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Preface

The International Workshop on Complex Networks – CompleNet
(www.complenet.org) was initially proposed in 2008 with the first workshop
taking place in 2009. The initiative was the result of efforts from researchers from
the BioComplex Laboratory in the Department of Computer Sciences at Florida In-
stitute of Technology, USA, and the from the Dipartimento di Ingegneria Informatica
e delle Telecomunicazioni, Università di Catania, Italia.

CompleNet aims at bringing together researchers and practitioners working on
areas related to complex networks. In the past two decades we have been witnessing
an exponential increase on the number of publications in this field. From biological
systems to computer science, from social systems and language to science of sci-
ence, complex networks are becoming pervasive in many fields of science. It is this
interdisciplinary nature of complex networks that CompleNet aims at addressing.
CompleNet 2014 was the fifth event in the series and was hosted by the Università
di Bologna, Italy, on March 12–14, 2014.

This book includes the some of the peer-reviewed works presented at CompleNet
2014. We received 86 submissions from 32 countries. Each submission was re-
viewed by at least 3 members of the Program Committee. Acceptance was judged
based on the relevance to the symposium themes, clarity of presentation, originality
and accuracy of results and proposed solutions. After the review process, 12 papers
and 18 short papers were selected to be included in this book.

The 30 contributions in this book address many topics related to complex net-
works and have been organized in five major groups: (1) Social Networks, Social
Media and the Arts, (2) Diffusion, transportation and search on networks, (3) Net-
work theory, structure, growth and community detection, (4) Biological and health-
related networks, and (5) Language networks and science of science

We would like to thank the Program Committee members for their time an exper-
tise spent for the refereeing process. We deeply appreciate the efforts of our Keynote
Speakers: Raffaella Burioni (Università di Parma, Italy), Tamás Vicsek (Eötvös Uni-
versity, Hungary), Alessandro Vespignani (Northeastern University, Boston, US);
their presentations are among the reasons CompleNet 2014 was such a success.
We are grateful to our Invited Speakers who enriched CompleNet 2014 with their
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presentations and insights in the field of Complex Networks: Juyong Park (KAIST,
South Korea), Mirkodegli Esposti (Università di Bologna, Italy), Stephen Uzzo
(New York Institute of Technology), Giorgio Fagiolo (Sant’Anna School of Ad-
vanced Studies, Pisa, Italy), Adriano Barra (Università La Sapienza di Roma, Italy),
Bruno Gonçalves (Aix-Marseille Université, Marseille, France).

Special thanks also go to the Local Organizer and Poster Chair, Enrico Denti
(Università di Bologna, Italy), the Steering Committee, Giuseppe Mangioni (Uni-
versità di Catania, Italy) and José Mendes (University of Aveiro, Portugal).

Bologna, Italy Pierluigi Contucci
March 2014 Università di Bologna, Italy

Ronaldo Menezes
Florida Institute of Technology, US

Andrea Omicini
Università di Bologna, Italy

Julia Poncela-Casasnovas
Northwestern University, US
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The Network of Western Classical Music
Composers

Doheum Park, Arram Bae, and Juyong Park

Abstract. Network science focuses on the connections between the elements of
a complex system in order to uncover the nature and the underlying patterns of
interaction relationships inside the system. In this paper we apply network theory
to understand associations between the composers of western classical music con-
structed from a comprehensive data of CD recordings. We study the properties of
the network of composer-composer ties including the degree distribution, the com-
ponent structure, clustering, and several types of centralities of the composers. We
also investigate the nature of prominent modules found in the network, and show
how the tastes of consumers of western classical music manifest themselves in the
network. We believe that our work shows how network science can be a useful tool
for studying arts and humanities.

1 Introduction

Recently network science has been instrumental in the modeling and understanding
of various complex systems, ranging from technical systems such as the Internet
and the Worldwide Web [1, 2] to social networks [3] and biological systems [4]. The
success and the wide range of applicability of network science is based on the fact
that by focusing on the connection patterns of a system’s constituents it provides a
unified framework for studying diverse systems, allowing developments in one area
to quickly find use in others [5].

One area where network science as a methodology is garnering interest is arts
and humanities [6, 7] including archaeology, history, and music. Coupled with an
accelerating accumulation of so-called “Big Data,” network science is advancing

Doheum Park · Arram Bae · Juyong Park
Graduate School of Culture Technology
Korea Advanced Institute of Science and Technology
Daejeon, Republic of Korea
e-mail: {park154,redsin0617,juyongp}@kaist.ac.kr

P. Contucci et al. (eds.), Complex Networks V, 1
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the field of humanities by helping us make sense of the patterns inherent in the data
and their significance in the arts and humanities. Some notable large-scale data and
network analyses in the field are as follows. Suarez, Sancho and Rosa [8] analyzed
the data set of 11 443 works from Spain and Latin America and the linkage patterns
of paintings with respect to genre and theme, finding that religious theme is the
most dominant factor linking the paintings. Gleiser and Dan [9] studied the topol-
ogy and the community structure of the collaboration network of Jazz musicians.
Their analysis uncovered the presence of communities based on the recording lo-
cations of the bands correlated with the racial segregation between the musicians.
Park et al. [10] highlighted the discrepancies between the network of collaboration
and that of similarity in their study of contemporary popular musicians.

In this paper we analyze the network of composers of western classical music
that covers its 700 years of development, constructed from a comprehensive data of
CD recordings. We study the patterns of composer-composer associations includ-
ing the degree distribution, the component structure, clustering, and the centralities
of the composers. We also investigate the properties of prominent modules (com-
munities) in the network that shed light on the nature of large-scale associations in
western classical music, which we believe could prove useful for advances in tradi-
tional musicology that have often focused chiefly on understanding the individual
composers.

2 Data

We utilized data sets from two prominent providers of information on classical mu-
sic, ArkivMusic1 and All Music Guide2. ArkivMusic is an online classical music
retailer specializing in the distribution of CDs and DVDs. All Music Guide is an
online music guide service website. As of early 2013, ArkivMusic lists a total of
96 911 classical music CDs along with their titles, release dates, labels, and the
musicians involved, namely the composers of the pieces and the performers (con-
ductors, soloists, and ensembles). The data can thus be represented as a bipartite
network between CDs and the musicians in which an edge connects a CD and a
musician if the musician has been featured on the CD (see Fig. 1). While there
are several interesting possibilities of exploring the patterns of connections between
different classes of musicians, in this paper we focus specifically on the network of
composers obtained via the one-mode projection onto the set of composers. There-
fore in our network an edge between two composers means that they were featured
on at least one common CD.

We also processed the data to eliminate so-called “compilation CDs” that are
essentially repackaged collections of previously issued CDs that are the root of un-
desirable effect of most well-known becoming connected to each other, resulting
in an effective complete (full) network. We also trimmed out composers whose at-
tribute data (periods and active years) were not available from All Music Guide,

1 http://www.arkivmusic.com
2 http://www.allmusic.com

http://www.arkivmusic.com
http://www.allmusic.com
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Original data
Composer-side
one-mode projection

Fig. 1 The network representation of ArkivMusic data. The association between the CDs and
performers or composer can be visualized as a bipartite network (left). A one-mode projection
of the bipartite network onto the set of composers works by connecting two composers that
are associated with a common CD (right).

as we would need them later when we investigate the relationship between node
attributes and network properties [11].3

3 Network Properties

3.1 Small-World Property and Giant Component

Many networks exhibit the so-called “small-world property,” meaning that the dis-
tance between two nodes of a network measured by the length of the geodesic
(shortest path) connecting them is typically small. Also referred to as showing “six
degrees of separation” in common parlance and made famous by Milgram’s experi-
ment in 1967 [12], it is now known to be true for many other networks. The average
geodesic length between node pairs in our network is 2.6, and the longest geodesic
length (also called the diameter of the network) is 7, showing that it also has the
small-world property. A component in a network is a set of nodes between which
at least one geodesic exists. Many networks possess one giant component that ac-
counts for most of the nodes in the network, and it is true for our network as well:
the largest component consists of 99.8% of the nodes.

3 This process leaves us with 6.5% of all composers in the ArkivMusic data, however, we
find that most prominent classical composers – who turn out to be high-degree nodes –
that we are most interested in are left intact. The average number of CDs in which the
removed composers are featured on is 3.5, significantly lower than that for the composers
who remain in our database, which is 64.8.
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Table 1 Basic network properties

Number of nodes 878
Number of edges 13,667
Size of the largest component 876
Mean geodesic length 2.62
Diameter 7
Clustering coefficient (random expectation) 0.618 (0.035)

3.2 Clustering Coefficient

Clustering refers to the tendency for triangles to form in a network. It is most com-
monly quantified by the Clustering Coefficient C ∈ [0,1] defined as

C =
3× number of triangles

number of connected triples
, (1)

where a connected triple is a set of three nodes {u,v,w} such that u and v are con-
nected, and v and w are connected. C is the probability that two nodes connected to
a common neighbor are neighbors themselves. C for a network is often compared
with the expected value from a random graph of equal n (number of nodes) and
m (number of edges), and social networks in particular exhibit a large C [13]. Our
composer network exhibits C = 0.62, which is also significantly larger than the ran-
dom expectation 0.035. Thus two composers who have been featured on a CD with
a common composer are highly likely to have been featured on a common CD.

3.3 Degree Distribution

The number of a node’s neighbors is called its degree, often written as k. It is often
the most fundamental quantity underlying many features of a network [5]. The de-
grees of nodes in a network can sometimes vary widely, and it is represented by the
degree distribution p(k) or its cumulative distribution P(k) = ∑∞

k′=k p(k). We show
the P(k) for our network in Fig. 2 on a log-log scale. The node degrees vary widely
in the network, with Johann Sebastian Bach (1685–1750) having the highest degree
with k = 348, approximately 11 times that of the average degree k = 31.1, followed
by Wolfgang Amadeus Mozart (1756–1791) with k = 287.

3.4 Centralities of Composers

The most outstanding characteristic of a network is the heterogeneity in the struc-
tures around each node, and the right-skewed degree distribution in Fig. 2 is one
example of it. The differences between each node in a network are exemplified by
the nodes’ centralities. As its name suggests, centrality is a measure of the impor-
tance or influence of a node in a network. The degree is one type of a centrality; in
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Fig. 2 The cumulative degree distribution P(k) of the composers. The three highest-degree
musicians in our network are Johann Sebastian Bach (k = 348), Wolfgang Amadeus Mozart
(k = 287), and George Frideric Handel (k = 254).

a social network, for instance, a high-degree person with many friends can be as-
sumed to be more influential than one with few friends. In our network of classical
music composers, the degree is the number of composers that one has been featured
on a common CD. Since in a projected network the degree is bounded by ∑i Bi jn j

where Bi j is the number of connections (either 0 or 1) between a CD i and composer
j, and the n j is the number of composers featured with composer j on the CD, a
high degree implies being featured in many CDs or with many composers, i.e. pop-
ularity or compatibility with many composers. The top-degree composers are shown
in Table 2.

Different centralities capture different types of nodes’ importance, and while they
are often correlated, noticeable disagreements often point to some interesting as-
pects of the network. The Eigenvector centrality and the (Freeman) Betweenness
centrality are two popular centrality measures besides the degree [14, 15]. Un-
like the degree, the eigenvector centrality takes into consideration the “quality” of
a connection. The idea behind it is that not all connections may be equal, and that
being neighbors with an important node makes one more important. It is given as
xi = κ−1 ∑i j Ai jx j which happens to be the definition of the eigenvector of the ad-
jacency matrix A = {Ai j}, and the eigenvector centrality means the components of
the leading eigenvector of A [5]. This can be thought of as a generalization of the
degree, and it often correlates highly with the degree centrality: In our network the
Spearman rank correlation between the two is 0.940± 0.003, with seventeen com-
mon composers in the lists of top 20 composers of each centrality.
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Another popular centrality is the (Freeman) betweenness centrality. It measures
how often a node sits between two nodes, acting as an intermediary when the two
nodes were to, say, exchange messages. It is given by fi ≡ 1

2 ∑ jk g jik/g jk, where g jk

is the number of geodesics between j and k, and g jik is the number of geodesics
that go through i. The Spearman rank correlation between betweenness and degree
centralities is 0.831± 0.009, and between betweenness and eigenvector centralities
is 0.698± 0.012, respectively. While the correlations are positive, an inspection of
Table 2 tells us that Modern composers are ranked extraordinarily high in between-
ness centrality, whereas they were not so in other centralities. It turns out that mod-
ern composers who account for a majority of composers (70.3%) form a close-knit
community between themselves, raising the betweenness centrality of the prominent
ones such as Leonard Bernstein (1918–1990) and John Cage (1912–1992) despite
their low degrees compared with those of composers from other periods. This tells
us that investigating how composers in a common period are closely knit amongst
themselves could be useful for understanding our network, the results of which we
present next.

Table 2 Top 20 composers for the Degree, Eigenvector, and Betweenness centralities. Peri-
ods are abbreviated: Baroque (B), Classical (C), Romantic (R), and Modern (M).

Rank
Degree centrality Eigenvector centrality Betweenness centrality

Name Period Name Period Name Period
1 Johann S. Bach B Johann S. Bach B Johann S. Bach B
2 Wolfgang A. Mozart C Wolfgang A. Mozart C George Gershwin M
3 George F. Handel B Claude Debussy M Wolfgang A. Mozart C
4 Felix Mendelssohn R Beethoven R Leonard Bernstein M
5 Franz Schubert R Franz Schubert R John Cage M
6 Claude Debussy M Felix Mendelssohn R Ástor Piazzolla M
7 Johannes Brahms R Johannes Brahms R Claude Debussy M
8 Beethoven R Tchaikovsky R Beethoven R
9 Tchaikovsky R Robert Schumann R Aaron Copland M
10 Maurice Ravel M Maurice Ravel M Richard Rodgers M
11 Gabriel Fauré R George F. Handel B Heitor Villa-Lobos M
12 George Gershwin M Franz Liszt R Igor Stravinsky M
13 Robert Schumann R Gabriel Fauré R George F. Handel B
14 Franz Liszt R Camille Saint-Saëns R Johannes Brahms R
15 Leonard Bernstein M George Gershwin M Maurice Ravel M
16 Camille Saint-Saëns R Richard Strauss R Franz Schubert R
17 Franz J. Haydn C Antonı́n Dvor̆ák R Felix Mendelssohn R
18 Igor Stravinsky M Franz J. Haydn C Alan Hovhaness M
19 Frédéric Chopin R Igor Stravinsky M Irving Berlin M
20 Samuel Barber M Sergei Rachmaninoff M Tchaikovsky R
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4 Mixing Patterns and Community Structures

Music is one of the oldest art forms created and enjoyed by humans, and accord-
ingly has a rich history of development over time [16, 17, 18, 19]. Historians of
music have attempted to break down the evolution of music into stages centered on
distinguishable styles [20]. In network science, the study of commonalities between
nodes is performed by investigating the mixing patterns between nodes and the com-
munity (modular) structures. For our network, in particular, this would allow us to
see how well their connection patterns match with the conventional classification
scheme.

While any classification scheme of a system can show varying degrees of com-
plexity, a common convention for composers in western classical music is to assign
them to certain periods [21]. Here we adopt the period designations used by All
Music Guide database that consist of Medieval, Renaissance, Baroque, Classical,
Romantic, and Modern, whose musical characteristics are summarized as follows
(all years are approximate):

• Medieval (500 CE – 1400 CE). It is generally assumed that the primeval shape
of musical notation appeared in this period, and several advances over previous
practice were shown in regard to tonal material, texture and rhythm. In terms of
tonal material, polyphony took a shape, settled down in Renaissance period and
has been used in a variety of pieces and even recent ones [16]. Notable composers
from this period are Guillaume de Machaut (1300–1377) and Francesco Landini
(1325–1397).

• Renaissance (1401 – 1600). The main features of music from this period
are modes and rich textures in four or more parts that blend strands in the
musical texture and harmony with a greater concern with the flow and progres-
sion of chords. Polyphony is one of the notable changes that mark the Renais-
sance from the Middle Ages musically [22]. Notable composers from this period
are Thomas Tallis (1505–1585), William Byrd (1540–1623), and John Dowland
(1563–1626).

• Baroque (1601 – 1750). The creation of tonality distinguishes Baroque music
from previous periods. During this period, composers used more elaborate musi-
cal ornamentation and made changes in musical notation. Baroque music became
more complex in comparison with the songs of earlier periods and expanded the
size and range of instrumental performance [18]. Notable composers from this
period are Henry Purcell (1659–1695), Antonio Vivaldi (1678–1741), Johann
Sebastian Bach (1685–1750), and George Frideric Handel (1685–1759).

• Classical (1730 – 1820). Classical music is characterized by a lighter, clearer
texture than Baroque music and is less complex. It is mainly homophonic, al-
though counterpoint was used often in later periods. Importance was given to in-
strumental music. Variety and contrast within a piece became more pronounced
than before, and melodies tended to be shorter than those of Baroque music, with
clear-cut phrases and clearly marked cadences [23]. Notable composers from this
period are Wolfgang Amadeus Mozart (1756–1791) and Franz Joseph Haydn
(1732–1809).
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• Romantic (1815 – 1910). Romanticism, the artistic and literary movement in
Europe that occurred in the second half of the 18th century, is a closely-related
term with Romantic music [24]. It is characterized by freedom of form, emo-
tions, individuality, dynamic changes and nationalism, a reaction against Ger-
man influence. It was more personal and emotional than before so there was
more freedom in form. Lyrical melodies as well as chromatic harmonies and
discords boosted up this situation more along with dramatic contrasts of dynam-
ics and pitches and wide variety of pieces were popular at the same time. No-
table composers from this period are Ludwig van Beethoven (1770–1827), Franz
Schubert (1797–1828), Frédéric Chopin (1810–1849), Robert Schumann (1810–
1856), Franz Liszt (1811–1886) and Pyotr Ilyich Tchaikovsky (1840–1893).

• Modern (1900 – current). Modern music is characterized by innovations in the
ways of organizing and approaching harmonic, melodic, sonic, and rhythmic as-
pects of music. Changes in aesthetic views and developments in technology have
led to many novel techniques and styles, often called expressionism, abstraction-
ism, neoclassicism, futurism and etc. [25] Besides the aesthetic changes, the rise
of American classical music broke the tradition of composers replicating the Eu-
ropean classical music. Notable composers from this period are Claude Debussy
(1862–1918), Maurice Ravel (1875–1937), Sergei Rachmaninoff (1873–1943),
Igor Stravinsky (1882–1971), George Gershwin (1898–1937) and Leonard Bern-
stein (1918–1990).

4.1 Assortative Mixing

Assortative mixing measures the tendency for similar nodes to be connected, given
by the following assortativity measure for discrete node characteristics [26]:

r ≡ ∑i eii −∑i aibi

1−∑i aibi
=

Tr e−‖e2‖
1−‖e2‖ , (2)

where e = {ei j} is a matrix whose elements ei j is the fraction of edges in a network
that connect a vertex of type i to one of type j, and ‖x‖ is the sum of all elements of
the matrix x, and ai and bi are the fraction of each type of end of an edge that is at-
tached to nodes of type i. For the periods of composers, we have r = 0.257±0.005,
meaning that composers belonging to a common period tend to be connected pref-
erentially to one another. The Pearson Correlation Coefficient between connected
composers’ active years (the middle point between their birth and death years) is
even higher, with ρ = 0.451± 0.009.

4.2 Communities

A positive assortative mixing that we see above is a symptom of the existence of
communities or modules in a network. A community is commonly defined as a
group of nodes of a network where connections between the nodes are denser than
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to the rest of the network. Algorithms that seek to find communities inside a network
are deeply related to the graph partitioning problem, and have seen much develop-
ment in recent years [27, 28, 29, 30]. Here we used the Louvain algorithm of Blon-
del et al. [31], which returned six communities of which the five largest were studied
in more detail that account for 99.4% of the composers in our network. In Fig. 3 we
show the period compositions of the member nodes of each module (1A and 1B are
submodules of module 1 found by re-running the algorithm on the module, which
we discuss later).

We find that the modules represent certain aspects in the history of developments
in classical music. First, we see that each module corresponds reasonably well to
one single period except for Module 1, which contains composers from four distinct
periods – Medieval, Renaissance, Baroque, and Classical. In each of other modules
(2 to 5), the majority of nodes belong to a specific period: Module 2 are mainly
Romantic, while Modules 3, 4, and 5 are mainly Modern.

To further break down Module 1 we applied the Louvain algorithm one more
time, after which we obtained two sizable submodules 1A and 1B. The division
along the periods of the nodes is clearer now: Module 1A represents mainly Renais-
sance and early Baroque composers, while Module 1B represents later composers
of Baroque and Classical periods. The Modern composers in 1B, while they appear
to be many, are rather insignificant ones with average degree 19.9 in comparison
to 77.8, the average degree of later Baroque and Classical composers. They are
therefore nicely separated in chronological order. Notable composers in Module 1A

5 (186)

4 (187)

3 (196)

2 (165)

1B (88)

1A (48)

1 (139)

Medieval Renaissance Baroque Classical Romantic Modern

Modern (89.3%)

Modern (94.1%)

Modern (89.3%)

Modern (31.5%)Romantic (55.2%)

ModernRomanticClassicalBaroque

Baroque Modern

Romantic

Romantic

Renaissance

Renaissance Baroque Classical Romantic Modern

Fig. 3 Period compositions of the network communities. The numbers in parentheses are the
modules’ sizes. The grayscale color bars show the relative fractions of the periods. Module
1 includes composers from periods between Medieval and Classical. Module 2 represents
the Romantic period, while Modules 3, 4, and 5 represent Modern composers. Modules 1A
and 1B are submodules of Module 1, and correspond to the earlier and the later periods of
Medieval and Classical.
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include William Byrd (1540–1623, Renaissance) and Henry Purcell (1659–1695,
Baroque). Notable composers in Module 1B include Antonio Vivaldi (1678–1741,
Baroque), Johann Sebastian Bach (1685–1750, Baroque), George Frideric Handel
(1685–1759, Baroque) from the Baroque period, and Wolfgang Amadeus Mozart
(1756–1791, Classical), and Franz Joseph Haydn (1732–1809, Classical) from the
Classical period.

Module 2 represents a later time in history, consisting mainly of Romantic
(55.2%) and Modern (31.5%) composers. Among these, Romantic composers are
generally more prominent (the average degree of the Romantic composers in this
module is 104.4, and that of the Modern composers is 38.2), including Robert
Schumann (1810–1856, Romantic), Frédéric Chopin (1810–1849, Romantic), Franz
Liszt (1811–1886, Romantic), Johannes Brahms (1833–1897, Romantic), and Py-
otr Ilyich Tchaikovsky (1840–1893, Romantic). We also note the existence of
transitional composers between the Classical and Romantic periods, Ludwig van
Beethoven (1770–1827) and Franz Schubert (1797–1828).

Modules 3, 4, and 5 represent the Modern period. In Module 3, the fraction of
the Modern composers is 89.3%. The two highest-degree Modern composers are
George Gershwin (1898–1937, Modern) of Rhapsody in Blue and Porgy and Bess
and Leonard Bernstein (1918–1990, Modern) of West Side Story. Module 3 also in-
cludes Jazz composers such as Scott Joplin (1867–1917, Modern) and Billy Stray-
horn (1915–1967, Modern), and Broadway composers such as Richard Rodgers
(1902–1979, Modern) and Irving Berlin (1888–1989, Modern), reflecting the va-
riety of musical styles of the 20th century.

Module 4 include Charles Ives (1874–1954, Modern) of The Unanswered Ques-
tion, Aaron Copland (1900–1990, Modern) of Appalachian Spring, Samuel Barber
(1910–1981, Modern) of Adagio for Strings and John Cage (1912–1992) of 4’33”.
In fact, composers from the United States account for 86.8% of composers in this
module with the average degree of 25.53. Non-US composers have the average de-
gree of 7.33. This module thus represents the growth of American vernacular style of
classical music in the 20th century [32]. Ernest Bloch (1880–1959, Modern), Alan
Hovhaness (1911–2000, Modern), Ned Rorem (1923–current, Modern), Terry Ri-
ley (1935–current, Modern), Steve Reich (1936–current, Modern) and Philip Glass
(1937–current, Modern), all from the US, are also in this module.

Module 5 comprises of Modern (89.3%) and Romantic (10.2%) composers.
Transitional figures between the periods – e.g. Gabriel Fauré (1845–1924, Roman-
tic), impressionists such as Claude Debussy (1862–1918, Modern), Maurice Ravel
(1875–1937, Modern) – are found in this module. In a nice contrast with Mod-
ule 4, Module 5 appears to represent the non-US branch of modern music, with
non-US Modern composers accounting for 79.1% of the composers. The average
degree of non-US Modern composers is 41.8, noticeably larger than that of Amer-
ican composers in the module, 8.0. Notable composers include Arnold Schoenberg
(1874–1951, Modern) from Austria, Manuel de Falla (1876–1946, Modern) from
Spain, Béla Bartók (1881–1945, Modern) from Hungary, Igor Stravinsky (1882–
1971, Modern) from Russia, Heitor Villa-Lobos (1887–1959, Modern) from Brazil,
Paul Hindemith (1895–1963, Modern) from Germany, Francis Poulenc (1899–1963,
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Modern) from France, Ástor Piazzolla (1921–1992, Modern) from Argentina, and
Luciano Berio (1925–2003, Modern) from Italy.

In summary, the modules we find algorithmically correspond reasonably well to
the developmental history of western classical music. This shows that the associ-
ations between composers originally constructed in the academic (musicological)
tradition are also reflected deeply in the music recording business, suggesting that a
more in-depth exploration of the modular structures could potentially yield new and
helpful insights into understanding the landscape of classical music.

5 Conclusion and Discussions

In this paper, we studied the properties of the network of classical music composers.
We started by conducting a basic analysis of the structural properties of the network,
finding that our network exhibits characteristics common to many real-world net-
works, including the small-world property, the existence of a giant component, and
a high level of clustering. The centrality measurements of the composers showed a
reasonable agreement with a common perception of the popularity of the composers.
We also explored the global association patterns of composers via assortative mix-
ing and community structure analysis, which showed us the extent to which our
network reflected our musicological understanding of the western classical music
tradition.

Directions for further research are as follows. First, we note that our work is
based on a commercial data archive of classical music, and we believe a similar
work based on academic data sources may yield interesting and complementary
findings. Since artistic creations serve multiple purposes, as objects of appreciation
(consumption) as well as of scholarly study by scholars, both are necessary for a
proper understanding for art and culture. Second, we can ask the temporal aspects
of the networks in music to understand how a musical style emerges, evolves, and
fades in popularity. We believe that our work highlights the potential of network
science coupled with advanced data analytics in answering many such pertinent
questions in the arts and humanities, playing an instrumental role in the developing
field of “digital humanities.”
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The Network of Western Classical Musicians

Arram Bae, Doheum Park, and Juyong Park

Abstract. The expanding availability of large-scale data is leading to increased op-
portunities for applying advanced data analysis and modeling methodology to a
wide range of problems and systems, allowing us to deepen our understandings and
make novel discoveries. In this paper we use the tools of network science to the
network of composers and performers from the western classical music tradition
constructed from an extensive data archive of CD recordings. We measure the fun-
damental characteristics of the network such as the small-world property and the
power-law degree distribution. We also investigate the community structures of the
musicians, revealing how individual attributes such as musical style, positions, and
nationalities factor into the large-scale association patterns of the network. We be-
lieve that our work showcases the potential benefits of network science in the study
of arts and humanities.

1 Introduction

Advances in information technology have led to numerous fundamental develop-
ments in arts and humanities. In the creative process, for instance, artists are making
use of such online softwares and infrastructure as Dr Drum1 and MAGIX2 to col-
laborate and produce novel forms of art. Artistic activities taking place online often
leave digital “footprints” – data in the form of logs, documentation, or artworks
– that may help us observe the creative process in detail that can in turn enhance
our understanding of art. Such anticipation is not limited to the study of arts; the
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accumulation of large-scale detailed data produced from various human activities is
accelerating, and in many fields of science and engineering the analysis and model-
ing of “Big Data” are considered to be providing novel opportunities for developing
the fields. Sudden influxes of data have transformed researchers to document and
manage their data with advanced data-mining tools, online community collabora-
tions and sophisticated visualization techniques [1].

A framework of data analysis and modeling that has gained attention and seen
substantial advances in recent years is network science [2]. Network science focuses
on understanding the complex patterns of connections (ties) between the constituent
parts of a system. A product of the convergence of the long traditions of graph theory
from mathematics, data mining from computer science, and social network analysis
(SNA) from sociology, network science has contributed to a deep understanding of
a wide range of systems found nature [3, 4], engineering [5, 6], and society [7].

There have been some notable work on the use of networks in arts, humanities,
and culture studies [8]. In music, Gleiser and Danon studied the topology and com-
munity structure of the social interaction network of jazz musicians, and showed
the presence of communities based on the recording locations of the musicians and
racial segregation between musicians [9]. Silva et al. studied the Brazilian popu-
lar musician network, and showed small-world effect and a power-law degree dis-
tribution [10]. Park et al. considered two distinct types of ties – one representing
musical similarity, and the other representing collaboration – between modern pop-
ular musicians and showed how the central musicians determined from the edge
types can vary significantly [11]. Besides musician’s connection, a large amount of
work exploring the structural properties of human networks are studied. Words in
human language interact in sentences revealed small world effect [12]. Recently,
Ahn et al. studied the flavor network, and discussed how different culinary cultures
differ in the combination of flavors to produce popular recipes [13].

In this paper, we study the network of Western classical music that covers the
period from 5th century to the present, constructed from the comprehensive data of
music CD recordings. As a recording is essentially the product of the music indus-
try’s response to the demands of consumers of music, we can say that the network
constructed from the recordings data reflect what humans perceive as useful, ef-
fective combinations of musicians. In order to understand the combinations of the
various players, unlike the majority of previous studies where only one type of nodes
was considered at once – e.g. artist-to-artist or artwork-to-artwork associations – we
preserve the bipartite structure with multiple musician classes. From this we study
the distinct positions that each artist occupies in the landscape of classical music,
and investigate how they combine to form large discernible communities (modules).
We also make use of network-independent musician attribute data to identify possi-
ble factors of community formation.

This paper is organized as follows. First, we perform a general network analy-
sis on the network of musicians. Second we explore the finer details of communi-
ties in the network by inspecting their musical styles, positions (instruments), and
nationalities.
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2 The Data and Network Construction

We utilize the database from ArkivMusic3 (AM), an online vendor of classical music
CDs who maintains a comprehensive data on more than 96 000 CDs released in the
US as of 2013. For each CD it lists its title, release date, and label, along with the
musicians related to the featured music (composers, conductors, solo performers,
and ensembles). After cleaning up the data – mainly removing the so-called “com-
pilation CD” that are mostly collections of past recordings – we have at hand 67 305
CDs, 15 214 composers, 6 432 conductors, 47 262 solo performers, and 11 434 en-
sembles (see Table 1). We can represent this data set as a bipartite network, where a
tie can exist between the set of CDs and the set of musicians, shown in Fig. 1. While
taking a one-mode projection of a bipartite network is a common additional step, in
our paper we refrain from doing so, and maintain the bipartite nature of the data so
that no information is potentially lost due to the projection [14].

Wolfgang Amadeus Mozart

Robert Tear

Charles Gounod

Richard Hickox

Pietro Mascagni

Igor Stravinsky

Israel Philharmonic Orchestra

Richard Wagner

Franz Joseph Haydn

Sir Neville Marriner

Nicolai Gedda

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD

CD
CD

CD

CD

CD

Fig. 1 The construction of the bipartite network from the Arkivmusic dataset. The network
shows that Richard Wagner (1813–1883, composer), for instance, was featured on a CD with
Sir Neville Marriner (1924–, conductor), the Israel Philharmonic Orchestra (ensemble), and
Nicolai Gedda (1925–, tenor).

3 Method and Result

3.1 Basic Network Properties

Here we present some basic, standard network properties of the network, summa-
rized in Table 1.

3.1.1 Mean Geodesic Length, Diameter and Giant Component Size

A geodesic is the shortest path between two nodes in a network. Many networks
exhibit the so-called “small-world effect” [3] which means that geodesics of the

3 http://www.arkivmusic.com

http://www.arkivmusic.com


16 A. Bae, D. Park, and J. Park

network are typically very small compared with the size of the network, made fa-
mous by Milgram’s “six degrees of separation” experiment in the 1960’s [15]. In
our network of over 140 000 nodes the average geodesic length is 5.6. The diameter
of the network, the longest geodesic, is 18. The largest component, i.e. the set of
nodes that are connected via a path, comprises 98.8% of nodes. The existence of
such a giant component is also observed in many networks [16].

Table 1 Basic Network Properties

Total Number of Nodes (including CDs) 142 914
– Number of Composers 15 214
– Number of Conductors 6 432
– Number of Performers 47 262
– Number of Ensembles 11 434

Number of Edges 435 414
Mean Geodesic Length (Diameter) 5.6 (18)
Size of the Largest Component 141 224
Bipartite Clustering Coefficient (Random) 0.0314 (0.00004)

3.1.2 Clustering Coefficient

Clustering, or transitivity, is a measure of how tightly nodes of a network are con-
nected. It is measured in a unipartite network using the clustering coefficient C that
is the probability that two neighbors of a node are neighbors themselves, defined as

C �
3�number of triangles

number of connected triples
, (1)

where a connected triple is a set of three nodes �u,v,w� such that u and v are con-
nected, and v and w are connected.

This definition cannot be used, however, in a bipartite network since a triangle
does not exist in it. An appropriate definition of the clustering coefficient is CC4 in
a bipartite network [17].

CC4 �
4�number of full foursomes

number of connected foursomes
, (2)

where the number of connected foursomes �L3� is a set of four nodes �U,V,w,x�
such that at most one edge is missing between the node sets �U,V� and �w,x�. See
Fig. 2. We find in our network CC4 � 0.031, over 700 times larger than the random
expectation 0.00004.



The Network of Western Classical Musicians 17

Fig. 2 The clustering coefficient CC4 for a bipartite network is defined using the concept of
a connected foursome (L3) and a full foursome (C4)

3.1.3 Degree Distribution

The degree of a node is the number of connections it has. In our network the degree
of CD is the number of musicians featured on it, while the the degree of a musician
is the number of CDs the are featured on. In Fig. 3 we show the cumulative de-
gree distribution P�k� �

�
�

k�
�k p�k��, i.e. the fraction of the nodes that have degree

k or larger. We see that, starting from k � 13 for more than two decades the P�k�
approximates straight line, suggesting a power-law behavior for the degree distri-
bution, i.e. p�k�	k�α . The maximum likelihood estimate of the power exponent is
α � 2.62
 0.02 [18]. While Fig. 3 shows the degree of both the CDs and the mu-
sicians, we note that the maximum degree of CD is 59, and thus the right-skewed
nature of P�k� applies exclusively to the musicians. Also, the degree of a CD does
not carry any significant meaning to us, as it is very narrow in range (between 1
and 59) in comparison with the musicians’, owing to purely arbitrary technological
limitations. For this reason and the fact that it is the musicians that we are primarily
interested in, from this point we shall discuss the musicians only.

  

Fig. 3 The cumulative degree distribution in our classical music network. For k � 10 it ap-
pears to follow the power-law. The maximum likelihood estimate of the power exponent in
p�k��k�α is α � 2.26�0.02.
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The right-skewed degree distribution tells us that a musician’s popularity and ac-
tivity show significant variations, and a few top-degree musicians collectively out-
weigh the rest. In Table 2, we show the top twenty nodes from the composer and the
performer classes. We also indicate an attribute for each class: for the composers,
their periods designations (based on All Music Guide4 and Classical Archives5);
and for the performers, their positions. For instance, the most-recorded composer is
Wolfgang Amadeus Mozart (1756–1791) of the Classical period with 5 288 record-
ings. Placido Domingo (1941–present), a renowned tenor, is the most-recorded per-
former with 360 recordings.

The list of musicians on Table 2 may not comes as a surprise to aficionados
of western classical music, as they are indeed the most familiar names. The list,
however, deserves further investigation since a simple comparison between the mu-
sicians based their degrees can be nonsensical across node attributes: For instance, it
would be foolish to state that singers are more important to music than all organists
are because they exhibit higher degrees.

Table 2 The list of Top 20 Composers & Performers for Degree Centrality

Composer Composer Period Performer Performer Position
Wolfgang Amadeus Mozart Classical Placido Domingo Tenor

Johann Sebastian Bach Baroque Andre Previn Piano
Ludwig Van Beethoven Romantic Daniel Barenboim Piano

Johannes Brahms Romantic Dietrich Fischer-Dieskau Bass
Franz Schubert Romantic Maria Callas Soprano
Giuseppe Verdi Romantic Vladimir Ashkenazy Piano

Peter Ilyich Tchaikovsky Romantic Luciano Pavarotti Tenor
George Frideric Handel Baroque Peter Schreier Tenor

Robert Schumann Romantic Fritz Kreisler Violin
Frederic Chopin Romantic Sviatoslav Richter Piano

Felix Mendelssohn Romantic Jeno Jando Piano
Franz Joseph Haydn Classical Nicolai Gedda Tenor

Richard Wagner Romantic Elisabeth Schwarzkopf Soprano
Claude Debussy Modern Bruno Walter Piano

Franz Liszt Romantic Yehudi Menuhin Violin
Giacomo Puccini Romantic Mstislav Rostropovich Cello
Antonio Vivaldi Baroque Dame Joan Sutherland Soprano
Maurice Ravel Modern Jose Carreras Tenor

Antonin Dvorak Romantic Mirella Freni Soprano
Gioachino Rossini Romantic Christa Ludwig Mezzo-Soprano

Inspecting the degrees of musicians in each attribute class separately and the top
rankings covering more than 20 musicians yields more interesting patterns (see Fig-
ures 4 and 5). First, we see that within each attribute class (periods for composers
and positions for performers) the degrees of musicians are widely distributed (left
panels). The right panels in the figures show the fraction of each attribute class as
we consider and increasing number of most recorded musicians. For instance, in
Fig. 4 when we consider the top 10 composers (x-axis), 70% of them are from the
Romantic period, however, when we consider the top 320 composers the fraction

4 http://allmusic.com
5 http://classicalarchives.com

http://allmusic.com
http://classicalarchives.com
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Fig. 4 The degree distributions of composers in each attribute (period) class. The period
designations we use consist of Medieval (500–1400), Renaissance (1400–1600), Baroque
(1600–1750), Classical (1750–1830), Romantic (1825–1875), Post-Romantic (1875–1900),
and Modern (1890–current). The left panel shows that within each period the degree distri-
bution has a heavy tail. The radii of the circles scale logarithmically against the number of
musicians in each bin. The right panel shows the fraction of composers of each period belong-
ing to the list of top-degree nodes, as the length of the list is varied from top ten (leftmost) to
the entire list.
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Fig. 5 The degree distributions of performers in each attribute (position) class. The left panel
again shows the heavy tails within each position. The right panel shows that tenors and pi-
anists feature highly in the list of top-degree nodes.

drops to below 40%, the value decreasing as we consider more composers, showing
that the Romantic composers are indeed disproportionately more recorded in con-
trast to, say, Medieval composers who do not appear with significant frequency at
least until we inspect the top 80 composers. Modern composers are also dispropor-
tionately rare near the top of the list. As for the performers (Fig. 5) it is indeed the
singers (tenor and soprano in particular) who feature disproportionately high on the
list.
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3.2 Community Structure of Classical Music Network

Figs. 4 and 5 showcase two ways in which the musicians with certain attributes can
be studied, either separately (left panels) or as being in a type of competition for
popularity (right panels). While these viewpoints can helpful for understanding the
nature of the attributes, it is actually how musicians with different attributes com-
bine that is true to the nature of music on a fundamental level (all compositions
and recordings must feature at minimum two musicians with differing attributes).
Therefore we now turn to the community, or module, structure of the classical music
network that captures quantitatively the large-scale, higher-level patterns of associ-
ations and combination of musicians.

Computational methods for identifying communities or modules from a network
– a common definition of a community being a set of nodes that have a higher
density of connections between themselves to the rest of the network – have seen
much advance in recent years [19]. Here we use the popular Louvain algorithm of
Blondel et al. [20].

The algorithm yields 669 modules, the largest community including 17 871 nodes
(7 066 CDs, 2 440 composers, 508 conductors, 1 585 ensembles and 6 272 perform-
ers). We show the community size distribution P�s� in Fig. 6. It is right-skewed
nonetheless with a steep decline up to the community size s � 10, and a slower
decline afterwards.

Fig. 6 The cumulative community size distribution P�s�. The distribution is right-skewed.

Here we focus on the ten largest communities. We study the composition of
the communities via the attribution metadata comprising the period, position (func-
tional roles, such as the major instruments), and nationality of the nodes included in
them. The metadata were collected from two online sources, All Music Guide6 and

6 http://allmusic.com

http://allmusic.com
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Classical Archives7. The metadata coverage using these data archives for the 75607
artists nodes (excluding CDs) is 41%, although the missing ones are for the typi-
cally low-degree nodes; all nodes with degree 30 or larger have attached attribution
metadata.

In Table 3 we show the properties of the ten largest communities (labeled A to
J) along with the most frequent attributes of their musician nodes. For instance, the
largest one (community A) has 10 805 musicians. The most frequent period of the
composers is Modern (86.7%), the most common positions are instruments (77.0%),
and the most common nationality is USA (75.5%). The most prominent (high-
degree) musicians are Leonard Bernstein (1918–1990), George Gershwin (1898–
1937), Aaron Copland (1900–1990), Philadelphia Philharmonic, and New York
Philharmonic. The second largest one, community B, is of Baroque and Classi-
cal composers, including the likes of Wolfgang Amadeus Mozart, Johann Sebastian
Bach (1685–1750), and George Friedrich Handel (1685–1759). Famous opera com-
posers Giuseppe Verdi (1813–1901) and Giacomo Puccini (1858–1924) are featured
in community C along with popular opera singers Luciano Pavarotti (1935–2007)
and Nicolai Gedda (1925–present). Herbert von Karajan (1908–1989), the prolific
conductor, is included in community G along with Berlin Philharmonic Orchestra.

Table 3 Basic properties of ten largest communities

Label Number of Musicians Major Period Major Position Group Major Nationality
A 10 805 Modern (85.7%) Instrumental (77.0%) USA (75.0%)
B 6 811 Modern (39.2%) Instrumental (79.8%) UK (38.8%)
C 6 726 Romantic (60.2%) Vocal (90.9%) Italy (29.7%)
D 5 954 Renaissance (44.0%) Instrumental (56.7%) UK (22.1%)
E 5 257 Modern (72.9%) Instrumental (91.0%) France (16.1%)
F 5 084 Romantic (46.3%) Vocal (71.5%) Germany (43.9%)
G 4 395 Modern (78.2%) Instrumental (66.8%) Finland (18.8%)
H 3 802 Modern (75.2%) Instrumental (87.3%) USA (18.2%)
I 3 354 Modern (84.3%) Instrumental (67.5%) USA (19.2%)
J 3 193 Baroque (27.8%) Vocal (70.8%) Germany (27.5%)

While these observations do suggest interesting patterns of community-level as-
sociations, simply counting the most frequent attributes may be misleading to char-
acterize each community correctly, since the number of musicians for each attribute
may vary widely. To overcome this problem we characterize each community by
which attributes are overrepresented. We quantify this using the Z-score for each
attribute given as

Z�n, p;x� �
x�np

�
np�1� p�

, (3)

where x is the observed occurrence of musicians with a specific attribute in a com-
munity, n is the size of the community, and p is the overall (global) probability of
occurrence of the attribute.

7 http://classicalarchives.com

http://classicalarchives.com
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Characterizations of the communities using the Z-score for the three attribute
class are summarized graphically in Figs. 7. For each community we show four
types of graph in the following order, from top to bottom:

1. Visualization of the community. Names of some notable musicians are indicated.
2. Composers’ periods. The area of a period represent the relative size of its Z-

scores. Under-represented periods (Z � 0) are not indicated.
3. Performers’ positions.
4. Musicians’ nationalities.

According to these four types of information, we can make the following sum-
mary observations of the communities. First, as was first observed, community A
represents the American classical music scene led by Modern musicians such as
Aaron Copland, Leonard Bernstein, New York Philharmonic, etc. Other notable
Modern communities are communities E, G, H, and I. Community E is special in
that it actually represents the transition between Modern and the (late) Romantic
that precedes it; Claude Debussy (1862–1918) and Igor Stravinsky (1882–1971)
are well-known figures in the birth of Modern music. Communities G (Northern
Europe), H (Latin and Brazilian), and I (Eastern Europe) represent traditions of
Modern music developed in different regions. We see two prominently Romantic
communities, C and F: Community C is the operatic community led by Italian com-
posers, whereas community F is the Austro-German community led by the likes of
Ludwig van Beethoven (1770–1827), Johannes Brahms (1933–1897), and Richard
Wagner (1813–1883). Communities B (UK), D (broader Western Europe), and J
(Germany-heavy Europe) represent the early Periods, again divided along regions.

Lastly, we can see in the figures that the performers’ positions are correlated with
the communities’ Periods as well. Take communities B and J, for instance: Besides
having different nationalities overrepresented, community B is heavily instrumental
(representing 79.8% of performers) while community J is vocal (via operas, can-
tatas, and oratorios). In community H guitarists are highly overrepresented, con-
taining prominent ones including John Williams (1941–present), Andres Segovia
(1893–1987), and Julian Bream (1933-present).

4 Conclusion

In this paper, we analyzed the network of western classical music constructed from
the comprehensive CD recordings data. We found that our network shows common
characteristics of many real-world networks, such as the small-world property, the
existence of a giant components, and a high level of clustering. The community
structure analysis of the network allowed us to see how the various attribute data
(period, position, and nationality) correlate to form groups of musicians that agree
well with the development of western classical music.

Our work presented here has naturally answered only a very small fraction of
many interesting and crucial questions one can ask in the field of western classical
music, which may be answered as more data and methods become available and
well understood. We believe that our work showcases how network science and
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large-scale data analysis can be used for understanding a topic of interest to many
in the arts and humanities.
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Systematic Dynamic and Heterogeneous
Analysis of Rich Social Network Data

Lei Meng, Tijana Milenković, and Aaron Striegel

Abstract. Recent technological advances have lead to increasing amounts of social
network data that is longitudinal or encompasses multiple link types. We aim to pro-
vide a framework for systematic analysis of such data. We validate the framework
on a unique and rich social network, by studying the evolution of network structure
over an 18-month period as well as the relationships between different communica-
tion types (including both digital (e.g., Facebook) and face-to-face interactions).

1 Introduction

Motivation. Networks (or graphs) have been used to model real phenomena in many
domains (e.g., [6, 27, 28]). Here, we focus on social networks, which model com-
munication between people, such as real-world friendships, online social contacts,
or electronic communication [5, 16, 18]. Traditionally, due to limitations of tech-
niques for data collection, social network research has focused on studying static
networks as well as homogenous networks encompassing a single communication
(or link) type [21, 23]. However, with recent advances in data collection techniques,
dynamic and heterogeneous (or multiplex) social networks have become available
[3, 15, 33]. Consequently, new questions have emerged with regards to network evo-
lution and dependencies between different communication types. Answering these
questions is important for many network research applications such as link predic-
tion and others [1, 12, 32]. Thus, in this paper, we focus on comprehensive analysis
of dynamic and heterogeneous social network data.

Related Work. Many networks have been typically treated as homogenous data
in the sense that different link types are either treated equally or studied in isola-
tion without incorporating their interdependencies [9, 14, 15, 23, 24]. In either case,
valuable information encoded into the different network types is lost. Such studies
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have analyzed network structure in terms of e.g., network density [15], average path
length (the small world phenomenon) [23], degree distribution [9], or community
structure [10, 14, 24]. Recently, there have been advances in heterogeneous network
analysis [3, 4, 29, 30, 33]. However, whereas these studies have demonstrated the
potential of using diverse information encoded in multiple communication types, the
studies have typically been domain-specific or have not reasoned about the mecha-
nisms underlying the observations [3, 30].

Further, many of the current social network studies (including those listed ear-
lier) have analyzed only the static representation of a social network that is in fact
dynamic in nature [21, 24], thus losing valuable temporal information. More re-
cent studies have recognized the potential of accounting for the dynamic nature of
the network data [2, 11, 15, 14, 25]. The studies have typically done so by taking
multiple snapshots of the evolving network at different times and by using those
snapshots to make inferences about the evolution of network structure [14, 15]. Var-
ious parameters involved in this process, such as the length of the time interval used
to define a snapshot or the criteria for connecting two nodes (i.e., people) within the
snapshot, can significantly affect the inferred results [8]. The choice of appropriate
values of these parameters is often a neglected issue, as typically the parameters are
set to more or less arbitrary values [14].

Our Contributions. Thus, we aim to systematically analyze a dynamic social net-
work encompassing multiple link types in order to gain insights into the evolution
of the network as well as dependencies of the different communication types. In
the process, we thoroughly evaluate choices of parameters relevant for constructing
the dynamic network from longitudinal communication events. The summary of our
study and its contributions is as follows:

• We analyze a rich social dataset encompassing various types of digital and face-
to-face communication between 150 college students via their smartphones over
an 18-month period (starting with the Fall of 2011).

• We explore the effects of the network construction parameters on the results to
demonstrate how parameter selection can significantly impact the results.

• We present a novel computational framework for studying dynamic networks
with multiple link types. We compare both networks of a given link type over
time as well as networks at a given time across multiple link types. Note that
in terms of heterogenous analysis, we focus on studying relationships between
different communication types; their integration and the analysis of the resulting
integrated multuplex network is a subject of future research.

• Moreover, our framework uses four network comparison measures and we com-
prehensively study the relationships between the different measures.

Our framework reveals the following summary results. In terms of network evolu-
tion, networks from consecutive time periods are more similar than non-consecutive
networks, and holiday and non-holiday networks are different (users reduce all of
their communication during holidays, except for Facebook and email). In terms of
dependencies between different communication types, in general, the dependencies
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are strong between text messaging, phone calls, and physical proximity interactions,
each of which relates poorly with Facebook and email interactions. This confirms
that Facebook and email might not reflect real-world (personal) interactions to the
same extent as the other communication types.

2 Methods

2.1 Dataset

Our data is drawn from the University of Notre Dame’s NetSense smartphone study
[28] which was launched in August of 2011 with the goal of monitoring the smart-
phone usage of 200 freshmen entering the university in the Fall of 2011. The study
provided each of the students with an Android smartphone (Nexus S) along with
plans giving unlimited data, unlimited texting, and unlimited mobile-to-mobile min-
utes in exchange for complete monitoring privileges on the phone. Full details with
regards to the study are available in [28].

For this work, we focus on two broad categories of communication types: digital
communications (text messages, phone calls, emails, and Facebook postings) and
face-to-face interactions (proximity observed via Bluetooth). For each communi-
cation type, each communication event is associated with the two people involved
in the communication, a timestamp, and a length. Face-to-face interactions are de-
tected via Bluetooth and contain the aforementioned parties involved, timestamp,
and length, as well as identification of the relative distance between the two smart-
phones gleaned via observed signal strength. Per the guidelines in [17], we further
divide proximity into cases of close proximity (≤ 2.5m, ≥−55dbm) and near prox-
imity (≤ 5.5m,≥−65dbm). We filter random encounters: to form a Bluetooth prox-
imity event, a person needs to detect another person continuously for at least six
minutes (at least once in the first three minutes and at least once in the last three
minutes); in this case, the timestamp associated with the given event is the first
timestamp of the encounter.

Thus, we extract six communication types from the dataset: text (SMS),
PhoneCall, Email, Facebook, close proximity (CProximity), and near proximity
(NProximity). The data in this paper represents an 18-month period, from September
2011 to March 2013. The pool of users was filtered to 150 users who were involved
in the project consistently across the entire period.

2.2 Network Construction

To model the dynamic nature of the data with networks, for each communication
type, we take data snapshots at different time points, with all snapshots covering
time intervals of equal length, Δ t. For each snapshot, we form a corresponding net-
work as follows: nodes are the users (i.e., smartphones) and there is a link of type
x between two nodes if there are at least w events of type x between the corre-
sponding users within the given time interval. For simplicity, we treat all networks
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as unweighted and undirected, but our study can easily be extended to directed and
weighted networks. Although the networks are unweighted, we do use w to indicate
how strong the connections must be at minimum.

Different values of timescale Δ t and link strength threshold w might lead to dif-
ferent network structures. If Δ t is very large (Δ t=18 months being the extreme), we
miss dynamic aspects of the data. On the other hand, if Δ t is very small, networks
might be largely disconnected. Also, for a small Δ t, networks of different type might
have zero or weak dependencies with each other, forcing one to study each network
type in isolation without the benefit of utilizing across-type information [8]. Sim-
ilarly, for a given Δ t, the larger the value of w, the sparser but more disconnected
the network, and the smaller the value of w, the denser but more connected the net-
work. Thus, we aim to find some intermediate Δ t and w values that would generate
meaningful network structures.

For this purpose, we measure the density and the size of the largest connected
component (LCC) of networks resulting from different Δ t and w choices. For graph
G = (V,E), the density of G is 2|E|

|V |×(|V |−1) , and its LCC size is the number of nodes
in the LCC divided by |V |. We want our networks to be sparse (just as most of real-
world networks are [22]), while the nodes are still as interconnected as possible,
with ideally all nodes being in the networks’ LCCs. Hence, we want to balance
between small network density and large LCC size.

We vary Δ t from 1 week to 6 months (Table 1). For each Δ t, we vary w as follows
(Table 1). For Δ t =1 weeks, we only study w = 1, since the contact frequency for
Δ t is already low (and thus, many nodes would be disconnected for a larger w). For
Δ t = x month(s), we evaluate w = 1, w = x, w = 2x, w = 3x, and w = 4x, since
values greater than 4x would generate largely disconnected networks.

Table 1 Values for timescale Δ t and link
threshold w that we evaluate in our study.
We do not evaluate Δ t > 6 months, since
the resulting networks would fail to cap-
ture any holiday information (for details,
see Table 2 and Section 3.1).

Timescale (Δ t) Link threshold (w)

1 week 1
1 month 1, 2, 3, 4
3 month 1, 3, 6, 9, 12
6 month 1, 6, 12, 18, 24

2.3 Network Similarity Measures

To study network evolution as well as dependencies between network types, we per-
form homogenous as well as heterogeneous network comparisons. By homogenous
network comparison, we mean comparing networks of the same communication
type but from different time slots, in order to answer how networks of a given type
evolve with time. By heterogeneous network comparison, we mean comparing net-
works from the same time slot but of different types, in order to study dependencies
between different data types. We perform network comparison only on networks
constructed with same Δ t and w values.
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To compare any two networks, we use four network similarity measures: 1) com-
mon edges (CE), i.e., the absolute overlap of the networks’ edge sets E1 and E2:
|E1 ∩E2|; 2) adjusted common edges (ACE), i.e., the relative overlap of the net-

works’ edge sets, as measured by Jaccard index: |E1∩E2|
|E1∪E2| ; 3) Pearson correlation of

the networks’ degree distributions (PDD) (the degree distribution of a network is the
probability that a node has degree k); and 4) graphlet degree distribution agreement
(GDD), which generalizes the degree distribution into a spectrum of graphlet degree
distributions (graphlets are induced subgraphs) [26].

Table 2 Time slots and duration for each holiday (of at least 3 days) within the data, from
Fall 2011 to Winter 2013. We do not consider holidays shorter than 3 days, as people are
unlikely to change their communication behavior significantly during such short holidays.
Hence, including such holidays would have little effect on our results.

Holidays Duration
Time slots (Δ t)

1 week 1 month 3 months 6 months

Fall break(2011) 1 week 6-7 1 0 0
Thanksgiving(2011) 5 days 11-12 2 0 0
Winter break(2011) 1 week 14-19 3-4 1 0
Spring break(2012) 1 week 27-28 6 2 1
Easter(2012) 4 days 31 7 2 1
Summer break(2012) 3 months 36-50 8-11 2-3 1
Fall break(2012) 1 week 58 13 4 2
Thanksgiving(2012) 5 days 63-64 14 4 2
Winter break(2012) 1 month 67-71 15-16 5 2

Note that CE and ACE measures explicitly take into account correspondence of
node labels between networks: similar topological patterns have to exist in two net-
works and they have to exist between the same nodes for the networks to be similar.
But PDD and GDD consider only topological information: it is sufficient for similar
topological patterns to exist in networks for the networks to be similar, without the
explicit requirement for the patterns to exist between the same nodes. Also, note that
of PDD and GDD, GDD is a more constraining similarity measure, as it accounts
for more of network topology compared to PDD (GDD includes the degree distri-
bution as the first of its many graphlet degree distributions) [20, 26]. GDD has been
used extensively as a state-of-the-art measure for comparison of biological networks
[26]. We note though that GDD may perform “suboptimally” at extremely low net-
work connectedness [13] such as with Email networks or Facebook networks during
summer time (see below).
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3 Results and Discussion

3.1 Effects of the Choice of Network Construction Parameters

We vary values of the two parameters, timescale Δ t and link threshold w, in order
to empirically choose for further analyses only meaningful parameter values that
balance between network sparsity and large LCCs (Table 1 and Section 2.2). Since
network density is below 0.35 (and thus satisfactory, as no network is too dense)
for all combinations of the studied parameters (Table 1), we next only need to focus
on choosing Δ t and w values that result in as large of LCCs as possible but without
losing valuable information contained in the data.

The effect of Δ t is as follows. The LCC size increases as Δ t increases, until it
reaches a saturating state (Figure 1). However, as Δ t increases, useful information
about the data is lost. For example, while even the shortest holidays such as Thanks-
giving (Table 2) can be captured (in the sense that their effects on the network struc-
ture are visible in Figure 1) at Δ t=1 week, they cannot be captured at Δ t=1 month,
Δ t=3 months, or Δ t=6 months. While the winter break (Table 2) can be captured at
Δ t=1 week or Δ t=1 month, it cannot be captured at Δ t=3 months or Δ t=6 months.
While the summer break (Table 2) can be captured at Δ t=1 week, Δ t=1 month, or
Δ t=3 months, it cannot be captured at Δ t=6 months. Thus, increase in Δ t causes
loss of data resolution. In order to capture as much of the relevant (including holi-
day) information from the data as possible, we leave out from further consideration
Δ t=3 months and Δ t=6 months and henceforth we only focus on Δ t=1 week and
Δ t=1 month.
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Fig. 1 Illustration of the effect of Δ t on the LCC size for CProximity and for w=1. The trends
are qualitatively similar for other network types and values of w.

The effect of w is as follows. As w increases, more nodes lose links and thus
the LCC size decreases. For short time periods such as Δ t=1 week, LCCs are not
too large even at w=1. Hence, studying larger ws at this Δ t yields little insight, as it
results in highly disconnected networks. For longer periods such as Δ t=1 month, for
most network types, the LCC sizes do not decrease significantly when increasing w
from 1 to 3, but the LCC sizes do decrease drastically when increasing w from 3 to 4.
Therefore, w less than 4 should be used. Of the remaining ws, we henceforth focus
only on w=3, because the stronger the value of w, the stronger the communication,
and thus, we favor w=3 over w=1 or w=2.
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In summary, we continue by studying the following combinations of parameter
choices: 1) Δ t=1 week and w=1, and 2) Δ t=1 month and w = 3.

3.2 Homogenous Network Comparison: Network Evolution with
Time

We compute similarities between networks of a given type from different time slots
in order to answer whether networks of consecutive time slots are more similar than
networks of non-consecutive time slots, or whether networks from school year peri-
ods are different than networks from holiday periods. We use four network similarity
measures: CE, ACE, PDD, and GDD (Section 2.3). For measure x and data type y,
we form similarity matrix AN×N where N is the number of time slots and the ele-
ment ri, j of AN×N is the similarity value with respect to measure x of two networks
of type y from time slots i and j.
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Fig. 2 Illustration of pairwise network similarities for each of the six network types (in the
six panels) with respect to ACE for Δ t=1 month and w=3. The overall trends are qualitatively
similar for other similarity measures and other Δ t and w values. Each row/column of a sim-
ilarity matrix corresponds to a time slot. Values on the diagonals are always one since each
network is completely similar to itself. Squares along the diagonals indicate high similarity
between consecutive networks covered by the squares.

Indeed, consecutive networks are more similar than non-consecutive networks for
SMS, PhoneCall, NProximity, and CProximity (similar has already been observed
in proximity networks [7]), whereas this is not as obvious for Email and Facebook
(Figure 2). This could be because Email data is extremely sparse in the first place
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and as such it may be hard to infer meaningful network structure from such data.
Note that sparseness of Email is not unique to our dataset as Email is typically not
used to maintain personal relationships [19]. Facebook could simply be different
from the other network types. Namely, it has already been argued that Facebook
does not necessarily capture real-world interactions [31], whereas SMS, PhoneCall,
and physical (Bluetooth) proximity likely do.

The difference between Email or Facebook and other network types is further
supported with respect to similarities of non-holiday and holiday networks. Net-
works in summer time (time slots 9-10 in Figure 2) show the lowest similarity with
other networks (indicating that non-holiday and holiday networks are very different)
for most network types, except for Email and Facebook. Thus, while people reduce
SMS, PhoneCall, physical proximity interactions during the break, their Email and
Facebook behaviors do not change significantly.

While SMS, PhoneCall, NProximity, and CProximity show similar trends, as dis-
cussed above, SMS and PhoneCall are still somewhat different than the other two
network types as follows. Non-consecutive network pairs (e.g., networks from time
slots 6 and 12 in Figure 2) are overall more similar for SMS and PhoneCall than for
NProximity and CProximity. This means that SMS and PhoneCall interactions are
more persistent through time than physical proximity.

In Figure 2, we showed trends for ACE. Whereas the trends are qualitatively sim-
ilar for the other network similarity measures, we aim to quantify the relationship
between the measures. We would expect CE and ACE to be similar, as their only
difference is that they capture the absolute versus the relative number of common
edges (Section 2.3). Further, we would expect GDD and PDD to be somewhat sim-
ilar, as GDD incorporates PDD (Section 2.3). Finally, we would expect that GDD,
as a more constraining measure of topological similarity than PDD, would be more
similar to CE and ACE than PDD, under the assumption that CE and ACE correctly
reflect network similarity (which is a reasonable assumption, as the two measures
account for node correspondence; Section 2.3).

We illustrate all four network similarity matrices (for the four measures) for one
of the network types (Figure 3). But instead of visually inspecting relationships
between the different measures, we quantify them by computing for each network
type the Pearson correlation between each pair of the four similarity matrices. We

0 3 6 9 12 15

15

12

9

6

3

0

0
20
40
60
80
100
120

(a) CE

0 3 6 9 12 15

15

12

9

6

3

0

0.0

0.2

0.4

0.6

0.8

1.0

(b) ACE

0 3 6 9 12 15

15

12

9

6

3

0

0.80

0.85

0.90

0.95

1.00

(C) PDD

0 3 6 9 12 15

15

12

9

6

3

0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(D) GDD

Fig. 3 Illustration of pairwise network similarities with respect to each of the four measures
(in the four panels) for SMS, for Δ t=1 month and w=3. The trends are qualitatively similar
for other network types and other Δ t and w values.



Systematic Dynamic and Heterogeneous Analysis 33

Table 3 Pearson correlations between network similarity matrices for each pair of the mea-
sures (rows), for each network type (columns), for Δ t=1 month and w = 3. Similar trends are
observed for other Δ t and w values. “*”, “**”, and “***” indicate statistical significance at
p-value thresholds of 0.05, 0.01, and 0.001, respectively. For all network types, we ignored
holiday time slots 9 and 10, since their networks are extremely small. Email networks are not
considered due to their extreme disconnectedness.

Measure I & Measure II SMS PhoneCall Facebook CProximity NProximity

CE & ACE 0.884*** 0.880*** 0.782*** 0.849*** 0.834***
CE & GDD 0.169 -0.356*** -0.158 0.017 0.450***
CE & PDD -0.066 0.149 0.156 0.044 0.173
ACE & GDD 0.187* -0.162 0.328*** 0.174 0.413***
ACE & PDD -0.084 0.068 0.197* 0.213* 0.381***
GDD & PDD -0.065 0.052 0.194* 0.507*** 0.565***

find that indeed CE and ACE are significantly correlated independent of the net-
work type, GDD is significantly correlated to PDD for all but two network types,
and GDD is significantly correlated to CE or ACE for all but one network type
whereas for PDD this is the case for all but two network types (Table 3). Inter-
estingly, the most significant correlations and between almost all measures are ob-
served for NProximity, which is the densest (i.e., most complete) of all network
types. This indicates that the different measures tend to be more robust in denser
networks, whereas they tend to give quantitatively less similar (yet qualitatively
consistent) results in sparser networks.

3.3 Heterogenous Comparison: Relationships between Network
Types

We compute similarities between networks of different types from a given time point
to study relationships between the different network types. Since we are dealing with
m = 6 network types, we perform M=

(m
2

)
pairwise comparisons for each of N time

slots. Thus, for each of the four network similarity measures, we obtain an AM×N

heterogeneous comparison matrix (Figure 4).
Some observations are immediately apparent, such as the holiday effect for each

measure (as the trends in time slots 9-10 in Figure 4 are clearly distinguishable
from all other trends). While CE is lower during summer time compared to non-
holiday time, ACE is higher. This is due to ACE accounting for relative rather than
absolute edge intersection between networks having only few edges during summer
time. For the same reason, GDD is very high during holidays, as GDD performs
“suboptimally” at very low network connectedness (Section 2.3).

We quantify dependencies between different network types by computing, for
each matrix (measure) in Figure 4, the average similarity for each row (network
type pair). Then, we rank the pairs by the resulting average similarities and
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Fig. 4 Pairwise similarities with respect to each of the four measures (in the four panels)
between each pair of network types, for Δ t=1 month and w=3. The trends are qualitatively
similar for other Δ t and w values. In a matrix, each row corresponds to a pair of compared
network types and each column corresponds to a time slot. A grey color indicates meaningless
or undefined Pearson correlation values, resulting from comparing degree distributions of
very disconnected networks.

identify top scoring pairs. Interestingly, the most similar pairs for one measure are
not necessarily the most similar for another measure (Table 4).

For example, the similarity between CProximity and NProximity, which is ranked
the highest with respect to CE and ACE, is not even among the top five with respect
to GDD or PDD. This is because CProximity networks are subgraphs of NProximity
networks. Thus, all edges within CProximity are also within NProximity, which
likely leads in their high CE and ACE scores. However, their GDD and PDD scores
are lower, since the overall topologies (when ignoring node label correspondence;
Section 2.3) are not as similar.

On the other hand, the top scoring pairs with respect to GDD and PDD include
Email and Facebook, none of which are among the top four with respect to CE and
ACE (Table 4). This, together with the fact that GDD (and consequently PDD) might
not correctly reflect similarities between highly disconnected networks (thus mak-
ing CE and ACE more trustable measures for such networks; Figure 3.3) supports
our finding from Section 3.2 that E-mail and Facebook might not reflect personal
interactions to the same extent as the other network types (spatial proximity, SMS,
and PhoneCall). Note though that the GDD results should be meaningful for well
connected (even if still sparse) networks.

We quantify relationships between the different similarity measures in this con-
text by correlating, for each pair of the measures, their matrices from Figure 4. We
observe significant correlations between CE and ACE, as well as between GDD and
PDD, but not necessarily between CE or ACE (which account for node correspon-
dence) and GDD or PDD (which do not) (Table 5).



Systematic Dynamic and Heterogeneous Analysis 35

Table 4 Top five network type pairs ranked based on their average similarities by each mea-
sure, for Δ t=1 month and w=3. The trends are similar for other Δ t and w values.

CE ACE GDD PDD

1 CProximity&NProximity CProximity&NProximity Email&Call Facebook&Call
2 NProximity&SMS Call&SMS Email&Facebook Facebook&SMS
3 CProximity&SMS CProximity&SMS Call&Facebook Call&SMS
4 PhoneCall&SMS CProximity&Call CProximity&SMS CProximity&SMS
5 NProximity&Facebook NProximity&SMS CProximity&Facebook CProximity&Call

Fig. 5 Illustration of highly dis-
connected Email (left) and Face-
book (right) networks from the
dataset that despite being struc-
turally different have high GDD
score. The size of each node is
proportional to its degree.
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Table 5 Pearson correlations (“r”) between heterogeneous network similarity matrices for
each of pair of the measures (columns). “*”, “**”, and “***” indicate statistical significance
at p-value thresholds of 0.05, 0.01, and 0.001, respectively.

Pairs CE&ACE CE&GDD CE&PDD ACE&GDD ACE&PDD GDD&PDD

r 0.530*** -0.132 -0.488*** 0.102 0.189* 0.395***

4 Conclusions

We present a framework for the exploration of longitudinal data encompassing mul-
tiple link types and validate the framework on a rich dynamic and heterogeneous
social network. Our framework reveals that: 1) consecutive networks are more sim-
ilar than non-consecutive networks; 2) holiday and non-holiday networks are quite
different for all network types except Facebook and Email; 3) when studying evo-
lution of networks of a given type, most of the network similarity measures are
significantly correlated, especially in more complete networks; 4) when studying
dependencies of different network types at a given time, the most similar network
types with respect to one measure are not necessarily the most similar with respect
to another measure; and 5) Facebook and Email are different than the other net-
work types (SMS, PhoneCall, and physical proximity), suggesting that Facebook
and Email might not be capturing personal interactions to the same extent as SMS,
PhoneCall, and physical proximity.
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Our study has potential to help guide prediction of future links from past/present
links or relationships of one type from relationships of another type, thus affecting
the link prediction community among many others.
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Moneymakers and Bartering in Online Games

Jane E. Lee, Ah Reum Kang, Huy Kang Kim, and Juyong Park

Abstract. We study the interpersonal trade network from a Massively Multiplayer
Online Role-Playing Game (MMORPG), where players actively engage in the ex-
change and sales of goods and items in a hyperrealistic virtual environment. In this
paper we introduce the concept of Standard Price (SP) of items computed from the
trade network, which allows us to investigate the relation between the profitability
of a trade and the structure of the social networks of the users. We find that the
social network is correlated with the outcome of interpersonal trades. For instance,
we observe that the margin of profit in a trade correlates with the social distance
between trading partners, suggesting that social affinity implies shared information
on the value of an item.

1 Introduction

The economic activity is one of the most common and fundamental activities in
the human society. The price at which a good gets sold and bought, marked in a
common currency of a market, depends upon a wide range of factors including the
scarcity of the goods [1], the nature of the distribution channel [2], the relationship
between the seller and the buyer [3], to name a few. The complex combination of
these variables can cause identical items to be traded at different prices, resulting
in the differentiation of profit margins for those involved in the trade. Recently, the
characteristics of the complex network of trading partners and their implication on
the market structures and dynamics have garnered much interest [4].

In this paper, we study the relationship between the profit generated in a trade
and the social network structure of those involved in it. We utilize the economic
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trade and social interaction records from AION, a Massively Multiplayer Online
Role-Playing Game (MMORPG) serviced globally. As the goal of MMORPGs is
to provide the gamers with a fantastical yet highly lifelike online environment in
which they can form social relations and perform realistic actions, they are gaining
popularity as “virtual laboratories” for observing human behavior in great detail
[5–11].

In collaboration with NC Soft, Inc., the global service provider of AION, we
studied the economic trade and the social network data involving more than 50,000
individuals. By introducing the concept of Standardized Price (SP) of bartered
items, we determined the monetary value of each item, which allowed us to easily
quantify the profit or loss that each individual incurred in a barter for universal
comparison.

2 Materials and Methodology

We utilized AION data collected during a span of 87 days between April and July of
2010, comprising nearly 1.7 million interactions between 52,757 anonymized play-
ers. For our study we considered the following five interaction types, three economic
and two social:

1. Barter (economic) accounts for 35.6% of all economic transactions. In a barter
two players exchange goods for other goods or the in-game currency “Kinah”.

2. Personal Shop (economic) accounts for 2.7% of all economic transactions. Here
a player buys goods from another player who is in a dedicated “merchant mode,”
functioning only as a shop owner.

3. Sales Agency (economic) accounts for 61.7% of all economic transactions. Here
a player buys goods from sales agents controlled by the computer acting on be-
half of the owners of the goods.

4. Friendship (social) indicates that two players have each other on their Friend
Lists.

5. Private Messaging (social) indicates that two players have communicated with
each other.

2.1 Network Measures

We measure the following network properties from AION:

1. The degree k of a player is the number of his neighbors. In a directed network
one has the in-degree kin and the out-degree kout. A weighted edge is an edge
with an attached value, e.g. the number of transactions between two players.

2. The geodesic distance the length of the shortest path joining two players. The
diameter of a network is the length of the longest geodesic in the network.

3. The clustering coefficient C is the probability that two neighbors of a player are
themselves neighbors [12, 13].
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2.2 The Standard Price of Goods

Barter in AION comprise both monetary non-monetary transactions between play-
ers. Cases where items are traded for items pose a particular challenge, as it is
difficult to quantify the value of items involved in the network and therefore de-
termine whether one player has made a “profit.” Thus we introduce the concept of
the “Standard Price (SP)” of an item (in the unit of Kinah, the in-game currency),
to be determined from the transaction network itself. The fundamental idea is that
an item’s value can be computed from those of other items for which it has been
traded. One may set up this problem as solving a system of linear equations but this
is unlikely to work, as some equations may simply be contradictory (e.g. when an
item has been sold once for 500 Kinahs and another time for 1000 Kinahs). Thus
we propose the following method. We start by identifying the items that have been
traded for Kinah only at least once. Then we set their prices as the average of the
Kinahs they were paid for, which we now use to determine the prices of other items
that have been traded for Kinah and the first set of items. We can view the prices as
propagating through the network via this iteration. Formally, let us denote by sx the
SP of an item x. We can then represent a barter between two players as

{(n1,s1),(n2,s2), . . .}←→ {(na,sa),(nb,sb), . . .}, (1)

meaning that one player hands to the other player n1 of item 1 whose SP is s1, n2

of item 2 whose SP is s2, and so forth, in exchange for na of item a whose SP is sa,
and so forth. Here we mark a known SP with an asterisk, e.g. s∗i . The SP of Kinah
is its nominal value.

1. Find the transactions that involve only one item with the undetermined SP, say
item 1 in the barter transaction

{(n1,s1),(n2,s
∗
2), . . .}←→ {(na,s

∗
a),(nb,s

∗
b), . . .}, (2)

Table 1 Basic network characteristics of AION in comparisons with other online games

Networks
AION Pardus

Trade PM(9 days) Friendship Trade PM Friendship

Nodes 21,417 21,771 30,002 18,589 5,877 4,313

Edges 31,539 219,922 100,476 568,923 107,448 21,118

Diameter 23 14 15 NA NA NA

Clustering Coefficient /

Ratio to Random Network
0.12/872.57 0.04/43.10 0.12/537.50 0.25/109.52 0.28/45.71 0.43/131.95

Average Degree 2.95 20.20 6.70 61.21 36.57 9.79

Average Weighted Degree 6.13 234.00 NA NA NA NA

* measurements of Pardus is from Szell et al.’s paper. [8]
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from which s∗1 is given as

s∗1 =
(nas∗a + nbs∗b · · ·)− (n2s∗2 + n3s∗3 + · · ·)

n1
. (3)

Perform a similar calculation for all such transactions.
2. Substitute the newly determined SP’s for the same items in all the remaining

transactions.
3. Repeat.1

The SP’s of items determined using this method can now be used to quantify the
profit incurred by player i in a barter with player j, as

Ri j =−(∑
i

nis
∗
i

)
+
(
∑

j
n js

∗
j

)
, (4)

where Ri j =−R ji, and ∑i is the summation over the items given by i to j, and vice
versa. A negative Ri j would mean that player i has made a loss (and j a profit).

3 Results

3.1 Basic Network Characteristics

In Table 1 we present the basic properties of networks in AION, along with those of
networks from another online game Pardus [8] for comparison. The networks from
AION exhibit the so-called “small-world” property (with the diameter being much
smaller than the network size), while the Barter and the Friendship network also
exhibit high clustering typical of social networks, although the Private Messaging
does not, presumably due to the fact that one can send messages freely to anyone
on the game. While networks from Pardus generally show higher clustering, the two
networks from AION exhibit a larger ratio against the randomized value, possibly
resulting from the fact that gameplay in AION are centered around communities
called a “Legion.” [7]

The cumulative degree distributions are given in Fig. 1. The Barter network is
a weighted directed network; the in-degree kin of a node is the number of money-
making (profitable) barters, while the out-degree kout is that of lossmaking barters.
Friendship and Private Messaging (PM) networks are considered undirected and
simple.

1 For the undetermined s’s that remained when the method could no longer be applied, we
assumed they were the same price s̃ and solved for it from the linear equation. As they
were very few in number and were thus highly likely to be insignificant.
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(a) Barter (b) Friendship (c) Private Messaging

Fig. 1 The cumulative degree distributions of networks in AION. The Barter network is
weighted and directed, with the in-degree kin defined as the number of profitable transactions,
and the out-degree kout defined as that of lossmaking transactions. The Friendship and the
Private Messaging (PM) networks are considered undirected and simple.

3.2 Profits and the Social Network

In Fig. 2 we show the distribution of net (total) profits of the players based on the
SPs calculated using the method above . An intriguing aspect of it is the nearly even
split between the “moneymakers” and the “losers”, signified by the two peaks on
the negative and the positive sides of the x-axis. The near perfect symmetry between
the peaks reflects the skewed degree distribution of Fig. 1 (a), where a majority of
people conducted one transaction so that for each profit a matching loss exists.

Fig. 2 The distribution of the overall net profits for players who engaged in barter with other
players. Interestingly, there exists a split between moneymakers and losers, indicated by the
two prominent peaks.
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3.2.1 Degree and Profits

Given that the nodes of a network are primarily characterized by their degrees [14],
it is interesting to see whether there exists a relationship between the nodes’ profits
and degrees.

First, presuming that one’s skill in deal making increases with one’s experience,
we can inspect whether one’s net profit correlates with the degree itself, i.e. the
number of transactions one was involved in. The correlation between degree and
net profit turns out to be, however, insignificant: the Pearson correlation coefficient
is 0.01± 0.02, demonstrating that simply making many trades with others is no
indication of good skills2.

Second, based on the previous realization that a high degree does not necessarily
mean a high level of profit, we can ask whether we can distinguish between those
who make profits with a high probability and those who do not, given the degree.
Indicating the direction of the flow of profit by the direction of the edge in a network
(therefore, a player’s out-degree is the number of transactions from which the player
has suffered a loss), we studied the Pearson correlation coefficient between the in-
and out-degrees of the nodes, which turned out to be 0.66± 0.09. This means that
those with many profitable trades also have many loss-making trades.

These two findings suggest that the degree is generally a poor indicator of prof-
itability in barter, and therefore we may need to investigate other higher-order net-
work properties to understand the nature of the profits better.

Fig. 3 The profit margin in a trade versus the social distance between the partners in the
trade. The red dots represent the average for each inverse distance value. The profit margin
generally correlates positively with distance, indicating relative lack of common belief or
knowledge about the value of an item between players who are far apart.

2 To avoid problems from extremely high values, we took the logarithm of the profits in the
calculation.
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3.2.2 Profitability, Trade Frequency, and Social Network Distance

As mentioned above, an important feature of a network is the concept of the “dis-
tance” between nodes. We studied whether there exists a correlation between the
profitability (profit margin) of a trade and the social distance between the trading
players; from the Friendship network of AION we determined the geodesic distance
between the players, and found a Pearson coefficient of −0.25± 0.01 between the
(logarithmic) profit margin and the inverse geodesic distance3, implying that the
further apart two players are socially, the higher the profit margin and the likelihood
of trade to become less “fair.” This is a result that strongly suggests the existence of
a network effect in assessment of the value of an item in a trade, i.e. an implicitly
“shared knowledge” between users that are close in the network.

4 Conclusion

Online gaming environments act as a virtual laboratory in which one can examine
detailed socioeconomic behaviors of players, creating interesting opportunities for
research. In this paper we analyzed the relationship between the social networks of
people and their economic trade behaviors. We found out that a person’s profitability
is not correlated with their frequency of trade or experience, and that the social
distance increased the profit margin, i.e. social affinity lowered the profit margin,
indicating some possible role that a social network plays in economic activities.

We believe that our work, along with our method for determining the Standard
Price of items from barter data in MMORPGs, lays the foundation for a more in-
depth study on the relationship between economic activities and social networks
in online environments. We plan to investigate this further, as there are undoubtably
many more quantifiable properties of the players’ social networks that correlate with
their trade behaviors. We also believe that our work has the potential to shed light
on the social network-related dynamics of markets in the real world as well.
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Politics Matters:
Dynamics of Inter-organizational
Networks among Immigrant
Associations

Matteo Gagliolo, Tom Lenaerts, and Dirk Jacobs

Abstract. We model the dynamics of the two-mode network among di-
rectors and boards of voluntary associations, using a stochastic actor-based
model, SIENA [12], including the structural effects proposed in [6], and con-
sidering the political orientation of associations as a covariate. Using data
from [14], we compare the evolution of interlocks among Turkish associations
in two European capitals, and explain the noticeable difference in structure
by looking at statistically significant differences among the estimated effects.

1 Introduction

Social capital designs the ensemble of resources which are accessible to a
social actor through its relationship with other actors [9]. As such, it is nat-
urally embedded in social networks [1]. In his famous work on the causal
relationship between “bridging” social capital (associational life), trust, and
civic behavior, Putnam [10] did not investigate the structural aspect of such
networks, leaving the question of its relevance unstated. Recently, the rela-
tionship between associational life and political participation of ethnic mi-
nority groups in Europe has been investigated, obtaining useful insights, yet
without reaching uniform conclusions [4, 13, 14]. In this line of work, sim-
ple structural properties of the network of interlocking directorates among

Matteo Gagliolo · Dirk Jacobs
GERME, Institute of Sociology, Brussels, Belgium

Matteo Gagliolo · Tom Lenaerts
MLG, Computer Science Department
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ethnic associations have been used as a “proxy” of the social capital of the
corresponding minority group. The aim of our research is to pursue this line
further, looking at the structure of such networks, but also at the dynamics
that produce it. Here, we use a stochastic actor-based model, SIENA [12],
which estimates the effect of actor covariates and local structure on network
evolution, to analyze data from [14], describing the evolution of the councils
of Turkish associations in Amsterdam and Berlin.

2 Background

The concept of social capital designs the ensemble of resources that an actor
can access or mobilize via his connections to other actors, regardless of the
kind of resource considered (information, control, support, etc.). Most of the
early work on social capital focuses on individuals, or small elite groups [9];
its study at the aggregate level, for a whole community, has been popularized
by Putnam [10], who observed a virtuous circle of causal connections between
the amount of associational life, the level of trust, and civic behavior.

More recently, Fennema and Tillie [3] compared the social capital of four
migrant communities in Amsterdam, studying structural differences among
the networks of interlocking directorates of ethnic organizations (i.e., connec-
tions among organizations sharing one or more board members), and found
a positive correlation among the number of interlocks in the network, and
the political participation of the corresponding ethnic minority group. Later
studies questioned this hypothesis, finding more subtle relationships among
organizational network structures, aggregate indicators of immigrant groups,
and civic behavior (see [5], and other papers from the same special issue).

Interlocking directorates [2] are an example of two-mode or bipartite net-
works, where two classes of nodes are present (in this case, directors and
boards), and links are only possible from one class to the other. A projection
onto two distinct one-mode networks can be performed, linking two nodes if
they are connected to a same node of the other mode. This allows to draw a
network among boards that have at least one director in common; or among
directors that sit on the same board. As one mode networks have been the
subject of a much larger corpus of research, and software development, many
scholars prefer to analyze one of the projections, discarding the other mode.
While not devoid of interest, this approach has several limitation, in that
some of the information in the data is lost during the projection (e.g., in
the case of boards, multiple common directors). Moreover, it has been shown
that the projection introduces spurious structures in the one-mode network
[7], changing the meaning of some of the standard network measures, such as
density and clustering [8].
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3 Methods

SIENA [12] is a stochastic actor-oriented model of network evolution, mean-
ing that the structure of observed network data is assumed to be the result
of the actions of a set of agents, each corresponding to a node, and exerting
a control over its outgoing ties, by adding or deleting ties to the other nodes.
Given a set of potential motives governing social choices, mathematically
defined as effects, the algorithm estimates a set of parameters, each modulat-
ing the impact of the corresponding effect on the probability of forming and
deleting ties. Based on a pair of snapshots, or waves, of an evolving network,
the estimate is performed such that, in a simulation starting from the first
snapshot, the final simulated snapshot will be the most similar to the one
actually observed. In the following, we provide a simplified description of the
model, based on [11] and [6].

Be x ∈ {0, 1}N the binary matrix representing a network among N nodes,
and Δijx the matrix obtained by switching a single element of x, (xij ←
1 − xij). Each node i is an agent, which can perform atomic changes to its
outgoing ties xij , at exponentially distributed points in time, with rate λ.
Agents add and remove links according to a “perturbed” utility function:
the target index j is drawn with probability pi(j|x) ∝ expΔfi(j,x), where
Δfi(j,x) = fi(Δijx)−fi(x) is the variation in utility that would be obtained
by i with a switch of xij .

The utility function fi(j,x) is a linear combination of effects, which can
be arbitrary functions of the current network x, as well as of node covariates:

fi(x) =
∑
k

θksi,k(x). (1)

Usually, the structural effects can be decomposed according to the outgo-
ing ties of i, as si(x) =

∑
j si(j,x). The model is Markovian: at each time

step, the probability distribution over the possible next states (all networks
at Hamming distance 1) can only depend on the current state. Fixing a set of
effects and an initial network x, its further evolution will be a stochastic func-
tion of the rate λ and the effect weights θ = {θk}. These parameters can be
estimated with a Markov chain Monte Carlo approach, selecting those values
which produce networks that are the most similar to the ones observed, in
terms of the aggregate values of the included effects. The standard deviation
of effect estimates can be used to test their significance with a simple t-test.
Also differences among an effect estimated on distinct data sets can be tested
for significance1 [11].

1 Comparing different effects on the same data set is instead not trivial, as the
magnitude of an effect is not a relevant index of its actual impact on network
evolution, which also depends on the magnitude of the associated effect function.
What matters in interpreting the results is the sign of significant effects.
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Table 1 Structural effects used in [6] (argument x dropped to simplify the
notation)

density si(j) = xi,j

2-star si(j) = xi,j

∑
h�=i xh,j

3-path si(j) = xi,j

∑
h�=i xh,j

∑
k �=j xh,k

4-cycle si(j) = xi,j

∑
h�=i xh,j

∑
k �=j xh,kxi,k

As previously pointed out (Sec. 2), analyzing the one mode projection
of two-mode data can be misleading2. Luckily for us, the method has been
recently extended to two-mode networks by [6], who applied it to model
the evolution of interlocking directorates among firms in the Swedish stock
market. In the paper, four structural effects were considered as relevant for
interlock formation (Table 1): the basic outdegree effect, density; simple and
double interlocks, labeled 2-star and 4-cycle, respectively; and an inter-
mediate structure termed 3-path. The resulting four effects have distinctly
different meanings: while density is a “baseline” expressing the tendency of
associations of acquiring a new director3, 2-star corresponds to the tendency
of forming an interlock, which may indicate an underlying social connection
among the new director and members of the board, or reflect a strategy of
the two boards; and 4-cycle amounts to adding a second interlock to an
existing one, which is interpreted by [6] as a stronger clue of peer referral :
the fact that at least one of the directors sits already on both boards implies
that he knows already all directors involved, and may suggest that one of his
colleagues from the first board joins the second one, thus doubling the inter-
lock. The 3-path is added for completeness, as an alternative explanation to
4-cycle formation, and may be interpreted as a differential preference for
interlocks towards boards with a larger number of directors.

4 Results

The analysis was carried out using RSiena [11]: in the following we illustrate
the details of the experiments, and the results obtained.

Data. Longitudinal data (1985-2003) of the composition of directorates of
Turkish associations in Berlin and Amsterdam was provided by the au-
thors of [14], along with a broad classification of the political orientation
of the organizations, on three levels (left, center, right, which we encoded as
−1, 0, 1).

2 It is especially problematic with SIENA, as the basic assumption of atomicity
of changes (agents can only change one link at a time) is violated. For example,
by joining a new board, a director that sits already on k boards will add k new
links at once in the projection, among the new board and the previous ones.

3 The mode of the organizations is considered the active one, unilaterally deciding
when to add/remove directors.
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Settings. Following [6], the boards mode was considered the active one,
choosing which directors to recruit and release. The default Robbins-Monro
approximation was used for estimating the parameters. The estimates were
performed on a sequence of data sets, obtained using a shifting window of
four consecutive waves (four years).

Effects. The same structural effects of [6] were used (see Table 1). In order
to study the impact of political orientation on interlock formation, we imple-
mented a distance 2 similarity effect (simD2), to measure the preference for
interlocks with similar associations, corresponding to an homophily effect in
the one-mode projection. simD2 was defined as4:

si(j) = xij

∑
h �=i xhjsimih∑

h �=i xhj
. (2)

Estimates. In a first set of experiment (Fig. 4), we tested the four structural
effect described above. While the numbers involved are much different (inter-
locks are a much rarer phenomenon in the voluntary sector), the results follow
a similar pattern to that observed by [6] on much denser interlock networks
in the for profit sector. More precisely, the density effect is negative, due to
the limited number of directors per board, implying that the vast majority
of possible ties are absent. The 2-star effect is mostly negative, suggesting
that boards do not actively search to form interlocks: note that, given that
density acts as a baseline, a negative 2-star means that associations prefer
to enroll an inactive director (forming a simple tie) rather than someone who
is already active in another board (forming an interlock). The 3-path is often
not significant, and when it is, its value is quite small (i.e., when forming an
interlock with another board, its size does not matter): in our case, this effect
is small but significantly negative in Berlin for some of the waves (1986-1995
and 1997-2003), indicating a moderate preference for smaller boards. This
needs further interpretation: it may be related to the existence in Berlin
of so-called umbrella organizations, which aim at coordinating the activities
of several smaller ones, enrolling one director for each member association.
4-cycle is, instead, significantly positive. In practice this means that, when
a simple interlock is already present, an association will prefer to enroll a
director from the connected board, rather than a complete outsider. In [6],
this is interpreted as a clue of peer referral.

While we cannot compare the magnitudes of different effects on a given
data set (see note 1), we can however compare the estimates of the same
effect on different data sets: in particular, we can check for statistically sig-
nificant differences among the two data-sets. In this case, the first obvious

4 Here, vi is the covariate value of i, Δv = maxih |vi − vh| the observed range of

the covariate, and simih = Δv−|vi−vh|
Δv

the similarity among two nodes i and h
in the same mode. Therefore, simD2 varies between 0 (for interlocks connecting
two boards with maximum covariate difference) and 1 (for identical covariates).
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Fig. 1 SIENA estimates, structural effects only. Each horizontal section corre-
sponds to an effect. Ticks on the horizontal axes correspond to four consecutive
years of data. For each effect, at each year, two circles are plotted, indicating the
estimated values for Berlin (left, black), and Amsterdam (right, red). Full circles in-
dicate significant results (based on p-values, see legend at upper left), while empty
circles are not significant. Vertical segments represent the standard deviation of
each estimate. Significant difference among the two towns is instead highlighted
using a transparent tint effect where the difference is not significant.

difference is in the rate parameter, which is almost always higher in Amster-
dam, indicating more frequent variations in the composition of the boards. In
terms of the structural effects, a comparison among Amsterdam and Berlin
reveals that Turkish associations in Berlin have a stronger negative 2-star

and stronger positive 4-cycle, suggesting that they form interlocks less easy,
but are more prone to reinforcing them when present, compared to Turks in
Amsterdam: however, the absolute number of four cycles in Berlin is very
small (hence the large standard deviations of the estimates).

This difference is reflected in the evolution of these two indicators in the
two towns (see Fig. 2 for 2-star). While similar during the 1980s, both
indicators start diverging during the early 1990s: the steeper increase of in-
terlocks in Amsterdam corresponds to a significant difference in the 2-star

effect during this decade. Grouping interlocks according to the similarity of
the connected associations, we can remark that political polarization is very
strong in both cities, as the vast majority of interlocks connect associations
from the same political side.
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Fig. 2 Simple interlocks (2-star), per year, in Amsterdam and Berlin. Colors
indicate the ideology similarity among the two interlocked organizations (0: left-
right; 0.5: center-left, center-right; 1 left-left, right-right).

Fig. 3 SIENA estimates, including covariates. See Figure 4 for the legend.

Are these differences sufficient to explain the differences in structure ob-
served in the two cities? Intuitively, politics must play a role, otherwise the
interlocks would not follow political alignment. After implementing the simD2
effect, we could test the impact of similarity among associations, including
also a net effect of political orientation (Fig. 3). While density and 2-star

remain unaffected, the 4-cycle effect keeps the same pattern, but its dif-
ference looses significance in most of the waves, confirming that structural
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effects alone are not sufficient to explain this data: as the vast majority of
four cycles links politically homogeneous organizations, adding this covariate
effect renders the structural one superfluous. Ideology by itself is also mostly
not significant, except in Berlin during 1985-1992, indicating a greater ac-
tivity of right-wing associations in recruiting directors. The political affinity
among different associations (ideol.simD2) is instead relevant. It is mostly
significant, and positive, in both towns. Regarding significant differences, we
can identify two periods where the similarity effect is significantly lower in
Amsterdam, in the early and late 90’s. This corresponds to periods charac-
terized by a slight increase of politically heterogeneous interlocks in this town
(see Figure 2).

5 Conclusions

While preliminary, our results already highlight the importance of political
homophily in interlock formation, and allow to describe the difference among
the two communities in quantitative terms. In this sense, the 2-star effect
seems particularly relevant. In the longer term, we intend to relate the dy-
namics of these networks to the political participation of the corresponding
communities, in order to test existing hypotheses on the impact of ethnic
social capital on political participation [3, 4].
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A Statistical Mechanics Approach to Immigrant 
Integration in Emilia Romagna (Italy)   

Francesco De Pretis and Cecilia Vernia 

Abstract. Integration phenomena are social processes among human beings that 
take place every day when an autochthone population is experiencing the arrival 
of new immigrants. Although being a rising phenomenon (involving now over one 
billion people according to United Nations) which questions societies and policy-
makers all over the world, numerical measurements capable to give robust insights 
over the way immigrant integration occurs are still far from what is usually consi-
dered an affordable standard in mathematical and physical sciences. Basing our 
analysis on previous seminal works, we follow here a statistical physics approach 
to the analysis of immigrant integration. In specific, we consider a large dataset 
collected by the Emilia Romagna region office of statistics (Italy), containing 
information over all marriages occurred amid the regional population during a 
sixteen years span, from 1995 to 2010. We define as quantifier of integration the 
percentage of marriages with spouses of mixed origin and we perform several 
analyses over the dataset, including binning and data fitting. The final outcome 
consists in an emerging pattern: quantifier's average measurements align around a 
square root fit when considered with respect to a suitable function of the immi-
grant density. The theoretical interpretation we offer is that such result agrees with 
a suitable version of the Curie-Weiss model used in statistical mechanics to de-
scribe ferromagnetisms. More explicitly, immigrants living in Emilia Romagna 
municipalities seem to present mainly imitative behavior’s phenomena in making 
social actions for integration. The result emerged with Emilia Romagna data com-
plies with previous works concerning similar data coming from Spain. 
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1 Introduction 

Integration of immigrants is a political priority in many countries: there are over 
one billion migrants all over the world, one quarter of which are international 
migrants [1]. Even though it is not clear how sensitive integration is to an increase 
of immigrant density and to what extent social interaction goes into higher  
integration, it is easy to guess that social interaction between immigrants and  
autochthonous population is a necessary condition for immigrant integration. Cu-
rie-Weiss models have been used in the last years in the quest to model social 
interactions and processes of decision taken by individual human beings 
[2,3,4,5,6]. In this paper we follow a statistical physics approach to the study of 
immigrant integration using methods and models already explored in a previous 
seminal work concerning a large collection of Spanish data [7]. Given a large 
dataset described in the subsequent section, we focus on a classical quantifier of 
integration such as the fraction of marriages with spouses of mixed origin (native 
– i.e. bearing Italian citizenship – and immigrant)  

       . 

 
Within this framework, our goal is a statistical mechanics theory by which the 

magnitude of the above-mentioned quantifier can be expressed as a function of the 
density of immigrants, i.e. the ratio between the number of immigrants  and 
the total population  where  is the number of natives: 

 0,1  

 
For a better representation of the integration quantifier – based on combinatori-

al reasoning [7] – we are interested in studying its dependence on the quantity Γ 1 . Afterwards, we seek an empirical function from real data, able to 
entail the observed collective behavior. As it will be reported in the results section, 
this work confirms that it is possible to discriminate, using quantitative methods, 
whether the value of the integration quantifier follows from people acting accord-
ing to some individual preferences independently of other people (independent 
choices), or whether it follows as a result of social interaction with other ones 
(imitative behaviors). These two opposite cases are described in statistical me-
chanics theory either as perfect gas of independent particles (in this case, average 
measurements of the quantifier against Γ follow a linear growth) or interacting 
theory with possible phase transitions (in this case, average measurements of the 
quantifier against Γ align around a square root curve). 

2 Data Description and Methods 

As stated above, the perspective of this work belongs to the statistical mechanics 
methods used to explain social integration phenomena, starting from the analysis 
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of real data. More precisely, the work has been centered on a large dataset col-
lected by the Emilia Romagna region office of statistics (Italy), containing infor-
mation recorded in all Emilia Romagna region municipalities (348 cities) regard-
ing marriages occurred amid the population during a sixteen years span, from 
1995 to 2010. In particular, for each municipality, the database provides the refer-
ence year, the number of marriages between Italians and foreigners, the number of 
marriages only between foreigners, the number of marriages only between Italians 
and the total amount of marriages. 

Regarding the sources of data, the Emilia Romagna region dataset was some-
how freely downloadable from the regional office of statistics website (data were 
accessible per municipality at given year, so that techniques of automatic web-
contents wrapping have been employed to collect the entire dataset). All data were 
real (i.e. not estimated) and were subsequently matched with the density of immi-
grants for each municipality at each given year (information freely retrievable 
from ISTAT – Italian National Institute of Statistics – sources): the density of 
immigrants was estimated only for two specific years  (1999 and 2000) since the 
recording of immigrant population was suspended during that period. Given the 
dimension of the considered dataset, the work can be somewhat inscribed in a big 
data exploitation: to give a rough idea of the computational efforts pursued, 
around 50.000 data have been processed in order to compute the above described 
quantifier (y-axis) matched with the density of immigrants (x-axis), producing the 
scatter plot reported below in Figure 1. It is worth to note that according to pre-
scriptions of a time-independent analysis, data have been plotted together inde-
pendently from the year they were referring to. 

 

 

Fig. 1 Raw data versus . Blue points represent the fraction of mixed marriages occurred 
from 1995 to 2010 in all municipalities located in Emilia Romagna region where a percen-
tage  of migrants is present. 
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Besides the representation through a scatter plot, we have been interested in the 
quantifier’s average measurements as functions of Γ: since the quantifier  is a 
ratio (i.e. the total number of mixed marriages over the total number of marriages) 
and we were concerned in looking at patterns in the global scale of the dataset, a 
natural way to compute averages has been a mediant measure. This means that for 
a given bin of , we have computed the ratio between the statistical average of 
numerators and the statistical average of the denominators. This processing has 
been performed according to a constant information binning, i.e. each bin con-
tained a fixed number of points. After having compacted the initial information of 
raw data into bins, a classical procedure of curve fitting has taken place. In partic-
ular, following the example of previous work conducted in [7], we have evaluated 
linear and power functions according to the R2 coefficient of determination. 

3 Results 

After having performed the procedures described in the methods section, the fol-
lowing result has been obtained: quantifier's average measurements computed for 
all data coming from the Emilia Romagna region dataset have fitted around a visi-
ble square root pattern with a R2 coefficient of determination being over 95%, 
highly reproducing results obtained with similar Spanish data in [7]. Since the 
analysis of the data density versus Γ shows that only about the 7% of the data are 
found for Γ greater than 10%, we limit our study below this threshold. It is worth 
of note that in Emilia Romagna region in 2010 the percentage of immigrants over 
the total population is about 11%, the highest density of immigrants with respect 
to any other Italian region. 

The result has been verified according to various types of binning (i.e. changing 
the number of bins) and various families of functions (for instance, linear func-
tions). In the end, a square root fit emerged as the best estimation for the quantifi-
er's average measurements, since with linear and other fittings, the outcomes  
reported lower R2 coefficient of determination associated with noisy fits highly 
depending on the nature of binning. 

The mathematical model that supports these results is a generalization of the 
monomer-dimer model [8] with the addition of an imitative interacting social net-
work component of small world-type [9]. The model, proposed and described in 
[7], reduces to the classical discrete choice theory [10] (or perfect gas of indepen-
dent particles) with linear growth of the quantifier as a function of Γ, when imita-
tion is negligible, and to the square root behavior when imitation is dominant. The 
social network structure explains why the integration starts very close to Γ = 0 
when the choice is dependent on other agent behavior. 

Therefore, translated in statistical mechanics terms according to the theoretical 
interpretation shown in [7], the result of an empirical square root function for the 
quantifier's average measurements offers an interesting picture of immigrant inte-
gration issues in Emilia Romagna region. In specific, even though we do not deal 
with the possible origins of such cooperative influence, we simply conclude that 
data suggest that in Emilia Romagna municipalities imitative phenomena mainly 
take place against the possibility of independent choices carried on by the same 
immigrants. 



A Statistical Mechanics Approach to Immigrant Integration in Emilia Romagna  61  

 
Fig. 2 Emilia Romagna dataset. Dots are average quantities versus Γ, whereas lines denote 
error bars. Quantifier M  (blue dots), fraction of mixed marriages occurred from 1995 to 
2010 in all the municipalities located in Emilia Romagna region, with the best square root 
fit (red curve) a√Γ  (a = 0.5943  0.0757, b= -0.008631  0.014019, goodness of fit R2 
= 0.9529 computed for Γ  0.078). Parameter b evaluation is compatible with the hypothe-
sis that it can be null, as prescribed by the statistical mechanics model we use for results 
interpretation.   

 
Acknowledgement. Authors express their gratitude to Pierluigi Contucci and Claudio 
Giberti for the inspiring insights and comments that helped writing this work. 
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Searching in Unstructured Overlays Using Local
Knowledge and Gossip

Stefano Ferretti

Abstract. This paper analyzes a class of dissemination algorithms for the discov-
ery of distributed contents in Peer-to-Peer unstructured overlay networks. The algo-
rithms are a mix of protocols employing local knowledge of peers’ neighborhood
and gossip. By tuning the gossip probability and the depth k of the k-neighborhood
of which nodes have information, we obtain different dissemination protocols em-
ployed in literature over unstructured P2P overlays. The provided analysis and sim-
ulation results confirm that, when properly configured, these schemes represent a
viable approach to build effective P2P resource discovery in large-scale, dynamic
distributed systems.

1 Introduction

This paper deals with resource discovery in large-scale, dynamic Peer-to-Peer (P2P)
distributed communication systems. In this context, it has been recognized that an
interesting approach consists in exploiting unstructured overlay networks [2, 6, 8],
which are alternative to traditional structured solutions [7]. Indeed, there are some
clear drawbacks related to unstructured networks, that make structured ones more
effective in some distributed systems. In particular, the main weakness of unstruc-
tured nets is that links among nodes do not depend on the distribution of the con-
tents. This means that in general it is not possible to provide a bound on the number
of nodes that might be involved during the lookup of a resource. On the other hand,
the advantages are the easier manageability and the possibility of implementing re-
source discovery systems based on partial-match and complex queries. Conversely,
several structured P2P approaches (e.g. those based on DHTs) strongly limit the
expressiveness of the queries to retrieve contents. For these reasons, understanding
if, how and when unstructured overlays can support resource and content lookup
represents an interesting research topic.
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A main aspect refers to the algorithm employed to distribute queries among
nodes, that strongly influences the performance of the whole system. In this paper,
we study a simple class of dissemination algorithms, which are a mix of push-gossip
based and informed propagation schemes [4]. Each node has knowledge of its k-
neighborhood, i.e. those nodes that are distant at most k hops from it. This informa-
tion is exploited during the routing of messages in the overlay, i.e. a node sends the
message to those 1-neighbors that can relay the message to the k-neighbours that hit
the query. Moreover, the node gossips the message to its remaining 1-neighbors. The
tuning of the parameters of the algorithm (i.e. gossip probability threshold and depth
k of the k-neighborhood) allows to pass, for instance, from pure locally “best neigh-
bor selection” dissemination protocols (gossip probability set equal to 0), e.g. [11],
to flooding schemes (gossip probability set equal to 1). Similarly, if the depth k of
the k-neighborhood is set k = 0, a pure gossip strategy is obtained; when k is set
equal to the network diameter, we have a scheme with full-knowledge of the net.

We present an analytical framework that models the described family of com-
munication protocols. A numerical analysis over scale-free network topologies is
performed, and it is compared with a simulation of the system. Results confirm that
dissemination protocols exploiting the combination of gossip and local knowledge
about nodes’ neighborhood, are a useful tool to build lookup discovery services over
large-scale unstructured P2P systems. Moreover, the framework can be practically
exploited to tune the gossip probability at peers and build effective lookup discovery
services over P2P unstructured overlays. In many cases, it is sufficient to maintain
information on the 2-neighborhood (or even 1-neighborhood, with a higher gossip
probability) to have that queries percolate through the overlay, hence obtaining a
number of query hits of the order of the number of resources (matching the query)
present in the network.

The remainder of this paper is organized as follows. Section 2 presents the sys-
tem model and the local protocol executed at each node. Section 3 presents the
mathematical model. Section 4 outlines results coming from numerical analysis and
simulation. Finally, Section 5 provides some concluding remarks.

2 System Model and Protocol

Let consider unstructured overlay networks, with peers that connect each other
through a pseudo-random attachment process which shapes the overlay based on
a specific network topology, defined through a degree probability distribution. The
link creation process does not depend on the placement of contents in the P2P sys-
tem [5]. We denote with Π 1 the 1-neighborhood of a node n (n’s friends); in general
Π k is the k-neighborhood of a node, i.e. nodes at most k hops away from n. Nodes
know how to reach all its k-neighbors. We assume the existence of a RELAY(m) pro-
cedure that returns the node that n has to contact to reach m. Of course, if m is a
1-neighbor of n, RELAY(m) returns m.

When a peer n holds (removes) from its cache a novel resource item, it informs its
k-neighborhood, through some multicast message sent through the overlay. Hence,
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Algorithm 1. Query distribution protocol executed at node n
Require: Query Q generated at n ∨ Q received in a message relayed by a neighbor peer m
1: if Q already handled then
2: Return
3: end if
4: if QUERYHIT(Q) then {local query hit}
5: s = ORIGINATOR(Q)
6: rp = PROFILEMATCHINGRESOURCE(Q)
7: msg = 〈“available”,rp〉
8: SEND(msg,s)
9: end if

10: DECREASETTL(Q)
11: if TTL(Q) > 0 then {relay to hitting nodes}
12: R ←{RELAY(i)|i ∈ Πk ∧ i has an item matching Q}\m
13: for all r ∈ R do
14: SEND(Q, r)
15: end for
16: for all i ∈ Π1 \{R∪m} do {gossip}
17: if RANDOM() < γ then
18: SEND(Q, i)
19: end if
20: end for
21: end if

upon reception at m of a message stating that n holds (deletes) a novel resource
item, m adds (removes) a related entry in its neighbor table. This way, each time m
receives a query that hits that resource item, m can forward the query towards n. It
is clear that the higher the depth k of the neighborhood, the higher the amount of
control messages to be transmitted to maintain correct information.

The distribution of a query is based on pure local decisions [4]. We assume that
each query contains all the information needed to perform a matching among the
requested (type of) item and resources available in the system; in other words, re-
sources are described through a profile (or some metadata). Algorithm 1 shows the
pseudo-code of the peer (n) behavior executed to disseminate a query. When n cre-
ates or receives a novel query from a neighbor m (which has not be handled already,
lines 1–3), first, it checks if there is a query hit locally; in this case, the query origi-
nator is contacted directly (lines 4–9).

Then, n multicasts the query to those k-neighbors that own an item that hits the
query (lines 12–15). This is accomplished by sending the message to its 1-neighbors
that will relay it to the target nodes. However, this is done only if the message has
a positive Time-To-Live (TTL) (lines 10–11). (We are assuming that the TTL value
allows to cover the whole network; typically, this can be obtained using low values
of the order of the logarithm of the network size.) Finally, n gossips the message
with a probability γ ≤ 1 to the remaining set of 1-neighbors (lines 16–20) [4].

The considered family of protocols groups together different typical schemes
employed over unstructured P2P overlays. Figure 1 shows the protocols we obtain
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Fig. 1 Discovery protocols obtained through the setting of the depth of the k-neighborhood
and the gossip probability γ

depending on the gossip threshold γ and depth of the k-neighborhood. In fact, when
k = 0 and γ > 0, we have a gossip protocol, i.e. queries are randomly dissemi-
nated. When γ = 1 we have a flooding protocol, i.e. messages are relayed through
all nodes’ links. Informed protocols are those where peers have knowledge of their
k-neighborhood (without using gossip) [11]; they are thus placed on the k-axis, with
γ = 0. Finally, if we ideally set the k value equal to the network diameter, then we
obtain full-knowledge schemes, where the overlay is exploited to route messages.

3 System Analysis

The goal of this analysis is to estimate the average amount of query hits 〈h〉 that
would occur, given an estimate of the resource popularity (i.e. how much resources,
that would hit the query, are distributed in the net) and a given degree distribution
probability characterizing the unstructured overlay topology.

Each query dissemination process is considered as a standalone, independent
task. This is a correct assumption if peers have a buffer cache whose size is suf-
ficiently large to handle simultaneous queries. Otherwise, the model should be ex-
tended to consider possible buffer overflows.

We assume to work with very large and dynamical P2P systems. We already men-
tioned that, for small-sized and stable nets, the use of unstructured overlays can be
avoided, since other approaches can be proficiently employed, such as centralized
solutions or structured distributed systems (e.g. DHTs). The high number of nodes,
together with the random nature of contacts among peers in the overlay, augments
the probability of having a low clustering in the network [6, 10]. A consequence of
the random nature of the attachment process is that, regardless of the node degree
distribution, the probability that a 2-neighbor is also a 1-neighbor of a node, goes as
N−1, being N the number of nodes in the overlay. Hence, this situation can be ig-
nored for high N values. This assumption is supported by previous works, asserting
that it is undesirable for an unstructured P2P overlay to have high clustering [12].
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In fact, clustering reduces the connectivity of a cluster to the rest of the net, increases
the probability of partitioning, and it may cause redundant message delivery.

We denote with pi the probability that a peer has i 1-neighbors (its degree). Let
qi be the excess degree distribution [10], i.e. the probability that, following a link
in the overlay, we arrive to a peer m that has other i links (hence the degree of m is
i+ 1). Given pi, we have that qi =

(i+1)pi+1
∑ j jp j

.

Probabilities pi and qi represent two similar concepts i.e. the number of
contacts of a considered peer (its degree), and the number of contacts obtained
following a link of a peer (its excess degree), respectively. In the following, we
introduce measures obtained by considering the degree pi of a node, as well as the
excess degree qi of a link. Hence, with a slight abuse of notation we denote all
the probabilities/functions related to the excess degree with the same letter used
for the degree, with an arrow on top of it, just to recall that the quantity refers to
a link. Thus, for instance, the generating functions for pi and qi are denoted as
G(x) = ∑i pixi,

−→
G (x) = ∑i qixi.

We denote with ρ the probability that a node has a resource item matching the
considered query, and with γ the gossip probability. If the considered protocol em-
ploys the 1-neighborhood Π 1 only, then the probability that a node n does not trans-
mit a query to a neighbor m is (1−ρ)(1− γ), i.e. the probability that m does not hit
the query, and n decides not to gossip to m. Hence, the probability τ1 that n trans-
mits the query to a neighbour m, having only knowledge of its 1-neighborhood Π 1

is τ1 = 1− (1−ρ)(1− γ).
With this in view, the probability that none of the n’s 1-neighbours hit the query

is ∑i pi(1−ρ)i = G(1−ρ). This result is obtained by considering all the possible
cases of n having degree i and its i neighbours do not hit the query. Similarly, the
probability that, given a randomly chosen edge of n, we arrive to a node m that does
not have any neighbour (apart from the link we considered to arrive to m from n)
that hit the query is ∑i qi(1−ρ)i =

−→
G (1−ρ).

Following this reasoning, it is possible to determine the probability τ2 of relaying
a query to a node m when n has knowledge of its 2-neighborhood Π 2. In fact, such
probability is τ2 = 1− (1−ρ)(1− γ)

−→
G(1−ρ), i.e. n does not transmit to m if: m

does not hit the query (probability (1−ρ)); n decides not to gossip m (probability
(1−γ)); and n knows that its 2-neighbours connected through m do not hit the query
(probability

−→
G (1−ρ) measured above).

The approach can be exploited to measure τk, with any given value of k. For in-
stance, the probability that following a link we arrive to a node which has no neigh-
bors in its Π 2 that hit the query is ∑i qi(1−ρ)i[

−→
G (1−ρ)]i =

−→
G
(
(1−ρ)

−→
G (1−ρ)

)
.

Through this result we might obtain τ3, and so on.
Now, the probability that n forwards a message to i of its neighbors is

fi = τ i
k ∑

j≥i
p j

(
j
i

)
(1− τk)

j−i. (1)
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fi considers all the possible cases of n having a degree j, which forwards the query
to i(< j) neighbors, while not forwarding the query to its remaining j− i neighbors.
Similarly, the probability that following a link we arrive to a node that forwards the
query to i other nodes is readily obtained by substituting, in (1) above, p j with q j,

i.e.
−→
f i = τ i

k ∑ j≥i q j
( j

i

)
(1− τk)

j−i.
If we consider the generating function F of the fi coefficients, we have

F(x) = ∑
i

fix
i = ∑

i
τ i

kxi ∑
j≥i

p j

(
j
i

)
(1− τk)

j−i

= ∑
j

p j

j

∑
i=0

(
j
i

)
τ i

kxi(1− τk)
j−i

= ∑
j

p j(τkx+ 1− τk)
j = G

(
τkx+ 1− τk

)
.

The average value of coefficients fi is given by the derivative of F measured at x= 1,
i.e. F ′(1) = ∑i i fi,

F ′(x)
∣∣∣
x=1

=
dG
dx

(
τkx+ 1− τk

)∣∣∣
x=1

= τkG′(1) = τk〈p〉,

where 〈p〉 is the mean node degree.

Similarly,,
−→
F ′(x)

∣∣∣
x=1

= τk
−→
G ′(1) = τk〈q〉, where 〈q〉 is the mean value of the ex-

cess degree, 〈q〉= ∑i iqi =
∑i i(i+1)pi+1

∑ j jp j
= 〈p2〉−〈p〉

〈p〉 .

With these measures, it is possible to obtain the whole number of nodes reached
by a message starting from a given node, regardless of the number of hops [10]. Let
consider the probability ri that i peers receive a query, starting from a given node
and −→r i is the probability that i peers are reached starting from a link. −→r i can be
defined using the following recurrence,

−→r 0 = 0,
−→r i+1 = ∑

j≥0

−→
f j ∑

a1+a2+...+a j=i

−→r a1
−→r a2 . . .

−→r a j . (2)

Equation (2) can be explained as follows. It measures the probability that following
a link we disseminate the query to i+ 1 peers. (The case −→r 0 is impossible, since at
the end of a link there must be a node.) One peer is that reached at the end of the
link itself. Then, we consider the probability that the peer forwards to other j links
(varying the value of j). Each link k allows to disseminate the query to ak peers, and
the sum of all these reached peers equals to i.

Similarly, we can calculate ri as follows

r0 = 0,

ri+1 = ∑
j≥0

f j ∑
a1+a2+...+a j=i

−→r a1
−→r a2 . . .

−→r a j . (3)
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In this case, we start from the peer itself, considering it forwards to j nodes; and as
before, from these j links we can reach i other peers, in total.

The use of generating functions, R(x) = ∑i rixi,
−→
R (x) = ∑i

−→r ixi, allow to handle
equations (2–3). In fact, after some algebraic manipulation we have

−→
R (x) = x ∑

j≥0

−→
f j[

−→
R (x)] j = x

−→
F (

−→
R (x)) (4)

and, similarly,

R(x) = x ∑
j≥0

f j[
−→
R (x)] j = xF(

−→
R (x)). (5)

From these generating functions, it is possible to measure the average number 〈r〉
of peers that receive a query through the dissemination protocol, i.e. 〈r〉 = ∑i iri =
R′(1). On the other hand, taking (5) and differentiating

R′(1) =
[
F(
−→
R (x))+ xF ′(−→R (x))

−→
R ′(x)

]
x=1 = 1+F′(1)−→R ′(1),

Similarly, from (4),
−→
R ′(1)=

[−→
F (

−→
R (x))+x

−→
F ′(

−→
R (x))

−→
R ′(x)

]
x=1 =1+

−→
F ′(1)

−→
R ′(1).

Thus,
−→
R ′(1) = 1

1−−→F ′(1)
, and final formula for 〈r〉 is

〈r〉= 1+
F ′(1)

1−−→
F ′(1)

= 1+
τk〈p〉2

(1+ τk)〈p〉− τk〈p2〉 . (6)

Now, 〈r〉 is the number of peers that receive the query, regardless if these nodes
have a resource item matching it. To obtain the average number of query hits 〈h〉, it
suffices to multiply 〈r〉 by the probability ρ that a peer has a resource item matching
that query, i.e. 〈h〉= ρ〈r〉.

Equation (6) has a divergence when (1+ τk)〈p〉 = τk〈p2〉, meaning that, under
the assumption that the network has an infinite size, the query reaches an infinite
number of nodes, i.e. the query percolates through the network. In other words, an
amount of nodes of the order of the network size receives the query.

4 Evaluation

This section presents an assessment performed by considering the analytical model
and simulation. While during the assessment we tested different network topolo-
gies, we will focus here on results concerned with scale-free networks only. These
networks are characterized by nodes having a degree following a power law distri-
bution∼ pα . They are characterized by the presence of hubs, i.e. nodes with degrees
significantly higher than the average, that have an important impact on the net con-
nectivity. The interest on scale-free networks in this work relates to the fact that
several real P2P systems are indeed scale-free networks [3, 10].
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In this study, we considered not only traditional scale free networks, but also
those with an abrupt cutoff c that limits the maximum degree that peers can main-
tain, so as to bound the workload that hubs in the P2P system must sustain.

4.1 Simulation

We have built a discrete-event simulator mimicking the presented protocol. The
simulator was written in C code and it allows testing the behavior of a set of nodes
executing the presented dissemination protocol. It is able to generate a random net-
work based on a chosen degree distribution. In particular, once having (randomly)
assigned a specific target degree to each node, using the selected degree distribution,
a random mapping is made so that links are created until each node has reached its
own target degree. During the initialization phase, for each node a random choice
was made to place resources; the resource availability was set based on a probability
ρ , i.e. for each network node, an item was present with probability ρ .

To build scale-free networks, the construction method was the one proposed in
[1]. This algorithm differs from other well known proposals, which build networks
with a power law distribution by continuously adding novel nodes, hence having
networks that grow in time. Conversely, we build a network of fixed size, character-
ized by two parameters a,b. More specifically, the number y of nodes which have a
degree x satisfies logy = a− b logx, i.e. y = � ea

xb �. Thus, the total number of nodes

N = ∑�e a
b �

x=1
ea

xb , being �e a
b � the maximum possible degree of the network, since it

must be that 0 ≤ logy = a− b logx. Once the number of nodes and their degrees
have been determined, edges are randomly created among nodes until nodes reach
their desired degrees. In the reported results, the parameters were set to a= 6, b= 1,
resulting in networks composed of 2482 nodes.

For each overlay, we varied the values of σ ,ρ in a range going from 0.01 up to
0.5, using a step of 0.01. Thus, 2500 simulation scenarios were considered. For each
of these settings, we repeated the simulation using a corpus of 20 different randomly
generated networks (characterized by the mentioned statistical properties of the tar-
get topology). During each simulation execution, we analyzed the dissemination of
400 queries sent by random nodes.

4.2 Results

In a scale free network (without cutoffs) it is known that when α >−2 the mean di-
verges; when −3 < α <−2, the mean is finite but the variance and higher moments
diverge [10]. Hence, in these cases a query easily percolates through the network
and resources are found with high probability. Indeed, results from our assessment
confirm this. (We do not show them in charts.)

For this reason we focus, for now, on overlays with a lower value for such expo-
nent, i.e. α =−3.2. Figure 2 shows the average amount of query hits in this specific
scenario, obtained via the analytical model and simulation, when peers know their
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(a) Model, Π1 (b) Simulation, Π1

Fig. 2 Average amount of query hits; power law degree distribution with exponent α =−3.2.
Results are shown for Π1. When Π2 is considered, the model returns an ∞ amount of query
hits regardless of ρ,σ values (hence not shown in the figure); simulation results confirmed
that a high majority of nodes is reached and that queries percolate through the net.
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Fig. 3 Minimum γ to find at least one resource; power law degree distribution with exponent
α =−3.2

1-neighborhood Π 1. (In fact, when peers have knowledge of Π 2, the number of re-
ceivers diverges, and thus each query percolates through the network.) It is possible
to observe that with lower values of γ,ρ a limited amount of network nodes receive
the disseminated queries. Then, by increasing these two values, we reach a transi-
tion phase; and after that, the query percolates. One might notice some differences
between the two charts referring to the analysis and simulation. Actually, these are
perfectly reasonable since the analysis assumes an infinite network size; hence, once
a message percolates an infinite amount of nodes is reached. Conversely, simulations
employed finite networks; hence, we obtain smoother transitions where a finite (nev-
ertheless significant, when percolation occurs) amount of nodes is reached. With this
in view, we can conclude that the two approaches provide similar results.

Figure 3 shows the minimum value of the gossip probability γ , to have that at least
one resource is found through a query in a scale free network with α = −3.2. The
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Fig. 4 γ value to obtain an infinite amount of query hits; scale-free network topologies with
different power law distributions

outcome has been obtained through a numerical analysis exploiting the mathemati-
cal model. When peers have knowledge of Π 2, with a resource presence probability
ρ > 0.008 the gossip probability can be set γ = 0; hence, a non-negligible threshold
for the gossip probability is needed only for rare items. This result is due by the
presence of hubs that manage information of a high number of nodes.

It has been already mentioned that scale-free networks are characterized by the
presence of hubs; moreover, we already mentioned the importance of introducing a
cutoff that limits the maximum amount of contacts a peer may have in the overlay.
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Figure 4 shows the percolation transition values (i.e. those values of γ and ρ above
which queries do percolate through the net) for different scale-free networks, when
varying the exponent α of the degree distribution1 (different rows in the figure),
the depth k of the k-neighborhood (different charts in each row), and different set-
tings for the cutoff c (different curves on each chart). Results are obtained through
numerical measurements exploiting the analytical model. In this case, the cutoff
has an influence on the ability of nodes to disseminate the query. In fact, the lower
the cutoff the lower the number of links leaving from the hubs, and thus the more
difficult is to spread the query. An interesting result related to the introduction of
the cutoff, in line with what already mentioned, is that the lower the exponent α of
the power law distribution, the higher the γ to let queries percolate. This is due to
the fact that the presence of the cutoff avoids that the first and second moments of
the degree diverge. Moreover, the lower the exponent α the faster the distribution
goes to 0, and thus the higher the probability that nodes have low degrees, and thus
the lower the connectivity of the network and its ability to spread contents.

Similarly, and as expected, in Figure 4 the higher the cutoff the lower the γ to let
queries percolate, since the presence of nodes with higher degrees (hubs) augments
the connectivity of the network and its ability to spread contents.

Of course, when nodes have knowledge of 2-neighbors, very small γ values are
needed with lower cutoffs (see charts on the right in the figure), while negligible
values of γ are necessary for higher settings of the cutoff c.

To sum up, outcomes confirm that lookup operations can be easily built over
scale-free unstructured overlays.

5 Conclusions

We analyzed the performance of a class of simple dissemination protocols, em-
ploying local knowledge of peers’ neighborhood and gossip, to perform resource
lookup over P2P unstructured overlays. The provided analytical framework allows
to tune the gossip probability to spread queries through the overlay, given a network
topology and a resource probability distribution. These network parameters can be
estimated using some techniques such as entropy-reduction protocols [9].

We tested our approach over scale-free networks. It turns out that, in certain sce-
narios, it might be difficult to locate rare items with naive informed schemes without
gossip (especially if Π 1 is exploited); this is in accordance with some previous re-
sults [11]. However, in most cases very low gossip probabilities are sufficient. Thus,
when networks are large in size and with a high level of churn, these solutions rep-
resent an interesting alternative to dissemination strategies built on top of costly
structured distributed systems.

1 In this case, the cutoff imposes a limit on the moments of the degrees, that do not diverge;
hence, it is interesting to consider networks with values of α higher than those considered
above.
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Self-organizing Techniques for Knowledge
Diffusion in Dynamic Social Networks

Luca Allodi, Luca Chiodi, and Marco Cremonini

Abstract. In this paper, we model a knowledge diffusion process in a dynamic social
network and study two different techniques for self-organization aimed at improving
the average knowledge owned by agents and the overall knowledge diffusion within
the network. One is a weak self-organization technique requiring a system-level cen-
tral control, while the other is a strong self-organization technique that each agent
exploits based on local information only. The two techniques are aimed at increasing
the knowledge diffusion by mitigating the hype effect and the network congestion
that the system dynamics shows systematically. Results of simulations are analyzed
for different configurations, discussing how the improvements in knowledge diffu-
sion are influenced by the emergent network topology and the dynamics produced
by interacting agents. Our theoretical results, while preliminary, may have practi-
cal implications in contexts where the polarization of interests in a community is
critical.

1 Introduction

Dynamic social networks represent a multidisciplinary research strand that has been
studied with increasing interest since it emerged from sociology and complex sys-
tems research. Social networks exhibit peculiar characteristics with respect to non-
social networks, in particular regarding the degree correlation of adjacent nodes
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and the clustering [1–3]. With respect to node degree, social networks are typically
assortative, meaning that the degree correlation of adjacent nodes is positive, i.e.,
nodes of high degree tend, on average, to be connected with other nodes of high
degree. The second peculiar characteristic, clustering, has been defined in term of
network transitivity, that is, given an edge between a pair of nodes A and B and
another edge between nodes A and C, a network is said to be highly transitive if it
is likely that there will also be a connection between nodes B and C [2]. For social
networks, it has been observed that the clustering coefficient is typically greater,
possibly orders of magnitude greater, than in typical random graphs [6, 7].

In the literature, many works have applied models of social networks to real case
studies. The email exchange in a community of people, for instance, represents a
relevant case study [4], as well as the dynamics showed by individuals joining and
leaving groups of interests, which may stem from leisure (e.g. the case of online
games) to scientific research or corporate projects [5].

In this paper, we model a social network with a fixed number of nodes (i.e. in
the following we will refer to agents interacting according to some rules, rather than
nodes and edges of the network) and mechanisms for the dynamic creation of con-
nections among them. Our model shows the emergent characteristics of typical so-
cial networks, such as assortativeness [1, 2], high clustering coefficients [6, 7], and
transition from several clustered communities of agents to a giant interconnected
component [8]. The process of knowledge diffusion consists of agents that know a
variable set of topics, each one characterized by an interest and a quality. Agents
interact by selecting, first, a topic based on their own interests and then the agent
in their neighborhood that owns the best quality associated to the chosen topic. In
this sense, knowledge spreads from agents knowing more about a topic to those that
know less. At network level, each time an interaction between two agents succeeds
a directed link, from the requestor to the respondent agent, is created, if it were
the first interaction, or the link’s weight is increased with the number of exchanges.
This interaction model is similar to important models of network influence based
on belief and interest, such as the seminal one by DeGroot [9] and of knowledge
diffusion, such as the one discussed by Cowan et al. [10]. The aim of this work is to
study two self-organization strategies, weak and strong self-organization, according
to the definition introduced in [11], aimed at improving knowledge diffusion, both
based on the communication efficiency as the heuristic observed—at network level,
in one case, at agent level in the other—to adjust the behavior. The effects of the two
strategies are compared to the natural network behavior under different configura-
tions. Our results exhibit interesting similarities with research in different settings
and scenarios. In particular, works on organizational learning and parallel problem
solving [12, 13] have showed how agents that learn too fast can reduce total system
knowledge.
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2 Related Work

Works more closely related to ours are those that have investigated the knowledge
diffusion in networked environments and that have described self-organizing sys-
tems. In particular, Cowan and Jonard, two economists, modelled and analyzed the
dynamics of knowledge diffusion in a multi-agent scenario [14]. They showed how
network structure affects the dynamics of knowledge diffusion, and they demon-
strated that the average knowledge is maximal when the structure is a small-world.
Their approach and, qualitatively, many of their results are closely related to our
work. Different from them, ours is a dynamic model and we studied the emergent
behavior of the system, while in their case a number of static network configurations
have been considered. From a different field, but equally important for our research,
the work by Brun et al. [15] has analyzed the importance of feedback loops in de-
signing self-adaptive systems. Their findings, although not explicitly addressed at
modelling dynamic social networks, are relevant in our context. Similarly to them,
our self-organizing strategies exploit a control loop, either at system level or at agent
level, to adjust the behavior. Walter et al. presented a model closely related to ours,
although based on a static network and different in the research goal [16]. They con-
sidered a model of trust-based recommendation system on a social network, which
assumed the transitivity of trust along a chain of relationships connecting agents.
Differently from them, we admit only a limited degree of trust transitivity (which
is restricted to the best friend-of-friends). Important for the analysis of mixing pat-
terns and community structures in networks is the work by Girvan and Newman [8].
This research analyzed most of the characteristics that our model of social network
presents and that we have tested and discussed in this work, from the assortative
mixing to the formation of communities, from the relevance of friend-of-friend re-
lationships to the dynamics of the growing network.

3 Model Description

We consider a set of N agents, n1,n2, ...,nN , each one characterized by a Personal
state PSni (what ni knows) and a Friend state FSni (who ni knows). The Personal
state has the form PSni = (

⋃
j∈Ti

(topic j,qualityi, j , interesti, j)), where T is the set
of topics that the population knows; each agent ni knows a variable subset of them,
Ti ⊆ T . The Friend state has the form FSni = (

⋃
j∈Ni

(n j,answersi, j)), where n j are
the identifiers of agents connected with ni and answersi, j is a counter to keep track
of the number of interactions with each peer. The setup has been defined to be the
most neutral, with topics Ti assigned to each agent and associated qualities selected
randomly, interests distributed uniformly and no friends. More specifically:

Topics: A random set Ti of topics is defined for each agent. The maximum number of
topics assigned to the agents can be limited by setting the maximum rate λT ∈ (0,1],
so that |Ti| ≤ λT · |T |.
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Quality and Interest: The quality associated to each topic of an agent’s Personal
state is set to a random value in [1,100]. For the interest, the initial value is equally
distributed among all topics, and is calculated as 100/|Ti|.
Friends: Agents start with no friends at setup, therefore, in the early stage of net-
work formation, the local search fails and the selection of peers turns to the random
choice.

Topic 0: To permit the selection of new topics, a dummy topic called topic0 is always
held by each agent. If topic0 is selected, as for all ordinary topics, the system choose,
randomly, another topic not belonging to the agent’s Personal state. Next, the agent
looks for a peer based on the new topic. The quality associated to topic0 is always
zero, while the interest is calculated as for the other topics during a simulation.

3.1 Network Construction

The network is dynamically formed according to the following steps:

1. Given agent ni′ , select a topic (topicj∗) in the Personal state. The choice of
the topic is a weighted random selection with values of the associated interests
(interesti, j∗) as weights, this way topics with higher interest are more likely to be
selected;

2. Among ni′ friend agents and their ”best friend” holding topic (topicj∗), select
agent ni′′ with maximum value of topic’s quality (qualityi, j∗);

3. If qualityi′′, j∗ > qualityi′, j∗ then the communication takes places and agent ni′
increases qualityi′, j∗ of topic j∗;

4. Otherwise, if none holds topic j∗ or exhibits a topic’s quality greater than that of
agent ni′ , then select an agent ni′′′ randomly among the whole population;

5. if ni′′′ holds topic j∗ and qualityi′′′, j∗ > qualityi′, j∗, then the communication takes
places and qualityi′, j∗ increases, otherwise the communication fails.

Best friend-of-friends. Given agent ni′ , and a selected topic j∗, for each of its
friends, the “best friend” agent is the one owning topic j∗ and the higher value of
the answer attribute. The reason for this setup is that we consider unrealistic in a
social context to scan all agents with a distance of 2 from the one selected. The se-
lection based on the answer attribute represents a basic form of transitive trust. It is
worth noting that the inclusion of “best friends” fosters network transitivity and the
formation of triads, two key characteristics of social networks.

Start up. At start up, agents have no connection with others (i.e., Friend state is
empty). When, for an agent, the 5-steps algorithm is executed, a topic is selected in
Step1, then Step2 and Step3 fail and in Step4 a random agent is selected. If Step5
succeeds, then the connection is established. This mechanism triggers the network
formation at start up.
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3.2 State Update

After a successful interaction, the agent that started the communication is updated.
The quality and the interest of the topic for which the communication took place in-
crease and the other interests, associated to the other topics owned by the agent, are
decreased. We decided that the topic’s quality increases with increasing marginal in-
crements, according to the assumption that an agent distrusts another one when they
interact for the first time and this distrust progressively diminishes as interactions
occur. The discount starts at a given value (i.e. ρ) and goes to zero exponentially.
Motivations for this assumption could be found in the literature about information
aggregation [17] and collective behavior [18] and refers both to the prevalence of
egocentrism in assimilating new information and to trust dynamics. The quality gain
obtained by agent ni′ is:

δquality j∗ =
qualityi′′, j∗ − qualityi′, j∗

γ +ρe−
x
θ

(1)

with: γ ≥ 1 setting the nominal fraction of δquality that ni′ could learn from an-
other agent; x the value of the attribute answers representing the number of past
interactions that agent ni′ had with agent ni′′ ; ρ the initial discount; θ the factor that
controls the rate at which agents increase their trust towards the others.

The dynamics we have assumed for the interest associated to the topic for which
the interaction took place is similar to that of the quality, but with two important dif-
ferences: It only depends on the δquality value and, accordingly, all other interests
on topics owned by the agent decreases (studies in cognitive science have showed
the tendency of people to shift their attention and interest, rather than behave incre-
mentally [18]). The function is:

δ interesti′, j∗ = α(1− e−
δ qualityi′, j∗

β ) (2)

with α > 1 and β > 1 the two parameters that control, respectively, the scale and
slope of the interest increase.

Parameter β is key for our following analysis of the knowledge diffusion and
the self-organization strategies. Self-organizing mechanisms could tune β to reduce
(β ↑) or increase (β ↓) the speed at which the agent’s interests change.

Finally, all interests associated to topics different from topic j∗ are reduced by
δ interesti′, j �= j∗(tk, tk−1) = δ interesti′, j∗(tk, tk−1)/(|Ti′ | − 1), that is the value of the
interest gain for topic j∗ at tk divided by the number of topics |Ti′ | minus one.1

1 The interest reduction applies to topic0 as well, which is included in the total number |Ti|
of topics known by agent ni′ .
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3.3 Metrics

Three metrics have been defined: Communication Efficiency (CE), Average Knowl-
edge (AK) and Knowledge Diffusion (KD). The first one is a heuristic observed either
at system-level by a central control process or locally by each agent evaluating its
own behavior. CE measures how often agents are able to successfully interact with
others with respect to the number of requests they made during a simulation. Γ is
the number of requests made by all agents:

CE =
Total No. o f Answers
Total No. o f Requests

=
∑N

i=1 ∑ j∈Ni
answersi, j

Γ
(3)

The meaning is that if CE = 0, then there has been no communication since every
interaction failed; if CE = 1 every interaction succeeded.

AK and KD metrics are used to evaluate two different characteristics of the
knowledge diffusion dynamics and to analyze its efficiency and the benefits of the
proposed self-organizing techniques. AK is calculated as the average quality with
respect to the topics actually owned by agents. KD, instead, is the average quality
with respect to the case of perfect diffusion of knowledge (i.e., all agents holding
all topics). While AK is maximised by increasing only the average quality of each
agent, regardless of the number of known topics, KD, instead, depends from the
diffusion of topics among agents.

AK =
∑N

i=1 ∑
|PSi |
j=1 qualityi, j

∑N
i=1(|PSi|−1)

; KD =
∑N

i=1 ∑
|PSi |
j=1 qualityi, j

|N|×(|T |−1)
(4)

4 Network Simulations

During simulations, the number of agents (N = 100) and duration (Γ = 50000)
have been kept constant. Key parameters that were varied are: the number of topics
in the network |T |, the maximum rate of topics assigned to agents at setup λT (e.g.,
λT = 0.1 means that at setup agents know at most 10% of topics T ), and β defined in
Equation 2. Combined, they deeply influence the emergent network structure and the
aggregation of agents in communities. In our simulations, the parameter λT affects
the mean network degree. The typical transition [8] from small communities to the
giant one happens for λT ≈ 0.55.

Figure 1 shows the results for four typical base configurations. In all cases, CE
has an initial spike (i.e. the hype effect) as a result of polarization of agent inter-
ests, which, due to the positive feedbacks of successful interactions and the qual-
ity increase, tend to exhibit bursts of interaction with the same peer for the same
topic. While this effect greatly increases the performance of the network in the early
stages, it also quickly dissipates and CE abruptly drops until agents start rebalanc-
ing their interests by choosing other topics. The dynamics of the communication has
visible effects on KD: An inefficient communication, in general, implies a slower
diffusion of knowledge within the network, as showed by the values of KD (see case
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A with C and case B with D). Similar results, although on a different model (based
on broadcasting in a static network), have been presented in [10]. With respect to
AK, instead, the four cases do not exhibit relevant differences. In all cases, at the
end of the simulation, the average knowledge owned by agents has reached a level
close to 80%, meaning that, limited to the topics they individually own, they have
reached good quality. As a final remark to this set of results, we stress the fact that
where AK and KD strongly differ (configurations A and B are those with the largest
differences), the network behavior is inefficient with respect to the goal of diffusing
knowledge both in quality and in quantity. In those cases agents, on average, have
improved on topics they owned at setup, but did not acquire much knowledge about
new ones.

5 Weak and Strong Self-organization

The analysis of these configurations has showed that reducing the tendency of agents
to polarize, caused by interests on just a few topics that grow too fast, communi-
cation and knowledge diffusion generally improve. Self-organization mechanisms
could modify at run-time some critical parameters. In particular, we consider the
interest function and parameter β . The reason for choosing to change only β is
because it has both a intuitive meaning in real-world contexts and a direct refer-
ence with previous research. Increasing β means, essentially, to reduce the speed of
learning avoiding to concentrate on few issues only [13], or be driven more by our
own belief than by information received from others [17].

To decide when β should be adjusted, we adopted a simple heuristic based on
the dynamics of the CE: when its trend changes from increasing to decreasing, β
is modified. With this rationale for our approach to self-organization, two strategies
have been designed:

Weak Self-Organization is a system-level strategy that assumes the presence of a
central control process able to observe the system dynamics of CE and to adjust β ,
a global parameter, at run-time when communication starts dropping.

Strong Self-Organization is an local strategy where each agent observes its own
communication dynamics and acts on its own interest function. To this end, the
model has been modified to introduce a local communication efficiency CEni , for
each agent, and a local interest function, with the same form of Equation 2, except
for βni , now specified for each agent, rather than as a global parameter. Another
modification has been to set a threshold ω that automatically triggers the change of
βni for each agent.

The results of the system behavior with weak self-organizations are shown in
Figure 2 (A-D). Qualitatively, we can see that with this simple technique the initial
polarization of the network, with its negative effect, is not reduced. The benefit of the
weak self-organization strategy becomes evident when the network has absorbed the
excessive polarization following the spike and regains a higher level of efficiency.
From that point on, the CE remarkably improves in all four cases, with respect to
the corresponding ones of Figure 1.
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Network System Dynamics

A

B

C

D

Fig. 1 System dynamics with different configurations. The x-axis represents simulation time
(number of ticks Γ ); the y-axis is a scale 0-100. Parameters: A) λT = 0.1, |T | = 20; B)
λT = 0.1, |T |= 100; C) λT = 1.0, |T |= 20; D) λT = 1.0, |T |= 100.
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(a) λT = 0.1, |T |= 20 (b) λT = 0.1, |T |= 100

(c) λT = 1.0, |T |= 20 (d) λT = 1.0, |T |= 100

(e) λT = 0.1, |T |= 20 (f) λT = 0.1, |T |= 100

(g) λT = 1.0, |T |= 20 (h) λT = 1.0, |T |= 100

Fig. 2 (A-D): Weak self-organization; (E-H): Strong self-organisation
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The worsening of AK is a consequence of the lower clustering and the more
frequent random choice of peers (i.e. compare A with C and B with D). This effect
is amplified by adjusting β : Agents increment the number of topics, but do not
sufficiently interact to improve their AK.

Combined, these results suggest that when knowledge diffusion is adjusted at
system level by manipulating the interest dynamics, the number of information in
the network |T | with respect to the number of agents N is a critical characteristics,
that not only strongly influences the original dynamics, but it also affects the ef-
ficacy of the self-organization solution. On the contrary, it could be worthless to
force structural modifications, such as inducing the creation of larger communities
or splitting giant ones.

Finally, it is remarkable to note how CE always increases of about the same rate
in all four cases. This suggests that when self-organization strategies are applied and
benefits should be evaluated, an increase in the communication efficiency should not
be considered a reliable sign of better knowledge diffusion or a parameter suitable
for comparative analyses.

In case of strong self-organisation, agents adjust their local βni parameter by
evaluating their local CEni . For the simulations, the threshold, shared by all agents,
is set to ω = 0.8, meaning that when an agent sees its own CEni dropping below
80%, then it adjusts βni to 500; when, instead, it sees CEni raising over 80%, it
switches back to βni = 5.

The results are showed in Figure 2 (E-H). The more complex dynamics of the
strong self-organizing technique has clearly deeper effects on system behavior than
the weak self-organization case, which lead to further possibilities to manipulate
the evolution of a dynamic social network. By considering the numerical results of
Table 1, we observe that reducing the initial spike produces variable benefits. With
respect to AK, the network structure is clearly the dominant factor influencing the
performances, with highly clustered configurations C and D increasing AK, while
lower clustered ones A and B reducing AK. Similar results have been found in [14].
With respect to KD, the solution always produces a gain, but in this case the number
of topics is the dominant factor. Configurations A and C with few topics increase
KD of more than 16%, while configurations B and D with more topics increase KD
of about 4-5%. In more detail, from Table 1, we note that the differences observed
for the weak self-organization case between configurations with few topics A and C
and configurations with more topics B and D are confirmed in case of strong self-
organisation. The same holds for the differences between network structures, A and
B having one main component with respect to C and D with small clusters. With
respect to KD, there is a tendency of the strong self-organization technique to out-
perform the weak one, in all configurations except D, meaning that there is a better
knowledge diffusion. The opposite holds with respect to AK, due to the reduced
tendency of agents to polarize on just few topics. The reasons is that in the weak
technique, the global parameter β is adjusted when the average communication ef-
ficiency of agents drops. This means that some agents could be already extremely
polarized and almost unable to interact, while others could be still efficiently in-
teracting. Heterogeneity of agents behavior affects the effectiveness of the weak
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Table 1 Results of weak and strong self-organization techniques

Base System Weak Self-Organization Strong Self-Organization
CE AK KD ΔCE ΔAK ΔKD ΔCE ΔAK ΔKD

A 39.50 77.44 37.60 +15.18% -1.07% +16.74% +28.10% -0.32% +35.17%
B 44.12 76.14 9.68 +18.45% -8.04% +4.73% +24.41% -17.35% +5.98%
C 46.96 80.41 57.41 +14.26% +1.13% +16.42% +14.97% +0.41% +18.24%
D 52.39 66.11 27.36 +19.18% +7.08% +4.30% +14.48% +4.98% +2.60%

self-organization technique. Differently, the strong self-organization techniques op-
erates locally, therefore each agent adjusts its own behavior when needed. This has
the effect of preventing extreme polarization.

6 Conclusions

In this paper we presented a model of dynamic social network based on knowledge
exchange among agents. The results, although still preliminary, are promising and
some strikingly similitudes with previous studies based on different assumptions
and different network structures have been found.

In particular, it appears that social network analysis applied to different self-
organization strategies could provide important insights for relating one strategy
with another. In particular, our focus is on those phenomena that typically exhibit
network congestion due to excessive agent polarization, which, as a consequence,
exhibit an initial exceptional communication efficiency, followed by a steep de-
crease. Some well-known examples are: the hype effect typically present in the
adoption cycle of new technologies [19], the formation of blockbusters in cultural
markets [20] or the choice of news published by media [21]. As a final example, in
school education, either in traditional classes or through e-learning systems, there is
anecdotal evidence that polarization may emerge and could be detrimental for the
overall level of knowledge acquired by students. This could be the case of excessive
interest of students on few topics only with respect to a more balanced distribu-
tion of efforts and time for learning. In all these examples, intuitively, our model
and self-organization techniques could be well-suited for describing the effects of
manipulating the speed of interest grow.
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Complex Network Analysis of Ozone Transport 

Guoxun Tian and Mehmet Hadi Gunes* 

Abstract. Ozone transport has an important effect on the local ozone concentra-
tions. In this paper, we model the California State and the Eastern States of Amer-
ica ozone transport as complex networks to understand large-scale dynamics.  
California has a complex ozone transport due to geomorphology and is divided 
into 15 air basins to manage air pollution. Unlike California, the ozone transport in 
the Eastern States of America is mainly affected by wind speed and direction. 
Through different centralities, we can identify nodes that have higher ozone out-
put, higher ozone income, and the maximum ozone throughput. In general, both 
networks exhibit similar properties. However, even though Californian network 
has higher average degree it has smaller clustering than the Eastern State network. 
Moreover, while Californian counties can be divided into four communities, the 
Eastern States remain as a single community. Both of these points to the fact that 
ozone transport within Eastern States is more uniform than between the counties 
of California. 

1 Introduction 

In the upper atmosphere, ozone protects the earth from exposure to harmful ultra-
violet rays since ozone has a strong absorption of ultraviolet [1]. However, at the 
ground level, ozone is one of the most important air pollutants. The harms of hu-
man health are considerable [2]. In this paper, we establish an ozone transport net-
work to analyze large scale characteristics of ozone transfer. To our knowledge, 
this is the first study to map the ozone transport as a complex network. 

Control of ozone emissions is not very effective in reducing ozone concentra-
tions since there are relatively few anthropogenic sources of ozone. Ozone is  
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primarily formed in the air. After the formation, ozone is cumulated in the air at 
day time with sunlight and is transported to other places, propagating the air pollu-
tion, affecting the people in a downwind area which may be far away from the 
pollution sources. Transport and formation are the two main sources of ozone  
pollution.  

Long-range transport of ozone and its precursors has become a question in the 
West since they are isolated to a local area because of the topography. The United 
States Environmental Protection Agency (US EPA) use a new ozone standard 
based on the average of ozone concentrations. Areas failing to meet these standards 
set by the EPA were defined as a “non-attainment areas” for ozone [3].  

There were 4 states in the West with areas that do not comply with new stan-
dard, including California, Nevada, Arizona, and Colorado. Among which Califor-
nia was the worst. Several factors have to be taken into account to figure out why 
California has the highest ozone level and so many non-attainment areas. The first 
one is the long distance pollutant transport from Eastern Asia. Also, the ozone and 
its precursor can be transported from Eastern Asia to America. Several studies 
show that the concentration of air pollutants in Eastern Asia significantly affects 
the background levels of ozone in Western North America [4]. The second factor 
we have to consider is the ozone transport between different areas in California. To 
better manage air ozone transport, California is divided into 15 air basins based on 
its topography features or political boundary [5]. There are 68 counties are in-
cluded in these 15 air basins. In this study, a complex network is built for these 68 
counties to analyze the transport of ozone between them so the responsibility can 
be better understood.  

In the Eastern States of America, control programs throughout the northeast and 
southeast was established due to the formation and transport of ozone over long 
distances. These control programs are often more regional in scope. Through these 
programs, Eastern States and local governments have found that pollutants which 
are transported from the large industrial combustion sources in the Midwest and 
Southeast contribute to non-attainment classifications in these areas. The speed and 
direction of wind is the main factor of this long-range transport. It was found that 
moderate to high wind speeds have a moderate to high potential for a contribution 
from transport [6]. That is high pollution episodes from the Midwest and Southeast, 
which has heavy NOx pollution, can be taken by airflow streams to the Northeast. 
This long distance transport has been displayed using back trajectory analysis. In 
this study, the complex network of ozone transport between Eastern States is also 
constructed to better understand the ozone transport. 

2 Californian County Network 

2.1 Ozone Transport Classification between Air Basins 

California State is divided to 15 air basins for the ozone transport research. In this 
paper, we divide it into 68 counties for a finer granularity analysis using complex 
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network metrics. In our network, the nodes represent counties and the edges 
represent the ozone transport between them. Each county is treated as a sub-region 
of the corresponding air basin. The transport between air basins is estimated based 
on the assessment of the impacts of transported pollutants on ozone concentrations.  

California Environmental Protection Agency Air Resources Board (CEPAARB) 
estimate the transported pollutants on ozone concentrations, identify upwind air 
basins and the downwind air basins, and make an assessment of the relative contri-
butions of upwind emissions to downwind ozone concentrations [7]. Classification 
of aerosol transport between different regions made by CEPAARB is [5]: Inconse-
quential, Significant, and Overwhelmed. 

Using statistical analysis, we can estimate the transport effect by comparing the 
diurnal profile of hourly ozone concentration averaged over all potential transport 
days with similar plots for days not in the potential transport [8]. In this network, 
the weight of edges is determined based on the ozone transport classification be-
tween air basins using data from [7]. We assign weights of 0.1 to inconsequential, 
0.6 to significant, and 1 to overwhelmed. The average value of the combinations 
represents the weight of the edges. As [7] only shows the ozone transport between 
air basins, refinement of the air basins is needed. Thereby, we estimate the ozone 
transport between different counties using following assumptions.  

• Assumption 1: Ozone transport only exists between two adjacent counties. If 
these two counties are at different air basins, the edge between them has the 
same weight as the ozone transport between the two adjacent air basins.  

This assumption is used to estimate the ozone transport between two counties 
which are included in different air basins. For example, air transport from San Joa-
quin Valley to North Central Coast has weight of 0.6. Fresno County is in San Joa-
quin Valley and adjacent to Mono County which is in North Central Coast. So the 
ozone transport from Fresno County to Mono County also has weight 0.6.  

• Assumption 2: Air pollution can move freely within an air basin. In the same 
air basin, the maximum transport weight is set to 1. The actual weight value is 
directly proportional to the NOx emission of the air basin since it plays an im-
portant role in the formation of ozone. The quantification rule is:  

a) Within the air basin which has the maximum NOx emission (MNE) which 
is equal to 34% of state total, the ozone transport has a weight of 1. 

b) Within other air basins, the weight of the ozone transport is directly pro-
portional to the air basin NOx emission (NE) using the equation 

. 

For example, in San Francisco Bay Area air basin, there is a heavy concentration 
of industrial facilities, several airports, and a dense freeway and surface street net-
work. The NOx emission has 16% of state total. San Francisco County and San 
Mateo County are adjacent, so the weight between two of them is quantified as 
0.16/0.34=0.47. However, in North Coast air basin, the northern part is sparsely 
populated and the air is very clean. So the ozone transport in that area is neglected. 

• Assumption 3: Ozone transport between non-adjacent counties is ignored.  
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For example, ozone transport from San Francisco County to Mountain Counties 
and South Central Coast is neglected since they are not adjacent. In reality, ozone 
transport does exist between non-adjacent counties. It is neglected in this study 
because the ozone transport through aloft flow is much less than the direct wind 
transport, and each county always has a lot of non-adjacent neighbors.  

2.2 Analysis of the Californian County Network 

In this section, we analyze different measures of the ozone transport network of 
Californian counties.   

Closeness Centrality: In a graph, the farness of a node is defined as the sum of its 
distances to all other nodes, and its closeness is defined as the inverse of the far-

ness, i.e., ∑   where i is the focal node, j is any node in the 

network and dij is the shortest distance between them. As a consequence, a node 
with higher closeness has lower total distance to all other nodes. For a network, 
closeness is used to estimate how long it will take to spread information from one 
node to other nodes sequentially.  

In our case, instead of information spreading, ozone transport is considered. A 
node that has higher closeness can transport ozone to other nodes in a shorter 
time. The closeness centrality value give us a hint about which nodes has the high-
er ozone output. The average closeness is 0.164 and the top 10 counties have 
closeness centrality higher or equal to 0.237. 

Compared to other air basins, San Francisco Bay Area Air Basin has the most 
counties in the top 10 in terms of centrality. This is consistent with the history 
since this air basin has violated the state and federal health-based standards many 
times over the years, and has contributed to air pollution problems in all of the 
surrounding air basins.    

Betweenness Centrality: Betweenness centrality is a measure of a node within a 
network. It was introduced as a measure for quantifying the control of a node on 

the communication between other nodes.  It is defined as ∑ , ,,  

where σi,j is the total number of shortest paths between nodes i and j and σi,j(n) is 
the number of shortest paths between nodes i and j that pass node n. Nodes of high 
betweenness centrality are important since communication or transport is more 
efficient along the shortest paths.  

For this ozone transport network, the node with higher betweenness has the 
higher ozone throughput. The average betweenness centrality of this network is 
0.010 and the top 10 counties have betweenness higher or equal to 0.044. Despite 
the nodes with highest betweenness, compared to other air basins, San Joaquin 
Valley Air Basin includes the biggest portion, five counties, among the top 10 
counties. This air basin is at the center of California State and has the second high-
est NOx emission. The location and high NOx emission give this air basin the abili-
ty to affect other areas. 
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Community Structure: Community detection mechanisms try to identify strongly 
connected communities within a given network. We use simulated annealing approach 
which tries to minimize the Hamiltonian ∑ ,   
where pij is the proba-
bility of vertices i and 
j being connected. It 
can be shown that 
minimizing this Ha-
miltonian, with γ 1 
is equivalent to max-
imizing Newman’s 
modularity. By in-
creasing the para-
meter  γ , it’s possible 
also to find sub-
communities. As sho-
wn in Figure 3, the 
network can be di-
vided to 4 groups, i.e., 
network consists of 
four regions that are 
more densely inter-
related. 

 
 
 
 

3 Eastern State Network 

In this section, we establish a non-weighted Eastern State network. Transport of 
ozone and precursors between the Eastern States of America has no boundaries and 
it is highly related to the wind speed and direction. Ozone can travel across states 
and provinces easily. At different wind directions and speeds, the ozone concentra-
tion pattern is consistent with an atmospheric ozone lifetime of about one day. High 
ozone concentrations are typically located downwind of areas with the highest 
emissions with high wind speed (i.e., >6m/s). 

Transport during high and low ozone days is investigated in [9]. Transport condi-
tions were established for regionally high (90%) and low (10%) daily maximum  
1-hour ozone concentrations. Since the absolute ozone transport between different 
states is difficult to quantify, a non-weighted ozone transport network is constructed 
based on the wind directions. In the graph, if wind blow air from state A to B,  
 

 

Fig. 3 Communities of the Californian ozone transport net-
work. Different color represents different group. 
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a non-weighted edge from A to B in the transport network is established. For ex-
ample, as shown in Figure 5, wind vector shows that wind blow air from Texas to 
Oklahoma, so an edge from Texas (nodes 0) to Oklahoma (nodes 1) is established.  

3.1 Analysis of the Eastern State Network 

In this section, we analyze some network metrics of the ozone transport network 
of the Eastern States.  

Closeness Centrality: Compared to the Californian County network, the ozone 
transport network of the Eastern States of America has a higher average closeness 
centrality. The average value is 0.278 and Illinois and Kentucky have highest 
closeness with value 0.367. 

Betweenness Centrality: The average betweenness value of this network is 0.025, 
which is close to the Californian County network. New York has highest between-
ness with value 0.13. 

PageRank: The average PageRank of this network is 0.014 and is little higher than 
the Californian County network. New York State has highest PageRank with value 
0.45. 

Clustering: The average clustering coefficient of the ozone transport network is 
0.33, which is higher than the Californian County network. This indicates higher 
dependence between different regions. 

Assortativity: Assortativity coefficient of this ozone transport network is 0.26, 
which is higher than the Californian County network and shows the network is a bit 
more assortative. That is states of higher degree are more likely to affect or be af-
fected by other high degree regions.  

 

Average Degree: The average 
degree of this network is 3.6, 
which is lower than the Califor-
nian County network. Degree 
distribution is shown in Figure 4. 
Similar to Californian County 
network, this figure also shows 
that the network has an exponen-
tial degree distribution.  

Community Structure: The 
community structure is shown in 
Figure 5 where the network is 
divided into 4 groups. Compared 
with Californian County network, 

Fig. 4 Degree distribution of the ozone transport of 
Eastern States 
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included in San Francisco Bay Area Air Basin. The other 7 counties, which are 
distributed in several air basins, give us some details of the ozone transport. Those 
counties may also be playing or will potentially play important roles in the ozone 
transport. 

Table 1 Properties of Californian County network and Eastern State network 

Californian Counties Eastern States 
Average closeness centrality 0.164 0.278 
Average betweenness centrality 0.010 0.025 
Average PageRank 0.013 0.014 
Average clustering coefficients 0.25 0.33 
Assortativity coefficient 0.18 0.26 
Average degree 5.06 3.6 
Degree distribution Exponential Exponential 
Community structure 4 groups 2 or 4 groups 

 
Among the Eastern States of America, Michigan, one of the biggest source areas 

of ozone transport plays an important role in the ozone transport network. It has the 
3rd highest closeness centrality, 2nd highest betweenness centrality and 2nd highest 
PageRank. New York, which has the highest closeness centrality and PageRank, 
may be playing or will potentially play an important role in the ozone transport as 
well. The community structure of Eastern State network also shows that New York 
is a key node is the only conjunction node of the two groups. 

As we can see from Table 1, these two networks have similar properties. Despite 
the fact that the average degree of Californian county network is higher than East-
ern State network, the average clustering coefficient of Californian county network 
is lower since the geographic characteristics of the Californian counties. These 
facts point to the geomorphology effect for ozone transport and the fact that ozone 
transport within Eastern States is much more uniform than between the Californian 
counties. 

Acknowledgement: This material is based in part upon work supported by the National 
Science Foundation under grant number EPS- IIA-1301726 

Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of the National 
Science Foundation. 

References 

[1] Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution 
to Climate Change. John Wiley and Sons, Inc. (1998) 

[2] Avol, E.L., Linn, W.S., Venet, T.G., Shamoo, D.A., Hackney, J.D.: Comparative respi-
ratory effects of ozone and ambient oxidant pollution exposure during heavy exercise. 
J. Air Pollut. Control Assoc. 34, 804–809 (1984) 



96 G. Tian and M.H. Gunes 

 

[3] Wierman, S.S.: Will the 8-hr ozone standard finally get off the ground. EM, 20–28 
(September 2003) 

[4] Schwarzhoff, P.: Long-range Transport of Pollutants to the West Coast of North Amer-
ica. Georgia Basin/Puget Sound Research Conference (2003) 

[5] Garcia, C., Gouze, S., Wright, W.: Assessment of the Impacts of Transported Pollu-
tants on Ozone Concentrations in California. California Air Resources Board (2001) 

[6] Douglas, S.G., Hudischewskyj, A.B., Lolk, N.K., Guo, Z.: Analysis of Southern Cali-
fornia Wind Profiler and Aircraft Data. SAI Report (1997) 

[7] Austin, J., Gouze, S.: Ozone Transport: 2001 Review. California Environmental Pro-
tection Agency Air Resources Board (2001) 

[8] Tian, G.: Complex Network Analysis of Ozone Transport. MS Thesis, University of 
Nevada, Reno (2012) 

[9] Schichtel, B.A., Husar, R.B.: Eastern north america transprot climatology during aver-
age, high and low ozone days (1999) 

 



The Small World of Seismic Events

Douglas S.R. Ferreira, Andrés R.R. Papa, and Ronaldo Menezes

Abstract. The understanding of long-distance relations between seismic activities
has for long been of interest to seismologists and geologists. In this paper we have
used data from the world-wide earthquake catalog for the period between 1972 and
2011, to generate a network of sites around the world for earthquakes with magni-
tude m ≥ 4.5 on the Richter scale. After the network construction, we have ana-
lyzed the results under two viewpoints. Firstly, in contrast to previous works, which
have considered just small areas, we showed that the best fitting for networks of
seismic events is not a pure power law, but a power law with an exponential cutoff.
We also have found that the global network presents small-world properties. The
implications of our results are discussed.

1 Introduction

The general belief in seismic theory is that the relationship between events that are
located far apart is hard to be understood. However we live today in a world where
data is being collected on most aspects of our lives and better yet, computer power
is cheaply available for analyzing the data. The work on seismic data analysis is no
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different; we have now large collections of millions of seismic events from around
the world which deserves analysis. In this paper we have found some evidence that
point to small-world characteristics in the existent data on seismic events. An event
in a particular geographical site appears to be related to many other sites around the
world and not only to other events at nearby sites.

Since the work from Barabási and Albert [5] researchers have turned their atten-
tion not on mining the data itself but rather organizing the data in a network which
captures relationships between pieces of data and only then mining the network
structure and hence the relations between pieces of data. The network can review
information hard to see from mining the raw pieces of data. The use of networks as a
framework for the understanding of natural phenomena is nowadays called Network
Science.

Through the analysis of a model using successive earthquakes, recent studies
[1, 2] have applied concepts of complex networks to study the relationship between
seismic events. In these studies, networks of geographical sites are constructed by
choosing a region of the world (e.g. Iran, California) and its respective earthquake
catalog. The region is then divided into small cubic cells, where a cell will become
a node of the network if an earthquake occurred therein. Two different cells will be
connected by a directed edge when two successive earthquakes occurred in these re-
spective cells. If two earthquakes occur in the same cell we have a loop, i.e., the cell
is connected to itself. This method of describing the complexity of seismic phenom-
ena has found that, at least for some regions, the common features of complex net-
works (e.g. scale-free, small-world) are present. However, in spite of the importance
of the results which show that seismic networks for some specific regions present
small-world effects, these results are somewhat expected since it makes sense for
areas located geographically close to each other to be correlated.

In this paper we have used data from the world-wide earthquake catalog for the
period between 1972 and 2011, to generate a network of sites around the world.
Since only seismic events with m ≥ 4.5 are recorded for all locations around the
world, we then consider them significant events and used this set in our analysis.

2 Theoretical Background

2.1 Complex Networks Features

Scale-free networks are defined as those in which the degree distribution of nodes
(or vertices) follows a power law, that is, the probability that a network will have
nodes of degree k, denoted by P (k) is given by P (k) ∼ k−γ , where γ is a positive
constant. This equation states that scale-free networks have a very small number of
highly-connected nodes (called hubs) and a large number of nodes with low connec-
tivity. These networks exist in contrast with general random networks with a very
large number of nodes in which the probability distribution follows a Poisson dis-
tribution. Random networks have nice properties but the truth of the matter is that
most real networks are not random.
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One of the best approaches for defining Small-world Networks is based on the
work of Watts [13] which states that in small-world networks, every node is “close”
to every other node in the network. It is generally agreed that “close” refers to the
average path length in the network, �, which has the same order of magnitude as
the logarithm of the number of nodes, i.e., � ∼ lnN. In addition, and what makes
small-world networks even more interesting, is the fact that these networks have a
high degree of clustering representing a transitivity in the relation of nodes; if a node
i has two connections, the theory argues that the two connections are also likely to
“know” each other. More formally, the clustering coefficient, Ci, of that node is
given by:

Ci =
�(i)

�all(i)
(1)

where, �(i) is the number of the directed triangles formed by i with its neighbors
and �all(i) is the number of all possible triangles that i could form with its neigh-
bors; the clustering coefficient of the entire network, C, is just the average of all
Ci over the number of nodes in the network, N . In random networks the clustering
coefficient can be estimated using the closed form Crand = 〈k〉/N, where 〈k〉 is the
average degree in the random network.

In the context of networks of seismic events, if it contains hubs, one can argue
that the distribution of earthquakes should also follow a power law. On the other
hand, if the network has small-world properties one can argue that there is some
indication of long-range relations between far-apart earthquake sites.

3 A Geographical Network from Seismic Events

The use of networks to understand phenomena associated with geographical loca-
tions has been used in many instances in science including diseases [9], scientific
collaborations [8, 10], and organ transplantation [12] to mention just a few. Seismic
activity is intrinsically linked to geography because todays instruments can pinpoint
with great accuracy the location in the globe where each seismic event take place.

It is important to precisely locate the geographical location of a seismic event
but if we want to understand relations between events we should concentrate on
creating a network in which locations are linked based on an acceptable criteria. In
this paper we use the same procedure employed by [1] in their studies of earthquakes
in specific regions of the world. The construction of the network is as follows. We
first have to decide on what should represent the nodes. Obviously our first choice
are the sites where the earthquake took place. The problem of doing this is that
an earthquake epicenter is rarely located exactly in the same location and given
the accuracy of today’s instruments we would have an infinitely large number of
possible sites. We decided instead to define nodes representing a larger region of the
world we here call it cell. A cell will become a node of the network if an earthquake
has its epicenter therein. The creation of edges follows a temporal order of seismic
events. For instance, if an earthquake occurs in a cell C1 and the next earthquake in
a cell C2, we assume a relation between C1 and C2 and we represent the event by
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a directed edge in the network. The process continues linking cells according to the
temporal order.

The degree of each node (the total number of its connections) is not affected
by the direction of the network. The nature of the way the network is constructed
means that for each node in the network, its in-degree is equal to its out-degree (the
exceptions are only the first and last sites in the sequence of seismic events but for
all practical purposes we can disregard this small difference).

Although the use of temporal ordering of events is not new in our paper, there are
two main differences between our study and others. Firstly and most importantly,
the region considered in our investigation is the entire globe, instead of just some
specific geographical subarea of the globe; this is, to the best our knowledge, the first
worldwide study of seismic events using networks and consequently the first one to
investigate the possibility of long-range links between seismic events. Secondly, we
have used a two dimensional model in which the depth dimension of the earthquake
epicenter is not considered, since we are interested in looking for spatial connections
between different regions around the world and besides 82% of the earthquakes, in
our dataset, have their hypocenters in a depth less than or equal to 100 km.

Before we divide the globe into cells, we need to choose the size of such cells
particularly because we are dealing with the entire globe; if the cells are too small
we will not have any useful information in the network, if the cells are large we
lose information due to the grouping of events into a single network node. There are
no rules to define the sizes. Therefore we have taken three different sizes, the same
sizes used in previous studies [1, 11], where the authors conducted studies about
earthquake networks using data from California, Chile and Japan. The quadratic
cells have, 5 km× 5 km, 10 km× 10 km and 20 km× 20 km. To set up cells around
the globe, we have used the latitude and longitude coordinates of each epicenter in
relation to the origin of the coordinates, i.e., where both latitude and longitude are
equal to zero (we have chosen the referential at the origin for simplicity). So, if a
seismic event occurs with epicenter E with location (θE , φE), where θE and φE are
the values of latitude and longitude in radians of the epicenter, we are able to find
the distances north–south and east–west between this point and the origin. These
distances can be calculated, considering the spherical approximation for the Earth,
by:

Sns
E = R.θE

Sew
E = R.φE . cos θE ,

(2)

where Sns
E and Sew

E are, the north-south and east-west distances for the earthquake
E, respectively, and R is the Earth radius, considered equal to 6.371 × 103 km.
With this computation we can identify the cell in the lattice for each event using the
values of Sns

E and Sew
E .

Note that the distances between different cells are irrelevant for the present part of
our study. For now we are just interested in the connectivity of nodes. However, from
the sequence there are important consequences to be obtained which we present
below.
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The seismic data used to build our network was taken from the Global Earthquake
Catalog, provided by Advanced National Seismic System1, which records events
from the entire globe. The data spans all seismic events between the period from
January 1, 1972 to December 31, 2011. This catalog has a limitation because it is
not consistent in all regions of the world; it includes events of all magnitudes for the
United States of America but only events with m ≥ 4.5 (in the Richter scale) for the
rest of the world (unless they received specific information that the event was felt
or caused damage). Therefore, in order to obtain a more homogeneous distribution
of data through the world, we have analyzed only events with m ≥ 4.5 and we also
excluded data that represent artificial seismic events (”quarry blasts”). In the end,
we were left with 185 747 events, where 82% of them happen near the surface of
the world (depth ≤ 100 km).

4 Results

Given the network build as described in the previous section, we have performed
a few experiments to understand this structure. Following the procedure explained
earlier, the 185 747 events yielded three different networks depending on the size
used for the cells: 20 km × 20 km with 65 355 nodes, 10 km × 10 km with 104 516
nodes, and 5 km × 5 km with 144 974 nodes.

4.1 Scale-Free Property of the Seismic Network

It has been shown recently [3, 11] that seismic networks for specific regions of the
globe (e.g. California) appear to have scale-free properties, or in other words that
the construction of the network employs preferential attachment as described by [5]
insofar that a node added to the network has a higher probability to be connected to
an existing node that already has a large number of connections. This is somewhat
trivial to understand because active sites in the world will tend to appear in the tem-
poral sequence of seismic events many times. The preferential attachment states that
the probability P that a new node i will be linked to an existing node j, depends on
the degree deg(j) of the node j, that is, P (i → j) = deg(j)/

∑
u deg(u). This rule

generates a scale-free behavior whose connectivity distribution follows a power-law
with a negative exponent as shown in Section 2.1.

In [3, 11], earthquake networks were built for some specific regions (California,
Chile and Japan), and their connectivity distributions were found to follow power-
laws. However, if we look carefully to the connectivity distribution and plot its
cumulative probability, instead of its probability density, we can observe that the
power-law distributions that emerge from these network are truncated. According
to [4], there are at least two classes of factors that may affect the preferential at-
tachment and consequently the scale-free degree distribution: the aging of the nodes
and the cost of adding links to the nodes (or the limited capacity of a node). The

1 http://quake.geo.berkeley.edu/anss

http://quake.geo.berkeley.edu/anss
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aging effect means that even a highly connected node may, eventually, stop receiv-
ing new links. The presence of an aging-like effect in our work could be expected
from the fact that relaxation times for tectonics are much longer that the time inter-
val under study. Some cells can stop of receiving new connections during a period
of time comparable to our own time window by a temporal quiet period due to a
transitory stress accumulation. The second factor that affects the preferential attach-
ment occurs when the number of possible links attaching to a node is limited by
physical factors or when this node has, for any reason, a limited capacity to receive
connections, like in a network of world airports. We have not found a suitable par-
allel to this factor in the case of earthquakes. When any of these factors is present,
the distribution is better represented with a power law with an exponential cutoff,
P (k) ∼ k−αe−k/kc , where α and kc are constants.

In Fig. 1, we plot the cumulative probability distribution for the earthquake net-
work built for the Southern California (32◦N− 37◦N and 114◦W− 122◦W), using
the data catalog provided by Advanced National Seismic System, where we consid-
ered all seisms with magnitude m > 0 for the period between January 1, 2002 and
December 31, 2011. The total number of events is 147 435. It is possible to observe
in this plot that the data is better fitted to a power-law with exponential cutoff than
a pure power law which is a good fit only for small values of k with an exponent
γ − 1 = 0.513, which is consistent with the value γ = 1.5 reported in [3] for the
probability density function. These results apply for a network built using cell sizes
of 5 km×5 km. It is noteworthy that in a probability density plot, the cutoff does not
seem to exist, because the fluctuations are higher than in a cumulative probability
plot.

P ≥
(k

)

0.0001

0.001

0.01

0.1

11

Connectivity Degree (k)
1 10 100 1,000

P≥ ~ k-0.513
P≥ ~ k-0.511e-k/390

Fig. 1 Cumulative probability distribution of connectivity for the earthquake network in Cal-
ifornia using cell size 5 km×5 km. The solid lines represent two possible fittings: a power-law
(black) and a power-law with exponential cutoff (red). There are 4 187 nodes in this network.

Looking at the world earthquake network constructed using the data from the
Global Earthquake Catalog, we note that the aging-cost effect are visibly stronger
in the connectivity distribution; the exponential cutoff is clearly visible in both the
degree distribution and the cumulative degree distribution presented in Fig. 2.

Fig. 2(left) represents the connectivity distribution for the global networks us-
ing the three different cell sizes for the global lattice. It is interesting to note that,
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comparing these plots, we observe that the behavior is the same in all three cases (in
the sense that they present a power law with an exponential cutoff), which indicates
that the cell size does not change the complex features behind the global seismic
phenomena.

In Fig. 2(right), we have the same plot of Fig. 2(left), but using the cumulative
probability only for cell size 20 km × 20 km. Note that the cumulative probability
plot for the global network shows the same exponential cutoff behavior than for
local network, as shown in Fig. 1.
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Fig. 2 Connectivity distributions in the global earthquake network. Plot for the cell sizes
20 km × 20 km (solid circles), 10 km × 10 km (squares) and 5 km × 5 km (cross), where
the solid lines represent the best fit using power-law with exponential cutoff (on the left).
Cumulative probability for the cell size 20 km × 20 km. The solid lines represent a standard
power-law (black) and a power-law with exponential cutoff (red) (on the right).

4.2 Small-World Property of the Global Seismic Network

Small-world networks [13] have the general characteristic that they contain groups
of near-cliques (dense areas of connectivity) but long jumps between these areas.
These two properties lead to a network in which the average shortest path is very
small and the clustering coefficient very high. It is important to note that the term
average shortest path does not refer to a spatial distance but the number of “steps”
on the network to move from a node to another.

Here we would like to test if the global seismic network has small-world proper-
ties. The consequence of such a finding would be an indicative that seismic events
around the world are correlated and not independent. To study these properties we
need to introduce slight changes to our original network. The first is that the loops
have to be removed, since we are looking for correlations between nodes and it only
makes sense when these nodes are different. The second change is, that we move
from a network with multi-graph characteristics to a weighted network. That is, if
two nodes are linked by w edges in the original network, they will be linked by a
single edge with weight w in the new version of the network.

We have analyzed the seismic network for the entire world under two viewpoints:
directed and undirected. The cell size used in this construction was 20 km × 20 km.
The data were the same used to construct the Fig. 2. Table 1 shows the results ob-
tained for the clustering coefficient (C) [6] and the average path length (�) [7].
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Table 1 Results for the clustering coefficient (C) compared to the clustering coefficient of
a random network of the same size (Crand) and the average path length (�) compared to the
lnN , where N is 65 355 in network with cell size 20 km × 20 km

Network C Crand � lnN
Directed 7.0 × 10-3 4.2 × 10-5 17.19 11.08
Undirected 4.2 × 10-2 4.2 × 10-5 12.24 11.08

From Table 1, we note that both versions of the earthquake network has small-
world properties; the clustering coefficient is much higher than an equivalent for a
random network, and the average path length has the same order of magnitude as the
logarithm of the number of nodes. It is worth noticing that the regional earthquake
networks built for California, Japan and Chile also are small-world [3, 11] although
the significance of small world at the global level is higher because with these world-
wide results we have an indicative of long-range relations between different places
around the world.

5 Conclusions

The use of networks to model and study relationships between seismic events has
been used in the past for small areas of the globe. Here we demonstrate that similar
techniques could also be used at the global level. More importantly, many of the
techniques used in complex network analysis were used here to show that there
seem to exist long-distance relations between seismic events.

We argued in favor of the long-distance relation hypothesis by showing that the
network has small-world characteristics. Given the small-world characteristics of
high clustering and low average path length, we were able to argue that seisms
around the world appear not to be independent of each other.

Another interesting approach we intend to do in the future relates to using com-
munity analysis or community detection to understand how seismic locations are
grouped.
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Discovering Colored Network Motifs

Pedro Ribeiro and Fernando Silva

Abstract. Network motifs are small overrepresented patterns that have been used
successfully to characterize complex networks. Current algorithmic approaches fo-
cus essentially on pure topology and disregard node and edge nature. However, it is
often the case that nodes and edges can also be classified and separated into differ-
ent classes. This kind of networks can be modeled by colored (or labeled) graphs.
Here we present a definition of colored motifs and an algorithm for efficiently dis-
covering them. We use g-tries, a specialized data-structure created for finding sets of
subgraphs. G-Tries encapsulate common sub-structure, and with the aid of symme-
try breaking conditions and a customized canonization methodology, we are able to
efficiently search for several colored patterns at the same time. We apply our algo-
rithm to a set of representative complex networks, showing that it can find colored
motifs and outperform previous methods.

1 Introduction

Network motifs are small overrepresented subgraphs appearing more frequently
than what would be expected in randomized networks with similar topological char-
acteristics [1]. They have been extensively used in may domains, such as biologi-
cal [2] or social [3] networks. The vast majority of past research deals essentially
with pure structural motifs, with nodes and edges being of the same type, i.e., with
no associated color or label. This is a restriction that limits the information we can
obtain, because it is often the case that nodes or edges are of different nature. For
example, in metabolic networks, we can distinguish between two sets of nodes: re-
actions and chemical compounds [4]. By ignoring these labels we may be missing
important patterns, and it has been shown that by associating different colors to the
nodes, their information content is richer [5]. The same can be said about edges, and
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previous experiments have shown that we would gain if it was possible to distinguish
between different types of connections in biological networks [6].

Discovering network motifs is a computationally hard task, intimately connected
to the subgraph isomorphism problem. Current methods essentially rely on comput-
ing the frequency of subgraphs on both the original graph and on an ensemble of ran-
domized similar graphs. This is traditionally done in one of two distinct approaches:
either we enumerate all subgraphs of a certain size and then compute their isomor-
phisms, or we query individually for one subgraph at a time. The first network-
centric approach demands that we always look for all possible subgraphs, with no
option for looking for specific types. The second subgraph-centric approach, con-
siders one subgraph type at a time, not reusing information from previous searches.
We recently introduced the g-trie data-structure [7], allowing a set-centric approach,
in which we can search specifically for a certain set of subgraphs. The algorithms
developed show substantial efficiency gains on pure structural motifs, when com-
paring to previous approaches [8].

In this paper we present an efficient g-tries based algorithm able to discover col-
ored motifs. Our main contribution is two-fold. First, we give a clear definition of
what a colored motif can be, including how we can compute its statistical signif-
icance. Secondly, we provide an extension of the g-trie data structure and associ-
ated algorithms in order to allow the usage of color information on both nodes and
edges. This allows for richer searches that do not discard information about the na-
ture of the network constituents. We empirically evaluate our algorithms in a set
of representative graphs, showing the feasibility of our approach and how we can
outperform past methods.

The remainder of the paper is organized as follows. Section 2 establishes a com-
mon graph terminology, explains the problem being tackled, and overviews related
work. Section 3 describes the g-trie data structure and details how it can be used for
discovering colored motifs. Section 4 shows the results of an empirical evaluation
of the developed algorithms, when applied to a set of complex networks, and com-
pares it to the performance obtained by a competing algorithm. Finally, section 5
concludes the paper.

2 Preliminaries

2.1 Graph Notation

We briefly review the main concepts and notation that we use. A graph G is com-
posed of a set V (G) of vertices or nodes and a set E(G) of edges or connections.
A k-graph is a graph of size k, i.e., with k nodes. Every edge is composed of a pair
(u,v) of two endpoints in the set of vertices. A graph is said to be colored if we as-
sociate colors, or labels, to each of its vertices and/or edges. Note that non-colored
graphs can be seen as a simpler case with only one color for nodes and edges. The
degree of a vertex u is the number of connections it has to other nodes, and its neigh-
bourhood, denoted as N(u), is composed by the set of vertices v ∈V (G) such that v
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and u share an edge. The exclusive neighborhood of a vertex v of graph G relative to
a subgraph Gk is defined as Nexclusive(v,Gk) = {u : u ∈ N(v)∧u /∈ N(Gk)∧u /∈ Gk}.

A subgraph Gk of a graph G is a graph of size k in which V (Gk)⊆V (G) and
E(Gk)⊆E(G). This subgraph is said to be induced when ∀u,v ∈ V (GK), (u,v) ∈
E(Gk) if and only if (u,v) ∈ E(G). The neighborhood of a subgraph Gk, denoted
by N(Gk) is the union of N(u), ∀u ∈ V (Gk). Two graphs G and H are said to be
isomorphic, if there is a one-to-one mapping between the vertices of both graphs
(including colors) and there is an edge of color c between two vertices of G if and
only if their corresponding vertices in H also have an edge of color c.

2.2 Colored Motifs

Milo et al. provided the first definition of network motifs as “patterns of inter-
connections occurring in complex networks in numbers that are significantly higher
than those in similar randomized networks” [1]. Here we introduce a similar defi-
nition for colored motifs, but with the necessary adaptions. To put it to practice, we
need to establish two different concepts: what is the frequency of a subgraph and
what are similar randomized networks.

For the first concept, we resort to the standard definition in the motif detection
realm, considering only induced subgraphs, and with two occurrences being differ-
ent if they have at least one node or edge not shared. As to the second concept, the
idea is to test subgraph significance by comparing the frequency of the subgraph in
the original network with its frequency on a large number of similar random net-
works. To be sure that the results are specific to a particular network one should use
randomized networks as close as possible to the original one. Milo et al. suggested
to keep single-node properties, namely its degree. Adapting this to the colored case,
we maintain all color related information. The randomized networks have the same
set of nodes and colors, each node keeps the same amount of edges in each color, and
each edge connects endpoints of the same colors it was connecting in the original
network. We can say that we keep the colored degree sequence.

Figure 1 shows an example colored motif following our definition, appearing 4
times on the original network. Different occurrences (indicated with thick lines) may
share some of the nodes (e.g., {1,6,7} and {1,7,11} share nodes 1 and 7). Colors
enrich the information and allow us to distinguish between different types of triangle
subgraphs. Note how the randomized networks respect the colored degree sequence
of the original, with each node keeping the exact same type of colored connections.
For instance, in the original network node 1 has two dashed connections to light
nodes, one dashed connection to a black node and one continuous connection to
another black node. The same happens at each of the similar randomized networks.
However, the subgraph we are considering is much less frequent on these networks
than in the original one, and hence we consider it a motif, i.e., the subgraph is
overrepresented.
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Fig. 1 An example colored network motif with 3 nodes

2.3 Related Work

There has been some work on motif detection using colors only in nodes [9], but
not with colored edges, even if it was acknowledged that incorporating connection
types would lead to richer results [6]. The work by Adami et al. [5] considered the
case of colors only in nodes and uses an entropy-based measurement to determine
significance. Quian et al. [10] also use colors solely in nodes and swap colors in the
network, that is, the randomized networks are topological equivalent to the original,
but with a different permutation of the colors in the nodes. Schbath et al. [11] also
incorporate color in motif detection, but they only consider sets of connected colors,
ignoring the exact connections between the respective nodes.

The only work we are aware of that directly supports motif finding with colors
both in nodes and edges is the FanMod tool [12], which implements the ESU algo-
rithm ESU [13]. Nevertheless, a clear formal definition of colored motif is not given.
ESU was initially created for non-colored topological motif detection, a problem for
which there are several possible methodologies. Kavosh [14], FaSE [15] and ESU
itself are examples of network-centric approaches, where all subgraphs of a given
size are counted by an enumeration followed by isomorphism tests to determine the
subgraph class of each found occurrence. On the other hand, algorithms such as the
one by Grochow and Kellis [16] only search for one subgraph at a time, with no re-
usage of any kind of information between the computation of different subgraphs.

Here we use a set-centric approach, extending our own g-trie data structure [7],
which previously did not account for color information. This methodology has been
shown to be very competitive with running times that can outperform previous ex-
isting methods in the case of uncolored motifs [8].
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In this paper we concentrate on exact algorithms, that are able to compute exact
frequencies. There are however approximation techniques that trade accuracy for
better running times. They are based on methodologies such as sampling [13, 17,
18]. The work we show in this paper can be further extended in the future to support
such an approach.

3 Finding Colored Motifs with G-Tries

3.1 The Colored G-Trie Data Structure

A g-trie is a multiway tree (with a variable number of children per node) able to store
and describe a set of graphs. To avoid further ambiguities, from now on we will use
the term node for referring to g-trie tree nodes, and the term vertex to refer to the
actual graph vertices stored in the g-trie. Each node contains information about a
single vertex and connections to ancestor vertices. In order to support colors, we
include in this information the color of the respective node and the color of each
edge. A path from the root to a leaf node defines a subgraph.

Fig. 2 An example colored g-trie containing 10 different subgraphs

Figure 2 exemplifies the concept, with a g-trie storing 10 colored subgraphs, with
3 different vertex colors and 3 different edge colors. Each g-trie node adds a new
graph vertex (inside the small square) to the already existing ones in the ancestor
nodes. Note how descendants of a node share a common colored subtopology.

3.2 Motif Discovery

Our methodology has two input parameters: a network to analyze and k, the size
(in vertices) of the motifs we are looking for. The flow of the algorithm is, in its
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essence, the same as what was done originally by Milo et al [1]. First, compute the
frequency of all k-sized subgraphs of the original network, i.e., a subgraph census.
Secondly, compute the frequency of these subgraphs in the set of similar randomized
networks. In the following sections we describe how these two steps are made.

3.3 Census in Original Network

The original g-trie algorithm for computing subgraph frequencies needs as input
a set of subgraphs to store. When no colors are used and the size k is small, it is
possible to use as input the set of all possible k-subgraphs. With colors, the number
of different possibilities is much larger (due to the possible permutations between
colors) and this option becomes unfeasible even for a relatively small k.

Given this, we opted to follow a network-centric approach for this initial step,
i.e., we search for all occurrences of k connected nodes and identify their topolog-
ical type. At the core, we need an algorithm for enumerating the sets of connected
nodes. We opted to use ESU [13] as the base algorithm but in order to avoid a large
number of isomorphism tests we incorporate the g-trie in the enumeration process,
in a similar way to what was done with the FaSE algorithm [15].

Algorithm 1. Census of subgraphs with k vertices in the original network G.

1: T := new empty g-trie
2: for all v ∈V (G) do
3: EXTENDSUBGRAPH({v},{u∈ N(v) : u > v},v,T )

4: for all n ∈ T.leaves() do
5: f requency[CanonicalLabel(n.Graph)] += n.count

6: procedure EXTENDSUBGRAPH(VSubg,VExt ,v,T )
7: c := last vertex in VSubg and its connections to previous nodes
8: if T.notHasChild(c) then T.CREATECHILD(c)
9: T := T.child(c)

10: if |VSubg|= k then T.count+= 1
11: else
12: while VExt �= /0 do
13: remove any w ∈VExt

14: V ′
ext :=Vext ∪{u ∈ Nexclusive(w,Vsubg) : u > v}

15: EXTENDSUBGRAPH(VSubg∪{w},V ′
ext ,v,T )

Algorithm 1 details our approach. At the core we are using the ESU algorithm
(lines 2 to 3 and 10 to 15), which enumerates all k-subgraphs of a network once
and only once. It works by maintaining two vertex lists: VSubg and Vext . The first one
represents the current partial subgraph being constructed (set of connected vertices)
and the latter a list of all neighbor vertices that can be added. Initially, it chooses
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each vertex v in the original graph G to be a possible starting point, and its neighbors
as possible extensions (lines 2 and 3). Then it recursively removes each element of
the extension list (line 13) and creates a new list of possible extensions (line 14).
The usage of the exclusive neighborhood, along with the condition u > v, breaks
symmetries and guarantees that each occurrence is only found once. When the size
of VSubg reaches k it means a new occurrence of a k-subgraph is found.

ESU execution naturally creates an implicit recursive search tree. At each time,
one new node is added to the current partial subgraph, and it corresponds to a ram-
ification in the g-trie. If that ramification already existis, we just update our current
position in the g-trie (line 9). If not, we first create the ramification (line 8) and then
follow that path. In the end, a g-trie path from the root to any leaf corresponds to a
different node permutation of a certain graph type. We compute a canonical labeling
for each leaf in order to identify its subgraph type (lines 4 and 5) but we avoid the
need for that computation on all other occurrences of the same type whose node per-
mutation corresponds to an automorphism, i.e., corresponds to the same path in the
g-trie. Note that two leaves may be isomorphic, because the order in which vertices
are traversed may implicitly define different paths. Ideally, one wants a single canon
path in the g-trie for the same subgraph type but in here we trade memory for better
running time, postponing the canonization for the randomized networks. The actual
canonical labeling algorithm used is explained in section 3.5.

3.4 Census in the Randomized Networks

The bulk of the computation work is to discover the subgraphs frequency in the ran-
domized networks. Typically one uses around 100 random networks [1], with each
taking an amount of time similar to the time needed for the subgraph census in the
original network. Since we know which subgraph types appeared in the original net-
work, we limit our search to those. Our approach is to build a new g-trie containing
only a single representation of each subgraph we are interested in. For that, we take
all subgraphs found in the original network, apply the canonical labeling described
in section 3.5, and insert such canonical representation in the g-trie.

Henceforth, we can use the new g-trie (with a single copy of each subgraph type)
to greatly constrain the frequency calculation in the random networks. The core idea
is to backtrack through all possible connected sets of nodes, and at the same time
only follow the possibilities that map exactly to a g-trie path. We take advantage
of common substructures identified in the g-trie in the sense that at a given time
we have a partial isomorphic match for several different candidate subgraphs (all
the descendants in the g-trie). We also use symmetry breaking conditions to further
constrain the search and avoid redundant computation, in a similar way to what we
have done with uncolored motifs [8].

Algorithm 2 details our method to count all occurrences of the g-trie colored
subgraphs on a single randomized network. The idea is to find matches for all pos-
sible g-tries paths, i.e., all possible subgraphs. In the beginning we follow all g-trie
root children and start with an empty partial match (lines 1 and 2). We then find all
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Algorithm 2. Census of subgraphs of G-Trie T in graph G
1: for all children c of T.root do
2: MATCH(c, /0)

3: procedure MATCH(T,Vused)
4: V := MATCHINGVERTICES(T,Vused)
5: for all node v of V do
6: if isLeaf(T ) then FOUNDMATCH(Vused ∪{v})

7: for all children c of T do MATCH(c,Vused ∪{v})

8: function MATCHINGVERTICES(T,Vused)
9: if Vused = /0 then Vcand := {v ∈V (G) : v respects color of g-trie node}

10: else Vcand := {v ∈ N(Vused) : v respects color and sym. conditions}
11: Vertices := /0
12: for all v ∈Vcand do
13: if Vused ∪ v respects connections of T then Vertices :=Vertices∪{v}
14: return Vertices

candidate vertices to fill the position of that g-trie node (line 4). If we are at a g-trie
leaf, we found a complete match to a subgraph and we can increment its frequency
(line 6). If not, we continue as before, recursively following all possible g-trie paths
from there, i.e., all subgraphs that may start with the current partial match (line 7).
In order to find the candidate vertices (lines 8 to 14) we have a look at the neighbors
of the current partial match (line 10) and only use those that respect the symmetry
breaking conditions (line 10) and that at the same time respect the color connections
with the vertices already in the partial match (line 13).

3.5 Canonical Labeling of a Colored Subgraph

For both previous algorithms we need to be able to produce a canonical labeling of
a colored subgraph. This allows us to identify the subgraph type at each leaf in the
g-trie that is dynamically constructed as we enumerate the subgraphs in the original
network. At the same time, this canonical representation is used for choosing the
path that will individually represent each isomorphic type in the g-trie that is used
for searching in the randomized networks. The choice of this labeling will therefore
directly interfere with the g-trie shape for this second part, including how much
common-substructure is found, as explained in [8].

We opted to use the GTCanon labeling, which was created precisely for usage
with g-tries [8]. At the core, this labeling uses nauty, a very efficient graph isomor-
phism program [19]. However, natively, nauty supports colors only in nodes and
therefore we had to adapt it so that edge colors are also supported. In practice, for
the labeling part, we convert each subgraph to an equivalent subgraph that uses col-
ors only in vertices. The idea is to use several layers as is, for instance, exemplified
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in [20]. If we have k colors in the edges, we can substitute each vertex v j ∈V (G) in
the graph by a connected graph of k vertices v0

j ,v
1
j , . . . ,v

k
j (we use cycles of size k).

If there is an edge of color i between vertices v j and v j′ , we add an edge between
vi

j and vi
j′ . This would imply a new graph with |V (G)|× k nodes, that is, with k lay-

ers. We reduce this to |V (G)|× log(k) by using the binary expansion of each color
number and letting each layer represent a single bit in that binary representation.

4 Experimental Evaluation

In order to evaluate our approach, we implemented the described algorithms in C++.
All experiments were run on an Intel Core 2 6600 (2.40GHz) with 2GB of memory.
We use four different networks, with varied topological features, as summarized in
Table 1. All networks are undirected and simple, i.e., with no self-loops or multiple
edges between the same pair of nodes.

Table 1 The set of four networks used for experimentation

Name Nodes Edges Avg. Degree
Nr of colors in:

Brief Description Ref
nodes edges

blogs 1,490 16,715 22.4 2 1 links between political blogs [21]
dblp 2,878 11,324 7.9 3 3 co-authorship of papers [22]

flights 7,976 15,677 3.9 1 2 flights between airports [23]
elections 8.297 100.753 24.3 2 2 elections for wikipedia admin [24]

Given the nature of this paper, we always apply some kind of coloring in the
networks used, even if the original dataset did not natively come with that color
assignment. In blogs, all edges are of the same type and there are 2 colors in the
nodes, indicating political leaning (left/liberal or right/conservative). By contrast, in
flights all nodes are of the same type and there are 2 colors for the connections,
indicating domestic and international flights. dblp is a co-authorship network in
which we created 3 categories for the nodes (bottom 10%, top 1% and the rest) to
differentiate the number of different co-authors each one has (the same was done
for edges and number of co-authorships). Finally, elections is a signed network
where there are 2 node colors (users being voted on and user casting votes) and 2
edge colors (supporting or opposing).

The only publicly available competing algorithm that performs a similar task is
ESU, through its Fanmod tool [12], and therefore we directly compare our work with
it, turning on colors on both nodes and connections. We experimented to compute
motifs as we increase the size k of the subgraphs. We consider a typical usage of
100 randomized networks, generated with a markov chain process that keeps the
same colored degree sequence of the original network, both on ESU and g-tries. We
measured the execution time for each subgraph census, as shown in Table 2. For
practical reasons, we limited the size k so that it would be feasible to run an entire
motif computation with Fanmod.
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Table 2 Experimental results

network k
Execution Time (seconds) Speedup

ESU (via Fanmod) G-Tries G-Tries
Original Avg.Random Total Original Avg.Random Total vs ESU

blogs
3 2.1 2.1 209.06 0.73 0.29 29.73 7.0x
4 232.10 263.45 26,577.10 53.04 15.10 1,563.04 17.0x

dblp
3 0.50 0.25 25.50 0.15 0.02 2.15 11.9x
4 8.11 11.80 1,188.11 1.90 0.17 18.90 62.9x
5 276.03 479.57 48,233.03 70.02 5.50 620.02 77.8x

flights
3 1.59 1.63 164.59 0.48 0.05 5.48 30.0x
4 139.36 187.00 18,839.36 35.01 4.23 458.01 41.1x

elections
3 23.02 33.55 3,378.02 7.51 1.70 177.51 19.0x
4 6,987.34 7,434.25 750,412.02 800.86 256.68 26,468.85 28.4x

We can observe that our algorithm consistently outperforms ESU. The exact
speedup is not easy to predict and highly depends on the topology of the analyzed
network. Nevertheless, the results show a tendency to achieve better speedups as k
increases, being one to two orders of magnitude faster than ESU. Given the nature of
the associated computational task, the time to compute grows exponentially as k in-
creases. However, even an increase of just one node in the size of the motifs that we
are able to calculate may be very important, because patterns previously unknown
may become “visible”. Furthermore, faster execution times may allow the analysis
of larger networks. Regarding the memory usage, the census on the original network
is more expensive on our method than with ESU, since as explained in section 3.3
we opted to trade memory for better running time. However, it is possible to use any
other algorithm for this initial census, including ESU itself. Moreover, the task that
dominates the total running time is the census on the ensemble of random networks
and in that part g-tries are not more costly in terms of memory than ESU, because
they natively provide a compact representation of the set of subgraphs in which we
can store their respective frequencies.

The main focus of this paper is the algorithm in itself, but we feel it is important
to show the usefulness of colored motifs and figure 3 shows some of the motifs we
found. The significance of a subgraph is computed as in the original Milo et al. pa-
per [1]. For instance, a subgraph is overrepresented if the probability that it appears
more often in the randomized networks than in the original network is smaller than a
certain threshold. Here we are not worried about defining what the exact value of the
threshold should be, but rather we want to show some general trends and our goal
is to give the reader a feel of the kind of information colored motifs provide. For
instance, without colors on both nodes and edges, the 5 patterns indicated for dblp
would be indistinguishable. However, we can see that some of them are overrepre-
sented (appearing more often than expected), some are underrepresented (appear-
ing less than expected) and others are neutral (appearing in expected frequencies).
The same happens on the other networks. Finding explanations for the depicted
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Fig. 3 Some examples of motifs found on the networks used for experimenting

frequencies would be another (interesting) task, but what remains is that by con-
sidering colors we have a richer mining environment, able to expose patterns that
would be invisible when only using the traditional uncolored analysis.

5 Conclusions

In this paper we gave a definition of colored network motifs and described a com-
plete methodology to find such characteristic patterns. The main computational
problem we tackled was calculation of subgraphs frequency and at the core or our
algorithms lies the g-trie data structure, responsible for representing sets of sub-
graphs. We adapted existing algorithms and combined them in order to produce a
solution that we have shown to be not only feasible, but also substantially faster
than a direct competing algorithm. We also tried to show some of the potential in
the usage of colored motifs.

In the near future we plan to publicly release the software created for the de-
scribed algorithms and to explore extensions of these algorithms such as an approx-
imation version with sampling capabilities or a parallel approach. We also intend to
apply the concept of colored motifs on several real-world networks, and to experi-
ment with different types of randomized networks
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Structure Comparison of Binary and
Weighted Niche-Overlap Graphs

Nayla Sokhn, Richard Baltensperger, Louis-Felix Bersier,
Ulrich Ultes-Nitsche, and Jean Hennebert

Abstract. In ecological networks, niche-overlap graphs are considered as
complex systems. They represent the competition between two predators that
share common resources. The purpose of this paper is to investigate the struc-
tural properties of these graphs considered as weighted networks and compare
their measures with the ones calculated for the binary networks. To conduct
this study, we select four classical network measures : the degree of nodes, the
clustering coefficient, the assortativity, and the betweenness centrality. These
measures were used to analyse different type of networks such as social net-
works, biological networks, world wide web, etc. Interestingly, we identify
significant differences between the structure of the binary and the weighted
niche-overlap graphs. This study indicates that weight information reveals
different features that may provide other implications on the dynamics of
these networks.

Keywords: Network Measures, Weighted Networks, Food-webs, Niche-
Overlap Graphs.

1 Introduction

Complex systems have recently gained much interest. Many analyses have
been conducted to understand the structure of these systems and to un-
cover their unique patterns [1, 2, 3]. Networks have emerged across many
fields including biology, ecology, social networks [4, 5, 6] and many others.
All these different networks were found to have a special architecture and a

Nayla Sokhn · Louis-Felix Bersier · Ulrich Ultes-Nitsche · Jean Hennebert
University of Fribourg, CH 1700 Fribourg, Switzerland

Nayla Sokhn · Richard Baltensperger · Jean Hennebert
University of Applied Sciences of Western Switzerland,
CH 1700 Fribourg, Switzerland

P. Contucci et al. (eds.), Complex Networks V, 119
Studies in Computational Intelligence 549,
DOI: 10.1007/978-3-319-05401-8_12, c© Springer International Publishing Switzerland 2014



120 N. Sokhn et al.

particular behavior. It was shown that social networks belong to the small
word property [7], known as the «six degrees of separation» phenomena.
Food-webs and niche-overlap graphs turned out to follow a single scale ex-
ponential distribution [8, 9] while other networks such as the biology cells
and the World Wide Web were found to follow a scale-free power law dis-
tribution [10]. In these real systems, two entities are connected if there is a
relationship between them. For instance, in a social network, the relation-
ship would be «being a friend with», in a food-web «feeding on a species», in
a niche-overlap graph «competition between species». However, in order to
have a better understanding of these networks, it is important to quantify the
relationship between nodes. This is done by giving a weight to the links of
the network. For example, in the scientific collaborator network, the weight
is equal to the number of coauthored papers between two authors. For the
world wide web network, the weight is defined by the load of data transferred
between two hosts [11]. For niche-overlap graph, the weight is characterized
by the number of common prey between two predators. In order to analyse
weighted networks, researchers generalized some network measures by con-
sidering the weight of the links [12, 13]. Here, our aim is to first investigate
the structure of weighted niche-overlap graph using four classical metrics:
node degree, clustering coefficient, assortativity and betweenness centrality.
We then compare the results with the ones obtained by analysing the binary
niche-overlap graphs. To our knowledge, this is the first study that consid-
ers niche-overlap graphs as weighted networks and conducts an analysis to
reveal their structure. The rest of the paper is organized as follows. Section
2 describes the food-webs and the niche-overlap graphs. Section 3 presents
the structural properties used to inspect the binary and weighted networks.
Section 4 illustrates and discusses the results. Finally, Section 5 concludes.

2 Ecological Networks: Food-Webs and Niche-Overlap
Graphs

Food-webs are examples of ecological networks. They describe the interac-
tions between consumers and resources. These complex systems are illus-
trated by a directed network. Nodes characterize species and directed links
map the feeding connections between them. Other networks, namely niche-
overlap graphs, are also examples of ecological networks. These graphs depict
the competition between consumers. Two predators (consumer) are linked if
they share at least one prey (resource). Niche-overlap graphs are drawn con-
sidering the information (who eat whom) retrieved from the food-webs. There
are two different ways of using this information: (1) searching only for the
common prey for each predator or (2) taking in consideration the number of
common prey for each predator. In the second case, the weight ωi,j assigned
to each edge will be defined using the Jaccard index [14]:
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ωi,j =
|preyi

⋂
preyj |

|preyi
⋃

preyj |
, (1)

where preyi and preyj are the prey of predator i and j respectively.
These weights provide important information on the competition between

predators. Two nodes might have the same number of links. However the
strength of their links might be different.

3 Datasets and Network Measures

3.1 Datasets

We selected a collection of 15 real food-webs and built their corresponding
niche-overlap graphs (Table 1). Weighted niche-overlap graphs were also gen-
erated to assess the comparison with the binary ones.

Table 1 Empirical food-webs and their associated niche-overlap graphs are pre-
sented by their name, order and size (number of links)

Food-web Niche-overlap Food-web Niche-overlap
Graph Order Size Order Size Graph Order Size Order Size
Chesapeake 33 71 27 95 Mangrove 90 1151 84 2148
Cypdry 68 468 53 855 LRL North Spring 2 144 2095 111 2520
Cypress 64 437 50 827 LRL North Summer 165 2706 121 3064
Cypwet 68 459 53 854 LRL North Winter 109 1257 86 1501
Everglades 63 617 58 1214 LRL South Winter 102 1328 83 1418
Gramdry 66 664 60 1267 LRL South Spring 1 151 2399 112 2965
Saint Martin 44 218 38 312 LRL South Summer 173 2901 119 3652
Mangrovedry 94 1210 86 2315

3.2 Network Measures

In order to assess a comparison between the architecture of these binary and
weighted graphs, we selected four classical network measures that were used
to analyse different networks such as social networks, biological networks,
world wide web networks and others [15, 16, 17]. These measures are pre-
sented below:

Degree: The degree Dv is the number of links that a node v has.

Weighted Degree: The node strength DW
v is the sum of the weights of the

links that a node v has.



122 N. Sokhn et al.

By taking into consideration the strength of each link, we obtain additional
information on the importance of the competition that a predator has. DW

v

is certainly lower than Dv since the weights ωi,j are in the interval [0, 1].

Clustering Coefficient: The clustering coefficient Cv measures the ten-
dency that the neighbors of a node v are linked to each other’s. It is given
by:

Cv =
2Ev

Dv(Dv − 1)
=

∑
j,h avjavhajh

Dv(Dv − 1)
, (2)

where avj is 1 if species v and j are connected (i.e. in competition) and 0

otherwise. The factor
Dv(Dv − 1)

2
is the potential number of links among the

neighbors. Ev is the number of links among the neighbors of v i.e. the actual

number of triangles in which node v participates:
1

2

∑
j,h

avjajkakv. The
clustering coefficient of the whole network, is the average clustering coefficient
C over all the nodes.

Weighted Clustering Coefficient: Many definitions of the weighted clus-
tering coefficient have been proposed in the literature [13, 18, 19, 20, 21].
In this paper, we restrict our analysis on the following two definitions : the
one proposed by Barrat et al. [13] which reflects how much of node strength
is associated with adjacent triangle edges and the one proposed by Onnela
et al. [21] which shows how large triangle weights are compared to network
maximum.

Barrat et al. take into account only two links of the triangle:

CW (B)
v =

1

sv(Dv − 1)

∑
j,h

(wvj + wvh)

2
avjavhajh, (3)

where sv accounts for the strength of node v:

sv =
∑

j
avjwvj .

The factor sv(Dv − 1) is the normalization factor to ensure that the

weighted clustering is in the interval [0, 1] and
wvj + wvh

2
is the weights’

average of the links between node v and its neighbors j and h.
If CW (B) > C, this shows that the interconnected triples are more likely

to be created by the links with larger weights. If CW (B) < C, this indicates
that these triples are formed by the links with lower weights [22].

Onnela et al. consider all the three link weights of a triangle:

CW (O) =
2

Dv(Dv − 1)

∑
j,h

(ŵvjŵjhŵhv)
1
3 = Cv Īv, (4)

where ŵvj is equal to wvj/max(w). The actual number of triangles in which
node v participates is replaced by the average intensity Īv of the triangle,
which is the geometric mean of the links’ weights (ŵvjŵjhŵhv)

1
3 [11].
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Betweenness Centrality: The betweenness centrality of a node v intro-
duced by Freeman [23] identifies the number of shortest paths that passes
through node v (denoted by σst(v)) among all the shortest paths (σst) in the
network. This measure is given by:

BCv =
∑

s,t�=v

σst(v)

σst
. (5)

If the betweenness centrality BC of a node v is equal to 0, it belongs to
only one complete subgraph (a clique) of a graph G [24].

Weighted betweenness Centrality: The weighted betweenness centrality
of a node v is calculated by taking into consideration the weights of the links
in the network when finding the shortest path that passes through v, σw

st(v)
and the ones among the network σw

st :

BCW
v =

∑
s,t�=v

σw
st(v)

σw
st

. (6)

In the weighted version of the betweenness centrality, if a species has a
BCW equal to 0, this does not ensure that it belongs to one unique clique.

Assortativity Coefficient: The assortativity coefficient R of a graph mea-
sures the tendency of degree correlation. It is calculated using the correlation
coefficient of Pearson applied to the degrees of each node in the network.

It is defined as:

R =

1
M

∑
Φ(
∏

v∈F (Φ)Dv)− ( 1
2M

∑
Φ(
∑

v∈F (Φ) Dv))
2

1
2M

∑
Φ(
∑

v∈F (Φ)D
2
v)− ( 1

2M

∑
Φ(
∑

v∈F (Φ)Dv))2
, (7)

where M is the total number of links in the network, F (Φ) denotes the set
of two nodes linked by the Φth link [15].

Weighted Assortativity Coefficient: The weighted assortativity coeffi-
cient RW suggested by Leung et al. [25] is given by :

RW =

1
H

∑
Φ(wΦ

∏
v∈F (Φ) Dv)− ( 1

2H

∑
Φ(wΦ

∑
v∈F (Φ)Dv))

2

1
2H

∑
Φ(wΦ

∑
v∈F (Φ) D

2
v)− ( 1

2H

∑
Φ(wΦ

∑
v∈F (Φ)Dv))2

, (8)

where H is the total weight of all links in the network and wΦ denotes the
weight of the Φth link.

If RW > R, this implies that the links with a larger weights are pointing
to the neighbors with larger degree. If RW < R, this shows that the links
with a larger weights are pointing to the neighbors with smaller degree [26].

4 Results and Discussion

The average degree of species of the 15 weighted niche-overlap graphs was
significantly lower compared to the binary ones (Fig. 1 (a)). This indicates
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that even though species compete with many other species, they actually
share few resources between them, thus providing weak links.

The distribution of the weighted clustering coefficient proposed by Barrat
et al. CW (B) is slightly higher than the one for the binary clustering coeffi-
cient C whereas the one suggested by Onnela et al. CW (O) is considerably
lower among the others (Fig. 1 (b)). The differences between both definitions
comes from the fact that Onnela et al. take into account the weights between
neighbors of node v and the weights of the edges between neighbors. On the
other hand, Barrat et al. consider only the weights of the triangle forming
the edges linked to node v but not the edges connecting the neighbors of
v. Both weighted clustering coefficient (CW (B) and CW (O)) provide us with
complementary information. CW (B) being close the C yields to two conclu-
sions : (1) the absence of correlation (randomized network), (2) the network
is divided in two sets, one where triples are constituted by larger weights
and others by smaller weights. CW (O) being significantly lower is due to the
weight normalization by the global max(w) and to a broad distribution of
weights in networks [27].
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Fig. 1 Box plots (minimum, quartiles and maximum) illustrating the distribution
of degree and clustering coefficient respectively of the 15 niche-overlap graphs. Me-
dians are indicated by red lines. D and DW correspond to the binary and weighted
degree respectively. C denotes the binary clustering coefficient. CW (B) and CW (O)

the one proposed by Barrat et al. and Onnela et al. respectively.

The percentage of species with a betweenness centrality equal to 0 differed
between the binary and the weighted niche-overlap graphs (Fig. 2 (a)). A
higher number of species with a BCW = 0 was detected in the weighted
version. This points out that some species have a stronger competition (a
high number of shared prey) among the others.

Interestingly, the assortativity coefficient for the weighted networks was
positive whereas for the binary ones it was close to 0 and slightly negative
(Fig. 2 (b)). This points out that by considering the strength of links, niche-
overlap graphs reveal a fairly tendency to be assortative. This expresses that
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Fig. 2 Box plots (minimum, quartiles and maximum) illustrating the distribu-
tion of betweenness centrality and assortativity respectively of the 15 niche-overlap
graphs. Medians are indicated by red lines. BC and BCW correspond to the bi-
nary and weighted betweenness centrality respectively. R and RW correspond to
the binary and weighted assortativity respectively.

predators with a high number of common prey tend to be connected with
predators who also have a high number of common prey. Nevertheless, by
considering simply the presence or absence of links (ignoring the weights),
highlights a different assemblage of predators, indeed for binary niche-overlap
graphs, predators tend to be linked randomly.

5 Conclusion

In this work, a set of 15 real networks was considered to conduct a comparison
between the structure of the binary and weighted niche-overlap graphs. Our
analysis showed significant differences between both structures indicating the
influence of the weights on the architecture and on the assemblage of species.
We believe that our study provides new insights and additional topological
information on the structure of niche-overlap graphs studied in the context
of foodwebs.
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Core Decomposition in Directed Networks:
Kernelization and Strong Connectivity

Vincent Levorato

Abstract. In this paper, we propose a method allowing decomposition of directed
networks into cores, which final objective is the detection of communities. We based
our approach on the fact that a community should be composed of elements having
communication in both directions. Therefore, we propose a method based on di-
graph kernelization and strongly p-connected components. By identifying cores,
one can use based-centers clustering methods to generate full communities. Some
experiments have been made on three real-world networks, and have been evaluated
using the V-Measure, having a more precise analysis through its two sub-measures:
homogeneity and completeness. Our work proposes different directions about the
use of kernelization into structure analysis, and strong connectivity concept as an
alternative to modularity optimization.

1 Introduction

Complex networks appear in many applications, including social networks analysis
on the Web, which is a topical research subject. These networks carry non-trivial
topological properties that characterize their connectivity, and affect the dynam-
ics of their behavior. The analysis of complex networks often leads to the analysis
of the roles of elements, or groups of elements, composing a network. Communi-
ties detection belongs to this research field, and can be very useful to better un-
derstand how networks are structured. In this article, we focus on the problem of
finding communities in networks, and more specifically finding cores in directed
networks. Dealing with methods of community detection for directed networks is a
difficult task, and few methods exist compared to methods used in the undirected
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case. Here are some of the most known works in the literature [9, 17, 13] dedi-
cated to directed networks, or which can be adapted to work with directiveness:
Clauset et al. method [5], CFinder based on the Clique Percolation Method (CPM)
[21], Louvain method [3], InfoMap [23], Simulated Annealing for modularity [11],
Wu-Huberman method [31], MarkovCluster algorithm [29], Multistep Greedy algo-
rithm [24] and EM method (Expectation-Maximization) [18]. More recently, others
methods concerning directed networks have been proposed, with more or less good
results [32, 15, 14].

Generally, these methods are most of the time designed for undirected networks,
and adjusted to work in the directed case: they are not initially dedicated to the
directed case. There is also a significant amount of methods using modularity op-
timization. However, this kind of approach has its limits, and can “miss important
substructures of a network” [10]. Some recent work discuss about reciprocated in-
teraction [4], that two people should communicate in both directions, the first per-
son expecting messages from the second person, and vice versa. Our approach is
based on this simple idea: in a directed network, a community should be composed
of nodes which can communicate with every nodes in the community, in both di-
rections. Interesting results in our previous exploratory work [19] encourage us to
continue in this direction. Usually represented by graphs in undirected networks,
this kind of representation can be modeled by the connected component concept,
and more restrictively by the clique concept. Except that for the directed case, it can
be represented by the concept of strongly connected component. Finding these com-
ponents should be equivalent to find cores to which other elements of the network
will be assigned. This work gives the key concepts of this approach, focusing on the
cores finding.

Our paper is structured as such: the first section gives the definitions of graph
theory and formal concepts needed to understand our method. Then, the second part
exposes the different steps of our approach, followed by some experimental results
on real networks. The paper ends by a conclusion which opens discussion on future
work directions.

2 Graph Theory Notions

2.1 Graph Definitions

In this article, we consider only directed graphs (also noted digraph). We give here
a short reminder of graph theory notions. Formally, a digraph G = (V,A) is the pair
composed of [2]:

• a set V = {x1,x2, ...,xn} named vertices or nodes.
• a family A = (a1,a2, ...,an) of elements of the Cartesian product V × V =

{(x,y)/x ∈V,y ∈V} named arcs.

The amount of vertices is noted n (also noted |V (G)|) and the amount of arcs
is noted m (also noted |A(G)|). A path P is composed of k arcs such as P =
(a1,a2, ...,ai, ...,ak) where for every arc ai the terminal end coincides with the initial
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end of ai+1. Several equivalent notations can be used: P = ((x1,x2),(x2,x3), ...) =
[x1,x2, ...,xk,xk+1] = P[x1,xk+1]. A chain is, like a path, an alternating sequence of
vertices and edges, where an edge is an arc without orientation. A circuit is a path
such that the first node of the path corresponds to the last. It can be viewed as an
oriented cycle.

2.2 Connected Components

Here are the different types of connected components we could have in a directed
graph [12]:

• a weakly connected component WCC of a digraph is a subgraph where: ∀x,y ∈
WCC, there is a chain between x and y.

• an unilaterally connected component UCC of a digraph is a subgraph where:
∀x,y ∈UCC, there is a path between x and y OR there is a path between y and x.

• a strongly connected component SCC of a digraph is a subgraph where: ∀x,y ∈
SCC, there is a path between x and y AND there is a path between y and x.

To discover cores in a network, we use a special case of strongly connected
component named strongly p-connected component by [30] which is related to l-
edge-connectivity [7] (we use p-connected notation instead of n-connected to avoid
confusion):

• a strongly p-connected component p-SCC of a digraph is a subgraph where:
∀x,y ∈ p-SCC, there is a path of length p or less between x and y, and there
is a path of length p or less between y and x, with p ≥ 2.

3 Core detection

3.1 Related Work

Finding cores in order to find communities is a method that can be related to pattern
identification [13]. This consists in finding maximal subsets which implies separa-
tion between them. Clique finding is one of these methods, but is also very restric-
tive, because each node must have a direct connection to other nodes. This approach
has been relaxed by the n-clique definition where each node is connected to others
by at least one path which length is at most n, but that can be outside of the n-clique.
The n-clan concept fixes the connectedness issue of the n-clique [20].

Our approach is related to these works, but we don’t put strong constraint on
the size (triads), and we don’t want to avoid circuits (directed k-clique), as it is
specifically the configuration we are looking for: strongly p-connected components.
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3.2 Searching for Cores Using p-SCC Concept

Our community definition refers to a group containing elements that can commu-
nicate with all other elements of the group, corresponding in digraphs, to strongly
connected components (SCC) concept. Tarjan based his algorithm on the search of
circuits [27]. To our knowledge, no work has considered the SCCs in the case of
researching communities. By simply applying Tarjan’s algorithm to directed graph
generated through LFR benchmark [16], some communities can be found, but SCCs
are often oversized. To refine the process, our approach proposes to find p-SCCs
(fig. 1). The problem is that in a digraph, the number of circuits may be exponen-
tial in the number of vertices [26]. Therefore, processing all circuits of a graph is
not relevant, especially if the graph has a significant number of nodes like in large
real-world networks.

(a) (b)

Fig. 1 Examples of p-SCCs: (a): nodes are connected by paths of length at most 2 (2-SCC)
(b): nodes are connected by paths of length at most 3 (3-SCC)

Starting from a node s, we look for p-SCC by searching for circuits, but circuits
with a given size. Trivially, the length of the path p is bounded by the length of the
circuits found into the p-SCC :

p ≤ 2× (c− 1)

where c is the size of circuits we are searching for.

s

Fig. 2 Searching p-SCC is similar to search circuits from a starting node s. In this case,
searching for 4-SCC means searching for circuits of length at most 3. The highlighted path
length is 4, the maximal path length which can be found.
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For instance, searching for circuits of length 3 starting from a node means search-
ing for at most 4-SCCs (fig. 2). We propose an algorithm which returns a p-SCC
starting from a given node (alg. 1). As the algorithm is searching for circuits, and
considering that p parameter sets the circuit length, we can only find p-SCCs with
p being an even number. It is written in a non-recursive way, but time complexity
should be approximatively the same as Tarjan’s algorithm, which is O(n+m), with
two differences: we don’t always need to pass through every arc (depends on path
length), but we should pass through nodes several times.

Input: G: digraph, s:starting node, p:path length (even integer)
Data: astack: stack of arcs, vpath: stack of nodes, c: integer (circuit size)
Remark: Aout(k) represents set of outing arcs of the node k.
source(a) represents the source node of the arc a, dest(a) represents the destination node of the arc a.
Result: C:set of nodes (p-SCC)

C ← /0; C ←C∪{s};

vpath.push(s); c ← (p+2)
2 ;

foreach a in Aout(s) do
astack.push(a);

end
while astack �= /0 do

a ← astack.pop();
w ← vpath.peek();
if source(a) �= w then

while source(a) �= w do
w ← vpath.pop();

end
vpath.push(w);

end
z ← dest(a);
if z = s then

C ←C∪ vpath;
end
else

if |vpath|< c then
foreach b in Aout(z) do

astack.push(b);
end
vpath.push(z);

end
end

end
return C;

Algorithm 1. Algorithm for extracting the p-SCC.

3.3 Digraph Kernelization

Before describing the whole method based on core detection, we show how we
can optimize the search for p-SCCs by “cleaning” the digraph, meaning excluding
nodes and arcs which should never belong to a circuit: this brings us to the notion of
graph kernelization. We are interested in the kernelization which is used in the FVS
problem (Feedback Vertex Set) [28]. As we work in the directed case, we used the
kernelization technique applied to the directed FVS [8], following the four first rules
of the method (it removes self-loop, multiple arcs, isolated nodes, and recursively
chained nodes with only outgoing or incoming arcs).
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4 Digraph Cores Decomposition Method

This section describes our method for core detection in directed networks. Let use
the following notations: G is the input digraph (network), and K is the set of output
cores. The method follows these steps, considering a given p:

1. Kernelize G.
2. For each node of G as the starting node, process p-SCC.
3. Sort p-SCCs by size. Starting from the biggest one, put them one by one in K

if it doesn’t intersect existing cores already inserted into K . In case of cores
having the same size, take the most connected one (biggest amount of arcs).

4. (optionnal) Remove p-SCCs with size inferior to a given threshold Kmin.

Illustration: The figure 3 gives an illustration of our method, step by step, with
p= 4 (meaning we search for circuits of length at most 3). Let take a digraph (a), and
apply the first step which is kernelization (b). Some nodes are ignored, and won’t be
considered. The second step processes 4-SCCs, node by node: in the example (c),
only five iterations are represented (nodes with labels 4 ,5 ,8 ,10 ,13), and for each
node, a 4-SCC is computed, which can be the same for several nodes (nodes 5 and 8
produce the same 4-SCC, same thing for nodes 4 and 13). The last step (d) extracts
the biggest and non-intersecting 4-SCCs giving the final result with 3 cores.
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(a) Input digraph
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(b) Kernelization
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(c) Processing the
4−SCCs
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(d) Cores result

Fig. 3 Illustration of the decomposition method of a digraph into cores

This method returns a set of cores which can be used to cluster the remaining
nodes of the network to have a complete clustering. As some clustering methods
like k-means algorithm, the number of communities is set by the number of cores.
In this article, as we don’t focus on clustering methods, our experiments use a simple
aggregative method like center-based clustering methods, and assign each node to
the community having the nearest core, in term of chain length. The Kmin value can
be useful to avoid too small cores that shouldn’t be considered.

5 Experiments

Validating communities structures corresponds to validate a clustering method. The
difficulty is to find an objective measure of quality of clusters. For our experiments,



Core Decomposition in Directed Networks: Kernelization and Strong Connectivity 135

we use V-Measure which is an alternative to F-Measure, and Normalized Mutual
Information from the information theory field to compare the clustering obtained
by our method to the reference classes. We based our experiments on real data net-
works, as some experiments have already been done on generated networks (LFR
Benchmarks [16]) in our previous work with good results [19]. Moreover, there is
an issue with the LFR Benchmark, as it produces graphs already kernelized, which
puts a strong constraint on generated graphs. On the contrary, in the experiment part,
we observe that the real-world networks we used are strongly kernelizable.

5.1 Clustering Evaluation

The entropy notion is used to express the used measures, and is noted as follow, with
X and Y two discrete random variables: H(X) and H(Y ) for the marginal entropies,
H(X |Y ) and H(Y |X) for the conditional entropies, H(X ,Y ) for the joint entropy.
Measures give results between 0 (worst matching) and 1 (best matching). Here are
the two evaluation measures definitions:

• V-Measure [22] is an entropy based-evaluation measure, composed of two con-
cepts: completeness and homogeneity. With C a set of classes (reference), K a set
of clusters (unsupervised method), the homogeneity is defined as:

h =

{
1 i f H(C,K) = 0

1− H(C|K)
H(C) else

and the completeness is defined as:

c =

{
1 i f H(K,C) = 0

1− H(K|C)
H(K) else

A clustering result satisfies homogeneity if all of its clusters contain only ele-
ments which are members of a single class, and a clustering result satisfies com-
pleteness if all the elements that are members of a given class are elements of the
same cluster. The V-Measure is based on homogeneity and completeness scores
such as:

Vβ =
(1+β ) ·h · c
(β ·h)+c

with a β parameter which can be used to weight homogeneity and completeness
scores. In our experiments, we set β = 1 (balanced weights).

• Normalized Mutual Information (NMI) [6] Mutual information is a measure
used in information theory domain, giving the amount of information that one
random variable contains about another. This measure is defined between the
cluster assignments K and a pre-existing labeling set of classes C normalized by:
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NMI(K,C) =
I(K,C)√

H(K)H(C)

with I(K,C) the mutual information of K and C such that I(K,C) = H(K)
− H(K|C).

5.2 Results

In order to test our approach, we used directed network datasets already known in
the literature [1, 25]. Three networks have been used (see tab. 1). Several character-
istics of the network are given like density, degree information, communities max-
imum and minimum sizes, but also the mixing parameter μ [17] and the directed
modularity Qd [18].

Table 1 Network datasets

Directed Network Political Blog Cora Citeseer
|V | 1,222 2,485 2,120
|A| 19,024 5,209 3,768

Classes 2 7 6
Density 1.27% 0.08% 0.08%
Degrees kmean = 31 kmean = 4 kmean = 4

kmin = 1 kmin = 1 kmin = 1
kmax = 467 kmax = 169 kmax = 100

Communities size |C|min = 588 |C|min = 131 |C|min = 115
|C|max = 636 |C|max = 726 |C|max = 532

μ 0.09 0.18 0.28
Qd 0.41 0.63 0.51

5.2.1 Core Decomposition

In tab. 3, we compare the obtained cores with the reference classes, using the p pa-
rameter which corresponds to the path length of a p-SCC, and the Kmin parameter
which is the minimum core size (only relevant results are shown). In most cases,
cores have a good completeness score, meaning that we succeed in having nodes
which belong to a single class in only one core. On the other hand, the homogeneity
score tends to be better when the threshold of the minimum core size is increased
(Political Blog and Cora networks), having nodes of a same core belonging to a
single class. The interpretation that can be made from these results is that the more
the graph is compressed, the less the Kmin gets an high value. When too many nodes
are available to build cores, the Kmin threshold has to be high to remove some even-
tual noise, giving less nodes usable in the core creation. In the results of tab. 3, we
first consider completeness value, and then the homogeneity value. We give more
importance to the completeness score, as it gives better results in the final process
communities detection.
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Table 2 Network kernel sizes

Directed Network Political Blog Cora Citeseer
|V |K 811 2,485 2,120
|A|K 15,833 5,209 3,768

Compression rate (nodes) 33% 84% 97%

Table 3 Cores detection on real-world networks

(a) Political Blog

p K min size h c V Nb Nodes Nb Cores
2 2 0.35316 0.95295 0.51534 329 20
2 3 0.40471 0.94876 0.56739 308 13
2 4 0.44344 0.94601 0.60383 296 10
2 5 0.52053 0.96137 0.67538 281 7
2 6 0.59364 0.97468 0.73787 269 5
2 7 0.7381 1.0 0.84932 255 3
2 16 1.0 1.0 1.0 239 2
4 2 0.60926 0.98967 0.75421 401 12
4 3 0.79398 0.98896 0.88081 380 5
4 4 0.90979 1.0 0.95276 372 3
4 5 1.0 1.0 1.0 367 2

V-Measure

(b) Cora

p K min size h c V Nb Nodes Nb Cores
4 2 0.41019 0.9412 0.57137 98 28
4 3 0.57836 0.9352 0.71471 47 11
6 2 0.41481 0.93729 0.5751 103 28
6 3 0.58141 0.92778 0.71485 52 11
6 4 0.70183 0.92268 0.79724 32 6

V-Measure

(c) Citeseer

p K min size h c V Nb Nodes Nb Cores
2 1 0.49039 0.93415 0.64315 54 26
2 2 0.19087 0.29364 0.23136 6 2
4 1 0.48994 0.93454 0.64285 58 26
4 2 0.5907 0.77251 0.66948 12 3

V-Measure

5.2.2 Communities Detection

Using an aggregative method, the cores first absorb nodes which are in the kernel but
not in the cores, giving pre-built communities. Then, the nodes outside the kernel
are absorbed by the pre-built communities to give a final clustering of communities.
Clusters are not strongly connected, but unilaterally connected. The results in tab. 4
show that even with a naive method of clustering, the communities structures remain
”acceptable“. The cores used in the final clustering process are the cores having the
best completeness scores in the core decomposition operation. Observing the results,
we can make the assumption that the compression of graphs impacts the quality of
cores, and therefore the detection of communities. With a small amount of nodes in
the kernel, the choice to make between the nodes to build the cores is important, as it
determines the final process of communities detection. Also, having only big cores
means setting a too high Kmin threshold value, which can have a negative impact
on the cores detection, and some communities cannot be found in the process. For
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instance, in fig. 4, the central community has been found by our method using the
parameters p = 4,Kmin = 2. If we set Kmin = 3, cores of size 2 are excluded, and this
central community is not detected.

Table 4 Real-world networks communities detection results based on core decomposition

Network Amount of 
Communities

h c V NMI
Political Blog 0.70385 0.69929 0.70156 0.70116 2
Cora 0.35335 0.46349 0.40099 0.40469 28
Citeseer 0.28162 0.38734 0.32613 0.32742 26

Measures

(a) Clustering using an aggregative method
based on core decomposition.

(b) Reference classes.

Fig. 4 Communities detection comparison on the Cora citation network (p = 4,Kmin = 2)

6 Conclusion

In this article, we focused on an approach dedicated to directed networks, and we
gave a method allowing the decomposition of these networks into cores. These cores
can be used by any clustering method based on centers to detect communities. Our
various contributions can be presented as follows:

• We provide a simple and efficient algorithm to generate these p-SCCs in a di-
graph. This approach can be classified in the pattern identification category that
we can find in some method classification, while being flexible enough.

• The interest of using kernelization process has been highlighted : it reduces the
core detection process, and can give some information on the network structure.

• An important thing about these results is that we didn’t take into account the
modularity concept in our approach. As a large part of the communities detection
algorithms are dedicated to modularity optimization [13], we want to stress the
point that we can have interesting results in communities detection without this
concept.
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Several options can be considered for the continuation of this work. As we said,
we have to apply our method to others real-world datasets. We should also study how
to increase the quality of the core detection, and it could be interesting to have the
possibility to automatically fix the Kmin threshold value. Testing other based-centers
clustering methods should be done too. Also, the case of overlapping communities
should be considered, as our approach could be quickly adaptable with p-SCCs
which naturally overlap each other. In our opinion, our work points out that no clear
or unanimous consensus about the definition of communities exists, and provides
a new point of view on the detection of communities into directed networks, being
omnipresent in the Web nowadays.
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Abstract. The evolution of interactions between individuals or organizations
are a central theme of complexity research. We aim at modeling a dynamic
game on a network where an attacker and a defender compete in disrupt-
ing and reconnecting a network. The choices of how to attack and defend
the network are governed by a Genetic Algorithm (GA) which is used to
dynamically choose among a set of available strategies. Our analysis shows
that the choice of strategy is particularly important if the resources available
to the defender are slightly higher than the attackers’. The best strategies
found through GAs by the attackers and defenders are based on betweenness
centrality. Our results agree with previous literature assessing strategies for
network attack and defense in a static context. However, our paper is one
of the first ones to show how a GA approach can be applied in a dynamic
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game on a network. This research provides a starting-point to further explore
strategies as we currently apply a limited set of strategies only.

1 Introduction

Networks have been used to elegantly model systems with many interacting
elements in many different disciplines [16] including biology [10], linguistics
and social sciences [18], epidemics [4], infrastructures [17], and banking [3]. A
central question in network science is to understand the robustness of a net-
work if nodes or edges fail or come under attack [9, 2]. The study of network
robustness has many different applications, such as assessing the vulnerabil-
ity of power grids [1], subway networks [13], and airline transportation net-
works [7]. Additionally, social networks of interest are covert networks such as
criminal or terrorist organizations [12]. For example, targeting one individual
over another by police force might have more effect on the communication
capability of the network depending on network topology. Analogously, tech-
nical networks of interest are computer networks, where the maintainers of
computer networks might attempt to identify the best strategy to defend
against cyber attacks or random failures.

Network topology plays a large role in how effective an attack is, and how
the network is able to defend itself. Albert et al. [2] demonstrated that scale-
free networks, unlike random networks, are very robust to random failure
but vulnerable to targeted attacks. This is due to the fact that most nodes
in their scale-free model had few connections, so the probability of randomly
targeting a highly connected and central node was low. The targeted attack,
however, was able to remove the small percentage of highly connected nodes
rapidly, thereby crippling the network connectivity much faster than random
attacks. Several researchers have addressed the issue of network robustness
using iterative attack and defense games on networks where attackers and
the defending network employ static attack and defense strategies against
one another [14, 8, 5]. Holme et al. [8] considered static attack strategies on
edges as opposed to nodes, and suggested edge betweenness as a more effec-
tive target of an attacker than attacks on high degree nodes. Nagaraja and
Anderson [14] extend Holme’s approach by considering both static attack and
defense strategies. The network is allowed to defend, or rewire its connections
to become less vulnerable to attack via a set of predefined defense strategies.
Likewise attacks on the network are performed with a predefined strategy,
where attacks based on node centrality were found to perform best on discon-
necting the network. Like Nagaraja and Anderson, Domingo-Ferrer et al. [5]
allow for iterated attack and defense rounds, and show that the attacker’s
knowledge of the network is also an important factor in the effectiveness of
an attack.

But while previous literature on iterated attack and defense has considered
many different attack and defense strategies, to date, no research has been
done to allow the attacker (or defender) to dynamically change strategies
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during the course of the game. We extend previous approaches by allowing
the attacker and defender to operate with a set of strategies in each time
step and to make decisions based on mixing strategies. This allows not only
for the possibility that a single strategy could go to fixation, but also cyclical
pattern of attack and defense strategies to emerge. A second possibility is
that it could simply be advantageous to attack (or defend) based on mixing
strategies during attack and defense rounds. Or, it could be that attack and
defense strategies simply reach an equilibrium, where no further improvement
of attack (or defense) strategy is found by the participants. We examine at-
tacker strategies which identify network nodes to maximize the damage to
the network defender. Contrary, network defenders identify the best way to
rewire the network following the attack. The choice of strategies is dynami-
cally determined by a genetic algorithm (GA) for both attackers and defend-
ers, and thus representing coevolution between attacker and defender, or a
coevolutionary ’game’.

2 The Model

In our model we have three fundamental entities that we deal with:

1. A network composed by a set of n nodes and m edges.
2. An attacker attempting to disrupt the network.
3. A defender attempting to repair the network after an attack to guarantee

its continuing functionality.

An attacker disrupts the network by removing a node and all its associated
edges. The defender, on the other hand, is allowed to reintroduce a node
that has been previously disconnected as a consequence of an attack by re-
connecting it to the network. The defender also adds edges to the network
if he has enough resources to spend. In fact, the attacker and defender each
have an assigned set of resources that they can use in their attack or defense
process. The resources for the attacker correspond to the number of nodes
that he can remove, whereas defender resources correspond to the number of
edges that can be added to the network following an attack. We assume that
attackers and defenders have complete knowledge of the network topology
and that they perform their actions one after the other beginning with an
attack followed by a defense.

A particular simulation starts by generating an initial (first generation)
population of an equal number of attackers and defenders. Their genes are
initialized randomly, and attackers and defenders are randomly paired up.
Each attacker-defender pair is assigned a network of n vertices and no edges.
Based on the rules defined by their genomes (which are explained in detail
in section 3), each defender adds new edges to the network, up to a total
number of m edges. So we start with a set of disconnected nodes and start to
build the network from scratch, not fixing any specific network topology at
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the start. However, fixing the defender and attacker rules will create networks
that are similar in topology.

After the network is initially built, the attacker removes k nodes in the
network, k being the amount of resources assigned to the attacker, which are
the same for all attackers. The choice of the nodes to remove depends on the
attacker genome. Once the attack phase is completed, the defender is allowed
to add a total of w edges to the network, w being the amount of resources
assigned to the defender, which are the same for all defenders. First, the nodes
removed by the attacker in this round are re-connected to the network. The
nodes to which they will be connected depends on the defender genome. If
defender resources allow additional edges to be inserted into the network,
those edges are added to the network by the following rule: the starting point
for the edges is a random node from the list of nodes which lost edges in
the previous attack. The end point is determined by the genetic algorithm.
If there are still resources left after reconnecting each of the nodes that have
lost an edge in the previous attack, random nodes in the network are picked
as starting points. Again, the end points of the new edges are determined by
the genetic algorithm.

This process of attack and defense on the network is repeated for r rounds.
In summary, a round is an execution of the game with iterative attacks each
based on the k resources for the attacker and a (re-)wiring process consisting
of w resources for the defender. In our simulations r is equal to 20, i.e. a
total of 20 attack-defense rounds is played in each generation of the genetic
algorithm.

After each round, the fitness (see Section 3 for the thorough fitness descrip-
tion) of the attackers and defenders is calculated and a final average fitness
after r rounds is computed for each individual in the population. Recombi-
nation of individuals and mutations which are necessary to generate a new
generation of attackers and defenders are discussed in the next section. We
are interested to track over generations the evolution of the fitness function
for both, attacker and defender as a measurement of their performance in the
game. We track over generations the change in genomes as well, because we
are interested to identify prevailing strategies.

3 Genetic Algorithm

The GA is used to evolve the strategies applied by the attackers and defenders
and thus, allows for a dynamic development of the strategies that are applied
by the two groups. A strategy is a mechanism for both the attacker and the
defender to decide which node to attack or edge to create/rewire based on
some rules, measures or indicators on the network. First, we define the fitness
function, then we discuss the genomes of attackers and defenders, and finally
we present recombination and mutation strategies.
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3.1 The Fitness Function

We define the fitness of the defender to be the number of nodes of the Largest
Connected Component (LCC) divided by the total number of nodes in the
initial network n, i.e.

fdef =
LCC

n
(1)

The attacker’s fitness is the opposite, i.e.

fatt = 1− fdef (2)

The size of the LCC is a good proxy of the resilience of the network, its ability
to keep its structure connected and thus allow interaction between the nodes.
The same metric has been used in previous studies [11, 15], allowing our
results to be compared to previously-published ones. However, depending on
the application of our model, different fitness functions may be appropriate.
In section 6 we discuss this aspect in more detail.

3.2 Attacker Genome

A set of strategies is available to the attacker indexed by j = {1, 2, 3} – these
strategies have been developed previously in the literature [11, 15, 5]:

1. High-degree removal: nodes are prioritized for removal in decreasing order
with respect to their degree.

2. High-centrality removal: nodes are prioritized for removal in decreasing
order with respect to their betweenness centrality, which is known to be
more related to connectivity than other centrality measures.

3. Random removal: nodes are prioritized randomly.

Each gene Gj corresponds to a weight on one of the strategies, and its value
varies from 0 to 100. Each strategy calculates a specific network metric (e.g.
degree or betweenness centrality) for every node i. The metric is normalized
to the interval [0, 1]. Thus, to each node i in the network, a value Nij in the
interval [0, 1] is assigned by each strategy. In combination with the importance
of the strategy as defined by the genome, this represents the removal ranking
of a node i. For each node in the network, the attacker’s genome assigns a
number

TotalNi =
∑
j

GjNij (3)

which is a linear combination of all available strategies weighted by the at-
tacker genome. The probability of a node i to be attacked Pri is TotalNi

divided by the sum over TotalNi for all network nodes, i.e.
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Pri =
TotalNi∑
i TotalNi

(4)

A node is removed from the network based on its probability Pri.

3.3 Defender Genome

The strategies of the defender are similar to the attacker strategies as they
are based on the same weighting algorithm. The starting point of an edge that
is added to the network is not determined by this weighting algorithm, but
by a sequence of rules as outlined in the previous section. Only the endpoint
of the new edge is determined by the defender’s genome.

The following strategies are available to the defender indexed by j =
{1, 2, 3} - these strategies have been developed previously in the litera-
ture [11, 15, 5]:

1. Preferential replenishment: nodes are ranked in decreasing order with re-
spect to their degree.

2. Balanced replenishment: nodes are ranked in increasing order with respect
to their betweenness centrality.

3. Random replenishment: nodes are ranked randomly.

The weighting of nodes is performed similar to the attacker, i.e. the genome
determines how the value of a certain metric for the nodes is weighted. See
the description of the attacker genome above for details.

3.4 Genome Reproduction Process

The indexed set of genes Gj , j = {1, 2, 3} representing the attacker and the
defender genome are initially randomly sampled from a uniform distribution
in the range [0, 100]. Reproduction consists of gene recombination: two at-
tackers or defenders from the current population are randomly chosen from
the current generation. The mechanism of selection follows the principle of
genetic algorithms known as roulette wheel selection [6]: the probability of
being picked is not uniform, but is proportional to the fitness of the agent.
A random position in the genome is chosen for crossover. At this position,
the two individuals will exchange their genetic material, taking the first part
from the first parent and the second part from the second parent1, as shown in

1 As we have only 3 genes in the genome, there are only two possibilities: the
offspring will inherit the first gene from his first parent and second and third
genes from his second parent, or he will inherit the two first genes from the first
parent and the third gene from the second parent.
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Fig. 1 Example gene crossover

Figure 1. The offspring replaces the previous generation (i.e., parents), thus
providing the new base of the genetic material for the following evolution
step.

A mutation process occurs with a fixed 5% probability. The mutation in a
gene is obtained by sampling a value from a Gaussian distribution with the
mean equal to the current value of the gene and a standard deviation of 5.

4 Scenarios

We are interested in the following research problems: first, how does an at-
tacker applying a genetic algorithm perform against a static defender, i.e. a
defender with only one, fixed defense strategy. We next look at the inverted
scenario, i.e. how a static attacker performs against an evolving defender.
Finally, we allow both the attacker and defender to co-evolve against each
other. For the purpose of comparison, we also run each static attacker strat-
egy against each static defender strategy. Both defender and attacker have 3
different strategies each. This implies that there are 16 different scenarios to
assess in total.

In the base run, we start with a population of 200 attackers and defenders,
operating on a network of 100 nodes and 150 edges, and run the GA for 500
generations. Attackers are allowed to remove 3 nodes while defenders rewire
5 edges. In a sensitivity analysis we test different defender budgets of 3,7,
or 9 edges. The whole simulation is driven by random choices of attackers
and defenders and by a random (although directed) process of selection of
individuals in the genetic algorithm. That implies, that a different run of the
same simulation may show a different dynamical outcome. At the current
moment, we did not run the simulations for several times to analyze the
variance of results due to time constraints with the exception of the co-
evolution case which was run 25 times. Further runs are left to be presented
in future versions of this paper.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Top: evolution of the mean of fitness in the attacker population when at-
tackers use the genetic algorithm against 3 static strategies. Bottom: Evolution of
the mean of the value of attacker genes for different strategies in the genetic case.
The transparent areas indicate the standard deviation. Left: Attacker vs. Random
defender. Middle: Attacker vs. Preferential defender. Right: Attacker vs. Balanced
Replenishment.

5 Results

5.1 Scenarios Results

Static Defenders. Figure 2a shows that the dynamic attacker quickly ap-
proaches the fitness of the single best attacker strategy against a static ran-
dom defender. The genes evolve accordingly (Figure 2c) , prioritizing high
weights for the betweenness strategy and much lower weights for the other
two strategies. It can also be observed that the standard deviation in the
genes decreases over time, indicating that the individuals in the population
converge. Playing against the other two static defender strategies show similar
results (Figures 2e and 2f). The worst static defense strategy is preferential
attachment which can be derived from the fact that the attacker fitness is
highest in that case (middle in Figure 2b). The best possible static defense
strategy is balanced replenishment as indicated by the low attacker fitness
(Figure 2c). In all cases, the betweenness attack strategy is selected by the
attacker’s GA.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Results of simulation runs: Defenders applying the genetic algorithm against
3 static attack strategies. Top: Mean of fitness of defender. Bottom: Evolution
of value of mean of defender genes. The transparent areas indicate the standard
deviation. Left: Random attack vs. Defender. Middle: Degree attack vs. Defender.
Right: Betweenness attack vs. Defender.

Static Attackers. Also the defender has a preferred strategy, independent
of the static attacker strategy. It is balanced replenishment. However, the
GA takes more time to find the dominating strategy in comparison to the
attacker’s GA in some cases. Defending against a random attacker (Figure 3a)
shows that the defender’s fitness approaches the fitness of the best possible
solution only after 400 generations - even though the balanced replenishment
strategy is selected earlier as can be observed by the graph in Figure 3d.
However, as long as the random strategy has a rather high weight, the fitness
of the defender is not significantly increased. Only after ruling out the random
defense, the fitness increases rapidly. That indicates that even a small amount
of mixing of strategies may cause a rather bad performance of the defender.
This is not the case for the second and third comparison in Figures 3b,3c,
3e, 3f - if the attacker applies the degree attack and betweenness strategy
respectively, the defender evolves rapidly in using the balanced replenishment
strategy only. The fitness, accordingly, increases quickly in both cases. The
defender can deal best with the random attack strategy, as indicated by the
comparativley high overall fitness in Figure 3a, while the best strategy for
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Fig. 4 Results of simulation runs. Left: evolution of the mean of fitness in the
defender and attacker population in the co-evolution case. Middle: Evolution of
the mean of value of defender genes for different strategies. The transparent areas
indicate the standard deviation. Right: Evolution of the mean of value of attacker
genes for different strategies. The transparent areas indicate the standard deviation.

the attacker seems to be betweenness attacks, as also confirmed by the results
in the previous section.

Co-Evolution. In the case of co-evolution, i.e. both, defenders and attackers
employ a genetic algorithm to select their strategy, attackers evolve quicker
towards the more efficient strategy, causing a decline in the fitness of the
defender (see Figure 4). However, after about 50 generations, there is a turn-
around and the defender starts selecting the best defense strategy, causing an
increase in the defender’s fitness. After defenders and attackers have evolved
into applying the balanced replenishment and betweenness attack strategies
respectively, the fitness function stabilizes and no further major fluctuations
are observed – an equilibrium is reached. This co-evolutionary process was
tested for 25 different instances (while the cases described in the previous
section was only tested for 1 instance) and the variance in the overall observed
outcome of the gene weights and the fitness of defender and attacker was very
low. The pattern shown in Figure 4 for one instance could, in a similar way,
be observed in all instances of the problem.

5.2 Sensitivity Analysis

The sensitivity analysis assesses the effect of different defender budgets, i.e.
the number of edges that are rewired after an attack, on the overall out-
come. A high defender budget plus an efficient defense strategy (i.e. balanced
replenishment) almost completely reduce the possibility of the attacker to
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increase her fitness (see Table 1, row Attacker GA vs. Balanced Replenish-
ment and budget of 9). On the other hand, a low budget decreases the fitness
improvements over time for the defender (see Table 1, budget of 3). This
indicates that a meaningful game can only be played if the available budgets
are in a certain, rather limited interval - too high of a budget for one of the
two sides will make any response strategy inefficient. In the co-evolution case,
the defender shows a lower fitness at the end of the evolution process than
in the beginning if the budget is smaller or equal to 5 edges, while it is the
other way round for a budget above that level.

Table 1 Fitness of attackers and defenders with varying budgets. FAS and FAE
indicate the average fitness of the attacker at the start and the end of the simu-
lation (i.e. generation 1 and generation 500), respectively. FDS and FDE indicate
the average fitness of the defender at the start and at the end of the simulation,
respectively.

Defender Budget 3 5 7 9

Attacker GA vs. FAS FAE FAS FAE FAS FAE FAS FAE

Random Defense 0.38 0.63 0.22 0.52 0.12 0.37 0.08 0.18
Preferential Defense 0.48 0.76 0.40 0.76 0.36 0.64 0.32 0.62
Balanced Replenishment 0.37 0.54 0.10 0.34 0.01 0.02 0.01 0.01

Defender GA vs. FDS FDE FDS FDE FDS FDE FDS FDE

Random Attack 0.67 0.68 0.81 0.92 0.90 0.97 0.94 0.98
Degree Attack 0.49 0.54 0.63 0.81 0.81 0.98 0.90 0.98
Betweenness Attack 0.36 0.42 0.45 0.63 0.61 0.95 0.82 0.97

Co-Evolution FDS FDE FDS FDE FDS FDE FDS FDE

GA vs. GA 0.62 0.38 0.78 0.66 0.88 0.95 0.92 0.98

6 Related Work

Several researchers have assessed the robustness of networks in case of attacks
on nodes or edges. Here we look more in detail to studies where the concepts
of evolution of a network, in terms of its topology, is tied to the behavior of an
attacker of the network. In a seminal paper by Albert et al. [2], the authors
demonstrate that scale-free networks are vulnerable to targeted attacks of
nodes of high degree, while fairly robust to random attacks. Holme et al. [8]
consider attacks on edges as opposed to nodes, and suggest edge centrality
as an effective target of an attacker.

As already mentioned in Section 1, the work of Nagaraja and Anderson [15]
is relevant to our paper since it considers an evolutionary game theory ap-
proach that takes place on a network. In a way similar to our interpretation
of the evolutionary game, their game is organized in rounds and each round
consists of an attack followed by a recovery. The attack consists of targeting a
number of nodes to be removed, depending on the attacker budget. However,
the recovery is different than the one we propose in this paper, and consists
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in two stages, namely replenishment and adaptation. The first stage deals
with inserting new nodes into the network and establishing new connections
based on the defender’s budget, while the second deals with rewiring exist-
ing links. The objective for the attacker is to split the network in separate
components. The authors also consider betweenness as a type of attack and
the effects are more disrupting against all types of defense. Our approach is
more flexible giving the possibility to the attacker and defender to adapt or
change their strategies (i.e., type of attack/defense) during the game, while
in [15] the strategies are chosen and kept fixed through the game. Our model
allows to identify the strategies for attackers and defenders that provide the
maximum fitness out of a potentially broad set of strategies. In [15] the
test performed takes into account scale free networks as initial topologies,
whereas our approach starts with an initial topology that is already optimized
by the defender under the assumption that the defender initially generates
the network. One aspect that we prove through the evolution of the genome
is the superiority in attack of the balanced replenishment strategy that is
highlighted also in [15]. Nagaraja and Anderson’s work is not without limi-
tations, however. The cost of implementing an edge is essentially zero since
the network is allowed to rewire with an arbitrary amount of newly added
edges.

Kim and Anderson [11] expand upon the work of Nagaraja and Anderson.
Kim and Anderson give each attacker and defender a fixed budget, or cost
to add nodes and edges after an attack, and analyze the effect of attacks on
a variety of different network topologies. They find a strategy of connecting
low centrality nodes is the best defense strategy. However, as the edge to
node ratio increases, the network becomes more robust, and even adding
edges randomly is effective against targeted attacks. They find that there is
a threshold value for the proportion of edges to nodes at which point the
effectiveness of attacks decreases drastically.

The work of Domingo-Ferrer and Gonzalez-Nicolas [5] is based on the ideas
and findings of previous work by Nagaraja and Anderson [15] and Kim and
Anderson [11] and adds further properties to the networks and the experiment
set. In the paper the authors analyze the evolution of the order and average
path length of scale-free networks (weighted and unweighted) under attack
and defense. The only strategy of attack considers betweenness centrality as
the measure to identify the most critical node; whereas defense is achieved
following two types of strategies: delegation and node replenishment. The re-
sults show basically that an important factor is the visibility that an attacker
has of the network, while there is basically no difference in the disruption be-
havior of weighted and unweighted networks. Our approach is more flexible
considering the possibilities of different strategies of attack and defense and
networks that are not fixed a priori, but built by the defender that is usually
the organization that has to defend from the attacks.
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7 Conclusions and Future Work

We have shown that our approach to model interactions between attackers
and defenders can be successfully modeled using genetic algorithms. Our
results confirm what has been found in previous papers which compared
various static strategies. In addition, our work shows that strategies for link
placement can also be applied to generate networks from scratch, as we do in
generating the networks, achieving already an initial strength against some
types of attacks (in contrast to other papers, which only used them to rewire
networks after they have been attacked)2. Obviously, the success of a defense
and attack depends on the available resources. The choice of the strategy
matters primarily when the defender’s resources are slightly larger than the
attacker’s resources. In any other case, the results of the game are going
to be biased towards the side with the resource advantage. If the defender
resources are slightly higher than the attacker’s and if the defender’s goal
is to maintain or increase the LCC and the attacker aims for the opposite,
there are clear winning strategies among the ones tested in this study: the
balanced replenishment and betweenness attack strategy, respectively, can
be considered to be the most efficient ones, independent of which strategy is
applied by the opponent. An equilibrium situation arises if the two opponents
apply these strategies, although the defender appears to evolve slower than
the attacker.

This result may be applied to social networks, computer networks, or any
other kind of network. From an empirical perspective, it would be interesting
if similar strategies are observed in real networks (i.e. where they have evolved
‘naturally’). From a normative point of view, the results of this paper and
related work can be used to design strategies to defend against attacks or to
target attacks against certain nodes in networks.

Future work will include the development and testing of new defender and
attacker strategies - currently, only three strategies are included. A larger
number of strategies may make the game dynamics more complex than the
current version, which allows for a stable equilibrium in the co-evolution
case. Additionally, the current fitness function emphasizes connectedness of
the network, but does not assess the efficiency of the network in providing
transportation or communication services. Different fitness functions which
may include a combination of the largest connected component with some
measure of efficiency as, for example, the diameter or effective diameter of
the network, therefore might be considered interesting options for future
research.

2 However, this difference is somehow minor if we consider that many attack-
defense rounds applying the same defense strategies will cause the network topol-
ogy to resemble a network that was built from scratch using the very same defense
strategy.
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4. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: Predictability and
epidemic pathways in global outbreaks of infectious diseases: the sars case study.
BMC Med. 5, 34 (2007)

5. Domingo-Ferrer, J., Gonzlez-Nicols, R.: Decapitation of networks with and
without weights and direction: The economics of iterated attack an d defense.
Computer Networks 55(1), 119–130 (2011)

6. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. Urbana 51, 61801–62996
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Community Detection in Bipartite Networks
Using Random Walks

Taher Alzahrani, Kathy J. Horadam, and Serdar Boztas

Abstract. Community detection plays a crucial role in many complex networks,
including the increasingly important class of bipartite networks. Modularity-based
community detection algorithms for bipartite networks are hampered by their well-
known resolution limit. Unfortunately, the high-performing random walk based al-
gorithm Infomap, which does not have the same constraint, cannot be applied to
bipartite networks.To overcome this we integrate the projection method for bipar-
tite networks based on common neighbors similarity into Infomap, to acquire a
weighted one mode network that can be clustered by the random walks technique.
We also compare results obtained from this process with results in the literature.
We illustrate the proposed method on four real bipartite networks, showing that the
random walks technique is more effective than the modularity technique in finding
communities from bipartite networks as well.

Keywords: bipartite graph, community detection, random walks.

1 Introduction

One mode, or unipartite, networks are the typical framework for complex networks.
Many techniques have been constructed to analyze them. However, many complex
networks can best be described as bipartite [1]. A bipartite network is a network
in which there are two different types of nodes, and the edges between nodes may
occur only if nodes belong to different types. In the last few years, there has been
increasing motivation to analyse bipartite networks as a separate network category,
and in particular to investigate their community structure. For unipartite networks,
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two approaches to community detection have been very popular, one based on mod-
elling the community structure and one based on extracting it from flow calculations
on the network. The best algorithms to cluster very large networks using each ap-
proach [2], compared using the LFR benchmark datasets [3], are now referred to as
the Louvain algorithm [4] and the Infomap algorithm [5]. Unfortunately it is impos-
sible to reformulate Infomap on a bipartite network, since then there is no stationary
distribution for the probability of the walker to be at a given node on the bipartite
graph. In other words, if you start in one class (set), then you will always be in that
class after an even number of steps, so the probability of being at a particular ver-
tex is zero at odd time steps. In the language of Markov chains, the random walk
on a bipartite graph is periodic. The focus of this paper is on community detection
in the weighted one mode networks which are projected from unweighted bipartite
networks. This is a natural focus, as usually one set of nodes in a bipartite network,
denoted the primary set P is of more interest for a particular purpose than the other,
the secondary set S. The rôles of the two node sets can be switched for different
applications. Our contribution is to apply a random walks based algorithm to the
unipartite network projected on the primary set of the bipartite network. We also
compare our results with the results in the literature that used bipartite modularity
based algorithms. We investigate the communities found by Infomap in one case in
detail, to demonstrate that the small communities found (below the resolution limit
of modularity-based algorithms) represent real information.

2 Previous Work

Identifying communities, also called modules or clusters, in a network allows us
to explore its hierarchical structure. This leads to better understanding of the major
functions of the network, and more efficient spread of ideas, goods or services in
the network.

2.1 Unipartite Networks

Girvan and Newman [6] initiated recent work on defining and evaluating communi-
ties, introducing the fast greedy technique which relies on a quality function called
modularity. Modularity is a scalar measure of the quality of modules extracted from
a network. The partition which maximises it is regarded as the best. The complexity
of the algorithm is O(n3), where n is the number of nodes. Since the limited nodes
size for previous algorithm is 103 many efforts have been devoted to upgrade the
computational time of modularity optimization. For instance, the Radicchi et al [7]
algorithm is in spirit the Girvan-Newman method but it iteratively removes the edges
with highest clustering coefficient instead of edges with highest betweenness. The
stated complexity of this algorithm is O(n2). Another algorithm that takes modu-
larity optimization as its main quality function is that of Guimera and Amaral [8].
The fast modularity optimization algorithm by Blondel et al [4] has the best re-
sults compared with the previous algorithms. It is described as a multi level method
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in community detection. The complexity of the Louvain algorithm is linear in the
number of edges in the network, that is O(m). However, modularity-based algo-
rithms have a known drawback: a resolution limit in detecting communities [9]; that
is, communities with internal edge numbers ≤ O(

√
m) cannot always be reliably

detected. All these methods, which rely mainly on modularity, describe and reveal
communities in networks according to how the networks are built or by modelling
their structure. However, a different method using random walks, known as Infomap
proposed by Rosvall and Bergstrom [5], identifies communities according to infor-
mation flow in the networks. The quality function used, called the map equation, is
based on minimum description length (MDL) [10]. This function measures the av-
erage length L(M ) in bits per step of a random walk on a network with the modular
partition M , as follows:

L(M) = q�H(Q) +
∑
i

pi�H(P i) (1)

where q� is the probability that the random walk moves between modules, H(Q)
is the entropy of module names, pi� the probability of movement within module i
and H(P i) is the entropy of the movements within module i. The complexity of
the Infomap algorithm is also O(m). However, Infomap does not apply to bipartite
networks because a stationary distribution cannot be determined in general.

2.2 Bipartite Networks

Most authors follow Newman and Girvan’s modularity method [6] to determine
communities in bipartite networks. Michel et al [11] used unipartite Girvan-Newman
modularity [12] as their standard model to derive a bipartite modularity model by
building an unweighted “biadjacancy matrix” of a bipartite graph. Guimera [13]
produces a modularity measurement for bipartite networks, denoting the sets of this
network as actors and teams. The emphasis on finding modules here was in the ac-
tor set (P ) after projection, with projection based on joint participation in teams.
In [14], Barber developed a modularity matrix for bipartite networks, inspired by
Newman’s modularity matrix [15]. The previous approaches to finding modularity
in bipartite networks were extended from Newman modularity [6]. A fast technique
for unipartite networks, the Label Propagation Algorithm (LPA) [16], uses the lo-
cal network structure as a guide for finding communities very efficiently (almost
linearly in m). Barber and Clark [17] introduced a version of LPA, denoted LPAb,
for bipartite networks. The speed of LPAb (complexity near linear in total number
of edges m) makes it comparable with the fastest bipartite modularity optimization
algorithm [18]. However, Liu and Murata [18] introduce a new version of LPAb,
denoted LPAb+, which they claim as the most reliable algorithm with the highest
bipartite modularity.



160 T. Alzahrani, K.J. Horadam, and S. Boztas

3 Method

The Infomap algorithm utilizes the information flow on a network in order to achieve
its clustering. This information flow is approximated in practice by means of a ran-
dom walk along the network, and iterating until a steady state distribution emerges,
as it must, under the assumption that the network in question is strongly connected
and aperiodic. Unfortunately for us, in general there is no stationary distribution of
a random walk on bipartite networks that can be found from power iterations as dis-
cussed in Section 1. Thus Infomap cannot be directly used for our problem. Instead,
we apply a projection method based on common neighbors similarity for our bipar-
tite networks. The motivation is to be able to obtain a stationary distribution for the
walk on the nodes in the unipartite network obtained by projection. This is achieved
by integrating the projection process into the Infomap and Louvain algorithms. This
allows us to compute the complexity time for the whole operation starting from
converting bipartite networks to weighted unipartite networks followed by cluster-
ing them by the two algorithms. The reason the projection method is also applied to
the Louvain algorithm is to be able to compare the performance of Infomap with that
of Louvain, for the bipartite network case. The lack of existing benchmark bipartite
networks motivated our work. Moreover, there is no evaluated community detection
method in the literature that examines bipartite networks from a random walks per-
spective. We have programmed our projection algorithm in C++ for compatibility
with the implementations we have of the Infomap and Louvain algorithms. We start
by reading the bipartite network as a pair of nodes, the first from P and the second
from S. The labels on the nodes in this dataset do not have to be numbers, they can
be post codes, book serials, bank card numbers, names of social networks or even
names of people. Then, we find the common neighbors between nodes i and j in P
according to the following adjacency matrix Aij :

• Aij = 1, if nodes i and j have a common neighbor
• Aij = 1, if node i has a neighbor which has no other

neighbors in P (resulting in self loop, i=j)
• Aij = 0, Otherwise

The weight of the edge between i and j in the projected unipartite network is the
number of common neighbors of node i and node j.We also use special techniques
in C++ that improved the efficiency of the projection method. Starting by using a
C++ container called Mapvector which requests a key and a value, we choose the
key to be the common neighbors and the value to be a vector of nodes {v1,v2, .., vn}
where n is total number of nodes. Then, we create pairs in a one mode network and
store the result in container called “Multiset”.

4 Results and Discussion

Both algorithms were tested in four real world bipartite networks: the Southern
women network, Newman’s scientific collaboration network, a historical Australian
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Table 1 Network sizes, where P and S are the number of primary set nodes and secondary
set nodes respectively and m is the total number of edges

Network P S m

Southern women 14 18 89
Scientific collaboration 16726 22016 58595
Australian government contracts 11924 1655 70019
NSW Crimes 155 22 9611

government contracts network and an Australian crime network. Their primary and
secondary set sizes and total number of edges are given in Table 1.

Our results are summarised in Table 3. Since the Southern women network has
been studied widely in the literature we investigate it in some detail first.

4.1 Southern Women Network

The “Southern women” network collected by Divas et al [19] has become a bench-
mark for testing community detection algorithms on bipartite networks. This net-
work has 18 women (who form the primary set P ) who attended 14 different events
(the secondary set S). An edge exists between two women for each event they at-
tend together. Most studies conducted before 2003 identify two (sometimes over-
lapping) communities of women while one identifies three communities [20]. In
many studies, members within each community are further partitioned into core
or peripheral members. More recent studies using bimodularity find more commu-
nities (3 and 4). Consequently, at least two communities are expected. Our im-
plementation of the projection in Infomap produces 4 communities as shown in
Figure 1. In Table 2, we list the community numbers found in the Southern women
dataset by the more recent bipartite network algorithms described in Sections 2.2
and 3. We compare our results for the Southern women network with results in
the literature, in more detail. Using Infomap, we have community A consisting of
Evelyn and Theresa (women 1 and 3, respectively), community B consisting
of Katherine and Nora (women 12 and 14, respectively), and two others
C = {8, 9, 16, 17, 18} and D = {2, 4, 5, 6, 7, 10, 11, 13, 15}, as shown in Figure 1.
Our groups A and B consist of women frequently identified as core members of
each of the two communities found in earlier studies. By contrast, Barber’s two
smaller communities consist of women who tended to be identified as peripheral
members of each of the two communities found in earlier studies [20]. Barber also
tested the success of his partition into four communities, found using the maximum
bipartite modularity (as described in Section 2.2), as a partition in the correspond-
ing unweighted projection network, and found it to have negative modularity [14].
As this is worse than considering the women as a single community, it further sup-
ports our use of the weighted projection network. Guimera et al [13] found only
two communities of women (red and blue) whether modularity on the unweighted
projection, the weighted projection or bipartite modularity was used. They found the
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communities were inaccurate with unweighted projection, but identical and in agree-
ment with supervised results in [20] for the other two methods. The total number
of edges in the Southern women network after weighted projection is 139 edges.
Our community A (Evelyn and Theresa) has 7 internal edges and lies inside the
red group, while our community B (Katherine and Nora) has 5 internal edges and
lies inside the blue group. These two “core” communities are not detected by the
modularity based algorithm, probably because their edge numbers fall below the
resolution limit of modularity [9] which in this case is 12 (since 11 <

√
139 < 12).

By comparison the 2 communities found by our Louvain algorithm have 45 and 33
internal edges. This demonstrates that the resolution limit for modularity applies to
Louvain but is passed by Infomap, in this benchmark bipartite case.

Fig. 1 The four communities of
women found in the Southern
women dataset. Red nodes repre-
sent S, the events the women at-
tended, and the four other colors
represent four communities within
P , with nodes labelled by first
name.

Table 2 Numbers of communities of women detected by different algorithms in the Southern
women network

Algorithm Quality Network Modules
function applied to in P

Guimera [13] modularity weighted projection 2
Michel [11] bimodularity bipartite 3
Barber [14] bimodularity bipartite 4
LPAb(+) [18] bimodularity bipartite 4
This paper map equation weighted projection 4

4.2 The Scientific Collaboration Network

The scientific collaboration network in Newman [21], contains a bipartite network.
It lists the relationships between publications and the scientists who are authors of
these papers. There are 16726 scientists who wrote 22016 papers in this network.
The number of edges between scientists and papers is 58595. The primary set in our
projection is the scientists while the secondary set is the papers. Therefore, we are
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Table 3 Community numbers obtained from our experiments, where L is the code length
and Q is the modularity

Infomap Louvain

Network Comm. L Comm. Q

Australian government contracts network 1114 8.340 836 0.530
Scientific collaboration network 2131 6.164 1266 0.877
Southern women network 4 3.992 2 0.352
Crime network 2 7.276 1 0.0

interested in detecting the communities of authors and determining who are more
likely to collaborate together. The value of characterizing scientists in communities
and describing the ties between distinct communities from different disciplines is
important knowledge because it can help scientists collaborate. Our method utilizes
a modified Infomap algorithm to characterize the scientific collaboration network
into 2131 communities. The same method using Louvain algorithm finds fewer
communities: 1266. We attribute these different results to the resolution limit of
modularity optimization in Louvain algorithm. Scientists in one community have
more in common than in another and they are likely to collaborate together and this
increases the strength of the community.

4.3 The Historical Australian Government Contracts Network

The historical Australian government contract data has been published in 2012 [22];
it contains great detail about agencies and companies that undertake projects in Aus-
tralia. We construct a bipartite network from this dataset. The network in this case
has the ABN (Australian Business Number) a unique identifier number for agencies
and companies, as the primary set. The postcode areas which these agencies have
projects in them form the second set. The bipartite network has 11924 nodes as agen-
cies and/or companies, and 1655 different postcode areas. The number of edges in
this dataset is 70019, which is number of projects from 1999 until 2012 [22]. The
weighted one mode projected network relates agencies that have common projects
in the specific postcode area. The results produced from our method implemented in
Infomap illustrate 1114 communities are found which contained agencies working
on projects in the same postcode area. However, there were different results from
Louvain where only 836 communities have been identified. The investigation of
the historical Australian government contract data could lead to more collaboration
between agencies/companies if they have projects in the same postcode area.

4.4 Crime Network

This monthly data is collected from January 1995 to December 2009, and shows
the crimes and offences committed in New South Wales (NSW) in Australia [23].
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Moreover, it provides the location of the crimes, thus we are interested in the loca-
tion and the crime itself, which form our bipartite network. The primary set in this
data is the location of the crime, whereas the offence is the secondary set. The inten-
tion in finding communities in the crime dataset is to identify and illustrate where
similar crimes have occurred. There are 155 locations and 22 types of offences com-
mitted. The number of crimes committed during almost 14 years is 9611, which is
the number of edges in this network. Results from applying our integrated Infomap
algorithm show that there are two communities (one with 73 locations and the other
with 82) where similar crimes are being committed. However, only one community
that is the entire state of NSW is found when applying the Louvain algorithm, so
this algorithm provides no useful information.

5 Conclusion

In this paper, we have integrated the projection method for bipartite networks into
Infomap, to acquire a weighted one mode network that can be clustered by the ran-
dom walks technique. The results from this process reflect valuable information
compared with bipartite network based algorithms in the literature. Experiments on
four real world bipartite networks show that a random walk based algorithm is more
functional in detecting the communities in the primary set of a bipartite network
than a modularity based algorithm. For future work, we intend to modify our ap-
proach to project the two sets P and S of a bipartite network in parallel, cluster
them under random walks algorithms and then merge the whole into a clustered bi-
partite network. Moreover, weighted bipartite networks, overlapping communities,
measuring quality of the communities found and difference of the quality between
(projection + Infomap) and a method which would compute bipartite communities
and then project the will be taken into consideration.
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A Coevolutionary Model of Strategic
Network Formation

Ibrahim Al-Shyoukh and Jeff S. Shamma

Abstract. In foundational models of network formation, the mechanisms for
link formation are based solely on network topology. For example, prefer-
ential attachment uses degree distributions, whereas a strategic connections
model uses internode distances. These dynamics implicitly presume that such
benefits and costs are instantaneous functions of the network topology. A
more detailed model would include that benefits and costs are themselves
derived through a dynamic process, which, in the absence of time-scale sep-
aration, necessitates a coevolutionary analysis. This paper introduces a new
coevolutionary model of strategic network formation. In this model, network
formation evolves along with the flow of benefits from one node to another.
We examine the emergent equilibria of this combined dynamics of network
formation and benefit flow. We show that the class of strict equilibria is stable
(or robust to small perturbations in the benefits flows).

1 Introduction

Networks involving benefit exchanges between the different nodes are ubiq-
uitous. Examples include information exchange in social networks, goods ex-
change in economic markets, and scientific collaboration networks. The abun-
dance and importance of such networks have manifested a growing area of
research that looks into the theory of network formation and the relevance of
emerging structures. A number of different models for the network formation
in multiple disciplines have been proposed that encompass a range of ideas
[1–9]. A common feature of these models is that there is no interdependence
or feedback between the network formation dynamics, and the dynamics on
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the network. Recent work has begun to investigate models with endogenously
formed (i.e., coevolutionary) network topologies in a wide class of systems
including opinion dynamics [10–19].

The work in this paper concerns the study of strategic coevolutionary
network formation. In foundational models of network formation, the mech-
anisms for link formation are based solely on network topology. For example,
preferential attachment [20] uses degree distributions, whereas a strategic
connections model [21] uses internode distances. These dynamics implicitly
presume that such benefits and costs are instantaneous functions of the net-
work topology. A more detailed model would include that benefits and costs
are themselves derived through a dynamic process, which, in the absence of
time-scale separation, necessitates a coevolutionary analysis.

Here we present a model that captures the dynamic flow of benefits in
a network. The model is inspired by and builds upon the strategic network
formation model of Bala & Goyal [21]. In the model, and upon link estab-
lishment, benefits flow from one node to another over time. The amount of
benefit and speed of flow are distance dependent. As the distance between
nodes increase, the total attainable benefits becomes smaller and it takes
longer for the benefits to be attained. Another feature of the model is that
when links are severed, then benefits are not immediately lost. Rather, they
are dissipated over time.

By allowing time to propagate, then a node can realize the full benefits
from an established link, and nodes can seek to maximize such asymptoti-
cally realized benefits. However, this analysis presumes a separation of time
scales. Instead, we consider the case when nodes are myopic decision makers
that seek to maximize the one time step flow of benefits. We examine the
conditions for equilibria of this model and the stability of such equilibria.
We also show that this model admits equilibria that can only be realized at
a higher cost in the case of immediate benefit availability. This formulation
gives rise to a richer set of network topologies without additional cost con-
straints. Section 2 introduces some preliminaries, and Section 3 presents the
model and relevant analysis.

2 Preliminaries

Let us recall the strategic network formation model of Bala & Goyal [21]. The
model represents the flow of benefits in a network of N ≥ 3 nodes. Consider
for example the network shown in Fig. 1. A directed edge i ← j indicates
flow of benefits from j to i, e.g, node 8 is an immediate (one-hop) beneficiary
from node 5, and an indirect (two-hop) beneficiary from nodes 2, 6, and 7.
Nodes dynamically form and sever links based on the rewards of benefit flow
and costs of link formation and maintenance.



Coevolutionary Network Formation 169

3

4

1

2

7

5 6

8

Fig. 1 An example of a directed network of information flow. The arrow direction
indicates the direction of flow.

2.1 The Static Game

First, we will consider the static network formation game. Let N =
{1, 2, . . . , N} be the set of all nodes of the network. Given that a node can
connect to N − 1 nodes, a node’s strategy can be represented by the binary
valued vector gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,N),, where gi,j = 1 whenever
node i has a link with node j, gi,j = 0 otherwise. A network g can be repre-
sented by the joint strategies of all nodes as g = (g1, g2, . . . , gN ). We shall use
g−i to refer to the network constructed from g by excluding node i’s links, i.e.,
g−i = (g1, . . . , gi−1, gi+1, . . . , gN ). A path from node j to node i is denoted by
ij. Let |ij| denote the length of path ij. Define dij(gi, g−i) = minij∈g |ij| as
the length of the shortest path from j to i. For compactness, in the remainder
of this paper, we will write dij instead of dij(gi, g−i) whenever the arguments
are clear.

Immediate Benefit Availability. Whenever node i establishes a connec-
tion with node j, benefits become accessible to i. In the existing models of
strategic network formation, the benefits are fully transferred from node j
and its neighbors to i immediately upon link establishment. The amount of
benefits transferred can be distance dependent. Thus, the value of benefits
from a direct connection can generally be assumed to be δ ∈ (0, 1]. Whereas
if j is an indirect connection of i, then the value of benefits is δdij . Addi-
tionally, let c denote the cost of establishing a connection with another node.
The cost is only incurred by the node establishing/maintaining the link. In
the directed flow network, the benefits will only flow to the node establishing
the connection.

For a given network g, let N+
i (g) = {k ∈ {1, . . . , N} : ik ∈ g} denote the

set of all nodes that have a path to node i. This set defines all the neighbors
of i, direct or indirect. As such, benefits can flow from these nodes to i. We
shall define μi(gi) =

∑
k gi,k as the number of links, or direct neighbors, of

node i. The utility of a given strategy can be defined as the net value of the
benefits available through the connections established by the strategy minus
the cost of establishing these connections.
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ui(gi, g−i) =
∑

j∈N+
i (g)

δdij(gi,g−i) − cμi(gi). (1)

A best response strategy of node i to g−i, hereafter denoted by BR(g−i), is
a strategy gi such that

BR(g−i) ∈ arg max
gi∈Gi

ui(gi, g−i), (2)

where Gi is the set of all possible pure strategies of node i1. Hence for any
best response gi,

u(gi, g−i) ≥ u(g′i, g−i) ∀g′i ∈ Gi.

Definition 1. A network g is said to be a Nash network if gi = BR(g−i),
∀i ∈ N .

2.2 Repeated Myopic Play

Consider the case when the network formation game described above is played
repeatedly at time steps t = 1, 2, . . . . At the beginning of every time step2,
every node plays the same strategy it used in the last time step with proba-
bility pi. That is, the nodes’ strategies exhibit inertia from one time step to
another. With probability 1− pi, the nodes update their strategies based on
myopic best response to the observed network structure from the previous
time. In the case that the best response strategy is not unique, the node
randomizes its decision over the set of best response strategies. As a result,
a node playing a best response to the same network observed in the previous
time step might switch strategies.

Let gt−1 denote the network at time t− 1, then the dynamics of network
formation for agent i are

gti = BR(gt−1
−i ). (3)

As an example, consider the 3-node networks shown in Fig. 2. Starting
with the network in (a), the networks in (b) and (c) can be constructed by
having node 1 switch its connection from 2 to 3, or by adding a connection

to node 3 respectively. Therefore, g
(a)
1 = (1, 0), g

(b)
1 = (0, 1), g

(c)
1 = (1, 1)

and g−1 = (g2, g3) = ((1, 1), (0, 1)). For node 1, the utility for the different

strategies are, u1(g
(a)
1 , g−1) = δ + δ2 − c, u1(g

(b)
1 , g−1) = δ + δ2 − c, and

u1(g
(c)
1 , g−1) = 2δ−2c. For node 2, if c ≤ δ, then u2((1, 1), g−2) ≥ u2(g

′
2, g−2)

for any other strategy g′2 ∈ G2 of node 2. Because of the symmetry between
nodes 1 and 3, then the network in (a) is a Nash network if c < δ and

1 Here we are restricting our attention to the set of pure strategies.
2 Except at t = 1.
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2

1 3

(a)

1

2

3

(b)

1

2

3

(c)

g1 = (1, 0) g1 = (0, 1) g1 = (1, 1)

Fig. 2 A 3-node network showing the three strategies for node 1 with nodes 2, and
3 using the strategies g2 = (1, 1) and g3 = (0, 1)

u1(g
(a)
1 , g−1) ≥ u1(g

(c)
1 , g−1)

δ + δ2 − c ≥ 2δ − 2c

c ≥ δ − δ2. (4)

Notice that node 1 would be indifferent between the strategies g1 = (1, 0)
and g1 = (0, 1). Hence, networks (a) and (b) would be Nash networks, and
node 1 would switch between these two configurations provided the other two
nodes do not change their strategies.

If nodes 1 and 3 are allowed to change strategies simultaneously based
on a best response to the previous network, then it is conceivable that both
nodes would switch strategies where they switch to connections from nodes
3 and 1 instead of the existing connections to node 2. Hence, the network
becomes g = ((0, 1), (1, 1), (1, 0)). As such the utility of this network for
either node becomes u1 = u2 = δ − c, which is less than the current utility
of u1 = u2 = δ + δ2 − c. Therefore, in the event that players are allowed to
switch strategies simultaneously, the network in (a) is not stable.

3 Coevolutionary Model

3.1 Dynamic Flow of Benefits

This work is concerned with the case of dynamic flow of the benefits. In this
case, the benefits flow over time from one node to another. If the timescale
for flow is fast compared to the network formation dynamics, then there is a
separation of time scales, and this situation would closely resemble the above
mentioned case of immediate benefit availability. However, if the time scales
for benefit flow and network formation are comparable, then this presents a
coevolutionary process through which benefit flows and network formation
occur simultaneously and the emergent behavior can be different. We consider
the case where the benefits obtained are derived through a dynamic process.
Upon establishing a link, a node will realize a portion of the direct benefit of
the connected node, and with time, the benefits are asymptotically realized.
This model represents delay in the flow of benefits from a node another. The
same applies to benefits from non-direct connections, and the delay is distance
dependent, i.e., the further away two nodes are from each other, then the
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slower is the flow of benefits from one to another. The distance dependence
is very relevant to a number of systems including physical transfer of goods,
and information or knowledge transfer.

Additionally, when a path between two nodes is severed, then the benefits
available from a node to another are not lost immediately, but are forgotten
over time. Here, the rate is also distance dependent. Formally, we define the
benefit flow model to be

btij = f(bt−1
ij , gi, g−i) =

{
αdijb

t−1
ij + (1− αdij )δ

dij , δdij ≥ bt−1
ij (5a)

βdijb
t−1
ij + (1 − βdij )δ

dij , δdij < bt−1
ij (5b)

such that βi, αi ∈ [0, 1], α1 ≤ α2 ≤ . . . and β1 ≥ β2 ≥ . . ..
Here, btij is the benefit available to node i from node j at time t. Let

B denote the matrix whose elements are bij , and bi be the ith row of the
matrix B3.

Examining Eq. (5a) closely, notice that the benefits are increasing since
δdij ≥ bij . That is, when the attainable benefit is higher that the current
flow of benefits from a given node, then the benefits will increase. The rates
for increase αdij are distance dependent and hence the subscript. Note that
the higher the value of αdij , then the slower that benefits flow. As such, the
benefits flow slower as the distances between nodes increase.

When the attainable benefit from a given node, δdij is less that the current
flow of benefits, then the benefits will decrease according to Eq. (5b). The
rates of decrease are distance dependent. The lower the value of βdij , the
higher the decrease in benefits. When there is no path between two nodes i
and j, then dij is infinite and δdij = 0, and benefits will decrease at a rate
of β∞. In the case when αdij = 1, then no benefits will flow. Similarly, when
βdij = 1, benefits will not decrease. Furthermore, when αdij = 0, βdij = 0,
then the dynamics in (5) become equivalent to the instantaneous benefit
availability model.

Compared to the instantaneous model of benefit availability, for a fixed
network, the attainable benefits of both models are the same. However, when
the network is fixed, the dynamic flow model reaches that benefit in the
limit, as the distances between nodes dij do not change for a fixed network
limt→∞ btij = δdij .

For a given network g = (gi, g−i), and given the benefits bi, the utility for
node i can be given by

ui(bi, gi) =
∑
j

bij − cμ(gi).

In the instantaneous benefit flow model, the feedback law to select strategies
assumed an instantaneous realization of the full benefits from other nodes. In
the dynamic benefit flow case, a similar model can be obtained by allowing

3 bii will be assumed to be equal to 1.



Coevolutionary Network Formation 173

the dynamics to propagate to infinite time and and then selecting a new
strategy based on the limit of the average utility over time. This model,
however, introduces a separation of time scales where the dynamics of benefit
flow have no effect on the outcome of repeated play of the strategic network
formation game.

Alternatively, the strategy of a node can dynamically depend on the avail-
able benefits at a given time. Here, a node can be selecting a strategy at a
given point in time such that it maximizes a utility dependent cost function,
for example the total discounted utility

J =
∑
t

ρtu(bti, gi).

The complexity introduced by the dynamic interdependence of benefits
on the strategies of other nodes, renders the computation of strategies a
challenging task. Alternatively, we will consider the case when nodes are
myopic decision makers, whose interest is to maximize the projected utility
based on the benefit flow in the next time step, and assuming the strategies
of other nodes remain unchanged from the currently observed topology.

Hence, for a given strategy gi, strategies of other nodes g
t−1
−i , and benefits

vector at time t− 1, the utility is

ui(gi, g
t−1
−i , bt−1

i ) =
∑
j

f(bt−1
ij , gi, g

t−1
−i )− cμ(gi). (6)

As such, at time steps t = 1, 2, . . ., a randomly selected node plays a best
response to the currently observed benefit flow and network topology,

gti = BR(gt−1
−i , bt−1

i ) ∈ arg max
gi∈Gi

ui(gi, g
t−1
−i , bt−1

i ). (7)

To that end, at time t − 1 a node i evaluates, for every possible strategy,
the benefits available using (5). With the selected strategy, the benefit flow
dynamics are propagated one time step and a new node is selected randomly
to update its strategy.

3.2 Equilibria of the Coupled Dynamics

We shall consider the limiting behavior of the interconnection of the dynamic
benefit flow model (5) and myopic best response network formation (7).

Definition 2. The pair (B∗, g∗) is an equilibrium of the coupled dynamics
in (5) and (7) if ∀i ∈ N , g∗i = BR(g∗−i, b

∗
i ) and ∀j b∗ij = f(b∗ij , g

∗
i , g

∗
−i).

Here the equilibrium involves both network topology g∗ and a steady-state
benefit flow B∗. One class of equilibria that can emerge is when the topology
of the network remains unchanged, i.e., gt = g∗, ∀t ≥ t0 for some network
topology g∗. As a consequence, the shortest distances between nodes remain
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unchanged, i.e, dij(g
t
i , g

t
−i) = dij(g

∗
i , g

∗
−i), ∀i, j and ∀t ≥ t0. Therefore, the

benefits for each node will correspond to b∗ij = δdij(g
∗
i ,g

∗
−i).

Definition 3. The pair (B∗, g∗) is a strict equilibrium of the coupled dy-
namics in (5) and (7) if and only if u(g∗i , g

∗
−i, b

∗
i ) − u(g′i, g

∗
−i, b

∗
i ) > 0, ∀g′i ∈

Gi\g∗i , ∀i ∈ N .

Now let d∗ij = dij(g
∗
i , g

∗
−i) and d′ij = dij(g

′
i, g

∗
−i) for some strategy g′i ∈

Gi\g∗i . Also define S1 = {j : d′ij ≤ d∗ij} and S2 = {j : d′ij > d∗ij}, these are
the sets of nodes whose distance to node i given strategy g′i are respectively
smaller than and greater than their distances given the equilibrium strategy
g∗i . In retrospect, the sets would correspond to those nodes whose benefit
dynamics will be updated using Equations (5a) and (5b) respectively.

Proposition 1. An equilibrium (B∗, g∗) is strict if ∀i ∈ N , and ∀g′i ∈ Gi\g∗i
∑
j∈S1

(1− αd′
ij
)(δd

∗
ij − δd

′
ij ) +

∑
j∈S2

(1− βd′
ij
)(δd

∗
ij − δd

′
ij ) + c(μ(g′i)− μ(g∗i )) > 0.

(8)

Proof. For any equilibrium such that gti = gt−1
i , ∀t ≥ t0, we know that

b∗ij = δdij(g
∗
i ,g

∗
−i) = δd

∗
ij . For a strict equilibrium we have

u(g∗i , g
∗
−i, b

∗
i )− u(g′i, g

∗
−i, b

∗
i ) > 0∑

j

f(b∗ij , g
∗
i , g

∗
−i)− cμ(g∗i )−

∑
j

f(b∗ij , g
′
i, g

∗
−i)− cμ(g′i) > 0

∑
j∈S1∪S2

δd
∗
ij −

∑
j∈S1

αd′
ij
δd

∗
ij + (1− αd′

ij
)δd

′
ij

−
∑
j∈S2

βd′ij δ
d∗ij + (1− βd′ij )δ

d′ij + c(μ(g′i)− μ(g∗i )) > 0

∑
j∈S1

(1− αd′
ij
)(δd

∗
ij − δd

′
ij ) +

∑
j∈S2

(1− βd′
ij
)(δd

∗
ij − δd

′
ij ) + c(μ(g′i)− μ(g∗i )) > 0

��
Notice that for j ∈ S1, δ

dij(g
∗
i ,g

∗
−i) ≤ δdij(g

′
i,g

∗
−i), and for j ∈ S2, δ

dij(g
∗
i ,g

∗
−i) >

δdij(g
′
i,g

∗
−i). Therefore, the first term on the left in (8) is nonpositive and the

second term is positive.
An equilibrium of the combined dynamics of network formation and benefit

flow involves both a network topology and benefit flow matrix. The equilibria
here concern the limiting behavior of the coupled dynamics and not just a
best response network like a Nash network of the static game. One of the
questions to consider is whether the coevolutionary dynamics can induce
some network topologies to become equilibria while they are not equilibria
of the non-coevolutionary network formation (static game). In the following
we show through an example that given a common set of parameters, such
topologies exist.
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Proposition 2. For N = 3, if (1−β∞)δ ≥ c ≥ (1−α1)(δ−δ2), and β2 < α1,
then the pair (B∗, g∗) given by

g∗ = ((1, 0), (1, 1), (0, 1)), B∗
g =

⎡
⎣ 1 δ δ2

δ 1 δ
δ2 δ 1

⎤
⎦ ,

is an equilibrium of the coupled dynamics in (5) and (7), and g∗ is not a
Nash equilibrium of the static game when α1 > 0.

Proof. Consider the node utilities of the network in Fig. 2(a) and the as-
sociated benefits matrix B∗. By symmetry of nodes 1 and 3, we will only
consider the utilities of nodes 1 and 2. For node 1, comparing strategies (1,0)
and (0,1), using (8), we have

(1 − αd13)(δ
d∗
13 − δd

′
13) + (1− βd′

12
)(δd

∗
12 − δd

′
12) > 0

(1− α1)(δ
2 − δ)− (1 − β2)(δ

2 − δ) > 0

α1 > β2.

Moreover, comparing strategies (1,0) and (1,1) using (8) we have

(1− αd13)(δ
d∗
13 − δd

′
13) + c > 0

(1− α1)(δ − δ2) < c.

For node 2, comparing strategies (1,1) and (1,0) or equivalently (0,1) we have

(1− βd′
23
)(δd

∗
23 − δd

′
23)− c > 0

(1− β∞)δ > c.

Notice that when α1 = 0, then g∗ is an equilibrium if c ≥ δ − δ2 which
retrieves the conditions for the static game shown before in (4). ��
The above shows that the coupled coevolutionary dynamics can create
equilibria that can only be possible at higher costs of link formation in the
non-coevolutionary case. Additionally, the equilibrium also highlights the re-
quirement that nodes need to forget benefits of distant or severed nodes faster
than receiving benefits.

Characterizing equilibria for all N is a difficult problem that is yet to
be tackled. Instead, we present some equilibria of some small networks to
highlight some of the typical topologies of such equilibria. For c < δ − δ2,
the equilibrium in the model of Bala & Goyal [21] is the complete network.
For the coevolutionary model, the equilibria are quite diverse and examples
of these equilibria for 4- and 5-node are presented in Fig. 3. A sample run
converging to a non Nash-network of the static game is shown in Fig. 4.
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1

2

3

4

1 δ2 δ δ

δ 1 δ δ

δ δ 1 δ2

δ2 δ δ2 δ2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

1

2

3

4

1 δ δ2 δ2

δ 1 δ δ

δ2 δ 1 δ2

δ2 δ δ2 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

1

2

3

4

1 δ2 δ δ

δ2 1 δ2 δ

δ2 δ2 1 δ

δ δ δ 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

1

2
3

4
5

1 δ2 δ2 δ2 δ

δ2 1 δ2 δ2 δ

δ2 δ2 1 δ δ

δ2 δ2 δ2 1 δ

δ δ δ δ 1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1

2
3

4
5

1 δ2 δ2 δ2 δ

δ3 1 δ δ δ2

δ2 δ3 1 δ2 δ

δ δ δ 1 δ2

δ δ δ δ 1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1

2
3

4
5

1 δ2 δ2 δ δ

δ2 1 δ δ δ2

δ2 δ2 1 δ2 δ2

δ δ δ2 1 δ2

δ δ δ δ 1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

Fig. 3 Examples of equilibria of a 4- and 5-node network, when δ = 0.9, c = 0.05,
α1 = 0.6, α2 = 0.7, α3 = 0.8, α1 = 0.9, β1 = 0.4, β2 = 0.3, β3 = 0.2, β4 = 0.1,
β∞ = 0.01

3.3 Equilibrium Stability

In this section, we will examine the behavior of the coupled dynamics when
the network topology is at that of an equilibrium whereas the benefits avail-
able are close to the equilibrium values.

Proposition 3. Let (g∗, B∗), where g∗ = (g∗i , g
∗
−i), B∗ = [b∗ij ], be a strict

equilibrium such that ∀i, ui(g
∗
i , g

∗
−i, b

∗
i )− ui(gi, g

∗
−i, b

∗
i ) ≥ γ, ∀gi ∈ Gi\g∗i , for

some γ > 0. Also, let gt0 = g∗ and bt0ij = b∗ij ± ε ∀i, j, for some time t0. If ε

is sufficiently small, then gt = g∗, ∀t ≥ t0, and limt→∞ btij = b∗ij , ∀i, j.
Proof. We shall examine the utility of a strategy gti = g′i compared to gti = g∗i .
First define,

I ′
1 = {j : δdij(g

′
i,g

∗
−i) ≥ bt0ij}, I1 = {j : δdij(g

∗
i ,g

∗
−i) ≥ bt0ij},

I ′
2 = {j : δdij(g

′
i,g

∗
−i) < bt0ij}, I2 = {j : δdij(g

∗
i ,g

∗
−i) < bt0ij}.
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Then,

ui(g
′
i, g

∗
−i, b

t0
i ) =

∑
j

f(bt0ij , g
′
i, g

∗
−i)− cμ(g′i)

=
∑
j∈I′

1

αdij(g′
i,g

∗
−i)

bt0ij + (1− αdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i)

+
∑
j∈I′

2

βdij(g′
i,g

∗
−i)

bt0ij + (1− βdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i) − cμ(g′i)

=
∑
j∈I′

1

αdij(g′
i,g

∗
−i)

b∗ij + (1− αdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i)

+
∑
j∈I′

2

βdij(g′
i,g

∗
−i)

b∗ij + (1− βdij(g′
i,g

∗
−i)

)δdij(g
′
i,g

∗
−i)

− cμ(g′i)±
∑
j∈I′

1

αdij(g′
i,g

∗
−i)

ε ±
∑
j∈I′

2

βdij(g′
i,g

∗
−i)

ε

=ui(g
′
i, g

∗
−i, b

∗
i )±

∑
j∈I′

1

αdij(g′
i,g

∗
−i)

ε±
∑
j∈I′

2

βdij(g′
i,g

∗
−i)

ε.

Similarly, we can write

ui(g
∗
i , g

∗
−i, b

t0
i ) = ui(g

∗
i , g

∗
−i, b

∗
i )±

∑
j∈I1

αdij(g∗
i ,g

∗
−i)

ε±
∑
j∈I2

βdij(g∗
i ,g

∗
−i)

ε.

Therefore,

ui(g
∗
i , g

∗
−i, b

t0
i )− ui(g

′
i, g

∗
−i, b

t0
i ) =ui(g

∗
i , g

∗
−i, b

∗
i )− ui(g

′
i, g

∗
−i, b

∗
i )

±
∑
j∈I1

αdij(g∗
i ,g

∗
−i)

ε±
∑
j∈I2

βdij(g∗
i ,g

∗
−i)

ε

∓
∑
j∈I′

1

αdij(g′
i,g

∗
−i)

ε∓
∑
j∈I′

2

βdij(g′
i,g

∗
−i)

ε

≥γ − ε(
∑
I1

αdij(g∗
i ,g

∗
−i)

+
∑
I2

βdij(g∗
i ,g

∗
−i)

)

− ε(
∑
I′
1

αdij(g′
i,g

∗
−i)

+
∑
I′
2

βdij(g′
i,g

∗
−i)

).

Since αk, βk ∈ [0, 1], then for small ε we have

ui(g
∗
i , g

∗
−i, b

t0
i )− ui(g

′
i, g

∗
−i, b

t0
i ) > 0.

This implies that g∗i is a best response and that gt0+1
i = g∗i . Since the

topology remains unchanged, then δdij , ∀i, j remain unchanged. Furthermore,
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the stable dynamics in (5) results in |bt0+1
ij −b∗ij | ≤ ε′ < ε. Using the same argu-

ments recursively, the results follow. ��
Here we have shown that local stability is guaranteed, for small deviations
in the benefit flows from their equilibrium values, for strict equilibria. Strict
equilibria are equilibria such that their utilities are strictly greater than the
utilities of other strategies given a unilateral deviation of strategy.
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Fig. 4 A sample run of the algorithm converging to a non-Nash network of
the static game. Initially b12 = 5.835e−1, b13 = 8.893e−1, b14 = 1.893e−2,
b21 = 2.966e−4 , b23 = 1.934e−2, b24 = 1.299e−1, b31 = 6.847e−1, b32 = 5.124e−2,
b34 = 9.707e−1, b41 = 1.099e−3, b42 = 6.443e−1, b43 = 1.711e−1. A circle around
the node number denotes the node updating its network.

4 Conclusions

In this work, we presented a coevolutionary model of network formation based
on dynamic flow of benefits between nodes. We showed that the combined
dynamics can induce network topologies to be equilibria of the dynamics,
whereas these topologies are not Nash networks of the static game. These
equilibria can emerge at a lower cost than the non-coevolutionary case. We
also showed the stability of a class of equilibria of the combined network for-
mation and benefit flow dynamics. The model can be extended to cases where
each edge has a weight that corresponds to the strength of the connection.
However, this setup can manifest different behaviors and will be the subject
of further studies.
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One-Max Constant-Probability Models
for Complex Networks

Mark Korenblit, Vadim Talis, and Ilya Levin

Abstract. This paper presents a number of the tree-like networks that grow accord-
ing to the following newly studied principles: i) each new vertex can be connected
to at most one existing vertex; ii) any connection event is realized with the same
probability p; iii) the probability Π that a new vertex will be connected to vertex i
depends not directly on its degree di but on the place of di in the sorted list of ver-
tex degrees. The paper proposes a number of models for such networks, which are
called one-max constant-probability models. In the frame of these models, structure
and behavior of the corresponding tree-like networks are studied both analytically,
and by using computer simulations.

1 Introduction

According to the well-known Barabási-Albert model [1], scale-free networks are
characterized by two main mechanisms: continuous growth and preferential attach-
ment. That is, a) the networks expand continuously by addition of new vertices, and
b) there is a higher probability that a new vertex will be linked to a vertex already
having many connections (high-degree vertex). Most vertices have only a few con-
nections while there are a few highly connected hubs. Vertices of a scale-free net-
work are the elements of any system and its edges represent the interaction between
them.
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The Barabási-Albert random graph model is described as follows:

Starting with a small number m0 of vertices, at every time step we add a new
vertex with m ≤ m0 edges that link the new vertex to m different vertices already
present in the system. To incorporate preferential attachment, we assume that the
probability Π that a new vertex will be connected to vertex i depends on the degree
di of that vertex.

The mechanism of preferential attachment is assumed to be linear in the model,
i.e., Π(di) is proportional to di [1]. However, as noted in the same work, in gen-
eral relationship between Π(di) and di could have an arbitrary form and, therefore,
different types of preferential attachment may be considered.

It is of interest to consider a special case when in every step a new vertex is
connected to only one of the old vertices (m = 1). In this case the resulting graph
is a tree known as a nonuniform random recursive tree. The probability of linking
to its vertex depends on its degree. The structure and properties of such trees are
investigated in [2], [5], [6], and many other works. When the probability of linking
to a vertex is proportional to its degree, this gives a random plane-oriented recursive
tree.

Nonuniform random recursive trees have a number of applications. They may
serve for modeling pyramidal structures based on the principle ”success breeds suc-
cess”. In a pyramid scheme where each entrant competes with those already par-
ticipating, the experience gained in successful recruiting enhances the prospects for
further success as captured by the growth rule of these trees [6]. The example of
simulation of stock markets with these trees is given in [4].

In our paper we introduce a number of new network models based on nonuniform
random recursive trees, so called one-max constant-probability models. These mod-
els are characterized by the following features: i) each new vertex may be connected
to at most one old vertex, i.e., in every time step at most one new edge appears in
the network; ii) any connection event is realized with the same probability p due to
external factors; iii) the probability Π that a new vertex will be connected to vertex i
depends not directly on its degree di but on the place of di in the sorted list of vertex
degrees.

The proposed network model is rather realistic because in real life the choice of
an object may be determined not by an absolute characteristic of the object but by
a relative status of this object among other objects. The status itself depends, in its
turn, on the objects’ characteristics. Besides, this model explicitly defines the order
of priorities in the search of appropriate connection and, therefore, it allows not
just to analyze the topology of networks, but also to examine the network dynamics
step-by-step.

2 Constant-Probability Search Model

The first model (we call it Constant-Probability Search Model or CPSM) is based
on a regular linear search of a vertex with a maximum degree realized by con-
secutive comparisons of a current maximum degree with a degree’s value of a
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current checked vertex. If this value is greater than a current maximum, the maxi-
mum is updated. For vertices with equal degrees, an earlier arrived vertex is prefer-
able. However, in contrast to the standard search, every comparison is performed
not always but with probability p. A new vertex is connected to a vertex v with a
found maximum degree which, correspondingly, is equal to a true maximum degree
with probability p. The degree of vertex v is incremented by 1 and the new vertex’s
degree is assigned to 1 if it has been connected to any vertex.

Therefore, the vertex with the 1-st largest degree will be chosen for connection
by a new vertex with probability p, the vertex with the 2-nd largest degree – with
probability (1− p)p, . . . , the vertex with the i-th largest degree – with probability
(1− p)i−1 p (for equal degrees, the degree of a vertex checked earlier is quasi larger).
For n existing vertices, the probability that the new vertex will connect to no vertex
is equal to (1− p)n.

Proposition 1. Given an n-vertex network which starts with a single vertex and is
based on CPSM, the lower bound of the expected number Mn of the maximum degree
in the network is equal to p(n− 1).

Below, one can see that Proposition 1 holds not only for CPSM but also for all
other one-max constant-probability models.

It is clear that the higher is p, the larger is degree of the first vertex in the network
and the rather this degree is maximum. That is, older vertices increase their connec-
tivity at the expense of the younger ones and a “rich-get-richer” phenomenon [1] is
detected for high p.

Diagrams of two 100-vertex networks simulated for different values of p are
presented in Fig. 1. Three the largest degrees in a network are indicated (degree of
a vertex arrived in time step t is denoted by dt).

Fig. 1 100-vertex networks based on CPSM

3 Constant-Probability Ordered Model

The second model, so called Constant-Probability Ordered Model (CPOM) is sim-
ilar to CPSM. However, in contrast to CPSM, the list of existing vertices is kept
sorted in decreasing order of their degrees so that the vertex with a maximum de-
gree is in the top of the list. The list is scanned from the top and a new vertex is
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connected to the first vertex v which “is allowed to be connected by the probability
p”. The degree of vertex v is incremented by 1 and this vertex is moved toward the
top of the list to find a proper new place for it. The new vertex’s degree is assigned
to 1 and this vertex is inserted into the list above vertices with degrees 0 (isolated
vertices) if it has been connected to any vertex.

The running time of the search of appropriate connection in an n-vertex CPSM
network is O(n) for any p since always all existing vertices of the network have to
be checked. At the same time, CPOM gives O(n) running time in the average case
only, while in the best case its running time is O(1). Besides, CPOM exhibits a real
network that has a mechanism which keeps most referred sites in the top of the list
and makes them, correspondingly, more reachable than others.

Despite the different algorithms used by CPSM and CPOM, both models provide
identical network topologies and diagrams illustrated in Fig. 1 are appropriate to
CPOM as well.

CPOM (as CPSM) is characterized by the following phenomenon that becomes
apparent for low p. Some vertices which come first may remain isolated since while
a network is not large, a new vertex may rather connect to no existing vertices and
find oneself at the bottom of the list. Next later vertices will find more vertices in the
network and the probability of their connecting to one of existing vertices will be
higher. At that, they will be linked with a higher probability to vertices with larger
degrees and their degrees after connection will be 1. Therefore, as the size of the
network increases, the chance of vertices with zero degrees “to be found” by new
vertices decreases.

Fig. 2 illustrates the above phenomenon for p = 0.1. A network after 100 time
steps (Fig. 2 (a)) and the same network after 1000 time steps (Fig. 2 (b)) have the
same 6 isolated vertices with order numbers 1, 5, 11, 15, 23, 27.

Fig. 2 The phenomenon of first isolated vertices for CPOM

Proposition 2. Given an n-vertex network based on CPSM or CPOM, the expected
number In of isolated vertices in the network is defined recursively as follows: I1 = 1;
In+1 = In + 2(1− p)n − (1− p)n−In .

The result is well-reasoned. For p = 0, In+1 = In + 1 (the number of isolated
vertices increases in every time step). For p = 1, In+1 = In (all new vertices are
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connected to the first one and the number of isolated vertices does not increase at
all). For large n, In+1 tends to In (probabilities of appearance of new isolated vertices
and of connecting new vertices to old isolated vertices decrease).

Corresponding computational results for p from 0 to 1 are presented in Fig. 3.
One can see that for p < 0.5, the higher is p, the smaller is n for which In reaches
saturation and the smaller is In in saturation itself. For p > 0.5, the expected number
of isolated vertices is less than 1.

Fig. 3 Expected numbers of isolated vertices in CPOM and CPSM networks

4 Constant-Probability Ordered Non-0 Model (CPOM-N0)

In order to neutralize the negative effect described in the previous section, when
some vertices which come first may remain isolated, we slightly modify CPOM. A
new vertex connected to one of existing vertices is not inserted above isolated ver-
tices and remains at the bottom of the list. Thus old vertices with zero degrees will
not be at the bottom and the list will be sorted only concerning degrees exceeding
1. Such a model is appropriate to be called Constant-Probability Ordered Non-0
Model (CPOM-N0).

The example of this model’s behavior for p = 0.1 is shown in Fig. 4. In Fig. 4
(a) one can see a network after 100 time steps. This network has 3 isolated vertices:
5, 12, and 17. The same network after 300 time steps is presented in Fig. 4 (b). It
has the only isolated vertex 5. At last, after 1200 time steps, there are no isolated
vertices in this network (Fig. 4 (c)).

CPOM-N0 is evidence that the additional advantage of CPOM in contrast with
CPSM is its flexibility. The list of existing vertices in CPOM is actually the priority
list. While in CPSM a vertex’s degree directly determines the vertex’ priority, in
CPOM the vertex’s place in the list is this criterion. One can define this place not
only as a function of a degree but as a function of additional parameters as well.

There are also other differences in behavior of CPOM and CPOM-N0. Isolated
vertices not only disappear in networks based on CPOM-N0 for large n. For the
same small n, the expected number of vertices with zero degree in a CPOM-N0
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Fig. 4 A network based on CPOM-N0 (p = 0.1)

Fig. 5 100-vertex networks

network is less than in a CPOM network. On the other hand, the expected number of
connected components (collections of connected vertices which have no connections
to one another) consisting of more than one vertex in a CPOM-N0 network is greater
than in a CPOM network of the same size. The explanation of this phenomenon is
the following. An isolated vertex of a CPOM network may rather remain isolated in
the next time steps than in a CPOM-N0 network in which this vertex has a higher
probability to become a start vertex of a new autonomous part of the network. In any
case, both networks are characterized by the same expected number of connected
components including isolated vertices that is equal to the number of vertices which
were isolated some time, i.e., to the number of appearances of isolated vertices.

Two corresponding examples are illustrated in Fig. 5. In Fig. 5 (a) one can see the
CPOM network after 100 time steps. This network has 11 connected components, 5
of which are isolated vertices (5, 12, 14, 30, 57). The CPOM-N0 network after 100
time steps presented in Fig. 5 (b) has also 11 connected components and only 3 of
them are isolated vertices (25, 33, 40). With increase of the network in Fig. 5 (b),
new vertices will connect to these 3 vertices sooner or later, while the probability
of connecting new vertices to 5 isolated vertices in Fig. 5 (a) will decrease in every
time step. Herewith, both networks will consist of 11 connected components, and the
probability of appearance of new connected components will decrease with increase
of the networks.

The expected numbers of connected components including isolated vertices are
equal in networks of the same size based on all one-max constant-probability mod-
els. This fact allows to formulate and to prove the following proposition:
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Proposition 3. Given an n-vertex network based on a one-max constant-
probability model, the expected number Cn of connected components in the network
is defined recursively as follows: C1 = 1; Cn+1 =Cn +(1− p)n.

Corollary 1. Given a network discussed in Proposition 3, the expected number Cn

of connected components in the network is expressed explicitly as follows: Cn =

1+(1− p) 1−(1−p)n−1

p . With increase of n, Cn tends to 1
p .

5 Constant-Probability Ordered Directed Model

Previous models assume that connecting a new vertex to an old one leads to increase
of a number of connections both of the old and the new vertices. However, not al-
ways a subject that initiates a connection is considered as acquiring this connection.
At the same time, a referred object is regarded as a possessor of this connection in
any case. Thus while most networks (from social to biological ones) are undirected,
there are systems that should be simulated by directed networks. For example, Web
pages are connected by directed links [3], [7], software modules are taken as vertices
of a directed graph with links according to their interaction [3].

We slightly modify CPOM and introduce a Constant-Probability Ordered Di-
rected Model (CPODM). An edge corresponding to a new connection leaves the
new vertex and enters the old one. The list of vertices is sorted by their in-degrees.
It is clear that the in-degree of a new vertex is 0 even if it has been connected to any
existing vertex and, therefore, a new vertex is always in the bottom of the list.

Out-degree of any vertex in a network based on CPODM is 1 (if the vertex has
been connected to any vertex when arriving) or 0 (if the vertex has been connected
to no vertex when arriving). As follows from the model’s description, the list of
vertices does not distinguish between vertices with zero and non-zero out-degrees.
For two vertices with zero in-degrees, the older vertex will be nearer to the top. Thus
old isolated vertices (with zero in-degrees and out-degrees) will not be at the bottom
of the list.

One can see that CPODM is similar to CPOM-N0. Although CPOM-N0 de-
scribes an undirected network, it distinguishes in special cases between a vertex
that is connected to another one and a vertex to which another vertex is connected.
In fact, both CPOM-N0 and CPODM identically process new vertices. For this rea-
son, the same characteristic features inherent in both models. Like in CPOM-N0
networks, isolated vertices disappear in networks based on CPODM for large n.
For small n, expected numbers of isolated vertices and of connected components
consisting of more than one vertex for CPODM are the same as for CPOM-N0.

6 Conclusion

In this paper we proposed a number of new models of tree-like networks and stud-
ied genesis and evolution of these networks’ topology. Some remarkable network
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effects were observed. We provided the interpretation of the network behavior on
the base of analysis of simulation results.

Specifically, we have discovered the phenomenon of the existence of isolated
vertices when subjects that were at the origins of a complex network creation may
ultimately find oneself out of the network. We have interpreted the cause of this
phenomenon and have shown how it can be prevented. The absence of isolated ver-
tices in a large network, in turn, does not prevent it from splitting on unlinked au-
tonomous parts (connected components) whose number tends to 1

p with increase of
the network.
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Efficient Routing in Data Center
with Underlying Cayley Graph∗

Miguel Camelo, Dimitri Papadimitriou, Lluı́s Fàbrega, and Pere Vilà

Abstract. Nowadays data centers are becoming huge facilities with hundreds of
thousands of nodes, connected through a network. The design of such interconnec-
tion networks involves finding graph models that have good topological properties
and that allow the use of efficient routing algorithms. Cayley Graphs, a kind of
graphs that represents an algebraic group, meet these properties and therefore have
been proposed as a model for these networks. In this paper we present a routing
algorithm based on Shortlex Automatic Structure, which can be used on any inter-
connection network with an underlying Cayley Graph (of some finite group). We
show that our proposal computes the shortest path between any two vertices with
low time and space complexity in comparison with traditional routing algorithms.

1 Introduction

The growing demand for cloud computing services is leading to an increasing de-
ployment of large-scale Data Center (DC) as its underlying infrastructure [1]. A
fundamental component of such DCs is the interconnection network that provides
communication among the different components of the physical infrastructure. The
design of such networks has the goal of finding graph models that i) have good
properties topological (e.g. high connectivity, small degree, etc.) to ensure good
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performance in terms of throughput, delay, robustness, etc., and that ii) allow to
have routing algorithms with both low time complexity (time to take routing deci-
sion) and low space complexity (memory resources to build the routing table) with
respect to the number of nodes of the network [2]. Cayley Graphs (CGs) [3], a kind
of graphs that represents an algebraic group, meet these 2 properties and therefore
have been proposed as a model of DCs interconnection networks [4, 5, 6].

Concerning topological properties, CGs have high symmetry, hierarchical struc-
ture, recursive construction, high connectivity and fault tolerance, among others [2].
The definition of the CG implies that the vertices are elements of some group but it
does not imply any specific group. This flexibility allows to get a graph that meets
the desired requirements on diameter, vertex degree, number of nodes, etc [7]. More-
over, it has been demonstrated that CGs can also be used as models of deterministic
small world networks [8]. With respect to routing algorithms, the traditional Dijkstra
or Bellman-Ford routing algorithms can be used in any kind of graph but requiring
large amount of memory and/or with slow convergence time for large graphs [4].
Unlike them, there are routing algorithms for specific type of graphs that take ad-
vantage of their particular topological characteristics, reducing their time and space
complexity. This is the case of the routing algorithms for network topologies based
on hypercubes [9], butterflies [10] and star graphs [11], among others, which actu-
ally are CGs of some specific groups.

A routing algorithm for two specific classes of Cayley-based networks, the star
and pancake graphs, is presented in [13]. Since these graphs have a representation by
permutations, they propose a routing algorithm based on permutation sort. However,
this approach does not ensure a shortest path routing. K. Tang and B. Arden prove
in [14] that all finite CGs can be represented by generalized chordal rings (GCR)
and then propose an iterative routing algorithm based on table look-up. The space
complexity of such algorithm is O(n2) and its time complexity O(D), where n and D
are the size and diameter of the network, respectively. Wang and Tang [15] propose
a topology-based routing for Xmesh with CGs as the underlying topology. They
prove that the average path lengths between nodes is smaller and the averaged power
consumed is less than the original Xmesh. They use a CG from the Borel Subgroup,
which is also known as Borel Cayley Graph (BCG), as underlying topology. Their
routing algorithm computes off-line a shortest path routing table from the node Id to
all other nodes, and then they use this table to create the routing table for the rest of
nodes based on the vertex transitivity property of CG. This algorithm is is bounded
by O(log4 n) and its space complexity is given by O(n2D).

A distributed and fault-tolerant routing algorithm for BCG is presented in [16].
This two-phase algorithm uses two types of routing tables according to link failures:
(1) a Static Routing Table (SRT) (computed using [14]) and (2) a Dynamic Routing
Table (DRT). The first phase performs routing through the shortest path according
to the Static Routing Table. If there is a link failure making the shortest path un-
available, DRT is updated and other shortest paths will be used. In the case that all
shortest paths are disconnected, the phase 2 exploits the path length information in
the SRT to search additional routes besides the shortest paths. Finally, authors in [5]
present a routing algorithm on a special class of CGs used as underlying graph for
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a wireless data center. A two-level routing algorithm is proposed to send messages
between 1) servers in the same rack and 2) servers in different racks. This algorithm
is a geographical routing that exploits the uniform structure of the underlying topol-
ogy. The identification of each server is defined by composition of three values: the
coordinates of the rack, the story that contains the server within the rack and the
index of the server in the story. In addition, each server uses three routing tables to
forward package from source to destination using a shortest path route.

Note that the works presented above could be grouped into the one or more of the
following routing algorithm categories: a) those ones that are designed to specific
CGs, b) general purpose ones with high space/time complexity and c) low complex-
ity ones that do not ensure shortest paths. In contrast with them, in this paper we
present a low space and time complexity routing algorithm for any interconnection
network where its underlying graph is a CG of some finite group. The input of the
algorithm can be either the group presentation G = 〈S|R〉, where S and R are the
generators and relators of G /citewmagnus, or the permutation (or matrix) represen-
tation of the group. The proposed algorithm is based on the fact that finite groups are
Automatics and have an Shortlex Automatic Structure (SAS) [12]. These structures
solve the shortest path problem in CGs of finite groups by solving the equivalent
Minimum Word Problem, which is NP-Hard [18], in quadratic time with respect to
the length of the equivalent path written as a sequence of group generators.

The paper is organized as follows. In Section 2 we present the theoretical back-
ground about group theory, geometrical group theory and automatic structures. In
Section 3 we describe our proposed shortest path algorithm, its time and space com-
plexity and an example of the application of our routing algorithm to a 3-cube graph.
Conclusions and future work are presented in Section 4.

2 Preliminaries

In this section, we establish terminology, notation, and background material about
group theory and Automatic Groups. For more definitions and results on combina-
torial group theory we refer the reader to [3], and for groups and graphs to [20].

Let G be a finite group. The identity of the group G is denoted by Id and the group
operation is the multiplication. Let S = {s1, . . . ,sn} be a set of elements in a group
G. We say that S generates G if every element of G can be expressed as a product of
elements from S and their inverses. A group G is finitely generated if it has a finite
generating set. A word is a sequence w = (s1s2 . . .), where si ∈ S∪S−1, for all i. We
say that w is freely reduced if it does not contain any sub-word sis

−1
i . We say that

a group is a free group with basis S, represented by F(S), if S is a set of generators
for the group and no freely reduced word w ∈ F(S) represents the identity.

Definition 1. Let G be a group with generating set S. The Cayley Graph Γ (G,S) of
G with respect to S is the graph with vertex set V (Γ (G,S)) = {g | g ∈ G} and edge
set E(Γ (G,S)) = {(g,gs) | s ∈ S,g ∈ G}.

The group G acts on Γ (G,S) by multiplication on the left: the element g ∈ G
defines a map φg : h → gh that maps a vertex h ∈ Γ (G,S) to the vertex gh, while it
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brings adjacent vertices to adjacent vertices, preserving edges. The graph Γ (G,S)
is directed but it also can be considered undirected if we take an inverse-closed
generating set, i.e. S = S−1. If Γ (G,S) has not auto-loops, then Id �∈ S. If Γ (G,S)
has no loops and no multiple edges, then we say that Γ (G,S) is reduced, and then we
say that it is simple if in addition is undirected. Finally, for any finite presentation
of a group in terms of generators and relators, there exists an associated Cayley
Graph, i.e. the geometry and structure of the Γ (G,S) is directly related with a group
presentation and specifically with its generator set [3].

A metric on the CG is defined by assigning unit length to each edge and defining
the distance between two points to be the minimum length of paths joining them. In
this case, the action by left multiplication of G on Γ (G,S) is by isometries. Finally,
the algebraic structure of the group, which is encoded into its group presentation,
permits to define the word length and metric on such group:

Definition 2. Let π : F(S)→ G be a group homomorphism and let π(w) be the ele-
ment of G represented by w under π . The length of g, identified by ls(g), is the length
of the shortest word in the free group F(S) representing g, i.e. ls(g) = min{ls(w) |
w ∈ F(S),π(w) = g}.

Definition 3. Let G be a group with generating set S. The corresponding word met-
ric (i.e. distance function) ds is the metric on G satisfying d(Id,s) = d(Id,s−1) = 1
for all s ∈ S, and d(g,h) = min{ls(w) | w ∈ F(S),π(w) = g−1h}, for all g,h ∈ G.

Note that the word metric on a group G is a way to measure the length of the
shortest path between any two elements of G on Γ (G,S). This metric measures how
efficient the difference g−1h can be expressed as a word in the generating set for
G. Thus, it is possible to visualize the geometry of a group G by looking at its CG,
because the word metric of the group corresponds to the graph metric induced on
Γ (G,S).

Additionally to the algebraic and geometric structure of the group, there exists
a third point of view to work in an efficient way on groups: they can be seen as
languages. Let G be a group, A an alphabet and A∗ the set of strings (or words) on
the alphabet A. By interpreting concatenation as an associative multiplication on G,
we define a monoid homomorphism π : A∗ → G. If w is a string over A, we say that
π(w) is the element of G represented by w. If the homomorphism is surjective, i.e.
π(A) generates G as a group, then A is the set of group generators for G. We also
define a bijective map φ : A → S, where S is the set of generators of G, to indicate
that each element of the set A represents an element of S. In the rest of the paper, we
will use the set S to reference both generators of the group and the alphabet A.

Given any word w, there is an associated edge path in Γ (G,S). The path starts at
the identity vertex and then traverses edges of Γ (G,S) as dictated by w. Conversely,
every finite edge path in Γ (G,S) describes a word in terms of the generators and
their inverses: reading off the labels of edges being traversed, and adding an inverse
if they are traveling in the opposite direction of the orientation of the edge. Given
this relationship between languages and groups, D. Epstein et. al. in [12] present a
complete work about algebraic groups treated by finite state automaton.
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Definition 4. Let G be a group. An automatic structure on G consists of a set S of
generators of G, a finite state automaton W over S, and a finite state automaton
Ms over (S,S), for s ∈ S∪ Id, satisfying the following conditions: 1) the map π :
L(W )→ G is surjective and 2) for s ∈ S∪ Id, we have (w1,w2) ∈ L(Ms) if and only
if π(w1)s = π(w2) and both w1 and w2 are elements of L(W).

In the definition, W is called the word acceptor, MId the equality recognizer, and
each Ms, for s ∈ S, a multiplier automaton for the automatic structure. An automatic
group is one that admits an automatic structure. Note that MId recognizes equality in
G between words in L(W ). From a given automatic structure, it is always possible to
use MId to construct another one, such that W accepts a unique word mapping onto
each element of G; choosing the lexicographically least among the shortest words
that map onto each element as the normal form representative of that element. This
W is a word-acceptor with uniqueness.

Definition 5. Let ≤S be some total order on the alphabet S, the automatic struc-
ture is called shortlex if L(W) consists of the shortlex least representatives of
each element g ∈ G; therefore the map π1 : L(W ) → G is bijective and all paths
in Γ (G,S) according to the words of L(W) are shortest ones. In other words,
L(W ) = {w ∈ S∗ | w ≤S v,∀w,v ∈ S∗,w =G v}

Thus, given a group G with generator set S, a word w ∈ S∗ is called a geodesic if
it has minimal length among all strings representing the same element as w. Since
the language of all geodesic strings maps finite-to-one onto G, SAS is an automatic
structure for G that contains a geodesic representative for each element of G. The
package KBMAG [17] implements a procedure for computing SAS for groups with
finite presentation.

3 A Greedy Routing Algorithm Using Automatic Structures

Let g and h be two vertices in Γ (G,S) represented by the words (or labels) wg and
wh in the set S∪S−1. If wh = wgs1s2...st with si ∈ S∪S−1, 1 ≤ i ≤ t, then s1s2 . . . st

defines a path from vertex g to h with edges labeled by s1s2...st in Γ (G,S). This is
equivalent to finding a path from g−1h= s1s2 . . . st to the vertex Id. Notice that given
g and h, solving the shortest path problem between any pair of vertices in the CG
turns into finding a word w = s1s2. . . . st with minimum length such that w−1

g wh = w.
This problem is called the Minimum Word Problem [18], and the SAS is an efficient
tool to solve it:.

Theorem 1. (Theorem 2.3.10, [12]) Let G be an group and (S,L(W )) an automatic
structure for G. For any word w over S, we can find a word in L(W) representing the
same element of G as w, in time proportional to the square of the length of w.

Note that if the word acceptor has uniqueness, then this structure can solve the
Minimum Word Problem by reducing words to their (shortlex) normal forms. Be-
cause of finite groups have Automatic Structures (in fact they have a SAS [12]), it
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is possible to find a SAS for a given group presentation G and to use it as a shortest
path computation mechanism using only local information. We assume that an in-
coming message, whether originating at the vertex or in transit from another vertex,
contains the shortlex word that represents the destination vertex.

Our routing algorithm consists of two procedures, the vertex labeling and the
message forwarding. The vertex labeling procedure is the following:

• Given a group presentation G = 〈S|R〉 of the underlying Γ (G,S), compute the
SAS = (S,L(W )) of G. If Γ (G,S) is given by either its matrix or permutation
representation, then construct the group presentation by using the fundamental
cycles of Γ (G,S) (e.g. by using [19]).

• Select a random vertex of Γ (G,S) and construct a spanning tree T (Γ ) rooted on
it by using the Breadth First Search (BFS) algorithm. In the same process, label
all vertices with an integer from 1 (the root vertex) to | G |= n, according their
order of discovery.

• Use (S,L(W )) to enumerate the elements of the group G according to its shortlex
ordering (corresponding to a BFS through S∗) and re-label each vertex in the
spanning tree with its corresponding shortlex word enumerated before. Note that
there exists natural one-to-one mapping between vertices and the elements of the
group represented by their shortlex words following their BFS ordering.

• Create a table with d rows in each vertex g∈ T (Γ ), where d is the vertex degree,
and keep the label of each vertex at distance 1 from itself.

The message forwarding procedure uses the word metric on G to perform a
greedy routing strategy. Given two vertices g,h ∈ Γ (G,S) with labels wg and wh,
the procedure to find the shortest path between them is the following:

• When a message arrives to g, compare the label of g with the destination label
and verify whether they are equal or not.

• If the labels are equal, the destination is reached. Otherwise, send the message
to the neighbor pi of g, where i ∈ [1, . . . ,d], such that ls(w−1

pi
wh) is minimum. If

there exists more than one neighbor pi with equal minimum length on ls(w−1
pi

wh),
then the message is sent to the neighbor with shortlex wpi .

The space complexity of our algorithm is bounded by O(dn) because each vertex
keeps a list of its d neighbors. On the other hand, the time to make a routing decision
is bounded by O(D2), where D is the diameter of Γ (G,S). Note that any two vertices
g,h ∈ Γ (G,S) with labels wg and wh will have ls(wg) ≤ D and ls(wh) ≤ D. In fact,
any resulting word from w−1

g wh has ls(w−1
g wh) ≤ 2D. Since (S,L(W )) can reduce

any word w of length ls(w) in a time proportional to O(ls(w)2) (see Theorem 1), any
word v = wgwh will have a length ls(v)≤ 2D, and then it can be reduced in O(D2)
to a shortlex equivalent word.

The following is an example of the application of our routing algorithm to a
3-cube graph modeling a 8-node interconnection network (see Figure 1a). This
graph is isomorphic to the Γ (G,S) of the elementary Abelian group of order
23 with group presentation equal to G = 〈S|R〉, where S = {a,b,c} and R =
{a2,b2,c2,aba−1b−1,aca−1c−1,bcb−1c−1}. We start with the labeling procedure.
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Fig. 1 a) The 3-Cube graph and b) the resulting BFS tree with shortlex labels on vertices

Given a group presentation for Γ (G,S), the SAS is computed. Then a random ver-
tex in Γ (G,S) (left-bottom corner) is selected and a BFS spanning tree rooted on
that vertex is constructed. The resulting tree T (Γ ) has the following vertices (is
discovery order): {v1,v2,v3,v4,v5,v6,v7,v8}. At the same time, we use the SAS
to enumerate the elements of the group G according to the shortlex ordering:
L(W ) = {Id,a,b,c,ab,ac,bc,abc}. Next, the map π : L(W )→ G is performed, i.e.
the word wi ∈ L(W ) labels the vertex vi ∈ T (Γ ), for 1 ≤ i ≤ |G| (See Figure 1b).
Finally, each vertex creates a table with the labels of its neighbors at distance 1.

Assume now that vertex v4 sends a message to vertex v8 (labeled as abd). v4 uses
the labels of its neighbors v1 and v7 to compute the length of the shortlex words that
represent the following multiplications: (Id)−1(abc) and (bc)−1(abc). As a result
of the reduction process using (S,L(W )), (Id)−1(abc) = abc and (bc)−1(abc) = a.
Therefore v4 sends the message to v7. Vertex v7 does the same process with the
labels of its neighbors v6 and v8. The reduced words that represent (b)−1(abc) and
(abc)−1(abc) are ac and Id, respectively. Since Id is the empty word, i.e. the word
of length 0, v7 sends the message to v8, the final destination. Note that although
the labeling process is based on a rooted spanning tree, the algorithm has found the
shortest path between v4 and v8 in the whole graph and not only in that tree.

4 Conclusions and Future Work

We have proposed a routing algorithm based on SAS for route computation in DC
interconnection networks with underlying CG. The input of the algorithm is either
a group presentation G = 〈S|R〉 or the matrix/permutation representation of G. Our
routing algorithm is a shortest path one and each node in the network only needs
information about its neighbors to take its routing decision. This decision is taken
in time proportional to the square of the diameter of Γ (G,S). Our proposal uses
the fact that finite groups have SAS and these structures can efficiently solve the
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Minimum Word Problem in G, which is equivalent to find the shortest path between
any pair of vertices of Γ (G,S). Moreover, since any finite group is isomorphic to
some group of permutations, our algorithm can work on any interconnection net-
work with underlying CG. Finally, although the topologies for DCs are usually very
static, it would be important to consider as a future work the network dynamics and
to propose fault tolerance mechanism in our algorithm.
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Distributed Generation of Billion-node
Social Graphs with Overlapping
Community Structure

Kyrylo Chykhradze, Anton Korshunov, Nazar Buzun, Roman Pastukhov,
Nikolay Kuzyurin, Denis Turdakov, and Hangkyu Kim

Abstract. In the field of social community detection, it is commonly ac-
cepted to utilize graphs with reference community structure for accuracy
evaluation. The method for generating large random social graphs with re-
alistic community structure is introduced in the paper. The resulting graphs
have several of recently discovered properties of social community structure
which run counter to conventional wisdom: dense community overlaps, su-
perlinear growth of number of edges inside a community with its size, and
power law distribution of user-community memberships. Further, the method
is by-design distributable and showed near-linear scalability in Amazon EC2
cloud using Apache Spark implementation.

Keywords: random graph, social network, community detection, bench-
mark network, graph generation, LFR benchmark, Affiliation Graph Model,
SNAP, distributed algorithms, Amazon EC2, Apache Spark.

1 Introduction

Community structure is a natural property of human networks, including on-
line social networks where users tend to unite either explicitly (by means of
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grouping functionality of network software) or implicitly (by establishing ties
based on shared affiliation, role, activity, social circle, interest, function, or
some other property). Social data scientists widely employ intuitive notions
of separability, density, and cohesiveness of social groups for discovering and
evaluating implicit communities from social networks [4, 10, 12].

Recent advances in studying modular structure of social networks [13, 14]
helped to reveal several fundamental properties that appear to be common in
human interaction networks: dense community overlaps, superlinear growth
of number of edges inside a community with its size, power law distribution
of user-community memberships and communities size, etc. This suggests the
need for revisiting accuracy evaluation techniques for community detection
methods and adequacy of the methods themselves.

Despite the availability of community detection benchmarks based on real
networks, it is desirable to learn some fundamental properties from it and de-
velop a tool for producing synthetic benchmarks with similar properties and
different characteristics. For a reliable and comprehensive evaluation, a com-
munity detection method must be tested on benchmark networks of variable
size and other parameters as they may have significant impact on the results.

The main contributions of the paper could be summarized as follows:

– we introduce a novel approach to benchmark networks generation for com-
munity detection methods based on Community-Affiliation Graph Model
(AGM), where memberships of users to communities are modeled with
a bipartite graph and links among people stem from shared community
affiliations [13];

– we introduce CKB - a method for distributed generation of large bench-
mark networks with realistic properties of social graph and social commu-
nity structure;

– we make our method particularly suitable for benchmarking community
detection algorithms by providing the set of parameters for tuning the
most important structural properties: number of nodes, mean node de-
gree, edge probability inside a community, power law exponents for dis-
tributions of community size and node-community memberships, etc;

– we introduce simple and efficient distributed algorithms for building user-
community affiliation network and linking nodes inside communities;

– we develop and evaluate a distributed implementation of the proposed
method capable of producing billion-node random social graphs with ref-
erence community structure;

– we make our implementation accessible to the research community by
providing it as a web service with possibility to download the generated
graphs1.

The rest of the paper is organized as follows. Section 2 contains problem
description and section 3 describes the details of CKB. In section 4 accuracy

1 http://ckb.at.ispras.ru/

http://ckb.at.ispras.ru/
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and performance of the method are evaluated. We conclude in section 5 with
possible future directions.

2 Problem

Let’s consider a graph G = (V,E), where |V | = N1 and |E| = m. A commu-
nity Ci with |Ci| = nci is defined as an induced subgraph. The number of com-
munities is N2, all communities together constitute a cover of a graph. The
number of entries of j-th node into different communities (node-community
memberships) is mj .

The internal (dintj ) and external (dextj ) degree of vertex j ∈ Ci are defined
as the number of edges connecting j to other vertices in Ci or to the rest of the
graph respectively. So the total degree of vertex j is dj = dintj +dextj . Number

of edges inside Ci is dci =
1
2

∑
∀j∈Ci

dintj .
The task is to generate G with the following properties:

1. power law degree distribution: p(d) ∼ d−β [3];
2. giant connected component presence: ∃ G∗ ⊂ G : |V ∗| ∼ N1, ∀ i, j ∈

V ∗ ∃ w1, w2, ..., wk ∈ E∗ ∃ tl ∈ V : w0 = (i, t0), w1 = (t0, t1), ..., wD =
(tD−1, j) [11];

3. small effective diameter: ∀ i, j ∈ V ∗∃ w1, w2, ..., wk ∈ E∗ ∃ tl ∈ V :w0 =
(i, t0), w1 = (t0, t1), ..., wDi,j = (tDi,j−1, j) such that

P

(
(1 − ε) lnN1

ln lnN1
≤ Di,j ≤ (1 + ε) lnN1

ln lnN1

)
→ 1 for N1 →∞ [1];

4. users could have zero degrees and memberships: dj ≥ 0, mj ≥ 0;
5. communities are overlapping: ∃ Ci, Cj : Ci ∩Cj �= ∅ [6];
6. each community Ci is connected with high probability:

P (Ci is connected) ≥ 1− 1
nCi

;

7. intra-community density is larger than the average link density of whole

graph G:
dCi

nCi
(nCi

−1) >
m

N1(N1−1) [7];

8. number of edges inside the community is greater than number of edges
linking vertices of the community with the rest of the graph: dCi >∑

∀j∈Ci
dextj ;

9. number of edges in the community increases superlinearly with the com-
munity size: dCi ∝ n1+γ

Ci
, where γ ∈ (0, 1) [14];

10. user-community memberships have power-law distribution: p(mi) ∼ m−β1

i

[14];

11. size of communities has power-law distribution: p(nCi) ∼ n−β2

Ci
[5];

12. overlaps of communities are more densely connected than the non-

overlapping parts: ∀ Ci∀ Cj(i �= j), Ci∩j = Ci ∩ Cj ⇒ dCi∩j

nCi∩j
(nCi∩j

−1) >

dCi

nCi
(nCi

−1) [13];

13. low-degree nodes tend to be part of very few communities, while high-
degree nodes tend to be members of multiple groups: di ∼ mi [8].
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3 Method

The main steps of CKB graph generator are:
1. Degree sequences for users and communities are generated on the assump-

tion of input parameters;
2. Users are assigned to communities using modified configuration model [9];
3. Edges inside each community are generated using configuration model.

Fig. 1 General workflow

General workflow is shown in Figure 1. Master node is the central node of
computational cluster and by slave nodes we mean the rest of cluster nodes.
HDFS files are distributed across local file systems of slave nodes. On the
master node, the non-distributed part of computations is carried. During the
distributed computations, the master node assigns tasks to slave nodes and
aggregates the results. First step of the generation process is done once on
the master node while second step is distributed across slave nodes. During
the third step edge generation inside each community is performed in a dis-
tributed way, so that each slave node generates some part of edges which are
then merged.

3.1 Users-Communities Bigraph Generation

Bipartite graph (or bigraph) is a graph whose vertices can be divided into
two disjoint sets U and V and such that every edge connects a vertex in U to
one in V . In our case V (|V | = N1) is a set of nodes and U (|U | = N2) is a set
of communities. User-community affiliations are modeled as bigraph edges.
1. Number of users (nodes) N1 is a parameter. At first on the master node

number of communities N2 is computed from the equation:

M0 = N1 · E[m] = N2 · E[x], (1)
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Table 1 Parameters of CKB

Parameter Meaning Default value

N1 number of nodes –

dmean mean node degree –

xmin minimum user-community memberships 1

mmin minimum community size 2

xmax maximum user-community memberships 10,000

mmax maximum community size 10,000

β1 > 1
power law exponent of user-community
membership distribution

2.5

β2 > 1 power law exponent of community size distribution 2.5

α > 0 affects edge probability inside communities 4

0 < γ < 1 affects edge probability inside communities 0.5

ε controls the number of edges in ε-community 2N−1
1

where E[m] and E[x] are the expectation of node memberships and com-
munity sizes respectively. The number of generated edges is defined as

M = (1 + E[Pmult
ci,j ])M0, (2)

where P
mult
ci,j

is multiple edge probability (section 3.3) which helps to re-
duce the bias introduced by deleting multiple edges.
k-th moment of the random variable distributed by power law with expo-
nent (β1 for membership distribution and β2 for community size distribu-
tion are parameters) is

E[xk] =

∫ xmax

xmin

xkp(x)dx =

∫ xmax

xmin

xk 1− β

x1−β
max − x1−β

min

x−βdx, (3)

since p(x) = 1−β

x1−β
max−x1−β

min

x−β . So,

E[xk] =
(1 − β)(xk+1−β

max − xk+1−β
min )

(x1−β
max − x1−β

min)(k + 1− β)
(4)

Note that for k − β + 1 = 0 the expectation equals to

E[xk] =
1− β

x1−β
max − x1−β

min

ln

(
xmax

xmin

)

2. Identical power law degree sequences are generated on each slave node.
3. Each vertex is associated with degree (d1i for i-th user-node and d2j for j-

th community-node) from degree sequence that was generated at previous
step.
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4. Numbers D1
1 = d11, D

1
2 = D1

1 + d12, ... , D
1
k+1 = D1

k + d1k+1, ..., D
1
N1

=
D1

N1−1 + d1N1
and D2

1 = d21, D
2
2 = D2

1 + d22, ... , D
2
k+1 = D2

k + d2k+1, ...
,D2

N2
= D2

N2−1 + d2N2
are computed.

5. For the sequence of natural numbers

[M ] = {1, 2, 3, . . . , �M
s
�},

where �x� = max{n ∈ Z|n ≤ z} and s is the number of slave nodes,
compute in a loop on each slave node:
for t = 1 to �Ms � do:
a. choose random natural numbers p and q from [M ] with uniform dis-

tribution;
b. find the interval [D1

i , D
1
i+1] to what the number p belongs;

c. find the interval [D2
j , D

2
j+1] to what the number q belongs;

d. if i �= j add to the bigraph an edge (i, j).
6. Merge all generated edges and remove multiple edges.

Complexity of this stage is O(M log(N1N2)).

3.2 Intra-community Edges Generation

At this stage edges between nodes are generated in conformity with their be-
longing to communities. We sample number of edges in community Cj from
Binomial distribution (considering the number of multiple edges):

Mcj =
1

s
(1 + P

mult
ck )Bin(xck , pck), (5)

where xck is community size, pck is edge probability in the community ck, s is
the number of slave nodes, and P

mult
ck

is multiple edge probability (section 3.3)
which helps to reduce the bias introduced by deleting multiple edges.

Then, on each slave node Mcj edges are generated using configuration
model. Finally, all generated edges are merged and multiple edges are re-
moved. Self-loops are filtered during the generation process.

For each pair of nodes i and j in the community ck the probability of edge
(i, j) is defined as

pck =
α

xγ
ck

, (6)

where α and γ are parameters (0 < γ < 1, α > 0) [14].
The total probability of an edge between i and j in overall graph is

p(i, j) = 1−
∏

ck∈Cij

(1− pck), (7)

where Cij is a set of communities that i and j share [14].
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Therefore, overlaps of communities are more densely connected than the
non-overlapping parts. Also low-membership nodes will have low-degree. And
vice versa, if membership of node increases then its degree is growing too.

ε-Community. To allow for edges between nodes that don’t share any com-
mon communities, we add an additional ε-community [13] which connects any
pair of nodes with a small probability ε. This step is also necessary to ensure
the existence of zero membership nodes with non-zero degrees in the resulting
graph. In other words, some part of users with low degrees are not members
of any community.

The number of edges generated on each slave node is

Mε =
1

s

N1(N1 − 1)

2
ε, (8)

where ε is a parameter.
Complexity of this stage is O(Km), where Km =

∑
cj
Mcj .

3.3 Multiple Edges

Knowing multiple edge probability for each step of generation helps to re-
duce the bias introduced by deleting multiple edges produced by configura-
tion models. So for users-communities bigraph generation the probabil-
ity that in bipartite graph an edge appears two or more times will be

P
mult
ci,j ≈

(xcimj

M

)2
(9)

For intra-community edges generation the probability of multiple edge
is

P
mult
ck

≈ α2

4x2γ
ck

(10)

3.4 Mean Degree

Since mean degree is an important feature for graph analysis and community
detection algorithm testing, we obtained the dependence between input pa-
rameters α and γ and mean degree. Calculation of the mean degree allows to
prove that density of edges inside the community is increased than in overall
graph. Due to limited space we provide only the final equations. So the mean
degree is:

dmean ≈ (S1 − S2 + S3)
(
N1

2

)
N1

, (11)
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where N1 is the number of nodes in the whole graph and S1, S2 and S3 are

Sr = αr
E

[ ∑
c1<...<cr

∏
k={1,...,r}

1

xγ
ck

∏
t={i,j}

(xckmt

M

) ]
(12)

Each moment E[xy ] can be computed from (4). Now after solving the cubic
equation in variable α (and fixed γ) we can compute probability pci . But the
(11) is valid only with some constrains, that are not provided due to limited
space.

3.5 Connectedness of Community

Using known results on evolution of random graphs in Erdos-Renyi model [2]
we can claim the following:

Theorem 1. The community Ci is connected with high probability for

α > ln(xci)x
γ−1
ci (13)

4 Evaluation

We implemented the proposed method in Scala using Apache Spark2 - a
framework for efficient computations in distributed environment.

Number of nodes (·106) Number of nodes (·106)
Fig. 2 Scalability evaluation results. Left: Amazon EC2 clusters of m1.large
instances, blue line - 2 slave nodes, red line - 4 slave nodes, yellow line - 8 slave
nodes, green line - 16 slave nodes. Right: single machine.

2 http://spark.incubator.apache.org/

http://spark.incubator.apache.org/
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Degree Community size Membership Connected component

Fig. 3 Community size, user-community memberships, degree distribution and
connected component distribution for N1 = 106, β1 = β2 = 2.5

Table 2 Comparison of CKB against SNAP networks and LFR

Orkut LiveJournal YouTube CKB LFR

Number of nodes 3M 4M 1.1M 3M 97.5K 100K

Mean degree 76.2 17.3 5.3 109.9 68.8 66.7

Community size power law
exponent βcommsize

2.12 2.14 2.36 2.19 2.57 2.54

Membership power law
exponent βmemb

1.59 2.22 2.83 2.28 2.62 –

Degree distribution power law
exponent βgraph

1.58 2.15 2.53 2.22 2.54 2.56

Community size
distribution median

16 2 3 5 49 40

Membership distribution median 14 2 1 7 1 1

Average clustering coefficient 0.169 0.353 0.172 0.039 0.055 0.226

Effective diameter deff 4.8 6.4 6.5 4.38 3.88 3.98

Generation time (sec) – – – 160 11 863

The results of running time evaluation on Amazon EC2 clusters and sin-
gle machine are shown in Figure 2. Near-linear scalability on the number of
nodes in the generated graph allows to produce synthetic networks of huge
size in reasonable time: one billion nodes graph generation took < 2 hours on
Amazon EC2 cluster with 100 m1.large instances.

Table 2 summarizes the most important statistics of LiveJournal, ORKUT
and YouTube datasets from Stanford Large Network Dataset Collection3

and compares them with CKB and LFR benchmarks [5]. Comparing the ta-
bles suggests that CKB graphs have very similar structural properties to real
networks. The only difference is low average clustering coefficient of the gen-
erated networks. However, achieving more realistic clustering coefficient re-
quires some changes in the edge generation process and is a subject of future
work.

3 http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html
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5 Conclusion

A method for distributed generation of large benchmark networks with real-
istic properties of social graph and social community structure has been in-
troduced and evaluated. Possible directions for future work include:

– distributed computation of Normalized Mutual Information or other mea-
sures for comparing covers of communities;

– testing different community detection algorithms;
– allow to control clustering coefficient and degree correlation of nodes.
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10. Plantié, M., Crampes, M.: Survey on social community detection. In: Social
Media Retrieval, pp. 65–85. Springer (2013)

11. Spencer, J.: The giant component: The golden anniversary. Not. Am. Math.
Soc. 401, 130–131 (1999)

12. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection
in networks: the state of the art and comparative study. arXiv preprint
arXiv:1110.5813 (2011)

13. Yang, J., Leskovec, J.: Community-afliation graph model for overlapping net-
work community detection. In: IEEE 12th International Conference on Data
Mining (2012)

14. Yang, J., Leskovec, J.: Structure and overlaps of communities in networks. In:
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2012)



Using the Entropy of the DFT of the Laplacian
Eigenvalues to Assess Networks

Danilo R.B. de Araújo, Carmelo J.A. Bastos-Filho, and Joaquim F. Martins-Filho

Abstract. There are several metrics that are very useful to analyze and to design
networks. These metrics, including the spectral-based ones, can be used to retrieve
topological properties from the network. We observed that if one applies the Dis-
crete Fourier Transform (DFT) over the eigenvalues of the Laplacian matrix, it is
possible to observe different patterns in the DFT depending on some properties of
the analyzed networks. In this paper, we propose a new metrics based on the entropy
of the DFT samples, that can be used to identify the type of network. We evaluated
this metrics in networks generated by four different procedures (k-Regular, Erdos-
Renyi, Watts-Strogatz and Barabasi-Albert) and in well-known datasets of real net-
works. The results indicate that one can use the proposed metrics to identify the
generational model of the network.

1 Introduction

Important advances in Network Science are highly correlated to the recent proposi-
tion of generative procedures to create graphs with similar topological properties of
real world networks. In 1960, Erdos and Renyi presented important studies regard-
ing random graphs. Watts and Strogatz proposed the first procedure for generating
small world networks (SW) in 1998. In 1999, Barabasi and Albert presented a model
based on preferential attachment to generate scale-free networks (SF). Variations of
the preferential attachment mechanism were presented by Dorogovtsev and Mendes
in 2002. Since these models can generate networks with specific characteristics,
many models to generate networks have been proposed in the literature. A review
on generative procedures can be found in [1].
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210 D.R.B. de Araújo, C.J.A. Bastos-Filho, and J.F. Martins-Filho

In most of cases, real networks do not present a random topological structure,
such as the networks that can be generated by the Erdos-Renyi (ER) model. In gen-
eral, real world networks present characteristics that are similar to regular networks,
small-world networks, scale-free networks, or a combination of them. These topo-
logical features can be used to classify networks. It is quite interesting for real world
applications, since these characteristics can present high correlation with some de-
sired behavior of some real world networks. For example, scale-free networks gen-
erated by using the Barabasi-Albert (BA) model are related to real networks that
present high resilience to random node failures, but these type of network is very
vulnerable to targeted attacks (i.e. the network can be seriously damaged when high
connected hubs are attacked). On the other hand, random networks are robust to
targeted attacks, but they are more vulnerable to random failures [2].

Planning real networks can be associated to choose a network topology that pro-
mote specific patterns of dynamic behaviour. In general, these patterns are related
to network requirements during the operational phase. Thus, it is key that we can
assess whether topologies follow theoretical models. For example, metrics to assess
robustness include: the algebraic or natural connectivity, the average path length
(APL), the largest connected component (LCC). In general, the studies about net-
work planning have adopted this approach to forecast if the network performance
will obey the requirements [3]. In this context we emphasize the importance of using
expressive metrics to assess networks. Currently, there is a need to use several met-
rics to capture specific properties of the network under design. The use of several
metrics for this type of analysis can be computationally expensive and error prone.
Furthermore, it would be desirable to have a metrics that can be used for a variety
of graphs, including small, large, sparse and dense ones.

In this paper we propose to use the entropy of the DFT coefficients of the eigen-
values of the Laplacian Matrix to classify networks as: regular, random, SW or SF
networks. The paper is organized as follows: Section 2 provides a brief review of
topological analysis of complex networks; Section 3 explains the proposed metrics;
Section 4 details the experimental setup used to obtain the results; Section 5 presents
the results and Section 6 presents conclusions and suggestions for future work.

2 Characterization of Complex Networks

Networks with the same topological properties define a family of graphs. This sec-
tion presents a brief review of the most used topological metrics and explains how
these metrics have been used to characterize networks. Several surveys [4, 5] are
available and can be used for further studies on the concepts briefly presented in
this section.

In this work we consider a Complex Network as a graph G = (N ,L ), in which
N and L denote the set of vertices and the set of edges, respectively. In this paper
we just considered unweighted and undirected graphs. Besides, a graph cannot con-
tain self-loops (connections beginning and ending at the same node). We can also
define the amount of nodes and links in a network as n = |N | and l = |L |.
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The link density (d) of a network is defined as the ratio between the number of
links that actually exists and the maximum number of links that could exist in the
network. The node degree (k) describes the number of links or neighbor nodes of
a given node. The largest value of k, among all the nodes of a graph, defines the
hub degree, k(hub). The node degree distribution defines the probability, Pr(k), of
a randomly selected node to have a certain degree k. The node degree distribution
of a real network has been commonly used to indicate the canonical model of this
network. The average number of links that are connected to the nodes is called the
average node degree. The entropy of graph G, that is, I(G), is a measure of the graph
“randomness” and it is calculated over its node degree distribution. The shortest
path (SP) describes the number of hops between a given pair of nodes. The average
path length APL is the average of the SP between all source-destination pairs of
nodes of the network. The clustering coefficient (ci) is the ratio between the number
of triangles that contains node i and the number of triangles that could possibly exist
if all neighbors of i were interconnected [6]. The clustering coefficient for the entire
graph (CC) is the average of the clustering coefficients of all the network nodes.

In the graph theory, a network can be analyzed by its Adjacency matrix (A) or the
Laplacian matrix (L). The matrix A of an undirected graph with n nodes is a n x n
matrix, in which the non-diagonal entries (i, j) are equal to “1” if the nodes i and j
are adjacent (connected), or “0” otherwise. In A, the entries (i, i) are always equal to
“0”, since we are considering that a node can not be connected to itself. Since we are
considering undirected graphs in this paper, A is a symmetric matrix for this case.
The Node Degree matrix (D) is used together with A to build L as L = D−A, in
which the non-diagonal entries (i, j) are either “−1” or “0”, depending on whether
nodes i and j are adjacent or not, respectively, and the diagonal entries (i, i) are equal
to the degree of the nodes Di. The study on the relationship between a graph and its
eigenvalues (and eigenvectors) is referred in the literature as spectral graph theory.
All eigenvalues are real for A, whereas all eigenvalues are real and nonnegative for
L. The ordered set of n eigenvalues of A or L is called the spectrum of the matrix. If
there are two graphs with similar sets of eigenvalues, this means that they probably
present similar graph structures or graph isomorphism [7]. The density function of
the eigenvalues fλ (t) is also used to recognize specific families of networks and it
is suitable to analyze the eigenvalues {λm}1≤m≤n in large graphs [8].

The most basic topological characterization of a graph G can be obtained in terms
of the node degree distribution Pr(k). Information regarding the node distribution
of a undirected network can be obtained either by a plot of Pr(k) or by the calcula-
tion of the moments of the distribution [1]. In order to adopt the degree distribution
directly to characterize networks, one must calculate the distribution for a specific
network and then select the distribution that better fits the data. In this case, if the
distribution best fits a power law distribution, then the network is a typical SF; if
the distribution best fits a Poisson distribution, the network should be random or
SW (SW if the curve is taller and thinner than an equivalent random network).
This approach is not suitable to be used automatically. The most known models
of complex networks can be also analyzed according to the level of structuring of
the topology. Models rely between two extremes cases: networks highly structured



212 D.R.B. de Araújo, C.J.A. Bastos-Filho, and J.F. Martins-Filho

and predictable (such as a ring network), and completely random networks (such
as networks provided by ER model). In this sense, one can classify SW networks
and SF networks as intermediate cases between these two extremes. The SW net-
works are more structured than random, and SF networks are more random than
structured networks [1]. However, this approach is very imprecise if used alone. In
order to properly classify an arbitrary real world network, it is common to consider
a combination of various properties derived from the network topology. Lewis [1]
proposed the use of four topological properties (entropy, CC, APL and the hub de-
gree) in order to understand whether a network presents properties more related to
regular, random, SW or SF networks. If one considers dense networks and only
these metrics for the analysis, one can observe that basic topological properties for
each model begin to disappear and all the networks appear to have been generated
by the same model. Besides, we know that each of these properties can be tuned to
match a different value if the parameters of the generative procedures are modified.
Araújo et al. identified characteristic points in the DFT of Laplacian spectrum and
proposed two metrics [9], but these metrics are imprecise for dense networks.

3 Our Proposal

We propose a new metrics to analyze networks based on the entropy of the Fourier
Transform coefficients over the Laplacian spectrum. L contains a suitable summary
of the network topology, because it contains information about the node degrees and
connected links simultaneously. Thus, a metrics derived from its spectrum should
summarize properly the network topology. Besides, a metrics based on entropy can
maintain the information about randomness of the network. The use of the entropy
metrics directly over the Laplacian spectrum (without using the Fourier Transform)
do not offer the same reasoning for different values of d. Thus, we have considered
the entropy of the DFT coefficients over the Laplacian spectrum in order to classify
graphs according to their topology and also to provide a measure of randomness.
The proposed metrics can be calculated according to the Algorithm 1. Eq. (1) sum-
marizes the metrics value.

Algorithm 1: The algorithm used to calculate I(F̂ ).

Let A the adjacency matrix of a graph G;
Calculate the degree matrix D;
Calculate the Laplacian matrix L = D−A;
Calculate the real eigenvalues of L and store it in E;
Calculate the Discrete Fourier Transform (DFT ) over E and store the values in F ;
Normalize the F set in order to obtain values between 0 and 1 and store it in F̂ ;
Calculate the entropy of F̂ values using Eq. (1).
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I(F̂ ) =−
|F̂ |
∑
i=1

(F̂i · log2 F̂i). (1)

4 Experimental Setup

We obtained all the results for this paper based on experiments by using a simulation
platform for complex networks developed in the Java programming language.

We aim to show that the entropy of the DTF calculated over the eigenvalues of the
Laplacian matrix presents different characteristics for different types of networks
independently of the network density. In order to show this, we generated different
networks using the ER, BA and WS generative procedures. We used density values
d from 0.02 to 0.98 with a step value of 0.02. For each pair (generativeprocedure,
q), we created 30 different networks with different sizes (100 and 1000 nodes).
Our implementation of Random Graphs establishes a link between a pair (i, j) if a
uniform random variable assumes a value below a probability value p. In order to
generate SW networks we created a k-regular graph and change existing links (i, j)
to a new one (k, l) considering a rewiring probability rp. We use the value of d to
calculate a value to k. Finally, to generate a SF networks we used the preferential
attachment process. The networks start with n = 3 nodes and each of the (N− 3)
remaining nodes are attached to the network by adding Δm links to the existing
nodes. We use d to determine the value of Δm. The probability for a new link to be

attached to an existing node i is proportional to: P(i) ∝ kτ
i

∑n
j=1 kτ

j
.

In our work one also used real networks from datasets of previous studies from
different applications (biological, contact, communication, interaction and social
networks). For each real network, we generated equivalent ER, BA e WS networks
(with the same n and d). The value of I(F̂ ) was analyzed in order to find the best
model to fit the real networks. After this, we compared other topological properties
between the networks obtained by our process and the original ones. We consid-
ered the following datasets: Highland tribes [10]; Zachary karate club [11]; Hyper-
text 2009 [12]; Manufacturing emails [13]; Infectious [12]; Caenorhabditis elegans
metabolic [14]; U. Rovira i Virgili [15].

We analyzed our results based on tables and scatter graphs. The statistical behav-
ior of the values for the proposed metrics was analyzed by using the box-plot graphs
and by using a hypothesis test from the 50th percentile (median).

5 Results

Figure 1 presents the curves of “I(F̂ ) versus density” for networks with 100 and
1000 nodes. One can observe that I(F̂ ,d) presents the same meaning for small
and large networks. BA networks present the greater value to I(F̂ ,d). ER networks
presents their I(F̂ ,d) below the equivalent values of BA and WS networks presents
their I(F̂ ,d) below ER and BA. I(F̂ ,d) for k-Regular networks decays near to zero
quickly. One can associate this behavior to the lack of randomness of k-Regular
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networks and the capacity of our metrics to capture randomness. I(F̂ ,d) of BA
networks present huge values if we increase the network size, but for the ER model
the metrics remains constant for different n. If we consider two different values
IA(F̂ ,d1) and IB(F̂ ,d1), related to the same d but different models, A and B, we can
observe for any two pair of models that IA(F̂ ,d1)/|IA(F̂ ,d1)− IB(F̂ ,d1)|> 0.10
(0 < d < 0.94). Thus, one can conclude that our metrics is very sensitive to the
topological properties of each model and it can be properly used to classify sparse,
dense, small and large networks. This is an advantage over FZC and HVC [9],
because these metrics are imprecise for dense networks.
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(a) Networks with n = 100.
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(b) Networks with n = 1000.

Fig. 1 I(F̂ ) versus density for k-regular, BA, random and WS networks

If we consider a set of networks with the same value to n, d and generative pro-
cedure, our metrics should present similar values, because the topological charac-
teristics are the same. Figure 2 presents the box-plot charts in terms of I(F̂ ) for
30 different networks with n = 100. Figure 2a summarizes the statistics for sparse
networks that were generated from the BA, ER and WS algorithms. One can no-
tice that the minimum value of BA networks is above the maximum value of ER
networks and the minimum value of ER networks is above the maximum value of
WS networks. Figure 2b summarizes the statistics for networks with d = 0.30. One
can notice the same behavior observed for sparse networks, but the height of the
boxes was lowered. Figure 2c summarizes the statistics for very dense networks. As
expected, the variation in the values for the metrics was reduced to denser networks.

Table 1 present the value of I(F̂ ) calculated for the real network and for each
canonical model. In Table 1, we considered rp = 0.05 for SW networks and τ = 1
for SF networks. We used the values of I(F̂ ) for each canonical network to drive
a choice to the best model that fits the real network. For example, if I(F̂ ) = 0.64
for “Highland tribes” network, we conclude that a canonical small-world network
should better represent this network than a canonical scale-free network. On the
other hand, the “Infectious” network should be best represented by Scale-Free net-
works with “stretched exponential”. For the sake of comparison, we have created 30
networks with a similar value for I(F̂ ) between the original networks and the gen-
erated ones. One can infer important topological metrics if this generative process is
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(a) Networks with d = 0.04.
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(b) Networks with d = 0.30.
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(c) Networks with d = 0.80.

Fig. 2 Box-plot for 30 different networks with n = 100 and d = 0.04, 0.30 and 0.80

Table 1 Real networks and the equivalent WS, ER and BA networks

I(F̂ ) for each scenario Model and
Network n d Original Small-

world
RandomScale-

free
parameter to
best fit

Highland tribes 16 0.48 0.64 0.51 0.74 0.90 SW (rp = 0.15)
Zachary karate club 34 0.13 2.76 0.90 1.82 2.67 SF (τ = 1.29)
Hypertext 2009 113 0.35 3.46 0.21 1.01 3.18 SF (τ = 1.42)
Manufacturing emails 167 0.23 5.60 0.37 1.64 5.43 SF (τ = 1.07)
Infectious 410 0.10 8.67 0.55 4.86 12.89 SF (τ = 0.77)
C. elegans metabolic 453 0.02 20.69 0.76 6.35 14.58 SF (τ = 1.13)
U. Rovira i Virgili 1,133 0.01 18.19 0.71 8.55 26.09 SF (τ = 0.79)

taken. For example, the original “Highland tribes” present I(G) = 2.58, APL = 1.54
and k(hub) = 10. If one calculates the average value for each metrics for the SW ap-
proximated by I(F̂ ) (rp = 0.15), the obtained values are I(G) = 2.33, APL = 1.54
and k(hub) = 10. According to our results, it was possible to create networks with
I(G), APL and hub degree with average error near 0.10 among all the networks
analyzed if one searches the correct generative algorithm by using I(F̂ ).

6 Conclusion

In this paper we proposed a new approach to analyze and to classify networks ac-
cording to their topology. The proposed metrics consists in calculating the entropy
of the DFT over the eigenvalues of the Laplacian matrix. We evaluated the ability
of our method to classify networks with different sizes and densities. According to
our results on real datasets, the proposed metrics can summarize well known met-
rics such as entropy of node degrees, APL and hub degree, i.e., even if the entropy
of the DFT over the eigenvalues of L is used alone, one can capture information
about these three metrics. Thus, we emphasize the expressivity of our metrics due
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to the possibility of replacing the combined analysis of several metrics by a simpler
method in order to assess networks.

Further analysis aims to investigate the impact of using an approximate set of
eigenvalues due to scenarios related to very large sparse matrices (the computation
of the entire eigenvalues set is prohibitive). We also suggest investigations about the
behaviour of the proposed metrics when it is applied on variations of the generative
procedures we analyzed in this work.
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EGIA – Evolutionary Optimisation of Gene
Regulatory Networks, an Integrative Approach

Alina Sı̂rbu, Martin Crane, and Heather J. Ruskin

Abstract. Quantitative modelling of gene regulatory networks (GRNs) is still lim-
ited by data issues such as noise and the restricted length of available time series,
creating an under-determination problem. However, large amounts of other types of
biological data and knowledge are available, such as knockout experiments, anno-
tations and so on, and it has been postulated that integration of these can improve
model quality. However, integration has not been fully explored to date. Here, we
present a novel integrative framework for different types of data that aims to en-
hance model inference. This is based on evolutionary computation and uses differ-
ent types of knowledge to introduce a novel customised initialisation and mutation
operator and complex evaluation criteria, used to distinguish between candidate
models. Specifically, the algorithm uses information from (i) knockout experiments,
(ii) annotations of transcription factors, (iii) binding site motifs (expressed as posi-
tion weight matrices) and (iv) DNA sequence of gene promoters, to drive the al-
gorithm towards more plausible network structures. Further, the evaluation basis
is also extended to include structure information included in these additional data.
This framework is applied to both synthetic and real gene expression data. Models
obtained by data integration display both quantitative and qualitative improvement.

1 Introduction

Gene regulatory network reverse engineering is an important aim of Systems Bi-
ology [7], as models obtained can be used for analysis and simulation in contexts
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often difficult to realise in laboratory experiments. Approaches using mathematical
modelling, ranging from qualitative to quantitative, have been applied to discovery
of GRNs from gene expression data [10]. However, the size of GRNs and the nature
of the data (high dimensional, noisy, insufficient for analysis of dynamics), limit ro-
bustness when mimicking natural behaviour. This is particularly true for quantitative
models, which aim to simulate very detailed patterns of expression, increasing the
number of parameters to be inferred. However, such models can provide extremely
useful insight on the gene expression process, where improvement of reverse engi-
neering techniques is an ongoing aim of Systems Biology [16].

Given the challenges posed by available gene expression data and poor model ro-
bustness to date, a new direction is integration of several data types, [16], and these
reports have started to appear, mostly for coarse-grained analysis [8]. These inte-
grate expression data with other types of measurements, such as binding affinities
or protein interactions, to better discriminate between candidate models, but usually
are limited, (i.e. use only one additional data type, besides time-course data). How-
ever, several such data-types are available, and the hypothesis is that combining all
of these, can further increase modelling power. Recently, Drosophila Melanogaster
datasets have been integrated, but again for qualitative analysis only [3]. Here, a
novel inferential framework for quantitative models, based on Evolutionary Com-
putation (EC), is presented (EGIA - Evolutionary optimisation of GRNs - an Inte-
grative Approach). Although other methods are also possible, the EC approach has
been selected as it provides increased flexibility, implicit parallelism and has proved
to be a suitable search method for underdetermined problems, noisy data and large
search spaces [1]. The hypothesis tested is that integration of diverse large-scale bi-
ological data improves qualitative and quantitative performance of models inferred.

The strength of the newly-introduced platform is the number of data types to
be combined and the flexibility of integration. The novel customisation of different
stages of the Evolutionary Algorithm permits more knowledgeable exploration of
the search space and more informative evaluation criteria, based on the data avail-
able. This is crucial for improving the performance of the models inferred, both
quantitatively and qualitatively. Furthermore, a general methodology for GRN infer-
ence from multiple data types is developed. This includes an error structure analysis
to identify the stage of the algorithm at which each data type should be integrated.

2 Methods

2.1 Data

Both synthetic and real datasets are used to assess algorithm performance. Synthetic
networks are from the DREAM4[12] competition. This is a research community
competition where data from known GRNs are published and researchers have the
task of reverse engineering the original networks. These networks are carefully gen-
erated so as to resemble real GRNs. The data used here, generated by networks of
10 and 100 genes respectively, contain both time-series measurements and knockout
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experiments. The set of known interactions are used for qualitative evaluation, and
MSE for dual-knockout experiments for quantitative.

For real data, a sub-network of 27 genes involved in Drosophila melanogaster
embryo development is analysed. A single-channel (SC) microarray dataset [21],
is used for training, while a dual-channel (DC) dataset [11] is used for quantita-
tive evaluation. Cross-platform normalisation (namely XPN, [17]) has been per-
formed prior to model inference. For qualitative evaluation, 16 interactions from the
Drosophila Interactions Database (DROID) [13], version 2010 10, are considered
gold-standard. Additional data types are also integrated: (i) knockout experiments
for 8 genes, which were used to compute log-ratios against wild-type experiments
[11, 5, 20, 4, 6], (ii) pair-wise correlation between gene expression patterns, (iii)
Gene Ontology (GO) [14] annotations, which assign the function of transcriptional
regulation to 17 of these genes and (iv) binding site affinities for 11 transcription
factors (computed using known cis-regulatory modules and position specific weight
matrices - PSWMs [15, 2]).

Algorithm performance is evaluated both quantitatively and qualitatively.
Qualitative evaluation analyses GRN topology, to assess whether known interac-
tions between gene pairs are retrieved by the algorithm. This means that the known
adjacency matrix of the network is compared to the one retrieved by our algorithm.
Specifically, the AUROC (Area Under the ROC Curve) and AUPR (Area Under the
Precision-Recall Curve) are computed, measures used also in the DREAM4 com-
petition. Given that the algorithm is stochastic in nature, predictions of interactions
have been performed by using multiple models obtained in different runs, and em-
ploying a voting procedure for possible interactions. In this way, an interaction that
appears in more models is considered to be more plausible. The ranking of pos-
sible interactions is used for AUROC/AUPR computation. Quantitative evaluation
assesses whether the inferred models are able to predict the real-valued expression
levels seen in the data. This is performed by simulating a set of test data, not used
for model inference, and by computing average MSE (Mean Squared Error) values
over multiple runs.

2.2 Algorithm

EGIA seeks to exploit several types of data related to the process of gene expression,
which contribute at different stages of the evolutionary algorithm. The framework is
based on a previously introduced inferential algorithm, [9]. This algorithm has been
shown to be among the most scalable and least sensitive to noise of several methods
from the literature [18]. Based on this, we have chosen to extend it further for data
integration, by introducing novel mutation, initialisation and evaluation operators.

2.2.1 The Basic Algorithm

In [9], a neural-genetic hybrid approach to GRN inference was introduced. This
models the GRN as a single-layered Artificial neural Network (ANN), consisting
of one neural unit per gene. Each unit i takes as input the expression values of the
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regulators of gene gi (i.e. g j) at time point t and computes the expression level for
gene gi at time t + 1, using the input weights wi j and the logistic function S(x) =

1
1+e−x for activation:

gi(t + 1) = S

(
∑

j
wi jg j(t)+ bi− digi(t)

)
(1)

where bi accounts for external input, while di represents the degradation rate.
The basic algorithm divides optimisation into two phases: structure and parame-

ter search. The first involves optimising network topology, i.e. the set of regulators
for each gene. This is implemented as a Genetic Algorithm, where each individual
encodes a candidate structure, as a subset of the possible regulators for the cur-
rent gene. Each candidate structure is assigned a fitness value during the parameter
search phase, which employs Gradient Descent to optimise the input weights for the
neural unit for the current gene. The final error obtained is considered the fitness
of the candidate structure. A divide-and-conquer approach is used to optimise pa-
rameters for each gene at a time, i.e. training small networks with one neural unit,
independently of the other units.

2.2.2 Algorithmic Schema Extension

The basic algorithm [9] optimises parameters for each gene separately, in a divide-
and-conquer manner. This approach reduces dimensionality of the system for each
optimisation run. However, the model obtained by directly combining sub-models
may not be able to correctly simulate the whole system, as separate optimisation
disregards the feed-back from the full gene set. In consequence, we have added
a second optimisation stage, which combines single-gene models and performs a
fine-tuning of complete-network parameters, using the same structure and parameter
optimisation.

One way of obtaining models that are robust to noise involves creating noisy
replicates from the available data [22]. This simulates technical replicates, and re-
sults in multiple time series to be used during inference. Here, a larger set of time-
series has been derived from available data through addition of random Gaussian
noise. This has been performed during the parameter optimisation phase, for ANN
training.

2.2.3 Custom Initialisation and Mutation

The basic algorithm achieves an initial population of candidate structures by ran-
domly selecting possible transcription factors for a specific gene. Similarly, muta-
tion is performed by replacing one of the regulators with a randomly chosen gene.
However, many data types provide indications on which interactions between genes
are most likely. For example, binding site affinities can indicate what transcription
factors can bind to a specific gene promoter. This type of information is very valu-
able, and can be used to explore the search space in a more knowledgeable manner.
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For this, we have developed a customised initialisation and mutation procedure,
which uses likelihood assignment for gene regulation. This results, for each gene
g, in a non-uniform probability mass function, which describes which of the genes
in the network are more likely to be regulators of gene g. When performing muta-
tion or initialisation, this function is used to select a candidate regulator for gene g.
This is similar to Wheel of Fortune (WOF) selection [1], (also known as the roulette
wheel), so will be addressed henceforth as WOF mutation and initialisation.

In order to build the probability mass function for each gene g, the strategy is to
assign segments on the WOF to each gene in the network, if there is any indication
in the data of a possible effect of that gene on the current gene g. This number of
segments has to be defined by the user based on the reliability of the data used.
In the following we provide the values used in our experiments, empirically deter-
mined through multiple applications of the algorithm. Of course, these values can be
changed to produce a higher or lower effect on the resulting WOF. Several different
types of data can be used for this, as follows.

Correlation Patterns. Althought dependences between genes can be non-linear,
a good correspondence between linear gene expression correlation-based networks
and GRNs has been previously identified, [23]. In consequence, we have used Pear-
son correlation between time series data of gene pairs, to enhance solution space
exploration. Based on absolute values of the correlation to gene g, each gene i is
assigned segments on the WOF:

CORRgi =

⎧⎪⎪⎨
⎪⎪⎩

0 if |rgi|< 1st decile
1 if 1st decile < |rgi|< 3rd decile
4 if 3rd decile < |rgi|< 7th decile
6 otherwise

(2)

where rgi is the Pearson coefficient between genes i and g. The deciles are based on
all correlation values obtained. In this way, genes that show high correlation with
the current gene will be more likely to be selected as possible regulators.

Knockout(KO) Experiments. Gene expression data from KO experiments can also
be used to enhance the search for network models. Absolute values of log-ratios be-
tween wild-type and knockout samples can be used to allocate segments on the WOF
to those genes that display a large effect on other genes. The number of segments
(KOgi) allocated for each gene i on the WOF of gene g depends on the magnitude
of the log-ratio:

KOgi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |log-ratiogi|< 0.2
1 if 0.2 < |log-ratiogi|< 0.5
4 if 0.5 < |log-ratiogi|< 0.8
6 if 0.8 < |log-ratiogi|< 1.1
8 otherwise

(3)

Gene Ontology (GO) Annotations. The GO database contains annotations of
which gene products have been observed to have a specific function, and
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annotations of transcriptional regulator activity can be included in the EGIA frame-
work. These genes will be allocated additional segments (4 in our experiments) on
all the wheels of fortune of the genes in the network. In this way, known transcrip-
tion factors become more likely to be selected as regulators:

ANNOTgi =

{
0 if gene i is not annotated as TF
4 otherwise

(4)

Binding Site Affinities. Binding site (BS) affinities can be integrated in a simi-
lar manner. To compute the affinity between a regulator and a gene, the position
specofic weight matrix (PSWM) associated with the regulator is required, as well as
promoter sequences for the gene. Using these two pieces of information, BS affinity
values for each TF i and target gene g are retrieved. For each regulator i, the average
(A) and maximum affinity (Amax), over all target genes g, is computed, and segments
on the WOF are allocated as follows:

BSgi =

⎧⎨
⎩

0 if Agi < A

6 if A < Agi < A+ A−Amax
2

8 otherwise
(5)

where Agi represents the affinity of gene i for binding to a promoter of gene g.
Once all the segments, corresponding to the different type of data, are allocated

for all possible regulators, these are summed (Equation 6) and the segment distribu-
tion is normalised to represent a probability mass function (Equation 7).

WOFgi =CORRgi +KOgi +BSgi+ANNOTgi (6)

fg(i) =
WOFgi

∑i WOFgi
(7)

This probability mass function defines the probability that a gene i will be se-
lected as regulator for gene g during mutation and initialisation. Each target gene g
is associated with such a probability mass function. All data types mentioned can be
integrated or omitted, depending on availability. When no additional data are avail-
able, the WOF mutation and initialisation are equivalent to the random assignment
from the basic algorithm.

2.2.4 Extending Evaluation

The original algorithm uses a fitness function based on the RSS between data
and simulation. This has been extended to include also the correlation between
simulation and gene patterns [19]. However, this only considers time-series data
for evaluation. Using additional data during model evaluation, which might pro-
vide information on possible structure, is one way of addressing the noise and
under-determination problem, inherent in time-series data. This changes the fitness
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landscape, so that models which have a plausible topology as well as ability to sim-
ulate the time-series data, correspond to better fitness.

The WOF mechanism presented in Section 2.2.3 can be thus also used for model
evaluation, by computing an average of all probabilities assigned to the model in-
teractions by the WOF. This, used in combination with the previous fitness function
discussed [19], enables construction of a fitness landscape that helps the optimisa-
tion algorithm find more plausible structures, as well as models that can simulate
continuous behaviour. The final fitness function to be minimised is:

F =
1
2 ∑

i
(oi − ti)

2 − cP−w
1
n ∑
(i, j)∈INT

f j(i) (8)

where the first term on the right hand side represents the squared error typical for
ANN backpropagation (oi is the expression level simulated by the model, while
ti is that observed in the data), the second the correlation term from [19], while
the last term is an average, over all pair-wise interactions present in the model, of
the probabilities obtained by the WOF mechanism. INT is the set of interactions
predicted by the model ( (i, j) is an inferred regulatory effect of i on j), while f j(i)
represents the fraction of the WOF allocated to that interaction (Equation 7). This
term is weighted by w, a parameter which needs to be provided by the user. This
evaluation criterion is used both at the single-gene and complete-model optimisation
stage.

3 Results

The customised evolutionary operators have been implemented using all data types
available and models obtained compared to the original algorithm. In order to iden-
tify which type of data is more useful, different variants of WOF and evaluation
have also been employed, by eliminating one data type at a time.

3.1 Performance on Synthetic Networks
For the synthetic datasets (DREAM networks), only correlation patterns and log-
ratios for knockout experiments are available, so three versions of the algorithm

Fig. 1 Performance of WOF and extended evaluation for the 10-gene synthetic dataset
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were compared to the basic one (Random). These three variants are denoted by All-
eval (including all data available in WOF mutation, initialisation and evaluation),
-KO (all data excluding knockout experiments) and -Corr (all data excluding corre-
lation patterns).

Figure 1 displays AUROC and AUPR values obtained after 10 runs of each al-
gorithm on the 10-gene synthetic network. It also includes average MSE over 10
runs for dual knockout simulations, and corresponding p-values of differences ob-
served (compared to the basic algorithm - Random). As the figures show, extend-
ing the evaluation criterion appears to produce both qualitative and quantitative
improvement when compared to the basic algorithm. The set of predicted inter-
actions is slightly improved when knockout experiments only are used (-Corr), but
quantitative behaviour is best (lowest MSE values) when both data types are inte-
grated. However, when knockout experiments are excluded, AUROC/AUPR values
decrease significantly. This suggests that knockout data are very important for ex-
tracting direct interactions.

Fig. 2 WOF and extended evaluation for the 100-gene synthetic dataset

Similarly, for the 100-gene network, qualitative and quantitative results are dis-
played in Figure 2. Introducing the enhanced evaluation criterion markedly in-
creases the number of correct interactions discovered, as shown by the AUROC
and AUPR values. The best results are obtained after excluding correlation patterns
from the data types used, indicating again that these are not particularly useful in
this context, (as found also for the 10-gene network). On the other hand, if knockout
experiments are excluded, AUROC/AUPR values decrease significantly, showing
that these data are very important in predicting a good set of interactions. From
the quantitative point of view, the novel evaluation criterion yields models with low
MSE in dual knockout simulations, (minimum values under 0.025), with best re-
sults obtained for exclusion of correlation patterns. However, although minimum
and average MSE are lower compared to the basic algorithm, the overall quantita-
tive results from multiple experiments are only statistically significant at the 10%
level (-Corr).

We have compared these results to those obtained by the participants in the
DREAM4 competition, on the same networks used in this analysis. The top three
teams, which submitted quantitative and qualitative results for both network sizes,
have been selected for comparison. For these, AUROC/AUPR and MSE values are
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given in Table 1, with best performances outlined in bold font. EGIA has obtained
the best predicted interactions for the large scale network, while for the small scale
it scored 3rd. This indicates that our method is more scalable compared to the oth-
ers. From the quantitative simulation point of view, EGIA has obtained models with
lower MSE than the other methods on dual knockouts for both network sizes al-
though, on average, behaviour is comparable to other methods. Nevertheless, given
the good qualitative results, we conclude that this framework has something to con-
tribute for extracting models with correct interactions, while it can also simulate
unseen behaviour.

Table 1 Comparison of EGIA with DREAM4 results. For the dual knockout MSE values of
EGIA, both the minimum and the average values obtained in repeated runs are provided.

10-gene
√

AUROC ∗√
AUPR

10-gene dual-KO
MSE

100-gene
√

AUROC ∗√
AUPR

100-gene dual-KO
MSE

EGIA 0.6735 0.019/0.028 0.624 0.0229/0.0324
Team 548 0.654 0.038 0.544 0.0349
Team 532 0.733 0.020 0.505 0.0303
Team 498 0.702 0.029 0.28 0.0327

3.2 Performance on the Drosophila Network

For the real dataset, five variants of the algorithm have been analysed: All-eval (eval-
uation and WOF operators using all data available), -Corr (all data excluding cor-
relation patterns), -KO (excluding knockout experiments), -BS (excluding binding
site affinities), -Annot (excluding GO annotations), enabling assessment of the error
structure in these data and how this influences the models obtained. Figure 3 dis-
plays AUROC and AUPR values for the five algorithm variants. These indicate that
integrating all types of data yields the best prediction for interactions. The largest ef-
fect is from the binding site affinity data. However, all data types seem to contribute,
unlike the synthetic data where correlation patterns disimproved performance com-
pared to the basic algorithm.

Quantitative evaluation was performed again by computing the RMSE with the
test dataset (DC), and Figure 3 also shows average results obtained by each of the
algorithm variants in 10 runs, with p-values of observed differences from the basic

Fig. 3 Performance of WOF and extended evaluation for the 27-gene real dataset
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Fig. 4 WOF and binding site extended evaluation for the 27-gene real dataset

algorithm. Our algorithm improves quantitative behaviour, with RMSE values sig-
nificantly lower than the basic algorithm (at the 1% level for All-eval and -Corr, and
the 5% level for -KO and -Annot). This improvement means that models not only
contain more valid interactions, but also simulate test data better, i.e. improvement
in both qualitative and quantitative performance. The error structure analysis also in-
dicates that correlation patterns are once again not particularly useful for improving
quantitative performance, while binding site affinities seem to be crucial.

While WOF is a weak integration method, as it drives the algorithm only to-
wards promising areas of the search space, without forcing it to choose one model
or another, extended evaluation is a strong integration criterion, having the final say
in which model is better. So, while the WOF operators can be resilient to some
level of noise in the data, the evaluation criterion must include more specific data
types. Given the results from the error structure analysis for the real dataset, correla-
tion patterns, knockout experiments and GO annotation are more suitable for WOF
alone, as they provide guideline information only on potential interactions. Binding
site affinities are, however, suitable for formal model evaluation, as they have proved
to be crucial for obtaining good quantitative performance (Figure 3). For the rest of
this section, therefore, we present a similar analysis for different algorithm variants
employing only binding site affinities in evaluation, but using various forms of WOF
operators: BS-eval (using all data types for WOF), -Corr (excluding correlation pat-
terns from WOF), -KO (excluding knockout experiments), -Annot (excluding GO
annotations).

Figure 4 displays the performance for all four algorithm variants above, com-
pared to All-eval (evaluation and WOF using all data types) and Random, the basic
algorithm (no meta-data used). BS-eval produces models with better connections
compared to All-eval, while RMSE on test data is maintained at a low level (BS-eval
and -KO significantly different from Random at the 1% level).

On extending evaluation, RMSE values for training data display a slight increase,
both for synthetic and real data. One explanation for this is that the generalisation
ability of models is increased (RMSE on test data decreases), and the over-fitting of
training data is decreased. Generally, machine learning techniques need to obtain a
balance between generalisation and over-fitting, which was made possible here by
the inclusion of additional data types for training.
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4 Conclusion

This paper presented an analysis of data integration for GRN modelling. Two inte-
gration mechanisms have been analysed, namely customised mutation and initial-
isation (WOF) and extended evaluation. The error structure of available data has
been studied, to identify which data type has larger effect on the networks analysed.
WOF and extended evaluation led to both quantitative and qualitative improvement.
This supports the hypothesis that optimisation with time-series data alone is not
powerful enough, and that additional information from other data types is needed to
aid further selection of GRN models.

The error structure analysis suggested that not all data types are useful for in-
ference, however, and that great caution needs to be taken when integrating these.
For synthetic data, knockout experiments proved to be highly important to improve
predictions of regulatory interactions. For real data, binding site affinities seemed to
have the largest impact. Correlation patterns, on the other hand, were of some help
when integrated in WOF mutation with other data types, but had less individual im-
portance. This might be due to the fact that correlation does not indicate only direct
interaction, but also indirect effects, which can be captured by the models.

WOF proved to be a flexible integration tool, while evaluation provided addi-
tional rigour. For best results, only very reliable data should be used for the latter,
while noisy data can be integrated into the former, following an error structure anal-
ysis. In our experiments, best performance on real data was found by using only
binding affinities for evaluation, and all data types for WOF. This suggests that
other data types can provide only general guidelines for possible structures. For
instance, log ratios in knockout experiments, or correlations between gene expres-
sion patterns can sometimes be misleading, due to the existence of feedback loops,
related to alternative regulatory paths or indirect interactions in the real network.
The results presented here apply for the Drosophila melanogaster embryo develop-
ment network and associated datasets available for this system. In analysing other
systems, e.g. different processes or organisms, data types and quality available will
vary, so performing an initial error analysis is crucial to determining the best inte-
gration strategy.
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Designing a Social Network Survey for Cancer 
Care Coordination 

Andrew Vakarau Levula, Kon Shing Kenneth Chung, and Kate White 

Abstract. In this paper, we propose the use of social network analytics for inves-
tigating the effect of aggregate complexity on health care coordination for people 
with cancer. Here, we highlight the social networks data collection procedures, its 
benefits and limitations, and measures of relational data specific to aggregate 
complexity. Firstly, we suggest that collection and analysis of relational and 
attribute data offer richer insights to the health care coordination experience of 
cancer patients. Secondly, drawing from theoretical and methodological strength 
of previous social network studies conducted in health care, we describe the phas-
es of design undertaken to develop our data collection instrument as well as chal-
lenges and solutions associated with the design phases. Thirdly, we discuss the 
sampling aspect of the study in the context of cancer patients at the Sydney Cancer 
Centre, New South Wales (NSW), Australia along with results and implications 
from our pre-pilot study. 

Keywords: Social Networks, Complexity, Aggregate Complexity, Care  
Coordination. 

1 Introduction 

Social network concepts and measures have been widely adopted across a range of 
discipline such as organizational studies, diffusion of innovation, information 
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management, research, education and healthcare [1-4]. Social network studies 
focuses on the structure of relationships linking individuals (or aggregate social 
units, such as groups, teams and organizations) and the interdependencies in beha-
vior or attitudes related to their social context [3, 4]. For instance, Healthcare 
systems may be viewed as a socio-technical network that comprise of diverse 
individuals (e.g. patients, nurses, physicians and clinicians) or technological units 
(e.g. computer systems, medical software) that have strong interdependencies on 
one another [2, 3, 5]. Healthcare systems are therefore complex systems – a col-
lection of individual agents with the freedom to act in ways that are not always 
predictable, and whose actions are interconnected so that one agent’s action af-
fects the context of other agents systems[6, 7]. Examining the structural patterns 
and the interconnections within these structures is therefore important to unpack-
ing complexity from a system-wide approach. In other words, we view complexity 
from an aggregate complexity perspective, which refers to the study of multiple 
concurrent and dynamic interactions amongst components within a social system 
[8, 9]. According to Kannampallil, Schauer [10], aggregate complexity can be 
characterized in terms of the number of components and the degree of interrela-
tedness amongst the components. Here, we argue that these variables can be cap-
tured through social network measures such as degree centrality and density [5], 
as will be explained in Section 3. In the following sections, we provide an over-
view of social network analysis, focus on the data collection procedure and de-
scribe the challenges in designing a data collection instrument, particularly in the 
context of patients diagnosed with cancer. We will also describe the findings from 
our pre-pilot study, along with conclusion and implications of the study. 

2 Social Network 

Social network relationships indicate connections between one or more units (also 
known as “actors”, “nodes” or “vertices”). These units or actors are usually indi-
vidual persons e.g. patients or clinicians. They can also be other social unit such as 
hospitals or objects such as text. Pairs of actors who maintain a particular relation-
ship are said to be linked by that relationship (e.g. two people who are friends are 
linked by their friendship relation). Relationships often represent influence, com-
munication, trust or friendship in the form of ties and can also represent conflicts 
or disputes [4]. The strength of ties can range from weak to strong depending on 
the number and type of resources they exchange, the frequency of exchanges and 
the intimacy of the exchanges [3, 4]. Furthermore, social ties consist of multiple 
relations (as in the case of cancer patients and his/her General Practitioner (GP) 
where a tie could constitute a patient-doctor relationship as well as a friendship 
relationship) and therefore are called “multiplex ties”.  
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Table 1 Summary of Social Network Components 

Components  Description of social network components 
Ego  The focal person whose social network is being analyzed.  
Alter People who are connected to the ego. 
Relationships  The tie(s) that connect the ego with alters. 

 
Social Network Analysis (SNA) is a method for capturing the complexity of 

social relationships [3, 11]. O'Malley and Marsden [3] predict that health related 
applications of social network analysis will grow rapidly during the coming dec-
ades, since interpersonal relationships and support networks are crucial to the 
well-being of most persons and because appropriate methods for addressing the 
difficult analytic problems posed by social network data are increasingly availa-
ble. Chambers, Wilson [12] also highlight that little evidence exists for the poten-
tial of SNA to be realized in the healthcare settings. Future work needs to move 
beyond the descriptive approach towards SNA-based interventions [12]. In the 
following section we examine the methodology and measures proposed in this 
study.  

3 Measures for Social Network Data Analysis  

This study is currently in the pilot phase to a small random sample of patients. 
Data from the survey will be stored in a MySQL database to allow for mainten-
ance and flexible retrieval of data. Factor analyses and hypothesis testing will be 
conducted using SPSS. Density and degree centrality measures can be computed 
using UCINet and Netdraw [13]. These social network measures will be used as 
measures for the Aggregate Complexity Framework (ACF) explained in Levula, 
Chung [14]. In this paper however, we will only focus on the designing of an ego-
centric social network instrument required for conducting this study.  

The simplest and most obvious notion of centrality is degree centrality. The de-
gree of a point pi, is simply the count of the number of other points, pj (i≠j), that 
are adjacent to it and with which it is, in direct contact. With respect to communi-
cation an actor with relatively high degree is somehow in the “thick of things”.  To 
measure degree centrality we use the following equation.  ,  

where , 1 if and only if  and  are connected by a line, 0 otherwise.  
The density of a network is a commonly analyzed network property within so-

cial network analysis. Density is defined as “the ratio of existing ties within the 
network as a proportion of all possible number of ties within the network” [4]. 
Density in a directed network is defined using the following equation. 
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1 /2 

where  is the number of lines present and  is the number of nodes in the 
graph[4]. The density value for any social network ranges from 0 to 1.The higher 
the density within a network the more connections there would be between the 
actors in that network [4].  

4 Limitations of Social Network Analysis 

A significant challenge in social network analysis (SNA) is associated with recall 
and recognition bias when respondents identify components of their social net-
work in response to the name generator item. Researchers have argued that name 
generators elicit only a fraction of those persons having a criterion relationship to 
a respondent [15]. However, studies have shown that people are able to remember 
long term events and patterns of interaction fairly well. Data gathered through 
self-reports could explore the influences of other personal variables that would not 
have been possible through observational data [3, 16].  

In addition, SNA only captures the social network at a given timestamp. Social 
network analysis according to O'Malley and Marsden [3] is not dynamic, however 
social systems consists of human actors who are always moving and frequently 
changing (dynamic systems) their behaviors due to interactions with their envi-
ronment. Such social dynamic modeling are being explored by scientists such as 
[17]  and [18] using computational and mathematical models to predict the inte-
raction patterns and behavior of individuals and groups. Finally, further applied 
work needs to be undertaken in the domain of healthcare especially from a pa-
tient’s perspective [3, 12].  The current social network instruments need to be 
modified and adjusted to meet people with complex cases in healthcare organiza-
tions such as cancer [3].   

5 Context of the Study 

In this study we examine the aggregate complexity involved in cancer care coor-
dination from a patient’s perspective using aggregate social network measures 
[14]. We will be collecting primary data from the Royal Prince Alfred Hospital 
(RPAH), Sydney Cancer Centre, in New South Wales (NSW), Australia. Cancer 
care is a high priority area in Australia and managing cancer is complex [19-21]. 
Cancer care often requires multiple interventions provided by a variety of health 
professionals over prolonged periods [9, 22]. Problems such as poor care coordi-
nation resulting from socio-demographic factors, physical demographic factors, 
lack of association with peers, size of the social health professional networks, 
treatment types and infrastructure (e.g. transportation, technology and hospital 
services) provide the motivation for an understanding of the interplay between 
aggregate complexity using social network concepts and measures and care coor-
dination for patients diagnosed with cancer care.   
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6 Network Data Collection 

There are two main social network approaches for data collection. These are ego-
centric and sociocentric network approaches. The egocentric network approach 
views the network from the perspective of an actor in the network and the socio-
centric network approach views the network as a whole [4, 16].  In this paper we 
will only focus on an egocentric network approach because it is not practical to 
apply a sociocentric network approach given the context of this study.  In terms of 
sampling, we utilize the purposive sampling technique. Purposive sampling is one 
of the most commonly used sampling strategies that involve participants who have 
been pre-selected according to criteria relevant to a particular research question 
[20]. The pre-selection criteria for this study is to include patients that have been 
diagnosed with head and neck, breast, gynecological (surgical and medical) and 
lung and brain and have had at least 3 – 6 months of treatment. The recruitment 
for this study will take place at the oncology and outpatient clinics of the Sydney 
Cancer Centre. Patients will be informed about this research by the medical staff 
and via posters and flyers that will be placed in selected locations e.g. lifts and 
waiting areas. These will point the patients to the research investigators that will 
be collecting the data onsite.  

6.1 Design Phase 1: Survey  

In phase 1 of this study we developed a social network survey instrument to be 
completed by cancer patients. It is an egocentric social network instrument in 
which the cancer patients are the ego and those within their social network are 
alters. In this section we refer to the social network for patients as their “social 
health professional network”. By social health professional network we mean 
“social (e.g. family member, friend) and professional (e.g. Doctors, care nurses 
etc) people who the patient would communicate, interact or consult for matters 
related to cancer care and the provision of care”. An egocentric network instru-
ment contains two main questions - 1) a name generator to identify the respon-
dent’s alters and 2) a name interpreter aimed towards obtaining the associations 
between alters [16, 23]. Name generators are free to recall questions that delineate 
network boundaries. However, name interpreters are used to elicit data about both 
the ego-alter and alter-alter relationships. 

The name generator question that we used to elicit cancer patients social health 
professional network is: “Looking back over the last six months, please identify 
people (up to 15 maximum) who are or were important in providing you with 
information or advice related to cancer care. Please also identify their occupation 
or role and their proximity in their involvement with you”. The name interpreter 
question that we used is “In this section we would like to determine how the mem-
bers of your professional network relate to each other. This is most essential for 
conducting an analysis of your network”.  The answer for this question was to be 
completed using an adjacency matrix as shown in figure 1. The patients are  
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required to select an answer from one of six possible answers - unsure (missing 
data), 1 – do not know each other, 2 – distant, 3 – less than close, 4 – close and 5 – 
especially close.  

 

 

Fig. 1 Response matrix of formal data elicited through the name interpreter item 

This social network survey instrument was tested and reviewed by several indi-
viduals (including two subject matter experts in cancer research, two clinicians 
and five PhD research students) before it was circulated to the healthcare profes-
sionals (e.g. medical oncologists, hematologists and nurse practitioners) in the 
Sydney Cancer Centre to evaluate and provide feedback. The feedback from the 
healthcare professionals was anonymous. They felt that the instrument was too 
complicated and difficult for the patients to complete especially the name genera-
tor item – to elicit up to fifteen people. They thus proposed that we undertake a 
pre-pilot study so we could better understand the patient’s situation.   

Given these feedbacks we conducted a pre-pilot study at the Sydney Cancer 
Centre. The pre-pilot study was conducted by a healthcare expert in the area of 
cancer research.  Patients were firstly asked to identify up to 15 people who they 
interacted with, communicated and/or consulted for information relating to their 
cancer care treatment. The responses from the patients were unclear and it was 
evident that most of the patients were unable to understand the question.  The 
interviewer then rephrased the questions so that the patients could understand and 
answer them. It was evident that the patients were mostly already stressed and 
some were suffering from physical impairment such as hearing disability, fatigue 
and diminished physical activities. Another issue that was identified from the pre-
pilot was due to the sequential structure of the instrument. It created an obstacle 
for the patients such that the patients were unable to tell their cancer care journey 
story naturally.  

However, an interesting finding from this pre-pilot study was that patients were 
able to express their views of the clinician’s role and what they would consult 
them for. Given the feedback from the pre-pilot study and that from the healthcare 
professionals we redesigned our instrument by developing a more semi-structured  
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and qualitative interview instrument. This would enable patients to “tell their  
story” without being interrupted in a natural way. These findings were incorpo-
rated in the second design phase which is discussed in section 6.2 below.  

6.2 Design Phase 2: Interview 

The feedback and results from the pre-pilot study led to the development of a 
semi-structured qualitative interview instrument. This instrument would enable 
patients to tell their cancer care journey story naturally and the questions were 
simplified so that cancer patients could easily understand them. With the new 
instrument the interviewer would simply prompt and insert probes to help guide 
the discussion. Furthermore, the name generator item was slashed from eliciting 
up to 15 individuals to up to 5 individuals as alluded to by the healthcare profes-
sionals [24].  

Another critical change that was identified by the healthcare professionals was 
the six month duration in the name generator question.  This was reduced to three 
months and the name generator was rephrased to “Looking back over the last three 
months, who has been important in providing you with information, advice or 
support related to cancer care?” In order to elicit up to five alters, the interviewer 
would simply probe the respondent through the follow-up question “Anyone 
else?”. This would enable the investigator to collect relational data pertaining to 
the ego-alter network. The key with this approach was that it would enable pa-
tients to answer questions naturally in a conversational manner. Another reason 
for the change in duration was that it would enable patients to clearly recall their 
experiences and their relational attributes as they journeyed through their cancer 
treatment. We also changed the name interpreter question as such “Prompt: XXX 
(insert name or initials) was the 1st person, you listed.  Does XXX know any of the 
other members (prompt: unsure, don’t know, distant, less than close, close and 
especially close).” This would be repeated for all five or so alters depending on 
the number of alters identified by the patients. Furthermore, the patients will not 
have to fill out anything as the interviewer will be simultaneously asking the ques-
tions and filling in the form on their behalf.  

Given the feedback from the healthcare professional (i.e. medical oncologists, 
hematologists, administrators, nurses etc.) and from the pre-pilot study it became 
clear that the quantitative survey instrument that had been developed initially was 
too complex for the patients to complete on their own. This led to changes to the 
design of the instrument so that it would be more qualitative. This would allow the 
patients to share their experience in a natural and conversational manner.   

7 Summary 

This paper provides an overview of the concepts of social network in terms of 
understanding the aggregate complexity associated with the coordination of care 
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for cancer patients in the Sydney Cancer Centre, Royal Prince Alfred Hospital 
(RPAH), in New South Wales (NSW), Australia. In this study, we focused specif-
ically on egocentric network approach to elicit the ego-alter and alter-alter net-
work for cancer diagnosed patients. We also discuss two design phases for the 
development of our survey instrument. In design phase 1, patients were required to 
complete a quantitative survey. The instrument was pre-piloted to a sample of 
patients at the Sydney Cancer Centre by a senior cancer researcher. In design 
phase 2, we developed a semi-structured qualitative interview instrument based on 
the response from the healthcare specialists and the issues identified in the pre-
pilot study. The instrument would enable patients to tell their story in a more natu-
ral and conversational manner.  

The contributions that this study makes to the field are novel insights into the 
design of social network instrument for complex diseases such as cancer. This 
study also contributes to the theoretical aspect of aggregate complexity and care 
coordination. These insights can be leveraged by practitioners and researchers 
working on similar projects or on complex diseases such as cancer care. The next 
step for this study is to start data collection which would provide more insights 
into how the social networks for each patient contributes toward their treatment 
journey in the healthcare system.  
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Abstract. We analyse a huge and very precise trace of contact data collected
during 6 months on the entire population of a rehabilitation hospital. We in-
vestigate the graph structure of the average daily contact network. Our main
results are to unveil striking properties of this structure in the considered
hospital, and to present a methodology that can be used for analysing any
dynamic complex network where nodes are classified into groups.

The MOSAR project aims at examining the factors determining the dynam-
ics of AMRB (AntiMicrobial Resistant Bacteria) spread within healthcare
facilities. To further reduce transmission, in addition to classical prevention
measures (such as admission controls, isolation of carriers and hand hygiene),
changing contacts within the hospital is considered as the next step [1]. In-
deed, contacts strongly influence how transmission occurs [2]. Yet, contacts
are difficult to measure efficiently in practice, and they may even be harder
to change. Recently, however, advances in communication technologies have
made it possible to record person-to-person interactions with unprecedented
detail, allowing an in depth view of the structure of contacts in real-life set-
tings [3]. If such contacts actually support transmission, it may open the way
to further improvement in hospital hygiene.
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In this article, we analyse the contact trace recorded on the entire popula-
tion of a rehabilitation hospital during 6 months between June and November
2009, within the MOSAR project. We focus on a period of 8 weeks of the
measurement, from July 6th to September 2nd involving 492 individuals, 253
patients and 239 staffs. We describe the methodology we used to uncover
the key characteristics of this dynamic contact network and the main results
we obtained: we point out big differences in the contact profiles of services
(Sec. 1), as well as in contact patterns of patients and staffs (Sec. 2), and
we reveal the structure of interconnections between the mainly introverted
services of the hospital (Sec. 3).

Related Works. There have been some works using sensor devices in order
to unfold contact patterns among individuals in environments involving pa-
tients or children, which present critical risks for spreading of diseases. The
measurement analysed in [4] was made on an entire primary school during
3 days. Two similar experiments, described in [5, 6], were both conducted
during one week in some paediatric ward. Compared to those works, our
analyses present two important advantages. Firstly, the measurement we use
was made on a much longer period of time (6 months), which allows to assess
the generality of the conclusions we can derive on shorter period of times
(like one day or one week). Secondly, our measurement is not limited to a
specific part of the hospital, it involves all patients and all staffs of all services
of the hospital, which is a key point to have an accurate view of the actual
possibility of spreading into a given service. Indeed, these possibilities highly
depend on the contacts occurring outside the service under study.

Preliminaries. The contact data was recorded using sensor devices carried
by the participants and that send signals every 30s. Those signals include the
ID of their source device which is recorded together with a time stamp by
devices that are close enough from this source (typically 1 to 2 meters). The
sending time of the different sensors are not synchronised but their internal
clocks are. Afterwards, time is sliced in slots of 30s and we keep, for each
slot, the list of pairs A,B of sensors such that at least one (possibly both)
recorded the signal of the other. Each of these pairs is unordered (we do
not keep track of which node receives the signal and which one sends it)
and appears at most once in a given time slot. Finally, in all this article, we
manipulate intervals of contacts instead of punctual contacts, i.e. a contact is
a quadruplet (A,B, ts, te) where A and B are two nodes of the network and
ts and te are respectively the time slots where starts and ends the interval of
contact between A and B, the length of the contact being te − ts.

Throughout the article, we analyse sets of contacts over a specified time
period (typically one day) using three parameters: number of contacts, cumu-
lated length of contacts and number of adjacency pairs. (A,B) is an adjacency
pair on a given time period iff there is at least one contact between A and B
during this period. A contact (A,B, ts, te) between A and B gives rise to two
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semi-contacts: one attached to A, denoted (A, ts, te)
B, and one attached to

B, denoted (B, ts, te)
B. And similarly, every adjacency pair gives rise to two

adjacency semi-pairs. In the rest of the article, for sake of simplicity of vo-
cabulary, we use the term contact (resp. pair) instead of semi-contact (resp.
semi-pair), but all statistics are actually made using semi-contacts (resp.
semi-pairs). The reason is that it gives a straightforward meaning to mean
statistics per individual.

In the rest of the article, for sake of comparison, we make extensive use of
a uniformised version of the network of the hospital, which we call the full-
uniform network and which is defined as follows. The full-uniform network
is a complete weighted graph where each pair of nodes receives 1) a weight
equal to the density of the real network (i.e.the mean number of adjacency
pairs per pair of nodes in the real network), 2) a number of contacts equal to
the mean number of contacts per pair of nodes, and 3) a cumulated length
of contacts equal to the mean cumulated length per pair of nodes.

General Organisation of the Hospital. Over the period of study, the
mean number of people present in the hospital in one day is about 103 pa-
tients and 64 staffs. The patients and staffs are divided into 9 services (see
repartition on Fig. 1), only the first five of which (S1 to S5) contain both
patients and staffs, the other four (S6 to S9) containing only staffs. Each of
the services S1 to S5, containing both patients and staffs, occupies one floor
in one of the two wings of the building: S1, S2 and S3 occupy respectively
the 1st, 2nd and 3rd floor of the 1st wing, while services S4 and S5 occupy
the 2nd and 3rd floor of the 2nd wing. Services S7 to S9 contain rehabilita-
tion staffs and S6 is the night service, regrouping people replacing staffs from
services S1 to S5 during nights. S7 and S8 are located in two distinct places
between the two wings of the buildings, but S6 and S9 do not have a unique
location in the hospital. It must be clear that the division of the hospital
into services is not meaningful only from an administrative point of view but
has also a strong impact on the structure of the network: in average in one

Fig. 1 Number of individuals per day for each service, distinguishing between
patients (light red) and staffs (deep blue)
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Fig. 2 Mean activity per day in each service. Left: number of adjacency pairs.
Centre: number of contacts. Right: cumulated length of contacts.

day, 66% of the adjacency pairs of the hospital occur inside services, and 92%
of the cumulated length of contacts, while these values are only 25% in the
full-uniform network.

1 Different Levels of Activity of Services

Figure 2 shows the repartition of contacts among the 9 services of the hos-
pital, in terms of total number of adjacency pairs (left), number of contacts
(centre) and cumulated length of contacts (right). It reveals some big dif-
ferences between services. The 5 services including patients seem to be more
active than the 4 others, for each of the three criteria. But there are also clear
differences between these 5 services as well. As one may guess, one reason for
this is that services have different sizes (see Fig. 1). For adjacency pairs, this
is confirmed by the fact that the number of mean adjacency pairs per individ-
ual per day varies only little between two different services (Fig. 3 left). On
the other hand, the number of contacts and the cumulated length of contacts
per day remain very different from one service to another even when com-
puted in average for one individual (Fig. 3 centre and right). This indicates
that for these two criteria, the sizes of services cannot be hold for entirely
responsible of the disparities between global activity of services appearing on
Fig. 2.

Services S6 to S9, which do not include any patients, have a mean number
of contacts and cumulated length of contacts per individual which is far less
than those of services S1 to S5, which do include patients (Fig. 3 centre and
right). Moreover, among these latter services, it appears that services S4, S5
and S2 present a higher mean individual activity, for these two parameters,
than services S1 and S3; and it turns out that S4, S5 and S2 are the 3 services
that contain the greater number of patients (see Fig. 1). These observations
suggest that the individual activity of patients wrt. number of contacts and
cumulated length of contacts may be much higher than the one of staffs.

Another interesting fact revealed by Fig. 2 and 3 is that the number of
contacts and the cumulated length of contacts per service behave very sim-
ilarly. We conducted more analyses (not presented here) which showed that
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Fig. 3 Mean individual activity per day in each service. Left: number of adjacency
pairs. Centre: number of contacts. Right: cumulated length of contacts. The doted
lines depicts the mean values per individual in the hospital.

Fig. 4 Mean individual activity per day in each service, distinguishing between
patients (light red) and staffs (deep blue). Left: number of adjacency pairs. Right:
cumulated length of contacts.

this is a more general fact, not only visible for services: for one node over
the whole period of study, these two parameters appear to be strongly corre-
lated. Therefore, as they give very similar results in all the experiments we
conducted, we chose to keep only one of them in the rest of the paper, namely
the cumulated length of contacts.

2 Different Behaviours of Patients and Staffs

As pointed out above, patients and staffs seem to have a very different activ-
ity. We then refine our analysis of the mean activity per individual and per
day by separating patients from staffs in the 5 concerned services (Fig. 4). It
turns out that patients are a bit less active than staffs (about 20% to 30%
less) in terms of adjacency pairs, but are much more active in terms of cu-
mulated length of contact (between 2 and 6 times more, except for service S1
where cumulated length of contacts of patients and staffs are comparable).
This explains why the differences between services that appeared on Fig. 2
left for the whole service disappear when considering the adjacency pairs per
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person (Fig. 3 left), while this difference does not disappear for cumulated
length (see Fig. 2 right and Fig. 3 right).

This rises an even more accurate question: what is the role of patients
and staffs in the global contact pattern of the hospital? Where is located the
majority of contacts? between patients, between staffs or between patients
and staffs? Table 1 shows that a vast majority of the cumulated length of
contacts in the hospital (80%) occurs between two patients, while only 12%
of this length involve one patient and one staff, and 8% involve two staffs.
Nevertheless, the picture for adjacency pairs is quite different: those between
patients represent only 24% of all pairs, which is about 35% less than in
the full-uniform network. The majority of adjacency pairs (56%) involves
one patient and one staff, and 20% of them involve two staffs. Both of these
values are about 20% higher than in the full-uniform network, suggesting
that the contacts of staffs and in particular the contacts between staffs and
patients are very important for the structure of the network, and may then
play a key role regarding the possibility of spreading in the hospital.

Table 1 Repartition of contacts between patients and staffs in the hospital

PA-PA PA-ST ST-ST

Pairs 0.24 0.56 0.20
Length 0.80 0.12 0.08

(a) Global repartition

PA vs PA ST

Pairs 0.46 0.54

Length 0.93 0.07

(b) Patients centred

ST vs PA ST

Pairs 0.60 0.40

Length 0.42 0.58

(c) Staffs centred

Table 1 centre and right give the repartition of contacts respectively for
an average patient and an average staff. They show that the majority of the
adjacency pairs of a patient (54%) occurs with a staff, and that the majority
of the adjacency pairs of a staff (60%) occurs with a patient. Note that,
opposite to the the case of patients whose cumulated length of contacts is
strongly unbalanced in favour of contacts with patients (93%), staffs share
much more equitably their length of contacts between patients (42%) and
staffs (58%). This confirms that staffs present a more open pattern of contacts
than the one of patients, which may result for them in particular spreading
abilities.

3 Introversion and Interconnection of Services

In the introduction, we mentioned that most of the activity of the network
takes place inside services. Here we investigate further this question by exam-
ining the deviation of introversion of each service with regard to adjacency
pairs, number of contacts and cumulated length of contacts. The introversion
of a service S with regard to one of these 3 parameters, denoted α, is defined
as αint(S)/αext(S), where αint(S) is the value of parameter α (e.g. number
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of adjacency pairs) inside S and αext(S) is the value of parameter α between
S and the rest of the hospital. In all the rest of the article, we qualify con-
tacts and adjacency pairs as internal or external depending whether they
take place inside a service or between two distinct services. We define the
factor of deviation of introversion of service S as the ratio between the intro-
version of S in the real network and the introversion of S in some specifically
defined uniform network. For adjacency pairs, we use for comparison the full-
uniform network defined in the preliminaries. For number of contacts, we use
the contact-uniform network, which has exactly the same adjacency pairs as
the real network, each of which receives a number of contacts equal to the
mean number of contacts per adjacency pair in the real network. And finally,
for cumulated length of contacts we use the length-uniform network, which
has the same adjacency pairs as the real network, each of which has the same
number of contacts as in the real network, but each of this contacts receives
a length equal to the mean cumulated length per contact in the real network.
The rational behind these definitions is that for the number of contacts, we
compute its deviation knowing the adjacency pairs of the real network, and
for the cumulated length of contacts, we compute its deviation knowing both
the adjacency pairs and the number of contacts of the real network.

Fig. 5 Factor of deviation of the introversion per day for each service. Left: devi-
ation of the introversion wrt. number of adjacency pairs. Centre: deviation of the
introversion wrt. number of contacts, knowing adjacency pairs. Right: deviation of
the introversion wrt. cumulated length of contacts, knowing adjacency pairs and
number of contacts.

The results are depicted on Fig. 5. They show that services are strongly
introverted in terms of adjacency pairs: most of them have a factor of devia-
tion of introversion between 9 and 18, except two services S6 and S9 having
factors 2 and 3. Note that these two services are those that do not have a
single location in the building of the hospital. Going further, even knowing
this structure of the adjacency pairs, services are still clearly introverted in
terms of number of contacts (factors between 3 and 10). This means that ser-
vices do not have only a strong preference for making adjacency pairs inside
rather than outside, but they are also much more likely to repeat contacts for
their internal adjacency pairs. For cumulated length, the factor of deviation
of introversion is between 2 and 4 for all services. The fact that these values
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Table 2 Repartition of adjacency pairs between patients and staffs, distinguishing
between internal and external pairs

PA-PA PA-ST ST-ST Total

External 0.05 0.23 0.06 0.34
Internal 0.19 0.33 0.14 0.66

Total 0.24 0.56 0.20 1.00

(a) Global repartition.

PA vs PA ST Total

Ext. 0.10 0.22 0.32

Int. 0.36 0.32 0.68

Total 0.46 0.54 1

(b) Patients centred.

ST vs PA ST Total

Ext. 0.24 0.12 0.36

Int. 0.34 0.30 0.64

Total 0.58 0.42 1

(c) Staffs centred.

are lower than the previous ones is a consequence of the correlation between
cumulated length of contacts and number of contacts (see Section 1). But
still, they indicate that services not only favour internal adjacency pairs and
internal repetition of contacts, but also prefer longer contacts between their
members rather than outside.

Table 2 gives some global statistics distinguishing both between internal
and external contacts and between patients and staffs. It reveals a strong
bipartite-like structure of the network between the staffs divided into services
on one side (9 classes), and the patients divided into services on the other
side (5 classes). Indeed, more than 83% of the links between these 14 classes
occur between one patient and one staff. In addition, links between patients
and staffs represent more than 67% of the external links between services
of the hospital (18% of these links occur between staffs and 15% between
patients). This shows that the contacts between patients and staffs play a
prevalent role in connecting the introverted services of the hospital. These
observations are confirmed from an individual centred point of view (see
Tab. 2 centre and right): an individual (either patient or staff) has only
few external adjacency pairs with his own side of the bipartition, while the
repartition between its external and internal pairs with the other side are
more balanced than internal/external pairs in the whole network.

Perspectives

The main perspective of our work is to determine the impact of the specific
structure of contacts we highlighted on spreading processes. In this context, it
is still to establish whether there is a correlation between the contaminations
contained in the MOSAR dataset (which also includes biological data) and
the pattern of contacts in the dynamic network. The second perspective is
to take into account the variation of the contact pattern of the hospital
along time and determine its impact on the possibility of spreading in the
network.
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A., Abiteboul, D., Bouvet, E., Mentré, F., Fleury, E.: Electronic sensors for
assessing interactions between healthcare workers and patients under airborne
precautions. PLoS ONE 7(5), e37893 (2012)

4. Stehle, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto,
M., den Broeck, W.V., Régis, C., Lina, B., Vanhems, P.: High-resolution mea-
surements of face-to-face contact patterns in a primary school. PLoS ONE 6(8),
e23176 (2011)

5. Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., den Broeck, W.V.,
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Abstract. In the last decade, several researchers have been using interaction net-
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(such as Facebook), that have brought a set of metrics to study the network struc-
ture and the function of each node in the network. Thus, the aim of this work was 
to assess the application of Social Network Analysis (SNA) concepts and metrics 
in microbiological interaction networks, to identify patterns of cohesive sub-
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subgroups. We built a bipartite microbiological interaction database containing 
frequency of phylogenetic subgroups in water bodies and applied the following 
SNA metrics: dependence distribution, strength, betweenness centrality and cli-
que. The sna package for the R program, Pajek, Dieta and Ucinet programs were 
the tools used. Among the results, we found that SNA concepts and metrics are 
extremely useful in microbiological studies to understand the correlation between 
each node in the network (the generalist and the predominant nodes), as well as to 
analyze the co-occurrence pattern of microorganisms in the network (cohesive 
subgroups).  

1 Introduction 

The concepts, metrics and tools commonly used in interaction network studies 
have their foundations in Social Network Analysis (SNA), which uses the graph 
theory concepts, computing techniques and resources, to analyze the network 
structure and its interactions [26]. The SNA is considered one of the broadest ap-
plications in the network science field to research human relationships and con-
nections [16]. Among the challenges that posed in this area are: (i) how networks 
improve, weaken or transform; and (ii) how to tackle the dynamic process of 
changes in the network structure. These same challenges arise in several biological 
contexts, such as in pollination studies [3, 29], that use interaction network analy-
sis as a resource for studying the factors that have contributed and influenced bio-
diversity maintenance.  

In the ecological field, interaction network is defined as a set of species (polli-
nators and plants) which are connected by means of links, which represent interac-
tions [3]. Thus, researchers apply the algorithms, metrics and software commonly 
available in the SNA area to identify the role of each species in the network, as 
well as the properties of the network structure (e.g. connectance, number of spe-
cies at each trophic level, among others). Furthermore, in the microbiological con-
text, network analysis has become increasingly common in the last decade, and 
has been used in protein interactions with other macromolecules, such as carbohy-
drates, nucleic acids, lipids and other chemical molecules (metabolites and drugs) 
[31]. Besides, network analysis can also be used with microorganisms in more 
complex data, as phylogenetic relationships [22], microbial source tracking [21], 
soil bacterial diversity [25], health and disease variants [10, 19], and microbiota 
diversity [2, 22] .  

Concerning microbial indicators, they have been used to survey water quality 
as surrogates to detect the presence of pathogens of fecal origin. However, these 
indicators do not provide any information about the origin of fecal pollution, i.e., 
whether the host source is human, cattle or birds, or even a combination of these 
[14]. Phylogenetic groups were proposed as a screening tool in source tracking 
due to rapidity and simplicity [9]. Nevertheless, new approaches should be used to 
evaluate pollution sources relationships. Considering this limitation, we deem that 
network analysis is an important tool for addressing this issue, particularly as it 
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has not been used yet in interactions between phylogenetic subgroups and envi-
ronmental sites. This proof-of-principle study will also provide a framework  
to evaluate the potential use of network metrics in more complex biological  
problems.  

Therefore, our aim is to assess the application of SNA concepts and metrics in 
microbiological interaction networks, to identify patterns of cohesive subgroups, 
besides discovering new knowledge regarding the underlying structure of sub-
groups. 

2 Material and Methods  

2.1 Sample Description     

Phylogenetic subgroups (A0, A1, B1, B22, B23, D1 and D2) described by [11] and 
[12] were identified from Escherichia coli strains isolated from twelve water bo-
dies with different pollution levels in the State of São Paulo as previously de-
scribed by [27]. The phylogenetic subgroups were used as biomarkers in the rivers 
and reservoirs studied, which are Tietê River (TIET2050 and TIET3120), Paratei 
River (PTEI2900), Ipiranga River (IPIR0018), Pau de Bala Stream (PBAL0014), 
Aguapei River (AGUA2800), Jaguari Mirim River (JAMI2100), Tanque Grande 
Reservoir (TGDE0900), Billings Reservoir (BILL2801 and BILL2251) and Gua-
rapiranga Reservoir (GUAR0502 and GUAR0601). 

These data were organized in a bipartite microbiological interaction database 
(water bodies x phylogenetic subgroups) – available as part of a project of the Re-
search Center on Biodiversity and Computing (BioComp-USP), under develop-
ment by the authors. This dataset is composed of a weighted matrix (phylogenetic 
group abundance), instead of a binary matrix, in which rows were represented by 
water bodies, and columns by phylogenetic subgroups; therefore, each cell con-
tains a positive integer representing the frequency of occurrence of a phylogenetic 
subgroup in the corresponding water body. 

2.2 SNA Metrics    

The SNA metrics was the method used to analyze the role of each node on the mi-
crobial interaction network (species level); it was chosen because it allows identi-
fying the following characteristics of the network nodes: dependence, strength, 
betweenness centrality and w-clique (cohesive subgroups) – which are described 
below. 

In a weighted network, the dependence of i node on j node (dij) is considered 
the proportion of all interactions of the i node with j node [17]. Therefore, the 
formula used is dij = Nij/Ni, where Nij represents the number of interactions ob-
served between node i and j, and Ni the total number of interactions identified to 
node i [18]. 
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The interaction strength of the j node comprises the sum of all dependencies of 
that j node with each i node (strength(j) = Σdij) and represents the effect of one j 
node with the total population of the network [30, 28]. For instance, in plant-
pollinator mutualism networks, it is usually measured as the contribution of a pol-
linator to the maintenance of the plant species [28]. In our network, is the effect of 
one j phylogenetic subgroup in the network structure. 

The betweenness centrality metric allows analyzing how vital a node is in the 
network; values near 1 indicate the node that has the bridge function in the net-
work (if it is removed, any node would be disconnected from the other nodes in 
the network), and 0 indicate nodes with low betweenness centrality (if the node is 
removed, the network structure would not be altered) [16]. The calculation of this 
metric is based on the geodesic distances (the shortest paths between a given pair 
of nodes in the network) and it is described in [13]. 

The last metric applied was the w-clique that allows identifying the cohesive 
subgroups (clusters) in the network structure; it is composed of a set of vertices 
(nodes) that are connected to each other by strong interactions, i.e., the weights of 
which are higher than the average network weight [1]. This metric is an alternative 
approach to the clique1 metric, because it takes into account the interaction abun-
dance (weighted matrices) to identify the network clusters. 

2.3 Tools Applied to Calculate the Metrics     

To calculate the SNA metrics in the network, we used the following tools: sna 
package for R program (The R Foundation for Statistical Computing), Pajek, Di-
eta and Ucinet programs. 

The sna package [8] has a set of tools for Social Network Analysis that allows 
calculating the metrics related to the nodes level in the network, such as depen-
dence and strength; from this metrics we can analyze the role of each node in the 
interaction networks. 

The Pajek2 program [4] – Slovene word for spider – is a computational tool 
used for performing large network analysis and drawing the network structure in 
graph form [24]. In this context, it was used to calculate the betweenness centrali-
ty metric and its representation in graph form. 

The Dieta3 program [1] allows analyzing individual specialization and identify-
ing cohesive subgroups (w-cliques) in weighted networks; it is based on the com-
plex network theory. It is used in combination with Ucinet4 [7] – a software that  
 

                                                           
1 A clique is composed by a set of three or more vertices (nodes) totally connected to each 

other on the network [24]. 
2 Available online for free download at <http://pajek.imfm.si/doku.php> 
3 Available online for free download at 
  <http://esapubs.org/archive/ecol/E089/115/Dieta1.exe> 
4 Available online for free download in <http://www.analytictech.com/ 
 downloaduc6.htm>. A Ucinet tutorial is available at [15]. 
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has incorporated a range of SNA metrics, such as cohesive subgroups and measure 
of centrality [6]. We firstly used the Dieta program to verify the nodes that have 
been connected to each other by strong interactions and, in sequence, we applied 
the resulting matrix in the Ucinet program to identify the w-cliques. 

2.4 Data Analysis     

From the bipartite microbiological database (phylogenetic subgroups frequency in 
water bodies), available in an excel spreadsheet, we organized the data, sorted the 
rows and columns in descending order of degree (number of connections of each 
node), as recommended by [23], in order to draw the standard graphs. Following 
these spreadsheets, we prepared two matrices formats and saved in text files: (i) 
the first, in which labels of columns and rows are represented, besides the values 
of frequencies – to be used in the R program (matrix_r.txt); and (ii) the second, in 
which only the row labels and values of frequencies remain to be used in the Dieta 
program (matrix_dieta.txt).  

Firstly, we use the matrix (prepared to the R program) and applied the sna 
package to calculate the node level metrics, specially the dependence distribution 
and the strength of each node in the network. Furthermore, this matrix was also 
used in the Pajek program to draw the network graphs, and to calculate and plot 
the betweenness centrality metric values in graph form. 

Another application performed in these networks was the use of the Dieta pro-
gram, in order to identify niche overlap (cohesive subgroups). More details about 
the parameters used in the Dieta program can be seen in its manual, available in 
the supplementary section of [1]. The output file generated by Dieta corresponds 
to a binary matrix representing the interactions with strong connections, i.e., inte-
ractions whose values were greater than or equal to the network average (w-
clique). This matrix was opened with the Pajek program to transform it into an 
undirected network, because it was a niche overlap network. Finally, we used the 
Ucinet program for the identification of cliques and for drawing the clusters by 
means of a dendrogram. 

3 Results and Discussion     

Among the results, by analyzing dependence distribution and strength metrics of 
the network nodes (Table 1), it was possible to identify the generalist nodes (e.g., 
phylogenetic subgroups occurring in most of the water body nodes) and the pre-
dominant nodes (e.g., which phylogenetic subgroups were important for certain 
water body groups). In this case, Table 1 represents the dependence distribution of 
each water body by phylogenetic subgroups, and the phylogenetic subgroups 
strength metric (sum of the dependencies of all i water bodies by each j phyloge-
netic subgroup). Thus, it can be observed that although the BILL2801 reservoir 
has a positive value of dependence for all phylogenetic subgroups, it has the high-
est dependence of A1 (0.4314), because this phylogenetic subgroup is the most 
frequent in this reservoir. 
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Table 1 Dependence distribution of water bodies by phylogenetic subgroups, and 
phylogenetic subgroups strength metric 

Dependence of water bodies by  
phylogenetic subgroups(a) 

A0 B1 B23 D2 A1 D1 B22 

BILL2801 0.2549 0.0980 0.1373 0.0392 0.4314 0.0196 0.0196 

GUAR0601 0.2245 0.1020 0.1837 0.0408 0.3469 0.0612 0.0408 

TIET2050 0.3913 0.0870 0.2391 0.0217 0.1739 0.0652 0.0217 

TIET3120 0.3269 0.1154 0.1731 0.0577 0.2115 0.0769 0.0385 

BILL2251 0.2453 0.0943 0.3396 0.0189 0.2642 0.0000 0.0377 

GUAR0502 0.2692 0.0769 0.2885 0.0385 0.2692 0.0577 0.0000 

TGDE0900 0.3725 0.0392 0.0784 0.0000 0.3922 0.0588 0.0588 

PTEI2900 0.6136 0.0682 0.0455 0.0227 0.2273 0.0000 0.0227 

AGUA2800 0.4630 0.2222 0.0741 0.1296 0.0000 0.1111 0.0000 

IPIR0018 0.6667 0.0513 0.0513 0.1538 0.0000 0.0769 0.0000 

PBAL0014 0.3913 0.0000 0.0435 0.1739 0.0000 0.3913 0.0000 

JAMI2100 0.7727 0.0909 0.0000 0.0000 0.1364 0.0000 0.0000 

Phylogenetic subgroup strength(b) 4.9920 1.0455 1.6539 0.6969 2.4529 0.9188 0.2399 

Notes: 
(a) The sum total of the dependence values of each water body should be equal to 1. High value of 

water body dependence (closer to 1) comprises higher association with the phylogenetic sub-
group; whilst low value of water body dependence (closer to 0) consists of lower association 
with the phylogenetic subgroup.  

(b) The strength metric represents the abundance of phylogenetic subgroups (based on their fre-
quency values) in each water bodies; thus, high strength values can demonstrate the nodes that 
are more generalists or more predominant in the microbiological network. Strength (j) = ∑ d(ij). 

 
In our network, A0 was the phylogenetic subgroup with the highest strength 

(4.9920). This subgroup has the highest abundance in the water bodies sampled 
and showed the highest interaction frequency values. However, not necessarily, 
the most frequent and ubiquitous node displays the highest strength. For instance, 
the phylogenetic subgroup A1 which is not present in some reservoirs 
(AGUA2800, IPIR0018 and PBAL0014) has the second highest strength in the 
network (2.4529). This higher strength resulted from the highest dependence val-
ues in those water bodies in which it is present (as in BILL2801, TGDE0900 and 
GUAR0601). From this analysis, we can conclude that the strength metric is di-
rectly related to the presence of association (interaction) and with the dependence 
value. Moreover, by means of the dependence and strength metrics, it is possible 
to note the role of each network node and then analyze the network tolerance re-
garding to the extinction/inclusion of a node – similarly to analyzing the potential 
of an actor in Social Networks studies, as performed by [20]. 

Another result found in this study refers to the betweenness centrality metric. 
As it can be seen in Figure 1, this metric allows verifying that the phylogenetic 
subgroups have a central role in the network – specially A0, B1, B23 and D2 –, the 
most centralized in the graph and with the largest circles). An analogy to Social 
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Networks would be to know the most popular people in the network (those that 
have many friends). In our context, by means of this metric we can verify that the 
water body interactions have been established through the phylogenetic sub-
groups, as expected. An additional result to support this kind of analysis is the 
graphical representation of the metric values, as can be done with the Pajek  
program. 

 

Fig. 1 Betweenness centrality graph – phylogenetic subgroups (A0, A1, B1, B22, B23, D1, 
D2) and water bodies (AGUA2800, BILL2251, BILL2801, GUAR0502, GUAR0601, 
IPIR0018, JAMI2100, PBAL0014, PTEI2900, TGDE0900, TIET2050, TIET3120)  

Once the relationship between water bodies and phylogenetic subgroups was 
confirmed (by means of dependence, strength and betweenness centrality metric), 
we found a metric that can support the identification of phylogenetic subgroup co-
occurrence patterns in water bodies, from a clustering method. The first alternative 
was the use of statistical methods – commonly applied for cluster identification – 
such as Correspondence Analysis (CA) and Unweight Par Group Method with 
Arithmetic mean (UPGMA). As described by [27], the CA did not recover any 
consistent grouping. The  UPGMA clustering of the dissimilarities split the nodes 
into two groups, but these groups did not reflect features that are of interest for 
water studies, such as geographic location, source of pollution or abiotic factors. 

Finally, by means of cliques identification, it was possible to discover new 
knowledge regarding a simple interactions database, such as grouping patterns of 
water bodies (in protected environments and contaminated environments), based 
on the abundance of phylogenetic subgroups. From the identification of network 
cliques (nodes connected by stronger interactions – greater than or equal to the 
network average, as showed in Table 2), we could find the cohesive subgroups in 
the network and it was an innovative contribution for this research area. 
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Table 2 The output file ‘B[file_name].mat’ generated by Dieta program that corresponds to 
a binary matrix representing the presence (1) or absence (0) of the interactions with strong 
connections 

 *Vertices 12  *Matrix 1 2 3 4 5 6 7 8 9 10 11 12 

1 BILL2801 1 0 1 1 1 1 1 1 1 0 0 0 0 

2 GUAR0601 2 1 0 1 1 1 1 1 0 0 0 0 0 

3 TIET2050 3 1 1 0 1 1 1 1 1 1 0 0 0 

4 TIET3120 4 1 1 1 0 1 1 1 1 1 0 0 0 

5 BILL2251 5 1 1 1 1 0 1 1 1 0 0 0 0 

6 GUAR0502 6 1 1 1 1 1 0 1 1 0 0 0 0 

7 TGDE0900 7 1 1 1 1 1 1 0 1 0 0 0 0 

8 PTEI2900 8 1 0 1 1 1 1 1 0 0 1 0 1 

9 AGUA2800 9 0 0 1 1 0 0 0 0 0 1 1 0 

10 IPIR0018 10 0 0 0 0 0 0 0 1 1 0 1 1 

11 PBAL0014 11 0 0 0 0 0 0 0 0 1 1 0 0 

12 JAMI2100 12 0 0 0 0 0 0 0 1 0 1 0 0 

(a)                                                                            (b) 
Note: The left side of this table (a) shows the vertices (nodes) of the network and the right side of 
this table (b) demonstrate the binary matrix. This matrix gets the result of processing of Dieta 
program from the bipartite microbiological interaction database (containing the distribution of 
phylogenetic subgroups in these water bodies). In this case, the nodes between 1 and 7 represent 
the “contaminated environments” and, the others, the “protected environments”.  

 
 
It is noteworthy that there is a set of metrics (measures) for network analysis. 

However, the choice should take into account the specific problem and the dataset. 
Besides, it is possible to analyze at the network level (network structure) or at the 
node level (the role of one node in the network) – this also depends on the context 
analysis. More details about a set of metrics can be seen in [5, 29]. 

Another finding in this research concerning computational tools is that there is 
a trend towards having graphical and user-friendly interfaces, based on open 
source codes and having extensive documentation, supporting data import/export 
to other software, metrics calculation and interactions representation in graph 
form. As an example, we can mention the Pajek program that allows a set of tools 
to be accessed only through menu options (such as betweenness centrality) and al-
so provides a set of graphs for visualizing the results (networks). 

4 Conclusion     

From this research, we found that SNA concepts and metrics can be used as a  
tool in microbiological studies, allowing the visualization of phylogenetic sub-
groups and water bodies associations. For instance, they can help to identify  
pollution sources (w-clique), higher/lower association between water bodies and 
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phylogenetic subgroups (dependence), abundance of phylogenetic subgroups in 
each water bodies (strength) and, moreover, the node that has the bridge function 
in the network. However, is important to emphasize the support of experts in 
Biodiversity Informatics and microbiological fields, to identify which kind of new 
knowledge would be generated with biological significance. 

In conclusion, a considerable part of the microbiological Interaction Networks 
studies requirements, especially microbial genetics, concerns the need to identify 
subgroups (clusters) and co-occurring microorganisms – that have already been 
exploited in the Social Networks and Ecological Networks field. Thus, these find-
ings will guide further developments of the application of SNA tools and metrics 
to microbiological studies. 
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Inducing Language Networks from Continuous
Space Word Representations

Bryan Perozzi, Rami Al-Rfou’, Vivek Kulkarni, and Steven Skiena

Abstract. Recent advancements in unsupervised feature learning have developed
powerful latent representations of words. However, it is still not clear what makes
one representation better than another and how we can learn the ideal represen-
tation. Understanding the structure of latent spaces attained is key to any future
advancement in unsupervised learning. In this work, we introduce a new view of
continuous space word representations as language networks. We explore two tech-
niques to create language networks from learned features by inducing them for two
popular word representation methods and examining the properties of their resulting
networks. We find that the induced networks differ from other methods of creating
language networks, and that they contain meaningful community structure.

Keywords: Language Networks, Word Embeddings, Natural Language Process-
ing, Unsupervised Learning, Distributed Representations.

1 Introduction

Unsupervised feature learning (deep learning) utilizes huge amounts of raw data to
learn representations that model knowledge structure and disentangle the explana-
tory factors behind observed events. Under this framework, symbolic sparse data is
represented by lower-dimensional continuous spaces. Integrating knowledge in this
format is the secret behind many recent breakthroughs in machine learning based
applications such as speech recognition, computer vision, and natural language pro-
cessing (NLP) [3].

We focus here on word representations (word embeddings) where each word rep-
resentation consists of a dense, real-valued vector. During the pre-training stage,
the representations acquire the desirable property that similar words have lower
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distance to each other than to unrelated words [13]. These representations have been
used successfully in supervised learning applications such as part-of-speech tagging,
named entity recognition, language modeling, and sentiment analysis [10, 11, 15].

Several methods and algorithms have been proposed to learn word representa-
tions using different benchmarks for evaluation [9]. However, these evaluations are
hard to comprehend as they squash the analysis of the representation’s quality into
abstract numbers. To enable better understanding of the actual structure of word re-
lationships which have been captured, we have to address the problems that come
with analyzing high-dimensional spaces (typically between 50-1000 dimensions).
We believe that network induction and graph analysis are appropriate tools to give
us new insights.

In this work, we seek to induce meaningful graphs from these continuous space
language models. Specifically, our contributions include:

• Analysis of Language Network Induction - We propose two criteria to induce
networks out of word embeddings. For both methods, we study and analyze the
characteristics of the induced networks. Moreover, the networks generated lead
to easy to understand visualizations.

• Comparison Between Word Representation Methods - We evaluate the qual-
ity of two well known words embeddings. We contrast between their character-
istics using the analysis developed earlier.

The remainder of this paper is set up as follows. First, in Section 2, we describe
continuous space language models that we consider. In Section 3, we discuss the
choices involved with inducing a network from these embeddings and examine
the resulting networks. Finally, we finish with a discussion of future work and our
conclusions.

2 Continuous Space Language Models

The goal of a language model is to estimate the likelihood of observing any given
sequence of words. The training objective usually maximizes the joint probability
of the training corpus. A continuous space probabilistic language model aims to
estimate such probability distribution by, first, learning continuous representations
for the words and phrases observed in the language. Such mapping is useful to cope
with the curse of dimensionality in cases where data distribution is sparse as in
natural language.

More precisely, given a sequence of words S = [w1 . . .wk], we want to maximize
P(w1, . . . ,wk) and learn representations for words. During the training process the
continuous space language model learns a mapping of words to points in R

d , where
d usually ranges between 20− 200. Prior to training we build a vocabulary V that
consists of the most frequent |V | words, and we map each word to a unique identifier
that indexes an embeddings matrix C that has a size of |V |× d. The sequence S is

now represented by a matrix
[
C[w1]

T . . . C[wk]
T
]T

, enabling us to compose a new
representation of the sequence using one of several compositional functions. The
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simplest is to concatenate all the rows in a bigger vector with size kd. Another
option is to sum the matrix row-wise to produce a smaller representation of size d.
While the first respects the order of the words, it is more expensive to compute.

We will focus our investigations, here, on two embeddings which are trained with
different tasks and compositional functions; the Polyglot and SkipGram
embeddings.

2.1 Polyglot

The Polyglot project offers word representations for each language in Wikipedia
[18]. For large enough Wikipedias, the vocabulary consists of the most frequent
100,000 words. The representations are learned through a procedure similar to
the one proposed by Collobert et al. [10]. For a given sequence of words St =
[wt−k . . .wt . . .wt+k] observed in the corpus T , a corrupted sequence S′t will be con-
structed by replacing the word in the middle wt with a word wj chosen randomly
from the vocabulary V . Once the vectors are retrieved, we compose the sequence
representation by concatenating the vectors into one vector called the projection
layer St . The model is penalized through the hinge loss function,

1
T

t=T

∑
t=1

|1− score(S′t)+ score(St)|+

where score is calculated through a hidden layer neural network

score(St) =W2(tanh(W1St + b1))+ b2.

For this work, we use the Polyglot English embeddings1 which consist of the
100,000 most frequent words in the English Wikipedia, each represented by a vector
in R

64.

2.2 SkipGram

While the Polyglot embeddings consider the order of words to build the represen-
tation of any sequence of words, the SkipGram model proposed by Mikolov et al.
[14] maximizes the average log probability of the context words independent of
their order

1
T

T

∑
t=1

[ k

∑
j=−k

log p(wt+ j|wt )
]

where k is the size of the training window. This allows the model to scale to larger
context windows. In our case, we train a SkipGram model2 on the English Wikipedia

1 Polyglot embeddings and corpus available at http://bit.ly/embeddings
2 SkipGram training tool available at https://code.google.com/p/word2vec/

http://bit.ly/embeddings
https://code.google.com/p/word2vec/
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corpus offered by the Polyglot project for the most frequent 350,000 words with
context size k set to 5 and the embeddings vector size set to 64.

2.3 Random

In order to have a baseline, we also generate random embeddings for the most fre-
quent 100,000 words. The initial position of words in the Polyglot embeddings were
sampled from a uniform distribution, therefore, we generate the random embedding
vectors by sampling from U (m̄−σ , m̄+σ), where m̄ and σ are the mean and stan-
dard deviation of the trained Polyglot embeddings’ values respectively. This base-
line allows us to see how the language networks we construct differ from networks
induced from randomly initialized points.

3 Word Embedding Networks

We now consider the problem of constructing a meaningful network given a contin-
uous space language model. As there are a variety of ways in which such a network
could be induced, we start by developing a list of desirable properties for a language
network. Specifically, we are seeking to build a network which:

1. Is Connected - In a connected graph, all the words can be related to each other.
This allows for a consistent approach when trying to use the network to solve
real-world problems.

2. Has Low Noise - Minimizing the spurious correlations captured by our discrete
representation will make it more useful for application tasks.

3. Has Understandable Clusters - We desire that the community structure in the
network reflects the syntactic and semantic information encoded in the word em-
beddings.

We also require a method to compute the distance in the embedding space. While
there are a variety of metrics that could be used, we found that Euclidean distance
worked well. So we use:

dist(x,y) = ||x− y||22 = (
m

∑
i=1

(xi − yi)
2)(1/2) (1)

where x and y are words in an d-dimensional embedding space (x,y ∈ R
d). With

these criteria and a distance function in hand, we are ready to proceed. We examine
two approaches for constructing graphs from word embeddings, both of which seek
to link words together which are close in the embedding space. For each method,
we induce networks for the 20,000 most frequent words for each embedding type,
and compare their properties.
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Fig. 1 Graph Coverage. The connected components and relative size of the Giant Connected
Component (GCC) in graphs created by both methods. We see that very low values of k
quickly connect the entire network (1a), while relatively large values of d are required before
a a GCC emerges (1b).

3.1 k-Nearest Neighbors

The first approach we will consider is to link each word to the k closest points in
the embedding space. More formally, we induce a set of directed edges through this
method:

Eknn = {(u,v) : min
x

dist(u,v)} ∀u,v ∈V,x ≤ k (2)

where minx denotes the rank of the x-th number in ascending sorted order (e.g. min0

is the minimum element, min1 the next smallest number). After obtaining a directed
graph in this fashion, we convert it to an undirected one.

The resulting undirected graph does not have a constant degree distribution. This
is due to the fact that the nearest-neighbor relation may not be symmetric. Although
all vertices in the original directed graph have an out-degree of k, their orientation
in the embedding space means that some vertices will have higher in-degrees than
others.

Results from our investigation of basic network properties of the k-NN embed-
ding graphs are shown in Figures 1 and 2. In Figure 1a we find that the embedding
graphs have few disconnected components, even for small values of k. In addition,
there is an obvious GCC which quickly emerges. In this way, the embeddings are
similar to the network induced on random points (which is fully connected at k = 2).
We performed an investigation of the smaller connected components when k was
low, and found them to contain dense groupings of words with very similar usage
characteristics (including ordinal values, such as Roman numerals (II,III,IV)).

In Figure 2a we see that the clustering coefficient initially grows quickly as
we add edges to our network (k ≤ 6), but has leveled off by (k = 20). This ten-
dency to bridge new clusters together, rather than just expand existing ones, may
be related to the instability of the nearest neighbor [5] in high dimensional spaces.



266 B. Perozzi et al.

0 1 2 3 4 5

|E| 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
e
ra

g
e
 c

lu
s
te

ri
n
g
 c

o
e
ff

ic
ie

n
t 
(C

)

kNN-SkipGram

kNN-Polyglot

kNN-Random

d-SkipGram

d-Polyglot

d-Random

(a) Clustering Coeff., C

0 5 10 15 20 25 30 35

# Nearest Neighbors

0.0

0.2

0.4

0.6

0.8

1.0

M
o
d
u
la

ri
ty Polyglot

SkipGram

Random

(b) k-NN Modularity, Qknn

Fig. 2 Community Metrics. In (2a), C shown for k = [2,30] and d = [0.8,1.6] against number
of edges in the induced graph. When the total number of edges is low (|E| < 150,000),
networks induced through the k-NN method have more closed triangles than those created
through d-Proximity. In (2b), Qknn starts high, but slowly drops as larger values of k include
more spurious edges.

In Figure 2b, we see that the networks induced by the k-NN are not only connected,
but have a highly modular community structure.

3.2 d-Proximity

The second approach we will consider is to link each word to all those within a fixed
distance d of it:

Eproximity = {(u,v) : dist(u,v)< d} ∀u,v ∈V (3)

We perform a similar investigation of the network properties of embedding
graphs constructed with the d-Proximity method. The results are shown in Figures
1 and 2. We find that networks induced through this method quickly connect words
that are near each other in the embedding space, but do not bridge distant groups
together. They have a large number of connected components, and connecting 90%
of the vertices requires using a relatively large value of d (Fig. 1b).

The number of connected components is closely related to the average distance
between points in the embedding space (around d =(3.25, 3.80, 2.28) for (Skip-
Gram, Polyglot, Random)). As the value of d grows closer to this average distance,
the graph quickly approaches the complete graph. Figure 2a shows that as we add
more edges to the network, we add triangles at a faster rate than using the k-NN
method.

3.3 Discussion

Here we discuss the differences exposed between the methods for inducing word
embeddings, and the differences between the embeddings themselves.



Inducing Language Networks from Continuous Space Word Representations 267

Comparison of Network Induction Methods. Which method then, provides the
better networks from word embeddings? To answer this question, we will use the
properties raised at the beginning of this section:

1. Connectedness - Networks induced through the k-NN method connect much
faster (as a function of edges) than those induced through d-Proximity (Fig. 1).
Specifically, the network induced for k = 6 has nearly full coverage (Fig. 1a) with
only 100K edges (Fig. 2a). This inability to create connected graphs is a serious
limitation of using the d-Proximity approach.

2. Spurious Edges - We desire that our resulting networks should be modular. As
such we would prefer to add edges between members of a community, instead of
bridging communities together. For low values of |E|, the k-NN approach creates
networks which have more closed triangles than d-Proximity (Fig. 2a). However
this does not hold in networks with more edges.

3. Understandable Clusters - In order to qualitatively examine the quality of such
a language network, we induced a subgraph with the k-NN of the most frequent
5,000 words in the Polyglot embeddings for English (Fig. 3). We find the iden-
tified clusters to be highly meaningful. The lack of a connected graph precludes
us from reasoning about how well d-Proximity preserves global relationships.

According to our three criteria, k-NN seems better than d-Proximity. In addition
to the reasons we already listed, we note that k-NN has the additional advantage
of requiring less parameterization (d-Proximity has a different optimal d for each
embedding type).

Comparison of Polyglot and SkipGram. Having chosen to use k-NN as our pre-
ferred method for inducing language networks, we now examine the difference be-
tween the Polyglot and SkipGram networks.

Clustering Coefficient. We note that in Figure 2a, the SkipGram model has a consis-
tently higher clustering coefficient than Polyglot in k-NN networks. A larger clus-
tering coefficient denotes more triangles, and this may indicate that points in the
SkipGram space form more cohesive local clusters than those in Polyglot. Tighter
local clustering may explain some of the interesting regularities observed in the
SkipGram embeddings [16].

Modularity. In Figure 2b, we see that Polyglot modularity is consistently above the
SkipGram modularity. SkipGram’s embeddings capture more semantic information
about the relations between words, and it may be that causes a less optimal commu-
nity structure than Polygot whose embeddings are syntactically clustered.

Clustering Visualizations. In order to understand the differences between the lan-
guage networks better, we conducted an examination of the clusters found using the
Louvain method [7] for modularity maximization. Figure 4 examines communities
from both Polyglot and SkipGram in detail.
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Fig. 3 Polyglot Nearest Neighbor Graph. Here we connect the nearest neighbors (k = 6)
of the top 5,000 most frequent words from the Polyglot English embeddings. Shown is the
giant connected component of the resulting graph (|V |= 11,239; |E|= 26,166). Colors rep-
resent clusters found through the Louvain method (modularity Q = 0.849). Vertex label size
is determined by its PageRank. Best viewed in color.
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(a) Professions (SkipGram) (b) Professions (Polyglot)

(c) Locations (SkipGram) (d) Locations (Polyglot)

Fig. 4 Comparison of clusters found in Polyglot and SkipGram language networks. Polyglot
clusters viewed in context of the surrounding graph, SkipGram clusters have been isolated
to aide in visualization. SkipGram’s bag-of-words approach favors a more semantic meaning
between words, which can make its clusters less understandable (Note how in Figure 4c
Petersburg is included in a cluster of religious words, because of Saint.) Images created
with Gephi [2].
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4 Related Work

Here we discuss the relevant work in language networks, and word embeddings.

Language Networks. One branch of the study of language as networks seeks to
build networks directly from a corpus of raw text. Cancho and Solé [8] examine
word co-occurrence graphs as a method to analyze language. In their graph, edges
connect words which appear below a fixed threshold (d ≤ 2) from each other in sen-
tences. They find that networks constructed in this manner show both small world
structure, and a power law degree distribution. Language networks based on word
co-occurrence have been used in a variety of natural language processing tasks,
including motif analysis of semantics [6], text summarization [1] and resolving dis-
ambiguation of word usages [20].

Another approach to studying language networks relies on studying the relation-
ships between words exposed by a written language reference. Motter et al. [17] use
a thesaurus to construct a network of synonyms, which they find to find to exhibit
small world structure. In [19], Sigman and Cecchi investigate the graph structure
of the Wordnet lexicon. They find that the semantic edges in Wordnet follow scale
invariant behavior and that the inclusion of polysemous edges drastically raises the
clustering coefficient, creating a small world effect in the network.

Much of the previous work in language networks build networks that are prone to
noise from spurious correlations in word co-occurrence or infrequent word senses
[8, 19]. Dimensionality reduction techniques have been successful in mitigating the
effects of noise in a variety of domains. The word embedding methods we examine
are a form of dimensionality reduction that has improved performance on several
NLP tasks and benchmarks.

The networks produced in our work are considerably different from language
networks created by previous work that we are aware of. We find that our degree
distribution does appear to follow a power-law (like [8, 17, 19]) and we have some
small world properties like those present in those works (such as C % Crandom).
However, the average path length in our graphs is considerably larger than the aver-
age path length in random graphs with the same node and edge cardinalities. Table
1 shows a comparison of metrics from different approaches to creating language
networks.3

Word Embeddings. Distributed representations were first proposed by Hinton
[12], to learn a mapping of symbolic data to continuous space. These representa-
tions are able to capture fine grain structures and regularities in the data [16]. With
the recent advancement in hardware performance, Bengio et al. [4] used the dis-
tributed representations to produce a state-of-the-art probabilistic language model.
More applications followed, Collobert et al. [10] developed SENNA, a system that
offers part of speech tagger, chunker, named entity recognizer, semantic role labeler
and discriminative syntactic parser using the distributed word representations. Al-
Rfou’ et al. [18] trained word embeddings for more than a hundred languages and

3 Our induced networks available at
http://bit.ly/inducing_language_networks

http://bit.ly/inducing_language_networks
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Table 1 A comparison of properties of language networks from the literature against those
induced on the 20,000 most frequent words in the Polyglot and SkipGram Embeddings. (C
clustering coefficient, pl average path length, γ exponent of power law fits to the degree
distribution) ‘*’ denotes values which have been estimated on a random subset of the vertices.

|V | |E| C Crandom pl plrandom γ
Cancho and Solé [8](UWN) 478,773 1.77×107 0.687 1.55×10−4 2.63∗ 3.03 -1.50,-2.70
Cancho and Solé [8](RWN) 460,902 1.61×107 0.437 1.55×10−4 2.67∗ 3.06 -1.50,-2.70
Motter et al. [17] 30,244 − 0.53 0.002 3.16 − −
Polyglot, 6-NN 20,000 96,592 0.241 0.0004 6.78∗ 4.62∗ -1.31
SkipGram, 6-NN 20,000 94,172 0.275 0.0004 6.57∗ 4.62∗ -1.32

showed that the representations help building multilingual applications with mini-
mal human effort. Recently, SkipGram and Continuous bag of words models were
proposed by Mikolov et al. [14] as simpler and faster alternatives to neural network
based models.

5 Conclusions

We have investigated the properties of recently proposed distributed word represen-
tations, which have shown results in several machine learning applications. Despite
their usefulness, understanding the mechanisms which afford them their character-
istics is still a hard problem.

In this work, we presented an approach for viewing word embeddings as a lan-
guage network. We examined the characteristics of the induced networks, and their
community structure. Using this analysis, we were able to develop a procedure
which develops a connected graph with meaningful clusters. We believe that this
work will set the stage for advances in both NLP techniques which utilize distributed
word representations, and in understanding the properties of the machine learning
processes which generate them.

Much remains to be done. In the future we would like to focus on comparing
word embeddings to other well known distributional representation techniques (e.g.
LDA/LSA), examining the effects of different vocabulary types (e.g. topic words,
entities) on the induced graphs, and the stability of the graph properties as a function
of network size.

Acknowledgments. This research was partially supported by NSF Grants DBI-1060572
and IIS-1017181, with additional support from TASC Inc, and a Google Faculty Research
Award.
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Network Differences between Normal
and Shuffled Texts: Case of Croatian

Domagoj Margan, Sanda Martinčić-Ipšić, and Ana Meštrović

Abstract. This paper is an initial attempt to study the properties of the
Croatian word order via complex networks. We present network properties of
normal and shuffled Croatian texts for different co-occurrence window sizes
and different linkage boundaries. The results of network analysis show that
the text shuffling causes the decrease of the network diameter, due to the
establishment of previously non-existing links. This indicates that the syntax
does play a significant role in the Croatian language, although it is a mostly
free word-order language.

Keywords: complex networks, linguistic co-occurrence networks, Croatian
corpus, shuffled text, randomized text.

1 Introduction

The complex networks sub-discipline tasked with the analysis of language
has been recently associated with the term of linguistic’s network analysis.
The linguistic network can be based on various language constraints: struc-
ture, semantics, syntax dependencies, etc. It has been shown that language
networks share various non-trivial topological properties and may be charac-
terized as small-world networks and scale-free networks which are well-known
and studied classes of complex networks. Small-world networks [14] have a
small average shortest path length and a large clustering coefficient; scale-free
networks [4] have power law degree distribution.
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In the linguistic co-occurrence complex networks properties are derived
from the word order in texts. The open question is how the word order itself
is reflected in topological properties of the linguistic network. One approach
to address this question is to compare networks constructed from normal texts
with the networks from randomized or shuffled texts. Since the majority of
linguistic network studies have been performed for English, it is important
to check whether the same properties hold for Croatian language as well.
In this context the study of the Croatian language is notably behind other
European languages [1]. So far, there have been only sporadic efforts to model
the phenomena of the Croatian language through complex networks. Croatian
is a highly flective Slavic language and words can have 7 different cases for
singular and 7 for plural, genders and numbers. The Croatian word order is
mostly free, especially in non-formal writing. These features are positioning
Croatian among morphologicaly rich and free word-order languages.

In this paper we address the problem of Croatian text complexity by con-
structing the linguistic co-occurrence networks form two types of corpora: a)
Croatian original texts, b) Croatian word-level shuffled texts. For the con-
struction of the networks we varied two different criteria: a) the co-occurrence
window size, b) the delimiters for limiting the linkage of the words only to
the borders of a sentence.

Section 2 presents an overview of related work on complex network anal-
ysis of randomized texts. In Section 3 we define measures for the network
structure analysis. In Section 4 we present the construction of eight differ-
ent co-occurrence networks. The network measurements are in Section 5. In
the final Section, we elaborate the obtained results and make conclusions
regarding future work.

2 Related Work

Some of the early work related to the analysis of random texts dates to 1992,
when Li [8] showed that the distribution of word frequencies for randomly
generated texts is very similar to Zipf’s law observed in natural languages
such as in English. Thus, the feature of being a scale-free network does not
depend on the syntactic structure of the language. Watts and Strogatz [14]
showed that the network formed by the same amount of nodes and links but
only establishing links by choosing pairs of nodes at random has a similar
small network distance measures as in the original one. Caldeira et al. [5]
analyzed the role played by the word frequency and sentence length distribu-
tions to the undirected co-occurrence network structure based on shuffling.
Shuffling procedures were conducted either on the texts or on the links. Liu
and Hu [9] discussed whether syntax plays a role in the complexity measures
of a linguistic network. They built up two random linguistic networks based
on syntax dependencies and compared the complexity of non-syntactic and
syntactic language networks. Masucci and Rodgers showed [11, 12] that the
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power law distribution holds when they randomized the words in the text.
Thus, they showed that degree distribution is not the best measure of the
self-organizing nature of weighted linguistic networks. Due to the equivalence
between frequency and strength of a node, shuffled texts obtain the same de-
gree distribution, but lose all the syntactic structure. They have analyzed the
differences between the statistical properties of a real and a shuffled weighted
network and showed that the scale-free degree distribution and the scale-free
weight distribution are induced by the scale-free strength distribution. They
defined a measure, the node selectivity, that can distinguish a real network
from a shuffled network. Krishna et al. [7] studied the effect of linguistic
constraints on the large scale organization of language. They described the
properties of linguistic co-occurrence networks with the randomized words.
These properties were compared to those obtained for a network built over
the original text. It is observed that the networks from randomized texts also
exhibit small-world and scale-free characteristics.

Preliminary results on Croatian co-occurrence networks presented in [10]
point out that the increase of the co-occurrence window size is followed by a
decrease in diameter, average path shortening and, expectedly, the condens-
ing of the average clustering coefficient. The stopwords removal causes the
same effect. When comparing Croatian literature networks to networks from
other languages such as English and Italian [3] some expected universalities
such as small-world properties are shown, but there are still some differences.
The Croatian language exhibits a higher path length than English and Ital-
ian language which can be caused by the mostly free word order nature of
Croatian.

3 The Network Structure Analysis

In the network, N is the number of nodes and K is the number of links. In
weighted networks every link connecting two nodes has an associated weight
w ∈ R+

0 . The co-occurrence window mn of size n is defined as n subsequent
words from a text. The number of network components is denoted by ω.

For every two connected nodes i and j the number of links lying on the
shortest path between them is denoted as dij , therefore the average distance
of a node i from all other nodes is:

di =

∑
j dij

N
. (1)

And the average path length between every two nodes i, j is:

L =
∑
i,j

dij
N(N − 1)

. (2)
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The maximum distance results in the network diameter:

D = maxidi. (3)

For weighted networks the clustering coefficient of a node i is defined as
the geometric average of the subgraph link weights:

ci =
1

ki(ki − 1)

∑
ij

(ŵijŵikŵjk)
1/3, (4)

where ki is the degree of the node i, and the link weights ŵij are normalized
by the maximum weight in the network ŵij = wij/max(w). The value of ci
is assigned to 0 if ki < 2.

The average clustering of a network is defined as the average value of the
clustering coefficients of all nodes in a network:

C =
1

N

∑
i

ci. (5)

If ω > 1, C is computed for the largest network component.
An important property of complex networks is degree distribution. For

many real networks this distribution follows power law [13], which is defined
as:

P (k) ∼ k−α, (6)

where the distribution parameter α is typically in range between 2 and 3.

4 Methodology

4.1 Data

For the construction and analysis of co-occurrence networks, we used two
corpora. First is the original text of literature (C1), and second is the shuffled
version of the same text (C2). In C2, the content of the original corpus is
randomized by shuffling the words and punctuation marks, so C2 has the
same quantity and frequency of words as the original corpus, but the text
itself is meaningless.

Corpus C1 contains 10 books written in or translated into the Croatian
language: I. Andrić ”The Bridge on the Drina”, M. Krleža ”On the Edge
of Reason” and ”The Return of Philip Latinowicz”, A. Šenoa ”Branka”, M.
Jergović ”Mama Leone”, C. Collodi ”Pinocchio”, U. Eco ”The Name of the
Rose”, E. Hemingway ”The Old Man and the Sea”, S. King ”The Mist”, and
H. Lee ”To Kill a Mockingbird”.

The C1 has 895547 words, of which 91714 are unique, in 59128 sentences.
The shuffling algorithm randomized words and punctuation marks which
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raised the new structure of sentences in the C2. The C2 has the same number
of words in 58896 sentences.

4.2 The Construction of Co-occurrence Networks

Text can be represented as a complex network of linked words: each individual
word is a node and interactions amongst words are links. From C1 and C2 we
constructed eight different co-occurrence networks, all weighted and directed.
Words are nodes linked within the co-occurrence window and according to
the usage of the delimiters (punctuation marks).

The co-occurrence window mn of size n is defined as a set of n subsequent
words from a text. Within a window the links are established between the
first word and n − 1 subsequent words. In the networks where the linkage
is limited to the sentence borders during the construction, we consider the
sentence boundary as the window boundary too. Three steps in the network
construction for a sentence of 6 words, with usage of the delimiters, for the
co-occurrence window sizes n = 2 and n = 6 are shown in Fig. 1.

Fig. 1 An illustration of 3 steps in a network construction with a co-occurrence
window mn of sizes n = 2, and n = 6. w1...w6 are words within a sentence

The weight of the link is proportional to the overall co-occurrence fre-
quencies of the corresponding words within a co-occurrence window. Network
construction and analysis was implemented with the Python programming
language using the NetworkX software package developed for the creation,
manipulation, and study of the structure, dynamics, and functions of complex
networks [6]. Numerical analysis of power law distributions was made with
the ‘powerlaw’ software package [2] for the Python programming language.

5 Results

The comparison of the properties for networks differing in the co-occurrence
window sizes (m2,m6) and the usage of delimiters are shown in Tables 1 and
2. The results show that the networks constructed with larger co-occurrence
window emphasize small-world properties in both networks: from original
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Table 1 Networks constructed with de-
limiters: the rand subscript is for the net-
works from C2

m2 m6

N 91647 91647
Nrand 91526 91535

K 464029 2009187
Krand 598519 2233643

L 3.10 2.38
Lrand 2.998 2.40

D 23 7
Drand 9 5

C 0.32 0.71
Crand 0.35 0.73

ω 22 22
ωrand 15 8

Table 2 Networks constructed with-
out delimiters: the rand subscript is
for the networks from C2

m2 m6

N 91714 91714
Nrand 91714 91714

K 513297 2459706
Krand 636748 2666998

L 3.05 2.30
Lrand 2.95 2.29

D 17 6
Drand 7 4

C 0.34 0.68
Crand 0.38 0.70

ω 1 1
ωrand 1 1

and shuffled texts. More precisely, in networks built with m6, values of the
average path length L and network diameter D are smaller, and the average
clustering coefficient C is larger in comparison to the same measures from
networks built with m2.

Furthermore, in Tables 1 and 2 we compare the characteristics of networks
constructed for co-occurrence window limited within or across the sentence
boundaries. In the networks without delimiters, words are linked within a
given co-occurrence window regardless of being in different sentences.

All of the networks constructed without the usage of delimiters show
smaller network distance measures. Also, the clustering coefficient becomes
larger only in the case of m2, while the larger co-occurrence window m6

decreases its value.
The number of nodes N (Nrand < N) is different from the number of

words in C1, due to the used co-occurrence criteria. Our approach (Table
1) limits the co-occurrence window size within the sentence delimiters. This
causes sentences with exactly one word to be isolated from the network, which
reduces the number of nodes N . This is the reason why we considered the co-
occurrence window across sentence boundaries (Table 2). ωrand < ω indicates
that the number of connected components is smaller in the shuffled text C2.
Therefore, when co-occurrence window disregarded the sentence boundaries
networks have only 1 connected component (Table 2).

Fig. 2. shows the comparison of the plots of the clustering coefficient
against the node degree for four different networks. Each plot shows clus-
tering coefficient values spread on a log-log scale. The difference between
plots constructed for networks based on original (a, b) and shuffled text (c,
d) is that the clustering coefficients are more dispersed for the C1 than for
the C2. It is especially emphasized in the case of small window size (m2). The
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Fig. 2 Plots of the clustering coefficient against the degree of the vertices for four
networks: (a) network based on the original text with m2, (b) network based on the
original text with m6, (c) network based on the shuffled text with m2, (d) network
based on the shuffled text with m6; always with delimiters used

dispersion of the clustering coefficient values associated with the properties
of the word neighborhood reflects the complex organization of words [11].
Therefore, the more dispersed plots for the networks from the original texts,
may indicate the more complex structure of original texts in comparison to
the shuffled texts.

The clustering coefficient, as a local measure, is calculated considering the
links’ weights (Eq. 4). The results shown in Fig. 2 indicate that clustering
coefficient of the weighted networks should be considered in the further study
of the syntax structure.

Numerical results of power law distribution analysis indicate the presence
of the power law distribution. The numeric values of α for the power law
distributions are: 2.167 for m2, C1; 2.090 for m2, C2; 2.158 for m6, C1; 2.137
for m6, C2.

The global network measures: average shortest path length, diameter, clus-
tering coefficient and degree distribution may not be well-suited properties
for fine-grained network analysis. This may be explained by the fact that the
syntax is a local language property. Therefore, it is necessary to include local
network measures such as clustering coefficient of a node.
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6 Conclusion

We studied the topologies of the linguistic networks constructed from nor-
mal and shuffled Croatian texts. As expected, the text shuffling causes the
decrease of the network diameter, due to the establishment of previously non-
existing links. This indicates that syntax does play a significant role in the
Croatian language, although it is a free word-order language.

We have shown that the Croatian language networks have similar prop-
erties as language networks from English and other languages. Firstly, all
Croatian language co-occurrence networks, based on normal and shuffled
texts, have a power law degree distribution. That means that text shuffling
has no influence on the degree distribution, which has already been shown
for English [11, 12], English and Portuguese [5] and English, French, Spanish
and Chinese [7]. Furthermore, all eight networks constructed for the Croatian
language have small-world properties. There is a slight difference in the av-
erage clustering coefficient which is higher for the networks based on shuffled
text. Distance measures (average shortest path length and diameter) show
that each of the four networks based on normal texts have a greater L and
D value than the corresponding network based on shuffled text. The same
relations for average clustering coefficient, average shortest path length and
diameter are shown in [7] for all studied languages (English, French, Spanish
and Chinese). Similar results are shown for English and Portuguese in [5],
although the authors used different shuffling procedures.

Our results imply that the syntax structure of the Croatian language has
impact on the network properties, which needs further detailed analysis in
order to find which network measures perform a fine-grained differentiation
between an original and shuffled text. This should be thoroughly examined
in the future work, which will cover: a) the comparison of the topological
properties of the networks constructed from shuffled texts with preserved
sentence length frequencies, b) shuffling of each book separately, c) using the
node selectivity measure, and d) the analysis of the syntax dependencies in
the Croatian linguistic networks.
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Application of Text Mining to Analysis
of Social Groups in Blogosphere

Bogdan Gliwa, Anna Zygmunt, Jaros�law Koźlak, and Krzysztof Cetnarowicz

Abstract. The paper concerns analysis of social groups in blogosphere us-
ing text mining methods to discover additional knowledge about groups and
users. Two methods to distinguish messages (the first one - between mes-
sages from main and secondary thread, the second one - between facts and
opinions) in blogosphere were proposed and their quality was assessed on
manually annotated dataset. Both tasks are very important and proposed
methods deal with them in a fully automatic way. The results were obtained
on real-world data from Polish blogosphere.

Keywords: social network analysis, group topics, subjectivity detection, bl-
ogosphere, text mining.

1 Introduction

Nowadays, more and more elements of our everyday life are transferred to the
virtual reality, especially communication with other people: we participate in
discussions on forums, comment on blogs, chat and express our opinions using
social media. Many companies are interested in automatic way of extraction
information from users messages left in forums, blogs etc.

For analysis of user activity in social media, the application of methods
of social network analysis is very popular. Discussions between people in
blogs or forums can be modeled as social network and in such a network
there are formed some groups of users that are more strongly connected
between themselves than with the rest of network. This approach lets us
analyse groups of people at different angles. Analysing groups in the context
of written messages is the main goal of the paper.
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2 Related Work

Many methods for groups detection were proposed [3], [8]. They can find
overlapping or non-overlapping groups, changing in time or not, etc. One of
the most popular representative of algorithms finding overlapping groups is
CPM method (Clique Percolation Method) [10].

In different methods regarding dynamics of groups, many events in groups
lifecycle (also called groups evolution) were proposed. Palla et al. [11] de-
scribed some events that can be identified during groups evolution: growth,
contraction, merging, splitting, birth and death.

Topic Modeling [9] is a statistical technique that detects abstract ”topics”
existing in a collection of documents. ”Topic” can be defined as a set of words
that tend to co-occur in multiple documents, and, therefore, they are expected
to have similar semantics. One of the biggest advantage of this method is that
similar texts can be discovered even if they use different vocabulary, which
is hard to achieve using other methods. Latent Dirichlet Allocation (LDA)
[1] is one of the most popular methods in topic modeling and aims to reduce
dimensionality by grouping words with similar semantics together.

In literature most applications of Text Mining in the field of Social Network
Analysis regard some specific cases [2]. In [7] the authors showed usefulness
of topic modeling to analysis of groups dynamics in social networks in blogo-
sphere.

3 Analysis of Text Messages and Groups in Blogs

This section provides the concept of methods used to further analysis. In 3.1
and 3.2 we describe methods used to find out whether a message is a fact or
an opinion and whether given message relates to the main topic of discussion
thread (called in the main thread) or not (called in the secondary thread).
Next, we depict methods used to analyse groups in dynamic social network.

3.1 Finding Messages in the Main and the Secondary
Thread for Comments

Distinction between messages in the main and the secondary thread is based
on topics uncovered by LDA method (and manually labelled) for given com-
ment and post in analysed conversation thread. Additionally, one from LDA
topics was labelled as various (it was hard to annotate as one particular
topic), so in this method during comparison of topics in the case when post
has topic various and comments has topic various, we assumed that they are
different ones.

Let us define c as analysed comment, postc - post in thread where comment
c was written and topics(m) as topics for message m. Method is quite simple
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and can be described in the following way (MS is a function assigning label for
a comment whether such comment is in the main thread or in the secondary
one):

MS(c, postc) =

{
main, if topics(c) = ∅ ∨ |topics(c) ∩ topics(postc)| > 0,

secondary, otherwise.

(1)

3.2 Finding Facts and Opinions in Comments

To distinguish messages containing only facts from messages containing opin-
ions we also employed detection of topics (by means of LDA method) for a
comment and a post in the same discussion thread.

Method consists of 2 steps:

Step 1. Analysing content of message to find out some symptoms of opinions,
which we defined as occurence one of opinion words (manually defined, about
20 words such as (translated to English) think, convince, respect...), containing
exclamation sign or have one topic from annotated as opinions and critics
(LDA method uncovered such clusters). If any of above mentioned conditions
are fulfilled, then message is annotated as opinion and second step is omitted.

Step 2. Analysing similarity of topics for given comment and post in thread.
If they are similar i.e. |topics(c) ∩ topics(postc)| > 0, then we assumed that
message c is a fact. When there are no topics for given post and comment then
such comment is treated as opinion, but when there are no topics for post
and comment has some topics – the comment is labelled as fact. Otherwise,
we marked comment as opinion.

Above conditions can be expressed also as an assumption that when topic
of comment and post matches then people discuss facts (except the case when
we found some symptoms of opinions) and when they introduce new topic,
then they express their opinions (or attacks personally between themselves).

3.3 Groups in Dynamic Social Network

Data from whole time range is divided into series of time slots and each time
slot contains static snapshot of network from defined period of time.

In each slot we used the comments model for building graph, introduced
by us in [4] - the users are nodes and relations between them are built in
the following way: from user who wrote the comment to the user who was
commented on (if the user whose comment was commented on is not explicitly
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referenced by using @ and name of author of comment in title of comment
by commenting author, the target of the relation is the author of post).

In every static snapshot of social network groups were detected. Groups
from adjacent time slots can be matched to find continuation of groups from
different periods of time. For this goal, the SGCI (Stable Group Changes Iden-
tification) [5] method was applied. SGCI algorithm consists of the following
steps: identification of short-lived groups in each time slot; identification of
groups continuation, separation of the stable groups (lasting for a certain
time interval) and the identification of types of group changes (transitions
between stable groups).

Identification of group continuation is conducted using modified Jaccard
measure with minimal threshold equals 0.5 (A and B are examined groups
from the consecutive time slots):

MJ(A,B) =

{
0, if A = ∅ ∨B = ∅,
max( |A∩B|

|A| , |A∩B|
|B| ), otherwise.

(2)

and ratio of group size with maximal threshold equals 50:

ds(A,B) = max(
|A|
|B| ,

|B|
|A| ). (3)

4 Results

4.1 Description of Experiments

The experiments were conducted on data set containing data from the portal
salon241. The data set consists of 31 750 users (12 750 of them have their own
blog), 380 700 posts and 5 703 140 comments within the period 1.01.2008 -
1.07.2013. The analysed period was divided into time slots, each lasting 7 days
and neighboring slots overlap each other by 4 days. In the examined period
there are 503 time slots.

For group detection we used CPM [10] method (directed version of CPM
from CFinder2).

Topic for messages were extracted using LDA algorithm from mallet tool3.
The method discovered 350 clusters of topics, which were manually annotated
and some of them were manually joined. After this operation the number of
clusters shortened to 67.

1 Mainly focused towards politics, www.salon24.pl
2 http://www.cfinder.org/
3 http://mallet.cs.umass.edu/

www.salon24.pl
http://www.cfinder.org/
http://mallet.cs.umass.edu/
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4.2 Testing Quality of the Methods for Detection of
Opinions, Facts, Messages in the Main and in
the Second Thread

To assess quality of proposed methods we prepared set of discussion threads
chosen in a random way from threads having at least 10 comments inside.
Test dataset consists of 30 threads and 833 comments. Each comment was
manually annotated whether contains only facts or contains opinions (possi-
bly mixed with facts), and whether is related to the main topic in discussion
thread or maybe is related to other one (e.g. personal messages between blog-
gers are annotated as messages not related to the main topic). The shortest
thread has 11 comments and the longest one – 69 comments.

We evaluated F-measure (the harmonic mean of precision and recall) for
each thread expressing quality of both methods. The results are presented
in table 1. One can observe that results are quite good for both tasks. The
lowest values (below or equal 0.5) in task determining whether message is
fact or opinion are for 3 cases and in task assessing the fact that message
belongs to the main topic of discussion thread or not are for 2 cases.

Table 1 Number of cases with given F-measure for methods detecting facts/
opinions and main/secondary thread on manually annotated set of threads

range main/secondary opinion/fact

0-0.5 2 3
0.51-0.6 0 2
0.61-0.7 5 7
0.71-0.8 11 10
0.81-0.9 10 6
0.91-1 2 2

4.3 Discussion Threads with Messages Related to the
Main and the Secondary Topic

We analysed the impact of the discussion thread topic on tendency to moving
discussion to other topics. In figure 1a we can see topics of discussion threads,
in which users most frequently discussed also other topics. Figure shows for
topics the number of messages in the secondary thread divided by the number
of messages in the main thread. We can observe that people often change
topic of discussion in e.g. discussion threads with controversial content (like
abortion) or in philosophical threads. Opposite situation is described in figure
1b – there are topics, in which users rarely change the subject of discussion.
Among them we can find such topics as sport and music.
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(a) Max secondary part. (b) Min secondary part.

Fig. 1 Top 5 topics of discussion threads with max and min secondary part

(a) Max fact part. (b) Min fact part.

Fig. 2 Top 5 topics of thread with max and min fact part

4.4 Discussion Threads with Facts and Opinions

We conducted similar analysis – we tried to find out the topics where users
mostly express their opinions and where they discuss also about facts. Fig. 2a
presents topics with the highest number of facts in comments in discussion
threads. It is not surprise that we can find there science topic. On the other
hand, fig. 2b shows topics with the lowest number of facts in comments in
discussion threads. Among such topics, one can notice topics related with
critics, celebrities and opinions.

4.5 Topics in Groups

In fig. 3 the most popular topics in groups with different size are shown. We
can notice that the most popular topics in groups are various and politics. Sci-
ence topic is dominated by groups of medium size (11-50 members). Another
interesting observation is that the topic of religion mostly occurs in small and
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Fig. 3 Most popular topics in groups with different size

medium size groups. One can see also smolensk topic which is very popular.
This topic concerns event of Polish President airplane crash in Smolensk and
some other events related with investigation of this catastrophe.

4.6 Groups Formed Around Messages Deviating from
the Main Topic

In fig. 4 we can observe what part of a group consitutes the part related
with the main thread of discussion or, in other words, in how many groups
the people during their discussions are stuck to the main topic. One can
notice that for most groups the fraction of the main threads in discussions
established inside them is very high, which means that people form groups to
discuss particular topics. The highest variety can be noted for small groups
(with 4-10 members) and it decreases when size of groups increases.

Fig. 4 Fraction of the main thread part in groups with different size



292 B. Gliwa et al.

4.7 Groups Formed around Facts and Opinions

Fig. 5 presents how many groups with different size talk mostly about opin-
ions. As we could anticipate, in blogs people in groups mostly share their
opinions with others. However, we can notice that there are some small groups
that talk almost completely about facts without expressing their own opin-
ions. Moreover, in large groups (with more than 50 members) for most of
them the part related with facts is quite high (about 20%) which is different
from small and medium size groups.

Fig. 5 Fraction of opinion part in groups with different size

5 Conclusion

In this paper we proposed 2 methods – the first for the distinction of messages
in the main and in the secondary thread and the second one – detection opin-
ions and facts, both in blogosphere. We assessed quality of these methods on
manually annotated subset of whole analysed data and achieved results seem
promising. Moreover, we analysed groups in social network under those an-
gles. The obtained results allow us to better understand structure of groups.

Future work may follow in several directions. Firstly, there is a place to
improve these methods (e.g. maybe some assumptions are not well suited for
all types of topics). The second is to analyse roles of users in groups who e.g.
change the main discussed topic or express mostly facts. For this purpose we
want to employ our method of detecting roles of users [6]. Another interesting
direction is to conduct experiments on other datasets including datasets in
English language.

Acknowledgements. The research leading to these results has received funding
from the dean grant.
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The Role of the Shannon Entropy
in the Identification of Acronyms

Marco Alberto Javarone

Abstract. Acronyms are linguistic signs composed of the initial components of
other signs, therefore a codification process is needed to find their meaning. Usually,
people are able to evaluate whether a sign is an acronym by considering its gram-
matical form and its phonic aspect. For instance, signs as “WWW” (i.e., World Wide
Web) or “btw” (i.e., by the way) are easily identified as acronyms, although some-
times their meaning can be unknown. On the other hand, acronyms as “radar” and
“laser” can be exchanged for simple nouns both from a grammatical and a phonetic
perspective. We hypothesize the existence of a relation between the identification
(i.e., the correct classification) of an acronym and its Shannon entropy. In order to
investigate this hypothesis, we define an agent-based model to study the spreading
dynamics of acronyms. Numerical simulations of the proposed model seem to con-
firm that the Shannon entropy has a central role in these dynamics. In particular, we
found that the number of time steps to identify the solution of an acronym increases
with its Shannon entropy.

1 Introduction

Nowadays, the human language and its evolution are investigated from different
perspectives, as philosophy, psychology, classical linguistics, statistics and also sta-
tistical physics. In particular, many scientists have shown that several linguistic
phenomena can be represented as complex dynamical systems [1][2][3][4][5]. In
this scenario, it is worthy to note that Wittgenstein was the first to introduce an
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interdisciplinary approach in the studying of the human language, as he observed
that it can be represented as a game [6]. Later on, his insightful observation has been
used as reference in many language models, as the famous Naming Game [7]. This
latter has been widely investigated by several authors. Just to cite a few, Baronchelli
et al. [8] introduced a microscopic model of communicating autonomous agents,
Dall’Asta et al. [9] studied the dynamics of the Naming Game on complex net-
works and Liu et al. [10] analyzed its behavior on small-world networks. The term
language dynamics [1][11] identifies this research line, that makes use of the statisti-
cal physics to study phenomena as the emergence of a common vocabulary in com-
munities of agents. In this work, we analyze a linguistic phenomenon related to the
spreading dynamics of acronyms (see also [12]). Usually, people are able to evaluate
whether a linguistic sign [13] (sign hereinafter) is an acronym. In particular, peo-
ple consider its grammatical form and its phonic aspect. Notwithstanding, there are
acronyms that can be exchanged for simple nouns, e.g., radar and laser. We hypothe-
size that a relation holds between how an acronym is considered (i.e., as an acronym
or as a noun) and its Shannon entropy. The Shannon entropy [14][15] has a funda-
mental role in several branches of knowledge, as communications [16][17], data
compression [18], network theory [19], genomics [20][21] and linguistics [22][23].
In order to investigate our hypothesis, we define an agent-based model where agents,
interacting in a network, have to compute the solution of an acronym (i.e., the set
of signs to generate it). Agents that compute a solution consider the acronym as
such; otherwise, they consider it as a simple noun. Finally, we perform numerical
simulations to study the proposed model.

2 Shannon Entropy of Acronyms

The Shannon entropy of acronyms depends on the degrees of freedom of signs that
constitute a vocabulary. In this context, the term degree of freedom means the num-
ber of combinations that a sign can generate with other signs of a vocabulary. In
principle, all signs can be used together to set up a phrase with a logic meaning. For
instance, signs as “car” and “flower” can be combined in phrases as “A car is not
a flower”. Notwithstanding, if we consider our experience in the use of a language,
we can observe that not all signs are combined together. This concept can be put
into practice by representing a vocabulary as a network of signs, where signs are
connected in the event they can be used together. Therefore, the topology of the net-
work of signs is fundamental to compute the Shannon entropy of acronyms [12]. In
general, if a network of signs has a fully-connected structure, there is a large set of
possible solutions for each acronym. The cardinality of the set of solutions can be
computed as:

|Ω f c|=
z

∏
i=1

ωi (1)

where z is the acronym length, |Ω f c| is the cardinality of the set of all possible
solutions considering a fully-connected network of signs, and ωi is the number of
signs that begin with the ith character. On the other hand, if we consider a different
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topology of the network of signs, the number of possible solutions can be widely re-
duced. For instance, in the event a network of signs has a scale-free structure, we can
write |Ωs f | ≤ |Ω f c| (with |Ωs f | cardinality of the set of all possible solutions consid-
ering a network of signs with a scale-free structure). The reported inequality holds
because not all signs, in the scale-free network, are reciprocally connected. Consid-
ering a network of signs fully-connected, the Shannon entropy [24] of acronyms can
be computed as follows:

Hf c =
z

∑
i=1

hi (2)

where hi is the entropy of the ith character of the acronym, computed as:

hi =−
ωi

∑
j=1

s j · log2 s j (3)

with s j probability of occurrence of the jth sign. Instead, by using a network of
signs with a scale-free structure, the Shannon entropy Hs f of acronyms becomes:

Hs f =−∑
j1

∑
j2

...∑
jz

s j1, j2,..., jz · log2 s j1, j2,..., jz (4)

with z acronym length and s j1, j2,..., jz probability that all signs occur together.

3 Identification of Acronyms

Let us now introduce our model to study the spreading dynamics of acronyms
and their identification. In the proposed model, we consider N interacting agents
which communicate by a linguistic convention, i.e., a common vocabulary. Rela-
tions among signs are mapped to a network [12], named NetSigns. The edges of
NetSigns are generated between signs that can be used together, since their combi-
nation has a logic meaning. All agents know the rule for generating/codifying an
acronym, which consists in the utilization of the first character of each sign. In so
doing, more than one solution (i.e, meaning) can be associated to an acronym. At
the time t = 0, a randomly chosen agent invents a new acronym with the aim to
spread it in the population. The inventor communicates the acronym and the first
sign of the solution to its neighbors. For example, it wants to spread the acronym
laser, hence it communicates to its neighbors both the acronym and the sign light.
In this case, to compute the Shannon entropy of acronyms, we have to consider that
the first sign is known. Therefore, the value of Hs f can be computed as:

Hs f =−∑
j2

...∑
jz

s j1, j2,..., jz| j1 · log2 s j1, j2,..., jz| j1 (5)

The first sign j1 constitutes a partial solution that agents use to codify the acronym.
In the event they compute the solution (i.e., the meaning) defined by the inventor,
they add the acronym in their vocabulary and consider it as an acronym. In the



298 M.A. Javarone

opposite case, they add the acronym in their vocabulary but consider it as a simple
noun, hence the acronym has not been identified. At each time step, all agents that
receive an unknown acronym (with its first sign), try to compute the solution. On
the other hand, all agents that know the acronym, but not its solution, can try again
to compute the solution if they have neighbors that know both the acronym and its
solution. Agents have a limited number of attempts to codify an acronym. The num-
ber of attempts depends on the knowledge of their neighbors. In particular, in the
event there are more neighbors that know the acronym and its solution, the number
of attempts is 4; otherwise, the number of attempts is 2. To summarize, the proposed
model is composed by the following steps:

(1) In a network with N agents, a randomly selected agent invents a new acronym.
(2) Each agent, who does not know the acronym and/or its solution, computes the

number of its neighbors that know the acronym:

(a) in the event there are more neighbors that know the acronym and its solu-
tion, it tries to codify the acronym by 4 attempts.

(b) in the event there are more neighbors that know only the acronym but not
its solution, it tries to codify the acronym by 2 attempts.

if the agent does not compute the correct solution, it saves the acronym but
considers it as a simple noun. Otherwise, it saves the acronym and its solution,
therefore it considers this sign as an acronym.

(3) Repeat from (2) until all agents knows both the acronym and its solution.

In order to compute the solution of an acronym, agents use the following algorithm:

(1) Identify the “list 1”, that contains all signs connected to the first (known) sign.
(2) Randomly select one sign from the “list 1”:

(a) if the selected sign is correct, define the “list 2” that contains all signs con-
nected to the 2nd sign;

(b) else increase the number of failures and, if there are still attempts, restart
from step (2).

(3) Randomly select one sign from the “list n”, that contains all signs connected to
the nth sign:

(a) if the selected sign is correct, define the “list n+ 1”, that contains all signs
connected to the n+1th sign and repeat from step (3) using the new list;

(b) else increase the number of failures and, if there are still attempts, restart
from step (3).

(4) Repeat, starting from the partial correct solution, until the acronym has been
codified or until the number of failures is equal to the number of attempts.

In so doing, the task of codifying acronyms is simplified. For example, let us con-
sider the acronym laser. At the first attempt, an agent computes the following partial
solution: (Light, Amplification, Stimulated, Element). Since the 4th sign is wrong,
the number of failures of the agent increases. Hence, if the agent has other avail-
able attempts, it tries again to compute a solution starting from the partial solution
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Fig. 1 Density of agents that add an acronym in their vocabulary over time, and know its
solution. The legend indicates values of the Shannon entropy of each acronym. a Results
achieved in a population with N = 1000. b Results achieved in a population with N = 5000.
Values are averaged over 10 different realizations.

(Light, Amplification, Stimulated); otherwise it saves the acronym as a noun. It is
worthy to recall that, agents that saved the acronym as a noun can change opinion
by trying to compute again a solution (in the event they have at least one neighbor
that considers the acronym as such).

4 Simulations

We performed numerical simulations of the proposed model with a community of
language users composed by a number of agents in the range N = [100,10000].
Agents have a common vocabulary, organized as a network (named NetSigns),
with a number of signs in the range S = [1000,5000]. The agent network and Net-
Signs have a scale-free structure achieved by the Barabasi-Albert model [25]. In so
doing, both networks have a degree distribution P(k)∼ k−γ , with a scaling parame-
ter γ ≈ 3. The number of attempts to codify an acronym has been set to 4 in the event
an agent has a greater number of neighbors that know the acronym and its solutions
than those of neighbors that know the acronym but not its solution; otherwise, in
the opposite case, the number of attempts is 2. The first analysis is related to the
density of agents (ρ) that add an acronym in their vocabulary over time, and know
its solution –see Figure 1.

This analysis allows also to compare the length of acronyms with their Shannon
entropy in terms of time steps to let all agents to identify the solution. Figure 2
illustrates this comparison, showing that the Shannon entropy affects this process
more than the length of acronyms. These results highlight that the number of time
steps, to let agents compute the correct solution of an acronym, increases as the
Shannon entropy of the considered acronym increases. Another important measure
is the scaling of the consensus time Tc [26], i.e., the time at which the system reaches
the ordered phase, with the size of the population and with the Shannon entropy of
acronyms. As shown in Figure 3 (panel a), the value of Tc increases as the size



300 M.A. Javarone

Fig. 2 Density of agents, in a population with N = 2500, that add an acronym in their vocab-
ulary over time, and know its solution. The legend indicates the length of acronyms and their
Shannon entropy. Values are averaged over 10 different realizations. a and b show results for
two different sets of acronyms (see the Shannon entropy).

Fig. 3 a Scaling of the consensus time Tc with the size of the population. Each curves referes
to a different acronym. b Scaling of the consensus time Tc with the Shannon entropy of
acronyms, in a population of 10000 agents. Values are averaged over 10 different realizations.

of the population increases. Moreover, in the cases of 3 character acronyms and 4
character acronyms, it seems that the growth of Tc is almost linear. Results shown
in Figure 3 (panel b) confirm that as the Shannon entropy of acronyms increases the
Tc increases.

4.1 Discussion

In this work we investigate the relation between the Shannon entropy of acronyms
and their identification in a population of language users. We propose a model
where interacting agents have to compute the solution of an acronym, i.e., the set
of signs to generate it. Agents, arranged in a network, communicate the acronym to
their neighbors. In particular, they send both the acronym and the first sign of the
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solution. Agents that compute a solution add the new sign to their vocabulary and
they consider it as an acronym. In the opposite case, agents save the acronym but
they consider it as a simple noun. For each agent, the number of attempts to compute
a solution depends on the amount of neighbors that consider the acronym as such or
as a noun. The density of agents that compute the solution of an acronym allows to
evaluate whether the Shannon entropy affects the identification process. We found
that as the Shannon entropy increases the number of time steps to let all agents com-
pute the solution increases –see Figure 1. Furthermore, we compared the Shannon
entropy with the length of acronyms. Figure 2 illustrates that the entropy affects
the identification process more than the acronyms length. Finally, we analyzed the
scaling of the consensus time with the size of the population, and with the Shan-
non entropy of the acronyms. Results shown in panel a of Figure 3 highlights that
the growth of Tc is almost linear while increasing the size of the population. More-
over, results shown in panel b of Figure 3 confirms that the number of time steps to
reach the ordered phase depends on the entropy of acronyms. In particular, as the
entropy increases the Tc increases. It is worthy to observe that all achieved results
support our hypothesis about the existence of a relation between the probability of
identifying acronyms and their Shannon entropy.

5 Conclusions

In this work, we propose a model for studying the identification of acronyms in a
community of language users. This work originates by the observation that, from a
linguistic perspective, there are acronyms that can be exchanged for simple nouns
because of their grammatical and phonic aspect, e.g., radar, laser and sonar. We hy-
pothesize that the Shannon entropy of acronyms affects their probability to be identi-
fied as such. We introduce an agent-based model to study the spreading dynamics of
acronyms, with the aim to investigate the above hypothesis. In the proposed model,
an acronym spreads in the agent network and each agent tries to compute a solution.
In the event an agent finds a solution, it considers the acronym as such; otherwise
it considers the acronym as a noun. Results of numerical simulations show that the
Shannon entropy strongly affects the identification of acronyms. In particular, sev-
eral time steps are needed for computing acronyms with a high Shannon entropy.
This latter seems more important than the acronym length, since the codification of
short acronyms with a high Shannon entropy requires more time steps than that of
longer acronyms with a low entropy. Finally, we deem the proposed model useful
also for more general problems related to the codification of sequences of symbols.
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Negative Implications of a Power-Law
Distribution: A Study on Networks of Scientific
Reviewers

Song Qin, Marius C. Silaghi, Ronaldo Menezes, and William Cheung

Abstract. Traditional peer-reviewing is a process whereby submissions by various
scientists are selected based on certain criteria passed on to reviewers by organiz-
ers of conferences or editors of journals. This process has been used to maintain
the quality of the works being presented and also to help grouping reports relevant
to a given community (or topic). However, certain scientific opinions and theories
compete and have partisans. Common examples of such competitions appear when
deciding the most important metric in classification algorithms, what to use as a
basis for recommendation algorithms, the best predicting models for a known phe-
nomena, to name a few. The common assumption is that the community will be
equally informed about the arguments of all involved studies, in order to come out
with objective conclusions. This assumption is reasonable when partisans of each
competing opinion can eventually review and recommend for publication the stud-
ies that agree with their perspective. In its turn, this can be expected to eventually
happen whenever expert reviewers are randomly assigned to corresponding papers.
However in recent years we have seen that power-law distributions instead of ran-
domness are present in many social relationships. In this study we investigate what
happens in the world of peer-reviewing, more specifically in a network of review-
ing relations for an open review journal. We found that a power-law distribution is
indeed present, as a small group of reviewers evaluates a significant fraction of all
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submissions. The problem however is that this is undesirable since these “hubs”
have an unmatched influence on what gets published. This experiment presents
a first case where arguably the power-law structure of the social network can be
considered as an overall negative factor. It also supports an argument for employ-
ing the social graph of reviewers as an additional metric of the quality of a jour-
nal/conference.

Keywords: Social Networks, Peer-Reviewing Process, Power-Law Distributions.

1 Introduction

Peer reviewing is an essential mechanism of the modern research process. Tradi-
tionally, journals have used the peer-review process as a filter to decide which sub-
missions should be selected for publication, potentially based on criteria such as
relevance to the main topic of the journal and technical quality. In the past it
was difficult to study the properties of reviewing processes due to requirements
of anonymity of reviewers. It is generally believed that this process is fair and it is
assumed that it avoids bias given the fact that most journals and conferences employ
at least 3 individuals to evaluate each publication.

Recently however, several journals and workshops have adopted new models of
peer reviewing, where the names of the reviewers are made public [8, 17, 13, 14].
Among them the journal of Biology Direct, which has used open peer-review for
several years, yields a large amount of data for verifying assumptions. This allows
us to analyze the process and to try to understand peer-reviewing a little better.

While the general public is familiar with “reviewing” for items sold on eBay and
Amazon, that type of reviews does not have as purpose the forbidding of the sale of
poor quality items. Instead, the poor quality items are still left for sale but they are
attached with the relevant information for warning potential buyers.

Traditional peer-reviewing for scientific articles is a very different concept. Re-
views of scientific articles are not commonly published with these articles and are
not commonly used for warning potential readers of the failures and qualities of the
article. Rather, these reviews are meant for helping a chair of conference or journal
editors to decide which submissions should be filtered out. The general public (sci-
entists who read these papers) are not aware of any concerns or discussion that took
place during the review process.

1.1 Problem

While reviewing aims to be impartial, it is difficult for introspection alone to remove
certain biases stemming from the school of thought where the reviewer was herself
educated as a scientist. There exist competing schools of thought in economics,
science, engineering, and many other fields [15, 10, 7]. A factor that is arguably
desirable for the objectivity of a journal, is how well it gives equal chances to re-
searchers from different currents to state their arguments. Based on the assumption



Negative Implications of a Power-Law Distribution 307

of potential bias, it is desirable to have a diverse range of reviewers being able to
review and participate in filtering, balancing the chances of the competing schools
of thought. While not all schools of thought will review each given submission, each
of them should at least get a fair chance of reviewing relevant submissions.

There are four major types of peer-review mechanisms used in reviewing of sci-
entific articles, as well as in (medical) experiments on human subjects. Common
simple blind review mechanisms are those where reviewers know the name of the
authors but authors do not know the names of their reviewers. The motivation is to
avoid that reviewers would fear retribution for their reviews. Double-blind reviews
are those made in such a way that reviewers do not know the name of the paper
authors and paper authors do not know the name of their reviewers; they stem from
concern of bias for reviewers (e.g. when reviewing an influential person). Open peer
reviews are mechanisms where reviewers know the names of the authors and authors
know the names of their reviewers, while reviews and reviewer names are published
with the articles. The motivation is to encourage reviewers to write responsible re-
views. Blinded review is another mechanism where reviewers do not have access to
the names of authors but the names of reviewers are published together with their
reviews. The idea is to encourage reviewers to be responsible, by accountability,
while helping them to avoid bias (as in the case of the double blind review).

In the aforementioned processes there exist relations between authors and re-
viewers (even if these relations are sometimes hidden from both parts). According
to theories in social network analysis and complex networks, the structure of these
relations should tell us something about the process itself. This study looks at the
characteristics of the social network of reviewers and its relation to the fairness of
the review process.

The online availability of the reviewing information from the Biology Direct
Journal gives us a window into the scientific review process. It allows for verify-
ing whether submissions have fair chances to be reviewed by a varied number of
researchers, potentially covering multiple schools of thought. What we noticed is
that a couple of reviewers eventually reviewed a large fraction of the accepted arti-
cles. This took place despite the editor’s effort of finding different people to review
each work. The issue however is that each submission could have different reviewers
that appear to be chosen at random but at the global level the picture is quite differ-
ent and what emerges when we combine the seemly individual random choices for
each paper is a network in which few reviewers are hubs and review quite a lot of pa-
pers, a typical social network with hubs and long-tail distributions [1]. Note that this
would be less prominent in a conference if we analyze only one edition. Normally
conferences enforce a maximum number of reviews per person. For a conference
one would have to look at the global picture across many editions (years) of the
event.

From the perspective of review processes, we claim that the power-law distribu-
tion is detrimental to the process itself because it points to an unbalanced influence
for any potential bias that these hub reviewers may have. While a power-law distri-
bution for networks was so far considered as a positive characteristic signaling the
stability of the social network, we have identified here an argument for considering
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the power-law distribution in peer-reviewers networks to be a negative trait. Having
journals and conferences publish the networks of reviewers (even if just the structure
without actual names) can help developing a new metric for their objectivity.

We discuss the related work in Section 2. Section 3 describes the dataset and how
it was modeled as a network. We then look at these networks formed from author-
reviewer relations and discuss our findings in Section 4. Finally we conclude with
suggestions of how these findings can be used to improve peer-review processes.

2 Related Work

2.1 Social Network Analysis

A social network is a structure that represents social interactions and personal rela-
tionships. Examples of social networks include: friendship [6], collaboration [16, 5]
and email networks [3]. In general a social network can be abstracted as a structure
in which the entities are people and the links between these people are extracted
from some social relationship. In this paper we address the social network of re-
viewers. This network is obtained by projecting the bipartite network of reviewers
and papers shown in Figure 1 unto the set of reviewers. Two reviewers are con-
nected if they have reviewed the same paper. The strength of their link is given by
the number of submission that they have reviewed together.

PAPERS REVIEWERS

2

NETWORK OF REVIEWERS

PROJECTION

Fig. 1 From a bipartite network in which reviewers are linked to the papers they review, we
can project a network of reviewers where reviewers are linked directly if they reviewed the
same paper

When looking at networks one can use several metrics to understand the rep-
resented phenomena. The metrics we use are the degree distribution, betweenness
centrality, closeness centrality and clustering coefficient, explained below:
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Degree Distribution: This distribution expresses the probability, p(k), that a node
in the network will have k connections. It has been observed that in many real
networks [12] their degree distribution roughly follows a power law as given by
Equation 1,

p(k) = ck−λ, (1)

where, c and λ are constants. For most of the real networks 2 ≤ λ ≤ 3. Nodes
that have more ties to other nodes may be in advantageous positions.

Betweenness Centrality: The betweenness is a measure of the centrality of a ver-
tex in a network. Betweenness is calculated as the fraction of the shortest paths
between vertex pairs, that pass through the vertex of interest. For a network
N = (V,E) with n vertices, the betweenness CB(v) for a vertex v is:

CB(v) =
∑

s�=t�=v∈V

αst(v)

αst
, (2)

where αst is the number of shortest paths from s to t, and αst(v) is the number
of shortest paths from s to t that pass through vertex v. Vertices exhibiting a high
level of betweenness are in a position to control information flow in the network.

Closeness Centrality: Centrality is defined as the inverse of the distance from a
vertex to all other vertices in the network

Cc(i) =
1∑

k d(i, k)
, (3)

where d(i, k) is the shortest path between vertices i and k. This metric gives low
values for the central nodes and high values for the less central ones. Nodes with
high closeness are generally in a position to influence other nodes because they
can reach them very quickly.

Clustering Coefficient: This coefficient is a measure of the ratio in which nodes in
a graph tend to cluster together. The clustering coefficient, Ci, of node i is given
by Equation 4, where, mi is the number of links between the ki neighbors of i;
the clustering coefficient of the entire network is just the average of all Ci over
the number of nodes in the network n. Clustering is relevant to social networks.
It can be used to identify small-world networks [19] which are expected to have
high clustering and short average path lengths.

Ci =
2mi

ki(ki − 1)
. (4)

In this paper we study the aforementioned metrics in relation to a reviewers’
network from a peer-review process. However our main discussion in this paper
focuses on the drawbacks of the degree distribution to the peer-review process itself.
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2.2 Open Peer-Review Process

One of the most common reviewing processes is the double-blind review. Under
this scheme one publishes only accepted articles and the names of the organizing
committee members (names which are supposed to witness to the quality of the
reviewing process). Reviewers are not expected to know the names of the authors at
the time of the review, and authors will never find out the names of the reviewers of
their submission. Reviews are not published and are not digitally signed, and authors
have no way to prove that they have received any given review, or even that they
have submitted any given article. The camera-ready article eventually published in
the proceedings can be completely different from the corresponding article actually
evaluated by reviewers (and even the title can be completely changed). As example
of venue using double blind review we mention the International Joint Conference
on Artificial Intelligence (IJCAI).

Multiple models of open peer-review processes have been proposed and exper-
imented with. The openness varies in terms of what is revealed, in terms of the
degree of the revelations, and in terms of the articles to which the revelation applies
(e.g., only to accepted articles or to all submitted articles). A classification from the
perspective of the object of the revelation contains the following dimensions:

Open/Closed Author Names: This dimension tells whether reviewers are informed
about the names of the authors at review time. This information is supposed to
help reviewers correctly assess the originality of the submission. An example of
open author names reviewing is employed by the Conference on Principles and
Practice of Constraint Programming (CP).

Open/Closed Article: Venues may either publish articles, or keep them as part of
a closed meeting. Certain workshops do not produce public proceedings and the
articles accepted and presented in their forum are not considered published.

Open/Closed Submission: Some venues do publish the submission actually eval-
uated by reviewers, while others only use the submission as an acceptance criteria
for publishing a different article. The actually published (aka camera-ready) ar-
ticle is typically assumed to be an improvement of the submitted article based
on feedback from reviewers. However, only few journals have mechanisms to
ensure that the actually published article has any relation whatsoever with the
actually reviewed submission. In practice submitters can change even the title
and the list of author names of a submission. An example of venue that publishes
both the original submission and the camera ready version is the Workshop on
Decentralized Coordination.
A limited degree of openness of submissions is offered by some cryptology
conferences that give authors digital signature certificates for their submissions,
helping them to prove that they have submitted the corresponding articles.

Open/Closed Reviews Summary: At various conferences, a senior committee
member is charged with writing a short summary of the reviews, to be privately
communicated to the author and to the editor making the acceptance decision.
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Under schemes with open reviews summary, an anonymous committee member
is charged with writing a public summary of the anonymous reviews for an article
(Example: IEEE Conference on Peer to Peer Computing (P2P)).

Open/Closed Reviews: With open reviews, the actual reviews received by the arti-
cle are made publicly available (not necessarily publishing the names of the indi-
viduals). This procedure is more common in online journals such as Philica.com.

Open/Closed Reviewing Activity: This revelation dimension quantifies whether
one publishes the number of articles reviewed by each reviewer (helping to quan-
tify their impact). Most conferences do publish an average of the number of ar-
ticles reviewed by its reviewers, but note that an average is not significant if the
distribution of reviews per reviewer follows a power-law.

Open/Closed Article Reviewers: The names of the reviewers of each article may
or may not be published in association with that article. Certain journals publish
articles labeled with names of researchers recommending them.

Open/Closed Review Authorship: The dimension of review authorship is used to
specify whether the name of each reviewer is published in association with the
corresponding review. With open review authorship the reviewers assume the re-
sponsibility of their reviews, and they also get credit for improvements suggested
in these reviews. Sample venues presenting this feature are the 2013 Workshop
on Decentralized Coordination and the online journal Biology Direct.

From the perspective of the degree of revelation, each of the aforementioned
items of information can be revealed to any subset of the following groups:

• conference chairs
• reviewers
• authors
• conference audience
• general public

For example, the 2007 Workshop on Material Thinking Design revealed reviewer
names to authors but did not publish them.

Here we focus on the effects of using an open reviewing activity. These effects
appear also in the case of a stronger revelation that implies the opening of the re-
viewing activity, such as using open article reviewers or open review authorship.

There are multiple (more or less logic) qualitative arguments for and against each
of these degrees of openness, and there are at least two series of conferences ded-
icated to the practice of Peer Reviewing. Nevertheless it is a remarkable scientific
challenge to design quantitative metrics that can be used for founding a systematic
study of this area [13]. We believe that the use of the social graph can move us one
step closer to a mechanism in which the general audience can have a better idea of
the quality of the peer-reviewing process.
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3 Network of Reviewers

Biology Direct1 is an open peer-reviewed journal where publications and their re-
views (also the reviewers’ name) are publicly accessible through unique URLs. We
downloaded information for about 314 papers (titles) and the corresponding review-
ers up to March 2013. The dataset contained 843 reviewers. Once the projection was
done as explained earlier, the network contained 843 nodes and 2,512 relations.

We first performed an analysis of the degree distribution of the network and found
that two nodes dominated the reviewing process with 192 and 125 reviews each.
This is respectively 3 and 2 times as much as the third reviewer who reviewed 65
submissions. The obtained degree distribution is shown in Figure 2.

Fig. 2 The degree distribution of reviewers shows a scale-free network in which a couple of
nodes are hubs

Next we performed a community analysis to understand whether the hubs are
part of the same group of people. Fortunately, in this case they belong to different
communities which we believe indicate that they belong to perhaps two different
groups of individuals interested in reviewing papers. The community detection al-
gorithm that we used here was proposed by Blondel et al. [4], and it identifies 14
communities. In Figure 3 we can observe the network of reviewers where the size of
the node represents the degree and the colors highlight the different communities.
Diversity in the community can be used to positively assess the quality of the review
process.

As mentioned before, the network of reviewers is built by using nodes to rep-
resent the reviewers and arcs to illustrate whether they are connected by reviewing
together the same paper. The tool we used for visualization is Gephi [2]. Note that
the size of a node is proportional to its degree. Nodes are colored based on the 14
different communities they are in. The employed community detection algorithm is
proposed in [4, 9].

1 http://www.biology-direct.com/

http://www.biology-direct.com/
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Fig. 3 Network of reviewers highlighting the communities they belong to. 14 communities
can be observed in this network. The existence of many communities is a positive indicator
of the review quality. Communities can be seen as groups of reviewers interested in similar
subjects.

In this network we have a high correlation between the degree of a node and its
betweenness and closeness so we decided not to show the visualizations for these
centralities due to lack of space in the article. The high correlation is due to the
fact that the people doing a lot of reviews end up linking different groups and being
close to most of the other reviewers. What these high centralities mean is that highly-
connected reviewers have an unhealthy chance to exert a strong influence on other
reviewers and consequently on the review process. Not only that their reviewing
leads to a collection of accepted articles that fits the scientific view of these hubs,
but the other reviewers are likely to be indirectly influenced by the reviews of the
hubs. In a reviewing process it is common to have reviewers modify their review
after they see the reviews of others or participate in discussions. A hub acts as an
authority in the process because she has participated in several other discussions.

Last we looked at the clustering coefficient of the nodes in the network and at the
average clustering coefficient. Figure 4 shows a network in which the color of the
node represents its clustering coefficient; the stronger the color the more clustered
the node is.

Note that Figure 4 indicates the existence of a few highly connected groups.
These groups are not good for the peer-review process and can indicate the existence
of some “mob” phenomena in which a group of individuals may work together to
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Fig. 4 Network of reviewers by clustering coefficient. Darker colors represent higher clus-
tering coefficient.

achieve a certain goal—in the case here the goal could be to influence the accep-
tance/rejection of a paper. Fortunately however this is not generalized throughout
the network.

4 Discussion

While each given submission to a venue may be reviewed by a varied set of
researchers, the aggregated distribution of reviewers may be less uniform. The
aggregated distribution of reviewers can end up with a few reviewers having dis-
proportionate influence. The danger of this phenomenon is increased if one cannot
always guarantee the relation between expertise and influence.

The existence of communities is more complicated to understand. Although the
existence of communities can be positive for showing a variety of individuals with
different interests (as we said before), one has to also be careful because the com-
munities may also mean that we have individuals who review papers together but
rarely mix with other groups. When one uses the social graph to assess the quality
of a conference, the community structure should be carefully analyzed to help one
understand its benefits and drawbacks. Moreover on the drawback side, communi-
ties show that the peer-review process is not being vetted by reviewers with diverse
backgrounds and interests. We believe a good reviewing network will not have a
good resolution on the division of communities, having at most a small number of
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communities defined (the exact number really depends on the size of the network
and on the field of research).

One can also look deeper into the structure of the neighbors of each researcher.
Ideally each submission would be reviewed by reviewers that are as disconnected
as possible, reducing social contagion (while still being somewhat connected due to
their expertise), such as to obtain diverse points of view [18].

A parallel can be drawn between peer-reviewing and genetics. Multiple sets of
genes come together to generate a more robust set of genes where the union over-
shadows individual damaging mutations from each independent set. Similarly, the
opinion of multiples reviewers come together to select and influence an article.

With current genome donors one has raised the issue of dangers coming from the
disproportionate usage of certain sources [11]. In particular, offspring of the same
donors will inherit mutations that can dangerously surface in subsequent genera-
tions.

Similarly, there are dangers from disproportionate usage of certain reviewers.
Reviewers (as any human) can have preconceived ideas and can subjectively favor
certain metrics or scientific views. The relevance of peer-reviewing as a pillar of
the modern science is also due to the theory that it can mitigate such subjectivity
by joining diverse opinions. Disproportionate involvement of certain reviewers can
endanger this property, as their subjectivity will disproportionately impact on the
venue and thereby on subsequent generations of researchers.

5 Conclusions

We raise the issue that the power-law distribution generally seen as a positive factor
for the stability of social networks can also have negative undesirable connotations.
We raise this issue in the context of peer-review social networks, where the fact that
certain reviewers are found to be involved in a disproportionate number of articles,
conflicts with the objectivity expected from scientific reviewing. Human individuals
are intrinsically subject to preconceived ideas, errors and subjective reasoning. Di-
versity of reviewers is therefore the basis that makes from peer-reviewing the pillar
of modern science, where the mixture of multiple views can lead to sounder ag-
gregated result (just as the combination of genes can help defend against damaging
mutations in each individual contribution). Just as the defects of a disproportionately
frequent donor of genes risk to appear more frequently in subsequent generations,
the subjectivity of one disproportionately involved reviewer can impact negatively
on generations of researchers.

The availability of data for our study was made possible by the recent trend of
openness in journal and conference peer-reviewing. In particular we made an ex-
tensive usage of the information on reviews and reviewers made available by the
Biology Direct online journal. In the proceedings of this journal we find that a cou-
ple of reviewers were involved in reviewing a significant fraction of the articles
being published in the venue. We conclude that such openness (at least openness
of reviewer activity) can be recommended to journals and conferences that want
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to convince the public about the soundness of their reviewing procedures. Further
openness concerning the structure of reviewer neighborhoods (as offered by open-
ness of article reviewers) can also be recommended as a way to detect risks of social
contagion and detection of undesirable segregation into communities.

While significantly more research is required for establishing a sound scientific
foundation to the peer-reviewing procedures found at the foundations of modern
science, this study brings a small but clear and objective contribution.
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Using Complex Network Representation  
to Identify Important Structural Components  
of Chinese Characters 

Grace Crosley and Mehmet Hadi Gunes 

Abstract. It has recently been shown that the Chinese character system can be 
treated as a complex network, in which the nodes represent written Chinese charac-
ter components, and a connection between nodes indicates a structural relationship 
between the two corresponding components. This study explores the complex net-
work formed by written Chinese components. We examine the considerations in-
volved in generating such a network (boundary choice, weighting of edges and 
nodes, connectivity model, etc.).  Treating these considerations as variables, we 
create several complex network representations of the Chinese writing system, and 
compare their resulting topologies. By analyzing these networks, we try to identify 
important written components and component clusters, and thereby gain insight into 
the best strategies for structure-based written Chinese vocabulary acquisition. Sam-
ple networks can be found at http://cse.unr.edu/∼mgunes/Chinese/. 
 

1 Introduction 

Chinese is an important language with approximately 1.2 billion native speakers 
worldwide. It is also considered to be one of the most difficult human languages to 
master, in large part because of its complex writing system. Traditionally, mastery 
of the writing system involves rote memorization of thousands of characters. 
While memorization will always be required, Chinese could be made more access-
ible to non-native speakers by developing an organized approach to studying  
written vocabulary. The central task of this paper is to form complex networks 
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from the components of written Chinese characters, and apply complex network 
theory to analyze these networks, with the particular goal of identifying a useful 
set and ordering of these components for Chinese as a Foreign Language (CFL) 
learners to study.   

Each Chinese character represents one syllable of the Chinese language. The 
way a Chinese character is written does not necessarily provide any information 
about its pronunciation, and many characters are written differently but have iden-
tical pronunciations. Almost all Chinese words consist of one or two characters; 
we shall refer to a two-character word as a compound word. 

In general, every written Chinese character can be ultimately decomposed into 
one or more of the roughly 200 written elements called radicals, many of which 
are characters in their own right. One or more radicals may combine to what we 
call a component. In turn, one or more components may combine to form a written 
character, which may combine with another component to form a more complex 
character. A component may therefore be a single radical, a full-fledged character 
or something in-between. 

About 90% of modern Chinese vocabulary consists of phono-semantic charac-
ters, which are made up of a semantic component (typically a radical) that indi-
cates meaning and a phonetic component that indicates pronunciation [1]. Studies 
have shown that students who use knowledge about phonetic and semantic com-
ponents to help identify characters are better at reading written Chinese [2]. How-
ever, the typical CFL education emphasizes rote memorization of characters, with 
no formal attention given to the role of radicals or phonetic components [3]. Fur-
thermore, vocabulary lists are typically based on the contents of textbook dialo-
gues, rather than on character frequency or structural similarity of characters. 
While existing research has suggested that CFL students should learn about writ-
ten Chinese character components, it has not suggested any set or sequence of 
components for study.   

This paper aims to identify a useful order in which to learn written Chinese 
character components. Various complex networks will be created in which the 
nodes are written Chinese components (radicals, characters and, in some cases, 
intermediate components). A component will be connected to each of its constitu-
ent components. The metrics of each complex network will be evaluated, and its 
hubs and clusters will be examined, to identify radicals and/or intermediate com-
ponents that are particularly useful for CFL students to learn.   

The formation of a complex network from Chinese character components is a 
relatively new approach. While a couple of recent studies have created and ana-
lyzed similar complex networks [4-6], these studies focused on the network-level 
properties, and did not call attention to any particular nodes or clusters. Complex 
network analysis has not yet been used to identify important character components 
or inform Chinese language learning strategies. Our novel approach could form 
the basis for a much-needed structure-based system for the acquisition of written 
Chinese vocabulary. 
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2 Methodology 

A publicly available data table from the Wikimedia Commons was selected as a 
source of raw data about the composition of Chinese characters [7]. The table 
provides information about the graphical composition of roughly 20,000 tradition-
al Chinese characters. Its advantages are that it is publicly available, deals with 
traditional characters and has more than sufficient character coverage (given that 
fewer than 10,000 characters are required for literacy). The disadvantage is that its 
contributors are anonymous, and therefore its contents may be incomplete or unre-
liable. As the Wikimedia Commons decomposition list is based on indivisible 
subcomponents rather than radicals, it was manually modified for this project so 
that non-radical subcomponents were broken down into standard Kangxi radicals. 
The sources used for this decomposition were www.zhongwen.com and 
www.wiktionary.com. A few missing decompositions were also added, using 
the same sources. 

Three separate character frequency lists were used in conjunction with the cha-
racter composition table. Since each frequency list is based on a unique body of 
data, the source material may differ greatly as to volume, source, time period and 
subject matter, and so the character frequencies may differ substantially. Frequen-
cy rankings from a selected list were used to limit the boundaries of the network 
and weight its nodes. The effects of each list on the resulting complex network 
metrics were compared. Most readily available character frequency lists are based 
on simplified characters, but three useful traditional character frequency lists were 
found. 

The first list, compiled by Chih-Hao Tsai, is based on a corpus of over 170 mil-
lion characters gathered from Usenet newsgroups in 1993 and 1994 [8]. It assigns 
a frequency to each of the 13,060 traditional Chinese characters that are 
represented in the BIG-5 encoding scheme. The second list, compiled and pub-
lished by Ho Hsiu-hwang and Kwan Tze Wan, consists of nearly 4 million charac-
ters, gathered from literary texts from three different decades in Taiwan, Hong 
Kong and mainland China [9]. For the purposes of this complex network analysis, 
the mainland China data has been excluded, since it uses simplified characters. 
The third list, maintained by Patrick Zein, is based on data from various other 
statistical lists and dictionaries [10]. Zein's list is limited to the 3,000 most  
frequent characters, and provides the traditional character equivalent to each sim-
plified character in the list. While this sort of conversion from simplified to tradi-
tional characters may slightly alter the accuracy of the source data (keeping in 
mind the fact that a simplified character may correspond to more than one tradi-
tional character), it still seemed worthwhile to make use of a frequency list that is 
based on such a large and varied corpus. 

First, any entries with incomplete decomposition data were removed. Then two 
types of networks were created, one of which emphasized the role of radicals, 
while the other took complex subcomponents into consideration. In both cases, the 
set of radicals consists of the standard set of Kangxi radicals. In the radical-based 
network, vertices belonged to two classes: radicals and characters. In many cases, 
a radical is itself a character; in such cases, the radical was represented by two 
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vertices, one classed as a radical and one classed as a character. Each character 
was connected by arcs to the radical(s) that composed it. In the subcomponent-
based complex network, vertices belonged to three classes: radicals, complex 
subcomponents and characters. If a character was also a radical, it was 
represented by two vertices – a radical and a character. Likewise, if a character 
was also a complex subcomponent, it was represented both as a character and as a 
complex subcomponent. Each character was connected by an arc to its corres-
ponding radical or complex subcomponent. Each complex subcomponent was 
connected by arcs to its constituent radical(s) and/or complex subcomponent(s).  

Each character frequency list was applied to these two basic networks in order 
to further refine and differentiate them. All but the most frequent n characters 
from the list were culled from the network. Then each arc connected to each cha-
racter-vertex in the network was assigned a weight corresponding to that charac-
ter's normalized frequency of usage. A separate network was created based on the 
most frequent 1,000; 2,500; and – if available – 5,000 and 10,000 characters from 
the frequency list. 

Individually important radicals and subcomponents (hubs) were identified by 
examining the network's degree distribution (both weighted and unweighted). The 
weighted degree distribution gave more importance to radicals and subcompo-
nents that appear in high-frequency characters, while the unweighted degree dis-
tribution gave importance to radicals and subcomponents that appear in a greater 
number of characters. A comparison of the degree distributions of corresponding 
radical-based and subcomponent-based networks was performed, in the hope that 
this would provide insight into the relative importance of radicals and subcompo-
nents as units of character study. 

In order to identify important clusters, the networks were converted into un-
imodal format, with the character vertices (and their associated weights) removed. 
We attempted to identify clusters by finding sets of k-cores with increasingly large 
values of k. We hoped to find a value of k for each network that would yield many 
clusters of approximately equal size, each of which could correspond to a textbook 
lesson. Once a useful-looking set of clusters is identified for a given network, 
these clusters would be ranked in order of importance by reintroducing the charac-
ter weights, summing up the weights of the characters connected to each cluster, 
and assigning this sum as the overall weight of the cluster. Within each cluster, 
individual radicals and subcomponents would be ranked according to their original 
weighted degrees. 

3 Results 

3.1 Giant Components 

Each network was dominated by a giant component; only a handful of vertices in 
each network were not connected to the giant component. This suggests that net-
work-level measurements are representative of the network as a whole.  
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3.2 Path Distance 

Path distance was measured only for mixed networks, since the length of each 
path in the radicals-only networks is 1. Average path distance was fairly consistent 
among networks. It did decrease slightly as the network size decreased. This is 
likely because less-common characters are more likely to be complex; longer 
paths are therefore introduced when less-common characters are added to the net-
work. There was very little variation in path distance between networks based on 
different frequency lists. The average path distance of two might typically 
represent a character decomposing into components, which themselves decompose 
into radicals.  However, it must be remembered that paths between all reachable 
pairs – not just a character and its ultimate radical members - were included in the 
measurement of the average path length. Thus, the typical number of decomposi-
tions done when breaking a character down into radicals is likely higher than two. 

Table 1 Average Path Distance 

# of Characters Tsai Kwan Zein Average Std Dev 
1000 1.843 1.816 1.814 1.824 0.017 
2500 1.955 1.946 1.944 1.948 0.006 
5000 2.023 2.025 n/a 2.024 0.002 

10000 2.070 n/a n/a 2.070 n/a 

3.3 Clustering Coefficients 

All other factors being equal, the clustering coefficient of a network that included 
only radicals was roughly twice as great as the clustering coefficient of a network 
that included components as well as radicals. In both types of network, the cluster-
ing coefficient decreased as the network size decreased. As with average path 
distance, networks based on different frequency lists showed very little variation 
in network clustering coefficient. 

Table 2 Clustering Coefficients (mixed) 

# of Characters Tsai Kwan Zein Average Std Dev 
1000 0.194 0.178 0.190 0.187 0.008 
2500 0.210 0.200 0.218 0.209 0.009 
5000 0.284 0.255 n/a 0.270 0.020 

10000 0.380 n/a n/a 0.380 n/a 

Table 3 Clustering Coefficients (only radicals) 

# of Characters Tsai Kwan Zein Average Std Dev 
1000 0.468 0.479 0.466 0.471 0.007 
2500 0.558 0.545 0.541 0.548 0.009 
5000 0.619 0.613 n/a 0.616 0.004 

10000 0.683 n/a n/a 0.683 n/a 
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3.4 Clustering 

Each sibling network contained only one large cluster; no separate clusters could 
be identified. As low-degree vertices were pruned during k-core clustering, the 
large cluster simply got gradually smaller, rather than decomposing into various 
smaller clusters. This is in accordance with other researchers’ observations that 
Chinese character component networks display disassortative mixing. 

3.5 Indegree 

Mean indegree was looked at separately for three types of vertex: radicals in a 
radicals-only network, radicals in a mixed network, and components in a mixed 
network. By far, the highest mean indegree was found for radicals in a radicals-
only network. This is logical, since every arc in the radicals-only networks pointed 
to a mere 214 (or so) radical vertices. The lowest mean indegree by far was found 
for components in a mixed network. Mean indegree decreased with the size of the 
network, but showed little variation between networks that were based on different 
frequency lists. Within the mixed networks, radicals typically had much higher 
mean indegree than components.  In addition, they had greater variation in inde-
gree; the heavy tail of the indegree distribution in each network was exclusively 
populated by radicals. 

Table 4 Mean Degree (only radicals) 

# of Characters Tsai Kwan Zein Average 
1000 13.35 12.75 13.23 13.11 
2500 32.59 32.92 32.82 32.78 
5000 67.54 67.87 n/a 67.70 

10000 138.37 n/a n/a 138.37 

Table 5 Mean Degree (mixed) 

# of Characters Tsai Kwan Zein Average 
1000 9.07 8.95 9.27 9.10 
2500 17.93 18.16 18.14 18.07 
5000 31.35 31.54 n/a 31.45 

10000 58.05 n/a n/a 58.05 

Table 6 Mean Degree (components) 

# of Characters Tsai Kwan Zein Average 
1000 1.34 1.32 1.32 1.33 
2500 1.52 1.52 1.52 1.52 
5000 1.66 1.66 n/a 1.66 

10000 1.73 n/a n/a 1.73 
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3.6 Top Ten Nodes 

For the three types of vertices (radicals in a radicals-only network, radicals in a 
mixed network, and components in a mixed network), the ten highest-ranked ver-
tices were compared across weighted and unweighted networks based on each 
frequency list. 

For radicals in the radicals-only networks, the top ten nodes remained remarka-
bly consistent. Only two of the nodes in this group (3.3% of all nodes) were 
unique to one frequency list (that is, they appeared in the top-ten list(s) based on 
one frequency list, but not in the top-ten lists based on other frequency lists). 

For radicals in the mixed networks, there were five unique nodes in the sets of 
top-ten nodes (about 8.3% of the nodes in this group). For components in the 
mixed networks, there were eight unique nodes in the sets of top-ten nodes, about 
13.3%. In other words, the top ten lists are quite consistent regardless of the 
weighting of the network or the frequency list used to generate it. 

Table 7 Top Ten Radicals (only radicals) 

Tsai 
Tsai - 

Weighted Kwan 
Kwan - 

Weighted Zein 
Zein - 

Weighted 
口 口 口 口 口 口 
一 一 一 一 一 一 
人 人 人 人 人 人 
木 丿 丿 丿 丿 丿 
丿 木 木 木 木 土 
土 土 水 水 土 木 
日 日 土 土 日 日 
十 十 日 日 十 水 
言 言 十 十 水 十 
丶 丶 丶 丶 丶 丶 

* Top ten radicals (in terms of indegree) from radicals-only networks. Unique radicals are in red. 

Table 8 Top Ten Radicals (mixed)  

Tsai 
Tsai - 

Weighted Kwan 
Kwan - 

Weighted Zein 
Zein - 

Weighted 
口 口 人 口 口 口 
人 人 口 人 人 人 
一 一 水 一 一 一 
木 木 一 水 水 水 
言 言 木 木 木 木 
水 水 言 言 言 言 
心 心 辵 土 手 手 
手 手 土 辵 糸 土 
日 日 心 糸 心 糸 
土 土 手 手 土 刀 

* Top ten radicals (in terms of indegree) from mixed networks. Unique radicals are in red. 
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Table 9 Top Ten Components (mixed) 

Tsai Tsai - Weighted Kwan Kwan - Weighted Zein Zein - Weighted 
古 亼 古 亼 古 古 
亼 古 亡 也 各 亼 
可 正 丷 古 丷 丷 
正 可 亼 寺 亼 各 
各 各 可 丷 可 可 
六 六 也 可 正 六 
僉 僉 各 亡 共 寺 
也 也 六 各 六 正 
者 丷 共 六 寺 共 
主 者 寺 共 丁 也 

* Top ten components (in terms of indegree) from mixed networks. Unique components are in red. 
 

 

 

Fig. 1 10,000-character mixed network visualization. (Mixed network using top 10,000 
characters from Tsai frequency list. Nodes are grouped by indegree. Nodes with lowest 
indegree are at top left; nodes with highest indegree are at bottom right. Radical nodes are 
colored red and component nodes are colored green. 
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3.7 Consistency in Node Rankings 

From each network, radicals (and, separately, components, if present in the net-
work) were ranked based on indegree. The consistency across these rankings was 
evaluated by taking the average ranking (with standard deviation) of each node, 
then finding the average standard deviation for all nodes. Rather surprisingly, the 
average standard deviation was quite high.  For component rankings, the average 
standard deviation was 934.05 – roughly one-tenth the size of the component list.  
For radical rankings, the average standard deviation was lower – 15.08 – but the 
size of the radical list is also much lower, with only 214 radicals. It should be 
noted that rankings based on both weighted and unweighted networks were eva-
luated together. Possibly the average standard deviation would be substantially 
lower if weighted and unweighted network rankings were evaluated separately. 

4 Conclusions 

The reasonably large clustering coefficients of these networks mean that the net-
works are densely connected, so learning a small number of well-chosen structural 
components is likely to make a relatively high number of characters available. On 
the other hand, the lack of discrete clusters in the character decomposition net-
work means that lessons based on clusters of components will not be feasible. 
Components and radicals must be looked at individually, based on indegree, in-
stead of in clusters. 

One approach to learning characters could be to learn radicals and components 
one at a time, based on their indegree.  Students would learn all characters that 
were composed solely of radicals and components they had already studied. How-
ever, this approach may result in learning characters in a piecemeal fashion, where 
the characters learned in a given lesson sometimes have little in common. In addi-
tion, some radicals have such high indegrees that they are not particularly useful 
as units of study. 

Since radicals have such high variation in indegree, another approach to learn-
ing characters could involve using components as units of study. However, there 
are very many components with a low indegree. In addition, as other researchers 
have shown, phonetic components typically combine with radicals rather than 
with other components. Therefore, eliminating radicals as a basis for character 
study would be unhelpful. 

We suggest a combination of the preceding two approaches. Students would 
first learn all 200+ radicals and their meanings without learning any complex cha-
racters. Once the radicals had been memorized, components with reasonably high 
indegree would be used as the basis for vocabulary lessons. Using Tsai’s 10,000-
character network as a basis, there are many components with an indegree  
(say, between ten and forty) that would be appropriate for one or two vocabulary 
lessons. 

Under this approach, CFL learners would gain important familiarity with radi-
cals, which are used to organize Chinese dictionaries and are therefore a crucial 
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tool for Chinese language students. In addition, each vocabulary lesson would be 
tightly organized around a particular written component, allowing students to 
easily compare and contrast the characters containing that component. 

One challenge when designing a course of study will be deciding in what order 
to present components. The high average standard deviation in the component 
rankings suggests that the relative importance of each component depends signifi-
cantly on the corpus of text that is in use. 

References 

[1] Feldman, L.B., Siok, W.W.T.: Semantic Radicals in Phonetic Compounds: Implica-
tions for Visual Character Recognition in Chinese. In: Wang, J., Chen, H., Radach, R., 
Inhoff, A. (eds.) Reading Chinese Script: A Cognitive Analysis, pp. 19–33. Psycholo-
gy Press, Wang (1999) 

[2] Su, X.: Radical Awareness among Chinese-as-a-Foreign-Language Learners. Ph.D. 
thesis, Sch. of Tch. Ed., Florida State Univ., Tallahassee, FL (2010) 

[3] Morgan, Y.K.: Attitudes toward Hanzi Production Ability among Chinese Teachers 
and Learners. Ph.D. thesis, Grad. Sch., Purdue Univ., West Lafayette, IN (2012) 

[4] Li, J., Zhou, J.: Chinese Character Structure Analysis Based on Complex Networks. 
Physica A: Statistical Mechanics and its Applications 380, 629–638 (2007) 

[5] Wang, J., Rong, L., Jin, T.: An Empirical Study of Chinese Word-Word Language Di-
rected Network. In: IEEE International Conference on Service Operations and Logis-
tics, and Informatics, October 12-15, vol. 1, pp. 498–501 (2008) 

[6] Yu, Y., Wang, Z., Gao, W., Gu, G.: Chinese Language Processing with Complex Net-
work Theory. In: 2008 International Conference on Computer Science and Software 
Engineering, December 12-14, vol. 1, pp. 710–713 (2008) 

[7] Wikimedia Commons. Commons: Chinese characters decomposition, 
http://commons.wikimedia.org/wiki/Commons:Chinese_ 
characters_decomposition 

[8] Tsai, C.: Frequency and Stroke Counts of Chinese Characters (January 1, 1996), 
http://technology.chtsai.org/charfreq/ 

[9] Kwan, T.W.: Hong Kong, Mainland China & Taiwan: Chinese Character Frequency – 
A Trans-Regional, Diachronic Survey (July 7, 2001), 
http://humanum.arts.cuhk.edu.hk/Lexis/chifreq/ 

[10] Zein, P.H.: The Most Common Chinese Characters (December 2009), 
http://www.zein.se/patrick/3000char.html 

 
 



Author Index

Allodi, Luca 75
Al-Rfou’, Rami 261
Al-Shyoukh, Ibrahim 167
Alzahrani, Taher 157
Arnold, Holly 141

Bae, Arram 1, 13
Baltensperger, Richard 119
Bastos-Filho, Carmelo J.A. 209
Bersier, Louis-Felix 119
Boztas, Serdar 157
Buzun, Nazar 199

Camelo, Miguel 189
Cetnarowicz, Krzysztof 285
Cheung, William 305
Chiodi, Luca 75
Chung, Kon Shing Kenneth 231
Chykhradze, Kyrylo 199
Crane, Martin 217
Cremonini, Marco 75
Crespelle, Christophe 241
Crosley, Grace 319
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