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Abstract. In foundational models of network formation, the mechanisms for
link formation are based solely on network topology. For example, prefer-
ential attachment uses degree distributions, whereas a strategic connections
model uses internode distances. These dynamics implicitly presume that such
benefits and costs are instantaneous functions of the network topology. A
more detailed model would include that benefits and costs are themselves
derived through a dynamic process, which, in the absence of time-scale sep-
aration, necessitates a coevolutionary analysis. This paper introduces a new
coevolutionary model of strategic network formation. In this model, network
formation evolves along with the flow of benefits from one node to another.
We examine the emergent equilibria of this combined dynamics of network
formation and benefit flow. We show that the class of strict equilibria is stable
(or robust to small perturbations in the benefits flows).

1 Introduction

Networks involving benefit exchanges between the different nodes are ubiq-
uitous. Examples include information exchange in social networks, goods ex-
change in economic markets, and scientific collaboration networks. The abun-
dance and importance of such networks have manifested a growing area of
research that looks into the theory of network formation and the relevance of
emerging structures. A number of different models for the network formation
in multiple disciplines have been proposed that encompass a range of ideas
[1–9]. A common feature of these models is that there is no interdependence
or feedback between the network formation dynamics, and the dynamics on
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the network. Recent work has begun to investigate models with endogenously
formed (i.e., coevolutionary) network topologies in a wide class of systems
including opinion dynamics [10–19].

The work in this paper concerns the study of strategic coevolutionary
network formation. In foundational models of network formation, the mech-
anisms for link formation are based solely on network topology. For example,
preferential attachment [20] uses degree distributions, whereas a strategic
connections model [21] uses internode distances. These dynamics implicitly
presume that such benefits and costs are instantaneous functions of the net-
work topology. A more detailed model would include that benefits and costs
are themselves derived through a dynamic process, which, in the absence of
time-scale separation, necessitates a coevolutionary analysis.

Here we present a model that captures the dynamic flow of benefits in
a network. The model is inspired by and builds upon the strategic network
formation model of Bala & Goyal [21]. In the model, and upon link estab-
lishment, benefits flow from one node to another over time. The amount of
benefit and speed of flow are distance dependent. As the distance between
nodes increase, the total attainable benefits becomes smaller and it takes
longer for the benefits to be attained. Another feature of the model is that
when links are severed, then benefits are not immediately lost. Rather, they
are dissipated over time.

By allowing time to propagate, then a node can realize the full benefits
from an established link, and nodes can seek to maximize such asymptoti-
cally realized benefits. However, this analysis presumes a separation of time
scales. Instead, we consider the case when nodes are myopic decision makers
that seek to maximize the one time step flow of benefits. We examine the
conditions for equilibria of this model and the stability of such equilibria.
We also show that this model admits equilibria that can only be realized at
a higher cost in the case of immediate benefit availability. This formulation
gives rise to a richer set of network topologies without additional cost con-
straints. Section 2 introduces some preliminaries, and Section 3 presents the
model and relevant analysis.

2 Preliminaries

Let us recall the strategic network formation model of Bala & Goyal [21]. The
model represents the flow of benefits in a network of N ≥ 3 nodes. Consider
for example the network shown in Fig. 1. A directed edge i ← j indicates
flow of benefits from j to i, e.g, node 8 is an immediate (one-hop) beneficiary
from node 5, and an indirect (two-hop) beneficiary from nodes 2, 6, and 7.
Nodes dynamically form and sever links based on the rewards of benefit flow
and costs of link formation and maintenance.
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Fig. 1 An example of a directed network of information flow. The arrow direction
indicates the direction of flow.

2.1 The Static Game

First, we will consider the static network formation game. Let N =
{1, 2, . . . , N} be the set of all nodes of the network. Given that a node can
connect to N − 1 nodes, a node’s strategy can be represented by the binary
valued vector gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,N),, where gi,j = 1 whenever
node i has a link with node j, gi,j = 0 otherwise. A network g can be repre-
sented by the joint strategies of all nodes as g = (g1, g2, . . . , gN ). We shall use
g−i to refer to the network constructed from g by excluding node i’s links, i.e.,
g−i = (g1, . . . , gi−1, gi+1, . . . , gN ). A path from node j to node i is denoted by
ij. Let |ij| denote the length of path ij. Define dij(gi, g−i) = minij∈g |ij| as
the length of the shortest path from j to i. For compactness, in the remainder
of this paper, we will write dij instead of dij(gi, g−i) whenever the arguments
are clear.

Immediate Benefit Availability. Whenever node i establishes a connec-
tion with node j, benefits become accessible to i. In the existing models of
strategic network formation, the benefits are fully transferred from node j
and its neighbors to i immediately upon link establishment. The amount of
benefits transferred can be distance dependent. Thus, the value of benefits
from a direct connection can generally be assumed to be δ ∈ (0, 1]. Whereas
if j is an indirect connection of i, then the value of benefits is δdij . Addi-
tionally, let c denote the cost of establishing a connection with another node.
The cost is only incurred by the node establishing/maintaining the link. In
the directed flow network, the benefits will only flow to the node establishing
the connection.

For a given network g, let N+
i (g) = {k ∈ {1, . . . , N} : ik ∈ g} denote the

set of all nodes that have a path to node i. This set defines all the neighbors
of i, direct or indirect. As such, benefits can flow from these nodes to i. We
shall define μi(gi) =

∑
k gi,k as the number of links, or direct neighbors, of

node i. The utility of a given strategy can be defined as the net value of the
benefits available through the connections established by the strategy minus
the cost of establishing these connections.
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ui(gi, g−i) =
∑

j∈N+
i (g)

δdij(gi,g−i) − cμi(gi). (1)

A best response strategy of node i to g−i, hereafter denoted by BR(g−i), is
a strategy gi such that

BR(g−i) ∈ arg max
gi∈Gi

ui(gi, g−i), (2)

where Gi is the set of all possible pure strategies of node i1. Hence for any
best response gi,

u(gi, g−i) ≥ u(g′i, g−i) ∀g′i ∈ Gi.

Definition 1. A network g is said to be a Nash network if gi = BR(g−i),
∀i ∈ N .

2.2 Repeated Myopic Play

Consider the case when the network formation game described above is played
repeatedly at time steps t = 1, 2, . . . . At the beginning of every time step2,
every node plays the same strategy it used in the last time step with proba-
bility pi. That is, the nodes’ strategies exhibit inertia from one time step to
another. With probability 1− pi, the nodes update their strategies based on
myopic best response to the observed network structure from the previous
time. In the case that the best response strategy is not unique, the node
randomizes its decision over the set of best response strategies. As a result,
a node playing a best response to the same network observed in the previous
time step might switch strategies.

Let gt−1 denote the network at time t− 1, then the dynamics of network
formation for agent i are

gti = BR(gt−1
−i ). (3)

As an example, consider the 3-node networks shown in Fig. 2. Starting
with the network in (a), the networks in (b) and (c) can be constructed by
having node 1 switch its connection from 2 to 3, or by adding a connection

to node 3 respectively. Therefore, g
(a)
1 = (1, 0), g

(b)
1 = (0, 1), g

(c)
1 = (1, 1)

and g−1 = (g2, g3) = ((1, 1), (0, 1)). For node 1, the utility for the different

strategies are, u1(g
(a)
1 , g−1) = δ + δ2 − c, u1(g

(b)
1 , g−1) = δ + δ2 − c, and

u1(g
(c)
1 , g−1) = 2δ−2c. For node 2, if c ≤ δ, then u2((1, 1), g−2) ≥ u2(g

′
2, g−2)

for any other strategy g′2 ∈ G2 of node 2. Because of the symmetry between
nodes 1 and 3, then the network in (a) is a Nash network if c < δ and

1 Here we are restricting our attention to the set of pure strategies.
2 Except at t = 1.
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Fig. 2 A 3-node network showing the three strategies for node 1 with nodes 2, and
3 using the strategies g2 = (1, 1) and g3 = (0, 1)

u1(g
(a)
1 , g−1) ≥ u1(g

(c)
1 , g−1)

δ + δ2 − c ≥ 2δ − 2c

c ≥ δ − δ2. (4)

Notice that node 1 would be indifferent between the strategies g1 = (1, 0)
and g1 = (0, 1). Hence, networks (a) and (b) would be Nash networks, and
node 1 would switch between these two configurations provided the other two
nodes do not change their strategies.

If nodes 1 and 3 are allowed to change strategies simultaneously based
on a best response to the previous network, then it is conceivable that both
nodes would switch strategies where they switch to connections from nodes
3 and 1 instead of the existing connections to node 2. Hence, the network
becomes g = ((0, 1), (1, 1), (1, 0)). As such the utility of this network for
either node becomes u1 = u2 = δ − c, which is less than the current utility
of u1 = u2 = δ + δ2 − c. Therefore, in the event that players are allowed to
switch strategies simultaneously, the network in (a) is not stable.

3 Coevolutionary Model

3.1 Dynamic Flow of Benefits

This work is concerned with the case of dynamic flow of the benefits. In this
case, the benefits flow over time from one node to another. If the timescale
for flow is fast compared to the network formation dynamics, then there is a
separation of time scales, and this situation would closely resemble the above
mentioned case of immediate benefit availability. However, if the time scales
for benefit flow and network formation are comparable, then this presents a
coevolutionary process through which benefit flows and network formation
occur simultaneously and the emergent behavior can be different. We consider
the case where the benefits obtained are derived through a dynamic process.
Upon establishing a link, a node will realize a portion of the direct benefit of
the connected node, and with time, the benefits are asymptotically realized.
This model represents delay in the flow of benefits from a node another. The
same applies to benefits from non-direct connections, and the delay is distance
dependent, i.e., the further away two nodes are from each other, then the
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slower is the flow of benefits from one to another. The distance dependence
is very relevant to a number of systems including physical transfer of goods,
and information or knowledge transfer.

Additionally, when a path between two nodes is severed, then the benefits
available from a node to another are not lost immediately, but are forgotten
over time. Here, the rate is also distance dependent. Formally, we define the
benefit flow model to be

btij = f(bt−1
ij , gi, g−i) =

{
αdijb

t−1
ij + (1− αdij )δ

dij , δdij ≥ bt−1
ij (5a)

βdijb
t−1
ij + (1 − βdij )δ

dij , δdij < bt−1
ij (5b)

such that βi, αi ∈ [0, 1], α1 ≤ α2 ≤ . . . and β1 ≥ β2 ≥ . . ..
Here, btij is the benefit available to node i from node j at time t. Let

B denote the matrix whose elements are bij , and bi be the ith row of the
matrix B3.

Examining Eq. (5a) closely, notice that the benefits are increasing since
δdij ≥ bij . That is, when the attainable benefit is higher that the current
flow of benefits from a given node, then the benefits will increase. The rates
for increase αdij are distance dependent and hence the subscript. Note that
the higher the value of αdij , then the slower that benefits flow. As such, the
benefits flow slower as the distances between nodes increase.

When the attainable benefit from a given node, δdij is less that the current
flow of benefits, then the benefits will decrease according to Eq. (5b). The
rates of decrease are distance dependent. The lower the value of βdij , the
higher the decrease in benefits. When there is no path between two nodes i
and j, then dij is infinite and δdij = 0, and benefits will decrease at a rate
of β∞. In the case when αdij = 1, then no benefits will flow. Similarly, when
βdij = 1, benefits will not decrease. Furthermore, when αdij = 0, βdij = 0,
then the dynamics in (5) become equivalent to the instantaneous benefit
availability model.

Compared to the instantaneous model of benefit availability, for a fixed
network, the attainable benefits of both models are the same. However, when
the network is fixed, the dynamic flow model reaches that benefit in the
limit, as the distances between nodes dij do not change for a fixed network
limt→∞ btij = δdij .

For a given network g = (gi, g−i), and given the benefits bi, the utility for
node i can be given by

ui(bi, gi) =
∑

j

bij − cμ(gi).

In the instantaneous benefit flow model, the feedback law to select strategies
assumed an instantaneous realization of the full benefits from other nodes. In
the dynamic benefit flow case, a similar model can be obtained by allowing

3 bii will be assumed to be equal to 1.
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the dynamics to propagate to infinite time and and then selecting a new
strategy based on the limit of the average utility over time. This model,
however, introduces a separation of time scales where the dynamics of benefit
flow have no effect on the outcome of repeated play of the strategic network
formation game.

Alternatively, the strategy of a node can dynamically depend on the avail-
able benefits at a given time. Here, a node can be selecting a strategy at a
given point in time such that it maximizes a utility dependent cost function,
for example the total discounted utility

J =
∑

t

ρtu(bti, gi).

The complexity introduced by the dynamic interdependence of benefits
on the strategies of other nodes, renders the computation of strategies a
challenging task. Alternatively, we will consider the case when nodes are
myopic decision makers, whose interest is to maximize the projected utility
based on the benefit flow in the next time step, and assuming the strategies
of other nodes remain unchanged from the currently observed topology.

Hence, for a given strategy gi, strategies of other nodes g
t−1
−i , and benefits

vector at time t− 1, the utility is

ui(gi, g
t−1
−i , bt−1

i ) =
∑

j

f(bt−1
ij , gi, g

t−1
−i )− cμ(gi). (6)

As such, at time steps t = 1, 2, . . ., a randomly selected node plays a best
response to the currently observed benefit flow and network topology,

gti = BR(gt−1
−i , bt−1

i ) ∈ arg max
gi∈Gi

ui(gi, g
t−1
−i , bt−1

i ). (7)

To that end, at time t − 1 a node i evaluates, for every possible strategy,
the benefits available using (5). With the selected strategy, the benefit flow
dynamics are propagated one time step and a new node is selected randomly
to update its strategy.

3.2 Equilibria of the Coupled Dynamics

We shall consider the limiting behavior of the interconnection of the dynamic
benefit flow model (5) and myopic best response network formation (7).

Definition 2. The pair (B∗, g∗) is an equilibrium of the coupled dynamics
in (5) and (7) if ∀i ∈ N , g∗i = BR(g∗−i, b

∗
i ) and ∀j b∗ij = f(b∗ij , g

∗
i , g

∗
−i).

Here the equilibrium involves both network topology g∗ and a steady-state
benefit flow B∗. One class of equilibria that can emerge is when the topology
of the network remains unchanged, i.e., gt = g∗, ∀t ≥ t0 for some network
topology g∗. As a consequence, the shortest distances between nodes remain
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unchanged, i.e, dij(g
t
i , g

t
−i) = dij(g

∗
i , g

∗
−i), ∀i, j and ∀t ≥ t0. Therefore, the

benefits for each node will correspond to b∗ij = δdij(g
∗
i ,g

∗
−i).

Definition 3. The pair (B∗, g∗) is a strict equilibrium of the coupled dy-
namics in (5) and (7) if and only if u(g∗i , g

∗
−i, b

∗
i ) − u(g′i, g

∗
−i, b

∗
i ) > 0, ∀g′i ∈

Gi\g∗i , ∀i ∈ N .

Now let d∗ij = dij(g
∗
i , g

∗
−i) and d′ij = dij(g

′
i, g

∗
−i) for some strategy g′i ∈

Gi\g∗i . Also define S1 = {j : d′ij ≤ d∗ij} and S2 = {j : d′ij > d∗ij}, these are
the sets of nodes whose distance to node i given strategy g′i are respectively
smaller than and greater than their distances given the equilibrium strategy
g∗i . In retrospect, the sets would correspond to those nodes whose benefit
dynamics will be updated using Equations (5a) and (5b) respectively.

Proposition 1. An equilibrium (B∗, g∗) is strict if ∀i ∈ N , and ∀g′i ∈ Gi\g∗i
∑

j∈S1

(1− αd′
ij
)(δd

∗
ij − δd

′
ij ) +

∑

j∈S2

(1− βd′
ij
)(δd

∗
ij − δd

′
ij ) + c(μ(g′i)− μ(g∗i )) > 0.

(8)

Proof. For any equilibrium such that gti = gt−1
i , ∀t ≥ t0, we know that

b∗ij = δdij(g
∗
i ,g

∗
−i) = δd

∗
ij . For a strict equilibrium we have

u(g∗i , g
∗
−i, b

∗
i )− u(g′i, g

∗
−i, b

∗
i ) > 0

∑

j

f(b∗ij , g
∗
i , g

∗
−i)− cμ(g∗i )−

∑

j

f(b∗ij , g
′
i, g

∗
−i)− cμ(g′i) > 0

∑

j∈S1∪S2

δd
∗
ij −

∑

j∈S1

αd′
ij
δd

∗
ij + (1− αd′

ij
)δd

′
ij

−
∑

j∈S2

βd′ij δ
d∗ij + (1− βd′ij )δ

d′ij + c(μ(g′i)− μ(g∗i )) > 0

∑

j∈S1

(1− αd′
ij
)(δd

∗
ij − δd

′
ij ) +

∑

j∈S2

(1− βd′
ij
)(δd

∗
ij − δd

′
ij ) + c(μ(g′i)− μ(g∗i )) > 0

��
Notice that for j ∈ S1, δ

dij(g
∗
i ,g

∗
−i) ≤ δdij(g

′
i,g

∗
−i), and for j ∈ S2, δ

dij(g
∗
i ,g

∗
−i) >

δdij(g
′
i,g

∗
−i). Therefore, the first term on the left in (8) is nonpositive and the

second term is positive.
An equilibrium of the combined dynamics of network formation and benefit

flow involves both a network topology and benefit flow matrix. The equilibria
here concern the limiting behavior of the coupled dynamics and not just a
best response network like a Nash network of the static game. One of the
questions to consider is whether the coevolutionary dynamics can induce
some network topologies to become equilibria while they are not equilibria
of the non-coevolutionary network formation (static game). In the following
we show through an example that given a common set of parameters, such
topologies exist.
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Proposition 2. For N = 3, if (1−β∞)δ ≥ c ≥ (1−α1)(δ−δ2), and β2 < α1,
then the pair (B∗, g∗) given by

g∗ = ((1, 0), (1, 1), (0, 1)), B∗
g =

⎡

⎣
1 δ δ2

δ 1 δ
δ2 δ 1

⎤

⎦ ,

is an equilibrium of the coupled dynamics in (5) and (7), and g∗ is not a
Nash equilibrium of the static game when α1 > 0.

Proof. Consider the node utilities of the network in Fig. 2(a) and the as-
sociated benefits matrix B∗. By symmetry of nodes 1 and 3, we will only
consider the utilities of nodes 1 and 2. For node 1, comparing strategies (1,0)
and (0,1), using (8), we have

(1 − αd13)(δ
d∗
13 − δd

′
13) + (1− βd′

12
)(δd

∗
12 − δd

′
12) > 0

(1− α1)(δ
2 − δ)− (1 − β2)(δ

2 − δ) > 0

α1 > β2.

Moreover, comparing strategies (1,0) and (1,1) using (8) we have

(1− αd13)(δ
d∗
13 − δd

′
13) + c > 0

(1− α1)(δ − δ2) < c.

For node 2, comparing strategies (1,1) and (1,0) or equivalently (0,1) we have

(1− βd′
23
)(δd

∗
23 − δd

′
23)− c > 0

(1− β∞)δ > c.

Notice that when α1 = 0, then g∗ is an equilibrium if c ≥ δ − δ2 which
retrieves the conditions for the static game shown before in (4). ��
The above shows that the coupled coevolutionary dynamics can create
equilibria that can only be possible at higher costs of link formation in the
non-coevolutionary case. Additionally, the equilibrium also highlights the re-
quirement that nodes need to forget benefits of distant or severed nodes faster
than receiving benefits.

Characterizing equilibria for all N is a difficult problem that is yet to
be tackled. Instead, we present some equilibria of some small networks to
highlight some of the typical topologies of such equilibria. For c < δ − δ2,
the equilibrium in the model of Bala & Goyal [21] is the complete network.
For the coevolutionary model, the equilibria are quite diverse and examples
of these equilibria for 4- and 5-node are presented in Fig. 3. A sample run
converging to a non Nash-network of the static game is shown in Fig. 4.
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Fig. 3 Examples of equilibria of a 4- and 5-node network, when δ = 0.9, c = 0.05,
α1 = 0.6, α2 = 0.7, α3 = 0.8, α1 = 0.9, β1 = 0.4, β2 = 0.3, β3 = 0.2, β4 = 0.1,
β∞ = 0.01

3.3 Equilibrium Stability

In this section, we will examine the behavior of the coupled dynamics when
the network topology is at that of an equilibrium whereas the benefits avail-
able are close to the equilibrium values.

Proposition 3. Let (g∗, B∗), where g∗ = (g∗i , g
∗
−i), B∗ = [b∗ij ], be a strict

equilibrium such that ∀i, ui(g
∗
i , g

∗
−i, b

∗
i )− ui(gi, g

∗
−i, b

∗
i ) ≥ γ, ∀gi ∈ Gi\g∗i , for

some γ > 0. Also, let gt0 = g∗ and bt0ij = b∗ij ± ε ∀i, j, for some time t0. If ε

is sufficiently small, then gt = g∗, ∀t ≥ t0, and limt→∞ btij = b∗ij , ∀i, j.
Proof. We shall examine the utility of a strategy gti = g′i compared to gti = g∗i .
First define,

I ′
1 = {j : δdij(g

′
i,g

∗
−i) ≥ bt0ij}, I1 = {j : δdij(g

∗
i ,g

∗
−i) ≥ bt0ij},

I ′
2 = {j : δdij(g

′
i,g

∗
−i) < bt0ij}, I2 = {j : δdij(g

∗
i ,g

∗
−i) < bt0ij}.
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Then,

ui(g
′
i, g

∗
−i, b

t0
i ) =

∑

j

f(bt0ij , g
′
i, g

∗
−i)− cμ(g′i)

=
∑

j∈I′
1

αdij(g′
i,g

∗
−i)

bt0ij + (1− αdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i)

+
∑

j∈I′
2

βdij(g′
i,g

∗
−i)

bt0ij + (1− βdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i) − cμ(g′i)

=
∑

j∈I′
1

αdij(g′
i,g

∗
−i)

b∗ij + (1− αdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i)

+
∑

j∈I′
2

βdij(g′
i,g

∗
−i)

b∗ij + (1− βdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i)

− cμ(g′i)±
∑

j∈I′
1

αdij(g′
i,g

∗
−i)

ε ±
∑

j∈I′
2

βdij(g′
i,g

∗
−i)

ε

=ui(g
′
i, g

∗
−i, b

∗
i )±

∑

j∈I′
1

αdij(g′
i,g

∗
−i)

ε±
∑

j∈I′
2

βdij(g′
i,g

∗
−i)

ε.

Similarly, we can write

ui(g
∗
i , g

∗
−i, b

t0
i ) = ui(g

∗
i , g

∗
−i, b

∗
i )±

∑

j∈I1

αdij(g∗
i ,g

∗
−i)

ε±
∑

j∈I2

βdij(g∗
i ,g

∗
−i)

ε.

Therefore,

ui(g
∗
i , g

∗
−i, b

t0
i )− ui(g

′
i, g

∗
−i, b

t0
i ) =ui(g

∗
i , g

∗
−i, b

∗
i )− ui(g

′
i, g

∗
−i, b

∗
i )

±
∑

j∈I1

αdij(g∗
i ,g

∗
−i)

ε±
∑

j∈I2

βdij(g∗
i ,g

∗
−i)

ε

∓
∑

j∈I′
1

αdij(g′
i,g

∗
−i)

ε∓
∑

j∈I′
2

βdij(g′
i,g

∗
−i)

ε

≥γ − ε(
∑

I1

αdij(g∗
i ,g

∗
−i)

+
∑

I2

βdij(g∗
i ,g

∗
−i)

)

− ε(
∑

I′
1

αdij(g′
i,g

∗
−i)

+
∑

I′
2

βdij(g′
i,g

∗
−i)

).

Since αk, βk ∈ [0, 1], then for small ε we have

ui(g
∗
i , g

∗
−i, b

t0
i )− ui(g

′
i, g

∗
−i, b

t0
i ) > 0.

This implies that g∗i is a best response and that gt0+1
i = g∗i . Since the

topology remains unchanged, then δdij , ∀i, j remain unchanged. Furthermore,
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the stable dynamics in (5) results in |bt0+1
ij −b∗ij | ≤ ε′ < ε. Using the same argu-

ments recursively, the results follow. ��
Here we have shown that local stability is guaranteed, for small deviations
in the benefit flows from their equilibrium values, for strict equilibria. Strict
equilibria are equilibria such that their utilities are strictly greater than the
utilities of other strategies given a unilateral deviation of strategy.
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Fig. 4 A sample run of the algorithm converging to a non-Nash network of
the static game. Initially b12 = 5.835e−1, b13 = 8.893e−1, b14 = 1.893e−2,
b21 = 2.966e−4 , b23 = 1.934e−2, b24 = 1.299e−1, b31 = 6.847e−1, b32 = 5.124e−2,
b34 = 9.707e−1, b41 = 1.099e−3, b42 = 6.443e−1, b43 = 1.711e−1. A circle around
the node number denotes the node updating its network.

4 Conclusions

In this work, we presented a coevolutionary model of network formation based
on dynamic flow of benefits between nodes. We showed that the combined
dynamics can induce network topologies to be equilibria of the dynamics,
whereas these topologies are not Nash networks of the static game. These
equilibria can emerge at a lower cost than the non-coevolutionary case. We
also showed the stability of a class of equilibria of the combined network for-
mation and benefit flow dynamics. The model can be extended to cases where
each edge has a weight that corresponds to the strength of the connection.
However, this setup can manifest different behaviors and will be the subject
of further studies.
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