Let �t be an irreducible component of V1.St ;OSt .1//, for t 2 ��, and let �0 be
its (crude) limit as t tends to 0, which consists of a certain number of (quadruple)
curves lpq . Note that, by Proposition 26, the pull–back of the lines lpq to the good
limit constructed in Sect. 8 all appear with multiplicity 1 in the limit Severi variety.
This yields that, if l is an irreducible component of �0, then it cannot be in the limit
of an irreducible component � 0

t of V1.St ;OSt .1// other than �t .
We shall prove successively the following claims, the last one of which proves

the theorem:

(i) �0 contains two curves lpq , lpq0 , with q ¤ q0;
(ii) �0 contains two curves lpq , lpq0 , with q ¤ q0, and p; q; q0 on a contact conic

D of S0;
(iii) There is a contact conic D of S0, such that �0 contains all curves lpq with

p; q 2 D;
(iv) Property (iii) holds for every contact conic of S0;
(v) �0 contains all curves lpq .

If �0 does not verify (i), then it contains at most 8 curves of type lpq , a
contradiction to n > 36. To prove (ii), we consider two curves lpq and lpq0 contained
in �0, and assume that p; q; q0 do not lie on a contact conic, otherwise there is
nothing to prove. Consider a degeneration of S0 to a product Kummer surface S,
and let p,q,q’ be the limits on S of p; q; q0 respectively: they are necessarily in one
of the three configurations depicted in Fig. 12. In all three cases, we can exchange
two horizontal lines in S (as indicated in Fig. 12), thus moving q0 to q00, in such a
way that p and q remain fixed, and there is a limit in S of contact conics that contains
the three points p, q0, and q00. Accordingly, there is an element � 2 G16;6 mapping
p; q; q0 to p; q; q00 respectively, such that p; q0; q00 lie on a contact conic D of S0.
Then �.�0/ contains �.lpq/ D lpq . By the remark preceding the statement of (i)–
(v), we have �.�0/ D �0. It follows that �0 contains lpq0 and lpq00 , and therefore
satisfies (ii).

Claim (iii) follows from (ii) and the fact that the monodromy acts as S6 on the
set of nodes lying on D (see Lemma 11). As for (iv), let D0 be any other contact
conic of S0. There exists � 2 G16;6 interchangingD and D0 (again by Lemma 11).
The action of � preserves D \ D0 D fx; yg. We know that �0 contains lxy C lxy0

with y0 2 D different from y. Then the same argument as above yields that �0
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contains l�.x/�.y0/, where �.x/ 2 fx; yg and �.y0/ 2 D0 � fx; yg. This implies that
�0 satisfies (ii) for D0, and therefore (iii) holds forD0. Finally (iv) implies (v). ut

It is natural to conjecture that Theorem 4 is a particular case of the following
general statement:

Conjecture 2. Let S � P3 be a general surface of degree d � 4. Then the following
curves are irreducible:

(i) V2.S;OS.1//, the curve of binodal plane sections of S ;
(ii) V�.S;OS .1//, the curve of cuspidal plane sections of S .

We hope to come back to this in a future work.

10.2 Some Noteworthy Subgroups of G4;3 � S3;200

In this section we use the degenerations we studied in Sects. 5 and 8 to give some
information on the monodromy group G4;3 of p W V ı

3 ! U . We will use the
following:

Remark 22. Let f W X ! Y be a dominant, generically finite morphism of degree
n between projective irreducible varieties, with monodromy group G � Sn. Let
V � Y be an irreducible codimension 1 subvariety, the generic point of which is a
smooth point of Y . Then fV WD f jf �1.V / W f �1.V /! V is still generically finite,
with monodromy group GV . If V is not contained in the branch locus of f , then
GV � G.

Suppose to the contrary that V is contained in a component of the branch locus
of f . Then GV � SnV , with nV WD degfV < n, and GV is no longer a subgroup
of G. We can however consider the local monodromy group Gloc

V of f around V ,
i.e. the subgroup of G � Sn generated by permutations associated to non–trivial
loops turning around V . Precisely: let UV be a tubular neighbourhood of V in Y ;
then Gloc

V is the image in G of the subgroup �1
�
UV � V

	
of �1.Y � V /.

There is an epimorphismGloc
V ! GV , obtained by deforming loops in UV �V to

loops in V . We let H loc
V be the kernel of this epimorphism, so that one has the exact

sequence of groups

1! H loc
V ! Gloc

V ! GV ! 1: (31)

We first apply this to the degeneration studied in Sect. 5. To this end, we consider
the 12–dimensional subvariety T of B which is the Zariski closure of the set of
fourtuples of distinct planes. Let f W QBtetra ! B be the blow–up of B along T ,
with exceptional divisor QT . The proof of the following lemma (similar to Lemma 3)
can be left to the reader:

Lemma 16. Let X be a general point of T . Then the fibre of f over X can be
identified with jO�.4/j, where � D Sing.X/.
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Thus, for general X 2 T , a general point of the fibre of f over X can be
identified with a pair .X;D/, with D 2 jO�.4/j general, where � D Sing.X/.
Consider a family f W S ! � of surfaces in P3, induced as in Example 1 by a pencil
l generated by X and a general quartic; then the singular locus of S is a member of
jO�.4/j, which corresponds to the tangent direction normal to T defined by l in B.

Now the universal family p W P ! B can be pulled back to Qp W QP ! QBtetra,
and the analysis of Sect. 5 tells us that we have a generically finite map Qp W QV3 !QBtetra, which restricts to p W V ı

3 ! U over U , and such that QT is in the branch
locus of Qp. We let Gtetra be the monodromy group of Qp W QV3 ! QBtetra on QT , and
Gloc

tetra, resp. H loc
tetra, be as in (31).

Proposition 33. Consider a general .X;D/ 2 QBt . One has:

(a) Gtetra ŠQ4
iD1 Gi , where:

(i) G1 Š S1;024 is the monodromy group of planes containing three points in
D, but no edge of X ;

(ii) G2 Š S4 � S3 � .S4/
2 is the monodromy group of planes containing a

vertex of X and two points in D, but no edge of X ;
(iii) G3 Š S6 � S4 is the monodromy group of planes containing an edge of

X , and a point in D on the opposite edge of X ;
(iv) G4 Š S4 is the monodromy group of faces of X ;

(b) H loc
tetra Š S3 � G �H , where G � S16 is the monodromy group of bitangent

lines to 1–nodal plane quartics as in Proposition 12, and H � S304 is the
monodromy group of irreducible trinodal curves in the linear system of quartic
curves with 12 base points at a general divisor of jOaCbCc.4/j, with a; b; c three
lines not in a pencil (see Sect. 9).

Proof. The proof follows from Corollary 7. Recall that a groupG � Sn is equal to
Sn, if and only if it contains a transposition and it is doubly transitive. Using this,
it is easy to verify the assertions in (ai)–(aiv) (see [21, p.698]). As for (b), the factor
S3 comes from the fact that the monodromy acts as the full symmetric group on a
general line section of the irreducible cubic surface T as in Proposition 13. ut

Analogous considerations can be made for the degeneration studied in Sect. 8. In
that case, we consider the 18–dimensional subvariety K of B which is the Zariski
closure of the set K ı of Kummer surfaces. Let g W QBKum ! B be the blow–up
along K , with exceptional divisor QK . In this case we have:

Lemma 17. Let X 2 K be a general point, with singular locus N . Then the fibre
of g over X can be identified with jON .4/j Š P15.

The universal family p W P ! B can be pulled back to Qp W QP ! QBKum. The
analysis of Sect. 8 tells us that we have a map Qp W QV3 ! QBKum, generically finite
over QK , which is in the branch locus of Qp. We let GKum be the monodromy group
of Qp on QK , and set Gloc

Kum andH loc
Kum as in (31).
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Proposition 34. One has:

(a) GKum Š G16;6 � G0, where G0 is the monodromy group of unordered triples of
distinct nodes of a general Kummer surface which do not lie on a contact conic
(see Sect. 7.2 for the definition of G16;6);

(b) H loc
Kum Š S8 � G00, where G00 is the monodromy group of the tritangent planes

to a rational curve B of degree 8 as in the statement of Proposition 24.

Proof. Part (a) follows right away from Proposition 27. Part (b) also follows, since
the monodromy on complete intersections of three general quadrics in P3 (which
gives the multiplicity 8 in (i) of Proposition 27) is clearly the full symmetric group.

ut
Concerning the group G0 appearing in Proposition 34 (a), remember that it acts

with at most two orbits on the set of unordered triples of distinct of nodes of a
general Kummer surface which do not lie on a contact conic (see Proposition 22 (ii)).
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Osamu Fujino and Yoshinori Gongyo

Abstract We consider a smooth morphism between smooth complex projective
varieties. We give an alternative proof of the following fact: If the anti-canonical
divisor of the source space is nef, then so is the anti-canonical divisor of the target
space. We do not use mod p reduction arguments.

1 Introduction

We will work over C, the field of complex numbers. The following theorem is the
main result of this paper.

Theorem 1 (Main theorem). Let f W X ! Y be a smooth morphism between
smooth projective varieties. LetD be an effectiveQ-divisor onX such that .X;D/ is
log canonical, SuppD is a simple normal crossing divisor, and SuppD is relatively
normal crossing over Y . Let � be a .not necessarily effective/ Q-divisor on Y .
Assume that �.KX CD/ � f �� is nef. Then �KY �� is nef.

By setting D D 0 and � D 0 in Theorem 1, we obtain the following result,
hence a new proof, in characteristic zero, of [5, Corollary 3.15 (a)].

O. Fujino (�)
Faculty of Science, Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
e-mail: fujino@math.kyoto-u.ac.jp

Y. Gongyo
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro,
Tokyo 153-8914, Japan

Department of Mathematics, Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, UK
e-mail: gongyo@ms.u-tokyo.ac.jp; y.gongyo@imperial.ac.uk

A. Frühbis-Krüger et al. (eds.), Algebraic and Complex Geometry, Springer Proceedings
in Mathematics & Statistics 71, DOI 10.1007/978-3-319-05404-9__7,
© Springer International Publishing Switzerland 2014

201

mailto:fujino@math.kyoto-u.ac.jp
mailto:gongyo@ms.u-tokyo.ac.jp
mailto:y.gongyo@imperial.ac.uk


202 O. Fujino and Y. Gongyo

Corollary 1. Let f W X ! Y be a smooth morphism between smooth projective
varieties. Assume that �KX is nef. Then �KY is nef.

By setting D D 0 and taking for � a small ample Q-divisor, we also obtain
the following result, which is [10, Corollary 2.9]. Note that Theorem 1 is also a
generalization of [8, Theorem 4.8].

Corollary 2 (cf. [10, Corollary 2.9]). Let f W X ! Y be a smooth morphism
between smooth projective varieties. Assume that �KX is ample. Then �KY is
ample.

This last corollary was proved in [10] using mod p reduction arguments. Our
proof of Theorem 1 relies instead, as in [4], on a generalization of Viehweg’s
weak positivity theorem due to Campana [3, Theorem 4.13] which is obtained from
the theory of variations of mixed Hodge structure. So our argument is ultimately
Hodge-theoretic.

In [8, Theorem 4.1] (see Theorem 2), we also proved a weaker version of
Theorem 1 using Kawamata’s positivity theorem [8, Theorem 2.2]. We recommend
that the readers compare the proof of Theorem 1 with the arguments in [8, Section
4].

By the Lefschetz principle, all the results in this paper hold over any algebraically
closed field of characteristic zero. We do not discuss here the case when the
characteristic of the base field is positive.

2 Proof of the Main Theorem

In this section, we prove Theorem 1. We closely follow the arguments in [4].

Lemma 1. Let f W Z ! C be a surjective morphism from a .d C 1/-dimensional
smooth projective variety Z to a smooth projective curve C . Let B be an ample
Cartier divisor on Z such that Rif�OZ.kB/ D 0 for every i > 0 and k � 1. Let
H be a very ample Cartier divisor on C such that BdC1 < f �.H �KC/ 	 Bd and
BdC1 � f �H 	 Bd . Then

.f�OZ.kB//� � OC .lH/

is generated by global sections for all l > k � 1.

Proof. By Grothendieck duality, we have

RH om.Rf�OZ.kB/; !�
C / ' Rf�RH om.OZ.kB/; !�

Z/;

hence we obtain

.f�OZ.kB//� ' Rdf�OZ.KZ=C � kB/
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for k � 1 and

Rif�OZ.KZ=C � kB/ D 0

for k � 1 and i ¤ d . We note that f�OZ.kB/ and its dual .f�OZ.kB//� are locally
free sheaves. Therefore, we have

H1.C; .f�OZ.kB//� � OC ..l � 1/H//
' H1.C;Rdf�OZ.KZ=C � kB/� OC ..l � 1/H//
' HdC1.Z;OZ.KZ � f �KC � kBC f �.l � 1/H//

for k � 1. By Serre duality,

HdC1.Z;OZ.KZ � f �KC � kBC f �.l � 1/H//

is dual to

H0.Z;OZ.kBC f �KC � f �.l � 1/H//:

On the other hand, it follows from our assumptions that

.kBC f �KC � f �.l � 1/H/ 	 Bd < 0

if l � 1 � k. Thus, we obtain

H0.Z;OZ.kBC f �KC � f �.l � 1/H// D 0

for l > k. This means that

H1.C; .f�OZ.kB//� � OC ..l � 1/H// D 0

for k � 1 and l > k. Therefore, .f�OZ.kB//� � OC .lH/ is generated by global
sections for k � 1 and l > k.

The following lemma directly follows from [3, Theorem 4.3]. It is essential for
the proof of Theorem 1.

Lemma 2. Let f W V ! W be a surjective morphism between smooth projective
varieties with connected fibers. Let � be an effective Q-divisor on V such that
.V;�/ is log canonical. Assume that m� is Cartier for some positive integer m.
Then f�OV .m.KV=W C �// is weakly positive over some non-empty Zariski open
set of W .

For basic properties of weakly positive sheaves, see [11, Section 2.3]. Although
the original proof of [3, Theorem 4.3] depends on Kawamata’s difficult result
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[9, Theorem 32], the results [6, Theorem 3.9] and [7, Theorem 1.1] are sufficient
for the proof of our Lemma 2.

Proof (Proof of Theorem 1). We note that, by Stein factorization, we may assume
that f has connected fibers (see [8, Lemma 2.4]). We need to prove that for any
finite morphism � W C ! Y from a smooth projective curveC , we have .���KY �
���/ 	 C � 0. Let L be an ample Cartier divisor on C . We will prove that for any
positive rational number ", we have .���KY � ���C 2"L/ 	C � 0. We consider
the following base change diagram

Z
p−−−−→ X

g f

C −−−−→
π

Y

where Z D X �Y C . Then g W Z ! C is smooth, Z is smooth, Supp.p�D/
is relatively normal crossing over C , and Supp.p�D/ is a simple normal crossing
divisor onZ. LetA be a very ample Cartier divisor onX and let ı be a small positive
rational number such that 0 < ı � ". Since �.KX CD/� f ��C ıA is ample, we
can take an effective Q-divisor F on X such that �.KX CD/� f ��C ıA �Q F .
Then we have

KX=Y CD C F �Q ıA� f �KY � f ��:

By taking the base change, we obtain

KZ=C C p�D C p�F �Q ıp
�A � g���KY � g����:

Without loss of generality, we may assume that Supp.p�D C p�F / is a simple
normal crossing divisor, p�D and p�F have no common irreducible components,
and .Z; p�D C p�F / is log canonical. Let m be a sufficiently divisible positive
integer such that mı and m" are integers, mp�D, mp�F , and m� are Cartier
divisors, and

m.KZ=C C p�D C p�F / � m.ıp�A � g���KY � g����/:

We apply Lemma 2 and obtain that

g�OZ.m.KZ=C C p�D C p�F // ' g�OZ.m.ıp
�A � g���KY � g����//

is weakly positive over some non-empty Zariski open set U of C . Therefore,

E1 WD Sn.g�OZ.m.ıp
�A� g���KY � g����///� OC .nm"L/
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' Sn.g�OZ.mıp
�A//� OC .�nm��KY � nm���C nm"L/

is generated by global sections over U for every n � 0. On the other hand, by
Lemma 1, if mı� 0,

E2 WD OC .nm"L/� Sn..g�OZ.mıp
�A//�/

' Sn.OC .m"L/� .g�OZ.mıp
�A//�/:

is generated by global sections because 0 < ı � " and p�A is ample on Z. Thus
there is a homomorphism

˛ W
M

finite

OC ! E WD E1 � E2

which is surjective over U . We note that

Sn..g�OZ.mıp
�A//�/ ' .Sn.g�OZ.mıp

�A///�

since g�OZ.mıp
�A/ is locally free. Therefore, there is a non-trivial trace map

Sn.g�OZ.mıp
�A//� Sn..g�OZ.mıp

�A//�/! OC :

Hence we have a non-trivial homomorphism

M

finite

OC

˛�! E
ˇ�! OC .�nm��KY � nm���C 2nm"L/;

where ˇ is induced by the above trace map. Thus we obtain

.�nm��KY � nm���C 2nm"L/ 	 C D nm.���KY � ���C 2"L/ 	 C � 0:

Since " is an arbitrary positive rational number, we obtain

��.�KY ��/ 	 C � 0:

This means that �KY �� is nef on Y .

Remark 1. In Theorem 1, if �.KX C D/ is moreover semi-ample, then we can
prove very simply that �KY is nef (this is a generalization of [8, Theorem 4.1]).
First, by Stein factorization, we may assume that f has connected fibers (see [8,
Lemma 2.4]). Next, in the proof of Theorem 1, when �.KX C D/ is semi-ample,
we can take ı D 0 and � D 0 Then

g�OZ.m.KZ=C C p�D C p�F // ' OC .�m��KY /
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is weakly positive over some non-empty Zariski open set of C . This means that
�m��KY is pseudo-effective. Since C is a smooth projective curve, ���KY is
nef. Therefore, �KY is nef. In this case, we do not need Lemma 1.

Here we give one more alternative proof of [8, Theorem 4.1], which is implicitly
contained in Viehweg’s theory of weak positivity [11] and is different from the
argument in Remark 1.

Theorem 2 ([8, Theorem 4.1]). Let f W X ! Y be a smooth morphism between
smooth projective varieties. If �KX is semi-ample, then �KY is nef.

Proof. By Stein factorization, we may assume that f has connected fibers (see
[8, Lemma 2.4]). Note that a locally free sheaf E on Y is nef, equivalently, semi-
positive in the sense of Fujita–Kawamata, if and only if E is weakly positive over
Y (see, for example, [11, Proposition 2.9 (e)]). Since f is smooth and �KX is
semi-ample, f�OX.KX=Y �KX/ is locally free and weakly positive over Y (cf. [11,
Proposition 2.43]). Therefore, we obtain that OY .�KY / ' f�OX.KX=Y � KX/

is nef.

The argument in Remark 1 and the proof of Theorem 2 are much simpler than the
original proof of [8, Theorem 4.1]. However, that original proof played important
roles in [8, Remark 4.2] and the proof of the following result, which completely
solves [8, Conjecture 1.3].

Theorem 3 ([2, Theorem 1.3]). Let f W X ! Y be a smooth morphism between
smooth projective varieties. If �KX is semi-ample, then �KY is also semi-ample.

1 (Analytic method). Sébastien Boucksom pointed out that the following theo-
rem, which is a special case of [1, Theorem 1.2], implies [8, Theorem 4.1] and
[10, Corollary 2.9]. Note that a line bundle L on a compact complex manifold is
said to be semi-positive (resp. positive) if L has a smooth hermitian metric whose
curvature form is a semi-positive (resp. positive) .1; 1/-form.

Theorem 4 (cf. [1, Theorem 1.2]). Let f W X ! Y be a smooth morphism from
a compact Kähler manifold X to a compact complex manifold Y . If OX.�KX/ is
semi-positive .resp. positive/, then OY .�KY / is semi-positive .resp. positive/.

The proof of [1, Theorem 1.2] is analytic and does not use mod p reduction
arguments.

We close this paper with a remark on [5]. By modifying the proof of Theorem 1
suitably, we can generalize [5, Corollary 3.14] without any difficulties. We leave the
details as an exercise for the readers.

Corollary 3 (cf. [5, Corollary 3.14]). Let f W X ! Y be a surjective morphism
from a smooth projective variety X such that Y is smooth in codimension one. Let
D be an effective Q-divisor on X such that SuppDhor, where Dhor is the horizontal
part ofD, is a simple normal crossing divisor onX and that .X;D/ is log canonical
over the generic point of Y . Let� be a not necessarily effectiveQ-Cartier Q-divisor
on Y .
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• If �.KX CD/ � f �� is nef, then �KY �� is generically nef.
• If �.KX CD/ � f �� is ample, then �KY �� is generically ample.
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The Hyperholomorphic Line Bundle

Nigel Hitchin

Dedicated to Klaus Hulek on the occasion of his 60th birthday

Abstract We study the hyperholomorphic line bundle on a hyperkähler manifold
with circle action introduced by A. Haydys, and in particular show how it transforms
under a hyperkähler quotient. Applications include ALE spaces and coadjoint orbits.

1 Introduction

In a recent paper [9], A.Haydys introduced a natural line bundle with connection
on a hyperkähler manifold with an S1-action of a certain type. The curvature is of
type .1; 1/ with respect to all complex structures in the hyperkähler family and for
this reason is called hyperholomorphic. In [11] a description of this line bundle via
a holomorphic bundle on the twistor space was given and in this format calculated
for a number of examples of interest to physicists. These are mostly moduli spaces
of solutions to gauge-theoretic equations.

In this article we give examples with a more geometrical flavour, in particular
on minimal resolutions of Kleinian singularities and cotangent bundles of coadjoint
orbits of a compact Lie group. We first approach the subject from the differential-
geometric point of view, giving some explicit formulae, and then from the twistor
viewpoint, where, as in [11], the holomorphic point of view demonstrates a
naturality which is not apparent from the explicit expressions.

In a more general result, which contributes to the examples, we show how the
hyperholomorphic bundle descends naturally in a hyperkähler quotient, and for
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the quotient by a linear action on flat space can be identified with a canonical
hyperholomorphic line bundle.

2 The Differential Geometric Viewpoint

2.1 The Hyperholomorphic Connection

Let M be a hyperkähler manifold with Kähler forms !1; !2; !3 relative to complex
structures I; J;K . If the de Rham cohomology class Œ!1=2�� 2 H2.M;R/ is in the
image of the integral cohomology then there exists a line bundle L and hermitian
connection r with curvature !1, unique up to tensoring with a flat U.1/ bundle.
Since !1 is of type .1; 1/ with respect to the complex structure I , L also has a
holomorphic structure defined by the N@-operator r0;1. Given a local holomorphic
section s ofL, then!1 D ddc log ksk2=2. Hence, if we multiply the hermitian metric
by e2f the curvature of the connection on L compatible with this new structure is

F D !1 C ddcf:

Suppose now we have a circle action which fixes !1 but acts on the other forms by
the transformation .!2C i!3/ 7! ei� .!2C i!3/. The manifoldM must necessarily
be noncompact for this. Suppose further that we have chosen a lift of the action toL.
This implies in particular the existence of a moment map – a function � such that
iX!1 D d� where X is the vector field generated by the action. Then the result of
Haydys [9] (see also [11]) is:

Theorem 1. The 2-form !1 C ddc� is of type .1; 1/ with respect to complex
structures I; J;K .

Thus rescaling the natural metric by e2� gives a new connection which defines a
holomorphic structure on L relative to all complex structures in the quaternionic
family. This is a hyperholomorphic connection, and L is the hyperholomorphic
bundle of the title.

There are relatively few hyperkähler metrics which one can write down explicitly
but it is instructive to find the line bundle in these cases.

Example. Flat quaternionic space Hn. Writing Hn D Cn
� jCn we have

!1 D i

2

X

i

.dzi ^ dNzi C dwi ^ d Nwi /; !2 C i!3 D
X

i

dzi ^ dwi

and the action .z;w/ 7! .z; ei�w/ is of the required form. Then

F D !1 C ddc� D i

2

X

i

.dzi ^ dNzi � dwi ^ d Nwi /:
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In the complex structure I this is the trivial holomorphic line bundle with hermitian
metric h D .kzk2 � kwk2/=2.

In the above we have specified a particular action of the circle on the three Kähler
forms !1; !2; !3. More generally, if an irreducible hyperkähler manifold M has
a circle symmetry group then it acts on the three-dimensional space of covariant
constant 2-forms preserving the inner product. The action is either trivial, in which
case it is called triholomorphic, or it leaves fixed a one-dimensional subspace with
an orthogonal complement on which the action is rotation by n� . The case above
is n D 1. This occurs for example on the cotangent bundle of a complex manifold
where the action is scalar multiplication in a fibre and the symplectic form is the
canonical one. In the general case, Zn � S1 preserves the three Kähler forms and so
the quotientM=Zn is a hyperkähler orbifold with a circle action as above. The local
geometry of the hyperholomorphic bundle is then the same, but the curvature form
on M is F D !1 C nddc�.

In what follows we shall also consider flat space as above but with the action
.z;w/ 7! ei� .z;w/. Then n D 2 since .!2 C i!3/ 7! e2i� .!2 C i!3/.
The moment map � D �.kzk2 C kwk2/=2 and so F D !1 C 2ddc� D 0 and
the hyperholomorphic line bundle is trivial as a line bundle with connection. This
may seem uninteresting, but in Theorem 4 we shall see how it defines the bundle for
a hyperkähler quotient of Hn.

2.2 Hermitian Symmetric Spaces

Biquard and Gauduchon gave in [2] an explicit formula for a hyperkähler metric
which, in the complex structure I , is defined on the total space of the cotangent
bundle of a hermitian symmetric spaceG=H . A circle action is given by multiplica-
tion of a cotangent vector by a unit complex number and the form !2 C i!3 is the
canonical symplectic form on the cotangent bundle.

If p W T �.G=H/ ! G=H is the projection and ! is the Kähler form of the
symmetric space G=H then the hyperkähler metric is defined by !1 D p�!C ddch
where, for a cotangent vector v, h is the quartic function on the fibres defined by
h.v/ D .f .IR.Iv; v//v; v/. Here R.u; v/ is the curvature tensor of G=H and f is the
analytic function

f .u/ D 1

u

 p
1C u � 1 � log

1Cp1C u

2

!
:

This function is applied to IR.Iv; v/ which is a non-negative hermitian transforma-
tion. In fact since the curvature of a symmetric space is constant we can also view
the quadratic map R.Iv; v/ from .g=h/� to h � g as a multiple of the moment map
for the isotropy action of H . The strange function f .u/ has the property that
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.uf .u//0 D 1

2u
.
p
1C u � 1/ (1)

We first calculate the moment map � for the circle action. Since the action is purely
in the fibres of the cotangent bundle we have

iX!1 D iX.p�! C ddch/ D iXddch:

Now the action preserves both h and the complex structure so .diX C iXd/d ch D
LXd

ch D dc.LXh/ D 0, which means that iX!1 D �d.iXd ch/ and we can take
� D �iXd ch D .IX/.h/. The vector field X was generated by v 7! ei�v so IX is
generated by v 7! 	�1v for 	 2 RC. Hence

�.v/ D @

@	
h.	�1v/j	D1:

But h.v/ D .f .u/v; v/ where u D IR.Iv; v/ is homogeneous of degree 2 in v and so
�.v/ D �2.uf 0.u/v; v/� 2.f .u/v; v/ D �2..uf .u//0v; v/. Using (1) we see that

F D !1 C ddc� D p�! C ddck

where k.v/ D .g.IR.Iv; v//v; v/ for the function

g.u/ D �1
u

 
log

1Cp1C u

2

!
:

This is an explicit formula for the curvature of the hyperholomorphic line bundle
(assuming ! is normalized so that Œ!=2�� is an integral class).

Note that on the zero-section v D 0, F restricts to ! and is S1-invariant. From
[4,5] we can say that this is the unique hyperholomorphic extension to T �.G=H/ of
this line bundle with connection onG=H . Later we shall view this in a more natural
setting.

2.3 Multi-instanton Metrics

The most concrete examples of hyperkähler metrics are the gravitational multi-
instantons of Gibbons and Hawking [6]. These are four-dimensional and in this
dimension a hyperholomorphic connection is the same thing as an anti-self-dual
one. The general Ansatz for this family of metrics consists of taking a harmonic
function V on an open set in R3, with its flat metric. Writing locally 
dV D d˛ the
metric has the form

g D V.dx21 C dx22 C dx23/C V �1.d� C ˛/2:

Then !1 D V dx2 ^ dx3C dx1 ^ .d� C˛/ is a Kähler form and similarly for !2; !3.
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An example is flat space C2 with a circle action .z1; z2/ 7! .ei�z1; e�i�z2/.
(Note that this action is triholomorphic, and so is not of the type we have
been considering). The quotient space is R3 with Euclidean coordinates
x1D .jz1j2� jz2j2/=2; x2C ix3 D z1z2 and then the metric has the above form
if V D 1=2r . The flat space C2nf0g is here expressed as a principal circle bundle
over R3nf0g and d� C ˛ is the connection form for the horizontal distribution
defined by metric orthogonality. The curvature of the connection is d˛ D 
dV and
the function V �1=2 is the length of the vector field Y generated by the action.

The general case has the same principal bundle structure but the flat example
shows that a 1=r singularity for V does not produce a singularity in the metric: it
is simply a fixed point of the circle action on the four-manifold. With this in mind,
setting

V D
kC1X

iD1

1

jx� aij

for distinct points ai 2 R3 defines a nonsingular, complete hyperkähler manifoldM .
If the points ai lie on the x1-axis then rotation about that axis induces an isometric

circle action generating a vector fieldX . This involves lifting the action on R3 to the
S1-bundle with connection form ˛, commuting with the circle action. Such a lifting
is defined by a vector field of the formX D XH C f Y , where XH is the horizontal
lift of

x2
@

@x3
� x3 @

@x2

and, since 
dV is the curvature of the connection, iX 
dV D df . Since LXV D 0

the local existence of such an f is assured. This means

df D .x2V2 C x3V3/dx1 � x2V1dx2 � x3V1dx3:

It follows that, with ai D .ai ; 0; 0/,

f D
kC1X

iD1

x1 � ai
jx � aij C c: (2)

The Kähler form !1 is given by !1 D V dx2 ^ dx3 C dx1 ^ .d� C ˛/. This is
the curvature of a connection if its periods lie in 2�Z. Now the segment Œai ; aiC1�
defines a one-parameter family of S1-orbits which become single points over the
end-points and therefore form a 2-sphere in M . The manifold retracts onto a
neighbourhood of a chain Œa1; a2�; Œa2; a3�; : : : ; Œak; akC1� of k such spheres which
therefore generateH2.M;Z/. Integrating!1 over the i th sphere gives 2�.aiC1�ai /
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and so for integrality we require aiC1 � ai to be an integer. With these conditions
we have, from Haydys’s theorem, a hyperholomorphic line bundle which, since the
two actions commute, is invariant under the triholomorphic circle action on M .

Kronheimer [12] showed that S1-invariant instantons on the multi-instanton
space became monopoles on R3 with Dirac singularities at the marked points
ai . Since the hyperholomorphic bundle is invariant we can define it this way by
a U.1/-monopole: a harmonic function 
 on R3 and a connection A such that
F D dA D 
d
. The Ansatz is

OA D A� 
V �1.d� C ˛/ (3)

where OA is a local connection form on M . Thus

!1 C ddc� D dA � d.
V �1/ ^ .d� C ˛/ � 
V �1 
 dV

and taking the interior product with Y we obtain

iY .!1 C ddc�/ D �dx1 C iY ddc� D d.
V �1/:

Since Y is triholomorphic, it preserves I and since it commutes with X it preserves
� so as in the previous section d.
V �1/ D �dx1 � d.iY d c�/ and up to an additive
constant,


V �1 D �x1 � iY d c� D �.x1 C iY .IiX!1// D �.x1 � g.X; Y //

Now g.X; Y / D V �1f . therefore


 D �x1V C f D �
kC1X

iD1

ai

jx � aij C c:

Note however that A 7! A C c˛; 
 7! 
 C cV takes OA to A C c˛ � .
 C
cV/V �1.d� C ˛/ D OA� cd� and so preserves the anti-self-dual curvature form d OA
(this absorbs the constant ambiguity too). We can therefore also take


 D
kX

iD1

akC1 � ai
jx� aij C c

and since the coefficients akC1 � ai are integers, this is a genuine U.1/-monopole
which satisfies the Dirac quantization condition.

There remains the question of the constant c. This is not in general zero since
k D 1 is flat space and we have seen the non-zero curvature of the connection in the
previous section. Here we have by construction also a circle action which preserves
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all three Kähler forms so given one lifting of the rotation action on R3 to M we
can compose with a homomorphism to the triholomorphic circle to obtain another.
The constant c will then change by 2�n; n 2 Z.

Remark. When c D 0 the curvature F is a linear combination of L 2 harmonic
forms [8,14]. In this case if k D 2m and x lies on the x1-axis with am � x1 � amC1
then (2) shows that f D 0. Note for future reference that this means that the middle
2-sphere in the chain is point-wise fixed by the circle action.

The complex structure I for the metrics above is the minimal resolution of the
Kleinian singularity xy D zkC1. There are, thanks to Kronheimer [13], hyperkähler
metrics on all such resolutions. These are produced by a finite-dimensional hyper-
kähler quotient construction and this is semi-explicit – the quotient metric of a
subspace of flat space defined by a finite number of quadratic equations – but the
hyperholomorphic line bundle is well adapted to the quotient construction.

2.4 Hyperkähler Quotients

The hyperkähler quotient construction of [10] proceeds as follows. Given a hyper-
kähler manifold with a triholomorphic action of a Lie group G we have, under
appropriate conditions, three moment maps �1; �2; �3 corresponding to the three
Kähler forms !1; !2; !3 and hence a vector-valued moment map � WM ! g�

�R3.
Then, assuming G acts freely on ��1.0/, the manifold NM D ��1.0/=G with its
quotient metric is hyperkähler.

In our situation we have a distinguished complex structure I preserved by a circle
action. The construction can then be viewed in a slightly different way. Firstly �c D
�2 C i�3 is holomorphic with respect to I and so the zero set M0 D ��1

c .0/ is
a complex submanifold of M and hence !1 restricts to it as a Kähler form. The
group G preserves M0 and �3 is the moment map for the restriction of !1. Hence
the hyperkähler quotient is the symplectic quotient ofM0 by this action.

Theorem 2. Suppose M has a circle action as in Sect. 2.1, commuting with G, so
that the hyperkähler quotient NM has an induced action. Then the hyperholomorphic
line bundle on M descends naturally to the hyperholomorphic line bundle of NM .

Proof. First recall that for a symplectic manifold .N; !/ with Œ!=2�� integral there
is a line bundle – the prequantum line bundle – with a unitary connection whose
curvature is !. Given a lift of the action of a group G, the invariant sections on the
zero set of the moment map define the prequantum line bundle on the symplectic
quotient.

To see this more concretely, let Y be the vertical vector field of the principal
U.1/-bundle P , Xa the vector field on N given by a 2 g and � W N ! g�
the moment map. Then a lift commuting with the U.1/-action is defined by
.Xa/H C h�; aiY where .Xa/H is the horizontal lift. An arbitrary section of the
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line bundle is defined by a function f on P , equivariant under the vertical action,
and an invariant section satisfies ..Xa/HCh�; aiY /f D 0. Thus on��1.0/we have
.Xa/Hf D 0 which means that the section is covariant constant along theG-orbits.
Hence the connection is pulled back from the symplectic quotient ��1.0/=G.

This is the construction for a symplectic manifold. Now suppose we take our
hyperkähler manifold with circle action and commuting triholomorphic G-action
with hyperkähler moment map �. We want to apply the above toN DM0 D ��1

c .0/

for the symplectic quotient of M0 is the hyperkähler quotient of M . Now the circle
action does not preserve!2Ci!3 but it acts on d�c D d.�2Ci�3/ by multiplication
by ei� . If we make a choice of moment map so that the action on �c is the same scalar
multiplication, then the action will preserve M0 D ��1

c .0/. Moreover �, restricted
to M0, is the moment map for !1 restricted to M0.

The line bundle with hyperholomorphic connection on M , and hence its
restriction to M0, was obtained from the prequantum line bundle by rescaling the
hermitian metric by e2�. By what we have just seen, this descends to NM , the
symplectic quotient of N D M0. However, G commutes with the circle action
and so � is G-invariant. It is also the moment map for the induced action on the
quotient, and it follows that rescaling the prequantum hermitian metric on NM gives
the hyperholomorphic bundle. ut

One other aspect of the quotient is that it comes equipped with a canonical
principal G-bundle with a hyperholomorphic connection. Indeed ��1.0/=G D NM
and ��1.0/ is the total space of the principal G-bundle. The induced metric defines
an orthogonal subspace in the tangent space to the orbit directions and this is
the horizontal space of a connection, which is hyperholomorphic. A differential-
geometric proof of this was give in [7] but it can be seen very naturally from the
twistor space point of view which we carry out in the next section. In fact, with
fewer formulae and more geometry, the hyperholomorphic bundle appears much
more naturally using holomorphic techniques.

3 The Twistor Viewpoint

3.1 The Holomorphic Bundle

This section is essentially a review of the construction in [11]. The twistor space
Z of a hyperkähler manifold M is the product Z D M � S2 given the complex
structure .Iu; I / where Iu D u1I C u2J C u2K for a unit vector u 2 R3 and where
the second factor is the complex structure of S2 D P1. The projection � W Z ! P1

is holomorphic and for each x 2M , .x; S2/ is a holomorphic section, a twistor line.
The fibre over u 2 S2 is the hyperkähler manifold M with complex structure

defined by u but it also has a holomorphic symplectic form relative to this complex
structure. Using an affine coordinate � on P1 where u2 C iu3 D 2�=.1C j�j2/ the
complex structures I;�I are defined by � D 0;1 and the holomorphic symplectic
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form is .!2Ci!3/C2i!1�C.!2�i!3/�2. Globally, this is a twisted relative 2-form
!: a holomorphic section of �2T �

Z=P1 .2/ where the .2/ denotes the tensor product
with the line bundle ��O.2/, reflecting the quadratic dependence on �.

Example. The twistor space for flat Hn is the total space of the vector bundle C2n.1/

over P1. This is given by holomorphic coordinates .v; �; �/ 2 C2nC1 on the open set
U defined by � ¤ 1 and .Qv; Q�; Q�/ for V by � ¤ 0, with identification .Qv; Q�; Q�/ D
.v=�; �=�; 1=�/ over � 2 C�. In these coordinates Z is expressed as a C1-product
by the map .z;w; �/ 7! .zC � Nw;w � �Nz; �/.

If a bundle on M has a hyperholomorphic connection its curvature is of type
.1; 1/ with respect to all complex structures parametrized by � and it follows
that its pull-back to Z D M � S2 has a holomorphic structure. Conversely any
holomorphic vector bundle on Z which is trivial on the twistor lines .x; S2/ defines
a hyperholomorphic connection on a vector bundle overM . This is the hyperkähler
version of the Atiyah-Ward result for anti-self-dual connections. For a line bundle
the triviality on twistor lines is simply the vanishing of the first Chern class. To
get a unitary connection we impose a reality condition. It follows that to describe a
hyperholomorphic line bundle on M we simply look for a holomorphic line bundle
LZ on Z determined by the circle action.

Example. In flat space with the action .z;w/ 7! .z; ei�w/ one can calculate the line
bundle directly. The .1; 0/-forms on Z for � ¤ 1 are spanned by dzi C �d Nwi ;
dwi � �dNzi ; d� and then with

loghU D 1

2

X

i

zi Nzi � wi Nwi C �Nzi Nwi C N�ziwi

we find

N@Z loghU D 1

2

X
ziwi d N� C zi d Nzi � wid Nwi C N�d.ziwi /

and hence N@Z@Z loghU D .
P

i �dzi d Nzi C dwid Nwi /=2, the curvature of the hyper-
holomorphic line bundle, on the open set U . Defining loghV D � loghU .�1= N�/ on
V , the pair .hU ; hV / defines a hermitian metric on the line bundle with holomorphic
transition function on U \ V

exp.�
X

i

vi �i =2�/:

The link between the differential geometric and holomorphic points of view is
proved in [11]. In fact the line bundle LZ is essentially the prequantum line bundle
for the family of holomorphic symplectic manifolds defined by Z.

To understand this, and to see where the circle action enters in the construction,
first note that since !2 C i!3 transforms as .!2 C i!3/ 7! ei� .!2 C i!3/,
differentiating with respect to � we have !2 D LX!3 D diX!3 and so !2 and
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similarly !3 are exact. Thus the 2-form .!2C i!3/=2i�C!1C .!2� i!3/�=2i has
the same cohomology class as !1 for any � and is therefore, given the integrality
condition on Œ!1=2��, the curvature of a line bundle onM . In the complex structure
at �, .!2C i!3/=2i�C!1C .!2� i!3/�=2i is of type .2; 0/ therefore has no .0; 2/
part: hence the bundle has a holomorphic structure.

Now observe that the induced circle action on the twistor space generates a
holomorphic vector field V on Z. Since the action fixes ˙I , V projects to the
vector field i�d=d� on P1 vanishing at � D 0;1. This is a holomorphic section s
of O.2/ and so the 2-form we wrote above, .!2C i!3/=2i�C!1C .!2� i!3/�=2i
is, on a specific fibre, the restriction of the meromorphic relative differential form
!=2is 2 ˝2

Z=P1 . It turns out that this relative form is the restriction of a closed
meromorphic 2-form FZ onZ, which is the curvature of a meromorphic connection
on the holomorphic line bundle.

Theorem 3 ([11]). The line bundle LZ on the twistor space Z admits a meromor-
phic connection such that

• There are simple poles at � D 0;1
• The curvature FZ restricts to

1

2i�
.!2 C i!3/C !1 C 1

2i
.!2 � i!3/�

on each fibre over C� � P1

• iV FZ D 0 where V is the vector field generated by the circle action.

Remark. Suppose the holomorphic vector field V integrates to a C�-action. Then
as FZ is closed, the last property tells us that this action gives a symplectic
isomorphism between any of the holomorphic symplectic manifolds over � 2 C�.

Given that such a connection exists, the line bundle is essentially uniquely
determined by the residue of the connection, for given any two such bundles
L;L0 with the connections as above and with the same residue at � D 0;1,
the resulting holomorphic connection on L0L� would have a curvature which is
a holomorphic 2-form. But the normal bundle of a twistor line is C2n.1/ and so
T �
Z Š C2n.�1/ � O.�2/ on such a line. It follows that there are no holomorphic

forms of positive degree on a twistor space since there is a twistor line through each
point. Hence the connection on L0L� is flat and this is in any case the ambiguity in
choosing a prequantum connection.

The residue is canonically determined by the data of the action as follows (see
[11] for details). Since the connection has a singularity on a divisor of O.2/, its
residue will be a section of T �

Z .2/ on that divisor. Now since TP1 Š O.2/ the
projection � W Z ! P1 gives an exact sequence of bundles:

0! O ! T �
Z .2/! T �

Z=P1 .2/! 0
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and the twisted relative form ! identifies TZ=P1 with T �
Z=P1 .2/. The resulting

extension

0! O ! E ! TZ=P1 ! 0

can be identified with TP=C� where P is the holomorphic principal bundle of the
prequantum line bundle for the real symplectic form !1. The vector field V on Z
is tangential to the fibres at � D 0;1 and is X itself. The moment map defines an
invariant lift to P and hence a section of TP=C�. Under the isomorphism above,
this is the residue of the connection. If we restrict it as a form to the fibre � D 0 it is
iV .!2 C i!3/=2i
Examples.

(i) For flat space with the action .z;w/ 7! ei� .z;w/ the line bundle LZ is trivial
and the connection with the trivial action is just the meromorphic one-form

1

2 Q�
X

i

Q�idQvi � Qvid Q�i D �

2

X

i

�i

�
d

vi
�
� vi
�
d
�i

�
D 1

2�

X

i

�idvi � vid �i :

With the action u 7! ein�u it is

2�in
d�

�
C 1

2�

X

i

�i dvi � vi d �i (1)

(ii) Flat space with the other action .z;w/ 7! .z; ei�w/ requires local connection
forms AU ;AV such that AV D AU C g�1

UV dgUV . Define

AU D 1

2�

X
vi d �i AV D � 1

2 Q�
X

i

Qvi d Q�i

then on U \ V

AV � AU D ��
2

X

i

�i

�
d

vi
�
� 1

2�

X

i

vi d �i D �d
 
1

2�

X

i

vi �i

!
:

3.2 Hyperkähler Quotients

In the twistor formalism the hyperkähler quotient is a very natural operation: it is just
the fibrewise holomorphic symplectic quotient as long as the holomorphic vector
fields generated by G integrate to an action of the complexificationGc . Each a 2 g
gives a holomorphic vector field Va tangential to the fibres of � W Z ! P1 and the
three moment maps for Va; a 2 g give a complex section
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� D .�2 C i�3/C 2i�1� C .�2 � i�3/�2

of gc.2/. The twistor space NZ of the hyperkähler quotient is then simply ��1.0/=Gc

where the metric plays a role in determining the stable points for this quotient by
a complex group. With this viewpoint the descent of the hyperholomorphic bundle
through a quotient is, given Theorem 3, the descent of the prequantum line bundle
in a symplectic quotient (it is straightforward to check that the residue descends
appropriately).

As we saw in the previous section, a hyperkähler quotient brings with it a
canonical hyperholomorphicG-bundle. In fact, in the twistor interpretation, ��1.0/
is a principal Gc-bundle over the twistor space NZ D ��1.0/=Gc and it satisfies
the reality condition to define a hyperholomorphic principal G-bundle over NM .
A homomorphism G ! U.1/ then defines a hyperholomorphic line bundle and
this raises the obvious question about whether, given a circle action, this is the
hyperholomorphic bundle of the title.

In fact for a manifold to be a smooth hyperkähler quotient of flat space such
homomorphisms must exist. The standard moment map for a linear action is
quadratic and the origin lies in ��1.0/, so for smoothness we must change this by
a constant. Equivariance however demands that the constant is an invariant in g�: a
homomorphism from g to R.

Consider flat space Hn as a right H-module, then U.n/ � Sp.n/ is the subgroup
commuting with left multiplication by ei� : this is a distinguished complex structure
I . LetG � U.n/ and c 2 g� be aG-invariant element. If c is integral it corresponds
to a homomorphism � W G ! U.1/. Let � be the standard quadratic hyperkähler
moment map for the linear action, then taking the reduction at � D .c; 0; 0/, the
cohomology class of the Kähler form !1 lies in 2�H2. NM;Z/. Indeed the integrality
for c gives a lift of the G-action to the prequantum line bundle on ��1

c .0/ which
descends.

Theorem 4. If the hyperkähler quotient NM of Hn by G with � D .c; 0; 0/ is
smooth, then the hyperholomorphic line bundle is ��1.c; 0; 0/ �G C endowed with
the canonical connection, where G acts via � W G ! U.1/.

Proof. From the twistor point of view the line bundle LZ on the quotient is defined
by the property that local sections are the same as local Gc-invariant sections of the
holomorphic line bundle on ��1.0/. For flat space and the circle action above the
latter, as we observed in Sect. 2.1, is a trivial holomorphic bundle but has a non-
trivial action defined by �. Thus on Z the line bundle is associated to the principal
Gc-bundle ��1.0/ by �. ut

Examples.

(i) The simplest example is the cotangent bundle of a complex Grassmannian,
one of the Hermitian symmetric spaces of Sect. 2.2. In this case the flat space
is M D V � jV for V D Hom.Ck;Cn/ and G D U.n/ acting in the obvious
way. There is just a one-dimensional space of invariant elements in g� and
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H2. NM;Z/ Š Z. Notice that �1 acting on the vector space is represented by
�1 2 U.n/ and hence acts trivially on the quotient. It is therefore e2i� which
acts effectively on the quotient. Since ei� acts on !2 C i!3 in flat space by
multiplication by e2i� , on the quotient the induced action is the standard one:
in fact the fibre action on the cotangent bundle.

(ii) TakingM D V � jV where V D End Ck
� Hom.Ck;Cn/ andG D U.k/ one

obtains the moduli space of U.n/-instantons on R4 of charge k or, with a non-
zero moment map, the moduli space of noncommutative instantons. For n D 1
this is the Hilbert scheme .C2/Œk� of k points on C2 and the hyperholomorphic
line bundle with complex structure I is defined by the exceptional divisor. The
circle action is induced from scalar multiplication on C2 and so the action on
!2 C i!3 is multiplication by e2i� , since on the open set of .C2/Œk� consisting
of the configuration space of C2 the symplectic form is the sum k copies of
dz ^ dw.

(iii) In [13] Kronheimer constructed asymptotically locally Euclidean hyperkähler
metrics on minimal resolutions of Kleinian singularities (C2=� for� � SU.2/
a finite group) by the quotient construction. The construction is as follows. Let
R D L2.� / be the regular representation, C2 the basic representation from
� � SU.2/ and put M D .C2

� End.R//� . Since End.R/ has real structure
A 7! A� and SU.2/ Š Sp.1/ this is a quaternionic vector space and the group
G D U.R/� acts as quaternionic unitary transformations. The ALE space
appears as a hyperkähler quotient of M by the action of G. If R0; : : : ; Rk are
the irreducible representations of � , of dimension di then

R D
M

i

Cdi �Ri

and so U.R/� Š U.d0/� 	 	 	 �U.dk/. From the McKay correspondence each
Ri labels a vertex of an extended Dynkin diagram of type A;D;E and then

M D
M

i!j

Hom.Cdi ;Cdj / (2)

the sum taken over the edges of the diagram, once with each orientation.
As shown in [13], the invariant subspace of g� can be identified with the
Cartan subalgebra of the Lie algebra of type A;D;E as can the coho-
mology H2. NM;R/, with H2. NM;Z/ the root lattice. The case of Ak is the
multi-instanton metric of Sect. 2.3, where the chain of 2-spheres constructed
explicitly realizes the Dynkin diagram of type Ak .

Here the circle action on the symplectic form of the quotient will be the
standard one if there is an element inG which acts as�1. For this, from (2) we
need to show that there exist ci D ˙1, 0 � i � k, such that if i; j are joined
by an edge of the extended Dynkin diagram then ci cj D �1. For A1 this
is trivial. Consider the extended Dynkin diagram (for k > 1) as a simplicial
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complex, then this is the same as asking that the Z2-cocycle associating �1
to each 1-simplex is a coboundary. The diagrams of type Dk;E6;E7;E8 are
contractible and so have zero first cohomology so this is true. For Ak the
diagram is homeomorphic to a circle and the cohomology class inH1 vanishes
if there is an even number of edges, which is when k is odd.

Now the D;E Dynkin diagrams have a trivalent vertex which, in the pres-
ence of our circle action, corresponds to a rational curve of self-intersection�2
which is pointwise fixed, since there cannot be just three fixed points. And, as
pointed out in Sect. 2.3, when k is odd, the central curve in theAk case is fixed.

In these cases, with respect to the complex structure I , we have a ratio-
nal curve of self-intersection �2 and a neighbourhood of such a curve is
biholomorphic to a neighbourhood of the zero section of the cotangent bundle.
Moreover the circle action is the standard scalar multiplication in the fibre.
Applying [4] this means that the Kronheimer metric with circular symmetry
is the unique hyperkähler extension of the induced metric on the distinguished
2-sphere.

3.3 Coadjoint Orbits

The Hermitian symmetric spaces which we considered in Sect. 2.2 are special cases
of coadjoint orbits of compact semi-simple Lie groups with their canonical Kähler
structure. There is a very natural description of the twistor space of a hyperkähler
metric on the cotangent bundle of such a space due originally to Burns [3]. In fact,
that paper only asserts the existence of such a metric in a neighbourhood of the
zero section, but it was written before hyperkähler quotients, and in particular the
infinite-dimensional gauge-theoretic versions, were discovered. Much later, armed
with a knowledge of existence theorems for Nahm’s equations, Biquard [1] revisited
this description being assured of global existence. The action of scalar multiplication
in the cotangent fibres by ei� gives a circle action and we shall now seek a concrete
description of the line bundle LZ using Burns’s approach.

Let G be a semisimple compact Lie group with a bi-invariant metric and
z 2 g be an element with centralizer H . Then in the complex group Gc there
are parabolic subgroups PC; P� with PC \ P� D Hc . The real (co)adjoint orbit
G=H Š Gc=PC Š Gc=P�, and the complex coadjoint orbit is Gc=Hc .

The Lie algebra pC D hC nC where nC is nilpotent, z 2 h by definition and we
define two complex manifolds

Z0 D Gc �PC
fC 	 zC nCg Z1 D Gc �P�

fC 	 zC n�g:

Since P˙ fixes z modulo n˙, the coefficient of z defines a projection �0 W Z0 ! C
and similarly for Z1. The fibre over 0 is the cotangent bundle T �.Gc=PC/ Š
Gc �PC

nC and for � ¤ 0, Gc �PC
f�zC nCg is an affine bundle over Gc=PC.



The Hyperholomorphic Line Bundle 223

There is another description, however, for .g; �z C xC/ 7! .Adg.�z C xC/; �/
identifies the fibre at � ¤ 0 with the Gc-orbit of �z. Note that the map z 7! �z
defines an isomorphism with the orbit of z which is not symplectic for the canonical
Kostant-Kirillov form !can but is for its rescaling !can=�.

The twistor space is obtained by identifying Z0;Z1 over � 2 C� by .x; �/ 7!
.��2x; ��1/. Then the two projections define � W Z ! P1 and !can defines the
twisted relative symplectic form.

We define line bundlesLC; L� overZ0;Z1 by pulling back the prequantum line
bundle on G=H D Gc=P˙ using the projections p0 W Z0 ! Gc=PC; p1 W Z1 !
Gc=P�. Then to define a line bundleLZ onZ we need an isomorphism betweenLC
and L� over C� � P1. But the prequantum line bundle is homogeneous, defined by
representations �˙ W P˙ ! C�, and these agree onHc D PC \P�. This therefore
gives an isomorphism p�CLC Š p��L� on Z0 \Z1 Š Gc=Hc � C�.

To show that this truly is the twistor version of the hyperholomorphic bundle
we may simply note that it does generate a hyperholomorphic line bundle but by
the invariance of the construction it is homogeneous on the zero section G=H and
hence agrees with a hyperholomorphic bundle there. Invoking [4, 5] once more we
see that they are isomorphic everywhere.
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Hodge Numbers for the Cohomology
of Calabi-Yau Type Local Systems

Henning Hollborn and Stefan Müller–Stach

Klaus Hulek zum 60. Geburtstag gewidmet

Abstract We determine the Hodge numbers of the cohomology group
H1
L2
.S;V/ D H1. NS; j�V/ using Higgs cohomology, where the local system V is

induced by a family of Calabi-Yau threefolds over a smooth, quasi-projective curve
S . This generalizes previous work to the case of quasi-unipotent, but not necessarily
unipotent, local monodromies at infinity. We give applications to Rohde’s families
of Calabi-Yau 3-folds.

1 Introduction

The first L2-cohomology group H1
L2
.S;V/ D H1. NS; j�V/, where V is a variation

of Hodge structures V of weight m over a smooth, quasi-projective curve S D
NS n D j

,! NS , carries a pure Hodge structure of weight m C 1 by [12]. The goal
of this paper is to continue the study of its Hodge numbers. We build up on the
work done in [2], using the methods of Zucker [12], but in addition the equivalent
framework of Higgs bundles from the work of Jost, Yang, and Zuo [7]. In [2]
the local monodromies were assumed to be unipotent, but we show that one may
skip this assumption, and get similar formulae nevertheless. For simplicity, we will
assume that all Hodge numbers of V are equal to one. Such situations occur for
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families of elliptic curves, for the transcendental cohomology of families of K3
surfaces with generic Picard number 19, and for certain families of Calabi-Yau
3-folds.

The case of primary interest will be m D 3, i.e., families of Calabi-Yau 3-folds.
However, for other applications we will also state results for the cases m D 1 and
m D 2, which go back to work of Stiller [11] and Cox-Zucker [3].

The group H1
L2
.S;V/ is of interest in theoretical physics [8], as the presence

of codimension two cycles on the total space of a fibration of Calabi-Yau 3-folds
implies that its .2; 2/-Hodge number is non-zero.

The plan of this paper is as follows: After reviewing the basics of L2-Higgs
cohomology, we discuss the cases m D 1, m D 2 and m D 3 separately and state
the results in each case, comparing with the existing literature. In case m D 3 we
extend the results from [2] to the case of non-unipotent monodromies at infinity
and complete some tables of Hodge numbers there. In the last section we discuss
some examples without maximally unipotent degeneration due to J. C. Rohde [4,9].
These examples are interesting as they contain many CM points in moduli induced
by underlying Shimura varieties.

2 The Basic Set-Up: Higgs Cohomology

We consider a smooth, connected, projective family f W X �! S ofm-dimensional
varieties over a smooth quasi-projective curve S . Denote by NS a smooth compact-
ification of S , and by Nf W NX ! NS an extension of f to a flat family over NS .
Associated to this situation is a local system V D Rmf�C and the corresponding
vector bundle V WD V � OS on S . We would like to computeH1. NS; j�V/ in terms
of the degeneration data of Nf .

We denote by T the local monodromy matrix around a point in D at infinity. V
has quasi-unipotent monodromies at all points of D WD NS n S . If Nf is semistable
in codimension one, then the local monodromies are unipotent. After Deligne, the
vector bundle V has a quasi-canonical extension NV to NS as a vector bundle together
with a logarithmic Gauß-Manin connection

Nr W NV ! NV �˝1NS.logD/:

In the case of unipotent local monodromies NV has degree zero, but not in the general
case. The Hodge filtration V D F 0 � F 1 � 	 	 	 � Fm � FmC1 D 0 also extends
to NS and we define

Ep;m�p WD F p=F pC1



Hodge Numbers for the Cohomology of Calabi-Yau Type Local Systems 227

as vector bundles on NS . Let

E WD
mM

pD0
Ep;m�p

be the associated Higgs bundle with Higgs field

# W E ! E �˝1NS .logD/;

where

# W Ep;m�p ! Ep�1;m�pC1
�˝1NS.logD/

is induced by Nr and Griffiths transversality. In particular, the Higgs bundle induces
a complex of vector bundles

E� W E #�!E �˝1NS.logD/:

Since dim.S/ D 1 here, the usual condition # ^ # D 0 is empty, and the complex
lives only in degrees 0 and 1. The hypercohomology group H1.E�/ computes
H1.S;V/ [7, 12].

If the local monodromy matrix T at some point P 2 D is unipotent, then its
logarithm N WD log.T / is nilpotent. Any nilpotent endomorphism N of a vector
space V0 satisfying Nm ¤ 0 and NmC1 D 0 defines a natural increasing filtration
on V0:

0 � W�m � W�mC1 � 	 	 	 � W0 � W1 � 	 	 	 � Wm D V0;

which has the following definition: if NmC1 D 0 but Nm ¤ 0, we put

Wm�1 D Ker.Nm/; W�m D Im.Nm/:

The further groupsWk for�m < k � m�2 are inductively constructed by requiring
that N.Wk/ D Im.N /\Wk�2 � Wk�2 and

Nk W GrWk .V0/! GrW�k.V0/

are isomorphisms. If V0 is the fiber of V at a smooth point this filtration is called the
monodromy weight filtration. Prop. 4.1. of [12] states that in the unipotent case one
has a resolution which locally looks like

0! j�V! ŒW0 C t NV �
Nr�!dt

t
� ŒW�2 C t NV �! 0:
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In the quasi-unipotent case with no unipotent part one has on the other hand locally
a resolution of the form

0! j�V! NV Nr�!dt

t
� NV ! 0

by Prop. 6.9. of [12] and the stalk of j�V at t D 0 is zero.
Zucker also studies the Hodge filtration on NV . Theorem 11.6 in loc. cit. gives

eventually a representation of H1. NS; j�V/ and its Hodge components. Instead of
this de Rham representation we will switch to the corresponding Higgs version.

We can use the monodromy weight filtration W� on each fiber EP ; P 2 D to
define the L2-Higgs complex

.˝�
.2/.E/; �/ W ˝0

.2/.E/ � E; ˝1
.2/.E/ � E �˝1NS.logD/;

The sub-sheaves in each degree are defined near P 2 D as

˝0
.2/.E/ WD W0 C tE; ˝1

.2/.E/ WD .W�2 C tE/�˝1NS.logD/:

The notation is such that t is a local parameter with P D ft D 0g 2 D and the
monodromy weight filtration is given by the logarithm N D log.T /. At any point
P 2 S outside D, the L2-Higgs complex is just given by the Higgs bundle.

It can be shown [7] that the hypercohomology of the L2� Higgs complex
.˝�

.2/.E/; �/ is isomorphic to the L2-cohomology group

Hk
.2/.S;E/ D Hk. NS; j�V/ D H

k.˝�
.2/.E/; �/:

In the following sections, we study the local structure of .˝�
.2/; �/ for the case of

logarithmic Higgs bundles of type .1; 1; : : : ; 1; 1/, so that each summandEp;m�p of
E is a line bundle. For the points P 2 D one has to distinguish cases corresponding
to the possible Jordan normal forms of the endomorphismN . The decomposition

E D
mM

pD0
Ep;m�p

induces a decomposition

˝�
.2/.E/ D

mM

pD0
˝�
.2/.E/

p:m�p;

where

˝0
.2/.E/

p;m�p WD ˝0
.2/.E/ \ Ep;m�p;

˝1
.2/.E/

p;m�p WD ˝1
.2/.E/ \Ep�1;m�pC1

�˝1NS.logD/:
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The hypercohomology spectral sequence associated to this filtration induces the
Hodge structure on Hk

.2/.S;E/.

3 Elliptic Families

In the case of families of elliptic curves (m D 1) we obtain from the previous results:

Theorem 1 (Zucker [12]). The L2-Higgs complex for E is given by:

˝0
.2/.E/

1;0 D E1;0.�I /
˝0
.2/.E/

0;1 D E0;1

˝1
.2/.E/

1;0 D E1;0.II/�˝1NS
˝1
.2/.E/

0;1 D E0;1.II/�˝1NS

Here I is the set of points with unipotent local monodromy (denoted by type Ib in
the Kodaira classification of singular fibers), II the set of remaining non-unipotent
singular points.

Proof. Elliptic fibrations have either unipotent local monodromy T at points of type
I , where the Jordan normal form of T is given by the matrix

T D


1 1

0 1

�

or non-unipotent local monodromies, where T is equivalent to

T D


	 1

0 	

�
; or T D



	1 0

0 	2

�
:

for some roots of unity 	; 	i ¤ 1. In the first case, Zucker [12, Prop. 4.1.] gives a
monodromy weight filtration locally at a point P D ft D 0g 2 I which looks like
W0 D W�1 D tE1;0

� E0;1 and W�2 D tE , hence the claim. At a non-unipotent
point P 2 II, [12, Prop. 6.9.] shows the claim as well. ut

These observations imply the following well-known theorem.

Theorem 2 (Cox-Zucker [3]). Assume that V is irreducible, and that # W E1;0 !
E0;1

�˝1NS.logD/ is a non-zero map with aC jIIj > 0, where a WD degE1;0. Then

the Hodge numbers for the pure Hodge structure of weight 2 on H1. NS; j�V/ are

h2;0 D h0;2 D g � 1C aC jIIj; h1;1 D 2g � 2 � 2aC jI j:
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This implies the well-known formula h1.j�V/ D 4g � 4 C jI j C 2jIIj, see [3,
page 39].

Proof. The Higgs complex is given by

Note that both ˝0
.2/.E/

0;1 D E0;1 and ˝1
.2/.E/

1;0 D E1;0.II/ � ˝1NS have neither

incoming nor outgoing Higgs differential. By Hodge duality, i.e., h2;0 D h0;2, we
get h1.E0;1/ D h0.E1;0.II/�˝1NS/. Under the assumption aCjIIj > 0 this gives the
formula for h2;0 D h0;2 by applying Riemann-Roch to the line bundleE1;0.II/�˝1NS .

h1;1 is h0 of the cokernel of # W ˝0
.2/.E/

1;0 ! ˝1
.2/.E/

0;1, hence the difference of
the degrees of both line bundles, from which the rest of the assertion follows. ut
Remark 1. The assumptions in the theorem are not independent. The condition that
a C jIIj > 0 is not always satisfied, but in many cases: the parabolic degree of any
subbundle F � E is defined as

degp F WD degF C
X

P2II

X

0	˛<1
˛ dim.Gr˛FP /;

where Gr˛ is the graded piece of the parabolic filtration corresponding to the
monodromy exp.2�i˛/. For F D E0;1, a Higgs subbundle of .E; #/ with # D 0,
one gets degp.E

0;1/ � degp.E/ D 0 by the Simpson correspondence [6, 10, Prop.
2.1], which implies degp.E

1;0/ D � degp.E
0;1/ � 0. Therefore, if the double sum

is not zero, i.e., some ˛ > 0 occurs, then 0 � degp E
1;0 < aC jIIj, since all Hodge

numbers are 1.

Remark 2. In the case NS D P1 and degE0;1 � �2, the proof states that h1.E0;1/ D
h0..E0;1/_ �˝1NS / D h0.E1;0.II/�˝1NS /. This implies that E0;1 D .E1;0/�1.�II/.

4 Families of K3 Surfaces

With the previous notation, we consider a smooth projective family of K3 surfaces
f W X �! S with generic Picard number 19 over a smooth curve S . Associated
to this situation is a local system V � R2f�C of rank 3, given fiberwise by the
transcendental cohomology. Let

E WD E2;0
�E1;1

�E0;2
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be the associated Higgs bundle with Higgs field

# W E ! E �˝1NS.logD/:

Now we make the following

Assumption. Each local monodromy is either unipotent or has no unipotent part.
In other words, there are no mixed cases with non-zero unipotent and non–unipotent
pieces. This implies that the Jordan normal forms for the local monodromies are

T D
0

@
1 1 0

0 1 1

0 0 1

1

A ;

0

@
1 1 0

0 1 0

0 0 1

1

A ;

0

@
	 1 0

0 	 1

0 0 	

1

A ;

0

@
	1 0 0

0 	2 0

0 0 	3

1

A or

0

@
	1 1 0

0 	1 0

0 0 	2

1

A ;

with 	; 	i ¤ 1 roots of unity.

Lemma 1. Only the Jordan normal forms

TI D
0

@
1 1 0

0 1 1

0 0 1

1

A ; TII D
0

@
	 1 0

0 	 1

0 0 	

1

A ; TII D
0

@
	1 0 0

0 	2 0

0 0 	3

1

A or TII D
0

@
	1 1 0

0 	1 0

0 0 	2

1

A

with 	; 	i ¤ 1 occur. The case I is unipotent, the cases II are strictly quasi–
unipotent.

Proof. In the unipotent case, as in [2, p. 11], both maps in the sequence

E2;0 N!E1;1 N!E0;2

are dual to each other. Hence, if N2 D 0, both must be zero, which implies N D 0.
This excludes the second matrix. ut
Theorem 3. The L2-Higgs complex for E is given by:

˝0
.2/.E/

2;0 D E2;0.�I /
˝0
.2/.E/

1;1 D E1;1

˝0
.2/.E/

0;2 D E0;2

˝1
.2/.E/

2;0 D E2;0.II/�˝1NS
˝1
.2/.E/

1;1 D E1;1.II/�˝1NS
˝1
.2/.E/

0;2 D E0;2.I C II/�˝1NS

Here I is again the set of points with unipotent local monodromy, II the set of
remaining non-unipotent singular points.
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Proof. The proof is exactly as in the casem D 1 using [12, Props. 4.1 and 6.9.]. ut
Theorem 4. Assume that V is irreducible, and that # W E2;0 ! E1;1

�˝1NS .logD/
as well as # W E1;1 ! E0;2

�˝1NS .logD/ are non-zero maps with aCjIIj > 0, where

a WD degE2;0. Then the Hodge numbers for the pure Hodge structure of weight 3
on H1. NS; j�V/ are

h3;0 D h0;3 D g � 1C aC jIIj; h2;1 D h1;2 D 2g � 2 � aC jI j C 1

2
jIIj:

In total, one has h1.j�V/ D 6g�6C2jI jC3jIIj, which agrees with [2, Prop 3.6.].

Proof. The Higgs complex is given by

Note that both ˝0
.2/.E/

0;2 D E0;2 and ˝1
.2/.E/

2;0 D E2;0.CII/ �˝1NS have neither

incoming nor outgoing Higgs differential. Hodge duality, i.e., h3;0 D h0;3, implies
h0.E2;0.II/ � ˝1NS/ D h1.E0;2/. Riemann-Roch applied to E2;0.II/ then gives the
formula for h3;0 D h0;3 under the assumption aC jIIj > 0.

The space H2;1 is represented as global sections of the cokernel of the map

˝0
.2/.E/

2;0 ��! ˝1
.2/.E/

1;1;

hence we have to count the zeros of a map of line bundles

E2;0.�I / �! E1;1.CII/�˝1NS :

This number is given by the difference in degrees of the line bundles, so

h2;1Dh1;2D degE1;1.CII/�˝1NS�degE2;0.�I / D 2g�2CdegE1;1�aCjI jCjIIj:

It is not true that degE1;1 D 0 in the non–unipotent case. Indeed let b WD degE1;1.
We thus obtain h2;1 D 2g � 2C b � aC jI j C jIIj.

Now we use a checking sum: By [2, Prop 3.6.] we know that

h1.j�V/ D h3;0 C h2;1 C h1;2 C h0;3 D 6g � 6C 2jI j C 3jIIj;
since by our assumption non–unipotent local monodromies have zero invariant
subspace. This implies that b D � 1

2
jIIj. ut
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Remark 3. Condition a C jIIj > 0 again follows in many cases, see Remark 1.
Assume that NS D P1 and that degE0;2 � �2. The proof states that h1.E0;2/ D
h0..E0;2/_ �˝1NS / D h0.E2;0.II/�˝1NS/. This implies that E0;2 D .E2;0/�1.�II/.

5 Families of Calabi–Yau 3–Folds

We consider a smooth projective family of Calabi–Yau 3–folds f W X �! S over a
smooth curve S as in [2]. Assume that NS is a smooth compactification and consider
a real VHS V � R3f�C of rank 4 with Hodge numbers .1; 1; 1; 1/. We use the
previous notation and make again the assumption that each local monodromy is
either unipotent or has no unipotent part.

This implies that the Jordan forms for the local monodromies T are

0

BB@

1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

1

CCA ;

0

BB@

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1

CCA ;

0

BB@

1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1

1

CCA ;

0

BB@

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

1

CCA ;

0

BB@

	1 0 0 0

0 	2 0 0

0 0 	3 0

0 0 0 	4

1

CCA ;

0
BB@

	1 0 0 0

0 	2 1 0

0 0 	2 0

0 0 0 	3

1
CCA ;

0
BB@

	1 1 0 0

0 	1 0 0

0 0 	2 1

0 0 0 	2

1
CCA ;

0
BB@

	1 1 0 0

0 	1 1 0

0 0 	1 0

0 0 0 	2

1
CCA or

0
BB@

	 1 0 0

0 	 1 0

0 0 	 1

0 0 0 	

1
CCA ;

with 	; 	i ¤ 1 roots of unity.

Lemma 2. Only the Jordan normal forms

TI D

0

BB@

1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

1

CCA ; TII D

0

BB@

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1

CCA ; TIII D

0

BB@

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

1

CCA ;

TIV D

0
BB@

	1 0 0 0

0 	2 0 0

0 0 	3 0

0 0 0 	4

1
CCA ; TIV D

0
BB@

	1 0 0 0

0 	2 1 0

0 0 	2 0

0 0 0 	3

1
CCA ; TIV D

0
BB@

	1 1 0 0

0 	1 0 0

0 0 	2 1

0 0 0 	2

1
CCA ;

TIV D

0

BB@

	1 1 0 0

0 	1 1 0

0 0 	1 0

0 0 0 	2

1

CCA or TIV D

0

BB@

	 1 0 0

0 	 1 0

0 0 	 1

0 0 0 	

1

CCA
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with 	; 	i ¤ 1 occur. The cases I , II and III are unipotent, the cases IV are strictly
quasi–unipotent.

Proof. See the discussion of normal forms in [2, Sect. 1]. ut
Theorem 5. The L2-Higgs complex for E is given by:

˝0
.2/.E/

3;0 D E3;0.�II � III/

˝0
.2/.E/

2;1 D E2;1.�I � III/

˝0
.2/.E/

1;2 D E1;2.�II/

˝0
.2/.E/

0;3 D E0;3

˝1
.2/.E/

3;0 D E3;0.IV/�˝1NS
˝1
.2/.E/

2;1 D E2;1.IV/�˝1NS
˝1
.2/.E/

1;2 D E1;2.IV/�˝1NS
˝1
.2/.E/

0;3 D E0;3.III C IV/�˝1NS

Here I , II, III are again the sets of points with unipotent local monodromy, IV the
set of remaining non-unipotent singular points.

Proof. The proof is exactly as in the cases m D 1 and m D 2 using [12, Props. 4.1
and 6.9.]. ut

In summary, we get the following result, which agrees with [2, Prop 3.6.] in the
unipotent case.

Theorem 6. Assume that V is irreducible, and that # W E3;0 ! E2;1
�˝1NS .logD/

as well as # W E2;1 ! E1;2
�˝1NS .logD/ and # W E1;2 ! E0;3

� ˝1NS.logD/ are

non-zero maps with aCjIVj > 0, where a WD degE3;0 and b WD degE2;1. Then the
Hodge numbers for the pure Hodge structure of weight 4 on H1. NS; j�V/ are

h4;0Dh0;4Dg � 1C aC jIVj; h3;1Dh1;3D 2g � 2C b � aC jIIj C jIIIj C jIVj;
h2;2 D jI j C jIIIj � 2b C 2g � 2:

In total, one has

h1.j�V/ D 8g � 8C jI j C 2jIIj C 3jIIIj C 4jIVj:

Proof. The Higgs complex is given by
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Note that both ˝0
.2/.E/

0;3 D E0;3 and ˝1
.2/.E/

3;0 D E3;0.IV/ � ˝1NS have neither

incoming nor outgoing Higgs differential. Hodge duality, i.e., h4;0 D h0;4, implies
h0.E3;0.IV/ �˝1NS / D h1.E0;3/. Riemann-Roch applied to E3;0.IV/ then gives the
formula for h4;0 D h0;4 under the assumption aC jIVj > 0.

As in [2] the space H3;1 is represented as global sections of the cokernel of the

map ˝0
.2/.E/

3;0 ��! ˝1
.2/.E/

2;1, hence we have to count the zeros of a map of line
bundles

E3;0.�II � III/ �! E2;1.IV/�˝1NS :

This number is therefore given by the difference in degrees of the line bundles, i.e.,

h3;1Dh1;3D degE2;1.IV/�˝1NS�degE3;0.�II�III/DbC2g�2�aCjIIjCjIIIjCjIVj:

In a similar way, H2;2 is represented as global sections of the cokernel of the

map ˝0
.2/.E/

2;1 ��! ˝1
.2/.E/

1;2, hence we have to count the zeros of the map of
line bundles

E2;1.�I � III/ �! E1;2.CIV/�˝1NS :

ut
Remark 4. Condition a C jIVj > 0 again follows in many cases, see Remark 1.
Assume that NS D P1 and that deg.E0;3/ � �2. The proof states that h1.E0;3/ D
h0..E0;3/_ �˝1NS / D h0.E3;0.IV/�˝1NS /. This implies that E0;3 D .E3;0/�1.�IV/.
Hence, if a0 WD � degE0;3, one has a0 D aC jIVj.

It is not clear that degE1;2 D � degE2;1. Indeed let b0 WD � degE1;2. We obtain
h2;2 D jI j C jIIIj C jIVj � b � b0 C 2g � 2.

Now we use a checking sum: By [2, Prop 3.6.] we know that

h1.j�V/ D h4;0C h3;1Ch2;2Ch1;3C h0;4 D 8g� 8C jI j C 2jIIj C 3jIIIj C 4jIVj;

since by our assumption non–unipotent local monodromies have zero invariant
subspace. This implies that b0 D b C jIVj.

Using the formulas obtained above, one can revisit the tables for Hodge numbers
in [2] and add the degrees a and b of the Hodge bundles (see table). In the table, e
is the degree of a covering map P1 ! P1 of the form z 7! ze ramified in 0 and1.
The numbering follows the database (Almkvist G, van Enckevort C, van Straten D,
Zudilin W, Tables of Calabi-Yau equations, arXiv:math/0507430, unpublished).

In the following sections, we need in addition the following upper bound for a
from the work of Jost and Zuo:
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Theorem 7 ([6, Theorem 1]).

degE3;0 �


1

2
.h2;1 � h2;10 /C .h3;0 � h3;00 /

�
.2g � 2C ]D/;

where a subscript 0 denotes the kernel of # . More generally, if V is a real VHS of
odd weight k D 2l C 1 � 1, then one has

degEk;0 �
0

@1
2
.hk�l;l � hk�l;l

0 /C
l�1X

jD0
.hk�j;j � hk�j;j

0 /

1

A .2g � 2C ]D/:

If we assume that all maps # are non-zero (except the one on E0;3), and all ranks
hp;q are 1 as in our case, then the inequality simply becomes:

degE3;0 � 3

2
.2g � 2C ]D/:

In the case NS D P
1 we therefore obtain degE3;0 � 3

2
.]D � 2/. In the case of 3

singular points, we get degE3;0 � 3
2
, hence a D degE3;0 � 1.

6 Rohde’s Example

In [4, 9] one finds examples of one-dimensional families f W X ! S of certain
Calabi-Yau 3-folds. Their construction is induced by a Borcea-Voisin method, i.e.,
is obtained from a product of a fixed elliptic curve E and a K3 surface S	 by
application of certain automorphisms. To describe the underlying VHS, in section 2
of [4] a family of genus two Picard curves C	 is constructed, given by a triple
covering C	 ! P1, and thus coming with an automorphism � of order three.
The cohomology H1.C	;Q/ has an eigenspace decomposition according to the
eigenvalues � and N� D �2 and it is strongly related to the cohomology of the fibers
of f . Namely, one has

H3;0.X	;Q/ D H1;0.C	/N� ; H
2;1.X	;Q/ D H0;1.C	/N� ;

H1;2.X	;Q/ D H1;0.C	/� ; H
0;3.X	;Q/ D H0;1.C	/� :

Furthermore, the family C	 is induced from a Shimura family, see [4]. As a
consequence, the Higgs map # induces non-zero maps

# W E3;0 �! E2;1
�˝1NS .logD/; # W E1;2 �! E0;3

�˝1NS .logD/
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# Model T1 e h1.j�V/ h4;0 h3;1 h2;2 a b

1 P
4Œ5� IV 1 0 0 0 0 0 0

2 1 0 0 1 0 0
5 0 0 0 0 1 2
10 1 1 1 1 2 4

2 P.1; 1; 1; 2; 5/Œ10� IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
5 4 0 0; 1; 2 4; 2; 0 0 0; 1; 2

10 5 0 0; 1; 2 5; 3; 1 1 2; 3; 4

3 P7Œ2; 2; 2; 2� III 1 0 0 0 0 0 0
2 0 0 0 0 1 1
2k 2k � 2 k � 1 0 0 k k

4 P5Œ3; 3� II 1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 0 0 0 0 1 1
6 3 1 0 1 2 2

5 P6Œ2; 2; 3� I 1 0 0 0 0 0 0
6 2 0 0 or 1 2 or 0 1 2 or 3

6 P
5Œ2; 4� I 1 0 0 0 0 0 0

4 0 0 0 0 1 2
8 4 1 1 0 2 4

7 P.1; 1; 1; 1; 4/Œ8� IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
4 3 0 0 or 1 3 or 1 0 0 or 1
8 3 0 0 or 1 3 or 1 1 2 or 3

8 P.1; 1; 1; 1; 2/Œ6� IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
6 1 0 0 1 1 2

9 P.1; 1; 1; 1; 4; 6/Œ2; 12� IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 2 0 0 or 1 2 or 0 0 0 or 1
4 3 0 0 or 1 3 or 1 0 0 or 1
6 5 0 0,1,2 5,3,1 0 0,1,2
12 7 0 0,1,2,3 7,5,3,1 1 2,3,4,5

10 P.1; 1; 1; 1; 2; 2/Œ4; 4� II 1 0 0 0 0 0 0
2 1 0 0 1 0 0
4 1 0 0 1 1 1
8 5 1 0 3 2 2

11 P.1; 1; 1; 2; 2; 3/Œ4; 6� IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
12 7 0 0; 1; 2; 3 7; 5; 3; 1 1 2; 3; 4; 5

12 P.1; 1; 1; 1; 1; 2/Œ3; 4� IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 2 0 0 or 1 2 or 0 0 0 or 1
12 7 0 0; 1; 2; 3 7; 5; 3; 1 1 2; 3; 4; 5

(continued)
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# Model T1 e h1.j�V/ h4;0 h3;1 h2;2 a b

13 P.1; 1; 2; 2; 3; 3/Œ6; 6� II 1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 2 0 0 or 1 2 or 0 0 0 or 1
6 3 0 0 or 1 3 or 1 1 1 or 2

14 P.1; 1; 1; 1; 1; 3/Œ2; 6� I 1 0 0 0 0 0 0
3 2 0 0 or 1 2 or 0 0 0 or 1
6 2 0 0 or 1 2 or 0 1 2 or 3

induced by the corresponding Higgs fields for the familyC	, and the zero morphism

# W E2;1 0�!E1;2
�˝1NS .logD/;

by noting that Higgs fields respect eigenspace decompositions.
In this case one knows a little bit more about a and b: One has NS D P1 and

]D D 3 singular points, one of them of type IV . Hence jIVj D 1 and jIIj D 2 in
our case. This follows from [4, Sec. 2] from the fact that the resulting Picard-Fuchs
equation is a classical hypergeometric equation with singularities at 0; 1;1. Let
F D F 1;0

� F 0;1 be the Higgs bundle associated to the variation of the genus two
curves C	. Then F decomposes according to eigenspaces, i.e., F D F� � FN� . Due

to the existence of non-unipotent points, F 1;0
� and F 0;1

� for � 2 f�; N�g are not dual
to each other. One has:

Lemma 3. In Rohde’s example, each rank two Higgs bundle F� has a maximal
Higgs field, i.e.,

# W F 1;0
�

Š�!F 0;1
� �˝1

P1
.logD/:

is an isomorphism. Furthermore, degF 1;0
� D 0 and degF 0;1

� D �1.

Proof. Theorem 7, i.e., the Arakelov inequality of Jost and Zuo [6, Thm. 1], implies
that degF 1;0

� � 1
2
, hence degF 1;0

� � 0. On the other hand, one has degF 1;0
� � 0:

Consider the local system W� corresponding to F�. It satisfies h2.P1; j�W�/ D
h0.P1; j�W�/ D 0 by the argument of [2, Prop 3.6.]. The Higgs complex for F� is
given by

as in the proof of Theorem 2. Therefore, H1.P1; F
1;0
� .II/ � ˝1

P1
/ is the direct

summand of Hodge type .2; 1/ inside H2.P1; j�W�/ D 0. Since jIIj D 1, we
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obtain 0 D h1.P1; F 1;0
� .1/�˝1

P1
/ D h0.P1; .F 1;0

� /�1.�1//. Therefore F 1;0
� D OP1 .

In a similar way,H0.F
0;1
� / contributes toH0.P1; j�W�/ D 0, therefore degF 0;1

� <

0. Since # is a non-zero map, and deg.˝1
P1
.logD// D 1, we get that degF 0;1

� D �1
and F 0;1

� D OP1 .�1/. ut
Corollary 1. It follows that for the Higgs bundle E one has a D 0 and b D �1.
Furthermore, the Higgs maps # W E3;0 �! E2;1

�˝1
P1
.logD/, and # W E1;2 �!

E0;3
�˝1

P1
.logD/ are both isomorphisms.

Note that the identities for a0 D aC jIVj, b0 D b C jIVj in Remark 4 still hold.
The properties of E we have shown are summarized in the following definition.

Definition 1. A logarithmic Higgs bundleE D E3;0
�E2;1

�E1;2
�E0;3 of weight

m D 3 and rank 4 on NS is called decomposed, if # W E3;0 ! E2;1
�˝1NS.logD/ and

# W E1;2 ! E0;3
�˝1NS.logD/ are isomorphisms, and # W E2;1 ! E1;2

�˝1NS.logD/
is the zero map.

Theorem 8. TheL2-Higgs cohomology of a decomposed Higgs bundleE D E3;0
�

E2;1
� E1;2

� E0;3 of weight m D 3 and rank 4 with a C jIVj > 0 is described as
follows:

h1
L2
.S;V/.4;0/Dh0. NS;E3;0.IV/�˝1

NS
/Dg � 1C aC jIV j; h1

L2
.S;V/.3;1/ D h1

L2
.S;V/.1;3/ D 0;

h1
L2
.S;V/.2;2/ D h0. NS;E1;2.IV/�˝1

NS
/� h1. NS;E2;1.�I � III// D 2h0. NS;E1;2.IV/�˝1

NS
/:

The assumptions imply that jI j D jIIIj D 0 and a D b C 2g � 2C ]D.

Proof. We use the same notations for the L2-Higgs complex˝0
.2/.E/

#!˝1
.2/.E/ as

above. The symmetry of decomposed Higgs bundles implies that jI j D jIIIj D
0, since such degenerations cannot occur. As E is decomposed, also the arrow
˝0
.2/.E/

2;1 ! ˝1
.2/.E/

1;2 is still zero. Also the two non-zero arrows in the following
diagram remain isomorphisms (which implies again that jI j D 0):

It follows that a D b C 2g � 2C jIIj C jIIIj C jIVj, and by Riemann-Roch, using
the assumption aC jIVj > 0,

h1
L2
.S;V/.4;0/ D h1

L2
.S;V/.0;4/ D h0. NS;E3;0.IV/�˝1NS/ D g � 1C aC jIVj;
h1
L2
.S;V/.3;1/ D h1

L2
.S;V/.1;3/ D 0;

h1
L2
.S;V/.2;2/ D h0. NS;E1;2.IV/�˝1NS /� h1. NS;E2;1.�I � III//:
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In the last line, the two summands are dual to each other, which implies again jI j D
jIIIj D 0, and h1

L2
.S;V/.2;2/ D 2h0. NS;E1;2.IV/�˝1NS /. ut

Theorem 8 implies:

Corollary 2. In Rohde’s example one has h1
L2
.S;V/ D 0, consequently all Hodge

numbers vanish:

h1
L2
.S;V/.4;0/Dh1

L2
.S;V/.0;4/Dh1

L2
.S;V/.3;1/Dh1

L2
.S;V/.1;3/Dh1

L2
.S;V/.2;2/D0:

In particular, since jI j D jIIIj D 0 and jIIj D 2, jIVj D 1, the check sum

h1.j�V/ D h4;0Ch3;1Ch2;2Ch1;3Ch0;4 D 8g�8CjI jC2jIIjC3jIIIjC4jIVj D 0
is correct. Base change maps e W P1 ! P1 with prescribed ramification lead to more
families where the theorem can be applied. Details can be found in the forthcoming
thesis of Henning Hollborn [5].
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of K3Œn�-Type
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birthday.

Abstract Let X be a compact Kähler holomorphic-symplectic manifold, which
is deformation equivalent to the Hilbert scheme of length n subschemes of a K3
surface. Let L be a nef line-bundle onX , such that the top power c1.L /2n vanishes
and c1.L / is primitive. Assume that the two dimensional subspace H2;0.X/ �

H0;2.X/ ofH2.X;C/ intersectsH2.X;Z/ trivially. We prove that the linear system
of L is base point free and it induces a Lagrangian fibration onX . In particular, the
line-bundle L is effective. A determination of the semi-group of effective divisor
classes on X follows, when X is projective. For a generic such pair .X;L /, not
necessarily projective, we show thatX is bimeromorphic to a Tate-Shafarevich twist
of a moduli space of stable torsion sheaves, each with pure one dimensional support,
on a projective K3 surface.
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1 Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact
Kähler manifold such that H0.X;^2T �X/ is generated by an everywhere non-
degenerate holomorphic 2-form [4]. A compact Kähler manifold X is said to
be of K3Œn�-type, if it is deformation equivalent to the Hilbert scheme SŒn� of
length n subschemes of a K3 surface S . Any manifold of K3Œn�-type is irreducible
holomorphic symplectic [4]. The second integral cohomology of an irreducible
holomorphic symplectic manifold X admits a natural symmetric non-degenerate
integral bilinear pairing .�; �/ of signature .3; b2.X/ � 3/, called the Beauville-
Bogomolov-Fujiki pairing. The Beauville-Bogomolov-Fujiki pairing is monodromy
invariant, and is thus an invariant of the deformation class of X .

Definition 1.1. An irreducible holomorphic symplectic manifold X is said to be
special, if the intersection in H2.X;C/ of H2.X;Z/ and H2;0.X/ �H0;2.X/ is a
non-zero subgroup.

The locus of special periods forms a countable union of real analytic subvarieties
of half the dimension in the corresponding moduli space.

Definition 1.2. Let X be a 2n-dimensional irreducible holomorphic symplectic
manifold and L a line bundle onX . We say that L induces a Lagrangian fibration,
if it satisfies the following two conditions.

1. h0 .X;L / D nC 1.
2. The linear system jL j is base point free, and the generic fiber of the morphism
�WX ! jL j� is a connected Lagrangian subvariety.

A line bundle L on a holomorphic symplectic manifold X is said to be nef,
if c1.L / belongs to the closure in H1;1.X;R/ of the Kähler cone of X .

Theorem 1.3. Let X be an irreducible holomorphic symplectic manifold of K3Œn�-
type and L a nef line-bundle, such that c1.L / is primitive and isotropic with respect
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to the Beauville-Bogomolov-Fujiki pairing. Assume that X is non-special. Then the
line bundle L induces a Lagrangian fibration � W X ! jL j�.

See Theorem 6.3 for a variant of Theorem 1.3 dropping the assumption that L is
nef. Theorem 1.3 is proven in Sect. 6. The proof relies on Verbitsky’s Global Torelli
Theorem [14, 40], on the determination of the monodromy group of X [21, 22],
and on a result of Matsushita that Lagrangian fibrations form an open subset in the
moduli space of pairs .X;L / [27]. Let us sketch the three main new ingredients in
the proof of Theorem 1.3.

(1) We associate to the pair .X;L / in Theorem 1.3 a projective K3 surface S
with a nef line bundle B of degree 2n�2

d2
, where d WD gcdf.c1.L /; 	/ W

	 2 H2.X;Z/g. The sub-lattice c1.B/? orthogonal to c1.B/ in H2.S;Z/

is Hodge-isometric to c1.L /?=Zc1.L /. The construction realizes the period
domain ˝20 of the pairs .X;L / as an affine line bundle over a period domain
˝19 of semi-polarizedK3 surfaces (Sect. 4).

(2) The bundle map q W ˝20 ! ˝19 is invariant with respect to a subgroup Q of
the monodromy group (Lemma 5.3). The groupQ is isomorphic to c1.B/?.Q
acts on the fiber of q over the period of a semi-polarized K3 surface .S;B/.
Similarly, the lattice c1.B/? projects to a subgroup of H0;2.S/, which acts on
H0;2.S/ by translations. There exists an isomorphism, of the fiber of q with
H0;2.S/, which is equivariant with respect to the two actions (Lemma 5.4).

(3) The fiber of q over the period of a semi-polarized K3 surface .S;B/ contains
the period of a moduli space of sheaves on S with pure one-dimensional support
in the linear system jBd j (Sect. 5.1). Each such moduli space of sheaves is
known to be a Lagrangian fibration [34].

The assumption that X is non-special in Theorem 1.3 is probably not necessary.
Unfortunately, our proof will rely on it. When X is non-special the Q-orbit, of
every point in the fiber of q through the period of X , is a dense subset of the fiber
(Lemma 5.4). This density will have a central role in this paper due to the following
elementary observation.

Observation 1.4. Let T be a topological space andQ a group acting on T . Assume
that the Q-orbit of every point of T is dense in T . Then any nonempty Q-invariant
open subset of T must be the whole of T .

The above observation will be used in an essential way in three different proofs
(Theorem 6.1, Proposition 7.7, and Theorem 7.11).

The statement of the next result requires the notion of a Tate-Shafarevich twist,
which we now recall. Let M be a complex manifold and � W M ! B a proper
map with connected fibers of pure dimension n. Assume that the generic fiber of
� is a smooth abelian variety. Let fUig be an open covering of B in the analytic
topology. Set Uij WD Ui \ Uj and Mij WD ��1.Uij/. Assume given a 1-co-cycle gij

of automorphisms of Mij, satisfying � ı gij D � , and acting by translations on the
smooth fibers of � . We can re-glue the open covering fMig ofM using the co-cycle
fgijg to get a complex manifold M 0 and a proper map � 0 W M 0 ! B , whose fibers
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are isomorphic to those of � . We refer to .M 0; � 0/ as the Tate-Shafarevich twist of
.M; �/ associated to the co-cycle fgijg. Tate-Shafarevich twists are standard in the
study of elliptic fibrations [10, 17].

Let L be a semi-ample line bundle on a K3 surface S with an indivisible
class c1.L /. Given an ample line bundle H on S and an integer �, denote by
MH.0;L d ; �/ the moduli space of H -stable coherent sheaves on S of rank zero,
determinant L d , and Euler characteristic �. Assume that d and � are relatively
prime. For a generic polarizationH , the moduli spaceMH.0;L d ; �/ is smooth and
projective and it admits a Lagrangian fibration over the linear system jL d j [34].

Let X be an irreducible holomorphic symplectic manifold of K3Œn�-type and � W
X ! Pn a Lagrangian fibration. Set ˛ WD ��c1.OPn.1//. The divisibility of .˛; �/
is the positive integer d WD gcdf.˛; 	/ W 	 2 H2.X;Z/g. The integer d2 divides
n � 1 (Lemma 2.5).

Theorem 1.5. Assume that X is non-special and the intersection H1;1.X;Z/\ ˛?
is Z˛. There exists a K3 surface S , a semi-ample line bundle L on S of degree
2n�2
d2

with an indivisible class c1.L /, an integer � relatively prime to d , and a
polarization H on S , such that X is bimeromorphic to a Tate-Shafarevich twist
of the Lagrangian fibrationMH.0;L d ; �/! jL d j.

Theorem 1.5 is proven in Sect. 7. The semi-polarized K3 surface .S;L / in
Theorem 1.5 is the one mentioned already above, which is associated to .X; ˛/
in Sect. 4.1. The equalityH1;1.X;Z/\ ˛? D Z˛ is equivalent to the statement that
Pic.S/ is cyclic generated by L . This condition is relaxed in Theorem 7.13, which
strengthens Theorem 1.5.

A reduced and irreducible divisor on X is called prime exceptional, if it has
negative Beauville-Bogomolov-Fujiki degree. A divisorD on X is called movable,
if the base locus of the linear system jDj has co-dimension � 2 in X . The
movable cone MVX of X is the cone in N1.X/ WD H1;1.X;Z/�Z R generated by
classes of movable divisors. Assume that X is a projective irreducible holomorphic
symplectic manifold ofK3Œn�-type and let h 2 N1.X/ be an ample class. Denote by
PexX � H1;1.X;Z/ the set of classes of prime exceptional divisors. The set PexX
is determined in [24, Theorem 1.11 and Sec. 1.5]. The closure of the movable cone
in N1.X/ is determined as follows:

MV X Dfc 2 N1.X/ W .c; c/� 0; .c; h/� 0; and .c; e/� 0; for all e 2PexX g;

by a result of Boucksom [6, 23, Prop. 5.6 and Lemma 6.22].1

Corollary 1.6. Let X be a projective irreducible holomorphic symplectic manifold
of K3Œn�-type. The semi-group of effective divisor classes on X is generated by

1Prop. 5.6 and Lemma 6.22 in the last reference [23]. The same convention will be used throughout
the paper for all citations with multiple references.
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the classes of prime exceptional divisors and integral points in the closure of the
movable cone in N1.X/.

Corollary 1.6 was shown to follow from Theorem 1.3 in [23, Paragraph following
Question 10.11].

We classify the deformation types of pairs .X;L /, consisting of an irreducible
holomorphic symplectic manifold X of K3Œn�-type, n � 2, and a line bundle L
on X with a primitive and isotropic first Chern class, such that .c1.L /; �/ > 0,
for some Kähler class �. The following proposition is proven in Sect. 4.3, using
monodromy invariants introduced in Lemma 2.5.

Proposition 1.7. Let d be a positive integer, such that d2 divides n� 1. If 1 � d �
4, then there exists a unique deformation type of pairs .X;L /, with c1.L / primitive
and isotropic, such that .c1.L /; �/ has divisibility d . For d � 5, let �.d/ be half the
number of multiplicative units in the ring Z=dZ. Then there are �.d/ deformation
types of pairs .X;L / as above, with .c1.L /; �/ of divisibility d .

A generalized Kummer variety of dimension 2n is the fiber of the Albanese
map SŒnC1� ! S from the Hilbert scheme of length n subschemes of an abelian
surface S to S itself [4]. We expect all of the above results to have analogues
for X an irreducible holomorphic-symplectic manifold deformation equivalent to a
generalized Kummer variety. Yoshioka proved Theorem 1.3 for those X associated
to a moduli space of sheaves on an abelian surface [43]. Let the pair .X;L /

consist ofX , deformation equivalent to a generalized Kummer, and a line bundle L
with a primitive and isotropic first Chern class. The basic construction of Sect. 4.1
associates to the pair .X;L /, with dim.X/ D 2n, n � 2, and with .c1.L /; �/ of
divisibility d , two dual pairs .S1; ˛1/ and .S2; ˛2/, each consisting of an abelian
surface Si and a class ˛i in the Neron-Severi group of Si of self intersection 2nC2

d2
,

such that S2 Š S�
1 and the natural isometry H2.S1;Z/ Š H2.S2;Z/ maps ˛1

to ˛2. A conjectural determination of the monodromy group of generalized Kummer
varieties was suggested in the comment after [25, Prop. 4.8]. Assuming that the
monodromy group is as conjectured, we expect that the proofs of all the results
above can be adapted to this deformation type.

A version of Theorem 1.3 has been conjectured for irreducible holomorphic sym-
plectic manifolds of all deformation types [5, 26, 39, Conjecture 2]. Markushevich,
Sawon, and Yoshioka proved a version of Theorem 1.3, when X is the Hilbert
scheme of n points on a K3 surface and .c1.L /; �/ has divisibility 1 [26, Cor.
4.4] and [39] (the regularity of the fibration, in Sect. 5 of [39], is due to Yoshioka).
Bayer and Macri recently proved a strong version of Theorem 1.3 for moduli spaces
of sheaves on a projectiveK3 surface [3].

Remark 1.8 (Added in the final revision). Let X0 be an irreducible holomorphic
symplectic manifold and L0 a nef line bundle on X0, such that c1.L0/ is primitive
and isotropic with respect to the Beauville-Bogomolov-Fujiki pairing. Matsushita
proved that if L0 induces a Lagrangian fibration, then so does L for every
pair .X;L / deformation equivalent to .X0;L0/, with X irreducible holomorpic
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symplectic and L nef (preprint posted very recently [28], announced earlier in his
talk [31]). It follows that Theorem 1.3 above holds also without the assumption
that X is non-special, since a pair .X;L / with X special is a deformation of a
pair .X0;L0/ with X0 non-special. In fact, this stronger version of Theorem 1.3,
dropping the non-speciality, follows already from the combination of Matsushita’s
result and Example 3.1 below, since Example 3.1 exhibits a pair .X0;L0/, with a
line bundle L0 inducing a Lagrangian fibration, in each deformation class of pairs
.X;L / with X of K3Œn�-type and c1.L / primitive, isotropic, and on the boundary
of the positive cone. Matsushita’s result does not seem to provide an alternative
proof of Theorem 1.5 and the only proof we know is presented in Sect. 7 and relies
on the preceding sections.

2 Classification of Primitive-Isotropic Classes

A lattice, in this note, is a finitely generated free abelian group with a symmetric
bilinear pairing .�; �/ W L�Z L! Z. The pairing may be degenerate. The isometry
groupO.L/ is the group of automorphisms of L preserving the bilinear pairing.

Definition 2.1. Two pairs .Li ; vi /, i D 1; 2, each consisting of a lattice Li and an
element vi 2 Li , are said to be isometric, if there exists an isometry g W L1 ! L2,
such that g.v1/ D v2.

Let X be an irreducible holomorphic symplectic manifold of K3Œn�-type, n � 2.
Set � WD H2.X;Z/. We will refer to � as the K3Œn�-lattice. Let Q� be the Mukai
lattice, i.e., the orthogonal direct sum of two copies of the negative definite E8.�1/
lattice and four copies of the even unimodular rank two lattice with signature
.1;�1/.
Theorem 2.2 ([22], Theorem 1.10). X comes with a natural O. Q�/-orbit �X
of primitive isometric embeddings � W H2.X;Z/ ,! Q�.

Choose a primitive isometric embedding � W � ,! Q� in the canonicalO. Q�/-orbit
�X provided by Theorem 2.2. Choose a generator v 2 Q� of the rank 1 sub-lattice
orthogonal to �.�/. We say that an isometry g 2 O.�/ stabilizes the O. Q�/-orbit
�X , if given a representative isometric embedding � in the orbit �X , there exists an
isometry Qg 2 O. Q�/ satisfying � ı g D Qg ı �. Note that Qg necessarily maps v to˙v.

Set �R WD ��Z R. Let QC � �R be the positive cone fx 2 �R W .x; x/ > 0g.
Then H2. QC ;Z/ is isomorphic to Z and is a natural character of the isometry group
O.�/ [23, Lemma 4.1]. Denote by OC.�/ the kernel of this orientation character.
Isometries in OC.�/ are said to be orientation preserving.

Definition 2.3. Let X , X1, and X2 be irreducible holomorphic symplectic mani-
folds. An isometry g W H2.X1;Z/ ! H2.X2;Z/ is a parallel transport operator,
if there exists a family � W X ! B (which may depend on g) of irreducible
holomorphic symplectic manifolds, points b1 and b2 in B , isomorphismsXi ŠXbi ,
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where Xbi is the fiber over bi , i D 1; 2, and a continuous path � from b1 to b2, such
that parallel transport along � in the local system R2��Z induces the isometry g.
When X D X1 D X2, we call g a monodromy operator. The monodromy group
Mon2.X/ of X is the subgroup, of the isometry group of H2.X;Z/, generated by
monodromy operators.

Theorem 2.4 ([22], Theorem 1.2 and Lemma 4.2). The subgroup Mon2.X/
of O.�/ consists of orientation preserving isometries stabilizing the orbit �X .

Given a latticeL, let In.L/ � L be the subset of primitive classes v with .v; v/ D
2n�2. Notice that the orbit set In.L/=O.L/ parametrizes the set of isometry classes
of pairs .L0; v0/, such that L0 is isometric to L and v0 is a primitive class in L0 with
.v0; v0/ D 2n � 2 [23, Lemma 9.14].

Let n be an integer � 2, let � be the K3Œn�-lattice, and let ˛ 2 � be a primitive
isotropic class. Let div.˛; �/ be the largest positive integer, such that .˛; �/=div.˛; �/
is an integral class of ��. Set d WD div.˛; �/ and

ˇ WD �.˛/:

Let L � Q� be the saturation2 of span
Z
fˇ; vg. Clearly, the isometry class of .L; v/

depends only on ˛ and the O. Q�/-orbit of �. Consequently, the isometry class of
.L; v/ depends only on ˛, as the O. Q�/-orbit �X of � is natural, by Theorem 2.2. We
denote by ŒL; v�.˛/ the isometry class of the pair .L; v/ associated to ˛.

Lemma 2.5. (1) d2 divides n � 1.

(2) L is isometric to the lattice Ln;d with Gram matrix 2n�2
d2



1 0

0 0

�
:

(3) Let d � 1 be an integer, such that d2 divides n � 1. The map ˛ 7! ŒL; v�.˛/
induces a one-to-one correspondence between the set of Mon2.X/-orbits,
of primitive isotropic classes ˛ with div.˛; �/ D d , and the set of isometry
classes In.Ln;d /=O.Ln;d /.

(4) There exists an integer b, such that .ˇ � bv/=d is an integral class of L. The
isometry class ŒL; v�.˛/ is represented by .Ln;d ; .d; b//, for any such integer b.

Proof. Part (1): There exists a class ı 2 �, such that .ı; ı/ D 2 � 2n and
the sub-lattice ı?

� of �, orthogonal to ı, is a unimodular lattice isometric to the
K3-lattice. The sub-lattice Œ�.ı?

� /�
?
Q� of Q�, which is the saturation of spanf�.ı/; vg,

is unimodular, hence isometric to the unimodular hyperbolic plane U with Gram

matrix



0 �1
�1 0

�
:We may further assume that v D .1; 1�n/ and �.ı/ D .1; n�1/,

under this isomorphism. If X is the Hilbert scheme SŒn� of a K3-surface and ı
is half the class of the big diagonal, then ı satisfies the above properties. Write

2The saturation of a sublattice L0 of � is the maximal sublattice L of �, of the same rank as L0,
which contains L0.
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˛ D a� C bı, where � is a primitive class of the K3-lattice ı?
� , a > 0, and

gcd.a; b/ D 1. We get

0 D .˛; ˛/ D a2.�; �/ � .2n� 2/b2;

and .�; �/ is even. Hence, a2 divides n � 1. Furthermore, div.ı; �/ D 2n � 2,
div.�; �/ D 1, since ı?

� is unimodular, and div.˛; �/ D gcd.div.a�; �/; div.bı; �// D
gcd.a; .2n � 2/b/ D a. Thus, a D d WD div.˛; �/.

Part (2): Note that �.ı/ � v D .2n � 2/e, where e is a primitive isotropic class
of Q�. Set � WD 1

d
.ˇ � bv/ D �.�/ C b.2n�2/

d
e. We claim that the lattice L WD

span
Z
fv; �g is saturated in Q�. Indeed, choose � 2 ı?

� , such that .�; �/ D 1. Then

.v; e/ .v; �/
.�; e/ .�; �/

�
D

�1 0
0 1

�
.

Let G be the Gram matrix of L in the basis fv; �g. Then

G D 2n � 2
d2



d2 �bd
�bd b2

�
D 2n � 2

d2



d

�b
� �
d �b 	 :

Choose a 2 � 2 invertible matrix A, with integer coefficients, such that A



d

�b
�
D



1

0

�
. Then AGAt is the Gram matrix of Ln;d .

Part (3): Assume given two primitive isotropic classes ˛1 and ˛2 in � WD
H2.X;Z/ and let .Li ; vi / be the pair associated to ˛i as above, for i D 1; 2. In other
words, �i W � ,! Q� is a primitive embedding in the orbit �X , vi generates the sub-
lattice of Q� orthogonal to the image of �i , andLi is the saturation of span

Z
f�.˛i /; vig.

Let us check that the map ˛ 7! ŒL; v�.˛/ is constant on Mon2.X/-orbits. Assume
that there exists an element � 2 Mon2.X/, such that �.˛1/ D ˛2. Then there exists
an isometry Q� 2 O. Q�/, satisfying Q� ı �1 D �2 ı �, by Theorem 2.4. We get that
Q�.L1/ D L2 and Q�.v1/ D v2, or Q�.v1/ D �v2. So, the isometry Q� or � Q� from L1
onto L2 provides an isometry of the pairs .Li ; vi /, i D 1; 2.

We show next that the map ˛ 7! ŒL; v�.˛/ is injective, i.e., that the isometry
class of the pair .L; v/ determines the Mon2.X/-orbit of ˛. Assume that there exists
as isometry f W L1 ! L2, such that f .v1/ D v2. Then there exists an isometry
Qf 2 O. Q�/, such that Qf .L1/ D L2 and the restriction of Qf to L1 is f , by ([36],

Proposition 1.17.1 and Theorem 1.14.4, see also [21], Lemma 8.1 for more details).
In particular, Qf .v1/ D v2. There exists a unique isometry h 2 O.�/ satisfying
�2ıh D Qf ı�1. There exists an isometry 
 2 O. Q�/, such that 
ı�2 D �1, since both �i
belong to the sameO. Q�/-orbit �X . We get the equality �1ıh D 
ı�2ıh D .
ı Qf /ı�1.
If h is orientation preserving, then h belongs to Mon2.X/, otherwise, �h does, by
Theorem 2.4. Let � D h, if it is orientation preserving. Otherwise, set � WD �h.
Then � is a monodromy operator and �2.�.˛1// D ˙�2.h.˛1// D ˙ Qf .�1.˛1//. The
class �1.˛1/ spans the null space of L1, and Qf restricts to an isometry from L1 to
L2. Hence, �2.�.˛1// spans the null space of L2. Hence, �.˛1/ D ˙˛2.
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Finally we show that ˛2 and�˛2 belong to the same Mon2.X/-orbit. There exists
an element � 2 � satisfying .�; �/ D 2, and .�; ˛2/ D 0. The isometry �� 2 O.�/,
given by �� .	/ D �	C .	; �/� , belongs to Mon2.X/, by ([21], Corollary 1.8), and
it sends ˛2 to �˛2.

It remains to prove that the map ˛ 7! ŒL; v�.˛/ is surjective. Assume given a
primitive class v 2 Ln;d with .v; v/ D 2n � 2. There exists a primitive isometric
embedding f W Ln;d ,! Q�, by ([36], Proposition 1.17.1). The lattice f .v/?Q� ,

orthogonal to f .v/ in Q�, is isometric to the K3Œn�-lattice �. Choose such an
isometry h W f .v/?Q� ! �, with the property that h�1 W � ,! Q� belongs to

the O. Q�/-orbit �X . Such a choice exists, since O.�/ acts transitively on the orbit
space O.�; Q�/=O. Q�/, by ([22], Lemma 4.3). Above, O.�; Q�/ denotes the set of
primitive isometric embeddings of � in Q�. Denote by ˇ 2 Ln;d a generator of the
null space of Ln;d . Set ˛ WD h.f .ˇ//. Then ˛ is a class in �, such that ŒL; v�.˛/ is
represented by .Ln;d ; v/.

Part (4): The existence of such an integer b was established in the course of
proving part (1). The rest of the statement follows from Lemma 2.6. ut

If d D 2, set �.d/ WD 1. If d > 2, let �.d/ be half the number of multiplicative
units in the ring Z=dZ.

Lemma 2.6. A vector .x; y/ 2 Ln;d is primitive of degree 2n � 2, if and only
if jxj D d and gcd.d; y/ D 1. Two primitive vectors .d; y/, .d; z/ belong to the same
O.Ln;d /-orbit, if and only if y 
 z modulo d , or y 
 �z modulo d . Consequently,
�.d/ is equal to the number ofO.Ln;d /-orbits of primitive vectors in Ln;d of degree
2n � 2.

Proof. The isometry group ofLn;d consists of matrices of the form


˙1 0

c ˙1
�

. The

orbit O.Ln;d /.d; y/ consists of vectors of the form .˙d; cd ˙ y/. Consequently,
the number ofO.Ln;d /-orbits of primitive vectors in Ln;d of degree 2n� 2 is equal
to the number of orbits in fy W 0 < y < d and gcd.y; d/ D 1g under the action
y 7! d � y. The latter number is �.d/. ut

3 An Example of a Lagrangian Fibration for Each Value
of the Monodromy Invariants

Let S be a projective K3 surface, K.S/ its topological K-group, generated by
classes of complex vector bundles, and H�.S;Z/ its integral cohomology ring. Let
tdS WD 1 C c2.S/

12
be the Todd class of S and

p
tdS WD 1 C c2.S/

24
its square root.

The homomorphism v W K.S/ ! H�.S;Z/, given by v.x/ D ch.x/
p

tdS is an
isomorphism of free abelian groups. Given a coherent sheaf E on S , the class v.E/
is called the Mukai vector ofE . Given integers r and s and a class c 2 H2.S;Z/, we
will denote by .r; c; s/ the class of H�.S;Z/, whose graded summand in H0.S;Z/

is r times the class Poincare dual to S , its graded summand in H2.S;Z/ is c, and
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its graded summand in H4.S;Z/ is s times the class Poincare dual to a point. We
endowH�.S;Z/ with the Mukai pairing

..r; c; s/; .r 0; c0; s0// WD .c; c0/� rs0 � r 0s;

where .c; c0/ WD R
S c [ c0: Then .v.x/; v.y// D ��.x � y/, where � W K.S/ !

Z is the Euler characteristic [35]. H�.S;Z/, endowed with the Mukai pairing, is
called the Mukai lattice. The Mukai lattice is an even unimodular lattice of rank 24,
which is isometric to the orthogonal direct sum of two copies of the negative definite
E8.�1/ lattice and four copies of the even unimodular rank 2 hyperbolic lattice U .

Let v 2 K.S/ be the class with Mukai vector .0; d�; s/ in H�.S;Z/, such that
� a primitive effective class in H1;1.S;Z/, .�; �/ > 0, d is a positive integer, and
gcd.d; s/ D 1. There is a system of hyperplanes in the ample cone of S , called
v-walls, that is countable but locally finite [15, Ch. 4C]. An ample class is called
v-generic, if it does not belong to any v-wall. Choose a v-generic ample classH . Let
MH.v/ be the moduli space of H -stable sheaves on the K3 surface S with class v.
MH.v/ is a smooth projective irreducible holomorphic symplectic variety of K3Œn�-

type, with n D .v;v/C2
2
D d2.�;�/C2

2
. This is a special case of a result, which is due

to several people, including Huybrechts, Mukai, O’Grady [38], and Yoshioka [44].
It can be found in its final form in [44].

Over S�MH.v/ there exists a universal sheaf F , possibly twisted with respect to
a non-trivial Brauer class pulled-back from MH.v/. Associated to F is a class ŒF �

in K.S �MH.v// ([20], Definition 26). Let �i be the projection from S �MH.v/
onto the i -th factor. Denote by v? the sub-lattice in H�.S;Z/ orthogonal to v. The
second integral cohomologyH2.MH.v/;Z/, its Hodge structure, and its Beauville-
Bogomolov-Fujiki pairing, are all described by Mukai’s Hodge-isometry

� W v? �! H2.MH.v/;Z/; (3.1)

given by �.x/ WD c1
�
�2Šf�Š1.x_/� ŒF �g	 (see [44]).

We provide next an example of a moduli space MH.v/ and a primitive isotropic
class ˛ 2 H1;1.MH.v/;Z/, such that ŒL; v�.˛/ is represented by .Ln;d ; .d; b//, for
every integer n � 2, for every positive integer d , such that d2 divides n� 1, and for
every integer b satisfying gcd.b; d/ D 1.

Example 3.1. Let d be a positive integer, such that d2 divides n � 1. Let S be a
K3 surface with a nef line bundle L of degree 2n�2

d2
. Let 	 be the class c1.L / in

H2.S;Z/. Fix an integer b satisfying gcd.b; d/ D 1. Set v WD .0; d	; s/, where s
is an integer satisfying sb D 1 (modulo d ). Then v is a primitive Mukai vector and
.v; v/ D 2n � 2. Choose a v-generic ample line bundle H . A sheaf F of class v is
H -stable, if and only if it is H -semi-stable. The moduli space MH.v/, of H -stable
sheaves of class v, is smooth, projective, holomorphic symplectic, and ofK3Œn�-type.
Set ˛ WD �..0; 0; 1//. Let � W H2.MH.v/;Z/ ! H�.S;Z/ be the composition of
��1 with the inclusion of v? intoH�.S;Z/. A Mukai vector .r; c; t/ belongs to v?,
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if and only if rs D d.c; 	/. It follows that d divides r , since gcd.d; s/ D 1. Thus,
div.˛; �/ D d . Now

�.˛/ � bv D .0;�bd	; 1 � bs/

is divisible by d , by our assumption on s. Hence, the monodromy invariant ŒL; v�.˛/
is equal to the isometry class of .Ln;d ; .d; b//, by Lemma 2.5. The cohomology
H1.S;L d / vanishes, since L is a nef divisor of positive degree [32, Prop. 1].
Thus, the vector space H0.S;L d / has dimension �.L d / D n C 1. The support
morphism � W MH.v/ ! jL d j realizes MH.v/ as a completely integrable system.
The equality ��c1.OjL d j.1// D ˛ is easily verified.

4 Period Domains and Period Maps

4.1 A Projective K3 Surface Associated to an Isotropic Class

Let X be an irreducible holomorphic symplectic manifold of K3Œn�-type, n � 2.
Assume that there exists a non-zero primitive isotropic class ˛ 2 H1;1.X;Z/. Let Q�
be the Mukai lattice. Choose a primitive isometric embedding � W H2.X;Z/! Q� in
the canonical O. Q�/-orbit �X of Theorem 2.2. Set Q�C WD Q� �Z C. Endow Q�C with
the weight 2 Hodge structure, so that Q�2;0

C
D �.H2;0.X//. Set ˇ WD �.˛/. Then ˇ

belongs to Q�1;1
C

. Set

�k3 WD ˇ?
Q�=Zˇ

and endow �k3 with the induced Hodge structure. Let U be the even unimodular
rank 2 lattice of signature .1; 1/, and E8.�1/ the negative definite E8 lattice. Then
�k3 is isometric to the K3 lattice, which is the orthogonal direct sum of two copies
of E8.�1/ and three copies of U . Indeed, this is clear if ˇ is a class in a direct
summand of Q� isometric to U . It follows in general, since the isometry group of Q�
acts transitively on the set of primitive isotropic classes in Q�. The induced Hodge
structure on �k3 is the weight 2 Hodge structure of some K3 surface S.˛/, by the
surjectivity of the period map.

Let v be a generator of the rank 1 sub-lattice of Q� orthogonal to the image of �.
Then v is of Hodge-type .1; 1/. Set � WD H2.X;Z/. Then v? is isometric to �. We
claim that .v; v/ D 2n � 2. Indeed, the pairing induces an isomorphism of the two
discriminant groups .Zv/�=Zv and ��=�, since Zv and � are a pair of primitive
sublattices, which are orthogonal complements in the unimodular lattice Q�. We
conclude that the order j.v; v/j of .Zv/�=Zv is equal to the order 2n � 2 of ��=�.
Finally, .v; v/ > 0, by comparing the signatures of � and Q�.

Let Nv be the coset v C Zˇ in �k3. Then Nv is of Hodge-type .1; 1/ and .Nv; Nv/ D
2n � 2. Hence S.˛/ is a projective K3 surface (even if X is not projective). We
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may further choose the Hodge isometry � W H2.S.˛/;Z/ ! �k3, so that that
Nv corresponds to a class in the positive cone of S.˛/, possibly after replacing
v by �v. We may further assume that Nv corresponds to a nef class of S.˛/,
possibly after replacing � with � ı w, where w is an element of the subgroup
W � OC.H2.S.˛/;Z//, generated by reflections by classes of smooth rational
curves on S.˛/ [19, Prop. 1.9].

4.2 A Period Domain as an Affine Line Bundle Over Another

Keep the notation of Sect. 4.1. Set � WD H2.X;Z/. Set d WD div.˛; �/. Let ˛?
� be

the (degenerate) lattice orthogonal to ˛ in �. Set Q˛ WD ˛?
�=Z˛:

Lemma 4.1. Q˛ is isometric to the sub-lattice Nv? of �k3 and both are isometric to
the orthogonal direct sum

E8.�1/� E8.�1/� U � U � Z	;

where .	; 	/ D 2�2n
d2

.

Proof. The K3 lattice �k3 WD Œˇ?
Q� �=Zˇ is isometric to E8.�1/ � E8.�1/ � U �

U �U . Let L be the saturation of span
Z
fv; ˇg in Q�. Then L is contained in ˇ?

Q� and

the image of L in �k3 is spanned by a class � of self-intersection 2n�2
d2

, such that
Nv D d�, by Lemma 2.5.

It remains to prove that Q˛ is isometric to �?
�k3

. Consider the following
commutative diagram.

0! Zˇ ! ˇ?
Q� ! �k3 ! 0

D " " " j
0! Zˇ ! L?

Q� ! L?
Q�=Zˇ ! 0

Š " Š " � " N�
0! Z˛ ! ˛?

� ! Q˛ ! 0:

The lower vertical arrow N� in the rightmost column is evidently an isomorphism. The
image of the upper one j is precisely �?

�k3
. ut

Let ˝� be the period domain

˝� WD f` 2 PŒH2.X;C/� W .`; `/ D 0 and .`; Ǹ/ > 0g: (4.1)

Set

˝˛? WD f` 2 ˝� W .`; ˛/ D 0g: (4.2)
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Then˝˛? is an affine line-bundle over the period domain

˝Q˛ WD f` 2 PŒQ˛ �Z C� W .`; `/ D 0 and .`; Ǹ/ > 0g:

Given a point of ˝Q˛ , corresponding to a one-dimensional subspace ` of Q˛ �Z

C, we get a two dimensional subspace V` of H2.X;C/ orthogonal to ˛ and
containing ˛. The line in˝˛? , over the point ` of˝Q˛ , is PŒV`�nfPŒC˛�g. Denote by

q W ˝˛? ! ˝Q˛ (4.3)

the bundle map. A semi-polarized K3 surface of degree k is a pair consisting of
a K3 surface together with a nef line bundle of degree k (also known as weak
algebraic polarization of degree k in [33, Section 5]). Note that each component of
˝Q˛ is isomorphic to the period domain of the moduli space of semi-polarizedK3
surfaces of degree 2n�2

d2
.

Definition 4.2. Fibers of q will be called Tate-Shafarevich lines for reasons that
will become apparent in Sect. 7.

Tate-Shafarevich lines are limits of twistor lines, as will be explained in
Remark 4.6.

4.3 The Period Map

Given a period ` 2 ˝�, set �1;1.`;Z/ WD f	 2 � W .	; `/ D 0g. Define
Q1;1
˛ .q.`/;Z/ similarly. We get the short exact sequence

0! Z˛ ! �
˛? \�1;1.`;Z/

�! Q1;1
˛ .q.`/;Z/! 0:

˝˛? has two connected components, since˝Q˛ has two connected components.
Indeed, Q˛ has signature .2; b2.X/ � 4/, and a period ` comes with an oriented
positive definite plane Œ` � Ǹ� \ Œ�R�, which, in turn, determines the orientation of
the positive cone in Q˛ �Z R.

The positive cone QC� in �R is the cone

QC� WD fx 2 �R W .x; x/ > 0g: (4.4)

The cohomology group H2. QC�;Z/ is isomorphic to Z and an orientation of QC�
is the choice of one of the two generator of H2. QC�;Z/. An orientation of QC�
determines an orientation of every positive definite three dimensional subspace of
�R [23, Lemma 4.1]. A choice of an orientation of QC� determines a choice of a
component of˝˛? as follows. A period ` 2 ˝� determines the subspace�1;1.`;R/

and the cone C 0̀ WD fx 2 �1;1.`;R/ W .x; x/ > 0g in�1;1.`;R/ has two connected
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components. A choice of a connected component of C 0̀ is equivalent to a choice of
an orientation of the positive cone of QC�. Indeed, a non-zero element 
 2 ` and
an element ! 2 C 0̀ determine a basis fRe.
/; Im.
/; !g, hence an orientation,
of a positive definite three dimensional subspace of �R, and the corresponding
orientation of QC� is independent of the choice of 
 and !. Thus, the choice of
the orientation of the positive cone QC� determines a connected component C` of
C 0̀, called the positive cone (for the orientation). If ` belongs to ˝˛? , then the class
˛ belongs to�1;1.`;R/ and ˛ is in the closure of precisely one of the two connected
components of C 0̀. The connected component of ˝˛? , compatible with the chosen
orientation of QC�, is the one for which ˛ belongs to the boundary of the positive
cone C` for the chosen orientation.

A marked pair .Y;  / consists of an irreducible holomorphic symplectic mani-
fold Y and an isometry  from H2.Y;Z/ onto a fixed lattice. The moduli space of
isomorphism classes of marked pairs is a non-Hausdorff complex manifold [13]. Let
M0

� be a connected component of the moduli space of marked pairs of K3Œn�-type,
where the fixed lattice is �. The period map

P0 WM0
� ! ˝�

sends a marked pair .Y;  / to the point .H2;0.Y // of˝�.P0 is a holomorphic map
and a local homeomorphism [4]. The positive cone CY is the connected component
of the cone fx 2 H1;1.Y;R/ W .x; x/ > 0g containing the Kähler cone. Hence,
the positive cone in H2.Y;R/ comes with a canonical orientation and the marking
 determines an orientation of the positive cone in QC�. We conclude that M0

�

determines an orientation of the positive cone QC� [23, Sec. 4]. Let

˝C
˛? (4.5)

be the connected component of ˝˛? , inducing the same orientation of QC� as M0
�.

Let

M0
˛? (4.6)

be the inverse image P�1
0 .˝C

˛?/.

Theorem 4.3 (The Global Torelli Theorem [14, 40]). The period map P0 W
M0

� ! ˝� is surjective. Any two points in the same fiber of P0 are inseparable. If
.X1; �1/ and .X2; �2/ correspond to two inseparable points in M0

�, then X1 and X2
are bimeromorphic. If the Kähler cone of X is equal to its positive cone and .X; �/
corresponds to a point of M0

�, then this point is separated.

Lemma 4.4. M0
˛? is path-connected.

Proof. The statement follows from the Global Torelli Theorem 4.3 and the fact that
˝C
˛? is connected. The proof is similar to that of [24, Proposition 5.11]. ut
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Proposition 4.5. Let X1 and X2 be two irreducible holomorphic symplectic man-
ifolds of K3Œn�-type and �j W H2.Xj ;Z/ ! �, j D 1; 2, isometries. The marked
pairs .X1; �1/ and .X2; �2/ belong to the same connected moduli space M0

˛? ,
provided the following conditions hold.

(1) The O. Q�/ orbits �Xj ı ��1
j , j D 1; 2, are equal. Above �Xj is the canonical

O. Q�/-orbit of primitive isometric embeddings of H2.Xj ;Z/ into Q� mentioned
in Theorem 2.2.

(2) ��1
2 ı �1 W H2.X1;Z/! H2.X2;Z/ is orientation preserving.

(3) ��1
j .˛/ is of Hodge type .1; 1/ and it belongs to the boundary of the positive

cone CXj in H1;1.Xj ;R/, for j D 1; 2.

Proof. Conditions 1 and 2 imply that ��1
2 ı �1 is a parallel-transport operator, by

Theorem 2.4. Hence, the two marked pairs belong to the same connected component
M0

� of M�. Condition 3 implies that both belong to M0
˛? , and the latter is

connected, by Lemma 4.4. ut

Proof (of Proposition 1.7). Lemma 2.5 introduced the monodromy invariant
ŒL; v�.c1.L // of the pair .X;L /. The claimed number of deformation types
in the statement of the proposition is equal to the number of values of the
monodromy invariant ŒL; v�.�/ for fixed n and d , by Lemma 2.6. Assume
given another pair .X 0;L 0/ as above, such that the monodromy invariants
ŒL; v�.c1.L 0// and ŒL; v�.c1.L // are equal. Choose a parallel transport operator
g W H2.X 0;Z/ ! H2.X;Z/. We do not assume that g.c1.L 0// is of Hodge
type .1; 1/. Set ˛ WD c1.L / and ˛0 WD c1.L 0/. The monodromy invariant
ŒL; v�.g.˛0// is equal to ŒL; v�.˛0/ and hence also to ŒL; v�.˛/. Hence, there exists
a monodromy operator f 2 Mon2.X/, such that fg.˛0/ D ˛, by Lemma 2.5.
Choose a marking � W H2.X;Z/ ! �. Then �0 WD � ı f ı g is a marking of X 0
satisfying �.˛/ D �0.˛0/. Hence, the triples .X; ˛; �/ and .X 0; ˛0; �0/ both belong to
the moduli space M0

�.˛/?
, by Proposition 4.5. M0

�.˛/?
is connected, by Lemma 4.4.

Hence, .X;L / and .X 0;L 0/ are deformation equivalent. ut
Remark 4.6. Tate-Shafarevich lines (Definition 4.2) are limits of twistor lines in
the following sense. Let ` be a point of ˝� and ! a class in the positive cone C`
in �1;1.`;R/. Assume that ! is not orthogonal to any class in �1;1.`;Z/. Then
there exists a marked pair .X; �/ in each connected component M0

� of the moduli
space of marked pairs, such that P.X; �/ D ` and ��1.!/ is a Kähler class of X
[13, Cor. 5.7]. Set W 0 WD ` � Ǹ� C!. P.W 0/ \˝� is a twistor line for .X; �/; it
admits a canonical lift to a smooth rational curve in M0

� containing the point .X; �/
[13, Cor. 5.8]. This lift corresponds to an action of the quaternions H on the real
tangent bundle of the differentiable manifold X , such that the unit quaternions act
as integrable complex structures, one of which is the complex structure of X . Let
˛ 2 � be the primitive isotropic class as above. Assume that ` belongs to ˝C

˛? .

Consider the three dimensional subspace W WD ` � Ǹ � C˛ of H2.X;C/. Then
W is a limit of a sequence of three dimensional subspaces W 0

i , associated to some
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sequence of classes !i as above, since ˛ belongs to the boundary of the positive
cone C`. Now W is contained in ˛?, and so P.W / \˝˛? D P.W / \ ˝�: In this
degenerate case, the conic P.W / \˝� consists of two irreducible components, the
Tate-Shafarevich line PŒ`�C˛�n fPŒC˛�g in˝C

˛? and the line PŒ Ǹ�C˛�n fPŒC˛�g
in the other connected component˝�

˛? of˝˛? . Theorem 7.11 will provide a lift of
a generic Tate-Shafarevich line in the period domain to a line in the moduli space of
marked pairs.

A summary of notation related to lattices and period domains

U The rank 2 even unimodular lattice of signature .1; 1/
E8.�1/ The root lattice of type E8 with a negative definite pairing
Q� The Mukai lattice; the orthogonal direct sum U�4

�E8.�1/�2

� The K3Œn�-lattice; the orthogonal direct sum U�3
�E8.�1/�2

� h2� 2ni,
where h2� 2ni is the rank 1 lattice generated by a class of self-intersection 2� 2n

˛ A primitive isotropic class in�
Q˛ The subquotient ˛?=Z˛

� A primitive embedding of � in Q�
ˇ The primitive isotropic class �.˛/ in Q�
�k3 The subquotient ˇ?=Zˇ, which is isomorphic to the K3 lattice U�3

� E8.�1/�2

v A generator of the rank 1 sublattice of Q� orthogonal to �.�/
Nv The coset v C Zˇ in �k3

d The divisibility of .˛; �/ in��; d WD gcdf.˛; 	/ W 	 2 �g
� The integral element .1=d/Nv of �k3. We have .�; �/ D 2n�2

d2

˝� The period domain given in (4.1)
QC� The positive cone given in (4.4)
˝

C
� The connected component of ˝� determined by the orientation of QC�

˝˛? The hyperplane section of ˝� given in (4.2)
˝

C

˛? The connected component of ˝˛? given in (4.5)
˝Q˛ The period domain of the latticeQ˛

q The fibration q W ˝˛? ! ˝Q˛ by Tate-Shafarevich lines given in (4.3)
M0

� A connected component of the moduli space of marked pairs
P0 The period map P0 W M0

� ! ˝
C
�

M0
˛? The inverse image of ˝C

˛? in M0
� via P0

ŒL; v�.˛/ The monodromy invariant associated to the class ˛ in Lemma 2.5 (4)

5 Density of Periods of Relative Compactified Jacobians

We keep the notation of Sect. 4. In Sect. 5.1 we construct a section � W ˝C
Q˛
!

˝C
˛? , given in (5.2), of the fibration q W ˝C

˛? ! ˝C
Q˛

by Tate-Shafarevich lines.
We then show that � maps a period `, of a semi-polarized K3 surface .S;B/ in
the period domain ˝C

Q˛
, to the period �.`/ of a moduli space M of sheaves on S
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with pure one-dimensional support in the linear system jBd j. The moduli space
M admits a Lagrangian fibration over jBd j. In Sect. 5.2 we construct an injective
homomorphism g W Q˛ ! O.�/, whose image is contained in the subgroup of
the monodromy group which stabilizes ˛. We get an action of Q˛ on the period
domain˝C

˛? , which lifts to an action on connected components M0
˛? of the moduli

space of marked pairs given in Eq. (4.6). We then show that the fibration q by Tate-
Shafarevich lines is g.Q˛/-invariant. In Sect. 5.3 we prove that the g.Q˛/-orbit of
every point in a non-special Tate-Shafarevich line is dense in that line. Consequently,
the non-special Tate-Shafarevich line q�1.`/ contains the dense orbit g.Q˛/�.`/ of
periods of marked pairs in M0

˛? admitting a Lagrangian fibration.

Conventions: The discussion in the current Sect. 5 concerns only period domains,
so we are free to choose the embedding �. When we consider in subsequent sections
a componentM0

� of the moduli space of marked pairs .X; �/ ofK3Œn�-type, together
with such an embedding � W � ! Q�, we will always assume that � is chosen so
that � ı � belongs to the canonical O. Q�/-orbit �X of Theorem 2.2, for all .X; �/ in
M0

�. We choose the orientation of the positive cone QC� of �, so that ˛ belongs
to the boundary of the positive cone in �1;1.`;R/, for every ` 2 ˝C

˛? . We choose

the orientation of the positive cone QC�k3 , so that Nv belongs to the positive cone

in �1;1
k3 .`;R/, for every ` 2 ˝C

Nv? . Note that the composition ˛?
�

�! ˇ?
Q� ! �k3

induces an isometry from Q˛ WD ˛?
�=Z˛ onto Nv?

�k3
, by Lemma 4.1. The choice of

orientation of the positive cone of�k3 determines an orientation of the positive cone
of Q˛.

5.1 A Period of a Lagrangian Fibration in Each
Tate-Shafarevich Line

Choose a class � in Q� satisfying .�; ˇ/ D �1 and .�; �/ D 0. Note that ˇ and �
span a unimodular sub-lattice of Q� of signature .1; 1/. We construct next a section
of the affine bundle q W ˝˛? ! ˝Q˛ , given in Eq. (4.3), in terms of � . We have the
following split short exact sequence.

(5.1)

Above, 
�.x/ D �.x; �/ˇ, and Q�� .y/ D Qy C . Qy; �/ˇ, where Qy is any element of
ˇ?

Q� satisfying j. Qy/ D y. One sees that Q�� is well defined as follows. If Qy1 and Qy2
satisfy j. Qyk/ D y, then the difference Œ Qy1 C . Qy1; �/ˇ�� Œ Qy2 C . Qy2; �/ˇ� belongs to
the kernel of j and is sent to 0 via 
� , so the difference is equal to 0. Note that Q�� is
an isometric embedding and its image is precisely fˇ; �g?Q� .
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We regard˝C
Q˛

as the period domain for semi-polarizedK3 surfaces, with a nef

line bundle of degree 2n�2
d2

, via the isomorphism Nv?
�k3
Š Q˛ of Lemma 4.1. The

homomorphism ��1 ı Q�� induces an isometric embedding of Q˛ in ˛?
� . We get a

section

�� W ˝C
Q˛
! ˝C

˛? (5.2)

of q W ˝C
˛? ! ˝C

Q˛
: Following is an explicit description of �� . Let ` be a period in

˝C
Q˛

. Choose a period ` in ˝C
˛? satisfying q.`/ D `. Let x be a non-zero element

of the line ` in ˛?
� �Z C. Then

�� .`/ D span
C
fx C .�.x/; �/˛g: (5.3)

We see that � belongs to Q�1;1.�� .`//, for every ` in ˝C
Q˛

.

Fix a period ` in ˝C
Q˛

. We construct next a marked pair .MH.u/; �1/ with period
�� .`/, such that ��1

1 .˛/ induces a Lagrangian fibration. Let S be a K3 surface and
� W H2.S;Z/ ! �k3 a marking, such that the period �.H2;0.S// is `. Such a
marked pair .S; �/ exists, by the surjectivity of the period map. Extend � to the
Hodge isometry

Q� W H�.S;Z/! Q�;

given by Q�..0; 0; 1// D ˇ, Q�..1; 0; 0// D � , and Q� restricts to H2.S;Z/ as Q�� ı �.
We have the equality v D 
�.v/C Q�� .Nv/ D �.�; v/ˇ C Q�� .Nv/. Set a WD �.�; v/ and
u WD .0; ��1.Nv/; a/. Then Q�.u/ D v. We may choose the marking � so that the class
��1.Nv/ is nef, possibly after replacing � by ˙� ı w, where w is an element of the
group of isometries ofH2.S;Z/, generated by reflections by�2 curves [2, Ch. VIII
Prop. 3.9]. Choose a u-generic polarization H of S . Then MH.u/ is a projective
irreducible holomorphic symplectic manifold. Let

� W u? ! H2.MH.u/;Z/

be Mukai’s isometry, given in Eq. (3.1). We get the commutative diagram:

(5.4)

where �2 is the restriction of Q� and �1 D ��1 ı�2 ı��1. Note that �1.�.0; 0; 1// D ˛.
Let L be the saturation in H�.S;Z/ of the sub-lattice spanned by .0; 0; 1/ and u.
Let b be an integer satisfying ab 
 1 (modulo d ). The monodromy invariant
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ŒL; u�.�.0; 0; 1// of Lemma 2.5 is the isometry class of the pair .Ln;d ; .d; b//, by
the commutativity of the above diagram. Furthermore, �1 is a Hodge isometry with
respect to the Hodge structure on � induced by �� .`/. In particular, .MH.u/; �1/
is a marked pair with period �� .`/. Example 3.1 exhibits �.0; 0; 1/ as the class
��c1.OjL d j.1//, for a Lagrangian fibration � W MH.u/ ! jL d j, where L is the
line bundle over S with class ��1.�/.

Remark 5.1. The isometry �1 is compatible with the orientations of the positive
cones, the canonical one ofH2.MH.u/;Z/ and the chosen one of�. Indeed, it maps
the class �.0; 0; 1/, on the boundary of the positive cone of H1;1.MH.u/;R/, to the
class ˛ on the boundary of the positive cone of �1;1.�� .`/;R/. The composition
Q� ı ��1 in Diagram (5.4) belongs to the canonical orbit �MH .u/ of Theorem 2.2, by
[22, Theorem 1.14]. The commutativity of the Diagram implies that the isometric
embedding � ı �1 also belongs to the orbit �MH .u/.

5.2 Monodromy Equivariance of the Fibration
by Tate-Shafarevich Lines

Denote by O. Q�/Cˇ;v the subgroup of O. Q�/C stabilizing both ˇ and v. Following is
a natural homomorphism

h W O. Q�/Cˇ;v ! O.�k3/Nv: (5.5)

If  belongs toO. Q�/Cˇ;v, then  .ˇ/ D ˇ and ˇ?
Q� is  -invariant. Thus  induces an

isometry h. / of�k3 WD ˇ?
Q�=Zˇ. We construct next a large subgroup in the kernel

of h.
Given an element z of Q�, orthogonal to ˇ and v, define the map Qgz W Q�! Q� by

Qgz.x/ WD x � .x; ˇ/zC


.x; z/ � 1

2
.x; ˇ/.z; z/

�
ˇ:

Lemma 5.2. The map Qgz is the unique isometry in O. Q�/ˇ;v, which sends � to an
element of Q� congruent to � C z modulo Zˇ and belongs to the kernel of h. The
isometry Qgz is orientation preserving.

Proof. We first define an isometry f with the above property, then prove its unique-
ness, and finally prove that it is equal to Qgz. Set �1 WD � C zC �.�; z/C 1

2
.z; z/

�
ˇ.

Then .�1; �1/ D 0, .�1; ˇ/ D �1, and �1 is the unique element of Q� satisfying the
above equalities and congruent to � C z modulo Zˇ. Define Q
� W Q� ! Zˇ C Z�

by Q
� .x/ WD �.x; ˇ/� � .x; �/ˇ. We get the commutative diagram with split short
exact rows:
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Above Q�� and j are the homomorphisms given in Eq. (5.1), Qj .x/ D j.xC .x; ˇ/�/,
and Q
�1 , Q��1 , and Qj1 are defined similarly, replacing � by �1. The map f is defined
by f .ˇ/ D ˇ, f .�/ D �1, and f . Q�� .y// D Q��1.y/. Then f is clearly an isometry.

The isometry f can be extended to an isometry of Q�R and we can continuously
deform z to 0 in fˇ; vg? �Z R, resulting in a continuous deformation of f to the
identity. Hence, f is orientation preserving.

Note the equalities Q
�.v/ D �.v; �/ˇ D �.v; �1/ˇ D Q
�1 .v/, where the middle
one follows from that fact that both z and ˇ are orthogonal to v. We get the equality

Q�� .Nv/ D v � Q
� .v/ D v � Q
�1 .v/ D Q��1.Nv/:

Thus f .v/ D v and f belongs toO. Q�/Cˇ;v. Let x be an element of ˇ?. Then Qj .x/ D
j.x/ D Qj1.x/. Set y WD j.x/. Now Q�� .y/ 
 Q��1.y/ modulo Zˇ, by definition of
both. Hence, h.f / is the identity isometry of �k3.

Let f 0 be another isometry of Q� satisfying the assumptions of the Lemma. Then
f 0.�/ D �1, by the characterization of �1 mentioned above. Set e WD f �1 ı f 0.
Then e.ˇ/ D ˇ, e.�/ D � , e.v/ D v, and h.e/ D id . Given x 2 ˇ?, we get that
e.x/ 
 x modulo Zˇ. Now .e.x/; �/ D .e.x/; e.�// D .x; �/. Thus, e restricts to
the identity on ˇ?. We conclude that e is the identity of Q�, as the latter is spanned
by � and ˇ?. Thus f 0 D f .

It remains to prove the equality f D Qgz. We already know that f .�/ D �1 D
Qgz.�/ and f .ˇ/ D ˇ D Qgz.ˇ/. Given y 2 �k3, we have

Qgz. Q�� .y// D Q�� .y/C . Q�� .y/; z/ˇ D Q��1.y/ D f . Q�� .y//:

Hence, Qgz D f . ut
Let

Qg W ˛?
� ! O. Q�/Cˇ;v

be the map sending z to Qg�.z/. Denote by Mon2.�; �/ the subgroup of OC.�/ of
isometries stabilizing the orbit O. Q�/�. Note that O. Q�/Cv is conjugated via � onto
Mon2.�; �/, if n D 2, and to an index 2 subgroup of Mon2.�; �/, if n � 2 [21,
Lemma 4.10]. Let Mon2.�; �/˛ be the subgroup of Mon2.�; �/ stabilizing ˛.
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Lemma 5.3. (1) The map Qg is a group homomorphism with kernel Z˛. It thus
factors through an injective homomorphism

g W Q˛ ! Mon2.�; �/˛:

(2) Let z be an element of ˛?
� and Œz� its coset in Q˛. Then gŒz� W ˛? ! ˛? sends

x 2 ˛? to x C .x; z/˛.
(3) The map q W ˝C

˛? ! ˝C
Q˛

is Mon2.�; �/˛-equivariant and it is invariant with

respect to the image g.Q˛/ � Mon2.�; �/˛ of g.
(4) The image of Qg is equal to the kernel of the homomorphism h, given in Eq. (5.5).

Proof. Part (1) follows from the characterization of Qgz in Lemma 5.2. Part (2) is
straightforward as is the Mon2.�; �/˛-equivariance of q. The g.Q˛/-invariance of q
follows from part (2). Part (3) is thus proven.

Part (4): The image of Qg is contained in the kernel of h, by Lemma 5.2. Let f 2
O. Q�/ˇ;v belong to the kernel of h. Set �1 WD f .�/ and z WD �1 � � . Then .�1; ˇ/ D
.f .�/; ˇ/ D .f .�/; f .ˇ// D .�; ˇ/ and similarly .�1; v/ D .�; v/. Hence, .z; ˇ/ D
0 and .z; v/ D 0. The isometry Qgz is thus well defined and it is equal to f , by
Lemma 5.2. ut

5.3 Density

A period ` in ˝�k3 is said to be special, if it satisfies the condition analogous to the
one in Definition 1.1. We identify ˝Q˛ as a submanifold of ˝�k3 , via Lemma 4.1.
Note that a period ` 2 ˝˛? is special, if and only if the period q.`/ is.

Lemma 5.4. 1. g.Q˛/ has a dense orbit in q�1.`/, if and only if ` is non-special.
2. If g.Q˛/ has a dense orbit in q�1.`/, then every g.Q˛/-orbit in q�1.`/ is dense.

Proof. Part 2 follows from the description of the action in Lemma 5.3 part 2. We
prove part 1. Fix a period ` such that q.`/ D ` and choose a non-zero element t of
the line ` in ˛?

� �Z C. Then q�1.`/ D PŒC˛ C Ct � n fPŒC˛�g and gŒz�.a˛ C t/ D
.a C .t; z//˛ C t , by Lemma 5.3 part 2. The fiber q�1.`/ has a dense g.Q˛/-orbit,
if and only if the image of

.t; �/ W Q˛ ! C (5.6)

is dense in C.
Suppose first that ` is special. Set V WD Œ`� Ǹ�\ ŒQ˛ �ZR�. Let 	 be a non-zero

element in V \Q˛. There exists an element t 2 `, such that 	 D t C Nt . Given an
element z 2 Q˛, then 2Re.z; t/ D .z; t/C.z; Nt / D .z; 	/ is an integer. Thus,Re.z; t/
belongs to the discrete subgroup 1

2
Z of R. Hence, the image of the homomorphism

(5.6) is not dense in C.



262 E. Markman

Assume next that ` is non-special. Denote by �.`/ � Q˛ the lattice orthogonal
to the kernel of the homomorphism (5.6). �.`/ is the transcendental lattice of the
K3-surface with period `. We know that �.`/ has rank at least two, and if the rank
of �.`/ is 2, then the Hodge decomposition is defined over Q and so ` is special.
Thus, the rank of �.`/ is at least three. Let G � �.`/ be a co-rank 1 subgroup.
We claim that the image .t; G/, of G via the homomorphism (5.6), spans C as a
2-dimensional real vector space. The latter statement is equivalent to the statement
that the image of G in V �, under the map z 7! .z; �/ which has real values on V ,
spans V �. The equivalence is clear considering the following isomorphisms of two
dimensional real vector spaces:

where evt is evaluation at t , Re takes .z; �/ to its real part Re.z; �/, and p� is
pullback via the projection p W V ! ` on the .2; 0/ part. Assume that the
image of G in V � spans a one-dimensional subspace W . Let U be the subspace
of V annihilated by W , and hence also by .z; �/, z 2 G. Then the kernel of the
homomorphism �k3 ! U �, given by z 7! .z; �/, has co-rank 1 in �k3. It follows
that the decomposition �k3 �Z R D U � U? is defined over Q. Thus, U \ �k3

is non-trivial and ` is special. A contradiction. Thus, indeed, the image .t; G/ of G
spans C. Let Z � C be the image .t; �.`// of �.`/ via the homomorphism (5.6).
We have established that Z satisfies the hypothesis of Lemma 5.5 below, which
implies that the image of the homomorphism (5.6) is dense in C. ut
Lemma 5.5. LetZ � R2 be a free additive subgroup of rank� 3. Assume that any
co-rank 1 subgroup of Z spans R2 as a real vector space. Then Z is dense in R2.

Proof. Let ˙ be the set of all bases of R2, consisting of elements of Z. Given a
basis ˇ 2 ˙ , ˇ D fz1; z2g, set ǰ j D jz1j C jz2j. Set I WD inffǰ j W ˇ 2 ˙g: Note
that the closed parallelogram Pˇ with vertices f0; z1; z2; z1C z2g has diameter < ǰ j.
Furthermore, every point of the plane belongs to a translate of Pˇ by an element of
the subset span

Z
fz1; z2g of Z. Hence, it suffices to prove that I D 0.

The proof is by contradiction. Assume that I > 0. Let ˇ D fz1; z2g be a basis
satisfying I � ǰ j < 12

11
I . We may assume, without loss of generality, that jz1j � jz2j.

We prove next that there exists an element w 2 Z, such that w D c1z1 C c2z2,
where the coefficients ci are irrational. Set r WD rank.Z/. Let z3; : : : ; zr be elements
of Z completing fz1; z2g to a subset, which is linearly independent over Q. Write
zj D cj;1z1 C cj;2z2, for 3 � j � r . Assume that cj;1 are rational, for 3 �
j � r . Then there exists a positive integer N , such that Ncj;1 are integers, for
all 3 � j � r . Then

fz2;Nz3 � Nc3;1z1; : : : ;Nzr � Ncr;1z1g

spans a co-rank 1 subgroup ofZ, which lies on Rz2. This contradicts the assumption
on Z. Hence, there exists an element w 2 Z, such that w D c1z1 C c2z2, where the
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coefficient c1 is irrational. Repeating the above argument for c2, we get the desired
conclusion.

Choose an element w as above. By adding vectors in span
Z
fz1; z2g, and possibly

after changing the signs of z1 or z2, we may assume that w D c1z1 C c2z2, with
0 < c1 <

1
2

and 0 < c2 < 1
2
. Then w belongs to the parallelogram 1

2
Pˇ with vertices

f0; z1
2
; z2
2
; z1Cz2

2
g. If c1 and c2 are both larger than 1

3
replace w by z1Cz2�2w. We may

thus assume further, that at least one ci is � 1
3
. In particular, jwj � c1 jz1j C c2 jz2j <

5
6
jz1j : Consider the new basis Q̌ WD fw; z2g of R2. Then

ˇ̌
ˇ Q̌
ˇ̌
ˇ D jwjCjz2j < 5

6
jz1jCjz2j D

ǰ j � 1
6
jz1j � 11

12
ǰ j < I: We obtain the desired contradiction. ut

Denote by J˛ � ˝˛? the union of all the g.Q˛/ translates of the section ��
constructed in Eq. (5.2) above.

J˛ WD
[

y2Q˛

gy

h
��

�
˝C
Q˛

�i
:

One easily checks that gŒz� ı �� D �ı, where ı WD � C �.z/C .�; �.z//ˇ C .z;z/
2
ˇ, for

all z 2 ˛?
� , and so J˛ is independent of the choice of � .

Proposition 5.6. (1) J˛ is a dense subset of ˝C
˛? .

(2) If V is a g.Q˛/-invariant open subset of ˝C
˛? , which contains J˛ , then V

contains every non-special period in ˝C
˛? .

(3) For every ` 2 J˛ , there exists a marked pair .M; �/, consisting of a smooth
projective irreducible holomorphic symplectic manifold M of K3Œn�-type and
a marking � W H2.M;Z/ ! � with period ` satisfying the following
properties.

(a) The composition �ı� W H2.M;Z/! Q� belongs to the canonicalO. Q�/-orbit
�M of Theorem 2.2.

(b) There exists a Lagrangian fibration � WM ! Pn, such that the class ��1.˛/
is equal to ��c1.OPn.1//.

Proof.

(1) The density of J˛ follows from Lemma 5.4.
(2) V intersects every non-special fiber q�1.`/ in a non-empty open g.Q˛/-

equivariant subset of the latter. The complement q�1.`/ n V is thus a closed
g.Q˛/-equivariant proper subset of the fiber. But any g.Q˛/-orbit in the non-
special fiber q�1.`/ is dense in q�1.`/, by Lemma 5.4. Hence, the complement
q�1.`/ n V must be empty.

(3) If `0 belongs to the section ��
�
˝C
Q˛

�
, then such a pair .M; �/ WD .MH.u/; �1/

was constructed in Diagram (5.4) as mentioned in Remark 5.1. If ` D gz.`0/,
z 2 ˛?

� , set .M; �/ D .MH.u/; gz ı �1/. ut
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6 Primitive Isotropic Classes and Lagrangian Fibrations

We prove Theorem 1.3 in this section using the geometry of the moduli space
M0

˛? given in Eq. (4.6). Recall that M0
˛? is a connected component of the moduli

space of marked pairs .X; �/ with X of K3Œn�-type and such that ��1.˛/ is a
primitive isotropic class of Hodge type .1; 1/ in the boundary of the positive cone
in H1;1.X;R/.

Fix a connected moduli space M0
˛? as in Eq. (4.6). Denote by L��1.˛/ the line

bundle on X with c1.L / D ��1.˛/. Let V be the subset of M0
˛? consisting of all

pairs .X; �/, such that L��1.˛/ induces a Lagrangian fibration.

Theorem 6.1. The image of V via the period map contains every non-special
period in ˝C

˛? .

Proof. Let .X; �/ be a marked pair in M0
˛? . The property that ��1.˛/ is the

first Chern class of a line-bundle L on X , which induces a Lagrangian fibration
X ! jL j�, is an open property in the moduli space of marked pairs, by a result of
Matsushita [27]. V is thus an open subset.

Choose a primitive embedding � W � ! Q� with the property that � ı �
belongs to the canonical O. Q�/-orbit �X of Theorem 2.2, for all .X; �/ in M0

�. Let
Mon2.�; �/ and its subgroup Mon2.�; �/˛ be the subgroups of OC.�/ introduced
in Lemma 5.3. The component M0

� of the moduli space of marked pairs is invariant
under Mon2.�; �/, by Theorem 2.4. The subset M0

˛? of M0
� is invariant under

the subgroup Mon2.�; �/˛. Hence, the subset V is Mon2.�; �/˛ invariant. The
construction in Sect. 5.1 yields a marked pair .MH.u/; �1/ with period in the image
of the section �� W ˝C

Q˛
! ˝C

˛? , given in Eq. (5.2). Furthermore, the class ��1
1 .˛/

induces a Lagrangian fibration of MH.u/. The marked pair .MH.u/; �1/ belongs to
M0

˛? , by Proposition 4.5 (Remark 5.1 verifies the conditions of Proposition 4.5).

Hence, .MH.u/; �1/ belongs to V and the image of the section �� W ˝C
Q˛
!

˝C
˛? is thus contained in the image of V via the period map. The period map

P0 is Mon2.�; �/˛ equivariant and a local homeomorphism, by the Local Torelli
Theorem [4]. Hence, the image P0.V / is an open and Mon2.�; �/˛ invariant subset
of ˝C

˛? . Any Mon2.�; �/˛ invariant subset, which contains the section �� .˝
C
Q˛
/,

contains also the dense subset J˛ of Proposition 5.6. P0.V / thus contains every
non-special period in ˝C

˛? , by Proposition 5.6 (2). ut
We will need the following criterion of Kawamata for a line bundle to be semi-

ample. Let X be a smooth projective variety and D a divisor class on X . Set
�.X;D/ WD maxfe W De 6
 0g, where
 denotes numerical equivalence. IfD 
 0,
we set �.X;D/ D 0. Denote by ˚kD W X ⇢ jkDj� the rational map, defined
whenever the linear system is non-empty. Set �.X;D/ WD maxfdim˚kD.X/ W
k > 0g, if jkDj is non-empty for some positive integer k, and �.X;D/ WD �1,
otherwise.
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Theorem 6.2 (A special case of [16, Theorem 6.1]). LetX be a smooth projective
variety with a trivial canonical bundle andD a nef divisor. Assume that �.X;D/ D
�.X;D/ and �.X;D/ � 0. ThenD is semi-ample, i.e., there exists a positive integer
k such that the linear system jkDj is base point free.

An alternate proof of Kawamata’s Theorem is provided in [11]. A reduced and
irreducible divisor E on X is called prime-exceptional, if the class e 2 H2.X;Z/

of E satisfies .e; e/ < 0. Consider the reflection RE W H2.X;Z/ ! H2.X;Z/,
given by

RE.x/ D x � 2.x; e/
.e; e/

e:

It is known that the reflection RE by the class of a prime exceptional divisor E
is a monodromy operator, and in particular an integral isometry [24, Cor. 3.6]. Let
W.X/ � O.H2.X;Z// be the subgroup generated by reflections RE by classes
of prime exceptional divisors E � X . Elements of W.X/ preserve the Hodge
structure, henceW.X/ acts on H1;1.X;Z/.

Let PexX � H1;1.X;Z/ be the set of classes of prime exceptional divisors. The
fundamental exceptional chamber of the positive cone CX is the set

FEX WD fa 2 CX W .a; e/ > 0; for all e 2PexX g:

The closure of FEX in CX is a fundamental domain for the action of W.X/ [23,
Theorem 6.18]. Let f W X ⇢ Y be a bimeromorphic map to an irreducible
holomorphic symplectic manifold Y and KY the Kähler cone of Y . Then f �KY

is an open subset of FEX . Furthermore, the union of f �KY , as f and Y vary over
all such pairs, is a dense open subset of FEX , by a result of Boucksom [6] (see also
[23, Theorem 1.5]).

Proof (of Theorem 1.3). Step 1: Keep the notation in the opening paragraph of
Sect. 5. Choose a marking � W H2.X;Z/ ! �, such that � ı � belongs to the
canonicalO. Q�/-orbit �X . Set ˛ WD �.c1.L //. Then .X; �/ belongs to a component
M0

˛? of the moduli space of marked pairs ofK3Œn�-type considered in Theorem 6.1.
We use here the assumption that L is nef in order to deduce that ��1.˛/ belongs to
the boundary of the positive cone of X , used in Theorem 6.1.

The period P0.X; �/ is non-special, by assumption. There exists a marked pair
.Y;  / in M0

˛? satisfying P0.Y;  / D P0.X; �/, such that the class  �1.˛/
induces a Lagrangian fibration, by Theorem 6.1. The marked pairs .X; �/ and
.Y;  / correspond to inseparable points in the moduli space M0

˛? , by the Global
Torelli Theorem 4.3. Hence, there exists an analytic correspondence Z � X � Y ,
Z D Pk

iD0 Zi in X � Y , of pure dimension 2n, with the following properties, by
results of Huybrechts [13, Theorem 4.3] (see also [23, Sec. 3.2]).
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(1) The homomorphismZ� W H�.X;Z/ ! H�.Y;Z/ is a Hodge isometry, which
is equal to  �1 ı �. The irreducible componentZ0 of the correspondence is the
graph of a bimeromorphic map f W X ⇢ Y .

(2) The images in X and Y of all other components Zi , i > 0, are of positive
co-dimension.

Step 2: We prove next that the line bundle L overX is semi-ample. We consider
separately the projective and non-algebraic cases.

Step 2.1: Assume thatX is not projective.3 We claim that f�.c1.L // D  �1.˛/.
The Neron-Severi group NS.X/ does not contain any positive class, by Huybrechts
projectivity criterion [13]. Hence, the Beauville-Bogomolov-Fujiki pairing restricts
to NS.X/ as a non-positive pairing with a rank one null sub-lattice spanned by
the class c1.L /. Similarly, the Beauville-Bogomolov-Fujiki pairing restricts to
NS.Y / with a rank one null space spanned by  �1.˛/. Hence, f�.c1.L // D
˙ �1.˛/. Now  �1.˛/ is semi-ample and hence belongs to the closure of FEY .
The class c1.L / is assumed nef, and hence belongs to the closure of FEX .
The bimeromorphic map f induces a Hodge-isometry f� W H2.X;Z/! H2.Y;Z/,
which maps FEX onto FEY [6]. Hence, f�.c1.L // belongs to FE Y as well. We
conclude the equality f�.c1.L // D  �1.˛/.

Let L2 be the line bundle with c1.L2/ D  �1.˛/. The bimeromorphic map
f W X ⇢ Y is holomorphic in co-dimension one, and so induces an isomorphism
f1 W jL j ! jL2j of the two linear systems. Denote by ˚L2 W Y ! jL2j� the
Lagrangian fibration induced by L2. We conclude that jL j is n dimensional and the
meromorphic map˚L W X ⇢ jL j� is an algebraic reduction ofX (see [8]). By def-
inition, an algebraic reduction of X is a dominant meromorphic map � W X ⇢ B to
a normal projective variety B , such that �� induces an isomorphism of the function
fields of meromorphic functions [8]. Only the birational class of B is determined by
X . Fibers of the algebraic reduction � are defined via a resolution of indeterminacy,
and are closed connected analytic subsets of X . In our case, the generic fiber of
˚L is bimeromorphic to the generic fiber of ˚L2 . The generic fiber of ˚L2 is a
complex torus, and hence algebraic, by [7, Prop. 2.1]. Hence, the generic fiber of
˚L has algebraic dimension n. It follows that the line bundle L is semi-ample, it
is the pullback of an ample line-bundle over B , via a holomorphic reduction map
� W X ! B which is a regular morphism, by [8, Theorems 1.5 and 3.1].

Step 2.2: When X is projective there exists an element w 2 W.X/, such that
Huybrecht’s birational map f W X ⇢ Y satisfies f �ı �1ı� D w, by [23, Theorem
1.6]. Set ˛X WD ��1.˛/ and ˛Y WD  �1.˛/. We get the equality w.˛X/ D f �.˛Y /.

Let FE X be the closure of the fundamental exceptional chamber FEX in
H1;1.X;R/. The class ˛X is nef, by assumption, and it thus belongs to FE X . We
already know that ˛Y is the class of a line bundle, which induces a Lagrangian

3I thank K. Oguiso and S. Rollenske for pointing out to me that in the non-algebraic case the result
should follow from the above via the results of Ref. [8].
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fibration. Hence, f �.˛Y / belongs to FE X . The class w.˛X/ thus belongs to the

intersection w
�
FE X

�
\FE X .

Let J be the subset of PexX given by J D fe 2PexX W .e; ˛X/ D 0g. Denote
by WJ the subgroup of W.X/ generated by reflections Re , for all e 2 J . Then WJ

is equal to

fw 2 W.X/ W w.˛X/ 2 FE X g;

by a general property of crystalographic hyperbolic reflection groups [12, Lecture 3,
Proposition on page 15]. We conclude that w.˛X / D ˛X and

˛X D f �.˛Y /: (6.1)

We are ready to prove4 that L is semi-ample. The rational map f is regular in
co-dimension one. The map f thus induces an isomorphism fm W jL mj ! jL m

2 j,
for every integer m. Hence, �.X;L / D �.Y;L2/ D n. Any non-zero isotropic
divisor class D on a 2n dimensional irreducible holomorphic symplectic manifold
satisfies �.X;D/ D n, by a result of Verbitsky [41]. Hence, �.X;L / D n. The line
bundle L is assumed to be nef. Hence, L is semi-ample, by Theorem 6.2.

Step 3: We return to the general case, where X may or may not be projective.
In both cases we have seen that there exists a positive integerm, such that the linear
system jL mj is base point free and ˚L m is a regular morphism. Furthermore, the
bimeromorphic map f W X ⇢ Y is regular in co-dimension one and thus induces
an isomorphism fk W jL kj ! jL k

2 j, for every positive integer k. Denote by f �
k WjL k

2 j� ! jL kj� the transpose of fk . We get the equality ˚L k D f �
k ı˚L k

2
ı f; for

all k. Let Vm W jL2j� ! jL m
2 j� be the Veronese embedding. We get the equalities

Vm ı .f �
1 /

�1 ı ˚L D Vm ı ˚L2 ı f D ˚L m
2
ı f D .f �

m /
�1 ı ˚L m: (6.2)

Now, Vm ı .f �
1 /

�1 W jL j� ! jL m
2 j� is a closed immersion and the morphism

on the right hand side of (6.2) is regular. Hence, the rational map ˚L is a regular
morphism. The base locus of the linear system jL j is thus either empty, or a divisor.
The latter is impossible, since f is regular in co-dimension one and jL2j is base
point free. Hence, jL j is base point free. ut

Let X and L be as in Theorem 1.3, except that we drop the assumption that L
is nef and assume only that c1.L / belongs to the boundary of the positive cone.
Assume that X is projective.

4I thank C. Lehn for Ref. [18, Prop. 2.4], used in an earlier argument, and T. Peternell and Y.
Kawamata for suggesting the current more direct argument.
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Theorem 6.3. There exists an element w 2 W.X/, a projective irreducible
holomorphic symplectic manifold Y , a birational map f W X ⇢ Y , and a
Lagrangian fibration � W Y ! Pn, such that w.L / D f ���OPn.1/.

Proof. Let .Y;  / be the marked pair constructed in Step 1 of the proof of
Theorem 1.3. Then Y admits a Lagrangian fibration � W Y ! Pn and the class
��c1.OPn.1// was denoted ˛Y in that proof. In step 2.2 of that proof we showed the
existence of a birational map f W X ⇢ Y and an element w 2 W.X/, such that
w.c1.L // D f �.˛Y / (see Equality (6.1)). ut

7 Tate-Shafarevich Lines and Twists

7.1 The Geometry of the Universal Curve

Let S be a projectiveK3 surface, d a positive integer, and L a nef line bundle on S

of positive degree, such that the class c1.L / is indivisible. Set n WD 1C d2 deg.L /

2
.

Let C � S � jL d j be the universal curve, �i the projection from S � jL d j to the
i -th factor, i D 1; 2, and pi the restriction of �i to C . We assume in this section the
following assumptions about the line bundle L .

Assumption 7.1. (1) The linear system jL d j is base point free.
(2) The locus in jL d j, consisting of divisors which are non-reduced, or reducible

having a singularity which is not an ordinary double point, has co-dimension
at least 2.

Remark 7.2. Assumption 7.1 holds whenever Pic.S/ is cyclic generated by L . The
base point freeness Assumption 7.1 (1) follows from [32, Prop. 1]. Assumption 7.1
(2) is verified as follows. If aCb D d , a � 1, b � 1, then the image of jL aj�jL bj
in jL d j has co-dimension 2ab

�
n�1
d2

	 � 1. The co-dimension is at least two, except
in the case .n; d/ D .5; 2/. In the latter case jL j Š P2, jL 2j Š P5 and the generic
curve in the image of jL j� jL j in jL 2j is the union of two smooth curves of genus
2 meeting transversely at two points. Hence, Assumption 7.1 (2) holds in this case
as well.

The morphism p1 W C ! S is a projective hyperplane sub-bundle of the trivial
bundle over S with fiber jL d j, by the base point freeness Assumption 7.1 (1).
Assumption 7.1 (2) will be used in the proof of Lemma 7.9. Consider the exponential
short exact sequence over C

0! Z! OC ! O�
C ! 0:

We get the exact sequence of sheaves of abelian groups over jL d j

0 �! R1p2�
Z �! R1p2�

OC �! R1p2�
O�

C

deg�! R2p2�
Z �! 0; (7.1)
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where we work in the complex analytic category. Note that deg above is sur-
jective, since R2p2�

OC vanishes. Set X WD H1.jL d j; R1p2�
O�

C / and fX WD
H1.jL d j; R1p2�

OC /. Set Br 0.S/ WD H2.S;O�
S / and Br 0.C / WD H2.C ;O�

C /.

Lemma 7.3. (1) There is a natural isomorphism

R1p2�
OC Š T �jL d j�C H

2;0.S/�:

(2) fX is naturally isomorphic to H0;2.C /. Consequently, fX is one dimensional.
(3) H2.C ;Z/ decomposes as a direct sum

H2.C ;Z/ D p�
1 H

2.S;Z/� p�
2 H

2.jL d j;Z/:

The groups Hi.C ;Z/ vanish for odd i . The Dolbeault cohomologiesHp;q.C /
vanish, if jp � qj > 2.

(4) The pullback homomorphism p�
1 W H2.S;O�

S / ! H2.C ;O�
C / is an isomor-

phism. The Leray spectral sequence yields an isomorphism

b W H2.C ;O�
C /! H1.jL d j; R1p2�

O�
C /:

Consequently, we have the isomorphisms

Let F be a sheaf of abelian groups over C . Let F pHk.C ;F / be the
Leray filtration associated to the morphism p2 W C ! jL d j and E

p;q1 WD
F pHpCq.C ;F /=F pC1HpCq.C ;F / its graded pieces. Recall that the E

p;q
2

terms are E
p:q
2 WD Hp.jL d j; Rqp2�

F / and the differential at this step is
d2 W Ep;q

2 ! E
pC2;q�1
2 .

Proof. (1) We have the isomorphism OS�jL d j.C / Š ��
1 L d

���
2 OjL d j.1/. Apply

the functor R�2�
to the short exact sequence 0! OS�jL d j ! OS�jL d j.C /!

OC .C /! 0 to obtain the Euler sequence of the tangent bundle.

0! OjL d j ! H0.S;L d /�C OjL d j.1/! T jL d j ! 0:

Now OC .C /�C H
2;0.S/ is isomorphic to the relative dualizing sheaf !p2 . We

get the isomorphisms

R1p2�
OC Š ŒR0p2�

OC .C /�C H
2;0.S/�� Š ŒR0p2�

OC .C /�
�

�C H
2;0.S/�

Š T �jL d j�C H
2;0.S/�:

(2) R2p2�
OC vanishes, since p2 has one-dimensional fibers. H2.jL d j; p2�

OC /

vanishes, since p2�
OC Š OjL d j. The latter isomorphism follow from the
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fact that p2 has connected fibers. We conclude that H2.C ;OC / is isomor-
phic to the E1;11 graded summand of its Leray filtration. The differential
d2 W H1.jL d j; R1p2�

OC / ! H3.jL d j; p2�
OC / vanishes, since H0;3.jL d j/

vanishes. Hence, the E1;1
2 term fX WD H1.jL d j; R1p2�

OC / is isomorphic to
H2.C ;OC /.

(3) The statement is topological and so it suffices to prove it in the case where
Pic.S/ is cyclic generated by L . In this case L is ample, and so the line bundle
��
1 L d

���
2 OjL d j.1/ is ample. The Lefschetz Theorem on Hyperplane sections

implies that the restriction homomorphism H2.S � jL d j;Z/ ! H2.C ;Z/ is
an isomorphism.

C is the projectivization of a rank n vector bundle F over S . Hence,
H�.C ;Z/ is the quotient of H�.S;Z/Œx�, with x of degree 2, by the ideal
generated by

PnC1
iD0 ci .F /xi . The image of x in H�.C ;Z/ corresponds to the

class Nx WD c1.OC .1// of Hodge type .1; 1/. In particular, H�.C ;Z/ is a free
H�.S;Z/-module of rank n generated by 1, Nx, . . . , Nxn�1.

(4) The vanishing ofH3.S;Z/ andH3.C ;Z/ yields the commutative diagram with
exact rows:

Part (3) of the Lemma implies that the left and middle vertical homomorphism
are isomorphisms. It follows that the right vertical homomorphism is an
isomorphism as well.

The sheaf R2p2�
O�

C vanishes, by the exactness of R2p2�
OC ! R2p2�

O�
C !

R3p2�
Z and the vanishing of the left and right sheaves due to the fact that p2 has

one-dimensional fibers. The sheaf p2�
O�

C is isomorphic to O�
jL d j, since p2 has

connected complete fibers. Thus, H2.C ;O�
C / is isomorphic to the kernel of the

differential

d2 W E1;1
2 WD H1.jL d j; R1p2�

O�
C /! E3;0

2 WD H3.jL d j;O�
jL d j/: (7.2)

We prove next that d2 vanishes. The co-kernel of d2 is equal to F 3H3.C ;O�
C /. Now

F 3H3.C ;O�
C / is equal to the image of p�

2 W H3.jL d j;O�
jL d j/! H3.C ;O�

C /. We
have a commutative diagram
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The horizontal homomorphisms, induced by the connecting homomorphism of the
exponential sequence, are isomorphisms, since h0;3.C / D h0;3.jL d j/ D 0 and
h0;4.C / D h0;4.jL d j/ D 0. The right vertical homomorphism is injective. We
conclude that the left vertical homomorphism is injective. Hence the differential d2
in (7.2) vanishes andH2.C ;O�

C / is isomorphism toH1.jL d j; R1p2�
O�

C /, yielding
the isomorphism b. ut

Let ˙ � H2.S;Z/ be the sub-lattice generated by classes of irreducible
components of divisors in the linear system jL d j. Denote by ˙? the sub-lattice
of H2.S;Z/ orthogonal to ˙ .

Lemma 7.4. (1) The Leray filtration of H2.C ;Z/ associated to p2 is identified as
follows:

F 2H2.C ;Z/ D p�
2 H

2.jL d j;Z/;
F 1H2.C ;Z/ D p�

2 H
2.jL d j;Z/ � p�

1 ˙
?:

(2) Ep;q
2 D E

p;q1 , if .p; q/ D .2; 0/, or .1; 1/. Consequently, we get the following
isomorphisms.

E2;0
2 WD H2.jL d j; p2�

Z/ Š p�
2 H

2.jL d j;Z/;
E
1;1
2 WD H1.jL d j; R1p2�

Z/ Š p�
1 ˙

?;

(3) If the sub-lattice ˙ is saturated in H2.S;Z/, then H2.jL d j; R1p2�
Z/ van-

ishes.

Proof. (1), (2) The sheaf p2�
Z is the constant sheafZ, since p2 has connected fibers.

Then E3;0
2 D H3.jL d j;Z/ D 0, and so E1;11 D E

1;1
2 D H1.jL d j; R1p2�

Z/.
E2;0
2 WD H2.jL d j; p2�

Z/ has rank 1 and it maps injectively into H2.C ;Z/, with
image equal to p�

2 H
2.jL d j;Z/. Thus,E2;0

2 D E2;01 andE1;11 WD F 1H2.C ;Z/=E2;01
is isomorphic to F 1H2.C ;Z/=p�

2 H
2.jL d j;Z/. Finally, E0;2

2 is the kernel of

d2 W H0.jL d j; R2p2�
Z/! H2.jL d j; R1p2�

Z/:

Thus, F 1H2.C ;Z/ is the kernel of the homomorphism H2.C ;Z/ !
H0.jL d j; R2p2�

Z/. The latter kernel is equal to p�
1 ˙

?
� p�

2 H
2.jL d j;Z/, by

Lemma 7.3 (3). We conclude that F 1H2.C ;Z/=p�
2 H

2.jL d j;Z/ is isomorphic to
bothH1.jL d j; R1p2�

Z/ and p�
1 ˙

?.
(3) The composition H2.C ;Z/ ! H0.R2p2�

Z/ ,! ˙� factors through
H2.S;Z/. If ˙ is saturated, then the composition is surjective, since H2.S;Z/

is unimodular. Thus, d0;22 W H0.R2p2�
Z/ ! H2.R1p2�

Z/ vanishes. The sheaf
p2�

Z is the trivial local system and the homomorphism H4.jL d j; p2�
Z/ Š

H4.jL d j;Z/ ! H4.C ;Z/ is the injective pull-back homomorphism p�
2 . Thus

the differential d2;12 W H2.R1p2�
Z/ ! H4.p2�

Z/ vanishes. We conclude that
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E
2;1
2 WD H2.R1p2�

Z/ is isomorphic to E2;11 . Now E2;11 vanishes, since H3.C ;Z/
vanishes. ut

Let A 0 be the kernel of the homomorphism deg, given in (7.1). Then A 0 is a
subsheaf of R1p2�

O�
C and we get the short exact sequences

0 �! A 0 �! R1p2�
O�

C

deg�! R2p2�
Z �! 0; (7.3)

0 �! R1p2�
Z �! R1p2�

OC �! A 0 �! 0; (7.4)

and the long exact

	 	 	 ! H1.jL d j; R1p2�
Z/! H1.jL d j; R1p2�

OC /! H1.jL d j;A 0/! 	 	 	

Lemma 7.5. The group H0.jL d j;A 0/ is isomorphic to NS.S/ \ ˙?. The com-
posite homomorphism

H2.S;Z/! H0;2.S/
p�
1! H0;2.C / ŠfX! H1.jL d j;A 0/

factors through an injective homomorphism from H2.S;Z/=Œ˙?CNS.S/� into the
kernel of the homomorphismH1.jL d j;A 0/!X.

Proof. The space H0.jL d j; R1p2�
OC / vanishes, by Lemma 7.3 (1). Hence,

H0.jL d j;A 0/ is the kernel of the homomorphism H1.jL d j; R1p2�
Z/ !

fX Š H0;2.S/. Compose the above homomorphism with the isomorphism
˙? Š H1.jL d j; R1p2�

Z/ of Lemma 7.4 in order to get the isomorphism
H0.jL d j;A 0/ Š NS.S/\˙?.

We have a commutative diagram with short exact rows

(7.5)

The top row is obtained from the long exact sequence of sheaf cohomologies
associated to the short exact sequence (7.4). The left vertical homomorphism
is injective and the right vertical homomorphism is surjective. The co-kernel of
the former is isomorphic to the kernel of the latter and both are isomorphic to
H2.S;Z/=Œ˙? C NS.S/�. Setting

X0 WD kerŒH1.A 0/! H2.R1p2�
Z/�; (7.6)

we see that the right vertical homomorphism fits in the short exact sequence
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0 �! H2.S;Z/

˙? C NS.S/
�!X0 �!X �! 0: (7.7)

The statement of the Lemma follows. ut
Let X0 be the group given in Eq. (7.6). Classes of X represent torsors for the

relative Picard group scheme, while classes of X0 represent torsors for the relative
Pic0 group scheme. This comment will be illustrated in Example 7.8 below.

7.2 A Universal Family of Tate-Shafarevich Twists

Let S be the marked K3 surface in Diagram (5.4) and MH.u/ the moduli space of
H -stable sheaves of pure one-dimensional support on S in that Diagram. Recall that
c1.u/ is the first Chern class of L d , for a nef line-bundle L on S , and the support
map � WMH.u/! jL d j is a Lagrangian fibration.

Let 
 be a section ofR1p2�
.O�

C / over an open subset U of jL d j. Assume that 

is the image of a section Q
 of R1p2�

.OC / over U . Then 
 lifts to an automorphism
of the open subset ��1.U / ofMH.u/. This is seen as follows. Fix a point t 2 jL d j
and denote by Ct the corresponding divisor in S . Denote by 
.t/ the image of 

in H1.Ct ;O

�
Ct
/ and by L
.t/ the line-bundle over Ct with class 
.t/. A sheaf F

over Ct is H -stable, if and only if F � L
.t/ is H -stable, since tensorization by
L
.t/ induces a one-to-one correspondence between the set of subsheaves, which is
slope-preserving, since L
.t/ belongs to the identity component of the Picard group
of Ct .

Let s be an element of X0. We can choose a Čech 1-co-cycle 
 WD f
ijg for the
sheaf A 0 representing s in X0, with respect to an open covering fUig of jL d j, such
that each 
ij is the image of a section Q
ij of R1p2�

.OC /, since the homomorphism
R1p2�

.OC /! A 0 is surjective. The co-cycle f
ijgmay be used to re-glue the open
covering ��1.Ui / of MH.u/ to obtain a separated complex manifold M
 together
with a proper map �
 W M
 ! jL d j: The latter is independent of the choice of the
co-cycle, by the following Lemma, so we denote it by

�s WMs ! jL d j: (7.8)

Lemma 7.6. Let 
 WD f
ijg and 
 0 WD f
 0
ijg be two co-cycles representing the

same class in X0. Then there exists an isomorphism h W M
 ! M
 0 satisfying the
equation �
 0 ıh D �
 . If the lattice˙ of Lemma 7.4 has finite index in NS.S/, then
h depends canonically on 
 and 
 0.

Proof. There exists a co-chain h WD fhig in C0.fUig;A 0/, such that hi
ij D 
 0
ijhj ,

possibly after refining the covering and restricting the co-cycles 
 and 
 0 to the
refinement. Each hi is the image of a section Qhi of R1p2�

OC , possibly after further
refinement of the covering, since the sheaf homomorphism R1p2�

OC ! A 0 is
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surjective. Hence, hi lifts canonically to an automorphism of ��1.Ui/. The co-chain
fhig of automorphisms glues to a global isomorphism from M
 0 to M
 , by the
equality hi
ij D 
 0

ijhj .
If h0 WD fh0

ig is another co-chain satisfying the equality ı.h/ D 
.
 0/�1,
then h�1h0 is a global section of A 0. The assumption that ˙ has finite index in
NS.S/ implies that H0.A 0/ vanishes, by Lemma 7.5. Hence h D h0 and the above
refinements are not needed. ut

In the relative setting the above construction gives rise to a natural proper family

Q� WM !fX � jL d j;

which restricts over f0g � jL d j to � W MH.u/ ! jL d j, and over Qs 2 fX to
�j.Qs/ W Mj.Qs/ ! jL d j: Indeed, let .fUig; Q
ij/ be a Čech co-cycle representing a
non-zero class Q
 in H1.jL d j; R1p�OC /. Let

� WfX! C (7.9)

be the function satisfying �.x/ Q
 D x. Then .ffX � Uig; exp.� Q
ij// is a global
co-cycle representing the desired family. Let

f WM !fX

be the composition of Q� with the projection to fX.

Proposition 7.7. If the weight 2 Hodge structure of S is non-special, then Ms is
Kähler, for all s 2X0.

Proof. There is an open neighborhood of the origin in fX, over which the fibers
of f are Kähler, by the stability of Kähler manifolds [42, Theorem 9.3.3]. Let j W
fX!X0 be the homomorphism given in Eq. (7.5) The kernel ker.j / is isomorphic
to the group Œ˙? C NS.S/�=NS.S/, by Lemma 7.5. As a subgroup of the base fX
of the family f , the kernel ker.j / acts on the base. Let z be an element of ker.j /
and Qs an element of fX. The fibersMQs and MQsCz of f are both isomorphic to Mj.Qs/
by Lemma 7.6. Let V � fX be the subset consisting of points over which the fiber
of f is Kähler. Then V is an open and ker.j /-invariant subset of fX. Note that
ker.j / is a finite index subgroup of H2.S;Z/=NS.S/. The kernel ker.j / is a dense
subgroup offX, if and only if the image ofH2.S;Z/=NS.S/ is dense inH0;2.S/, by
Lemma 7.3 (4). This is indeed the case, by the assumption that the weight 2 Hodge
structure of S is non-special, and Lemmas 5.4 and 5.5. The complement V c of V
in fX is ker.j / invariant. If non-empty, then V c is dense and closed and so equal to
fX. But we know that V is non-empty. Hence, V DfX. ut
Example 7.8. Consider the case where d D 1 and Pic.S/ is cyclic generated by
the line bundle L of degree 2n � 2, n � 2. Then H2.jL d j; R1p2�

Z/ vanishes, by
Lemma 7.4 (3), and X0 D H1.A 0/. The linear system jL j consists of integral
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curves, and so we can find an open covering fUig of jL j, and sections �i W Ui ! C ,
such that p2 ı �i is the identity. Set Di WD �i .Ui /. We get the line bundle
Op�1

2 .Ui /
.Di /, which restricts to a line bundle of degree 1 on fibers of p2 over points

of Ui . Let hi be the section ofR1p2�
O�

C overUi corresponding to Op�1
2 .Ui /

.Di / and

denote by h WD fhig the corresponding co-chain in C0.fUig; R1p2�
O�

C /.
Consider the Lagrangian fibrations �0 W ML .0;L ; �/ ! jL j and �1 W

ML .0;L ; � C 1/ ! jL j, for some integer �. The push-forward of every rank
1 torsion free sheaf on a curve in the linear system jL j is an L -stable sheaf
on S , since the curve is integral. Hence, the section hi induces an isomorphism
hi W ��1

0 .Ui/ ! ��1
1 .Ui/. The co-boundary .ıh/ij WD hj h

�1
i is a co-cycle in

Z1.fUig;A 0/ representing a class s 2 X0 mapping to the identity in X. The
Lagrangian fibration �s W Ms ! jL j, associated to the class s in Eq. (7.8) with
u D .0;L ; �/, coincides with �1 WML .0;L ; �C1/! jL j; by the commutativity
of the following diagram.

The moduli spaces ML .0;L ; �/ and ML .0;L ; � C 1/ are not isomorphic for
generic .S;L /, since their weight 2 Hodge structures are not Hodge isometric.

The kernel of X0 ! X is cyclic of order 2n � 2, by the exactness of the
sequence (7.7). The class s constructed above generates the kernel. This is seen as
follows. The sheafR2p2�

Z is trivial, in our case, and the homomorphism deg, given
in (7.3), maps the 0-co-chain h to a global section of R2p2�

Z, which generates
H0.R2p2�

Z/: Hence, ıh generates the image of the connecting homomorphism
H0.R2p2�

Z/ ! H1.A 0/ associated to the short exact sequence (7.3). The latter
image is precisely the kernel of X0!X.

7.3 The Period Map of the Universal Family is Étale

Denote by T�s WD ker
�
d�s W TMs ! ��

s T jL d j� the relative tangent sheaf of �s W
Ms ! jL d j.
Lemma 7.9. The vertical tangent sheaf T�s is isomorphic to ��

s T
�jL d j.

Proof. Let sing.�s/ be the support of the co-kernel of the differential d�s W TMs !
��
s T jL d j. We use Assumption 7.1 to prove that the co-dimension of sing.�s/ inMs

is � 2. The generic fiber of �s is smooth, since Ms is smooth. All fibers of �s have
pure dimension n [29]. Hence, the only way sing.�s/ could contain a divisor is if �s
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has fibers with a non-reduced irreducible component over some divisor in jL d j. The
generic divisor in the linear system jL d j is a smooth curve, by Assumption 7.1 (1)
and [32, Prop. 1]. The fiber of �s , over a reduced divisorC 2 jL d j, is isomorphic to
the compactified Picard of C , consisting of L -stable sheaves of Euler characteristic
� with pure one-dimensional support C , which are the push forward of rank 1
torsion free sheaves over C . If C is an integral curve, then the moduli space of
rank 1 torsion free sheaves over C with a fixed Euler characteristic is irreducible
and reduced [1]. If C is reduced (possibly reducible) with at worst ordinary double
point singularities, then the compactified Picard is reduced, by a result of Oda and
Seshadri [37]. Assumption 7.1 (2) thus implies that sing.�s/ has co-dimension� 2
in Ms .

Let U be the complement of sing.�s/ in Ms . The isomorphism TMs ! T �Ms ,
induced by a non-degenerate global holomorphic 2-form, maps the restriction of T�s
to U isomorphically onto the restriction of ��

s T
�jL d j. The isomorphism TMs !

T �Ms must map T�s as a subsheaf of the locally free ��
s T jL d j, by the fact that

sing.�s/ has codimension � 2. But T�s is a saturated subsheaf of TMs . Hence, the
image of T�s is also saturated in T �Ms , and is thus equal to ��

s T
�jL d j. ut

When the K3 surface S is non-special, the fibers of the family f are irreducible
holomorphic symplectic manifolds, by Proposition 7.7 and the fact that Kähler
deformations of an irreducible holomorphic symplectic manifold remain such [4].
Denote by

� W R2f�Z! .�/eX (7.10)

the trivialization, which restricts to the marking �1 in Diagram (5.4) over the point
0 2 fX. Let Pf W fX ! ˝C

˛? be the period map of the family f and the marking

�. Let dPf W TQsfX! H2;0.Ms/
�

�H1;1.Ms/ be the differential at Qs of the period
map.

Lemma 7.10. The differential dPf is injective, for all Qs in fX, and its image is
equal to H2;0.Ms/

�
� ��

s H
1;1.jL d j/.

Proof. Let  W H2;0.Ms/
�

� H1.jL d j; T �jL d j/ ! H1.Ms; T�s / be the
composition of

1���
s WH2;0.Ms/

�
�H1.jL d j; T �jL d j/!H0.Ms;^2TMs/�H

1.Ms; �
�
s T

�jL d j/

with the contraction homomorphism H0.Ms;^2TMs/ � H1.Ms; �
�
s T

�jL d j/ !
H1.Ms; T�s /. Let �Qs W TQsfX ! H1.Ms;TMs/ be the Kodaira-Spencer map. We
have the commutative diagram.
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Above, the right vertical homomorphism is induced by the sheaf homomorphism
TMs ! T �Ms , associated to a holomorphic 2-form, and � is induced by the
inclusion of the relative tangent sheaf T�s as a subsheaf of TMs . The homomorphism
� is defined as follows. A tangent vector � at a class Qs of fX is represented by a
co-cycle of infinitesimal automorphisms – tangent vector fields – which are vertical,
being a limit of translations by local sections of the image ofR1p2�

OC inR1p2�
O�

C .
So � corresponds to an element �.�/ in H1.Ms; T�s /.

The top right triangle commutes, by Griffiths’ identification of the differential of
the period map [9]. The middle triangle commutes, by definition of the family f .
The commutativity of the outer polygon is easily verified. The top horizontal
homomorphism 1���

s is injective, with image equal to the tangent line to the fiber
of q. Hence, it suffices to prove that  and � have the same image in H1.Ms; T�s /.
The latter statement would follow once we prove that � is an isomorphism.

The homomorphism � is induced by the pullback

��
s H

1.jL d j; R1p2�
OC /! H1.Ms; �

�
s R

1p2�
OC /;

followed by the homomorphism of sheaf cohomologies induced by an injective
sheaf homomorphism

Q� W ��
s R

1p2�
OC ! T�s :

The domain of Q� is isomorphic to ��
s T

�jL d j, by Lemma 7.3, and its target is
isomorphic to ��

s T
�jL d j, by Lemma 7.9. Hence, Q� is an isomorphism. It remains

to prove that H1.Ms; �
�
s T

�jL d j/ is one dimensional. We have the exact sequence

0! H1.jL d j; �s���
s T

�jL d j/! H1.Ms; �
�
s T

�jL d j/
! H0.jL d j; T �jL d j�R1�s�OMs /:

The left hand space is one-dimensional. It remains to prove that the right hand
one vanishes. It suffices to prove that R1�s�OMs is isomorphic to T �jL d j, since
T �jL d j� T �jL d j does not have any non-zero global sections.

When s D 0 and M0 D MH.u/, then M0 is projective and R1�0�
OM0

is isomorphic to T �jL d j, by [30, Theorem 1.3]. Let us show that the sheaves
R1�s�OMs are naturally isomorphic to R1�0�

OM0 , for all s in X. The fibrations �s
agree, by definition, over the open sets in a Čech covering of jL d j, and the gluing
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transformations for the co-cycle representing the class s do not change the induced
sheaf transition functions for the sheaves R1�s�OMs , as we show next. The gluing
transformations glue locally free sheaves, so it suffices to prove that they agree
with those of �0 over a dense open subset of jL d j. Indeed, if the fiber of MH.u/
over t 2 jL d j is a smooth and projective Picd .Ct/, then an automorphism
of an abelian variety Picd .Ct /, acting by translation, acts trivially on the fiber
H1.Picd .Ct /;OPicd .Ct /

/ of R1��OMH .u/. ut

7.4 The Tate-Shafarevich Line as the Base
of the Universal Family

Let q W ˝C
˛? ! ˝C

Q˛
be the morphism given in Eq. (4.3).

Theorem 7.11. Assume that the weight 2 Hodge structure of S is non-special
and Assumption 7.1 holds. Then the period map Pf of the family f maps fX
isomorphically onto the fiber of the morphism q through the period of MH.u/.

Proof. We already know that Pf is non-constant, by Lemma 7.10. The statement
implies that Pf is an affine linear isomorphism of one-dimensional complex affine
spaces. It suffices to prove the statement for a dense subset in moduli, since the
condition of being affine linear is closed. We may thus assume that Pic.S/ is cyclic
generated by L . ThenH0.jL d j;A 0/ is trivial, by Lemma 7.5.

Set � WD c1.L /?. Note that NS.S/ D Zc1.L / and � has finite index in
H2.S;Z/=NS.S/. Let

e W � !fX

be the composition of the projection � ! H0;2.S/ with the isomorphisms
H0;2.S/ Š H0;2.C / Š fX of Lemma 7.3. Then e is injective and its image is
dense in fX, by Lemma 5.4.

Given an element x 2fX, we get a marked pair .Mx; �x/, as above.MH.u/ will
be denoted by M0, it being the fiber of f over the origin in fX. We associate next
to an element � 2 � a canonical isomorphism

h� WM0 !Me.�/:

Let � W fX ! C be the function given in (7.9), which was used in the construction
of the family f . Let Q
 WD f Q
ijg be the co-cycle used in that construction. Let a be
the 1-co-cycle given by aij WD exp.�.e.�// Q
ij/. Then Me.�/ is the Tate-Shafarevich
twist of M0 with respect to the co-cycle a. The 1-co-cycle a is a co-boundary in
Z1.fUig;A 0/, by Lemma 7.5 and the definition of � . Thus, there exists a 0-co-
chain h WD fhi g in C0.fUig;A 0/, satisfying ıh D a. The co-chain h is unique,
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since H0.A 0/ is trivial, by our assumption on S . The co-chain h determines the
isomorphism h� WM0 !Me.�/ (Lemma 7.6).

We define next a monodromy representation associated to the family f . Denote
by h��

W H2.M0;Z/! H2.Me.�/;Z/ the isomorphism induced by h� . Let

� W � ! Mon2.M0/

be given by the composition�� WD ��1
0 ı�e.�/ıh��

of the parallel-transport operator
��1
0 ı �e.�/ and the isomorphism h��

.

Claim 7.12. The map � is a group homomorphism.

Proof. Let �1, �2 be elements of � and set �3 WD �1C �2. Let the topological space
B be the quotient of fX obtained by identifying the four points 0, e.�1/, e.�2/,
e.�3/. The family f descends to a family Nf W M ! B by identifying the fiber
Me.�i / with M0 via the isomorphisms h�i , 1 � i � 3. Then ��i is the monodromy
operator corresponding to any loop in B , which is the image of some continuous
path from 0 to e.�i / in fX. Let N0 2 B be the image of 0 2 fX. The statement now
follows from the fact that the monodromy representation of �1.B; N0/ in H2.M0;Z/

is a group homomorphism. ut
The image of fX via the period map is contained in the fiber of q, since the

differential of the morphism q ı Pf vanishes, by Lemma 7.10. It follows that the
variation of Hodge structures of the local system R2f�Z over fX is the pullback
of the one over the fiber of q via the period map Pf . Let � be the trivialization
of R2f�Z given in Eq. (7.10). Given a point x 2 fX, set ˛x WD ��1

x .˛/. Then
˛x D ��

x .c1.OjL d j.1/// and the sub-quotient variation of Hodge structures ˛?
x =Z˛x

is trivial.
The vertical tangent sheaf T�x is naturally isomorphic to T�0 , as we saw in the

last paragraph of the proof of Lemma 7.10. The 2-form wx induces an isomorphism

�x�
T�x

wx! T �jL d j, by Lemma 7.9. We get the composite isomorphism �0�
T�0 Š

�x�
T�x

wx! T �jL d j: Let wx be the unique holomorphic 2-form, for which the

composite isomorphism is equal to �0�
T�0

w0! T �jL d j: Such a form wx exists,
since the endomorphism algebra of T �jL d j is one dimensional.

We show next that the class of wx is the .2; 0/ part of the flat deformation of
the class of w0 in the local system R2f�C. It suffices to prove the local version
of that statement. Let x0 be a point of fX. There is a differentiable trivialization
of f W M ! fX, over an open analytic neighborhood U of x0, and a C1
family of complex structures Jx , x 2 U , such that .Mx0; Jx/ is biholomorphic
toMx. Furthermore, the complex structures Jx0 and Jx restrict to the same complex
structure on each fiber of �x0 and �x0 is holomorphic with respect to both. Both
complex structures induce the same complex structure on Hom

�
T�x0 ; �

�
x0
T �
R
jL d j	

and the two forms wx0 and wx induce the same section in the complexification of that
bundle. Hence, the difference wx0 � wx is a closed 2-form in ��

x0
^2T �

R
jL d j�R C.

Being closed, the latter 2-form must be the pull-back of a closed 2-form � on jL d j,
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since fibers of �x0 are connected. Now the cohomology class of ��
x0
� is of type .1; 1/

with respect to all complex structures, since H1;1.jL d j/ D H2.jL d j;C/. Hence,
the class of wx is the .2; 0/ part of the class of wx0 with respect to the complex
structure Jx .

There exists a constant cx 2 C, such that the equality

�x.wx/ D �0.w0/C cx˛

holds in �C, by the characterization of !x in the above paragraph. The function c W
fX! C defined above is equivalent to the period map Pf and is thus holomorphic
and its derivative is no-where vanishing, by Lemma 7.10. If x D e.�/, we get
��1
0 �e.�/.we.�// D w0 C ce.�/˛0, Now h�.w0/ D we.�/, by definition of wx , x 2fX,

and the construction of h� . We get the equality

��.w0/ D w0 C ce.�/˛0: (7.11)

The composition c ı e W � ! C is a group homomorphism,

c.e.�1/C e.�2// D c.e.�1//C c.e.�2//;

by Eq. (7.11) and Claim 7.12. The image e.� / is dense in fX and so e.� / � e.� /
is dense in fX �fX. We conclude that c is a group homomorphism, c.x1 C x2/ D
c.x1/C c.x2/, for all .x1; x2/ 2 fX �fX. Continuity of c implies that it is a linear
transformation of real vector spaces. Indeed, given x1, x2 in fX, c.ax1 C bx2/ D
ac.x1/Cbc.x2/, for all a; b 2 Z, hence also for all a; b 2 Q, and continuity implies
that the equality holds also for all a; b 2 R. The map c is holomorphic, hence it
is a linear transformation of one-dimensional complex vector spaces, which is an
isomorphism, since c is non-constant. This completes the proof of Theorem 7.11.

ut
Let X be an irreducible holomorphic symplectic manifold of K3Œn�-type and

� W X ! P
n a Lagrangian fibration. Set ˛ WD ��c1.OPn.1//. Let d be the

divisibility of .˛; �/. Let .S;L / be the semi-polarized K3 surface associated to
.X; ˛/ in Diagram (5.4) and � the Euler characteristic of the Mukai vector u in that
diagram. Choose a u-generic polarizationH on S .

Theorem 7.13. Assume thatX is non-special and .S;L / satisfies Assumption 7.1.
Then X is bimeromorphic to a Tate-Shafarevich twist of the Lagrangian fibration
MH.0;L d ; �/! jL d j.
Proof. Fix a marking � W H2.X;Z/ ! �. Starting with the period of .X; �/,
Theorem 7.11 exhibits a marked triple .X 0; ˛0; �0/, with �0.˛0/ D �.˛/, in the same
connected component MC

�.˛/?
as the triple .X; ˛; �/, such that the class ˛0 is semi-

ample as well and the periods P.X; �/ and P.X 0; �0/ are equal. Furthermore, the
Lagrangian fibration � 0 W X 0 ! jL d j induced by ˛0 is a Tate-Shafarevich twist
of �0 W MH.0;L d ; �/ ! jL d j. Step 1 of the proof of Theorem 1.3 yields a
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bimeromorphic map f W X ⇢ X 0, which is shown in Step 2 of that proof to satisfy
f �.˛0/ D ˛ (see Eq. (6.1)). ut
Proof (of Theorem 1.5). The condition that NS.X/ \ ˛? is cyclic generated by
˛ implies that the semi-polarized K3 surface .S;L /, associated to .X; ˛/, has a
cyclic Picard group generated by L . Assumption 7.1 thus holds, by Remark 7.2.
Theorem 1.5 thus follows from Theorem 7.13. ut
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Contact Kähler Manifolds: Symmetries
and Deformations

Thomas Peternell and Florian Schrack

Dedicated to Klaus Hulek on his 60th birthday.

Abstract We study complex compact Kähler manifolds X carrying a contact
structure. If X is almost homogeneous and b2.X/ � 2, then X is a projectivised
tangent bundle (this was known in the projective case even without assumption on
the existence of vector fields). We further show that a global projective deformation
of the projectivised tangent bundle over a projective space is again of this type
unless it is the projectivisation of a special unstable bundle over a projective space.
Examples for these bundles are given in any dimension.

1 Introduction

A contact structure on a complex manifold X is in some sense the opposite of a
foliation: there is a vector bundle sequence

0! F ! TX ! L! 0;

where TX is the tangent bundle and L a line bundle, with the additional property
that the bilinear map, induced by the Lie bracket,

F � F ! L; .v;w/ 7! Œv;w�=F

is everywhere non-degenerate.
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Suppose now that X is compact and Kähler or projective. If b2.X/ D 1; then at
least conjecturally the structure is well-understood:X should arise as minimal orbit
in the projectivised Lie algebra of contact automorphisms. Beauville [5] proved this
conjecture under the additional assumption that the group of contact automorphisms
is reductive and that the contact line bundle L has “enough” sections.

If b2.X/ � 2 and X is projective, then, due to [20] and [9], X is a projectivized
tangent bundle P.TY / (in the sense of Grothendieck, taking hyperplanes) over a
projective manifold Y (and conversely every such projectivised tangent bundle
carries a contact structure). If X is only Kähler, the analogous conclusion is
unknown. By [9], the canonical bundleKX is still not pseudo-effective in the Kähler
setting, but—unlike in the projective case—it is not known whether this implies
uniruledness of X .
If howeverX has enough symmetries, then we are able to deal with this situation:

Theorem 1. Let X be an almost homogeneous compact Kähler manifold carrying
a contact structure. If b2.X/ � 2, then there is a compact Kähler manifold Y such
that X ' P.TY /.

Here a manifold is said to be almost homogeneous, if the group of holomorphic
automorphisms acts with an open orbit. Equivalently, the holomorphic vector fields
generate the tangent bundle TX at some (hence at the general) point.

In this setting it might be interesting to try to classify all compact almost
homogeneous Kähler manifolds X of the form X D P.TY /. Section 4 studies this
question in dimension 3.

In the second part of the paper we treat the deformation problem for projective
contact manifolds. We consider a family

�WX ! �

of projective manifolds over the 1-dimensional disc � � C. Suppose that all Xt D
��1.t/ are contact for t ¤ 0. Is then X0 also a contact manifold?

Suppose first that b2.Xt/ D 1. Then—as discussed above—Xt should be
homogeneous for t ¤ 0. Assuming homogeneity, the situation is well-understood
by the work of Hwang and Mok. In fact, then X0 is again homogeneous with
one surprising 7-dimensional exception, discovered by Pasquier and Perrin [26]
and elaborated further by Hwang [18]. Therefore one has rigidity and the contact
structure survives unless the Pasquier–Perrin case happens, where the contact
structure does not survive. We refer to [18] and the references given at the beginning
of Sect. 5. Therefore—up to the homogeneity conjecture—the situation is well-
understood.

If b2.Xt/ � 2, the situation gets even more difficult; so we will assume that Xt
is homogeneous for t ¤ 0. We give a short argument in Sect. 2, showing that then
Xt is either P.TPn/ or a product of a torus and Pn. Then we investigate the global
projective rigidity of P.TPn/:
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Theorem 2. Let �WX ! � be a projective family of compact manifolds. If Xt '
P.TPn/ for t ¤ 0, then either X0 ' P.TPn/ or X0 ' P.V / with some unstable
vector bundle V on Pn.

The assumption that X0 is projective is indispensable for our proof. In general, X0
is only Moishezon, and in particular methods from Mori theory fail. In case X0 is
even assumed to be Fano, the theorem was proved by Wiśniewski [31]; in this case
X0 ' P.TPn/. The case X0 ' P.V / with an unstable bundle really occurs; we
provide examples in all dimensions in Sect. 6. In this case X0 is no longer a contact
manifold.

In general, without homogeneity assumption, Xt is the projectivisation of the
tangent bundle of some projective variety Yt I here we have only some partial results,
see Proposition 3. If however Xt is again homogeneous (t ¤ 0) and not the
projectivization of the tangent bundle of a projective space, then Xt is a product
of a torus At and a projective space, and we obtain a rather clear picture, described
in Sect. 7.

The work on the project was started in collaboration with Kristina Frantzen. We
would like to heartily thank her for her contributions to Sects. 2–4. We also thank
Alan Huckleberry and the referee for very valuable comments.

2 Homogeneous Kähler Contact Manifolds

We first study homogeneous manifolds which are projectivized tangent bundles.

Proposition 1. Let Y be compact Kähler. Then X D P.TY / is homogeneous if and
only if Y is a torus or Y D Pn.

Proof. One direction being clear, assume that X is homogeneous; thus Y is
homogeneous, too. The theorem of Borel and Remmert [8] says that

Y Š A �G=P

where G=P is a rational homogeneous manifold (G a semi-simple complex Lie
group and P a parabolic subgroup) and A a torus, one factor possibly of dimension
0. Let d D dimA � 0.

We first assume that d > 0. If we denote by �1 and �2 the two projections from Y

to A and G=P , then

TY D ��
1 Od

A � ��
2 TG=P ' Od

Y � ��
2 TG=P :

This leads to an inclusion

Z WD P.Od
Y / � X
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with normal bundle

NZ=X D OZ.1/� ��q�.˝1
G=P / D p�.O.1//� ��q�.˝1

G=P /

(use the formula on p. 12, before (0.5) in [3] to compute the normal bundle).
Here �WX ! Y , pWZ D Pd�1 � Y ! Pd�1 and qWY ! G=P are the
projections. Now, X being homogeneous, NZ=X is spanned. This is only possible
when dimG=P D 0 so that Y D A. If d D 0, then X is rational homogeneous,
hence Fano. This is to say that TY is ample, hence Y D Pn (we do not need Mori’s
theorem here because Y is already homogeneous).

Proposition 1 is now applied to obtain

Proposition 2. Let X be a homogeneous compact Kähler manifold with contact
structure and dimX D 2n � 1. Then either X is a Fano manifold (and therefore
X ' P.TPn/, by Proposition 1, unless b2.X/ D 1) or

X Š A � Pn�1 D P.TA/;

where A denotes a complex torus of dimension n and TA its holomorphic tangent
bundle.

Proof. Again by the theorem of Borel–Remmert, X Š A � G=P where G=P is
rational-homogeneous and A a torus, one factor possibly of dimension 0. If A has
dimension 0, then X is Fano. Therefore in the case b2.X/ � 2, the variety X is of
the form X D P.TY / by [20]. Then we conclude by Proposition 1.

So we may assume dimA > 0. Since a torus does not admit a contact structure,
it follows that the factor G=P is nontrivial, i.e. dimG=P � 1. We consider the
projection �WX Š A � G=P ! A. Every fiber is G=P and in particular a Fano
manifold. We may therefore use the arguments of [20], Proposition 2.11, to conclude
that every fiber is Pn�1. Note that the arguments used in [20], Proposition 2.11 do
not use the assumption that X is projective. This completes the proof.

3 The Almost Homogeneous Case

The aim of this section is to generalize the previous section to almost homogeneous
contact manifolds.

3.1 Almost Homogeneous Projectivized Tangent Bundles

We begin with the following general observation.



Contact Kähler Manifolds: Symmetries and Deformations 289

Lemma 1. Let Y be a compact complex manifold and let X D P.TY / be its
projectivised tangent bundle. If X is almost homogeneous, then Y is almost
homogeneous.

We already mentioned that if X is homogeneous, so is Y .

Proof. Let �WX ! Y be the bundle projection and consider the relative tangent
sequence

0! TX=Y ! TX ! ��TY ! 0:

Since at a general point of X the tangent bundle TX is spanned by global sections,
so is ��TY . So if y 2 Y is general, if x 2 ��1.y/ is general and v 2 .��TY /x , then
there exists

s 2 H0.X; ��.TY //

such that s.x/ D v. Since s D ��.t/ with t 2 H0.Y; TY /; we obtain t.y/ D v 2
TY;y . Thus Y is almost homogeneous.

Remark 1. Note that, conversely, the projectivized tangent bundle X D P.TY / of
an almost homogeneous manifold Y is in general not almost homogeneous. This is
illustrated by the following examples.

Example 1. We start in a quite general setting with a projective manifold Y of
dimension n. We assume that Y is almost homogeneous with h0.Y; TY / D n.
Furthermore we assume

h0.Y;˝1
Y � TY / D h0.Y;End.TY // D 1; (1)

an assumption which is e.g. satisfied if TY is stable for some polarization. We let
X D P.TY / be the projectivized tangent bundle with projection� WX DP.TY /!Y

and hyperplane bundle OX.1/. Pushing forward the relative Euler sequence to
Y yields

0! OY ! ˝1
Y � ��.OX.1//! ��TX=Y ! 0:

Since ��.OX.1// D TY , we obtain

0! OY ! ˝1
Y � TY ! ��TX=Y ! 0:

This sequence splits via the trace map ˝1
Y � TY ' End.TY / ! OY , so we obtain

the exact sequence

0! H0.Y;OY /! H0.Y;˝1
Y � TY /! H0.Y; ��TX=Y /! 0:
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Using assumption (1) we find

H0.X; TX=Y / D H0.Y; ��TX=Y / D 0:

Now the relative tangent sequence with respect to �WX ! Y yields an exact
sequence

0! H0.X; TX=Y /! H0.X; TX/! H0.X; ��.TY // ' H0.Y; TY /

and therefore

h0.TX/ � h0.TY /:

Hence h0.TX/ � n, and X cannot be almost homogeneous.
Notice that an inequality h0.TX/ � 2n � 2 suffices to conclude that X is not

almost homogeneous. Therefore we could weaken the assumptions h0.TY / D n and
h0.End.TY // D 1 to

h0.TY /C h0.End.TY // � 2n � 2:

We give two specific examples.
First, let Y be a del Pezzo surface of degree six, i.e., a three-point blow-up of P2.

Its automorphisms group is .C�/2 ÌS3. In particular, Y is almost homogeneous and
h0.TY / D 2. Since h0.End.TP2// D 1 and Y is a blow up of P2, each endomorphism
of TY induces an endomorphism of TP2 and it follows that

h0.TY �˝1
Y / D h0.End.TY // D 1: (2)

Hence the assumptions of our previous considerations are fulfilled and X D P.TY /

is not almost homogeneous.
Here is an example with b2.Y / D 1. We let Y be the Mukai–Umemura Fano

threefold of type V22, [23]. Here h0.TY / D 3 and Y is almost homogeneous with
Aut0.Y / D SL2.C/. Since TY is known to be stable (see e.g. [27]), again all
assumptions are satisfied and X D P.TY / is not almost homogeneous.

3.2 The Albanese Map for Almost Homogeneous Manifolds

A well-known theorem of Barth–Oeljeklaus determines the structure of the
Albanese map of an almost homogeneous Kähler manifold.

Theorem 3 ([4]). Let X be an almost homogeneous compact Kähler manifold.
Then the Albanese map ˛WX ! A is a fiber bundle. The fibers are connected,
simply-connected and projective.
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Remark 2. All fibers Xa of ˛ are almost homogeneous.

Proof. Let x; y 2 Xa be two general points of a general fiber Xa. Then there exists
f 2 Aut.X/ with f .x/ D y. Since the automorphism f is fiber preserving,
we obtain an automorphism of Xa mapping x to y. Hence the general fiber Xa
is almost homogeneous. Therefore, since ˛ is a fiber bundle, all fibers are almost
homogeneous.

3.3 The Case q.X/ D 0

If the irregularity of X is q.X/ D 0, the Albanese map is trivial, and it follows that
X itself is simply-connected and projective.

Lemma 2. Let X be an almost homogeneous compact Kähler manifold with
contact structure. If q.X/ D 0 and b2.X/ � 2, then X Š P.TY / is a projectivised
tangent bundle.

Proof. X being projective, the results of [20] apply. Combining them with [9] (cf.
Corollary 4) yields the desired result.

Remark 3. The case where q.X/ D 0 and b2.X/ D 1 remains to be studied. HereX
is an almost homogeneous Fano manifold. It would be interesting to find out whether
the results of [5] apply. That is, one has to check whether Aut.X/ is reductive and
whether the map associated with the contact line bundle L is generically finite.

In order to study the second property, consider the long exact sequence

0! H0.X; F /! H0.X; TX/! H0.X;L/! : : :

If H0.X; F / ¤ 0 then X has more than one contact structure [22], Proposition 2.2,
hence Corollary 4.5 of [19] implies that X Š P2nC1 or X Š P.TY /.

If H0.X; F / D 0 then L has “many sections” and the map associated with L is
expected to be generically finite.

3.4 The Case q.X/ � 1

If the irregularity of X is positive, then the Albanese map ˛WX ! A is a fiber
bundle. We denote its fiber by Xa.

Lemma 3. Let X be an almost homogeneous compact Kähler manifold with
contact structure and q.X/ � 1. If the fiber Xa of the Albanese map fulfills
b2.Xa/ D 1, then X Š P.TA/ D Pn � A, where A is the Albanese torus of X .
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Proof. Since b2.Xa/ D 1, then Xa (being uniruled) is a Fano manifold. We may
therefore apply Proposition 2.11 of [20] (which works perfectly in our situation) to
conclude that ˛WX ! A is a Pn-bundle. The proof of Theorem 2.12 in [20] can
now be adapted to conclude that X Š P.TA/. To be more specific, we already know
in our situation that X D P.E / with E D ˛�.L/. The only thing to be verified
is the isomorphism E ' TA. But this is seen as in the last part of the proof of
Theorem 2.12 in [20], since Sect. 2.1 of [20] works on any manifold.

So X ' P.TA/ and X Š Pn �A.

It remains to study the case where the fiber Xa fulfills b2.Xa/ � 2. In this
case we consider a relative Mori contraction (over A; the projection is a projective
morphism, [24], (4.12))

'WX ! Y:

Lemma 4. We have dimX > dimY .

Proof. The lemma follows from the fact that the restriction map 'a D 'jXa is not
birational. This can be shown by the same arguments as in Lemma 2.10 of [20]
using the length of the contraction and the restriction of the contact line bundle to
the fiber Xa. Again the projectivity of X is not needed in Lemma 2.10.

As above, we may now apply Proposition 2.11 of [20] and conclude that the general
fiber of ' is Pn. It remains to check that ' is a Pn-bundle and X Š P.TY /. This is
done again as in Theorem 2.12 of [20] with Fujita’s result generalized to the Kähler
setting by Lemma 5. Also the compactness assumption in [11] is not necessary, this
will be important later.

Lemma 5. Let X be a complex manifold, f WX ! S a proper surjective map to a
normal complex space S . Let L be a relatively ample line bundle on X such that
.F;LF / ' .Pr ;O.1// for a general fiber F of f . If f is equidimensional, then f
is a Pr -bundle.

Proof. Since the statement is local in S , we may assume S to be Stein. Then we can
simply copy the proof of Lemma 2.12 in [11].

In total, we obtain

Theorem 4. Let X be a compact almost homogeneous Kähler contact manifold,
b2.X/ � 2. Then X D P.TY / with a compact Kähler manifold Y .

The arguments above actually also show the following.

Theorem 5. Let X be a compact Kähler contact manifold. Let 
WX ! Y be
a surjective map with connected fibers such that �KX is 
-ample and such that
�.X=Y / D 1 (we do not require the normal variety Y to be Kähler). Then Y is
smooth and X D P.TY /.

One might wonder whether this is still true when X is Moishezon or bimero-
morphic to a Kähler manifold. Although there is no apparent reason why the
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theorem should not hold in this context, at least the methods of proof completely
fail. More generally, also the assumption that X is almost homogeneous should be
unnecessary. If X is still Kähler, a Mori theory in the non-algebraic case seems
unavoidable. Already the question whether X is uniruled is hard.

3.5 Conclusion and Open Questions

1. In all but one case we find that a compact almost homogeneous Kähler contact
manifold X has the structure of a projectivised tangent bundle. The remaining
case where q.X/ D 0 and b2.X/ D 1 is discussed in Remark 3.

2. Can one classify all Y (necessarily almost homogeneous) such that P.TY / is
almost homogeneous? The case where dimY D 2 will be treated in the next
section. One might also expect that if Y D G=P , then X should be almost
homogeneous. In case Y is a Grassmannian or a quadric, this has been checked
by Goldstein [13]. Of course, if Y D Pn; then X is even homogeneous.

4 Almost Homogeneous Contact Threefolds

In this section we specialize to almost homogeneous contact manifolds in dimen-
sion 3.

Theorem 6. Let X be a smooth compact Kähler threefold which is of the form
X D P.TY / for some compact (Kähler) surface Y .

1. If X is almost homogeneous, then Y is a minimal surface or a blow-up of P2 or
Y D Fn D P.OP1 � OP1 .�n// for some n � 0, n ¤ 1.

2. If Y is minimal, then X is almost homogeneous if and only if Y is one of the
following surfaces.

• Y D P2

• Y D Fn for some n � 0, n ¤ 1
• Y is a torus
• Y D P.E / with E a vector bundle of rank 2 over an elliptic curve which is

either a direct sum of two topologically trivial line bundles or the non-split
extension of two trivial line bundles.

Proof. Suppose X is almost homogeneous. Then Y is almost homogeneous, too
(Lemma 1). By Potters’ classification [29], Y is one of the following.

1. Y D P2

2. Y D Fn D P.OP1 � OP1 .�n// for some n � 0, n ¤ 1
3. Y is a torus
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4. Y D P.E / with E a vector bundle of rank 2 over an elliptic curve which is either
a direct sum of two topologically trivial line bundles or the non-split extension
of two trivial line bundles

5. Y is a certain blow-up of P2 or of Fn.

This already shows the first claim of the theorem, and it suffices to assume Y
to be a minimal surface of the list and to check whether X D P.TY / is almost
homogeneous. In cases (1) and (3) this is clear; X is even homogeneous.

To proceed further, consider the tangent bundle sequence

0! TX=Y ! TX ! ��.TY /! 0:

Notice

h0.TX=Y / D h0.�KX=Y / D h0.S2TY �KY /:

Applying �� and observing that the connecting morphism

TY ! R1��.TX=Y /

(induced by the Kodaira-Spencer maps) vanishes since � is locally trivial, it follows
that

H0.X; TX/! H0.X; ��.TY // D H0.Y; TY /

is surjective. If therefore

H0.X; TX=Y / ' H0.Y; S2TY �KY / ¤ 0; (
)

the tangent bundle TX is obviously generically spanned and therefore X is almost
homogeneous.

In case (4), (
) is now easily verified: Let pWP.E /! C be the P1-fibration over
the elliptic curve C . The tangent bundle sequence reads

0! �KY ! TY ! OY ! 0:

Since TY is generically spanned, the map H0.OY / ! H1.�KY / must vanish, so
that the sequence splits:

TY ' �KY � OY :

Thus S2TY �KY ' �KY � OY �KY and (
) follows.
Now if Y D Fn as in (2), let pWY ! P1 be the natural projection. The relative

tangent sequence then reads

0! TY=P1 ! TY ! p�OP1 .2/! 0: (

)
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Taking the second symmetric power and tensorizing with KY yields

0! TY � TY=P1 �KY ! S2TY �KY ! p�OP1 .4/�KY ! 0;

so, by (

), we obtain an inclusion

H0.T�2
Y=P1

�KY / � H0.S2TY �KY /:

Now by the relative Euler sequence, TY=P1 ' OY .2/� p�OP1.n/, and thus

H0.T�2
Y=P1

�KY / ' H0.OY .2/� p�OP1 .n � 2//:

Now since

p�.OY .2/� p�OP1 .n � 2// ' OP1.n � 2/� OP1 .�2/� OP1.�n � 2/;

we have shown (
) to be true for n � 2. If n D 0, i.e., Y ' P1 � P1, the
sequence (

) splits and an easy calculation shows that (
) is satisfied also in
this case.

Remark 4. The case that Y is a non-minimal rational surface in Theorem 6 could
be further studied, but this is a rather tedious task.

5 Deformations I: The Rational Case

We consider a family �WX ! � of compact manifolds over the unit disc � � C.
As usual, we let Xt D ��1.t/. We shall assume Xt to be a projective manifold for
all t , so we are only interested in projective families here. If now Xt is a contact
manifold for t ¤ 0; when is X0 still a contact manifold?

If b2.Xt/ D 1; there is a counterexample due to [26], see also [18]. Here the
Xt are 7-dimensional rational-homogeneous contact manifolds and X0 is a non-
homogeous non-contact manifold. If one believes that any Fano contact manifold
with b2 D 1 is rational-homogeneous, then due to the results of Hwang and Mok,
this is the only example where a limit of contact manifolds with b2 D 1 is not
contact.

If b2.Xt / � 2, it is no longer true that the limit X0 is always a contact manifold,
as can be seen from the following example: We let Y ! � be a family of
compact manifolds such that Yt ' P1 � P1 for t ¤ 0 and Y0 ' F2. Then
there exist line bundles L1 and L2 on Y such that L1jYt ' OP1�P1 .2; 0/ and
L2jYt ' OP1�P1 .0; 2/ for every t ¤ 0. If we let X WD P.L1 � L2/, then
Xt ' P.TYt / for t ¤ 0, but X0 6' P.TY0/.

However P.TP1�P1 / is not homogeneous; in fact by Proposition 1, P.TPn/ is
the only homogeneous rational contact manifold with b2 � 2. In this prominent
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case we prove global projective rigidity, i.e., X0 D P.TPn/, unless X0 is the
projectivization of some unstable bundle, so that both contact structures coming
from the two projections P.TPn/ ! Pn survive in the limit. In the “unstable case”,
the contact structure does not survive. The special case where X0 is Fano is due to
Wiśniewski [31]; here global rigidity always holds.

There is a slightly different point of view, asking whether projective limits of
rational-homogeneous manifolds are again rational-homogeneous. As before, if
b2.Xt/ D 1; this is true by the results of Hwang and Mok with the 7-dimensional
exception. In case b2.Xt/ � 2, this is false in general (e.g. for P1 � P1), but the
picture under which circumstances global rigidity is still true is completely open.

Theorem 7. Let �WX ! � be a family of compact manifolds. Assume Xt '
P.TPn/ for t ¤ 0. If X0 is projective, then either X0 ' P.TPn/ or X0 ' P.V / with
some unstable vector bundle V on Pn.

Proof. Since KX is not �-nef, there exists a relative Mori contraction (see [24],
(4.12), we may shrink �)

˚ WX ! Y

over�. Put�� D � n f0g and X � DX nX0I Y � D Y n Y0. Now 
t D ˚ jXt is
a Mori contraction for any t (cf. [21], (12.3.4), but this is pretty clear in our simple
situation), unless possibly 
t is biholomorphic for t ¤ 0.

Now since X , � and � are smooth, the latter case cannot occur by [32], (1.3),
so 
t is the contraction of an extremal ray for any t 2 �. Let � WY ! � be the
induced projection and set Yt D ��1.t/; so that Yt ' Pn for t ¤ 0. Recall that
Xt ' P.TPn/ for t ¤ 0 and that P.TPn/ carries two projections to Pn. Since Y is
normal, the normal variety Y0 must also have dimension n.

From the exponential sequence, Hodge decomposition and the topological
triviality of the family X ; it follows that

Pic.X / ' H2.X ;Z/ ' Z
2

and that

Pic.X0/ ' H2.X0;Z
2/ ' Z

2:

Furthermore, the restriction Pic.X / ! Pic.X0/ is bijective. As an immediate
consequence, we can write

�KX D nH

with a line bundle H on X . Let Ht DH jXt so that Ht ' OP.TPn /
.1/ for t ¤ 0.

Claim. Y0 ' Pn.
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In fact, by our previous considerations, there is a unique line bundle L on X
such that

L jXt D 
�
t .OPn.1//

for t ¤ 0. Moreover L jX0 D 
�
0 .L

0/ with some ample line bundle L 0 on Y0.
Therefore by semi-continuity,

h0.L 0/ D h0.L jX0/ � nC 1

and

c1.L
0/n D 1:

Hence by results of Fujita [12], (I.1.1), see also [6], (III.3.1), we have .Y0;L 0/ '
.Pn;O.1//.

In particular we obtain

Sub-Corollary 1. Y is smooth and Y ' Pn ��.

Next we notice that the general fiber of 
0 must be Pn�1, since it is a smooth degen-
eration of fibers of 
t (by the classical theorem of Hirzebruch and Kodaira [14]).

One main difficulty is that 
0 might not be equidimensional. If we know
equidimensionality, we may apply ([11], 2.12) to conclude that X0 D P.E0/ with a
locally free sheaf E0 on Y0.

We introduce the torsion free sheaf

F D ˚�.H /� OY .�1/:

Since

codim˚�1.Sing.F // � 2;

the sheaf F is actually reflexive and of course locally free outside Y0. In the
following Sublemma we will prove that F is actually locally free.

Sub-Lemma 1. F is locally free and therefore X D P.F /.

Proof. As explained above, it is sufficient to show that


0WX0 ! Pn

is equidimensional. So let F0 be an irreducible component of a fiber of 
0. Then F0
gives rise to a class

ŒF0� 2 H2k.X0;Q/;
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where we denote by k the codimension of F0 in X0. Obviously k � n, and we must
exclude the case that k < n.

So we assume in the following that k < n. Then, since X0 is homeomorphic to
P.TPn/, the Leray–Hirsch theorem (cf. [16], Theorem 17.1.1) gives

dimH2k.X0;Q/ D k C 1:

Now if we denote by H the class of a hyperplane in Pn, and by L the class of an
ample divisor on X0, then the classes

Lk;Lk�1:.
�
0 H/; : : : ; L:.


�
0 H/

k�1; .
�
0 H/

k (3)

form a basis of H2k.X0;Q/, which can be seen as follows: By the dimension
formula given above, it is sufficient to show linear independency, so assume that
we are given 	0, : : : , 	k 2 Q such that

kX

`D0
	`L

k�`:.
�
0 H/

` D 0: (4)

Now let `0 2 f0; : : : ; kg. By induction, we assume that 	` D 0 for all ` < `0. Then
intersecting (4) with Ln�k�1C`0 :.
�

0 H/
n�`0 yields

	`0L
n�1:.
�

0 H/
n D 0;

thus 	`0 D 0 since Ln�1:.
�
0 H/

n > 0.
So (3) is indeed a basis of H2.X0;Q/ and we can write

ŒF0� D
kX

`D0
˛`L

k�`:.
�
0 H/

` (5)

for some ˛0, : : : , ˛k 2 Q. We now let `0 2 f0; : : : ; kg and assume that ˛` D 0 for
` < `0. We observe that ŒF0�:.
�

0 H/
n�`0 D 0 since F0 is contained in a fiber of 
0

and `0 � k < n. Hence, intersecting (5) with Ln�k�1C`0 :.
�
0 H/

n�`0 yields

0 D ˛`0Ln�1:.
�
0 H/

n;

so we deduce ˛`0 D 0 as before. Therefore by induction, we have ŒF0� D 0, which
is impossible, X0 being projective.

Now we set V D F jX0: If the bundle V is semi-stable, then V ' TPn and the
theorem is settled.

Suppose in Theorem 7 thatX0 ' P.V / with an unstable bundle V (we will show
in Sect. 6 that this can indeed occur). Then X0 does not carry a contact structure.
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In fact, otherwise X0 ' P.TS/ with some projective variety S , [20]. Hence X0 has
two extremal contractions, and therefore X0 is Fano. Hence TS is ample and thus
S ' Pn (or apply Wiśniewski’s theorem). Therefore we may state the following

Corollary 1. Let �WX ! � be a family of compact manifolds. Assume Xt '
P.TPn/ for t ¤ 0. If X0 is a projective contact manifold, then X0 ' P.TPn/.

In the situation of Theorem 7, we had two contact structures on Xt ' P.TPn/,
given by the two projections to Pn. This phenomenon is quite unique because of the
following result [20], Proposition 2.13.

Theorem 8. Let X be a projective contact manifold of dimension 2n� 1 admitting
two extremal rays in the cone of curves NE.X/. Then X ' P.TPn/.

Here is an extension of Theorem 8 to the non-algebraic case.

Theorem 9. Let X be a compact contact Kähler manifold admitting two contrac-
tions 
i WX ! Yi to normal compact Kähler spaces Yi . This is to say that �KX is

i -ample and that �.X=Yi/ D 1. Then X is projective and therefore X D P.TPn/.

Proof. We already know by Theorem 5 thatX D P.TYi /. LetF ' Pn�1 be a fiber of

2. Then the restriction 
1jF is finite. We claim that Y1 must be projective. In fact,
consider the rational quotient, say f WY1 Ü Z, which is an almost holomorphic
map to a compact Kähler manifold Z. By construction, the map f contracts the
images 
1.F /, hence dimZ � 1. But then Z is projective and therefore Y1 is
projective, too (e.g. by arguing that Y1 cannot carry a holomorphic 2-form and
applying Kodaira’s theorem that Kähler manifolds without 2-forms are projective).

By symmetry, Y2 is projective, too. Since the morphisms 
i induce a finite map
X ! Y1 � Y2 (onto the image of X ), the variety X is also projective.

Any projective contact manifold X with b2.X/ � 2 is of the form X D
P.TY /. Therefore it is natural ask for generalizations of Theorem 7, substituting
the projective space by other projective varieties.

Proposition 3. Let �WX ! � be a projective family of compact manifolds Xt of
dimension 2n� 1. Assume that Xt ' P.TYt / for t ¤ 0 with (necessarily projective)
manifolds Yt ¤ Pn. Assume that Hq.Xt ;OXt / D 0 for q D 1; 2 for some (hence
all) t . Then the following statements hold.

1. There exists a relative contraction ˚ WX ! Y over � such that ˚ jXt is the
given Pn�1-bundle structure for t ¤ 0.

2. If 
0 WD ˚ jX0 is equidimensional, thenX0 ' P.E0/ with a rank-n bundle E over
the projective manifold Y0; and Y0 is the limit manifold of a family � WY ! �

such that Yt ' ��1.t/ for t ¤ 0. In other words, X ' P.E / such that E D
TY =� over � n f0g.

Proof. Since Yt ¤ Pn by assumption, every Xt , t ¤ 0, has a unique Mori contrac-
tion, the projection  t WXt ! Yt , by Theorem 8. Notice that since Hq.Xt ;OXt / D
0 for q D 1, 2, we have Pic.X / ' H2.X ;Z/ and the restriction map
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Pic.X /!Pic.X0/ is bijective. Therefore, as in the proof of Theorem 7, we obtain
a relative Mori contraction

˚ WX ! Y

over �, and necessarily ˚ jXt D 
t for all t ¤ 0 (we use again [32], (1.3)).
This already shows Claim (1).

If 
0 is equidimensional, we apply—as in the proof of Theorem 7—[6],
(III.3.2.1), to conclude that there exists a locally free sheaf E0 of rank n on Y0 such
that X0 ' P.E0/, proving (2).

Theorem 10. Let �WX ! � be a projective family of compact manifolds Xt of
dimension 2n� 1. Assume that Xt ' P.TYt / for t ¤ 0 with (necessarily projective)
manifolds Yt.¤ Pn/. Assume that Hq.Xt ;OXt / D 0 for q D 1; 2 for some (hence
all) t . Assume moreover that

1. dimX0 � 5; or
2. b2j .Yt / D 1 for some t ¤ 0 and all 1 � j < n

2
.

Then there exists a relative contraction ˚ WX ! Y over � such that ˚ jXt is the
given Pn�1-bundle structure for t ¤ 0. Moreover there is a locally free sheaf E
on Y such that X ' P.E / and E jYt ' TYt for all t ¤ 0.

Proof. By the previous proposition it suffices to show that 
0 D ˚ jX0 is
equidimensional.

1. First suppose that dimX0 � 5. Then 1 � dimY0 � 3. The case dimY0 D 1

is trivial. If dimY0 D 2, then all fibers must have codimension 2, because 
0
does not contract a divisor (the relative Picard number being 1). If dimY0 D 3,
then by [1], (5.1), we cannot have a 3-dimensional fiber. Since again there is no
4-dimensional fiber, 
0 must be equidimensional also in this case.

2. If b2j .Yt / D 1 for some t and all 1 � j � n
2
, then b2k.Xt / D kC1 for k < n and

we may simply argue as in Sublemma 1 to conclude that 
0 is equidimensional
(the smoothness of Y0 is not essential in the reasoning of Sublemma 1).

6 Degenerations of TPn

In view of Theorem 7, we can ask the question which bundles can occur as
degenerations of TPn , i.e., for which rank-n bundles V on Pn there exists a rank-
n bundle V on Pn �� such that

Vt WD V jPn � ftg '
(
TPn ; for t ¤ 0;
V; for t D 0:
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In the case that n � 3 is odd, it was already observed by Hwang in [17] that one
can easily construct a nontrivial degeneration of TPn as follows: We consider the
null correlation bundle on Pn, which is a rank-.n � 1/ bundle N on Pn given by a
short exact sequence

0 �! N �! TPn.�1/ �! OPn.1/ �! 0:

(cf. [25], (I.4.2)). The existence of this sequence now implies that TPn can be
degenerated to N.1/� OPn.2/.

When n is even, matters become more complicated, but we can still obtain
nontrivial degenerations:

Proposition 4. Let n � 2. Then there exists a rank-n bundle V on Pn�� such that
Vt ' TPn for t ¤ 0 and h0.V0.�2// D 1, so in particular V0 6' TPn .
Proof. We construct an inclusion of vector bundles

AW˝1
Pn��=�.2/� OPn�� ,! OPn��.1/�.nC1/

�˝1
Pn��=�.2/

via a family A D .At /t2� of matrices

At D


˛t ˇt

�t ıt

�

of sheaf homomorphisms

˛t W˝1
Pn
.2/! OPn.1/

�.nC1/; ˇt WOPn ! OPn.1/
�.nC1/;

�t W˝1
Pn
.2/! ˝1

Pn
.2/; ıt WOPn ! ˝1

Pn
.2/;

which we define as follows: We take ˛t and ˇt to be the natural inclusions coming
from the Euler sequence and its dual, where we choose the coordinates on Pn

such that

ˇt .OPn/ 6� ˛t .˝1
Pn
.2//:

This implies that the map

˛t � ˇt W˝1
Pn
.2/� OPn ! OPn.1/

�.nC1/

is generically surjective. Since ˝1
Pn
.2/ ' �n�1.TPn.�1// is globally generated,

a general section in H0.˝1
Pn
.2// has only finitely many zeroes. Since ˝1

Pn
.2/ is

homogeneous, we can thus choose the map ıt in such a way that its zeroes are
disjoint from the locus where ˛t � ˇt is not surjective. Finally we let �t D t 	 id.
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Now in order to show that A is an inclusion of vector bundles, we need to show
that for any point .p; t/ 2 Pn ��, the matrix

At.p/ D


˛t .p/ ˇt .p/

�t .p/ ıt .p/

�
2 C

.2nC1/�.nC1/

has rank nC1. For semicontinuity reasons, shrinking� if necessary, we can assume
t D 0, then the rank condition follows easily from the choice of ˛0, ˇ0, �0, ı0.

We now let

V WD cokerA:

It remains to investigate the properties of the bundles Vt WD V jPn � ftg. For each
t 2 �, we have an exact sequence of vector bundles

0 �! ˝1
Pn
.2/� OPn �! OPn.1/

�.nC1/
�˝1

Pn
.2/ �! Vt �! 0: (6)

We want to calculate Hq.Vt .�1 � k// for k D 0, : : : , n. From the Bott formula we
obtain for .k; q/ 2 f0; : : : ; ng2:

hq.˝1
Pn
.1 � k// D

(
1; for .k; q/ D .1; 1/;
0; otherwise:

Now if we tensorize (6) with OPn.�1�k/, take the long exact cohomology sequence
and observe that Hq.ı0/ D 0 for every q, we get for .k; q/ 2 f0; : : : ; ng2:

hq.V0.�1 � k// D

8
ˆ̂<

ˆ̂:

nC 1; for .k; q/ D .0; 0/;
1; for .k; q/ 2 f.1; 0/; .1; 1/; .n; n� 1/g;
0; otherwise:

Similarly, if we observe that Hq.ıt / D id for t ¤ 0, we obtain for t ¤ 0, .k; q/ 2
f0; : : : ; ng2:

hq.V0.�1 � k// D

8
ˆ̂<

ˆ̂:

nC 1; for .k; q/ D .0; 0/;
1; for .k; q/ 2 f.n; n� 1/g;
0; otherwise:

The proposition now follows from Lemma 6.

Lemma 6. Let V be a vector bundle on Pn such that for any .k; q/ 2 f0; : : : ; ng2,
we have
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hq.V .�1 � k// D

8
ˆ̂<

ˆ̂:

nC 1; for .k; q/ D .0; 0/;
1; for .k; q/ D .n; n � 1/;
0; otherwise:

Then V ' TPn .
Proof. We consider the Beilinson spectral sequence for the bundle V.�1/, which
has E1-term

E
pq
1 D Hq.V.�1C p//�˝

�p
Pn
.�p/

(cf. [25], (II.3.1.3)).
By assumption, Epq

1 D 0 for .p; q/ 62 f.0; 0/; .�n; n� 1/g and

E
0;0
1 D O

�.nC1/
Pn

; E
�n;n�1
1 D OPn.�1/:

In particular, the only nonzero differential occurs at the En-term, namely

d�n;n�1
n WE�n;n�1

n ! E0;0
n :

Since Epq1 D 0 for p C q ¤ 0 and E�p;p1 are the quotients of a filtration of V.�1/,
the differential d�n;n�1

n induces a short exact sequence

0 �! OPn.�1/
d

�n;n�1
n�! O

�.nC1/
Pn

�! V.�1/ �! 0: (7)

Now since V is locally free, the map d�n;n�1
n cannot have zeroes, so (7) must be an

Euler sequence, whence V.�1/ ' TPn.�1/.

7 Deformations II: Positive Irregularity

A homogeneous compact contact Kähler manifold X of dimension 2n C 1 with
b2.X/ � 2 is either P.TPnC1

/ or a product A � Pn with a torus A of dimension
nC 1. Here we study in general the Kähler deformations of A � Pn; where A is an
m-dimensional torus.

Theorem 11. Let �WX ! � be a family of compact manifolds over the unit disc
� � C. Assume Xt ' At � Pn for t ¤ 0, where At is a torus of dimension m.
If X0 is Kähler, then the relative Albanese morphism realises X as a submersion
˛WX ! A , where pWA ! � is torus bundle such that p�1.t/ ' At for t ¤ 0.
Moreover there is a locally free sheaf E over A such that X D P.E /, Xt ' P.Et /
for all t and E jAt ' OnC1

At
for t ¤ 0:
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Proof. Let m D dimAt D q.Xt / for t ¤ 0. Hodge decomposition on X0 gives
q.X0/ D m. Let

˛WX ! A

be the relative Albanese map. Then A ! � is a torus bundle and

˛t D ˛jXt WXt ! At

is the Albanese map for all t . Since ˛t is surjective for all t ¤ 0; the map ˛ is
surjective, too, and so is ˛0.

For t ¤ 0,Xt ' At�Pn, so b2.Xt /�b2.At / D 1. Since the families �WX ! �

and pWA ! � are topologically trivial, we also have b2.X0/ � b2.A0/ D 1. Thus
h1;1.X0/ � h1;1.A0/ D 1. Choose a Kähler form ! on X0. Then we find a positive
number 	 and a closed .1; 1/-form u on A0 such that

c1.�KX0/ D Œ	!�C Œ˛�.u/�:

Now we apply [7], Theorem 1.1, to conclude that ˛0 is projective. The proof of
Theorem 1.1 also shows that �KX0 is ˛0-ample, which, however, is anyway clear in
our situation since

�.X0=A0/ D 1:

Furthermore, we have

.�KX0/
nC1 D .�KXt /

nC1 D 0: (8)

From this we conclude that ˛0 is equidimensional. In fact, let F be an irreducible
component of a fiber of ˛0 and assume that d WD dimF � nC1. Then, since�KX0

is ˛0-ample, we obtain

.�KX0/
d :F > 0;

which contradicts (8).
We have thus shown that ˛ is equidimensional and therefore flat. Since �KXt is

divisible by nC 1 in Pic.Xt/ for t ¤ 0, so is �KX0 (first argue topologically, then
use the fact that R2��.OX0/ is locally free, hence cannot have a non-zero section
which vanishes on�n0). Now write �KX0 D L nC1

0 and apply Lemma 3.10 to L0:

Alternatively, argue as follows. Since X0 is smooth, a general fiber of ˛0 is
smooth and hence isomorphic to Pn. This means that the analytic set

f s 2 A j ˛�1.s/ 6' Pn g



Contact Kähler Manifolds: Symmetries and Deformations 305

has codimension � 2 in A . We can now apply [2], Theorem 2, to conclude that ˛
is a Pn-bundle.

The existence of E follows from [10], (4.3).

Remark 5. One might hope to weaken the assumption that X0 is Kähler and just
assume X0 to be in class C : In this context, it should be noticed that Popovici [28]
has shown that any global deformation of projective manifolds is automatically in
class C . The Kähler version of Popovici’s theorem is still open.

Example 2. We cannot conclude in Theorem 11 that X0 ' A0 � Pn; even if m D
n D 1. Take e.g. a rank-2 vector bundle F over P1 �� such that F jP1 � ftg D O2

for t ¤ 0 and F jP1 � f0g D O.1/ � O.�1/. Let �WA ! P1 be a two-sheeted
covering from an elliptic curve A and set E D .� � id/�.F /. Then X D P.E / is
a family of compact surfaces Xt such that Xt D A � P1 for t ¤ 0 but X0 is not a
product. Notice also that X0 is not almost homogeneous.

It is a trivial matter to modify this example to obtain a map to a 2-dimensional
torus which is a product of elliptic curves. Therefore the limit of a Kähler contact
manifold with positive irregularity might not be a contact manifold again.

Corollary 2. Assume the situation of Theorem 11. Then the following assertions
are equivalent.

1. X0 ' A0 � Pn.
2. E0 is semi-stable for some Kähler class !.
3. X0 is homogeneous.
4. X0 is almost homogeneous.

Proof. (1) implies (2). Under the assumption of (1), there is a line bundle L on
A0 such that E0 ' L�nC1. Hence E is semi-stable for actually any choice of !.

(2) implies (3). From the semi-stability of E0 and h0.E0/ � n C 1; it follows
easily that E0 is trivial and that X0 is homogeneous as product A0 � Pn. In fact,
choose nC1 sections of E0 and consider the induced map �WOnC1

A0
! E0. By the

stability of E0, the map � is generically surjective. Hence det� ¤ 0, hence an
isomorphism, so that � itself is an isomorphism.
The implication “(3) implies (4)” is obvious.
(4) implies (1). Consider the tangent bundle sequence

0! TX0=A0 ! TX0 ! ˛�
0 .TA0/! 0:

Since X0 is almost homogeneous, all vector fields on A0 must lift to X0.
Consequently the connecting map

H0.X0; �
�.TA0//! H1.X0; TX0=A0 /

vanishes, and therefore the tangent bundle sequence splits. Let F D ˛�
0 .TA0/.

As a limit of the foliations Ft WD ˛�
t .TAt / D TXt=Pn , also F � TX0 is a foliation

and it has compact leaves (the limits of tori in At � Pn). By [15], 2.4.3, there
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exists an equi-dimensional holomorphic map f WX0 ! Z0 to a compact variety
Z0 such that the set-theoretical fibers F of f are leaves of F . Since the fibers
F have an étale map to A0, they must be tori again. It is now immediate that
Z0 D Pn and that X0 D A0 � Pn.

Corollary 3. Assume in Theorem 11 that m D 2 and n D 1. Then either X0 '
A0 � P1, or X0 D P.E0/ and one of the following holds:

1. There is a torus bundle pWA0 ! B0 to an elliptic curveB0 and the rank-2 bundle
E0 on A0 sits in an extension

0! p�.L0/! E0 ! p�.L �
0 /! 0

with deg L0 > 0.
2. The rank 2-bundle E0 sits in an extension

0! S ! E0 ! IZ � S � ! 0

with an ample line bundle S and a finite non-empty set Z of degree degZ D
c1.S /2:

Proof. By Corollary 2 we may assume that E0 is not semi-stable for some (or any)
Kähler class !. Let S be a maximal destabilising subsheaf, which is actually a line
bundle, leading to an exact sequence

0! S ! E0 ! Q! 0:

Notice thatQ ' IZ�S �, whereZ is a finite set or empty. Taking c2 and observing
that c2.E0/ D 0 gives

c1.S /2 D degZ:

The destabilisation property reads

c1.S / 	 ! > 0:

Since h0.E0/ � 2, we deduce that h0.S / � 2; in particular, S is nef, S being
maximal destabilizing.

If S is ample, there is nothing more to prove, hence we may assume that S is
not ample. S being nef, c1.S /2 D 0 and S defines a submersionpWA0 ! B0 to an
elliptic curve B0 such that there exists an ample line bundle L0 with S D p�.L0/.
Therefore we obtain an extension

0! p�.L0/! E0 ! p�.L �
0 /! 0;

as required.
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Remark 6. The second case in Corollary 3 really occurs. Take a finite map f WA !
P2 � � over � and a rank-2 bundle F on P2 �� such that F jP2 � ftg ' O2 for
t ¤ 0 and such that F0 is not trivial. For examples see e.g. [30]. Now E D f �.F /

gives an example we are looking for.

Corollary 4. Assume in Theorem 11 thatm D 2 and n D 1. Let ˚ WTX =� ! �KX
2

be a morphism such that ˚ jXt D 
t is a contact morphism (i.e., defines a contact
structure) for t ¤ 0. Suppose that


0WTX0 !
�KX0

2

does not vanish identically. Then the kernel F0 of 
0 is integrable (in contrast to
the maximally non-integrable bundle Ft ).

Proof. We consider a family .
t / of morphisms


t WTXt !Ht

such that 
t is a contact form for t ¤ 0 and �KXt D 2Ht . Consider the (torsion
free) kernel F0 of 
0. We need to show that the induced map

�W .
2̂

F0/
�� D det F0 !H0:

vanishes. Since the determinant of the kernel Ft of 
t is isomorphic to Ht ; we
conclude that

det F0 'H0 � OX0.E/ (
)

with an effective (possibly vanishing) divisor E on X0. Now the induced map

�W det F0 !H0

must have zeroes, otherwise X0 would be a contact manifold, henceX0 ' A0 � P1:
Thus � D 0 by (
), and F0 is integrable.
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Beauville, Arnaud (Nice): Abelian Varieties Associated
to Gaussian Lattices

Let � be a self-dual lattice, endowed with an automorphism of square �1. Then
A� D �R=� is a principally polarized abelian variety, with an automorphism {

of square �1. I will show that the configuration of {-invariant theta divisors of A�
follows a pattern very similar to the classical theory of theta characteristics; as a
consequence A� has a high number of vanishing thetanulls. When � D E8 we
recover the 10 vanishing thetanulls of the abelian fourfold discovered by R. Varley.

Caporaso, Lucia (Rome): Tropical Methods for the Geometry
of Algebraic Curves and Their Moduli Spaces

The talk will be a survey on the interplay between tropical/combinatorial and
algebro geometric techniques, with focus on the case of tropical and algebraic curves
and their moduli spaces.

Catanese, Fabrizio (Bayreuth): Topological Methods in Moduli
Theory

The structure of the moduli spaces of surfaces and higher dimensional varieties is
sometimes rather elusive if one only uses algebraic methods. But, over the complex
numbers, sometimes the homotopy type of an algebraic variety determines the
structure of the moduli spaces. I will explain this via examples of rigid and weakly
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rigid varieties (connected moduli space up to complex conjugation), such as curves,
Abelian varieties, Kodaira surfaces, varieties isogenous to a product, Beauville
varieties. I will then present some main results on the Inoue type varieties recently
introduced in joint work with Ingrid Bauer. A dominant role is played also by the
study of moduli spaces of curves with a group G of automorphisms. Here, I will
present some recent works, in particular joint work with Michael Loenne and Fabio
Perroni, concerning the irreducibe components for some special groups, as Abelian
and Dihedral, and the irreducible stable components of the latter moduli spaces for a
general groupG (extending work of Dunfield and Thurston in the free action case).

Ciliberto, Ciro (Rome): Construction and Properties of Some
Irregular Surfaces

In this talk I will explain a few constructions of some non-trivial irregular surfaces
with no irrational pencils (among them a recent interesting example by Schoen
which I will look from a slightly different viewpoint than the original one). Some
interesting properties of these surfaces will also be discussed. This is (experimental)
work in progress with M. Mendes Lopes and X. Roulleau.

Esnault, Hélène (Essen): Index and Euler Characteristic over
Henselian Fields with Algebraically Closed Residue Fields

Over a henselian field with algebraically closed residue field of residue characteristic
0 or p large, the index of a smooth projective variety divides the Euler characteristic
of any coherent sheaf. (Joint with Marc Levine and Olivier Wittenberg)

Farkas, Gavril (Berlin): Syzygies of Torsion Bundles
and the Geometry of the Level l Modular Variety over Mg

In joint work with Chiodo, Eisenbud and Schreyer, we formulate, and in some cases
prove, three statements concerning the purity of the resolution of various rings one
can attach to a generic curve of genus g and a torsion point of order l in its Jacobian.
These statements can be viewed an analogues of Green’s Conjecture and we verify
them computationally for bounded genus. We then compute the cohomology class
of the corresponding non-vanishing locus in the moduli space Rg;l of twisted level
l curves of genus g and use this to derive results about the birational geometry of
Rg;l . For instance, we prove that Rg;3 is a variety of general type when g > 11.
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I will also discuss the surprising failure of the Prym-Green Conjecture for genera
which are powers of 2.

Gathmann, Andreas (Kaiserslautern): The Relative Tropical
Inverse Problem for Curves in a Tropical Plane

The idea of tropical geometry is to associate to an algebraic variety X a polyhedral
complex, the so-called tropicalization trop.X/ ofX . One can then study trop.X/ by
purely combinatorial means and try to translate the results back to the original vari-
ety X . One of the central problems in this process is the “tropical inverse problem”,
i.e. the question which polyhedral complexes can be realized as tropicalizations of
an algebraic variety. We study this question in a relative setting: given a tropical
curve C contained in the tropicalization of a plane X , is there an algebraic curve
contained in X that tropicalizes to C ? We give a complete algorithmic answer to
this problem and use this to reprove certain known and some new general criteria
for realizability.

Geer, Gerard van der (Amsterdam): Vector-Valued Picard
Modular Forms and Curves of Genus Three

The talk deals with vector-valued Picard modular forms on a unitary group of
signature .2; 1/ over the ring of Eisenstein numbers. We construct modular forms
and discuss the structure of modules of such modular forms. It is related to the
cohomology of local systems on a moduli space of curves of genus three. This is
joint work with Fabien Clery and Jonas Bergstroem.

Gritsenko, Valery (Lille): Exceptional Arnold Singularities
and Their Automorphic Discriminants

The semi-universal deformations of exceptional Arnold singularities can be pre-
sented as modular varieties of orthogonal type. We construct their automorphic
discriminants and we show that three of them determine Lorentzian Kac-Moody Lie
algebras. We consider two types of generalized automorphic forms on the full space
of deformations (a non-classical homogeneous domain defined by E. Looijenga and
K. Saito) and we give an answer of some old problems of K. Saito. At the end we
formulate open research questions in this area.
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Grushevsky, Sam (Stony Brook): Towards the Stable
Cohomology of Ag

The stable (for g much larger than the degree) cohomology of the moduli space
Ag of principally polarized abelian varieties was computed by Borel, as the
group cohomology of the symplectic group. Using topological methods, Charney
and Lee computed the cohomology of Satake-Baily-Borel compactification. In
this talk we will discuss the question of computing the stable cohomology of
toroidal compactifications, and in particular will discuss the stabilization of suitable
cohomology for the perfect cone toroidal compactification, and the computation of
some these stable cohomology groups. Joint work in progress with Klaus Hulek and
Orsola Tommasi.

Halle, Lars (Oslo): Néron Component Groups and Base Change

Let K be a complete discretely valued field and let A be an abelian K-variety. In
this talk I will discuss the Néron component series of A. This is a formal power
series in ZŒŒT �� which measures how the number of connected components of the
special fiber of the Néron model of A varies under tame extensions of K . In case
A is wildly ramified, it is particularly challenging to describe the properties of this
series. I will present some results for Jacobians and abelian varieties with potential
multiplicative reduction, and discuss a few open problems in this setting. If time
permits, I will also mention generalizations to semi-abelian varieties. This is joint
work with Johannes Nicaise (Leuven).

Hitchin, Nigel (Oxford): The Hyperholomorphic Line Bundle

On a hyperkähler manifold with a circle action preserving just one complex structure
there is a natural hyperholomorphic line bundle. This is a constituent of the
physicists’ hyperkähler/quaternionic Kähler correspondence and was treated in a
differential geometric fashion by A Haydys. We show how to construct this via
a holomorphic bundle on the twistor space and consider examples including the
moduli space of Higgs bundles.

Kawamata, Yujiro (Tokyo): Derived Categories
from the Viewpoint of the Minimal Model Program

I would like to consider some problems concerning the minimal model program and
the derived categories; MMP and semi-orthogonal decompositions, K-equivalence
and the Fourier-Mukai partners, finiteness of models, and the cone conjecture.
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Laza, Radu (Stony Brook): The KSBA Compactification
for the Moduli Space of Degree Two K3 Pairs

A classical (and still open) problem in algebraic geometry is the search for a
geometric compactification for the moduli of polarized K3 surfaces .X;L/. If one
considers instead K3 pairs .X;H/ with H a divisor in the linear system jLj, the
resulting moduli space has a natural geometric compactification given by the general
MMP framework (pioneered by Kollár, Shepherd-Barron, and Alexeev). In this talk,
I will discuss the existence of a good compactification for the moduli of K3 pairs in
all degrees, and then discuss in detail the degree 2 case.

Liedtke, Christian (Stanford): On the Birational Nature
of Lifting

Whenever a variety X lifts from characteristic p to characteristic zero, say over the
Witt ring, then many classical results over the complex numbers hold for X , and
certain “characteristic p pathologies” cannot occur, simply because one can reduce
modulo p. But then, lifting results are difficult, and in general, varieties do not lift.
However, in many situations, it is possible or easier to lift a birational model of X ,
maybe even one that has “mild” singularities. Thus, a natural question is whether
the liftability of such a birational model implies that of our originalX . We will show
that this completely fails in dimension at least 3, that this question is surprisingly
subtle in dimension 2, and that it is trivial in dimension 1. This is joint work with
Matthew Satriano.

Markman, Eyal (Amherst): Lagrangian Fibrations
on Holomorphic Symplectic Varieties of K3Œn� Deformation Type

Let X be an irreducible holomorphic symplectic manifold deformation equivalent
to the Hilbert scheme of n points on a K3 surface. LetL be a nef line-bundle, which
is isotropic with respect to the Beauville-Bogomolov pairing. Assume that the two-
dimensional subspace spanned by cohomology classes of type .2; 0/ and .0; 2/ on
X does not contain non-zero integral classes. We prove that L is base point free
and it induces a Lagrangian fibration fromX onto a projective space, whose general
fiber is a Jacobian.
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Mukai, Shigeru (RIMS): Enriques Surfaces and Abelian
Surfaces

Many families of Enriques surfaces are constructed from abelian surfaces via
Kummer surfaces. Such Enriques surfaces promote and shed new light on the
study of Abelian surfaces. In this talk I review known results in this direction and
reconstruct such Enriques surfaces canonically from their periods in several cases.

Keiji Oguiso (Osaka): Automorphism Groups of Calabi-Yau
Manifolds of Picard Number Two

We prove that the automorphism group of an odd dimensional Calabi-Yau manifold
of Picard number two is always a finite group. This makes a sharp contrast to the
automorphism groups of K3 surfaces and hyperkähler manifolds and birational
automorphism groups, as we shall see. We also clarify the relation between
finiteness of the automorphism group (resp. birational automorphism group) and the
rationality of the nef cone (resp. movable cone) for a hyperkähler manifold of Picard
number two. We will also discuss a similar conjectual relation for a Calabi-Yau
threefold of Picard number two, together with existence of rational curve, expected
by the cone conjecture.

Peternell, Thomas (Bayreuth): Differential Forms, Foliations
and Ricci Flat Varieties

I will discuss possible generalizations of the Beauville-Bogomolov decomposition
theorem to singular varieties and present recent results on the decomposition of the
tangent sheaf of singular varieties with trivial canonical classes ( joint work with
D.Greb and S.Kebekus).

Sankaran, Gregory (Bath): Stable Homology for Partial
Compactifications of Ag

I shall describe joint work (in progress) with Jeff Giansiracusa that aims to
prove stability results for homology or cohomology of suitable toroidal partial
compactifications of Ag . The methods come partly from homotopy theory, using
stability results for homology of GL.Z/ due to Charney, Dwyer and van der Kallen.
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Tommasi, Orsola (Hannover): Cohomology of Local Systems
of Low Weight on M2

In this talk we discuss different techniques for the computation of the cohomology
of the moduli space of non-singular curves of genus 2 with marked points. We
concentrate on the case of genus 2 curves with 4 marked points and we explain
how such research is motivated by the study of the structure of the tautological ring
of the moduli space of stable curves.

Ravi Vakil (Stanford): Stabilization of Discriminants
in the Grothendieck Ring

We consider the “limiting behavior” of discriminants, by which we mean informally
the closure of the locus in some parameter space of some type of object where
the objects have certain singularities. We focus on the space of partially labeled
points on a variety X , and linear systems on X . These are connected—we use the
first to understand the second. We describe their classes in the “ring of motives”,
as the number of points gets large, or as the line bundle gets very positive. They
stabilize in an appropriate sense, and their stabilization can be described in terms
of the motivic zeta values. The results extend parallel results in both arithmetic and
topology. I will also present a conjecture (on “motivic stabilization of symmetric
powers”) suggested by our work. Although it is true in important cases, Daniel Litt
has shown that it contradicts other hoped-for statements. This is joint work with
Melanie Wood.

Voisin, Claire (Paris): Symplectic Involutions of K3 Surfaces
Act Trivially on Zero-Cycles

A symplectic involution of a K3 surface acts trivially on the space of holomorphic
2-forms, hence Bloch’s conjecture predicts that it acts trivially on 0-cycles of degree
0 modulo rational equivalence. This statement has been proved by Huybrechts and
Kemeny for the pairs (K3, involution) in one of the three series described by Sarti
and Van Geemen. We will show how to prove the result in all cases.
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