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Preface
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of Klaus Hulek’s 60th birthdays; it is with great pleasure that we dedicate this volume
to him.

We would like to thank the members of the Scientific Advisory Board of the
conference, David Eisenbud, Nigel Hitchin and Thomas Peternell, for their crucial
input in setting up the program. The conference would have been impossible without
the generous support from the following institutions:
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* MWK Niedersachsen
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Introduction

The following paragraphs are meant to give a brief outline of the topics of the
conference “Algebraic and Complex Geometry” and the content of this PROMS
volume. Algebraic and complex geometry are exceptionally active areas of research
in pure mathematics which have seen many novel developments in recent years,
influencing numerous other areas such as differential geometry, number theory,
representation theory, and mathematical physics. Many of these interesting aspects
will be reflected in what follows.

1 Topic of the Conference

The program of the conference was designed to review the latest achievements and
innovations in algebraic and complex geometry. The program featured 23 lectures
from various subfields, allowing a broad scope, but putting specific emphasis on two
subjects of spectacular recent and ongoing progress: geometry of moduli spaces and
irreducible symplectic manifolds (Hyperkihler manifolds).

Geometry of Moduli Spaces

Moduli spaces are a key object of study in algebraic and complex geometry.
Originally introduced by Riemann in the case of curves, moduli spaces turned out
to be interesting both for their own sake and for the numerous implications to other
fields such as e.g. number theory (arithmetic geometry) and mathematical physics
(string theory).

Recently, there has been a particular interest in establishing the geometric and
topological properties of moduli spaces. In particular, newly developed techniques
yield results on the Kodaira dimension and on the cohomology of several moduli

ix



X Introduction

spaces. Most of the recent results are for moduli spaces of curves, of abelian varieties
and of K3 surfaces.

K3 surfaces are a special case of holomorphic symplectic manifolds, which
brings us to the second central topic of the conference.

Irreducible Symplectic Manifolds (Hyperkihler Manifolds)

Irreducible symplectic manifolds (or Hyperkidhler manifolds, defined by the exis-
tence of an everywhere non-degenerate holomorphic 2-form) behave in many ways
similar to abelian varieties and K3 surfaces. Yet they remain quite mysterious
objects.

As an illustration, there are only a few known constructions of irreducible
symplectic manifolds due to Beauville, Huybrechts, Beauville-Donagi, Debarre-
Voisin, and O’ Grady. It is still unclear whether there might be any more. The moduli
spaces of irreducible symplectic manifolds are conjectured to be locally symmetric
varieties, as in the case of K3 surfaces.

The conference program highlighted several important aspects of moduli spaces
and irreducible holomorphic symplectic manifolds.

For the reader’s information, we decided to include a full list of speakers with
titles and abstracts in the Appendix “Complete List of Talks”.

At the same time, this volume reflects the broad diversity of lectures at the
conference beyond the above focal topics. We continue with a short tour of the
content of this book.

2 Tour of Content of This Volume

This volume comprises 11 papers on current research from different areas of
algebraic and complex geometry. Reflecting the diversity of topics at the conference,
we sorted the article in alphabetic order by the first author instead of grouping them
by topic. Below we give a brief survey of the content.

The general topic of the paper by Barja and Stoppino concerns the rela-
tion between stability conditions and positivity in algebraic geometry. Given a
1-parameter family of polarized varieties, the authors study three different methods,
all of them involving stability conditions, to prove the positivity of a natural
numerical invariant associated to the family.

Beauville studies a problem related with the algebraic topology of algebraic
varieties. The author expresses the second quotient of the lower central series
of the fundamental group of a topological space X in terms of the homology
and cohomology of X. As an application, the author considers the Fano surface
parametrizing lines in a cubic threefold, where he recovers a result due to Collino.

Blume’s contribution extends the classical McKay correspondence for finite
subgroups G of SL(2,C) to non-algebraically closed fields. More precisely,
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Blume constructs for arbitrary fields K of characteristic zero a bijection between
isomorphism classes of nontrivial irreducible representations of G C SL(2, K) and
the irreducible components of the exceptional divisor in the minimal resolution of
the quotient singularity A% /G.

The paper by Caporaso studies the interplay between the theory of linear series
on algebraic curves and on graphs. To this end, the author introduces the notion
of d-gonality for weighted graphs using harmonic indexed morphisms. Then a
combinatorial locus of the moduli space of curves contains a d-gonal curve if the
corresponding graph is d-gonal and of Hurwitz type. Conversely the dual graph of
a d-gonal stable curve is equivalent to a d -gonal graph of Hurwitz type. A detailed
study of the hyperelliptic case is included.

A classical problem is the subject of Catanese’s considerations. He proves for a
plane curve C that the map from C to its caustic is a birational map and he concludes
with similar results for matrix projections.

The starting point for the extensive work of Ciliberto and Dedieu are degenera-
tions of complex K3 surfaces. Given a degeneration of complex K3 surfaces, they
investigate the limits of the corresponding Severi varieties parametrizing irreducible
§-nodal plane sections of the K3 surfaces. Applications include counting plane nodal
curves through base points in special position, the irreducibility of Severi varieties
of a general quartic surface, and the monodromy of the universal family of rational
curves on quartic K3 surfaces.

Fujino and Gongyo consider the behaviour of divisors under smooth morphisms
between smooth complex projective varieties with a special view towards nefness.
Their arguments lead to a Hodge theoretic proof of the fact that nefness of the anti-
canonical divisor of the source space implies the same for the target space. Previous
proof of these results had been derived using positive characteristic arguments. The
present work relies on a generalization of Viehweg’s weak positivity theorem due to
Campana.

Haydys introduced the notion of the hyperholomorphic line bundle on a hyper-
kihler manifold with an S'-action of a certain type. Previous descriptions involved
twistor spaces and gauge theory, illustrating the relevance for physics. The paper
by Hitchin gives examples and more general results with a more geometrical
flavour.

Hollborn and Miiller-Stach start from a local system V induced by a family of
Calabi-Yau threefolds over a smooth quasi-projective curve S. Using Higgs coho-
mology, they determine the Hodge numbers of the cohomology group H le (S,V) =
H'(S, j.V). This generalizes previous work to the case of quasi-unipotent local
monodromies at infinity and has applications to Rohde’s families of Calabi-Yau
3-folds without maximally unipotent degenerations.

Compact Kihler holomorphic-symplectic manifolds, which are deformation
equivalent to the Hilbert scheme of length n subschemes of a K3 surface, are the
subject of Markman’s contribution. Motivated by the K3 case, Markman investigates
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criteria when the linear system associated with a nef line-bundle is base point free
and when this linear system induces a Lagrangian fibration.

The concluding paper by Peternell and Schrack studies complex compact Kéhler
manifolds X carrying a contact structure (which is in some sense the opposite of a
foliation). If X is almost homogeneous and b,(X) > 2, then they show that X is
a projectivised tangent bundle. Moreover, any global projective deformation of the
projectivised tangent bundle over a projective space is again of this type unless it is
the projectivisation of a special unstable bundle over a projective space.



Stability Conditions and Positivity of Invariants
of Fibrations

M_.A. Barja and L. Stoppino

Abstract We study three methods that prove the positivity of a natural numerical
invariant associated to 1-parameter families of polarized varieties. All these methods
involve different stability conditions. In dimension 2 we prove that there is a
natural connection between them, related to a yet another stability condition, the
linear stability. Finally we make some speculations and prove new results in higher
dimension.

1 Introduction

The general topic of this paper regards how stability conditions in algebraic geome-
try imply positivity. One of the first results in this direction is due to Hartshorne [25]:
a j-semistable vector bundle of positive degree over a curve is ample. Other seminal
results are Bogomolov Instability Theorem [15] and Miyaoka’s Theorem on the nef
cone of projective bundles over a curve [37]. These theorems — not accidentally —
are recalled and used in this paper (Theorems 8 and 4).
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An important example of this kind of result is provided by the various proofs
of the so-called slope inequality for a non-locally trivial relatively minimal fibred
surface f:S —> B, with general fibre F of genus g > 2:

—1
K2=48 "y,
: g

There are at least three different proofs of this result. One is due to Cornalba
and Harris for the Deligne-Mumford non-hyperelliptic stable case [18] (generalized
to the general case by the second author [50]), and uses the Hilbert stability of
the canonical morphism of the general fibre of f. In [16] Bost proves a similar
result assuming Chow stability. Although the proofs of Cornalba-Harris and Bost
are different, the results are almost identical, being Chow and Hilbert stability very
close (Remark 15). Another proof of the slope inequality, due to Xiao [52], uses the
Clifford Theorem on the canonical system of the general fibre combined with the
Harder-Narashiman filtration of the vector bundle fiw . A third approach has been
introduced more recently by Moriwaki in [39]; this method uses the p-stability of
the kernel of the relative evaluation map f* fxw s —> w/ restricted on the general
fibres. In [3] there is a good account of the last two proofs. Miyaoka’s Theorem is
a key tool in the proof of Xiao, and Bogomolov Theorem is the main ingredient
of Moriwaki’s approach. So we see at least two stabilities conditions involved in
the proof of the slope inequality for fibred surfaces: Hilbert (or Chow) stability and
J-stability.

In this paper we study these three methods in a general setting. Firstly we present
them with arbitrary line bundles — instead of the relative canonical one — and in
arbitrary dimension, when possible. Then we make a comparison between them,
finding that in dimension 2 there is a yet another stability condition, the [linear
stability, that connects them. Finally we make some speculations about the higher
dimensional case, and we prove a couple of new applications.

Let us describe in more detail the contents of the paper. We consider the following
setting. Let f: X —> B a fibred variety, .Z a line bundle on X, and let 4 C f..Z
be a subsheaf of rank r. A great deal of the results presented in the paper are in
a more general setting, but let us assume here for the sake of simplicity that the
general fibre of ¢ is generating and that .Z is nef. Following [18], we consider the
number e(Z,¥) = rL" —ndeg¥(L|r)"~", which is an invariant of the fibration
(Remark 1). We introduce the following notation (Definition 3): we say that (£, ¥)
is f-positive when e(Z, %) > 0. In the case n = 2, choosing £ = w/, the slope
inequality is equivalent to f-positivity of (w/, fxwr).

The structure of the paper is the following. In Sect.2, after giving the first
definitions, we make some useful computations via the Grothendieck-Riemann-
Roch Theorem (Theorem 2 and Propositions 2 and 3): the number e(.Z, ¢) appears
as the leading term of a polynomial expression associated to the relative Noether
morphism
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yu:Sym'9 — £, 2%" forh > 0.

We then give a new elementary proof of a consequence of Miyaoka’s result
(Theorem 3): if .Z is nef and ¢ is sheaf semistable, then (Z,%) is f-positive.
This is the first case we see where a stability condition implies f -positivity.

In Sect.3 we describe the three methods, adding here and there some new
contribution. As an illustration we re-prove along the way the slope inequality
for fibred surfaces via the three methods (Examples 2, 3, and 5). The neat idea
would be to extend them so that they all give as an output f-positivity of the
couple (£, %), under some suitable assumptions. The Cornalba-Harris and Bost
methods are originally stated in the general setting; we present them providing a
slight generalization of the first one. They prove f-stability with the assumption
that the fibre over general ¢ € B is Hilbert or Chow semistable together with the
morphism defined by the fibre G; := 4 ® C(¢) (Theorems 6 and 7).

After discussing these methods, we make in Sect.3.2 a digression on some
applications that are specific to the Cornalba-Harris method. In particular we give
in Proposition 4 a bound on the canonical slope of the fibred surfaces such that the
k-th Hilbert point of (F, wr) is semistable for fixed k. This suggests a possible
meaningful stratification of the moduli space of curves .#.

The method of Xiao was extended in higher dimensions by Konno [30] and Ohno
[45]. We give a general compact version (Proposition 5). Xiao’s method does not
provide in general f-positivity; it gives an inequality between the invariants L" and
deg & that has to be interpreted case by case.

Moriwaki’s method is described in Sect. 3.4. It only works in dimension 2, and
it gives f-positivity if the restriction of the kernel sheaf ker( f*¥Y — Z) is u-
semistable on the general fibres. We also provide a new condition for f-positivity,
independent from the one of the theorem of Moriwaki (Theorem 10).

It is natural to try and make a comparison between these results, and between
their assumptions: in particular, in the case of fibred surfaces all the three methods
work because the canonical system enjoys many different properties or is there a red
thread binding the three approaches? In Sect. 4 we study the 2-dimensional case. It
turns out that there is a yet another stability concept, the linear stability, playing a
central role in all three methods. Indeed, we observe the following:

* Section 4.1: linear (semi-)stability can be assumed as hypothesis in the Cornalba
Harris method, as it implies Chow (semi-)stability (Mumford and others).

* Section 4.2: linear (semi-)stability is the key assumptions that assures that the
method of Xiao produces f -positivity.

* Section 4.3: linear (semi-)stability is implied by the stability assumption needed
in Moriwaki’s method and in a large class of cases is equivalent to it (Mistretta-
Stoppino).
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So the picture goes as follows:

Linear stability of
(F,G;) for general ¢

A N

Chow stability of Xiao u-stability of
(F,G;) for general ¢ ker(f*Y — L) ¢

Bost
Cornalba Harris Moriwaki

In Sect.4.2 we also prove some positivity results that can be proved via Xiao’s
method with weaker assumptions.

Finally in Sect.5 we consider the higher dimensional case. At this state of art,
there is no hope to reproduce in higher dimension the beautiful connection between
the three methods described for dimension 2. First of all, the method of Moriwaki
seemingly can not even be extended to dimension higher than 2 (Remark 21).
However, we provide some results regarding the other two methods. Firstly we
prove that the hypothesis of linear stability still implies a positivity result via
Xiao’s method (Proposition 11). In Sect. 5.2, using known stability results, we can
prove new inequalities for families of abelian varieties and of K3 surfaces via the
Cornalba-Harris and Bost methods. Moreover, we conjecture a higher-dimensional
slope inequality to hold for fibred varieties whose relative canonical sheaf is
relatively nef and ample (Conjecture 1). We end the paper with an application of the
(conjectured) slope inequality in higher dimension: using the techniques of Pardini
[47] it is possible to derive from the slope inequality a sharp Severi inequality
K% > 2nly(wy) for n-dimensional varieties with maximal Albanese dimension
(Proposition 14). It is worth noticing that in [4] the first author proves this Severi
inequality, and Severi type inequalities for any nef line bundle, independently of
such conjectured slope inequality.

2 First Results

2.1 First Definitions and Motivation

We work over the complex field. All varieties, unless differently specified, will be
normal and projective. Given a line bundle . on a variety X, we call L any (Cartier)
divisor associated. It is possible to develop the major part of the theory for reflexive
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sheaves associated to Weil Q-Cartier divisors, but in order to avoid cumbersome
arguments, we will stitch to this setting.

Let X be a variety of dimension n, and B a smooth projective curve. Let
f: X —> B be a flat proper morphism with connected fibres. Throughout the paper
we shall call this data f: X —> B a fibred variety.

Let .Z be a line bundle on X. The pushforward f..% is a torsion free coherent
sheaf on the base B, hence it is locally free because B is smooth 1-dimensional. Let
9 C f..Z be a subsheaf of rank r. The sheaf ¢ defines a family of r-dimensional
linear systems on the fibres of f,

G, =9 ®C(t) C H'(F, %),
where t € B and F' = f*(¢). Let us recall that the evaluation morphism
ev: [*Y — &

is surjective at every point of X if and only if it induces a morphism ¢ from X to
the relative projective bundle P := Py (%) over B

X 2> Py(¥) =P

|7

such that . = ¢*(Op(1)). We will denote the surjectivity condition for ev by
saying that the sheaf ¢ is generating for Z. If ev is only generically surjective, it
defines a rational map ¢: X --»> P. In this case, let D be the unique effective divisor
such that f*¢ — Z(—D) is surjective in codimension 1. The divisor D is called
the fixed locus of ¢ in X. Clearly the evaluation morphism f*¢ — Z(—D) is
surjective in codimension 1.

Moreover, by Hironaka’s Theorem, there exist a desingularization v: X — X
and a morphism ¢: X —> P such that § = ¢ o v, and an effective v-exceptional
divisor E on X such that

¢ (Op(1)) v (L(-D)) ® O3 (-E).

See [45, Lemma 1.1] for a detailed proof of these facts. Define .# := ¢*Op(1) C

v*.Z; following [45] we call this the moving part of the couple (£, %), and we
define the fixed part of (£,%) on X tobe Z := v*(D) + E.Call f:= fovthe
induced fibration. Clearly the evaluation homomorphism f *G —> M is surjective
at every point of X.,ie 9 is generating for . on X .

Example 1. Let f:S —> B be a fibred surface, assuming for simplicity that S is
smooth. Let s = wsg ® f *w;l be the relative dualizing sheaf of f. Let g be the
(arithmetic) genus of the fibres. The general fibres are smooth curves of genus g.
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Let us assume that g > 2: then the restriction of w s on the general fibres is ample.
Hence the base divisor D is vertical with respect to f. Moreover, the line bundle
o has negative degree only on the (—1)—curves contained in the fibres. So, all
the vertical (—1)—curves of S are contained in D. It is possible to contract these
curves preserving the fibration, and obtaining a unique relatively minimal fibration
associated whose relative dualizing sheaf is f-nef. However, there could still be a
divisorial fixed locus, as we see now for the case of nodal fibrations.

Let us suppose that f is a nodal fibration, i.e. that any fibre of f is a reduced
curve with only nodes as singularities. We now describe explicitly the moving and
the fixed part of (wy, fswy). Let us first recall the following simple result, that can
be found in [39, Prop. 2.1.3]. If C is a nodal curve, the base locus of wc¢ is given
by all the disconnecting nodes and all the smooth rational components of C that are
attached to the rest of the fibre only by disconnecting nodes; following [39] we call
these components of socket type.

The fixed locus of (@, fxwy) is the union D of all components of socket type.
Indeed, by what observed above the evaluation homomorphism ev: f* fiw; —>
wy factors through w;(—D). On the other hand, it is easy to verify that the
restriction of w s (—D) on any fibre is well defined except that on the disconnecting
nodes not lying on components of socket type, so f* fuws(—D) — ws(—D) is
surjective in codimension one.

Let v:S —> S be the blow up of all the base points of the map induced by
Sxwy(=D); call E the exceptional divisor, and f = f o v the induced fibration
on S. Then we have that all the components of E are of socket type for the
corresponding fibre, and that the union of all the components of socket type of the
fibres of f is D + E, where D is the inverse image of D. Thus D + E is the fixed
part of (w 7 7o f*w 7), and the evaluation homomorphism

f*few (=D — E) — w (—D — E)

is surjective at every point. Noting that o 7 = V¥ (wyr) ® O5(E) (see for instance
[10, Chap. 1, Theorem 9.1]), we have that

® (=D — E) = v*(wy) ® O5(—D) = v*(ws(~D)) ® O5(E).

So the moving part of (wy, fywy) is A = v¥(ws(—=D)) ® O5(—E).
Let us now come to the definition of the main characters of the play.

Definition 1. With the above notation, define the Cornalba-Harris invariant
e(Z,9) :=rL" —ndeg¥(Lir)" ",

where L is a divisor such that £ =~ Ox (L), and F is a general fibre.

Remark 1. The number e(.%, %) is indeed invariant by twists of line bundles from
the base curve B. Indeed, if 7 is a line bundle on B we have
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rank(¥ ® of) =rank¥ =r, deg(¥9 ® &) = deg¥ + r deg 7,
(L+ f*A) =L"+ndeg /L', (£® f*d)r = L.

It is therefore immediate to verify that (X ® f* &/, 9 @ &) = e( L, 9).

Remark 2. There is another significant incarnation of the C-H invariant: the number
r"~le(£,9) is the top self-intersection of the divisor rL — deg 4 F.

Let us now consider again a fibred surface f: S — B as in Example 1. Let g >
2 be the genus of the fibres and b the genus of the base curve B. The main relative
invariants for f are K_f, = K2-8(b—1)(g—1)and y; = x(Os)—x(Op)x(OF) =
x(Os) — (g — 1)(b —1). By Leray’s spectral sequence and Riemann-Roch one sees
that y r = deg fixws. The canonical slope sy of the fibration is defined as the ratio
between K} and x 7. The slope s have been extensively studied in the literature
(see [3,6,52)]).

In a more general setting, given a line bundle .Z on X and a subsheaf 4 C f,..Z,
one can consider, when possible, the ratio between L" and deg ¥, as follows.

Definition 2. With the same notation as above, let us suppose moreover that
deg%¥ > 0. We define the slope of the couple (£, 9) as

Ln
deg¥’

Sf(Z, %) =

When ¢ = f..Z, we shall use the notation s s (.Z).

There is a rich literature about the search of lower bounds for the slope, in particular
about the canonical one. The most general result is the following (see [5]).

Proposition 1. Assume that £ and f+. £ are nef. Then s ;(£) > 1.
This bound is attained by a projective bundle on B and its tautological line bundle.

Remark 3. The slope is not invariant by twists of line bundles. Indeed, let ' =
f*(t) be a general fibre, and G, := ¥ ® C(1) € H(F,.%r). Attached to the
triple ( f, ¥, £) a natural ratio appears, which depends on the geometry of the triple
(F, G:, ZF). Indeed, consider the line bundle .2 (kF') obtained by “perturbing”
% with kF for k € N, and the corresponding perturbed sheaf ¢ ® Op(kt) <
J«(Z(kF)) = fi.Z ® Op(kt). Then we have that

B (kP L k(L)
57 D) = 5, (L EE), G ® Op (k) = deg¥ @ Op(kt)  deg(¥) + k rank¥’

Hence

. (L)
kli>nolo /(L) k) =n rank¥
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This asymptotic ratio is related to e(.Z, %) as follows; we have that

L n—1

sf(f,g)Zn% = e(Z,9) =0. €]
rank¥

The positivity of the Cornalba-Harris invariant thus coincides with this natural

boundon s (Z,¥9).

Remark 4. Let us consider inequality (1) in the case of a fibred surface f: S — B
of genus g > 1. It becomes
degwr

K2 >2

g—1
7= deg frwy = ML

rank fyx s

This bound is the famous slope inequality for fibred surfaces mentioned in the
introduction. It holds true for non locally trivial relatively minimal fibred surfaces
of genus g > 2 ([18] and [39,50,52]).

The case of surfaces allows us to single out some positivity conditions on the
family that seem to be necessary in general.

* The genus g of the fibrationis >2 <= w/ is ample on the general fibres of f;
» f isnon-locally trivial <= x> 0;
» f isrelatively minimal <= the divisor K s is nef (Arakelov).

In particular, if the fibration is not relatively minimal, the slope inequality is easily
seen to be false. We see that indeed in order to prove the positivity of e(.Z,¥)
we will often need similar conditions, in particular the relative nefness of .Z. In
Sect. 5.2 we conjecture and discuss a natural slope inequality in higher dimension.

By now we have seen how the condition of positivity of e(.Z, ¥) is very natural
and produces significant bounds for the geometry of the fibration. We shall thus give
a name to this phenomenon:

Definition 3. The couple (.Z,¥) is said to be f -positive (resp. strictly f-positive)
ife(Z,9) > 0 (resp. > 0).

2.2 Some Intersection Theoretic Computations

As above, let f: X —> B be a fibred variety over a curve B. Let £ be a line bundle
on X and¥ C f..Z asubsheaf of rank r. Consider the natural morphism of sheaves

yn: Sym'y —s f, %",

for i > 1. The fibres of this morphism on general ¢ € B are just the multiplication
maps
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® C(t):Sym"G, = H'(P"™", Opr—1 (h)) — H°(F, £8")
)/h . y r — s, Upr—1 ) ‘ F /)

where F = f*(t) and G, = ¢4 ® C(t) € H(F, 4r). Call ¥, the image sheaf,
and %, the kernel of y;. If ¢ is relatively ample then for 4 > 0 we have that
G, = f..®" and that .7, is just Fy sp(h), the ideal sheaf of the image of X in the
relative projective space P twisted by &p(h).

Remark 5. Suppose now that ¢ is generating. Let X = ¢(X) <5 P be the image
of X, let f:X — B the induced fibration, and let £ = ;j*(Op(1)). Then if
a: X — X is the restriction of ¢, we have that . = a*.%Z. Clearly, for & > 0 the

sheaf ¢, coincides with 7*§®h, and J¢, with S5 p(h).

Let us recall that the slope' of a vector bundle .# on a smooth curve C is the
following rational number (%) = deg .% /rank(%).

Remark 6. Note that f-positivity is equivalent to an upper bound on the slope of
the sheaf ¢, namely

n

wé) < PTAST

We can now prove a simple condition for f-positivity.

Theorem 1. Suppose that there exists an integer m > 1 such that
(i) The couple (£L®™,9,) is f-positive;

(i) mu(4) < u(Gn).

Then (£,9) is f-positive.

Proof. Assumption (i) tells us that

n

mL
G, < .
p( )—nL?;l

which, combined with (ii), gives the desired inequality.

We see below that the C-H class appears naturally as the leading term of the
expression

r deg ¥, — h deg Yrank¥,

when computed as a polynomial in /. This produces the following condition for
[ -positivity in terms of the slope of ¢ and of the one of ¥,.

"Unfortunately this crash of terminology seems unavoidable, as both the notations are well
established.
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Theorem 2. With the above notation, suppose that the sheaf 4 C fi.Z is
generating and such that the morphism ¢ it induces is generically finite on its image.
Then the following implications hold

1. If w(¥4)) = hu(9) for infinitely many h > 0, then (£, %9) is f-positive.
2. If (£, 9) is strictly f-positive, then (W(%y) = hu(9) for h > 0.

Proof. Asin Remark 5, let Y_:: o(X) < P be the image of X, let f:X — Bbe
the induced fibration, and let .Z = j*(0p(1)). As observed in the remark, the sheaf

%, coincides with 7*§®h for i > 0. By Grothendieck-Riemann-Roch theorem
we have that

— —®h L)" , — —®h
deg %, = deg 7, 7% = h”% + ) (1) deg RF,Z% + o,
n!
i>1
and that
rank¥, = rank7*§®h = h'(F, ?ﬁh) =
_ (Z|F)"_1 P —®h _
=p 2 N () Ri(F 2 o(h"2).
=D ;( VH(F,Z )+ O

Moreover, ¢ is relatively very ample as a subsheaf of f,.Z, and so by Serre’s
vanishing theorem deg Ri7*§®h = 0and /' (F, yﬁh) =0forh > 0,andi > 1.
By the assumption, the map a: X —> X is generically finite of degree say d . Hence

L" = (@*L)" =d(L)" and (Ljz)""' = (@*Ljp)"" =d(Lr)"".

Putting all together, we have

n

rank¥ deg ¢, — h deg Yrank¥;, =
d(n!)

(rank%L” —n deg%LT’F_l) +oh" ) =

n

_ n—l1
= G LD+ o0,

2

So, if we have that u(%,) > hu(%) for infinitely many 2 > 0, then the leading
term of rank¥ deg ¥, — h deg ¥rank%, as a polynomial in # must be non-negative
(in particular inequality (%) > (%) is satisfied for & > 0). Vice-versa, if the
leading term is strictly positive, then w(¥4;,) > hu (%) for h > 0.

Remark 7. 1f we have that e (%, ¥) is zero, then of course we cannot conclude that

rank¥ deg %), — h deg @rank¥, > 0 for h > 0.
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However, we can in this case consider the term in 4" ~!, which is

hn—l B B
m ((n -1 deg%L‘”FzKp —L" lerank%) .

Using the equality rank¥ L" = ndeg¥ Ly !, this term becomes

rh"! (n —1L{7°Kr

(n—1)! n Lt

L"— L”_le) .
|F

Note that in case £ = w we obtain —%K ’}, so that we can observe that if K. > 0
and ws is ample on the general fibres, then if 1(4,) > hu (%) for infinitely many
h>0,(wyr, fewy) is strictly f-positive.

Remark 8. We can observe the following. Consider the function ¥ (h) := w(%)/ h,
and assume the same hypothesis as Theorem 2. Then, by the very same computa-
tions contained in the proof of Theorem 2, we see that

. L
MY =y

Moreover observe that, for any 2 > 1

Ln

(,Ef@h,%) is f-positive <= v (h) < —.
n(L‘F

Theorem 2 can thus be rephrased as the following behavior of the function .

(1) If yr(h) = y(1) for infinitely many h, then ¥ (1) < L"/(nL{;").
() 1y (1) < L"/(nL'7"), then (k) = y(1) for h > 0.

We state now a couple of results along the lines of Theorem 2, when we weaken
as much as possible the assumptions needed in order to obtain f -positivity.

Proposition 2. With the same notation as above, suppose that the line bundle £ is
nefon X and that the base locus of 4 is concentrated on fibres.
If W(&) = hu(9) for infinitely many h, then (£,9) is f-positive.

Proof. If the map ¢ induced by ¥ is not generically finite on its image then
e(Z,9) = 0, hence f-positivity is trivially satisfied. If on the contrary ¢ is finite
on its image, we can apply Theorem 2 using, instead of ., the moving part of
(Z.9)

M =v*(L(=D)) ® Og(—E),
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where we follow the notation of Sect.2. Let M be a divisor associated to .#. By
Theorem 2, we have that the assumption ©(%,) > hu(¥¢) for h > 0 implies that
(A ,9) is f-positive, so that M" > nu(4)(M|r)"~'. By the assumption on the
base locus of ¢, we have that M| ~ L|r. Moreover, as .Z and .# are nef and
A is . minus an effective divisor, we have that L" > M". Summing up, we have
L' —np(@)Li7 '> M" —npu(4)(Mr)"~" > 0, and so we are done.

Remark 9. 1t is worth noticing that in the statement of Proposition 2 above, we
could replace the assumption of . being nef with . being relatively nef. Indeed, as
e(Z,9) is invariant by twists with pullback of line bundles on the base (Remark 1),
we can always replace a relatively nef line bundle with a nef one, by twisting with
the pullback of a sufficiently ample line bundle on B.

Proposition 3. With the same notation as above, suppose that
(x) forh > Oandi > 1 degR f,. %" = O(h"") and h'(F, gl‘fh) =
O(h"2).
Suppose moreover that one of the following conditions hold

(a) The sheafd C fi.Z is normally generated for generalt € B;
(b) The sheaf f.L®" is nef for h > 0.
Then if u(4) = hu(9) for infinitely many h > 0, then (£,9) is f -positive.

Proof. Suppose that condition (a) holds: then for 2 >> 0 the sheaf &, generically
coincides with (and is contained in) f;.% ® Hence, as we are on a smooth curve,
deg ¥, < deg f.Z®" for h > 0. The same inequality holds true if condition (b) is
satisfied.

By Grothendieck-Riemann-Roch theorem as in Theorem 2 we have that

deg fo. %" = h” + D (=)t deg R fo.2®" + (0",

i>1

rank f,.Z®" = W°(F, £ 3" = h"~ 1(( )" + Y DL+ o).

i>1

Putting all together and using assumption () we have

n

h
rank¥ deg %, — h deg/rank?), > — (rank%L” —deg gL"’F_l) + o0 =
n!

n

= %e(f, )+ o),
' 3)

and the conclusion follows as in the above theorem.
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Remark 10. Note that if we drop assumption (%), we still obtain an inequality,
involving a correction term due to the higher direct image sheaves.

The results above are generalizations of a computation contained in the proof of
the main theorem of [18] (see also [50] and [7, sec.2]), where it is treated the case
where the general fibre of ¢ is very ample.

2.3 Stability and f -Positivity: First Results

Let us recall that a vector bundle .% over a smooth curve B is said to be w-stable
(resp. p-semistable) if for any proper subbundle . C .% we have u() < u(%)
(resp. <). This is equivalent to asking that for any quotient bundle .% —> 2 we
have (2) > (%) (resp. >).

Let us now consider as usual a fibred variety f: X — B overacurve B. Let ¥
be a line bundle on X and 4 C f..Z a generating subsheaf of rank r. We see here
that pu-semistability of ¢ implies f-positivity. This is the first case we encounter
where a stability condition implies the positivity of the C-H invariant. However,
-semistability on the base is quite a restrictive condition to ask (see Remark 12).
In Sect.3.3, we will see a method due to Xiao that uses vector bundle techniques
on ¥ to prove some positivity results, but does not need to assume p-semistability.
However, we will see in Sect. 4.2 that, in order to give f -positivity as aresult, Xiao’s
method needs another stability condition on the general fibres, the so-called linear
stability.

We will need the following simple remark.

Remark 11. Let % be a vector bundle of rank r on a smooth curve B. Observe that,
if & is any integer > 1, we have the following equalities:

h -1 h -1
deg(Sym".7) = ( tr ) deg.#, rank(Sym".%) = ( tr ! )
r r—

We thus easily deduce the following.
w(Sym".#) = hu(F). “)

Theorem 3. With the notation above, let us suppose that 9 is generating, or that
the assumptions of Proposition 2 or of Proposition 3 hold. Then the following holds:
if the sheaf 4 is p-semistable, then (£, 9) is f-positive.

Proof. If 9 is p-semistable then Sym"# is ji-semistable for any 4, so that we have
that the inequality +(Sym”"¥) < (%) is satisfied. But (Sym"%) = hu(¥%) by
formula (4) above.

Then if the conditions in Proposition 2 or in Proposition 3 are satisfied, we are
done.
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Let us now suppose that ¢ is generating. If the morphism ¢ it induces is not
generically finite on its image then e(.Z, %) = 0. If on the contrary ¢ is generically
finite on its image, by what we have seen above, we are in the conditions to apply
Theorem 2.

Remark 12. From the above argument, we see that the p-stability of ¢ is much
more than we need to prove f-positivity: indeed, in order to assure f -positivity, we
just need that for infinitely many 4 > 0 the sheaf ¢, is not destabilizing for Sym"%,
and this condition is almost necessary (Theorem 2). The condition of u-stability of
Sym"% implies instead that this sheaf does not have any destabilizing quotient.

Indeed, it seems that the p-stability of ¢ is an extremely restrictive condition to
ask. In order to illustrate this, consider any variety fibred over P!, and consider the
relative canonical sheaf w . If the sheaf fiwy is j1-semistable, then necessarily its
rank has to divide its degree, so that h°(F, K r) necessarily divides deg fxw /. Any
fibred variety violating this numerical condition cannot have fiw, p-semistable.
Moreover, let us recall Fujita’s decomposition theorem for the pushforward of the
relative canonical sheaf. Given a fibration f: X — B, we have that

frwp = o & (&Y Op), &)

where ¢ = h'(B, fxwx), and H°(B, «/*) = 0. From this result we see that
Jf+w fails to be semistable as soon as g s > 0. For instance, for any fibred surface
f:S —> B with ¢(S) > b, the pushforward of the relative canonical sheaf needs
to be p-unstable. See [52] (in particular Theorem 3) for some related results.

A weaker version of Theorem 3 can be proved as a corollary of a beautiful result
due to Miyaoka, as we see below.

Let us first define the setting of Miyaoka’s Theorem. Let .% be a vector bundle
over a smooth curve B. Let m: P := Pp(.%#) —> B be the relative projective bundle,
and let H be a tautological divisoron P, i.e. Op(H) =~ Op(1), and let X' be a general
fibre of 7.

Theorem 4 (Miyaoka [37]). Using the above notations, the sheaf F is -
semistable if and only if the Q-divisor

H— ()X

is nef.
Applying Theorem 4 to our situation we can deduce the following

Corollary 1. Let .Z be a nef line bundle, f: X —> B a fibration and ¢ C fi. L
has base locus vertical with respect to f. If the sheaf 4 is j-semistable, then the
couple (£,9) is f-positive.

Proof. With the notations of Sect. 2, let us observe that

¢ (H - (@) X)) =vi(L-D) - E—-p@F.
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Recalling that ¢ is a morphism, by Theorem 4 the divisor v*(L — D) — E — u(4) F
is nef. This divisor therefore has non-negative top self-intersection, and so the result
follows using the same computations of Proposition 2 and Remark 2.

3 The Three Methods

3.1 Cornalba-Harris and Bost: Hilbert and Chow Stability

We now present the method of Cornalba and Harris [18], in the generalized setting
introduced in [50]. Let us start with a definition. Let X be a variety, with a linear
system V € H %(X, 2), for some line bundle 2 on X. Fix & > 1 and call G, the
image of the natural homomorphism

Sym"V -2 HO(X, 2.
Set Ny = dim Gy, and take exterior powers

Nj
' ANy,

Np
A\ Sym"V —= A\ Gy = det Gy, (6)

The map A"i g defines uniquely an element [AM g, | € P(AMSym"VV) which we
call the generalized h-th Hilbert point associated to the couple (X, V).

Definition 4. With the above notation, we say that the couple (X, V) is Hilbert

(semi)stable if its generalized h-th Hilbert points are GIT (semi)stable for infinite
heN.

Remark 13. Let (X, V) be as above. Consider the factorization of the induced map
through the image

Xff>}7((—j>]P’r.

Set 7 = j*(Op: (1)) and let V € H°(X, 2) be the linear systems associated to .
The homomorphism (6) factors as follows:

Sym"V = sym"V 25 HOX, ") < HO(X, 2%,

where the homomorphism @, is the s-th Hilbert point of the embedding j; notice
that, by Serre’s vanishing theorem, this homomorphism is onto (and, in particular,

G, = H°(X, §®h)) for large enough /. The generalized /-th Hilbert point of
(X, V) is therefore naturally identified with the 4-th Hilbert point of (X, V), and the
generalized Hilbert stability of (X, V) coincides with the classical Hilbert stability
of the embedding ;.
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Now consider a fibred variety f: X —> Y, where the base Y is smooth but not
necessarily of dimension 1. Let .Z be a line bundle on X, and let 4 C f..Z be a
subsheaf of rank r. Consider the homomorphism of sheaves Sym"¥ —s f, Z®"
and, as usual, call ¥, its image.

Theorem 5 (Cornalba-Harris). With the above notation, suppose that for general
y € Y the h-th generalized Hilbert point of the fibre G, = 4 ® C(y) <
HO(F, L) is semistable.

Then the line bundle

Zi = det(%)®" ® (det®) TNk,

is pseudo-effective.

The above result is the key point of the proof of [18, Theorem 1.1]. In particular,
when the base Y is a smooth curve, we obtain the following inequality

rank¥ deg ¥, — h deg Yrank¥;, > 0, 7

In the general case with base of arbitrary dimension it is possible, under some
assumptions, to compute the first Chern class of £}, as a polynomial in & with
coefficients in CH; (Y )g and to conclude that its leading term is a pseudoeffective
class ([18, Theorem 1.1] and [50, Corollary 1.6]).

Applying the results of Sect.2, we obtain the following condition for f-
positivity, which provides an improvement of Theorem 1.1 of [18] in the case of
1-dimensional base.

Theorem 6. With the notation above, suppose that the base Y = B is a curve.
Suppose that the sheaf & is either generating, or it satisfies the conditions of
Proposition 2 or 3. Suppose moreover that for general t € B the fibre G; C
HO(F, 4r) is Hilbert semistable. Then (£,9) is f-positive.

Proof. Apply Theorem 5 above, and Theorem 2 and Propositions 2 and 3.

Bost’s Result: Chow Stability

We now describe a result of Bost, which is almost equivalent to the one of Cornalba-
Harris, except that it uses as assumption the Chow stability on the general fibres.
Moreover it has to be mentioned that Bost’s result holds in positive characteristic.

Let us first recall some definitions. Let X be an n-dimensional variety together
with a finite morphism of degree a in the projective space ¢: X —> P" associated
to a linear system V € H %X, 2). Consider

Z(X) :={n —spaces w of V | Ann(mr) N p(X) # 0} C Gr(n, V).
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The set Z(X) is an hypersurface of degree d = degg/a, in the grassmanian
Gr(n, V). The homogeneous polynomial Fx € H*(Gr(n,V), Ogyn.v)(d)) repre-
senting Z(X) is the Chow form of (X, V') and the Chow point of (X, V') is the class
of FX in P(HO(G}’(}’I s V), ﬁGr(n,V) (d)))

The couple (X, V) is Chow (semi)stable if its Chow point is GIT (semi)stable
with respect to the natural SL(V') action.

Remark 14. Note that X is Chow (semi)stable if and only if the cycle mX is, for
any integer m: see for instance [16], proof of Proposition 4.2. So, in particular, the
Chow (semi)stability of (X, V') as above coincides with the Chow (semi)stability of
the cycle image ¢« (X) together with the linear system of the immersion induced by
¢. This fact should be compared with the behavior of the Hilbert stability described
in Remark 13.

Remark 15. In [40, Corollary 3.5], it is proven that Chow stability implies Hilbert
stability, while for semistability, the arrows are reversed. In [13] some examples are
given of curves Hilbert unstable and Chow (strictly) semistable. However, the two
concepts asymptotically coincide (see Sect. 3.2 below).

Hence, we can apply Theorem 6 if we replace the assumption of Hilbert semistabil-
ity with Chow stability, but we can not assume Chow semistability.

In [16], Bost has proven an arithmetic analogue to the theorem of Cornalba and
Harris, assuming the Chow semistability of the maps on the general fibres. The
geometric counterpart of Bost’s result in the case when the base is 1-dimensional
is the following. Consider as usual a fibred variety f: X — B. Let .Z be a line
bundle on X, and let 4 C f,.Z be a subsheaf of rank r.

Theorem 7 ([16] Theorem 3.3). With the above notation, suppose that

1. Fort € B general, the fibre G, := 9 ® C(t) € H*(F, 4r) is base-point free;

2. If a: F — P" is the morphism induced, the cycle ax(F) € Z,(P") is Chow
semi-stable;

3. The line bundle & is relatively nef.

Then the couple (£,9) is f-positive.

Example 2. Let us prove the slope inequality for fibred surfaces via these methods.
Let f:S —> B be a relatively minimal fibred surface of genus g > 2. Recall
that the relative dualizing sheaf w is nef [11]. The slope inequality for relatively
minimal fibred surfaces now follows right away from Proposition 2, using the fact
that the restriction of w s to the general smooth fibre is Hilbert and Chow semistable
(Sect. 3.2 above), and base-point free. An alternative proof can be obtained using
Proposition 3, by proving, as in [18], that condition (%) holds.

Let us now refine the computation in the case of a relatively minimal nodal
fibred surface. In this case we have given in Example 1 an explicit description
of the moving and the fixed part of (ws, fiwy). Recall that the moving part is
M = v*ws(—D)® Oz(—FE), where D is the union of all socket type components,
v:S —> S is the blow up of S in the disconnecting nodes of the fibres of f that
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do not belong to a socket type component and E is the exceptional divisor of v. Let
f = vo f be the induced fibration. From the proof of Proposition 2, we can derive
the following inequality:

0 < M?>—2u(fawj)degoy; = K7 + D* + E> = 2K, D — 4

-1
(¢—1) deg fuoy.
8

Let us compute explicitly the term D? + E? — 2K rD. Let n be the total number
of disconnecting nodes contained in the fibres, k the number of nodes lying on a
socket type component and [ = n —k = —E?. Let r be the number of connected
components of socket type in the fibres, so that D = Dy + ... + D, with the D;’s
connected and disjoint. Then we have that K ;D = —2r + k, so that D? + E? —
2Ky D = 3k — 4r + [. Note that the condition of relative minimality is equivalent
to 2r < k, so we obtain inequality

1
K2 = 4%xf a2 ®)

In particular any fibred surface satisfying the slope equality necessarily has all
fibres free from disconnecting nodes. It is interesting to compare this result with the
inequalities obtained via Xiao’s method (Example 3) and with Moriwaki’s method
(Example 5).

3.2 Some Remarks on GIT Stabilities and Applications

It comes out the interest in understanding when a variety, endowed with a map in
a projective space, is Hilbert or Chow semistable. The following is a (without any
doubt non-complete) list of cases where Hilbert (or Chow) semistability is known.
In this list any time we use the term “stability” without specification, we mean that
both the Hilbert and the Chow (semi)stabilities are known to coincide.

* Homogeneous spaces embedded by complete linear systems are semistable;
abelian varieties embedded by complete linear systems are semistable [28].

* Linear systems on curves: if C is a smooth curve of genus g > 2, the canonical
embedding is Chow semistable, and it is Chow stable as soon as C is non-
hyperelliptic. Any line bundle of degree d > 2g + 1 induces a Chow stable
embedding [42]. Deligne-Mumford stable curves are semistable for the linear
system induced by the m-th power of the dualizing sheaf for m > 5 ([22, 42],
[23, Chap.4, Sec.C]). See [26,48] for curves Chow stable with respect to lower
powers of the dualizing sheaf.

2For the reader familiar with the moduli space of curves %g, this inequality means that the divisor
g — Mg —DA—g > 08 ~ (8 +HA— g8 —2g Y ;.08 is nef outside the boundary 9.7
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* Morrison in [40] studies the Chow stability of ruled surfaces in connection with
the w-stability of the associated rank 2 vector bundle: he proves that if & is a
stable rank 2 bundle on a smooth curve C then the ruled surface 7: P(§) — C
is Chow stable with respect to the polarisation Op(s) (1) ® w4 Oc (k) for k > 0.
Seyyedali in [49] extends the results of Morrison to higher rank vector bundles
and to higher dimensional bases. See also [27] for another generalization.

* General K3 surfaces: a K3 surface with Picard number 1 and degree at least 12
is Hilbert semistable [41].

* Hypersurfaces: in [43, Prop. 4.2] it is proven that smooth hypersurfaces of P" of
degree >3 are stable. In [42] it is studied the stability of (singular) plane curves
and surfaces in P2. A hypersurface F C P" of degree d > r + 2 and only log
terminal singularities is Hilbert semistable [51].

* Higher codimensional varieties: Lee [32] proved that a subvariety F' C P" of
degree d is Chow semistable as far as the log canonical threshold of its Chow
form is greater or equal to rdj (resp. > for stability). In [13] both the Chow and

the Hilbert stability of curves of degree d and arithmetic genus g in P?~¢ are
studied.

A lot of remarkable results — due to Gieseker, Viehweg and many others — are known
regarding asymptotic stability: given a line bundle & and a linear subsystem V' C
HO(X, 2), this is the stability of the couple (2", V},), for high enough /, where

Vi, i= Im(Sym"V —s HO(X, 2®")).

In this case Hilbert and Chow stability have been proved to be equivalent by
Fogarty [21] and Mabuchi [33]. There are beautiful results due to Donaldson,
Ross, Thomas and many others relating asymptotic Chow stability to differential
geometry properties, such that the existence of a constant scalar curvature metric.
Unfortunately, if a bound is not known on the power of the line bundle, the
Cornalba-Harris theorem does not give interesting consequences: if a couple (¢, .Z)
is asymptotically semistable on a general fibre, then the Cornalba-Harris theorem
implies that L" > 0.

On the other hand, it has come out recently, also in relation with the minimal
model program for the moduli space of curves initiated in [26], the interest in the
stability of the /-th Hilbert point for fixed h. The main result obtained in this topic is
that general canonical and bicanonical curves have the /-th Hilbert point semistable
forh > 2[1].

The Cornalba-Harris method can be applied with this kind of assumption. For
instance we can prove the following result (cf. [20] for & = 2).

Proposition4. Let f:S —> B be a relatively minimal non-hyperelliptic fibred
surface of genus g > 2. Suppose that the h-th Hilbert point of a general fibre F
with its canonical sheaf is semistable (with h > 2). Then the following inequality
holds
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2 2g=DR*+(1-gh—g
Ky=z2 1) s ©)

Proof. With the usual notation, we choose .2 = wy and 4 = fiws. Then by the
assumption, using Theorem 5, we have that rank¥ deg &), — h deg Yrank%¥,, > 0. By
Riemann-Roch, rank¥, = (2h — 1)(g — 1), and deg %), = h(hz_ ) Kff + xr,and the
computation is immediate.

The computations with higher powers of the relative canonical sheaf gives worse
inequalities than the slope one.

Remark 16. By a result of Fedorchuck and Jensen [20] (that improves the result in
[1]), the best inequality in Eq. (9), reached for & = 2, holds for relatively minimal
fibred surfaces whose general fibres are non-hyperelliptic curves of genus g whose
canonical image does not lie on a quadric of rank 3 or less. In particular this is
the case for fibred surfaces of even genus whose general fibres are trigonal with
Maroni invariant O (ibidem. and [7]). It is quite interesting to notice that this very
same bound is obtained by Konno in [29, Lemma 2.5] under the assumption that the
pushforward sheaf fiw/ is p1-semistable.

From the above proposition we can derive a new proof of the following result
(cf. [18, Theorem. 4.12] and [50, Prop. 2.4]). The same result follows from the
computation contained in Remark 7.

Corollary 2. If a relatively minimal non-locally trivial fibred surface of genus g >
2 reaches the slope inequality, then it is hyperelliptic.

Proof. Observe that the function of 4 appearing in inequality (9) is strictly
decreasing and — of course — it tends to the ratio of the slope inequality 4(g — 1)/g
for i > o0o. So, for any non-hyperelliptic fibration in the conditions of the theorem,
a strictly stronger bound than the slope one is satisfied.

A New Stratification of ./,

It is widely believed (see for instance [7,31]) that there should exist a lower bound
for the slope of fibred surfaces increasing with the gonality of the general fibres
(under some genericity assumption). This conjecture, however, is only proved for
some step: hyperelliptic fibrations (the slope inequality), trigonal fibrations [7, 19]
and fibrations with general gonality [24,31]. Recently Beorchia and Zucconi [12]
have proved some results also on fourgonal fibred surfaces.

Let us consider the following open subsets of .#,

S = {[C] € ., such that the k-th Hilbert point is semistable for k > h} .

Clearly ., € & fori < j, and for some m € N the sequence becomes
stationary, i.e. ; = .%; for every i, j > m (cf. [22]). If we consider the subsets
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S, BN\ Sy, I\ Fm—1, it seems possible that these provide an alternative
stratification of .#, minus the hyperelliptic locus. For such a stratification, a lower
bound for the slope increasing with the dimension of the strata would be provided
by Proposition 4. However, it does not seem clear, at least to the authors, to give a
geometrical characterization of the curves lying in .%; \ .%;_;, and an estimate on
the codimensions of these strata.

3.3 Xiao’s Method: The Harder-Narashiman Filtration

As we have seen in the previous section, p-semistability of ¢ implies f-positivity.
What about the case when the sheaf ¢ is not semistable as a vector bundle? We
describe here a method based on Miyaoka’s Theorem 4, which exploits the Harder-
Narashimann filtration of the sheaf &.

The main idea is given by Xiao in [52], where he uses the method in the case of
fibred surfaces. Later on, Ohno [45] and Konno [30] extended the method to higher
dimensional fibred varieties over curves. We present here a compact version of the
general formula (see Proposition 5 below).

We need to recall the definition of the Harder-Narashimann filtration of a vector
bundle ¢ over a curve B: it is the unique filtration of subbundles

0=%Cc4%cCc..Cc¥% =9

satisfying the following assumptions

e Foranyi =0,...[ the sheaf &; /¥, _; is pu-semistable;
o Ifwesetu; := u(%; /¥ —1), we have that u; > ;.

Note that | > u(&) > uy, unless ¢ is u-semistable, in which case 1 = [ and
these numbers are equal. If H is a divisor associated to the tautological line bundle
of P(¢) and X is a general fibre then an R-line bundle H — x X' is pseudoeffective
if and only if x < u; [44, Cor. 3.7] and it is nef if and only if x < y; [37].

As usual, consider an n-dimensional fibred variety f: X —> B and be a line
bundle . on X. Let F be a general smooth fibre of f. Consider ¥ C f..Z a
subbundle, and its corresponding Harder-Narashiman filtration as above. Set r; =
rank¥;.

Foreachi = 1,...,I, we consider the pair (£, %;) as in Sect. 2.1 and a common
resolution of indeterminacies v : X —> X. Let M; be the moving part of (£, %;),
andlet N; = M;—pu; F. By Miyaoka’s theorem 4 we have that N; is a nef Q—divisor
(not necessarily effective). The linear system P; := Njj is free from base points
and induces a map ¢; : F —s Pri—!, By construction we have P, > P} > ... >
P, > P;. Define a;+; = 0 and N;+; = N;. Then, we can state the generalized
Xiao’s inequality as follows. We refer to [30] for proofs.
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For any set of indexes I = {iy,...,in} C€{1,2,...,1},definei,+y =1+ 1and
consider the partition of / given by

Iy = {ix |k = 1,....m such that dimg;, (F) = s }.
Define now b, = [ 4 1 and decreasingly

b — min/; if Iy # @
* | byy1 otherwise.

Proposition 5 (Xiao, Konno). With the above notation, assume the £ and ¢ are
nef. Then the following inequality holds

1 s
L"=*Ly =Ny = | D0 CTT P Yo Qo Py P | (=),

s=n—1 n—1>k>s j€I; r=0

(10)

Remark 17. As we see Xiao’s method does not give as a result f-positivity, but an
inequality for the top self-intersection L” that has to be interpreted case by case.
On the other hand, it basically only has one hypothesis: the nefness of .Z and of ¢.
However, as we will see in Sect. 4.2 we can derive results on 4 = f,.Z even if it
is not a nef vector bundle. One of the contributions of this article is to frame Xiao’s
result in a more general setting, and to prove that with the right stability condition
in the couple (F,¥|r), for F' general, Xiao’s method produces f-positivity, at least
in the case of dimension 2.

Example 3. Let us describe how inequality (10) implies the slope inequality in the
case of fibred surfaces. We use the above formulaforn =2, ¢ = wr, ¥ = fiwy
and the sets of indexes I = {1,...,l} and I’ = {1,1}. If we call d; = degP;
inequality (10) becomes, respectively

I
K5 =Y (di + div) (i — pis),

i=1

K7 = (dy 4+ dp) (o — ) + 2dyp = di(pa + ) = (28 = 2) (1 + 141).
Let us note that by Cifford’s theorem we have inequality d; > 2r; — 2. Observing

now thatr;; > r; +1, and that deg fxw s = Zf:l ri (i — Wi+1), wWe obtain straight
away the slope inequality

g—1

K} >4 degfiwy.
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In fact, the above proof gives an inequality for N 12. In the case of nodal fibrations,
using the same notations as in Example 2, since N; = v*(K(—D))(—E), we
obtain the inequality le < K2 — n, which gives the very same inequality (8)
obtained via the Cornalba-Harris method.

Example 4. 1t could be interesting to have explicitly written the case n = 3 for the
complete set of indexes {1, ...,/}. Assume that N; induces a generically finite map
on the surface F'. Hence we have I, # @ and so

L* =3P + (P} + PrProy 4 PRy (e — ) + ...
oo (Poiy + Pyt Poy + P (ttn, — pny )+
+Pp, [(Po, + Poy—1) (=1 — fby) + o+ (Poy+1 + Pp) (o +1 — 1))

Observe that b} = 1 except for the case r; = 1 where b; = 2.

Since the linear systems induced by P; fori = by, ..., b, —1 map F onto curves
C;, we have a chain of projections between these curves in such a way that the
fibration part of the Stein factorization of the maps ' — C; are the same. Hence
we have a fibration

n:F—C.

Call D the general fibre, and let Q; be base point free linear systems on C such
that P; = 7*Q; of rank h°(C, Q;) > r; = rank%; and degrees which we call d;.
Writing this information and using that for all j

kK pl k=1 pi+1
P P = Pi P,

since P; < P;y and they are nef, we obtain a simplified (and weaker) version of
the previous inequality:

L3> 3(PP i + PRy (u—t — ) + - 4 P (e, — fby41)) +
+2A(dpy—1 (=1 — My) + - + dpy (U, — by +1)), (11)

where A = DPy,.

3.4 Moriwaki’s Method: p-Stability on the Fibres

In this paragraph we shall restrict ourselves to the case n = 2; see Remark 21 below
for a discussion on higher-dimensional results. Let X = S be a smooth surface.
We need the following fundamental result due to Bogomolov, which can be found
in [15].
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Definition 5. Let & be a torsion free sheaf over S. The class
A(&) = 2rank&cr (&) — (ranké — 1)c7 (&) € AZ(S)

is the discriminant of the vector bundle &. Let §(&) denote its degree.
Theorem 8 (Bogomolov Instability Theorem). With the above notation, if
8(&) < O then there exists a saturated subsheaf % C & such that the class

D = —rank% ¢|(&) + rank&'c| (F)

belongs to the positive cone KT (S) of Picg(S).

Recall that the positive cone KT is defined as follows: consider the (double) cone
K(S)={AeN'(S)g| A% >0} Cc N'(S)o.

The cone K (S) is the connected component of K(S) containing the ample cone.

Remark 18. Recall the definition of semistable sheaf in higher dimension: if X is
a variety of dimension n and % a locally free sheaf on X, let # be an ample
line bundle on X. We say that .% is J#-(semi)stable if for any proper subsheaf
0#%CF

(@) -H™ _e(F) B!
rank% - rank. %

(resp. <),

where H is the class of 7. In particular from the strong instability condition
provided by the theorem above, we have that if & is .7-semistable with respect
to any ample line bundle 7 on S, then (&) > 0.

The argument of Moriwaki relies on two key observations. The first is the
following: if the surface S carries a fibration, then, in order to ensure the non-
negativity of §(&) for a vector bundle &, one can assume that & is semistable on the
general fibres of f.

Proposition 6 ([39] Theorem 2.2.1). Let us consider a fibred surface f:S — B.
Let & be a sheaf on S such that the restriction of & on a general fibre of [ is a
u-semistable sheaf. Then §(&) > 0.

Proof. Suppose by contradiction that §(&) < 0. Then by the Bogomolov Instability
Theorem there exists a saturated subsheaf .# C & such that the divisor D =
rank.Z ¢, (&) —rank&c| (.F) satisfies that D> > 0. As a fibre F is nef, and F? = 0,
by the Hodge Index Theorem [10, sec.IV, Cor. 2.16], we have that

0 < D - F = ranké deg .#|r — rank.% deg &iF.

So Z|F is a destabilizing subsheaf of &}, against the assumption.
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Remark 19. Tt is worth noticing that the hypothesis of the above proposition that
the restriction &} is p-semistable on the general fibres F does not imply, neither
is implied, by some semistability of the sheaf & on S. Indeed, we can say only the
following:

 Let # be an ample line bundle on S and C be a general curve in |7#®¢| with
d > 1. Suppose that &j¢ is u-semistable, then & is 7 -semistable. Indeed if &
would be an JZ-destabilizing subsheaf of &, then .%|c would be destabilizing
for &jc, because

deg Fic _ jdeglcr(F)-H) _ deg(c1(6)  H)
rankZ|c rank.% ranké’

deg éjc

= = éa
rankdic m(éic)

w(Fic)

e If & is s#-semistable with respect to some ample line bundle .7, and C is a
general curve in |.77®™|, for sufficiently large m, then &j¢ is u-semistable [34].

Note that as a fibre F of any fibration f:S — B satisfies F' 2 = 0, it cannot be
ample. However, if the fibration is rational (i.e. B = P'), the conditions above can
hold true after some blow down of sections of the fibration.

Let us consider now a fibred surface f:S — B, a line bundle . and a
rank r subsheaf 4 C f..Z. The second point of Moriwaki’s argument, using our
terminology, relates §(&) to e(.Z,¥), for a suitably chosen vector bundle &, as
follows.

Let .# be the kernel of the evaluation morphism f*¢ C f* f,.¥ — £. The
following is a generalization of a computation contained in [39].

Proposition 7. With the above notation, if either

(a) The sheaf ¥ is generating in codimension 2, or
(b) The line bundle L is f-nef, and 4 has base locus vertical with respect to f,

then
(M) <e(Z,9).

Proof. Let us call % the image of the evaluation morphism, so that we have the
following exact sequence

0— M — [*9 25 ¥ —>0.

Note that, with the notations of Sect.2.1, ¢; (%) = ¢1(Z(—D)), where D is the
fixed locus of 4, and ¢ := c»(#) = —E? > 0, where E is as in Sect.2.1. Indeed,
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c2(£) is the length of the isolated base points of the variable part (with natural
scheme structure) [3]. So we have

* a(h) = fre@) —a(ZL(=D));
© o) =—ci(A)e(Z(=D)) —c.

Hence degcy(#) = (L — D)*> —deg¥(L — D)F — c. Let r = rank¥, so that
rank.# = r — 1. We can make the following computation

§(A)=2(r—1)[(L— D)>—deg¥(L — D)F —c]+
—(r—2)[(L—D)*—2deg¥(L — D)F]| =
=r(L—D)*—2deg¥9(L — D)F —2(r — 1)c.

In case (a) D = 0 and we thus obtain §(.#Z) = e(Z,9) —2(r — 1)c < e(Z,9).
In case assumption (b) holds, observe that (L — D)2 =1?2—-2LD+ D*< L%
indeed being D effective and vertical, we have D2 <0 by Zariski’s Lemma, and
LD > 0 because L is supposed to be f-nef. On the other hand, (L — D)F = LF
again because D is vertical. Hence, we still obtain the desired inequality, and the
proof'is concluded.

Combining Propositions 6 and 7 we get immediately the following result

Theorem 9. With the notation above, suppose that the restriction | to a general
fibre F is a semistable sheaf on it. Suppose moreover that one of the following
conditions holds.

o The sheafq is generating in codimension 2;
* The line bundle £ is f-nef, and 4 has base locus vertical with respect to f.

Then the couple (£, 9) is f-positive.

Example 5. Let f:S —> B be a relatively minimal non-locally trivial fibred
surface. Let us prove the slope inequality via Moriwaki’s method. Let us consider
the couple (wy, fxwy), and let .# be the kernel sheaf of the evaluation morphism
f*fxwy — wr. The hypotheses of the above theorem are satisfied. Indeed,
the assumption that .#|r is a semistable sheaf has been proved by Pranjape
and Ramanan in [46]. The evaluation morphism f* fiw; —> wjy can fail to
be surjective on some vertical divisor, so that Theorem 9 can be applied with
assumption (b) holding, and leads to the slope inequality (see also [3]).

In case f is a nodal fibration, we can obtain a finer inequality, as follows. From
the computations of Proposition 7, using the results contained in Example 1, we
have that

0=8(&8) =gk} —4(g — Vs — 8Bk —4r)—2(g — I,
where, as in Example 2, k is the number of disconnecting nodes lying on

components of socket type of the fibres, / is the number of the others disconnecting
nodes, and r is the number of components of socket type. So, we get
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—1 —1
K2=48 g, vk 4250
: g g

Note that this inequality is slightly better than the one obtained in Examples 2 and 3
using respectively the Cornalba-Harris and the Xiao methods.

Remark 20. Moriwaki in [39] uses, for nodal fibred surfaces S — B, as line
bundle .Z on S an ad hoc modification of the relative canonical bundle w s on the
singular fibres, and as ¢ the whole f..Z. The result is an inequality, involving some
contributions due to the singular fibres, stronger than the one obtained in Example 5.

From Proposition 7, combining it with Remark 18, we can straightforwardly
deduce the following condition for f -positivity.

Theorem 10. With the notations above, if the kernel of the evaluation morphism
Y — &

is J€-semistable with respect to an ample line bundle 5€ on S, then (£,9) is
[ -positive.

This result is not implied by Moriwaki’s Theorem 9, by what observed in
Remark 19.

Remark 21. 1t would be nice to be able to extend Moriwaki’s method to higher
dimensions. Thanks to Mumford-Metha-Ramanathan’s restriction theorem [34], it
is possible to obtain the following Bogomolov-type result. Let X be a variety of
dimension 7, and & a vector bundle on X. Let .7 be an ample line bundle on S.
Define

8(&) := deg (2rank&er (&) H"~* — (rank& — 1) (&)H" ).

Then, if & is 7 -semistable, then §(&) > 0. Unfortunately, this beautiful result
does not imply f-positivity in dimension greater than 2. One should consult also
the paper [38], of Moriwaki himself, for other inequalities along the same lines.

4 Linear Stability: A Thread Binding the Methods for n = 2

In this section we introduce the linear stability, for curves together with a linear
series. We see that in the case of fibred surfaces linear stability represents a link
between the three methods described in the previous section, that are from all other
aspects extremely different.

Let us start by recalling the notion of linear stability for a curve and a linear series
on it [50]. This is a straightforward generalization in the case of curves of the one
given by Mumford in [42].
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Let C be a smooth curve, and let 9: C —> P"~! be a non-degenerate morphism.
This corresponds to a globally generated line bundle .Z on C, and a base-point
free linear subsystem V € H?(C,.#) of dimension r such that ¢ is induced from
the linear series |V|. Let d be the degree of % (i.e. [V is a g;~' on C). Linear
stability gives a lower bound on the slope between the degree and the dimension of
any projections, depending on the degree and dimension of the given linear series
as follows.

Definition 6. With the above notation, we say that the couple (C, V), is linearly
semistable (resp. stable) if any linear series of degree d’ and dimension r’ — 1
contained in | V| satisfies

d’ d
>
r'—1"r—1

(resp. >)

In case V = H(Z), we shall talk of the stability of the couple (C,.Z). It is
easy to see that it is sufficient to verify that the inequality of the definition holds for
any complete linear series in |V|.

Example 6. Some of the known results are the following.

1. The canonical system on a curve of genus >2 is linearly semistable and it is
stable if and only if the curve is non-hyperelliptic. This follows from Clifford’s
Theorem and Riemann-Roch Theorem (see [2, chap.14, sec.3]).

2. It is immediate to check that a plane curve of degree d is linearly semistable
(with respect to its immersion in P?) if and only if it has points of multiplicity at
most d /2.

3. Using Riemann-Roch Theorem, it is easy to check that the morphism induced
on a curve of genus g by a line bundle of degree >2g + 1 is linearly stable (see
[42]).

4. For a non-hyperelliptic curve of genus >2, generic projections of low codimen-
sion from the canonical embedding are linearly stable [6].

5. Given a base-point free linear system V C HY(C,.%) on a curve C of genus
g, if deg.Z > 2g, and the codimension of V in H°(C, %) is less or equal than
(deg Z —2g)/2, then (C, V) is linearly semistable [35].

4.1 Linear Stability and the Cornalba-Harris Method

Mumford introduced the concept of linear stability in order to find a more treatable
notion that the ones of GIT stability. The importance of linear stability from this
point of view lies indeed in the following result [42, Theorem 4.12]

Theorem 11 (Mumford). If (C,.Z) is linearly (semi-)stable and £ is very ample,
then (C,Z) is Chow (semi-)stable.
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In [2] it is proved the following result ([2, Theorem (2.2)])

Theorem 12. If (C,.%7) is linearly stable and £ is very ample, then (C,.Z) is
Hilbert stable.

By Morrison’s result [40, Corollary 3.5], we see that Theorem 11 implies
Theorem 12. The arguments of [2, Theorem (2.2)] cannot be pushed through to
the semistable case, so at present it is not known if linear strict semistability implies
Hilbert strict semistability (through the authors would be surprised if it doesn’t).

It is easy to extend the proof of both Mumford’s Theorem 11, and [2, Theorem
(2.2)] to the case of a very ample non necessarily complete linear system (see e.g.
the second author’s Ph.D. Thesis).

Remark 22. Let V be a base-point free linear system on C inducing a morphism
¢:C —> P’ of positive degree on the image. It is immediate to see that the linear
(semi)stability of V is equivalent to the linear stability of the image ¢(C) with its
embedding in P" (compare with Remarks 13 and 14).

Using the results of Sect. 3.1 we can thus state the following results.

Theorem 13. Let f:S —> B be a fibred surface, £ a line bundle on S and
Y C [ asubsheaf. Suppose that for generalt € B the couple (F, G;) is linearly
semistable. Suppose moreover that we are in one of the following situations:

(i) The couple (F,G,) is strictly linearly stable, and the sheaf & is either
generating, or it satisfies the conditions of Proposition 2 or 3;

(ii) Fort € B general, the fibre G, € H(F, L) is base-point free and the line
bundle .Z is relatively nef.

Then the couple (£, 9) is f-positive (via the Cornalba-Harris method).

4.2 Linear Stability and Xiao’s Method

We verify here that the method of Xiao gives as a result the f-positivity under the
assumption of linear stability.

Theorem 14. Let f: S —> B a fibred surface, F a general fibre, £ a nef line
bundle on S and 9 < f..Z a nef rank r subsheaf. Assume that the linear system
on F induced by ¢ is linearly semistable. Then (£,9) is f-positive (via Xiao’s
method).

Proof. Following the description of Xiao’s method given in Sect. 3.3, consider the
linear systems P; induced on F' by the pieces of the Harder-Narashiman filtration of
¢, of rank r;. Let d; = degP;, and observe that d; = degL|r =: d. Linear stability
condition implies

d; d; d; .
> = =:a foranyi =1,...,1.
ri—1 7 r—1 r—1
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Observe that if 7, = 1 then d; = 0 and the above inequality should be read as
d; > ar; and still holds. Consider now the sets of indexes / = {1,...,/} and
I' = {1,1}. Then we have

I
L* > Z(di +dir D) (i — fit1)
i=1
and
L? = (dy + dp) (w1 — ) + 2dim = di(u + ).

Usenow that d; > a(r; — 1) fori = 1,...,] (dj4+1 = d;) and that r; 1 > r; + 1.
Observe that deg = Z£=1 ri(Wi — (i41) to get

L? > 2adeg¥ — a(u) + ).

which finally proves

2ad, d
deg¥ = 2—d .
a+d °8 r cg?

L*>
Remark 23. The fact that we used Clifford’s theorem in the proof of the slope
inequality via Xiao’s method in Example 3 can thus be rephrased in the following
way: Clifford’s theorem implies the linear semistability of the general fibres of f
together with their canonical systems.

We can make the following improvement for the complete case.

Proposition 8. With the notations above, assume that £ is nef and that L is
linearly semistable. Then (£, f«.L) if f -positive, i.e.

d
L?>2—degfi.?l.
r

Proof. Take ¢ to be the biggest piece of the Harder-Narashiman filtration of f..%
such that u; > 0. It is nef and we have that r,-d_il > rdTl by linear semistability and
that deg® > deg f..-Z. Then apply the same method as in the proof of Theorem 14.

Remark 24. From the proof of the Theorem 14 we get an inequality even if we do
not assume linear semistability condition on fibres. Indeed, observe that, if the linear
subsystems of P, the one induced by ¥, verify

d:
' >a foranyi =1,...,/
r,-—l

for some constant a, then we obtain the following inequality for the slope
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2ad
L*> addegg.

where d = degP.

' Take ¢ as in the proof of the previ0u§ proppsition. Ot.>serve that az_‘:_‘fi‘l 2 :iddzz
if d; > d,. Hence we can conclude that if . is nef and induces a base point free
linear system on F of degree d, such that all its linear subsystems verify

d
Zaﬂ
r,-—l

then

2ad
L? > addegf*.f.

This remark allows us to give a general result for a nef line bundle . depending
of its degree of subcanonicity (compare with [4]).

Proposition 9. Let f : S —> B be a fibred surface with general fibre F of genus
g > 2 and let £ be a nef line bundle on S. Let d be the degree of the moving part
of L. Then

(i) If ZF is subcanonical then

L?> deg fx.Z.

d+2

(ii) Ifd > 2g + 1 then

2d

L*> — d Z.
“d—g+2 ce/s

Proof. (i) Just take a = 2 in the previous remark using Clifford’s theorem.

(ii) If d > 2g + 1 then the linear system .7, is linearly semistable and hence we
can take, by Riemann-Roch theorem on F,

d d
r—1 d+1-g

a =

4.3 Linear Stability and Moriwaki’s Method

Let C be a curve, .Z a line bundle on C, and V € H°(C,.?) a linear subsystem
of degree d and dimension . We now compare the concept of linear stability for a
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couple (C, V) with the stability needed for the application of Moriwaki’s method.
We call

Mgy :=ker(VQ Oc — &),

the dual span bundle (DSB) of the line bundle .# with respect to the generating
subspace V € HY(C,.%). This is a vector bundle of rank r — 1 and degree —d.
When V = HO(C, %) we denote it M &3

Remark 25. An interesting geometric interpretation of this sheaf is the following.
Consider the Euler sequence on P":

0— 24(1) — 63" — G (1) — 0.

Applying the pullback of ¢ we obtain
0— ¢*(2p(1) — V®0c — £ —>0.

Hence the kernel of the evaluation morphism coincides with the restriction of the
cotangent bundle of the projective space P" to the curve C.

The p-stability of the DSB is the stability condition assumed to hold on the
general fibres for the method of Moriwaki.

Proposition 10. With the above notation, if the DSB sheaf M ¢y is ju-(semi)stable,
then the couple (C, V) is linearly (semi)stable.

Proof. Let us consider any g(’i/,_1 in |V]. Let V' be the associated subspace of V.
Consider the evaluation morphism V' ® 0¢ — £, which is not surjective unless
d’ = d, and let ¢ be its kernel. Then ¢ is a vector subbundle of My ) with
deg¥ = —d’, rank¥ = r’ — 1. So from the stability condition on M ¢y we obtain
thatd’/(r' — 1) = d/(r — 1).

Remark 26. Note that any 4 € M ¢y as in the above theorem fits into the diagram

0 T V@O — L ——>0
0 Mgy V@O — % ——>0

where .Z C & is the image of the evaluation morphism V' ® 0¢ — .

3Note that we make here, as in [36], an abuse of notation: properly speaking the dual span bundle
is the dual bundle of My _¢, which is indeed spanned by V' *.
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The converse implication is studied in [36]. Let us now briefly discuss the
question. Consider a linearly semistable couple (C, V). Let us consider a proper
saturated subsheaf & C M » . We have that 4™ is generated by its global sections.
Consider the image of the natural morphism W* := im(V* — H°(C,%4*)). The
evaluation morphism W* ® 0¢c — ¥* is surjective. We thus have the following
commutative diagram (cf. [17])

0 i WQ 0O —— % ——=0
0 Mgy VO —— £ ——0 (12)

where .% is a vector bundle without trivial summands (this follows from the choice
of W). Note that the morphism « is non-zero, because W ® O¢ is not contained in
the image of My in V ® O¢. Let us suppose that ¢ is destabilizing: if the sheaf .7
is a line bundle, then we would be in the situation described in Remark 26, and we
could easily deduce from the linear (semi)stability of (C, V') the u-(semi)stability
of M ¢ y. But we cannot exclude that a destabilizing subsheaf exists which is not
the transform of a line bundle contained in .Z.

In [36] the second author and E. C. Mistretta prove that indeed this is the case in
the following cases, which depend on the Clifford index Cliff(C') of the curve C.

Theorem 15 ([36] Theorem 1.1). Let £ be a globally generated line bundle on
C,andV < H(C,Z) a generating space of global sections such that

deg Z —2(dimV — 1) < ClLif(C).
Then linear (semi)stability of (C, V') is equivalent to p-(semi)stability of My _¢ in
the following cases:

1.V = H'(Y);

2. deg ¥ < 2g — CIlLif(C) + 1;

3. codimyo o)V < h'(Z) + g/(dimV —2);

4. deg £ = 2g, and codimyo 4V < (deg.Z —2g)/2.

S Results in Higher Dimensions

5.1 Linear Stability in Higher Dimensions and Xiao’s Method

Mumford’s original definition of linear stability is in any dimension, as follows.

Definition 7 ([42], Definition 2.16). An m-dimensional variety of degree d in pr-1
is linearly semistable (resp. linearly stable) if for any projection :P"~! ——» P~!
such that the image of X is still of dimension m, the following inequality holds:
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deg(n«(X)) _ d
s—m T r—m

(resp. >),

where 7, (X) denotes the image cycle of X in P.

For example, it easy to verify that a K3 surface with Picard number 1 is linearly
semistable. However, as Mumford himself remarks some lines after the definition,
this condition in dimension higher than 1 seems to be difficult to handle. Moreover,
it does not imply anymore Hilbert or Chow stability.

It seems that there is no sensible connection between linear stability and the
method of Cornalba-Harris.

The relation of linear semistability with f-positivity via Xiao’s method appears
clear enough when all the induced maps of the Harder-Narashiman pieces are
generically finite onto its image. More concretely, we obtain an inequality very close
to f-positivity (it is possible to get something slightly better with much more effort).

Proposition 11. Let f : X —> B be a fibration with general fibre F, n = dimX
and £ a nef line bundle. Let 9 C f«.Z be a nef subbundle. Assume that all the
induced maps on F by the Harder-Narashimann pieces of 4 are generically finite
and that the one induced by ¢ is (Mumford-)linearly semistable. Then

> d de
_nr+(n—1)2

n

2.

Proof. A similar argument as in Theorem 14 applies. Leta = d/(r —n + 1), where
d and r are the degree and rank of the base-point free linear map induced on (a
suitable blow-up of) F' by 4. By Xiao’s inequality, using that all the induced maps
on fibres are generically finite onto their images and that P¥_ | P/~'=% > P/~ !for
all 7, we obtain

1

L" = n(Y " PM i — pign) = Y _(nari — n(n — Da) (i — pi+1)
= nadeg¥ —n(n — )ap,.

Since L — 1 F is pseudoeffective and L is nef we have that L""'(L — u; F) > 0
and so

L" > ud,
which finally gives

> d d
n———de
T r+(m-1)7?

n

99 .

Clearly, the argument above does not work in general for dimX > 3, due
to the presence of induced map on fibres which are not generically finite. In
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some situations, however, it is possible to control such maps and conclude again
f-positivity. In [9] we do this analysis for families of K3 surfaces, obtaining a
significant generalization of Proposition 13 below.

5.2 New Inequalities and Conjectures via the C-H Method

We now state a couple of new results obtained via the CH method, using known sta-
bility results in dimension >2, and make some speculation and natural conjectures.

Families of Abelian Varieties

Let us consider a fibred variety f: X —> B of dimension n such that the general
fibre is an abelian variety. Suppose that . is a line bundle on X such that f..Z is
either generating, or it satisfies the conditions of Proposition 2 or 3.

Proposition 12. Under the above assumption, suppose that £ is very ample on the
general fibre. Then (£,99) is f -positive, i.e.

L" > nldeg f.Z. (13)

Proof. We can apply Theorem 6 because the immersion induced by .#r on the
general fibre F is Hilbert semistable by Kempf’s result [28]. Observe then that as F'
is abelian, and . is very ample, we have that h°(F, Zr) = y(Lr) = L‘”F_l/(n —
1)1, and so f -positivity translates in formula (13).

Families of K3 Surfaces

Let f:T — B be a fibred threefold such that the general fibre is a K3 surface
of genus g. Let .Z be a line bundle on T such that f..Z is either generating, or
it satisfies the conditions of Proposition 2 or 3. The following result follows right
away from Theorem 6 applying Morrison’s result [41].

Proposition 13. In the above situation, suppose that the general fibres F have
Picard number 1, that ,2”|p is the primitive divisor class, and that its degree is at
least 12. Then £ is f-positive, i.e. the following inequality holds:

g—1
L’>6 d 2.
e+ 1 eg f«

Remark 27. 1t is interesting to notice that the bound 6(g — 1)/(g + 1) appearing in
the inequality of Proposition 13 coincides with the one obtained in [31] and in [24]
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for the canonical slope of fibred surfaces of odd degree g whose general fibre is of
maximal gonality.

Moreover, it is easy to prove that the canonical slope of a family of curves
contained in a fixed K3 surface is indeed bounded from below by 6(g —1)/(g + 1).

A Conjecture on the Slope Inequality in Higher Dimension

Let f: X —> B be an n-dimensional fibred variety. It is natural to define as a
possible canonical slope the ratio between K " and deg fixw s, another possibility
being to use the relative characteristic y 7: in hlgher dimension the values deg fxw
and y  are not equal, but it holds an inequality between them [5,45].

A natural slope inequality in higher dimension would be the following

n—1

Wdegf*wf, (14)
which is equivalent to the f-positivity of w ;. From the Cornalba-Harris and Bost
method we can derive inequality (14) any time we have a Hilbert-Chow semistable
canonical map on the general fibres. Although there are not much general results, it
seems natural in the framework of GIT to conjecture that the stability of a variety
has a connection with its singularities: a stable or asymptotically stable variety has
mild singularities and it seems that also a vice-versa to this statement should hold.
In consideration of this fact, and in analogy with the case of curves, it seems natural
to state the following conjecture. See also Remark 4 for an account the natural
positivity conditions on w .

Conjecture 1. Let f: X —> B be a fibred n-dimensional variety whose relative
canonical sheaf wy is relatively nef and ample on the general fibres, and whose
general fibres have sufficiently mild singularities (e.g. they are log canonical, or
semi-log-canonical). Then the fibration satisfies the slope inequality (14).

Almost nothing is known about this conjecture in dimension higher than 2. In [8]
we prove this inequality for families of hypersurfaces whose general fibres satisfy
a very weak singularity condition expressed in terms of its log canonical threshold
and depending upon the degree of the hypersurfaces (see [32]).

Remark 28. Recall that the Severi inequality for surfaces S of maximal Albanese
dimension K% > 4x(COy) has been proved in full generality by Pardini in [47].
In [4] the first author proves that higher dimensional Severi inequalities of the form
L" > 2n! (%) hold n arbitrary dimensions for any nef line bundle .Z. The classical
proof of Severi inequality for surfaces and . = wg given by Pardini makes use of
the slope inequality for fibred surfaces. We prove now that her argument can be
generalized, assuming that Conjecture 1 holds.

Proposition 14. Let m > 0 be an integer. Suppose that slope inequality (14) holds
for all varieties of dimension < m that have maximal Albanese dimension and are
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fibred over P'. Then for any variety X of dimension n < m with maximal Albanese
dimension it holds the following sharp Severi inequality:

K = 2nly(wy). (15)

Proof. We proceed by inductionon n = dimX . Forn = 1 inequality (15) is trivially
true. Take now n > 2. First of all observe that from the slope inequality we can
deduce a stronger result for maximal Albanese dimensional varieties with fibrations
f:X —> P! Indeed, consider an étale Galois cover of X of degree r, and the
induced fibration f . Then, applying inequality (14) we obtain

K" = K" > HL("Xf + &),
' I 7 rx(wr) + €

where €; = (W' (F,wr)— ...+ (—1)"2h""}(F,wF)) and €, = (degR' fxw;—...
<.+ (=D)"2R""! fuwy). Since the inequality holds for all r we obtain

n—1

K
Kj + 20K = K = n—E—(y(ox) + 2x(oF)).
' x(wr)

Applying induction hypothesis for F' (which is clearly of maximal Albanese
dimension), we deduce the inequality

K} 420K = 20! (x(0x) + 2((@F)). (16)
Now we can “eliminate the contribution due to F” just mimetizing Pardini’s

argument in [47], which we sketch here.
Consider the following cartesian diagram

where a: X —> A is the Albanese map, and the maps p are multiplication by d in
A and so are Galois étale maps of degree d?. Fix a very ample line bundle .# on
Aandlet # = a*() and A4 = a* (). By [14, Ch2. Prop.3.5] we have that

M

yH w*(M) (numerical equivalence).

Take general elements F, F’ € |M | and perform a blow-up ¥ — X to obtain a
fibration f : Y —> P'. Then we apply (16) to f and obtain

Ky + ZnK’};1 >2nl(y(wy) + 2x(wF)).
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Now an easy computation through the blow-up and the étale cover p shows that

o Ky =d¥K} + 0(d*™). )
« KUl = KUUM 4 (n— DKM = 0(d%7?).

© xloy) = r(wg) = d* y(wx). i
* x(wr) = 0(d*?7?) by Riemann-Roch theorem on X .

Since these equalities holds for any d we conclude that

K% > 2nly(wy).
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Abstract Let X be a topological space, G = m;(X) and D = (G, G). We express
the second quotient D/(D, G) of the lower central series of G in terms of the
homology and cohomology of X. As an example, we recover the isomorphism
D/(D,G) = 7Z/2 (due to Collino) when X is the Fano surface parametrizing lines
in a cubic threefold.

1 Introduction

Let X be a connected topological space. The group G := m1(X) admits a lower
central series

G2D:=(G,G)2(D.G)2...

The first quotient G/ D is the homology group H;(X, Z). We consider in this note
the second quotient D/(D, G). In particular when H;(X,Z) is torsion free, we
obtain a description of D/(D, G) in terms of the homology and cohomology of
X (see Corollary 2 below).

As an example, we recover in the last section the isomorphism D/(D,G) = Z/2
(due to Collino) for the Fano surface parametrizing the lines contained in a cubic
threefold.
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2 The Main Result

Proposition 1. Let X be a connected space homotopic to a CW-complex, with
H,(X,Z) finitely generated. Let G = m,(X), D = (G, G) its derived subgroup, D
the subgroup of elements of G which are torsion in G/ D. The group D/(D, G) is
canonically isomorphic to the cokernel of the map

W Hy(X,Z) — A} (H (X, Z)) givenby u(o)(a,.p) =0 ~ (@A),

where AI?(H'(X, 7)) is the group of skew-symmetric integral bilinear forms on
HY(X,7Z).

Proof. Let H be the quotient of H;(X,Z) by its torsion subgroup; we put V :=
H®zRand T := V/H. The quotient map  : V — T is the universal covering of
the real torus 7.

Consider the surjective homomorphism « : 7;(X) — H. Since T is a K(H, 1),
there is a continuous map a : X — 7', well defined up to homotopy, inducing o
on the fundamental groups. Let p : X’ — X be the pull back by a of the étale
coveringw : V — T, sothat X' := X xr V and p is the covering associated to the
homomorphism o.

Our key ingredient will be the map f : X x V — T defined by f(x,v) =
a(x) — (v). Itis a locally trivial fibration, with fibers isomorphic to X’. Indeed the
diagram

V———T
where g((x,v),w) = (x,v —w), is cartesian.
It follows from this diagram that the monodromy action of 7;(7) = H on

H(X’,Z) is induced by the action of H on X’; it is deduced from the action of
71(X) on 71 (X’) by conjugation in the exact sequence

1> m(X) 2 m(X) > H—> 1. (1

The homology spectral sequence of the fibration f (see for instance [5]) gives
rise in low degree to a five terms exact sequence

Hy(X,7) > H)(T,Z) — H\(X'.Z)y 2> H\(X,Z) — H\(T,Z) — 0,
)

where H{ (X', Z)y denote the coinvariants of H;(X’, Z) under the action of H.
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The exact sequence (1) identifies 7;(X’) with D, hence H,(X',Z) with
D/(D, D), the action of H being deduced from the action of G by conjugation.
The group of coinvariants is the largest quotient of this group on which G acts
trivially, that is, the quotient D /(D, G).

The exact sequence (2) gives an isomorphism Ker p, —> Cokera. The map
px © H(X',Z)y — H\(X.,Z) is identified with the natural map D/(D,G) —
G/ D deduced from the inclusions D C G and (D, G) C D. Therefore its kernel is
D/(D, G). On the other hand since T is a torus we have canonical isomorphisms

H(T,7) <> Hom(H*(T,7),7) = AI*(H'(T, 7)) = Alt*(H'(X,Z)).

through which a, corresponds to u, hence the Proposition. O

Corollary 1. 1. There is a canonical surjective map D/(D,G) — Coker u with
finite kernel.
2. There are canonical exact sequences

Hy(X, Q) —% AI2(H'(X,Q)) —> D/(D,G)®Q — 0

0 — Hom(D/(D,G),Q) — A2H(X,Q) BN H*(X,Q),

where cg, is the cup-product map.

Proof. (2) follows from (1), and from the fact that the transpose of Kq is Co-
Therefore in view of the Proposition, it suffices to prove that the kernel of the
natural map D/(D,G) — D/(D,G), that is, (D, G)/(D, G), is finite. Consider
the surjective homomorphism

G/D® G/D — D/(D,G)
deduced from (x,y) + xyx~'y~'. It maps D/D ® G/D onto (D,G)/(D,G);
since D/ D is finite and G/ D finitely generated, the result follows. O
Corollary 2. Assume that H,(X,Z) is torsion free.

1. The second quotient D/(D, G) of the lower central series of G is canonically
isomorphic to Coker .

2. For every ring R the group Hom(D/(D, G), R) is canonically isomorphic to the
kernel of the cup-product map cp : N°H'(X, R) - H*(X, R).

Proof. We have D = D in that case, so (1) follows immediately from the Propo-
sition. Since H;(X,Z) is torsion free, the universal coefficient theorem provides
an isomorphism H?(X, R) —=> Hom(H,(X,Z), R), hence applying Hom(—, R) to
the exact sequence

Hy(X,Z) — Al*(H'(X,Z)) - D/(D,G) = 0

gives (2). O
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Remark 1. The Proposition and its Corollaries hold (with the same proofs) under
weaker assumptions on X, for instance for a connected space X which is paracom-
pact, admits a universal cover and is such that H, (X, Z) is finitely generated. We
leave the details to the reader.

Remark 2. For compact Kdhler manifolds, the isomorphism Hom(D/(D, G), Q) =
Ker ¢ (Corollary 1) is usually deduced from Sullivan’s theory of minimal models
(see [1], ch.3); it can be used to prove that certain manifolds, for instance
Lagrangian submanifolds of an abelian variety, have a non-abelian fundamental

group.

3 Example: The Fano Surface

Let V' C P* be a smooth cubic threefold. The Fano surface F of V parametrizes the
lines contained in V. It is a smooth connected surface, which has been thoroughly
studied in [2]. Its Albanese variety A is canonically isomorphic to the intermediate
Jacobian JV of V, and the Albanese map a : F' — A is an embedding. Recall that

A = JV carries a principal polarization § € H?(A, Z); for each integer k the class
k 3

0
a0 belongs to H?*(A, Z). The class of F in H(A,7Z) is a7 ([2], Proposition 13.1).

Proposition 2. The maps a* : H*(A,Z) — H?*(F,Z) and ax : Hy(F,7Z) —
H,(A,7Z) are injective and their images have index 2.

Proof. We first recall thatif u : M — N is a homomorphism between two free
Z-modules of the same rank, the integer | detu| is well-defined: it is equal to the
absolute value of the determinant of the matrix of u for any choice of bases for M
and N. If it is nonzero, it is equal to the index of Imu in N.

Poincaré duality identifies a, with the Gysin map ax : H*(F,Z) — H8(A,7Z),
and also to the transpose of a*. The composition

f:HYA,Z) <> HX(F.7Z) 25> H%(A,Z)

93
is the cup-product with the class [F] = I We have |deta™®| = |detas| # 0 ([2],

10.14), so it suffices to show that | det | = 4.

The principal polarization defines a unimodular skew-symmetric form on
H'(A,Z); we choose a symplectic basis (¢;,8;) of H'(A,Z). Then

93
0= e A8  and yzZ(SiASi)A(sjA(Sj)A(Sk/\(Sk).

i<j<k

If we identify by Poincaré duality H®(A,Z) with the dual of H?(A,Z), and
H'(A,Z) with Z, f is the homomorphism associated to the bilinear symmetric
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3
formb : (o, B) = aABA %, hence | det f'| is the absolute value of the discriminant
of b. Let us write H>(A,Z) = M & N, where M is spanned by the vectors &; A€,
8 A6 and g; A S fori # j, and N by the vectors &; A §;. The decomposition is
orthogonal with respect to b; the restriction of » to M is unimodular, because the
dual basis of (e; Ae;,8; A8;, 8 AN8j)is (=6; N8;,—&; Aej,—e; AJi).On N the
matrix of b with respect to the basis (¢; A §;) is E — I, where E is the 5-by-5 matrix
with all entries equal to 1. Since E has rank 1 we have AYE =0 fork > 2, hence

det(E—1) = —det(/ —E) = —I + TrE = 4;

hence | det /| = 4. O

Corollary 3. Set G = m(F) and D = (G, G). The group D/(D, G) is cyclic of
order 2.

Indeed H,(F,Z) is torsion free [3], hence the result follows from Corollary 2. O

Remark 3. The deeper topological study of [3] gives actually the stronger result that
D is generated as a normal subgroup by an element o of order 2 (see [3], and the
correction in [4], Remark 4.1). Since every conjugate of o is equivalent to ¢ modulo
(D, G), this implies Corollary 3.

Remark 4. Choose a line £ € F, and let C C F be the curve of lines incident to
{.Letd : H>(F,Z) — 7Z/2 be the homomorphism given by d(a) = (« - [C])
(mod. 2). We claim that the image of a* : H*(A,Z) — H*(F,Z) is Kerd. Indeed
we have (C?) = 5 (the number of lines incident to two given skew lines on a
cubic surface), hence d([C]) = 1, so that Ker d has index 2; thus it suffices to prove
doa* = 0.Fora € H*(A,Z), wehave d(a*a) = (a*a-[C]) = (a-a«[C]) mod. 2;

0
this is 0 because the class a«[C] € H®(A,Z) is equal to 2 m ([2], Lemma 11.5),

hence is divisible by 2.
We can identify a* with the cup-product map c; thus we have an exact sequence

0— A2H'(F,Z) — H*(F,Z) 4, 7/2 — 0 with d(a) = («-[C]) (mod. 2).
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McKay Correspondence over Non Algebraically
Closed Fields

Mark Blume

Abstract The classical McKay correspondence for finite subgroups G of SL(2, C)
gives a bijection between isomorphism classes of nontrivial irreducible represen-
tations of G and irreducible components of the exceptional divisor in the minimal
resolution of the quotient singularity Aé /G. Over non algebraically closed fields
K there may exist representations irreducible over K which split over K. The same
is true for irreducible components of the exceptional divisor. In this paper we show
that these two phenomena are related and that there is a bijection between nontrivial
irreducible representations and irreducible components of the exceptional divisor
over non algebraically closed fields K of characteristic 0 as well.

1 Introduction

Let G be a finite group operating on a smooth variety M over C, e.g. M = A{, and
a linear operation of a finite subgroup G C SL(n, C). Usually the quotient M/G
is singular and one considers resolutions of singularities ¥ — M/G with some
minimality property. A method to construct resolutions of quotient singularities is
the G-Hilbert scheme G-HilbM introduced in [10, 11]. Under some conditions the
G-Hilbert scheme is irreducible, nonsingular and G-HilbM — M/G a crepant
resolution [6]. In particular, this applies to the operation of finite subgroups G C
SL(n, C) on A, forn < 3. For G C SL(2, C) there are also other methods to show
that the G-Hilbert scheme is the minimal resolution, see [10, 11].

The McKay correspondence in general describes the resolution Y in terms of the
representation theory of the group G, see [16, 17] for expositions of this subject.
Part of the correspondence for G C SL(2, C) is a bijection between irreducible
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components of the exceptional divisor £ and isomorphism classes of nontrivial
irreducible representations of the group G and moreover an isomorphism of graphs
between the intersection graph of components of E and the representation graph of
G, both being graphs of ADE type. This was the observation of McKay [14].

The new contribution in this paper is to consider McKay correspondence over
non algebraically closed fields. We will work over a field K that is not assumed
to be algebraically closed but always of characteristic 0 and extend the McKay
correspondence to this slightly more general situation. Over non algebraically
closed K it is natural to consider finite group schemes instead of simply finite
groups. In comparison with the situation over algebraically closed fields there may
exist both representations of G and components of E that are irreducible over K
but split over the algebraic closure. We will see that these two kinds of splitting
that arise by extending the ground field are related by investigating the operation
of the Galois group. For this we introduce Galois-conjugate representations and
consider the Galois operation on the G-Hilbert scheme. The following McKay
correspondence over arbitrary fields K of characteristic 0 will be consequence of
more detailed theorems in Sect. 5.

Theorem 1. Let K be any field of characteristic 0 and G C SL(2,K) a
finite subgroup scheme. Then there is a bijection between the set of irreducible
components of the exceptional divisor E and the set of isomorphism classes of
nontrivial irreducible representations of G and moreover an isomorphism between

the intersection graph of the irreducible components of E.q and the representation
graph of G.

Examples are discussed in Sect. 5.5, the possible graphs can be found in Sect. 4.4.
As already observed in [13], considering the rational double points over non
algebraically closed fields one finds the remaining Dynkin diagrams of types (B,),
(Ch), (Fy), (G,). The methods of this paper should also apply to other situations, in
particular to the McKay correspondence for finite small subgroups of GL(2, C) and
give a similar generalisation as in the SL-case.

This paper is organised as follows. Section 2 shortly summarises some tech-
niques used in this paper, namely G-sheaves for group schemes G and G-Hilbert
schemes. Section 3 is concerned with the relations between Galois operations and
decompositions into irreducible components both of schemes and representations.
We introduce the notion of Galois-conjugate representations and G-sheaves and we
describe the Galois operation on G-Hilbert schemes. In Sect. 4 we collect some data
of the finite subgroup schemes of SL(2, K) and list possible representation graphs.
In addition we investigate under what conditions a finite subgroup of SL(2, C),
C the algebraic closure of K, is realisable as a subgroup of SL(2, K). Section 5
contains the theorems of McKay correspondence over non algebraically closed
fields. We consider two constructions, the stratification of the G-Hilbert scheme and
the tautological sheaves, originating from [10] and [8] respectively, that are known
to give a McKay correspondence over C and formulate them for not necessarily
algebraically closed K.
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Notations. In general we write a lower index for base extensions, for example
if X,T are S-schemes then Xy denotes the T-scheme X xg T or if V is a
representation over a field K then V. denotes the representation V ® L over the
extension field L. Likewise, if ¢: X — Y is a morphism of S-schemes, we write
or: X7 — Y7 for its base extension with respectto 7 — S.

2 Preliminaries

2.1 G-Sheaves

Let K be a field. Let G be a group scheme over K with p:G — SpecK the
projection, e: SpecK — G the unit, and m: G xx G — G the multiplication. For
affine G = SpecA, A has the structure of a Hopf algebra over K, the coalgebra
structure being equivalent to the group structure of G.

Let X be a G-scheme over K, that is a K-scheme with an operation sy: G xg
X — X of the group scheme G over K. We have to use a more general notion of
a G-sheaf than in [6], we adopt the definition of [15]: a (quasicoherent, coherent)
G-sheaf on X is a (quasicoherent, coherent) &y-module .% with an isomorphism
A7 5% F —> p%.F of Ogx, x-modules satisfying the conditions (i) the restriction
of A7 to the unit in Gy is the identity, i.e. exA7:e}s5F — e} pyF identifies
with idz: F — Z, and (i) (m x idx)*A7 = pHA7 o (idg x sx)*A7, where
123G xXg G xg X — G Xk X is the projection to the factors 2 and 3.

Remark 1. We summarise relevant properties of G-sheaves.

1. There is the canonical notion of G-equivariant homomorphisms between
G-sheaves .7, % on X, the set of these is denoted by Hom)G( (Z,%9). Kernels and
co-kernels of G-equivariant homomorphisms have natural G-sheaf structures.

2. Assume G = SpecA affine and let X be a G-scheme with trivial G-operation,
i.e. sy = px. Then the G-sheaf structure of a G-sheaf .# is equivalent to a
homomorphism of Oy -modules o: .% — AQ®g F satisfying the usual conditions
of a comodule. This relation can be constructed using the adjunction (px*, pxs)-
Further, notions such as “subcomodule”, “homomorphism of comodules”, etc.
correspond to “G-subsheaf”, “equivariant homomorphism”, etc. The G-invariant
part Z¢ C .7 is defined by ZC6(U) := {f € Z(U) |o(f) =1 ® f} for open
UCX.

3. For an A-comodule .# on X a decomposition of A4 into a direct sum A = €p; 4;
of subcoalgebras A; determines a direct sum decomposition .# = P, .%; into
subcomodules (take preimages 0~ (4; ®k %)), where the comodule structure
of .Z; reduces to an A;-comodule structure.

4. A G-sheaf on X = SpecK (or an extension field of K) we also call a
representation. Dualisation of an A-comodule V' over K leads to a KG-module
VYV, where KG = AY = Homg(A, K) with algebra structure dual to the
coalgebra structure of A.
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5. For quasicoherent G-sheaves .%, ¥ with .% finitely presented the sheaf #omg,
(F,%9) carries a natural G-sheaf structure. For locally free .# one defines the
dual G-sheaf by #V = JHome,(F, Ox). In the case of trivial G-operation
on X there is the component %mgx (F,9) of stomg,(F,9), the sheaf
of equivariant homomorphisms, that can either be described as G-invariant
part (ome, (F,9)° < Stomg, (F,9) or by %mgx (Z,9@U) =
Homg(ﬁﬂy,%y) foropen U C X.

6. Functors for sheaves like ®, f*,... as well have analogues for G-sheaves,
e.g. for equivariant f:Y — X and a G-sheaf .# on X the sheaf f*.7 has a
natural G-sheaf structure.

7. Natural isomorphisms for sheaves lead to isomorphisms for G-sheaves,
e.g. under some conditions there is an isomorphism f*me, (F#,¥) =
Home, (f*F, f*9) and this isomorphism becomes an isomorphism of
G-sheaves provided that f is equivariant and .%#,% are G-sheaves. Other
examples are f *(F Qg ¥) = f*F Qp, f*Y, Home, (F Qpy 6,9) =
Home, (F,8 Qpy 9).

8. Base extension K — L makes out of a G-scheme X over K a scheme X; with
a G-scheme or a G -scheme structure, the operation given by sy, = (sx).. A
G-sheaf .# ona G-scheme X givesrise to a G-sheaf #; = QgL = f*F on
Xy, where f: X, — X..%] can be considered as a G -sheaf on the G -scheme
X over L.

2.2 G-Hilbert Schemes

Let G = SpecA be a finite group scheme over a field K, assume that its Hopf
algebra A is cosemisimple (that is, A is sum of its simple subcoalgebras, see [20,
Ch. XIV] and Sect. 3.1 below).

For us the G-Hilbert scheme G-Hilbx X of a G-scheme X over K will be by
definition the moduli space of G-clusters, i.e. parametrising G-stable finite closed
subschemes Z < X;, L an extension field of K, with H%(Z, 0) isomorphic
to the regular representation of G over L. We recall its construction (a variation
of the Quot scheme construction of [9]), for a detailed discussion including
the generalisation to finite group schemes with cosemisimple Hopf algebra over
arbitrary base fields see [1].

Let X be a G-scheme algebraic over K, assume that a geometric quotient
m:X — X/G, m affine, exists. Then the G-Hilbert functor G-Hilby X:
(K -schemes)® — (sets), given by

Quotient G-sheaves [0 - % — Ox, — Oz — 0] on Xr,
G-Hilb, X(T):= { Z finite flat over T, fort € T: H*(Z,, 0z,) isomorphic

to the regular representation
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for K-schemes 7T, is represented by an algebraic K-scheme G-Hilbg X. Here we
write [0 — 4/ — Ox, — 0Oz — 0] for an exact sequence 0 — ¥ —
Ox, — Oz — 0 of quasicoherent G-sheaves on X7 with .#, 07 specified up to
isomorphism, that is either a quasicoherent G-subsheaf .# C Oy, or an equivalence
class [Ox, — O] of surjective equivariant homomorphisms of quasicoherent
G-sheaves with two of them equivalent if their kernels coincide.

There is the natural morphism t: G-Hilbx X — X /G, which is projective and as
a map of points takes G-clusters to the corresponding orbits.

In this paper we are interested in the case G C SL(2, K) operating on X = A%
over fields K of characteristic 0.

Proposition 1. The G-Hilbert scheme G-Hilb KA%( is irreducible and nonsingular.

The morphism t: G-Hilb KA%( — A%( /G is birational and the minimal resolution
of A%/G.

Proof. This is known for algebraically closed fields of characteristic 0 [6, 10,
11]. From this the statements about irreducibility and nonsingularity for not
necessarily algebraically closed K follow, use that for C the algebraic closure
(G-Hilbg A%)c = Gc-HilbcAZ (see [1]). The morphism 7:G-HilbxA% —
A% /G is known to be birational. The base extension (G-Hilbx A% )c — (A%/G)c
identifies with the natural morphism G¢-Hilbc AZC — Azc /G¢ (follows directly
from the functorial definition of , see e.g. [1]). So the statement about minimality
as well follows from the same statement for algebraically closed fields. O

3 Galois Operation and Irreducibility

3.1 (Co)semisimple (Co)algebras and Galois Extensions

Let K be a field and K — L a Galois extension, I" := Autg(L). As reference
for simple and semisimple algebras we use [3, Algébre, Ch. VIII], for coalgebras
and comodules [20]. Note that for a K-vector space V' (maybe with some additional
structure) I" operates on the base extension V;, = V ®k L via the second factor.

Proposition 2. Let F be a simple K-algebra. Assume that Fy is semisimple, let
FL = @!_, FL. be its decomposition into simple components. Then I' permutes
the simple summands F|, ; and the operation on the set{ Fy 1, ..., Fy ,} is transitive.

Proof. The Fy; are the minimal two-sided ideals of Fy. Since any y € I is an
automorphism of Fy as a K-algebra or ring, the F ; are permuted by I".

LetU = ZyEF yFr 1 and V the sum over the remaining Fy, ;. Then F, = U @
V,U and V are I'-stable and thus U = U], V = V] for K-subspaces U', V' C F
by [2, Algebra II, Ch.V, § 10.4], since K — L is a Galois extension. It follows
that F = U’ @ V' with U’, V'’ two-sided ideals of F. Since F is simple, V' = 0,
U = F and the operation is transitive. O
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A coalgebra C # 0 is called simple, if it has no subcoalgebras except {0} and C.
A coalgebra is called cosemisimple, if it is the sum of its simple subcoalgebras, in
which case this sum is direct. For cosemisimple C the simple subcoalgebras are the
isotypic components of C as a C-comodule (left or right), so they correspond to the
isomorphism classes of simple representations of G over K.

Proposition 3. Let C be a finite dimensional coalgebra over K. Then C is cosemi-
simple if and only if Cy, is cosemisimple.

Proof. This is equivalent to the dual statement for finite dimensional semisimple
K-algebras [3, Algébre, Ch. VIII, § 7.6, Thm. 3, Cor. 4]. O

For simple coalgebras there is a result similar to Proposition 2 and proven
analogously, note that simple coalgebras are finite dimensional.

Proposition 4. Let C be a simple coalgebra over K. Then Cy, is cosemisimple, and
if Cr, = P, Cy; is its decomposition into simple components, then I transitively
permutes the simple summands Cy. ;.

Corollary 1. Let C be a cosemisimple coalgebra over K. Then Cy, is cosemisimple,
and if C = @j C; resp. Cp = @, Cr; are the decompositions into simple
subcoalgebras, then:

(i) The decomposition C; = @, Cy; is a refinement of the decomposition Cy, =
@ Jj (Cj)L-

(ii) I transitively permutes the summands Cp ; of (C;) forany j.
Therefore (C;) = Zyef yCur, if Cp; is a summand of (C;)y.

This applies to the situation considered in this paper. Assume that the field
K is of characteristic 0 and let G = SpecA be a finite group scheme over K,
|G| := dimg A. Define KG to be the K-vector space AY = Homg (4, K) with
algebra structure dual to the coalgebra structure of A. In this situation the algebra
A is always reduced and for a suitable algebraic extension field L of K the group
scheme G is discrete. Then G(L) is a finite group of order |G| and the algebra
LG = (KG)_ is isomorphic to the group algebra of the group G(L) over L. By
semisimplicity of group algebras for finite groups over fields of characteristic 0 and
Proposition 3 one obtains:

Proposition 5. Let G = SpecA be a finite group scheme over a field K of
characteristic 0. Then the Hopf algebra A is cosemisimple and so are its base
extensions Ay, with respect to field extensions K — L.

3.2 Irreducible Components of Schemes and Galois Extensions

Let X be a K-scheme. For an extension field L of K the group I" = Autg(L)
operates on X; = X Xk SpecL by automorphisms of K-schemes via the
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second factor. For simplicity we denote the morphisms SpecL — SpecL, X; —
X1 coming from y: L — L by y as well.

A point of X may decompose over L, this way a point x € X corresponds to a
set of points of X, the preimage of x with respect to the projection X; — X. In
particular this applies to closed points and to irreducible components. These sets are
known to be exactly the I"-orbits.

Proposition 6. Let X be an algebraic K-scheme and K — L be a Galois
extension, I' := Autg (L). Then points of X correspond to I"-orbits of points of
X1, the I'-orbits are finite.

Proof. Taking fibers, the proposition reduces to the following statement:

Let F be the quotient field of a commutative integral K-algebra of finite type.
Then F;, = F Qg L has only finitely many prime ideals and they are I -conjugate.

Proof. F} is integral over F because this property is stable under base extension
[5, Commutative Algebra, Ch.V, § 1.1, Prop. 5]. It is clear that every prime ideal of
F lies above the prime ideal (0) of F. There are no inclusions between the prime
ideals of F [5, Commutative Algebra, Ch.V, § 2.1, Proposition 1, Corollary 1].
Since every prime ideal of F; is a maximal ideal and F is noetherian (a localisation
of an L-algebra of finite type), F, is artinian, it has only finitely many prime ideals
O1,...,0,.

F} has trivial radical [3, Algébre, Ch. VIII, § 7.3, Thm. 1, also § 7.5 and § 7.6,
Cor. 3]. Being an artinian ring without radical, i.e. semisimple [3, Algébre, Ch. VIII,
§ 6.4, Thm. 4, Cor. 2 and Prop. 9], F; decomposes as a L-algebra into a direct sum

FL=@i_ Fri

of fields Fr;, = Fr/Q; (this can easily be seen directly, however, it is part of
the general theory of semisimple algebras developed in [3, Algébre, Ch. VIII] that
contains the representation theory of finite groups schemes with cosemisimple Hopf
algebra as another special case).

I' operates on Fp, it permutes the Q; and the simple components Fy; of Fp
transitively by Proposition 2. O

3.3 Galois Operation on G-Hilbert Schemes

Let Y be a K-scheme, L an extension field of K and I" = Autg (L).

For an L-scheme f:T — SpecL and y € I" define the L-scheme y.T to be the
scheme T with structure morphism y o f. For a morphism«: T’ — T of L-schemes
let yxo be the same morphism « considered as an L-morphism y. T’ — y«T.

For a morphism «:Y; — Y] of L-schemes and y € I' define the conjugate
morphism a? by a” := y o (yxa) o y~!, which again is a morphism of L-schemes.
Here y: y« Y, — Y is a morphism over L.
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Let T be an L-scheme defined over K, thatis T = TL/ for some K-scheme 7.
The group I” operates on the set Y, (T') of morphisms T — Y, over L by

Yy Yi(T) — Y.(T)

a = a’ =yo(ysa)oy”!
Consider the case of G-Hilbert schemes. Let G be a finite group scheme over K,
X be a G-scheme over K and assume that the G-Hilbert functor is represented
by a K-scheme G-Hilbg X. There is the canonical isomorphism of L-schemes
(G-Hilbx X); =~ G-Hilby X, (see [1]), obtained by identifying X xx T =
X xp T for L-schemes T'.

Proposition 7. Let T be an L-scheme defined over K. Then, for a morphism
a:T — Gp-Hilbp X} of L-schemes corresponding to a quotient [0 — & —
Ox, — Oz — 0] and for y € I', the y-conjugate morphism o” corresponds
to the quotient [0 — yx.% — Oy, — Oyz7 — 0|.

Proof. For a morphism of L-schemes «: T — G -Hilb; X; =~ (G-Hilbg X) xx
SpecL consider the commutative diagram of L-morphisms

7T 1 (G-Hilbg X) xx (7. SpecL)
Y \-.““*-?_/_(?‘(y*a) idx y
T - (G-Hilbg X) x g SpecL

The morphism « is given by a quotient [0 — ¥ — Oy, — Oz — 0] on
Xr = X xp T. Under the identification G -Hilb; X; = (G-Hilbx Xx), the T-
valued point « corresponds to a morphism 7" — G-Hilbg X of K-schemes, that is a
quotient [0 - & — Oxx,r — Oz — 0l on X xg T, and the structure morphism
f: T — SpecL. We have the correspondences

o (_)%[O—>f—>ﬁXXKT—>ﬁZ—>O]

f:T — SpecL

0>  — Oxxyyr = Oz — 0]
yo (Y« f):y«T — SpecL
0=y *.F = Oxxer =y~ 07 — 0]
f=yo(ysf)oy :T — SpecL
[0 = y«I — Oxxyr — Oyz — 0]
f=yo(y«f)oy ':T — SpecL

yo(ysa) <«—

o’ =yo(pa)oy™!

<>

|
=
|
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Under the identification (G-Hilbx X); = G-Hilb; X} the last morphism corre-
sponds to the quotient [0 — y«.¥ — Oy, — Oyz = 0lon X7 = X x; T. O

In particular, in the case X = A\%< the y-conjugate of an L-valued point given by
an ideal I C L[x;,x;] or a Gy -cluster Z C A? is given by the y-conjugate ideal
y ' C L[xy, x,] or the y-conjugate G -cluster yZ C AZ.

Every point x of the L-scheme G -Hilb; A such that k(x) = L corresponds
to a unique L-valued point o: SpecL — G-Hilb LA\%. The y-conjugate point yx
corresponds to the y-conjugate L-valued point «”: SpecL — G -Hilb LA\%.

Corollary 2. Let x be a closed point of G -Hilb, A3 such that k(x) =
L,a:SpecL. — G -Hilb, A2 the corresponding L-valued point given by an
ideal I C L[xy,x3). Then for y € I the conjugate point yx corresponds to
the y-conjugate L-valued point o : SpecL — G -Hilb;, A2, which is given by the
ideal )/_1] C L[Xl,XQ].

3.4 Conjugate G-Sheaves

Let G = SpecA be a group scheme over a field K, X be a G-scheme over K,
let K — L be a field extension and I = Autg(L). Again, I" operates on X
by automorphisms y: X; — X over K, these are equivariant with respect to the
G-scheme structure of X; defined in Remark 1(8).

Proposition—Definition 1 Let.Z be a G -sheafon X|. Fory € I' the Ox, -module

v« has a natural G -sheaf structure given by

F
Y*SSk(Ly v > y*pj(L,gz

2 2 (D

YR

Sy, T Px, %7

This Gp-sheaf y«F is called the y-conjugate Gp-sheaf of %#. For a morphism
of Gp-sheaves ¢:F — & the morphism y«@:y«F — v«4 is a morphism
of Gr-sheaves between the sheaves y«.7 and v+ with y-conjugate Gp-sheaf
structure.

Remark 2. This way functors y, are defined, similarly one may define functors y*,
then y, and (y~!)* are isomorphic. In the case of trivial operation they preserve
trivial G-sheaf structures.

The functors y, commute with functors f;*, fi« for equivariant morphisms f
and with bifunctors like 5%om and ®:
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Lemma 1. There are the following natural isomorphisms of G -sheaves:

(i) For Gp-sheaves F,9 on X, : y«(F ®ay, 9) = y«F ®oy, v+Y.
(ii) Let f:Y — X be an equivariant morphism of G-schemes over K and % a
Gp-sheafon X;. Then y« [ F = f 'y« F.
(iii) For quasicoherent G -sheaves .%,9 on X with F finitely presented:y«. /¢
omey, (F,9) = Homgy, (y«F , y+9). If the G-operation on X is trivial, it
follows that y*(%mg;L (F.9)) =~ %ﬂomg;L VT V4.

Remark 3. 1f F = Z| for some G-sheaf .#' on X, then there are maps (not L-
linear) y: % — .7 resp. isomorphisms of G -sheaves y:.% — y..%# on X . For a
subsheaf ¥ C .% the above isomorphisms of G -sheaves restrict to isomorphisms
of G -sheaves y:y ™'Y — . 9.

3.5 Conjugate Comodules and Representations

Let G = SpecA be an affine group scheme over a field K, X be a G-scheme over
K,let K — L be a field extension and I" = Autg (L).

Remark 4. For y € I' there are maps y: A — Ap. Taking the canonically defined
conjugate Hopf algebra structure on the target, these maps become isomorphisms
y: A — y«Ap of Hopf algebras over L. They correspond to isomorphisms
y:y«Gr — G of group schemes over L.

Proposition 8. Let .% be a G -sheaf on X, X with trivial G-operation, the G| -
sheaf structure equivalent to an Ay -comodule structure 07 : F — A; @ .F. Then
for y € I' the G -sheaf structure of the y-conjugate G -sheaf y«.F is equivalent
1o the comodule structure 0"*7 : y.F — A @1 y«.F determined by commutativity
of the diagram

'J/*g P 'V*AL ®L ')/*9
id Y®id
prZ
Y AL QL VT
Proof. Apply the construction mentioned in Remark 1(2) to diagram (1). O

In the special case of representations the definition of conjugate G-sheaves leads
to the notion of a conjugate representation: Instead of a sheaf y..% one has an
L-vector space y«V, the vector space structure given by (/,v) +— y(I/)v using
the original structure. The choice of a K-structure V' = V/ gives an isomorphism
y: V — y.V of L-vector spaces and leads to the diagram
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%p”

YV VAL QL ViV

id\ y®id
p*”

’V*V AL®LY*V

Y‘ id®y
Vyy

% () AL @V

for definition of the y-conjugate A;-comodule structure (0")” on V—this
definition is made, such that y:(V, (0")”) — (y«V.0"*") is an isomorphism
of Aj-comodules. We write V7 for I with the conjugate A;-comodule structure.

Remark 5. Let V' be an A-comodule over K and V' = V/. Then as a special
case of Remark 3 there are maps y: V' — V resp. isomorphisms of A;-comodules
y:V — y«V.For any Ar-subcomodule U C V these restrict to isomorphisms of
Az-comodules y~'U — y, U = U?”.

3.6 Decomposition into Isotypic Components and Galois
Extensions

Let G = SpecA be an affine group scheme over a field K, let K — L be a Galois
extension, I” = Autg(L). Assume that A, A; are cosemisimple.

Recall the relations between the Galois operation on A;, given by maps y: A; —
Ay resp. isomorphisms y: A; — y«Ap of Hopf algebras or of A;-comodules (see
Remarks 4 or 5) and the decompositions A = P, 4; and AL = P, AL
into simple subcoalgebras described in Corollary 1. We relate this to conjugation
of representations. The subcoalgebras A} ; are the isotypic components of A; as a
left-(or right-)comodule, let V; be the isomorphism class of simple A;-comodules
corresponding to A, ;. Define an operation of I on the index set I by V, ) = V;".
Using Remark 5 one obtains:

Lemma2. y~'A,; = AL ,q).

The decomposition of A into simple subcoalgebras A = ; Aj gives decom-
positions of representations and more generally of G-sheaves on G-schemes
with trivial G-operation into isotypic components corresponding to the A; (see
Remark 1(3)). After base extension one has decompositions of G -sheaves, we
compare it with the decompositions coming from the decomposition of A; into
simple subcoalgebras.

Proposition 9. Let X be a G-scheme with trivial operation, .% a G-sheaf on X
and let
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F=@,;7;., TL=@; T

be the decompositions into isotypic components as a G-sheaf resp. Gp-sheaf.
Then:

(i) FL =@, FLi is a refinement of F1 = @j (F)L-
(ii) The operation of I' on 7|, (see Remark 3) permutes the isotypic components
yL,i OfyL. Itis )/_lyL,i = yL,y(i), l'ny(,') = V,-y.
(i) (F))r =X er VFrLi, if FL. is a summand of (F ;).
Proof (Sketch of proof). Combine Remark 3, Proposition 8 and Lemma 2 with
Corollary 1. O

Corollary 3. I operates by V; +> V! onthe set {V;|i € I} of isomorphism classes
of irreducible representations of Gr. The subsets of {V; | i € I}, which occur by
decomposing irreducible representations of G over K as representations over L,
are exactly the I'-orbits.

For similar results in the representation theory of finite groups see e.g. [7, Vol.1,
§ 7B].

4 The Finite Subgroup Schemes of SL.(2, K):
Representations and Graphs

In this section K denotes a field of characteristic 0.

4.1 The Finite Subgroups of SL(2,C)

By the well known classification any finite subgroup G C SL(2,C), C an
algebraically closed field of characteristic 0, is isomorphic to one of the following
groups (presentations and character tables are listed in Sect. 6).

Z./nZ. (cyclic group of ordern), n > 1
BD, (binary dihedral group of order 4n), n > 2

BT (binary tetrahedral group)
BO (binary octahedral group)
BI (binary icosahedral group).

4.2 Representation Graphs

In the following definition we will introduce the (extended) representation graph
as an in general directed graph. A loop is defined to be an edge emanating from
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and terminating at the same vertex. In addition we will attach a natural number
called multiplicity to any vertex, and for homomorphisms of graphs in addition
we will require, that for any vertex of the target its multiplicity is the sum of the
multiplicities of its preimages.

Definition 1. The extended representation graph Graph(G, V') associated to a finite
subgroup scheme G of GL(n, K), V the given n-dimensional representation, is
defined as the following directed graph:

— Vertices. A vertex of multiplicity n for each irreducible representation of G
over K which decomposes over the algebraic closure of K into n irreducible
representations.

— Edges. Vertices V; and V; are connected by dimg Hom%(l/i, V @k V) directed
edges from V; to V;. In particular any vertex V; has dimg Homg(V,-, V ek V)
directed loops.

Define the representation graph to be the graph, which arises by leaving out
the trivial representation and all edges emanating from or terminating at the trivial
representation.

We say that a graph is undirected, if between any two different vertices the
numbers of directed edges of both directions coincide and for any vertex the number
of directed loops is even.

Then one can form a graph having only undirected edges by defining (number of
undirected edges between V; and V; ) .= (number of directed edges from V; to V) =
(number of directed edges from V; to V;) for different vertices V;, V; and (number
of undirected loops of V;) := %(number of directed loops of V;) for any vertex V;.

Remark 6. 1. For G C SL(2, K) the (extended) representation graph is undirected.
There is the isomorphism Homg(V,- gV, V) = Hom%(Vi, V ®k V;), which
follows from the isomorphism Homg(Vi ®k V,V;) = Hom%(Vi, VY Qk
V;) and the fact that the 2-dimensional representation V' given by inclusion
G — SL(2, K) is self-dual. Further, that the number of directed loops of any
vertex is even, follows from the fact that over the algebraic closure C one has
dim¢ Homg Ui, Ve ®c U;) = 0 for irreducible U; over C.

2. There is a definition of (extended) representation graph with another description
of the edges: vertices V; and V; are connected by a;; edges from V; to V;,
where V @k V; = a;; Vi @ other summands. The two definitions coincide over
algebraically closed fields, always one has a;; < dimg Homg(V,-, V ®k V;),
inequality comes from the presence of nontrivial automorphisms.

Definition 2. For a finite subgroup scheme G C SL(2,K), V the given
2-dimen-sional representation, define a Z-bilinear form (-, -) on the representation
ring of G by

(V;, V;) := dimg Hom&(V;, V ®k V;) — 2 dimg Hom% (V;, V;)
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Remark 7. The form (-, -) determines and is determined by the extended represen-
tation graph (the second equation follows from the fact, that dimg Homg(V,-, Vi) =
multiplicity of V;):

(V,-, V]) = (V], V,-) = number of undirected edges between V; and V;, if Vi £ V;
% (Vi, Vi) = number of undirected loops of V; — multiplicity of V;

4.3 Representation Graphs and Field Extensions

Let K — L be a Galois extension, I" = Autg(L) and let G be a finite subgroup
scheme of SL(2, K).

An irreducible representation W of G over K decomposes as a representation
of G, over L into isotypic components W = €D, U; which are I"-conjugate
by Proposition 9. Every U; decomposes into irreducible components U; = Vl-e)’"
(the same m for all i because of I'-conjugacy). In the following we will write
m(W, L/K) for this number. It is related to the Schur index in the representation
theory of finite groups (see e.g. [7, Vol. 11, § 74]).

Proposition 10. For finite subgroup schemes G of SL(2, K) itism(W;, L/K) = 1
for every irreducible representation W; of G. It follows that W; decomposes over
L into a direct sum (W;) = €, Vi of y-conjugate irreducible representations V;
of G, nonisomorphic to each other.

Proof. We may assume L algebraically closed. Further we may assume that G
is not cyclic. The natural 2-dimensional representation W given by inclusion
G C SL(2,K) does satisfy m(W,L/K) = 1, because it is irreducible over
L. Following the discussion below without using this proposition one obtains the
graphs in Sect. 4.4 without multiplicities of vertices and edges but one knows which
vertices over the algebraic closure may form a vertex over K and which vertices are
connected. Argue that if an irreducible representation W; satisfies m(W;, L/ K) = 1,
then any irreducible W; connected to W; in the representation graph has to satisfy
this property as well. O

There is a morphism of graphs Graph(Gp, W;) — Graph(G, W) (resp. of the
nonextended graphs, the following applies to them as well). For W; an irreducible
representation of G the base extension (W) is a sum (W;), = &, Vi of
irreducible representations of G; nonisomorphic to each other by Proposition 10.
The morphism Graph(G., W;) — Graph(G, W) maps components of (W;), to
W;, thereby their multiplicities are added. Further, for irreducible representations
W;, W, of G there is a bijection between the set of edges between W; and W;, and
the union of the sets of edges between the irreducible components of (W), and
(W;/), again using Proposition 10 (W;); and (W;/), are sums (W;);, = D, Vi,
WL = @D, Vir of irreducible representations of G, nonisomorphic to each other
and one has
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dimg Hom@ (W; @k W, W;r) = dimy (Hom%(W; @k W, W;/) ®x L)
= dim; Hom% (W) ®1 Wi, (W;/)1)
= dim; Hom{ (B, V; ®. W.. D, Vi)
=Y, ;dim; Hom§ (V; ®, W, Vi)

The Galois group I" operates on Graph(Gp, Wy) by graph automorphisms. Irre-
ducible representations are mapped to conjugate representations and equivariant
homomorphisms to the conjugate homomorphisms. The vertices of Graph(G, W)
correspond to I"-orbits of vertices of Graph(G, W;,) by Corollary 3.

Proposition 11. The (extended) representation graph of G arises by identifying
the elements of I'-orbits of vertices of the (extended) representation graph of Gp,
adding multiplicities. The edges between vertices W; and W;: are in bijection with
the edges between the isomorphism classes of irreducible components of (W;) and
W)L

4.4 The Representation Graphs of the Finite Subgroup
Schemes of SL(2, K)

As extended representation graph of a finite subgroup scheme of SL(2, K) with
respect to the natural 2-dimensional representation the following graphs can occur.
We list the extended representation graphs Graph(G, V') of the finite subgroups
of SL(2,C) for C algebraically closed, their groups of automorphisms leaving
the trivial representation fixed and the possible extended representation graphs for
finite subgroup schemes over non algebraically closed K, which after suitable base
extension become the graph Graph(G, V). We use the symbol o for the trivial
representation.

Cyclic Groups

(A2n)7 n>1

7.)27Z. ~

(AZn)/ o
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(A2n+l)7 n Z 1

7,27,

(A2ns1)

(41)

{id}

Binary dihedral groups.

(Dp),n>5
7.)2Z
(Dn)
(Ds)
S5 I
./
(Da) >

M. Blume
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Binary tetrahedral group.

(Es)

7,27 o ~

(Eg)’ o o o $—8
Binary octahedral group.
(E7) .
{id} O——e—— oo 06— o o
Binary icosahedral group.
(Es) .
{id} oo 06— o o 0o

Remark 8. Taking ﬁ V for the isomorphism classes of irreducible representa-
tions V' as simple roots one can form the Dynkin diagram with respect to the form
— (-, ) (see e.g. [5, Groupes et algebres de Lie]). Between (extended) representation
graphs and (extended) Dynkin diagrams there is the correspondence

(4n)  (A2)" (Azus1) (A2ng2) (Dn) (Dn) (D4)" (E6) (Eg)' (E7) (Es)
(An) (C1) = (A1) (Cut1) (Cug1) (D) (Bu—1) (G2) (Ee) (Fu) (E7) (Eg)

A long time ago, the occurrence of the remaining Dynkin diagrams of types (B,),
(Ch), (F4), (Gy) as resolution graphs had been observed in [13] with a slightly
different assignment of the non extended diagrams to the resolutions of these
singularities, see also [19].

4.5 Finite Subgroups of SL(2, K)

Given a field K of characteristic 0, it is a natural question, which of the finite
subgroups G C SL(2,C), C the algebraic closure of K, are realisable over the
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subfield K as subgroups (not just as subgroup schemes), that is, there is an injective
representation of the group G in SL(2, K).

For a finite subgroup G of SL(2, C) to occur as a subgroup of SL(2, K) it is
necessary and sufficient that the given 2-dimensional representation in SL(2, C) is
realisable over K. This is easy to show using the classification and the irreducible
representations of the individual groups. If a representation of a group G over C is
realisable over K, necessarily its character has values in K. For the finite subgroups
of SL(2, C) and the natural representation given by inclusion this means:

Z/nZ: £+ &' €K, &€ C aprimitive n-th root of unity.
BD,: £+ &1 € K, £ € C aprimitive 2n-th root of unity.
BT: no condition. BO: v/2 € K. BI: /5 € K.

To formulate sufficient conditions, we introduce the following notation:

Definition 3 ([18, Part I, Chapter III, §1]). For a field K the Hilbert symbol
(,-)k is the map K* x K* — {—1, 1} defined by ((a,b))x = 1, if the equation
7> —ax? — by? = 0 has a solution (x, y,z) € K*\ {(0,0,0)}, and (a,b)x = —1
otherwise.

Remark 9. Tt is (—1,b)x = 1 if and only if x> — by?> = —1 has a solution
(x,y) € K%

Theorem 2. Let G be a finite subgroup of SL(2, C) such that the values of the
character of the natural representation given by inclusion are contained in K.
Then:

(1) If G = Z/nZ, then G is realisable over K.
(ii)) If G = BDy, let & € C be a primitive 2n-th root of unity and ¢ := %({: +£&7h).
Then G is isomorphic to a subgroup of SL(2, K) ifand only if (—1,c>—1)x =
1.
(iii) If G = BT, BO or BI, then G is isomorphic to a subgroup of SL(2, K) if and
only if (—1, ~1)x = 1.

Proof. (i) Forn > 3 let & be a primitive n-th root of unity and ¢ := %(S +£&71). By
assumption ¢ € K. Then Z/nZ.is realisable over K, there is the representation

Z/nZ — SL2.K), T (0 ‘1)
1 2c

(i) Let G = BD, = (0,7 |1? = 0" = (10)?) (then the element 1> = ¢" =
(t0)? has order 2) and let £ be a primitive 2n-th root of unity. Then G is
realisable as a subgroup of SL(2, K) if and only if the representation given by

() 0

is realisable over K.
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The representation (1) is realisable over K if and only if there is a 2 X 2-
matrix M, over K having the properties

det(M,) = 1, ord(M,) =4, (M;M,)*> = —1, @)
where My = (93)). c=3E+&).

If the representation (1) is realisable over K, then with respect to a suitable
basis it maps 0 +— M, and the image of 7 is a matrix satisfying the
properties (2).

On the other hand, if M, is a matrix having these properties, then 0 — M,
T +— M. is a representation of G in SL(2, K), which is easily seen to be
isomorphic to the representation (1).

There is a 2 x 2-matrix M, over K having the properties (2) if and only if
the equation

x4+ =2ecxy+1=0 (3)

has a solution (x, y) € K>.
A matrix M, = (5?) satisfies the conditions (2) if and only if

(o, B,v,8) € K*isasolutionof a§—By—1 =0, a+8§=0, B+2cé—y =
0. Such an element of K* exists if and only if there exists a solution
(x,y) € K? of Eq. (3).
Equation (3) has a solution (x,y) € K? ifand only if (—1,¢> — 1)x = 1.
We write the equation x>+ y?—2cxy+1 = 0as (x, y) (1. 7¢) (3) = -1
After diagonalisation (x, ) (§ ,%.) (3) = —lorx>+ (1 —c?)y*+ 1 =0.
This equation has a solution (x, y) € K2 if and only if (—1,c¢? — 1)g = 1.
(iii) Let G = BT, BO or BI, thatis G = (a.b | a® = b* = (ab)?) for k € {3.4,5}.
Let £ be a primitive 2k-th root of unity and ¢ = %(é + £71). As in (ii), using
the subgroup (b) instead of (o), we obtain:
G is isomorphic to a subgroup of SL(2, K) if and only if there is a solution
(x,y) € K? of the equation

x24+y2—2cxy—x+2cy+1=0 4)

Next we show:
Equation (4) has a solution (x,y) € K? if and only if (—1,(2c)*—
k=1
. . . . 1 —c—1/2 x
Equation (4) has a solution if and only if (x, y,z) ( ST ) (;) =0
172 e .
has a solution (x,y,z) € K 3 with z # 0. The existence of a solution with
z # 0 is equivalent to the existence of a solution (x,y,z) € K3\ {(0,0,0)}
(if (x,y,0) is a solution, then (x,y,x — 2cy) as well). After diagonalisation:
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10 0 x
01 0 ) = i i 3
(x,y,2) (0 : 3_(20)2) (;) 0. The existence of a solution (x,y,z) € K’ \

{(0,0,0)} for this equation is equivalent to (—1, (2¢)* = 3))x = 1.
For the individual groups we obtain:
BT:c=14,(-1.-2)k = 1.
BO: ¢ = % (=1, —1)g = 1.
Bl:c =11+ V5), (-1, 53+ V) = L.

Each of these conditions is equivalent to (—1,—1))x = 1. For BI: %(3 +5) =
(3(1 & +/5))%. For BT one has maps between solutions (x, y) for x> 4+ y? = —1
corresponding to (—1,—1)x and (x', ") for x'* + 2y’ = —1 corresponding to

(—1,—2)k givenby x = 5! & &/ = 2Ly — ol oy = Lforx # y
resp. y' # 0 and by (x, x) — (0, x), (x’,0) <= (x,0). O

5 McKay Correspondence for G C SL(2, K)

Let G be a finite subgroup scheme of SL(2, K), K a field of characteristic 0, and C
the algebraic closure of K. There is the geometric quotient 7: A% — A% /G and
the natural morphism 7: G-Hilbxk A% — A% /G, which is the minimal resolution of
this quotient singularity.

5.1 The Exceptional Divisor and the Intersection Graph

We define the exceptional divisor E by E := t7'(0) where O = 7(0), O the
origin of A%{. In general E is not reduced, denote by E\.q the underlying reduced
subscheme.

Definition 4. The intersection graph of E\q is defined as the following undirected
graph:

— Vertices. A vertex of multiplicity n for each irreducible component (Eeq);
of E.q which decomposes over the algebraic closure of K into n irreducible
components.

— Edges. Different (Ereq); and (Erq); are connected by (Ereq); - (Ereq) ; undirected
edges. (Efeq); has %(Ered),- - (Eteq); + multiplicity of (Eteq); loops.

If K is algebraically closed, then the (Eeq); are isomorphic to IP}( and the self-
intersection of each (Eeq); is —2, because the resolution is crepant.

Let K — L be a Galois extension, I = Autg (L). I" operates on the intersection
graph of (Eq); by graph automorphisms. The irreducible components (Ereq);
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of Eq4 correspond to I"-orbits of irreducible components (Eeq)r x Of (Ereq)r by
Proposition 6. For the intersection form one has

(Ered)i : (Ered)j = ((Ered)i)L . ((Ered)j)L = Zki (Ered)L,k . (Ered)L,I

where indices k£ and / run through the irreducible components of ((Eq);). and
((Erea) j)1 respectively. Thus for the intersection graph there is a proposition similar
to Proposition 11 for representation graphs.

Proposition 12. The intersection graph of E.eq arises by identifying the elements of
I -orbits of vertices of the intersection graph of (Eteq) L, adding multiplicities. The
edges between vertices (Erq); and (Erq); are in bijection with the edges between
the irreducible components of ((Erea)i) 1 and ((Erea) ;) L.

5.2 Irreducible Components of E and Irreducible
Representations of G

The basic statement of McKay correspondence is a bijection between the set of
irreducible components of the exceptional divisor E and the set of isomorphism
classes of nontrivial irreducible representations of the group scheme G.

Theorem 3. There are bijections for intermediate fields K C L C C between the
set Irr(E L) of irreducible components of E; and the set Irr(Gp) of isomorphism
classes of nontrivial irreducible representations of G having the property that for
K C L C L' CC, ifthe bijectionTrr(E) — Irr(GL) for L maps E; — V;, then
the bijection Irr(E; /) — Irr(G /) for L' maps irreducible components of (E;)y/ to
irreducible components of (V;) .

Proof. As described earlier, the Galois group I" = Aut, (C) of the Galois extension
L — C, operates on the sets Irr(G¢) and Irr(Ec¢). In both cases elements of
Irr(Gr) and Irr(EL) correspond to [-orbits of elements of Irr(G¢) and Irr(E¢)
by Corollary 3 and Proposition 6 respectively. This way a given bijection between
the sets Irr(G¢) and Irr(E¢) defines a bijection between Irr(G,) and Irr(E.) on
condition that the bijection is equivariant with respect to the operations of I".
Checking this for the bijection of McKay correspondence over the algebraically
closed field C constructed via stratification or via tautological sheaves will give
bijections over intermediate fields L having the property of the theorem. This will
be done in the process of proving Theorems 5 or 6. O

Moreover, in the situation of the theorem the Galois group I' = Aut.(C)
operates on the representation graph of G¢ and on the intersection graph of (Eeq)c.
Then in both cases the graphs over L arise by identifying the elements of I"-orbits of
vertices of the graphs over C by Propositions 11 and 12. Therefore an isomorphism
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of the graphs over C, the bijection between the sets of vertices being I"-equivariant,
defines an isomorphism of the graphs over L.

For the algebraically closed field C this is the classical McKay correspondence
for subgroups of SL(2, C) [8,11,14]. The statement, that there is a bijection of edges
between given vertices (Ewq)r; <> Vi and (Ewq)r,; < Vj, can be formulated
equivalently in terms of the intersection form as (Erea)r.i-(Erea)z.j = (Vi V;).

Theorem 4. The bijections E; <> V; of Theorem 3 between irreducible components
of E1, and isomorphism classes of nontrivial irreducible representations of Gy can
be constructed such that (Ewq); + (Ered); = (Vi, Vj) or equivalently that these
bijections define isomorphisms of graphs between the intersection graph of (Ereq) 1
and the representation graph of G .

We will consider two ways to construct bijections between nontrivial irreducible
representations and irreducible components with the properties of Theorems 3
and 4: A stratification of G-HileA%< [10, 11] and the tautological sheaves on
G-Hilbg A% [8,12].

5.3 Stratification of G-Hilbg A%

Let S := K[x1,x3],let O € A\% be the origin, m C S the corresponding maximal
ideal, O := 7(0) € A%/G with corresponding maximal ideal n C S9, let
S := S/nS with maximal ideal m. An L-valued point of the fiber £ = t7'(0)
corresponds to a G-cluster defined by an ideal / C S such that n;, < [ or
equivalently an ideal 7 C S; = S;/n;S.. For such an ideal I define the
representation V(1) over L by

V() :=T/m, T

Lemma 3. Fory € Autg(L): V(y~'I) = V(I)".

Proo_f. As an AL-_comodule T=T® ﬁ_LT, Where_To o~ 7/_ﬁL7._Then )/_17 =
yoem(y " Dand V(y™' 1) =y ' /mp(y~') =y = Ty = V(I) by
Remark 5 appliedto Iy € 5. |

Theorem 5. There is a bijection E; < V; between the set Irr(E) of irreducible
components of E and the set Irt(G) of isomorphism classes of nontrivial irreducible
representations of G such that for any closed point y € E: If I C Sy, is an ideal
defining a k (y)-valued point of the scheme {y} C E, then

Hom{,, (V(I), (Vi)e(y) #0 <= y € E,

and V(1) is either irreducible or consists of two irreducible representations not
isomorphic to each other. Applied to the situation after base extension K — L, L
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an algebraic extension of K, one obtains bijections Irt(EL) <> Irr(Gp) having the
properties of Theorems 3 and 4.

Proof. In the case of algebraically closed K the theorem follows from [11].

In the general case denote by U; the isomorphism classes of nontrivial irreducible
representations of G¢ over the algebraic closure C. Over C the theorem is valid, let
E¢; be the component corresponding to Us;.

We show that this bijection is equivariant with respect to the operations of I' =
Autg(C). Let x € Ec; be a closed point such that x ¢ E¢ ;s for i’ # i. Then
for the corresponding C -valued point a: SpecC — E¢; given by an ideal I C S¢
one has V(1) = U;. By Corollary 2 the C-valued point corresponding to yx is a¥
given by the ideal y =!I C Sc. By Lemma 3 V(y~'I) = U, (), where U, = U/
Therefore yx € E, ;) and yE; = E, ;).

For an irrreducible representation V; of G define E; to be the component of E,
which decomposes over C into the irreducible components E¢; satisfying U; €
(V;)c. This method, applied to the situation after base extension K — L, leads to
bijections having the properties of Theorems 3 and 4.

We show that this bijection is given by the condition in the theorem. Let y be
a closed point of £ and « a k(y)-valued point of the scheme {y} C E given by
an ideal / C Sc(). K — «(y) is an algebraic extension, embed «(y) into C.
After base extension k(y) — C one has the C-valued point a¢: SpecC — {y}c
given by Ic C Sc. Then V(I)¢ = V(I¢) and I¢ corresponds to a closed point
z€{y}c C Ec. Therefore

vy € E; & z€ Ec; forsomei satisfying U C (Vj)c
— Homg(V(Ic), Ui) # 0 for some i satisfying U; < (V;)c
> Hom,(V(1), (V) )e(n) # 0

5.4 Tautological Sheaves

Let0 - . — O AL Oz — 0 be the universal quotient of ¥ := G-HileA\%(.
The projection p: Z — Y is a finite flat morphism, p. 0 is a locally free G-sheaf
on Y with fibers p« 0z ®p, () isomorphic to the regular representation over k().

Let Vp, ..., V; the isomorphism classes of irreducible representations of G, V;
the trivial representation. The G-sheaf 4 := p. 0z on Y decomposes into isotypic
components (see Remark 1(3) and Sect. 3.6)

Y =@i-Y9

where ¢ is the component for V.
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Definition 5. For any isomorphism class V; of irreducible representations of G
over K define the sheaf .#; on Y = G-HilbgA% by

T = SomG (V; ®k Oy.9;) = HomG (V; ®k Oy.9)

For a field extension K — L denote by .% ; the sheaf jfomzz (Ui ®1 Oy, ,%1) on
Y1, U; an irreducible representation of G, over L.

Remark 10. 1. For K = C the sheaves .% ; were studied in [8, 12], they may be

defined as well as .7 = r*%ﬂomgi/c(V,’ ®k ﬁA%/G, s @%)/(ﬁy-mrsion} or

(p+q* (O A2 ®x Vjv))G using the canonical morphisms in the diagram

2. #; is alocally free sheaf of rank dimg V.
3. For each j there is the natural isomorphism of G-sheaves .%; ®end¢ (v Vi —
;. '
Let K — L be a Galois extension and Uy, . . ., U, be the isomorphism classes of
irreducible representations of G, over L. Then a decomposition (V;), = ;¢ 1, Ui

over L of an irreducible representation V; of G over K gives a decomposition of
the corresponding tautological sheaf

(F))L = HomG, (V; &k Oy, 9)1. = Aomg, (V; @k Oy)1.9,)
= Aomgy (Bicy, Ui ©1 Or,.91) = @iy, Homgl (Ui @1 Oy,.91) = Biey, T

We have used the fact that the U; occur with multiplicity 1 as it is the case for finite
subgroup schemes of SL(2, K), see Proposition 10.

The tautological sheaves . ; can be used to establish a bijection between the set
of irreducible components of E.4 and the set of isomorphism classes of nontrivial
irreducible representations of G by considering intersections .Z; - (Erq) 7, i.€. the

degrees of restrictions of the line bundles .Z; := N 7 7 ; to the curves (Ereq) 7.

Theorem 6. There is a bijection E; <> V; between the set Irr(E) of irreducible
components of E and the set Irr(G) of isomorphism classes of nontrivial irreducible
representations of G such that

&+ (Erea) j» = dimg Hom$.(V;, V1)

where £ = /\rk‘gf F;.
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Applied to the situation after base extension K — L, L an algebraic extension
field of K, one obtains bijections Irr(EL) <> Irr(Gp) having the properties of
Theorems 3 and 4.

Proof. In the case of algebraically closed K the theorem follows from [8].

In the general case denote by Uy, . .., U, the isomorphism classes of irreducible
representations of G¢ over the algebraic closure C, Uy the trivial one. Over C the
theorem is valid, let E¢; be the component corresponding to U;, what means that
Lei(Era)cir = 8iir, where Lo, = NV7¢ Ze.

To show that the bijection over C is equivariant with respect to the operations of
I' = Autg(C), one has to show that y«.%c; = Zc ), where Uy;) = Uiy. Then
ZciEcir = y«Zci YEci» = Zcyi) - YEc,v and therefore yEc ;s = Ec . It
is y«Zci = Zc (i), because using Lemma 1 and Remark 3

Ve FCi = %m2§C (y«(Ui®c Oy, ), y«%c) = %mgfc U!®cOy., %) = Fcyi)

Since the bijection over C is equivariant with respect to the I"-operations on Irr(G¢)
and Irr(Ec), one can define a bijection Irr(G) <> Irr(E): For V; € Irr(G) let E;
be the element of Irr(£) such that (Vj)e = e, Ui and (Ej)c = Uiy, Eci
for the same subset /; C {1, ..., r}. This method applied to the situation after base
extension K — L leads to bijections having the properties of Theorems 3 and 4.

We show that this bijection is given by the construction of the theorem. It is
(Fj)e = @iel, Z¢.; and therefore

%'(Ered)j/ = (egj)C'((Ered)j’)C = (®,'51‘/. gc,i)-(Zﬂe]j.,(Ered)C,i’)
= Y Zei (B = Y dime Hom (Us, Uy)
= dim¢ HomZ® (V))e, (Vi)e) = dimg Hom§ (V;, Vj)

5.5 Examples

Finite subgroups of SL(2, K). In the case of subgroups G C SL(2, K) the
representation graph can be read off from the table of characters of the group G
over an algebraically closed field, since in this case representations are conjugate if
and only if the values of their characters are. We have the following graphs for the
finite subgroups of SL(2, K):

— Cyclic group Z/nZ,n > 1.1tis § + £~' € K, £ a primitive n-th root of unity.
Diagram (A,—) if §¢ € K, otherwise (A4,—1)’.



72 M. Blume

— Binary dihedral group BD,,,n > 2. Itisc¢ = %(S +£&71) € K, £ aprimitive 2n-th
root of unity, and (—1, ¢> — 1)) = 1. Diagram (D, 1) if n even or v/—1 € K,
otherwise (D, +5) .

— Binary tetrahedral group BT. Itis (—1,—1))x = 1. Diagram (Ey) if K contains
a primitive 3rd root of unity, otherwise (E¢)’.

— Binary octahedral group BO. Itis (—1,—1)x = 1 and +/2 € K. Diagram (E7).

— Binary icosahedral group BI. Itis (—1,—1)x = 1 and /5 € K. Diagram (Eg).

Examples for the graphs (4,)’, (Dan+1), (Eg)':

(An)  Z/(n + 1)Z over Q(€ + £7"), £ a primitive (n + 1)-th root of unity.
(Dam+1) BDyy—1 over Q(&), € a primitve 2(2m — 1)-th root of unity.
(Eg)’ BT over Q(+/—1).

Abelian subgroup schemes. In the case of abelian subgroup schemes of SL(2, K)
the graphs (A4,) and (A4,)" occur.

— The cyclic group G = Z/nZ is realisable as the subgroup of SL(2, K) generated
by g := (‘1) 54__;_1 ), if the field K contains £ + £~ for £ a primitive n-th root of
unity. If K does not contain £, then there are 1-dimensional representations over
the algebraic closure that are not realisable over K, one has diagram (A4,—1)’.

— For the subgroup scheme G = u, C SL(2, K) the Hopf algebra K[y]/ (»")
decomposes into a direct sum of simple subcoalgebras (yf ) ¢ corresponding to
1-dimensional representations of G. Thus one has diagram (A4,—).

The graph (D;,,)". Letn > 2, ¢ a primitive 4n-th root of unity and § = &2. Put
K =Q(+¢e"),C =Q(e)and I' = Autg(C) = {id, y}. One has the injective
representation of BD,, = (cr, T|12=0"= (ra)z) in SL(2, C) given by

£ 0 0 —¢
=) = (7)

We will identify BD,, with its image in SL(2, C') and regard it as a subgroup scheme
of SL(2, C).

I" operates on SL(2, C), the K-automorphism y € I', y:e + &~ ! of order
2 operates nontrivially on the closed points of BD, by o + o~ !, ¢ > 0. The
subgroup scheme BD, C SL(2, C) is defined over K, let G C SL(2, K) such that
Gc¢ = BD,,. The closed points of G correspond to I"-orbits of closed points of BD,,,
they have the form {id}, {—id}, {o*,07*}, {ro*, ro=**1}.

The automorphism y operates on the characters of BD,, trivially except that for
even n it permutes two of the irreducible 1-dimensional representations. One has
the graph (D, 4+,)’ for n even and the graph (D,,4,) for n odd.
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6 Finite Subgroups of SL(2, C): Presentations
and Character Tables

6.1 Cyclic Groups

The irreducible representations are y ;: Z/nZ — C*, i giforjef0,...,n—1},
where £ is a primitive n-th root of unity.

Binary dihedral groups. BD, = (0,7 | 1> = 0" = (10)?), —id := (r0)*.

BD,,, n odd BD,,, n even
id —id oF T T0o id —id oF T 10

1 1 1 1 1 1 1 11 1 1 1
1 1 1 -1 -1 1 11 1 -1 -1
171 -1 (=k i =i 17 1 1 (=1k 1 —1
1”71 -1 (=1k —i i 1”7 1 1 (=1)k -1 1
212 (=1)J2 Ei4EHR 0 0 22 (=12 E9 g 0 0
& a primitive 2n-th root of unity and j = 1,...,n — 1
Binary tetrahedral group. BT = (a.b | a® = b = (ab)?), —id := (ab)>.

id —id a —a b —b ab
1 1 1 1 1 1 1 1 1
1 1 1 1) 1)) w? w? 1 7.]37.
1” 1 1 w? ? 1) 1) 1 7./37Z
3 3 3 0 0 0 0 -1 Ay
2 2 -2 1 -1 1 -1 0 BT
2 2 -2 1) ) w? —w? 0 BT
2/ 2 -2 w? —w? ® —w 0 BT

1 1 4 4 4 4 6
w a primitive 3rd root of unity
Binary octahedral group. BO = (a,b | a® = b* = (ab)?), —id := (ab)*.

id —id ab a —a b —b b?
1 1 1 1 1 1 1 1 1 1
1 1 1 -1 1 1 -1 -1 1 7.]27.
2 2 2 0 -1 -1 0 0 2 S3
3 3 3 1 0 0 -1 -1 -1 Sy
3 3 3 -1 0 0 1 1 -1 Sy
2 2 -2 0 1 -1 V2 -2 0 BO
2 2 -2 0 1 -1 =2 V2 0 BO
4 4 —4 0 -1 1 0 0 0 BO

1 1 12 8 8 6 6 6
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Binary icosahedral group. BI = (a,b|a’ =b> = (ab)?), —id := (ab)>.
id —id a —a b —b b? —b%>  ab
1 1 1 1 1 1 1 1 1 1 1
3 3 3 0 0o wut ut W W -1 As
Iy 3 3 0 0 pu- u wt wt -1 As
4 4 4 1 1 —1 —1 —1 —1 0 As
5 5 5 -1 -1 0 0 0 0 0 As
2 2 -2 1 =1 ut —ut - ous 0 BI
22 -2 | I -~ —utout 0 BI
4 4 —4 -1 1 1 —1 -1 1 0 BI
6 6 —6 0 0 —1 1 1 —1 0 BI
1 1 20 20 12 12 12 12 30

pt =11+ V5), um =11 - V5)
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Gonality of Algebraic Curves and Graphs

Lucia Caporaso

Abstract We define d-gonal weighted graphs using “harmonic indexed” mor-
phisms, and prove that a combinatorial locus of Vg contains a d-gonal curve if
the corresponding graph is d-gonal and of Hurwitz type. Conversely the dual graph
of a d-gonal stable curve is equivalent to a d-gonal graph of Hurwitz type. The
hyperelliptic case is studied in detail. For » > 1, we show that the dual graph of a
(d, r)-gonal stable is the underlying graph of a tropical curve admitting a degree-d
divisor of rank at least r.

1 Introduction and Preliminaries

1.1 Introduction

In this paper we study the interplay between the theory of linear series on algebraic
curves, and the theory of linear series on graphs.

A smooth curve C is d-gonal if it admits a linear series of degree d and rank 1;
more generally, C is (d, r)-gonal if it admits a linear series of degree d and rank r.
A stable, or singular, curve is defined to be (d, r)-gonal, if it is the specialization of
a family of smooth (d, r)-gonal curves. This rather unwieldy definition is due to the
fact that the divisor theory of singular curves is quite complex; for example, every
reducible curve admits infinitely many divisors of degree d and rank r, for every
d and r > 0. Moreover characterizing (d, r)-gonal curves is a well known difficult
problem.
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On the other hand, the moduli space of Deligne-Mumford stable curves, M,,
has a natural stratification into “combinatorial” loci, parametrizing curves having a
certain weighted graph as dual graph; see [13]. It is thus natural to ask whether the
existence in a combinatorial locus of a (d, r)-gonal curve can be detected uniquely
from the corresponding graph and its divisor theory.

In fact, in recent times a theory for divisors on graphs has been set-up and
developed in a purely combinatorial way, revealing some remarkable analogies
with the algebro-geometric case; see [4, 6, 7] for example. One of the goals of this
paper is to contribute to this development; we give a new definition for morphisms
between graphs, which we call indexed morphisms, and then introduce harmonic
indexed morphisms. Our definition is inspired by the theory of admissible coverings
developed by J. Harris and D. Mumford in [16], and generalizes the combinatorial
definition of harmonic morphisms given by M. Baker, S. Norine and H. Urakawa
in [7] and [20] for weightless graphs; this is why we use the word “harmonic”.
Harmonic indexed morphisms have a well defined degree, and satisfy the Riemann-
Hurwitz formula with an effective ramification divisors.

We say that a graph is d-gonal if it admits a non-degenerate harmonic indexed
morphism, ¢, of degree d to a tree; furthermore we say that it is of Hurwitz type if
the Hurwitz existence problem naturally associated to ¢ has a positive solution; see
Definition 6 for details. In particular, if d < 3 every d-gonal graph is of Hurwitz
type. Then we prove the following:

Theorem 1. If (G,w) is a d-gonal weighted stable graph of Hurwitz type, there
exists a (stable) d-gonal curve whose dual graph is (G,w). Conversely, the dual
graph of a stable d-gonal curve is equivalent to a d -gonal graph of Hurwitz type.

This Theorem follows immediately from the more general Theorem 2, whose
proof combines the theory of admissible coverings with properties of harmonic
indexed morphisms.

Next, for all » > 1 we prove Theorem 3, which, in particular, states that the dual
graph of a (d, r)-gonal curve admits a refinement admitting a divisor of rank r and
degree d.

The proof of this theorem uses different methods than the previous one: the
theory of stable curves, and a generalization, from [1], of Baker’s specialization
lemma [5, Lemma 2.8].

Testing whether a graph admits a divisor of given degree and rank involves only
a finite number of steps, and can be done by a computer; hence Theorem 3 yields a
handy necessary condition for a curve to be (d, r)-gonal.

This theorem has also consequences on tropical curves. In fact the moduli space
of tropical curves of genus g, M, ;,mp, has a stratification indexed by stable weighted
graphs exactly as Vg. Using our results we obtain that if a combinatorial stratum of
Vg contains a (d, r)-gonal curve, so does the corresponding stratum of M gm’p; see
Sect. 3.1 for more details. The connections between the divisor theories of algebraic
and tropical curves have been object of much interest in recent years; in fact some
closely related issues are currently being investigated, under a completely different
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perspective, in a joint project of O. Amini, M. Baker, E. Brugallé and J. Rabinoff.
We refer also to [8, 10-12] and [17] for some recent work on the relation between
algebraic and tropical geometry.

The paper is organized in four sections; the first recalls definitions and results
from algebraic geometry and graph theory needed in the sequel, mostly from
[3,6,16] and [1]. In Sect.2 we study the case r = 1 and prove Theorem 2 (and
Theorem 1). The next section studies the case r > 1 and extends the analysis to
tropical curves; the main result here is Theorem 3. In Sect.4 we concentrate on the
hyperelliptic case, and develop the basic theory by extending some of the results
of [7]. It turns out that for this case the analogies between the algebraic and the
combinatorial setting are stronger; see Theorem 4.

I wish to thank M. Baker, E. Brugallé¢, M. Chan, R Guralnick, and F. Viviani for
enlightening discussions related to the topics in this paper. I am grateful to S. Payne
for pointing out an error in the first version of Theorem 2.

1.2 Graphs and Dual Graphs of Curves

Details about the forthcoming topics may be found in [3] and [11].

Unless we specify otherwise, by the word “curve” we mean reduced, projective
algebraic variety of dimension one over the field of complex numbers; we always
assume that our curves have at most nodes as singularities. The genus of a curve is
the arithmetic genus.

The graphs we consider, usually denoted by a “G” with some decorations, are
connected graphs (no metric) admitting loops and multiple edges, unless differently
stated. For the reader’s convenience we recall some basic terminology from graph
theory. Our conventions are chosen to fit both the combinatorial and algebro-
geometric set up. For a graph G we denote by V(G) the set of its vertices, by E(G)
the set of its edges and by H(G) the set of its half-edges. The set of half-edges
comes with a fixed-point-free involution whose orbits, written {/, i}, bijectively
correspond to E(G), and with a surjective endpoint map € : H(G) — V(G). For
e € E(G) corresponding to the half-edges h, h we often write e = [, h].

A loop-edge is an edge e = [h, h] such that e(h) = €(h).

A leaf is a pair, (v, e), of a vertex and an edge, where e is not a loop-edge and is
the unique edge adjacent to v. We say that e is a leaf-edge and v is a leaf-vertex.

A bridge is an edge e such that G ~ e is disconnected.

Letv € V(G); we denote by E,(G) C E(G), respectively by H,(G) C H(G),
the set of edges, resp. of half-edges, adjacent to v.

In some cases we will need to consider graphs endowed with legs, then we will
explicitly speak about graphs with legs. A leg of a graph G is a one-dimensional
open simplex having exactly one endpoint v € V(G). We denote by L(G) the set of
legs of G, and by L,(G) the set of legs having v as endpoint.
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The valency, val(v), of a vertex v € V(G) is defined as follows
val(v) := [Hy(G)| + |L.(G)]. €]

Let now X be a curve (having at most nodes as singularities), and let Gy be its so-
called dual graph. So, the vertices of Gy correspond to the irreducible components
of X, and we write X = U,ey(y)C, with C, irreducible curve. The edges of Gx
correspond to the nodes of X, and we denote the set of nodes of X by X, =
{N., e € E(Gyx)}. The endpoints of the edge e correspond to the components of
X glued at the node N,. Finally, the set of half-edges H(Gy) is identified with
the set of points of the normalization of X lying over the nodes, so that a pair
{h,h} C H(Gy) corresponding to the edge ¢ € E(Gy) is identified with a pair
of points pj, p; on the normalization of X in such a way that, denoting by v,V the
endpoints of e, with & adjacent to v and & adjacent to 7, we have that pj, lies on
the normalization of C, and p; on the normalization of Cs. This yields a handy
description of X:

u cy
X = veV(Gy)©y )
{pn = py. Yh € H(Gx)}
where C denotes the normalization of C,.
Next, let (X; x1,...,xp) be a pointed curve, i.e. X is a curve and x, ..., X are
nonsingular points of X. To (X; xy, ..., Xp) we associate a graph with legs, written

G(X5x1,xp)

by adding to the dual graph Gy described above one leg £; for each marked point
X;, so that the endpoint of £; is the vertex v such that x; € C,.

A weighted graph is a pair (G, w) where G is a graph (possibly with legs) and w
a weight function w : V(G) — Zs¢. The genus of a weighted graph is

gow =bi(G)+ Y w().

veV(G)

A tree is a connected graph of genus zero (hence weights equal zero).
A weighted graph (G, w) with legs is stable (respectively semistable), if for every
vertex v we have

w(v) + val(v) >3 (resp. > 2).

Definition 1. Let (G, w) be a weighted graph of genus at least 2. Its stabilization
is the stable graph obtained by removing from (G, w) all leaves (v, e) such that
w(v) = 0 and all 2-valent vertices of weight zero (see below). We say that two
graphs are (stably) equivalent if they have the same stabilization.
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The stabilization does not change the genus.

As in the previous definition, we shall often speak about graphs obtained by
“removing” a 2-valent vertex, v, from a given graph, G. By this we mean that after
removing v, the topological space of the so-obtained graph is the same as that of G,
but the sets of vertices and edges are different. The operation opposite to removing
a 2-valent vertex is that of “inserting” a vertex (necessarily 2-valent) in the interior
of an edge.

A refinement of a weighted graph (G,w) is a weighted graph obtained by
inserting some weight zero vertices in the interior of some edges of G.

Let now X be a curve as before. The (weighted) dual graph of X is the weighted
graph (Gx,wy), with Gy as defined above, and for v € V(Gy) the value wy (v) is
equal to the genus of the normalization of C,.

It is easy to see that the genus of X is equal to the genus of (Gy, wy).

The (weighted) dual graph of a pointed curve (X; xy, ..., Xp) is the graph with
legs (G(x;xi...xp)> WX)-

Remark 1. A pointed curve (X; xy, ..., Xp) is stable, or semistable, if and only if

8018 (G(x;x..xp)> WX )-
A curve X is rational (i.e. it has genus zero) if and only if (Gy,wy) is a tree.

Remark 2. Let X be a curve of genus > 2 and (G x, wy) its dual graph. There exists
a unique stable curve X* of genus g with a surjective map o : X — X, such that
o is birational away from some smooth rational components that get contracted to a
point. X* is called the stabilization of X. The dual graph of X* is the stabilization
of (Gx,wy); see Definition 1.

For a stable graph (G, w) of genus g, we denote by M*2(G,w) C M, the locus
of curves whose dual graph is (G, w), and we refer to it as a combinatorial locus
of Vg (the superscript “alg” stands for algebraic, versus tropical, see Sect.3.1). Of
course, we have

M, = | | MY(G,w). (3)

(G,w) stable, genus g

1.3 Admissible Coverings

Details about this subsection may be found in [15,16] and [3]. Let Vg be the moduli
space of stable curves of genus g > 2 and M, C Vg its open subset parametrizing
smooth curves. We denote by M_’d the closure in Vg of the locus, M g’ 4> 0f smooth
curves admitting a divisor of degree d and rank r; in symbols:

M, = {[X] € My : W[(X) # 0} 4)
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where W/ (X) is the set of linear equivalence classes of divisors D on X such that
(X,D)>r +1.

The case of hyperelliptic curves, r = 1 and d = 2, has traditionally a simpler
notation: one denotes by H, C M, the locus of hyperelliptic curves and by Fg its

closure in M,. So, H, = M1

Definition 2. Let X be a connected curve of genus_g > 2.
If X is stable, then X is hyperelliptic if [X] € H,; more generally X is (d,r)-

gonal, respectively d-gonal, if [X] € M’d, resp. if [X] € M1 dg

If X is arbitrary, we say X is hyperelhptlc (d, r)-gonal, or d-gonal if so is its
stabilization.

A connected curve of genus g < 1 is d-gonal for all d > 2.

We recall the definition of admissible covering, due to J. Harris and D. Mumford
[16, Sect. 4], and introduce some useful generalizations.

Definition 3. Let Y be a connected nodal curve of genus zero, and yi,..., y, be
nonsingular points of Y; let X be a connected nodal curve.

(A) A covering (of Y) is a regular map o : X — Y such that the following
conditions hold:

a. O‘_l(Ysing) = Xiing.

b. « is unramified away from X, and away from yi,..., ys.

c. o has simple ramification (i.e. a single point with ramification index
equals 2) over yy,..., Vp.

d. For every N € X, the ramification indices of « at the two branches of N
coincide.

(B) A covering is called semi-admissible (resp. admissible) if the pointed curve
(Y; y1,...,yp) is semistable (resp. stable), i.e. for every irreducible component
D of Y we have

IDNY ~D[+[DN{yr..... o} =2 (resp. = 3). )

We shall writeow : X — (Y'; y1, ..., yp) for a covering as above, and sometimes just
o : X — Y. In fact the definition of a covering (without its being semi-admissible)
does not need the points yy, ..., yp, as conditions (Ab) and (Ac) may be replaced
by imposing that « has ordinary ramification away from Xj;,,. The following are
simple consequences of the definition.

Remark 3. Leta : X — Y be a covering.

(A) There exists an integer d such that for every irreducible component D C Y the
degree of o) : @~ (D) — D is d. We say that d is the degree of .

(B) Every irreducible component of X is nonsingular.

(C) If « is admissible of degree 2, then X is semistable.
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In [16] the authors construct the moduli space Hy , for admissible coverings, as
a projective irreducible variety compactifiying the Hurwitz scheme (parametrizing
admissible coverings having smooth range and target), and show that it has a natural
morphism

Hyp — M, [@:X = Y] [X] (6)

where X is the stabilization of X and g is its genus, so that b = 2d + 2g — 2. For
example, if d = 2 we have Hj 5,12 2g+2 — M

Moreover, the image of H> 54> coincides with the locus of hyperelliptic stable
curves, H,. ¢, and more generally the image of (6) is the closure in M of the locus of

d-gonal curves, here denoted by M| ;’ d
The description of an explicit admissible covering is in Example 3.

1.4 Divisors on Graphs

For any graph G, or any weighted graph (G, w), its divisor group, Div G, or
Div(G, w), is defined as the free abelian group generated by the vertices of G. We
use the following notation for a divisor D on (G, w)

D = Z D(v)v (7

veV(G)

where D(v) € Z. For loopless and weightless graphs we use the divisor theory
developed in [6]. If G is a weighted graph with loops, we extend this theory as
in [1]. We begin with a definition.

Definition 4. Let (G, w) be a weighted graph.

We denote by G° the loopless graph obtained from G by inserting a vertex in
the interior of every loop-edge, and by (G°, w°) the weighted graph such that w°
extends w and is equal to zero on all vertices in V(G°) ~ V(G).

We denote by G" the weightless, loopless graph obtained from G° by adding
w(v) loops based at v for every v € V(G) and then inserting a vertex in the interior
of every loop-edge.

Notice that (G, w), (G°, w”) and G" have the same genus, and that (G°)*" = G".

For every D € Div(G,w) its rank, r(g,w) (D), is set equal to rgw (D). Linearly
equivalent divisors have the same rank. A weighted graph (G, w) of genus g has a
canonical divisor K(g ) = ZveV(G) (2w(v) — 2 4 val(v))v of degree 2g — 2 such
that the following Riemann-Roch formula holds [1, Thm. 3.8]

rGw (D) —riGw(KGw —D) =degD — g + 1.
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Remark 4. A consequence of the Riemann-Roch formula is the fact thatif g < 1
then for any divisor D of degree d > 0 we have rg,)(D) =d — g.

For a weighted graph (G, w) we denote by Jac? (G, w) the set of linear equiva-
lence classes of degree-d divisors, and set

W/ (G,w) := {[D] € Jac' (G, w) : rG.m)(D) > r}.

Definition 5. We say that a graph (G, w) is divisorially d-gonal if it admits a
divisor of degree d and rank at least 1, that is if Wg,1 (G,w) # 0.
A hyperelliptic graph is a divisorially 2-gonal graph.

Example 1. Consider the following graph G with n > 2.

G is obviously hyperelliptic, as rg(v; + v2) = 1. Notice also that

1 ifn=2

rg(2vy) = _
0 ifn>3.

Now fix on G the weight function given by w(v;) = 0 and w(v,) = 1. Here is the
picture of G" (drawing weight-zero vertices by a “o”)

We have 7 ) (vi +v2) = rGw)(u +v1) = 1w+ 1v2) = 0foreveryn > 2.
On the other hand

1 ifn=2

rem @) = {0 ifn >3

and the same holds for 2v, ~ 2u. Therefore (G, w) is hyperelliptic if and only if
n = 2 (in fact n < 2). This example is generalized in Corollary 3
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2 Admissible Coverings and Harmonic Morphisms

2.1 Harmonic Morphisms of Graphs

Let ¢ : G — G’ be a morphism; we denote by ¢y : V(G) — V(G') the map
induced by ¢ on the vertices. ¢ is a homomorphism if $(E(G)) C E(G’); in this
case we denote by ¢pg : E(G) — E(G') and by ¢y : H(G) — H(G’) the induced
maps on edges and half-edges. A morphism between weighted graphs (G, w) and
(G’,w'") is defined as a morphism of the underlying graphs, so we write either G —
G’ or (G,w) — (G’,w') depending on the situation.

In the next definition, extending the one in [7, Subsect. 2.1], we introduce some
extra structure on morphisms between graphs.

Definition 6. Let (G, w) and (G', w') be loopless weighted graphs.

(A) An indexed morphism is a morphism ¢ : (G,w) — (G’,w’) enriched by the
assignment, for every e € E(G), of a non-negative integer, the index of ¢ at e,
written r4(e), such that r4(e) = 0 if and only if ¢ (e) is a point. An indexed
morphism is simple if rg(e) < 1 for every e € E(G). Lete = [h, h] with
h,h € H(G); we set ry(h) = ry(h) = re(e).

(B) An indexed morphism is pseudo-harmonic if for every v € V(G) there exists
a number, my(v), such that for every e/ € E4,(,)(G’) (and, redundantly for
convenience, every i’ € Hy,,)(G')) we have

my) = Y rgle)= Y. reh). ®)

e€E,(G):¢(e)=e heH,(G):¢(h)y=Hh’

(C) A pseudo-harmonic indexed morphism is non-degenerate if mg(v) > 1 for
every v € V(G).

(D) A pseudo-harmonic indexed morphism is harmonic if for every v € V(G) we
have, writing v/ = ¢ (v),

D Co@) = 1) =2(mp() = 1+ w0 —mpO ). ()

¢€E,(G)

In the sequel, all graph morphisms will be indexed morphisms, hence we shall
usually omit the word “indexed”.

For later use, let us observe that if w' = 0 (i.e. G’ is weightless) condition (9)
simplifies as follows

Y (rple) = 1) <20my(v) — 1 + w(v)). (10)

¢€E,(G)
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Remark 5. Suppose that ¢ contracts a leaf-edge e whose leaf-vertex v has w(v) = 0.
Then rg(e) = mgy(v) = 0 and condition (9) is not satisfied on v. So, loosely
speaking, a harmonic morphism contracts no weight-zero leaves.

Remark 6 (Relation with harmonic morphisms of [7]). For simple morphisms of
weightless graphs our definition of harmonic morphism coincides with the one given
in [7, Sec. 2.1] for morphisms which contract no leaves. Indeed, it is clear that any
simple pseudo-harmonic morphism is harmonic in the sense of [7]. Conversely, a
harmonic morphism in the sense of [7] satisfies (10) (with w(v) = 0) if and only if
¢ contracts no leaves; see the previous remark.

Lemma — Definition 1 Ler ¢ : (G,w) — (G',w) be a pseudo-harmonic mor-
phism. Then for every ¢’ € E(G’) and V' € V(G’) we can define the degree of ¢ as
follows

degp= Y rele)= > my() (11)
¢€E(G):p(e)=e’ vep—1(V)
(i.e. the above summations are independent of the choice of ¢’ and V').

Proof. Trivial extension of the proof of [7, Lm. 2.2 and Lm. 2.3].

Let¢ : (G,w) — (G’,w') be a pseudo-harmonic morphism. As in [7, Subs. 2.3] we
define a pull-back homomorphism ¢* : Div(G’,w') — Div(G, w) as follows: for
every V' € V(G')

P*V = Z my(v)v (12)
vep=I(v)
and we extend this linearly to all of Div(G’, w'). By (11) we have
deg D = degpdeg D’. (13)

For a pseudo-harmonic morphism ¢ the ramification divisor Ry is defined as
follows.

Ry = Z (2(m¢(v) =14+ w) —mg)w'(V'))— Z (ro(e) — 1))v, (14)

veV(G) e€ky(G)

The next result, generalizing the analog in [7], implies that harmonic morphisms are
characterized, among pseudo-harmonic morphisms, by a Riemann-Hurwitz formula
with effective ramification divisor.

Proposition 1 (Riemann-Hurwitz). Let ¢ : (G,w) — (G'W) be a pseudo-
harmonic morphism of weighted graphs of genus g and g’ respectively. Then

Kw = ¢*K'w) + Ry. (15)

¢ is harmonic if and only if Ry > 0 (equivalently 2g —2 > deg ¢(2g’ — 2)).
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Proof. We write K = K, and K’ = K’ . For every v € V(G) we have
K(v) = 2w(v) — 2 + val(v) (notation in (7)). Hence, writing v = ¢ (v), by (12) we
have

KO) — ¢*K'(v) = 2w(v) — 2 + val(v) — my(v) <2w(v’) 24 Val(v/))
= 2(m¢(v) —1+wh)— m¢(v)w(v’))+ val(v) —mg(v) val(y').
On the other hand by (11)

Yo (rple) =1 = Y ryle) —val(v) = my(v) val(v') — val(v).

e€E,(G) e€E,(G)

The two above identities imply K(v) —¢*K'(v) = Ry(v), so (15) is proved.
By definition, ¢ is harmonic if and only if its ramification Ry divisor is effective.
The equivalence in parenthesis follows from (13).

Remark 7. Other results proved in [7] for simple harmonic morphisms extend. In
particular, if D’ and E’ are linearly equivalent divisors on (G’, w’), their pull-backs
¢* D’ and ¢* E’ under a pseudo-harmonic morphisms ¢ are linearly equivalent.

2.2 The Hurwitz Existence Problem

Our goal is to use harmonic morphisms to characterize graphs that are dual graphs
of d-gonal curves. This brings up the “Hurwitz existence problem”, about the
existence of branched coverings of P! with prescribed ramification profiles; to state
it precisely we need some terminology.

Letd > 1be aninteger and let P = { Py, ..., Py} be a set of partitions of d, so
that we write P; = {r},...,r"} withr/ € Z>, and Z’}izl rl =d.

We say that P is a Hurwitz partition set, or that P is of Hurwitz type, if
the following condition holds. There exist b permutations oy, ...,0, € Sg (Sy the
symmetric group) whose product is equal to the identity, such that o; is the
product of n; disjoint cycles of lengths given by P;, and such that the subgroup
<oy,...,0p > 1S transitive.

Notice that if P is of Hurwitz type and we add to it the trivial partition

{1, 1,..., 1}, the resulting partition set is again of Hurwitz type.

Remark 8. By the Riemann existence theorem, P is a Hurwitz partition set if and
only if there exists a degree-d connected coveringa : C — P! withqy,...,q, € P!
such that « is unramified away from ¢y, ..., g, and such that foralli = 1,...,b

we have a*(gq;) = Z'}izl rl-j p!. The genus g of C is determined by the Riemann-
Hurwitz formula:
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b n
20—2=-2d+) Y (] - 1), (16)

i=1j=1
so that we shall also say that P is a Hurwitz partition set of genus g and degree d.

Remark 9. 1t is a fact that a partition set P satisfying (16) is not necessarily
of Hurwitz type. Indeed, the so-called Hurwitz existence problem can be stated
as follows: characterize Hurwitz partition sets among all P satisfying (16). This
problem turns out to be very difficult and is open in general. Easy cases in which
every P satisfying (16) is of Hurwitz type are P, = (2,1,...,1) for every i, or
d <3,orb <2.

On the other hand if d = 4 the partition set P = {(3, 1); (2,2);(2,2)} is not of
Hurwitz type, but the Riemann-Hurwitz formula (16) holds with g = 0; see [19] for
this and other results on the Hurwitz existence problem.

Let now ¢ : (G,w) — T be a non-degenerate pseudo-harmonic morphism,
where T is a tree; let v € V(G). For any half-edge /’ € H(T) in the image of some
half-edge adjacent to v we define, using (8), a partition of m4(v):

Py (¢, v) := {rg(h), Yh € H,(G) : ¢p(h) =h'}.
Now we associate to v and ¢ the following partition set:

P(¢p.v) = {Pr(¢.v). Vh' € ¢ (H\(G))}. (17)
In the next definition we use the terminology of Remark 8.

Definition 7. (A) Let (G,w) be a loopless weighted graph. We say that (G, w)
is d-gonal if it admits a non-degenerate, degree-d harmonic morphism ¢ :
(G,w) - T where T is a tree.

If such a ¢ has the property that for every v € V(G) the partition set
P (¢,v) is contained in a Hurwitz partition set of genus w(v), we say that ¢ is a
morphism of Hurwitz type, and that (G, w) is a d-gonal graph of Hurwitz type.

(B) Let (G, w) be any graph. We say that it is d-gonal, or of Hurwitz type, if so is
(G, w?), with (G°, w®) as in Definition 4.

Example 2. A harmonic morphism with indices at most equal to 2 is of Hurwitz
type. Hence if d < 3 a d-gonal graph is always of Hurwitz type.

The following is one of the principal results of this paper, of which Theorem 1 is a
special case. Recall the terminology introduced in Definition 1.

Theorem 2. Let (G,w) be a d-gonal graph of Hurwitz type; then there exists a
d-gonal curve whose dual graph is (G, w).

Conversely, let X be a d-gonal curve; then its dual graph is equivalent to a
d-gonal graph of Hurwitz type.

The proof of the first part of the theorem will be given in Sect. 2.4. The converse
is easier, and will be proved earlier, in Corollary 1.
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2.3 The Dual Graph-Map of a Covering

To prove Theorem 2 we shall associate to any covering & : X — Y an indexed
morphism of graphs, called the dual graph-map of o, and denoted by

¢o : (Gx,wx) — Gy.

As all components of Y have genus zero, we omit the weight function for Y. We
sometimes write just Gy — Gy for simplicity.
We use the notation of Sect. 1.2; denote by

Y = Uuevcy)Du

the irreducible component decomposition of Y. For any v € V(Gy) we have that
a(C,) is an irreducible component of Y, hence there is a unique u € V(Gy) such
that «(C,) = D,; this defines a map ¢,y : V(Gx) — V(Gy) mapping v to u.

Next, E(Gy) and E(Gy) are identified with the set of nodes of X and Y. To
define ¢y g : E(Gx) — E(Gy) lete € E(Gy); then e corresponds to the node
N, of X. The image «(N,) is a node of Y, corresponding to a unique edge of Gy,
which we set to be the image of e under ¢, £.

It is trivial to check that the pair (¢y.y, o r) defines a morphism of graphs,
¢a . GX — Gy.

Let us now define the indices of ¢,. For any e € E(G) let N, be the correspond-
ing node of X. By Definition 3, the restriction of « to each of the two branches of
N, has the form u = x" and v = y” where x and y are local coordinate at the
branches of N,, and u, v are local coordinates at the branches of «(N,) (which is a
node of Y). We set g, (e) =r.

If we need to keep track of the branch points of @ : X — (Y;y1,...,yp), we
endow the dual graph of Y with b legs, in the obvious way, and write ¢, : Gy —

G(Y;y1 ----- Vb)*

Example 3 (Dual graph-map for the admissible covering of an irreducible hyper-
elliptic curve). Let X € Fg be an irreducible singular hyperelliptic curve. Such
curves are completely characterized; we here choose X irreducible with g nodes,
so that its normalization is P'. Let us describe an admissible coveringa : Z — Y
which maps to X under the map (6). As we noticed in Remark 3, Z cannot be equal
to X. In fact, Z is the “blow-up” of X at its g nodes, so that Z = UfZOC,- is the
union of g+ 1 copies of P!, with one copy, Cy, corresponding to the normalization of
X, and the remaining copies corresponding to the “exceptional” components. Hence
|Ci N Co| =2and |C;NCj| =0foralli,j # 0. Now, since X is hyperelliptic,
its normalization Cy has a two-to-one map to P!, written oy : Co — Do = P!, such
that ag(p;) = ao(q;) = t; € Dy for every pair p;,q; € Cy of points lying over the
i-th node of X. Let yg, y; € Dy be the two branch points of .

We assume that in X the component Cj is glued to C; along the pair p;, g;. For
i > 1 we pick a two-to-one map «; : C; — D; = P! such that the two points of
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C; glued to X have the same image, s;, under «;. Let y,;, y2;4+1 € D; be the two
branch points of ¢;.

(Y y2i, y2i+1, Yi = 0,...g) is stable, and it is clear that the «; glue to an
admissible covering ¢ : Z — Y. The dual graphs and graph-map are in the
following picture, where g = 3.

o= TR

Lemmal. Let o : X — Y be a covering and ¢, : (Gx,wx) — Gy the dual
graph-map defined above. Then ¢, is a harmonic homomorphism of Hurwitz type.
Ifdega = 2 and X has no separating nodes, then ¢, is simple.

Proof. Ttis clear that Gy has no loops. By Remark 3 (B), every component C, of X
is nonsingular, hence G x has no loops.

Since « is a covering, we have that ¢, » and ¢, g are surjective, and ¢, does not
contract any edge of Gx; hence ¢, is a homomorphism. We shall abuse notation by
writing ¢, for ¢ v, Py and P, .

Letnow v € V(Gx) and i’ € Hy,(Gy), so that i’ corresponds to a point in the
image of C, via «, i.e. to a pointin Dy, C Y. Consider the restriction of & to C,:

q|c, . Cv —> D¢(v).

This is a finite morphism, and it is clear that for every 4’ € Hy,)(Gy)

Z r¢tx (h) = degalcv'

heH,(Gx):¢ ()=l

The right hand side above does not depend on /', hence we may set

mg, (v) := degoc,. (18)
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Therefore ¢, is pseudo-harmonic. To prove that ¢, is harmonic we must prove that
for every v € V(Gy) we have

D (rale) = 1) < 2(my, () — 1+ wx (v)). (19)

¢€E,(Gy)

Let R € Div(C,) be the ramification divisor of the map o|c, above. Then, by the
Riemann-Hurwitz formula applied to ¢, we have,

deg R = 2(mg,(v) — 1 + wx (v)).

On the other hand the map ¢, has ramification index rg, (%) at all p;, € H,(Gy),
hence we must have

R— Y (rp(m)=1)py=0

heH,(Gy)

from which (19) follows. The fact that ¢, is of Hurwitz type follows immediately
from Remark 8.

Assume dego = 2 and X free from separating nodes. We must prove the indices
of ¢ are all equal to one, i.e. that oc, does not ramify at the points pj;, for every
h € H(Gy). By contradiction, suppose /¢, is ramified at pj; hence, as dega = 2,
it is totally ramified at pj, so that o~ ! (e(ps)) N C, = pj. Since « is an admissible
covering, we have exactly the same situation at the other branch of N, i.e. at py.
Therefore

o (@(Ne)) = {Ne}.

Now «(N,) is anode of Y, and hence it is a separating node. So, the above identity
implies that N, is a separating node of X; a contradiction.

Corollary 1. The second part of Theorem 2 holds.

Proof. Let X be a d-gonal curve; we must prove that the dual graph of X is
equivalent to a d-gonal graph of Hurwitz type. By hypothesis there exists an
admissible covering X — Y of degree d such that the stabilization of X is the
same as the stabilization of X; see the end of Sect. 1.3. Therefore the dual graph
of X is equivalent to the dual graph of X. By Lemma 1 the dual graph of X is of
Hurwitz type, hence we are done.

The proof of the first part of Theorem 2 will be based on the next Proposition, which
is a converse to Lemma 1.

Proposition 2. Let (G, w) be a weighted graph of genus > 2 and let T be a tree.
Let ¢ : (G,w) — T be a harmonic homomorphism of Hurwitz type. Then there
exists a covering o : X — Y whose dual graph map is ¢.



92 L. Caporaso

Proof. As ¢ is harmonic, for every v € V(G) condition (10) holds.

We will abuse notation and write ¢ also for the maps V(G) — V(T), H(G) —
H(T) and E(G) — E(T) induced by ¢. We begin by constructing two curves X
and Y whose dual graphs are (G, w) and T'.

For every u € V(T) we pick a pointed curve (D,, Q,) with D, = P!, and such
that the (distinct) points in Q,, are indexed by the half-edges adjacent to u:

0. = {qn, Yh € H(T)}.

We have an obvious identification U,ey(r)Q, = H(T'). To glue the curves D,
to a connected nodal curve Y we proceed as in Sect. 2.3, getting

Y — Uuev(r)Du
{9n = q5. Yh € H(T)}

By construction, T is the dual graph of Y.

Now to construct X we begin by finding its irreducible components C, with
their gluing point sets P,. Pick v € V(G) and u = ¢(v) € V(T). By hypothesis,
mg(v) > 1; we claim that there exists a morphism from a smooth curve C, of genus
w(v) to D,

o, :C,— D, (20)

of degree equal to m(v) such that for every 4’ € H,(T) the pull-back of the divisor
gy has the form

oy gy = Z re(h) pn

don()=h

for some points {p;, h € H(G)} C C,; weset P, = {pn, h € H(G)}.

Indeed, the degree of the ramification divisor of a degree-m morphism from a
curve of genus w(v) to P! of is equal to 2(m — 1 +w(v)). Therefore assumption (10)
guarantees that the ramification conditions we are imposing are compatible; now as
¢ is of Hurwitz type, the Riemann Existence theorem yields that such an «, exists;
see Remark 8. Observe that «, may have other ramification, in which case we can
easily impose that any extra ramification and branch point lie C, ~ P,, respectively
in D, ~ Q,, and that they are all simple.

Now that we have the pointed curves (C,, P,) for every v € V(G) such that C,
is a smooth curve of genus w(v) we can define X:

¥ Uyvev)Cy
{pn = py, Yhe HG)}

so, (G, w) is the dual graph of X.
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Let us prove that the morphisms {¢,, Vv € V(G)} glue to a morphism « :
X — Y. It suffices to check that for every pair (p;, p;) we have o, (py) = ox(py),
where p;, € C, and p; € G We have «,(py) = q4n) and o5(py) = 94 () Now,

looking at the involution of H(T) (see Sect.1.2), we have ¢(h) = (¢(h)), and
hence o : X — Y is well defined.

We now show that « is a covering. It is obvious that oz_l(Ysmg) = Xiing. Next,
for every node N, of X, the ramification indices at the two branches, p;, p; where
[h,h] = e, are equal, as they are equal to rg(h) andrg (7). As we have imposed that
a, has only ordinary ramification points away from the nodes of X, condition (Oc)
of Definition 3 is satisfied. Therefore the map o : X — Y is a covering; obviously
o has ¢ as dual graph-map.

To deduce Theorem 2 from the previous Proposition we will need to construct a
suitable homomorphism from a given morphism of Hurwitz type, which is done in
the next Lemma.

Lemma 2. Let ¢ : (G,w) — T be a degree-d morphism of Hurwitz type. Then
there exists a degree-d homomorphism ¢ : (G,w) — T of Hurwitz type fitting in a
commutative diagram

¢
—_—

N<—M)

N=<=—=W

@
—_—

21

whose vertical arrows are edge contractions, and such that (G, w) is equivalent to

(G,w).

Proof. The picture after the proof illustrates the forthcoming construction. Since
(G°,w") is equivalent to (G,w) we can assume G loopless. Consider the set of
“vertical” edges of ¢:

E}(G) = {e € E(G) : ¢(e) € V(G')}

and set Egor(G) = E(G) ~ E;7(G). Of course, if E5*(G) = @ there is nothing to
prove. So, lete € E;*(G) and vy, v be its endpoints. We setu = ¢(vi) = ¢(v2) =
¢ (e) and write

¢y (W) = viva, v} (22)

with n > 2 and the v; distinct. Set m; 1= mgy(v;) fori =1,...,n.

We begin by constructing G. First, we insert a wei ght zero vertex 7, in the interior
of e, and denote by é1, é; the two edges adjacent to it. Next, we attach m| — 1 leaves
at vi, mp — 1 leaves at v,, and m; leaves at v; for all i > 3; all these leaf-vertices
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l()

are given weight zero. We denote the j-th leaf-edge attached to v; by 0 and its

leaf-vertexbyw (l),with jO =1,...,mj—1ifi =1,2and j© = 1,...,m,- if
i>3.
We repeat this construction for every e € E(;er(G), and we denote the so obtained

graph by G . We have identifications
E(G) = El™(G) U {é1.65. Ve € E;*(G)} U {le“;(,.) Ve € E}(G).¥i,¥j®}
and

V(G) = V(G) U {i.. Ye € Ef(G)} U {wg’j,(i) Ve € E}(G), Vi, ¥j O},

There is a contraction G — G given by contracting, for every e € E;*(G), the

l()

edge ¢, and all leaf edges 0 Itis clear that G and G are equivalent.

Let us now construct T, for every e € EY(G) we add to T a leaf based at
u = ¢(e); we denote by /., and w, the edge and vertex of this leaf. We let T' be
the tree obtained after repeating this process for every e € E *(G). There is a

contraction 7 — T given by contracting all leaf edges l;.

Let G' := G — E§(G), so that G’ is also a subgraph of G. Denote by ¢ :
G' — T the restrlctlon of ¢ to G’; observe that ¢’ is a harmonic homomorphism.
To construct ¢ G — T we extend ¢’ as follows. For every ¢ € E s (G) we set,
with the above notations,

$@) = $@) =0 ,) =1
and
P(e) = ¢(W€j(1))
for every i and j . Finally, we define the indices of ¢

r¢(e) ifée Ehor(G)
otherwise.

r(@) =

It is clear that q3 is a homomorphism and that diagram (21) is commutative.
Let us check that ¢ is pseudo-harmonic. Pick e € E¥'(G). Consider a leaf vertex

wg;m of G. Then it is clear that condition (8) holds with m (;(wii; @) = 1. Next,
consider a vertex V.. It is again clear that condition (8) holds with m d;(f)e) = 2.

Finally, consider the vertices vy, ..., v, introduced in (22). lgecall that qAﬁ(v,-) =
¢(v;) = u and condition (8) holds for any edge in £E(T") C E(T) adjacent to u with
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m 43(‘}") = m;. We need to check that the same holds for the leaf-edges fe e E (f).

For v| and any leaf l; adjacent to ¢A>(v1) we have

m1—1
Yoo @ =Y Ul +rg@) =mi—1+1=m,
éeE, (G)d(e)=l, jO=1

(as r¢(l()

have

m) = r¢(el) 1) Similarly for v,. Next, for v; with i = 3,...,n we

m;

> np@= Yl =m

é€E,, (G):dle)=I, jO=1

Since ¢’ is pseudo-harmonic there is nothing else to check; hence ¢3 is pseudo-
harmonic. Now, to prove that ¢3 is harmonic we must check that condition (10)
holds; since ¢’ is harmonic, this follows immediately from the fact that the index of
q3 at each of the new edges is 1.

Finally, to prove that q3 is of Hurwitz type, pick a vertex of G if this vertex
is of type v, or w(; ., then the associated partition set contains only the trivial
partition, and hence it is obviously contained in some partition set of Hurwitz type.
The remaining case is that of a vertex v of G. Then either P (¢,v) = P (¢, v) (if v
is not adjacentto e € EV®"), or P. (qS, v) is obtained by adding the trivial partition to
P (¢, v); in both cases, since by hypothesis P (¢, v) is contained in a partition set of
Hurwitz type, so is P (qS, V).

The following picture illustrates q3 for a 3-gonal morphism ¢. All indices of ¢ are
set equal to 1, with the exception of the vertical edge e for which ry(e) = 0.

v2

<
-~
<)
_
)
4]
O
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2.4 Proof of Theorem 2

By Corollary 1 we need only prove the first part of the Theorem. We first assume
that G is free from loops.

By hypothesis we have a non-degenerate, degree- d harmonic morphism ¢ :
G — T of Hurwitz type, where T is a tree. We let ¢ G — T be a degree- d,
harmonic homomorphism associated to ¢ by Lemma 2. Now ¢ G—>T satisfies
all the assumptions of Proposition 2, hence there exists a covering o X > Y
whose dual graph-map is ¢ G — T. We denote by yi,....,0p €Y the smooth
branch points of .

Suppose now that (G,w) is stable; we claim that o is admissible, i.e. that
(Y;y1,...,yp) is stable. We write ¥ = Uaev(f)D,; as usual. For every branch

point y; we attach a leg to T, having endpoint &t € V(f) such that y; € D;. We
must prove that the graph T with these b legs has no vertex of valency less than 3.
Pick a vertex of 7. There are two cases, either it is a vertex u € V(T) oritis aleaf
vertex w,.

In the first case the preimage of u via ¢3 is made of vertices of the original graph
G. So, pick v € V(G) with ¢(v) = u. The map o, : C, — D, has degree my(v). If
my(v) = 1, then, of course, C, = P! and we have val(u) > val(v), and val(v) > 3
as G is stable; hence val(u) > 3 as wanted. Notice that this is the only place where
we use that (G, w) is stable, the rest of the proof works for any d-gonal graph. If
mg(v) > 2 then the map a, has at least two branch points, each of which corresponds
to a leg adjacent to u. If o, has more than two branch points, then u has more than
two legs adjacent to it, hence we are done; if o, has exactly two branch points, then,
by Riemann-Hurwitz, C, =~ P' and hence C, € X as X has genus > 2. Therefore
C, N X ~C, # @, and hence there is at least one edge of T adjacent to u, hence
val(u) > 3.

Now consider a vertex of type w,. By construction, its preimage contains the
vertex V,, for which m d;(f)e) = 2; hence the corresponding component of X maps
two-to-one to the component corresponding to w,, and hence there are at least 2 legs
attached to w, (corresponding to the two branch points). There is also at least one
edge because, as before, w, is not an isolated vertex of T. So, val(w,) > 3. This
proves that « is an admissible covering.

Now, X is a curve whose dual graph is (G w). Its stabilization is a stable curve,
X, whose dual graph is clearly the original (G, w). As we already mentioned, the
fact that X is d-gonal follows from [16, Sect 4], observing that X is the image of
the admissible covering o : X > (Y; y1,...,y») under the morphism (6). This
concludes the proof in case (G, w) is stable and loopless.

Now let us drop the stability assumption on (G,w). If « is admissible, the
previous argument yields that the stabilization of Xisd -gonal. But the stabilization
of X is the same as the stabilization of X , hence we are done.

Suppose « is not admissible; then there are two cases. First case: T has a vertex
u of valency 1. By the previous part of the proof this can happen only if every vertex
ve ¢>;1 (1) has valency 1 and « induces an isomorphism C, = P'; such components
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of X are called rational tails. We now remove the component D, from Y, and all the
rational tails mapping to D, from X . Observe that this operation does not change
the stabilization of X. This corresponds to removing one leaf from T and all its
preimages (all leaves) under ¢. We repeat this process until there are no 1-valent
vertices left.

Second case, T has a vertex u of valency 2. Again by the previous part this
happens only if every v € ¢y, "(u) has valency 2 and « induces an isomorphism
C, = P'. We collapse the component D, of Y and all the exceptional components
of X mapping to D,. Again, this operation does not change the stabilization of X.
We repeat this process until there are no 2-valent vertices left.

In this way we arrive at two curves X’ and (Y’; y1,..., y»), the latter being
stable, endowed with a covering o’ : X’ — Y’ induced by «, by construction;
indeed the process did not touch the branch points yy, ..., yp, which are now the

smooth branch points of «’. The covering o’ is admissible, hence the stabilization of
X'’ is d-gonal (as before). Since the stabilization of X’ is equal to the stabilization
of X we are done. The loopless case is now proved.

We now suppose that G has some loop; let (G°, w°) be its loopless model. By
Definition 7, (G°, w") is d-gonal. The previous part yields that there exists a curve
X° whose dual graph is (G° w") and whose stabilization is d-gonal. Since the
stabilization of X is equal to the stabilization of X° we are done. Theorem 2 is
proved. |

Remark 10 (Hyperelliptic and 2-gonal graphs). 1t is easy to construct hyperelliptic
(i.e. divisorially 2-gonal) graphs that are not 2-gonal; for example the weightless
graph G in Example 1 forn > 3.

On the other hand every 2-gonal stable graph is hyperelliptic, by Theorem 2 and
Proposition 4; see also Theorem 4. More generally, using Remark 7 one can prove
directly that if a graph admits a pseudo-harmonic morphism of degree 2 to a tree,
then it is hyperelliptic. We omit the details.

Example 4 (A 3-gonal graph which is not divisorially 3-gonal). In the following
picture we have a pseudo-harmonic morphism ¢ of degree 3 from a weightless graph
G of genus 5. There is one edge, joining v, and v3, where the index is 2, and all other
edges have index 1. The graph G is easily seen to be 3-gonal, but not divisorially
3-gonal, i.e. W,'(G) = 0. We omit the details.
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Example 5 (A divisorially 3-gonal graph which is not 3-gonal). In the graph G
below, weightless of genus 5, we have

3vi ~3vy ~ =V +2vy + 2v3 ~ 3v3 ~ vy + Vo + V3 ~ 31y

so the graph is divisorially 3-gonal.

/\ /2.03\ /\.

) o -

R
2] V4
V2 ) v3

Let us show that G does not admit a non-degenerate pseudo-harmonic morphism
of degree 3 to a tree. By contradiction, let ¢ : G — T be such a morphism. Then
the edges adjacent to v; cannot get contracted (if one of them is contracted, all
of them will be contracted, for T has no loops; but if all of them get contracted
then mgy(v;) = 0, which is not possible). Therefore the three edges adjacent to
vi are all mapped to the unique edge, e}, joining ¢ (v;) with ¢(v>). Similarly, the
edges adjacent to v4 are all mapped to the unique edge €} joining ¢ (v4) with ¢ (v3).
Therefore, as ¢ as degree 3, all edges between v; and v,, and all edges between v3
and v4 have index 1, hence mg(vi) = mg(v2) = my(v3) = mgy(v4) = 3.

Now, if ¢(v2) = ¢ (v3) then one easily checks that ¢ is contracted and e;, e3 are
mapped to the same edge e} of T', which is different from ¢/ and e}. Therefore we
have 1 < rg4(e;) < 2fori = 1,2. But then by (8) we have

my(v2) = Z re(e) =rp(e2) <2

e€E,, (G):¢(e)=e§

and this is a contradiction.

It remains to consider the case ¢ (v2) # ¢(v3), let e, = ¢ (eo). Then vy is either
mapped to ¢ (v2) by contracting e,, or to ¢ (v3) by contracting e3 (for otherwise T
would not be a tree). With no loss of generality, set ¢ (v2) = ¢(vo) so thatrg(e) =0.
Now, since ¢(e3) = ¢ (eg) = ej we have ry(ep) < 2. Hence

mg(v2) = Z re(e) = ry(eo) <2

€€E,, (G):p(e)=¢]

and this is a contradiction.
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3 Higher Gonality and Applications to Tropical Curves

3.1 Basics on Tropical Curves

A (weighted) tropical curve is a weighted metric graph I = (G, w, £) where (G, w)
is a weighted graph and £ : E(G) — R.,. The divisor group Div(I") is, as usual,
the free abelian group generated by the points of I" (viewed as a metric space). The
weightless case has been carefully studied in [14], for example; the general case has
been recently treated in [1], to which we refer for the definition of the rank rp (D)
of any D € Div(I") and its basic properties. Here we just need the following facts.
Given I' = (G, w,{) we introduce the tropical curve I'* = (G", 0, £*) such that
GV is as in Definition 4, the weight function is zero (hence denoted by 0), and £* is
the extension of £ such that £*(e) = 1 for every e € E(G") ~ E(G"). We have a
natural commutative diagram

Div(G, w) & Div(G"™)

.

Div(I") ——— Div(I'") (23)

the above injections will be viewed as inclusions in the sequel. Then, for any D €
Div(I") we have, by [1, Sect. 5]

rr(D) = rra(D). (24)

So, the horizontal arrows of the above diagram preserve the rank. If the length
functions on I" and I'" are identically equal to 1, then, by [18, Thm 1.3], also
the vertical arrows of the diagram preserve the rank.

For a tropical curve I" we denote by W (I") the set of equivalence classes
of divisors of degree d and rank at least r; we say that I" is (d,r)-gonal if
Wi (I) # 0.

The moduli space of equivalence classes of tropical curves of genus g is denoted
by M ;Op, and the locus in it of curves whose underlying weighted graph is (G, w)
is denoted by M"°P(G, w). This gives a partition

M = UM (G, w)

indexed by all stable graphs (G, w) of genus g.
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3.2 From Algebraic Gonality to Combinatorial and Tropical
Gonality

Theorem 3. Let X € M;,d and let (G, w) be the dual graph of X. Then

(A) There exists a refinement (G, W) of (G,w), such that W) (G, W) # 0;
(B) There exists a tropical curve I' € M"P(G,w) such that W] (I") # @.

Proof. By hypothesis there exists a family of curves, f : 2" — B, with B smooth,
connected, of dimension one, such that there is a point by € B over which the fiber
of f is isomorphic to X, and the fiber over any other point of B is a smooth curve
whose W is not empty. In the sequel we will work up to replacing B by an open
neighborhood of by, or by an étale covering. Therefore we will also assume that f
has a section.

Forevery b € B* = B~{bo} we have W/ (X}) # 0 (X, is the fiber of f over b).
Write f* : 2% — B* for the smooth family obtained by restricting f to 2" ~ Xp.
Recall that as b varies in B* the W] (X;) form a family ([2, Sect. 2] or [3, Ch. 21]),
i.e. there exists a morphism of schemes

W, ;o — B* 25)

whose fiber over b is W] (X).

Up to replacing B by a finite covering possibly ramified only over by, we may
assume that the base change of the morphism (25) has a section. The base change
of f to this covering may be singular (or even non normal) over by, but will still
have smooth fiber away from by. Let & : 2 — B be the desingularization of the
normalization of this base change of f. Then the fiber of & over by is a semistable
curve Z, whose stabilization is X ; all remaining fibers are isomorphic to the original
fibers of f. By construction, the morphism

W), — B (26)

has a section, o. By our initial assumption i : & — B is endowed with a section,
hence, by [9, Prop. 8.4], ¢ corresponds to a line bundle .£* € Pic Z*. Since 2
is nonsingular .£* extends to some line bundle .Z on %, and we have, for every
b e B:

"(Zy, Lz,) = 1.
Let (G, w) be the dual graph of Z,. We can apply the weighted specialization
Lemma [1, Thm 4.9] to & — B with respect to. the line bundle .. This gives,
viewing the multidegree deg .|z, as a divisor on G,

rémdeg Lz) > 1(Zy. Lz,) > 1

and therefore W; (G, W) # 0.
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Now, by construction (é w) a refinement of (G, w) (the dual graph of X). Hence
the first part is proved.

For the next part, consider the tropical curve I = (G w, E) with E(e)
for every e € E(G) Let D € W’(G w). Then D is also a divisor on r (cf
Diagram (23)). We claim that 72 (D) > r.

We have, by definition,

r < r(éﬁ,)(D) =raa(D).

Let f'” = (CA}’A“,Q, é@-) be the tropical curve such that é@'(e) = 1 for every e €
E(I'"); so D is also a divisor on I'". By [18, Thm 1.3], we have

rea(D) = rpa(D).
Now, as we noticed in (24) we have
rea(D) = rpa(D).

The claim is proved; therefore W) (f' ) # @.

The supporting graph (G w) of I" is not necessarily stable; its stabilization,
obtained by removing every 2-valent vertex of weight zero, is the original (G, w),
so that I is tropically equ1valent toacurve I' € M, ;P (G, w). Since the underlying
metric spaces of I" and r coincide, we have

Wi () = Wy (I") # 0.

The statement is proved.

Corollary 2. Every d-gonal stable weighted graph admits a divisorially d-gonal
refinement.

Proof. Let (G,w) be a d-gonal stable graph. By Theorem 2 there exists X € M;’ d
whose dual graph is (G, w). By Theorem 3 we are done.

The proof of Theorem 3 gives a more precise result, to state which we need some
further terminology.

Let X be any curve. A one-parameter smoothing of X is a morphism f : 2" —
(B, by), where B is smooth connected with dim B = 1, by is a point of B such that
£~ Y(bo) = X, and all other fibers of f are smooth curves. By definition, 2" is a
surface having only singularities of type A4, at the nodes of X. To f we associate
the following length function £ ; on Gx:

Ly E(Gx) — R.o; e n(e)
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where 7 (e) is the integer defined by the fact that 2™ has a singularity of type A, ()1
at the node of X corresponding to e. In particular, if 2" is nonsingular, then £ / is
constant equal to one. This defines the following tropical curve associated to f:

Ff = (Gx,WX,ef).

Similarly, we define a refinement of the dual graph of X by inserting n(e)—1 vertices
of weight zero in e, for every e € E(Gy); we denote this refinement by (G, wy).
Now, if 2 — 2 is the minimal resolution of singularities and & : & — B the
composition with f, then (G s, w) is the dual graph of the fiber of / over by; we
denote by X / this fiber.

For example, the surface 2~ is nonsingular if and only if X = X, if and only if
(Gx.wx) = (Gy.wy)

The following is a consequence the proof of Theorem 3, where X s corresponds
to the curve Zy, while (G, wy) = (é w),and I'y =T

Proposition 3. Let [ : & — (B, by) be a one-parameter smoothing of the curve
X. If the general fiber of f is (d,r)-gonal (i.e. if Wj(f~' (b)) # @ for every
b # by) then the following facts hold.

1. Wi(Gr,wy) # 0.
2. Wi(Iy) # 0.
3. Wi(Xy) #0.

Remark 11. The tropical curve I'y may be interpreted as a Berkovich skeleton of
the generic fiber 2k of Z° — B, where K is the function field of B (note that Iy
depends on 2"). Then the theorem says that the Berkovich skeleton of a (d, r)-gonal
smooth algebraic curve over K is a (d, r)-gonal tropical curve.

4 The Hyperelliptic Case

4.1 Hyperelliptic Weighted Graphs

Recall that a graph is hyperelliptic if it has a divisor of degree 2 and rank 1.
Hyperelliptic graphs free from loops and weights have been thoroughly studied in
[7]. In this subsection we extend some of their results to weighted graphs admitting
loops.

Recall the notation of Definition 4. We will use the following terminology.
A 2-valent vertex of is said to be special if its removal creates a loop. For example,
given (G, w), every vertex in V(G") ~ V(G) is special.
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Lemma 3. Let (G, w) be a weighted graph of genus g. Then (G, w) is hyperelliptic
if and only if so is G" if and only if so is (G°, w°).

Proof. By Remark 4 we can assume g > 2. By definition, if G is hyperelliptic so
is G%. Conversely, assume G" hyperelliptic and let D € Div(G") be an effective
divisor of degree 2 and rank 1. If Supp D C V(G) we are done, as r(G,w)(D) =
rgw(D). Otherwise, suppose D = u+u’ withu € V(G")~V(G). So, u is a special
vertex whose removal creates a loop based at a vertex vof G. As rgw(u+u') = 1, it
is clear that u’ # v (e.g. by [1, Lm. 2.5(4)]), and a trivial direct checking yields that
u' = u. Moreover, we have 2u ~ 2v and hence rgv(2v) = 1, by [1, Lm. 2.5(3)].
As (GO)W0 = (", the second double implication follows the first.

Let e be a non-loop edge of a weighted graph (G, w) and let vi,v, € V(G) be
its endpoints. Recall that the (weighted) contraction of e is defined as the graph
(Ge,we) such that e is contracted to a vertex v of G,, and w,(v) = w(vy) + w(v2),
whereas w, is equal to w on every remaining vertex of Go.

We denote by (G, W) the 2-edge-connected weighted graph obtained by contract-
ing every bridge of G as described above.

By [7, Cor 5.11] a weightless, loopless graph is hyperelliptic if and only if so is
G. The following Lemma extends this fact to the weighted case.

Lemma 4. Let (G, w) be aloopless weighted graph of genus at least 2. Then (G, w)
is hyperelliptic if and only if so is (G, w).

Proof. By Lemma 3, (G,w) is hyperelliptic if and only if so is G". Similarly,
(G,w) is hyperelliptic if and only if so is G". Now, G is obtained from G"
by contracting all of its bridges (indeed, the bridges of G and G" are in natural

bijection). Therefore, as we said above, G" is hyperelliptic if and only if so is G
So we are done.

Recall, from [7], that a loopless, 2-edge-connected, weightless graph G is
hyperelliptic if and only if it has an involution ¢ such that G/t is a tree. If G has genus
at least 2, this involution is unique and will be called the hyperelliptic involution.
Furthermore, the quotient map G — G/ is a non-degenerate harmonic morphism,
unless |V(G)| = 2; see [7, Thm 5.12 and Cor 5.15]. We are going to generalize this
to the weighted case.

Remark 12. Let G be a loopless, 2-edge-connected hyperelliptic graph of genus >2
and ¢ its hyperelliptic involution. Let v € V(G) be a special vertex whose removal
creates a loop based at the vertex u. Then ¢t(v) = v, ((u#) = u and ¢ swaps the two
edges adjacent to v.

Indeed, G/ is a tree, hence the two edges adjacent to v are mapped to the same
edge by G — G/t. As v has valency 2 and u has valency at least 3 (G has genus at
least 2), ¢ cannot swap v and u. Hence ¢(v) = v and t(u) = u.

Lemma 5. Let (G,w) be a loopless, 2-edge-connected weighted graph of genus
at least 2. Then (G,w) is hyperelliptic if and only if G has an involution t, the
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hyperelliptic involution, fixing every vertex of positive weight and such that G/u is
a tree.

t is unique and, if |V(G)| > 3, then the quotient G — G/t is a non-degenerate
harmonic morphism of degree 2.

Proof. Assume that G has an involution as in the statement; then we extend ¢ to an
involution ¢ of G" by requiring that (* fix all the (special) vertices in V(G")~V(G)
and swap the two edges adjacent to them. It is clear that G /(" is the tree obtained
by adding w(v) leaves to the vertex of G/t corresponding to every vertex v € V(G).
Hence G" is hyperelliptic, and hence so is (G, w) by Lemma 3.

Conversely, suppose G" hyperelliptic and let :" be its hyperelliptic involution.
Letv € V(G) C V(G") have positive weight. Then there is a 2-cycle in G" attached
atv; lete™ and e~ be its two edges, and u its special vertex. By Remark 12 we know
that ¢ fixes v and u and swaps et and e~. Notice that the image in G" /1" of every
such 2-cycle is a leaf.

We obtain that the restriction of (* to G is an involution of G, written ¢, fixing all
vertices of positive weight. Finally, the quotient G/ is the tree obtained from G" /("
by removing all the above leaves, so we are done.

As G is 2-edge-connected, by Remark 6 we can apply some results from [7]. In
particular, the uniqueness of ¢ follows from Corollary 5.14. Next, if |V(G)| > 3
then G — G/t is harmonic and non-degenerate by Theorem 5.14 and Lemma 5.6.

Corollary 3. Let (G,w) be a loopless, 2-edge-connected graph of genus at least
2, having exactly two vertices, vi and v,. Then (G, w) is hyperelliptic if and only if
either |E(G)| =2, or |E(G)| = 3 and w(vi) = w(vz) = 0.

Proof. Assume (G, w) hyperelliptic. Let |E(G)| > 3; by contradiction, suppose
w(vy) > 1. By Lemma 5 the hyperelliptic involution fixes v;, and hence it fixes also
vo; therefore G/t has two vertices. Since there are at least three edges between vy
and v, such edges fall into at least two orbits under ¢, and each such orbit is an edge
of the quotient G /¢, which therefore cannot be a tree. This is a contradiction. The
other implication is trivial; see Example 1.

4.2 Relating Hyperelliptic Curves and Graphs

Proposition 4. Let X be a hyperelliptic stable curve. Then its dual graph (Gx,wy)
is hyperelliptic.

Proof: We write (G,w) = (Gx,wy) for simplicity. By Theorem 3, there exists
a hyperelliptic refinement, (G w), of (G,w). Then the weightless graph GV i
hyperelliptic. By Lemma 3 it is enough to prove that the weightless graph G”
is hyperelliptic. Now, one easily checks that G" is obtained from G¥ by removing
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every non-special 2-valent vertex of weight zero, and possibly some special vertex
of weight zero. On the other hand, by Lemma 3, the removal of any special vertex
of weight zero does not alter being hyperelliptic. Therefore G* is hyperelliptic if so
is the graph obtained by removing every 2-valent vertex of weight zero from G*.
This follows from the following Lemma 6.

Lemma 6. Let (G, vAvA) be hyperelliptic of genus at least 2 and let (G,w) be the
graph obtained from G by removing every 2-valent vertex of weight zero. Then G is
hyperelliptic.

Proof. By Lemma 4, contracting bridges does not alter being hyperelliptic, hence
we may assume that G is 2-edge-connected. By Lemma 3 up to inserting some
special vertices of weight zero we can also assume that G has no loops. Finally, we
can assume that G has at least three vertices, for otherwise the result is trivial.

It suffices to prove that the loopless model (G°, w°) (see Definition 7) of (G, w)
admits an involution ¢ fixing every vertex of positive weight and such that G°/.
is a tree, by Lemma 5. As (G, w) is hyperelliptic, it admits such an involution,
denoted by . Recall that the quotient map G—>G /T is a non-degenerate harmonic
morphism.

Observe that G° is obtained from G by removing all the non-special 2-valent
vertices of weight zero. Let § € V(G) be such a vertex and write é,, &, for the edges
of G adjacent to V. To prove our result it suffices to show that if one removes from a
hyperelliptic graph either a non-special 2-valent vertex of weight zero fixed by the
hyperelliptic involution, or a pair of non-special 2-valent vertices swapped by the
hyperelliptic involution, then the resulting graph is hyperelliptic.

First, let £(v) = v and let (G’, w’) be the graph obtained by removing v. We have
(1) = é (as G — G/i is non-degenerate), and ¥ is mapped to a leaf of G/i.
Now, V(G') = V(G) ~ {9}, and E(G') = {e} U E(G) ~ {é,é,} where e is the
edge created by removing v. We define the involution ¢’ of G’ by restricting I on
V(G’) and on E(G) ~ {é,é,}, and by setting (/(¢) = e. Since ¢’ swaps the two
endpoints of e (because so does ©), we have that e is contracted to a point by the
quotient G’ — G’/!". Therefore G’ /!’ is the tree obtained from G /i by removing
the leaf corresponding to v. It is clear that ¢ fixes all vertices of positive weight,
hence (G’,w’) is hyperelliptic.

Next, let {(v) = V' # v; with ¥ and ¥ non-special and 2-valent, then the vertex
of G /7 corresponding to {, ¥’} is 2-valent as well. Moreover, ? and ¥ have weight
zero, by Lemma 5. Let us show that the graph (G”,w”) obtained by removing v
and V' is hyperelliptic. Now  maps €, é, to the two edges adjacent to . We denote
by e and ¢’ the new edges of G”. We define  on V(G”) = V(G) ~ {9,?} by
restricting 7; next, we define ¢ on E(G”) so that (" (e) = ¢’ and " coincides with
T on the remaining edges. It is clear that ¢’ is an involution fixing positive weight
vertices and such that the quotient G” /¢ is the tree obtained from G /7 by removing
the 2-valent vertex corresponding to {V, '}. We have thus proved that (G”,w") is
hyperelliptic. The proof is now complete.
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Theorem 4. Let (G,w) be a stable graph of genus g > 2. Then the following are
equivalent.

(A) M™¢(G,w) contains a hyperelliptic curve.

B) (G,w) is hyperelliptic and for every v € V(G) the number of bridges of G
adjacent to v is at most 2w(v) + 2.

(C) Assume |V(G)| # 2; the graph (G, w) is 2-gonal.

Proof of the Lemma. (C) = (A) by Theorem 2 and Example 2.

(A) = (B). Let X be a hyperelliptic curve such that (Gx,wx) = (G, w). Then,
by Proposition 4, (G, w) is hyperelliptic. Let o : X — Y be an admissible covering
corresponding to X'; by Remark 3 (C), X is semistable. Therefore the dual graph of
X, written (G w),is a refinement of (G, w) (as X is the stabilization of X ).

Letv e V(G) C V(G) and C, C X be the component corresponding to v, recall
that C, is nonsingular (by Remark 3) of genus w(v). Now let € € E(é) be a bridge
of G adjacent to v. Then the corresponding node N; of Xisa separating node of X,
and hence o~ (a(N;)) = N;. This implies that the restriction of « to C, ramifies
at the point corresponding to N;. By the Riemann-Hurwitz formula, the number of
ramification points of ¢c, is at most 2w(v) + 2, therefore the number of bridges of
G adjacent to v is at most 2w(v) + 2.

Now, by construction, we have a natural identification Ev(é) = E,(G) which
identifies bridges with bridges. Hence also the number of bridges of G adjacent to
vis at most 2w(v) + 2, and we are done.

(B) = (C) assuming |V(G)| # 2. We can assume |V(G)| > 3 for the case
|[V(G)| = 1 is clear; see Example 3. Let us first assume that G has no loops. By
Lemma 4, the 2-edge-connected graph (G, W) is hyperelliptic.

Suppose |V(G)| > 2. By Lemma 5, G has an involution 7 such that

¢:G—T:=G/1

is a non-degenerate harmonic morphism of degree 2, with T a tree. Let us show
that ¢ corresponds to a non-degenerate pseudo-harmonic morphism of degree 2,
¢ : G — T, with T atree, such that r4(e) = 2 for every bridge e. Suppose that G
has a unique bridge e, which is contracted to the vertex v of G; let @ = ¢(v) € V(T).
Let T be the tree obtained from 7 by replacing the vertex # by a bridge e’ and its
two endpoints in such a way that there exists a morphism ¢ : G — T mapping e to
¢’ fitting in a commutative diagram

Q\

H<7Q
o
e

’ﬂ \

27)

where the horizontal arrows are the maps contracting e and e’ (it is trivial to check
that such a ¢ exists). To make ¢ into an indexed morphism of degree 2 we set
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r¢(e) = 2 and we set all other indices to be equal to 1. Since ¢ was harmonic and
non-degenerate, we have that ¢ is pseudo-harmonic and non-degenerate.

If G has any number of bridges, we iterate this construction one bridge at the
time. This clearly yields a pseudo-harmonic, degree 2, non-degenerate morphism
¢ : G — T where T is a tree.

We claim that condition (10) holds. Indeed, we have rg(e) = 2 if and only if
e is a bridge. Therefore (10) needs only be verified at the vertices of G that are
adjacent to some bridge; notice that for any such vertex v we have my(v) = 2.
Writing brdg(v) for the number of bridges adjacent to v, we have, as by hypothesis,
brdg(v) < 2w(v) + 2,

Z (rp(e) — 1) <brdg(v) < 2w() + 2 = 2(w() + my(v) — 1).
e€E,(G)NEL™(G)

This proves that (10) holds, that is, (G, w) is a 2-gonal graph. So we are done.

Suppose |V(G)| = 2, hence the bridges of G are leaf-edges. By Corollary 3, if
|E (E)| > 3, then all the weights are zero, hence, as G is stable, G = G, which
is excluded. If |E(G)| = 2, then the vertices must be fixed by the hyperelliptic
involution (for otherwise they would have weight zero by Lemma 5, contradicting
that the genus be at least 2). But then G has clearly an involution ¢ swapping its
two edges and fixing the two vertices, whose quotient is a non-degenerate harmonic
morphism of degree 2 to a tree, as in the previous part of the proof, which therefore
applies also in the present case.

Suppose |V(G)| = 1. Then G is a tree, hence the identity map G — G with all
indices equal to 2 is a pseudo-harmonic morphism, ¢, of degree 2. Arguing as in the
previous part we get ¢ is harmonic; so we are done.

Finally, suppose G admits some loops. Let (G, w) be the loopless model; then
|[V(G®)| > 3. By the previous part we have that (G°, w°) is 2-gonal, hence so is
(G,w).

(B) = (A) assuming |V(G)| = 2. If G has loops, then |V(G°)| > 3 and we can
use the previous implications (B) = (C) = (A). So we assume G loopless. By [16],
hyperelliptic curves with two components are easy to describe. Let X = C; U C;
with C; smooth, hyperelliptic of genus w(v;) and such that X € M¥¢(G,w). If
|E(G)| = 1 for X to be hyperelliptic it suffices to glue p; € C to p, € C, with p;
Weierstrass point of C; fori = 1, 2.

If |[E(G)| = 2 for X to be hyperelliptic it suffices to glue p1,q1 € Cito p2,qa €
C, with h°(C;, p; + q;) > 2fori =1,2.

If |E(G)| = 3, by Corollary 3 all weights are zero. For X to be hyperelliptic
it suffices to pick two copies of the same rational curve with |E(G)| marked
points, and glue the two copies at the corresponding marked points. The theorem is
proved.
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Caustics of Plane Curves, Their Birationality
and Matrix Projections
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Abstract After recalling the notion of caustics of plane curves and their basic
equations, we first show the birationality of the caustic map for a general source
point S in the plane. Then we prove more generally a theorem for curves D in the
projective space of 3 x 3 symmetric matrices B. For a general 3 x 1 vector S the
projection to the plane given by B — BS is birational on D, unless D is not a line
and D is contained in a plane of the form Delta, := {B|Bv = 0}.

1 Introduction and Setup

Given a plane curve C and a point S, a source of light (which could also lie at
infinity, as the sun), the light rays L p originating in S, and hitting the curve C in
a point P, are reflected by the curve, and the caustic 4" of C is the envelope of the
family of reflected rays Ap.

Our first Theorem 3 says that the correspondence between the curve C and the
caustic curve ¥ is birational, i.e., it is generically one to one, if the light source point
S is chosen to be a general point.
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We learnt about this problem in [4], to which we refer for an account of the
history of the theory of caustics and for references to the earlier works of von
Tschirnhausen, Quetelet, Dandelin, Chasles, and more modern ones (as [2, 3]).

Our methods are from algebraic geometry, so we got interested in a generaliza-
tion of this result, in which the special form of a certain curve D plays no role: we
achieve this goal in Theorem 4.

Let us now describe the mathematical set up for the description of caustics.

Let P2 = P% and let C C P? be a plane irreducible algebraic curve, whose
normalization shall be denoted by C’.

Choose an orthogonality structure in the plane, i.e. two points, called classically
the cyclic points, and let PL_ be the line (‘at infinity’) joining them.

The two cyclic points determine a unique involution ¢ on PL | for which the cyclic
points are fixed, hence an involution, called orthogonality, on the pencils of lines
passing through a given point of the affine plane P? \ P._.

Without loss of generality, we choose appropriate projective coordinates such
that

L (x,9,0) = (=, x,0), Fix()) = {(1, £v/—1,0)}.

Let S € P? be a light source point, and to each point P € P2 \ {S§} associate the
line Lp := PS. In the case where P € C, we define A p, the reflected light ray,
as the element of the pencil of lines through P determined by the condition that the
Cross ratio

CR(Np.Tp,Lp,Ap) = —1,

ensuring the existence of a symmetry with centre P leaving the tangent line 7Tp to
C at P and the normal line Np := ¢(7Tp) fixed, and exchanging the incoming light
ray L p with the reflected light ray Ap.

We thus obtain a rational map of the algebraic curve C to the dual projective
plane:

A:C -—-> (PHY.

Definition 1. The Caustic % of C is defined as the envelope of the family of lines
{Ap}: in other words, setting I" := A(C), ¢ = I'V.

Remark 1. since the biduality map I --> I'V is birational (cf. [7], pages 151—
152), the map C --» % is birational iff A : C --> I" is birational. Moreover, by
the biduality theorem, the class of the caustic % is the degree of I", and the degree
of € is the class of I".

We shall quickly see in the next section the basic calculations which give the
class of ¥, i.e. the degree of I', in the case where C and S are general (more
precise Pliicker type formulae which show how the singularities of the curve C
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and the special position of S make these numbers decrease are to be found in [4]
and [5]).

In Sect. 3 we show our fist result, that A is birational onto its image for general
choice of the source point S, if C is not a line (in this case I" is a line, and the caustic
is a point). The next section recalls a well known lemma about lines contained in
the determinantal variety A which is the secant variety of the Veronese surface V.

This lemma plays a crucial role in the proof of our main result, which says the
following (see Theorem 4 for more details):

Theorem 1. Let D C P := P(Sym*(C?)) be a curve.

Then, for general S € P2, the projection s : P = P(Sym*(C?)) --> P? given
by ws(B) := BS has the property that its restriction to D, ms|p, is birational
onto its image, unless (and this is indeed an exception) D is a curve contained
in a plane A(S’) = {B| BS' = 0} (contained in the determinantal hypersurface
A = {B|det(B) = 0}) and D is not a line.

This result suggests the investigation of a more general situation concerning the
birationality of linear projections given by matrix multiplications.

Problem 1. Given a linear space P of matrices B, and a linear space P’ of
matrices S, consider the matrix multiplication 7s(B) = BS. For which algebraic
subvarieties D C P is the restriction of the projection 75| p birational onto its image
for a general choice of S € ’?

2 Equations in Coordinates

Let f(xo,x1,x2) = 0 be the equation of C in the appropriate system of homoge-
neous coordinates, let d := deg( f), and let F := (fy(x), f1(x)) be the first part of
the gradient of f. For a point x = (xo, X1, X») we define

(F,x) = fo(x)xo + fi(x)x1, {F Ax}:= fo(x)x; — fi(x)xo.

Then the tangent line Tp at a point P with coordinates x is the transpose of the

row vector ( fo(x), f1(x), f2(x)).

The normal line Np is orthogonal to the tangent line, hence it has the form
Np = (- fi(x), fo(x), f3(x)), and the condition that P € Np forces the unknown
rational function f3(x) to fulfill — f;(x)xo + fo(x)x1 + f3(x)x2 = 0, thus

" Np is the row vector

'Np = (=x2f1(x). x2 fo(x), —{F Ax}).

We find now the line L p as the line in the pencil spanned by 7p and Np passing
through S: as such the line Lp is a column vector which is a linear combination
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ATp + N p; the condition that S € L p then determinesA = —'Np-S,u =" Tp-S,
where S is the transpose of the vector (s, 51, 52).
Hence we get

Lp(S)= A(P)S, A(P):=-Tp th + Np rTP,

in particular the matrix A(P) is skew symmetric.
To obtain the reflected ray A(P) it is sufficient, by definition, to change the sign
of A, and we get therefore:

Ap(S)=B(P)S, B(P):= Tp'Np + Np'Tp.

Remark 2. (1) The matrices A(P) and B(P) are functions which are defined for
all general points P of the plane.

(2) The matrix B(P) is symmetric and has rank at most two, since its image is
generated by Np and Tp; moreover we have

B(P)P =0,A(P)P =0, YP € C.

(3) Assume that C is not a line passing through a cyclic point: then the matrix
B(P) has precisely rank two on the non empty open set where f2 + f7 # 0
and x, # 0; the former condition clearly holds for a general point P € C,
otherwise the dual curve of C would be contained in a line yy = £+/—1y;.

(4) The entries of the matrix B(x) are given by polynomials of degree 2d — 1.

By the preceding remark follows easily the classical theorem asserting that

Theorem 2. The class of the caustic, i.e., the degree of I', equals d(2d — 1), for a
general curve C and a general choice of S.

In fact C has degree d, and B(x)S is given by polynomials of degree 2d — 1 in
x, which have no base points on a general curve C.

3 Birationality of the Caustic Map

Theorem 3. If C is not a line, then the caustic map C --> € is birational, for
general choice of S.

Proof. As already remarked, the caustic map is birational iff the map A : C --> I
is birational. Observe that A defines a morhism C’ — I' which we also denote
by A.

The matrix B, whose entries are polynomials of degree 2d — 1, yields a map

B:C' — D C P° = P(Sym?*(C?)).
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Lemmal. B:C’' — D := ®(C) is birational.

Proof. 1t suffices to recall Remark 2: for a general point P € C, B(P) has rank
exactly two, and B(P)P = 0. Hence P = ker(B(P)), and the matrix B(P)
determines the point P € P2, [ ]

We have now a projection P(Sym?(C?)) --> P? given by
7s(B) := BS.
Consider the linear subspace
W :={B|Boo + Bi1 = 0}.

We observe preliminarily that the curve D is contained in the linear subspace
W since, setting for convenience f; := f;(x), the matrix B(x) has the following
entries:

Boo = —2x2 fo fi, Bi1=2x2/0 /1.

Then our main result follows from the next assertion, that, for a general choice
of S € P2, the projection s yields a birational map of D onto I" := ms(D).
In order to prove this, we set up the following notation:

Ag = {BIBS = 0}, A= {BI det(B) = 0} = UgAg.
Observe that A is the secant variety of the Veronese surface
V :={B| rank(B) = 1}.

Observe that the curve D is contained in the linear subspace W, is contained in
A but not contained in the Veronese surface V.

We are working inside the subspace W, and we observe first of all that the centre
of the projection g restricted to W is the linear space

Ws = As N W.

Observe moreover that A N W = Ug Ws.

Now, the projection s is not birational on D if and only if, for a general B € D,
there exists another B’ € D, B # B’, such that the chord (i.e., secant line) B x B’
intersects Wy in a point B” (observe that the general point B € D does not lie in
the line Wy).

There are two possible cases:

Case: B’ is independent of the point B € D.
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CaseII:  B” moves as a rational function of the point B € D, hence the points
B’ sweep the line Ws.

Lemma 2. The assumption that case I holds for each S € P? leads to a contradic-
tion.

Proof of the Lemma. Under our assumption, for each S there is a point B”(S) such
that infinitely many chords of D meet Ws in B”(S).

Let us see what happens if we specialize S to be a general point P € C.

The first alternative is

(I-1) B”(P) = B(P): in this case, for each point B! € D there is B> € D such
that B(P), B!, B? are collinear. Since this happens for each choice of B(P), B!,
every secant is a trisecant, hence, by the well known trisecant lemma (cf. [1],
page 110), D is a plane curve of order at least three.

Take now a general S € P?: since B”(S) is on a secant to D, B”(S) belongs
to the secant variety X' of D (here a plane IT), but we claim that it is not in D. In
fact, if there were a point P € C’ such that B”"(S) = B(P), then B(P)S = 0
contradicting that S is a general point. Hence we obtain that the plane IT intersects
A in a bigger locus than D: since A is a cubic hypersurface, it follows that IT C A.

By Proposition 1 it follows that either there is a point S’ such that S’ €
ker(B),YB € II, or there is a line L € P? such that ker(B) € L,VB € II:
both cases imply that the curve C must be contained in a line, a contradiction.

The second alternative is

(I-2) B” := B”(P) # B(P). Then there is a point B’ € D (possibly infinitely
near) such that B’ is a linear combination of B” and B := B(P).

However, since BP = 0,B”P = 0, and B # B”, then also for their linear
combination B’ we have B’ P = 0. The consequence is, since B'P = B'P’ = 0,
that B’ has rank one. Therefore, if B’ is not infinitely near, B’ cannot be a general
point of D, hence B’ is independent of P: but then C C ker(B’), and since we
assume that C is not a line, we obtain B’ = 0, a contradiction.

If P’ is infinitely near to the point P € C, i.e., P, P’ span the tangent line to C
at P, and B, B’ span the tangent line to D at B = B(P), we work over the ring of
tangent vectors C[e]/(€?), and we observe that

(B+€B')(P+¢P')=0= BP =0.

For P € C general this is a contradiction, since BP" = 0, BP = 0 imply that
B = B(P) has rank one. |

Lemma 3. The assumption that case II holds for general S € P? leads to a
contradiction.

Proof of the Lemma. As we already observed, for general S, B” moves as a rational
function of the point B € D, hence the points B” sweep the line Ws. Therefore the
line Wy is contained in the secant variety X of the curve D. As this happens for
general S, and A N W = UgWs, it follows that the threefold A N W is contained
in the secant variety X
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Since X is irreducible, and has dimension at most three, it follows that we have
equality

ANW =X,

We conclude that, for P;, P, general points of C, the line joining B(P;) and
B(P,) is contained in A.

By Proposition 1, and since ker(B(P;)) = Py,ker(B(P;)) = P,, we have
that the matrices in the pencil A; B(P;) + A, B(P;) send the span of Py, P, to its
orthogonal subspace.

This condition is equivalent to

IPI(B(Pz))Pl = OVPl,Pz eC

(' P,(B(Py)) P, = 0 follows in fact since Py, P, are general).

Fix now a general point P,: then we have a quadratic equation for C, hence C is
contained in a conic.

A little bit more of attention: the matrix B(P,) has rank two, hence the quadratic
equation defines a reducible conic, and, C being irreducible, C is a line, a
contradiction. |

4 Linear Subspaces Contained in the Determinantal Cubic
A := {B|det(B) = 0}

Proposition 1. Let ABy + B be a line contained in the determinantal hypersur-
face A of the projective space of symmetric 3 x 3 matrices.

Then the line is contained in a maximal projective subspace contained in A,
which is either of the type

Ag = {B|BS = 0},
for some S € P2, or of the type
A(L) := {B|BL C L*} = {B|B|. = 0},

for some line L C P%.

Proof. A pencil of reducible conics either has at most one (non infinitely near) base
point S € P2, or it has a line L as fixed component.

In the first case the pencil is C Ag, in the second case it is contained in the
subspace A(L) consisting of the conics of the form L + L', where L' is an arbitrary
line in the plane. |
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Remark 3. Even if the result above follows right away from the classification of
pencils of conics, it is useful to recall the arguments which will be used in the sequel.

For instance, we observe that the hyperplane sections of the Veronese surface V
are smooth conics, hence no line is contained in V.

S Birationality of Certain Matrix Projections of Curves

In this final section we want to show the validity of a much more general statement:

Theorem 4. Let D C P := P(Sym*(C?)) be a curve and B : C' — D C P be its
normalization.

Then, for general S € P2, the projection s : P = P(Sym*(C?)) --> P? given
by s (B) := BS has the property that its restriction to D, ms|p is birational onto
its image, unless D is a curve contained in a plane A(S') and is not a line.

In the latter case, each projection s|p has as image the line (S')* and is not
birational.

Proof. Let 4 := Gr(1,P) be the Grassmann variety of lines A C P: ¢ has
dimension 8.

Define, for S € P2, % = {A € 4|A N As # @}. Indeed, these 6-
dimensional submanifolds of ¢ are the fibres of the second projection of the
incidence correspondence

I CYxP? I :={(A,S)|ANAs # @}.
In turn 7 is the projection of the correspondence
JCYxAxP? J:={(A,B,S)|BeA, BS=0).
Recall further that A \ V has a fibre bundle structure
H T A\V — P?

such that JZ'(B) := ker(B), and with fibre over S equal to Ag \ V.

Remark 4. 1. Observe that for matrices B € V we can write them in the form
B = x 'x, for a suitable vector x, and in this case ker(B) = x=+, Im(B) = ((x)).
2. In any case, since the matrices B are symmetric, we have always

Im(B) = ker(B)1.

Consider now the fibres of I — ¥: for a general line A, its fibre . (A) is
LLIfANA# A, ANAC A\ V,then ¥ (A) consists of at most three points;
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2.IFANA#A, (ANV) # @, then #(A) consists of a line x* and at most one
further point;
3.1f A C Ais of the form A C Ag, then . (A) consists of one or two lines
containing S;
4. If A C Aisof the form A C A(L), ./ (A) consists of the line L.
Since, if A C A(L), the conics in A consist of L plus a line L’ moving in the
pencil of lines through a given point P.

We let
UC¥YxP,U:={(A,B)|Be A}

be the universal tautological P!-bundle, and we denote by p : U — P the second
projection.

Recall now that the secant variety X' of D is defined as follows: we have a
rational map ¢ : C’ x C’' --» ¢ associating to the pair (s, ¢) the line B(s) * B(t)
joining the two image points B(s), B(¢).

Then one denotes by U’ the pull back of the universal bundle, and defines X' as
the closure of the image p(U’).

The condition that for each S € P? the projection 7 is not birational on D means
that, if Y is the closure of the image of ¥, then ¥ N &5 has positive dimension.

This implies that the correspondence

Ip :={(A,,S)|lyeY, AynAs # 0} CY xP?

has dimension at least three and surjects onto P2.

Projecting Ip on the irreducible surface Y, we obtain that all the fibres have
positive dimension, and we infer that each secant line A, has a fibre .#(A,) of
positive dimension.

There are two alternatives:

(i) A general secant A, is not contained in A, but intersects the Veronese
surface V.
(ii) Each secantline A, C A.

Step (I): the theorem holds true if D C V.

Proof of step I.
In this case any element of D is of the form B(f) = x(t)'x(¢), and

ms(B(1)) = x()['x(1)S] = (x (1), $)x(t) = x(1).
Hence, for each S, the projection g is the inverse of the isomorphism

p:xelP’ =V p(x)=x"x.
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We may therefore assume in the sequel that D is not contained in V.
Step (II): the theorem holds in case (i).

Proof of step II.

Observe preliminarly that, in case (i), D ¢ A; else we could take two smooth
points By, B € D N (A \ V), and the secant line B} * B; could not fulfill (i).

Choose then a point By € D, By € P\ A, hence w.l.o.g. we may assume that By
is the identity matrix /.

Since any other point B(¢) € D is on the line joining By with a point x(¢)' x(¢) €
V, we may write locally around a point of C’

B(t) =1+£&@1)'&(),

where £(¢) is a vector valued holomorphic function.
Now, for each s, ¢, the secant line B(¢) * B(s) meets the Veronese surface V.
Since B(t) cannot have rank equal to 1, there exists A such that

AB(t) + B(s) = AL + £E@)'E@) + (I +&(5)'E(s))
has rank equal to 1, i.e.,
K; :=ker(AB(t) + B(s)) = W|[AU +E(0)'E@) + (I +£(s)'E(s))]v = 0} =
I+ Dy + A8 (@), v) + §()(E(s).v) = 0}

has dimension 2.

Let us now make the assumption:

(**) two general points £(¢), £(s) are linearly independent.

The above formula shows however that, under assumption (**), it must be that
v is a linear combination of &(¢), £(s). This is clear if A + 1 # 0, otherwise v is
orthogonal to the span of £(¢), £(s), contradicting that the kernel has dimension 2.

Hence K, = ({£(¢), £(s))) and the condition that £(¢) € K yields

A+ DE@) +AE@)(E@).£@1)) + E()(E(s).£(1)) =0
and implies
(x % %) Vs,1 (5(s).§(2)) = 0.
(***) says that K, = ((£(1). £(s))) is an isotropic subspace, which can have at

most dimension 1.
Hence assumption (**) is contradicted, and we conclude that it must be:

(k # xx) E(1) = f(Du,

where u is an isotropic vector and f(¢) is a scalar function.
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Even if this situation can indeed occur, we are done since in this case the matrix
in V is unique, u'u, each secant A y contains u'u, hence .7 (A y) = ut U T, where
T) is a finite set. Therefore, for general S, the fibre {y|A, N Ag # @} is a finite
set. |

Step III: the theorem holds true in case (ii).

Proof of Step III.
Consider the general secant line A,. We have two treat two distinct cases.

Case (3): A, C Aisofthe form A, C Ag (then .(A),) consists of one or two
lines containing ).
Case (4): A, C Aisoftheform A, C A(L) (then (A,) consists of the line L).

In case (3), this means that two general matrices B(s), B(¢f) have a common
kernel S(s,?). Since the general matrix B(¢) is in A \ V, its rank equals 2 and
S(s,t) = S(t) Vs.

Hence the curve D is contained in a plane A. In this case however ImB(t) C S+
and every projection s/ (B(t)) = B(t)S’ lands in the line S+, so that the projection
cannot be birational, unless our curve D is a line.

In case (4) for two general matrices B(s), B(t) there exists a line L = L(s,t)
such that B(s), B(t) € A(L).

Since two such general matrices have rank equal to 2, and B(t)L C L%,
B(s)L C L*,if v(t) € ker B(¢) it follows that v(t) € L (since ker B(¢t) N L # 9).
Therefore, if B(t) # B(s), then L(t,s) = ({(v(t),v(s))).

However, the above conditions B(t)L C L+, B(s)L C L' are then equivalent to

(B(t)v(s)., v(s)) = v(s)B(t)v(s) = 0, Vt,s.

Fixing ¢ this is a quadratic equation in v(s), but, since the curve D is irreducible,
and B(t) has rank equal to 2, we see that the vectors v(s) belong to a line. Therefore
the line L = L(s, ) is independent of s, ¢ and the conclusion is that the curve D is
contained in the plane A(L).

In suitable coordinates for P2, we may assume that L = ((e3,e3)) and L+ =

{{e1)).

Choosing then S = e;, we obtain an isomorphic projection, since for a matrix
abc

B=|bh0O
c00

we have

B(@l) =\|b
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Remark 5. The referee suggested some arguments to simplify the proofs.
For Theorem 3, this is the proposal:

(a) Firstly, in the case of the caustic, the curve D parametrizes the reducible conics
of the form Tp + Np, where Tp is the tangent to the curve C at P, and Np is
the normal.

If S is a general point in IP?, then the degree of D equals the number of such
conics passing through S, hence, if v is the degree of the curve .4 of normal
lines, u is the degree of C’ — .4/, then

deg(D) = deg(CY) + pv.

The above formula shows that deg(D) > 4 if C is not a line.
In fact, then deg(C") > 2, while in general v > 1 (the normal Np contains
P). But, if v = 1, then the dual curve of .4, the evolute, is a point, so C is a
circle, but in this case u = 2.
(b) Therefore, if one shows that D is contained in a plane 7, then the plane r is
contained in the cubic hypersurface A, hence we can apply Proposition 1.
(c) In turn, to show that D is a plane curve, it is necessary and sufficient to show
that two general tangent lines to D meet, which follows if one proves that:
(d) For each secant line there is a cone over D and with vertex a point B”, such
that the secant line passes through B”

(since then the two tangent lines are coplanar).

In case (I), (d) follows since then, for each general S, there is a point B”(.S) such
that a curve of secants passes through B”(S), and we get a cone over D with vertex
B”(S). Varying S, the point B”(S) must vary, since B”(S)S = 0; hence the cone
varies, and we get that for each secant (d) holds true.

In case (II), as we have shown, the secant variety of D equals W N A, which is
the secant variety of the rational normal quartic W N V: but the singular locus of
the secant variety of W NV equals W N V' and contains D, hence W NV = D, a
contradiction.

The argument suggested for Theorem 4 requires some delicate verification, so
we do not sketch it here.
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Limits of Pluri-Tangent Planes to Quartic
Surfaces

Ciro Ciliberto and Thomas Dedieu

Abstract We describe, for various degenerations S — A of quartic K3 surfaces
over the complex unit disk (e.g., to the union of four general planes, and to a general
Kummer surface), the limits as ¢ € A* tends to 0 of the Severi varieties Vs(S;),
parametrizing irreducible -nodal plane sections of S;. We give applications of this
to (i) the counting of plane nodal curves through base points in special position,
(i1) the irreducibility of Severi varieties of a general quartic surface, and (iii) the
monodromy of the universal family of rational curves on quartic K3 surfaces.

1 Introduction

Our objective in this paper is to study the following:

Question 1. Let f : S — A be a projective family of surfaces of degree d
in P3, with S a smooth threefold, and A the complex unit disc (usually called a
degeneration of the general S; := f~!(¢), for t # 0, which is a smooth surface,
to the central fibre Sy, which is in general supposed to be singular). What are the
limits of tangent, bitangent, and tritangent planes to S;, for ¢ # 0, as ¢ tends to 0?

Similar questions make sense also for degenerations of plane curves, and
we refer to [24, pp. 134-135] for a glimpse on this subject. For surfaces, our
contribution is based on foundational investigations by Caporaso and Harris [9, 10],
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and independently by Ran [30-32], which were both aimed at the study of the so-
called Severi varieties, i.e. the families of irreducible plane nodal curves of a given
degree. We have the same kind of motivation for our study; the link with Question 1
resides in the fact that nodal plane sections of a surface S; in P? are cut out by those
planes that are tangent to S;.

Ultimately, our interest resides in the study of Severi varieties of nodal curves
on K3 surfaces. The first interesting instance of this is the one of plane sections of
smooth quartics in P?, the latter being primitive K3 surfaces of genus 3. For this
reason, we concentrate here on the case d = 4. We consider a couple of interesting
degenerations of such surfaces to quite singular degree 4 surfaces, and we answer
Question 1 in these cases.

The present paper is of an explorative nature, and hopefully shows, in a way
we believe to be useful and instructive, how to apply some general techniques for
answering some specific questions. On the way, a few related problems will be
raised, which we feel can be attacked with the same techniques. Some of them we
solve (see below), and the other ones we plan to make the object of future research.

Coming to the technical core of the paper, we start from the following key
observation due to Caporaso and Harris, and Ran (see Sect.3.4 for a complete
statement). Assume the central fibre Sy is the transverse union of two smooth
surfaces, intersecting along a smooth curve R. Then the limiting plane of a family of
tangent planes to the general fibre S;, for # # 0, is: (i) either a plane that is tangent
to Sy at a smooth point, or (ii) a tangent plane to R. Furthermore, the limit has to be
counted with multiplicity 2 in case (ii).

Obviously, this is not enough to deal directly with all possible degenerations of
surfaces. Typically, one overcomes this by applying a series of base changes and
blow—ups to S — A, thus producing a semistable model S — A of the initial
family, such that it is possible to provide a complete answer to Question 1 for § —
A by applying a suitable extended version of the above observationto S — A. We
say that S — A is well behaved when it is possible to do so, and S — Ais then
said to be a good model of S — A.

We give in Sect. 3.4 a rather restrictive criterion to ensure that a given semistable
model is a good model, which nevertheless provides the inspiration for constructing
a good model for a given family. We conjecture that there are suitable assumptions,
under which a family is well behaved. We do not seek such a general statement here,
but rather prove various incarnations of this principle, thus providing a complete
answer to Question 1 for the degenerations we consider. Specifically, we obtain:

Theorem 1. Let f : S — A be a family of general quartic surfaces in P3
degenerating to a tetrahedron Sy, i.e. the union of four independent planes. The
singularities of S consist in four ordinary double points on each edge of So. The
limits in |Os,(1)| of §-tangent planes to S,, fort # 0, are:

(6§ =1) the 24 webs of planes passing through a singular point of S, plus the 4
webs of planes passing through a vertex of Sy, the latter counted with
multiplicity 3;
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(6 =2) the 240 pencils of planes passing through two double points of the total
space S that do not belong to an edge of So, plus the 48 pencils of planes
passing through a vertex of Sy and a double point of S that do not belong
to a common edge of Sy (with multiplicity 3), plus the 6 pencils of planes
containing an edge of So (with multiplicity 16);

(6 =3) the 1,024 planes containing three double points of S but no edge of Sy,
plus the 192 planes containing a vertex of Sy and two double points of
S, but no edge of So (with multiplicity 3), plus the 24 planes containing
an edge of So and a double point of S not on this edge (with multiplicity
16), plus the 4 faces of Sy (with multiplicity 304).

Theorem 2. Let f : S — A be a family of general quartic surfaces degenerating
to a general Kummer surface So. The limits in |Os,(1)| of 8-tangent planes to S;,
fort #£ 0, are:

(6 =1) the dual surface So to the Kummer (which is itself a Kummer surface),
plus the 16 webs of planes containing a node of Sy (with multiplicity 2);

(6 =2) the 120 pencils of planes containing two nodes of So, each counted with
multiplicity 4;

(6 =3) the 16 planes tangent to Sy along a contact conic (with multiplicity 80),
plus the 240 planes containing exactly three nodes of Sy (with multiplicity
8).

We could also answer Question 1 for degenerations to a general union of two
smooth quadrics, as well as to a general union of a smooth cubic and a plane;
once the much more involved degeneration to a tetrahedron is understood, this
is an exercise. We do not dwell on this here, and we encourage the interested
reader to treat these cases on his own, and to look for the relations between these
various degenerations. However, a mention to the degeneration to a double quadric
is needed, and we treat this in Sect. 6.

Apparent in the statements of Theorems 1 and 2 is the strong enumerative flavour
of Question 1, and actually we need information of this kind (see Proposition 4) to
prove that the two families under consideration are well behaved. Still, we hope to
find a direct proof in the future.

As a matter of fact, Caporaso and Harris’ main goal in [9, 10] is the computation
of the degrees of Severi varieties of irreducible nodal plane curves of a given degree,
which they achieve by providing a recursive formula. Applying the same strategy,
we are able to derive the following statement (see Sect. 9):

Theorem 3. Let a,b,c be three independent lines in the projective plane, and
consider a degree 12 divisor Z cut out on a + b + ¢ by a general quartic
curve. The sub-linear system ¥ of | Op2(4)| parametrizing curves containing Z has
dimension 3.

For 1 <6 <3, we let Vs be the Zariski closure in 'V of the locally closed subset
parametrizing irreducible §-nodal curves. Then Vs has codimension § in ¥, and

degree 21 for § = 1, degree 132 for § = 2, degree 304 for § = 3.
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Remarkably, one first proves a weaker version of this (in Sect.9), which is
required for the proof of Theorem 1, given in Sect. 5. Then, Theorem 3 is a corollary
of Theorem 1.

It has to be noted that Theorems 1 and 2 display a rather coarse picture of the
situation. Indeed, in describing the good models of the degenerations, we interpret
all limits of nodal curves as elements of the limit O(1) of |Js, (1), for ¢ # 0,
inside the relative Hilbert scheme of curves in S. We call O(1) the limit linear
system of |Os, (1), for ¢ # 0 (see Sect.3.2), which in general is no longer a P?,
but rather a degeneration of it. While in |Os,(1)|, which is also a limit of |Os, (1)],
for ¢ # 0, there are in general elements which do not correspond to curves (think
of the plane section of the tetrahedron with one of its faces), all elements in O(1)
do correspond to curves, and this is the right ambient to locate the limits of nodal
curves. So, for instance, each face appearing with multiplicity 304 in Theorem 1 is
much better understood once interpreted as the contribution given by the 304 curves
in #3 appearing in Theorem 3.

It should also be stressed that the analysis of a semistable model of S — A
encodes information about several flat limits of the S,’s in P?, as t € A* tends to 0
(each flat limit corresponds to an irreducible component of the limit linear system
(1)), and an answer to Question 1 for such a semistable model would provide
answers for all these flat limits at the same time. Thus, in studying Question 1
for degenerations of quartic surfaces to a tetrahedron, we study simultaneously
degenerations to certain rational quartic surfaces, e.g., to certain monoid quartic
surfaces that are projective models of the faces of the tetrahedron, and to sums of
a self-dual cubic surface plus a suitable plane. For degenerations to a Kummer, we
see simultaneously degenerations to double quadratic cones, to sums of a smooth
quadric and a double plane (the latter corresponding to the projection of the Kummer
from one of its nodes), etc.

Though we apply the general theory (introduced in Sect. 3) to the specific case of
degenerations of singular plane sections of general quartics, it is clear that, with
some more work, the same ideas can be applied to attack similar problems for
different situations, e.g., degenerations of singular plane sections of general surfaces
of degree d > 4, or even singular higher degree sections of (general or not) surfaces
of higher degree. For example, we obtain Theorem 3 thinking of the curves in ¥
as cut out by quartic surfaces on a plane embedded in P3, and letting this plane
degenerate. By the way, this is the first of a series of results regarding no longer
triangles, but general configurations of lines, which can be proved, we think, by
using the ideas in this paper. On the other hand, for general primitive K3 surfaces of
any genus g = 2, there is a whole series of known enumerative results [3, 6,29, 35],
yet leaving some open space for further questions, which also can be attacked in the
same way.

Another application of our analysis of Question 1 is to the irreducibility of
families of singular curves on a given surface. This was indeed Ran’s main
motivation in [30-32], since he applied these ideas to give an alternative proof to
Harris’ one [22, 24] of the irreducibility of Severi varieties of plane curves. The
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analogous question for the family of irreducible §—nodal curves in |05 ()|, for S a
general primitive K 3 surface of genus g = 3 is widely open.

In [11] one proves that for any non negative § < g, with3 < g < 1l and g # 10,
the universal Severi variety 7/;,5’ parametrizing §—nodal members of |0 (n)|, with
S varying in the moduli space %, of primitive K3 surfaces of genus g in P¢, is
irreducible for n = 1. One may conjecture that all universal Severi varieties "//g”’g
are irreducible (see [13]), and we believe it is possible to obtain further results in
this direction using the general techniques presented in this paper. For instance, the
irreducibility of “1/31'5, 0 < § < 3, which is well known and easy to prove (see
Proposition 32), could also be deduced with the degeneration arguments developed
here.

Note the obvious surjective morphism p : “I/g”"S — B, For § € A, general,

one can consider V;’S (S) the Severi variety of 5—nodal curves in |Os(n)| (i.e. the
fibre of p over S € %, ), which has dimension g — § (see [11, 15]). Note that the
irreducibility of 7/}:”’8 does not imply the one of the Severi varieties V”-*(S) for a
general S € %, ; by the way, this is certainly not true for § = g, since V""¢(S) has
dimension 0 and degree bigger than 1, see [3,35]. Of course, V'11(S) is isomorphic
to the dual variety S C P¢, hence it is irreducible. Generally speaking, the smaller
§ is with respect to g, the easier it is to prove the irreducibility of V”-(S): partial
results along this line can be found in [26] and [27, Appendix A]. To the other
extreme, the curve V1¢71(S) is not known to be irreducible for S € B, general. In
the simplest case g = 3, this amounts to proving the irreducibility of V'!2(S) for
a general quartic S in P?, which is the nodal locus of S. This has been commonly
accepted as a known fact, but we have not been able to find any proof of this in the
current literature. We give one with our methods (see Theorem 4).

Finally, in Sect. 10.2, we give some information about the monodromy group of
the finite covering ”1/31’3 — %3, by showing that it contains some geometrically
interesting subgrou[i)s. Note that a remarkable open question is whether the mon-
odromy group of ¥, ¢ — 2, is the full symmetric group for all g = 2.

The paper is organized as follows. In Sect. 3, we set up the machinery: we give
general definitions, introduce limit linear systems, state our refined versions of
Caporaso and Harris’ and Ran’s results, introduce limit Severi varieties. In Sect. 4,
we state some known results for proper reference, mostly about the degrees of
the singular loci of the dual to a projective variety. In Sects.5 and 8, we give
a complete description of limit Severi varieties relative to general degenerations
of quartic surfaces to tetrahedra and Kummer surfaces respectively; Theorems 1
and 2 are proved in Sects. 5.8 and 8.4 respectively. In Sect. 6 we briefly treat other
degenerations of quartics. Section 7 contains some classical material concerning
Kummer quartic surfaces, as well as a few results on the monodromy action on
their nodes (probably known to the experts but for which we could not find any
proper reference): they are required for our proof of Theorem 4 and of the results in
Sect. 10.2. Section 9 contains the proof of a preliminary version of Theorem 3; it is
useful for Sect. 5, and required for Sect. 10. Section 10 contains Theorem 4 and the
aforementioned results on the monodromy.
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2 Conventions

We will work over the field C of complex numbers. We denote the linear equivalence
on a variety X by ~x, or simply by ~ when no confusion is likely. Let G be a group;
we write H < G when H is a subgroup of G.

We use the classical notation for projective spaces: if V' is a vector space, then
PV is the space of lines in V', and if & is a locally free sheaf on some variety X, we
let P(&) be Proj (Sym &V). We denote by P” the projective space dual to P”, and if
X ivs a closed subvariety of P, we let X be its dual variety, i.e. the Zariski closure
in P" of the set of those hyperplanes in P” that are tangent to the smooth locus of X .

By a node, we always mean an ordinary double point. Let § = 0 be an integer.
A nodal (resp. §-nodal) variety is a variety having nodes as its only possible
singularities (resp. precisely § nodes and otherwise smooth). Given a smooth surface
S together with an effective line bundle L on it, we define the Severi variety
Vs(S, L) as the Zariski closure in the linear system |L| of the locally closed
subscheme parametrizing irreducible §-nodal curves.

We usually let H be the line divisor class on P?; when F,, = P(Op1 @ Op1(n)) is
a Hirzebruch surface, we let F be the divisor class of its ruling over P!, we let E be
an irreducible effective divisor with self-intersection —n (which is unique if n > 0),
and we let H be the divisor class of F + nE.

When convenient (and if there is no danger of confusion), we will adopt the
following abuse of notation: let ¢ : ¥ — X be a birational morphism, and C (resp.
D) a divisor (resp. a divisor class) on X; we use the same symbol C (resp. D) to
denote the proper transform (g4) ™! (C) (resp. the pull-back e*(D)) on Y.

For example, let L be a line in P2, and H the divisor class of L. We consider
the blow-up &; : X; — P? at a point on L, and call E; the exceptional divisor. The
divisor class H on X, is ] (H), and L on X is linearly equivalent to H — E|.
Let then &, : X, — X be the blow-up of X; at the point L N Ej, and E; be
the exceptional divisor. The divisor E; (resp. L) on X, is linearly equivalent to
e5(E1) — E5 (resp. to H —2E| — E»).

In figures depicting series of blow—ups, we indicate with a big black dot those
points that have been blown up.

3 Limit Linear Systems and Limit Severi Varieties

In this section we explain the general theory upon which this paper relies. We build
on foundational work by Caporaso and Harris [9, 10] and Ran [30-32], as reinvesti-
gated by Galati ([17, 18]), see also the detailed discussion in [Galati-Knutsen].
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3.1 Setting

In this paper we will consider flat, proper families of surfaces f : § — A, where
A C Cis a disc centered at the origin. We will denote by S; the (schematic) fibre
of f overt € A. We will usually consider the case in which the rotal space S is a
smooth threefold, f is smooth over A* = A—{0}, and S; is irreducible for t € A*.
The central fibre Sy may be singular, but we will usually consider the case in which
So is reduced and with local normal crossing singularities. In this case the family is
called semistable.

Another family of surfaces f’ : S’ — A as above is said to be a model of
f S — A if there is a commutative diagram

p

S5 -=>5—>¢
el ek
it tt?

where the two squares marked with a ‘00’ are Cartesian, and p is a birational
map, which is an isomorphism over A*. The family f’ : §" — A, if semistable,
is a semistable model of f : S — A if in addition d’ = 1 and p is a morphism.
The semistable reduction theorem of [28] asserts that f : S — A always has a
semistable model.

Example 1 (Families of surfaces in P3). Consider a linear pencil of degree k
surfaces in P?, generated by a general surface Soo and a special one Sy. This pencil
gives rise to a flat, proper family ¢ : .# — P!, with .# a hypersurface of type (k, 1)
in P> x P!, isomorphic to the blow—up of P? along the base locus Sy N Soo of the
pencil, and Sy, Soo as fibres over 0, co € P, respectively.

We will usually consider the case in which Sy is reduced, its various compo-
nents may have isolated singularities, but meet transversely along smooth curves
contained in their respective smooth loci. Thus Sy has local normal crossing
singularities, except for finitely many isolated extra singularities belonging to one,
and only one, component of Sy.

We shall study the family f : S — A obtained by restricting .& to a disk
A C P! centered at 0, such that .% is smooth for all # € A*, and we will consider
a semistable model of f : § — A. To do so, we resolve the singularities of S
which occur in the central fibre of f, at the points mapped by . — Sy C P to the
intersection points of S, with the double curves of Sy (they are the singular points
of the curve Sy N Seo). These are ordinary double points of S, i.e. singularities
analytically equivalent to the one at the origin of the hypersurface xy = z¢ in A%,
Such a singularity is resolved by a single blow—up, which produces an exceptional
divisor F 2 P! x P!, and then it is possible to contract F in the direction of either
one of its rulings without introducing any singularity: the result is called a small
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resolution of the ordinary double point. If Sy has no extra singularities, the small
resolution process provides a semistable model. Otherwise we will have to deal
with the extra singularities, which are in any case smooth points of the total space.
We will do this when needed.

Let f: S — A be the semistable model thus obtained. One has S’, ~ S, fort €
A*. If Sy has irreducible components Q1, ..., Q,, then fo consists of irreducible
components Ql, el Q, which are suitable blow—ups of O, ..., Q,, respectively.
If g is the number of ordinary double points of the original total space S, we will
denote by Ej, ..., E, the exceptional curves on Ql, el Q, arising from the small
resolution process.

Going back to the general case, we will say that f : S — A is quasi—semistable
if Sy is reduced, with local normal crossing singularities, except for finitely many
isolated extra singularities belonging to one, and only one, component of Sy, as in

Example 1.
Assume then that Sy has irreducible components Qi,..., Q,, intersecting
transversally along the double curves Ry, ..., R,, which are Cartier divisors on the

corresponding components.

Lemma 1 (Triple Point Formula, [8, 16]). Assume f : S — A is quasi—
semistable. Let Q, Q' be irreducible components of S intersecting along the double
curve R. Then

triple points of Sy

deg(Ngjp) + deg(Ng|o/) + Card =0,

along Ry

where a triple point is the intersection R N Q" with a component Q" of Sy different
from Q, Q.

Remark 1 (See [8, 16]). There is a version of the Triple Point Formula for the case
in which the central fibre is not reduced, but its support has local normal crossings.
Then, if the multiplicities of Q, Q' are m, m’ respectively, one has

triple points of Sy

= 07
along R;

m' deg(Ngjp) + m deg(Ngjo’) + Card

where each triple point R N Q" has to be counted with the multiplicity m” of Q”
in S().

3.2 Limit Linear Systems

Let us consider a quasi—semistable family f : S — A asin Sect. 3.1. Suppose there
is a fixed component free line bundle . on the total space S, restricting to a line
bundle .%, on each fibre S;, t € A. We assume . to be ample, with h’(S;, %))
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constant for r € A. If W is an effective divisor supported on the central fibre Sy,
we may consider the line bundle . (—W), which is said to be obtained from .Z by
twisting by W. For t € A*, its restriction to S, is the same as .%;, but in general
this is not the case for So; any such a line bundle Z(—=W)|g, is called a limit line
bundle of &, fort € A*.

Remark 2. Since Pic(A) is trivial, the divisor Sy C S is linearly equivalent to 0. So
if W is a divisor supported on Sy, one has Z(—W) = £ (mSy — W) for all integers
m. In particular if W + W' = Sy then L (—W) = Z(W').

Consider the subscheme Hilb(.%) of the relative Hilbert scheme of curves of S
over A, which is the Zariski closure of the set of all curves C € |.%4|, fort € A*.
We assume that Hilb(.Z’) is a component of the relative Hilbert scheme, a condition
satisfied if Pic(S;) has no torsion, which will always be the case in our applications.
One has a natural projection morphism ¢ : Hilb(.Z) — A, which is a projective
bundle over A*; actually Hilb(.¥) is isomorphic to B := P(fx (L)) over A*. We
call the fibre of ¢ over 0 the limit linear system of |.£;| ast € A* tends to 0, and we
denote it by £.

Remark 3. In general, the limit linear system is not a linear system. One would be
tempted to say that £ is nothing but |.%|; this is the case if Sy is irreducible, but
it is in general no longer true when Sy is reducible. In the latter case, there may be
non-—zero sections of %, whose zero—locus contains some irreducible component of
So, and accordingly points of |.Z5| which do not correspond to points in the Hilbert
scheme of curves (see, e.g., Example 2 below).

In any event, Hilb(.%) is a birational modification of 3, and £ is a suitable
degeneration of the projective space |.Z;|, t € A*. One has:

Lemma 2. Let P’ — A be a flat and proper morphism, isomorphic to P( f«(£))
over A*, and such that WY is a Zariski closed subset of the relative Hilbert scheme

of curves of S over A. Then 3’ = Hilb(¥).

Proof. The two Zariski closed subsets 3" and Hilb(.¥) are irreducible, and coincide
over A*. O

In passing from P( /(%)) to Hilb(.¥), one has to perform a series of blow—ups
along smooth centres contained in the central fibre, which correspond to spaces
of non-trivial sections of some (twisted) line bundles which vanish on divisors
contained in the central fibre. The exceptional divisors one gets in this way give rise
to components of £, and may be identified with birational modifications of sublinear
systems of twisted linear systems restricted to Sy, as follows from Lemma 3 below.
We will see examples of this later (the first one in Example 2).

Lemma 3. (i) Let X be a connected variety, £ a line bundle on X, and o a non
zero global section of £ defining a subscheme Z of X. Then the projectivized
tangent space to PHY (X, Z) at (o) canonically identifies with the restricted linear
system
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PIm(H(X,.2) - H(Z, Z],)).

also called the trace of |.Z| on Z (which in general is not the complete linear system
|-Z ® O7]).

(ii) More generally, let | be a linear subspace of PHY (X, %) with fixed locus
scheme F defined by the system of equations {o = 0}(5)e1. Then the projectivized
normal bundle of L in PHY(X, ) canonically identifies with

(x PIm(H*(X,.%) — H(F, Z|p)).

Proof. Assertion (i) comes from the identification of the tangent space of
PH’(X,.%) at (o) with the cokernel of the injection H*(X, 0y) — H’(X,.%),
given by the multiplication by o. As for (ii), note that the normal bundle of [ in
PH’(X, ) splits as a direct sum of copies of &((1), hence the associated projective
bundle is trivial. Then the proof is similar to that of (i). O

Example 2 (See [20]). Consider a family of degree k surfaces f : S — A arising,
as in Example 1, from a pencil generated by a general surface S and by Sy =
F U P, where P is a plane and F a general surface of degree k — 1. One has
a semistable model f : S — A of this family, as described in Example 1, with
So = F U P, where P — P is the blow—up of P at the k(k — 1) intersection points
of Seo with the smooth degree k — 1 plane curve R := F N P (with exceptional
divisors E;, for 1 <i < k(k —1)).

We let £ := 05(1) be the pull-back by S — S of Og(1), obtained by pulling
back Ops(1) via the map S — P?. The component Hilb(.#) of the Hilbert scheme
is gotten from the projective bundle P(fx(&z(1))), by blowing up the point of
the central fibre |0s,(1)| corresponding to the 1-dimensional space of non—zero
sections vanishing on the plane P. The limit linear system £ is the union of £, the
blown-up | s, (1)|, and of the exceptional divisor £, = P3, identified as the twisted
linear system |Ts, (1) ® Os,(—P)|. The corresponding twisted line bundle restricts
to the trivial linear system on F', and to |05 (k) ® Op(— Zf(zkl_l) E;)| on P.

The components £; and £, of £ meet along the exceptional divisor ¢ = P? of
the morphism £, — |05, (1)|. Lemma 3 shows that the elements of & C £, identify
as the points of |Og(1)| = |Op (1)|, whereas the plane & C £, is the set of elements
Iel|Oplk)®0p(— Zj‘ﬂ‘l‘ D E;)| containing the proper transform R = Rof Ron
P.The corresponding element of |g(1)] is cut out on R by the further component
of I', which is the pull-back to P ofalinein P.

3.3 Severi Varieties and Their Limits

Let f : S — A be a semistable family as in Sect. 3.1, and .Z be a line bundle on
S as in Sect.3.2. We fix a non—negative integer §, and consider the locally closed
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subset I;S(S,f) of Hilb(.Z) formed by all curves D € |.Z|, fort € A*, such
that D is irreducible, nodal, and has exactly § nodes. We define Vs(S, . %) (resp.
V§I(S, Z)) as the Zariski closure of I;S(S, £) in Hilb(Z) (resp. in P(f«(Z))).
This is the relative Severi variety (resp. the crude relative Severi variety). We may
write Io/g, Vs, and V™, rather than I%(S L), Vs(S,Z), and V{T(S, Z), respectively.

We have a natural map fs : Vs —> A.If t € A*, the fibre Vs, of f5 overt is the
Severi variety Vs(S;, £;) of §—nodal curves in the linear system |.Z;| on S;, whose
degree, independent on t € A*, we denote by ds(.Z) (or simply by ds). We let
U5(S, L) (or simply Us) be the central fibre of f; : Vs — A; it is the limit Severi
variety of V5(S;,%4;) ast € A* tends to 0. This is a subscheme of the limit linear
system £, which, as we said, has been studied by various authors. In particular, one
can describe in a number of situations its various irreducible components, with their
multiplicities (see Sect. 3.4 below). This is what we will do for several families of
quartic surfaces in P3.

In a similar way, one defines the crude limit Severi variety Ty (S, ) (or Ty,
sitting in |.%p|.

Remark 4. Fort € A*, the expected dimension of the Severi variety Vs(S;, %) is
dim(|L;|) — 8. We will always assume that the dimension of (all components of)
Vs(S:, £:) equals the expected one for all ¢ € A*. This is a strong assumption,
which will be satisfied in all our applications.

Notation 1. Let f : S — A be afamily of degree k surfaces in P* as in Example 1,

and let f S — A be a semistable model of f S — A. We consider the line
bundle Os (1), defined as the pull-back of Op3(1) via the natural map S — P?, and
let 05(1) be its pull-back on S. We denote by ,.5(S) (resp. U, 5(S)), or simply
0, 5, the limit Severi variety U (S.05 5(n)) (resp. V;(S, Os(n))). Similar notation
Q]“S(S ) (resp. U7 5(S)), or ', will be used for the crude limit.

3.4 Description of the Limit Severi Variety

Let again f : S — A be a semistable family as in Sect.3.1, and .Z a line
bundle on S as in Sect.3.2. The local machinery developed in ([17, 18, Galati-
Knutsen]) enables us to identify the components of the limit Severi variety, with
their multiplicities. As usual, we will suppose that Sy has irreducible components
01, ..., Q,, intersecting transversally along the double curves Ry, ..., R,. We will
also assume that there are g exceptional curves Ej,..., E; on Sp, arising from
a small resolution of an original family with singular total space, as discussed in
Sect.3.1.

Notation 2. Let N be the set of sequences T = (7,,)m=2 of non—negative integers
with only finitely many non—vanishing terms. We define two maps v, & : N — N
as follows:
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v(z)zzmzzfm-(m—l), and M@:n mm

m=2
Givena p-tuple T = (z;,...,7,) € N”, we set
v(r) =v(r) +---+v(,), and wu(®) =pu()---pu),),
thus defining two maps v, i : N” — N. Given § = (6;,...,6,) € N", we set
8] := 8y +---+ 6.

Given a subset I C {1,...,q}, |I| will denote its cardinality.

Definition 1. Consider a divisor W on S, supported on the central fibre Sy, i.e. a
linear combination of Q1,...,Q,.Fix§ e N, t e N’ and I C {1,...,r}. We let

Io/(W, 8,1, T) be the Zariski locally closed subset in | .Z(—W) ® O, | parametrizing
curves D such that:

(1) D neither contains any curve R;, with [ € {1, ..., p}, nor passes through any

triple point of So;

(i) D contains the exceptional divisor E;, with multiplicity 1, if and only ifi € I,
and has a node on it;

(iil) D — ) ;¢; Ei has §; nodes on Q,, for s € {1,...,r}, off the singular locus of
So, and is otherwise smooth;

(iv) Foreveryl € {1,..., p} and m = 2, there are exactly 7;,, points on R;, off
the intersections with Zie ; Ei, at which D has an m-tacnode (see below for
the definition), with reduced tangent cone equal to the tangent line of R; there.

We let V(W, 6, I, T) be the Zariski closure of Ia(W, §,1,71)in | L(—W)® Ox,|.

Recall that an m-tacnode is an A,,,—1-double point, i.e. a plane curve singularity
locally analytically isomorphic to the hypersurface of C? defined by the equation
y2 = x?™ at the origin. Condition (iv) above requires that D is a divisor having
7;,» m—th order tangency points with the curve R;, at points of R; which are not
triple points of So.

Notation 3. In practice, we shall not use the notation V(W,$, I, ), but rather a
more expressive one like, e.g., V(W,8p, = 2, Ei,tg,» = 1) for the variety
parametrizing curves in |.Z(— W) ® O, |, with two nodes on Q, one simple tacnode
along R, and containing the exceptional curve E.

Proposition 1. (/17,18, Galati-Knutsen]). Let W, 8, I, T be as above, and set |8| +
|[I| 4+ v(t) = 6. Let V be an irreducible component of V(W, 8,1, t). If

(i) The linear system | £ (—W) ® O, | has the same dimension as |-£;| fort € A*,
and
(ii) V has (the expected) codimension § in |.£(—W) ® Ox,|,



Limits of Pluri-Tangent Planes to Quartic Surfaces 135

then V' is an irreducible component of multiplicity (V') := () of the limit Severi
variety Us(S, Z).

Remark 5. Same assumptions as in Proposition 1. If there is at most one tacnode
(i.e. all 77 ,, but possibly one vanish, and this is equal to 1), the relative Severi variety
Vs is smooth at the general point of V' (see [17, 18, Galati-Knutsen]), and thus V'
belongs to only one irreducible component of V. There are other cases in which
such a smoothness property holds (see [9]).

If Vs is smooth at the general point D € V, the multiplicity of V' in the limit
Severi variety *Us is the minimal integer m such that there are local analytic m—
multisections of Vs — A, i.e. analytic smooth curves in Vj, passing through D and
intersecting the general fibre Vs,;,t € A*, at m distinct points.

Proposition 1 still does not provide a complete picture of the limit Severi variety.
For instance, curves passing through a triple point of Sy could play a role in this
limit. It would be desirable to know that one can always obtain a semistable model
of the original family, where every irreducible component of the limit Severi variety
is realized as a family of curves of the kind stated in Definition 1.

Definition 2. Let f : § — A be a semistable family as in Sect.3.1, .Z a line
bundle on S as in Sect.3.2, and § a positive integer. The regular part of the limit
Severi variety Us(S, Z) is the cycle in the limit linear system £ C Hilb(.¥)

TS =), ) u(z)-( > V) (1)

W 18| +11[+v(z)=$ Ve’ (V(ws.1.0))

(sometimes simply denoted by Q}geg), where:

(i) W varies among all effective divisors on S supported on the central fibre Sy,
such that h’(Z(—=W)) = h’(Z) fort € A*;

(i) Irr® (Z) denotes the set of all codimension § irreducible components of a scheme
Z.

reg

Proposition 1 asserts that the cycle Z(U3)—U, © is effective, with support disjoint
in codimension 1 from that of Q]geg (here, Z(*U;s) is the cycle associated to Us). We
call the irreducible components of the support of Q]geg the regular components of the
limit Severi variety.

Let f : § — A be a semistable model of f : S — A, and 2 the pull-back on
S of .. There is a natural map Hilb(.j ) — Hilb(.Z), which induces a morphism
¢: L — Ll

Definition 3. The semistable model f : S — Aisaé—goodmodelof f : S — A
(or simply good model, if it is clear which § we are referring at), if the following
equality of cycles holds

D« (TE(S, L)) = TE(S, 2).
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Note that the cycle T§'(S, L) — ¢« (‘Bgeg S.¢ )) is effective. The family f :
S — A is said to be §—well behaved (or simply well behaved) if it has a §-good
model. A semistable model f : § — Aof f : S — A as above is said to
be §—absolutely good if V(S L) = Q}geg (S, 2) as cycles in the relative Hilbert
scheme. It is then a 5—good model both of itself, and of f : § — A.

Theorems 1 and 2 will be proved by showing that the corresponding families of

quartic surfaces are well behaved.

Remark 6. Suppose that f : S — A is §—well behaved, with §—good model
f S — A.ltis possible that some components in Q}reg (S, ) are contracted by
Hilb(.Z) — |.%| to varieties of smaller dimension, and therefore that their push—
forwards are zero. Hence these components of 2s(S) are not visible in U(S).
They are however usually visible in the crude limit Severi variety of another model
f’ S’ — A, obtained from S via an appropriate twist of .. The central fibre So
is then a flat limit of S;, as t € A* tends to 0, different from S.

Conjecture 1. Let f : S — A be a semistable family of surfaces, endowed with a
line bundle .Z as above, and § a positive integer. Then:

(Weak version) Under suitable assumptions (to be discovered), f : S — A'is
d—well behaved.

(Strong version)  Under suitable assumptions (to be discovered), f : S — A has
a 6—absolutely good semistable model.

The local computations in [18] provide a criterion for absolute goodness:

Proposition 2. Assume there is a semistable model f S > Aoff:S — A
with a limit linear system £ free in codimension § + 1 of curves of the following

types:

(i) Curves containing double curves of So; ;
(ii) Curves passing through a triple point of Sy;
(iii) Non-reduced curves.

If in addition, for W,8,1,x as in Definition 1, every irreducible component of
V(W,8,1,t) has the expected codimension in |£y(—=W)|, then f S > Ais
d—absolutely good, which implies that f : S — A is §—well behaved.

Unfortunately, in the cases we shall consider conditions (i)—(iii) in Proposition 2
are violated (see Propositions 15 and 23), which indicates that further investiga-
tion is needed to prove the above conjectures. The components of the various
V(W,§, I, T) have nevertheless the expected codimension, and we are able to prove
that our examples are well-behaved, using additional enumerative information.

Absolute goodness seems to be a property hard to prove, except when the
dimension of the Severi varieties under consideration is 0, equal to the expected one
(and even in this case, we will need extra enumerative information for the proof).
We note in particular that the §—absolute goodness of f : §—>A implies that it
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is a —good model of every model f’ : §” — A, obtained from S via a twist of &
corresponding to an irreducible component of the limit linear system £.

3.5 An Enumerative Application

Among the applications of the theory described above, there are the ones to
enumerative problems, in particular to the computation of the degree ds of Severi
varieties Vs(S;,.%;), for the general member S; of a family f : S — A asin
Sect. 3.1, with . a line bundle on S as in Sect. 3.2.

Let t € A* be general, and let ms be the dimension of Vs(S;,.%), which we
assume to be ms = dim(|-%£;|) — §. Then dj is the number of points in common of
Vs(S;, £) with ms sufficiently general hyperplanes of |.Z}|. Given x € S;,

H, :={[D] € |%Z]|st.x € D}

is a plane in |.Z}|. It is well known, and easy to check (we leave this to the reader),
that if xy,...,x,; are general points of S;, then H,,..., H,, are sufficiently

general planes of |.Z;| with respect to Vs (S;, .£;). Thus ds is the number of 5—nodal
curves in |.£;| passing through mg general points of S;.

Definition 4. In the above setting, let V' be an irreducible component of the limit

Severi variety Us(S, %), endowed with its reduced structure. We let Qy,..., O,
be the irreducible components of Sy, and n = (ny,...,n,) € N’ be such that
n| := n; + --- 4+ n, = mg. Fix a collection Z of ny,...,n, general points on

0O1,..., Q, respectively. The n—degree of V' is the number deg, (V') of points in V'
corresponding to curves passing through the points in Z.

Note that in case ms = 0, the above definition is somehow pointless: in this case,
deg, (V) is simply the number of points in V. By contrast, when V has positive
dimension, it is possible that deg, (V') be zero for various n’s. This is related to the
phenomenon described in Remark 6 above. We will see examples of this below.

By flatness, the following result is clear:

Proposition 3. Let f S - ﬂA be a semistable model, and name P, ..., P;
the irreducible components of Sy, in such a way that Py, ..., P, are the proper
transforms of Q1, ..., Q, respectively.
(i) Foreveryn = (ny,...,n,,0,...,0) € N7 such that [n| = mg, one has
iz Y (V) degy(V) )
Vel (054 (S..2))

(recall the definition of w(V') in Proposition 1).
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(ii) If equality holds in (2) for every i as above, then f 'S = Aisa 8—good model
of f S — A endowed with £.

4 Auxiliary Results

In this section we collect a few results which we will use later.

First of all, for a general surface S of degree k in P3, we know from classical
projective geometry the degrees ds of the Severi varieties Vs(S, Os(1)), for 1 <
8 < 3. For K3 surfaces, this fits in a more general framework of known numbers
(see [3,6,29,35]). One has:

Proposition 4 ([33,34]). Let S be a general degree k hypersurface in P*. Then
di =k(k —1)%,

1
do i =§k(k — Dk =2)(k> —k* + k —12),

1
ds s :6k(k —2) (k7 — 4k® + 7k — 45k* + 114k — 111k* + 548k — 960).

For k = 4, these numbers are 36, 480, 3,200 respectively.

Note that V1 (S, Os (1)) identifies with the dual surface S C P3. The following is
an extension of the computation of d; i for surfaces with certain singularities. This
is well-known and the details can be left to the reader.

Proposition 5. Let S be a degree k hypersurface in P3, having v and « double
points of type A1 and A, respectively as its only singularities. Then

deg(S) = k(k — 1)> — 2v — 3«.

The following topological formula is well-known (see, e.g., [2, Lemme VI1.4]).

Lemma 4. Let p : S — B be a surjective morphism of a smooth projective surface
onto a smooth curve. One has

Xtop(S) = Xtop(Fgen)Xtop(B) + Z (Xtop(Fb) - Xlop(Fgen))a
beDisc(p)

where Foen and Fy, respectively denote the fibres of p over the generic point of B
and a closed point b € B, and Disc(p) is the set of points above which p is not
smooth.

As a side remark, note that it is possible to give a proof of the Proposition 5 based
on Lemma 4. This can be left to the reader.
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Propositions 4 and 5 are sort of Pliicker formulae for surfaces in P3. The next
proposition provides analogous formulae for curves in a projective space of any
dimension.

Proposition 6. Let C C PV be an irreducible, non—degenerate curve of degree d
and of genus g, the normalization morphism of which is unramified. Let t < N be
a non-negative integer, and assume 2t < d. Then the Zariski closure of the locally
closed subset of pY parametrizing t-tangent hyperplanes to C (i.e. planes tangent
to C at t distinct points) has degree equal to the coefficient of u"™v? =2 in

(1 + 4u + )51+ 2u +v)778,

Proof. Letv : C — C be the normalization of C, and let g be the gN on C defined

as the pull-back on C of the > hyperplane linear series on C. Since v is unramified, the
degree of the subvariety of pYy parametrizing t-tangent hyperplanes to C is equal to
the number of divisors having t double points in a general sublinear series g/, of g.
This number is computed by a particular instance of de Jonquieres’ formula, see [1,
p. 3591. O

The last result we shall need is:

Lemma S. Consider a smooth, irreducible curve R, contained in a smooth surface
S in P3. Let Ry be the irreducible curve in p3 parametrizing planes tangent to S
along R. Then the dual varieties S and R both contain R, and do not intersect
transversely at its general point.

Proof. Clearly Ry is contained in S N R. If either § or R are singular at the general
point of Ry, there is nothing to prove. Assume that S and R are both smooth at the
general point of Rs. We have to show that they are tangent there. Let x € R be
general. Let H be the tangent plane to S at x. Then H € Ry is the general point.
Now, the biduality theorem (see, e.g., [23, Example 16.20]) says that the tangent
plane to S and of R at H both coincide with the set of planes in P? containing x,
hence the assertion. O

5 Degeneration to a Tetrahedron

We consider a family f : § — A of surfaces in P?, induced (as in Example 1 and in
Sect. 3.2) by a pencil generated by a general quartic surface So, and a tetrahedron Sy
(i.e. Sy is the union of four independent planes, called the faces of the tetrahedron),
together with the pull-back g (1) of Op3(1). We will prove that it is 6—well behaved
for 1 < § < 3 by constructing a suitable good model.

The plan is as follows. We construct the good model in Sect. 5.1, and complete
its description in Sect. 5.2. We then construct the corresponding limit linear system:
the core of this is Sects. 5.3-5.6, are devoted to the study of the geometry of the
exceptional components of the limit linear system (alternatively, of the geometry of
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the corresponding flat limits of the smooth quartic surfaces S;, t € A*); eventually,
we complete the description in Sect. 5.7. We then identify the limit Severi varieties
in Sect. 5.8.

5.1 A Good Model

The outline of the construction is as follows:

(I) We first make a small resolution of the singularities of S as in Example 1,
(II) Then we perform a degree 6 base change;
(IIl) Next we resolve the singularities of the total space arisen with the base change,
thus obtaining a new semistable family w : X — A;
(IV) Finally we will flop certain double curves in the central fibre X, thus
obtaining a new semistable family w : X — A.

The central fibre of the intermediate family 7 : X — A is pictured in Fig. 1 (p. 143;
we provide a cylindrical projection of a real picture of X, the dual graph of which is
topologically an 8% sphere), and the flops are described in Fig. 2 (p. 144). The reason
why we need to make the degree 6 base change is, intuitively, the following: a degree
3 base change is needed to understand the contribution to the limit Severi variety
of curves passing through a vertex (i.e. a triple point) of the tetrahedron, while an
additional degree 2 base change enables one to understand the contributions due to
the edges (i.e. the double lines) of the tetrahedron.

Steps (I) and (IT)

The singularities of the initial total space S consist of four ordinary double points on
each edge of Sy. We consider (cf. Example 1) the small resolution S — S obtained
by arranging for every edge the four (—1)-curves two by two on the two adjacent
faces. We call f S — A the new family.

Let pi,..., ps be the triple points of So. For each i € {1,...,4}, we let P; be
the irreducible component of So which is opposite to the vertex p;: it is a plane
blown-up at six points. For distinct i, j € {1,..., 4}, we let Eljr and E; be the two
(—=1)-curves contained in P; and meeting P;. We call z;.r and z;; the two points cut
out on P; by E and E;; respectively.

Letnow f : S S A be the family obtained from f S — A by the base change
t € A 1% € A. The central fibre S is isomorphic to SO, so we will keep the
above notation for it.

Step (IIT)

As a first step in the desingularization of S, we perform the following sequence of
operations for all i € {1,...,4}. The total space S around p; is locally analytically
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isomorphic to the hypersurface of C* defined by the equation xyz = ¢° at the origin.
We blow-up S at p;. The blown—up total space locally sits in C* x P3. Let (£ : 7 :
¢ : 1) be the homogeneous coordinates in P3. Then the new total space is locally
defined in C* x P? by the equations

Ee =097, Enfr =07 &t =97, and &t =91 (3)

The equation of the exceptional divisor (in the exceptional P* of the blow—up of C*)
is £n¢ = 0, hence this is the union of three planes meeting transversely at a point
p;in P3. For i, j distinctin {1,...,4}, we call A; the exceptional planes meeting
the proper transform of P; (which, according to our conventions, we still denote by
P;, see Sect.2).

The equation of the new family around the point p; given by [ i A; isént =
13 (which sits in the affine chart % = 1). Next we blow-up the points p;, fori €
{1,...,4}. The new exceptional divisor 7" at each point p/ is isomorphic to the
cubic surface with equation £n¢ = ¢* in the P? with coordinates (£ : 1 : ¢ : ¢). Note
that 77 has three A,—double points, at the vertices of the triangle ¢t = 0, £n¢ = 0.

Next we have to get rid of the singularities of the total space along the double
curves of the central fibre. First we take care of the curves Cy; := P N Py, for
h, k distinct in {1, ..., 4}. The model we constructed so far is defined along such
a curve by an equation of the type £n = ©°z3, (as it follows, e.g., from the third
equation in (3) by setting { = 1). The curve Cy is defined by § = n = ¢ = 0.
If i € {1,....4} — {h,k}, the intersection point ppi; := Cp N AL N Al is cut
out on Cy by the hyperplane with equation z = 0. Away from the pp;’s, with
i €{l,...,4} — {h, k}, the points of Cj; are double points of type As for the total
space. We blow—up along this curve: this introduces new homogeneous coordinates
(&1 : my 1 ¥1), with new equations for the blow—up

gEm =002, & =9n'2, and & =970

The exceptional divisor is defined by &117; = 0, and is the transverse union of two
ruled surfaces: we call Wh’k the one that meets Py, and Wk’ , the other. The affine
chart we are interested in is ©; = 1, where the equation is £;1; = 9473. We then
blow—up along the curve & = n; = ¢ = 0, which gives in a similar way the new
equation &7, = 1?73 with the new coordinates (£, : 17, : ). The exceptional
divisor consists of two ruled surfaces, and we call W} (resp. W/}) the one that
meets W), (resp. W/,). Finally, by blowing-up along the curve &, = 7, = 9 = 0,
we obtain a new equation &373 = 193213, with new coordinates (&3 : 73 : 93). The
exceptional divisor is a ruled surface, with two A,—double points at its intersection
points with the curves Cj, := A}, N A}, withi € {1,...,4}—{h, k}. We call it either
Wik or Wy, with no ambiguity.

The final step of our desingularization process consists in blowing—up along the
12 curves C},, with pairwise distinct 4, k,i € {1,...,4}. The total space is given
along each of these curves by an equation of the type £ = ¥3¢3 in the variables
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(¢€,7,0,1), obtained from the last equation in (3) by setting { = 1. The curve C}, is
defined by the local equations £ = n = ¢t = 0, which shows that they consist of A,—
double points for the total space. They also contain an A,—double point of W}, and
T' respectively. A computation similar to the above shows that the blow—up along
these curves resolves all singularities in a single move. The exceptional divisor over
C ,’;k is the union of two transverse ruled surfaces: we call V,fk the one that meets AZ,
and V}/, the other.

At this point, we have a semistable family = : X — A, whose central fibre is
depicted in Fig. 1: for each double curve we indicate its self—intersections in the two
components of the central fibre it belongs to. This is obtained by applying the Triple
Point Formula (see Lemma 1).

Step (IV)

For our purposes, we need to further blow-up the total space along the 12 curves
I, = Vi N V. This has the drawback of introducing components with
multiplicity two in the central fibre, namely the corresponding exceptional divisors.
To circumvent this, we will flop these curves as follows.

Let# : X — Abethe family obtained by blowing-up X along the I}, ’s. We call
Wi, (or, unambiguously, Wk’ ») the corresponding exceptional divisors: they appear
with multiplicity two in the central fibre Xo. By applying the Triple Point Formula
as in Remark 1, one checks that the surfaces Wk’ , are all isomorphic to P! x P!
Moreover, it is possible to contract W), in the direction of the ruling cut out by V,
and V,{ih, as indicated on Fig.2. We call X — X the contraction of the 12 divisors
W, in this way, and @w : X — A the corresponding semistable family of surfaces.

Even though X --> X is only a birational map, we have a birational morphism
X — S over A.

5.2 Identification of the Components of the Central Fibre

Summarizing, the irreducible components of the central fibre X are the following:
(i) The 4 surfaces P;, with 1 <i < 4.

Each P; is a plane blown—up at 6 4 3 points, and H (i.e. the pull-back of a general
line in the plane, recall our conventions in Sect. 2) is the restriction class of &'z (1)
on P;. For j, k € {l1,...,4} —{i}, we set

Lij:=P,NW, and Gf:=P;N A},

as indicated in Fig. 3. In addition to the three (—1)—curves Gik , we have on P; the six

exceptional curves E; Ej forall j € {l,....4} —{i}, with E; E;; intersecting
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Fig. 1 Planisphere of the model X, of the degeneration into four planes

Lj; at one point. Moreover, for j € {1,...,4}—{i}, we have on L the two points zjle
defined as the strict transform of the intersection E ; N L;in §. We will denote by

Z; the O—dimensional scheme of length 6 given by ) i (z;{ +z;;). We let 7, C
Op, be its defining sheaf of ideals.
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Fig. 3 Notations for P; C Xo

(ii) The 24 surfaces W/, W'

G Wi with i, j € {1,..., 4} distinct.

Each of them is isomorphic to F;. We denote by | F| the ruling. Note that the divisor
class F corresponds to the restriction of &'z (1).

(iii) The 6 surfaces Wj;, with i, j € {1, ..., 4} distinct.
Foreachk € {1,...,4} —{i, j}, we set
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Fig. 4 Notations for W; C )?0

W k. k k_ k
Ay =Wy OWy, Gyi=Wyn0 4y, Fy =W;NV;,

k k
Dy =W;nT",
and define similarly Aj;, Gﬁ, Fli‘ (D;; may be called Dﬁ without ambiguity). This is
indicated in Fig. 4. o ‘ ‘

A good way of thinking to the surfaces Wj; is to consider them as (non—minimal)
rational ruled surfaces, for which the two curves A;; and A;; are sections which do
not meet, and the two rational chains

Gi+ Ff +2Df + Ff + Gj. ke{l.....4}—{i.j}.

lj’

are two disjoint reducible fibres of the ruling |F|. One has furthermore Oy, (F) =
Ozy(1)® O W
The surface Wj; has the length 12 anticanonical cycle

Aji+ G+ Ff +DE+ Ff +GE + Aj+ G+ F) + D+ Fl + G (4

cut out by Xy — Wi;, where we fixed k and £ such that {i, j. k,h} = {1,...,4}.
It therefore identifies with a plane blown—up as indicated in Fig.5: consider a
general triangle L, Ly, L3 in P2, with vertices a, a», az, where a; is oppositeto Ly,
etc.; then blow—up the three vertices a, and call E; the corresponding exceptional
divisors; eventually blow—up the six points L, N E;, r # s, and call E,; the
corresponding exceptional divisors. The obtained surface has the anticanonical cycle

i+ Es+E+Exs+ Lo+ En+E+E31+Ls+ Espp+ Ey+ Ep, (5)

which we identify term-by-term and in this order with the anticanonical cycle (4)
of VV;,
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Fig. 5 W and T* as blown—up planes
Fig. 6 Notations for 7% C X
We let H be, as usual, (the transform of) a general line in the plane
k k k
H ~y, Aji + Zkg{i,j}(ZGﬁ + Fji + Dji : (©)

The ruling | F| is the strict transform of the pencil of lines through the point a;,
hence

|F|=|H - (Aj+ GE+ G|, with {I,....4}={i j.k.h}. (]

(iv) The 4 surfaces T, with 1 < k < 4.

Here we set [} = 75 N A fori € {1,...,4} — {k},and FJ = T* N Vi fori, j €
{1,...,4} — {k} distinct. Also recall that D}, = T* N Wj; fori, j € {1,...,4} —{k}
distinct. This is indicated in Fig. 6.
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Ly

B By, B B

Fig. 7 Alj‘- as a blown-up plane

Each T* identifies with a plane blown—up as indicated in Fig. 5, as in the case of
the Wj’s: it has the length 12 anticanonical cycle

F'+ DS+ F +TF+ F+ D+ FE+ If + Fl + D+ Fl + T (®

(where we fixed indices s, i, j such that {s,i, j,k} = {1,...,4}) cut out by Xo—Tk
on T*, which we identify term-by-term and in this order with the anticanonical
cycle (5). This yields

H ~p F' 4+ @D+ FY+ 1)+ @rf + F + D). 9)

We have on T* the proper transform of a pencil of (bitangent) conics that meet
the curves 1"31‘ and D{; in one point respectively, and do not meet any other curve in

the anticanonical cycle (8): we call this pencil |45§ |, and we have

\®¥| = |2H — (F + D +2r}) — (F! + I'f +2D})|.

The restriction of &'y (1) on T* is trivial.
(v) The 12 surfaces A¥, with i,k € {1,...,4} distinct.

Each of them identifies with a blown—up plane as indicated in Fig. 7. It is equipped

with the ruling |H — I'¥|, the members of which meet the curves G¥ and I'* at

one point respectively, and do not meet any other curve in the length 8 anticanonical
cycle cut out by Xo — A¥ on A¥. The restriction of 'z (1) on A¥ is trivial.

(vi) The 24 surfaces Vl]k with i, j, k € {1,...4} distinct.

These are all copies of P2, on which the restriction of &y (1) is trivial.

5.3 The Limit Linear System, I: Construction

According with the general principles stated in Sect. 3.2, we shall now describe the
limit linear system of |0 (1)| as € A* tends to 0. This will suffice for the proof,

presented in Sect. 5.7, that w : X — A is a —~good model for 1 < § < 3.
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We start with P := P(w(CO3(1))), which is a P>~bundle over A, whose fibre
att € Ais |0y (1)]. We set & = O3(1), and |0y (1)| = |-£; note that | -Z| =
|Os,(1)]. We will often use the same notation to denote a divisor (or a divisor class)
on the central fibre and its restriction to a component of the central fibre, if this does
not cause any confusion.

We will proceed as follows:

(I) We first blow—up B at the points m; corresponding to the irreducible com-
ponents P; of So, fori € {1,...,4} (the new central fibre then consists of
|Os,(1)| = P3 blown—up at four independent points, plus the four exceptional
P3s);

(II) Next, we blow—up the total space along the proper transforms L of the six
lines of |Os,(1)| joining two distinct points mw;, 7w, with i, j € {1,...,4},
corresponding to pencils of planes with base locus an edge of Sy (the
new central fibre is the proper transform of the previous one, plus the six
exceptional P(ﬁpl @ Op (1)@2) s);

(III) Finally, we further blow—up along the proper transforms of the planes Ii
corresponding to the webs of planes passing through the vertices py of Sy, for
k € {1,...,4} (this adds four more exceptional divisors to the central fibre,
for a total of 15 irreducible components).

In other words, we successively blow—up 3 along all the cells of the tetrahedron
dual to Sy in By, by increasing order of dimension.

Each of these blow—ups will be interpreted in terms of suitable twisted linear
systems as indicated in Remark 3. It will then become apparent that every point
in the central fibre of the obtained birational modification of ¥ corresponds to a
curve in X, (see Sect. 5.7), and hence that this modification is indeed the limit linear
system £.

Step (I)

In H°(X,, O%,(1)) there is for each i € {I,...,4} the 1-dimensional subspace
of sections vanishing on P;, which corresponds to the sections of H(Sp, &, (1))
vanishing on the plane P;. As indicated in Remark 3, in order to construct the
limit linear system, we have to blow up the corresponding points 77; € |-%p|. Let
B’ — B be this blow—up, and call ﬁ,-, 1 < i < 4, the exceptional divisors.
Each £; is a P3, and can be interpreted as the trace of the linear system ’.,%(—P,-)|
on Xy (see Lemma 3 and Example 2). However, any section of H(Xo, Zp(—P))
still vanishes on components of X, different from P;. By subtracting all of them
with the appropriate multiplicities (this computation is tedious but not difficult and
can be left to the reader), one sees that f}i can be identified as the linear system
L= |$0(—Mi) , where
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My i= 6P+ 3 (SWj + 4W] + 3W; + 20 + W)+
J#i

+Z(2T"+4Af?+ > (3V,§+2V,.f.‘+A’;)+ > (I/]kj+1/j’3)).
ki J#iK U<PINGk=0
(10)

With the notation introduced in Sect. 5.2, one has:

Lemma 6. The restriction class of Ly(—M;) to the irreducible components of X,
is as follows:

(i) On P;, we find 4H — Zj?é’.(E;‘ + Elj_)’

(ii) On Pj, j # i, we find E + Ej;
(iii) For each j # i, we find 2F on each of the surfaces WU’ Wij’.’, Wi, I/I/j.f’,
(iv) On the remaining components the restriction is trivial.

/
Wi

Proof. This is a tedious but standard computation. As a typical sample we
prove (iii), and leave the remaining cases to the reader. Set {h,k} = {1,...,4} —
{i, j}. Then, recalling (6) and (7), we see that the restriction of £y(—M;) to W; is
the line bundle determined by the divisor class

k k k k
F+(M§,f’—W,~;’+ S A +vi+T —A,.))‘
ketli.j} i
~ F + Ajj— Ay + 2G5 + Ff + D — Gf) + (G} + Fj} + D} - G}

= F 4 (Ay-+ QG + Ef + DY)+ G} + Ef + D)
—(Aj+ G + G))

= 2F.
O
From this, we deduce that £; identifies with its restriction to P;:
Proposition 7. There is a natural isomorphism
C~ _ + -
[ ‘ﬁp,.(w Y L+ E; )®fz,.). (1)

Proof. Foreach j # i, the restriction of £ to P; has E; + E;; as its only member.
This implies that its restriction to Wﬂ’ has only one member as well, which is the

sum of the two curves in |F| intersecting E; and Ej; respectively. On W/, we
then only have the sum of the two curves in | F'| intersecting the two curves on Wﬂ’

respectively, and so on Wy, W;/, and W;;. Now the two curves on W;; impose the two
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base points z;{ and z;; to the restriction of £; to P;. The right hand side in (11) being
3—dimensional, this ends the proof with (i) of Lemma 6. O

Step (II)

Next, we consider the blow—up B” — ' along the proper transforms £; of
the six lines of |.%| joining two distinct points m;, w;, with i,j € {1,...,4},
corresponding to the pencils of planes in |0, (1)| respectively containing the lines
P; N P;. The exceptional divisors are isomorphic to P(Fp1 & Opi(1)®?); we call
them E,j, 1 <i < j < 4. Arguing as in Step (I) and leaving the details to the reader,
we see that éii is in a natural way a birational modification (see Sect. 5.5 below) of
the complete linear system £; := |-%(—Mj;)|, where

My = 3Wy + QW + W) + QW + W+

+ ) (ZTk+ZAi‘+2(V,-f‘+K§)+ > (K€+K§)). (12)

ki j} s#k sefij}
ré{i.jk}

We will denote by k < h the two indices in {1, ...,4} — {7, j}, and go on using
the notations introduced in Sect. 5.2.

Lemma 7. The restriction class of £o(—M;) to the irreducible components of Xo
is as follows:

(i) On Py (resp. Pp) we find H — G]f (resp. H — G;l‘);

(ii) On each of the surfaces W, Wk’}l, Win, Wy, and W, we find F;
(iii) On Ak (resp. Al w) we find H — F (resp. H — Fh)

(iv) On Tk (resp. Th) we find @k (resp @h)

(v) On P; (resp. P;), weﬁndEJr +E (resp. EJr +E )

(vi) On W’ W” w! W weﬁndZF

ji o TTji

(vii) On WU, wzth H as in (6), we find
k h k k k
4H —2 (A,j + Gij + Gn) — (F.. + G-» + Dij)

I h I k I
_(F;11+GJZ+DZ1) D _Dl;9

(viii) On the remaining components the restriction is trivial.

Proof. As for Lemma 6, this is a tedious but not difficult computation. Again we
make a sample verification, proving (vii) above. The restriction class is

P (W) + X (24, + V] + T V] 24) W]l
I=k,h

ij
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~F+ Aji+ Y (2Gi+ Fj + D}, + F} +2G})) + 4;
I=k,h

which, by taking into account the identification of Fig. 5, i.e. with (6) and (7), is
easily seen to be equivalent to the required class. O

Let wfic € W, be the two points cut out on Wj; by the two connected chains
of curves in |F |W’; X |F |Wi}/ meeting £ respectively. We let wis € W be the
two points defined in a similar fashion by starting with E;E Define the 0-cycle
Zij = wy +wy +w; 4wy on Wy, and let .7, C Oy be its defining sheaf of
ideals. ‘

Proposition 8. There is a natural isomorphism between £;; and its restriction to
Wi;, which is the 3—dimensional linear system

|0, (4H —2(4; + G} + Gl) - (Ff + G + DY)

— (Fi + G + D}) — D —DZ») ® I7. |, (13)

i

where we set {1,...,4} = {i, j,h,k}, and H as in (6).

Proof. Consider a triangle L, Ly, L3 in P2, with vertices a1, a», as, where a; is
opposite to L, etc. Consider the linear system % of quartics with a double point at
a, two simple base points infinitely near to a; not on L, and L3, two base points
at a, and a3 with two infinitely near base points along L3 and L, respectively,
two more base points along L. There is a birational transformation of Wj; to the
plane (see Fig.5) mapping (13) to a linear system of type # . One sees that two
independent conditions are needed to impose to the curves of % to contain the
three lines L, L,, L3 and the residual system consists of the pencil of lines through
ay. This proves the dimensionality assertion (see Sect. 5.5 below for a more detailed
discussion).
Consider then the restriction of £; to the chain of surfaces

! " 4 /
By taking into account (v)—(vii), of Lemma 7, we see that each divisor C of this
system determines, and is determined, by its restriction C’ on Wij;, since C consists

of C’ plus four rational tails matching it.
The remaining components of Xo on which £;; is non—trivial, all sit in the chain

T+ A P+ W+ W+ Wi+ W+ W+ P+ AV T (14)

The restrictions of £;; to each irreducible component of this chain is a base point free
pencil of rational curves, hence £; restricts on (14) to the 1-dimensional system of
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connected chains of rational curves in these pencils: we call it 9. Given a curve
in £, it cuts T* and T" in one point each, and there is a unique chain of rational

curves in 9" matching these two points. O
Step (III)
Finally, we consider the blow-up 8”” — 3" along the proper transforms of the

three planes that are strict transforms of the webs of planes in |, (1)| containing
a vertex px, with 1 < k < 4. For each k, the exceptional divisor £K is a birational
modification (see Sect. 5.6 below) of the complete linear system £¢ := |.$0( M¥) \,
where

M*=2TR 4y A+ > (VE+VE).
s#k {s<r}zk

Lemma 8. The restriction class of Lo(—M¥) to the irreducible components of X
is as follows:
(i) On P, i #k, wefind H — G¥;
(i) On AX,i # k, we find H — TK;
(iii) On Py, as well as on the chains Wy + W, + Wy + W/ + W/, i # k, we find
the restriction class of 2o,

(iv) On T*, we find
3H — (FY + D% +2r)) — (FI' + Df + 2rf) — (Ff + Df + 21},

with {s,i, j,k} ={1,...,4}, and H as in (9),
(v) On the remaining components it is trivial.

Proof. We limit ourselves to a brief outline of how things work for TX. The
restriction class is

(ZA"+ >k awe + 1))

r#k {r<r’}Fk

Tk

which is seen to be equal to the required class with the identification of Figs. 5 and 6,
i.e. with H asin (9). ]

Proposition 9. There is a natural isomorphism between £X and its restriction to
Tk, which is the 3—dimensional linear system

3H — (F + Dk +2r¥) — (F] + D% + 2r¥) — (F{* + D

where we set {s,i, j,k} = {1,...,4}, and H as in (9).
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Proof. This is similar (in fact, easier) to the proof of Proposition 8, so we will be
sketchy here. The dimensionality assertion will be discussed in Sect. 5.6 below.
For each i # k, the restriction of £k to each irreducible component of the chain

AY P WA W A W+ W+ W, (15)

is a base point free pencil of rational curves, and £F restricts on (15) to the 1—
dimensional system of connected chains of rational curves in these pencils, that we
will call M¥.

Now the general member of £F consists of a curve in £F |Tk’ which uniquely
determines three chains of rational curves in ‘ﬂf.‘, i # k, which in turn determine a
unique line in |Opr (H)|. O

5.4 The Linear Systems £;

Let a, b, ¢ be three independent lines in P2, and consider a O—dimensional scheme
Z cut out on @ + b + ¢ by a general quartic curve. Consider the linear system
& of plane quartics containing Z. This is a linear system of dimension 3. Indeed
containing the union of the three lines a, b, ¢ is one condition for the curves in &
and the residual system is the 2—dimensional complete linear system of all lines in
the plane.

Proposition 7 shows that £; can be identified with a system of type 7. We denote
by o; : P; ——> P3 (or simply by o) the rational map determined by £; and by Y its
image, which is the same as the image of the plane via the rational map determined
by the linear system 2.

Proposition 10. The map o : P; --> Y is birational, and Y is a monoid quartic
surface, with a triple point p with tangent cone consisting of a triple of independent
planes through p, and with no other singularity.

Proof. The triple point p € Y is the image of the curve C = Z?= j (2Dij + Lj)

(alternatively, of the sides of the triangle a, b, ¢). By subtracting C to £; one gets a

homaloidal net, mapping to the net of lines in the plane. This proves the assertion.
0

Remark 7. The image of X by the complete linear system |.Z(—M;)| provides a
model f’ : S’ — A of the initial family f : S — A, such that the corresponding
flat limit of S] = S;s with ¢ # 0, is S] = Y the quartic monoid image of the
face P; of the tezrahedron via 0. The map X 0 —> Sé contracts all other irreducible
components of Xy to the triple point of the monoid.

Remark 8. Theorem 3 says that the degree of the dual surface of the monoid Y is 21.
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The strict transform of f}i in ‘Bg/ (which we still denote by f}i , see Sect. 2) can be
identified as a blow—up of £; = &7 first blow—up the three points corresponding to
the three non-reduced curves 2a +b +c¢, 2b+a +c¢, 2¢ +a +b. Then blow—up the
proper transforms of the three pencils of lines with centres at A, B, C plus the fixed
parta + b + ¢. We will interpret this geometrically in Sect. 5.7, using Lemma 3.

5.5 The Linear Systems £;

Next, we need to study some of the geometric properties of the linear systems
£;; as in Proposition 8. Consider the rational map ¢; : W; --> P3 (or simply @)
determined by £;;. Alternatively, one may consider the rational map, with the same
image W (up to projective transformations), determined by the planar linear system
W of quartics considered in the proof of Proposition 8.

Proposition 11. The map ¢ is birational onto its image, which is a quartic surface
W C P3, with a double line D, and two triple points on D.

Proof. First we get rid of the four base points in Z; by blowing them up and taking
the proper transform £;; of the system. Let u : W — Wj; be this blow—up, and let
Il.lj.E (resp. 1 jli) be the two (—1)—curves that meet A;; (resp. Aj).

The strict transform £; = u*(L;) — (I,;r + I + I + IUT), has self-

intersection 4. Set, as usual, {1,...,4} = {i, j, h, k} and consider the curves

Ci=Aj + (ZG;E + F;],C) + (ZG‘]{; + F/il)
(16)
and Cj = Ay + G + Ff) + Gl + F]).

One has
'SU M Cs = 09 pa(Cs) = 07 CSZ = _3’ fOr S € {(l.])’ (.]l)}

By mapping W to W,;, and this to the plane as in Fig. 5 with (4) and (5) identified,
one sees that Cj; goes to the line L and Cj; to the union of the two lines L,, L.
The considerations in the proof of Proposition 8 show that i_llj has no base points on
C;;UC;j; (i.e., # has only the prescribed base points along the triangle L+ L, +L3).
On the other hand, the same considerations show that the base points of i_llj may only
lie on Cj; U Cy;. This shows that i_llj is base points free, and the associated morphism
@ : W — P3 contracts C i and Cy to points ¢ and ¢, respectively.

The points ¢; and ¢, are distinct, since subtracting the line L; from the planar
linear system % does not force subtracting the whole triangle L; + L, + L3 to
the system. By subtracting Cj; from f}ij, the residual linear system is a linear system
of rational curves with self—intersection 1, mapping Wj; birationally to the plane.
Indeed, this residual linear system corresponds to the residual linear system of L
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with respect to 7, which is the linear system of plane cubics, with a double point
at aj, two simple base points infinitely near to a; not on L, and L3, two base points
at a, and as, and this is a homaloidal system. This shows that ¢ is a triple point of
W and that ¢ is birational. The same for c;,. Finally ¢ maps (the proper transforms
of) D% and D! both to the unique line D containing ¢; and ¢. O

Remark 9. The subpencil of £; corresponding to planes in P? that contain the line
D corresponds to the subpencil of curves in % with the triangle L + L, + L3 as its
fixed part, plus the pencil of lines through a;. In this subpencil we have two special
curves, namely L; + 2L, + L3 and Ly + L, + 2L3. This shows that the tangent
cone to W at the general point of D is fixed, formed by two planes.

Remark 10. The image of X via the complete linear system | (—M;;)| provides a
model f’ : S’ — A of the initial family f : S — A, such that the corresponding
flat limit of S} = S,s with ¢ # 0, is S; = W the image of Wj via ¢. The map
Xo > Sé contracts the chain (14) to the double line of W, and the two connected
components of Xy — W;; minus the chain (14) (cf. Fig. 1) to the two triple points of
W respectively.

Corollary 1. The exceptional divisor f}u of B" — P’ is naturally isomorphic
to the blow—up of the complete linear system £; = |Ow(1)| along its subpencil
corresponding to planes in P3 containing the line D.

Proof. This is a reformulation of the description of B” — P’ (cf. Step (I) in
Sect. 5.3 above), taking into account Propositions 8 and 11. O

The divisor f},-j C By is a P(Op1 (1)P2 @ Op1 ), and its structure of P2-bundle over
P! is the minimal resolution of indeterminacies of the rational map £; --> |0 (1)],
which sends a general divisor C € £;; to its intersection point with D. The next
Proposition provides an identification of the general fibres of Eii over |0p(1)| = P!
as certain linear systems.

Proposition 12. The projection of W from a general point of D is a double cover
of the plane, branched over a sextic B which is the union

B=By+ B+ B>

of a quartic By with a node p, and of its tangent cone B, 4+ B, at p, such that the
two branches of By at p both have a flex there (see Fig. 8; the intersection B; N By
is concentrated at the double point p, for 1 <i < 2).

Proof. Let us consider a double cover of the plane as in the statement. It is singular.
Following [7, §4], we may obtain a resolution of singularities as a double cover
of a blown-up plane with non-singular branch curve. We will then observe that
it identifies with W blown—up at two general conjugate points on Dk and Dh
respectively (here conjugate means that the two points are mapped to the same
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-1/B; By

-\ B2

Fig. 8 Desingularization of the branch curve of the projection of Wj;

point x of D by @). We will denote by W the surface W blown—up at two such
points, and by 17, I/ the two exceptional divisors.

First note that our double plane is rational, because it has a pencil of rational
curves, namely the pull-back of the pencil of lines passing through p (eventually
this will correspond to the pencil of conics cut out on W by the planes through D).

In order to resolve the singularities of the branch curve (see Fig. 8), we first blow—
up p, pull-back the double cover and normalize it. Since p has multiplicity 4, which
is even, the exceptional divisor E of the blow—up does not belong to the branch
curve of the new double cover, which is the proper transform B (still denoted by B
according to our general convention). Next we blow—up the two double points of B
which lie on E, and repeat the process. Again, the two exceptional divisors E|, E;
do not belong to the branch curve. Finally we blow—up the two double points of B
(which lie one on E; one on E;, off E), and repeat the process. Once more, the two
exceptional divisors E{, E} do not belong to the branch curve which is the union
of By, By and B, (which denote here the proper transforms of the curves with the
same names on the plane). This curve is smooth, so the corresponding double cover
is smooth.

The final double cover has the following configuration of negative curves: B
(resp. By) is contained in the branch divisor, so over it we find a (—1)-curve; E i
(resp. E}) meets the branch divisor at two points, so its pull-back is a (—2)-curve;
E| (resp. E;) does not meet the branch divisor, so its pull-back is the sum of two
disjoint (—2)-curves; similarly, the pull-back of E is the sum of two disjoint (—3)-
curves. In addition, there are four lines through p tangent to By and distinct from B
and B,. After the resolution, they are curves with self-intersection 0 and meet the
branch divisor at exactly one point with multiplicity 2. The pull-back of any such a
curve is the transverse union of two (—1)-curves, each of which meets transversely
one component of the pull-back of E.

This configuration is precisely the one we have on W, after the contraction of the
four (—1)-curves G}j s G{;, G/}, and Gl’; Moreover, the pull-back of the line class of
P2 is the pull-back to W of £;(—(I. + I!')). O

Corollary 2. In the general fibre of the generic P? bundle structure of f}ij, the Severi
variety of 1-nodal (resp. 2-nodal) irreducible curves is an irreducible curve of
degree 10 (resp. the union of 16 distinct points).
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Proof. This follows from the fact that the above mentioned Severi varieties are
respectively the dual curve By of a plane quartic as in Proposition 12, and the set of
ordinary double points of By. One computes the degrees using Pliicker formulae.

0

5.6 The Linear Systems £*

Here we study some geometric properties of the linear systems £* appearing in the
third step of Sect. 5.3.

Consider a triangle L, L,, L3 in P2, with vertices a,,das,as, where a; is
opposite to Lj, etc. Consider the linear system Z of cubics through ay,a,, a3
and tangent there to L3, L, L, respectively. By Proposition 9, there is a birational
transformation of 7% to the plane (see Fig.5) mapping £¢ to .7. We consider
the rational map ¢ : TX --> P? (or simply ¢) determined by the linear system
£k, or, alternatively, the rational map, with the same image 7 (up to projective
transformations), determined by the planar linear system .. The usual notation is

(1,.... 4y ={i,j.s, k}.

Proposition 13. The map ¢ : T* — T C P3? is a birational morphism, and T
is a cubic surface with three double points of type A, as its only singularities.
The minimal resolution of T is the blow—down of T* contracting the (—1)—curves
D{;, Di’fv, D,{E' This cubic contains exactly three lines, each of them containing two of
the double points.

Proof. The linear system .7 is a system of plane cubics with six simple base points,
whose general member is clearly irreducible. This implies that ¢ : T — T C P3 is
a birational morphism and 7 is a cubic surface. The linear system £¢ contracts the
three chains of rational curves

C=F'+2D5+ F!, C=F'+2Df+FF, Cy=F!+2Df+ F]

which map in the plane to the sides of the triangle L;, L,, L3. By contracting the
(—=1)—curves D{;, Di]fv, D,]:Cw the three curves Cy, C,, C3 are mapped to three (—2)—
cycles contracted by ¢ to double points of type A;.

The rest follows from the classification of cubic hypersurfaces in P3 (see, e.g.,
[S5]). The three lines on T are the images via ¢ of the three exceptional divisors

k k k
rk.rkrk. O

Remark 11. We now see that the image of X by the complete linear system
|-Z(—M¥)| provides a model f/ : §' — A of the initial family f : § — A,
such that the corresponding flat limit of S/ = S;s with t # 0, is Sé =T+ P,
where T is the image of T* via ¢, and P is the plane in P3 through the three lines
contained in 7', image of Py by the map associated to £¢. The three other faces of
the initial tetrahedron Sy are contracted to the three lines in 7" respectively.
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Proposition 14. The dual surface T cPwTis itself a cubic hypersurface with
three double points of type A, as its only singularities. Indeed, the Gauss map yr
fits into the commutative diagram

N

T————>T
YT

where qvﬁ is the morphism associated to the linear system
3H — (F + I} +2DY) — (F/ + r¥F +2D%) — (F¥ + r} +2Df)].

which is mapped to the linear system ' of cubics through ay, a,as and tangent
there to Ly, Ly, Ly respectively, by the birational map T* --> P? identifying £
with .

Proof. The dual hypersurface T has degree 3 by Proposition 5. Let p be a double
point of T'. The tangent cone to T" at p is a rank 2 quadric, with vertex a line L ,. A
local computation shows that the limits of all tangent planes to 7" at smooth points
tending to p are planes through L,. This means that yr is not well defined on
the minimal resolution of 7', which is the blow—down of T* contracting the (—1)—
curves Dk Dl’fv, D]ﬁ, its indeterminacy points being exactly the three points images
of these curves The same local computation also shows that y7 is well defined on
T*, hence yr fits in the diagram as stated.

In 7 there are the three curves 2L+ L3, 2L, + L1, 2L3+ L,, which implies that
for any given line £ C T there is a plane IT; in P? tangent to T at the general point of
£ (actually one has [T,NT = 3{). Then yr contracts each of the three lines contained
in T to three different points, equivalently ¢ contracts to three different points the
three curves Fk I'; k Fk Being T a (weak) Del Pezzo surface, this implies that ¢

must contract the three chains of rational curves F ,fj +2rk+ F Fis+2rk + F, v

and F; ,{i +2I jk + F ]/:S, because they have 0 intersection with the anticanonical system,
and the rest of the assertion follows. ]

Recalling the description of 3”7 — B, one can realize £ as a birational
modification of £¢ 2 |@r(1)|: first blow—up the point corresponding to the plane
containing the three lines of T, then blow—up the strict transforms of the three lines
in |07 (1)| corresponding to the three pencils of planes respectively containing the
three lines of 7. Notice that £¥ has a structure of P'—bundle on the blow—up of P?
at three non—coplanar points, as required.

Alternatively, we have in 7 the four curves Cy = Ly + L, + L3, C; = 2L +
L3, Cy = 2Ly + L,C3 = 2L3 + L,, corresponding to four independent points
cy...,c3 of 7. Then £k is the blow—up of J at ¢y, further blown-up along the
proper transforms of the lines (cg, ¢}, {co, c2), and {cg, c3). Via the map ok 7,
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the projection of the P'~bundle structure corresponds to the projection of .7 from
co to the plane spanned by ¢y, ¢2, ¢3.
This will be interpreted using Lemma 3 in Sect. 5.7 below.

5.7 The Limit Linear System, I1: Description

We are now ready to prove:

Proposition 15. The limit linear system of |-£;| = |0 (1)| ast € A tends to O is
Proof. The identification of P"” as Hilb(.¥) will follow from the fact that every
point in B’ corresponds to a curve in Xo (see Lemma 2). Having the results of
Sects. 5.3-5.6 at hand, we are thus left with the task of describing how the various
components of the limit linear system intersect each other. We carry this out by
analyzmg, with Lemma 3, the birational modifications operated on the components
PBo, £i, £, and ok during the various steps of the construction of B (see
Sect.5.3).

() In Bj,, the strict transform of P (which we shall go on calling P, according
to the conventions set in Sect.2) is the blow up of |-%| = |Os,(1)| at the four
points corresponding to the faces of Sy. For each i € {1,...,4}, the corresponding
exceptional plane is the intersection 3 N £;, and it identifies with the subsystem of
£; consisting of curves

L+ )  (Li+G'+G). LelonH)L
J#i
{z/kh} {1....4}

together with six rational tails respectively joining £; £to z], ,J FEI.
(II) Foreach {i # j} C {1,...,4}, the intersectlon Lo N 2,;,~ C Py identifies as
the exceptional P! x P! of both the blow—up of 3y C 3 along the line £;, and the

blow—up f},-j — Eii described in Corollary 1. As a consequence, it parametrizes the
curves

C + @+ D+ D} + Ci + C; (17)

(i, j,k,h} = {1,...,4}, C; and Cj as in (16)), where C is a chain in 9%, and
@ € |F|w; is the proper transform by ¢;; of a conic through the two triple points
of W (cf. Proposition ll) together with four rational tails respectively joining Ej *
and £ £ to wi ; and w . The two components C and @ are independent one from
another and respectlvely move in a 1-dimensional linear system.

The intersection £; N g c Py is a P2 In £, it identifies as the proper transform
via SU — SU of the linear system of curves
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Cj+C, Cel|L My ® Ow,(—Cy)|, andCjasin (16), (18)

while in £; it is the exceptional divisor of the blow—up of & C B, at the point
corresponding to the curve

2Lj+ G+ GO+ (Liy+ G/ +GEY+(La+G! +GI, . j.k.hy={1,...,4}.

It follows that it parametrizes sums of a curve as in (18), plus the special member
of M€ consisting of double curves of X, and joining the two points Df; N Fljk and
Dl n Fp.

(IIT) For each k € {1,...,4}, the intersection IT; = & n Po is a P? blown
up at three non colinear points. Seen in By, it identifies as the blow—up of the web
of planes in |.%| = |Os,(1)| passing through the vertex k of Sy, at the three points
corresponding to the faces of S containing this very vertex. In £¥ on the other hand,
it is the strict transform of the exceptional P? of the blow—up T — T =~ &k at the
point [a + b + c]. It therefore parametrizes the curves

L+ Y (rf+ Y (F+ DY), (19)
i#k J ik}

where L is aline in Py, together with three rational tails joining respectively L N Lg;
to ¥, i # k.

For i # k: £k n f}i is a P! x P!, identified as the exceptional divisor of both
the blow—up ¢ — T along the strict transform of the line parametrizing planes in
7 = |Or(1)| containing the line ¢* (Fik), and the blow—up of & C B;, along the
strict transform of the line parametrizing curves

L+GE+ > (Ly+Gl+GH., Lelop(H-GH. 0

It therefore parametrizes sums of

®+ (rik + Y (F/+2Dfk+ F) + C) 2D
J K

(where @ € ‘)‘(f-‘ , and the second summand is a member of £¥ |Tk), plus the fixed
part Ly, + Ef + Ef; + Zj g{i,k}(G,{ + @;), where @; is the special member of ‘ﬁ’;
consisting of double curves of X, and joining the two points G,{ N Li; on Py and
F//NIfonTk foreach j ¢ {i,k}, with J such that {i, k, j, J} = {1,...,4}. The
two curves @ and C are independent one from another, and respectively move in a
1-dimensional linear system.
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For each j ¢ {k.i}, £ n f},j is an Fj, and identifies as the blow—up of the
plane in £¢ corresponding to divisors in |&(1)| passing through the double point
ok (1'}]‘) N ¢* (1";‘), at the point [Zi# @k (1"1-]‘)]; it also identifies as the exceptional
divisor of the blow—up of f)u C Py along the P! corresponding to the curves as
in (17), with @ the only member of | F'|y; containing D{; We only need to identify
the curves parametrized by the exceptional curve of this F; they are as in (19), with
L corresponding to a line in the pencil |Op (H — G})|, s & {i. j. k}.

In conclusion, 3" is an irreducible Zariski closed subset of the relative Hilbert
scheme of X over A, and this proves the assertion. O

5.8 The Limit Severi Varieties

We shall now identify the regular parts of the limit Severi varieties U 5(X) =
U ()Z , L) for1 < § < 3 (see Definition 2). To formulate the subsequent statements,
we use Notation 3 and the notion of n—degree introduced in Sect. 3.5.

We will be interested in those n that correspond to a choice of 3 — § general base
points on the faces P; of Sy, with 1 < i < 4. These choices can be identified with
4—tuples n = (n1,n,,n3,n4) € N* with |n| = 3 — § (by choosing n; general points
on P;). The vector n is non—zero only if 1 < § < 2. For§ = 1 (resp. for § = 2), to
give n is equivalent to give two indices i, j € {1,..., 4)? (resp.ani € {1,...,4}):
we let n; ; (resp. n;) be the 4—tuple corresponding to the choice of general base
points on P; and P; respectively if i # j, and of two general base points on P; if
i = j (resp. a general base point on P;).

Proposition 16 (Limits of 1-nodal curves). The regular components of the limit
Severi variety 01 1 (X) are the following (they all appear with multiplicity 1):

(i) The proper transforms of the 24 planes V(E) C |Os,(1)|, where E is any one
of the (—1)—curves Eif,for 1 <i,j <4andi # j. The ny—degree is 1 if
h # k; whenh =k, itis 1 ifh & {i, j}, and 0 otherwise;

(ii) The proper transforms of the four degree 3 surfaces V(M* 6 = 1) c £k,
1 < k < 4. The nj—degreeis 3 ifi # j; wheni = j,itis3ifk =i, and 0
otherwise;

(iii) The proper transforms of the four degree 21 surfaces V(M;,8p, = 1) C £,
1 <i < 4. The ny—degreeis 21 if h = k = i, and 0 otherwise;

(iv) The proper transforms of the six surfaces in V(My, w, = 1) C £ 1 <i <
j < 4. They have ny—degree 0 for every h, k € {1,...,4}%

Proof. This follows from (1), and from Propositions 14 and 29. Proposition 29 tells
us that V(M;,8p, = 1) has degree at least 21 in £; for 1 < i < 4; the computations
in Remark 12 (a) below yield that it cannot be strictly larger than 21 (see also
the proof of Corollary 4), which proves Theorem 3 for § = 1. The ny—degree
computation is straightforward. O
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Remark 12. (a) The degree of the dual of a smooth surface of degree 4 in P? is
36. It is instructive to identify, in the above setting, the 36 limiting curves passing
through two general points on the proper transform of Sy in X. This requires the
ny,—degree information in Proposition 16. If we choose the two points on different
planes, 24 of the 36 limiting curves through them come from (i), and 4 more, each
with multiplicity 3, come from (ii). If the two points are chosen in the same plane,
then we have 12 contributions from (i), only one contribution, with multiplicity 3,
from (ii), and 21 more contributions form (iii). No contribution ever comes from (iv)
if we choose points on the faces of the tetrahedron.

(b) We have here an illustration of Remark 6: the components V(M;,§p, = 1)
are mapped to points in |0, (1)[, hence they do not appear in the crude limit ", (S)
(see Corollary 3 below); they are however visible in the crude limit Severi variety
of the degeneration to the quartic monoid corresponding to the face P;. In a similar
fashion, to see the component V' (M, y; = 1) one should consider the flat limit of
the S;, t € A*, given by the surface W described in Proposition 11.

Corollary 3 (Theorem 1 for § = 1). Consider a family f : S — A of general
quartic surfaces in P? degenerating to a tetrahedron Sy. The singularities of the
total space S consist in 24 ordinary double points, four on each edge of Sy (see
Sect. 3.1). It is 1-well behaved, with good model w : X — A. The limit in |Os,(1)]
of the dual surfaces S, t € A* (which is the crude limit Severi variety 0 (S)),
consists in the union of the 24 webs of planes passing through a singular point of
S, and of the 4 webs of planes passing through a vertex of Sy, each counted with
multiplicity 3.

Proof. The only components of ‘Urlef (X) which are not contracted to lower dimen-
sional varieties by the morphism B/ — ‘P are the ones in (i) and in (ii) of
Proposition 16. Their push—forward in By = |Os,(1)| has total degree 36. The
assertion follows. O

Corollary 4. Consider a family f' : S’ — A of general quartic surfaces in P,
degenerating to a monoid quartic surface Y with tangent cone at its triple point p
consisting of a triple of independent planes (see Remark 7). This family is 1-well

behaved, with good model w : X — A. The crude limit Severi variety 0{"(S’)

consists in the surface Y (which has degree 21), plus the plane p counted with
multiplicity 15.

Proof. We have a morphism B — P(w«(ZL(—M;))) = P(f/(Ts(1))). The
push—forward by this map of the regular components of U ;(X) are Y for
V(M;,8p, = 1),3-pfor V(M', 87 = 1), p for each of the 12 V(E) corresponding
toa (—1)—curve Ei withi € {h, k}, and 0 otherwise. The degree of V(M;,8p, = 1)
in £; is at least 21 by Proposition 29, so the total degree of the push—forward in
|O 56(1)| of the regular components of U ; (X) is at least 36. The assertion follows.

O
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Proposition 17 (Limits of 2-nodal curves). The regular components of the limit
Severi variety 01 ,(X) are the following (they all appear with multiplicity 1):

(i) V(E, E') for each set of two curves E, E' € {Eif, 1 <i,j <4,i # j}that
do not meet the same edge of the tetrahedron Sy. The ny—degree is 1 if P, C Sy
does not contain the two edges met by E, E’, and 0 otherwise;

(ii) VIM*,8pc = 1E) fork =1,... . 4and E € {Ejf,1 <i,j <4,i # jk €
{i, ]}}, which is a degree 3 curve in £F. The nj—degree is 3 if Py does not
contain both the edge met by E and the vertex corresponding to T, it is 0
otherwise;

(iii) V(My, 8wy = 2) for | <i < j < 4, which has ny,-degree 16 for h & {i, j},
and 0 otherwise;

(iv) V(M;,8p, = 2) for 1 < i < 4, which has ny-degree 132 for h = i, and 0
otherwise;

(v) V(My,8w; = 1,E) for1 <i < j <4, and E € {El-f-,{z',j}u{i,j} =

{1,...,4}}, which is a curve of nj-degree O for 1 < h < 4.

Proof. Tt goes as the proof of Proposition 16. Again, Proposition 30 asserts that

V(M;,p, = 2) has degree at least 132 in £;, but it follows from the computations

in Remark 13 (a) below that it is exactly 132, which proves Theorem 3 for § = 2.
|

Remark 13. (a) The degree of the Severi variety V,(X, 05 (1)) for a general quartic
surface X' is 480 (see Proposition 4). Hence if we fix a general point x on one of
the components P, of Sy we should be able to see the 480 points of the limit Severi
variety U, » through x. The n,—degree information in Proposition 17 tells us this.

For each choice of two distinct edges of Sy spanning a plane distinct from P,
and of two (—1)-curves E and E’ meeting these edges, we have a curve containing
x in each of the items of type (i) . This amounts to a total of 192 such curves.

For each choice of a vertex and an edge of Sy, such that they span a plane distinct
from P, there are 3 curves containing x in each of the four corresponding items (ii).
This amounts to a total of 108 such curves.

For each choice of an edge of Sy not contained in Py, there are 16 curves
containing x in the corresponding item (ii). This gives a contribution of 48 curves.

Finally, there are 132 plane quartics containing x in the item (ii) for i = h.
Adding up, one finds the right number 480.

(b) Considerations similar to the ones in Remark 12 (b) could be made here, but
we do not dwell on this.

Corollary 5 (Theorem 1 for § = 2). Same setting as in Corollary 3. The family
f S — Ais 2-well behaved, with good model w : X — A. The crude limit
Severi variety G, (S) consists of the image in | Us,(1)| of:

(i) The 240 components in (1) of Proposition 17, which map to as many lines in
|Os, (DI
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(ii) The 48 components in (ii) of Proposition 17, each mapping 3 : 1 to as many
lines in |Us,(1)|;

(iii) The 6 components in (ii) of Proposition 17, respectively mapping 16 : 1 to the
dual lines of the edges of Sy.

Proof. The components in question are the only ones not contracted to points by the
morphism *B;" — |Os,(1)], and their push—forward sum up to a degree 480 curve.

O

Corollary 6. Same setting as in Corollary 4; the family f’' : S’ — A is 2-well

behaved, with good model w : X — A. The crude limit Severi variety 0{",(S")

consists of the ordinary double curve of the surface Y, which has degree 132, plus
a sum (with multiplicities) of lines contained in the dual plane p of the vertex of Y.

Proof. Tt is similar to that of Corollary 4. The lines of 2U{",(S’) contained in p are
the push—forward by B’ — |0y (1)| of the regular components of U » (X) listed
in Remark 13 (a), with the exception of V(M;,§p, = 2). They sum up (with their
respective multiplicities) to a degree 348 curve, while V(M;, §p, = 2) has degree at
least 132 in £; by Proposition 30. O

Proposition 18 (Limits of 3-nodal curves). The family @ : X — A is absolutely
3—good, and the limit Severi variety 0 3(X) is reduced, consisting of:

(1) The 1,024 points V(E, E', E"), for E,E',E" € {E;F,l <i < j <4} such
that the span of the three corresponding double points of S is not contained in
a face of So;

(ii) The 192 schemes V(M*,8;x = 1,E E’), for 1 < k < 4and E,E' €
{E;F, 1 <i < j < 4}, such that the two double points of S corresponding
to E and E’ and the vertex with index k span a plane which is not a face of S.
They each consist of 3 points;

(iii) The 24 schemes V(Mj;, 8w, = 2,E), for1 <i < j <4, and E € {E;F,l <
i < j < 4}, such that the double point of S corresponding to E does not lie
on the edge P; N P; of So, and that these two together do not span a face of
So. They each consist of 16 points;

(iv) The 4 schemes V(M;,Sp, = 3), each consisting of 304 points.

Proof. The list in the statement enumerates all regular components of the limit
Severi variety U 3(X) with their degrees (as before, Corollary 14 only gives 304 as
alower bound for the degree of (iv)). They therefore add up to a total of at least 3,200
points, which implies, by Proposition 18, that 0 3(X) has no component besides
the regular ones, and that those in (iv) have degree exactly 304. Reducedness then
follows from Remark 21, (b). ]

In conclusion, all the above degenerations of quartic surfaces constructed from

X — A with a twist of £ are 3-well behaved, with X as a good model.
In particular:
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Corollary 7 (Theorem 1 for § = 3). Same setting as in Corollary 3. The limits in
|Os,(1)| of 3-tangent planes to S;, fort € A*, consist of:

(i) The 1,024 planes (each with multiplicity 1) containing three double points of
S but no edge of Sy;
(i1) The 192 planes (each with multiplicity 3) containing a vertex of So and two
double points of S, but no edge of So;
(iii) The 24 planes (each with multiplicity 16) containing an edge of Sy and a
double point of S on the opposite edge;
(iv) The 4 faces of Sy (each with multiplicity 304).

6 Other Degenerations

The degeneration of a general quartic we considered in Sect. 5 is, in a sense, one of
the most intricate. There are milder ones, e.g. to:

(1) A general union of a cubic and a plane;
(il)) A general union of two quadrics (this is an incarnation of a well known
degeneration of K3 surfaces described in [12]).

Though we encourage the reader to study in detail the instructive cases of degen-
erations (i) and (ii), we will not dwell on this here, and only make the following
observation about degeneration (ii). Let f : S — A be such a degeneration, with
central fibre So = Q1 U Q,, where Q1, Q> are two general quadrics meeting along
a smooth quartic elliptic curve R. Then the limit linear system of |J5s, (1)| ast € A*
tends to O is just |Os,(1)[, so that f : S — A endowed with Og(1) is absolutely
good.

On the other hand, there are also degenerations to special singular irreducible
surfaces, as the one we will consider in Sect. 7 below. In the subsequent sub—section,
we will consider for further purposes another degeneration, the central fibre of which
is still a (smooth) K3 surface.

6.1 Degeneration to a Double Quadric

Let Q C P? be a smooth quadric and let B be a general curve of type (4,4) on
Q. We consider the double cover p : Sy — O branched along B. This is a K3
surface and there is a smooth family f : S — A with general fibre a general quartic
surface and central fibre Sy. The pull-back to Sy of plane sections of Q which are
bitangent to B fill up a component U of multiplicity 1 of the crude limit Severi
variety 209" Note that 205 naturally sits in | T, (1)| = P3 in this case, hence one can
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unambiguously talk about its degree. Although it makes sense to conjecture that
is irreducible, we will only prove the following weaker statement:

Proposition 19. The curve 0 contains an irreducible component of degree at least
36.

We point out the following immediate consequence, which will be needed in
Sect. 10.1 below:

Corollary 8. If X is a general quartic surface in P3, then the Severi variety
Va(X, Ox (1)) (which naturally sits in |Ox (1)| = P3) has an irreducible component
of degree at least 36.

To prove Proposition 19 we make a further degeneration to the case in which B
splits as B = D + H, where D is a general curve of type (3,3) on @, and H is a
general curve of type (1,1), i.e. a general plane section of Q C P3. Then the limit
of U contains the curve 20 := Wp g in p? parametrizing those planes in P3 tangent
to both H and D (i.e., 2 is the intersection curve of the dual surfaces H and D).
Note that H is the quadric cone circumscribed to the quadric Q and with vertex
the point P orthogonal to the plane P cutting out H on Q, while D is a surface
scroll, the degree of which is 18 by Proposition 6, hence deg(20) = 36. To prove
Proposition 19, it suffices to prove that:

Lemma 9. The curve 20 is irreducible.

To show this, we need a preliminary information. Let us consider the irreducible,
locally closed subvariety % C |0(4)| of dimension 18, consisting of all curves
B = D + H, where D is a smooth, irreducible curve of type (3,3), and H is a
plane section of Q which is not tangent to D. Consider .¥ C % x P the Zariski
closure of the set of all pairs (D + H, IT) such that the plane IT is tangent to both D
and H,i.e. IT € H N D. We have the projections p; : .% — % and p, : .9 — P>
The curve 27 is a general fibre of p.

Lemma 10. The variety .9 contains a unique irreducible component ¢ of dimen-
sion 19 which dominates P3 via the map p-.

Proof. Let IT be a general plane of P?. Consider the conic I" := IT N Q, and fix
distinct points ¢, ...,q¢ on I". There is a plane P tangent to I" at g;, and a cubic
surface F passing through g3, ..., g¢ and tangent to I" at g,; moreover P and F
can be chosen general enough for D + H to belong to %, where H = P N Q and
D = F N Q.Then (D + H,II) € ., which proves that p, is dominant.

Let #7 be the fibre of p, over I1. The above argument shows that there is a
dominant map .# --> I'> x Sym*(I") whose general fibre is an open subset of
P! x P°: precisely, if ((q1,42),q3 + ... + g¢) € I'> x Sym*(I") is a general point,
the P! is the linear system of plane sections of Q tangent to I" at ¢1, and the P is
the linear subsystem of | (3)| consisting of curves passing through gs, . .., gs and
tangent to I” at g». The existence and unicity of _# follow. O
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Now we consider the commutative diagram

v

S —7

” (22)

where v is the normalization of #, and f o p’ is the Stein factorization of p; o v :
' — % . The morphism [ : %' — % is finite of degree &, equal to the number
of irreducible components of the general fibre of p;, which is 20. The irreduciblity
of ¢ implies that the monodromy group of f : %’ — % acts transitively on the
set of components of 20.

Proof (of Lemma 9). We need to prove that 4 = 1. To do this, fix a general D €
|00 (3)|, and consider the curve 20 = 20p y, with H general, which consists of /
components. We can move H to be a section of Q by a general tangent plane Z.
Then the quadric cone H degenerates to the tangent plane T S to Q atz == Z,
counted with multiplicity 2.

We claim that, for z € Q general, the intersection of TQ,z with D is irreducible.

Indeed, since Disa scroll, a plane section of D is reducible if and only if it contains
a ruling, i.e. if and only if it is a tangent plane section of D. Since D #+ Q, the
biduality theorem implies the claim.

The above assertion implies 7 < 2. If equality holds, the general curve 20
consists of two curves which, by transitivity of the monodromy action of f, are
both unisecant to the lines of the ruling of D.

To see that this is impossible, let us degenerate D as D; + D,, where D is a
general curve of type (2, 1) and D, is a general curve of type (1,2) on Q. Then
D accordingly degenerates and its limit contains as irreducible components D, and
D5, which are both scrolls of degree 4 (though we will not use it, we note that
Dy -D, =5 and the (crude) limit of D in the above degeneration consists of the
union of D 1 Dz, and of the five planes dual to the points of D; N D,, each of the
latter counted with multiplicity 2). We denote by © either one of the curves Dy, D5.

Let again H be a general plane section of 0. We claim that the intersection of
® with H does not contain any unisecant curve to the lines of the ruling of ®. This
clearly implies that the general curve 20 cannot split into two unisecant curves to
the lines of the ruling of D, thus proving that 4 = 1.

To prove the claim, it suffices to do it for specific ®, Q and H. For ® we take
the rational normal cubic with affine parametric equations x = ¢,y = 12,7 =13,
with t € C. For Q we take the quadric with affine equation x> + y> — xz — y =
0, and for H the intersection of Q with the plane z = 0. Let (p, g, r) be affine
coordinates in the dual space, so that (p, ¢, r) corresponds to the plane with equation
px +qy +rz+ 1 = 0 (i.e.,, we take as plane at infinity in the dual space the
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orthogonal to the origin). Then the affine equation of D is gotten by eliminating ¢ in
the system

pt+qgrf +rP +1=0, p+2qt+3r? =0, (23)

which defines the ruling p; of D orthogonal to the tangent line to © at the point with
coordinates (¢,22,1%), t € C. The affine equation of H is gotten by imposing that
the system

Px+qr+qz+1=0 x*+y?—xz—y=0, z=0,

has one solution with multiplicity 2; the resulting equation is p*—4qg—4 =0.
Adding this to (23) means intersecting H with p;; for ¢ # 0, the resulting system
can be written as
22 4 8pt — 41> —3) =0 P Ml A
—_ —_ = s = — —1, r = _——
P P 7= 6t 312

For a general t € C, the first equation gives two values of p and the remaining
equations the corresponding values of g and r, i.e., we get the coordinates (p, g, 1)
of the two intersection points of H and p:. Now we note that the discriminant of
p2t? + 8pt — 4(t> — 3) as a polynomial in p is 16¢2(¢> 4 1), which has the two
simple solutions #i. This implies that the projection on ® = P! of the curve cut
out by H on ® has two simple ramification points. In particular HNDis locally
irreducible at these points, and it cannot split as two unisecant curves to the lines of
the ruling. This proves the claim and ends the proof of the Lemma. O

7 Kummer Quartic Surfaces in P3

This section is devoted to the description of some properties of quartic Kummer
surfaces in P3. They are quartic surfaces with 16 ordinary double points p;, ..., pis
as their only singularities. Alternatively a Kummer surface X is the image of
the Jacobian J(C) of a smooth genus 2 curve C, via the degree 2 morphism
¥ : J(C) — X C P? determined by the complete linear system |2C |, where
C C J(C) is the Abel-Jacobi embedding, so that (J(C),C) is a principally
polarised abelian surface (see, e.g., [4, Chap. 10]). Since ¢ is composed with the
= involution on J(C), the 16 nodes of X are the images of the 16 points of order
2 of J(C). By projecting from a node, Kummer surfaces can be realised as double
covers of the plane, branched along the union of six distinct lines tangent to one
single conic (see, e.g., [2, Chap. VIII, Exercises]). We refer to the classical book
[25] for a thorough description of these surfaces (see also [14, Chap. 10]).
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7.1 The 164 Configuration and Self-Duality

An important feature of Kummer surfaces is that they carry a so-called 16—
configuration (see [19], as well as the above listed references). Let X be such
a surface. There are exactly 16 distinct planes [1; tangent to X along a contact
conic I, for 1 < i < 16. The contact conics are the images of the 16 symmetric
theta divisors Cy, ..., Cis on J(C). Each of them contains exactly 6 nodes of X,
coinciding with the branch points of the map ¥, : C; = C — [} = P! determined
by the canonical g% on C.

Two conics I7,I7;, i # j, intersect at exactly two points, which are double
points of X: they are the nodes corresponding to the two order 2 points of J(C)
where C; and C; meet. Since the restriction map Pic’(J(C)) — Pic’(C) is an
isomorphism, there is no pair of points of J(C) contained in three different theta
divisors. This implies that, given a pair of nodes of X, there are exactly two contact
conics containing both of them. In other words, if we fix ani € {1,..., 16}, the map
from {1,...,16} — {i} to the set of pairs of distinct nodes of X on I}, which maps
j to Iy N I';, is bijective. This yields that each node of X is contained in exactly
6 conics I;. The configuration of 16 nodes and 16 conics with the above described
incidence property is called a 16¢—configuration.

Let X be the minimal smooth model of X , Eq,..., Eig the (—=2)-curves over the
nodes pi, ..., p1s of X respectively, and D; the proper transform of the conic I5,
for 1 <i < 16. Since X is a K3 surface and the D;’s are rational curves, the latter
are (—2)-curves. The 16¢—configuration can be described in terms of the existence
of the two sets

gZ{El,...,Em} and _@Z{Dl,...,Dl(,}

of 16 pairwise disjoint (—2)—curves, enjoying the further property that each curve
of a given set meets exactly six curves of the other set, transversely at a single point.

Proposition 20. Let X be a Kummer surface. Then its dual X c PPisalsoa
Kummer surface.

Proof. By Proposition 5, we have deg()f ) = 4. Because of the singularities on X,
the Gauss map yx : X --> X is not a morphism. However we get an elimination of
indeterminacies

N
XZ o s%
rx
by considering the minimal smooth model X of X. The morphism f is the

contraction of the 16 curves in &, and g maps each E; to a conic which is the
dual of the tangent cone to X at the node corresponding to E;. On the other hand,
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since yx contracts each of the curves I7,..., [¢ to a point, then g contracts the
curves in Z to as many ordinary double points of X . The assertion follows. O

7.2 The Monodromy Action on the Nodes

Let JZ° be the locally closed subset of |Op3(4)| whose points correspond to
Kummer surfaces and let 7 : 2~ — J£° be the universal family: over x € JZ°,
we have the corresponding Kummer surface X = 7~ !(x). We have a subscheme
A C & suchthat p := n| , : A — J° is a finite morphism of degree 16: the
fibre p~!(x) over x € J#° consists of the nodes of X. We denote by G55 C Si6
the monodromy group of p : A — #Z°

There is in addition another degree 16 finite coveringq : ¢ — £ °: forx € J#°,
the fibre ¢! (x) consists of the set of the contact conics on X . Proposition 20 implies
that the monodromy group of this covering is isomorphic to Gie¢. Then we can
consider the commutative square

q
e ——

7 N
/| Ir
% H°

q 24)

where ¢ is the incidence correspondence between nodes and conics. Note that
P, ¢’ are both finite of degree 6, with isomorphic monodromy groups (see again
Proposition 20).

Here, we collect some results on the monodromy groups of the coverings
appearing in (24). They are probably well known to the experts, but we could not
find any reference for them.

Lemma 11. The monodromy group of ¢’ : ¢ — N and of p' : 7 — ¥ is the
SJull symmetric group Sg.

Proof. Tt suffices to prove only one of the two assertions, e.g. the one about p’.
Let X be a general Kummer surface and let e be a node of X. As we noticed, by
projecting from e, we realise X as a double cover of P? branched along 6 lines
tangent to a conic E, which is the image of the (—2)—curve over e. These 6 lines
are the images of the six contact conics through e, i.e. the fibre over ¢’. Since X is
general, these 6 tangent lines are general. The assertion follows. O

Corollary 9. The group G acts transitively, so ¢ and N are irreducible.

Proof. 1t suffices to prove that the monodromy of p : A — J£° is transitive. This
follows from Lemma 11 and from the fact that any two nodes of a Kummer surface
lie on some contact conic. O
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It is also possible to deduce the transitivity of the monodromy action of p and
q from the irreducibility of the Igusa quartic solid, which parametrizes quartic
Kummer surfaces with one marked node (see, e.g., [14, Chap. 10]). The following
is stronger:

Proposition 21. The group G g6 acts 2—transitively.

Proof. Again, it suffices to prove the assertion for p : .4~ — J£°. By Corollary 9,
proving that the monodromy is 2-transitive is equivalent to showing that the
stabilizer of a point in the general fibre of p acts transitively on the remaining points
of the fibre. Let X be a general Kummer surface and e € X a node. Consider the
projection from e, which realizes X as a double cover of P? branched along 6 lines
tangent to a conic E. The 15 nodes on X different from e correspond to the pairwise
intersections of the 6 lines. Moving the tangent lines to E one leaves the node e
fixed, while acting transitively on the others. O

Look now at the pull back ¢*(.#"). Of course _# is a component of ¢*(.4"). We
set #' = q*(A) — _#, and the morphism p’ : # — & which is finite of degree
10. We let Hig6 € S19 be the monodromy of this covering.

Lemma 12. The group H e acts transitively, i.e. W' is irreducible.

Proof. Let a,b € X be two nodes not lying on the contact conic I". There is a
contact conic I/ that contains both a and b; it meets I” transversely in two points,
distinct from a and b, that we shall call ¢ and d. Now a monodromy transformation
that fixes I"’ and fixes ¢ and d necessarily fixes I". It therefore suffices to find a
monodromy transformation fixing I’ which fixes ¢ and d, and sends a to b. Such a
transformation exists by Lemma 11. O

Proposition 22. Let X be a general Kummer surface. Then:

(i) Giee acts transitively the set of unordered triples of distinct nodes belonging to
a contact conic;

(ii) The action of Gies on the set of unordered triples of distinct nodes not
belonging to a contact conic has at most two orbits.

To prove this, we need to consider degenerations of Kummer surfaces when the
principally polarised abelian surface (J(C), C) becomes non-simple, e.g., when
C degenerates to the union of two elliptic curves E1, E; transversally meeting at a
point. In this case the linear system |2(E;+ E,)| on the abelian surface A = E{ X E3,
is still base point free, but it determines a degree 4 morphism ¢ : A — Q =
P! x P! C P? (where Q C P? is a smooth quadric), factoring through the product
Kummer surface X = A/=+, and a double cover X — Q branched along a curve of
bidegree (4, 4) which is a union of 8 lines; the lines in question are L, = P! x {a}
(resp. Ly, = {b} x P') where a (resp. b) ranges among the four branch points of the
morphism E; — (E /%) = P! (resp. E; — (E»/%) = P'). We call the former
horizontal lines, and the latter vertical lines. Each of them has four marked points:
on aline Ly, (resp. Lyp), these are the four points Ly, N Ly, where b (resp. a) varies
as above. One thus gets 16 points, which are the limits on X of the 16 nodes of a
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Fig. 9 Limits in a product Kummer surface of three double points not on a double conic

general Kummer surface X. The limits on X of the 16 contact conics on a general
Kummer surface X are the 16 curves L, + Ly,. On such a curve, the limits of
the six double points on a contact conic on a general Kummer surface are the six
marked points on L, and L, that are distinct from L, N Lyp.

Proof (of Proposition 22). Part (i) follows from Lemma 11. As for part (ii), consider
three distinct nodes a, @’ and a” (resp. b, b’ and b”) of X that do not lie on a common
conic of the 164 configuration on X . We look at their limits @, @’ and a” (resp. b, b’
and b”) on the product Kummer surface X; they are in one of the two configurations
(a) and (b) described in Fig. 9.

The result follows from the fact that the monodromy of the family of product
Kummer surfaces acts as the full symmetric group &4 on the two sets of vertical
and horizontal lines respectively. Hence the triples in configuration (a) (resp. in
configuration (b)) are certainly in one and the same orbit. O

8 Degeneration to a Kummer Surface

We consider a family f : S — A of surfaces in P? induced (as explained in
Sect.3.1) by a pencil generated by a general quartic surface Soo and a general

Kummer surface Sy. We will describe a related §-good model w : X — A for
1<§<3.

8.1 The Good Model

Our construction is as follows:

(I) We first perform a degree 2 base change on f : S — A;
(II) Then we resolve the singularities of the new family;
(I1I1) We blow—up the proper transforms of the 16 contact conics on Sy.
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The base change is useful to analyze the contribution of curves passing through a
node of Sj.

Steps (I) and (II)
The total space S is smooth, analytically—locally given by the equation
Xy =t

around each of the double points of Syo. We perform a degree 2 base change on f,
and call f : § — A the resulting family. The total space S has 16 ordinary double
points at the preimages of the nodes of Sy.

We let &y : X — S be the resolution of these 16 points, gotten by a simple
blow—up at each point. We have the new family 7 : X — A, withw = f o¢ej.
The new central fibre X consists of the minimal smooth model §0 of So, plus the
exceptional divisors Qy,..., Q. These are all isomorphic to a smooth quadric
Q = P'xP' C P>.Welet £y, ..., Ei be the exceptional divisors of Sy — So.
Each Q; meets fo transversely along the curve E;, and two distinct Q;, Q; do not
meet.

Step (III)

Asin Sect. 7.1, welet Dy, ..., D¢ be the proper transforms of the 16 contact conics
I, ..., I'ig on Sy: they are pairwise disjoint (—2)-curves in X,. We consider the
blow -up &2 : X — X of X along them. The surface So is isomorphic to its strict
transform on Xo. Let Wi, ..., Wi be the exceptional divisors of €,. Each W; meets
So transversely along the (strict transform of the) curve D;. Note that, by the Triple
Point Formula 1, one has deg(Np;|w,) = —deg(Np,5,) — 6 = —4, so that W; is an
F4—Hirzebruch surface, and D; is the negative section on it.

We call Ql, ey Q16 the strict transforms of Qi,..., Q¢ respectively. They
respectively meet So transversely along (the strict transforms of) Ey, ..., Ej¢. For
1 < i < 16, there are exactly six curves among the D;’s that meet E;: we call
them Di .. Di The surface Q, is the blow-up of Q; at the six intersection points
of E; Wlth D’ .. D’ we call / Gi, ce G’ respectively the six corresponding
(—1)-curves on Q, Accordlngly, o meets transversely six W;’s, that we denote
by W',...,W¢, along 'Gi,...,"G} respectively. The surface Q; is disjoint from
the remaining W .

For 1 < j < 16, we denote by E}, o E]6 the six E;’s that meet D;. There

56
) ] ’
let Gjl., cees G;? be their respective intersection curves with W;. Note the equality of
sets

are correspondingly six Q i’s that meet W;: we denote them by Q~1, .. and
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{’Gi,lsislé,lsssé}z{G;,1sjs16,1<s<6}.

We shall furthermore use the following notation (cf. Sect.2). For 1 < j < 16,
we let Fy, (or simply F') be the divisor class of the ruling on W;, and Hy,; (or
simply H) the divisor class D; + 4Fy,. Note that G} ~y, F and 'G} ~ws F, for
1<i,j <l6and1 < s < 6. We write H, for the pull-back to So of the plane
section class of Sy C P3. For 1 <i < 16, we let L} and L} be the two rulings of
Q;,and Hyp, (or simply H) be the divisor class L] + L; we use the same symbols
for their respective pull-backs in Q~i. When designing one of these surfaces by Q~‘V,
we use the obvious notation L and L*".

8.2 The Limit Linear System

We shall now describe the limit linear system of |0 (1)| as t € A* tends to 0,
and from this we will see that X is a good model of S over A. We start with =
P(w.«(0(1))), which is a P>~bundle over A, whose fibre at 7 € A is |0y (1)|; we
set & = Og(1),and |Og (1)| = |Z| fort € A. Note that | | = |5, (1)].

We will proceed as follows:

(I) We first blow—up B at the points of Po = |-L| corresponding to planes in
P3 containing at least three distinct nodes of Sy (i.e. either planes containing
exactly three nodes, or planes in the 16¢ configuration);

(II) Then we blow—up the resulting variety along the proper transforms of the lines
of || corresponding to pencils of planes in P containing two distinct nodes
of So;

(I11) Finally we blow-up along the proper transforms of the planes of |%b|
corresponding to webs of planes in P* containing a node of Sy.

The description of these steps parallels the one in Sect. 5.3, so we will be sketchy
here.

Step (Ia)

The (136) - 16(2) = 240 planes in P? containing exactly three distinct nodes of Sy
correspond to the 0-dimensional subsystems

|Hy— Ey — Eg» — Egr|g, (25)
of |Hy| = |-%4]|, where {s’,s”,s"} ranges through all subsets of cardinality 3 of
{1,...,16} such that the nodes py, ps, ps» corresponding to the (—2)—curves
Ey, Eyr, Egr do not lie in a plane of the 164 configuration of Sy. We denote by
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Cy gy the unique curve in the system (25) and we set Hygrgr = Cygrgr + Eg +
Es» 4+ Egr, which lies in | Hy|.

The exceptional component Lygrgm of the blow-up of *J3 at the point correspond-
ing to Hy gy can be identified with the 3—dimensional complete linear system

Lergrgm o= ‘%(_Qs’ - Qs” - Qs”’)

’

which is isomorphic to the projectivization of the kernel of the surjective map

f: ( @ HO(QSa ﬁQNS (H))) 52 HO(S'(), ﬁgo (CS/S//S///))

se{s’ s s/}

— P H(On(-E)) = H(P.6n(2)*

se€{s’ 5" s}

mapping (s'.¢”,s",s)to (" —¢.¢" —¢. 6" —¢).
The typical element of £y~ consists of

(i) The curve Cyrgrg on 5’0, plus
(i) One curve in |05 (H)| for each s € {s",s”, 5"}, matching Cy g~ along Ej,
plus
(iii) Two rulings in each W; (i.e. a member of |Gy, 2F)| = | £ ® Ow,|), 1 < j <
16, matching along the divisor D ;, while
(iv) The restriction to O, is trivial for every s € {1,...,16} — {s',s",s"'}.

The strict transform of Py is isomorphic to the blow—up of |Hy| at the point
corresponding to Hy gy, By Lemma 3, the exceptional divisor J7srgn = P?
of this blow-up identifies with the pull-back linear series on Hy g7y of the 2-
dimensional linear system of lines in the plane spanned by py, ps, py» (note that in
this linear series there are three linear subseries corresponding to sections vanishing
on the curves Ey, Ey», Eyr» which are components of Hy 7 o).

The divisor .74,y is cut out on the strict transform of | Hy| by Lognom, along
the plane [T C £y, given by the equation ¢ = 0 in the above notation. The
identification of 7%y~ with IT is not immediate. It would become more apparent
by blowing up the curves Cyyy in the central fibre; we will not do this here,
because we do not need it, and we leave it to the reader (see Step (Ib) for a
similar argument). However, we note that ker(f) N {c = 0} coincides with the C3
spanned by three non-zero sections (¢y, 0,0, 0), (0, 57, 0, 0), (0,0, ¢y~, 0), where
¢ vanishes exactly on E for each s € {s’,s”,s”’}. These three sections correspond
to three points 7y, 7y, e in I1. In the identification of IT with J7s/s» the points
Ty, Ty, Ty are mapped to the respective pull-backs on Hy g of the three lines

ES//S/// = (ps//, ps///),es/s/// = (ps/,ps///>,£5/5// = (ps/,ps//),
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Step (Ib)
The 16 planes of the 164 configuration correspond to the 0-dimensional subsystems
1 6 ~ ;
|Ho—Ej —---— ES|g C |Ho| = |%| (1< <16),

consisting of the only curve 2D ;. The blow-up of °B at these points introduces 16
new components £/, 1 < j < 16, in the central fibre, respectively isomorphic to
the linear systems

o= L(=2W; = Q) —--- = 09)|.

The corresponding line bundles restrict to the trivial bundle on all components of
Xo but Wj and Q7, for 1 < s < 6, where the restriction is to Oy, (2H) and to
o o (H —2G3), respectively.

J

For each s € {l,...,16}, the complete linear system |H — 2G‘]‘-|Q; is O-

- J

dimensional, its only divisor is the strict transform in Q% of the unique curve
in |H |Q>¢ that is singular at the point D; N Q7. This is the union of the proper
transforms of the two curves in |L’ |os and |3 | through D; N Q% and it cuts
outa 0-cycle Z$ of degree 2 on G . We conclude that

e iﬁW,/(ZH) ® Iz,

, for 1</ <16, (26)

where ¥z, C Oy, is the defining sheaf of ideals of the O-cycle Z; := Z} +-e Z]6.
supported on the six fibres G}, cees G;? of the ruling of W;. We shall later study the
rational map determined by this linear system on W; (see Proposition 24).

For each j, the glueing of £/ with the strict transform of | Ho| is as follows: the
exceptional plane .7/ on the strict transform of | Hy| identifies with |&p i (Ho)| =
|Op1(2)| by Lemma 3, and the latter naturally identifies as the 2-dimensional linear
subsystem of \ﬁwj QH)® Iz, \ consisting of divisors of the form

2D, +Gj+--+ G+ @, P € |Ow2F)|

Step (II)

Let 3’ be the blow-up of 3 at the 240+ 16 distinct points described in the preceding
step. The next operation is the blow-up 3" — P’ along the (126) pairwise disjoint
respective strict transforms of the pencils

|Ho— Eg — Eg 1<s <s" <16. 27)

So’
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To describe the exceptional divisor L of B’ — P’ on the proper transform
of (27), consider the 3—dimensional linear system Ly, = \,%( QY/ - an)
isomorphic to the projectivization of the kernel of the surjective map

E}

( P H(0,. 04 (H))) ® H(S0. 05, (Hy — Ey — E))

se{s’ s}

— P H(E..Ok(-Ey) (28)

se{s’ s"}

mapping (¢’,¢”,¢) to (¢'—¢,¢” —¢). Then £y~ identifies as the blow—up of £/
along the line defined by ¢ = 0 in the above notation; in particular it is isomorphic
to P(Op1 @ Op:1(1)®?), with P*-bundle structure

/OS’S” N gs’s” — |HO — ES/ — E‘Y//igo
induced by the projection of the left-hand side of (28) on its last summand, as
follows from Lemma 3. The typical element of £y~ consists of

(i) A member C of |Hy— Ey — ES//|§0, plus
(i) Two curves in |H |Q§ and |H |Q§ respectively, matching C along Ey and Ey»,
together with
(iii) Rational tails on the W;’s (two on those W; meeting neither Q~S/ nor Q~S~, one
on those W; meeting exactly one component among Q~S/ and Q~S~, and none on
the two W;’s meeting both Q~S/ and Q~S~) matching C along D;.

The image by pys~ of such a curve is the point corresponding to its component (i).

Remark 14. The image of X via the complete linear system |.Z(—Qy — Q)|
provides a model f’ : S’ — A of the initial family f : § — A, with central fibre
the transverse union of two double planes Ty and ITy». For s € {s’, s”}, the plane
I1; is the projection of Q~S from the point p; corresponding to the direction of the
line {5y in |05 (H)|" = |-Z(—0s)|V, where {s5,5} = {s',s"}; there is a marked
conic on I, corresponding to the branch locus of this projection. The restriction to
E; of the morphism Q‘ — Il is a degree 2 covering E; — Iy N I1yr =: Lygr.

The two marked conics on [Ty and Il intersect at two points on the line Ly,

which are the two branch points of both the double coverings £y — Ly and
Ey — Lgyyv. These points correspond to the two points cut out on Ey (resp. Ey)
by the two curves D that correspond to the two double conics of Sy passing through
ps and pyr. There are in addition six distinguished points on Ly g, corresponding
to the six pairs of points cut out on Ey (resp. Ey») by the six curves Cyrgrgr
on Sp.
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Step (III)

The last operation is the blow-up B — B” along the 16 disjoint surfaces that are
the strict transforms of the 2-dimensional linear systems

|Ho— E|5,, 1<s<16,

We want to understand the exceptional divisor £,. Consider the linear system
£, 1= |%(—0y)|, which identifies with the projectivization of the kernel of the
surjective map

fs : H(Qs. 05, (H)) & H'(So. 05, (Ho — Ey)) — H(Ey. Ok, (—Ey))
") (s'=9)

(itself isomorphic to H(Q,, ﬁQS(H )), by the way). Blow—up £; at the point &
corresponding to ¢ = 0; one thus gets a P'~bundle over the plane |Hy — E;| 5
Then £ is obtained by further blowing—up along the proper transforms of the lines
joining & with the 6+ [(125) — 6(;)] = 51 points of | Hy— E,| we blew—up in Step (I).

The typical member of £, consists of two members of |Hy — Ej| 5, and |H |Qs
respectively, matching along E, together with rational tails on the surfaces W;.

Remark 15. The image of X by the complete linear system |.Z(—Q,)| provides
amodel f’ : S’ — A of the initial family f : § — A, with central fibre the
transverse union of a smooth quadric Q, and a double plane T branched along six
lines tangent to the conic I" := IT N Q (i.e. the projection of Sy from the node py).
There are 15 marked points on I1, namely the intersection points of the six branch
lines of the double covering Sy — 1.

Conclusion

We shall now describe the curves parametrized by the intersections of the various

components of (", thus proving:

Proposition 23. The central fibre B is the limit linear system of |.Z,| = |0y | as
t € A* tends to 0.

Proof. We analyze step by step the effect on the central fibre of the birational
modifications operated on ‘B in the above construction, each time using Lemma 3
without further notification.

(I) At this step, recall (cf. Sect.2) that By C P’ denotes the proper transform
of Py C P in the blow—up P’ — P. For each {s’,s”, s} C {1,..., 16} such that
(p’, p”, p"") is a plane that does not belong to the 164 configuration, the intersection
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Lo NPy C P’ is the exceptional P2 of the blow—up of |.Z| = |Os,(1)] at
the point corresponding to Hy gg. Its points, but those lying on one of the three
lines joining two points among my, 7y, e Which also have been blown—up (the
notation is that of Step (Ia)), correspond to the trace of the pull-back of |Js,(1)| on
Cs’s”s’” + Es/ + Es” + Es”’-

For each j € {1,...,16}, the intersection £/ NPy C P’ is a plane, the points
of which correspond to curves 2D ; + G} + -+ G? +Pof X, @ € |Ow, (2F)|,
except for those points on the six lines corresponding to the cases when @ contains
one of the six curves G}, ceey G?.

(I) Let {s" # 5"} C {1,...,16}. The intersection £y,» NPy C P” is a P! x P';
the first factor is isomorphic to the proper transform of the line |Hy — Ey — E/| 5
in 3y, while the second is isomorphic to the line {¢ = 0} C £~ in the notation
of Step (II) above. Then the points in £y N Po C P correspond to curves C +
Ey + Eg in X, with C € |Hy— Ey — Eyr| 5, exception made for the points with
second coordinate [¢cy : 0 : 0] or [0 : ¢y : 0] in £y, where ¢; € HO(ﬁQX(H ))
vanishes on E; for each s € {s’,s"}. A

Let s ¢ {s',s"} be such that (p’, p”, p”’) is a plane outside the 16¢
configuration. The intersection f)scw n f)s/s//s/// C B" is the P? preimage of the point
corresponding to Cy gy in |Hy — Ey — Eg| S via pyg7, and parametrizes curves
Cyyrgm + Eyn 4+ C' + C” + rational tails, with C’ € |H|5, and C” € |H|; ,
matching Cy7yr along Ey and E» respectively.

On the other hand, for s ¢ {s’,s”} such that (p’, p”, p”’) belongs to the 16¢
configuration, let j € {1,..., 16} be such that2D; is cutout on Sy by (p’, p”, p"’),
and set Qg = Q~} and Qg = Q~3, then £y N Lygnen C P is the preimage by
pss of the point corresponding to D in |Hy — Ey — Ey/| 50 and parametrizes the
curves

2D; + (G +C) + (G +C") + Z;(Gj + E3),

where C' € |H — G} |Q~s/ is the proper transform by Q~S/ — Qg of a member of
|H|p, tangentto Ey at D; N Ey, and similarly for C".

(I) Let s € {1,...,16}. The intersection £, N Py C P” is isomorphic to
the plane |Hy — E| 5, blown—up at the 51 points corresponding to the intersection
of at least two lines among the 15 |Hy — E; — Ey|, s’ # s. Each point of the
non—exceptional locus of this surface corresponds to a curve C + E; C )Zo, with
Ce |H0 — ES|§0.

Lets' € {1,...,16} —{s}. The intersection £, N £, C P” is an F, isomorphic
to the blow—up at § of the plane in £, projectivization of the kernel of the restriction
of §; to H° (ﬁés (H)) ®H°(O5,(Ho— Es — Ey)). It has the structure of a P'~bundle
over | Hy— E;— E |, and its points correspond to curves C 4+ Ey 4 Cs +rational tails,
with C; € |H|Qs matching with C € |Hy— E; — Ey| along Ej; note that the points
on the exceptional section correspond to the curves C + Ey + E; + rational tails.
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Lets” € {1,...,16} — {s,s’}, and assume the plane {p’, p”, p”’) is outside the
166 configuration. Then £, N £,» C P is a P! x P!, the two factors of which
are respectively isomorphic to the projectivization of the kernel of the restriction of
fs to H'(O5 (H)) ® H'(O5 (Ho — E; — Ey — Ey)), and to the line (rry, 757) in
L5 (with the notations of Step (Ib)). It therefore parametrizes the curves

Cyws + Ey + Eg + C + rational tails,

where C € |H| 0, matches C,y v along Ej.
Let j € {1,...,16} be such that W; intersects Q,. and set QNJ1 = Q. Then

£, N L/ c P isaP! x P!, the two factors of which are respectively isomorphic
to the pencil of pull-backs to Q~S of members of |H |p, tangent to E; at the point
D; N Ej, and to the subpencil 2D; + ZG} + sz» + -+ G;? + |Flw, of £/ 1t
parametrizes curves

2D; + (G} +C) + le(Gj +ES),

where C € |H — G} | g, 1s the proper transform of a curve on 0O, tangent to E; at
D; N E;.

It follows from the above analysis that the points of J3; all correspond in a
canonical way to curves on X, which implies our assertion by Lemma 2. O

8.3 The Linear System £/

In this section, we study the rational map ¢; (or simply ¢) determined by the linear
system &/ = |0y, 2H) ® fzj\ on W;,forl < j < 16.

Letu; : W; — W; be the blow—up at the 12 points in the support of Z ;. For
1 < s < 6, we denote by G; the strict transform of the ruling G4, and by 13’, 13"

the two exceptional curves of u; meeting CA?; Then the pull-back via u; induces a
natural isomorphism

6
‘ﬁwj 2H) ® jzj| ~ )ﬁwj (2H - Z([jsl + I;/,)));
s=1

we denote by £/ the right hand side linear system.

Proposition 24. The linear system &/ determines a2 : 1 morphism

g:W, > X CP,
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where X is a quadric cone. The divisor D~j =D; + 13]1 4+ 131»6 is contracted
by ¢ to the vertex of X. The branch curve B of ¢ is irreducible, cut out on X by a
quartic surface; it is rational, with an ordinary six—fold point at the vertex of X.

Before the proof, let us point out the following corollary, which we will later
need.

Corollary 10. The Severi variety of irreducible §-nodal curves in
\ﬁwj (2H) ® Iz, | is isomorphic to the subvariety of P? parametrizing $—tangent
planesto B, for § = 1,...,3. They have degree 14, 60, and 80, respectively.

For the proof of Proposition 24 we need two preliminary lemmas.
Lemma 13. The linear system |Ow,(2H) ® Fz,| C [2Hw,| has dimension 3.

Proof. The O-cycle Z; is cut out on G} + -t G? by a general curve in |2H |. Let
then

6
o € DHGS, Og; (2H)) = HO(P', Op1 (2))%°

s=1

be a non—zero section vanishing at Z ;. Then H'(W;, Ow, RH) ® 92;) = r~'((0))
where

6
r:H'(W;, Ow,2H)) — @HO(G“’., O3 (2H)) = HO(P!, Op1(2))®°

s=1

is the restriction map. The assertion now follows from the restriction exact sequence,
since

W (W;. Ow,2H) ® I7,) = 1 +h°(W;, Oy, (2H — 6F)) = 4.

|

Lemma 14. The rational map ¢; has degree 2 onto its image, and its restriction to
any line of the ruling | Fy, | but the six G;, 1 <5 < 6, has degree 2 as well.

Proof. Let x € W; be a general point and let F be the line of the ruling containing
x. One can find a divisor D € |0y, (2H) ® -9z, | containing x but not containing
F..Let x+x’ be the length two scheme cut outby D on F. By an argument similar
to the one in the proof of Lemma 13, one has dim(|Ow, 2H)® Iz, ® I 1v]) = 2.
This shows that x and x” are mapped to the same point by ¢. Then, considering the
sublinear system

2D +Gj 4+ G+ F.+ @, @ € |0w(F)
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of £/, with fixed divisor 2D; + Gjl. 4+t G]6. + F,, the assertion follows from the
base point freeness of |Oy, (F)|. O

Proof (of Proposition 24). First we prove that £/ has no fixed components, hence
that the same holds for £/. Suppose @ is such a fixed component. By Lemma 14,
@ - F = 0, hence @ should consist of curves contained in rulings. The argument of
the proof of Lemma 13 shows that no such a curve may occur in @, a contradiction.

Let D € £/ be a general element. By Lemmas 13 and 14, D is irreducible and
hyperelliptic, since D - F = 2. Moreover D? = 4 and p,(D) = 3. This implies that
D is smooth and that £/ is base point free. Moreover the image ¥ of ¢ has degree
2. Since D - D ;i = 0and D~j2 = —4, the connected divisor D ; 1is contracted to a
double point v of X', which is therefore a cone.

Since D is mapped 2 : 1 to a general plane section of X', which is a conic, we see
that deg(B) = 8. Let @ € |F |y, be general, and £ its image via ¢, which is a ruling
of X'. The restriction ¢|, : @ — £ is a degree 2 morphism, which is ramified at the
intersection point of @ with D ;. This implies that £ meets B at one single point off
the vertex v of ¥. Hence B has a unique irreducible component By which meets the
general ruling £ in one point off v. We claim that B = By. If not, B — By consists of
rulings ¢y, ..., £,, corresponding to rulings F, ..., F,, clearly all different from the
G‘j‘i, with 1 < s < 6. Then the restrictions ¢| R F; — {; would be isomorphisms,
for 1 < i < n, which is clearly impossible. Hence B is irreducible, rational, sits
in |Os(4)|. Finally, taking a plane section of X' consisting of two general rulings,
we see that it has only two intersection points with B off v. Hence B has a point of
multipilicity 6 at v and the assertion follows. O

Remark 16. Each of the curves é} +1I + 1" e |Flyy,, for 1 <5 < 6, is mapped
by ¢ to a ruling £; of X', and this ruling has no intersection point with B off v. This
implies that v is an ordinary 6—tuple point for B and that the tangent cone to B at v
consists of the rulings £, ..., ¢c of X.

Remark 17. Let " — A be the image of X — A via the map defined by the linear
system [£(=2W; — 3  O%)|. One has S/ = S for # # 0, and the new central

fibre S} is a double quadratic cone X in P3.

8.4 The Limit Severi Varieties

In this section we describe the regular components of the limit Severi varieties
20, 5(X) for 1 < § < 3. The discussion here parallels the one in Sect. 5.8, therefore
we will be sketchy, leaving to the reader most of the straightforward verifications,
based on the description of the limit linear system in Sect. 8.2.

Proposition 25 (Limits of 1-nodal curves). The regular components of the limit
Severi variety 0, 1(X) are the following (they all appear with multiplicity 1, but the
ones in (iii) which appear with multiplicity 2):
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@) V(Sgo = l) which is isomorphic to the Kummer quartic surface So C
05,0 = P v
(ii) V(QY, ) which is isomorphic to the smooth quadric Q, C |Op (1)| =

=1

P3, Jorl < < s < 16;

(i) V(Qy. TE, 2 = 1), which is isomorphic to a quadric cone in |Op (1)|, for 1 <
s < 16;

(iv) V(QS/ + QS//,5Q~ , = l), which is isomorphic to Q5 C |0, (1)| = P3, for
1 §~s/ < s”ﬁ 16,

V) V(Qy + Oy + Qur. 85, = 1), for 1 < s'.s",s" < 16 such that
QS/, QS//, QS/// are pairwise distinct and do not meet a common W; : it is again
isomorphic to st C |ﬁQA(1)| ~ P3;

(vi) V(2W + Ql -4 Q?,SWJ = 1) which is isomorphic to the degree 14
surface B C |Op(1)| = P?, for1 < j < 16.

Corollary 11 (Theorem 2 for § = 1). The family f : S — A of general quartic
surfaces degenerating to a Kummer surface Sy we started with, with smooth total
space S, and endowed with the line bundle Os(1), is 1-well behaved, with good
model w : X — A. The limit in |Os,(1)| of the dual surfaces S;, t € A*, consists
in the union of the dual So of So (which is again a Kummer surface), plus the 16
planes of the 164 configuration ofgo, each counted with multiplicity 2.

Proof. The push—forward by the morphism By’ — Py = |0, (1)] of the regular
components of 2 ; with their respective multiplicities in %rlel is §0 in case (i), 2 p

in case (ii), and O otherwise. The push-forward of ‘Breg (X) has thus total degree 36,
and is therefore the crude limit Severi variety U{"; (S ) by Proposition 4. O

Remark 18. (a) Similar arguments show that @ : X — A is a 1-good model for
the degenerations of general quartlc surfaces obtained from X — A via the line
bundles £ (—2W; — Q - Q ) and .Z(—Qy) respectively (see Remarks 17
and 15 for a descrlptlon of these degeneranons)

To see this in the former case, let us consider two general points on a given W,
and enumerate the regular members of U, ; that contain them. There are 2 curves
in (i) (indeed, the two points on W; project to two general points on D; = I'; C
So C P?, which span a line £ C P; the limiting curves in Sy passing through the
two original points on W; correspond to the intersection points of ¢ with So; now

¢ meets Sy with multiplicity 2 at the double point which is the image of I'; via the
Gauss map, and only the two remaining intersection points are relevant). There are
in addition 2 limiting curves in each of the 10 components of type (ii) corresponding
to the Q,’s that do not meet W;, and 14 in the relevant component of type (vi).

In this case, the crude limit Severi variety therefore consists, in the notation of
Remark 17, of the degree 14 surface B, plus the plane v with multiplicity 22 (this
has degree 36 as required).

For the degeneration given by .2 (—0y), the crude limit Severi variety consists,
in the notation of Remark 15, of the dual to the smooth quadric Q, plus the dual to
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the conic I with multiplicity 2, plus the 15 planes p with multiplicity 2, where p
ranges among the 15 marked points on the double plane I7.

(b) One can see that  : X — A is not a 1-good model for the degeneration to a
union of two double planes obtained via the line bundle .%(—Q s = 0, v) described
in Remark 14. In addition (see Step (Ia)) the line bundles £ (—Qy — Qg — Q ),
though corresponding to 3—dimensional components of the limit linear system, do
not provide suitable degenerations of surfaces. Despite all this, it seems plausible
that one can obtain a good model by making further modifications of X — A. The
first thing to do would be to blow—up the curves Cy .

Proposition 26 (Limits of 2-nodal curves). The regular components of the limit
Severi variety 01 2(X) are the following (they all appear with multiplicity 1, except
the ones in (ii) appearing with multiplicity 2):

Q) V(Oy + O3, 85 = 85 = 1) fors s”, proper transform of the
QA/ Q.\'//

intersection of two smooth quadrics in Lygr;

(i) V(Qy + Q. 86, = LtE, 0 = = 1) for s’ # s", proper transform of the
intersection of a smooth quadrlc and a quadric cone in Ly sr;

(i) V(OQy + Qg + Oy, 85 =85 = 1)forl < s',s", ”’ < 16 such that

Q / Q 7"
~S/, ~s”, ~s’” are pairwise distinct and do not meet a common W;, proper
p j» prop

transform of the intersection of two smooth quadrics in Ly sy ;

(@iv) V(ZWj + le 4+t Q?, Sw, = Z)foreach Jj €{l,...,16}, proper transform
of a degree 60 curve in £/ .

Proof. Again, one checks that the components listed in the above statement are the
only ones provided by Proposition 1, taking the following points into account:

(a) The condition § §, = 2 is impossible to fulfil, because there is no plane of P’
tangent to Sy at exactly two points (see Proposition 20);
(b) The condition § 5 = 8@; = 1 is also impossible to fulfil, because there is

no plane in P? tangent to S, at exactly one point, and passing through one of
its double points. Indeed, let p; be a double point of Sy, the dual plane p; is
everywhere tangent to So along the contact conic Gauss image of E;;

(¢) The conditiond5 = 7z, » = 1 imposes to a member of |H |5 to be the sum of
two rulings intersecting at a point on Ej, and such a curve does not belong to
the limit Severi variety:

(d) The condition tg,» = g, » = 1 imposes to contain one of the two curves D
intersecting both Ey» and Ey», which violates condition (i) of Definition 1.

0

Remark 19. As in Remark 13, we can enumerate the 480 limits of 2—_noda1 curves
passing through a general point in certain irreducible components of Xj:

(a) For a general point on So, we find 4 limit curves in each of the (126) = 120
components in (i) of Proposition 26;
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(b) For a general point on a given W;, we find 60 limit curves in the appropriate
component in (iv), and 4 in each of the (}) — (§) = 105 different components

of type (i) such that Q~S/ and Q~S~ do not both meet W;.

This shows that X — A is a 2-good model for the degenerations of quartics
corresponding to the line bundles .#’ and £ (—2W; — le —— Q;?). In particular,
it implies Corollary 12 below.

Corollary 12 (Theorem 2 for § = 2). Same setting as in Corollary 11. The crude
limit Severi variety U1, (S) consists of the images in | Us,(1)| of the 120 irreducible
curves listed in case (a) of Remark 19. Each of them projects 4 : 1 onto a pencil of
planes containing two double points of Sy.

Proposition 27 (Limits of 3-nodal curves). The family X — A is absolutely 3—
good, and the limit Severi variety *0, 3 is reduced, consisting of:

(1) Eight distinct points in each V(—Q~S/ — Q0 —0yr. 85, =126

n

6., =86, = 1),
where 1 <s',s”,5" < 16 are such that {py, ps», ps) is a plane that does not
belong to the 16¢ configuration of Sy,

(i) The 80 distinct points in each V (2Wj + Q~} 4+ Q?, Sw, = 3), corresponding
to the triple points of the double curve ofé C|Op(1)| = P3 that are also triple
points of B.

Proof. There are 240 unordered triples {s’,s”,s”} such that the corresponding
double points of Sy do not lie on a common D, so 275 has degree 3,200, which
fits with Proposition 4. O

Corollary 13 (Theorem 2 for § = 3). Same setting as in Corollary 11. The crude
limit Severi variety V{5 (S) C |Os,(1)] consists of:

(1) The 240 points corresponding to a plane through three nodes of Sy, but not
member of the 16¢ configuration, each counted with multiplicity 8;

(i) The 16 points corresponding to a member of the 16¢ configuration, each
counted with multiplicity 80.

9 Plane Quartics Curves Through Points in Special Position

In this section we prove the key result needed for the proof of Theorem 3, itself given
in Sect. 5.8. We believe this result, independently predicted with tropical methods
by E. Brugallé and G. Mikhalkin (private communication), is interesting on its own.
Its proof shows once again the usefulness of constructing (relative) good models.

The general framework is the same as that of Sects. 5 and 8, and we are going to
be sketchy here.
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Fig. 10 Degeneration of base
points on a triangle c

Fl )

9.1 The Degeneration and Its Good Model

We start with the trivial family f : S := P> x A — A, together with flatly varying
datafort € A of three independent lines a;, b;, ¢; lying in S;, and of a 0-dimensional
scheme Z; of degree 12 cut out on a, + b, + ¢, by a quartic curve I} in S;, which
is general for t € A*. We denote by s (1) the pull-back line bundle of Op2(1) via
the projection S — P2

We blow—up S along the line ¢¢. This produces a new family ¥ — A, the central
fibre Y, of which is the transverse union of a plane P (the proper transform of Sy,
which we may identify with P) and of an F; surface W (the exceptional divisor).
The curve E := P N W is the line ¢y in P, and the (—1)-section in W. The limit
on Yy of the three lines a;, b;, ¢; on the fibre ¥; =~ P2, fort € A*, consists of:

(i) Two general lines a, b in P plus the curves a’, b’ € | F |y matching them on E;
(ii) Acurvec € |H|w = |F + E|w on W.

We denote by Oy (1) the pull-back of Os(1) and we set " = Oy(4) ®
Oy (—W). One has .,Zu ~ Op(4) fort € A*, whereas .Zon restrict to Op(3H)
and Ow (4F + E) = Ow(4H — 3E) respectively. We may assume that the quartic
curve I; € |.$,n| cutting Z; on a; + b; + ¢, fort € A* tends, for t — 0, to
a general curve I € |.$0u| Then Iy = I'p + 'y, where I'p is a general cubic
in P and I'p € |[4H — 3E|w, with I'p and 'y matching along E. Accordingly
Zy = Zp + Zy, where Z p has length 6 consisting of 3 points on ¢ and 3 on b, and
Zyw consists of 1 point on both ¢’ and 4’, and 4 points on ¢ (see Fig. 10).

Next we consider the blow—up ¢ : X — Y along the curve Z in Y described
by Z;, fort € A, and thus obtain a new family 7 : X — A, where each X, is
the blow—up of Y; along Z,. We call E the exceptional divisor of ¢. The fibre of
élg,  Ez — Aatt € A consists of the 12 (—1)—curves of the blow—up of ¥; at
Z,. The central fibre X, is the transverse union of P and W, respectively the blow—
ups of P and W along Zp and Zy; we denote by Ep and Eyy the corresponding
exceptional divisors.

We let £ = &* %" ® Ox(—Ez). Recall from Sect.5.4 that the fibre of
P(7«(%)) overt € A* has dimension 3. We will see that X — A, endowed
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with .Z, is well behaved and we will describe the crude limit Severi variety T for
1 < 8§ < 3. This analysis will prove Theorem 3.

Remark 20. We shall need a detailed description of the linear system |-%5|. The
vector space H'(X,, %) is the subspace of HY(W, 0 (4H — 3E — Ey)) x
H(P, 0 5(3H — Ep)) which is the fibred product corresponding to the Cartesian
diagram

H°(Xo,.%) H(P,05(3H — Ep))

¢ e

HO(W, Oy, (4H — 3F — Ew)) HY(E,.Z|,) = H(PY,0p1(3)) (29)

Tw

where rp, ry are restriction maps. The map ry is injective, whereas rp has a 1-
dimensional kernel generated by a section s vanishing on the proper transforms
of a + b + c. Since h’(Xy,.%) > 4 by semicontinuity, one has Im(rp) =
Im(ry), and therefore H*(X, %) = HY(P,03(3H — Ep)) has also dimension
4. Geometrically, for a general curve Cp € |3H — Ep]|, there is a unique curve
Cw € |4H —3E— Ew| matchingitalong E and Cp +Cy € |-%]|. On the other hand
(0,5) € H(Xo, %) is the only non—trivial section (up to a constant) identically
vanishing on a component of the central fibre (namely W), and H (X, %)/ (s) =
HO(W, Oy (4H —3E — Ey)). Therefore, if we denote by D the point corresponding
to (0,s) in | %], a line through D parametrizes the pencil consisting of a fixed
divisorin [4H — 3E — Ey| on W plus all divisors in |3H — E p| matching it on E.
We will denote by %R the g3 on E given by |Im(rp)| = [Im(ry)].

To get a good model, we first blow—up the proper transform of a in P, and then
we blow—up the proper transform of b on the strict transform of P. We thus obtain

anew family @ : X — A. The general fibre X,,t € A*,is isomorphic to X,. The
central fibre X, has four components (see Fig. 11):

(i) The proper transform of P, which is isomorphic to P;
(ii) The proper transform W of W, which is isomorphic to the blow—up of W at
the two points @ N E, b N E, with exceptional divisors £, and Ej;
(iii) The exceptional divisor W}, of the last blow—up, which is isomorphic to Fy;
(iv) The proper transform W, of the exceptional divisor over a, which is the blow—
up of an Fy—surface, at the point corresponding to a N b (which is a general
point of Fy) with exceptional divisor E ;.

As usual, we go on calling .Z the pull-back to X of the line bundle .# on X.

9.2 The Limit Linear System

We shall now describe the limit linear system £ associated to .Z. As usual, we
start with P := P(w« (%)), and we consider the blow—up P’ — ‘P at the point
D € Py == |-%]|. The central fibre of B’ — A is, as we will see, the limit linear
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Fig. 11 Good model for plane quartics through 12 points

system £. It consists of only two components: the proper transform £; of |.%| and
the exceptional divisor £, = P3. Let us describe these two components in terms of
twisted linear systems on the central fibre.

Since the map ry in (29) is injective, it is clear that £, = | Lo (=W — W, —Wp)|.
The line bundle Zy(—W — W, — W},) is trivial on P and restricts to Oy(4H —
2E—-3E,—3E,—Ew),Ow,(H—Eu), Ow,(H) on W, W,, W respectively. Once
chosen Cy € |ﬁW (4H —2E —-3E,—3E,— Ew)|, there is only one possible choice
of two curves C, and Cy in | Oy, (H — Eq)| and |Ow, (H)| respectively, that match
with Cy along E,, E} respectively. They automatically match along E,p,.

In conclusion, by mapping W to P? (via | H |};), we have:

Proposition 28. The component £, 2= | .Ly(—W — W, — Wp)| of By, is isomorphic
to a 3-dimensional linear system of plane quartics with an imposed double point x,
prescribed tangent lines t1, t, at x, and six further base points, two of which general
on ty, t, and the remaining four on a general line.

To identify £, as the blow—up of | %] at D, we take into account Lemma 3, which
tells us that the exceptional divisor & C £ identifies with fR. Since € = £, N L,, the
linear system € identifies with a sublinear system of codimension 1 in £,, namely
that of curves

a+b+E+C, Ce€l|4H-3E—-3E,—-3E,—Ew|,

(in the setting of Proposition 28, C corresponds to a quartic plane curve with a triple
point at x passing through the six simple base points).
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It follows from this analysis that £ is the limit as # — 0 of the linear systems
|Z |, t € A*,in the sense of Sect. 3.2.

9.3 The Limit Severi Varieties

We will use the notion of n—degree introduced in Definition 4. However we will
restrict our attention to the case in which we fix 1 or 2 points only on P. Hence,
if we agree to set P = 01, then we call P—degree of a component V' of Us its
n—degree with n = (3 —§, 0,0, 0); we denote it by degp (V).

Proposition 29 (Limits of 1-nodal curves). The regular components of the limit
Severi variety 0 (X, ) are the following, all appearing with multiplicity 1,
except (iii), which has multiplicity 2.:

(i) V(8 = 1), with P—degree 9;
(ii) V(83 = 1), with P—degree 4;
(iii)) V(zg2 = 1), with P—degree 4,
(v) V(W + W, + W, 85 = 1), with P—degree 0.

Proof. The list is an application of Proposition 1. The only things to prove are the
degree assertions. Since £, is trivial on P, case (iv) is trivial. Case (i) follows from
Proposition 5, because the P—degree of V(85 = 1) is the degree 9 of the dual
surface of the image X p of P via the linear system [3H — Ep|, which is a cubic
surface with an A, double point (see Proposition 5).

As for (ii), note that nodal curves in [4H —3E — Ey | on W consist of a ruling in
|F|plusacurve C in [4H — F —3E — Ew|. If F does not intersect one of the four
exceptional curves in Ey meeting ¢y, then C = ¢o+a’ + b’ and the matching curve
on P contains the proper transform of @ and b, which is not allowed. So F has to
contain one of the four exceptional curves in Ey meeting co. This gives rise to four
pencils of singular curves in |4 H —3E — Ey |, which produce (see Remark 20) four
2—-dimensional linear subsystems in |.%5|, and this implies the degree assertion.

The degree assertion in (iii) follows from the fact that a g} on E has 4
ramification points. O

Proposition 30 (Limits of 2-nodal curves). The regular components of the limit
Severi variety U(X, L) are the following, all appearing with multiplicity 1,
except (iv) and (v), which have multiplicity 2, and (vi), which has multiplicity 3:

(i) V(8p = 2), with P-degree 9;
(ii) V(8 = 2), with P-degree 6;
(iii)y V(8p = 8 = 1), with P-degree 36;
(iv) V(6p = te2 = 1), with P-degree 28;
) V(©y = tg2 = 1), with P-degree 8;
(vi) V(tgs = 1), with P-degree 3;
(vil) V(W + W, + W, 8 = 2), with P—degree 0.
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Proof. Again, the list is an immediate application of Proposition 1, and the only
things to prove are the degree assertions. Once more case (vii) is clear.

In case (i) the degree equals the number of lines on X p (the cubic surface image
of 13), that do not contain the double point; this is 9.

In case (ii), we have to consider the binodal curves in |[4H — 3E — Ey/| not
containing E. Such curves split into a sum @ + @, + C, where @, and P, are the
strict transforms of two curves in | F | . They are uniquely determined by the choice
of two curves in Ey meeting c: these fix the two rulings in | F| containing them,
and there is a unique curve in |[2H — E| containing the remaining curves in Ey .
This shows that the degree is 6.

Next, the limit curves of type (iii) consist of a nodal cubicin [3H — Ep|p and a
nodal curve in [4H — 3E — Ew|y; aruling necessarily splits from the latter curve.
Again, the splitting rulings F are the ones containing one of the four curves in Ey
meeting co. The curves in |[3H — 2E|j; containing the remaining curves in Ey,
fill up a pencil. Let F be one of these four rulings. The number of nodal curves in
|3H — Ep|p passing through the base point Fy N E and through a fixed general
point on P equals the degree of the dual surface of X p, which is 9. For each such
curve, there is a unique curve in the aforementioned pencil on W matching it. This
shows that the degree is 36.

The general limit curve of type (iv) can be identified with the general plane of

=|3H — Ep |\1§ which is tangent to both X p and the curve Cg (image of E in
Xp), at different points. The required degree is the number of such planes passing
through a general point p of X p. The planes in question are parametrized in p3 by
a component /I of X pN C £ one needs to remove from X p N C £ the component
I, the general point of which corresponds to a plane which is tangent to Xp at a
general point of Cg. The latter appears with multiplicity 2 in XpNCg by Lemma 5.
Moreover, X p and Cr have respective degrees 9 and 4 by Proposition 5. Thus we
have

degp (VS5 = te2 = 1)) = 36 — 2deg(I).

To compute deg(I), take a general point ¢ = (¢ : ... : q3) € P?, and let Py(Xp)
be the first polar of X p with respect to ¢, i.e. the surface of homogeneous equation
a a
qo_f 4+ 4 qo_f — ()’
8 8X3

where f = 0is the homogeneous equation of X p. The number of planes containing
q and tangent to Xp at a point of Cg is then equal to the number of points of
P,(Xp) N Cg, distinct from the singular point v of X p. A local computation, which
can be left to the reader, shows that v appears with multiplicity 2 in P,(Xp) N CE,
which shows that deg(/%) = 4, whence degp (V(Sﬁ =1p) = 1)) = 28.

In case (v), we have to determine the curves in |4 H — 3E — Ey | with one node
(so that some ruling splits) that are also tangent to E. As usual, the splitting rulings
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are the one containing one of the four curves in Ey meeting cy. Inside the residual

pencil there are two tangent curves at E. This yields the degree 8 assertion.
Finally, in case (vi), the degree equals the number of flexes of Cg, which is a

nodal plane cubic: this is 3. O

Proposition 31 (Limits of 3-nodal curves). The regular components of the limit
Severi variety 03(X , L) are the following O-dimensional varieties, all appearing
with multiplicity 1, except the ones in (iv) and (v) appearing with multiplicity 2,
and (vi) with multiplicity 3:

(i) V(8 = 3), which consists of 6 points;
(ii) V(83 = 2,8y = 1), which consists of 36 points;
(iii) V(85 = 1,83 = 2), which consists of 54 points;
(iv) V(8 = 2,te2 = 1), which consists of 18 points;
(v) V(85 = 8y = te2 = 1), which consists of 56 points;
(vi) V(85 = te3 = 1), which consists of 18 points;
(vii) V(W + W, + W, 8y = 3), which consists of 6 points.

In the course of the proof, we will need the following lemma.
Lemma 15. Let p, g be general points on E.

(1) The pencil | C |3H — Ep| of curves containing ¢, and tangent to E at p,
contains exactly 7 irreducible nodal curves not singular at p.

(ii) The pencil m C |3H — Ep| of curves with a contact of order 3 with E at p
contains exactly 6 irreducible nodal curves not singular at p.

Proof. First note that [ and m are indeed pencils by Remark 20. Let P,, — P be the
blow-up at p and ¢, with exceptional curves E, and E, above p and g respectively.
Let P,, — P, be the blow-up at the point £ N E,, with exceptional divisor £,
Then [ pulls back to the linear system (3H — Ep — E, — E, — 2E]’7 \, which induces
an elliptic fibration Pp’ g~ P!, with singular fibres in number of 12 (each counted
with its multiplicity) by Lemma 4. Among them are: (i) the proper transform of
a + b + E, which has 3 nodes, hence multiplicity 3 as a singular fibre; (ii) the
unique curve of [ containing the (—2)-curve E,, which has 2 nodes along E,, hence
multiplicity 2 as a singular fibre. The remaining seven singular fibres are the ones
we want to count.

The proof of (ii) is similar and can be left to the reader. |

Proof (of Proposition 31). There is no member of £; with 3 nodes on W, because
every such curve contains one of the curves a’, b, co.

There is no member of £; with two nodes on W and a tacnode on E either.
Indeed, the component on W of such a curve would be the proper transform of a
curve of W consisting of two rulings plus a curve in |2 H — E|, altogether containing
Zy . Each of the two lines passes through one of the points of Zy on ¢p. The curve in
|2 H — E| must contain the remaining points of Zy, hence it is uniquely determined
and cannot be tangent to E.
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Then the list covers all remaining possible cases, and we only have to prove the
assertion about the cardinality of the various sets.

The limiting curves of type (i) are in one-to-one correspondence with the
unordered triples of lines distinct from @ and b in P, the union of which contains
the six points of Z p. There are 6 such triples.

The limiting curves of type (ii) consist of the proper transform Cp in P of the
union of a conic and a line on P containing Z p, plus the union Cy of the proper
transforms in W of a curve in |F| and one in |3H — 2E| altogether containing
Zw, with Cp and Cy matching along E. We have 9 possible pencils for Cp,
corresponding to the choice of two points on Z p, one on a and one on b; each such
pencil determines by restriction on E a line [ C 9A. There are 4 possible pencils for
Cw , corresponding to the choice of one of the points of Zy on ¢y: there is a unique
ruling containing this point, and a pencil of curves in |3 H — 2 E| containing the five
remaining points in Zy ; each such pencil defines a line m C fR. For each of the
above choices, the lines [ and m intersect at one point, whence the order 36.

We know from the proof of Proposition 30 that there are six 2—nodal curves in
|4H — 3E — Ew|. For each such curve, there is a pencil of matching curves in
|3H — Ep|. This pencil contains deg()? p) = 9 nodal curves, whence the number
54 of limiting curves of type (iii).

The component on P ofa limiting curve of type (iv) is the proper transform of
the union of a conic and a line on P, containing E p. As above, there are 9 possible
choices for the line. For each such choice, there is a pencil of conics containing the
4 points of Z p not on the line. This pencil cuts out a gj on E, and therefore contains
2 curves tangent to E. It follows that there are 18 limiting curves of type (iv).

The component on W of a limiting curve of type (v) is the proper transform of
aruling of W plus a curve in |[3H — 2F| tangent to E, altogether passing through
Zw . The line necessarily contains one of the four points of Zy on ¢y. There is then
a pencil of curves in |3H — 2 E| containing the five remaining points of Zy, . It cuts
out a g} on E, hence contains 2 curves tangent to E. For any such curve Cy on
W, there is a pencil of curves on the P—side matching it. By Lemma 15, this pencil
contains 7 curves, the union of which with Cy is a limiting curve of type (v). This
proves that there are 56 such limiting curves.

As for (vi), there are 3 members of R that are triple points (see the proof of
Proposition 30). Each of them determines a pencil of curves on the P—side, which
contains six 1-nodal curves by Lemma 15. This implies that there are 18 limiting
curves of type (vi).

Finally we have to count the members of V(W + W, + W, §;; = 3). They are
in one—to—one correspondence with their components on W, which decompose into
the proper transform of unions C, U C, of two curves C, € |2H — E —2E, — E}|
and C € |2H — E — E, —2E}|, altogether containing Zy . The curves C,, C;, must
contain the two base points on b’, a’ respectively. We conclude that each limiting
curve of type (vii) corresponds to a partition of the 4 points of Zy on ¢y in two
disjoint sets of two points, and the assertion follows. O
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In conclusion, the following is an immediate consequence of Propositions 29-31,
together with the formula (2).

Corollary 14 (preliminary version of Theorem 3). Let a, b, ¢ be three indepen-
dent lines in the projective plane, and Z be a degree 12 divisor on a + b + ¢ cut
out by a general quartic curve. We consider the 3—dimensional sub—linear system
YV of |Op2(4)| parametrizing curves containing Z, and we let, for 1 <6 < 3, V5 be
the Zariski closure in V" of the codimension § locally closed subset parametrizing
irreducible 6—nodal curves. One has

deg(¥7) = 21, deg(¥) =132, and deg(¥3) = 304. (30)

Remark 21. (a) (Theorem 3) The three inequalities in (30) above are actually
equalities. This is proved in Sect. 5.8, by using both (30) and the degrees of the
Severi varieties of a general quartic surface, given by Proposition 4.

Incidentally, this proves that w : X — A is a good model for the family f
S — A obtained by blowing—up S = P? x A along Z, and endowed with the
appropriate subline bundle of &g (1).

(b) In particular, we have %3 = 5%, It then follows from Remark 5 that the
relative Severi variety V3 (X,2)is smooth at the points of *U3. This implies that the
general fibre of V3 (X , %) is reduced. Therefore, in the setting of Corollary 14, if
a + b + c and Z are sufficiently general, then ¥#5 consists of 304 distinct points.

10 Application to the Irreducibility of Severi Varieties
and to the Monodromy Action

Set = |Op3(4)|. We have the universal family p : & — 9B, such that the fibre
of p over § € & is the linear system |Os(1)|. The variety & is a component of
the flag Hilbert scheme, namely the one parametrizing pairs (C, S), where C is a
plane quartic curve in P3 and S € % contains C. So &2 C % x W, where # is the
component of the Hilbert scheme of curves in P3 whose general point corresponds
to a plane quartic. The map p is the projection to the first factor; we let g be the
projection to the second factor.

Denote by %4 C % the open subset parametrizing smooth surfaces, and set
Py = p~ " (U). Inside P4 we have the universal Severi varieties 72,1 <6 <3,
such that for all S € %, the fibre of #* over S is the Severi variety Vs(S, Os(1)).
Since S is a K3 surface, we know that for all irreducible components V of
Vs(S, Os(1)), we have dim(V) = 3 — 6, so that all components of 7, have
codimension § in %77 . We then let 75 be the Zariski closure of 7;° in &; we will
call it universal Severi variety as well.

The following is immediate (and it is a special case of a more general result,
see [11]):
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Proposition 32. The universal Severi varieties ¥s are irreducible for 1 < § < 3.

Proof. Tt suffices to consider the projection g : ¥5 — %/, and notice that its image
is the irreducible variety whose general point corresponds to a quartic curve with §
nodes (cf. [22,24]), and that the fibres are all irreducible of the same dimension 20.

O

Note that the irreducibility of ¥ also follows from the fact that for all S € %,
we have V(S, Os(1)) = S. To the other extreme, p : ¥;° — % is a finite cover
of degree 3,200. We will denote by G43 < G300 the monodromy group of this
covering, which acts transitively because 75 is irreducible.

10.1 The Irreducibility of the Family of Binodal Plane Sections
of a General Quartic Surface

In the middle we have p : #,° — % . Though % is irreducible, we cannot deduce
from this that for the general S € %, the Severi variety V,(S, Os(1)) (i.e., the
curve of binodal plane sections of §) is irreducible. Though commonly accepted as
a known fact, we have not been able to find any proof of this in the current literature.
It is the purpose of this paragraph to provide a proof of this fact.

In any event, we have a commutative diagram similar to the one in (22)

v
%/H%O

N\

%/?GZ/

where v is the normalization of #;°, and f o p’ is the Stein factorization of p o v :
¥y — % . The morphism f : %’ — % is finite, of degree h equal to the number
of irreducible components of V,(S, (1)) for general S € 7% . The monodromy
group of this covering acts transitively. This ensures that, for general S € %, all
irreducible components of V,(S, s (1)) have the same degree, which we denote by
n. By Proposition 19, we have n = 36.

Theoremd. If S C P? is a general quartic surface, then the curve
Vo(S, Os(1)) is irreducible.

Proof. Let Sy be a general quartic Kummer surface, and f : . — A a family
of surfaces induced as in Example 1 by a pencil generated by Sy and a general
quartic Seo. Given two distinct nodes p and g of Sy, we denote by [,, the pencil of
plane sections of Sy passing through p and g. Corollary 12 asserts that the union
of these lines, each counted with multiplicity 4, is the crude limit Severi variety
VS (S, O (1)),
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() o (b) a’ } (b”) q” }
q q/ qI
p p q q p

Fig. 12 How to obtain three double points on a double conic

Let I be an irreducible component of V| (S;, s, (1)), fort € A*, and let I be
its (crude) limit as ¢ tends to 0, which consists of a certain number of (quadruple)
curves l,,. Note that, by Proposition 26, the pull-back of the lines [, to the good
limit constructed in Sect. 8 all appear with multiplicity 1 in the limit Severi variety.
This yields that, if [ is an irreducible component of I, then it cannot be in the limit
of an irreducible component I}’ of V| (S;, s, (1)) other than I7.

We shall prove successively the following claims, the last one of which proves
the theorem:

(i) I contains two curves lpy, [py7, With ¢ # g';
(i) I contains two curves [,4, [y, with ¢ # ¢’, and p,q. ¢’ on a contact conic
D of Sy;
(iii) There is a contact conic D of Sp, such that I'y contains all curves [,, with
p.q € D;
(iv) Property (iii) holds for every contact conic of Sp;
(v) Tj contains all curves [ .

If Iy does not verify (i), then it contains at most 8 curves of type [,,, a
contradiction to n = 36. To prove (ii), we consider two curves [, and [,/ contained
in I, and assume that p,q,q’ do not lie on a contact conic, otherwise there is
nothing to prove. Consider a degeneration of Sy to a product Kummer surface S,
and let p,q,q’ be the limits on S of p, g, ¢’ respectively: they are necessarily in one
of the three configurations depicted in Fig. 12. In all three cases, we can exchange
two horizontal lines in S (as indicated in Fig. 12), thus moving ' to q”, in such a
way that p and q remain fixed, and there is a limit in S of contact conics that contains
the three points p, q', and q”. Accordingly, there is an element y € G146 mapping
P.4.q" to p.q,q" respectively, such that p,q’, ¢” lie on a contact conic D of Sy.
Then y (1) contains y(I,y) = [,4. By the remark preceding the statement of (i)—
(v), we have y(Ih) = Ip. It follows that I contains [,,s and [,,~, and therefore
satisfies (ii).

Claim (iii) follows from (ii) and the fact that the monodromy acts as G¢ on the
set of nodes lying on D (see Lemma 11). As for (iv), let D’ be any other contact
conic of Sy. There exists y € Gyg¢ interchanging D and D’ (again by Lemma 11).
The action of y preserves D N D" = {x, y}. We know that I contains [, + [/
with y’ € D different from y. Then the same argument as above yields that I
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contains [, (v),(,7), where y(x) € {x,y} and y(»’) € D’ — {x, y}. This implies that
Iy satisfies (ii) for D’, and therefore (iii) holds for D’. Finally (iv) implies (v). O

It is natural to conjecture that Theorem 4 is a particular case of the following
general statement:

Conjecture 2. Let S C P3 be a general surface of degree d > 4. Then the following
curves are irreducible:

(1) Wa2(S, Os(1)), the curve of binodal plane sections of S;
(i1) Vi (S, Os(1)), the curve of cuspidal plane sections of S.

We hope to come back to this in a future work.

10.2 Some Noteworthy Subgroups of G43 < &3 200

In this section we use the degenerations we studied in Sects. 5 and 8 to give some
information on the monodromy group G43 of p : ¥ — % . We will use the
following:

Remark 22. Let f : X — Y be a dominant, generically finite morphism of degree
n between projective irreducible varieties, with monodromy group G < &,,. Let
V C Y be an irreducible codimension 1 subvariety, the generic point of which is a
smooth pointof Y. Then fy 1= f| 1y : f (V) — V is still generically finite,
with monodromy group Gy. If V' is not contained in the branch locus of f, then
Gy <G.

Suppose to the contrary that V' is contained in a component of the branch locus
of f. Then Gy < &,,, with ny := deg fy < n, and Gy is no longer a subgroup
of G. We can however consider the local monodromy group G%}’C of f around V,
i.e. the subgroup of G < &, generated by permutations associated to non—trivial
loops turning around V. Precisely: let Uy be a tubular neighbourhood of V in Y;
then G}* is the image in G of the subgroup 7y (Uy — V) of 7 (Y — V).

There is an epimorphism G{j’c — Gy, obtained by deforming loops in Uy — V to
loopsin V. We let H ‘lf’c be the kernel of this epimorphism, so that one has the exact
sequence of groups

1 — H - G — Gy — 1. (3D

We first apply this to the degeneration studied in Sect. 5. To this end, we consider
the 12—dimensional subvariety .7 of % which is the Zariski closure of the set of
fourtuples of distinct planes. Let f : Biewa — B be the blow—up of & along 7,
with exceptional divisor 7. The proof of the following lemma (similar to Lemma 3)
can be left to the reader:

Lemma 16. Let X be a general point of . Then the fibre of f over X can be
identified with |0 4 (4)|, where A = Sing(X).
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Thus, for general X € .7, a general point of the fibre of f over X can be
identified with a pair (X, D), with D € |04(4)| general, where A = Sing(X).
Consider a family f : S — A of surfaces in P?, induced as in Example 1 by a pencil
[ generated by X and a general quartic; then the singular locus of S is a member of
|0 4(4)|, which corresponds to the tangent direction normal to .7 defined by [ in %.

Now the universal family p : &2 — 9 can be pulled back to p : P — Bewas
and the analysis of Sect.5 tells us that we have a generically finite map p : Vs —
Bretra, Which restricts to p V3 — U over %, and such that 7 is in the branch
locus of p. We let Gy, be the monodromy group of p : “173 — g;[em on 7 , and
Gl resp. H'  beasin (31).

tetra> tetra®

Proposition 33. Consider a general (X, D) € @t. One has:
(@) Gremra = ]_[;;1 G, where:

(i) G| = G| 24 is the monodromy group of planes containing three points in
D, but no edge of X;
(ii) Gy = B4 x &3 x (64)? is the monodromy group of planes containing a
vertex of X and two points in D, but no edge of X ;
(iii) Gz = G¢ x &4 is the monodromy group of planes containing an edge of
X, and a point in D on the opposite edge of X ;
(iv) G4 = &4 is the monodromy group of faces of X ;

(b) HS =~ &3x G x H, where G < &g is the monodromy group of bitangent
lines to 1-nodal plane quartics as in Proposition 12, and H < G3yq4 is the
monodromy group of irreducible trinodal curves in the linear system of quartic
curves with 12 base points at a general divisor of |0y 4p+.(4)|, witha, b, c three

lines not in a pencil (see Sect. 9).

Proof. The proof follows from Corollary 7. Recall that a group G < G, is equal to
G, if and only if it contains a transposition and it is doubly transitive. Using this,
it is easy to verify the assertions in (ai)—(aiv) (see [21, p.698]). As for (b), the factor
&3 comes from the fact that the monodromy acts as the full symmetric group on a
general line section of the irreducible cubic surface T as in Proposition 13. O

Analogous considerations can be made for the degeneration studied in Sect. 8. In
that case, we consider the 18—dimensional subvariety t@/ of % which is the Zariski
closure of the set #° of Kummer surfaces. Let g : PBxuym — £ be the blow—up
along %, with exceptional divisor . In this case we have:

Lemma 17. Let X € J# be a general point, with singular locus N. Then the fibre
of g over X can be identified with |Oy (4)| = P,

The universal family p : % — 2 can be pulled back to j : & — Byum. The
analysis of Sect. 8 tells us that we have a map p : Vs — PBrums generically finite
over % , which is in the branch locus of p. We let Ggym be the monodromy group
of p on 2, and set G and H}gfm asin (31).

Kum
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Proposition 34. One has:

(@) Gkum = Gie6 X G', where G’ is the monodromy group of unordered triples of
distinct nodes of a general Kummer surface which do not lie on a contact conic
(see Sect. 7.2 for the definition of Gi6¢);

(b) HX =~ &g x G”, where G is the monodromy group of the tritangent planes

Kum =
to a rational curve B of degree 8 as in the statement of Proposition 24.

Proof. Part (a) follows right away from Proposition 27. Part (b) also follows, since
the monodromy on complete intersections of three general quadrics in P? (which
gives the multiplicity 8 in (i) of Proposition 27) is clearly the full symmetric group.

|

Concerning the group G’ appearing in Proposition 34 (a), remember that it acts
with at most two orbits on the set of unordered triples of distinct of nodes of a
general Kummer surface which do not lie on a contact conic (see Proposition 22 (ii)).
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Abstract We consider a smooth morphism between smooth complex projective
varieties. We give an alternative proof of the following fact: If the anti-canonical
divisor of the source space is nef, then so is the anti-canonical divisor of the target
space. We do not use mod p reduction arguments.

1 Introduction

We will work over C, the field of complex numbers. The following theorem is the
main result of this paper.

Theorem 1 (Main theorem). Let f : X — Y be a smooth morphism between
smooth projective varieties. Let D be an effective Q-divisor on X such that (X, D) is
log canonical, SuppD is a simple normal crossing divisor, and SuppD is relatively
normal crossing over Y. Let A be a (not necessarily effective) Q-divisor on Y.
Assume that —(Kx + D) — f*A is nef. Then —Ky — A is nef.

By setting D = 0 and A = 0 in Theorem 1, we obtain the following result,
hence a new proof, in characteristic zero, of [5, Corollary 3.15 (a)].
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Corollary 1. Let f : X — Y be a smooth morphism between smooth projective
varieties. Assume that —Ky is nef. Then —Ky is nef.

By setting D = 0 and taking for A a small ample Q-divisor, we also obtain
the following result, which is [10, Corollary 2.9]. Note that Theorem 1 is also a
generalization of [8, Theorem 4.8].

Corollary 2 (cf. [10, Corollary 2.9]). Let f : X — Y be a smooth morphism
between smooth projective varieties. Assume that —Kx is ample. Then —Ky is
ample.

This last corollary was proved in [10] using mod p reduction arguments. Our
proof of Theorem 1 relies instead, as in [4], on a generalization of Viehweg’s
weak positivity theorem due to Campana [3, Theorem 4.13] which is obtained from
the theory of variations of mixed Hodge structure. So our argument is ultimately
Hodge-theoretic.

In [8, Theorem 4.1] (see Theorem 2), we also proved a weaker version of
Theorem 1 using Kawamata’s positivity theorem [8, Theorem 2.2]. We recommend
that the readers compare the proof of Theorem 1 with the arguments in [8, Section
4].

By the Lefschetz principle, all the results in this paper hold over any algebraically
closed field of characteristic zero. We do not discuss here the case when the
characteristic of the base field is positive.

2 Proof of the Main Theorem

In this section, we prove Theorem 1. We closely follow the arguments in [4].

Lemma 1. Let f : Z — C be a surjective morphism from a (d + 1)-dimensional
smooth projective variety Z to a smooth projective curve C. Let B be an ample
Cartier divisor on Z such that R’ {07 (kB) = O for everyi > 0 and k > 1. Let
H be a very ample Cartier divisor on C such that B! < f*(H — K¢) - B¢ and
Bt < f*H . B? Then

(f«O2(kB))* ® Oc(IH)

is generated by global sections for alll > k > 1.

Proof. By Grothendieck duality, we have
R om(Rf«O7z(kB),wl) =~ Rfx R om(0z(kB), wy),
hence we obtain

(f«Oz(kB))* ~ R? f,07(Kz,c — kB)
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fork > 1 and
R fu07(Kz/c —kB) =0

fork > 1andi # d. We note that f,. 0z (kB) and its dual ( f« Oz (kB))* are locally
free sheaves. Therefore, we have

H'(C, (f+02(kB)* ® Oc((I — 1)H))
~ H'(C.R? f07(Kz/;c —kB) ® Oc((I — 1)H))
~ HI"N(Z,0,(Kz — f*Kc —kB+ f*( —1)H))

for k > 1. By Serre duality,
HY"NZ,0,(Kz — f*Kc —kB+ f*(1 —1)H))

is dual to

HY(Z.07(kB+ [*Kc — f*(I = )H)).
On the other hand, it follows from our assumptions that

(kB+ f*Kc— f*(—1)H)-B? <0
if | — 1 > k. Thus, we obtain
H%Z,07(kB+ f*Kc — f*(I—1)H)) =0

for [ > k. This means that

HY(C,(f07(kB))* ® Oc(( — 1)H)) =0

for k > 1 and [ > k. Therefore, (f«Oz(kB))* ® Oc(lH) is generated by global
sections for k > 1 and [ > k.

The following lemma directly follows from [3, Theorem 4.3]. It is essential for
the proof of Theorem 1.

Lemma 2. Let f : V — W be a surjective morphism between smooth projective
varieties with connected fibers. Let A be an effective Q-divisor on V such that
(V, A) is log canonical. Assume that mA is Cartier for some positive integer m.
Then fiOy(m(Ky,w + A)) is weakly positive over some non-empty Zariski open
set of W.

For basic properties of weakly positive sheaves, see [11, Section 2.3]. Although
the original proof of [3, Theorem 4.3] depends on Kawamata’s difficult result
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[9, Theorem 32], the results [6, Theorem 3.9] and [7, Theorem 1.1] are sufficient
for the proof of our Lemma 2.

Proof (Proof of Theorem 1). We note that, by Stein factorization, we may assume
that f has connected fibers (see [8, Lemma 2.4]). We need to prove that for any
finite morphism 7 : C — Y from a smooth projective curve C, we have (—n* Ky —
7*A)-C > 0. Let L be an ample Cartier divisor on C. We will prove that for any
positive rational number &, we have (—n* Ky — n*A + 2¢L) - C > 0. We consider
the following base change diagram

zZ — X

where Z = X Xy C. Then g : Z — C is smooth, Z is smooth, Supp(p* D)
is relatively normal crossing over C, and Supp(p* D) is a simple normal crossing
divisor on Z. Let A be a very ample Cartier divisor on X and let § be a small positive
rational number such that 0 < § < ¢. Since —(Kx + D) — f*A + §A4 is ample, we
can take an effective Q-divisor F on X such that —(Kx + D) — f*A+ 4 ~q F.
Then we have

Kx/;y + D+ F ~q SA— f*Ky — f*A.
By taking the base change, we obtain
Kz/jc +p*D + p*F ~q8p*A—g*n* Ky — g*n™ A.
Without loss of generality, we may assume that Supp(p*D + p*F) is a simple
normal crossing divisor, p* D and p* F have no common irreducible components,
and (Z, p*D + p*F) is log canonical. Let m be a sufficiently divisible positive
integer such that md and me are integers, mp*D, mp*F, and mA are Cartier
divisors, and
m(Kz/c + p*D + p*F) ~m(p*A—g*n* Ky — g*n* A).
We apply Lemma 2 and obtain that
gxO0z(m(Kzjc + p*D + p*F)) = g 07z(m(p*A — g*n* Ky — g"n* A))

is weakly positive over some non-empty Zariski open set U of C. Therefore,

& 1= S"(gxOz(m(8p* A — g"n* Ky — g"n* A))) ® Oc (nmeL)
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~ S"(gsO7z(mép*A)) ® Oc(—nmnx* Ky — nmn™ A + nmeL)

is generated by global sections over U for every n >> 0. On the other hand, by
Lemma 1, if m§ > 0,

& = Oc(nmeLl) ® S"((g+Oz(mép* A))*)

~ S"(Oc(meL) ® (g+O0z(mép* A))*).

is generated by global sections because 0 < § < ¢ and p* A4 is ample on Z. Thus
there is a homomorphism

a:@Poc— =606

finite

which is surjective over U. We note that
S"((g+Oz(mdp* A)*) = (S"(g+ Oz (mép™ A)))*
since g« 07z (mdp* A) is locally free. Therefore, there is a non-trivial trace map
S"(g+Oz(mép™ A)) ® S"((g+Oz(mdp*A)*) — Oc.

Hence we have a non-trivial homomorphism

@ﬁc Loe i> Oc(—nma* Ky — nmmx™ A + 2nmeL),

finite

where f is induced by the above trace map. Thus we obtain
(—nmn*Ky —nma*A + 2nmel) - C = nm(—n*Ky —n*A +2¢L)-C > 0.
Since ¢ is an arbitrary positive rational number, we obtain
7*(—Ky —A)-C > 0.

This means that — Ky — Aisnefon Y.

Remark 1. In Theorem 1, if —(Ky + D) is moreover semi-ample, then we can
prove very simply that —Ky is nef (this is a generalization of [8, Theorem 4.1]).
First, by Stein factorization, we may assume that f has connected fibers (see [8,
Lemma 2.4]). Next, in the proof of Theorem 1, when —(Ky + D) is semi-ample,
we can take § = 0 and A = 0 Then

g+0z(m(Kzjc + p*D + p*F)) =~ Oc(—mn*Ky)
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is weakly positive over some non-empty Zariski open set of C. This means that
—mn* Ky is pseudo-effective. Since C is a smooth projective curve, —n* Ky is
nef. Therefore, — Ky is nef. In this case, we do not need Lemma 1.

Here we give one more alternative proof of [8, Theorem 4.1], which is implicitly
contained in Viehweg’s theory of weak positivity [11] and is different from the
argument in Remark 1.

Theorem 2 ([8, Theorem 4.1]). Let f : X — Y be a smooth morphism between
smooth projective varieties. If —K x is semi-ample, then — Ky is nef.

Proof. By Stein factorization, we may assume that f has connected fibers (see
[8, Lemma 2.4]). Note that a locally free sheaf & on Y is nef, equivalently, semi-
positive in the sense of Fujita—Kawamata, if and only if & is weakly positive over
Y (see, for example, [11, Proposition 2.9 (e)]). Since f is smooth and —Ky is
semi-ample, fx Oy (Kx,y — Ky) is locally free and weakly positive over Y (cf. [11,
Proposition 2.43]). Therefore, we obtain that Oy (—Ky) =~ f«Ox(Kx;y — Kx)
is nef.

The argument in Remark 1 and the proof of Theorem 2 are much simpler than the
original proof of [8, Theorem 4.1]. However, that original proof played important
roles in [8, Remark 4.2] and the proof of the following result, which completely
solves [8, Conjecture 1.3].

Theorem 3 ([2, Theorem 1.3]). Let f : X — Y be a smooth morphism between
smooth projective varieties. If —Ky is semi-ample, then —Ky is also semi-ample.

1 (Analytic method). Sébastien Boucksom pointed out that the following theo-

rem, which is a special case of [1, Theorem 1.2], implies [8, Theorem 4.1] and
[10, Corollary 2.9]. Note that a line bundle .Z on a compact complex manifold is
said to be semi-positive (resp. positive) if .Z has a smooth hermitian metric whose
curvature form is a semi-positive (resp. positive) (1, 1)-form.

Theorem 4 (cf. [1, Theorem 1.2]). Let f : X — Y be a smooth morphism from
a compact Kdhler manifold X to a compact complex manifold Y. If Ox(—Kx) is
semi-positive (resp. positive), then Oy (—Ky) is semi-positive (resp. positive).

The proof of [1, Theorem 1.2] is analytic and does not use mod p reduction
arguments.

We close this paper with a remark on [5]. By modifying the proof of Theorem 1
suitably, we can generalize [5, Corollary 3.14] without any difficulties. We leave the
details as an exercise for the readers.

Corollary 3 (cf. [5, Corollary 3.14]). Let f : X — Y be a surjective morphism
from a smooth projective variety X such that Y is smooth in codimension one. Let
D be an effective Q-divisor on X such that Supp D™, where D" is the horizontal
part of D, is a simple normal crossing divisor on X and that (X, D) is log canonical
over the generic point of Y. Let A be a not necessarily effective Q-Cartier Q-divisor
onY.
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e If—(Kx + D) — f*Ais nef, then —Ky — A is generically nef.
e If—(Kx + D) — f*Ais ample, then —Ky — A is generically ample.
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The Hyperholomorphic Line Bundle

Nigel Hitchin

Dedicated to Klaus Hulek on the occasion of his 60th birthday

Abstract We study the hyperholomorphic line bundle on a hyperkihler manifold
with circle action introduced by A. Haydys, and in particular show how it transforms
under a hyperkéhler quotient. Applications include ALE spaces and coadjoint orbits.

1 Introduction

In a recent paper [9], A.Haydys introduced a natural line bundle with connection
on a hyperkihler manifold with an S'-action of a certain type. The curvature is of
type (1, 1) with respect to all complex structures in the hyperkihler family and for
this reason is called hyperholomorphic. In [11] a description of this line bundle via
a holomorphic bundle on the twistor space was given and in this format calculated
for a number of examples of interest to physicists. These are mostly moduli spaces
of solutions to gauge-theoretic equations.

In this article we give examples with a more geometrical flavour, in particular
on minimal resolutions of Kleinian singularities and cotangent bundles of coadjoint
orbits of a compact Lie group. We first approach the subject from the differential-
geometric point of view, giving some explicit formulae, and then from the twistor
viewpoint, where, as in [11], the holomorphic point of view demonstrates a
naturality which is not apparent from the explicit expressions.

In a more general result, which contributes to the examples, we show how the
hyperholomorphic bundle descends naturally in a hyperkihler quotient, and for
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the quotient by a linear action on flat space can be identified with a canonical
hyperholomorphic line bundle.

2 The Differential Geometric Viewpoint

2.1 The Hyperholomorphic Connection

Let M be a hyperkihler manifold with Kéhler forms w;, w,, w3 relative to complex
structures 1, J, K. If the de Rham cohomology class [w; /27] € H*(M,R) is in the
image of the integral cohomology then there exists a line bundle L and hermitian
connection V with curvature w;, unique up to tensoring with a flat U(1) bundle.
Since w; is of type (1, 1) with respect to the complex structure /, L also has a
holomorphic structure defined by the d-operator V*!. Given a local holomorphic
section s of L, then w; = dd° log ||s||?/2. Hence, if we multiply the hermitian metric
by e?/ the curvature of the connection on L compatible with this new structure is

F =w, 4+ dd’f.

Suppose now we have a circle action which fixes w; but acts on the other forms by
the transformation (w; +i3) + e!?(w, + i ws). The manifold M must necessarily
be noncompact for this. Suppose further that we have chosen a lift of the action to L.
This implies in particular the existence of a moment map — a function p such that
ixyw; = du where X is the vector field generated by the action. Then the result of
Haydys [9] (see also [11]) is:

Theorem 1. The 2-form w; + dd°u is of type (1,1) with respect to complex
structures I, J, K.

Thus rescaling the natural metric by e?* gives a new connection which defines a
holomorphic structure on L relative to all complex structures in the quaternionic
family. This is a hyperholomorphic connection, and L is the hyperholomorphic
bundle of the title.

There are relatively few hyperkéhler metrics which one can write down explicitly
but it is instructive to find the line bundle in these cases.

Example. Flat quaternionic space H”. Writing H" = C" @ j C" we have

i _ _ .
o =3 Z,-:(dZi AdZi +dwi Adw;), @ +iws = Zf:de A dw
and the action (z, w) > (z, e'?w) is of the required form. Then

i _ _
F=o +ddp=; Zi:(dz,- A dz — dwi A dwy).
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In the complex structure / this is the trivial holomorphic line bundle with hermitian
metric h = (||z]|> — [w]|*)/2.

In the above we have specified a particular action of the circle on the three Kéhler
forms w;, w,, w3. More generally, if an irreducible hyperkéhler manifold M has
a circle symmetry group then it acts on the three-dimensional space of covariant
constant 2-forms preserving the inner product. The action is either trivial, in which
case it is called triholomorphic, or it leaves fixed a one-dimensional subspace with
an orthogonal complement on which the action is rotation by n6. The case above
is n = 1. This occurs for example on the cotangent bundle of a complex manifold
where the action is scalar multiplication in a fibre and the symplectic form is the
canonical one. In the general case, Z, C S! preserves the three Kihler forms and so
the quotient M/Z, is a hyperkihler orbifold with a circle action as above. The local
geometry of the hyperholomorphic bundle is then the same, but the curvature form
on M is F = w; + ndd‘ .

In what follows we shall also consider flat space as above but with the action
(z.w) +— ez w). Then n = 2 since (wy + iw3) +— e (wy + iws).
The moment map u = —(||z||*> + ||w||*)/2 and so F = w; + 2dd°u = 0 and
the hyperholomorphic line bundle is trivial as a line bundle with connection. This
may seem uninteresting, but in Theorem 4 we shall see how it defines the bundle for
a hyperkihler quotient of H".

2.2 Hermitian Symmetric Spaces

Biquard and Gauduchon gave in [2] an explicit formula for a hyperkihler metric
which, in the complex structure /, is defined on the total space of the cotangent
bundle of a hermitian symmetric space G/H . A circle action is given by multiplica-
tion of a cotangent vector by a unit complex number and the form w, + iw; is the
canonical symplectic form on the cotangent bundle.

If p: T*(G/H) — G/H is the projection and w is the Kéhler form of the
symmetric space G/H then the hyperkéhler metric is defined by w; = p*w + dd°h
where, for a cotangent vector v, & is the quartic function on the fibres defined by
h(v) = (f(R(Iv,v))v,v). Here R(u,v) is the curvature tensor of G/H and f is the
analytic function

f(u)=£<«/1+u—1—1ogl+— ‘ZH”)

This function is applied to IR(Iv, v) which is a non-negative hermitian transforma-
tion. In fact since the curvature of a symmetric space is constant we can also view
the quadratic map R(/v,v) from (g/h)* to h C g as a multiple of the moment map
for the isotropy action of H. The strange function f(u) has the property that
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(wf@) = - (VTFa—1) n

We first calculate the moment map p for the circle action. Since the action is purely
in the fibres of the cotangent bundle we have

iyws = iX(p*a) 4+ dd°h) = ixdd‘h.

Now the action preserves both £ and the complex structure so (dix + ixd)d‘h =
Lxdh = d°(Zxh) = 0, which means that iyw; = —d(ixd“h) and we can take
w = —ixd°h = (IX)(h). The vector field X was generated by v > e'%v so IX is
generated by v > A~ !v for A € R™. Hence

p) = T HO o

But 2(v) = (f(u)v,v) where u = IR(Iv, v) is homogeneous of degree 2 in v and so
w() = =2@uf (v, v) —2(f(w)v,v) = =2((uf (u))'v, v). Using (1) we see that

F=w +ddu= p*w +ddk

where k(v) = (g(IR(Iv, v))v, v) for the function

1 1+/14u
g(u)=—; 10gT :

This is an explicit formula for the curvature of the hyperholomorphic line bundle
(assuming o is normalized so that [ /2] is an integral class).

Note that on the zero-section v = 0, F restricts to w and is S'-invariant. From
[4,5] we can say that this is the unique hyperholomorphic extension to 7*(G/H) of
this line bundle with connection on G/H . Later we shall view this in a more natural
setting.

2.3  Multi-instanton Metrics

The most concrete examples of hyperkéhler metrics are the gravitational multi-
instantons of Gibbons and Hawking [6]. These are four-dimensional and in this
dimension a hyperholomorphic connection is the same thing as an anti-self-dual
one. The general Ansatz for this family of metrics consists of taking a harmonic
function V on an open set in R?, with its flat metric. Writing locally *dV = da the
metric has the form

g = V(x4 dd + dd) + V7 (do + a)*

Then wy = V dx, Adxs + dx; A (d6 + «) is a Kihler form and similarly for w,, ws.
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An example is flat space C> with a circle action (z1,z2) > (e'%z1,e7%2,).
(Note that this action is triholomorphic, and so is not of the type we have
been considering). The quotient space is R® with Euclidean coordinates
x1 = (|z11*>—|z2/*)/2.x2 +ix3 = zizo and then the metric has the above form
if V' = 1/2r. The flat space C?\{0} is here expressed as a principal circle bundle
over R3\{0} and df + « is the connection form for the horizontal distribution
defined by metric orthogonality. The curvature of the connection is doe = *dV and
the function V ~1/2 is the length of the vector field ¥ generated by the action.

The general case has the same principal bundle structure but the flat example
shows that a 1/r singularity for V' does not produce a singularity in the metric: it
is simply a fixed point of the circle action on the four-manifold. With this in mind,
setting

k+1

r= Z|X_al

i=l1

for distinct points a; € R* defines a nonsingular, complete hyperkihler manifold M .

If the points a; lie on the x-axis then rotation about that axis induces an isometric
circle action generating a vector field X . This involves lifting the action on R to the
S1-bundle with connection form &, commuting with the circle action. Such a lifting
is defined by a vector field of the form X = Xy + fY, where Xy is the horizontal
lift of

and, since *dV is the curvature of the connection, iy xdV = df. Since ZxV = 0
the local existence of such an f is assured. This means

df = (x2Va + x3V3)dx; — x2Vidxy — x3Vidxs.
It follows that, with a; = (a;, 0, 0),
k1

S= @

i=1

The Kihler form w, is given by w1 = V dxy A dxz + dx; A (d6 + «). This is
the curvature of a connection if its periods lie in 27 Z. Now the segment [a;, a; +1]
defines a one-parameter family of S'-orbits which become single points over the
end-points and therefore form a 2-sphere in M. The manifold retracts onto a
neighbourhood of a chain [ay, ay], [a2, as], . .., [ak,ar+1] of k such spheres which
therefore generate H, (M, Z). Integrating w; over the i th sphere gives 27 (a;+1 —a;)
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and so for integrality we require a;+; — a; to be an integer. With these conditions
we have, from Haydys’s theorem, a hyperholomorphic line bundle which, since the
two actions commute, is invariant under the triholomorphic circle action on M.

Kronheimer [12] showed that S!-invariant instantons on the multi-instanton
space became monopoles on R? with Dirac singularities at the marked points
a;. Since the hyperholomorphic bundle is invariant we can define it this way by
a U(1)-monopole: a harmonic function ¢ on R* and a connection A4 such that
F = dA = xd¢. The Ansatz is

A=A—¢V™'(dO +a) (3)

where A is a local connection form on M. Thus
w1 +ddpn =dA—d@V YA (O +a) — VT xdV
and taking the interior product with ¥ we obtain
iy () + ddj) = —dx; + iyddp = d(pV ).
Since Y is triholomorphic, it preserves I and since it commutes with X it preserves
W so as in the previous section d(¢pV ') = —dx; — d(iyd¢ 1) and up to an additive
constant,
¢V = —xi —iyd‘pn = —(x1 + iy(ixw)) = —(x; — g(X.,Y))

Now g(X,Y) = V~! f. therefore

k+1

¢=—X1V+f=—z

i=1

ai

+c.
|x—ai|

Note however that A = A + ca, ¢ +— ¢ + cV takes Ato A+ ca — (¢ +
cV)V=H(dB + a) = A — cdf and so preserves the anti-self-dual curvature form dA
(this absorbs the constant ambiguity too). We can therefore also take

and since the coefficients ax4; — a; are integers, this is a genuine U(1)-monopole
which satisfies the Dirac quantization condition.

There remains the question of the constant c¢. This is not in general zero since
k = 1is flat space and we have seen the non-zero curvature of the connection in the
previous section. Here we have by construction also a circle action which preserves
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all three Kihler forms so given one lifting of the rotation action on R? to M we
can compose with a homomorphism to the triholomorphic circle to obtain another.
The constant ¢ will then change by 2nn,n € Z.

Remark. When ¢ = 0 the curvature F is a linear combination of .#2 harmonic
forms [8, 14]. In this case if k = 2m and x lies on the x;-axis with a,, < x| < d;;+1
then (2) shows that f = 0. Note for future reference that this means that the middle
2-sphere in the chain is point-wise fixed by the circle action.

The complex structure I for the metrics above is the minimal resolution of the
Kleinian singularity xy = z€*!. There are, thanks to Kronheimer [13], hyperkihler
metrics on all such resolutions. These are produced by a finite-dimensional hyper-
kdhler quotient construction and this is semi-explicit — the quotient metric of a
subspace of flat space defined by a finite number of quadratic equations — but the
hyperholomorphic line bundle is well adapted to the quotient construction.

2.4 Hpyperkdhler Quotients

The hyperkihler quotient construction of [10] proceeds as follows. Given a hyper-
kahler manifold with a triholomorphic action of a Lie group G we have, under
appropriate conditions, three moment maps vi, v, v3 corresponding to the three
Kihler forms w1, w,, w3 and hence a vector-valued moment map v : M — g* ® R3.
Then, assuming G acts freely on v~'(0), the manifold M = v~'(0)/G with its
quotient metric is hyperkihler.

In our situation we have a distinguished complex structure I preserved by a circle
action. The construction can then be viewed in a slightly different way. Firstly v, =
vy + iv3 is holomorphic with respect to / and so the zero set My = v;l(O) is
a complex submanifold of M and hence w; restricts to it as a Kéhler form. The
group G preserves My and v; is the moment map for the restriction of w;. Hence
the hyperkihler quotient is the symplectic quotient of M by this action.

Theorem 2. Suppose M has a circle action as in Sect. 2.1, commuting with G, so
that the hyperkdhler quotient M has an induced action. Then the hyperholomorphic
line bundle on M descends naturally to the hyperholomorphic line bundle of M.

Proof. First recall that for a symplectic manifold (N, w) with [@/2] integral there
is a line bundle — the prequantum line bundle — with a unitary connection whose
curvature is . Given a lift of the action of a group G, the invariant sections on the
zero set of the moment map define the prequantum line bundle on the symplectic
quotient.

To see this more concretely, let Y be the vertical vector field of the principal
U(1)-bundle P, X, the vector field on N givenbya € gand u : N — g*
the moment map. Then a lift commuting with the U(1)-action is defined by
(Xo)m + {u,a)Y where (X,)p is the horizontal lift. An arbitrary section of the
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line bundle is defined by a function f on P, equivariant under the vertical action,
and an invariant section satisfies ((X,)x +{(u,a)Y) f = 0. Thus on £~ (0) we have
(X2)m f = 0 which means that the section is covariant constant along the G -orbits.
Hence the connection is pulled back from the symplectic quotient £ ~!(0)/G.

This is the construction for a symplectic manifold. Now suppose we take our
hyperkihler manifold with circle action and commuting triholomorphic G-action
with hyperkihler moment map v. We want to apply the aboveto N = My = v '(0)
for the symplectic quotient of M, is the hyperkihler quotient of M. Now the circle
action does not preserve w, + i w3 but it acts on dv. = d(v, +iv3) by multiplication
by '’ If we make a choice of moment map so that the action on v is the same scalar
multiplication, then the action will preserve My = vc_1 (0). Moreover p, restricted
to My, is the moment map for w; restricted to M.

The line bundle with hyperholomorphic connection on M, and hence its
restriction to My, was obtained from the prequantum line bundle by rescaling the
hermitian metric by e?*. By what we have just seen, this descends to M, the
symplectic quotient of N = M,. However, G commutes with the circle action
and so p is G-invariant. It is also the moment map for the induced action on the
quotient, and it follows that rescaling the prequantum hermitian metric on M gives
the hyperholomorphic bundle. O

One other aspect of the quotient is that it comes equipped with a canonical
principal G-bundle with a hyperholomorphic connection. Indeed v='(0)/G = M
and v™1(0) is the total space of the principal G-bundle. The induced metric defines
an orthogonal subspace in the tangent space to the orbit directions and this is
the horizontal space of a connection, which is hyperholomorphic. A differential-
geometric proof of this was give in [7] but it can be seen very naturally from the
twistor space point of view which we carry out in the next section. In fact, with
fewer formulae and more geometry, the hyperholomorphic bundle appears much
more naturally using holomorphic techniques.

3 The Twistor Viewpoint

3.1 The Holomorphic Bundle

This section is essentially a review of the construction in [11]. The twistor space
Z of a hyperkihler manifold M is the product Z = M x S? given the complex
structure (1y, 1) where Iy = u;l + upJ + uy K for a unit vector u € R? and where
the second factor is the complex structure of S? = P'. The projection 7 : Z — P!
is holomorphic and for each x € M, (x, S?) is a holomorphic section, a twistor line.

The fibre over u € S? is the hyperkihler manifold M with complex structure
defined by u but it also has a holomorphic symplectic form relative to this complex
structure. Using an affine coordinate ¢ on P! where uy + iuz = 2¢/(1 + |¢|?) the
complex structures /, —/ are defined by { = 0, co and the holomorphic symplectic
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formis (wy +iws)+2iw {+ (wr—iws3)¢ 2, Globally, this is a twisted relative 2-form
w: a holomorphic section of AzT; /P! (2) where the (2) denotes the tensor product
with the line bundle 7* £(2), reflecting the quadratic dependence on (.

Example. The twistor space for flat H" is the total space of the vector bundle C**(1)
over P'. This is given by holomorphic coordinates (v, §,¢) € C*"*! on the open set
U defined by ¢ # oo and (v,&,¢) for V by ¢ # 0, with identification (v, &,¢) =
(v/¢,&/C,1/¢) over { € C*. In these coordinates Z is expressed as a C °°-product
by the map (z, w, {) = (z+ {w, w — {Z,0).

If a bundle on M has a hyperholomorphic connection its curvature is of type
(1,1) with respect to all complex structures parametrized by ¢ and it follows
that its pull-back to Z = M x S? has a holomorphic structure. Conversely any
holomorphic vector bundle on Z which is trivial on the twistor lines (x, S?) defines
a hyperholomorphic connection on a vector bundle over M . This is the hyperkéhler
version of the Atiyah-Ward result for anti-self-dual connections. For a line bundle
the triviality on twistor lines is simply the vanishing of the first Chern class. To
get a unitary connection we impose a reality condition. It follows that to describe a
hyperholomorphic line bundle on M we simply look for a holomorphic line bundle
L7 on Z determined by the circle action.

Example. In flat space with the action (z, w) > (z, e'®w) one can calculate the line
bundle directly. The (1,0)-forms on Z for { # oo are spanned by dz; + (dw;,
— ¢dz;, d ¢ and then with

1 ~ B L _
loghy = 3 Zi:ZiZi —wiwi +8ziwi + {ziw;
we find
371 h—lz dt + zdz dw; + td(ziw;)
z1loghy = > i Wi az; wiaw; ZiWi

and hence 0,0 loghy = (3_; —dzidZ + dw;dw;)/2, the curvature of the hyper-
holomorphic line bundle, on the open set U. Defining loghy = —loghy(—1/¢) on
V, the pair (hy, hy) defines a hermitian metric on the line bundle with holomorphic
transition functionon U NV

exp(— ) viki/20).

The link between the differential geometric and holomorphic points of view is
proved in [11]. In fact the line bundle L7 is essentially the prequantum line bundle
for the family of holomorphic symplectic manifolds defined by Z.

To understand this, and to see where the circle action enters in the construction,
first note that since w, + iw; transforms as (wy + iws) — e¥(wy + iw3),
differentiating with respect to 8 we have w, = Zyws = diyws and so w, and
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similarly w3 are exact. Thus the 2-form (w; +iw3)/2i{ + wy + (w2 —iw3)/2i has
the same cohomology class as w; for any { and is therefore, given the integrality
condition on [w; /27], the curvature of a line bundle on M . In the complex structure
at s, (wr +iws)/2i¢ + w1 + (w2 —iw3)¢/2i is of type (2, 0) therefore has no (0, 2)
part: hence the bundle has a holomorphic structure.

Now observe that the induced circle action on the twistor space generates a
holomorphic vector field V' on Z. Since the action fixes =1, V projects to the
vector field i¢d /d ¢ on P! vanishing at { = 0, co. This is a holomorphic section s
of 0'(2) and so the 2-form we wrote above, (w) + i w3)/2i{ + w1 + (w2 —iw3){/2i
is, on a specific fibre, the restriction of the meromorphic relative differential form
w/2is € .Q% /pi- It turns out that this relative form is the restriction of a closed
meromorphic 2-form Fz on Z, which is the curvature of a meromorphic connection
on the holomorphic line bundle.

Theorem 3 ([11]). The line bundle Lz on the twistor space Z admits a meromor-
phic connection such that

e There are simple poles at { = 0, 00
e The curvature Fz restricts to

1 1
—(+im)+w+ =(m—iw
2i§( 2 3) + o1+ 5o (0 —iw3)¢
on each fibre over C* C P!
* iy Fz = 0whereV is the vector field generated by the circle action.

Remark. Suppose the holomorphic vector field V' integrates to a C*-action. Then
as Fz is closed, the last property tells us that this action gives a symplectic
isomorphism between any of the holomorphic symplectic manifolds over { € C*.

Given that such a connection exists, the line bundle is essentially uniquely
determined by the residue of the connection, for given any two such bundles
L, L’ with the connections as above and with the same residue at { = 0, oo,
the resulting holomorphic connection on L’'L* would have a curvature which is
a holomorphic 2-form. But the normal bundle of a twistor line is C**(1) and so
T} =~ C*(—1) ® 0(-2) on such a line. It follows that there are no holomorphic
forms of positive degree on a twistor space since there is a twistor line through each
point. Hence the connection on L’L* is flat and this is in any case the ambiguity in
choosing a prequantum connection.

The residue is canonically determined by the data of the action as follows (see
[11] for details). Since the connection has a singularity on a divisor of &(2), its
residue will be a section of 7, (2) on that divisor. Now since Tp1 = O'(2) the
projection 7 : Z — P! gives an exact sequence of bundles:

0-0—->T;2)—>T;,(2)—0

/P!
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and the twisted relative form o identifies Tz,p1 with T
extension

pu /Pl (2). The resulting

Oﬁﬁ—)E—)Tz/Pl—)O

can be identified with TP/C* where P is the holomorphic principal bundle of the
prequantum line bundle for the real symplectic form w;. The vector field V on Z
is tangential to the fibres at { = 0, 00 and is X itself. The moment map defines an
invariant lift to P and hence a section of T7P/C*. Under the isomorphism above,
this is the residue of the connection. If we restrict it as a form to the fibre { = 0 it is
iv(w + iw3)/2i

Examples.

(i) For flat space with the action (z,w) + e!?(z,w) the line bundle L is trivial
and the connection with the trivial action is just the meromorphic one-form

i 1
—Zé,dv, hdb =2 Z L4 - a2 v - wds
With the action u —> ey it is
d
27tll’l?§ + — Zf;‘,dv, vid§&; ()

(ii) Flat space with the other action (z,w) — (z,e'’w) requires local connection
forms Ay, Ay such that Ay = Ay + g;,\ dgyy - Define

1 1 ~
:szid& AV=—2—EZvidS,-

thenonU NV

AV_AUZ_%Z% %——ZV, g, ——d (%Zv,&)

3.2 Hyperkihler Quotients

In the twistor formalism the hyperkéhler quotient is a very natural operation: it is just
the fibrewise holomorphic symplectic quotient as long as the holomorphic vector
fields generated by G integrate to an action of the complexification G¢. Each a € g
gives a holomorphic vector field V, tangential to the fibres of 7 : Z — P! and the
three moment maps for V,,,a € g give a complex section
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v =(vy +1iv3)+2ivi¢+ (vz—iv3)§2

of g¢(2). The twistor space Z of the hyperkihler quotient is then simply v~ (0)/ G¢
where the metric plays a role in determining the stable points for this quotient by
a complex group. With this viewpoint the descent of the hyperholomorphic bundle
through a quotient is, given Theorem 3, the descent of the prequantum line bundle
in a symplectic quotient (it is straightforward to check that the residue descends
appropriately).

As we saw in the previous section, a hyperkihler quotient brings with it a
canonical hyperholomorphic G-bundle. In fact, in the twistor interpretation, v='(0)
is a principal G¢-bundle over the twistor space Z = v~!(0)/G¢ and it satisfies
the reality condition to define a hyperholomorphic principal G-bundle over M.
A homomorphism G — U(1) then defines a hyperholomorphic line bundle and
this raises the obvious question about whether, given a circle action, this is the
hyperholomorphic bundle of the title.

In fact for a manifold to be a smooth hyperkihler quotient of flat space such
homomorphisms must exist. The standard moment map for a linear action is
quadratic and the origin lies in v—'(0), so for smoothness we must change this by
a constant. Equivariance however demands that the constant is an invariant in g*: a
homomorphism from g to R.

Consider flat space H" as a right H-module, then U(n) C Sp(n) is the subgroup
commuting with left multiplication by e this is a distinguished complex structure
I.Let G C U(n) and ¢ € g* be a G-invariant element. If ¢ is integral it corresponds
to a homomorphism y : G — U(1). Let v be the standard quadratic hyperkéhler
moment map for the linear action, then taking the reduction at v = (c, 0, 0), the
cohomology class of the Kihler form e, lies in 27 H*(M , Z)). Indeed the integrality
for ¢ gives a lift of the G-action to the prequantum line bundle on v !(0) which
descends.

Theorem 4. If the hyperkihler quotient M of H" by G with v = (c,0,0) is
smooth, then the hyperholomorphic line bundle is v='(c,0,0) xg C endowed with
the canonical connection, where G acts via y : G — U(1).

Proof. From the twistor point of view the line bundle L on the quotient is defined
by the property that local sections are the same as local G¢-invariant sections of the
holomorphic line bundle on v~!(0). For flat space and the circle action above the
latter, as we observed in Sect. 2.1, is a trivial holomorphic bundle but has a non-
trivial action defined by y. Thus on Z the line bundle is associated to the principal
G¢-bundle v~ (0) by y. O

Examples.

(i) The simplest example is the cotangent bundle of a complex Grassmannian,
one of the Hermitian symmetric spaces of Sect.2.2. In this case the flat space
isM =V @ jV for V= Hom(CK, C") and G = U(n) acting in the obvious
way. There is just a one-dimensional space of invariant elements in g* and
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(i)

(iii)

H?*(M,Z) = Z. Notice that —1 acting on the vector space is represented by
—1 € U(n) and hence acts trivially on the quotient. It is therefore e?¢ which
acts effectively on the quotient. Since e’? acts on w, + iwj in flat space by
multiplication by e%?, on the quotient the induced action is the standard one:
in fact the fibre action on the cotangent bundle.

Taking M = V @ jV where V = End C* @ Hom(C¥, C") and G = U(k) one
obtains the moduli space of U(n)-instantons on R* of charge k or, with a non-
zero moment map, the moduli space of noncommutative instantons. Forn = 1
this is the Hilbert scheme (C?)K! of k points on C? and the hyperholomorphic
line bundle with complex structure / is defined by the exceptional divisor. The
circle action is induced from scalar multiplication on C? and so the action on
w, + i w3 is multiplication by e, since on the open set of (C?)] consisting
of the configuration space of C? the symplectic form is the sum k copies of
dz A dw.

In [13] Kronheimer constructed asymptotically locally Euclidean hyperkéhler
metrics on minimal resolutions of Kleinian singularities (C2/I" for I' C SU(2)
a finite group) by the quotient construction. The construction is as follows. Let
R = L*(I') be the regular representation, C? the basic representation from
I' € SU(2) and put M = (C?> ® End(R))". Since End(R) has real structure
A+ A* and SU(2) = Sp(1) this is a quaternionic vector space and the group
G = U(R)" acts as quaternionic unitary transformations. The ALE space
appears as a hyperkihler quotient of M by the action of G. If Ry, ..., Ry are
the irreducible representations of I", of dimension d; then

R=Pc er

and so U(R)" = U(dp) x - -+ x U(dy). From the McKay correspondence each
R; labels a vertex of an extended Dynkin diagram of type A, D, E and then

M = @Hom(cdf, CcY) (2)

i—j

the sum taken over the edges of the diagram, once with each orientation.
As shown in [13], the invariant subspace of g* can be identified with the
Cartan subalgebra of the Lie algebra of type A, D, E as can the coho-
mology Hz(]l;l, R), with HZ(M, Z) the root lattice. The case of Ay is the
multi-instanton metric of Sect. 2.3, where the chain of 2-spheres constructed
explicitly realizes the Dynkin diagram of type Ag.

Here the circle action on the symplectic form of the quotient will be the
standard one if there is an element in G which acts as —1. For this, from (2) we
need to show that there exist ¢c; = £1,0 < i < k, such that if i, j are joined
by an edge of the extended Dynkin diagram then c;c; = —1. For A; this
is trivial. Consider the extended Dynkin diagram (for k > 1) as a simplicial
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complex, then this is the same as asking that the Z,-cocycle associating —1
to each 1-simplex is a coboundary. The diagrams of type Dy, Es, E7, Eg are
contractible and so have zero first cohomology so this is true. For Ay the
diagram is homeomorphic to a circle and the cohomology class in H' vanishes
if there is an even number of edges, which is when k is odd.

Now the D, E Dynkin diagrams have a trivalent vertex which, in the pres-
ence of our circle action, corresponds to a rational curve of self-intersection —2
which is pointwise fixed, since there cannot be just three fixed points. And, as
pointed out in Sect. 2.3, when k is odd, the central curve in the A case is fixed.

In these cases, with respect to the complex structure I, we have a ratio-
nal curve of self-intersection —2 and a neighbourhood of such a curve is
biholomorphic to a neighbourhood of the zero section of the cotangent bundle.
Moreover the circle action is the standard scalar multiplication in the fibre.
Applying [4] this means that the Kronheimer metric with circular symmetry
is the unique hyperkéhler extension of the induced metric on the distinguished
2-sphere.

3.3 Coadjoint Orbits

The Hermitian symmetric spaces which we considered in Sect. 2.2 are special cases
of coadjoint orbits of compact semi-simple Lie groups with their canonical Kéhler
structure. There is a very natural description of the twistor space of a hyperkihler
metric on the cotangent bundle of such a space due originally to Burns [3]. In fact,
that paper only asserts the existence of such a metric in a neighbourhood of the
zero section, but it was written before hyperkihler quotients, and in particular the
infinite-dimensional gauge-theoretic versions, were discovered. Much later, armed
with a knowledge of existence theorems for Nahm’s equations, Biquard [1] revisited
this description being assured of global existence. The action of scalar multiplication
in the cotangent fibres by e? gives a circle action and we shall now seek a concrete
description of the line bundle L using Burns’s approach.

Let G be a semisimple compact Lie group with a bi-invariant metric and
z € g be an element with centralizer H. Then in the complex group G¢ there
are parabolic subgroups P4, P_ with Py N P_ = H°. The real (co)adjoint orbit
G/H = G°/ P4+ =~ G°/P_, and the complex coadjoint orbit is G°/H¢.

The Lie algebra p+ = h + ny where ny is nilpotent, z € h by definition and we
define two complex manifolds

Zo=G"xp {C-z+n4} Zoo =G xp_{C-z+n_}.
Since P+ fixes z modulo n4, the coefficient of z defines a projection mp : Zg — C

and similarly for Z. The fibre over O is the cotangent bundle 7*(G¢/Py) =~
G¢ xp, ny andfor § # 0, G xp, {{z+ n4} is an affine bundle over G/ P.
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There is another description, however, for (g, {z + x4+) — (Adg({z + x4+),0)
identifies the fibre at { # 0 with the G¢-orbit of {z. Note that the map z — {z
defines an isomorphism with the orbit of z which is not symplectic for the canonical
Kostant-Kirillov form w.,, but is for its rescaling wca, /¢.

The twistor space is obtained by identifying Z¢, Z, over { € C* by (x,{) —
(72x,¢71). Then the two projections define 7 : Z — P! and w,, defines the
twisted relative symplectic form.

We define line bundles L, L_ over Zy, Z by pulling back the prequantum line
bundle on G/H = G°/ P4+ using the projections py : Zo — G/ P+, poo : Zoo —
G¢/ P_. Thento define a line bundle L z on Z we need an isomorphism between L
and L_ over C* C P'. But the prequantum line bundle is homogeneous, defined by
representations y+ : P — C*, and these agree on H° = P, N P_. This therefore
gives an isomorphism pY Ly = p*L_onZyN Zx, = G°/H x C*.

To show that this truly is the twistor version of the hyperholomorphic bundle
we may simply note that it does generate a hyperholomorphic line bundle but by
the invariance of the construction it is homogeneous on the zero section G/H and
hence agrees with a hyperholomorphic bundle there. Invoking [4, 5] once more we
see that they are isomorphic everywhere.
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Hodge Numbers for the Cohomology
of Calabi-Yau Type Local Systems

Henning Hollborn and Stefan Miiller—Stach

Klaus Hulek zum 60. Geburtstag gewidmet

Abstract We determine the Hodge numbers of the cohomology group
H!,(S.V) = H'(S, j.V) using Higgs cohomology, where the local system V is
induced by a family of Calabi-Yau threefolds over a smooth, quasi-projective curve
S. This generalizes previous work to the case of quasi-unipotent, but not necessarily
unipotent, local monodromies at infinity. We give applications to Rohde’s families
of Calabi-Yau 3-folds.

1 Introduction

The first L?-cohomology group HLI2 (S.V) = H'(S, j«V), where V is a variation
of Hodge structures V of weight m over a smooth, quasi-projective curve § =

S\ DS , carries a pure Hodge structure of weight m + 1 by [12]. The goal
of this paper is to continue the study of its Hodge numbers. We build up on the
work done in [2], using the methods of Zucker [12], but in addition the equivalent
framework of Higgs bundles from the work of Jost, Yang, and Zuo [7]. In [2]
the local monodromies were assumed to be unipotent, but we show that one may
skip this assumption, and get similar formulae nevertheless. For simplicity, we will
assume that all Hodge numbers of V are equal to one. Such situations occur for
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families of elliptic curves, for the transcendental cohomology of families of K3
surfaces with generic Picard number 19, and for certain families of Calabi-Yau
3-folds.

The case of primary interest will be m = 3, i.e., families of Calabi-Yau 3-folds.
However, for other applications we will also state results for the cases m = 1 and
m = 2, which go back to work of Stiller [11] and Cox-Zucker [3].

The group H LIZ(S , V) is of interest in theoretical physics [8], as the presence
of codimension two cycles on the total space of a fibration of Calabi-Yau 3-folds
implies that its (2, 2)-Hodge number is non-zero.

The plan of this paper is as follows: After reviewing the basics of L2-Higgs
cohomology, we discuss the cases m = 1, m = 2 and m = 3 separately and state
the results in each case, comparing with the existing literature. In case m = 3 we
extend the results from [2] to the case of non-unipotent monodromies at infinity
and complete some tables of Hodge numbers there. In the last section we discuss
some examples without maximally unipotent degeneration due to J. C. Rohde [4,9].
These examples are interesting as they contain many CM points in moduli induced
by underlying Shimura varieties.

2 The Basic Set-Up: Higgs Cohomology

We consider a smooth, connected, projective family f : X — S of m-dimensional
varieties over a smooth quasi-projective curve S. Denote by S a smooth compact-
ification of S, and by f : X — S an extension of f to a flat family over S.
Associated to this situation is a local system V = R™ f,C and the corresponding
vector bundle V := V ® Og on §. We would like to compute H (S, j«V) in terms
of the degeneration data of f.

We denote by T' the local monodromy matrix around a point in D at infinity. V
has quasi-unipotent monodromies at all points of D := § \ S.If f is semistable
in codimension one, then the local monodromies are unipotent. After Deligne, the
vector bundle V' has a quasi-canonical extension V' to S as a vector bundle together
with a logarithmic Gauf3-Manin connection

ViVosT® Qé(logD).
In the case of unipotent local monodromies V has degree zero, but not in the general
case. The Hodge filtration V = F* D F' 5 ... D F™ D F"*! = 0 also extends

to S and we define

EPMP = FP/FPH]
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as vector bundles on S. Let

E:= é EPmp
p=0

be the associated Higgs bundle with Higgs field
Vv E—>EQ .Qé—(logD),
where
®: EPmP — pprimmrtl g Qé(log D)

is induced by V and Griffiths transversality. In particular, the Higgs bundle induces
a complex of vector bundles

E*: E->E @ QL(og D).

Since dim(S) = 1 here, the usual condition & A ¥ = 0 is empty, and the complex
lives only in degrees 0 and 1. The hypercohomology group H!'(E*®) computes
H'(S,V)[7,12].

If the local monodromy matrix 7 at some point P € D is unipotent, then its
logarithm N := log(T) is nilpotent. Any nilpotent endomorphism N of a vector
space V; satisfying N # 0 and N"+! = 0 defines a natural increasing filtration
on Vj:

ocw_,cW_,naC---CWoCWC---CW,, =W,
which has the following definition: if N ! = 0 but N # 0, we put
Wu—1 = Ker(N™), W_,, =Im(N™).

The further groups W for —m < k < m—2 are inductively constructed by requiring
that N(Wy) = Im(N) N Wy, C Wi_, and

NG (Vo) — G, (V)
are isomorphisms. If V} is the fiber of V at a smooth point this filtration is called the

monodromy weight filtration. Prop. 4.1. of [12] states that in the unipotent case one
has a resolution which locally looks like

. -V dt -
0— j.V—> [WO—HV]—>T®[W_2+IV] — 0.
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In the quasi-unipotent case with no unipotent part one has on the other hand locally
a resolution of the form

_ v dt _
0—>j*V—>Vl>T®V—>0

by Prop. 6.9. of [12] and the stalk of j,.V att = 0 is zero.

Zucker also studies the Hodge filtration on V. Theorem 11.6 in loc. cit. gives
eventually a representation of H'(S, j«V) and its Hodge components. Instead of
this de Rham representation we will switch to the corresponding Higgs version.

We can use the monodromy weight filtration W, on each fiber Ep, P € D to
define the L2-Higgs complex

(205, (E).0) : 20,(E) CE, 24/(E) C E® 24(log D),
The sub-sheaves in each degree are defined near P € D as
QU(E) =Wy +1E, 24 (E) = (W, +1E)® 25(log D).

The notation is such that ¢ is a local parameter with P = {t = 0} € D and the
monodromy weight filtration is given by the logarithm N = log(7T’). At any point
P € S outside D, the L2-Higgs complex is just given by the Higgs bundle.

It can be shown [7] that the hypercohomology of the L?>— Higgs complex
(.Q('z)(E ), §) is isomorphic to the L2-cohomology group

H\(S.E) = HY(S, j.V) = H'(28,(E). 6).

In the following sections, we study the local structure of (.Q(’ ) 0) for the case of
logarithmic Higgs bundles of type (1, 1,..., 1, 1), so that each summand E?"™ 7 of
E is a line bundle. For the points P € D one has to distinguish cases corresponding
to the possible Jordan normal forms of the endomorphism N. The decomposition

E = é EPmP
p=0

induces a decomposition
Q84)(E) = €D 24, (E)" "7,
p=0
where

QU (E)" P = Q0 (E) N EP" P,

20y (E)P" P 1= Qb (E) N EP7M" P @ QL (log D).
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The hypercohomology spectral sequence associated to this filtration induces the
Hodge structure on H (S, E).

3 Elliptic Families

In the case of families of elliptic curves (m = 1) we obtain from the previous results:

Theorem 1 (Zucker [12]). The L*-Higgs complex for E is given by:

Q0)(E)'0 = EY(=1)
Q(()Z)(E)o,l — gol
Qb(E)* = EY) ® 2}
Q4 (E)" = EY' (1) ® 2}
Here I is the set of points with unipotent local monodromy (denoted by type I in

the Kodaira classification of singular fibers), Il the set of remaining non-unipotent
singular points.

Proof. Elliptic fibrations have either unipotent local monodromy 7" at points of type
I, where the Jordan normal form of 7 is given by the matrix

=3

or non-unipotent local monodromies, where 7 is equivalent to

Al AL O
T = T = .
(o A) o ( 0 Az)
for some roots of unity A, A; # 1. In the first case, Zucker [12, Prop. 4.1.] gives a
monodromy weight filtration locally at a point P = {t = 0} € I which looks like

Wo = W_y = tEY @ E%! and W_, = tE, hence the claim. At a non-unipotent
point P € II, [12, Prop. 6.9.] shows the claim as well. O

These observations imply the following well-known theorem.

Theorem 2 (Cox-Zucker [3]). Assume that V is irreducible, and that ® : E'0 —
E'® .Q;-,(log D) is a non-zero map with a + |II| > 0, where a := deg E'C. Then
the Hodge numbers for the pure Hodge structure of weight 2 on H'(S, j«V) are

hZ,O:hO,ZZg_1+a+|III’ hl’l :2g—2—2a+|]|
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This implies the well-known formula h'(jV) = 4g — 4 + |I| + 2|II|, see [3,
page 39].

Proof. The Higgs complex is given by

ELO(_I) EO,l
B
£0
EN(IN e} EN (1) ® Q4
Note that both 20, (E)*' = E®' and 2/, (E)'* = E'0(Il) ® $2; have neither
incoming nor outgoing Higgs differential. By Hodge duality, i.e., >° = h%2, we
get h' (E®Y) = h(E(ID) ® £2}). Under the assumption a + [17] > 0 this gives the
formula for > = h%* by applying Riemann-Roch to the line bundle E"(I1) ® 2.
h'!is h® of the cokernel of ® : 20, (E)"* — £2/,/(E)*!, hence the difference of
the degrees of both line bundles, from which the rest of the assertion follows. O

Remark 1. The assumptions in the theorem are not independent. The condition that
a + |II| > 0 1is not always satisfied, but in many cases: the parabolic degree of any
subbundle F' C E is defined as

deg, F :=deg F + Z Z a dim(Gry Fp),

Pell 0<a<l

where Gr, is the graded piece of the parabolic filtration corresponding to the
monodromy exp(2mia). For F = E®!, a Higgs subbundle of (E, ) with ¢ = 0,
one gets deg,(E 0y < deg,(E) = 0 by the Simpson correspondence [6, 10, Prop.
2.1], which implies deg,,(E'?) = —deg,(E®") > 0. Therefore, if the double sum
is not zero, i.e., some a > 0 occurs, then 0 < degp EYW <q+ |11], since all Hodge
numbers are 1.

Remark 2. Inthe case S = P! and deg E®! < —2, the proof states that #' (E®!) =
RO((E®Y)Y @ 2§) = h°(EM(II) ® £2}). This implies that E*! = (E'0)~! (—1I).

4 Families of K3 Surfaces

With the previous notation, we consider a smooth projective family of K3 surfaces
f : X — S with generic Picard number 19 over a smooth curve S. Associated
to this situation is a local system V C R?f,C of rank 3, given fiberwise by the
transcendental cohomology. Let

E:=E*0E" ®E"
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be the associated Higgs bundle with Higgs field
9 E — E®Q;(log D).

Now we make the following

Assumption. Each local monodromy is either unipotent or has no unipotent part.
In other words, there are no mixed cases with non-zero unipotent and non—unipotent
pieces. This implies that the Jordan normal forms for the local monodromies are

110 110 A10 A1 00 Al O
T=1011}),1010}),]0A1].10A 0]or]OA O],
001 001 00A 0 0 A3 0 0 Ay

with A, A; # 1 roots of unity.

Lemma 1. Only the Jordan normal forms

110 A10 A1 00 A1 0
T]= 011 ,T1]= OAI ,T]1= 0120 OI'T][Z 0110
001 00A 0 0 A3 0 0 Ay

with A, A; # 1 occur. The case I is unipotent, the cases Il are strictly quasi—
unipotent.

Proof. In the unipotent case, as in [2, p. 11], both maps in the sequence
20N praX po2

are dual to each other. Hence, if N2 = 0, both must be zero, which implies N = 0.
This excludes the second matrix. O

Theorem 3. The L>-Higgs complex for E is given by:

(2)(E)20 Ex 0( I)
9(2)(E)1,1 — gl

Q?z)(E)OZ EOZ

Q4(E)’ = E*(II) © 2

Qb (E)" = EN(ID ® 24
Q4(E)"? = E“(I +1I) ® 2

Here I is again the set of points with unipotent local monodromy, Il the set of
remaining non-unipotent singular points.
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Proof. The proof is exactly as in the case m = 1 using [12, Props.4.1and 6.9.]. O

Theorem 4. Assume that V is irreducible, and that § : E** — E"!' @ Q2¢(log D)
aswellas® : EM' — EO*Z(XLQ}§ (log D) are non-zero maps with a + |Il| > 0, where

a = deg E29. Then the Hodge numbers for the pure Hodge structure of weight 3
on H'(S, j.V) are

1
B =h" =g —14a+ U], B*! =h1’2=2g—2—a+|1|+§|11|-

In total, one has h'(j«V) = 6g — 6+ 2|I| + 3|1l|, which agrees with [2, Prop 3.6.].
Proof. The Higgs complex is given by

EZ,O(_I) El,l EO,Z
U ¥
#0 £0

E*(II) @ Q] ENN(IN® Q) ECX(I+11)®Q}

Note that both .Q?z) (E)*? = E%? and 52(12)(E)2’0 = EX(+I) ® .Qé have neither

incoming nor outgoing Higgs differential. Hodge duality, i.e., #*° = h%3, implies
hO(E*O(II) ® 2¢) = h'(E"?). Riemann-Roch applied to E*°(I) then gives the
formula for 430 = h%3 under the assumption a + |7I| > 0.

The space H?! is represented as global sections of the cokernel of the map

0 20 9 1 1,
20)(E)*" — 24, (E),
hence we have to count the zeros of a map of line bundles
E**(—I) — E"'(+1) ® Q4.
This number is given by the difference in degrees of the line bundles, so
h*'=h'?=deg " (+1)® 2} —deg E**(—1) = 2g—2+deg EM' —a+|I|+|1I.
It is not true that deg E""! = 0 in the non—unipotent case. Indeed let b := deg E""!.

We thus obtain #>! =2g —2+b —a + |I| + |1].
Now we use a checking sum: By [2, Prop 3.6.] we know that

' (V) = B30 4+ B2 4 12 4+ 103 = 6g — 6 + 2|1 + 3|11,

since by our assumption non—unipotent local monodromies have zero invariant
subspace. This implies that b = —1|11]. O
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Remark 3. Condition a + |/I| > 0 again follows in many cases, see Remark 1.
Assume that S = P! and that deg E%? < —2. The proof states that h' (E®?) =
hO((E®)Y © 2§) = h°(E>°(I) ® 2}). This implies that E°? = (E>%)~! (~II).

5 Families of Calabi-Yau 3-Folds

We consider a smooth projective family of Calabi—Yau 3—folds f : X —> S overa
smooth curve S as in [2]. Assume that S is a smooth compactification and consider
areal VHS V C R?£,C of rank 4 with Hodge numbers (1,1,1,1). We use the
previous notation and make again the assumption that each local monodromy is
either unipotent or has no unipotent part.

This implies that the Jordan forms for the local monodromies 7" are

1000 1100 1100 1100 A1 00O
0110 0100 0110 0110 0A, 00
0010 foo11})>foot1o) Joo11] 10 O0A;0]}°
0001 0001 0001 0001 0 0 0 Ay
A1 0 00 A1 1 00 A1 00 A100
0A, 1 0 0AL 00 0OA; 1O or 0OA10
0O00AMmO]'lJ]OOA T ]OOAO ooAr1ll’
00 0 A3 00 0Ay 00 0 Ay 000A
with A, A; # 1 roots of unity.
Lemma 2. Only the Jordan normal forms
1000 1100 1100
s _|o110 _lot1oo0 o110
"“lootro]” " loor1]” """ loo11]
0001 0001 0001
A0 0O A0 0O A1 00
0A, 00 0A, 1 0 0AL 0O
Ty = Ty = , Ty = ,
" looaofl looxno|l T oo
0 0 0 Ay 0 0 0 As 00 0 A,
A1 00 A100
0OA; 1 0O OA10
T = T =
"=looxno|l " loort
00 0 A, 000A
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with A, A; # 1 occur. The cases I, Il and Il are unipotent, the cases IV are strictly
quasi—unipotent.

Proof. See the discussion of normal forms in [2, Sect. 1]. O
Theorem 5. The L>-Higgs complex for E is given by:

Q4(EY* = EX(—11—11I)

Q4(E)*' = E>!(—=1 —1II)

20, (E)'? = EV(=II)

9(2)(E)0’3 — E03

Q4(E)* = EX1V) © 2}

Q4(E)*' = E>'(IV) ® 2}

Q4(E)'? = ER (V) ® 24

Q4(E)" = EX W+ 1V) @ 2}

Here I, II, 1II are again the sets of points with unipotent local monodromy, 1V the
set of remaining non-unipotent singular points.

Proof. The proof is exactly as in the cases m = 1 and m = 2 using [12, Props. 4.1
and 6.9.]. O

In summary, we get the following result, which agrees with [2, Prop 3.6.] in the
unipotent case.

Theorem 6. Assume that V is irreducible, and that 9 : E3° — E*!' ® .Qé— (log D)
aswellas® : E>!' - E'? ® Qé(log D)and ¥ : E'?2 - E%3 ® .Qé(log D) are
non-zero maps with a + |IV| > 0, where a := deg E*° and b := deg E?!. Then the
Hodge numbers for the pure Hodge structure of weight 4 on H' (S, j«V) are

hO=h"* =g —1+a+|IV], R =h'=2¢ =2+ b—a+ |I| + |HI| + |IV],
¥ = |I| + |lII| —2b +2g —2.

In total, one has
h'(juV) = 8g — 8 4 |I| + 2|II| + 3|II| + 4|1V)|.
Proof. The Higgs complex is given by

E30(—11 —11I) E>Y(—I—1I) EY2(=II) EO3
¥ o o
#0 #0 #0
EMN(IV)® Q] E>N(1IV)® 24 EM(IV)® 3 EC(IT+1V) @ Q4
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Note that both 20, (E)** = E®? and 24, (E)*® = E*°(IV) ® 22} have neither
incoming nor outgoing Higgs differential. Hodge duality, i.e., h*® = h%*, implies
h(E3IV) ® .Qé) = h'(E®3). Riemann-Roch applied to E>°(IV) then gives the
formula for h*° = h%* under the assumption a + |IV| > 0.

As in [2] the space H>! is represented as global sections of the cokernel of the

6
map .Q?z) (E)*° — 9(12)(E )21, hence we have to count the zeros of a map of line
bundles

EX(—1I —1II) — E>'(IV) ® 2}.
This number is therefore given by the difference in degrees of the line bundles, i.e.,
h*' =h'?=deg E>' (IV)®82;—deg E>* (—II—IIl)=b+2g—2—a+|lI|+|III|+|IV|.

In a similar way, H?? is represented as global sections of the cokernel of the

9
map .Q?z)(E)z*1 — .Q(lz)(E)l*Z, hence we have to count the zeros of the map of
line bundles

E*N (=1 —IIl) — E"(+1V) ® 2.

O

Remark 4. Condition a + |IV| > 0 again follows in many cases, see Remark 1.
Assume that S = P' and that deg(E®?) < —2. The proof states that ' (E*?) =
hO((E*)Y ® £24) = h°(E>*(IV) ® £2¢). This implies that E®* = (E>%)~!(=1V).
Hence, if a’ := —deg E%3, one has @’ = a + |IV].

It is not clear that deg E'> = — deg E*>'. Indeed let b’ := — deg E'2. We obtain
¥ = |I|+ ||+ |[IV|—b—b" +2g —2.

Now we use a checking sum: By [2, Prop 3.6.] we know that

(G V) = k4O 4 13 2 1 n'S 0% = 8g — 8+ | T| + 2|I1| + 3|III| + 4|1V,

since by our assumption non—unipotent local monodromies have zero invariant
subspace. This implies that b’ = b + |IV].

Using the formulas obtained above, one can revisit the tables for Hodge numbers
in [2] and add the degrees a and b of the Hodge bundles (see table). In the table, e
is the degree of a covering map P! — P! of the form z +> z° ramified in 0 and oo.
The numbering follows the database (Almkvist G, van Enckevort C, van Straten D,
Zudilin W, Tables of Calabi-Yau equations, arXiv:math/0507430, unpublished).

In the following sections, we need in addition the following upper bound for a
from the work of Jost and Zuo:
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Theorem 7 ([6, Theorem 1]).
1
deg £** < (z(h” —hg") + (0 — h3'°)) (2 —2+1D).

where a subscript 0 denotes the kernel of O. More generally, if V is a real VHS of
odd weight k = 21 + 1 > 1, then one has

-1
1 B o L
deg X < E(hk_” — g7y + E (h*=7 —hl(; )| 2g =2+ 1D).
j=0

If we assume that all maps ¥ are non-zero (except the one on £°3), and all ranks
h?4 are 1 as in our case, then the inequality simply becomes:

3
deg E3° < E(Zg -2+ D).

In the case S = P! we therefore obtain deg E>° < %(]jD — 2). In the case of 3
singular points, we get deg E3°0 < %, hence a = deg E30 < 1.

6 Rohde’s Example

In [4,9] one finds examples of one-dimensional families f : X — S of certain
Calabi-Yau 3-folds. Their construction is induced by a Borcea-Voisin method, i.e.,
is obtained from a product of a fixed elliptic curve E and a K3 surface S, by
application of certain automorphisms. To describe the underlying VHS, in section 2
of [4] a family of genus two Picard curves Cj is constructed, given by a triple
covering C; — P!, and thus coming with an automorphism £ of order three.
The cohomology H '(C;,Q) has an eigenspace decomposition according to the
eigenvalues & and § = £ and it is strongly related to the cohomology of the fibers
of f. Namely, one has

H*(X;,Q) = H(C)g. H'(X3.Q) = H* (C);.

H2 (X, Q) = H(Ce, H*(X3,Q) = H*(Coe.

Furthermore, the family C, is induced from a Shimura family, see [4]. As a
consequence, the Higgs map ¥ induces non-zero maps

9: B — E*' @ Qi(log D), ¢ : E'? — E* ® 2¢(log D)
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#  Model Too e h(j«V) h40 h3! h22 a b
1 P35 v 1 0 0 0 0 0 0
2 1 0 0 1 0 0
5 0 0 0 0 1 2
10 1 1 1 1 2 4
2 P(1,1,1,2,5)[10] v 1 0 0 0 0 0 0
2 1 0 0 1 0 0
5 4 0 0,1,2 4,2,0 0 0,1,2
10 5 0 0,1,2 53,1 1 2,3,4
3 P'[2,2,2,2 a1 0 0 0 0 0 0
2 0 0 0 0 1 1
2k 2k —2 k—1 0 0 k k
4 P3[3,3] /4 1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 0 0 0 0 1 1
6 3 1 0 1 2 2
5 P°[2,2,3] 1 1 0 0 0 0 0 0
6 2 0 Oor 1 2o0r0 1 2or3
6 P°[2,4] 1 1 0 0 0 0 0 0
4 0 0 0 0 1 2
8 4 1 1 0 2 4
7 P(1,1,1,1,4)[8] v 1 0 0 0 0 0 0
2 1 0 0 1 0 0
4 3 0 Oor 1 3orl 0 Oorl
8 3 0 Oorl 3orl 1 2o0r3
8 P(1,1,1,1,2)[6] v 1 0 0 0 0 0 0
2 1 0 0 1 0 0
6 1 0 0 1 1 2
9 P(1,1,1,1,4,6)[2,12) IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 2 0 Oorl 20r0 0 Oorl
4 3 0 Oor 1 3orl 0 Oorl
6 5 0 0,1,2 53,1 0 0,12
12 7 0 0,1,2,3 7,5,3,1 1 2345
10 P(1,1,1,1,2,2)[4,4] 1 1 0 0 0 0 0 0
2 1 0 0 1 0 0
4 1 0 0 1 1 1
8 5 1 0 3 2 2
11 P(1,1,1,2,2,3)[4,6] IV 1 0 0 0 0 0 0
2 1 0 0 1 0 0
12 7 0 0,1,2,3 7,5,3,1 1 2,3,4,5
12 P(1,1,1,1,1,2)[3,4 v 1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 2 0 Oor 1 20r0 0 Oorl
12 7 0 0,1,2,3 7,5,3,1 1 2,3,4,5

(continued)
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# Model Too e h'(j«V) h*0 K3l h22 a b
13 P(1,1,2,2,3,3)[6,6] 1I 1 0 0 0 0 0o 0
2 1 0 0 1 0 0
3 2 0 Oorl 2or0 O Oorl
6 3 0 Oorl 3orl 1 lor2
14 P®1,1,1,1,1,3)[2, 6] 1 1 0 0 0 0 0 0
3 2 0 Oorl 2or0 O Oorl
6 2 0 Oorl 20r0 1 20r3

induced by the corresponding Higgs fields for the family Cj, and the zero morphism

9 : EX'5E'2 @ @L(og D),

by noting that Higgs fields respect eigenspace decompositions.

In this case one knows a little bit more about @ and b: One has § = P! and
D = 3 singular points, one of them of type IV. Hence |[IV| = 1 and |II| = 2 in
our case. This follows from [4, Sec. 2] from the fact that the resulting Picard-Fuchs
equation is a classical hypergeometric equation with singularities at 0, 1, co. Let
F = F'9@ F*! be the Higgs bundle associated to the variation of the genus two
curves C,. Then F decomposes according to eigenspaces, i.e., F = F; & F;. Due

to the existence of non-unipotent points, Fé’o and Fé’l for O € {&, &} are not dual
to each other. One has:

Lemma 3. In Rohde’s example, each rank two Higgs bundle Fo has a maximal
Higgs field, i.e.,

>~

9 : F5'—=F%' ® 2} (log D).

is an isomorphism. Furthermore, deg Fé’o = 0 and deg Fé’l =—1.

Proof. Theorem 7, i.e., the Arakelov inequality of Jost and Zuo [6, Thm. 1], implies
that deg Fé’o < %, hence deg Fé’o < 0. On the other hand, one has deg Fé’o > 0:
Consider the local system W corresponding to Fq. It satisfies h?(P!, j.Wg) =
h°(P', jsWpQ) = 0 by the argument of [2, Prop 3.6.]. The Higgs complex for F is
given by

1,0 0,1
=1 R
U
#0
Fune ), Fluane ),

as in the proof of Theorem 2. Therefore, H'(P!, Fé’o(ll) ® .Qﬂil) is the direct
summand of Hodge type (2, 1) inside H?(P!, j«Wp) = 0. Since |[II| = 1, we
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obtain 0 = h'(P', F°(1) ® £2},) = h°(P', (F4*)~'(—1)). Therefore F}’ = Gp1.
In a similar way, HO(FI%’I) contributes to H°(P!, j.Wp) = 0, therefore deg Flg’l <
0. Since ¥ is a non-zero map, and deg(.Q]%,1 (log D)) = 1, we get that deg Fé’l =-1
and FY' = Opi (—1). O
Corollary 1. It follows that for the Higgs bundle E one hasa = 0 and b = —1.
Furthermore, the Higgs maps ¥ : E** — E*' ® 2;,(log D), and ¥ : E'* —
E% ® .QI;,I (log D) are both isomorphisms.

Note that the identities for a’ = a + |IV|, b’ = b + |IV| in Remark 4 still hold.
The properties of E we have shown are summarized in the following definition.

Definition 1. A logarithmic Higgs bundle £ = E*°® E>' @ E'? @ E°? of weight
m = 3 and rank 4 on § is called decomposed, if # : E** — E*! ® 21(log D) and
¥ EV? — EO3 ®.§2§(log D) are isomorphisms, and ¢ : E>! — E1*2®.Qé (log D)
is the zero map.

Theorem 8. The L?-Higgs cohomology of a decomposed Higgs bundle E = E*°@
E>' @ EV? @ E®3 of weight m = 3 and rank 4 with a + |IV| > 0 is described as
follows:

> (S VHO=R"(S, EX(V) ® 2p)=g — L +a + |IV]. h}(S. V)V = h}, (5. V) =0,

hy2(S. V) = (S, EV2 (V) ® 24) @ h' (S, E>' (=1 — II)) = 2h°(S. E'2(IV) ® 2}).
The assumptions imply that |I| = |llll = 0anda = b +2g — 2+ #D.

Proof. We use the same notations for the L?-Higgs complex .Q?Z)(E )iQ(lz)(E ) as
above. The symmetry of decomposed Higgs bundles implies that |I| = |Ill| =
0, since such degenerations cannot occur. As E is decomposed, also the arrow
Q(OZ)(E )2 24,(E )12 is still zero. Also the two non-zero arrows in the following
diagram remain isomorphisms (which implies again that |/ | = 0):

E30(—11 —11I) E>Y(—I—1) EV2(=II) E03
¥ o o
= 0 =
EMN(IV)® Q] EXN(1IV)® 24 EM(IV)® 4 EC(II+1V)® Q4

It follows thata = b + 2g — 2 + |II| + |III| + |IV|, and by Riemann-Roch, using
the assumption a + |IV| > 0,

ho (S, V)Y =), (S, VO = KOS, EX V)@ 2% =g —1+a+ |1V,
hy (S, V)@Y =k, (S, V) =0,
hy, (S, V)*2 = 1S, EV? (V) ® 25) ® h' (S, E>' (—1 — III)).
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In the last line, the two summands are dual to each other, which implies again |/ | =
/11| = 0, and h, (S, V)2 = 21°(S, EM?(IV) ® £23). O

Theorem 8 implies:

Corollary 2. In Rohde’s example one has h le (S,V) = 0, consequently all Hodge
numbers vanish:

hy (S, V)40 =, (S, V)OV=h},(S, V)3V=h!,(S, V)V =h], (S, V)*I=0.
In particular, since |/ | = |III| = 0 and |II| = 2, |IV| = 1, the check sum
(V) = B0 3 122 403 b = 8g — 8+ | I |+ 2|H| + 3|1 +4]IV| =0

is correct. Base change maps e : P! — P! with prescribed ramification lead to more
families where the theorem can be applied. Details can be found in the forthcoming
thesis of Henning Hollborn [5].
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of Holomorphic-Symplectic Varieties
of K 3!"1-Type
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Abstract Let X be a compact Kihler holomorphic-symplectic manifold, which
is deformation equivalent to the Hilbert scheme of length n subschemes of a K3
surface. Let . be a nef line-bundle on X, such that the top power ¢ (.£)*" vanishes
and ¢ (%) is primitive. Assume that the two dimensional subspace H*°(X) @
H%2(X) of H*(X,C) intersects H?(X, Z) trivially. We prove that the linear system
of .Z is base point free and it induces a Lagrangian fibration on X . In particular, the
line-bundle .Z is effective. A determination of the semi-group of effective divisor
classes on X follows, when X is projective. For a generic such pair (X, .%), not
necessarily projective, we show that X is bimeromorphic to a Tate-Shafarevich twist
of a moduli space of stable torsion sheaves, each with pure one dimensional support,
on a projective K3 surface.
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1 Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact
Kihler manifold such that H%(X, A2T*X) is generated by an everywhere non-
degenerate holomorphic 2-form [4]. A compact Kéhler manifold X is said to
be of K3I-type, if it is deformation equivalent to the Hilbert scheme Sl of
length n subschemes of a K3 surface S. Any manifold of K3!"l-type is irreducible
holomorphic symplectic [4]. The second integral cohomology of an irreducible
holomorphic symplectic manifold X admits a natural symmetric non-degenerate
integral bilinear pairing (e, ®) of signature (3,b,(X) — 3), called the Beauville-
Bogomolov-Fujiki pairing. The Beauville-Bogomolov-Fujiki pairing is monodromy
invariant, and is thus an invariant of the deformation class of X .

Definition 1.1. An irreducible holomorphic symplectic manifold X is said to be
special, if the intersection in H*(X,C) of H*(X,Z) and H>*(X) ® H*?(X) is a
non-zero subgroup.

The locus of special periods forms a countable union of real analytic subvarieties
of half the dimension in the corresponding moduli space.

Definition 1.2. Let X be a 2n-dimensional irreducible holomorphic symplectic
manifold and .Z a line bundle on X . We say that .Z induces a Lagrangian fibration,
if it satisfies the following two conditions.

LAX,L)=n+1.
2. The linear system |.Z| is base point free, and the generic fiber of the morphism
w: X — |&Z|" is a connected Lagrangian subvariety.

A line bundle .Z on a holomorphic symplectic manifold X is said to be nef,
if ¢1(Z) belongs to the closure in H (X, R) of the Kihler cone of X.

Theorem 1.3. Let X be an irreducible holomorphic symplectic manifold of K 3/"-
type and L a nef line-bundle, such that ¢, (L) is primitive and isotropic with respect
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to the Beauville-Bogomolov-Fujiki pairing. Assume that X is non-special. Then the
line bundle % induces a Lagrangian fibration w : X — |.Z|".

See Theorem 6.3 for a variant of Theorem 1.3 dropping the assumption that . is
nef. Theorem 1.3 is proven in Sect. 6. The proof relies on Verbitsky’s Global Torelli
Theorem [14, 40], on the determination of the monodromy group of X [21, 22],
and on a result of Matsushita that Lagrangian fibrations form an open subset in the
moduli space of pairs (X, £) [27]. Let us sketch the three main new ingredients in
the proof of Theorem 1.3.

(1) We associate to the pair (X,.Z) in Theorem 1.3 a projective K3 surface S

with a nef line bundle & of degree 2’(’;2, where d = gcd{(c1(Z), 1)
A € H?*(X,Z7)}. The sub-lattice c¢; (%) orthogonal to ¢;(#) in H(S,Z)
is Hodge-isometric to ¢|(.£)*/Zci(.£). The construction realizes the period
domain §2,¢ of the pairs (X, %) as an affine line bundle over a period domain
£2)9 of semi-polarized K3 surfaces (Sect. 4).

(2) The bundle map q : §2,0 — $2)9 is invariant with respect to a subgroup Q of
the monodromy group (Lemma 5.3). The group Q is isomorphic to ¢ (2)*. Q
acts on the fiber of ¢ over the period of a semi-polarized K3 surface (S, %).
Similarly, the lattice ¢;(%)* projects to a subgroup of H%2(S), which acts on
H%2(S) by translations. There exists an isomorphism, of the fiber of ¢ with
H%2(S), which is equivariant with respect to the two actions (Lemma 5.4).

(3) The fiber of g over the period of a semi-polarized K3 surface (S, %) contains
the period of a moduli space of sheaves on S with pure one-dimensional support
in the linear system |%“| (Sect.5.1). Each such moduli space of sheaves is
known to be a Lagrangian fibration [34].

The assumption that X is non-special in Theorem 1.3 is probably not necessary.
Unfortunately, our proof will rely on it. When X is non-special the Q-orbit, of
every point in the fiber of g through the period of X, is a dense subset of the fiber
(Lemma 5.4). This density will have a central role in this paper due to the following
elementary observation.

Observation 1.4. Let T be a topological space and Q a group acting on T. Assume
that the Q-orbit of every point of T is dense in T. Then any nonempty Q-invariant
open subset of T must be the whole of T'.

The above observation will be used in an essential way in three different proofs
(Theorem 6.1, Proposition 7.7, and Theorem 7.11).

The statement of the next result requires the notion of a Tate-Shafarevich twist,
which we now recall. Let M be a complex manifold and  : M — B a proper
map with connected fibers of pure dimension n. Assume that the generic fiber of
7 is a smooth abelian variety. Let {U;} be an open covering of B in the analytic
topology. Set U := U; N U; and M;; := 7~ (Uy). Assume given a 1-co-cycle g;;
of automorphisms of Mj;, satisfying 7 o g;; = m, and acting by translations on the
smooth fibers of 7. We can re-glue the open covering { M; } of M using the co-cycle
{gij} to get a complex manifold M’ and a proper map 7’ : M’ — B, whose fibers
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are isomorphic to those of . We refer to (M, nr’) as the Tate-Shafarevich twist of
(M, ) associated to the co-cycle {g;;}. Tate-Shafarevich twists are standard in the
study of elliptic fibrations [10, 17].

Let . be a semi-ample line bundle on a K3 surface S with an indivisible
class ¢;(£). Given an ample line bundle H on S and an integer y, denote by
My (0, k7% x) the moduli space of H -stable coherent sheaves on S of rank zero,
determinant .2, and Euler characteristic y. Assume that d and y are relatively
prime. For a generic polarization H , the moduli space My (0, £, y) is smooth and
projective and it admits a Lagrangian fibration over the linear system || [34].

Let X be an irreducible holomorphic symplectic manifold of K3/-type and 7 :
X — P" a Lagrangian fibration. Set « := 7*c|(Opn(1)). The divisibility of («, e)
is the positive integer d := gcd{(a, A) : A € H*(X,Z)}. The integer d? divides
n — 1 (Lemma 2.5).

Theorem 1.5. Assume that X is non-special and the intersection H"'(X,7) N at
is Za. There exists a K3 surface S, a semi-ample line bundle £ on S of degree
2'(’1;2 with an indivisible class ¢1(£), an integer y relatively prime to d, and a
polarization H on S, such that X is bimeromorphic to a Tate-Shafarevich twist
of the Lagrangian fibration My (0, ¢, y) — |.Z4|.

Theorem 1.5 is proven in Sect.7. The semi-polarized K3 surface (S,.%) in
Theorem 1.5 is the one mentioned already above, which is associated to (X, «)
in Sect. 4.1. The equality H"'(X,Z) N at = Za« is equivalent to the statement that
Pic(S) is cyclic generated by .. This condition is relaxed in Theorem 7.13, which
strengthens Theorem 1.5.

A reduced and irreducible divisor on X is called prime exceptional, if it has
negative Beauville-Bogomolov-Fujiki degree. A divisor D on X is called movable,
if the base locus of the linear system |D| has co-dimension > 2 in X. The
movable cone .#Vx of X is the cone in N'(X) := H"!(X,Z) ®z R generated by
classes of movable divisors. Assume that X is a projective irreducible holomorphic
symplectic manifold of K3["-type andlet 7 € N'(X) be an ample class. Denote by
Pexy C HV(X,Z) the set of classes of prime exceptional divisors. The set Pexy
is determined in [24, Theorem 1.11 and Sec. 1.5]. The closure of the movable cone
in N'(X) is determined as follows:

MYV y ={c € NI(X) :(c,¢)>0, (c,h) >0, and (c,e) >0, forall e € Pexy},

by a result of Boucksom [6,23, Prop. 5.6 and Lemma 6.22].!

Corollary 1.6. Let X be a projective irreducible holomorphic symplectic manifold
of K3WM-type. The semi-group of effective divisor classes on X is generated by

Prop. 5.6 and Lemma 6.22 in the last reference [23]. The same convention will be used throughout
the paper for all citations with multiple references.
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the classes of prime exceptional divisors and integral points in the closure of the
movable cone in N'(X).

Corollary 1.6 was shown to follow from Theorem 1.3 in [23, Paragraph following
Question 10.11].

We classify the deformation types of pairs (X, %), consisting of an irreducible
holomorphic symplectic manifold X of K3"-type, n > 2, and a line bundle .%
on X with a primitive and isotropic first Chern class, such that (¢;(%),x) > 0,
for some Kihler class x. The following proposition is proven in Sect. 4.3, using
monodromy invariants introduced in Lemma 2.5.

Proposition 1.7. Let d be a positive integer, such that d* dividesn — 1. If 1 < d <
4, then there exists a unique deformation type of pairs (X, %), with ¢, (L) primitive
and isotropic, such that (¢ (£), ®) has divisibility d. For d > 5, let v(d) be half the
number of multiplicative units in the ring Z./dZ. Then there are v(d) deformation
types of pairs (X, L) as above, with (c1(.£), ®) of divisibility d.

A generalized Kummer variety of dimension 2n is the fiber of the Albanese
map ST — S from the Hilbert scheme of length n subschemes of an abelian
surface S to S itself [4]. We expect all of the above results to have analogues
for X an irreducible holomorphic-symplectic manifold deformation equivalent to a
generalized Kummer variety. Yoshioka proved Theorem 1.3 for those X associated
to a moduli space of sheaves on an abelian surface [43]. Let the pair (X,.%)
consist of X, deformation equivalent to a generalized Kummer, and a line bundle .#
with a primitive and isotropic first Chern class. The basic construction of Sect. 4.1
associates to the pair (X, %), with dim(X) = 2n, n > 2, and with (¢;(£), ) of
divisibility d, two dual pairs (Sy, ;) and (S3, «;), each consisting of an abelian
surface S; and a class ¢; in the Neron-Severi group of S; of self intersection 2’:;2'2,
such that S, =~ S} and the natural isometry H*(S1,Z) =~ H?(S,,Z) maps o,
to ay. A conjectural determination of the monodromy group of generalized Kummer
varieties was suggested in the comment after [25, Prop. 4.8]. Assuming that the
monodromy group is as conjectured, we expect that the proofs of all the results
above can be adapted to this deformation type.

A version of Theorem 1.3 has been conjectured for irreducible holomorphic sym-
plectic manifolds of all deformation types [5, 26,39, Conjecture 2]. Markushevich,
Sawon, and Yoshioka proved a version of Theorem 1.3, when X is the Hilbert
scheme of n points on a K3 surface and (c;(-Z), ®) has divisibility 1 [26, Cor.
4.4] and [39] (the regularity of the fibration, in Sect. 5 of [39], is due to Yoshioka).
Bayer and Macri recently proved a strong version of Theorem 1.3 for moduli spaces
of sheaves on a projective K3 surface [3].

Remark 1.8 (Added in the final revision). Let Xy be an irreducible holomorphic
symplectic manifold and % a nef line bundle on Xy, such that ¢ (%) is primitive
and isotropic with respect to the Beauville-Bogomolov-Fujiki pairing. Matsushita
proved that if .4 induces a Lagrangian fibration, then so does .Z for every
pair (X,.Z) deformation equivalent to (Xo, %), with X irreducible holomorpic
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symplectic and . nef (preprint posted very recently [28], announced earlier in his
talk [31]). It follows that Theorem 1.3 above holds also without the assumption
that X is non-special, since a pair (X,.Z) with X special is a deformation of a
pair (Xo, %) with X, non-special. In fact, this stronger version of Theorem 1.3,
dropping the non-speciality, follows already from the combination of Matsushita’s
result and Example 3.1 below, since Example 3.1 exhibits a pair (Xy, %)), with a
line bundle %) inducing a Lagrangian fibration, in each deformation class of pairs
(X,.%) with X of K3/"-type and ¢, (%) primitive, isotropic, and on the boundary
of the positive cone. Matsushita’s result does not seem to provide an alternative
proof of Theorem 1.5 and the only proof we know is presented in Sect. 7 and relies
on the preceding sections.

2 C(lassification of Primitive-Isotropic Classes

A lattice, in this note, is a finitely generated free abelian group with a symmetric
bilinear pairing (e, ®) : L ®7 L — Z. The pairing may be degenerate. The isometry
group O(L) is the group of automorphisms of L preserving the bilinear pairing.

Definition 2.1. Two pairs (L;,v;), i = 1,2, each consisting of a lattice L; and an
element v; € L;, are said to be isometric, if there exists an isometry g : L — L,
such that g(vy) = v,.

Let X be an irreducible holomorphic symplectic manifold of K3"-type, n > 2.
Set A := H?(X,Z). We will refer to A as the K3I"-latrice. Let A be the Mukai
lattice, i.e., the orthogonal direct sum of two copies of the negative definite Eg(—1)
lattice and four copies of the even unimodular rank two lattice with signature

(1,-1).

Theorem 2.2 ([22], Theorem 1.10). X comes with a natural O(A)-orbit 5%
of primitive isometric embeddings 1 : H*(X,Z) — A.

Choose a primitive isometric embedding ¢ : A < A in the canonical O(A)-orbit
tx provided by Theorem 2.2. Choose a generator v € A of the rank 1 sub-lattice
orthogonal to ¢(A). We say that an isometry g € O(A) stabilizes the O(A)-orbit
Ly, if given a representative isometric embedding ¢ in the orbit ty, there exists an
isometry § € O(A) satisfying ¢ o g = g o «. Note that g necessarily maps v to %v.

Set Ag := A ®z R. Let € C Ag be the positive cone {x € Ag : (x,x) > 0}.
Then HX(¢,Z) is isomorphic to Z and is a natural character of the isometry group
O(A) [23, Lemma 4.1]. Denote by O (A) the kernel of this orientation character.
Isometries in O (A) are said to be orientation preserving.

Definition 2.3. Let X, X, and X, be irreducible holomorphic symplectic mani-
folds. An isometry g : H?(X|,Z) — H?(X,,7) is a parallel transport operator,
if there exists a family 7 : 2~ — B (which may depend on g) of irreducible
holomorphic symplectic manifolds, points b; and b, in B, isomorphisms X; = Z},,
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where 2}, is the fiber over b;, i = 1,2, and a continuous path y from b; to b,, such
that parallel transport along y in the local system R’m,Z induces the isometry g.
When X = X; = X,, we call g a monodromy operator. The monodromy group
Mon?(X) of X is the subgroup, of the isometry group of H?(X,Z), generated by
monodromy operators.

Theorem 2.4 ([22], Theorem 1.2 and Lemma 4.2). The subgroup Mon?>(X)
of O(A) consists of orientation preserving isometries stabilizing the orbit tx.

Given a lattice L, let I,(L) C L be the subset of primitive classes v with (v, v) =
2n—2. Notice that the orbit set /,,(L)/O (L) parametrizes the set of isometry classes
of pairs (L', V'), such that L’ is isometric to L and V' is a primitive class in L’ with
(V',v') =2n —2[23, Lemma9.14].

Let 1 be an integer > 2, let A be the K3"l-lattice, and let @ € A be a primitive
isotropic class. Let div(c, ®) be the largest positive integer, such that («, ) /div(c, @)
is an integral class of A*. Set d := div(«, @) and

B = ().

Let L C A be the saturation of spany{f, v}. Clearly, the isometry class of (L,v)
depends only on « and the O(A)-orbit of . Consequently, the isometry class of
(L, v) depends only on «, as the O(A)-orbit ty of ¢ is natural, by Theorem 2.2. We
denote by [L, v](«) the isometry class of the pair (L, v) associated to «.

Lemma 2.5. (1) d? dividesn — 1.

(2) L is isometric to the lattice L, 4 with Gram matrix 2’:1;2 ((1) 8) .

(3) Let d > 1 be an integer, such that d* divides n — 1. The map a +— [L,v](c)
induces a one-to-one correspondence between the set of Mon®(X)-orbits,
of primitive isotropic classes o with div(x,e) = d, and the set of isometry
classes 1,(Ly4)/ O(Ly.a)-

(4) There exists an integer b, such that (B — bv)/d is an integral class of L. The
isometry class [L,v](«) is represented by (L, 4, (d, b)), for any such integer b.

Proof. Part (1): There exists a class § € A, such that (6,§) = 2 — 2n and
the sub-lattice 8j— of A, orthogonal to §, is a unimodular lattice isometric to the
K 3-lattice. The sub-lattice [t (8*)];: of A, which is the saturation of span{t(8), v},
is unimodular, hence isometric to the unimodular hyperbolic plane U with Gram

matrix ( 01 _01 ) . We may further assume thatv = (1, 1 —n) and ¢(§) = (1,n—1),

under this isomorphism. If X is the Hilbert scheme S of a K3-surface and §
is half the class of the big diagonal, then § satisfies the above properties. Write

2The saturation of a sublattice L’ of A is the maximal sublattice L of A, of the same rank as L/,
which contains L’.
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a = af + bd, where £ is a primitive class of the K3-lattice 8t a > 0, and
gcd(a,b) = 1. We get

0= (a.a) = a’( &) — (2n —2)b?,

and (£,§) is even. Hence, a® divides n — 1. Furthermore, div(§,e) = 2n — 2,
div(€, ) = 1, since §+ is unimodular, and div(c, ®) = ged(div(a&, o), div(h§, e)) =
gcd(a, (2n —2)b) = a. Thus, a = d = div(w, o).

Part (2): Note that ((§) —v = (2n — 2)e, where e is a primitive isotropic class
of A. Sety = %(,3 — bv)ﬂ = 1§ + @e. We claim that the lattice L :=
span,{v, y} is saturated in A. Indeed, choose 7 € §+, such that (£,77) = 1. Then
((v,e) o, n)) _ (—1 0)

(v.e) (r.m) 0 1)

Let G be the Gram matrix of L in the basis {v, y}. Then

2n—2( d? —bd 2n—-2 ( d
G=—— =7 )
d? (—bd b? ) d? (—b)(d ?)
Choose a 2 x 2 invertible matrix A, with integer coefficients, such that A ( db) =

((1)) Then AGA' is the Gram matrix of L, 4.

Part (3): Assume given two primitive isotropic classes «; and o, in A =
H*(X, Z) and let (L;, v;) be the pair associated to ¢; as above, fori = 1,2. In other
words, t; : A — Aisa primitive embedding in the orbit ¢y, v; generates the sub-
lattice of A orthogonal to the image of ¢;, and L; is the saturation of span,{t(c;), v;}.

Let us check that the map o > [L, v](e) is constant on Mon? (X )-orbits. Assume
that there exists an element . € Mon*(X), such that z1(ct;) = . Then there exists
an isometry ji € O(A), satisfying ji o t; = 15 o y, by Theorem 2.4. We get that
(L1) = Ly and fi(v)) = vy, or fi(vi) = —v,. So, the isometry i or —ji from L,
onto L, provides an isometry of the pairs (L;,v;),i = 1,2.

We show next that the map « + [L,v](«) is injective, i.e., that the isometry
class of the pair (L, v) determines the Mon?(X )-orbit of . Assume that there exists
as isometry f : Ly — Lo, such that f(v;) = v,. Then there exists an isometry
f € O(A), such that f(Ll) = L, and the restriction of f to Ly is f, by ([36],
Proposition 1.17.1 and Theorem 1.14.4, see also [21], Lemma 8.1 for more details).
In particular, f (vi) = v2. There exists a unique isometry 1 € O(A) satisfying
tp0h = fou;. There exists an isometry ¢ € O(A) such that oty = 11, since both ;
belong to the same O (A)-orbit 1y . We get the equality (;0h = $oiyoh = (qbof)on.
If 1 is orientation preserving, then & belongs to Mon?(X), otherwise, —h does, by
Theorem 2.4. Let u = h, if it is orientation preserving. Otherwise, set p := —h.
Then j is a monodromy operator and t>(u(a1)) = £ (h(ar)) = £ f (11(er)). The
class t; (1) spans the null space of L, and f restricts to an isometry from L; to
L,. Hence, t;(p(a1)) spans the null space of L,. Hence, (o)) = £as.
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Finally we show that a; and —a; belong to the same Mon? (X )-orbit. There exists
an element t € A satisfying (7, 7) = 2, and (7, a) = 0. The isometry p, € O(A),
given by p; (1) = —A + (A, 7)1, belongs to Mon?(X), by ([21], Corollary 1.8), and
it sends o, to —a;.

It remains to prove that the map o +— [L,v](®) is surjective. Assume given a
primitive class v € L, 4 with (v,v) = 2n — 2. There exists a primitive isometric
embedding f : L,q4 — A, by ([36], Proposition 1.17.1). The lattice f(v)j:,

orthogonal to f(v) in A, is isometric to the K3/"-lattice A. Choose such an
isometry i : f (v)i: — A, with the property that 7~' : A <> A belongs to
the O(A)-orbit 1y. Such a choice exists, since O(A) acts transitively on the orbit
space O(A, A)/O(A), by ([22], Lemma 4.3). Above, O(A, A) denotes the set of
primitive isometric embeddings of A in A. Denote by B € L, 4 a generator of the
null space of L, 4. Set o := h(f(B)). Then « is a class in A, such that [L, v](«) is
represented by (L, 4, v).

Part (4): The existence of such an integer » was established in the course of
proving part (1). The rest of the statement follows from Lemma 2.6. O

Ifd =2,setv(d) := 1.1f d > 2, let v(d) be half the number of multiplicative
units in the ring Z/d Z.

Lemma 2.6. A vector (x,y) € L, 4 is primitive of degree 2n — 2, if and only
ifl = d and ged(d, y) = 1. Two primitive vectors (d, y), (d, z) belong to the same
O(Ly q)-orbit, if and only if y = z modulo d, or y = —z modulo d. Consequently,
v(d) is equal to the number of O (L, 4)-orbits of primitive vectors in L, 4 of degree
2n —2.

Proof. The isometry group of L,, ;4 consists of matrices of the form ( +1 :Sl ) The
c

orbit O(L, 4)(d, y) consists of vectors of the form (+d,cd £ y). Consequently,
the number of O (L, 4)-orbits of primitive vectors in L, 4 of degree 2n — 2 is equal
to the number of orbits in {y : 0 < y < d and gcd(y,d) = 1} under the action
y + d — y. The latter number is v(d). O

3 An Example of a Lagrangian Fibration for Each Value
of the Monodromy Invariants

Let S be a projective K3 surface, K(S) its topological K-group, generated by
classes of complex vector bundles, and H* (S, Z) its integral cohomology ring. Let
dg =1+ % be the Todd class of S and +/tdg = 1 + % its square root.
The homomorphism v : K(S) — H*(S,Z), given by v(x) = ch(x)«/tds is an
isomorphism of free abelian groups. Given a coherent sheaf £ on S, the class v(E)
is called the Mukai vector of E. Given integers r and s andaclassc € H 2(S,7Z), we
will denote by (r, ¢, s) the class of H*(S, Z), whose graded summand in H°(S, Z)
is r times the class Poincare dual to S, its graded summand in H 2(S ,Z) is ¢, and
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its graded summand in H*(S, Z) is s times the class Poincare dual to a point. We
endow H *(S, Z) with the Mukai pairing

((r,c,s),(r',c',s")) = (c,c')y—rs' —7r's,

where (¢, ¢) := [, Uc’. Then (v(x),v(y)) = —x(x ® y), where y : K(S) —
Z is the Euler characteristic [35]. H*(S, Z), endowed with the Mukai pairing, is
called the Mukai lattice. The Mukai lattice is an even unimodular lattice of rank 24,
which is isometric to the orthogonal direct sum of two copies of the negative definite
Eg(—1) lattice and four copies of the even unimodular rank 2 hyperbolic lattice U .

Let v € K(S) be the class with Mukai vector (0, d£, s) in H*(S,Z), such that
£ a primitive effective class in H"!(S,7Z), (£,£) > 0, d is a positive integer, and
ged(d,s) = 1. There is a system of hyperplanes in the ample cone of S, called
v-walls, that is countable but locally finite [15, Ch. 4C]. An ample class is called
v-generic, if it does not belong to any v-wall. Choose a v-generic ample class H . Let
My (v) be the moduli space of H -stable sheaves on the K3 surface S with class v.
My (v) is a smooth projective irreducible holomorphic symplectic variety of K30
type, with n = (”%4'2 = dz(s’f) *2 This is a special case of a result, which is due
to several people, including Huybrechts, Mukai, O’Grady [38], and Yoshioka [44].
It can be found in its final form in [44].

Over S x My (v) there exists a universal sheaf .7, possibly twisted with respect to
a non-trivial Brauer class pulled-back from My (v). Associated to .% is a class [.F]
in K(S x My (v)) ([20], Definition 26). Let 7r; be the projection from S x My (v)
onto the i-th factor. Denote by v the sub-lattice in H*(S, Z) orthogonal to v. The
second integral cohomology H?*(My (v),Z), its Hodge structure, and its Beauville-
Bogomolov-Fujiki pairing, are all described by Mukai’s Hodge-isometry

0 : vt — HMy®»),7Z), (3.1)

given by 0(x) := ¢ (m{m](x") ® [F]}) (see [44]).

We provide next an example of a moduli space My (v) and a primitive isotropic
class o € H"'(My(v),Z), such that [L, v](«) is represented by (L, 4. (d, b)), for
every integer n > 2, for every positive integer d, such that d? divides n — 1, and for
every integer b satisfying ged(b,d) = 1.

Example 3.1. Let d be a positive integer, such that d? divides n — 1. Let S be a
K3 surface with a nef line bundle .Z of degree 2’;2. Let A be the class ¢;(.Z) in
H?(S,7Z). Fix an integer b satisfying gcd(b,d) = 1. Setv := (0,dA,s), where s
is an integer satisfying sb = 1 (modulo d). Then v is a primitive Mukai vector and
(v,v) = 2n — 2. Choose a v-generic ample line bundle H. A sheaf F of class v is
H -stable, if and only if it is H -semi-stable. The moduli space M (v), of H -stable
sheaves of class v, is smooth, projective, holomorphic symplectic, and of K 3/"]-type.
Set o := 6((0,0,1)). Let t : H>(My(v),Z) — H*(S,Z) be the composition of
6~! with the inclusion of v into H*(S,Z). A Mukai vector (r, c, t) belongs to v+,
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if and only if rs = d(c, A). It follows that d divides r, since ged(d,s) = 1. Thus,
div(a, @) = d. Now

() — by = (0, —bdA, 1 — bs)

is divisible by d, by our assumption on s. Hence, the monodromy invariant [L, v](c)
is equal to the isometry class of (L, 4, (d,b)), by Lemma 2.5. The cohomology
H'(S,£%) vanishes, since . is a nef divisor of positive degree [32, Prop. 1].
Thus, the vector space H°(S,.#¢) has dimension y(.Z¢) = n + 1. The support
morphism 77 : My (v) — |£?] realizes My (v) as a completely integrable system.
The equality 77*¢1(0) 4a|(1)) = « is easily verified.

4 Period Domains and Period Maps

4.1 A Projective K3 Surface Associated to an Isotropic Class

Let X be an irreducible holomorphic symplectic manifold of K3!"-type, n > 2.
Assume that there exists a non-zero primitive isotropic class « € H"!(X,Z). Let A
be the Mukai lattice. Choose a primitive isometric embedding ¢ : H 2(X,Z) — Ain
the canonical O(A)-orbit 1y of Theorem 2.2. Set A¢ := A ®7 C. Endow Ac with
the weight 2 Hodge structure, so that A20 = ((H*°(X)). Set B := t(a). Then B

belongs to /iéfl. Set

B;/LB

and endow A3 with the induced Hodge structure. Let U be the even unimodular
rank 2 lattice of signature (1, 1), and Eg(—1) the negative definite Ejg lattice. Then
Ay is isometric to the K3 lattice, which is the orthogonal direct sum of two copies
of Es(—1) and three copies of U. Indeed, this is clear if B is a class in a direct
summand of A isometric to U. It follows in general, since the isometry group of A
acts transitively on the set of primitive isotropic classes in A. The induced Hodge
structure on A3 is the weight 2 Hodge structure of some K3 surface S(«), by the
surjectivity of the period map.

Let v be a generator of the rank 1 sub-lattice of A orthogonal to the image of .
Then v is of Hodge-type (1,1). Set A := H?(X,Z). Then v* is isometric to A. We
claim that (v,v) = 2n — 2. Indeed, the pairing induces an isomorphism of the two
discriminant groups (Zv)*/Zv and A*/ A, since Zv and A are a pair of primitive
sublattices, which are orthogonal complements in the unimodular lattice A. We
conclude that the order |(v, v)| of (Zv)*/Zv is equal to the order 2n — 2 of A*/ A.
Finally, (v, v) > 0, by comparing the signatures of A and A.

Let v be the coset v + ZB in Ags. Then v is of Hodge-type (1, 1) and (v, V) =
2n — 2. Hence S(w) is a projective K3 surface (even if X is not projective). We



252 E. Markman

may further choose the Hodge isometry n : H?(S(),Z) — Ay, so that that
v corresponds to a class in the positive cone of S(«), possibly after replacing
v by —v. We may further assume that v corresponds to a nef class of S(),
possibly after replacing n with n o w, where w is an element of the subgroup
W C OT(H?*(S(x),Z)), generated by reflections by classes of smooth rational
curves on S(«) [19, Prop. 1.9].

4.2 A Period Domain as an Affine Line Bundle Over Another

Keep the notation of Sect.4.1. Set A := H*(X,Z). Setd := div(c, e). Let aj be
the (degenerate) lattice orthogonal to @ in A. Set QO := aj /Zo.

Lemma 4.1. Q, is isometric to the sub-lattice yt of Axs and both are isometric to
the orthogonal direct sum

Es(—1)® Esg(-1)pU U & ZA,
where (A, L) = 2;#.
Proof. The K3 lattice Ax; := [,le:]/Z,B is isometric to Eg(—1) @ Eg(—1) ® U &
U @ U. Let L be the saturation of span;{v, 8} in A. Then L is contained in ,Bj: and

the image of L in Ay is spanned by a class & of self-intersection 2’;—32, such that

v =d§, by Lemma 2.5.
It remains to prove that Q, is isometric to Ej—“. Consider the following
commutative diagram.

0—> ZB — ﬁA% - Az —0

=1 T T
0— ZB — L% —>L§/Zﬁ -0

=~ =1 Tt

0—> Zoa — aj— — Q4 —0.

The lower vertical arrow ¢ in the rightmost column is evidently an isomorphism. The
image of the upper one j is precisely S/Jsz' O

Let £24 be the period domain
Q4 :={LeP[H*(X,C)] : (£,£) =0and (£,{) > 0}. 4.1
Set

2,0 ={eR2,y: (L,a) =0} 4.2)
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Then £2,,.1 is an affine line-bundle over the period domain

R0, = {£LeP[Qy®2C] : (£,£) =0and (¢,{) > 0}.

Given a point of §2¢,, corresponding to a one-dimensional subspace £ of Q, ®z
C, we get a two dimensional subspace V; of H?(X,C) orthogonal to o and
containing «. The line in £2,, 1, over the point £ of £2¢,,, is P[V;]\{P[C«]}. Denote by

q: Ry — S0, (4.3)

the bundle map. A semi-polarized K3 surface of degree k is a pair consisting of
a K3 surface together with a nef line bundle of degree k (also known as weak
algebraic polarization of degree k in [33, Section 5]). Note that each component of
£, is isomorphic to the period domain of the moduli space of semi-polarized K3

surfaces of degree 2’:1;2.

Definition 4.2. Fibers of ¢ will be called Tate-Shafarevich lines for reasons that
will become apparent in Sect. 7.

Tate-Shafarevich lines are limits of twistor lines, as will be explained in
Remark 4.6.

4.3 The Period Map

Given a period { € 24, set AV, Z) := {A € A : (A, {) = 0}. Define
0L1(q(0), Z) similarly. We get the short exact sequence

00— Za — [on‘ N Al'l(ﬁ,Z)] — Q;’l(q(ﬁ),Z) — 0.

£2,1 has two connected components, since §2p, has two connected components.
Indeed, Q, has signature (2,5,(X) — 4), and a period £ comes with an oriented
positive definite plane [£ & £] N [Ag], which, in turn, determines the orientation of
the positive cone in @, ®z R.

The positive cone ‘JZA in A is the cone

Cp={x € Ag : (x,x) > 0} (4.4)

The cohomology group H 2(‘€~A, Z) is isomorphic to Z and an orientation of G
is the choice of one of the two generator of H 2(‘€~A, 7). An orientation of ‘65,1
determines an orientation of every positive definite three dimensional subspace of
Ag [23, Lemma 4.1]. A choice of an orientation of ‘65,1 determines a choice of a
component of 2,1 as follows. A period £ € £2,4 determines the subspace A" (£, R)
and the cone ¢} := {x € A" (£,R) : (x,x) > 0} in A"'(¢,R) has two connected
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components. A choice of a connected component of % is equivalent to a choice of
an orientation of the positive cone of ‘JZA. Indeed, a non-zero element o € £ and
an element @ € %, determine a basis {Re(0),Im(c), w}, hence an orientation,
of a positive definite three dimensional subspace of Ag, and the corresponding
orientation of ‘JZA is independent of the choice of o and w. Thus, the choice of
the orientation of the positive cone %, determines a connected component %; of
(fé, called the positive cone (for the orientation). If £ belongs to §2,1, then the class
a belongs to A1 (£, R) and « is in the closure of precisely one of the two connected
components of €. The connected component of £2,1, compatible with the chosen
orientation of €y, is the one for which « belongs to the boundary of the positive
cone %y for the chosen orientation.

A marked pair (Y, ) consists of an irreducible holomorphic symplectic mani-
fold Y and an isometry ¥ from H?(Y, Z) onto a fixed lattice. The moduli space of
isomorphism classes of marked pairs is a non-Hausdorff complex manifold [13]. Let
MY be a connected component of the moduli space of marked pairs of K 3l-type,
where the fixed lattice is A. The period map

P()IDJI%-).QA

sends a marked pair (Y, ¥) to the point ¥ (H?>°(Y)) of £24. Py is a holomorphic map
and a local homeomorphism [4]. The positive cone 6y is the connected component
of the cone {x € H"!'(Y,R) : (x,x) > 0} containing the Kihler cone. Hence,
the positive cone in H?(Y,R) comes with a canonical orientation and the marking
Y determines an orientation of the positive cone in %a. We conclude that Sm(/)‘
determines an orientation of the positive cone ‘65,1 [23, Sec. 4]. Let

2 (4.5)

be the connected component of §2,,1, inducing the same orientation of G4 as 93?%.
Let

m, (4.6)

be the inverse image Py ' (22)).

Theorem 4.3 (The Global Torelli Theorem [14, 40]). The period map Py
Dﬁ([)‘ — §2 4 is surjective. Any two points in the same fiber of Py are inseparable. If
(X1, m) and (X2, n2) correspond to two inseparable points in Dﬁ%, then X and X,
are bimeromorphic. If the Kiihler cone of X is equal to its positive cone and (X, 1)
corresponds to a point of 93?91, then this point is separated.

Lemma 4.4. i)ﬁg | is path-connected.

Proof. The statement follows from the Global Torelli Theorem 4.3 and the fact that
Q;‘J_ is connected. The proof is similar to that of [24, Proposition 5.11]. O
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Proposition 4.5. Let X| and X, be two irreducible holomorphic symplectic man-
ifolds of K3")-type and n; : Hz(Xj,Z) — A, j = 1,2, isometries. The marked
pairs (X1,n1) and (X2, n,) belong to the same connected moduli space Sﬁgr
provided the following conditions hold.

(1) The O(A) orbits lx; © n;l, J = 1,2, are equal. Above y; is the canonical
O(A)-orbit of primitive isometric embeddings of H?(X;,Z) into A mentioned
in Theorem 2.2.

(2) nytomi 1 HX(X1,Z) — H*(X»,Z) is orientation preserving.

(3) n;l(a) is of Hodge type (1,1) and it belongs to the boundary of the positive
cone ‘KXI. in Hl’l(Xj,R),forj =1,2.

Proof. Conditions 1 and 2 imply that 772_1 o 1 is a parallel-transport operator, by
Theorem 2.4. Hence, the two marked pairs belong to the same connected component
Sm% of M 4. Condition 3 implies that both belong to Dﬁg 1, and the latter is
connected, by Lemma 4.4. O

Proof (of Proposition 1.7). Lemma 2.5 introduced the monodromy invariant
[L,v](c1(:Z)) of the pair (X,.Z). The claimed number of deformation types
in the statement of the proposition is equal to the number of values of the
monodromy invariant [L,v](e) for fixed n and d, by Lemma 2.6. Assume
given another pair (X’,.#¢’) as above, such that the monodromy invariants
[L,v](c1(:£")) and [L,v](c1(:Z)) are equal. Choose a parallel transport operator
g : H*(X',Z) — H?*(X,Z). We do not assume that g(c;(.#")) is of Hodge
type (1,1). Set @ := ¢;(&) and o' = ¢;(&’). The monodromy invariant
[L,v](g(a)) is equal to [L, v](«') and hence also to [L, v](«). Hence, there exists
a monodromy operator f € Mon?(X), such that fg(a’) = o, by Lemma 2.5.
Choose a marking  : H*>(X,Z) — A.Then f := no f o g is a marking of X’
satisfying n(«) = n'(¢’). Hence, the triples (X, «, 1) and (X, &', ') both belong to
the moduli space Sm?] (@)L by Proposition 4.5. Sm?] (@t is connected, by Lemma 4.4.
Hence, (X, %) and (X', .¢’) are deformation equivalent. O

Remark 4.6. Tate-Shafarevich lines (Definition 4.2) are limits of twistor lines in
the following sense. Let £ be a point of §£24 and w a class in the positive cone %,
in A"(£,R). Assume that w is not orthogonal to any class in A"!(¢,Z). Then
there exists a marked pair (X, 7) in each connected component ‘Dﬁ% of the moduli
space of marked pairs, such that P(X,n) = £ and n~'(w) is a Kihler class of X
[13, Cor. 5.7]. Set W' := £ & £ & Cw. P(W') N 24 is a twistor line for (X, n); it
admits a canonical lift to a smooth rational curve in smg containing the point (X, 1)
[13, Cor. 5.8]. This lift corresponds to an action of the quaternions H on the real
tangent bundle of the differentiable manifold X, such that the unit quaternions act
as integrable complex structures, one of which is the complex structure of X. Let
a € A be the primitive isotropic class as above. Assume that £ belongs to .Q;l.

Consider the three dimensional subspace W := £ @ { @ Caof H 2(X,C). Then
W is a limit of a sequence of three dimensional subspaces W/, associated to some
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sequence of classes w; as above, since « belongs to the boundary of the positive
cone %;. Now W is contained in a*, and so P(W) N 2,1 = P(W) N £24. In this
degenerate case, the conic P(W) N £24 consists of two irreducible components, the
Tate-Shafarevich line P[{ @ Ca] \ {P[C«]} in .Q and the line P[{ & Ca] \ {P[Ca]}
in the other connected component §2_, of Qal. Theorem 7.11 will provide a lift of
a generic Tate-Shafarevich line in the period domain to a line in the moduli space of
marked pairs.

A summary of notation related to lattices and period domains

U The rank 2 even unimodular lattice of signature (1, 1)

Eg(—1) The root lattice of type Eg with a negative definite pairing

A The Mukai lattice; the orthogonal direct sum U ®* @ Eg(—1)®?

A The K3"-lattice; the orthogonal direct sum U®* @ Eg(—1)®2 & (2 — 2n),
where (2 — 2n) is the rank 1 lattice generated by a class of self-intersection 2 — 2n

o A primitive isotropic class in A

Qo The subquotient ' /Za

t A primitive embedding of A in A

B The primitive isotropic class t(«) in A

A The subquotient - /Zg, which is isomorphic to the K3 lattice U®? @ Eg(—1)®?2

v A generator of the rank 1 sublattice of A orthogonal to ¢(A)

v The coset v + Zf in A

d The divisibility of («, ®) in A*; d := ged{(a,A) : A € A}

& The integral element (1/d)v of A;. We have (§,§) = z;jl_;z

24 The period domain given in (4.1)

%”NA The positive cone given in (4.4)

.Q/T The connected component of £24 determined by the orientation of Gy

2,1 The hyperplane section of £2, given in (4.2)

.Qat The connected component of §2,1 given in (4.5)

29, The period domain of the lattice Q,

q The fibration g : §2,1. — £2¢, by Tate-Shafarevich lines given in (4.3)

mo A connected component of the moduli space of marked pairs

Py The period map Py : MY — .QA+

93?2 1 The inverse image of .Qat in MY via Py

[L,v](e) The monodromy invariant associated to the class « in Lemma 2.5 (4)

5 Density of Periods of Relative Compactified Jacobians

We keep the notation of Sect.4. In Sect.5.1 we construct a section 7 : .Q+ —
Qi, given in (5.2), of the fibration ¢ : .Q — .Q+ by Tate- Shafarev1ch hnes

We then show that maps a period £, of a semi- polanzed K3 surface (S, %) in
the period domain ‘QQu’ to the period 7(£) of a moduli space M of sheaves on S



Lagrangian Fibrations of Holomorphic-Symplectic Varieties of K 3["-Type 257

with pure one-dimensional support in the linear system |%?|. The moduli space
M admits a Lagrangian fibration over |%8?|. In Sect. 5.2 we construct an injective
homomorphism g : Q, — O(A), whose image is contained in the subgroup of
the monodromy group which stabilizes «. We get an action of Q, on the period
domain 9;, which lifts to an action on connected components Dﬁg . of the moduli
space of marked pairs given in Eq. (4.6). We then show that the fibration ¢ by Tate-
Shafarevich lines is g(Q)-invariant. In Sect. 5.3 we prove that the g(Q,)-orbit of
every point in a non-special Tate-Shafarevich line is dense in that line. Consequently,
the non-special Tate-Shafarevich line ¢! (£) contains the dense orbit g(Q,)7(£) of
periods of marked pairs in Sﬁg | admitting a Lagrangian fibration.

Conventions: The discussion in the current Sect. 5 concerns only period domains,
so we are free to choose the embedding ¢. When we consider in subsequent sections
a component SJI% of the moduli space of marked pairs (X, ) of K3M-type, together
with such an embedding ¢t : A — A, we will always assume that ¢ is chosen so
that ¢ o 1 belongs to the canonical O(A)-orbit 1y of Theorem 2.2, for all (X, 7) in
93?91. We choose the orientation of the positive cone %, of A, so that « belongs
to the boundary of the positive cone in A"!(£,R), for every £ € 9;. We choose
the orientation of the positive cone ‘JZA“, so that v belongs to the positive cone

in A}ﬂl (£, R), for every £ € .Q;l Note that the composition aj— N ,Bj: — A3

induces an isometry from Q, := a+/Za onto ﬁjkz, by Lemma 4.1. The choice of
orientation of the positive cone of A3 determines an orientation of the positive cone

of Q.

5.1 A Period of a Lagrangian Fibration in Each
Tate-Shafarevich Line

Choose a class y in A satisfying (y, ) = —1 and (y,y) = 0. Note that 8 and y
span a unimodular sub-lattice of A of signature (1, 1). We construct next a section
of the affine bundle ¢ : £2,1. — £2p,, given in Eq. (4.3), in terms of y. We have the
following split short exact sequence.

0 7B B Lo Ay 0.
A 5.1
e/ \& o

Above, 0,(x) = —(x,y)B, and 7,(y) = y + (¥, y)B, where y is any element of
,31: satisfying j(7) = y. One sees that 7, is well defined as follows. If y; and
satisfy j(yx) = y, then the difference [y; + (y1,y)B] — [V2 + (V2, ¥)B] belongs to
the kernel of j and is sent to 0 via o,, so the difference is equal to 0. Note that 7, is
an isometric embedding and its image is precisely {f, y}j:.
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We regard 2 Ziy as the period domain for semi- polarized K3 surfaces, with a nef
2n—2
2112 E
o 7, induces an isometric embeddmg of O, in af. We get a

line bundle of degree
1

via the isomorphism v+ A = Qo of Lemma 4.1. The

homomorphism ¢~
section

T, 1 Q4 - 28 (5.2)
of g : Q;’L — Q(j)'u. Following is an explicit description of 7,. Let £ be a period in
.an. Choose a period £ in .onl satisfying ¢(¢) = £. Let x be a non-zero element
of the line £ in f ® C. Then

7, (£) = spanc{x + (¢1(x), y)o}. (5.3)

We see that y belongs to A"! (t,(£)), for every £ in .Q'Q"d.

Fix a period £ in £2 Z?lw We construct next a marked pair (Mg (1), n;) with period
7,(£), such that 7y («) induces a Lagrangian fibration. Let S be a K3 surface and
n : H*(S,Z) — Ay a marking, such that the period n(H?>°(S)) is £. Such a
marked pair (S, n) exists, by the surjectivity of the period map. Extend 7 to the
Hodge isometry

i H*S.Z)— A,

given by 7((0,0,1)) = B, 7((1,0,0)) = y, and 7 restricts to H?*(S,Z) as %, o 1.
We have the equality v = o0, (v) + 7, (v) = —=(y,v)B + 7, (v). Seta := —(y,v) and

= (0,77'(¥),a). Then #(u) = v. We may choose the marking 7 so that the class
n~!(v) is nef, possibly after replacing n by 47 o w, where w is an element of the
group of isometries of H?(S, Z), generated by reflections by —2 curves [2, Ch. VIII
Prop. 3.9]. Choose a u-generic polarization H of S. Then My (1) is a projective
irreducible holomorphic symplectic manifold. Let

0 :ut - H*My(u),7)

be Mukai’s isometry, given in Eq. (3.1). We get the commutative diagram:

A : S —— |
mT TIzT T 5.4
~1
HAX(My(u),Z) 2 u* — S~ H*(S,Z

where 7, is the restriction of 7 and ; = t~' o1, 06~". Note that n,(6(0,0, 1)) = .
Let L be the saturation in H*(S, Z) of the sub-lattice spanned by (0,0, 1) and u.
Let b be an integer satisfying ab = 1 (modulo ). The monodromy invariant
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[L,u](6(0,0,1)) of Lemma 2.5 is the isometry class of the pair (L, 4, (d, b)), by
the commutativity of the above diagram. Furthermore, 1; is a Hodge isometry with
respect to the Hodge structure on A induced by 7, ({). In particular, (Mg (1), n1)
is a marked pair with period 7, (£). Example 3.1 exhibits (0,0, 1) as the class
7*¢1(0) ga|(1)), for a Lagrangian fibration 7 : My (u) — |24 |, where .Z is the
line bundle over S with class 7! (£).

Remark 5.1. The isometry 1, is compatible with the orientations of the positive
cones, the canonical one of H?(M (1), Z) and the chosen one of A. Indeed, it maps
the class (0, 0, 1), on the boundary of the positive cone of H'!'(My (1), R), to the
class « on the boundary of the positive cone of A"!(z,(£),R). The composition
ii o 8~ in Diagram (5.4) belongs to the canonical orbit ¢ My ) of Theorem 2.2, by
[22, Theorem 1.14]. The commutativity of the Diagram implies that the isometric
embedding ¢ o 77; also belongs to the orbit ¢, ().

5.2 Monodromy Equivariance of the Fibration
by Tate-Shafarevich Lines

Denote by O(A);v the subgroup of O(A)* stabilizing both f and v. Following is
a natural homomorphism

h: O(A)f, — O(Aks)s. (5.5)

If ¥ belongs to O(A);v, then ¥ (B) = B and ,le: is ¥-invariant. Thus v induces an
isometry h(Y) of Az 1= ,Bj: /7Z,B. We construct next a large subgroup in the kernel
of h.

Given an element z of A, orthogonal to B and v, define the map g : A—> A by

.00 = x—(x,ﬂ)z+[(x,z)—%(x,m(z,z)} .

Lemma 5.2. The map g, is the unique isometry in O(/i)ﬁ,v, which sends y to an
element of A congruent to y + z modulo 7B and belongs to the kernel of h. The
isometry g, is orientation preserving.

Proof. We first define an isometry f with the above property, then prove its unique-
ness, and finally prove that it is equal to g.. Set y1 1=y + z + [(1,2) + 1(z. 2)] B-
Then (y1,71) = 0, (y1, 8) = —1, and y, is the unique element of A satisfying the
above equalities and congruent to y + z modulo Zf. Define 6, : A— 7B + Zy
by 6, (x) := —(x, B)y — (x,y)B. We get the commutative diagram with split short
exact rows:
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Oy Ty
0—>7ZB+7Zy A—To A 0
l J{f iid
0——=ZB+7Zn A Az 0

Above 7, and j are the homomorphisms given in Eq. (5.1), J(x) = j(x+(x, B)y),
and 6,,, 7,,, and fl are defined similarly, replacing y by y,. The map f is defined
by f(B) =B, f(y) =yi,and f(7,(y)) = T),(y). Then f is clearly an isometry.

The isometry f can be extended to an isometry of Ay and we can continuously
deform z to 0 in {8, v}* ®7z R, resulting in a continuous deformation of f to the
identity. Hence, f is orientation preserving.

Note the equalities 6, (v) = —(v, )8 = —(v, y1)B = 0y, (v), where the middle
one follows from that fact that both z and f are orthogonal to v. We get the equality

Z,(0) =v—56,00) =v—25, () = T, (/).

Thus f(v) = vand f belongs to O(A)Eiv. Let x be an element of ,BJ-. Then f(x) =
j(x) = ji(x). Set y := j(x). Now 7,(y) = 7,(y) modulo Zg, by definition of
both. Hence, /(f) is the identity isometry of A;.

Let f’ be another isometry of A satisfying the assumptions of the Lemma. Then
f'(y) = 1, by the characterization of y; mentioned above. Set e := f~!o f/.
Then e(B) = B, e(y) = y, e(v) = v,and h(e) = id. Given x € B+, we get that
e(x) = x modulo ZB. Now (e(x),y) = (e(x),e(y)) = (x,y). Thus, e restricts to
the identity on S1. We conclude that e is the identity of A, as the latter is spanned
by y and B+. Thus f' = f.

It remains to prove the equality f = g,. We already know that f(y) = y; =
g.(y)and f(B) = B = g.(B). Given y € Ay, we have

&G0 =5,0) + @().28 =5, (y) = f(T, ).

Hence, g, = f. O
Let

g:ax — O(A)],

be the map sending z to g,;). Denote by Mon*(A, 1) the subgroup of OF(A) of
isometries stabilizing the orbit O(A).. Note that 0(/1)3’ is conjugated via ¢ onto
Monz(A, t), if n = 2, and to an index 2 subgroup of Monz(A, ), ifn > 2 [21,
Lemma 4.10]. Let Mon*(A, 1), be the subgroup of Mon*(A, ) stabilizing a.
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Lemma 5.3. (1) The map g is a group homomorphism with kernel Zo. It thus
factors through an injective homomorphism

g 04 — Mon*(A, ).
(2) Let z be an element of a7 and [7] its coset in Qy. Then gy : ot — at
x eattox + (x,2)a.
(3) The map q : .Q;_ — .qu is Mon® (A, 1)4-equivariant and it is invariant with
respect to the image g(Qy) C Mon*(A,1)g of .
(4) The image of g is equal to the kernel of the homomorphism h, given in Eq. (5.5).

sends

Proof. Part (1) follows from the characterization of g, in Lemma 5.2. Part (2) is
straightforward as is the Mon?(A , t)-equivariance of ¢. The g(Q,)-invariance of ¢
follows from part (2). Part (3) is thus proven.

Part (4): The image of g is contained in the kernel of /2, by Lemma 5.2. Let f €
O(A)ﬁ,v belong to the kernel of /. Set y; := f(y) andz := y; — y. Then (y;, B) =
(f).B) = (f(¥), f(B)) = (v.p) and similarly (y1,v) = (y,v). Hence, (z, B) =
0 and (z,v) = 0. The isometry g, is thus well defined and it is equal to f, by
Lemma 5.2. O

5.3 Density

A period £ in £24,, is said to be special, if it satisfies the condition analogous to the
one in Definition 1.1. We identify £2p, as a submanifold of §2,,,, via Lemma 4.1.
Note that a period £ € £2,.1 is special, if and only if the period ¢ () is.

Lemma 5.4. 1. g(Q.) has a dense orbit in g~ (£), if and only if £ is non-special.
2. If g(Qy) has a dense orbit in g~ (£), then every g(Qg)-orbit in g~ (£) is dense.

Proof. Part 2 follows from the description of the action in Lemma 5.3 part 2. We
prove part 1. Fix a period £ such that g(£) = £ and choose a non-zero element ¢ of
the line £ in aj ®z C. Then ¢! (£) = P[Ca + Ct] \ {P[Ce]} and gpj(ac + 1) =
(a + (t.z))a + t, by Lemma 5.3 part 2. The fiber ¢! (£) has a dense g(Q,)-orbit,
if and only if the image of

(t,0): Oy —> C (5.6)

is dense in C. B

Suppose first that £ is special. Set V := [{ €] N [Q, ®7z R]. Let A be a non-zero
elementin V' N Q. There exists an element ¢ € £, such that A = ¢ + 7. Given an
elementz € Qy, then2Re(z,t) = (z,1)+(z, 1) = (z, A) is an integer. Thus, Re(z, 1)
belongs to the discrete subgroup %Z of R. Hence, the image of the homomorphism
(5.6) is not dense in C.
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Assume next that £ is non-special. Denote by ©(£) C Q, the lattice orthogonal
to the kernel of the homomorphism (5.6). ©(£) is the transcendental lattice of the
K 3-surface with period £. We know that & (£) has rank at least two, and if the rank
of ®({) is 2, then the Hodge decomposition is defined over QQ and so £ is special.
Thus, the rank of ®({) is at least three. Let G C ©(£) be a co-rank 1 subgroup.
We claim that the image (¢, G), of G via the homomorphism (5.6), spans C as a
2-dimensional real vector space. The latter statement is equivalent to the statement
that the image of G in V*, under the map z > (z, ®) which has real values on V,
spans V' *. The equivalence is clear considering the following isomorphisms of two
dimensional real vector spaces:

5

C <2 Homg(¢,C) —~ Homp (£,R) —— Homg(V,R) = V*,

where ev, is evaluation at 7, Re takes (z, ®) to its real part Re(z,®), and p* is
pullback via the projection p : ¥V — £ on the (2,0) part. Assume that the
image of G in V* spans a one-dimensional subspace W. Let U be the subspace
of V' annihilated by W, and hence also by (z,®), z € G. Then the kernel of the
homomorphism Ag; — U*, given by z > (z, ®), has co-rank 1 in Agsz. It follows
that the decomposition Ax3 @z R = U @ U+ is defined over Q. Thus, U N Ags
is non-trivial and £ is special. A contradiction. Thus, indeed, the image (¢, G) of G
spans C. Let Z C C be the image (¢, ©@({)) of ®(£) via the homomorphism (5.6).
We have established that Z satisfies the hypothesis of Lemma 5.5 below, which
implies that the image of the homomorphism (5.6) is dense in C. O

Lemma 5.5. Let Z C R? be a free additive subgroup of rank > 3. Assume that any
co-rank 1 subgroup of Z spans R? as a real vector space. Then Z is dense in R2.

Proof. Let X be the set of all bases of R2, consisting of elements of Z. Given a
basis B € X, B = {z1, 22}, set |B| = k1| + ko|. Set I = inf{|f : B € X}. Note
that the closed parallelogram Pg with vertices {0, z, 22, 21 + z2} has diameter < |§|.
Furthermore, every point of the plane belongs to a translate of Pg by an element of
the subset spany{z;, 22} of Z. Hence, it suffices to prove that / = 0.

The proof is by contradiction. Assume that / > 0. Let 8 = {z;,z,} be a basis
satisfying I < |f| < %I . We may assume, without loss of generality, that [j| > [z

We prove next that there exists an element w € Z, such that w = ¢jz1 + 222,
where the coefficients ¢; are irrational. Set r := rank(Z). Let z3, . .., 7, be elements
of Z completing {z;,z>} to a subset, which is linearly independent over Q. Write
Zj = ¢j121 + ¢jp2, for 3 < j < r. Assume that c; are rational, for 3 <
Jj =< r. Then there exists a positive integer N, such that Nc; are integers, for
all 3 < j <r.Then

{z2,Nz3 — Nc3 121, - .., Nz, — Neyazi}

spans a co-rank 1 subgroup of Z, which lies on Rz,. This contradicts the assumption
on Z. Hence, there exists an element w € Z, such that w = c1z; + ¢222, where the
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coefficient ¢, is irrational. Repeating the above argument for c,, we get the desired
conclusion.

Choose an element w as above. By adding vectors in span,{zi, 22}, and possibly
after changing the signs of z; or z, we may assume that w = cjz; + 222, with
0<c < % and0 < ¢; < % Then w belongs to the parallelogram %Pﬁ with vertices
HUE # }.1If ¢ and ¢, are both larger thim % replace w by z; +2z,—2w. We may

thus assume further, that at least one ¢; is < 3. In particular, MW <cikil+cakd <

3 k| . Consider the new basis B := {w. z,} of R%. Then ‘5) =W+kd < 2kil+kd =
1Bl — % kil < % |8] < 1. We obtain the desired contradiction. O

Denote by J, C £2,. the union of all the g(Q,) translates of the section T,
constructed in Eq. (5.2) above.

Joi= U & ] (28,)]

y€0Qq

One easily checks that g o T, = 75, where § 1= y + 1(2) + (y,1(2)) 8 + @,B, for
allz € aj, and so J, is independent of the choice of y.

Proposition 5.6. (1) J, is a dense subset of .Q:l.

(2) If V is a g(Qq)-invariant open subset of .Q:' , which contains J,, then V
contains every non-special period in .Q:L.

(3) For every £ € J,, there exists a marked pair (M, n), consisting of a smooth
projective irreducible holomorphic symplectic manifold M of K3U-type and
a marking n : H>(M,Z) — A with period { satisfying the following
properties.

(a) The compositionion : HX(M,7) — A belongs to the canonical O(A)-orbit
ty of Theorem 2.2.

(b) There exists a Lagrangian fibration & : M — P", such that the class n~! ()
is equal to w*c 1 (Opn (1)).

Proof.

(1) The density of J, follows from Lemma 5.4.

(2) V intersects every non-special fiber ¢~!(£) in a non-empty open g(Qq)-
equivariant subset of the latter. The complement ¢~'(£) \ V is thus a closed
g(Qy)-equivariant proper subset of the fiber. But any g(Q,)-orbit in the non-
special fiber ¢! (£) is dense in ¢! (£), by Lemma 5.4. Hence, the complement
g~ '(¢) \ V must be empty.

(3) If £y belongs to the section t, (‘Qa)’ then such a pair (M, n) := (Myu (w), n1)
was constructed in Diagram (5.4) as mentioned in Remark 5.1. If £ = g,({o),
z€ay,set (M,n) = (My(u),g.om). o
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6 Primitive Isotropic Classes and Lagrangian Fibrations

We prove Theorem 1.3 in this section using the geometry of the moduli space
9312 | given in Eq. (4.6). Recall that 9312 | is a connected component of the moduli
space of marked pairs (X,n) with X of K3I-type and such that n~!(a) is a
primitive isotropic class of Hodge type (1, 1) in the boundary of the positive cone
in H'1(X,R).

Fix a connected moduli space ﬁﬁg 1 as in Eq. (4.6). Denote by .Z -1, the line
bundle on X with ¢;(£) = n~'(). Let V be the subset of MY | consisting of all
pairs (X, 1), such that £ -1, induces a Lagrangian fibration.

Theorem 6.1. The image of V via the period map contains every non-special
period in .Q:l.

Proof. Let (X,n) be a marked pair in 9312 . The property that n~!(a) is the
first Chern class of a line-bundle . on X, which induces a Lagrangian fibration
X — |£]*, is an open property in the moduli space of marked pairs, by a result of
Matsushita [27]. V' is thus an open subset.

Choose a primitive embedding ¢t : A — A with the property that ¢ o
belongs to the canonical O(A)-orbit tx of Theorem 2.2, for all (X, ) in MY, Let
Mon*(A, 1) and its subgroup Mon*(A, 1), be the subgroups of O (A) introduced
in Lemma 5.3. The component smg of the moduli space of marked pairs is invariant
under Mon?(A, 1), by Theorem 2.4. The subset Dﬁg . of MY is invariant under

the subgroup Mon*(A,t),. Hence, the subset V is Mon*(A,t), invariant. The
construction in Sect. 5.1 yields a marked pair (M (1), n1) with period in the image
of the section 7, : 525 — .Q;_, given in Eq. (5.2). Furthermore, the class 17" (@)
induces a Lagrangian fibration of My (u). The marked pair (Mg (1), ;) belongs to
sma |, by Proposition 4.5 (Remark 5.1 verifies the conditions of Proposition 4.5).

Hence, (My(u),n1) belongs to V' and the image of the section 7, : an —
.Q;'J_ is thus contained in the image of V via the period map. The period map

Py is Mon*(A, ), equivariant and a local homeomorphism, by the Local Torelli
Theorem [4]. Hence, the image Py(V) is an open and Mon?(A, t), invariant subset
of .Q;l. Any Mon*(A, 1), invariant subset, which contains the section r),(.Qé'a),
contains also the dense subset J, of Proposition 5.6. Py(V') thus contains every
non-special period in .Q;l , by Proposition 5.6 (2). O

We will need the following criterion of Kawamata for a line bundle to be semi-
ample. Let X be a smooth projective variety and D a divisor class on X. Set
v(X, D) := max{e : D° # 0}, where = denotes numerical equivalence. If D = 0,
we set V(X, D) = 0. Denote by ®;p : X -> |kD|" the rational map, defined
whenever the linear system is non-empty. Set (X, D) := max{dim ®p(X)

k > 0}, if |k D] is non-empty for some positive integer k, and (X, D) := —oo,
otherwise.
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Theorem 6.2 (A special case of [16, Theorem 6.1]). Let X be a smooth projective
variety with a trivial canonical bundle and D a nef divisor. Assume that v(X, D) =
k(X,D)andk(X, D) > 0. Then D is semi-ample, i.e., there exists a positive integer
k such that the linear system |k D | is base point free.

An alternate proof of Kawamata’s Theorem is provided in [11]. A reduced and
irreducible divisor E on X is called prime-exceptional, if the class e € H*(X,Z)
of E satisfies (e,e) < 0. Consider the reflection Rg : H*(X,Z) — H*(X,Z),
given by

2(x,e)
.0 e.

It is known that the reflection Rg by the class of a prime exceptional divisor E
is a monodromy operator, and in particular an integral isometry [24, Cor. 3.6]. Let
W(X) C O(H?(X,Z)) be the subgroup generated by reflections Rg by classes
of prime exceptional divisors £ C X. Elements of W(X) preserve the Hodge
structure, hence W(X) acts on H'!(X,Z).

Let Pexy C H'!(X,Z) be the set of classes of prime exceptional divisors. The
Sfundamental exceptional chamber of the positive cone % is the set

Re(x) =x—

FE = laeCy : (a,e) >0, foralle € Pexy}.

The closure of % & in €y is a fundamental domain for the action of W(X) [23,
Theorem 6.18]. Let f : X -» Y be a bimeromorphic map to an irreducible
holomorphic symplectic manifold Y and J#y the Kihler cone of Y. Then f*.¢y
is an open subset of .# & . Furthermore, the union of f*.#y, as f and Y vary over
all such pairs, is a dense open subset of .F &y, by a result of Boucksom [6] (see also
[23, Theorem 1.5]).

Proof (of Theorem 1.3). Step 1: Keep the notation in the opening paragraph of
Sect.5. Choose a marking n : H?*(X,Z) — A, such that ¢ o 5 belongs to the
canonical O(A)-orbit ty. Set o := 5(c1(.Z)). Then (X, ) belongs to a component
Dﬁg |, of the moduli space of marked pairs of K3/")-type considered in Theorem 6.1.
We use here the assumption that % is nef in order to deduce that n™' («) belongs to
the boundary of the positive cone of X, used in Theorem 6.1.

The period Py(X, n) is non-special, by assumption. There exists a marked pair
(Y, y) in M satisfying Po(Y,¥) = Po(X,n), such that the class ¢~ ()
induces a Lagrangian fibration, by Theorem 6.1. The marked pairs (X,7) and
(Y, ¥) correspond to inseparable points in the moduli space Dﬁg |, by the Global
Torelli Theorem 4.3. Hence, there exists an analytic correspondence Z C X x Y,
Z = Zf:o Z; in X x Y, of pure dimension 27, with the following properties, by
results of Huybrechts [13, Theorem 4.3] (see also [23, Sec. 3.2]).
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(1) The homomorphism Z, : H*(X,Z) — H*(Y,Z) is a Hodge isometry, which
is equal to 1! o 7. The irreducible component Z, of the correspondence is the
graph of a bimeromorphicmap f : X -> Y.

(2) The images in X and Y of all other components Z;, i > 0, are of positive
co-dimension.

Step 2: We prove next that the line bundle . over X is semi-ample. We consider
separately the projective and non-algebraic cases.

Step 2.1: Assume that X is not projective.’ We claim that fi(c1(Z)) = v (a).
The Neron-Severi group NS(X') does not contain any positive class, by Huybrechts
projectivity criterion [13]. Hence, the Beauville-Bogomolov-Fujiki pairing restricts
to NS(X) as a non-positive pairing with a rank one null sub-lattice spanned by
the class ¢1(-¢). Similarly, the Beauville-Bogomolov-Fujiki pairing restricts to
NS(Y) with a rank one null space spanned by ¥ ~'(a). Hence, fx(ci(Z£)) =
+v (o). Now ¥ ~! () is semi-ample and hence belongs to the closure of .7 &Y.
The class ¢;(¥) is assumed nef, and hence belongs to the closure of .Z &Y.
The bimeromorphic map f induces a Hodge-isometry fi : H*(X,Z) — H*(Y,Z),
which maps .7 &y onto . &y [6]. Hence, f«(c1(-£)) belongs to ZEy as well. We
conclude the equality fx(c1(Z)) = v (a).

Let .% be the line bundle with ¢;(%) = ¥~ !(«). The bimeromorphic map
f : X -> Y is holomorphic in co-dimension one, and so induces an isomorphism
fi 1 | = || of the two linear systems. Denote by @, : Y — |%|" the
Lagrangian fibration induced by .%,. We conclude that |.#| is n dimensional and the
meromorphicmap @¢ : X -» |.Z|" is an algebraic reduction of X (see [8]). By def-
inition, an algebraic reduction of X is a dominant meromorphicmap  : X -> B to
a normal projective variety B, such that 7* induces an isomorphism of the function
fields of meromorphic functions [8]. Only the birational class of B is determined by
X . Fibers of the algebraic reduction 7 are defined via a resolution of indeterminacy,
and are closed connected analytic subsets of X. In our case, the generic fiber of
@ » is bimeromorphic to the generic fiber of @,. The generic fiber of @4, is a
complex torus, and hence algebraic, by [7, Prop. 2.1]. Hence, the generic fiber of
@ has algebraic dimension n. It follows that the line bundle . is semi-ample, it
is the pullback of an ample line-bundle over B, via a holomorphic reduction map
m : X — B which is a regular morphism, by [8, Theorems 1.5 and 3.1].

Step 2.2: When X is projective there exists an element w € W(X), such that
Huybrecht’s birational map f : X -» Y satisfies f*oy ' on = w, by [23, Theorem
1.6]. Set ay := n~ () and ary := ¥~ (a). We get the equality w(ay) = f*(ay).

Let ﬁx be the closure of the fundamental exceptional chamber .#&x in
H''(X,R). The class oy is nef, by assumption, and it thus belongs to .Z & x. We
already know that oy is the class of a line bundle, which induces a Lagrangian

31 thank K. Oguiso and S. Rollenske for pointing out to me that in the non-algebraic case the result
should follow from the above via the results of Ref. [8].
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fibration. Hence, f*(ay) belongs to .# & x. The class w(ox) thus belongs to the
intersection w (355;() NZEy.
Let J be the subset of Pexy givenby J = {e € Pexy : (e,ay) = 0}. Denote

by W; the subgroup of W(X) generated by reflections R,, for all e € J. Then W;
is equal to

{(we W(X) : way) € FEyx),

by a general property of crystalographic hyperbolic reflection groups [12, Lecture 3,
Proposition on page 15]. We conclude that w(ox) = oy and

ax = f"(ay). 6.1)

We are ready to prove* that . is semi-ample. The rational map f is regular in
co-dimension one. The map f thus induces an isomorphism f,, : [.£"| — |.£}"],
for every integer m. Hence, k (X, %) = «(Y,%,) = n. Any non-zero isotropic
divisor class D on a 2n dimensional irreducible holomorphic symplectic manifold
satisfies v(X, D) = n, by a result of Verbitsky [41]. Hence, v(X,.Z) = n. The line
bundle .Z is assumed to be nef. Hence, . is semi-ample, by Theorem 6.2.

Step 3: We return to the general case, where X may or may not be projective.
In both cases we have seen that there exists a positive integer m, such that the linear
system |.Z"| is base point free and @ m is a regular morphism. Furthermore, the
bimeromorphic map f : X -» Y is regular in co-dimension one and thus induces
an isomorphism f; : |.Z*| — |.$2k|, for every positive integer k. Denote by f* :
|-Z5 1" — |.£%|" the transpose of fi. We get the equality @y = f* o ® i o f. for
all k. Let V, : | 4|" — |£4"|™ be the Veronese embedding. We get the equalities

Vo (ff) " o®y =Vyobgyof =Cgpof=(f)"oPym (62

Now, V,, o (/)7 : |.L]" — |-£"|" is a closed immersion and the morphism
on the right hand side of (6.2) is regular. Hence, the rational map @« is a regular
morphism. The base locus of the linear system |.Z| is thus either empty, or a divisor.
The latter is impossible, since f is regular in co-dimension one and |-%5| is base
point free. Hence, |-Z| is base point free. O

Let X and .Z be as in Theorem 1.3, except that we drop the assumption that .#
is nef and assume only that ¢;(.Z’) belongs to the boundary of the positive cone.
Assume that X is projective.

4] thank C. Lehn for Ref.[18, Prop. 2.4], used in an earlier argument, and T. Peternell and Y.
Kawamata for suggesting the current more direct argument.
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Theorem 6.3. There exists an element w € W(X), a projective irreducible
holomorphic symplectic manifold Y, a birational map f : X -> Y, and a
Lagrangian fibration w : Y — P", such that w(&) = f*n* Opn (1).

Proof. Let (Y,y) be the marked pair constructed in Step 1 of the proof of
Theorem 1.3. Then Y admits a Lagrangian fibration 7 : ¥ — P" and the class
¥ c1(Opn (1)) was denoted ay in that proof. In step 2.2 of that proof we showed the
existence of a birational map f : X -» Y and an element w € W(X), such that
w(c1 (X)) = f*(ay) (see Equality (6.1)). O

7 Tate-Shafarevich Lines and Twists

7.1 The Geometry of the Universal Curve

Let S be a projective K3 surface, d a positive integer, and .Z a nef line bundle on S
of positive degree, such that the class ¢, () is indivisible. Set n := 1 + w.
Let € C S x |.2“| be the universal curve, 7; the projection from § x |.£¢| to the
i-th factor,i = 1,2, and p; the restriction of 77; to ¥’. We assume in this section the

following assumptions about the line bundle .Z.

Assumption 7.1. (1) The linear system |.£?| is base point free.

(2) The locus in |.L%|, consisting of divisors which are non-reduced, or reducible
having a singularity which is not an ordinary double point, has co-dimension
at least 2.

Remark 7.2. Assumption 7.1 holds whenever Pic(S) is cyclic generated by .. The
base point freeness Assumption 7.1 (1) follows from [32, Prop. 1]. Assumption 7.1
(2) is verified as follows. If a+b = d,a > 1,b > 1, then the image of |.£*| x |$b|
in |.Z?| has co-dimension 2ab (”d;zl) — 1. The co-dimension is at least two, except
in the case (n,d) = (5,2). In the latter case |.#| = P?, |.#?| = PP° and the generic
curve in the image of |.Z| x |.Z| in |.£?| is the union of two smooth curves of genus
2 meeting transversely at two points. Hence, Assumption 7.1 (2) holds in this case
as well.

The morphism p; : ¥ — S is a projective hyperplane sub-bundle of the trivial
bundle over S with fiber |.Z“|, by the base point freeness Assumption 7.1 (1).
Assumption 7.1 (2) will be used in the proof of Lemma 7.9. Consider the exponential
short exact sequence over ¢

0—>2Z— Og— Oy — 0.

We get the exact sequence of sheaves of abelian groups over |.£|

d
O—>R1p2*Z—>R1p2*ﬁ<g—>Rlpz*ﬁ(;ﬁ)Rzpz*Z—>O, (7.1)
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where we work in the complex analytic category. Note that deg above is sur-
jective, since R?p,, Oy vanishes. Set 11 := H'(|.Z?|,R'p,, 0F) and 11 :=
HY(|Z|, R p», Og). Set Br'(S) :== H*(S, 0%) and Br'(¢) := H* (¥, 0%).

Lemma 7.3. (1) There is a natural isomorphism

R'py, Oy = T*| 29| @c H*(S)*.

(2) 101 is naturally isomorphic to H%*(%). Consequently, 11 is one dimensional.
(3) H*(€,7) decomposes as a direct sum

H*(¢.Z) = pfH*(S.Z) ® py H*(|.£"|. Z).
The groups H' (€, Z) vanish for odd i. The Dolbeault cohomologies H (%)
vanish, if |p — q| > 2.
(4) The pullback homomorphism p} : H*(S,0%) — H?(¢,0%) is an isomor-
phism. The Leray spectral sequence yields an isomorphism

b: HX(%.05) — H'(Z2|. R p». 67).

Consequently, we have the isomorphisms

[

BY(S) —s BF (%) —2s 1IL.

14
14

Let .Z be a sheaf of abelian groups over €. Let FPHX(¥,.7) be the
Leray filtration associated to the morphism p, : ¥ — |.Z9| and EL! :=
FPHPY(G, F)/FPTYHPY(E, F) its graded pieces. Recall that the E3“
terms are EJY = HP(| L, Rip,,.7) and the differential at this step is
dy: EPY — EJTRN
Proof. (1) We have the isomorphism O ya|(¢) = L @ny O\ 4)(1). Apply

the functor R, to the short exact sequence 0 — Oy pi| —> Ogypa|(€) —
O (%) — 0 to obtain the Euler sequence of the tangent bundle.

0= Olga) > H(S. L) ®c O)44)(1) > T|L4| — 0.

Now 0% (%) ®@c H?>?(S) is isomorphic to the relative dualizing sheaf w,,. We
get the isomorphisms

R'py, O¢ = [Rps, 04 (€) @c H*(S)]* = [R° p2, O (€)]* ®c H*(5)*
~ T*|.2% @c H*(S)*.

(2) R?p,, Oy vanishes, since p, has one-dimensional fibers. H?(|.£|, p1, O)
vanishes, since py, Oy = 0| ga). The latter isomorphism follow from the
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fact that p, has connected fibers. We conclude that H?(%, Oy) is isomor-
phic to the E ! graded summand of its Leray filtration. The differential

: H'(|.Z7), R1 D2, ﬁw) — H3(|.$d| pz* Oy ) vanishes, since H%3(].27|)
vanlshes Hence, the E1 term 101 := H'! (27|, R p,, Oy) is isomorphic to
H*(€, Og).

(3) The statement is topological and so it suffices to prove it in the case where
Pic(S) is cyclic generated by .Z. In this case .Z is ample, and so the line bundle
AN F SN | 4| (1) is ample. The Lefschetz Theorem on Hyperplane sections
implies that the restriction homomorphism H2(S x |.£¢|,Z) — H*(¢.Z) is
an isomorphism.

% is the projectivization of a rank n vector bundle F over S. Hence,
H*(%,7) is the quotient of H*(S,Z)[x], with x of degree 2, by the ideal
generated by Z:’;LOI ¢;(F)x'. The image of x in H*(%,Z) corresponds to the
class ¥ := ¢1(0%(1)) of Hodge type (1, 1). In particular, H*(%,Z) is a free
H*(S,7Z)-module of rank n generated by 1, X, ..., X

(4) The vanishing of H3(S,Z) and H*(%, Z) yields the commutative diagram with
exact rows:

0 —— H*(S,Z)/NS(S) —— H?(S,O5) —— H*(S,0}) —=0

|k
0 —— H?*(¢,Z)/NS(¢) — H* (¥, 0g) — H*(%,0%) —=0
Part (3) of the Lemma implies that the left and middle vertical homomorphism
are isomorphisms. It follows that the right vertical homomorphism is an
isomorphism as well.
The sheaf R?p,, 0 vanishes, by the exactness of R*p,, Oy — R>p>, O} —

R3 p,,7 and the vanishing of the left and right sheaves due to the fact that p, has
one-dimensional fibers. The sheaf p,, 07 is isomorphic to & since p, has

1R

|z
connected complete fibers. Thus, H?(%, 07%) is isomorphic to the kernel of the
differential

dy : Ell_ H (|$d| R pz*ﬁ%)%Eﬂ) H- (|$d| ﬁ|fd|) (7.2)

We prove next that d, vanishes. The co-kernel of d, is equal to F*H*(%, 07}). Now
F3H?3(%, 0%) is equal to the image of p5 : H3 (%4, 0%,,) — H(¥, 0%). We
have a commutative diagram

|24

H(%,0%) H(€,7)

pET p}‘T

H3 (29,07 ,,) — H*(1.29),2).

)
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The horizontal homomorphisms, induced by the connecting homomorphism of the
exponential sequence, are isomorphisms, since 1%3(%) = h%3(|.£?|) = 0 and
ho4(%) = h%*(29|) = 0. The right vertical homomorphism is injective. We
conclude that the left vertical homomorphism is injective. Hence the differential d,
in (7.2) vanishes and H2(¢, %) is isomorphism to H'(|-£4|, R' p,, 0%), yielding
the isomorphism b. O

Let ¥ C H?(S,Z) be the sub-lattice generated by classes of irreducible
components of divisors in the linear system |.Z?|. Denote by X1 the sub-lattice
of H?(S,Z) orthogonal to X.

Lemma 7.4. (1) The Leray filtration of H*(€ ,7) associated to p, is identified as
follows:

F*H*(¢.Z) = py H*(|.£“, 2),
F'HX¢.2) = psH*(.2].2) ® p} =™

(2) EVT = E& if (p,q) = (2,0), or (1, 1). Consequently, we get the following
isomorphisms.

B3 = HX (12|, po2) = py H*(|£7). ),
Ey = HY (1LY, R pp,7) = pr 5+,

(3) If the sub-lattice X is saturated in H*(S,Z), then H*(|.£?|, R' p»,7Z) van-
ishes.

Proof. (1), (2) The sheaf p,, Z is the constant sheaf Z, since p, has connected fibers.
Then E;° = H3(|.29],Z) = 0, and so EL} = E}' = H'(Z7], R p. Z).
EF? := H?(|.%£“|, p».Z) has rank 1 and it maps injectively into H2(%,Z), with
image equal to p* H2(|.£9|, Z). Thus, E;° = E2% and EL := F'H*(¢,2)/ E%®
is isomorphic to F'H*(¢,7)/ p3 H*(|-£?|, Z). Finally, Eg’z is the kernel of

dr s HY(|.L|, R p2, Z) — H*(|.L"|, R p». 7).

Thus, F'H?(%.,Z) is the kernel of the homomorphism H?*(¢,Z) —
H°(|.£?|, R*p», 7). The latter kernel is equal to pf X+ @ pyH*(|.£4|,Z), by
Lemma 7.3 (3). We conclude that F'H?(¢,Z)/p3 H*(|£“|,Z) is isomorphic to
both H'(|.£4|, R' p2,7Z) and p} Z+.

(3) The composition H*(¢,Z) — H°(R?’p,,7Z) < X* factors through
H?(S,7Z). If ¥ is saturated, then the composition is surjective, since H?(S,Z)
is unimodular. Thus, d2(),2 : HO(R?py,7Z) — H?*(R'p,,7Z) vanishes. The sheaf
P2, 7 is the trivial local system and the homomorphism H*(|.Z%|, p»,7) =
H*(|£,Z) — H*(¢,Z) is the injective pull-back homomorphism p}. Thus
the differential d22 1 HYX(R'p>,7Z) — H*(p,,7) vanishes. We conclude that
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E}' := H*(R'p,,7) is isomorphic to EZ'. Now EZ! vanishes, since H*(¢,Z)
vanishes. O

Let <7 be the kernel of the homomorphism deg, given in (7.1). Then </° is a
subsheaf of R! p, 0 and we get the short exact sequences

de
0—> o° — R'p,, 0F —> R2py, 7. —> 0, (7.3)
0— R'py,Z — R'py, Op — &/° — 0, 7.4)

and the long exact
o= HY(ZLY, R p2,2) — H' (1L, R p2, Og) —> H' (|L], %) — -+

Lemma 7.5. The group H°(|.Z?|, &°) is isomorphic to NS(S) N L. The com-
posite homomorphism
’

HA(S.Z) — H%(S) 55 HO2(%) = T — H'(|.2"|, &)

factors through an injective homomorphism from H*(S,7)/[Z+ + NS(S)] into the
kernel of the homomorphism H'(|.£?|, </°) — TIL

Proof. The space H°(|.Z“|,R'p,,Oy¢) vanishes, by Lemma 7.3 (1). Hence,
H(|£?], /%) is the kernel of the homomorphism H'(|.£?|.R'py,Z) —
I =~ H%%*(S). Compose the above homomorphism with the isomorphism
YLt =~ H'Y(|Z?,R'p,),Z) of Lemma 7.4 in order to get the isomorphism
H°(|.£%|, /%) = NS(S)n X+,

We have a commutative diagram with short exact rows

1 =~ J
0 NS(?)NEL il ker[H' (/) = H*(R' p2,2)] —0
i l 2.5
2
0 ——= 55— H2(5,05) H(8,05) 0

The top row is obtained from the long exact sequence of sheaf cohomologies
associated to the short exact sequence (7.4). The left vertical homomorphism
is injective and the right vertical homomorphism is surjective. The co-kernel of
the former is isomorphic to the kernel of the latter and both are isomorphic to
H?(S,7)/[Z+ + NS(S)]. Setting

II° := ker[H'(«°) — H*(R'p»,7)], (7.6)

we see that the right vertical homomorphism fits in the short exact sequence
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H*(S,7) 0
s 2 O — T —> 0. (7.7)
L+ NS(S)

The statement of the Lemma follows. ]

Let I1I° be the group given in Eq. (7.6). Classes of I1I represent torsors for the
relative Picard group scheme, while classes of I1I° represent torsors for the relative
Pic® group scheme. This comment will be illustrated in Example 7.8 below.

7.2 A Universal Family of Tate-Shafarevich Twists

Let S be the marked K3 surface in Diagram (5.4) and My («) the moduli space of
H -stable sheaves of pure one-dimensional support on S in that Diagram. Recall that
c1(u) is the first Chern class of .Z 4 for a nef line-bundle . on S, and the support
map 7 : My (u) — |£¢| is a Lagrangian fibration.

Let o be a section of R' p,, (02) over an open subset U of |24 |. Assume that &
is the image of a section & of R! p,, (0) over U. Then o lifts to an automorphism
of the open subset 7~ (U) of My (). This is seen as follows. Fix a point ¢ € |.£¢|
and denote by C; the corresponding divisor in S. Denote by o (¢) the image of o
in HI(C,, ﬁa) and by L, the line-bundle over C; with class o(f). A sheaf F
over C; is H-stable, if and only if F ® L, is H-stable, since tensorization by
L) induces a one-to-one correspondence between the set of subsheaves, which is
slope-preserving, since L, ;) belongs to the identity component of the Picard group
of C;.

Let s be an element of ITI°. We can choose a Cech 1-co-cycle o := {0y} for the
sheaf .7° representing s in ITI°, with respect to an open covering {U; } of |.£“|, such
that each o;; is the image of a section G;; of R! ps, (€y), since the homomorphism
R'p), (Og) — &/ is surjective. The co-cycle {o;;} may be used to re-glue the open
covering 7~ (U;) of My (u) to obtain a separated complex manifold M, together
with a proper map 7, : M, — |.Z?|. The latter is independent of the choice of the
co-cycle, by the following Lemma, so we denote it by

s My — |.£4). (7.8)

Lemma 7.6. Let 0 := {o;} and o' := {o}} be two co-cycles representing the
same class in 111°. Then there exists an isomorphism h : M, — M, satisfying the
equation 7ty o h = 1,. If the lattice X of Lemma 7.4 has finite index in NS(S), then
h depends canonically on o and ¢’.

Proof. There exists a co-chain & := {h;} in C°({U;}, &/°), such that h;0;; = ai/jh]"
possibly after refining the covering and restricting the co-cycles o and o’ to the
refinement. Each #; is the image of a section h; of R! p,, Oy, possibly after further
refinement of the covering, since the sheaf homomorphism R'p,, 0y — &7 is
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surjective. Hence, A; lifts canonically to an automorphism of 7! (U;). The co-chain
{h;} of automorphisms glues to a global isomorphism from M, to M,, by the
equality h;05 = ojh;.

If ' := {h!} is another co-chain satisfying the equality §(h) = o(o’)7",
then h~'A’ is a global section of .z7°. The assumption that X has finite index in
NS(S) implies that H°(.7?) vanishes, by Lemma 7.5. Hence & = h’ and the above
refinements are not needed. O

In the relative setting the above construction gives rise to a natural proper family
R A1 8% |24,

which restricts over {0} x |.Z%| to 7 : My(u) — |-Z%|, and over § € I to
i) - Mg — |.Z?|. Indeed, let ({Ui},0) be a Cech co-cycle representing a
non-zero class & in H'(|.-Z¢|, R p«Oy). Let

.11 - C (7.9)

be the function satisfying t(x)c = x. Then ({ﬁ x U}, exp(t6y)) is a global
co-cycle representing the desired family. Let

f -1

be the composition of 7 with the projection to .

Proposition 7.7. If the weight 2 Hodge structure of S is non-special, then M; is
Kdhler, for all s € T11°.

Proof. There is an open neighborhood of the origin in I, over which the fibers
of f are Kihler, by the stability of Kahler manifolds [42, Theorem 9.3.3]. Let j :

I — III° be the homomorphism given in Eq. (7.5) The kernel ker( ) is isomorphic
to the group [X+ 4+ NS(S)]/NS(S), by Lemma 7.5. As a subgroup of the base III
of the family f, the kernel ker(j) acts on the base. Let z be an element of ker(;)
and § an element of I11. The fibers M5 and M5, of f are both isomorphic to M
by Lemma 7.6. Let V' C III be the subset consisting of points over which the fiber
of f is Kihler. Then V' is an open and ker(j)-invariant subset of III. Note that
ker(j) is a finite index subgroup of H 2(S,7Z)/NS(S). The kernel ker(j) is a dense
subgroup of I, if and only if the image of H?(S,Z)/NS(S) is dense in H%%(S), by
Lemma 7.3 (4). This is indeed the case, by the assumption that the weight 2 Hodge
structure of S is non-special, and Lemmas 5.4 and 5.5. The complement V< of V'
in | I is ker(j) invariant. If non-empty, then V¢ is dense and closed and so equal to
I1I. But we know that V is non- -empty. Hence, V = 1. O

Example 7.8. Consider the case where d = 1 and Pic(S) is cyclic generated by
the line bundle .# of degree 2n — 2, n > 2. Then H?*(|.£?|, R p»,Z) vanishes, by
Lemma 7.4 (3), and I1I° = H!(</°). The linear system || consists of integral
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curves, and so we can find an open covering {U; } of |.Z|, and sections {; : U; — ¥,
such that p; o {; is the identity. Set D; := ¢;(U;). We get the line bundle
o ;! ;) (Di), which restricts to a line bundle of degree 1 on fibers of p; over points
of U;. Let h; be the section of R! p,, 07 over U; corresponding to ﬁpz—l(Ui)(Di) and
denote by & := {h;} the corresponding co-chain in C°({U;}, R' p>, ).

Consider the Lagrangian fibrations 7y : M£(0,.Z,y) — |Z| and m
My(0, %, x + 1) — |.Z|, for some integer y. The push-forward of every rank
1 torsion free sheaf on a curve in the linear system |.Z| is an .#-stable sheaf
on S, since the curve is integral. Hence, the section /; induces an isomorphism
hi : 7y (U) — n7'(U;). The co-boundary (8h); := h;h;! is a co-cycle in
Z'({U;}, o/°) representing a class s € III° mapping to the identity in III. The
Lagrangian fibration 7y : My — |.Z|, associated to the class s in Eq. (7.8) with
u= (0,242, x), coincides with 7; : M (0, Z, x+1) — |-Z|, by the commutativity
of the following diagram.

’lhj B

h;

1y | (U)) <—— 1y ' (Usy) — my ' (Uyy) —— 75 (U))

| g

17 (U)) <2 m (Uy) —4> 17 (U) — 77 (Uy).

The moduli spaces M (0,7, y) and M (0, %, x + 1) are not isomorphic for
generic (S, .Z), since their weight 2 Hodge structures are not Hodge isometric.

The kernel of IT1I° — III is cyclic of order 2n — 2, by the exactness of the
sequence (7.7). The class s constructed above generates the kernel. This is seen as
follows. The sheaf R? p,,Z is trivial, in our case, and the homomorphism deg, given
in (7.3), maps the 0-co-chain & to a global section of R?p,,Z, which generates
H°(R?p,,7). Hence, §h generates the image of the connecting homomorphism
H(R?p,,7) — H'(27°) associated to the short exact sequence (7.3). The latter
image is precisely the kernel of 111 — III.

7.3 The Period Map of the Universal Family is Etale

Denote by T, := ker[dm, : TM; — 7} T|£?|] the relative tangent sheaf of 7, :
M, — |.Z7.

Lemma 7.9. The vertical tangent sheaf Ty, is isomorphic to n*T*|.Z|.

Proof. Let sing(7y) be the support of the co-kernel of the differential d 7, : TM; —
7*T|.Z?|. We use Assumption 7.1 to prove that the co-dimension of sing(r;) in M,

is > 2. The generic fiber of m; is smooth, since M; is smooth. All fibers of 75 have
pure dimension 7 [29]. Hence, the only way sing(sr;) could contain a divisor is if 7
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has fibers with a non-reduced irreducible component over some divisor in |.£¢|. The
generic divisor in the linear system |.#*?| is a smooth curve, by Assumption 7.1 (1)
and [32, Prop. 1]. The fiber of 75, over a reduced divisor C € |.Z d |, is isomorphic to
the compactified Picard of C, consisting of .#-stable sheaves of Euler characteristic
x with pure one-dimensional support C, which are the push forward of rank 1
torsion free sheaves over C. If C is an integral curve, then the moduli space of
rank 1 torsion free sheaves over C with a fixed Euler characteristic is irreducible
and reduced [1]. If C is reduced (possibly reducible) with at worst ordinary double
point singularities, then the compactified Picard is reduced, by a result of Oda and
Seshadri [37]. Assumption 7.1 (2) thus implies that sing(7y) has co-dimension > 2
in M.

Let U be the complement of sing(sy) in M. The isomorphism TM; — T* M,
induced by a non-degenerate global holomorphic 2-form, maps the restriction of T,
to U isomorphically onto the restriction of 7*7*|.#“|. The isomorphism TM, —
T* M, must map T, as a subsheaf of the locally free 7*T|.#?|, by the fact that
sing(7ry) has codimension > 2. But T, is a saturated subsheaf of 7M. Hence, the
image of Ty, is also saturated in 7* My, and is thus equal to *T*|.£4|. |

When the K3 surface S is non-special, the fibers of the family f are irreducible
holomorphic symplectic manifolds, by Proposition 7.7 and the fact that Kéhler
deformations of an irreducible holomorphic symplectic manifold remain such [4].
Denote by

n: R2AZ — (A (7.10)

the trivialization, which restricts to the marking 7, in Diagram (5.4) over the point

0 € III. Let Py : IIT — 27 be the period map of the family f and the marking
S o

n.LetdPs : T:11 — H*°(M,)* ® H"!(M;) be the differential at § of the period

map.

Lemma 7.10. The differential dPy is injective, for all § in I, and its image is
equal to H**(M)* @ w* H"'(|.£7)).

Proof Let ¥ : H>(M)* ® H'(|Z¢.T*|£¢)) — H'(M,,T,,) be the
composition of

1@m} H> (M) *@H ' (|.£), T*|.£"))—H"(M;, NTM)® H' (M, 7 T*|.2))

with the contraction homogorphism HO(MS, /\2TMS) ® H'(M,, JTS*T*LZ”’ ) —
H'(M,, Ty,). Let k5 @ T;1I — Hl(MS, TM) be the Kodaira-Spencer map. We
have the commutative diagram.



Lagrangian Fibrations of Holomorphic-Symplectic Varieties of K 3["-Type 2717

17
T
HZ’O(My)* ®H1(|$d‘,T*|$d|) ]}m %HZ,O(MJ* ®H1’1(My)
v o

H' My, Ty,) ——— H' (M,, TM,).

Above, the right vertical homomorphism is induced by the sheaf homomorphism
T™M; — T*M,, associated to a holomorphic 2-form, and y is induced by the
inclusion of the relative tangent sheaf 77 as a subsheaf of 7M. The homomorphism
v is defined as follows. A tangent Vector ¢ at a class § of I is represented by a
co-cycle of infinitesimal automorphisms — tangent vector fields — which are vertical,
being a limit of translations by local sections of the image of R! p», O in R' p,, ;.
So £ corresponds to an element v () in H'(M;, Ty,).

The top right triangle commutes, by Griffiths’ identification of the differential of
the period map [9]. The middle triangle commutes, by definition of the family f.
The commutativity of the outer polygon is easily verified. The top horizontal
homomorphism 1 ® 7 is injective, with image equal to the tangent line to the fiber
of g. Hence, it suffices to prove that ¥ and v have the same image in H'(M;, Ty,).
The latter statement would follow once we prove that v is an isomorphism.

The homomorphism v is induced by the pullback

nFH'Y(1ZY, R pa2, Op) — H (M, ¥R pa, Op),

followed by the homomorphism of sheaf cohomologies induced by an injective
sheaf homomorphism

~ 1
VR pr,Op — Ty,

The domain of ¥ is isomorphic to 7*7*|.#?|, by Lemma 7.3, and its target is
isomorphic to 7*T*|.Z“|, by Lemma 7.9. Hence, ¥ is an isomorphism. It remains
to prove that H'(My, n* T*|.Z?|) is one dimensional. We have the exact sequence

0— H'(| L, my,n*T*| L) - H' (M, ¥ T*|.2%))
— HY(|2. T*|2¢| ® R'm,, On,).

The left hand space is one-dimensional. It remains to prove that the right hand
one vanishes. It suffices to prove that R'7,, Oy, is isomorphic to 7*|.Z¢|, since
T*|.2? ® T*|.£¢| does not have any non-zero global sections.

When s = 0 and My = Mpy(u), then M, is projective and R'mo, Oy,
is isomorphic to T*|.Z“|, by [30, Theorem 1.3]. Let us show that the sheaves
R'7,, Oy, are naturally isomorphic to R! 7o, Owu,, for all s in I11. The fibrations 7
agree, by definition, over the open sets in a Cech covering of |.2%|, and the gluing
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transformations for the co-cycle representing the class s do not change the induced
sheaf transition functions for the sheaves R'm,, Oy, as we show next. The gluing
transformations glue locally free sheaves, so it suffices to prove that they agree
with those of 7y over a dense open subset of |.Z¢|. Indeed, if the fiber of M (1)
over t € |.£9| is a smooth and projective Pic?(C,), then an automorphism
of an abelian variety Pic?(C,), acting by translation, acts trivially on the fiber
H'(Pic’ (C)). Opieac,)) of R 7 Orty - O

7.4 The Tate-Shafarevich Line as the Base
of the Universal Family

Letgq : Q;‘J_ — Qé‘a be the morphism given in Eq. (4.3).

Theorem 7.11. Assume that the weight 2 Hodge structure of S is non-special
and Assumption 7.1 holds. Then the period map P of the family f maps 111
isomorphically onto the fiber of the morphism q through the period of My (u).

Proof. We already know that Py is non-constant, by Lemma 7.10. The statement
implies that P is an affine linear isomorphism of one-dimensional complex affine
spaces. It suffices to prove the statement for a dense subset in moduli, since the
condition of being affine linear is closed. We may thus assume that Pic(S) is cyclic
generated by .Z. Then H°(|.£?|, </°) is trivial, by Lemma 7.5.

Set I' := ¢;(£)*. Note that NS(S) = Zc () and I' has finite index in
H?(S,7Z)/NS(S). Let

e: I — 101

be the composition of the projection I' — H 02(S) with the isomorphisms
H®*(S) = H"*(%¢) = I of Lemma 7.3. Then e is injective and its image is
dense in III, by Lemma Si

Given an element x € 111, we get a marked pair (M, 1), as above. My (u) will
be denoted by M), it being the fiber of f over the origin in III. We associate next
to an element y € I" a canonical isomorphism

hy : M() — Me(y).

Let 7 : III — C be the function given in (7.9), which was used in the construction
of the family f. Let 6 := {6;;} be the co-cycle used in that construction. Let a be
the 1-co-cycle given by a;; := exp(z(e(y))d;;). Then M, is the Tate-Shafarevich
twist of M, with respect to the co-cycle a. The 1-co-cycle a is a co-boundary in
Z'({U;}, <7°), by Lemma 7.5 and the definition of I". Thus, there exists a 0-co-
chain & := {h;} in C°({U;}, &°), satistying §h = a. The co-chain / is unique,
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since H"(27) is trivial, by our assumption on S. The co-chain & determines the
isomorphism £, : My — M,(,) (Lemma 7.6).

We define next a monodromy representation associated to the family f. Denote
by hy, : H*(My, Z) — H?(M,(y), Z) the isomorphism induced by &,. Let

w I — Mon*(My)

be given by the composition jt, := 77(?1 ©1e(y)©hy, of the parallel-transport operator
Mo © Ne(y) and the isomorphism £, .

Claim 7.12. The map p is a group homomorphism.

Proof. Let y1, y2 be elements of I" and set y3 := y; + y». Let the topological space
B be the quotient of III obtained by identifying the four points 0, e(y1), e(y2),
e(ys). The family f descends to a family f : .# — B by identifying the fiber
My, with My via the isomorphisms £,,, 1 <i < 3. Then u,, is the monodromy
operator corresponding to any loop in B, which is the image of some continuous
path from O to e(y;) in III. Let O € B be the i image of 0 € III. The statement now
follows from the fact that the monodromy representation of 7y (B, 0) in H?*(M,, Z)

is a group homomorphism. O

The image of I via the period map is contained in the fiber of g, since the
differential of the morphism g o P vanishes, by Lemma 7.10. It follows that the
variation of Hodge structures of the local system R? f,Z over I is the pullback
of the one over the fiber of g via the period map P;. Let n be the trivialization
of R?f,Z given in Eq.(7.10). Given a point x € III, set oy := 5, '(«). Then
oy = 17 (c1(0)»a4((1))) and the sub-quotient variation of Hodge structures af; /Loy
is trivial.

The vertical tangent sheaf 7}, is naturally isomorphic to Ty, as we saw in the
last paragraph of the proof of Lemma 7.10. The 2-form w, induces an isomorphism

Ty T, o |-£4|, by Lemma 7.9. We get the composite isomorphism 7o, T, =
Ty T, = T*|.£%|. Let w, be the unique holomorphic 2-form, for which the

composite isomorphism is equal to o, Tr, = T*|.#4|. Such a form w, exists,
since the endomorphism algebra of T*|.#“| is one dimensional.

We show next that the class of w, is the (2,0) part of the flat deformation of
the class of wy in the local system R>f,C. It suffices to prove the local version
of that statement. Let xo be a point of III. There is a differentiable trivialization
of f : M — ITI, over an open analytic neighborhood U of xy, and a C*
family of complex structures J,, x € U, such that (My,, J) is biholomorphic
to M. Furthermore, the complex structures Jy, and J, restrict to the same complex
structure on each fiber of m,, and m,, is holomorphic with respect to both. Both
complex structures induce the same complex structure on Hom (Tj,x0 s Te L d |)
and the two forms w,, and w, induce the same section in the complex1ﬁcat10n of that
bundle. Hence, the difference wy, — wy is a closed 2-form in 7 /\ZTD{ |.2?| @ C.

Being closed, the latter 2-form must be the pull-back of a closed 2-form 6 on |.Z d [,
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since fibers of 7, are connected. Now the cohomology class of 7 6 is of type (1, 1)
with respect to all complex structures, since H!(|.24|) = H?*(|.£“|,C). Hence,
the class of w, is the (2,0) part of the class of w,, with respect to the complex
structure J.

There exists a constant ¢, € C, such that the equality

nx(wx) = no(wo) + cr

holds in Ac, by the characterization of , in the above paragraph. The function ¢ :
IIT — C defined above is equivalent to the period map P and is thus holomorphic
and its derivative is no-where vanishing, by Lemma 7.10. If x = e(y), we get
Mo ey We(y)) = Wo + Cey)@0, Now Ay, (o) = We(y), by definition of wy, x € 111,
and the construction of /,,. We get the equality

Hy (Wo) = wo + Ceyy 0. (7.11)

The composition c oe : I' — C is a group homomorphism,

cle(yr) +e(y2) = cle(y1) + cle(y2)),

by Eq.(7.11) and Claim 7.12. The image e(I") is dense in I and so e(I')xe(I)
is dense in 111 x II1. We conclude that ¢ is a group homomorphism, ¢(x; + x2) =
c(xy) + c(xy), for all (x;,xy) € TIT x I1I. Continuity of ¢ implies that it is a linear
transformation of real vector spaces. Indeed, given xi, x; in Hl clax) + bxy) =
ac(x1) + be(x,), forall a, b € Z, hence also for all a, b € Q, and continuity implies
that the equality holds also for all @, € R. The map ¢ is holomorphic, hence it
is a linear transformation of one-dimensional complex vector spaces, which is an
isomorphism, since ¢ is non-constant. This completes the proof of Theorem 7.11.
O

Let X be an irreducible holomorphic symplectic manifold of K3["-type and
7 : X — P" a Lagrangian fibration. Set ¢ := m*c1(Op:(1)). Let d be the
divisibility of («,e). Let (S,.%) be the semi-polarized K3 surface associated to
(X, «) in Diagram (5.4) and y the Euler characteristic of the Mukai vector « in that
diagram. Choose a u-generic polarization H on S.

Theorem 7.13. Assume that X is non-special and (S, £) satisfies Assumption 7.1.
Then X is bimeromorphic to a Tate-Shafarevich twist of the Lagrangian fibration
MH(vadv X) g |$d|

Proof. Fix a marking n : H?*(X,Z) — A. Starting with the period of (X,7),
Theorem 7.11 exhibits a marked triple (X', «’, '), with ' (') = n(«), in the same
connected component Sﬁ;;'(a) | as the triple (X, o, ), such that the class o is semi-
ample as well and the periods P(X,n) and P(X',n’) are equal. Furthermore, the

Lagrangian fibration 7/ : X’ — |.£?| induced by &' is a Tate-Shafarevich twist
of mo : My (0,24, y) — |£%|. Step 1 of the proof of Theorem 1.3 yields a
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bimeromorphic map f : X -> X’, which is shown in Step 2 of that proof to satisfy
f* () = a (see Eq.(6.1)). O

Proof (of Theorem 1.5). The condition that NS(X) N ot is cyclic generated by
« implies that the semi-polarized K3 surface (S, %), associated to (X, «), has a
cyclic Picard group generated by .. Assumption 7.1 thus holds, by Remark 7.2.
Theorem 1.5 thus follows from Theorem 7.13. O
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Contact Kihler Manifolds: Symmetries
and Deformations
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Abstract We study complex compact Kihler manifolds X carrying a contact
structure. If X is almost homogeneous and b,(X) > 2, then X is a projectivised
tangent bundle (this was known in the projective case even without assumption on
the existence of vector fields). We further show that a global projective deformation
of the projectivised tangent bundle over a projective space is again of this type
unless it is the projectivisation of a special unstable bundle over a projective space.
Examples for these bundles are given in any dimension.

1 Introduction

A contact structure on a complex manifold X is in some sense the opposite of a
foliation: there is a vector bundle sequence

0—-F—>Ty—>L—0,

where Ty is the tangent bundle and L a line bundle, with the additional property
that the bilinear map, induced by the Lie bracket,

FxF—L, (v [v,w]/F

is everywhere non-degenerate.
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Suppose now that X is compact and Kéhler or projective. If 5,(X) = 1, then at
least conjecturally the structure is well-understood: X should arise as minimal orbit
in the projectivised Lie algebra of contact automorphisms. Beauville [5] proved this
conjecture under the additional assumption that the group of contact automorphisms
is reductive and that the contact line bundle L has “enough” sections.

If b,(X) > 2 and X is projective, then, due to [20] and [9], X is a projectivized
tangent bundle P(7y) (in the sense of Grothendieck, taking hyperplanes) over a
projective manifold Y (and conversely every such projectivised tangent bundle
carries a contact structure). If X is only Kéhler, the analogous conclusion is
unknown. By [9], the canonical bundle K is still not pseudo-effective in the Kéhler
setting, but—unlike in the projective case—it is not known whether this implies
uniruledness of X .

If however X has enough symmetries, then we are able to deal with this situation:

Theorem 1. Let X be an almost homogeneous compact Kihler manifold carrying
a contact structure. If bo(X) > 2, then there is a compact Kdhler manifold Y such
that X >~ P(Ty).

Here a manifold is said to be almost homogeneous, if the group of holomorphic
automorphisms acts with an open orbit. Equivalently, the holomorphic vector fields
generate the tangent bundle T’y at some (hence at the general) point.

In this setting it might be interesting to try to classify all compact almost
homogeneous Kihler manifolds X of the form X = P(7y). Section 4 studies this
question in dimension 3.

In the second part of the paper we treat the deformation problem for projective
contact manifolds. We consider a family

T2 > A

of projective manifolds over the 1-dimensional disc A C C. Suppose that all X, =
771(¢) are contact for ¢ # 0. Is then X, also a contact manifold?

Suppose first that b,(X;) = 1. Then—as discussed above—X, should be
homogeneous for ¢ # 0. Assuming homogeneity, the situation is well-understood
by the work of Hwang and Mok. In fact, then X, is again homogeneous with
one surprising 7-dimensional exception, discovered by Pasquier and Perrin [26]
and elaborated further by Hwang [18]. Therefore one has rigidity and the contact
structure survives unless the Pasquier—Perrin case happens, where the contact
structure does not survive. We refer to [18] and the references given at the beginning
of Sect.5. Therefore—up to the homogeneity conjecture—the situation is well-
understood.

If bo(X;) > 2, the situation gets even more difficult; so we will assume that X,
is homogeneous for ¢ # 0. We give a short argument in Sect. 2, showing that then
X; is either P(7p,) or a product of a torus and IP,. Then we investigate the global
projective rigidity of P(Tp,):
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Theorem 2. Let w: Z° — A be a projective family of compact manifolds. If X; ~
P(Tp,) fort # O, then either Xg >~ P(1p,) or Xo >~ P(V) with some unstable
vector bundle V on P,.

The assumption that X is projective is indispensable for our proof. In general, X,
is only Moishezon, and in particular methods from Mori theory fail. In case X is
even assumed to be Fano, the theorem was proved by Wisniewski [31]; in this case
Xo ~ P(Tp,). The case Xy ~ P(V) with an unstable bundle really occurs; we
provide examples in all dimensions in Sect. 6. In this case X is no longer a contact
manifold.

In general, without homogeneity assumption, X, is the projectivisation of the
tangent bundle of some projective variety Y;; here we have only some partial results,
see Proposition 3. If however X, is again homogeneous (t # 0) and not the
projectivization of the tangent bundle of a projective space, then X, is a product
of a torus A, and a projective space, and we obtain a rather clear picture, described
in Sect. 7.

The work on the project was started in collaboration with Kristina Frantzen. We
would like to heartily thank her for her contributions to Sects. 2—4. We also thank
Alan Huckleberry and the referee for very valuable comments.

2 Homogeneous Kihler Contact Manifolds

We first study homogeneous manifolds which are projectivized tangent bundles.

Proposition 1. Let Y be compact Kdiihler. Then X = P(Ty) is homogeneous if and
only if Y is a torus or Y = P,,.

Proof. One direction being clear, assume that X is homogeneous; thus Y is
homogeneous, too. The theorem of Borel and Remmert [8] says that

Y 2AxG/P
where G/ P is a rational homogeneous manifold (G a semi-simple complex Lie
group and P a parabolic subgroup) and A a torus, one factor possibly of dimension
0.Letd =dimA > 0.
We first assume that d > 0. If we denote by 7, and 77, the two projections from Y
to A and G/ P, then
Ty = ﬂ{kﬁj & 7'[2*Tg/p ~ ﬁ? & 772*TG/P-

This leads to an inclusion

Z:=P0% CX
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with normal bundle
Nzjx = 62(1) @ n*q*(2¢p) = p*(O(1) @ T*¢*(2¢p)

(use the formula on p. 12, before (0.5) in [3] to compute the normal bundle).
Here m: X — Y, p2Z = Py_y1 xY — Py and q:Y — G/P are the
projections. Now, X being homogeneous, Nz, x is spanned. This is only possible
when dimG/P = Osothat Y = A.If d = 0, then X is rational homogeneous,
hence Fano. This is to say that Ty is ample, hence Y = P, (we do not need Mori’s
theorem here because Y is already homogeneous).

Proposition 1 is now applied to obtain

Proposition 2. Let X be a homogeneous compact Kdihler manifold with contact
structure and dim X = 2n — 1. Then either X is a Fano manifold (and therefore
X >~ P(Tp,), by Proposition 1, unless by(X) = 1) or

Xx2AxP,1 = P(TA),

where A denotes a complex torus of dimension n and T4 its holomorphic tangent
bundle.

Proof. Again by the theorem of Borel-Remmert, X =~ A x G/P where G/P is
rational-homogeneous and A a torus, one factor possibly of dimension 0. If A has
dimension 0, then X is Fano. Therefore in the case h,(X) > 2, the variety X is of
the form X = P(Ty) by [20]. Then we conclude by Proposition 1.

So we may assume dim A > 0. Since a torus does not admit a contact structure,
it follows that the factor G/ P is nontrivial, i.e. dimG/P > 1. We consider the
projection 7: X =~ A x G/P — A. Every fiber is G/ P and in particular a Fano
manifold. We may therefore use the arguments of [20], Proposition 2.11, to conclude
that every fiber is P,_;. Note that the arguments used in [20], Proposition 2.11 do
not use the assumption that X is projective. This completes the proof.

3 The Almost Homogeneous Case

The aim of this section is to generalize the previous section to almost homogeneous
contact manifolds.

3.1 Almost Homogeneous Projectivized Tangent Bundles

We begin with the following general observation.
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Lemma 1. Let Y be a compact complex manifold and let X = P(Ty) be its
projectivised tangent bundle. If X is almost homogeneous, then Y is almost
homogeneous.

We already mentioned that if X is homogeneous, sois Y.
Proof. Let m: X — Y be the bundle projection and consider the relative tangent
sequence

0—>Tx/y—>Tx—>]T*Ty—>O.

Since at a general point of X the tangent bundle Ty is spanned by global sections,
sois 7*Ty. Soif y € Y is general, if x € 7~ !(y) is general and v € (7*Ty),, then
there exists

s € H'(X, n*(Ty))
such that s(x) = v. Since s = 7*(¢) with t € H°(Y, Ty), we obtain 1(y) = v €

Ty,y. Thus Y is almost homogeneous.

Remark 1. Note that, conversely, the projectivized tangent bundle X = P(7y) of
an almost homogeneous manifold Y is in general not almost homogeneous. This is
illustrated by the following examples.

Example 1. We start in a quite general setting with a projective manifold ¥ of
dimension n. We assume that Y is almost homogeneous with A°(Y,Ty) = n.
Furthermore we assume

(Y, 2y ® Ty) = h°(Y,End(Ty)) = 1, (1
an assumption which is e.g. satisfied if Ty is stable for some polarization. We let
X = P(Ty) be the projectivized tangent bundle with projection 7z : X =P(Ty) > Y
and hyperplane bundle Oy (1). Pushing forward the relative Euler sequence to
Y yields

0— Oy — .Q,l/ ® 14 (Ox (1)) = wTx/y — 0.
Since 4« (Ox (1)) = Ty, we obtain

0— Oy — 2y ® Ty — wsTx)y — 0.

This sequence splits via the trace map 2} ® Ty ~ End(Ty) — Oy, so we obtain
the exact sequence

0— H(Y,Oy) - H(Y, 2} ® Ty) - H(Y, 7. Tx;y) — 0.
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Using assumption (1) we find
H(X,Ty;y) = H'(Y, mTxy) = 0.

Now the relative tangent sequence with respect to 7: X — Y yields an exact
sequence

0— H'X,Tx)y) — H°(X, Tx) - H (X, n*(Ty)) ~ H(Y, Ty)
and therefore
h°(Tx) < h°(Ty).

Hence h°(Tx) < n, and X cannot be almost homogeneous.

Notice that an inequality A°(Ty) < 2n — 2 suffices to conclude that X is not
almost homogeneous. Therefore we could weaken the assumptions 2°(Ty) = n and
h°(End(Ty)) = 1to

h°(Ty) + h°(End(Ty)) < 2n — 2.

We give two specific examples.

First, let Y be a del Pezzo surface of degree six, i.e., a three-point blow-up of P,.
Its automorphisms group is (C*)? x S3. In particular, Y is almost homogeneous and
h°(Ty) = 2. Since h°(End(7p,)) = 1 and Y is a blow up of IP,, each endomorphism
of Ty induces an endomorphism of 7p, and it follows that

W(Ty ® 24) = h®(End(Ty)) = 1. ()

Hence the assumptions of our previous considerations are fulfilled and X = P(7y)
is not almost homogeneous.

Here is an example with 5,(Y) = 1. We let Y be the Mukai—-Umemura Fano
threefold of type Vs, [23]. Here h°(Ty) = 3 and Y is almost homogeneous with
Aut’(Y) = SL,(C). Since Ty is known to be stable (see e.g. [27]), again all
assumptions are satisfied and X = P(Ty) is not almost homogeneous.

3.2 The Albanese Map for Almost Homogeneous Manifolds

A well-known theorem of Barth—Oeljeklaus determines the structure of the
Albanese map of an almost homogeneous Kihler manifold.

Theorem 3 ([4]). Let X be an almost homogeneous compact Kdhler manifold.
Then the Albanese map a: X — A is a fiber bundle. The fibers are connected,
simply-connected and projective.
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Remark 2. All fibers X, of « are almost homogeneous.

Proof. Let x,y € X, be two general points of a general fiber X,. Then there exists
f € Aut(X) with f(x) = y. Since the automorphism f is fiber preserving,
we obtain an automorphism of X, mapping x to y. Hence the general fiber X,
is almost homogeneous. Therefore, since « is a fiber bundle, all fibers are almost
homogeneous.

3.3 The Caseq(X) =0

If the irregularity of X is ¢(X) = 0, the Albanese map is trivial, and it follows that
X itself is simply-connected and projective.

Lemma 2. Let X be an almost homogeneous compact Kdhler manifold with
contact structure. If ¢(X) = 0 and bo(X) > 2, then X = P(Ty) is a projectivised
tangent bundle.

Proof. X being projective, the results of [20] apply. Combining them with [9] (cf.
Corollary 4) yields the desired result.

Remark 3. The case where ¢(X) = 0and b(X) = 1 remains to be studied. Here X
is an almost homogeneous Fano manifold. It would be interesting to find out whether
the results of [5] apply. That is, one has to check whether Aut(X) is reductive and
whether the map associated with the contact line bundle L is generically finite.

In order to study the second property, consider the long exact sequence

0> H'X,F)—> H°(X,Tx) > H'(X,L) — ...

If H°(X, F) # 0 then X has more than one contact structure [22], Proposition 2.2,
hence Corollary 4.5 of [19] implies that X =~ P,,4; or X = P(Ty).

If H°(X, F) = 0 then L has “many sections” and the map associated with L is
expected to be generically finite.

3.4 The Caseq(X) =1

If the irregularity of X is positive, then the Albanese map a: X — A is a fiber
bundle. We denote its fiber by X,.

Lemma 3. Let X be an almost homogeneous compact Kdhler manifold with
contact structure and q(X) > 1. If the fiber X, of the Albanese map fulfills
by(X,) = 1, then X =~ P(T4) = P, x A, where A is the Albanese torus of X.
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Proof. Since b,(X,) = 1, then X, (being uniruled) is a Fano manifold. We may
therefore apply Proposition 2.11 of [20] (which works perfectly in our situation) to
conclude that «: X — A is a P,-bundle. The proof of Theorem 2.12 in [20] can
now be adapted to conclude that X =~ P(T4). To be more specific, we already know
in our situation that X = P(&) with & = a4 (L). The only thing to be verified
is the isomorphism & =~ T,. But this is seen as in the last part of the proof of
Theorem 2.12 in [20], since Sect. 2.1 of [20] works on any manifold.
So X ~P(T4) and X = P, x A.

It remains to study the case where the fiber X, fulfills b,(X,) > 2. In this
case we consider a relative Mori contraction (over A; the projection is a projective
morphism, [24], (4.12))

p: X =Y.

Lemma 4. We have dim X > dimY.

Proof. The lemma follows from the fact that the restriction map ¢, = ¢|X, is not
birational. This can be shown by the same arguments as in Lemma 2.10 of [20]
using the length of the contraction and the restriction of the contact line bundle to
the fiber X,. Again the projectivity of X is not needed in Lemma 2.10.

As above, we may now apply Proposition 2.11 of [20] and conclude that the general
fiber of ¢ is IP,. It remains to check that ¢ is a P,-bundle and X =~ P(7y). This is
done again as in Theorem 2.12 of [20] with Fujita’s result generalized to the Kahler
setting by Lemma 5. Also the compactness assumption in [11] is not necessary, this
will be important later.

Lemma 5. Let X be a complex manifold, f: X — S a proper surjective map to a
normal complex space S. Let L be a relatively ample line bundle on X such that
(F,Lp) ~ (P,, 0(1)) for a general fiber F of f.If f is equidimensional, then f
is a P.-bundle.

Proof. Since the statement is local in S, we may assume S to be Stein. Then we can
simply copy the proof of Lemma 2.12 in [11].

In total, we obtain

Theorem 4. Let X be a compact almost homogeneous Kdhler contact manifold,
by(X) = 2. Then X = P(Ty) with a compact Kdihler manifold Y .

The arguments above actually also show the following.

Theorem 5. Let X be a compact Kdhler contact manifold. Let ¢: X — Y be
a surjective map with connected fibers such that —Ky is ¢-ample and such that
p(X/Y) = 1 (we do not require the normal variety Y to be Kéiihler). Then Y is
smooth and X = P(Ty).

One might wonder whether this is still true when X is Moishezon or bimero-
morphic to a Kihler manifold. Although there is no apparent reason why the
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theorem should not hold in this context, at least the methods of proof completely
fail. More generally, also the assumption that X is almost homogeneous should be
unnecessary. If X is still Kéhler, a Mori theory in the non-algebraic case seems
unavoidable. Already the question whether X is uniruled is hard.

3.5 Conclusion and Open Questions

1. In all but one case we find that a compact almost homogeneous Kéhler contact
manifold X has the structure of a projectivised tangent bundle. The remaining
case where ¢(X) = 0 and b,(X) = 1 is discussed in Remark 3.

2. Can one classify all Y (necessarily almost homogeneous) such that P(7y) is
almost homogeneous? The case where dimY = 2 will be treated in the next
section. One might also expect that if ¥ = G/P, then X should be almost
homogeneous. In case Y is a Grassmannian or a quadric, this has been checked
by Goldstein [13]. Of course, if ¥ = IP,,, then X is even homogeneous.

4 Almost Homogeneous Contact Threefolds

In this section we specialize to almost homogeneous contact manifolds in dimen-
sion 3.

Theorem 6. Let X be a smooth compact Kdihler threefold which is of the form
X = P(Ty) for some compact (Kiihler) surface Y .

1. If X is almost homogeneous, then Y is a minimal surface or a blow-up of P, or
Y =F, =P(Op, ® Op,(—n)) for somen > 0,n # 1.

2. If Y is minimal, then X is almost homogeneous if and only if Y is one of the
following surfaces.

e Y = ]P)z

o Y =F, forsomen>0,n#1

* Y isatorus

» Y = P(&) with & a vector bundle of rank 2 over an elliptic curve which is
either a direct sum of two topologically trivial line bundles or the non-split
extension of two trivial line bundles.

Proof. Suppose X is almost homogeneous. Then Y is almost homogeneous, too
(Lemma 1). By Potters’ classification [29], Y is one of the following.

.Y=P

2. Y =F, =P(0p, ® Op,(—n)) forsomen > 0,n # 1
3. Y is atorus
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4. Y = P(&) with & a vector bundle of rank 2 over an elliptic curve which is either
a direct sum of two topologically trivial line bundles or the non-split extension
of two trivial line bundles

5. Y is a certain blow-up of P, or of [F,,.

This already shows the first claim of the theorem, and it suffices to assume Y
to be a minimal surface of the list and to check whether X = P(Ty) is almost
homogeneous. In cases (1) and (3) this is clear; X is even homogeneous.

To proceed further, consider the tangent bundle sequence

0— Tx/y —> TX —> JT*(Ty) — 0.
Notice
h(Tx;y) = h°(=Kx/v) = h°(S*Ty ® Ky).
Applying 7. and observing that the connecting morphism

TY —> Rlﬂ*(Tx/Y)

(induced by the Kodaira-Spencer maps) vanishes since r is locally trivial, it follows
that

H(X.Ty) - H'(X,7*(Ty)) = H(Y. Ty)
is surjective. If therefore
H®(X. Txy) = H(Y. STy ® Ky) # 0, (%)
the tangent bundle Ty is obviously generically spanned and therefore X is almost
homogeneous.
In case (4), (x) is now easily verified: Let p:IP(&) — C be the IP;-fibration over
the elliptic curve C. The tangent bundle sequence reads

0—>—Ky—>Ty—)ﬁY — 0.

Since Ty is generically spanned, the map H’(0y) — H'(—Ky) must vanish, so
that the sequence splits:

Ty ~ —Ky & Oy.
Thus S?Ty ® Ky ~ —Ky @ Oy ® Ky and () follows.
Now if Y = F, asin (2), let p: Y — PP, be the natural projection. The relative

tangent sequence then reads

0— Typ, > Ty — p*Op,(2) — 0. (x%)
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Taking the second symmetric power and tensorizing with Ky yields

0Ty ® Ty/p, ® Ky — STy ® Ky — p*0p,(4) ® Ky — 0,
s0, by (), we obtain an inclusion

HO(TI;%I ® Ky) ¢ H'(S*Ty ® Ky).
Now by the relative Euler sequence, Ty,p, >~ Oy (2) ® p* Op,(n), and thus
HO(T?}[ZPI ® Ky) ~ H(Oy(2) ® p* Op,(n —2)).
Now since
P«(Oy(2) ® p*Op (n —2)) ~ Op (n —2) & Op, (=2) ® Op,(—n —2),

we have shown (x) to be true forn > 2. If n = 0, ie., Y >~ Py x Py, the
sequence (xx) splits and an easy calculation shows that (x) is satisfied also in
this case.

Remark 4. The case that Y is a non-minimal rational surface in Theorem 6 could
be further studied, but this is a rather tedious task.

5 Deformations I: The Rational Case

We consider a family 7: 2~ — A of compact manifolds over the unit disc A C C.
As usual, we let X; = 7! (¢). We shall assume X; to be a projective manifold for
all 7, so we are only interested in projective families here. If now X, is a contact
manifold for ¢ # 0, when is X still a contact manifold?

If b(X;) = 1, there is a counterexample due to [26], see also [18]. Here the
X, are 7-dimensional rational-homogeneous contact manifolds and X, is a non-
homogeous non-contact manifold. If one believes that any Fano contact manifold
with b, = 1 is rational-homogeneous, then due to the results of Hwang and Mok,
this is the only example where a limit of contact manifolds with b, = 1 is not
contact.

If by(X;) > 2, it is no longer true that the limit X is always a contact manifold,
as can be seen from the following example: We let # — A be a family of
compact manifolds such that ¥, >~ Py x Py for ¢t # 0 and Yy ~ TF,. Then
there exist line bundles £} and %, on % such that .Z||Y; >~ Op «p,(2,0) and
DL|Y: ~ Opxp,(0,2) for every t # 0. If we let 27 = P(ZL & %), then
X; >~ P(Ty,) fort # 0, but Xy 2 P(Ty,).

However P(Tp,xp,) is not homogeneous; in fact by Proposition 1, P(7p,) is
the only homogeneous rational contact manifold with b, > 2. In this prominent
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case we prove global projective rigidity, i.e., Xo = P(7p,), unless X, is the
projectivization of some unstable bundle, so that both contact structures coming
from the two projections P(7p,) — P, survive in the limit. In the “unstable case”,
the contact structure does not survive. The special case where X is Fano is due to
Wisniewski [31]; here global rigidity always holds.

There is a slightly different point of view, asking whether projective limits of
rational-homogeneous manifolds are again rational-homogeneous. As before, if
by(X;) = 1, this is true by the results of Hwang and Mok with the 7-dimensional
exception. In case b(X;) > 2, this is false in general (e.g. for P; x P;), but the
picture under which circumstances global rigidity is still true is completely open.

Theorem 7. Let w: & — A be a family of compact manifolds. Assume X; =~
P(Tp,) for t # 0. If X is projective, then either Xy >~ P(Tp,) or Xo ~ P(V) with
some unstable vector bundle V on P,,.

Proof. Since K o is not m-nef, there exists a relative Mori contraction (see [24],
(4.12), we may shrink A)

DX >

over A.Put A* = A\{0}and 27 = 2\ Xo; #* = % \ Yy. Now ¢, = D|X; is
a Mori contraction for any ¢ (cf. [21], (12.3.4), but this is pretty clear in our simple
situation), unless possibly ¢, is biholomorphic for t # 0.

Now since 2", A and 7 are smooth, the latter case cannot occur by [32], (1.3),
so ¢, is the contraction of an extremal ray for any 1 € A. Let 1: % — A be the
induced projection and set Y, = t7'(¢), so that ¥; ~ P, for t # 0. Recall that
X; ~ P(Tp,) for t # 0 and that P(7p,) carries two projections to IP,. Since % is
normal, the normal variety Yy must also have dimension 7.

From the exponential sequence, Hodge decomposition and the topological
triviality of the family .27, it follows that

Pic(2) ~ H*(Z',7) ~ 7?
and that
Pic(Xo) ~ H*(X,,7%) ~ 72

Furthermore, the restriction Pic(Z") — Pic(Xj) is bijective. As an immediate
consequence, we can write

—K{;}f =nH

with a line bundle 77 on 2". Let 7] = S| X, so that 7] >~ Op(r;, (1) for ¢ # 0.
Claim. Yy >~ P,.
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In fact, by our previous considerations, there is a unique line bundle . on 2~
such that

Z1X: = ¢/ (0p,(1))

for t # 0. Moreover .Z|X, = ¢ (") with some ample line bundle ¢’ on Y.
Therefore by semi-continuity,

(L) = (LX) = n + 1
and
(L) =1.

Hence by results of Fujita [12], (I.1.1), see also [6], (II.3.1), we have (¥,, .&’) ~
Py, 0(1)).
In particular we obtain

Sub-Corollary 1. % is smooth and % ~ P, x A.

Next we notice that the general fiber of ¢y must be P,_, since it is a smooth degen-
eration of fibers of ¢, (by the classical theorem of Hirzebruch and Kodaira [14]).
One main difficulty is that ¢y might not be equidimensional. If we know
equidimensionality, we may apply ([11], 2.12) to conclude that X, = P(&p) with a
locally free sheaf &; on Yj.
We introduce the torsion free sheaf

F = O (H) Q Oy (—1).
Since
codim @~ !(Sing(.%)) > 2,

the sheaf .# is actually reflexive and of course locally free outside Y. In the
following Sublemma we will prove that .% is actually locally free.

Sub-Lemma 1. .% is locally free and therefore & = P(F).

Proof. As explained above, it is sufficient to show that
¢02 X 0o —> ]P)n

is equidimensional. So let Iy be an irreducible component of a fiber of ¢y. Then Fj
gives rise to a class

[Fo] € H*(Xo.Q),
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where we denote by k the codimension of Fj in X(. Obviously k < n, and we must
exclude the case that k < n.

So we assume in the following that k& < n. Then, since X, is homeomorphic to
P(Tp,), the Leray—Hirsch theorem (cf. [16], Theorem 17.1.1) gives

dim H*(Xo,Q) = k + 1.

Now if we denote by H the class of a hyperplane in PP,, and by L the class of an
ample divisor on X, then the classes

LK, L' (¢g H), ... . L(pg H) ', (¢ H)* 3)

form a basis of H%* (X0, Q), which can be seen as follows: By the dimension
formula given above, it is sufficient to show linear independency, so assume that
we are given Ao, ..., A € Q such that

k
> L@ H)Y = 0. “4)
{=0

Now let £y € {0, ..., k}. By induction, we assume that Ay, = O for all £ < £y. Then
intersecting (4) with L" %10 (¢* )"~ yields

Ao L" (P H)" =0,

thus A¢, = 0 since L"~'.(¢pg H)" > 0.
So (3) is indeed a basis of H*(Xy, Q) and we can write

k
[Fol =) o LM (g5 H)' ()
=0
for some «y, ..., ax € Q. We now let £y € {0, ..., k} and assume that oy = 0 for

£ < £y. We observe that [Fyl.(¢p5 H )'~% = 0 since Fy is contained in a fiber of ¢
and £y < k < n. Hence, intersecting (5) with L" %=1+ (¥ H )=t yields

0 =ayL" (¢ H)",
so we deduce ay, = 0 as before. Therefore by induction, we have [Fy] = 0, which
is impossible, X being projective.

Now we set V' = .#|X,. If the bundle V' is semi-stable, then V' ~ Tp, and the
theorem is settled.

Suppose in Theorem 7 that Xy >~ P(}') with an unstable bundle V' (we will show
in Sect. 6 that this can indeed occur). Then X, does not carry a contact structure.
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In fact, otherwise Xy ~ P(Ts) with some projective variety .S, [20]. Hence X, has
two extremal contractions, and therefore X, is Fano. Hence T is ample and thus
S ~ P, (or apply Wisniewski’s theorem). Therefore we may state the following

Corollary 1. Let 7: Z° — A be a family of compact manifolds. Assume X; =~
P(Tp,) fort # 0. If Xy is a projective contact manifold, then Xy >~ P(Tp,).

In the situation of Theorem 7, we had two contact structures on X; ~ P(Tp,),
given by the two projections to IP,,. This phenomenon is quite unique because of the
following result [20], Proposition 2.13.

Theorem 8. Let X be a projective contact manifold of dimension 2n — 1 admitting
two extremal rays in the cone of curves NE(X). Then X ~ P(Tp,).

Here is an extension of Theorem 8 to the non-algebraic case.

Theorem 9. Let X be a compact contact Kihler manifold admitting two contrac-
tions ¢;: X — Y; to normal compact Kdhler spaces Y;. This is to say that —K x is
¢i-ample and that p(X/Y:) = 1. Then X is projective and therefore X = P(Tp,).

Proof. We already know by Theorem 5 that X = P(Ty,). Let F >~ [P, be a fiber of
¢». Then the restriction ¢ | F' is finite. We claim that ¥} must be projective. In fact,
consider the rational quotient, say f:Y; --> Z, which is an almost holomorphic
map to a compact Kihler manifold Z. By construction, the map f contracts the
images ¢ (F), hence dim Z < 1. But then Z is projective and therefore Y; is
projective, too (e.g. by arguing that Y; cannot carry a holomorphic 2-form and
applying Kodaira’s theorem that Kédhler manifolds without 2-forms are projective).

By symmetry, Y, is projective, too. Since the morphisms ¢; induce a finite map
X — Y| x Y, (onto the image of X)), the variety X is also projective.

Any projective contact manifold X with b,(X) > 2 is of the form X =
P(Ty). Therefore it is natural ask for generalizations of Theorem 7, substituting
the projective space by other projective varieties.

Proposition 3. Let w: 2~ — A be a projective family of compact manifolds X, of
dimension 2n — 1. Assume that X, ~ P(Ty,) fort # 0 with (necessarily projective)
manifolds Y, # P,. Assume that H1(X,, Ox,) = 0 for ¢ = 1,2 for some (hence
all) t. Then the following statements hold.

1. There exists a relative contraction ®: Z — % over A such that ®|X, is the
given P,,_-bundle structure fort # 0.

2. If ¢g := D| Xy is equidimensional, then Xy >~ P(&y) with a rank-n bundle & over
the projective manifold Yy; and Yy is the limit manifold of a family ©: % — A
such that Y, ~ t=(t) for t # 0. In other words, Z =~ P(&) such that & =
Twa over A\ {0}.

Proof. Since Y, # P, by assumption, every X;, t # 0, has a unique Mori contrac-
tion, the projection v¥,: X; — Y;, by Theorem 8. Notice that since H?(X;, Ox,) =
0 for ¢ = 1, 2, we have Pic(2) ~ H?*(Z ,7Z) and the restriction map
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Pic(Z") — Pic(X)y) is bijective. Therefore, as in the proof of Theorem 7, we obtain
arelative Mori contraction

DX >

over A, and necessarily @|X, = ¢, for all t # 0 (we use again [32], (1.3)).
This already shows Claim (1).

If ¢y is equidimensional, we apply—as in the proof of Theorem 7—[6],
(IT1.3.2.1), to conclude that there exists a locally free sheaf & of rank n on Y such
that Xy ~ P(&)), proving (2).

Theorem 10. Let w: 2~ — A be a projective family of compact manifolds X, of
dimension 2n — 1. Assume that X, ~ P(Ty,) for t # 0 with (necessarily projective)
manifolds Y,(# P,). Assume that H1(X,, Ox,) = 0 for ¢ = 1,2 for some (hence
all) t. Assume moreover that

1. dim Xy <5, or
2. byj(Y;) = 1 forsomet # Oandall 1 < j < 3.

Then there exists a relative contraction @: 2 — % over A such that @|X, is the
given P,_-bundle structure for t # 0. Moreover there is a locally free sheaf &
on % suchthat 2 ~ P(&) and &Y, ~ Ty, forallt # 0.

Proof. By the previous proposition it suffices to show that ¢9 = @|Xp is
equidimensional.

1. First suppose that dim Xy < 5. Then 1 < dimY, < 3. The case dimYy = 1
is trivial. If dim Yy = 2, then all fibers must have codimension 2, because ¢y
does not contract a divisor (the relative Picard number being 1). If dim Yy = 3,
then by [1], (5.1), we cannot have a 3-dimensional fiber. Since again there is no
4-dimensional fiber, ¢y must be equidimensional also in this case.

2. Ifby;(Y;) = 1 forsomet andall 1 < j < 5,then by (X,) = k+1fork < nand
we may simply argue as in Sublemma 1 to conclude that ¢ is equidimensional
(the smoothness of Yj is not essential in the reasoning of Sublemma 1).

6 Degenerations of Tp,

In view of Theorem 7, we can ask the question which bundles can occur as
degenerations of Tp,, i.e., for which rank-n bundles V' on [P, there exists a rank-
n bundle ¥ on P, x A such that

Tp,, fort #0,

Y= V|P, x{t} ~
v, fort = 0.
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In the case that n > 3 is odd, it was already observed by Hwang in [17] that one
can easily construct a nontrivial degeneration of Tp, as follows: We consider the
null correlation bundle on P,, which is a rank-(n — 1) bundle N on P, given by a
short exact sequence

0— N — Tp,(-1) — Op,(1) — 0.

(cf. [25], (1.4.2)). The existence of this sequence now implies that 7p, can be
degenerated to N(1) @ Op, (2).

When n is even, matters become more complicated, but we can still obtain
nontrivial degenerations:

Proposition 4. Let n > 2. Then there exists a rank-n bundle v on P, x A such that
Yy ~ Tp, fort # 0 and h°(¥5(=2)) = 1, so in particular ¥4 # Tp,.

Proof. We construct an inclusion of vector bundles
A 25,4074 (2) © Op,xa = Op,xa(D®"V @ 24 44 (2)

via a family A = (A4;);ea of matrices
A[ — (af ﬁf)
V43 8

o 2, (2) = O, ()Y, Bi: O, — Op, (O D,

of sheaf homomorphisms

Y825 (2) > 23 (2), 8: Op, — 24, (2),

which we define as follows: We take o; and B, to be the natural inclusions coming
from the Euler sequence and its dual, where we choose the coordinates on P,
such that

Bi(O,) ¢ (825, (2)).
This implies that the map
o @ P2y (2) ® Op, — Op, (1))

is generically surjective. Since .Qé,n (2) = A" (Tp,(—1)) is globally generated,
a general section in H O(QH{,” (2)) has only finitely many zeroes. Since [21;,” (2) is
homogeneous, we can thus choose the map &, in such a way that its zeroes are
disjoint from the locus where «; @ B, is not surjective. Finally we let y; = ¢ - id.
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Now in order to show that A4 is an inclusion of vector bundles, we need to show
that for any point (p, ) € P, x A, the matrix

A, _ Olt(P),Br(P)) C@rtDx(n+1)
») (m(p) 5(p))

has rank n + 1. For semicontinuity reasons, shrinking A if necessary, we can assume
t = 0, then the rank condition follows easily from the choice of «g, B, Y0, o-
We now let

¥ := cokerA.

It remains to investigate the properties of the bundles ¥, := ¥|P, x {¢}. For each
t € A, we have an exact sequence of vector bundles

0— 2L 2@ Op, — Op,(N®" V@2l @) — % —0. (6

We want to calculate HY(¥;(—1 —k)) fork = 0, ..., n. From the Bott formula we
obtain for (k,q) € {0,...,n}*:

1, for(k,q) = (1,1),

hi(2p (1—k)) =
(€2, ( 2 0, otherwise.

Now if we tensorize (6) with &p, (—1—k), take the long exact cohomology sequence
and observe that H4(8y) = 0 for every ¢, we get for (k,q) € {0,...,n}*

n+1, for(k,q) = (0,0),
h (N (=1—k)) = 11, for (k,q) € {(1,0),(1,1), (n,n — 1)},

0, otherwise.

Similarly, if we observe that H%(5;) = id for t # 0, we obtain forz # 0, (k,q) €
{0,...,n}%

n+1, for(k,q)=(0,0),
h(H(—1—-k)) =11, for (k,q) € {(n,n — 1)},

0, otherwise.

The proposition now follows from Lemma 6.

Lemma 6. Let V be a vector bundle on P, such that for any (k,q) € {0,...,n}?
we have
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n+1, for(k,q) = (0,0),
h(V(=1-k)) =11, for(k,q) = (n,n —1),

0, otherwise.

ThenV ~ Tp,.

Proof. We consider the Beilinson spectral sequence for the bundle V(—1), which
has E|-term

EV = HI(V(-1+ p)) ® 2" (-p)

(cf. [25], (11.3.1.3)).
By assumption, E{? = 0 for (p,q) ¢ {(0,0), (—n,n — 1)} and

0,0 S(n+1) —nn—1
EY"=0p""", E[M"T = 0p,(-1).
In particular, the only nonzero differential occurs at the E,-term, namely

—n.n—1, p—n,n—1 0,0
d;"""E""T — E;C.
Since E5¢ = 0 for p + q # 0 and Eo? are the quotients of a filtration of V(—1),
the differential d, """ induces a short exact sequence

—n,n—1
0— O, (-1) "— 62" — y(—1) — 0. )

Now since V is locally free, the map d,"~! cannot have zeroes, so (7) must be an
Euler sequence, whence V(—1) >~ Tp, (—1).

7 Deformations II: Positive Irregularity

A homogeneous compact contact Kihler manifold X of dimension 2n + 1 with
by(X) > 2 is either P(Tg, ) or a product 4 x PP, with a torus A of dimension
n + 1. Here we study in general the Kihler deformations of A x P, where A4 is an
m-dimensional torus.

Theorem 11. Let w: & — A be a family of compact manifolds over the unit disc
A C C. Assume X; >~ A; x P, fort # 0, where A; is a torus of dimension m.
If Xo is Kdhler, then the relative Albanese morphism realises % as a submersion
oa: X — o, where p:of — A is torus bundle such that p~'(t) ~ A, fort # 0.
Moreover there is a locally free sheaf & over &/ such that ' = P(&), Z; ~ P(&)
forallt and &|A; ~ ﬁflj'l fort # 0.
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Proof. Let m = dim A, = q(X;) fort # 0. Hodge decomposition on X, gives
q(Xp) = m. Let

o — o
be the relative Albanese map. Then .2/ — A is a torus bundle and
o = Ol|X,:X, — A[

is the Albanese map for all . Since ¢, is surjective for all # # 0, the map « is
surjective, too, and so is .

Fort # 0, X; >~ A; xP,, so by(X;)—b2(A;) = 1. Since the families 7: 2~ — A
and p: &/ — A are topologically trivial, we also have by(X¢y) — b(Ap) = 1. Thus
h'1(Xo) — h"!(4p) = 1. Choose a Kihler form w on X,. Then we find a positive
number A and a closed (1, 1)-form u on A such that

c1(=Kx,) = [Ao] + [ (w)].

Now we apply [7], Theorem 1.1, to conclude that «q is projective. The proof of
Theorem 1.1 also shows that — Ky, is ap-ample, which, however, is anyway clear in
our situation since

p(Xo/Ag) = 1.
Furthermore, we have
(—Kx)"t' = (=Kx)"*' = 0. (8)

From this we conclude that g is equidimensional. In fact, let F' be an irreducible
component of a fiber of oy and assume that d := dim F > n + 1. Then, since —K,
is op-ample, we obtain

(=Kyx,)*.F >0,

which contradicts (8).

We have thus shown that « is equidimensional and therefore flat. Since —Ky, is
divisible by n + 1 in Pic(X;) for t # 0, so is —Ky, (first argue topologically, then
use the fact that R?m,(OY,) is locally free, hence cannot have a non-zero section
which vanishes on A\ 0). Now write — Ky, = .2 *1 and apply Lemma 3.10 to .%.

Alternatively, argue as follows. Since X, is smooth, a general fiber of oy is
smooth and hence isomorphic to PP,. This means that the analytic set

{sed |al(s) £ P}
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has codimension > 2 in .«/. We can now apply [2], Theorem 2, to conclude that «
is a IP,-bundle.
The existence of & follows from [10], (4.3).

Remark 5. One might hope to weaken the assumption that X, is Kihler and just
assume X to be in class % . In this context, it should be noticed that Popovici [28]
has shown that any global deformation of projective manifolds is automatically in
class €. The Kihler version of Popovici’s theorem is still open.

Example 2. We cannot conclude in Theorem 11 that Xy >~ Ay x P,, evenif m =
n = 1. Take e.g. a rank-2 vector bundle .% over P; x A such that Z|P; x {t} = 0?
fort # 0 and Z#|P, x {0} = O(1) & O(—1). Let i A — P, be a two-sheeted
covering from an elliptic curve 4 and set & = (n x id)*(%). Then 2 = P(&) is
a family of compact surfaces X, such that X, = A x P; forz # 0 but X, is not a
product. Notice also that X is not almost homogeneous.

It is a trivial matter to modify this example to obtain a map to a 2-dimensional
torus which is a product of elliptic curves. Therefore the limit of a Kihler contact
manifold with positive irregularity might not be a contact manifold again.

Corollary 2. Assume the situation of Theorem 11. Then the following assertions
are equivalent.

1. X() ~ A() X Pn.

2. & is semi-stable for some Kdihler class w.
3. Xo is homogeneous.

4. Xy is almost homogeneous.

Proof. (1) implies (2). Under the assumption of (1), there is a line bundle L on
Ay such that & ~ L®"T! Hence & is semi-stable for actually any choice of w.
(2) implies (3). From the semi-stability of & and h°(&) > n + 1, it follows
easily that & is trivial and that X is homogeneous as product 4y x P,. In fact,
choose n + 1 sections of &y and consider the induced map u: ﬁﬁjl — &. By the
stability of &y, the map p is generically surjective. Hence det & # 0, hence an
isomorphism, so that u itself is an isomorphism.
The implication “(3) implies (4)” is obvious.
(4) implies (1). Consider the tangent bundle sequence

0— TXO/AO —> TXO —> (X;(TAO) — 0.

Since X, is almost homogeneous, all vector fields on Ay must lift to Xj.
Consequently the connecting map

HO(XOv ”*(TA())) - HI(XOs TX()/A())
vanishes, and therefore the tangent bundle sequence splits. Let .# = oy (T4,).

As a limit of the foliations .%; 1= «; (Ty4,) = Tx,/p,, also F C Ty, is a foliation
and it has compact leaves (the limits of tori in 4, x P,;). By [15], 2.4.3, there
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exists an equi-dimensional holomorphic map f: Xo — Z, to a compact variety
Z, such that the set-theoretical fibers F' of f are leaves of .%. Since the fibers
F have an étale map to Ay, they must be tori again. It is now immediate that
Zy = P, and that Xo = Ag x P,.

Corollary 3. Assume in Theorem 11 that m = 2 and n = 1. Then either Xy =~
Ao x Py, or Xo = P(&p) and one of the following holds:

1. There is a torus bundle p: Ay — By to an elliptic curve By and the rank-2 bundle
&y on Ay sits in an extension

0— p*(L) —> & — p (L) —>0

with deg £ > 0.
2. The rank 2-bundle &) sits in an extension

0> —>E&E— I, 0.9 =0

with an ample line bundle . and a finite non-empty set Z of degree deg Z =
ci1(9)>.

Proof. By Corollary 2 we may assume that & is not semi-stable for some (or any)
Kabhler class w. Let . be a maximal destabilising subsheaf, which is actually a line
bundle, leading to an exact sequence

0>Y—>6— 0 —0.

Notice that Q >~ ., ®.%*, where Z is a finite set or empty. Taking ¢, and observing
that c2(&p) = 0 gives

() =deg Z.
The destabilisation property reads
c1(&L)-w > 0.
Since h°(&) > 2, we deduce that h1°(.#) > 2, in particular, .7 is nef, .# being
maximal destabilizing.
If . is ample, there is nothing more to prove, hence we may assume that .7 is
notample. . being nef, ¢;(.#)?> = 0 and.# defines a submersion p: Ay — By to an

elliptic curve By such that there exists an ample line bundle % with . = p*(%)).
Therefore we obtain an extension

0— p*(L) — & — p (L) — 0,

as required.
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Remark 6. The second case in Corollary 3 really occurs. Take a finite map f: .o/ —
P, x A over A and a rank-2 bundle .# on P, x A such that %P, x {t} ~ &? for
t # 0 and such that .% is not trivial. For examples see e.g. [30]. Now & = f*(.%)
gives an example we are looking for.

Corollary 4. Assume in Theorem 11 thatm =2 andn = 1. Let @: Ty )5 — _IE‘
be a morphism such that ®|X; = ¢, is a contact morphism (i.e., defines a contact
structure) for t # 0. Suppose that

—Kx,
2

¢o: TXO -

does not vanish identically. Then the kernel % of ¢y is integrable (in contrast to
the maximally non-integrable bundle %, ).

Proof. We consider a family (¢;) of morphisms
P TX, — 4

such that ¢, is a contact form for ¢ # 0 and —Kx, = 2.4. Consider the (torsion
free) kernel %, of ¢. We need to show that the induced map

2
7% (/\ Fo)™* = det.Fy — 4.

vanishes. Since the determinant of the kernel .%; of ¢, is isomorphic to 77, we
conclude that

det %y ~ 76 ® Ox,(E) (%)

with an effective (possibly vanishing) divisor £ on X,. Now the induced map
n: det %y — 4

must have zeroes, otherwise X, would be a contact manifold, hence Xy >~ Ag x P;.
Thus u = 0 by (%), and .%, is integrable.
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Beauville, Arnaud (Nice): Abelian Varieties Associated
to Gaussian Lattices

Let I" be a self-dual lattice, endowed with an automorphism of square —1. Then
Ap = Ig/T is a principally polarized abelian variety, with an automorphism 1
of square —1. I will show that the configuration of :-invariant theta divisors of A
follows a pattern very similar to the classical theory of theta characteristics; as a
consequence A has a high number of vanishing thetanulls. When I" = Eg we
recover the 10 vanishing thetanulls of the abelian fourfold discovered by R. Varley.

Caporaso, Lucia (Rome): Tropical Methods for the Geometry
of Algebraic Curves and Their Moduli Spaces

The talk will be a survey on the interplay between tropical/combinatorial and
algebro geometric techniques, with focus on the case of tropical and algebraic curves
and their moduli spaces.

Catanese, Fabrizio (Bayreuth): Topological Methods in Moduli
Theory

The structure of the moduli spaces of surfaces and higher dimensional varieties is
sometimes rather elusive if one only uses algebraic methods. But, over the complex
numbers, sometimes the homotopy type of an algebraic variety determines the
structure of the moduli spaces. I will explain this via examples of rigid and weakly
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rigid varieties (connected moduli space up to complex conjugation), such as curves,
Abelian varieties, Kodaira surfaces, varieties isogenous to a product, Beauville
varieties. [ will then present some main results on the Inoue type varieties recently
introduced in joint work with Ingrid Bauer. A dominant role is played also by the
study of moduli spaces of curves with a group G of automorphisms. Here, I will
present some recent works, in particular joint work with Michael Loenne and Fabio
Perroni, concerning the irreducibe components for some special groups, as Abelian
and Dihedral, and the irreducible stable components of the latter moduli spaces for a
general group G (extending work of Dunfield and Thurston in the free action case).

Ciliberto, Ciro (Rome): Construction and Properties of Some
Irregular Surfaces

In this talk I will explain a few constructions of some non-trivial irregular surfaces
with no irrational pencils (among them a recent interesting example by Schoen
which I will look from a slightly different viewpoint than the original one). Some
interesting properties of these surfaces will also be discussed. This is (experimental)
work in progress with M. Mendes Lopes and X. Roulleau.

Esnault, Hélene (Essen): Index and Euler Characteristic over
Henselian Fields with Algebraically Closed Residue Fields

Over a henselian field with algebraically closed residue field of residue characteristic
0 or p large, the index of a smooth projective variety divides the Euler characteristic
of any coherent sheaf. (Joint with Marc Levine and Olivier Wittenberg)

Farkas, Gavril (Berlin): Syzygies of Torsion Bundles
and the Geometry of the Level | Modular Variety over M,

In joint work with Chiodo, Eisenbud and Schreyer, we formulate, and in some cases
prove, three statements concerning the purity of the resolution of various rings one
can attach to a generic curve of genus g and a torsion point of order / in its Jacobian.
These statements can be viewed an analogues of Green’s Conjecture and we verify
them computationally for bounded genus. We then compute the cohomology class
of the corresponding non-vanishing locus in the moduli space Rg; of twisted level
[ curves of genus g and use this to derive results about the birational geometry of
Ry . For instance, we prove that R, 3 is a variety of general type when g > 11.
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I will also discuss the surprising failure of the Prym-Green Conjecture for genera
which are powers of 2.

Gathmann, Andreas (Kaiserslautern): The Relative Tropical
Inverse Problem for Curves in a Tropical Plane

The idea of tropical geometry is to associate to an algebraic variety X a polyhedral
complex, the so-called tropicalization trop(X ) of X. One can then study frop(X) by
purely combinatorial means and try to translate the results back to the original vari-
ety X. One of the central problems in this process is the “tropical inverse problem”,
i.e. the question which polyhedral complexes can be realized as tropicalizations of
an algebraic variety. We study this question in a relative setting: given a tropical
curve C contained in the tropicalization of a plane X, is there an algebraic curve
contained in X that tropicalizes to C? We give a complete algorithmic answer to
this problem and use this to reprove certain known and some new general criteria
for realizability.

Geer, Gerard van der (Amsterdam): Vector-Valued Picard
Modular Forms and Curves of Genus Three

The talk deals with vector-valued Picard modular forms on a unitary group of
signature (2, 1) over the ring of Eisenstein numbers. We construct modular forms
and discuss the structure of modules of such modular forms. It is related to the
cohomology of local systems on a moduli space of curves of genus three. This is
joint work with Fabien Clery and Jonas Bergstroem.

Gritsenko, Valery (Lille): Exceptional Arnold Singularities
and Their Automorphic Discriminants

The semi-universal deformations of exceptional Arnold singularities can be pre-
sented as modular varieties of orthogonal type. We construct their automorphic
discriminants and we show that three of them determine Lorentzian Kac-Moody Lie
algebras. We consider two types of generalized automorphic forms on the full space
of deformations (a non-classical homogeneous domain defined by E. Looijenga and
K. Saito) and we give an answer of some old problems of K. Saito. At the end we
formulate open research questions in this area.
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Grushevsky, Sam (Stony Brook): Towards the Stable
Cohomology of A,

The stable (for g much larger than the degree) cohomology of the moduli space
A, of principally polarized abelian varieties was computed by Borel, as the
group cohomology of the symplectic group. Using topological methods, Charney
and Lee computed the cohomology of Satake-Baily-Borel compactification. In
this talk we will discuss the question of computing the stable cohomology of
toroidal compactifications, and in particular will discuss the stabilization of suitable
cohomology for the perfect cone toroidal compactification, and the computation of
some these stable cohomology groups. Joint work in progress with Klaus Hulek and
Orsola Tommasi.

Halle, Lars (Oslo): Néron Component Groups and Base Change

Let K be a complete discretely valued field and let A be an abelian K-variety. In
this talk I will discuss the Néron component series of A. This is a formal power
series in Z[[T']] which measures how the number of connected components of the
special fiber of the Néron model of A varies under tame extensions of K. In case
A is wildly ramified, it is particularly challenging to describe the properties of this
series. I will present some results for Jacobians and abelian varieties with potential
multiplicative reduction, and discuss a few open problems in this setting. If time
permits, I will also mention generalizations to semi-abelian varieties. This is joint
work with Johannes Nicaise (Leuven).

Hitchin, Nigel (Oxford): The Hyperholomorphic Line Bundle

On a hyperkihler manifold with a circle action preserving just one complex structure
there is a natural hyperholomorphic line bundle. This is a constituent of the
physicists’ hyperkihler/quaternionic Kéhler correspondence and was treated in a
differential geometric fashion by A Haydys. We show how to construct this via
a holomorphic bundle on the twistor space and consider examples including the
moduli space of Higgs bundles.

Kawamata, Yujiro (Tokyo): Derived Categories
Jrom the Viewpoint of the Minimal Model Program

I would like to consider some problems concerning the minimal model program and
the derived categories; MMP and semi-orthogonal decompositions, K-equivalence
and the Fourier-Mukai partners, finiteness of models, and the cone conjecture.
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Laza, Radu (Stony Brook): The KSBA Compactification
Jfor the Moduli Space of Degree Two K3 Pairs

A classical (and still open) problem in algebraic geometry is the search for a
geometric compactification for the moduli of polarized K3 surfaces (X, L). If one
considers instead K3 pairs (X, H) with H a divisor in the linear system |L|, the
resulting moduli space has a natural geometric compactification given by the general
MMP framework (pioneered by Kollar, Shepherd-Barron, and Alexeev). In this talk,
I will discuss the existence of a good compactification for the moduli of K3 pairs in
all degrees, and then discuss in detail the degree 2 case.

Liedtke, Christian (Stanford): On the Birational Nature
of Lifting

Whenever a variety X lifts from characteristic p to characteristic zero, say over the
Witt ring, then many classical results over the complex numbers hold for X, and
certain “characteristic p pathologies” cannot occur, simply because one can reduce
modulo p. But then, lifting results are difficult, and in general, varieties do not lift.
However, in many situations, it is possible or easier to lift a birational model of X,
maybe even one that has “mild” singularities. Thus, a natural question is whether
the liftability of such a birational model implies that of our original X. We will show
that this completely fails in dimension at least 3, that this question is surprisingly
subtle in dimension 2, and that it is trivial in dimension 1. This is joint work with
Matthew Satriano.

Markman, Eyal (Amherst): Lagrangian Fibrations
on Holomorphic Symplectic Varieties of K3 Deformation Type

Let X be an irreducible holomorphic symplectic manifold deformation equivalent
to the Hilbert scheme of n points on a K3 surface. Let L be a nef line-bundle, which
is isotropic with respect to the Beauville-Bogomolov pairing. Assume that the two-
dimensional subspace spanned by cohomology classes of type (2,0) and (0, 2) on
X does not contain non-zero integral classes. We prove that L is base point free
and it induces a Lagrangian fibration from X onto a projective space, whose general
fiber is a Jacobian.
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Mukai, Shigeru (RIMS): Enriques Surfaces and Abelian
Surfaces

Many families of Enriques surfaces are constructed from abelian surfaces via
Kummer surfaces. Such Enriques surfaces promote and shed new light on the
study of Abelian surfaces. In this talk I review known results in this direction and
reconstruct such Enriques surfaces canonically from their periods in several cases.

Keiji Oguiso (Osaka): Automorphism Groups of Calabi-Yau
Manifolds of Picard Number Two

We prove that the automorphism group of an odd dimensional Calabi-Yau manifold
of Picard number two is always a finite group. This makes a sharp contrast to the
automorphism groups of K3 surfaces and hyperkéhler manifolds and birational
automorphism groups, as we shall see. We also clarify the relation between
finiteness of the automorphism group (resp. birational automorphism group) and the
rationality of the nef cone (resp. movable cone) for a hyperkéihler manifold of Picard
number two. We will also discuss a similar conjectual relation for a Calabi-Yau
threefold of Picard number two, together with existence of rational curve, expected
by the cone conjecture.

Peternell, Thomas (Bayreuth): Differential Forms, Foliations
and Ricci Flat Varieties

I will discuss possible generalizations of the Beauville-Bogomolov decomposition
theorem to singular varieties and present recent results on the decomposition of the
tangent sheaf of singular varieties with trivial canonical classes (joint work with
D.Greb and S.Kebekus).

Sankaran, Gregory (Bath): Stable Homology for Partial
Compactifications of A,

I shall describe joint work (in progress) with Jeff Giansiracusa that aims to
prove stability results for homology or cohomology of suitable toroidal partial
compactifications of Ag. The methods come partly from homotopy theory, using
stability results for homology of GL(Z) due to Charney, Dwyer and van der Kallen.
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Tommasi, Orsola (Hannover): Cohomology of Local Systems
of Low Weight on M,

In this talk we discuss different techniques for the computation of the cohomology
of the moduli space of non-singular curves of genus 2 with marked points. We
concentrate on the case of genus 2 curves with 4 marked points and we explain
how such research is motivated by the study of the structure of the tautological ring
of the moduli space of stable curves.

Ravi Vakil (Stanford): Stabilization of Discriminants
in the Grothendieck Ring

We consider the “limiting behavior” of discriminants, by which we mean informally
the closure of the locus in some parameter space of some type of object where
the objects have certain singularities. We focus on the space of partially labeled
points on a variety X, and linear systems on X. These are connected—we use the
first to understand the second. We describe their classes in the “ring of motives”,
as the number of points gets large, or as the line bundle gets very positive. They
stabilize in an appropriate sense, and their stabilization can be described in terms
of the motivic zeta values. The results extend parallel results in both arithmetic and
topology. I will also present a conjecture (on “motivic stabilization of symmetric
powers”) suggested by our work. Although it is true in important cases, Daniel Litt
has shown that it contradicts other hoped-for statements. This is joint work with
Melanie Wood.

Voisin, Claire (Paris): Symplectic Involutions of K3 Surfaces
Act Trivially on Zero-Cycles

A symplectic involution of a K3 surface acts trivially on the space of holomorphic
2-forms, hence Bloch’s conjecture predicts that it acts trivially on O-cycles of degree
0 modulo rational equivalence. This statement has been proved by Huybrechts and
Kemeny for the pairs (K3, involution) in one of the three series described by Sarti
and Van Geemen. We will show how to prove the result in all cases.
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