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General Considerations

A long history of research in both rodents and
humans strongly argues that energy, stored in the
form of fat in adipose tissue, is homeostatically
conserved. Energy homeostasis is a very complex
long-term process composed ofmultiple interacting
homeostatic and behavioral pathways, including
glucose homeostasis, lipid homeostasis, the
hypothalamic-pituitary-adrenal axis, short-term
satiety, and other macronutrient pathways that
together act to maintain constant levels of energy
stores. Obesity, anorexia, cachexia, and failure to
thrive are some of the syndromes that result from
mutations in genes critical to energy homeostasis.

Historically, five such mutations were identified
in the mouse: obese (ob) and diabetes (db), as well
as agouti (Ay), fat ( fat), and tubby (tubby) gene. The
cloning and characterization of these mutant genes
led to the discovery of leptin, the key adipocyte
hormone encoded by the obese (ob) gene that com-
municates to the brain information regarding the
level of energy stored in the form of fat. Discovery
of the leptin receptor, encoded by the diabetes (db)
gene, and the discovery that the product of the
agouti (Ay) gene caused obesity by antagonizing
the melanocortin-4 receptor (MC4-R) led to the
identification of key neural circuits involved in the
regulation of energy homeostasis. Since the charac-
terization of these first obesity genes, however, a
very large number of transgenic and knockout
models with obesity, anorexia, cachexia, or obesity
resistance have been created (Robinson et al. 2000).
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Obesity and diabetes are syndromes quite often
linked in patients (maturity-onset diabetes) and
hereditary animal models. The regulation of
body weight in animals by leptin was reviewed
by Friedman and Halaas (1998).

Symptoms of diabetes and obesity are
overlapping in many animal models (see also
chapter “▶Genetically Diabetic Animals”).
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Spontaneously Obese Mice

Obese-Hyperglycemic (ob/ob) Mice

Ingalls et al. (1950), Mayer et al. (1951), and
Bleisch et al. (1952) observed hereditary diabetes
in genetically obese mice. The obese-
hyperglycemic mice were glycosuric, the
non-fasting blood sugar levels were about
300 mg%, but neither ketonuria nor coma was
observed. One of the most interesting features
was insulin resistance; doses as high as
400 IU/kg had little effect on blood sugar. The
serum insulin-like activity was high, the islands of
Langerhans were hypertrophic, their insulin con-
tent was increased, and the liver glycogen stores
were decreased. Kidneys and other organs did not
show pathological changes. Obviously, the dia-
betic condition of this and other strains of obese-
hyperglycemic mice is different from that of the
human diabetic patient.

Three working groups identified in 1995 the OB
protein (Pelleymounter et al. 1995; Halaas
et al. 1995; Campfield et al. 1995), which was
later named leptin and which is missing in ob/ob
mice. Leptin is a hormone expressed in and
secreted from adipose tissue. It signals to the hypo-
thalamus the size of the fat stores and thereby
regulates food intake. As ob/ob mice are leptin
deficient, there is no break signal to the

hypothalamus for food intake with the result of
increased food uptake and with subsequent
increased adiposity. In addition leptin regulates
sympathetic outflow from the brain. Therefore,
at normal animal house temperature of about
20–22 �C, ob/ob mice feel cold and subsequently
increase food intake for compensation. Since 1977
it has been already known that ob/ob mice have a
thermogenic defect and lower body temperature
compared to wild-type littermates (Trayhurn
et al. 1977).

Pelleymounter et al. (1995) investigated the
effects of the obese gene product on body weight
regulation in ob/ob mice. The OB protein was
expressed in E. coli and purified to homogeneity
as a 16-kDa monomer. Daily intraperitoneal injec-
tions of the recombinant OB protein to ob/ob mice
lowered their body weight, percent body fat, food
intake, and serum concentrations of glucose and
insulin.

Halaas et al. (1995) reported that daily
intraperitoneal injections of either mouse or
human recombinant OB protein reduced the
body weight of ob/ob mice but had no effect
on db/db mice.

Campfield et al. (1995) found that peripheral
and central administration of microgram doses of
recombinant mouse OB protein reduced food
intake and body weight of ob/ob and diet-induced
obese mice but not in db/db obese mice.

Reduced oxygen consumption has been noted
as early as 10–18 days of age in ob/ob mice
(Boissenault et al. 1976; Trayhurn et al. 1977).

Other strains or substrains of mice with obesity
and hyperglycemia have been described by Dickie
(1962), Westman (1968), Stein et al. (1970),
Coleman and Hummel (1973), and Herberg and
Coleman (1977).

Strautz (1970) implanted ob/ob mice with
Millipore diffusion chambers containing islets
isolated from the pancreas of normal littermates.

Trayhurn et al. (1977) found a thermogenic
defect in pre-obese ob/ob mice. Rectal tempera-
ture of 17-day-old pre-obese mice in response to
an environmental temperature of 4 �C fell much
more than in lean controls.

Chlouverakis (1972) performed parabiotic
experiments of obese-hyperglycemic mice
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(ob/ob) with lean littermates and determined body
weight, glucose, serum insulin, and triglycerides
as well as insulin sensitivity of diaphragm muscle
and epididymal fat pad.

Parabiosis of obese (ob/ob) with diabetes (db/db)
mice caused the obese partner to become
hypoglycemic, to lose weight, and to die of star-
vation, while no abnormal changes were observed
in the diabetic partner (Coleman 1973).

Cresto et al. (1977) compared the rate of insu-
lin degradation in normal and in ob/ob mice.

Zhang et al. (1994) succeeded in positional
cloning of the mouse obese gene and its human
homologue.

Trayhurn et al. (1996) studied the effects of
fasting and refeeding on ob gene expression in
white adipose tissue of lean and obese (ob/ob)
mice using a 33-mer antisense oligonucleotide as
a probe for the rapid chemiluminescence-based
detection of ob mRNA.

Sterility defect in homozygous obese female
mice could be corrected by treatment with the
human recombinant OB protein leptin (Chehab
et al. 1996).

Roupas et al. (1990) used isolated adipocytes
from ob/ob mice to study the diabetogenic action
of growth hormone.

Rafael and Herling (2000) investigated the
effect of leptin on energy balance in leptin-
deficient ob/ob mice under conditions of
thermoneutrality. It was found that food intake
was reduced as long as body weight was above
that of lean littermates. The closer the body weight
of the obese mice came to that of lean mice, the
obese mice increased their food intake gradually.
It was concluded that leptin does not inhibit food
intake per se but that leptin redirects energy from
endogenous stores as long as they are present for
energy expenditure.
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Yellow Obese (AYA) Mouse

The yellow obese mouse is the only example of
obesity inherited through a dominant gene and
was described as early as 1883 by Lataste and in
1905 by Cuenot. It is located on chromosome 2 at
linkage group 5, the agouti locus (Bateson 1903).
Since the genes controlling obesity and the agouti
coat colors are so closely linked, the obesity is
associated with a change of pigmentation from
black to yellow. Such an association allows the
early identification of pre-obese mice as soon as
the coat hair begins to grow.

Since the original description of the yellow
(Aya) mouse, a number of additional alleles have
appeared at the agouti locus. The homozygous
dominant yellow mutation (Ay/Ay) is lethal in
utero (Robertson 1942; Eaton and Green 1962)
with approximately 25 % of any litter from Aya
matings dying from an abnormal development
after the trophoblast stage (Pedersen 1974).

Yellow (Aya) mice develop a moderate form of
obesity and diabetes. Increased body weight first
appears at the time of puberty (8–12 weeks)
(Dickie and Wooley 1946; Carpenter and Mayer
1958), after which body weight increases slowly
to reach values of approximately 40 g. In contrast
to other forms of obesity, yellow mice are charac-
terized by increased linear growth. Plasma insulin
concentrations are increased and food is stored
more efficiently than in lean mice (Dickerson
and Gowan 1967). Food intake returns to normal
in older Aya mice and the animals lose body
weight (Hollifield and Parson 1957). The obesity
may be exaggerated by being fed high-fat diets
(Fenton and Chase 1951; Silberberg and
Silberberg 1957; Carpenter and Mayer 1958).
Food restriction may normalize body weight but
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the animals still remain obese (Fenton and Chase
1951; Hollifield and Parson 1957). Metabolic rate
of Aya mice is depressed when related to body
surface, although oxygen consumption per animal
is identical to the homozygous recessive agouti
(a/a) mouse (Bartke and Gorecki 1968).

Gill and Yen (1991) studied the effect of
ciglitazone on endogenous plasma islet amyloid
polypeptide (amylin) and insulin sensitivity in
obese-diabetic viable yellowmice (VY/Wfl-Avy/a).
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KK-AY Mouse

Iwatsuka et al. (1970) reported on yellow KK
mice (also named KK-Ay mice), carrying the yel-
low obese gene (Ay). These mice develop marked
adiposity and diabetic symptoms in comparison
with their littermates, black KK mice. Blood glu-
cose and circulating insulin levels as well as
HbA1c levels were increased progressively from
5 weeks of age. Degranulation and glycogen infil-
tration of B cells were followed by hypertrophy
and central cavitation of islets. Lipogenesis by
liver and adipose tissue were increased. Insulin
sensitivity of adipose tissue was more remarkably
reduced than in black KK mice to its complete
loss at 16 weeks of age. Renal involvement is
uniquely marked by early onset and rapid devel-
opment of glomerular basement membrane thick-
ening (Diani et al. 1987).

Sohda et al. (1990) evaluated ciglitazone and a
series of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazoli-
dinediones for hypoglycemic and hypolipemic
activities in yellow KK mice.

Hofmann et al. (1992) evaluated the expression
of the liver glucose transporter GLUT2 and the
activity and the expression of phosphoenolpyr-
uvate carboxykinase in the liver of obese KKAY

mice after treatment with the oral antidiabetic
agent pioglitazone.

Yoshida et al. (1991) compared brown adipose
tissue thermogenesis, resting metabolic rate, insu-
lin receptors in adipocytes, and blood glucose and
serum insulin levels during a glucose overloading
test in yellow KK mice with C57B1 control mice
after a β3-adrenoceptor agonist.

Yoshida et al. (1996) determined body weight,
food intake, white adipose tissue weight, brown
adipose tissue weight and its thermogenesis,
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noradrenaline turnover, blood glucose and serum
insulin levels, and GLUT4 in diabetic yellow KK
mice compared with C57B1 mice after mazindol.
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Fat/Fat Mice

Fat mice carry an autosomal recessive
mutation and display a range of abnormalities,

including progressive adult-onset obesity,
hyperinsulinemia, and infertility (Coleman and
Eicher 1990). The mutant allele of fat was iden-
tified and shown to be a missense (serine !
proline) mutation in carboxypeptidase E which
abolishes enzyme activity in a variety of neuro-
endocrine tissues (Naggert et al. 1995).
Carboxypeptidase E is required for both sorting
and proteolytic processing of a variety of
prohormones including proinsulin and POMC
(Cool et al. 1997). As carboxypeptidase E is
expressed in the CNS, defective processing of a
variety of hypothalamic neuropeptides – such as
POMC and MCH – may trigger obesity in these
animals (Rovere et al. 1996).
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Tubby Mice

Tub is an autosomal recessive mutation in mice
(Coleman and Eicher 1990) which display a tri-
partite phenotype of blindness, deafness, and
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maturity-onset obesity. In response to weight
gain, these mice gradually increase their food
intake in proportion to body weight and increase
plasma insulin levels thereby maintaining
normoglycemia. The progressive retinal degener-
ation in tubby mice results from apoptotic loss of
photoreceptor cells, with abnormal electrore-
tinograms detected as early as 3 weeks of age
(Heckenlively et al. 1995). The mouse obesity
gene tub has been identified and characterized
(Noben-Trauth et al. 1996; Kleyn et al. 1996).
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NZO Mouse

The New Zealand obese (NZO) mouse was first
described in 1953 by Bielschowsky and
Bielschowsky. The strain was developed
by selective inbreeding of obese mice from a
mixed colony, beginning from a pair of agouti
mice, which also gave rise to the NZB
black strain (Melez et al. 1980). NZO mice
of both sexes exhibit high birth weights and are

significantly heavier at weaning age. Severe
obesity (including both visceral and subcutane-
ous fat depots) develops even when mice
are maintained on a standard diet containing
4.5 % fat. NZO mice develop obesity,
mild hyperglycemia, glucose intolerance,
hyperinsulinemia, and insulin resistance.
The adult NZO mouse normally attains a
body weight of 50–70 g by 6–8 months, although
weight gain continues slowly after this
age (Cofford and Davis 1965; Herberg
et al. 1970). Hyperglycemia and glucose intoler-
ance increase continuously with advancing age
of the animals.

Renal disease in NZOmice is seen by 6months
of age. NZO mice have a high prevalence of
autoimmune disorders.
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Diabetes Obesity Syndrome in CBA/Ca
Mice

CBA/Ca mice are commonly used for leukemogen-
esis research because this strain has a low sponta-
neous incidence of leukemia but has a relatively
high inducibility of myeloid leukemia in response
to benzene and radiation exposure. A mild sponta-
neous maturity-onset diabetes obesity syndrome
occurs in a small proportion (10–20 %) of male
CBA/Ca mice. Inbreeding can increase the inci-
dence to 80 %. It occurs at 12–16 weeks of age
and is characterized by hyperphagia, obesity, hyper-
glycemia, hypertriglyceridemia, hyperinsulinemia,
and an impaired glucose tolerance. The mice are
also resistant to exogenous insulin. Female mice
remain normal except for a slight increase in
serum insulin. The male obese-diabetic mice have
a normal life expectancy.
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Transgenic Animals

Purpose and Rationale

Transgenic animals offer a new approach to study
the development of obesity and therapeutic
possibilities.

The potential for inserting new genetic mate-
rial into mammals has produced numerous trans-
genic mice with increased or decreased quantities
of body fat (Bray and Bouchard 1997).

Reduced body weight is a common effect of
gene knockout mice (Reed et al. 2008). During a
search for obesity candidate genes in a small
region of the mouse genome, it was noticed that
many genes when knocked out influence body
weight. To determine whether this was a general
feature of gene knockout or a chance occurrence,
the Jackson Laboratory Mouse Genome Data-
base for knockout mouse strains and their phe-
notypes was surveyed. Based on a data set of
1977 knockout strains, it was found that 31 %
of viable knockout mouse strains weighed less
and an additional 3 % weighed more than did
controls. Assuming that the surveyed knockout
genes are representative, then upward of 6,000
genes are predicted to influence the size of a
mouse.

For the characterization of the specificity of a
candidate compound to a specific target involved
in body weight regulation, the use of respective
knockout mouse (in which the specific target is
knocked out) vs. wild-type mouse might be help-
ful: the compounds should only be active in wild-
type mice but inactive in the respective knockout
mouse model.
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Spontaneously Obese Rats

The occurrence of spontaneous obesity has been
reported in several strains of rats:

Zucker-Fatty (ZF) Rat

The Zucker-fatty rat is a classic model of obesity
combined with insulin resistance and
hyperinsulinemia (Zucker 1965). Obesity is due
to a simple autosomal recessive ( fa) gene
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mutation (Fa gene encodes the leptin receptor)
and develops at an early age. Obese Zucker rats
manifest mild glucose intolerance,
hyperinsulinemia, and peripheral insulin resis-
tance similar to human prediabetes. However,
their blood sugar level is usually normal through-
out life (Bray 1977; Clark et al. 1983; McCaleb
and Sredy 1992; Abadie et al. 1993; Alamzadeh
et al. 1993; Kasim et al. 1993; Galante et al. 1994).

Truett et al. (1991) found evidence that the rat
obesity gene fatty ( fa) has homology with the
mouse gene diabetes (db). Both genes determine
a leptin receptor defect.

Triscari and Sullivan (1987) reported a normal-
izing effect of an inhibitor of thromboxane
synthase on the hyperinsulinemic state of obese
Zucker rats and diet-induced obese rats.

Rouru et al. (1993) described the effect of
chronic treatment with a 5-HT1 receptor agonist
on food intake, weight gain, plasma insulin, and
neuropeptide Y mRNA expression in obese
Zucker rats.

Santti et al. (1994) studied the potentiation of
the anti-obesity effect of a β3-adrenoceptor ago-
nist in obese Zucker rats by exercise.

Savontaus et al. (1997) investigated the anti-
obesity effect of an imidazoline derivative in
genetically obese ( fa/fa) Zucker rats.

Lynch et al. (1992) identified several adipocyte
proteins, among them pyruvate decarboxylase
contributing to the increased lipogenic capacity
of young obese Zucker adipocytes.
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Zucker-Diabetic-Fatty (ZDF) Rat

The obese Zucker-diabetic-fatty (ZDF) rat derived
from inbreeding of hyperglycemic Zucker obese
rats. Male ZDF rats are obese and insulin resistant
and progress spontaneously to overt diabetes
(hyperglycemia: around 20 mmol/l blood glu-
cose) at the age of around 8–10 weeks. Female
ZDF rats are obese and insulin resistant and
remain normoglycemic as long as they are fed
with standard rat chow (low fat). On a high-fat

diet, female ZDF rats experience the slow pro-
gression to overt diabetes similar to their male
littermates. This transition to overt diabetes
appears due to a progressive loss of pancreatic
ß-cells. Body weight development is above that
of lean littermates as long as they are young and
normoglycemic; this reflects their fa genetic back-
ground. When they become overt diabetic, body
weight development stops and in later diabetic
stages declines due to the energy loss via
glucosuria.

The phenotype of ZDF rat is due to (1) the
autosomal recessive ( fa) gene identical to that of
ZF rats but (2) with an additional ß-cell gene
defect (Griffen et al. 2001).

Zhang et al. (1996) reported downregulation of
the expression of the obese gene by an antidiabetic
thiazolidinedione in Zucker-diabetic-fatty rats and
db/db mice.
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WDF/fa-fa Rat

The WDF/Ta-fa rat, commonly referred to as the
Wistar fatty rat, is a genetically obese, hypergly-
cemic rat established by the transfer of the fatty
( fa) gene from the Zucker rat to the Wistar-
Kyoto rat (Ikeda et al. 1981; Kava et al. 1989;
Velasquez et al. 1990). The Wistar fatty rat
exhibits obesity, hyperinsulinemia, glucose
intolerance, hyperlipidemia, and hyperphagia
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similar to Zucker rats being, however, more glu-
cose intolerant and insulin resistant than Zucker
rats. Hyperglycemia is usually not observed in
females but can be induced by addition of
sucrose to the diet.

Kobayashi et al. (1992) found an increase of
insulin sensitivity by activation of insulin recep-
tor kinase by pioglitazone in Wistar fatty rats
( fa/fa).

Mazusaki et al. (1996) found an augmented
expression of the obese (ob) gene during the pro-
cess of obesity in genetically obese-hyperglycemic
Wistar fatty ( fa/fa) rats.
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JCR:LA-cp Rat

Several substrains were developed from obese
SHR rats, such as the JCR:LA-corpulent rat
which exhibits a syndrome characterized by obe-
sity, hypertriglyceridemia, and hyperinsulinemia
with impaired glucose tolerance and is susceptible
to vascular arteriosclerotic lesions (Russell and
Amy 1986a, b; Russell et al. 1994).

Cp mutation encodes a leptin receptor defect,
which is different to those defects encoded by fa
mutation in rats or dbmutation in mice. Compared
to Zucker-fatty rats, the JCR:LA-cp (corpulent)
rats have higher levels of the insulin-releasing
hormone GIP (glucose-dependent insulinotropic
polypeptide = gastric inhibitory polypeptide) and
higher insulin levels (Pederson et al. 1991).

Vydelingum et al. (1995) found an
overexpression of the obese gene in the JCR:
LA-corpulent rat.
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OLETF Rat

A spontaneously diabetic rat with polyuria, poly-
dipsia, and mild obesity was discovered in 1984 in
an outbred colony of Long-Evans rats. A strain of
rats developed from this rat by selective breeding
has since been maintained at the Tokushima
Research Institute (Otsuka Pharmaceutical,
Tokushima, Japan) and named OLETF. The char-
acteristic features of OLETF rats are (1) late onset
of hyperglycemia (after 18 weeks of age), (2) a
chronic course of disease, (3) mild obesity,
(4) inheritance by males, (5) hyperplastic foci of
pancreatic islets, and (6) renal complications
(nodular lesions). The clinical and pathological
features of disease in OLETF rats resemble those
of human NIDDM.

Administration of diazoxide (0.2 % in diet), an
inhibitor of insulin secretion, to OLETF rats from
the age of 4–12 weeks completely prevented the
development of obesity and insulin resistance
(Aizawa et al. 1995).

Ishida et al. (1995) found that insulin resistance
preceded impaired insulin secretion in OLETF rats.

Umekawa et al. (1997) determined induction
of uncoupling protein and activation of GLUT4 in
OLETF rats after administration of a specific β3-
adrenoceptor agonist.

References and Further Reading
Aizawa T, Taguchi N, Sato Y, Nakabayashi T,

Kobuchi H, Hidaka H, Nagasawa T,
Ishihara F, Itoh N, Hashizume K (1995) Pro-
phylaxis of genetically determined diabetes by
diazoxide: a study in a rat model of naturally
occurring obese diabetes. J Pharmacol Exp
Ther 275:194–199

Ishida K, Mizuno A, Sano T, Shima K (1995)
Which is the primary etiologic event in Otsuka
Long-Evans Tokushima fatty rats, a model of
spontaneous non-insulin-dependent diabetes
mellitus, insulin resistance, or impaired insulin
secretion? Metabolism 44:940–945

Kawano K, Hirashima T, Mori S, Kurosumi M,
Saitoh Y (1991) A new rat strain with
non-insulin dependent diabetes mellitus,
“OLETF”. Rat News Lett 25:24–26

Kawano K, Hirashima T, Mori S, Saitoh YA,
Kurosumi M, Natori T (1992) Spontaneous
long-term hyperglycemic rat with diabetic
complications. Otsuka Long-Evans
Tokushima fatty (OLETF) strain. Diabetes
41:1422–1428

Umekawa T, Yoshida T, Sakane N, Saito M,
Kumamoto K (1997) Anti-obesity and
anti-diabetic effects of CL316,243, a highly
specific β 3-adrenoceptor agonist, in Otsuka
Long Evans Tokushima Fatty rats: induction
of uncoupling protein and activation of glucose
transporter 4 in white fat. Eur J Endocrinol
136:429–437

Yamamoto M, Dong MJ, Fukumitsu KI, Imoto I,
Kihara Y, Hirohata Y, Otsuki M (1999) Meta-
bolic abnormalities in the genetically obese
and diabetic Otsuka Long Evans Tokushima
fatty rat can be prevented by α-glucosidase
inhibitor. Metab Clin Exp 48:347–354

WBN/Kob Rat

Spontaneous hyperglycemia, glucosuria, and
glucose intolerance have been observed in aged
males of an inbred Wistar strain, named the
WBN/Kob rat (Nakama et al. 1985; Tsichitani
et al. 1985; Koizumi et al. 1989). These animals
exhibit impaired glucose tolerance and
glucosuria at 21 weeks of age. Obvious
decreases in the number and size of islets are
found already after 12 weeks of age. Fibrinous
exudation and degeneration of pancreatic tissue
are observed in the exocrine part, mainly around
degenerated islets and pancreatic ducts in
16-week-old males. Recent publications on this
obese rat strain focuses on spontaneous develop-
ment of chronic pancreatitis (Ohashi et al. 1990;
Mori et al. 2009).
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Obese SHR Rat

The strain of obese SHR rats was developed by
Koletsky (1973, 1975) by mating a spontaneous
hypertensive female rat of the Kyoto-Wistar
strain with a normotensive Sprague Dawley
male. After several generations of selective
inbreeding, these obese SHR exhibited obesity,
hypertension, and hyperlipidemia. In addition,
some rats developed hyperglycemia and
glucosuria associated with giant hyperplasia of
pancreatic islets.
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