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Abstract. This paper analyzes a class of dissemination algorithms for the discov-
ery of distributed contents in Peer-to-Peer unstructured overlay networks. The algo-
rithms are a mix of protocols employing local knowledge of peers’ neighborhood
and gossip. By tuning the gossip probability and the depth k of the k-neighborhood
of which nodes have information, we obtain different dissemination protocols em-
ployed in literature over unstructured P2P overlays. The provided analysis and sim-
ulation results confirm that, when properly configured, these schemes represent a
viable approach to build effective P2P resource discovery in large-scale, dynamic
distributed systems.

1 Introduction

This paper deals with resource discovery in large-scale, dynamic Peer-to-Peer (P2P)
distributed communication systems. In this context, it has been recognized that an
interesting approach consists in exploiting unstructured overlay networks [2, 6, 8],
which are alternative to traditional structured solutions [7]. Indeed, there are some
clear drawbacks related to unstructured networks, that make structured ones more
effective in some distributed systems. In particular, the main weakness of unstruc-
tured nets is that links among nodes do not depend on the distribution of the con-
tents. This means that in general it is not possible to provide a bound on the number
of nodes that might be involved during the lookup of a resource. On the other hand,
the advantages are the easier manageability and the possibility of implementing re-
source discovery systems based on partial-match and complex queries. Conversely,
several structured P2P approaches (e.g. those based on DHTs) strongly limit the
expressiveness of the queries to retrieve contents. For these reasons, understanding
if, how and when unstructured overlays can support resource and content lookup
represents an interesting research topic.
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A main aspect refers to the algorithm employed to distribute queries among
nodes, that strongly influences the performance of the whole system. In this paper,
we study a simple class of dissemination algorithms, which are a mix of push-gossip
based and informed propagation schemes [4]. Each node has knowledge of its k-
neighborhood, i.e. those nodes that are distant at most k hops from it. This informa-
tion is exploited during the routing of messages in the overlay, i.e. a node sends the
message to those 1-neighbors that can relay the message to the k-neighbours that hit
the query. Moreover, the node gossips the message to its remaining 1-neighbors. The
tuning of the parameters of the algorithm (i.e. gossip probability threshold and depth
k of the k-neighborhood) allows to pass, for instance, from pure locally “best neigh-
bor selection” dissemination protocols (gossip probability set equal to 0), e.g. [11],
to flooding schemes (gossip probability set equal to 1). Similarly, if the depth k of
the k-neighborhood is set k = 0, a pure gossip strategy is obtained; when k is set
equal to the network diameter, we have a scheme with full-knowledge of the net.

We present an analytical framework that models the described family of com-
munication protocols. A numerical analysis over scale-free network topologies is
performed, and it is compared with a simulation of the system. Results confirm that
dissemination protocols exploiting the combination of gossip and local knowledge
about nodes’ neighborhood, are a useful tool to build lookup discovery services over
large-scale unstructured P2P systems. Moreover, the framework can be practically
exploited to tune the gossip probability at peers and build effective lookup discovery
services over P2P unstructured overlays. In many cases, it is sufficient to maintain
information on the 2-neighborhood (or even 1-neighborhood, with a higher gossip
probability) to have that queries percolate through the overlay, hence obtaining a
number of query hits of the order of the number of resources (matching the query)
present in the network.

The remainder of this paper is organized as follows. Section 2 presents the sys-
tem model and the local protocol executed at each node. Section 3 presents the
mathematical model. Section 4 outlines results coming from numerical analysis and
simulation. Finally, Section 5 provides some concluding remarks.

2 System Model and Protocol

Let consider unstructured overlay networks, with peers that connect each other
through a pseudo-random attachment process which shapes the overlay based on
a specific network topology, defined through a degree probability distribution. The
link creation process does not depend on the placement of contents in the P2P sys-
tem [5]. We denote with Π 1 the 1-neighborhood of a node n (n’s friends); in general
Π k is the k-neighborhood of a node, i.e. nodes at most k hops away from n. Nodes
know how to reach all its k-neighbors. We assume the existence of a RELAY(m) pro-
cedure that returns the node that n has to contact to reach m. Of course, if m is a
1-neighbor of n, RELAY(m) returns m.

When a peer n holds (removes) from its cache a novel resource item, it informs its
k-neighborhood, through some multicast message sent through the overlay. Hence,
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Algorithm 1. Query distribution protocol executed at node n
Require: Query Q generated at n ∨ Q received in a message relayed by a neighbor peer m
1: if Q already handled then
2: Return
3: end if
4: if QUERYHIT(Q) then {local query hit}
5: s = ORIGINATOR(Q)
6: rp = PROFILEMATCHINGRESOURCE(Q)
7: msg = 〈“available”,rp〉
8: SEND(msg,s)
9: end if

10: DECREASETTL(Q)
11: if TTL(Q) > 0 then {relay to hitting nodes}
12: R ←{RELAY(i)|i ∈ Πk ∧ i has an item matching Q}\m
13: for all r ∈ R do
14: SEND(Q, r)
15: end for
16: for all i ∈ Π1 \{R∪m} do {gossip}
17: if RANDOM() < γ then
18: SEND(Q, i)
19: end if
20: end for
21: end if

upon reception at m of a message stating that n holds (deletes) a novel resource
item, m adds (removes) a related entry in its neighbor table. This way, each time m
receives a query that hits that resource item, m can forward the query towards n. It
is clear that the higher the depth k of the neighborhood, the higher the amount of
control messages to be transmitted to maintain correct information.

The distribution of a query is based on pure local decisions [4]. We assume that
each query contains all the information needed to perform a matching among the
requested (type of) item and resources available in the system; in other words, re-
sources are described through a profile (or some metadata). Algorithm 1 shows the
pseudo-code of the peer (n) behavior executed to disseminate a query. When n cre-
ates or receives a novel query from a neighbor m (which has not be handled already,
lines 1–3), first, it checks if there is a query hit locally; in this case, the query origi-
nator is contacted directly (lines 4–9).

Then, n multicasts the query to those k-neighbors that own an item that hits the
query (lines 12–15). This is accomplished by sending the message to its 1-neighbors
that will relay it to the target nodes. However, this is done only if the message has
a positive Time-To-Live (TTL) (lines 10–11). (We are assuming that the TTL value
allows to cover the whole network; typically, this can be obtained using low values
of the order of the logarithm of the network size.) Finally, n gossips the message
with a probability γ ≤ 1 to the remaining set of 1-neighbors (lines 16–20) [4].

The considered family of protocols groups together different typical schemes
employed over unstructured P2P overlays. Figure 1 shows the protocols we obtain
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Fig. 1 Discovery protocols obtained through the setting of the depth of the k-neighborhood
and the gossip probability γ

depending on the gossip threshold γ and depth of the k-neighborhood. In fact, when
k = 0 and γ > 0, we have a gossip protocol, i.e. queries are randomly dissemi-
nated. When γ = 1 we have a flooding protocol, i.e. messages are relayed through
all nodes’ links. Informed protocols are those where peers have knowledge of their
k-neighborhood (without using gossip) [11]; they are thus placed on the k-axis, with
γ = 0. Finally, if we ideally set the k value equal to the network diameter, then we
obtain full-knowledge schemes, where the overlay is exploited to route messages.

3 System Analysis

The goal of this analysis is to estimate the average amount of query hits 〈h〉 that
would occur, given an estimate of the resource popularity (i.e. how much resources,
that would hit the query, are distributed in the net) and a given degree distribution
probability characterizing the unstructured overlay topology.

Each query dissemination process is considered as a standalone, independent
task. This is a correct assumption if peers have a buffer cache whose size is suf-
ficiently large to handle simultaneous queries. Otherwise, the model should be ex-
tended to consider possible buffer overflows.

We assume to work with very large and dynamical P2P systems. We already men-
tioned that, for small-sized and stable nets, the use of unstructured overlays can be
avoided, since other approaches can be proficiently employed, such as centralized
solutions or structured distributed systems (e.g. DHTs). The high number of nodes,
together with the random nature of contacts among peers in the overlay, augments
the probability of having a low clustering in the network [6, 10]. A consequence of
the random nature of the attachment process is that, regardless of the node degree
distribution, the probability that a 2-neighbor is also a 1-neighbor of a node, goes as
N−1, being N the number of nodes in the overlay. Hence, this situation can be ig-
nored for high N values. This assumption is supported by previous works, asserting
that it is undesirable for an unstructured P2P overlay to have high clustering [12].
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In fact, clustering reduces the connectivity of a cluster to the rest of the net, increases
the probability of partitioning, and it may cause redundant message delivery.

We denote with pi the probability that a peer has i 1-neighbors (its degree). Let
qi be the excess degree distribution [10], i.e. the probability that, following a link
in the overlay, we arrive to a peer m that has other i links (hence the degree of m is
i+ 1). Given pi, we have that qi =

(i+1)pi+1
∑ j jp j

.

Probabilities pi and qi represent two similar concepts i.e. the number of
contacts of a considered peer (its degree), and the number of contacts obtained
following a link of a peer (its excess degree), respectively. In the following, we
introduce measures obtained by considering the degree pi of a node, as well as the
excess degree qi of a link. Hence, with a slight abuse of notation we denote all
the probabilities/functions related to the excess degree with the same letter used
for the degree, with an arrow on top of it, just to recall that the quantity refers to
a link. Thus, for instance, the generating functions for pi and qi are denoted as
G(x) = ∑i pixi,

−→
G (x) = ∑i qixi.

We denote with ρ the probability that a node has a resource item matching the
considered query, and with γ the gossip probability. If the considered protocol em-
ploys the 1-neighborhood Π 1 only, then the probability that a node n does not trans-
mit a query to a neighbor m is (1−ρ)(1− γ), i.e. the probability that m does not hit
the query, and n decides not to gossip to m. Hence, the probability τ1 that n trans-
mits the query to a neighbour m, having only knowledge of its 1-neighborhood Π 1

is τ1 = 1− (1−ρ)(1− γ).
With this in view, the probability that none of the n’s 1-neighbours hit the query

is ∑i pi(1−ρ)i = G(1−ρ). This result is obtained by considering all the possible
cases of n having degree i and its i neighbours do not hit the query. Similarly, the
probability that, given a randomly chosen edge of n, we arrive to a node m that does
not have any neighbour (apart from the link we considered to arrive to m from n)
that hit the query is ∑i qi(1−ρ)i =

−→
G (1−ρ).

Following this reasoning, it is possible to determine the probability τ2 of relaying
a query to a node m when n has knowledge of its 2-neighborhood Π 2. In fact, such
probability is τ2 = 1− (1−ρ)(1− γ)

−→
G(1−ρ), i.e. n does not transmit to m if: m

does not hit the query (probability (1−ρ)); n decides not to gossip m (probability
(1−γ)); and n knows that its 2-neighbours connected through m do not hit the query
(probability

−→
G (1−ρ) measured above).

The approach can be exploited to measure τk, with any given value of k. For in-
stance, the probability that following a link we arrive to a node which has no neigh-
bors in its Π 2 that hit the query is ∑i qi(1−ρ)i[

−→
G (1−ρ)]i =

−→
G
(
(1−ρ)

−→
G (1−ρ)

)
.

Through this result we might obtain τ3, and so on.
Now, the probability that n forwards a message to i of its neighbors is

fi = τ i
k ∑

j≥i
p j

(
j
i

)
(1− τk)

j−i. (1)
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fi considers all the possible cases of n having a degree j, which forwards the query
to i(< j) neighbors, while not forwarding the query to its remaining j− i neighbors.
Similarly, the probability that following a link we arrive to a node that forwards the
query to i other nodes is readily obtained by substituting, in (1) above, p j with q j,

i.e.
−→
f i = τ i

k ∑ j≥i q j
( j

i

)
(1− τk)

j−i.
If we consider the generating function F of the fi coefficients, we have

F(x) = ∑
i

fix
i = ∑

i
τ i

kxi ∑
j≥i

p j

(
j
i

)
(1− τk)

j−i

= ∑
j

p j

j

∑
i=0

(
j
i

)
τ i

kxi(1− τk)
j−i

= ∑
j

p j(τkx+ 1− τk)
j = G

(
τkx+ 1− τk

)
.

The average value of coefficients fi is given by the derivative of F measured at x= 1,
i.e. F ′(1) = ∑i i fi,

F ′(x)
∣∣
∣
x=1

=
dG
dx

(
τkx+ 1− τk

)∣∣
∣
x=1

= τkG′(1) = τk〈p〉,

where 〈p〉 is the mean node degree.

Similarly,,
−→
F ′(x)

∣
∣
∣
x=1

= τk
−→
G ′(1) = τk〈q〉, where 〈q〉 is the mean value of the ex-

cess degree, 〈q〉= ∑i iqi =
∑i i(i+1)pi+1

∑ j jp j
= 〈p2〉−〈p〉

〈p〉 .

With these measures, it is possible to obtain the whole number of nodes reached
by a message starting from a given node, regardless of the number of hops [10]. Let
consider the probability ri that i peers receive a query, starting from a given node
and −→r i is the probability that i peers are reached starting from a link. −→r i can be
defined using the following recurrence,

−→r 0 = 0,
−→r i+1 = ∑

j≥0

−→
f j ∑

a1+a2+...+a j=i

−→r a1
−→r a2 . . .

−→r a j . (2)

Equation (2) can be explained as follows. It measures the probability that following
a link we disseminate the query to i+ 1 peers. (The case −→r 0 is impossible, since at
the end of a link there must be a node.) One peer is that reached at the end of the
link itself. Then, we consider the probability that the peer forwards to other j links
(varying the value of j). Each link k allows to disseminate the query to ak peers, and
the sum of all these reached peers equals to i.

Similarly, we can calculate ri as follows

r0 = 0,

ri+1 = ∑
j≥0

f j ∑
a1+a2+...+a j=i

−→r a1
−→r a2 . . .

−→r a j . (3)
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In this case, we start from the peer itself, considering it forwards to j nodes; and as
before, from these j links we can reach i other peers, in total.

The use of generating functions, R(x) = ∑i rixi,
−→
R (x) = ∑i

−→r ixi, allow to handle
equations (2–3). In fact, after some algebraic manipulation we have

−→
R (x) = x ∑

j≥0

−→
f j[

−→
R (x)] j = x

−→
F (

−→
R (x)) (4)

and, similarly,

R(x) = x ∑
j≥0

f j[
−→
R (x)] j = xF(

−→
R (x)). (5)

From these generating functions, it is possible to measure the average number 〈r〉
of peers that receive a query through the dissemination protocol, i.e. 〈r〉 = ∑i iri =
R′(1). On the other hand, taking (5) and differentiating

R′(1) =
[
F(

−→
R (x))+ xF ′(−→R (x))

−→
R ′(x)

]
x=1 = 1+F′(1)−→R ′(1),

Similarly, from (4),
−→
R ′(1)=

[−→
F (

−→
R (x))+x

−→
F ′(

−→
R (x))

−→
R ′(x)

]
x=1 =1+

−→
F ′(1)

−→
R ′(1).

Thus,
−→
R ′(1) = 1

1−−→
F ′(1)

, and final formula for 〈r〉 is

〈r〉= 1+
F ′(1)

1−−→
F ′(1)

= 1+
τk〈p〉2

(1+ τk)〈p〉− τk〈p2〉 . (6)

Now, 〈r〉 is the number of peers that receive the query, regardless if these nodes
have a resource item matching it. To obtain the average number of query hits 〈h〉, it
suffices to multiply 〈r〉 by the probability ρ that a peer has a resource item matching
that query, i.e. 〈h〉= ρ〈r〉.

Equation (6) has a divergence when (1+ τk)〈p〉 = τk〈p2〉, meaning that, under
the assumption that the network has an infinite size, the query reaches an infinite
number of nodes, i.e. the query percolates through the network. In other words, an
amount of nodes of the order of the network size receives the query.

4 Evaluation

This section presents an assessment performed by considering the analytical model
and simulation. While during the assessment we tested different network topolo-
gies, we will focus here on results concerned with scale-free networks only. These
networks are characterized by nodes having a degree following a power law distri-
bution ∼ pα . They are characterized by the presence of hubs, i.e. nodes with degrees
significantly higher than the average, that have an important impact on the net con-
nectivity. The interest on scale-free networks in this work relates to the fact that
several real P2P systems are indeed scale-free networks [3, 10].
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In this study, we considered not only traditional scale free networks, but also
those with an abrupt cutoff c that limits the maximum degree that peers can main-
tain, so as to bound the workload that hubs in the P2P system must sustain.

4.1 Simulation

We have built a discrete-event simulator mimicking the presented protocol. The
simulator was written in C code and it allows testing the behavior of a set of nodes
executing the presented dissemination protocol. It is able to generate a random net-
work based on a chosen degree distribution. In particular, once having (randomly)
assigned a specific target degree to each node, using the selected degree distribution,
a random mapping is made so that links are created until each node has reached its
own target degree. During the initialization phase, for each node a random choice
was made to place resources; the resource availability was set based on a probability
ρ , i.e. for each network node, an item was present with probability ρ .

To build scale-free networks, the construction method was the one proposed in
[1]. This algorithm differs from other well known proposals, which build networks
with a power law distribution by continuously adding novel nodes, hence having
networks that grow in time. Conversely, we build a network of fixed size, character-
ized by two parameters a,b. More specifically, the number y of nodes which have a
degree x satisfies logy = a− b logx, i.e. y = � ea

xb �. Thus, the total number of nodes

N = ∑�e
a
b �

x=1
ea

xb , being �e
a
b � the maximum possible degree of the network, since it

must be that 0 ≤ logy = a− b logx. Once the number of nodes and their degrees
have been determined, edges are randomly created among nodes until nodes reach
their desired degrees. In the reported results, the parameters were set to a= 6, b= 1,
resulting in networks composed of 2482 nodes.

For each overlay, we varied the values of σ ,ρ in a range going from 0.01 up to
0.5, using a step of 0.01. Thus, 2500 simulation scenarios were considered. For each
of these settings, we repeated the simulation using a corpus of 20 different randomly
generated networks (characterized by the mentioned statistical properties of the tar-
get topology). During each simulation execution, we analyzed the dissemination of
400 queries sent by random nodes.

4.2 Results

In a scale free network (without cutoffs) it is known that when α >−2 the mean di-
verges; when −3 < α <−2, the mean is finite but the variance and higher moments
diverge [10]. Hence, in these cases a query easily percolates through the network
and resources are found with high probability. Indeed, results from our assessment
confirm this. (We do not show them in charts.)

For this reason we focus, for now, on overlays with a lower value for such expo-
nent, i.e. α =−3.2. Figure 2 shows the average amount of query hits in this specific
scenario, obtained via the analytical model and simulation, when peers know their
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(a) Model, Π1 (b) Simulation, Π1

Fig. 2 Average amount of query hits; power law degree distribution with exponent α =−3.2.
Results are shown for Π1. When Π2 is considered, the model returns an ∞ amount of query
hits regardless of ρ,σ values (hence not shown in the figure); simulation results confirmed
that a high majority of nodes is reached and that queries percolate through the net.
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Fig. 3 Minimum γ to find at least one resource; power law degree distribution with exponent
α =−3.2

1-neighborhood Π 1. (In fact, when peers have knowledge of Π 2, the number of re-
ceivers diverges, and thus each query percolates through the network.) It is possible
to observe that with lower values of γ,ρ a limited amount of network nodes receive
the disseminated queries. Then, by increasing these two values, we reach a transi-
tion phase; and after that, the query percolates. One might notice some differences
between the two charts referring to the analysis and simulation. Actually, these are
perfectly reasonable since the analysis assumes an infinite network size; hence, once
a message percolates an infinite amount of nodes is reached. Conversely, simulations
employed finite networks; hence, we obtain smoother transitions where a finite (nev-
ertheless significant, when percolation occurs) amount of nodes is reached. With this
in view, we can conclude that the two approaches provide similar results.

Figure 3 shows the minimum value of the gossip probability γ , to have that at least
one resource is found through a query in a scale free network with α = −3.2. The
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Fig. 4 γ value to obtain an infinite amount of query hits; scale-free network topologies with
different power law distributions

outcome has been obtained through a numerical analysis exploiting the mathemati-
cal model. When peers have knowledge of Π 2, with a resource presence probability
ρ > 0.008 the gossip probability can be set γ = 0; hence, a non-negligible threshold
for the gossip probability is needed only for rare items. This result is due by the
presence of hubs that manage information of a high number of nodes.

It has been already mentioned that scale-free networks are characterized by the
presence of hubs; moreover, we already mentioned the importance of introducing a
cutoff that limits the maximum amount of contacts a peer may have in the overlay.
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Figure 4 shows the percolation transition values (i.e. those values of γ and ρ above
which queries do percolate through the net) for different scale-free networks, when
varying the exponent α of the degree distribution1 (different rows in the figure),
the depth k of the k-neighborhood (different charts in each row), and different set-
tings for the cutoff c (different curves on each chart). Results are obtained through
numerical measurements exploiting the analytical model. In this case, the cutoff
has an influence on the ability of nodes to disseminate the query. In fact, the lower
the cutoff the lower the number of links leaving from the hubs, and thus the more
difficult is to spread the query. An interesting result related to the introduction of
the cutoff, in line with what already mentioned, is that the lower the exponent α of
the power law distribution, the higher the γ to let queries percolate. This is due to
the fact that the presence of the cutoff avoids that the first and second moments of
the degree diverge. Moreover, the lower the exponent α the faster the distribution
goes to 0, and thus the higher the probability that nodes have low degrees, and thus
the lower the connectivity of the network and its ability to spread contents.

Similarly, and as expected, in Figure 4 the higher the cutoff the lower the γ to let
queries percolate, since the presence of nodes with higher degrees (hubs) augments
the connectivity of the network and its ability to spread contents.

Of course, when nodes have knowledge of 2-neighbors, very small γ values are
needed with lower cutoffs (see charts on the right in the figure), while negligible
values of γ are necessary for higher settings of the cutoff c.

To sum up, outcomes confirm that lookup operations can be easily built over
scale-free unstructured overlays.

5 Conclusions

We analyzed the performance of a class of simple dissemination protocols, em-
ploying local knowledge of peers’ neighborhood and gossip, to perform resource
lookup over P2P unstructured overlays. The provided analytical framework allows
to tune the gossip probability to spread queries through the overlay, given a network
topology and a resource probability distribution. These network parameters can be
estimated using some techniques such as entropy-reduction protocols [9].

We tested our approach over scale-free networks. It turns out that, in certain sce-
narios, it might be difficult to locate rare items with naive informed schemes without
gossip (especially if Π 1 is exploited); this is in accordance with some previous re-
sults [11]. However, in most cases very low gossip probabilities are sufficient. Thus,
when networks are large in size and with a high level of churn, these solutions rep-
resent an interesting alternative to dissemination strategies built on top of costly
structured distributed systems.

1 In this case, the cutoff imposes a limit on the moments of the degrees, that do not diverge;
hence, it is interesting to consider networks with values of α higher than those considered
above.



74 S. Ferretti

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Experimental
Math. 10, 53–66 (2000)

2. Cholvi, V., Felber, P., Biersack, E.: Efficient search in unstructured peer-to-peer net-
works. In: Proc. of the 16th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2004, pp. 271–272. ACM, New York (2004)

3. D’Angelo, G., Ferretti, S.: Simulation of scale-free networks. In: Simutools 2009:
Proc. of the 2nd International Conference on Simulation Tools and Techniques, ICST,
pp. 1–10. ICST, Brussels (2009)

4. D’Angelo, G., Ferretti, S., Marzolla, M.: Adaptive event dissemination for peer-to-peer
multiplayer online games. In: Proc. of the Int. Conf. on Simulation Tools and Techniques
(SIMUTools 2011). ICST (2011)

5. Ferretti, S.: On the degree distribution of faulty peer-to-peer overlay networks. EAI En-
dorsed Transactions on Complex Systems 12(1), 11 (2012)

6. Ferretti, S.: Publish-subscribe systems via gossip: a study based on complex networks.
In: Proc. of the 4th Annual Workshop on Simplifying Complex Networks for Practition-
ers, SIMPLEX 2012, pp. 7–12. ACM, New York (2012)

7. Hidalgo, N., Rosas, E., Arantes, L., Marin, O., Sens, P., Bonnaire, X.: Dring: A layered
scheme for range queries over dhts. In: Proc. of the 2011 IEEE 11th International Con-
ference on Computer and Information Technology, CIT 2011, pp. 29–34. IEEE (2011)

8. Keidar, I., Melamed, R.: Evaluating unstructured peer-to-peer lookup overlays. In: Pro-
ceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp. 675–679.
ACM, New York (2006)

9. Montresor, A., Jelasity, M., Babaoglu, O.: Robust aggregation protocols for large-scale
overlay networks. In: Proc. of the 2004 Int. Conference on Dependable Systems and
Networks, DSN 2004, pp. 19–28. IEEE Computer Society, Florence (2004)

10. Newman, M.E.J.: Random graphs as models of networks, pp. 35–68. Wiley-VCH Verlag
GmbH and Co. KGaA (2005)

11. Puttaswamy, K.P.N., Sala, A., Zhao, B.Y.: Searching for rare objects using index replica-
tion. In: 27th IEEE International Conference on Computer Communications, pp. 1723–
1731. IEEE (2008)

12. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership manage-
ment for unstructured p2p overlays. Journal of Network and Systems Management 13(2),
197–217 (2005)


	Searching in Unstructured Overlays Using Local Knowledge and Gossip
	1Introduction
	2System Model and Protocol
	3System Analysis
	4Evaluation
	4.1Simulation
	4.2Results

	5Conclusions
	References




