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Abstract. Network motifs are small overrepresented patterns that have been used
successfully to characterize complex networks. Current algorithmic approaches fo-
cus essentially on pure topology and disregard node and edge nature. However, it is
often the case that nodes and edges can also be classified and separated into differ-
ent classes. This kind of networks can be modeled by colored (or labeled) graphs.
Here we present a definition of colored motifs and an algorithm for efficiently dis-
covering them. We use g-tries, a specialized data-structure created for finding sets of
subgraphs. G-Tries encapsulate common sub-structure, and with the aid of symme-
try breaking conditions and a customized canonization methodology, we are able to
efficiently search for several colored patterns at the same time. We apply our algo-
rithm to a set of representative complex networks, showing that it can find colored
motifs and outperform previous methods.

1 Introduction

Network motifs are small overrepresented subgraphs appearing more frequently
than what would be expected in randomized networks with similar topological char-
acteristics [1]. They have been extensively used in may domains, such as biologi-
cal [2] or social [3] networks. The vast majority of past research deals essentially
with pure structural motifs, with nodes and edges being of the same type, i.e., with
no associated color or label. This is a restriction that limits the information we can
obtain, because it is often the case that nodes or edges are of different nature. For
example, in metabolic networks, we can distinguish between two sets of nodes: re-
actions and chemical compounds [4]. By ignoring these labels we may be missing
important patterns, and it has been shown that by associating different colors to the
nodes, their information content is richer [5]. The same can be said about edges, and
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previous experiments have shown that we would gain if it was possible to distinguish
between different types of connections in biological networks [6].

Discovering network motifs is a computationally hard task, intimately connected
to the subgraph isomorphism problem. Current methods essentially rely on comput-
ing the frequency of subgraphs on both the original graph and on an ensemble of ran-
domized similar graphs. This is traditionally done in one of two distinct approaches:
either we enumerate all subgraphs of a certain size and then compute their isomor-
phisms, or we query individually for one subgraph at a time. The first network-
centric approach demands that we always look for all possible subgraphs, with no
option for looking for specific types. The second subgraph-centric approach, con-
siders one subgraph type at a time, not reusing information from previous searches.
We recently introduced the g-trie data-structure [7], allowing a set-centric approach,
in which we can search specifically for a certain set of subgraphs. The algorithms
developed show substantial efficiency gains on pure structural motifs, when com-
paring to previous approaches [8].

In this paper we present an efficient g-tries based algorithm able to discover col-
ored motifs. Our main contribution is two-fold. First, we give a clear definition of
what a colored motif can be, including how we can compute its statistical signif-
icance. Secondly, we provide an extension of the g-trie data structure and associ-
ated algorithms in order to allow the usage of color information on both nodes and
edges. This allows for richer searches that do not discard information about the na-
ture of the network constituents. We empirically evaluate our algorithms in a set
of representative graphs, showing the feasibility of our approach and how we can
outperform past methods.

The remainder of the paper is organized as follows. Section 2 establishes a com-
mon graph terminology, explains the problem being tackled, and overviews related
work. Section 3 describes the g-trie data structure and details how it can be used for
discovering colored motifs. Section 4 shows the results of an empirical evaluation
of the developed algorithms, when applied to a set of complex networks, and com-
pares it to the performance obtained by a competing algorithm. Finally, section 5
concludes the paper.

2 Preliminaries

2.1 Graph Notation

We briefly review the main concepts and notation that we use. A graph G is com-
posed of a set V (G) of vertices or nodes and a set E(G) of edges or connections.
A k-graph is a graph of size k, i.e., with k nodes. Every edge is composed of a pair
(u,v) of two endpoints in the set of vertices. A graph is said to be colored if we as-
sociate colors, or labels, to each of its vertices and/or edges. Note that non-colored
graphs can be seen as a simpler case with only one color for nodes and edges. The
degree of a vertex u is the number of connections it has to other nodes, and its neigh-
bourhood, denoted as N(u), is composed by the set of vertices v ∈V (G) such that v
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and u share an edge. The exclusive neighborhood of a vertex v of graph G relative to
a subgraph Gk is defined as Nexclusive(v,Gk) = {u : u ∈ N(v)∧u /∈ N(Gk)∧u /∈ Gk}.

A subgraph Gk of a graph G is a graph of size k in which V (Gk)⊆V (G) and
E(Gk)⊆E(G). This subgraph is said to be induced when ∀u,v ∈ V (GK), (u,v) ∈
E(Gk) if and only if (u,v) ∈ E(G). The neighborhood of a subgraph Gk, denoted
by N(Gk) is the union of N(u), ∀u ∈ V (Gk). Two graphs G and H are said to be
isomorphic, if there is a one-to-one mapping between the vertices of both graphs
(including colors) and there is an edge of color c between two vertices of G if and
only if their corresponding vertices in H also have an edge of color c.

2.2 Colored Motifs

Milo et al. provided the first definition of network motifs as “patterns of inter-
connections occurring in complex networks in numbers that are significantly higher
than those in similar randomized networks” [1]. Here we introduce a similar defi-
nition for colored motifs, but with the necessary adaptions. To put it to practice, we
need to establish two different concepts: what is the frequency of a subgraph and
what are similar randomized networks.

For the first concept, we resort to the standard definition in the motif detection
realm, considering only induced subgraphs, and with two occurrences being differ-
ent if they have at least one node or edge not shared. As to the second concept, the
idea is to test subgraph significance by comparing the frequency of the subgraph in
the original network with its frequency on a large number of similar random net-
works. To be sure that the results are specific to a particular network one should use
randomized networks as close as possible to the original one. Milo et al. suggested
to keep single-node properties, namely its degree. Adapting this to the colored case,
we maintain all color related information. The randomized networks have the same
set of nodes and colors, each node keeps the same amount of edges in each color, and
each edge connects endpoints of the same colors it was connecting in the original
network. We can say that we keep the colored degree sequence.

Figure 1 shows an example colored motif following our definition, appearing 4
times on the original network. Different occurrences (indicated with thick lines) may
share some of the nodes (e.g., {1,6,7} and {1,7,11} share nodes 1 and 7). Colors
enrich the information and allow us to distinguish between different types of triangle
subgraphs. Note how the randomized networks respect the colored degree sequence
of the original, with each node keeping the exact same type of colored connections.
For instance, in the original network node 1 has two dashed connections to light
nodes, one dashed connection to a black node and one continuous connection to
another black node. The same happens at each of the similar randomized networks.
However, the subgraph we are considering is much less frequent on these networks
than in the original one, and hence we consider it a motif, i.e., the subgraph is
overrepresented.
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Fig. 1 An example colored network motif with 3 nodes

2.3 Related Work

There has been some work on motif detection using colors only in nodes [9], but
not with colored edges, even if it was acknowledged that incorporating connection
types would lead to richer results [6]. The work by Adami et al. [5] considered the
case of colors only in nodes and uses an entropy-based measurement to determine
significance. Quian et al. [10] also use colors solely in nodes and swap colors in the
network, that is, the randomized networks are topological equivalent to the original,
but with a different permutation of the colors in the nodes. Schbath et al. [11] also
incorporate color in motif detection, but they only consider sets of connected colors,
ignoring the exact connections between the respective nodes.

The only work we are aware of that directly supports motif finding with colors
both in nodes and edges is the FanMod tool [12], which implements the ESU algo-
rithm ESU [13]. Nevertheless, a clear formal definition of colored motif is not given.
ESU was initially created for non-colored topological motif detection, a problem for
which there are several possible methodologies. Kavosh [14], FaSE [15] and ESU
itself are examples of network-centric approaches, where all subgraphs of a given
size are counted by an enumeration followed by isomorphism tests to determine the
subgraph class of each found occurrence. On the other hand, algorithms such as the
one by Grochow and Kellis [16] only search for one subgraph at a time, with no re-
usage of any kind of information between the computation of different subgraphs.

Here we use a set-centric approach, extending our own g-trie data structure [7],
which previously did not account for color information. This methodology has been
shown to be very competitive with running times that can outperform previous ex-
isting methods in the case of uncolored motifs [8].



Discovering Colored Network Motifs 111

In this paper we concentrate on exact algorithms, that are able to compute exact
frequencies. There are however approximation techniques that trade accuracy for
better running times. They are based on methodologies such as sampling [13, 17,
18]. The work we show in this paper can be further extended in the future to support
such an approach.

3 Finding Colored Motifs with G-Tries

3.1 The Colored G-Trie Data Structure

A g-trie is a multiway tree (with a variable number of children per node) able to store
and describe a set of graphs. To avoid further ambiguities, from now on we will use
the term node for referring to g-trie tree nodes, and the term vertex to refer to the
actual graph vertices stored in the g-trie. Each node contains information about a
single vertex and connections to ancestor vertices. In order to support colors, we
include in this information the color of the respective node and the color of each
edge. A path from the root to a leaf node defines a subgraph.

Fig. 2 An example colored g-trie containing 10 different subgraphs

Figure 2 exemplifies the concept, with a g-trie storing 10 colored subgraphs, with
3 different vertex colors and 3 different edge colors. Each g-trie node adds a new
graph vertex (inside the small square) to the already existing ones in the ancestor
nodes. Note how descendants of a node share a common colored subtopology.

3.2 Motif Discovery

Our methodology has two input parameters: a network to analyze and k, the size
(in vertices) of the motifs we are looking for. The flow of the algorithm is, in its
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essence, the same as what was done originally by Milo et al [1]. First, compute the
frequency of all k-sized subgraphs of the original network, i.e., a subgraph census.
Secondly, compute the frequency of these subgraphs in the set of similar randomized
networks. In the following sections we describe how these two steps are made.

3.3 Census in Original Network

The original g-trie algorithm for computing subgraph frequencies needs as input
a set of subgraphs to store. When no colors are used and the size k is small, it is
possible to use as input the set of all possible k-subgraphs. With colors, the number
of different possibilities is much larger (due to the possible permutations between
colors) and this option becomes unfeasible even for a relatively small k.

Given this, we opted to follow a network-centric approach for this initial step,
i.e., we search for all occurrences of k connected nodes and identify their topolog-
ical type. At the core, we need an algorithm for enumerating the sets of connected
nodes. We opted to use ESU [13] as the base algorithm but in order to avoid a large
number of isomorphism tests we incorporate the g-trie in the enumeration process,
in a similar way to what was done with the FaSE algorithm [15].

Algorithm 1. Census of subgraphs with k vertices in the original network G.

1: T := new empty g-trie
2: for all v ∈V (G) do
3: EXTENDSUBGRAPH({v},{u ∈ N(v) : u > v},v,T )

4: for all n ∈ T.leaves() do
5: f requency[CanonicalLabel(n.Graph)] += n.count

6: procedure EXTENDSUBGRAPH(VSubg,VExt ,v,T )
7: c := last vertex in VSubg and its connections to previous nodes
8: if T.notHasChild(c) then T.CREATECHILD(c)
9: T := T.child(c)

10: if |VSubg|= k then T.count+= 1
11: else
12: while VExt �= /0 do
13: remove any w ∈VExt

14: V ′
ext :=Vext ∪{u ∈ Nexclusive(w,Vsubg) : u > v}

15: EXTENDSUBGRAPH(VSubg ∪{w},V ′
ext ,v,T )

Algorithm 1 details our approach. At the core we are using the ESU algorithm
(lines 2 to 3 and 10 to 15), which enumerates all k-subgraphs of a network once
and only once. It works by maintaining two vertex lists: VSubg and Vext . The first one
represents the current partial subgraph being constructed (set of connected vertices)
and the latter a list of all neighbor vertices that can be added. Initially, it chooses
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each vertex v in the original graph G to be a possible starting point, and its neighbors
as possible extensions (lines 2 and 3). Then it recursively removes each element of
the extension list (line 13) and creates a new list of possible extensions (line 14).
The usage of the exclusive neighborhood, along with the condition u > v, breaks
symmetries and guarantees that each occurrence is only found once. When the size
of VSubg reaches k it means a new occurrence of a k-subgraph is found.

ESU execution naturally creates an implicit recursive search tree. At each time,
one new node is added to the current partial subgraph, and it corresponds to a ram-
ification in the g-trie. If that ramification already existis, we just update our current
position in the g-trie (line 9). If not, we first create the ramification (line 8) and then
follow that path. In the end, a g-trie path from the root to any leaf corresponds to a
different node permutation of a certain graph type. We compute a canonical labeling
for each leaf in order to identify its subgraph type (lines 4 and 5) but we avoid the
need for that computation on all other occurrences of the same type whose node per-
mutation corresponds to an automorphism, i.e., corresponds to the same path in the
g-trie. Note that two leaves may be isomorphic, because the order in which vertices
are traversed may implicitly define different paths. Ideally, one wants a single canon
path in the g-trie for the same subgraph type but in here we trade memory for better
running time, postponing the canonization for the randomized networks. The actual
canonical labeling algorithm used is explained in section 3.5.

3.4 Census in the Randomized Networks

The bulk of the computation work is to discover the subgraphs frequency in the ran-
domized networks. Typically one uses around 100 random networks [1], with each
taking an amount of time similar to the time needed for the subgraph census in the
original network. Since we know which subgraph types appeared in the original net-
work, we limit our search to those. Our approach is to build a new g-trie containing
only a single representation of each subgraph we are interested in. For that, we take
all subgraphs found in the original network, apply the canonical labeling described
in section 3.5, and insert such canonical representation in the g-trie.

Henceforth, we can use the new g-trie (with a single copy of each subgraph type)
to greatly constrain the frequency calculation in the random networks. The core idea
is to backtrack through all possible connected sets of nodes, and at the same time
only follow the possibilities that map exactly to a g-trie path. We take advantage
of common substructures identified in the g-trie in the sense that at a given time
we have a partial isomorphic match for several different candidate subgraphs (all
the descendants in the g-trie). We also use symmetry breaking conditions to further
constrain the search and avoid redundant computation, in a similar way to what we
have done with uncolored motifs [8].

Algorithm 2 details our method to count all occurrences of the g-trie colored
subgraphs on a single randomized network. The idea is to find matches for all pos-
sible g-tries paths, i.e., all possible subgraphs. In the beginning we follow all g-trie
root children and start with an empty partial match (lines 1 and 2). We then find all
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Algorithm 2. Census of subgraphs of G-Trie T in graph G
1: for all children c of T.root do
2: MATCH(c, /0)

3: procedure MATCH(T,Vused)
4: V := MATCHINGVERTICES(T,Vused)
5: for all node v of V do
6: if isLeaf(T ) then FOUNDMATCH(Vused ∪{v})

7: for all children c of T do MATCH(c,Vused ∪{v})

8: function MATCHINGVERTICES(T,Vused)
9: if Vused = /0 then Vcand := {v ∈V (G) : v respects color of g-trie node}

10: else Vcand := {v ∈ N(Vused) : v respects color and sym. conditions}
11: Vertices := /0
12: for all v ∈Vcand do
13: if Vused ∪ v respects connections of T then Vertices :=Vertices∪{v}
14: return Vertices

candidate vertices to fill the position of that g-trie node (line 4). If we are at a g-trie
leaf, we found a complete match to a subgraph and we can increment its frequency
(line 6). If not, we continue as before, recursively following all possible g-trie paths
from there, i.e., all subgraphs that may start with the current partial match (line 7).
In order to find the candidate vertices (lines 8 to 14) we have a look at the neighbors
of the current partial match (line 10) and only use those that respect the symmetry
breaking conditions (line 10) and that at the same time respect the color connections
with the vertices already in the partial match (line 13).

3.5 Canonical Labeling of a Colored Subgraph

For both previous algorithms we need to be able to produce a canonical labeling of
a colored subgraph. This allows us to identify the subgraph type at each leaf in the
g-trie that is dynamically constructed as we enumerate the subgraphs in the original
network. At the same time, this canonical representation is used for choosing the
path that will individually represent each isomorphic type in the g-trie that is used
for searching in the randomized networks. The choice of this labeling will therefore
directly interfere with the g-trie shape for this second part, including how much
common-substructure is found, as explained in [8].

We opted to use the GTCanon labeling, which was created precisely for usage
with g-tries [8]. At the core, this labeling uses nauty, a very efficient graph isomor-
phism program [19]. However, natively, nauty supports colors only in nodes and
therefore we had to adapt it so that edge colors are also supported. In practice, for
the labeling part, we convert each subgraph to an equivalent subgraph that uses col-
ors only in vertices. The idea is to use several layers as is, for instance, exemplified
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in [20]. If we have k colors in the edges, we can substitute each vertex v j ∈V (G) in
the graph by a connected graph of k vertices v0

j ,v
1
j , . . . ,v

k
j (we use cycles of size k).

If there is an edge of color i between vertices v j and v j′ , we add an edge between
vi

j and vi
j′ . This would imply a new graph with |V (G)|× k nodes, that is, with k lay-

ers. We reduce this to |V (G)|× log(k) by using the binary expansion of each color
number and letting each layer represent a single bit in that binary representation.

4 Experimental Evaluation

In order to evaluate our approach, we implemented the described algorithms in C++.
All experiments were run on an Intel Core 2 6600 (2.40GHz) with 2GB of memory.
We use four different networks, with varied topological features, as summarized in
Table 1. All networks are undirected and simple, i.e., with no self-loops or multiple
edges between the same pair of nodes.

Table 1 The set of four networks used for experimentation

Name Nodes Edges Avg. Degree
Nr of colors in:

Brief Description Ref
nodes edges

blogs 1,490 16,715 22.4 2 1 links between political blogs [21]
dblp 2,878 11,324 7.9 3 3 co-authorship of papers [22]

flights 7,976 15,677 3.9 1 2 flights between airports [23]
elections 8.297 100.753 24.3 2 2 elections for wikipedia admin [24]

Given the nature of this paper, we always apply some kind of coloring in the
networks used, even if the original dataset did not natively come with that color
assignment. In blogs, all edges are of the same type and there are 2 colors in the
nodes, indicating political leaning (left/liberal or right/conservative). By contrast, in
flights all nodes are of the same type and there are 2 colors for the connections,
indicating domestic and international flights. dblp is a co-authorship network in
which we created 3 categories for the nodes (bottom 10%, top 1% and the rest) to
differentiate the number of different co-authors each one has (the same was done
for edges and number of co-authorships). Finally, elections is a signed network
where there are 2 node colors (users being voted on and user casting votes) and 2
edge colors (supporting or opposing).

The only publicly available competing algorithm that performs a similar task is
ESU, through its Fanmod tool [12], and therefore we directly compare our work with
it, turning on colors on both nodes and connections. We experimented to compute
motifs as we increase the size k of the subgraphs. We consider a typical usage of
100 randomized networks, generated with a markov chain process that keeps the
same colored degree sequence of the original network, both on ESU and g-tries. We
measured the execution time for each subgraph census, as shown in Table 2. For
practical reasons, we limited the size k so that it would be feasible to run an entire
motif computation with Fanmod.
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Table 2 Experimental results

network k
Execution Time (seconds) Speedup

ESU (via Fanmod) G-Tries G-Tries
Original Avg.Random Total Original Avg.Random Total vs ESU

blogs
3 2.1 2.1 209.06 0.73 0.29 29.73 7.0x
4 232.10 263.45 26,577.10 53.04 15.10 1,563.04 17.0x

dblp
3 0.50 0.25 25.50 0.15 0.02 2.15 11.9x
4 8.11 11.80 1,188.11 1.90 0.17 18.90 62.9x
5 276.03 479.57 48,233.03 70.02 5.50 620.02 77.8x

flights
3 1.59 1.63 164.59 0.48 0.05 5.48 30.0x
4 139.36 187.00 18,839.36 35.01 4.23 458.01 41.1x

elections
3 23.02 33.55 3,378.02 7.51 1.70 177.51 19.0x
4 6,987.34 7,434.25 750,412.02 800.86 256.68 26,468.85 28.4x

We can observe that our algorithm consistently outperforms ESU. The exact
speedup is not easy to predict and highly depends on the topology of the analyzed
network. Nevertheless, the results show a tendency to achieve better speedups as k
increases, being one to two orders of magnitude faster than ESU. Given the nature of
the associated computational task, the time to compute grows exponentially as k in-
creases. However, even an increase of just one node in the size of the motifs that we
are able to calculate may be very important, because patterns previously unknown
may become “visible”. Furthermore, faster execution times may allow the analysis
of larger networks. Regarding the memory usage, the census on the original network
is more expensive on our method than with ESU, since as explained in section 3.3
we opted to trade memory for better running time. However, it is possible to use any
other algorithm for this initial census, including ESU itself. Moreover, the task that
dominates the total running time is the census on the ensemble of random networks
and in that part g-tries are not more costly in terms of memory than ESU, because
they natively provide a compact representation of the set of subgraphs in which we
can store their respective frequencies.

The main focus of this paper is the algorithm in itself, but we feel it is important
to show the usefulness of colored motifs and figure 3 shows some of the motifs we
found. The significance of a subgraph is computed as in the original Milo et al. pa-
per [1]. For instance, a subgraph is overrepresented if the probability that it appears
more often in the randomized networks than in the original network is smaller than a
certain threshold. Here we are not worried about defining what the exact value of the
threshold should be, but rather we want to show some general trends and our goal
is to give the reader a feel of the kind of information colored motifs provide. For
instance, without colors on both nodes and edges, the 5 patterns indicated for dblp
would be indistinguishable. However, we can see that some of them are overrepre-
sented (appearing more often than expected), some are underrepresented (appear-
ing less than expected) and others are neutral (appearing in expected frequencies).
The same happens on the other networks. Finding explanations for the depicted
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Fig. 3 Some examples of motifs found on the networks used for experimenting

frequencies would be another (interesting) task, but what remains is that by con-
sidering colors we have a richer mining environment, able to expose patterns that
would be invisible when only using the traditional uncolored analysis.

5 Conclusions

In this paper we gave a definition of colored network motifs and described a com-
plete methodology to find such characteristic patterns. The main computational
problem we tackled was calculation of subgraphs frequency and at the core or our
algorithms lies the g-trie data structure, responsible for representing sets of sub-
graphs. We adapted existing algorithms and combined them in order to produce a
solution that we have shown to be not only feasible, but also substantially faster
than a direct competing algorithm. We also tried to show some of the potential in
the usage of colored motifs.

In the near future we plan to publicly release the software created for the de-
scribed algorithms and to explore extensions of these algorithms such as an approx-
imation version with sampling capabilities or a parallel approach. We also intend to
apply the concept of colored motifs on several real-world networks, and to experi-
ment with different types of randomized networks
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