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Abstract. In this paper, we propose a method allowing decomposition of directed
networks into cores, which final objective is the detection of communities. We based
our approach on the fact that a community should be composed of elements having
communication in both directions. Therefore, we propose a method based on di-
graph kernelization and strongly p-connected components. By identifying cores,
one can use based-centers clustering methods to generate full communities. Some
experiments have been made on three real-world networks, and have been evaluated
using the V-Measure, having a more precise analysis through its two sub-measures:
homogeneity and completeness. Our work proposes different directions about the
use of kernelization into structure analysis, and strong connectivity concept as an
alternative to modularity optimization.

1 Introduction

Complex networks appear in many applications, including social networks analysis
on the Web, which is a topical research subject. These networks carry non-trivial
topological properties that characterize their connectivity, and affect the dynam-
ics of their behavior. The analysis of complex networks often leads to the analysis
of the roles of elements, or groups of elements, composing a network. Communi-
ties detection belongs to this research field, and can be very useful to better un-
derstand how networks are structured. In this article, we focus on the problem of
finding communities in networks, and more specifically finding cores in directed
networks. Dealing with methods of community detection for directed networks is a
difficult task, and few methods exist compared to methods used in the undirected
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case. Here are some of the most known works in the literature [9, 17, 13] dedi-
cated to directed networks, or which can be adapted to work with directiveness:
Clauset et al. method [5], CFinder based on the Clique Percolation Method (CPM)
[21], Louvain method [3], InfoMap [23], Simulated Annealing for modularity [11],
Wu-Huberman method [31], MarkovCluster algorithm [29], Multistep Greedy algo-
rithm [24] and EM method (Expectation-Maximization) [18]. More recently, others
methods concerning directed networks have been proposed, with more or less good
results [32, 15, 14].

Generally, these methods are most of the time designed for undirected networks,
and adjusted to work in the directed case: they are not initially dedicated to the
directed case. There is also a significant amount of methods using modularity op-
timization. However, this kind of approach has its limits, and can “miss important
substructures of a network” [10]. Some recent work discuss about reciprocated in-
teraction [4], that two people should communicate in both directions, the first per-
son expecting messages from the second person, and vice versa. Our approach is
based on this simple idea: in a directed network, a community should be composed
of nodes which can communicate with every nodes in the community, in both di-
rections. Interesting results in our previous exploratory work [19] encourage us to
continue in this direction. Usually represented by graphs in undirected networks,
this kind of representation can be modeled by the connected component concept,
and more restrictively by the clique concept. Except that for the directed case, it can
be represented by the concept of strongly connected component. Finding these com-
ponents should be equivalent to find cores to which other elements of the network
will be assigned. This work gives the key concepts of this approach, focusing on the
cores finding.

Our paper is structured as such: the first section gives the definitions of graph
theory and formal concepts needed to understand our method. Then, the second part
exposes the different steps of our approach, followed by some experimental results
on real networks. The paper ends by a conclusion which opens discussion on future
work directions.

2 Graph Theory Notions

2.1 Graph Definitions

In this article, we consider only directed graphs (also noted digraph). We give here
a short reminder of graph theory notions. Formally, a digraph G = (V,A) is the pair
composed of [2]:

• a set V = {x1,x2, ...,xn} named vertices or nodes.
• a family A = (a1,a2, ...,an) of elements of the Cartesian product V × V =

{(x,y)/x ∈V,y ∈V} named arcs.

The amount of vertices is noted n (also noted |V (G)|) and the amount of arcs
is noted m (also noted |A(G)|). A path P is composed of k arcs such as P =
(a1,a2, ...,ai, ...,ak) where for every arc ai the terminal end coincides with the initial
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end of ai+1. Several equivalent notations can be used: P = ((x1,x2),(x2,x3), ...) =
[x1,x2, ...,xk,xk+1] = P[x1,xk+1]. A chain is, like a path, an alternating sequence of
vertices and edges, where an edge is an arc without orientation. A circuit is a path
such that the first node of the path corresponds to the last. It can be viewed as an
oriented cycle.

2.2 Connected Components

Here are the different types of connected components we could have in a directed
graph [12]:

• a weakly connected component WCC of a digraph is a subgraph where: ∀x,y ∈
WCC, there is a chain between x and y.

• an unilaterally connected component UCC of a digraph is a subgraph where:
∀x,y ∈UCC, there is a path between x and y OR there is a path between y and x.

• a strongly connected component SCC of a digraph is a subgraph where: ∀x,y ∈
SCC, there is a path between x and y AND there is a path between y and x.

To discover cores in a network, we use a special case of strongly connected
component named strongly p-connected component by [30] which is related to l-
edge-connectivity [7] (we use p-connected notation instead of n-connected to avoid
confusion):

• a strongly p-connected component p-SCC of a digraph is a subgraph where:
∀x,y ∈ p-SCC, there is a path of length p or less between x and y, and there
is a path of length p or less between y and x, with p ≥ 2.

3 Core detection

3.1 Related Work

Finding cores in order to find communities is a method that can be related to pattern
identification [13]. This consists in finding maximal subsets which implies separa-
tion between them. Clique finding is one of these methods, but is also very restric-
tive, because each node must have a direct connection to other nodes. This approach
has been relaxed by the n-clique definition where each node is connected to others
by at least one path which length is at most n, but that can be outside of the n-clique.
The n-clan concept fixes the connectedness issue of the n-clique [20].

Our approach is related to these works, but we don’t put strong constraint on
the size (triads), and we don’t want to avoid circuits (directed k-clique), as it is
specifically the configuration we are looking for: strongly p-connected components.
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3.2 Searching for Cores Using p-SCC Concept

Our community definition refers to a group containing elements that can commu-
nicate with all other elements of the group, corresponding in digraphs, to strongly
connected components (SCC) concept. Tarjan based his algorithm on the search of
circuits [27]. To our knowledge, no work has considered the SCCs in the case of
researching communities. By simply applying Tarjan’s algorithm to directed graph
generated through LFR benchmark [16], some communities can be found, but SCCs
are often oversized. To refine the process, our approach proposes to find p-SCCs
(fig. 1). The problem is that in a digraph, the number of circuits may be exponen-
tial in the number of vertices [26]. Therefore, processing all circuits of a graph is
not relevant, especially if the graph has a significant number of nodes like in large
real-world networks.

(a) (b)

Fig. 1 Examples of p-SCCs: (a): nodes are connected by paths of length at most 2 (2-SCC)
(b): nodes are connected by paths of length at most 3 (3-SCC)

Starting from a node s, we look for p-SCC by searching for circuits, but circuits
with a given size. Trivially, the length of the path p is bounded by the length of the
circuits found into the p-SCC :

p ≤ 2× (c− 1)

where c is the size of circuits we are searching for.

s

Fig. 2 Searching p-SCC is similar to search circuits from a starting node s. In this case,
searching for 4-SCC means searching for circuits of length at most 3. The highlighted path
length is 4, the maximal path length which can be found.
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For instance, searching for circuits of length 3 starting from a node means search-
ing for at most 4-SCCs (fig. 2). We propose an algorithm which returns a p-SCC
starting from a given node (alg. 1). As the algorithm is searching for circuits, and
considering that p parameter sets the circuit length, we can only find p-SCCs with
p being an even number. It is written in a non-recursive way, but time complexity
should be approximatively the same as Tarjan’s algorithm, which is O(n+m), with
two differences: we don’t always need to pass through every arc (depends on path
length), but we should pass through nodes several times.

Input: G: digraph, s:starting node, p:path length (even integer)
Data: astack: stack of arcs, vpath: stack of nodes, c: integer (circuit size)
Remark: Aout(k) represents set of outing arcs of the node k.
source(a) represents the source node of the arc a, dest(a) represents the destination node of the arc a.
Result: C:set of nodes (p-SCC)

C ← /0; C ←C∪{s};

vpath.push(s); c ← (p+2)
2 ;

foreach a in Aout(s) do
astack.push(a);

end
while astack �= /0 do

a ← astack.pop();
w ← vpath.peek();
if source(a) �= w then

while source(a) �= w do
w ← vpath.pop();

end
vpath.push(w);

end
z ← dest(a);
if z = s then

C ←C∪ vpath;
end
else

if |vpath|< c then
foreach b in Aout(z) do

astack.push(b);
end
vpath.push(z);

end
end

end
return C;

Algorithm 1. Algorithm for extracting the p-SCC.

3.3 Digraph Kernelization

Before describing the whole method based on core detection, we show how we
can optimize the search for p-SCCs by “cleaning” the digraph, meaning excluding
nodes and arcs which should never belong to a circuit: this brings us to the notion of
graph kernelization. We are interested in the kernelization which is used in the FVS
problem (Feedback Vertex Set) [28]. As we work in the directed case, we used the
kernelization technique applied to the directed FVS [8], following the four first rules
of the method (it removes self-loop, multiple arcs, isolated nodes, and recursively
chained nodes with only outgoing or incoming arcs).
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4 Digraph Cores Decomposition Method

This section describes our method for core detection in directed networks. Let use
the following notations: G is the input digraph (network), and K is the set of output
cores. The method follows these steps, considering a given p:

1. Kernelize G.
2. For each node of G as the starting node, process p-SCC.
3. Sort p-SCCs by size. Starting from the biggest one, put them one by one in K

if it doesn’t intersect existing cores already inserted into K . In case of cores
having the same size, take the most connected one (biggest amount of arcs).

4. (optionnal) Remove p-SCCs with size inferior to a given threshold Kmin.

Illustration: The figure 3 gives an illustration of our method, step by step, with
p= 4 (meaning we search for circuits of length at most 3). Let take a digraph (a), and
apply the first step which is kernelization (b). Some nodes are ignored, and won’t be
considered. The second step processes 4-SCCs, node by node: in the example (c),
only five iterations are represented (nodes with labels 4 ,5 ,8 ,10 ,13), and for each
node, a 4-SCC is computed, which can be the same for several nodes (nodes 5 and 8
produce the same 4-SCC, same thing for nodes 4 and 13). The last step (d) extracts
the biggest and non-intersecting 4-SCCs giving the final result with 3 cores.
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(a) Input digraph
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(b) Kernelization
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(c) Processing the
4−SCCs
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(d) Cores result

Fig. 3 Illustration of the decomposition method of a digraph into cores

This method returns a set of cores which can be used to cluster the remaining
nodes of the network to have a complete clustering. As some clustering methods
like k-means algorithm, the number of communities is set by the number of cores.
In this article, as we don’t focus on clustering methods, our experiments use a simple
aggregative method like center-based clustering methods, and assign each node to
the community having the nearest core, in term of chain length. The Kmin value can
be useful to avoid too small cores that shouldn’t be considered.

5 Experiments

Validating communities structures corresponds to validate a clustering method. The
difficulty is to find an objective measure of quality of clusters. For our experiments,
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we use V-Measure which is an alternative to F-Measure, and Normalized Mutual
Information from the information theory field to compare the clustering obtained
by our method to the reference classes. We based our experiments on real data net-
works, as some experiments have already been done on generated networks (LFR
Benchmarks [16]) in our previous work with good results [19]. Moreover, there is
an issue with the LFR Benchmark, as it produces graphs already kernelized, which
puts a strong constraint on generated graphs. On the contrary, in the experiment part,
we observe that the real-world networks we used are strongly kernelizable.

5.1 Clustering Evaluation

The entropy notion is used to express the used measures, and is noted as follow, with
X and Y two discrete random variables: H(X) and H(Y ) for the marginal entropies,
H(X |Y ) and H(Y |X) for the conditional entropies, H(X ,Y ) for the joint entropy.
Measures give results between 0 (worst matching) and 1 (best matching). Here are
the two evaluation measures definitions:

• V-Measure [22] is an entropy based-evaluation measure, composed of two con-
cepts: completeness and homogeneity. With C a set of classes (reference), K a set
of clusters (unsupervised method), the homogeneity is defined as:

h =

{
1 i f H(C,K) = 0

1− H(C|K)
H(C) else

and the completeness is defined as:

c =

{
1 i f H(K,C) = 0

1− H(K|C)
H(K) else

A clustering result satisfies homogeneity if all of its clusters contain only ele-
ments which are members of a single class, and a clustering result satisfies com-
pleteness if all the elements that are members of a given class are elements of the
same cluster. The V-Measure is based on homogeneity and completeness scores
such as:

Vβ =
(1+β ) ·h · c
(β ·h)+c

with a β parameter which can be used to weight homogeneity and completeness
scores. In our experiments, we set β = 1 (balanced weights).

• Normalized Mutual Information (NMI) [6] Mutual information is a measure
used in information theory domain, giving the amount of information that one
random variable contains about another. This measure is defined between the
cluster assignments K and a pre-existing labeling set of classes C normalized by:
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NMI(K,C) =
I(K,C)√

H(K)H(C)

with I(K,C) the mutual information of K and C such that I(K,C) = H(K)
− H(K|C).

5.2 Results

In order to test our approach, we used directed network datasets already known in
the literature [1, 25]. Three networks have been used (see tab. 1). Several character-
istics of the network are given like density, degree information, communities max-
imum and minimum sizes, but also the mixing parameter μ [17] and the directed
modularity Qd [18].

Table 1 Network datasets

Directed Network Political Blog Cora Citeseer
|V | 1,222 2,485 2,120
|A| 19,024 5,209 3,768

Classes 2 7 6
Density 1.27% 0.08% 0.08%
Degrees kmean = 31 kmean = 4 kmean = 4

kmin = 1 kmin = 1 kmin = 1
kmax = 467 kmax = 169 kmax = 100

Communities size |C|min = 588 |C|min = 131 |C|min = 115
|C|max = 636 |C|max = 726 |C|max = 532

μ 0.09 0.18 0.28
Qd 0.41 0.63 0.51

5.2.1 Core Decomposition

In tab. 3, we compare the obtained cores with the reference classes, using the p pa-
rameter which corresponds to the path length of a p-SCC, and the Kmin parameter
which is the minimum core size (only relevant results are shown). In most cases,
cores have a good completeness score, meaning that we succeed in having nodes
which belong to a single class in only one core. On the other hand, the homogeneity
score tends to be better when the threshold of the minimum core size is increased
(Political Blog and Cora networks), having nodes of a same core belonging to a
single class. The interpretation that can be made from these results is that the more
the graph is compressed, the less the Kmin gets an high value. When too many nodes
are available to build cores, the Kmin threshold has to be high to remove some even-
tual noise, giving less nodes usable in the core creation. In the results of tab. 3, we
first consider completeness value, and then the homogeneity value. We give more
importance to the completeness score, as it gives better results in the final process
communities detection.
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Table 2 Network kernel sizes

Directed Network Political Blog Cora Citeseer
|V |K 811 2,485 2,120
|A|K 15,833 5,209 3,768

Compression rate (nodes) 33% 84% 97%

Table 3 Cores detection on real-world networks

(a) Political Blog

p K min size h c V Nb Nodes Nb Cores
2 2 0.35316 0.95295 0.51534 329 20
2 3 0.40471 0.94876 0.56739 308 13
2 4 0.44344 0.94601 0.60383 296 10
2 5 0.52053 0.96137 0.67538 281 7
2 6 0.59364 0.97468 0.73787 269 5
2 7 0.7381 1.0 0.84932 255 3
2 16 1.0 1.0 1.0 239 2
4 2 0.60926 0.98967 0.75421 401 12
4 3 0.79398 0.98896 0.88081 380 5
4 4 0.90979 1.0 0.95276 372 3
4 5 1.0 1.0 1.0 367 2

V-Measure

(b) Cora

p K min size h c V Nb Nodes Nb Cores
4 2 0.41019 0.9412 0.57137 98 28
4 3 0.57836 0.9352 0.71471 47 11
6 2 0.41481 0.93729 0.5751 103 28
6 3 0.58141 0.92778 0.71485 52 11
6 4 0.70183 0.92268 0.79724 32 6

V-Measure

(c) Citeseer

p K min size h c V Nb Nodes Nb Cores
2 1 0.49039 0.93415 0.64315 54 26
2 2 0.19087 0.29364 0.23136 6 2
4 1 0.48994 0.93454 0.64285 58 26
4 2 0.5907 0.77251 0.66948 12 3

V-Measure

5.2.2 Communities Detection

Using an aggregative method, the cores first absorb nodes which are in the kernel but
not in the cores, giving pre-built communities. Then, the nodes outside the kernel
are absorbed by the pre-built communities to give a final clustering of communities.
Clusters are not strongly connected, but unilaterally connected. The results in tab. 4
show that even with a naive method of clustering, the communities structures remain
”acceptable“. The cores used in the final clustering process are the cores having the
best completeness scores in the core decomposition operation. Observing the results,
we can make the assumption that the compression of graphs impacts the quality of
cores, and therefore the detection of communities. With a small amount of nodes in
the kernel, the choice to make between the nodes to build the cores is important, as it
determines the final process of communities detection. Also, having only big cores
means setting a too high Kmin threshold value, which can have a negative impact
on the cores detection, and some communities cannot be found in the process. For
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instance, in fig. 4, the central community has been found by our method using the
parameters p = 4,Kmin = 2. If we set Kmin = 3, cores of size 2 are excluded, and this
central community is not detected.

Table 4 Real-world networks communities detection results based on core decomposition

Network Amount of 
Communities

h c V NMI
Political Blog 0.70385 0.69929 0.70156 0.70116 2
Cora 0.35335 0.46349 0.40099 0.40469 28
Citeseer 0.28162 0.38734 0.32613 0.32742 26

Measures

(a) Clustering using an aggregative method
based on core decomposition.

(b) Reference classes.

Fig. 4 Communities detection comparison on the Cora citation network (p = 4,Kmin = 2)

6 Conclusion

In this article, we focused on an approach dedicated to directed networks, and we
gave a method allowing the decomposition of these networks into cores. These cores
can be used by any clustering method based on centers to detect communities. Our
various contributions can be presented as follows:

• We provide a simple and efficient algorithm to generate these p-SCCs in a di-
graph. This approach can be classified in the pattern identification category that
we can find in some method classification, while being flexible enough.

• The interest of using kernelization process has been highlighted : it reduces the
core detection process, and can give some information on the network structure.

• An important thing about these results is that we didn’t take into account the
modularity concept in our approach. As a large part of the communities detection
algorithms are dedicated to modularity optimization [13], we want to stress the
point that we can have interesting results in communities detection without this
concept.
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Several options can be considered for the continuation of this work. As we said,
we have to apply our method to others real-world datasets. We should also study how
to increase the quality of the core detection, and it could be interesting to have the
possibility to automatically fix the Kmin threshold value. Testing other based-centers
clustering methods should be done too. Also, the case of overlapping communities
should be considered, as our approach could be quickly adaptable with p-SCCs
which naturally overlap each other. In our opinion, our work points out that no clear
or unanimous consensus about the definition of communities exists, and provides
a new point of view on the detection of communities into directed networks, being
omnipresent in the Web nowadays.
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