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General Considerations

Neuroleptics have been defined as therapeutics
effective against schizophrenia. One has to bear
in mind that the effect of certain drugs has not
been predicted by pharmacological tests but has
been found in clinical trials by serendipity. The
clinical discoveries were followed by pharmaco-
logical studies in many laboratories (Courvoisier
1956).

Various studies have demonstrated the block-
ade of postsynaptic catecholamine receptors,
especially D2-receptors, to be the main mode of
action of most neuroleptics. Several in vitro
methods measure the receptor blockade by
neuroleptics.

Pharmacological models in the development of
antipsychotic drugs were reviewed by Costall
et al. (1991).

References and Further Reading
Costall B, Domeney AM, Kelly ME, Naylor RJ

(1991) Pharmacological models in the devel-
opment of antipsychotic drugs – new strate-
gies. In: Olivier B, Mos J, Slangen JL (eds)
Animal models in psychopharmacology.
Advances in pharmacological sciences.
Birkhäuser, Basel, pp 253–263

Courvoisier S (1956) Pharmacodynamic basis for
the use of chlorpromazine in psychiatry. J Clin
Exp Psychopathol 17:25–37

In Vitro Methods

D1 Receptor Assay: [
3H]-SCH 23390

Binding to Rat Striatal Homogenates

Purpose and Rationale
Dopamine receptors are the primary targets in the
development of drugs for the treatment of schizo-
phrenia, Parkinson’s disease, and Huntington’s
chorea (Seeman and Van Tol 1994).

Reviews on dopamine receptors and their sub-
types were given by Baldessarini and Tarazi (1996;
Missale et al. 1998) and by the NC-IUPHAR

subcommittee on dopamine receptors (Schwartz
et al. 1998).

Multiple dopamine receptors are known. Two
groups are most studied, designated as D1 and D2.
In the group of D1-like dopamine receptors, the
subtypes D1A and D5/D1B have been described.
To D2-like dopamine receptors belong the D2S,
the D2L, the D3, and the D4 receptor (Sokoloff
et al. 1990; Civelli et al. 1991; Grandy
et al. 1991; Van Tol et al. 1991; Lévesque
et al. 1992; Baldessarini et al. 1993; Ginrich and
Caron 1993; Todd and O’Malley 1993;
Waddington and Deveney 1996).

D1 receptors are positively linked to adenylate
cyclase, and the D2 receptor has been shown to be
negatively linked to adenylate cyclase. For typical
neuroleptic agents, like butyrophenones, a good
correlation was found between D2 receptor bind-
ing and clinically effective doses. Atypical neuro-
leptics, like clozapine, were found to be potent
inhibitors of D1 and D4 receptor binding,
renewing interest in these receptor types. The
compound SCH 23390 was found to be selective
for the D1 receptor.

Procedure

Reagents
[N-Methyl-3H] Sch 23390 (Amersham Lab., spe-
cific activity 67–73 Ci/mmol). For IC50 determi-
nations, 3HSch 23390 is made up to a
concentration of 10 nM and 50 μl is added to
each tube. This yields a final concentration of
0.5 nM in the assay.

d-Butaclamol (Ayerst Laboratories). A 1 mM
stock solution is made and diluted 1:20.

20 μl are added to three tubes for the determi-
nation of nonspecific binding.

For the test compounds α, 1 mM stock solution
is made up in a suitable solvent and serially
diluted, such that the final concentration in the
assays ranges from 10�5 to 10�8 M.

Tissue Preparation
Male Wistar rats are decapitated, brains rapidly
removed, striata dissected, and weighed. The
striata are homogenized in 100 volumes of
0.05 M Tris buffer, pH 7.7, using a Tekmar
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homogenizer. The homogenate is centrifuged at
40,000 g for 20 min, and the final pellet is
resuspended in the original volume of 0.05 Tris
buffer, pH7.7, containing physiological ions
(NaCl 120 mM, KCl 5 mM, MgCl2 1 mM, and
CaCl2 2 mM).

Assay

50 μl 0.5 M Tris buffer, pH7.7, containing
physiological ions

380 μl H2O

20 μl Vehicle or butaclamol or appropriate
concentration of test compound

50 μl 3H-SCH 23390

500 μl Tissue suspension

The tubes are incubated at 37 �C for 30 min.
The assay is stopped by rapid filtration through
Whatman GF/B filters using a Brandel cell har-
vester. The filter strips are then washed three
times with ice-cold 0.05 M Tris buffer, pH7.7,
and counted in 10 ml Liquiscint scintillation
cocktail.

Evaluation
Specific binding is defined as the difference
between total binding and binding in the presence
of 1 μM butaclamol. IC50 calculations are
performed using log-probit analysis. The percent
inhibition at each drug concentration is the aver-
age of duplicate determinations.

Modifications of the Method
Wamsley et al. (1992) recommended the radioac-
tive form of a dopamine antagonist, [3H]
SCH39166, as ligand for obtaining selective
labeling of D1 receptors.

Sugamori et al. (1998) characterized the com-
pound NNC 01–0012 as a selective and potent
D1C receptor antagonist.
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D2 Receptor Assay: [
3H]-Spiroperidol

Binding

Purpose and Rationale
The neuroleptic compound haloperidol has been
used as binding ligand to study the activity of
other neuroleptics. The use of haloperidol has
been superseded by spiroperidol. Dopamine
receptor binding assays employing dopaminergic
antagonists in mammalian striatal tissue, a
dopamine-enriched area of the brain, have been
shown to be predictive of in vivo dopamine recep-
tor antagonism and antipsychotic activity. Signif-
icant correlations exist between neuroleptic
binding affinities and their molar potencies in
antagonism of apomorphine- or amphetamine-
induced stereotypy, apomorphine-induced emesis
in dogs, and antipsychotic activity in man.
Spiroperidol is considered to be an antagonist
specific for D2 receptors.

Procedure

Tissue Preparation
Male Wistar rats are decapitated, their corpora
striata removed, weighed, and homogenized in
50 volumes of ice-cold 0.05 M Tris buffer,
pH7.7. The homogenate is centrifuged at
40,000 g for 15 min. The pellet is rehomogenized
in fresh buffer and recentrifuged at 40,000 g. The
final pellet is then resuspended in Tris buffer
containing physiological salts (120 mM NaCl,
5 mM KCl, 2 mM CaCl2, and 1 mM MgCl2)
resulting in a concentration of 10 mg/ml.

Assay
The membrane preparations are incubated with
3H-spiroperidol (0.25 nM) and various concentra-
tions of test drug at 37 �C for 20 min. in a K/Na
phosphate buffer (50 mM, pH7.2), followed by
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cooling in an ice bath for 45 min. To determine
nonspecific binding, samples containing 10 mM
(+)-butaclamol are incubated under identical con-
ditions without the test compound.

Bound ligand is separated by rapid filtration
through Whatman GF/B glass fiber filters. The
filters are washed three times with ice-cold
buffer, dried, and shaken thoroughly with
3.5 ml scintillation fluid. Radioactivity is deter-
mined in a liquid scintillation counter. Specific
binding is defined as the difference between total
binding and the binding in the presence of
2.0 mM (+)-butaclamol.

Evaluation
The following parameters are determined:

• Total binding of 3H-spiroperidol
• Nonspecific binding: binding of samples

containing 2 mM butaclamol
• Specific binding: total binding nonspecific

binding
• Percent inhibition: 100-specific binding as per-

centage of the control value

IC50 values are determined using at least 3–4
different concentrations of the test compound in
triplicate. Results are presented as mean � stan-
dard deviation.

Dissociation constants (Kd) are determined,
using 3H-spiroperidol concentrations ranging
between 0.1 and 1.0 nM. Ki values (inhibitory con-
stants) are calculated using the following equation:

Ki ¼ IC50

1þ c=Kd

c = 3H-spiroperidol concentrations used to deter-
mine IC50.

Standard values: Ki of haloperidol =
6.0 � 1.2 nM.

Modifications of the Method
Two isoforms of the D2 receptor were found
by alternative splicing: the long (D2L) and the
short (D2S) isoform (Dal Toso et al. 1989;
Giros et al. 1989; Monsma et al. 1989; Itokawa
et al. 1996).

Niznik et al. (1985) recommended [3H]-YM-
09151–2, a benzamide neuroleptic, as selective
ligand for dopamine D2 receptors.

Hall et al. (1985) used [3H]-eticlopride, a
substituted benzamide, selective for dopamine
D2 receptors, for in vitro binding studies.

Radioactive ligands for the D2 and the D3

receptor were described by Seeman and Schaus
(1991), Chumpradit et al. (1994), Booze and Wal-
lace (1995), Gackenheimer et al. (1995), Seeman
and van Tol (1995), and Van Vliet et al. (1996).

Vessotskie et al. (1997) characterized binding
of [125I]S(�)5-OH-PIPAT to dopamine D2-like
receptors.

Neve et al. (1992) used a special apparatus, the
“cytosensor microphysiometer,” which measures
the rate of proton excretion from cultured cells
(McConnell et al. 1991, 1992; Owicki and Parce
1992). In C6 glioma cells and L fibroblasts
expressing recombinant dopamine D2 receptors,
the dopamine D2 receptor agonist, quinpirole,
accelerated the rate of acidification of the medium
dose-dependent up to 100 nM quinpirole. The
response was inhibited by the D2 antagonist
spiperone. The D2 receptor-stimulated acidifica-
tion was due to transport of protons by a Na+/H+

antiporter which was verified by the inhibition
with amiloride or methylisobutyl amiloride.

The isolated rabbit ear artery was
recommended as a useful model to characterize
dopamine D2 agonists and antagonists (Hieble
et al. 1985).

Human Recombinant Dopamine D2A and D2B

Receptors
Hayes et al. (1992) described functionally distinct
human recombinant subtypes of the dopamine D2

receptor, D2A and D2B.

D2A Receptor Binding
In a radioligand binding assay, the binding of
[3H]-spiperone to membranes prepared from
COS cells transiently expressing a recombinant
human dopamine D2A receptor is measured.

Twenty mg of membrane is incubated with
[3H]-spiperone at a concentration of 2.0 nM for
2 h at 25 �C. Nonspecific binding is estimated in
the presence of 10 mM haloperidol. Membranes

1322 M.J. Kallman



are filtered and washed three times with binding
buffer, and filters are counted to determine
[3H]-spiperone bound.

D2B Receptor Binding
In a radioligand binding assay, the binding of
[3H]-spiperone to membranes prepared from
COS cells transiently expressing a recombinant
human dopamine D2B receptor is measured.

Fifteen mg of membrane is incubated with
[3H]-spiperone at a concentration of 0.7 nM for
2 h at 37 �C. Nonspecific binding is estimated in
the presence of 10 mM haloperidol. Membranes
are filtered and washed three times with binding
buffer, and filters are counted to determine
[3H]-spiperone bound.
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Dopamine D2 Receptor
Autoradiography (3H-Spiperone
Binding)

Purpose and Rationale
Autoradiography of 3H-spiperone binding sites
using selective labeling conditions permits the
visualization of the anatomical locations of
D2-dopamine receptors (Palacios et al. 1981).
Quantitative measurements of the binding to
receptors can be obtained with computer-assisted
video analysis of the autoradiograms with a
greater anatomical resolution and sensitivity than
in membrane homogenates (Altar et al. 1984;
1985). Using autoradiographic techniques, it has
been demonstrated that striatal D2 receptors are
present on intrinsic neurons (Trugman et al. 1986;
Joyce andMarshall 1987) and that the distribution
of D2 receptors within the striatum is not homo-
geneous (Joyce et al. 1985). Anatomically dis-
crete interactions of drugs with D2 receptors can
be examined in vitro with inhibition experiments
and ex vivo following acute or chronic drug treat-
ment of the whole animal.

Since 3H-spiperone labels serotonin-2 (5-HT2)
sites in many brain regions, a masking concentra-
tion of a 5-HT2 receptor blocker, e.g., ketanserin,
is included to selectively define binding to D2

receptors. This is necessary if the test compound
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inhibits 5-HT2 binding or if the brain region of
interest has a low D2 receptor density.

The assay is used to determine potential anti-
psychotic activity of compounds via direct inter-
action with the D2 dopamine recognition site in
discrete regions of the rat brain.

Procedure

Reagents
1a. 0.5 M Tris + 1.54 M NaCl, pH7.4.
1b. 0.05 M Tris + 0.154 M NaCl, pH7.4.
2. 3H-spiperone (specific activity 70–90

Ci/mmol) is obtained from Amersham
(TRK.818).

For IC50 determinations, 3H-spiperone is
prepared at a concentration of 8 nM, and
0.55 ml is added to each slide mailer (yields a
final concentration of 0.4 nM in the 11.0 ml
assay volume).

For saturation experiments, 3H-spiperone is
prepared at a concentration of 20 nM. The final
concentrations should range from 0.2 to 1.0
nM. Typically, six concentrations are used by
adding 0.55 ml or less to each mailer
(for smaller volumes, add water to bring total
addition of 0.55 ml).

3. Sulpiride is obtained from sigma. A stock solu-
tion of 5 � 10�4 M is made by dissolving the
sulpiride in 1.0 ml of 0.01 N acetic acid and
bringing the final volume to 10 ml with dis-
tilled water. 0.22 ml of the stock solution is
added to the nonspecific binding slide mailers
(final concentration 10 μM). All other mailers
receive 0.22 ml of vehicle (1 ml of 0.01 N
acetic acid in a final volume of 10 ml with
distilled water).

4. Ketanserin (free base or tartrate salt) is
obtained from Janssen. A stock solution of
10�3 M is made by dissolving the ketanserin
in 0.5 ml 1 N acetic acid and bringing the final
volume to 10 ml with distilled water. The tar-
trate salt is water-soluble. This is further
diluted to 5 � 10�6 M (50 μl q.s. to 10 ml).
0.22 ml is added to all mailers.

5. Test compounds (for IC50 determinations). For
most assays, a 5 � 10�3 M stock solution is
made up in a suitable solvent and serially

diluted, such that the final concentrations in
the assay range from 10�5 to 10�8 M. Seven
concentrations are used for each assay. Higher
or lower concentrations may be used
depending on the potency of the drug.

Tissue Preparation
Rat brain sections are collected from plates 9 (ros-
tral nucleus accumbens) through plate 17 (caudal
striatum) of The Rat Brain Atlas in Stereotaxic
Coordinates by Paxinos and Watson.

1. For in vitro inhibition experiments, 3–5 sets of
10 slides are collected with 3–4 sections per
slide.

2. For saturation experiments, 3–5 sets of 12 slides
are collected with 3–4 sections per slide.

3. For ex vivo inhibition experiments, a set of
8 slides is used, 4 for total binding and 4 for
nonspecific binding.

4. For experiments in which the tissue sections
will be swabbed and counted with scintillation
fluid, two sections per slide are collected.

Assay
1. Preparation of slide mailers (11.0 ml volume/

slide mailer).
Note: If slides with sections are to be wiped

for scintillation counting, a final volume of
6.5 ml is sufficient to cover two sections. A
proportional adjustment of the volumes to be
pipetted is made.
(a) In vitro inhibition experiments

Separate mailers are prepared for total
binding, nonspecific binding, and 7–8 con-
centrations of test compound. Ketanserin is
included in all mailers to mask binding of
[3H]-spiperone to 5-HT2 sites so that inhi-
bition of binding is D2-selective.

5.50 ml Buffer 1b

0.55 ml Buffer 1a

0.55 ml [3H]-spiperone, 0.4 nM final concentration

3.96 ml Distilled water

0.22 ml Ketanserin, 5 � 10�6 M, final concentration
100 nM or vehicle

0.22 ml Test compound, final concentration 10�8 to
10�5 M or sulpiride 5 � 10�4, final conc.
10 μM or vehicle
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(b) Ex vivo inhibition experiments
Separate mailers are prepared for total

and nonspecific binding, as described
above, including ketanserin to mask
5-HT2 receptor binding.

(c) Saturation experiments
Separate mailers are prepared for total

and nonspecific binding at each
radioligand concentration. Ketanserin is
not included in the mailers, in saturation
experiments, since specific binding is
defined as sulpiride-displaceable.

5.50 ml Buffer 1b

0.55 ml Buffer 1a

0.55 ml [3H]-spiperone, final concentration
0.2–1.0 nM

4.18 ml Distilled water

0.22 ml 5 � 10–4 M sulpiride, final concentration
10 μM or vehicle

2. Slides are air-dried for 10–15 min at room
temperature, preincubated in 0.05 M
Tris + 0.154 M NaCl, pH7.4 for 5 min, and
further incubated for 60 min with [3H]-
spiperone. Slides are then rinsed with ice-cold
solutions as follows: dipped in buffer 1b,
rinsed in buffer 1b for 2 � 5 min, and dipped
in distilled water.

Slides used for wipes: both sections are
wiped with one Whatman GF/B filter, and
radioactivity is counted after addition of
10 ml of scintillation fluid. Slides used for
autoradiography: slides are dried under a
stream of air at room temperature and are
stored in a desiccator under vacuum at room
temperature (usually over night). Slides are
then mounted onto boards, along with 3H-stan-
dards (Amersham RPA 506).

In the dark room under safelight illumina-
tion (Kodak GBX-2 filter), slides are exposed
to Amersham Hyperfilm or LKB Ultrofilm for
14–17 days.
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Binding to the D3 Receptor

Purpose and Rationale
Sokoloff et al. (1990) reported molecular cloning
and characterization of a dopamine receptor (D3)
as a potential target for neuroleptics. The D3

receptor is localized in limbic areas of the brain
which are associated with cognitive, emotional,
and endocrine functions. Together with the D2S,
the D2L, and the D4 receptor, the D3 receptor
belongs to the group of D2-like dopamine
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receptors (Ginrich and Caron 1993). 7-[3H]
hydroxy-N,N-di-n-propyi-2-aminotetralin
(Lévesque et al. 1992), R(+)-7-OH-DPAT
(Baldessarini et al. 1993), and [125I]trans-7-
OHPIPAT-A (Kung et al. 1993) have been
recommended as ligands for receptor binding
studies.

Chio et al. (1993) compared the heterologously
expressed D3 dopamine receptors with D2 recep-
tors in Chinese hamster ovary cells.

Damsma et al. (1993) described R-(+)-7-OH-
DPAT (R-(+)-7-hydroxy-2-(N,N-di-n-
propylamino)tetralin) as a putative dopamine D3

receptor ligand.
Functional correlates of dopamine D3 receptor

activation in the rat in vivo and their modulation
by the selective agonist, (+)-S 14297, have been
described by Millan et al. (1995).

Isoforms of the D3 receptor have been
described (Pagliusi et al. 1993).

Akunne et al. (1995) described binding of the
selective dopamine D3 receptor agonist
ligand [3H]PD 128907 = 4aR,10bR-(+)-trans-
3,4,4a,10b-tetrahydro-4-n-propyl-2H,5H-[1]
benzopyrano[4,3-b]1,4-oxazin-9-ol.

Procedure
Human dopamine D3 receptor is expressed in
Chinese hamster ovary cells. Cells are grown in
Dulbecco’s modified Eagle’s medium containing
10 % fetal bovine serum. Cells are harvested by
trypsin treatment (0.25 %) for 4–5 min and cen-
trifugation at 2000 g for 5 min. They are homog-
enized with a Polytron in 10 mM Tris–HCl
(pH7.5) containing 1 mM EDTA and are
centrifuged at 35,000 g for 15 min. The pellet is
then resuspended by sonication in a buffer
containing 50 mM NaHepes, 1 mM EDTA,
50 μM 8-hydroxyquinoline, 0.005 % ascorbic
acid, and 0.1 % bovine serum albumin (pH7.5)
(incubation buffer). Membrane suspensions
(15–25 μg protein) are added to polypropylene
test tubes containing [3H]7-OH-DPAT (7-[3H]
hydroxy-N,N-di-n-propyl-2-aminotetralin) for
the D3 receptor assay. Competing drugs are
dissolved in incubation buffer, the final volume
being 1 ml. Tubes are incubated in triplicate for
1 h at room temperature. The incubations are

stopped by rapid filtration under reduced pressure
through Whatman GF/C glass filters coated with
0.1 % bovine serum albumin, followed by three
rinses with 3–4 ml ice-cold buffer. Nonspecific
binding is measured in the presence of 1 μM
dopamine.

Evaluation
Saturation curves are analyzed by computer
nonlinear regression using a one-site cooperative
model to obtain equilibrium dissociation con-
stants (KD) and maximal density of receptors
(Bmax). Inhibition constants (Ki) are estimated
according to the equation

Ki ¼ IC50=1þ L=KD
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Binding to D4 Receptors

Purpose and Rationale
Van Tol et al. (1991) reported cloning of the gene of
a human dopamineD4 receptor with high affinity for
the antipsychotic clozapine. Together with the D2S,
theD2L, and theD3 receptor, theD4 receptor belongs
to the group of D2-like dopamine receptors (Ginrich
and Caron 1993). Recognition and characterization
of this dopamine binding site may be useful in the
design of new types of antipsychotic drugs.

Dopamine D4 receptors have been localized in
GABAergic neurons of the primate brain (Mrzljak
et al. 1996).

Procedure
A plasmid construct of a 3.9-kb gene-cDNA
hybrid subcloned into the expression vector
pCD-PS is introduced into COS-7 cells by cal-
cium phosphate-mediated transfection. Cells are
cultivated and homogenized (Teflon pestle) in
50 mM Tris–HCl (pH7.4 at 4 �C) buffer
containing 5 mM EDTA, 1.5 mM CaCl2, 5 mM
KCl, and 120 mM NaCl. Homogenates are
centrifuged for 15 min at 39,000 g, and the
resulting pellets resuspended in buffer at a con-
centration of 150–250 μg/ml. For saturation
experiments, 0.25 ml of tissue homogenate are
incubated in duplicate with increasing concentra-
tions of [3H]-spiperone (70.3 Cl mmol�1;
10–3000 pM final concentration) for 120 min at
22 �C in a total volume of 1 ml. For competition
binding experiments, assays are initiated by the
addition of 0.25 ml membrane and incubated in
duplicate with various concentrations of compet-
ing ligands (10�14–10�3 M) and [3H]spiperone
(150–300 μM) either in the absence or the pres-
ence of 200 μM Gpp(NH)p for 120 min at 22 �C.
Assays are terminated by rapid filtration through a
Titertek cell harvester and filters then monitored
for tritium. For all experiments, specific binding is
defined as that inhibited by 10 μM (�)sulpiride.

Evaluation
Both saturation and competition binding data are
analyzed by the nonlinear least-square curve-
fitting program ligand run on a suitable PC.
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Modifications of the Method

Human Recombinant Dopamine D4,2, D4,4,
D4,7, and D5 Receptors
Van Tol et al. (1992) described multiple dopamine
D4 receptor variants in the human population.

Sunahara et al. (1991) reported the cloning of
the gene for a human D5 receptor.

Human Recombinant Dopamine D4,2

Receptor Binding
In a radioligand binding assay, the binding of
[3H]-spiperone to membranes prepared from
COS cells transiently expressing a recombinant
human dopamine D4,2 receptor is measured.

Fifteen μg of membrane is incubated with
[3H]-spiperone at a concentration of 0.7 nM for
2 h at 25 �C. Nonspecific binding is estimated in
the presence of 10 μM haloperidol. Membranes
are filtered and washed three times with binding
buffer, and filters are counted to determine [3H]-
spiperone bound.

Human Recombinant Dopamine D4,4

Receptor Binding
In a radioligand binding assay, the binding of
[3H]-spiperone to membranes prepared from
COS cells transiently expressing a recombinant
human dopamine D4,4 receptor is measured.

Twenty-five μg of membrane are incubated
with [3H]-spiperone at a concentration of 1.0 nM
for 2 h at 25 �C. Nonspecific binding is estimated
in the presence of 10 μM haloperidol. Membranes
are filtered and washed three times with binding
buffer, and filters are counted to determine [3H]-
spiperone bound.

Human Recombinant Dopamine D4,7

Receptor Binding
In a radioligand binding assay, the binding of
[3H]-spiperone to membranes prepared from
COS cells transiently expressing a recombinant
human dopamine D4,7 receptor is measured.

Fifteen μg of membrane is incubated with
[3H]-spiperone at a concentration of 0.7 nM for
2 h at 25 �C. Nonspecific binding is estimated in
the presence of 10 μM haloperidol. Membranes

are filtered and washed three times with binding
buffer, and filters are counted to determine [3H]-
spiperone bound.

Human Recombinant Dopamine D5

Receptor
In a radioligand binding assay, the binding of [3H]
SCH 23390 to membranes prepared from COS
cells expressing a recombinant human dopamine
D5 receptor is measured.

First, 40 μg of membrane is incubated with
[3H]SCH 23390 at a concentration of 2 nM for
2 h at 25 �C. Nonspecific binding is estimated in
the presence of 10 μM cis-flupentixol. Mem-
branes are filtered and washed three times with
binding buffer, and filters are counted to deter-
mine [3H]SCH 23390 bound.

Several selective dopamine D4 antagonists
were described: Hidaka et al. (1996), Merchant
et al. (1996), Rowley et al. (1996), and Birstow
et al. (1997).

Some radioligands were proposed as being
selective for dopamine D4 receptors: [3H]cloza-
pine (Ricci et al. 1997a, b), [3H]NGD 94–1
(Thurkauf 1997; Primus et al. 1997), and
RBI-257 (Kula et al. 1997).
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Determination of Dopamine
Autoreceptor Activity

Purpose and Rationale
The method describes the procedure to determine
if a compound possesses autoreceptor
blocking activity without the interference
from postsynaptic effects. Striatal
DOPA (3,4-dihydroxyphenylalanine), DOPAC
(3,4-dihydroxyphenylacetic acid), and DA (dopa-
mine) are quantitated following in vivo treatment
with drug, apomorphine, gamma butyrolactone,
and NSD-1015. Antipsychotic compounds that
block striatal dopaminergic presynaptic
autoreceptors are believed to possess a greater
liability for producing EPS.

Procedure

Reagents
1. 0.1 M HCl
2. 1 N NaOH
3. 0.1 M perchloric acid (PCA) containing

4.3 mM EDTA
4. 2 mM solutions of DOPAC, DA, and DOPA

in 0.1 M HCl, with 0.5 ml aliquots stored
at �60 �C until use

5. Preparation of 2� standard mixture
10 μM solution of DOPAC, DA, and DOPA

diluted from reagent 4 with 0.1 M PCA/EDTA
The 2� standard solution is used for the

preparation of standard curves.
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6. Mobile phase/MeOH-buffer (4: 96, v/v) buffer:
0.012 mM sodium acetate, 0.036 M citric acid,
and 152 μM sodium octane sulfonate (mobile
phase); methanol/buffer (80 ml + 1920 ml) fil-
tered through a 0.2 pm nylon 66 filter

7. Preparation of dosing solutions
(a) Apomorphine (2 mg/kg) is prepared in

saline containing 1 % Tween 80 + 0.1 %
ascorbic acid to prevent oxidation.

(b) GBL (750 mg/kg) is prepared as a solution
in saline containing 1 % Tween 80.

(c) NSD-1015 (100 mg/kg) is prepared as
a solution in saline containing 1%Tween 80.

HPLC-Instrumentation
Consists of the following:

• Pump, model SP8810 (Spectra Physics)
• Injector, WISP 710B (Waters Associates)
• Detector, 5100A electrochemical with a 5011

analytical cell and 5020 guard cell (ESA)
• Integrator, D-2000 (Hitachi), used as a backup

for the data collection/integrator, CS 9000
(IBM) system

• Analytical column: C18-ODS Hypersil, 3 pm,
100 � 4.6 mm (Shandon)

Tissue Preparation
Following treatment with test drug, rats are
sacrificed by decapitation at the predetermined
time. The brain is rapidly removed; the striatum
is dissected on ice and frozen on dry ice. The
tissue is analyzed by HPLC the same day.

Tissue is homogenized in 500 μl 0.1 M
PCA/EDTA. The homogenate is centrifuged for
6 min using a microcentrifuge (model 5413,
Eppendorf). The supernatant is transferred to
0.2 pm microfilterfuge™ tubes and centrifuged
for 6–8 min as before. The filtrate is transferred
to WISP vials. Standards are included every
12–15 samples.

Five μl of the striatum homogenate is injected
into the HPLC column.

HPLC flow rate is 1.5 ml/min; run time is
20 min. Helium flow is constant in mobile phase.

For protein analysis, 1.0 ml 1 NNaOH is added
to the tissue pellet. The next day, the protein

analysis is performed as described by Bradford
(1976) using the BioRad Assay Kit.

Evaluation
Peak area is used for quantitation. The mg of
protein and pmoles of DOPAC, DA, and DOPA
are calculated from linear regression analyses
using the corresponding standard curve. Final
data are reported as pmoles/mg protein.
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Dopamine-Sensitive Adenylate Cyclase
in Rat Striatum

Purpose and Rationale
Agonist stimulation of dopamine D1 receptors
leads to increased cAMP formation mediated by
a guanine nucleotide-binding regulatory protein.
This effect is blocked by selective antagonists like
SCH 23390.
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Agonist stimulation of the dopamine D2 recep-
tor leads to a decreased cAMP formation medi-
ated by a guanine nucleotide-binding protein.
Apomorphine is a potent agonist with full intrinsic
activity at D2 receptors. Phenothiazines block
both D1 and D2 receptors, whereas butyrophe-
nones and related drugs are very potent antago-
nists at D2 receptors.

Studies on cAMP formation may be useful for
differentiation of antipsychotic drugs.

Procedure

Tissue Preparation
MaleWistar rats are sacrificed by decapitation, the
brains removed, and the striata dissected out, and
weighed. Striatal tissue from two rats is homoge-
nized in 25 volumes of ice-cold 0.08 M Tris-
maleate buffer, pH7.4, containing 2 mM EGTA.
Protein content of an aliquot is determined. A
50 μl aliquot is used in the cyclase enzyme assay.

Enzyme Assay
The following volumes are placed in conical cen-
trifuge tubes kept in an ice-water bath:

200
μl

Incubation buffer (equal amounts of 0.8 mM
Tris-maleate, pH 7.4; 60 mM MgSO4; 100 mM
theophylline and 4 mM EGTA)

50 μl 1 mM dopamine HCl or water

25 μl Test drug or water

125
μl

Distilled water

50 μl Tissue homogenate

After incubation for 20min at 0 �C, the enzyme
reaction is started by addition of 50 μl of 15 mM
ATP solution. The tube rack is placed in a shaking
water bath preset at 30 �C for 2.5 min. The reac-
tion is terminated by placing the tube rack in a
boiling water bath for 4 min. Then, the tubes are
centrifuged at 1000 g for 10 min.

A 25 μl aliquot of the supernatant in each tube
is removed and the cAMP determined using a
commercial RIA kit (Amersham).

Evaluation
Results are expressed as pmoles cAMP/mg
protein of dopamine-stimulated versus

nondopamine-stimulated level. Percentage inhibi-
tion of this dopamine-stimulated level by test
drugs is calculated and IC50 values determined
by log-probit analysis.
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a1-Adrenergic Receptor Binding
in Brain

Purpose and Rationale
The use of neuroleptic and antidepressant drugs
is sometimes limited by their side effects, such as
orthostatic hypotension and sedation. These side
effects are attributed to blockade of central and
peripheral adrenergic α-receptors. For neurolep-
tics the ratio between their dopamine antagonis-
tic and their receptor antagonistic potencies
should be taken into account rather than their
absolute α-blocking effect. WB-4101 is a spe-
cific and potent antagonist of the α1-
adrenoreceptor, characterized in vitro in rat
brain, heart, vascular smooth muscle, and gas-
trointestinal smooth muscle.

The in vitro [3H]-WB 4101 receptor binding
assay quantitates the α-adrenergic blocking proper-
ties of psychoactive agents and is used to assess a
compound’s potential to cause orthostatic hypoten-
sion and sedation as well as primary blood pressure
lowering effects through α1-receptor blockade.

Procedure

Reagents
[Phenoxy-3-3H(N)]-WB 4101 = (2,6-dimethox-
yphenoxyethyl)-aminomethyl-1,4-benzodioxane,
New England Nuclear (specific activity 20–35
Ci/mmol).

For IC50 determinations, [3H]-WB 4101 is
made up to a concentration of 2 nM in Tris buffer
and 500 μl is added to each tube (yields a final
concentration of 0.5 nM in the 2 ml assay).

L-norepinephrine bitartrate (Sigma Chemical
Company). A 800 μM solution is prepared in Tris
buffer and 250 μl is added to each of three tubes to
determine nonspecific binding. This yields a final
concentration of 100 μM in the 2 ml assay.

Test compounds: A 80 μM stock solution is
made up in a suitable solvent and serially diluted

with Tris buffer, such that the final concentration
in the assay ranges from 10�5 to 10�8 M. Usually,
seven concentrations are studied for each assay.

Tissue Preparation
Male Wistar rats (100–150 g) are sacrificed by
decapitation. The whole brain minus cerebellum
is homogenized in 75 volumes of ice-cold 0.05 M
Tris buffer, pH7.7. The homogenate is centrifuged
at 40,000 g at 4 �C for 15 min. The supernatant is
discarded and the pellet is rehomogenized in fresh
Tris buffer and recentrifuged at 40,000 g at 4 �C
for 15 min. The final pellet is resuspended in the
original volume of ice-cold 0.05 M Tris buffer.
The final tissue concentration in the assay is
10 mg/ml. Specific binding is approximately
80 % of total bound ligand.

Assay

1200
μl

Tissue suspension

500 μl 3H-WB 4101

250 μl Vehicle (for total binding) or

800
μM

L-norepinephrine bitartrate (for nonspecific
binding) or appropriate drug concentration

Sample tubes are kept in ice for additions, then
vortexed, and incubated for 15 min at 25 �C. The
binding is terminated by rapid vacuum filtration
through Whatman GF/B filters, followed by three
5 ml washes with ice-cold 0.05 M Tris buffer. The
filters are counted in 10 ml of Liquiscint scintilla-
tion cocktail.

Evaluation
Specific WB 4101 binding is defined as the dif-
ference between the total binding and that bound
in the presence of 100 μM norepinephrine. IC50

calculations are performed using computer-
derived log-probit analysis.
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[3H]Spiroperidol Binding to 5-HT2
Receptors in Rat Cerebral Cortex

Purpose and Rationale
The purpose of this assay is to determine the anti-
serotonin activity of neuroleptics, antidepressants,
and antihypertensive compounds, by measuring
the displacement of [3H]spiroperidol from seroto-
nergic antagonist binding sites in cerebral cortical
membranes. The regulation of 5-HT2 receptor
density by chronic antidepressant treatment is

discussed in a separate protocol (see chapter
“▶Antidepressant Activity”).

The receptor binding of serotonergic sites in
the CNS has been investigated using [3H]seroto-
nin (5-HT) (Bennett and Snyder 1976), [3H]LSD
(Peroutka and Snyder 1979), and [3H]
spiroperidol (Peroutka and Snyder 1979; List
and Seeman 1981; Leysen et al. 1978) as the
radioligand. Receptor sites have been defined
kinetically and classified as 5-HT1 sites (labeled
by [3H]5-HT and displaced by agonists) and
5-HT2 sites (labeled by [3H]-spiroperidol and
displaced by antagonists). [3H]LSD labels both
5-HT1 and 5-HT2 binding sites (Peroutka and
Snyder 1979). Of the brain regions tested, the
frontal cerebral cortex contained the greatest
density of 5-HT2 binding sites. Lesioning stud-
ies indicate that 5-HT2 binding sites are postsyn-
aptic and not linked to adenyiate cyciase
(Peroutka et al. 1979).

The inhibition of 5-HT2 binding correlates
with the inhibition of quipazine-induced head
twitch, which may reflect decreased behavioral
excitation. The physiological and pharmacologi-
cal role of these receptors is not clear. Although
numerous neuroleptics and antidepressants of
varying chemical structures are potent inhibitors
of 5-HT2 binding, there is no clear-cut relation-
ship to the efficacy of these drugs. Methysergide
and cyproheptadine are both potent inhibitors of
5-HT2 binding without having neuroleptic or anti-
depressant effects. However, potent interaction
with 5-HT2 receptors may indicate a reduced
potential for catalepsy, since methysergide blocks
catalepsy induced by haloperidol (Rastogi
et al. 1981). The interaction of serotonergic neu-
rons with cholinergic neurons in the striatum
(Samanin et al. 1978) may also be decreased by
potent 5-HT2 antagonists. In addition, the ratio of
activity at D2 and 5-HT2 receptors may be useful
in the screening of atypical antipsychotic agents
(Meltzer et al. 1989). Furthermore, it has been
shown that ketanserin, a selective 5-HT2 antago-
nist, is an effective hypotensive agent which
blocks peripheral vascular 5-HT receptors.

5-HT2 receptors have been subdivided into
5-HT2A, 5-HT2B, and 5-HT2C receptors. The
new 5-HT receptor classification has been
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published by the VII. International Union of Phar-
macology Classification of Receptors for
5-Hydroxytryptamine (Serotonin) (Hoyer
et al. 1994). Further comments were given by
Humphrey et al. (1993), Martin and Humphrey
(1994), Saxena (1994), and Tricklebank (1996).

Several compounds with HT2A antagonistic
activity are described, such as trazodone
(Clements-Jewery et al. 1980; Hingtgen
et al. 1984; Stryjer et al. 2003), MDL 100,907
(Kehne et al. 1996; Moser et al. 1996), and
sarpogrelate (Hayashi et al. 2003).

McCullough et al. (2006) described the
5-HT2B antagonist and 5-HT4 agonist activities
of tegaserod in the anesthetized rat.

Procedure

Reagents
1. 0.5 M Tris buffer, pH 7.7

(a) 57.2 g Tris–HCl.
16.2 g Tris base
q.s. to 1 l (0.5 M Tris buffer, pH7.7)

(b) Make a 1:10 dilution in distilled H2O
(0.05 M Tris buffer, pH7.7).

2. Tris buffer containing physiological ions
(a) Stock buffer

NaCl 7.014 g

KCl 0.372 g

CaCl2 0.222 g

MgCl2 0.204 g

q.s. to 100 ml in 0.5 M Tris buffer.
(b) Dilute 1:10 in distilled H2O.
(c) This yields 0.05 M Tris–HCl, pH7.7;

containing NaCl (120 mM), KCl (5 mM),
CaCl2 (2 mM), and MgCl2 (1 mM).

3. [Benzene-3H] spiroperidol (20–35 Ci/mmol)
is obtained from New England Nuclear. For
IC50 determinations, 3H-spiroperidol is
made up to a concentration of 30 nM in
0.01 N HCl and 50 μl added to each tube
(yields a final concentration of 1.5 nM in the
1 ml assay).

4. Methysergide maleate is obtained from
Sandoz. Methysergide maleate stock solution
is made up to 0.25 mM for determination of
nonspecific binding. The final concentration in

the assay is 5 μM, when 20 μl of the stock
solution is added to the reaction tube.

5. Test compounds. For most assays, α 1 mM
stock solution is made up in a suitable solvent
and serially diluted, such that the final concen-
tration in the assay ranges from 10�5 to
10�8 M. Seven concentrations are used for
each assay, and higher or lower concentrations
may be used, depending on the potency of
the drug.

Tissue Preparation
Male Wistar rats are decapitated, and the cerebral
cortical tissue is dissected, weighed, and homog-
enized in 50 volumes of 0.05 M Tris buffer, pH
7.7 (buffer 1b) with the Brinkman Polytron and
then centrifuged at 40,000 g for 15 min. The
supernatant is discarded and the pellet
resuspended and recentrifuged as described
above. This pellet is resuspended in 50 volumes
of buffer 2b and stored in an ice bath. The final
tissue concentration is 10 mg/ml. Specific binding
is 7 % of the total added ligand and 50 % of total
bound ligand.

Assay

50 μl 0.5 M Tris-physiological salts (buffer 2a)

380
μl

H2O

20 μl Vehicle (for total binding) or 0.25 mM
methysergide (for nonspecific binding) or
appropriate drug concentration

50 μl [3H] spiroperidol

500
μl

Tissue suspension

The samples are incubated for 10 min at 37 �C
and then immediately filtered under reduced
pressure using Whatman GF/B filters. The
filters are washed with three 5 ml volumes of
ice-cold 0.05 M Tris buffer, pH 7.7 mM
methysergide.

Evaluation
IC50 calculations are performed using log-probit
analysis. The percent inhibition at each drug
concentration is the mean of triplicate
determinations.
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Modification of the Method
The receptor binding properties of the 5-HT2

antagonist ritanserin were reported by Leysen
et al. (1985).

Preclinical characterization of a putative anti-
psychotic as a potent 5-HT2A antagonist was
reported by Kehne et al. (1996).

Using [125I]LSD and [3H]5-HT binding assays,
Siegel et al. (1996) characterized a structural class
of 5-HT2 receptor ligands.

[3H]Ketanserin has been described as a selec-
tive 3H-ligand for 5-HT2 receptor binding sites
(Leysen et al. 1981).

[3H]RP 62203, a potent and selective 5-HT2

antagonist, was recommended for in vivo labeling
of 5-HT2 receptors (Fajolles et al. 1992).

Other selective 5-HT2 receptor radioligands
were recommended:

[125I]-EIL (radioiodinated D-(+)-N1-ethyl-2-
iodolysergic acid diethylamide) (Lever
et al. 1991); [3H]MDL100,907 (Lopez-Gimenez
et al. 1998).
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Serotonin 5-HT2 Receptor
Autoradiography (3H-Spiperone
Binding)

Purpose and Rationale
Autoradiography of 3H-spiperone binding sites
with selective labeling conditions permits the
visualization of the anatomical locations of
5-HT2 receptors (Palacios et al. 1981; Pazos
et al. 1985; Altar et al. 1985). Quantitative mea-
surements of the binding to receptors can be
obtained with computer-assisted video analysis
of the autoradiograms with a greater anatomical
resolution and sensitivity than in membrane
homogenates (Pazos et al. 1985; Altar
et al. 1984). Using autoradiographic techniques,
it has been demonstrated that there is a heteroge-
neous distribution of 5-HT2 receptors, with much
higher levels in telencephalic areas such as the
neocortex and the claustrum than in meso- or
metencephalic areas. Within the cortex, 5-HT2

receptors are abundant in layers IV and V (Pazos
et al. 1985). The high concentration of 5-HT2

receptors in the frontoparietal motor area and the
claustrum which connects to the motor cortex and
other motor areas suggests a physiological role for

5-HT2 receptors in some motor syndromes (Cadet
et al. 1987; Costall et al. 1975; Kostowski
et al. 1972). The high affinity of the atypical
antipsychotic clozapine for 5-HT2 receptors
(Fink et al. 1984; Altar et al. 1986) and the
downregulation of 5-HT2 receptors following
chronic administration of clozapine (Reynolds
et al. 1983; Lee and Tang 1984; Wilmot and
Szczepanik 1989) suggest that 5-HT2 receptor
interaction may be a significant factor in the lack
of extrapyramidal side effects and tardive dyski-
nesias with its clinical use.

Since3 H-spiperone labels a1-noradrenergic
sites in the cerebral cortex, a masking concentra-
tion of the a1-blocker prazosin is included to
selectively define binding to 5-HT2 receptors
(Morgan et al. 1984). This is necessary if the test
compound also inhibits a1receptors which may be
present in the brain region of interest.

The assay is used to determine the direct inter-
action of potential antipsychotic compounds with
the serotonin-5-HT2 recognition site in discrete
regions of the rat brain either in vitro or after
ex vivo treatment of the whole animal.

Procedure

Reagents
1a. 0.5 M Tris + 1.54 M NaCl, pH7.4.
1b. 0.05 M Tris + 0.154 M NaCl, pH7.4.
2. 3H-spiperone (specific activity 70–90

Ci/mmol) is obtained from Amersham.
– For IC50 determinations, 3H-spiperone is

made up to a concentration of 20 nM, and
0.55 ml is added to each slide mailer (yields
a final concentration of 1.0 nM in the
11.0 ml assay volume).

– For saturation experiments, 3H-spiperone is
made up to a concentration of 20 nM. The
final concentration should range from 0.5 to
2.5 nM. Typically, six concentrations are
used by adding 0.55 ml or less to each
mailer (for smaller volumes, add water to
bring total addition of 0.55 ml).

3. Methysergide is used to determine nonspecific
binding in brain sections of the frontal cortex.
Methysergide maleate is obtained from
Sandoz. A stock solution of 2.5 � 10�4 M is
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made by dissolving in distilled water. A vol-
ume of 0.22 ml of the stock solution is added
to the nonspecific binding slide mailers
(final concentration 5 μM). All other mailers
receive 0.22 ml of vehicle (1 ml of 0.01 N
acetic acid in a final volume of 10 ml with
distilled water).

4. Ketanserin is used to determine nonspecific
binding in those slide mailers containing sec-
tions with the nucleus accumbens and striatum.
Ketanserin (free base or tartrate salt) is
obtained from Janssen. A stock solution of
10�3 M is made by dissolving the ketanserin
(free base) in 0.05 N acetic acid or the tartrate
salt in distilled water. This is further diluted to
5 � 10�6 M (50 μM q.s 10 ml with distilled
water). A volume of 0.22 ml is added to the
slide mailers to give a final concentration of
100 nM.

5. Prazosin is used to mask α1-receptors in corti-
cal brain section.

Prazosin HCl is obtained from Pfizer. A
stock solution of 10�4 M is made by dissolving
prazosin in 0.01 N acetic acid and bringing
the final volume to 10 ml with distilled water.
This is further diluted to 5 � 10�6 M (100 μM
q.s 10 ml). A volume of 0.22 ml is added to
those slide mailers to be used for cortical brain
sections to give a final concentration of
100 nM.

6. Sulpiride is used to mask D2 receptor binding
in brain sections from the nucleus accumbens
and striatum.

Sulpiride is obtained from sigma. A stock
solution of 10�4 M is made by dissolving
sulpiride in 1.0 ml of 0.01 N acetic acid and
bringing the final volume to 10 ml with dis-
tilled water. A volume of 0.22 ml is added to
the appropriate slide mailers to give a final
concentration of 10 μM.

7. Test compounds (for in vitro IC50 determina-
tions). For most assays, a 5 � 10�3 M stock
solution is made up in a suitable solvent and
serially diluted, such that the final concentra-
tion in the assay ranges from 10�5 to 10�8

M. Seven concentrations are used for each
assay. Higher or lower concentrations may be
used depending on the potency of the drug.

Tissue Preparation
Frontal cortical brain sections are collected from
plates 5 through 8, and nucleus accumbens/striatal
sections are collected from plates 9 (rostral
n. accumbens) through plate 17 (caudal striatum)
of “The Rat Brain Atlas in Stereotaxic Coordi-
nates” by Paxinos and Watson.

1. For in vitro inhibition experiments, 3–5 sets of
10 slides are collected with 4–5 sections per
slide.

2. For saturation experiments, 3–5 sets of
12 slides are collected with 4–5 six sections
per slide.

3. For ex vivo inhibition experiments, a set of
8 slides is used, 4 for total binding and 4 for
nonspecific binding.

4. For experiments in which the tissue sections
will be swabbed and counted with scintillation
fluid, two sections per slide are collected.

Assay
1. Preparation of slide mailers (11.0 ml volume/

slide mailer).
Note: If slides with sections are to be wiped

for scintillation counting, a final volume of
6.5 ml is sufficient to cover two sections. A
proportional adjustment of the volumes to be
pipetted is made.
(a) In vitro inhibition experiments

Separate mailers are prepared for total
binding, nonspecific binding, and 7–8 con-
centrations of test compound.
1. For frontal cortical brain sections,

prazosin is included in all mailers to
mask the binding of [3H]-spiperone to
α1-receptors, and nonspecific binding is
defined with 5 μM methysergide.

5.50 ml Buffer 1b

0.55 ml Buffer 1a

0.55 ml [3H]-spiperone, 1.0 nM final concentration

3.96 ml Distilled water

0.22 ml Prazosin 5 � 10�6 M, final concentration
100 nM or vehicle

0.22 ml Test compound, final concentration
10�8–10�5 M or methysergide
2.5 � 10�4 M, final concentration 5 μM or
vehicle
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2. For brain sections with the nucleus
accumbens and striatum in which there
is negligible binding of [3H]-spiperone
to α1-receptors, prazosin is not
included. Since levels of 5-HT2 recep-
tors in these brain areas are low, 10 μM
sulpiride is included in all mailers to
mask the binding of [3H]-spiperone to
D2 receptors.

Ketanserin, final concentration of
100 nM, is used to determine
nonspecific binding since methysergide
has a weak affinity for D2 receptors
(IC50 approximately 1–5 μM).

5.50 ml Buffer 1b

0.55 ml Buffer 1a

0.55 ml [3H]-spiperone, 1.0 nM final concentration

3.96 ml Distilled water

0.22 ml Sulpiride 5 � 10�4 M, final concentration
10 μM or vehicle

0.22 ml Test compound, final concentration 10�8 to
10�5 M or ketanserin 5 � 10�5 M, final
concentration 100 nM or vehicle

(b) Ex vivo inhibition experiments
Separate mailers are prepared for total

and nonspecific binding, as described
above, including sulpiride to mask D2

receptor binding with brain sections
through the nucleus accumbens and stria-
tum and prazosin to mask α1-receptors in
cortical brain sections.

(c) Saturation experiments
Separate mailers are prepared for total

and nonspecific binding at each
radioligand concentration. Prazosin is not
included in the mailers in saturation exper-
iments, since specific binding is defined by
methysergide which has negligible affinity
for α1-receptors.

5.50 ml Buffer 1b

0.55 ml Buffer 1a

0.55 ml [3H]-spiperone, final concentrations 0.5–2.5
nM

4.18 ml Distilled water

0.22 ml 2.5 � 10�4 M methysergide, final
concentration 5 μM or vehicle

2. Slides are air-dried for 10–15 min at room
temperature, preincubated in 0.05 M
Tris + 0.154 M NaCl, pH7.4 for 5 min, and
further incubated for 60 min with [3H]-
spiperone. Slides are then rinsed with ice-cold
solutions as follows: dipped in buffer 1b,
2 � 5 min rinsed in buffer 1b, dipped in dis-
tilled water.

Slides used for wipes: both sections are
wiped with one Whatman GF/B filter, and
radioactivity is counted after addition of
10 ml of scintillation fluid. Slides used for
autoradiography: slides are dried under a
stream of air at room temperature and are
stored in a desiccator under vacuum at room
temperature (usually overnight). Slides are
then mounted onto boards, along with 3H-stan-
dards (Amersham RPA 506).

In the dark room under safelight illumina-
tion (Kodak GBX-2 filter), slides are exposed
to Amersham Hyperfilm or LKB Ultrofilm for
14–17 days.
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Binding to the Sigma Receptor

Purpose and Rationale
Sigma receptors, as a class of binding sites in the
brain, were originally described as a subtype of the
opiate receptors. Efforts to develop less addicting
opiate analgesics led to the study of several
benzomorphan derivatives which produce analge-
sia without causing the classical morphine-induced

euphoria. Unfortunately, these compounds, like N-
allylnormetazocine (SKF 10,047), produced a vari-
ety of psychotic symptoms. This psychotomimetic
effect is thought to be mediated by sigma receptors.
This binding site is sensitive to many neuroleptics,
most notably the typical antipsychotic haloperidol,
leading to the hypothesis that drug interactionswith
the sigma site may be a new approach for the
discovery of novel antipsychotics which are not
dopamine receptor antagonists. D2 receptor antag-
onism is thought to be linkedwith the occurrence of
extrapyramidal symptoms in the form of hyperki-
nesia and Parkinson symptoms or tardive dyskine-
sia, limiting the therapeutic use of traditional
antipsychotic medication. It is hoped that ligands
to the sigma receptor do not produce these adverse
reactions. The sigma site is believed to be distinct
from the binding site for the psychotomimetic drug
phencyclidine.

Procedure

Reagents
(+)-SKF 10,047 is prepared as a stock solution of
5 � 10�3 M with distilled water. 130 μl added to
the 6.5 ml assay yields a final concentration of
10�4 M.

3H-(+)-SKF 10,047 (specific activity
40 Ci/mmol) is obtained from New England
Nuclear. A 200 nM stock solution is made up
with distilled water for IC50 determinations.
325 μl added to each tube yields a final concen-
tration of 10 nM in the 6.5 ml assay.

Test Compounds
A 5 mM stock solution is prepared in a suitable
solvent and serially diluted, such that the final
concentration in the assay ranges from 10�5 to
10�8 M.

Tissue Preparation
The assay utilizes slide-mounted cross sections of
brain tissue frommale Hartley guinea pigs. Whole
brain sections of 10 pm thickness are obtained
from the hippocampus, thaw-mounted onto
gel-chrome alum subbed slides, freeze-dried, and
stored at�70 �C until use. On the day of the assay,
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the sections are thawed briefly at room tempera-
ture until the slides are dry and then used in the
assay at a final volume of 6.5 ml.

Assay
Incubation solutions are prepared in plastic slide
mailer containers as follows:

3.250 ml 0.05 M Tris buffer, pH 7.7

2.470 ml Distilled water

0.325 ml 0.5 M Tris buffer, pH 7.7

0.130 ml (+)-SKF 10,047 or vehicle

0.325 ml [3H](+)-SKF 10,047

Dried slides with tissue sections are added to
the slide mailers and incubated at room tempera-
ture for 90 min. Non-bound radioligand is
removed by rinsing the slides sequentially in two
5-min rinses in ice-cold 0.05 M Tris buffer and a
dip in ice-cold distilled water. The sections are
either swabbed with Whatman GF/B filters for
scintillation counting of tissue-bound radioligand
or exposed to tritium-sensitive film for autoradi-
ography of the binding sites.

Evaluation
Specific binding is determined from the differ-
ence of binding in the absence or presence of
10�4 M (+)SKF 10,047 and is typically 60–70
% of total binding. IC50 values for the competing
drug are calculated by log-probit analysis of
the data.

Modifications of the Method
[3H]-(+)-pentazocine has been recommended as a
highly potent and selective radioligand for μ
receptors (de Costa et al. 1989; DeHaven-
Hudkins et al. 1992).

Classification of sigma binding sites into α1
and α2 receptors has been proposed (Walker
et al. 1990; Quirion et al. 1992; Abou-Gharbia
et al. 1993).

Hashimoto and London (1993) characterized
[3H]ifenprodil binding to σ2 receptors in rat brain.

Ganapathy et al. (1999) provided evidence for
the expression of the type 1 sigma receptor in the
Jurkat human T lymphocyte cell line.
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Simultaneous Determination
of Norepinephrine, Dopamine, DOPAC,
HVA, HIAA, and 5-HT from Rat Brain
Areas

Purpose and Rationale
To measure the effects of potential antipsychotic
drugs on catecholamines and indols, a quantitative
method for the determination of norepinephrine
(NE), dopamine (DA), 3,4-dihydroxyphenylacetic
acid (DOPAC), homovanillic acid (HVA),
5-hydroxyindolacetic acid (5HIAA), and
5-hydroxytryptamine (5-HT) from rat brain regions
is used. These catecholamines and indols are mea-
sured in rat brain prefrontal cortex, nucleus
accumbens, and striatum.

Procedure

Reagents
1. 0.1 M HCl.
2. 1 N NaOH.
3. 2 mM solutions of DOPAC, DA, and DOPA in

0.1 M HCl;
0.5ml aliquots are stored at�60 �C until use.

4. Preparation of 2� standard mixture
– 10 μM solution of NE, DOPAC, DA, HVA,

5HIAA, and 5-HT (diluted from reagent 3)
in mobile phase (reagent 5).
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– The 2� standard solution is used for the
preparation of standard curves.

5. Mobile phase/MeOH: buffer (7.5:92.5, v/v).
– Buffer: 0.07 M sodium acetate, 0.04 M

citric acid, 130 μM EDTA, and 230 μM
sodium octane sulfonate

– Mobile phase: methanol/buffer
(150 ml + 1850 ml) is filtered through a
0.2 pm nylon 66 filter.

HMLC-Instrumentation
• Pump, model SP8810 (Spectra Physics).
• Injector, WISP 710B (Waters Associates).
• Detector, 5100A electrochemical with

a 5011 analytical cell and 5020 guard cell
(ESA).

• Integrator, D-2000 (Hitachi), used as a backup
for the data collection/integrator, CS 9000
(IBM) system.

• Analytical column: C18-ODS Hypersil, 3 pm,
100 � 4.6 mm (Shandon).

Animal Treatment
Six rats per group (150–250 g) are dosed with 4–5
different concentrations of the putative antipsy-
chotic drug; usual concentrations range from 0.03
to 30 mg/kg. At a predetermined time, usually
60 min, the rats are sacrificed.

Tissue Preparation
Following treatment with test drug, rats are
sacrificed by decapitation. The brain is rapidly
removed and placed on ice. The striatum, nucleus
accumbens, and prefrontal cortex are dissected
and placed in 1.5 ml microcentrifuge tubes. The
tubes are capped and immediately placed in dry
ice. The frozen brain sections are stored at�60 �C
until HPLC analysis.

Tissue is homogenized in mobile phase (stria-
tum, in 600 μl, nucleus accumbens and prefrontal
cortex, in 300 μl). The homogenates are centrifuged
for 6 min using a microcentrifuge (model 5413,
Eppendorf). The supernatants are transferred to
0.2 pm microfilterfuge™ tubes and centrifuged for
6–8min as before. Thefiltrate is transferred toWISP
vials. Standards are included every 12–15 samples.

The following volumes are injected to the
HPLC column:

• Striatum, 5 μl; nucleus accumbens, 20 μl; pre-
frontal cortex, 50 μl.

• HPLC flow rate is 1.0 mi/min; run time is
25 min.

Helium flow is constant in mobile phase.

For protein analysis, 1 N NaOH is added to the
tissue pellets as follows:

• Striatum: 1.0 ml
• Nucleus accumbens and prefrontal cortex: 0.5ml

The next day, the protein analysis is run in
duplicate with 5 μl of striatum and 20 μl of
nucleus accumbens and prefrontal cortex as
described by Bradford (1976) using the BioRad
Assay Kit.

Evaluation
Peak area is used for quantitation. The mg of
protein and pmoles of NE, DOPAC, DA, HVA,
5HIAA, and 5-HT are calculated from linear
regression analysis using the corresponding stan-
dard curve. Final data are reported as pmoles/mg
protein.
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Measurement of Neurotransmitters by
Intracranial Microdialysis

Purpose and Rationale
Methods to measure neurotransmitters and their
metabolites in specific areas of the brain by
microdialysis were introduced by Ungerstedt and
his group (Ungerstedt et al. 1982; Zetterström
et al. 1982, 1983; Zetterström and Ungerstedt
1983; Ungerstedt 1984; Stähle et al. 1991;
Lindefors et al. 1989; Amberg and Lindefors
(1989) and by Imperato and di Chiara 1984,
1985). In brain dialysis, a fine capillary fiber is
implanted in a selected brain area. Low molecular
weight compounds diffuse down their

concentration gradients from the brain extracellu-
lar fluid into a physiological salt solution that
flows through the capillary fiber at a constant
rate. The fluid is collected and analyzed.

Procedure
Several designs of dialysis probes have been used
(Santiago and Westerink 1990; Kendrick 1991):

1. Horizontal Probe
A straight tube (Vita Fiber, 3 � 50 Amicon)

with an outer diameter of 0.34 mm and a
molecular weight cutoff of 50,000 is used.
The outer surface of the tube is porous and
can easily be sealed by epoxy which is applied
by passing the tube through a droplet of epoxy
and then through a narrow hole corresponding
to the outer diameter of the tube. The wall of
the tube is sealed in this way except for the area
where the dialysis is intended to take place.
The length of this region can be varied from
2 to 8 mm depending upon which structure of
the brain will be perfused. During the coating
and all other handling of the tube, it is
supported by a thin tungsten or steel wire
inserted into its lumen. One end of the tube is
glued into a steel cannula (6 mm long, outer
diameter 0.64 mm).

Male Sprague Dawley rats weighing
250–300 g are anesthetized with halothane
and held in a stereotactic instrument. The ani-
mals are maintained under halothane anesthe-
sia during the entire experiment.

Holes are drilled bilaterally (5.7 mm below
and 1.5 mm in front of bregma) in the temporal
bones after the temporal muscles have been
retracted from the bones and folded away.

During the implantation, the cannula is held
by the micromanipulator of the stereotactic
instrument, and the dialysis tube is passed hor-
izontally through the brain through the holes
drilled on both sides of the skull. A polyethyl-
ene tubing carrying the perfusion fluid is
connected to the steel cannula. The perfusate
is collected at the other end.

2. Loop Probe
The probe is made of a flexible cellulosic

tubing (Dow 50, outer diameter 0.25 mm).
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Both ends of the tube are inserted into 0.64 mm
diameter steel tubes, one of which is bent in an
angle. A very thin microsuture (0.1 mm in
diameter) is inserted into the tube and posi-
tioned half between the steel tubes. Before
implantation, the tube is moistened and bent
in such a way that the two steel tubes are held
closely together in the micromanipulator of the
stereotactic instrument. A tungsten wire is
inserted into the straight steel tube and passed
down the lumen of the dialysis tube in order to
stretch it and make it rigid enough to be
implanted into the brain. The tube is implanted
vertically, and the steel cannulae are attached to
the skull by dental cement. The tungsten wire
is removed before starting the experiment. The
cellulosic tube is flexible enough to withstand
the bending at the lower end. The microsuture
keeps the bend open.

Loop-shaped or U-shaped microdialysis
probes have been used by several authors, e.
g., Ichikawa and Meltzer (1990), Jordan
et al. (1994), Westerink and Tuinte (1985),
and Auerbach et al. (1994).

3. Vertical Probe
The probe is sealed at one end by epoxy.

The other end is glued into a 0.64-mm-diame-
ter steel tube. A thin inner cannula made of a
steel tube or a glass capillary carries the fluid to
the bottom of the dialysis tube where it leaves
the inner capillary and flows upwards and
leaves the probe by a lateral tube. This vertical
probe can also be coated with epoxy. It is
especially suited for reaching ventral parts of
the brain and performing dialysis in small
nuclei of the brain.

A similar device has been described for
continuous plasma sampling in freely moving
rats by Chen and Steger (1993).

Most of the commercially available
microdialysis probes are based on this
principle.

4. Commercially Available Microdialysis Probes
The microdialysis probes CMA/10,

manufactured by Carnegie Medicine, Stock-
holm, Sweden, consist of a tubular membrane
(polycarbonate; length: 3 mm; outside diame-
ter: 0.50 mm; and inside diameter: 0.44 mm)

glued to a cannula (outside diameter, 0.60 mm)
and sealed with a glue at the tip (Stähle
et al. 1991). The perfusion medium is carried
to the dialyzing part of the probe by a
thin cannula inside the probe. The medium
leaves the inner cannula through two holes,
flows back between the membrane and the
inner cannula, and is collected at the outlet
of the probe. The perfusion medium is
delivered by means of a high precision
microsyringe pump.

This probe was used by several authors, e.
g., Wood et al. (1988), Benveniste et al. (1989),
Rollema et al. (1989), Scheller and Kolb
(1991), Wang et al. (1993), Kreiss and Lucki
(1995), and Fink-Jensen et al. (1996).

CMA/11 probes were used by Boschi
et al. (1995), Romero et al. (1996), and Gobert
et al. (1997).

Dialysis fibers with a semipermeable mem-
brane AN 69-HF, Hospal-Dasco, Bologna,
Italy, were used by de Boer et al. (1994),
Rayevsky et al. (1995), Arborelius
et al. (1996), Gainetdinov et al. (1996), and
Tanda et al. (1996).

Evaluation
Samples of the dialyzate are collected for different
time intervals and analyzed for neurotransmitters.
For the evaluation of neuroleptics, most authors
measured dopamine, 3,4-dihydroxyphenyl acetic
acid (DOPAC), and homovanillinic acid (HVA)
by HPLC using appropriate detectors. See and
Lynch (1996) analyzed dialysis samples for glu-
tamate and GABA concentrations.

For the evaluation of antidepressants, the
concentrations of 5-hydroxytryptamine (5-HT),
5-hydroxy indole acetic acid (5-HIAA), dopamine
(DA), dihydroxyphenylacetic acid (DOPAC), or
noradrenaline (NA) were measured in the effluent
by HPLC. Wood et al. (1988) and Egan
et al. (1996) used 3-methoxytyramine accumula-
tion as an index of dopamine release.

Critical Assessment of the Method
The results obtained from brain dialysis
depend on at least three variables: type of probe,
post-implantation interval, and whether
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anesthetized or freely moving animals are used
(Di Chiara 1990).

Several authors analyzed the diffusion pro-
cesses underlying the microdialysis technique
and described the limitations of the experiments
(Jacobson et al. 1985; Amberg and Lindefors
1989; Benveniste et al. 1989; Scheller and Kolb
1991; Le Quellec et al. 1995).

As a matter of fact, brain microdialysis has
been used for the evaluation of many drugs in
various indications, such as:

• For neuroleptics by Ichikawa and Meltzer
(1990), Meil and See (1994), Hernandez and
Hoebei (1994), See et al. (1995), Schmidt and
Fadayel (1995), Semba et al. (1995), Rayevsky
et al. (1995), Fink-Jensen et al. (1996), See and
Lynch (1996), Gainetdinov et al. (1996), Egan
et al. (1996), and Klitenick et al. (1996)

• For antidepressants by de Boer et al. (1994),
Jordan et al. (1994), Arborelius et al. (1996),
Ascher et al. (1995), Auerbach et al. (1994), de
Boer (1995, 1996), Casanovas and Artigas
(1996), Gobert et al. (1997), Ichikawa and
Meltzer (1995), Kreiss and Lucki (1995), Petty
et al. (1996), Potter (1996), Romero et al. (1996),
Sharp et al. (1996), and Tanda et al. (1996a, b)

• For studies in Parkinson models by Rollema
et al. (1989) and Parsons et al. (1991)

Modifications of the Method
Ferraro et al. (1990) continuously monitored eth-
anol levels in the brain by microdialysis.

Hernandez and Hoebei (1994) performed
simultaneous cortical, accumbens, and striatal
microdialysis in freely moving rats.

Hegarty and Vogel (1995) assayed dopamine,
DOPAC, and HVA in the brain of rats after acute
and chronic diazepam treatment and immobiliza-
tion stress.

Casanovas and Artigas (1996) implanted
microdialysis probes simultaneously in six
different brain areas of rats (frontal cortex,
dorsal striatum, ventral hippocampus, dorsal hip-
pocampus, dorsal raphe nucleus, median raphe
nucleus).

Beneviste et al. (1984) determined extracellu-
lar concentrations of glutamate and aspartate in rat

hippocampus during transient cerebral ischemia
monitored by intracerebral microdialysis.

Boschi et al. (1995) showed that microdialysis
of small brain areas in mice is feasible using the
smallest commercially available probes.
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Use of Push–Pull Cannulae
to Determine the Release
of Endogenous Neurotransmitters

Purpose and Rationale
Originally reported by Gaddum (1961), the
push–pull cannula has become recognized and
utilized as a powerful tool in conjunction with
sufficiently sensitive assays to measure low levels
of neuroregulator release in distinct brain areas
in vivo (Philippu 1984).

This method has been used for various pur-
poses, e.g.:

• To perfuse the ventricles of the brain with
drugs or to determine the release of labeled or
endogenous compounds in the CSF
(Bhattacharya and Feldberg 1958; Korf
et al. 1976)

• To perfuse distinct brain areas with drugs and
to study their effects on functions of the central
nervous system (Myers et al. 1976; Bhargava
et al. 1978; Ruwe and Myers 1978)

• To inject labeled monoamines or amino acids
and to investigate the resting or induced release
of radioactive compounds and their metabo-
lites (Sulser et al. 1969; Strada and Sulser
1971; Kondo and Iwatsubo 1978)
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• To perfuse distinct brain areas with labeled
transmitter precursors and to determine the
patterns of release of the newly synthesized
transmitters (Philippu et al. 1974; Chéramy
et al. 1977; Nieoullon et al. 1977; Gauchy
et al. 1980)

• To perfuse distinct brain areas of anesthetized
and conscious animals and to determine the
release of endogenous neurotransmitters in
the perfusate (Dluzen and Ramirez 1991)

Procedure
The superfusion of the hypothalamus of the con-
scious, freely moving rabbit has been described
by Philippu et al. (1981) and Philippu (1984).
Rabbits of both sexes are anesthetized with
40 mg/kg sodium pentobarbital i.p. Guide
cannulae are mounted on a metal plate which is
fixed on the skull with screws and dental cement.
Some days after the operation, the guide cannulae
are replaced with push–pull cannulae which are
4 mm longer than the guide cannulae, thus
reaching the areas which are intended for
superfusion. The push–pull cannulae are
connected by tubing to two peristaltic pumps:
one to push and another one to pull the fluid.
The second pump is essential, because the
superfusate is not directly collected from the side
branch of the push–pull cannula but from tubing
which is connected to the side branch. The
superfusate is automatically collected every 10 s
in fraction collectors.

Evaluation
The concentrations of neurotransmitters, e.g., epi-
nephrine, norepinephrine, or dopamine, are deter-
mined with appropriate analytical methods
(Wolfensberger 1984) before and after
stimulation.

Modifications of the Method
Experiments in cats were described by Dietl
et al. (1981) and in rats by Tuomisto et al. (1983).

The cortical cup technique for collection of
neurotransmitters has been described by Moroni
and Pepeu (1984).
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Fos Protein Expression in Brain

Purpose and Rationale
The proto-oncogene c-fos encodes a 55,000 mol
wt, 380 amino acid phosphoprotein (FOS), which
after translation in the cytoplasm reenters the
nucleus and binds to DNA (Morgan and Curran
1989). C-fos induction can occur as a conse-
quence of synaptic activation. An increase in fos
immunoreactivity is associated with an increased
metabolic demand on a neuron, i.e., a marker for
neurons that is metabolically activated. Interme-
diate early genes such as c-fos have been tenta-
tively classified or linked to third messengers,
whose function is to produce a long-term effect
on the recipient neuron.

Acute administration of antipsychotics induces
c-fos expression in several areas of the rat fore-
brain as was shown with immunocytochemical
methods (Dragunow et al. 1990; Nguyen
et al. 1992; Robertson and Fibiger 1992;
MacGibbon et al. 1994). Fos protein is believed
to act as an initiator of long-term cellular changes
(neural plasticity) in response to a variety of extra-
cellular stimuli, including drugs (Graybiel
et al. 1990; Rogue and Vicendon 1992). Typical
(e.g., haloperidol) and atypical (e.g., clozapine)
neuroleptic drugs have different antipsychotic
effects and side effects. A differential
FOS-protein induction in rat forebrain regions
after haloperidol and clozapine treatment was
found (Deutch et al. 1992; Fibiger 1994; Fink-
Jensen and Kristensen 1994; Merchant
et al. 1994; Sebens et al. 1995). The induction
pattern of Fos-like immunoreactivity in the fore-
brain could serve as predictor of atypical antipsy-
chotic drug activity (Robertson et al. 1994).

Procedure
Groups of 4–6 male Wistar rats weighing
350–450 g are injected subcutaneously with saline
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(control) or with various doses of the standard
drugs or compounds with putative antipsychotic
activity. After 2 h, the animals are deeply anesthe-
tized by intraperitoneal injection of 100 mg/kg
pentobarbital and perfused with 200 ml saline
followed by 200 ml of 4 % paraformaldehyde in
phosphate buffer solution (PBS). Each brain is
removed immediately after perfusion and placed
in fresh fixative for at least 12 h.

After the post-fixative period, 30-pm sections
are cut from each brain using a vibratome. Several
antisera to detect Fos can be used, such as a sheep
polyclonal antibody directed against residues
2–16 of the N-terminal region of the Fos molecule
or a polyclonal antiserum raised in rabbits against
Fos peptide (4–17 amino acids of human Fos).

Sections are washed three times with 0.02 mM
PBS and then incubated in PBS containing 0.3 %
hydrogen peroxide for 10 min to block endogenous
peroxidase activity. Sections are then washed three
times in PBS and incubated in PBS containing 0.3
% Triton X-100, 0.02 % azide, and Fos primary
antisera (diluted 1:200) for 48 h. The sections are
then washed three times with PBS and incubated
with a biotinylated rabbit antisheep secondary anti-
body (diluted 1:200) for 1 h. The sections are
washed three times with PBS and incubated for
1 h with PBS containing 0.3 % Triton X-100 and
0.5 % avidin-biotinylated horseradish peroxidase
complex. After three washes in PBS, the sections
are rinsed in 0.1M acetate buffer, pH6.0. Fos immu-
noreactivity is revealed by placing the sections in a
solution containing 0.05 % 3,30-diaminobenzidine,
0.2 % ammonium nickel sulfate, and 0.01 % H2O2.
The reaction is terminated with a washing in acetate
buffer. The sections are mounted on chrome-alum-
coated slides, dehydrated, and prepared for micro-
scopic observation.

Drug-induced changes in Fos-like immunore-
activity are quantified by counting the number of
immunoreactive nuclei in the medial prefrontal
cortex, nucleus accumbens, medial and dorsolat-
eral striatum, and the lateral septal nucleus. The
number of Fos-positive nuclei is counted with a
550 � 550 pm grid placed over each of these
regions with a 100 � magnification.

Typical and atypical antipsychotics can be
classified on the basis of difference between

Fos-like immunoreactivity in the nucleus
accumbens and lateral striatum. For this purpose,
the data are corrected for the effects which are
produced by the injection procedure itself. The
injection-corrected value for the dorsolateral stri-
atum is subtracted from the corresponding
accumbal value for each drug dose.

This manipulation yields a value termed the
atypical index, i.e., number of Fos-positive neu-
rons in the nucleus accumbens minus the number
in the lateral striatum = atypical index. A nega-
tive index indicates the probability of side effects,
like extrapyramidal syndrome, exerted by the typ-
ical neuroleptics, a positive value to be devoid
of it.

Evaluation
A one-way analysis of variance is performed on
the cell count data for each dose and the
corresponding vehicle control. If the analysis of
variance is significant, multiple comparisons are
performed by using the Newman–Keuls test.

Modifications of the Method
Graybiel et al. (1990) reported a drug-specific
activation of c-fos gene in striosome-matrix com-
partments and limbic subdivisions of the striatum
by amphetamine and cocaine.

Deutch et al. (1991) found that stress selec-
tively increases Fos protein in dopamine neurons
innervating the prefrontal cortex.

Gogusev et al. (1993) described modulation of
c-fos and other proto-oncogene expression by
phorbol diester in a human histiocytosis DEL cell.

Deutch et al. (1995) studied the induction of
Fos protein in the thalamic paraventricular
nucleus as locus of antipsychotic drug action.
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Neurotensin

General Considerations on Neurotensin
and Neurotensin Receptors
Neurotensin is a 13-amino acid peptide originally
isolated from calf hypothalamus (Carraway and
Leeman 1973). It is secreted by peripheral and
neuronal tissues and produces numerous

1354 M.J. Kallman



pharmacological effects in animals, suggesting
analgesic (Coguerel et al. 1988; Clineschmidt
and McGuffin 1977; Smith et al. 1997), wound
healing (Brun et al. 2005), cardiovascular
(Carraway and Leeman 1973; Schaeffer
et al. 1998; Seagard et al. 2000), endocrine
(Rostene and Alexander 1997), hypothermic
(Bissette et al. 1976; Benmoussa et al. 1996;
Tyler-McMahon et al. 2000), and antipsychotic
(Nemeroff 1986; Sarhan et al. 1997; Feifel
et al. 1999; Kinkead et al. 1999; Cusack
et al. 2000) actions. Neurotensin is even consid-
ered to be an endogenous neuroleptic (Ervin and
Nemeroff 1988; Gully et al. 1995). Radke
et al. (1998) studied synthesis and efflux of
neurotensin in different brain areas after acute
and chronic administration of typical and atypical
antipsychotic drugs.

Neurotensin affects gastrointestinal func-
tions, such as stimulating the growth of various
gastrointestinal tissues (Feurle et al. 1987), mod-
ulating pre- and postprandial intestinal motility
(Pellissier et al. 1996), inhibiting gastric acid
secretion (Zhang et al. 1989a), stimulating
responses in rat stomach strips (Quirion
et al. 1980), inducing contractile responses in
intestinal smooth muscle (Unno et al. 1999), and
maintaining gastric mucosal blood flow during
cold water restraint (Zhang et al. 1989b; Xing
et al. 1998).

Neurotensin acts as a growth factor on a vari-
ety of normal and cancer cells (Wang et al. 2000).

Like other neuropeptides, neurotensin is syn-
thesized as part of a larger precursor which also
contains neuromedin N, a six amino acid
neurotensin-like peptide belonging to the
gastrin-releasing peptide/bombesin family (see
J.3.1.8).

Several peptidic and non-peptidic neurotensin
agonists and antagonists have been synthesized
and analyzed in pharmacological tests as potential
drugs mainly in psychopharmacology (Gully
et al. 1995, 1996, 1997; Azzi et al. 1996;
Castagliuolo et al. 1996; Chapman and See
1996; Mule et al. 1996; Hong et al. 1997; Johnson
et al. 1997; Sarhan et al. 1997; Betancur
et al. 1998; Gudasheva et al. 1998; Schaeffer
et al 1998; Kitabgi 2002). Furthermore, inhibitors

of neurotensin-degrading enzymes were
described (Bourdel et al. 1996). Binder
et al. (2001) reviewed neurotensin and dopamine
interactions.
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Neurotensin Receptor Binding

Purpose and Rationale
Neurotensin interacts with two cloned receptors
that were originally differentiated on the basis of
their affinity to the antihistaminic drug
levocabastine (Schotte et al. 1986). The high sen-
sitive, levocabastine-insensitive rat neurotensin
receptor (NTR1) was cloned first (Tanaka
et al. 1990) and shown to mediate a number of
peripheral and central neurotensin responses,
including the neuroleptic-like effects of the pep-
tide (Labbé-Jullié et al. 1994). The human NTR1
has been cloned from the colonic adenocarcinoma
cell line HT29 (Vita et al. 1993) and shown to
consist of a 416 amino acid protein that shares
84 % homology with rat NTR1. A second human
NTR1 receptor differing only in one amino acid
has been cloned from substantia nigra by Watson
et al. (1993).

The lower-affinity, levocabastine-sensitive
neurotensin receptor (NTR2) was cloned by Cha-
lon et al. (1996) and Mazella et al. (1996) and
characterized by Yamada et al. (1998). Studies by
Dubuc et al. (1999) indicate that NTR2 mediates
neurotensin-induced analgesia.

A third neurotensin receptor (NTR3) was
cloned from a human brain cDNA library
(Mazella et al. 1998; Vincent et al. 1999; Mazella
2001; Mazella and Vincent 2006). It is identical
with sortilin, a receptor-like protein, cloned from
human brain (Petersen et al. 1997, 1999). The
NT3/gp95/sortilin protein is a transmembrane
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neuropeptide receptor which does not belong to
the superfamily of G-protein-coupled receptors.

Gully et al. (1997) described a binding assay
for the neurotensin1 receptor.

Procedure

Cell Culture
CHO cells transfected with cDNA of the human
neurotensin receptor cloned from HT 29 cells
(h-NTR1-CHO cells) are cultured at 37 �C in
modified Eagle’s medium without nucleosides,
containing 10 % fetal calf serum, 4 mM gluta-
mine, and 300 μg /ml geneticin (G418), in a
humidified incubator under 5 % CO2 in O2. The
colonic adenocarcinoma HT 29 cell line (Ameri-
can Type Culture Collection, Rockville, MD) is
cultured under similar conditions in Dulbecco’s
modified Eagle’s medium/F-12 medium
supplemented with 10 % fetal calf serum, 4 mM
glutamine, 200 IU/ml penicillin, and 200 mg/ml
streptomycin. One week after seeding, confluent
monolayer cultures are washed three times with
3 ml PBS and harvested by enzymatic dissociation
with trypsin. After dilution with PBS, cells are
resuspended in the same culture medium at a den-
sity of 5 � 104 cells/ml and are plated into 35-mm
diameter, fibronectin-coated Petri culture dishes.

Membrane Homogenate Preparation
and Binding Assay
Whole brains of male Sprague Dawley rats albino
guinea pigs or cell pellets are homogenized in
10 volumes of ice-cold 50 mM Tris–HCl buffer
(pH7.4) for 30 s, using a polytron homogenizer
(setting 5). After 20 min. centrifugation at 30,000
g, the pellet is washed; centrifuged again under
the same conditions; resuspended in a storage
buffer containing 50 mM Tris–HCl (pH7.4),
1 mM EDTA, 0.1 % BSA, 40 mg/l bacitracin,
1 mM 1,10-orthophenanthroline, and 5 mM
dithiothreitol; and stored as aliquots in liquid
nitrogen until used.

Aliquots of membranes (10, 50, 300, and
500 μg of protein for h-NTR1-CHO cells, HT
29 cells, rat brain, and guinea pig brain, respec-
tively) are incubated for 20 min at 20 �C in the
incubation buffer (0.5 ml final volume) containing

appropriate concentrations of [125I-Tyr3]
neurotensin (25–100 pM) and unlabeled drugs.
After incubation, the assay medium is diluted
with 4 ml of ice-cold 50 mM Tris–HCl buffer
(pH 7.4) supplemented with 0.1 % BSA
and 1 mM EDTA, and the mixture is rapidly
filtered under reduced vacuum through Whatman
GF/B glass fiber filters that have been pretreated
with 0.1 % polyethyleneimine. The filters are
washed under the same conditions three times
and radioactivity is measured. Nonspecific bind-
ing is determined in the presence of 1 μM
unlabeled neurotensin. All experiments are
performed in triplicate, and data are expressed as
the mean � SEM of at least three separate
determinations.

Evaluation
The IC50 is the value of ligand that inhibits 50 %
of the specific binding and is determined using an
iterative nonlinear regression program (Munson
and Rodbard 1980).

Modifications of the Method
Cusack et al. (1995) studied species selectivity of
neurotensin analogs at the rat and two human
NTR1 receptors.

Lugrin et al. (1991) produced a series of
pseudopeptide analogs of neurotensin by system-
atically replacing peptide bonds in neurotensin
with CH2NH bonds. The compounds were
screened in vitro for agonist or antagonist activity
and for metabolic stability.

Le et al. (1997) cloned the human neurotensin
receptor gene and determined the structure.

Labbé-Jullié et al. (1998) attempted to identify
residues in the rat NTR1 that are involved in
binding of a nonpeptide neurotensin antagonist.

Souazé et al. (1997) and Najimi et al. (1998)
studied the effects of a neurotensin agonist and
showed in human colonic adenocarcinoma HT
29 cells after short incubation an increase, after
prolonged exposure a decrease of mRNA levels,
and in the human neuroblastoma cell line CHP
212 a high-affinity neurotensin receptor gene
activation.

Ovigne et al. (1998) described a monoclonal
antibody specific for the human NTR1.
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Nouel et al. (1999) found that both NT2 and
NT3 neurotensin receptor subtypes were
expressed by cortical glial cells in culture.

Cusack et al. (2000) developed a neurotensin
analog, NT34, which can distinguish between rat
and human neurotensin receptors and exhibits
more than a 100-fold difference in binding
affinities.

Neuromedin N, a peptide belonging to the
gastrin-releasing peptide/bombesin family
(see chapter “▶ Pharmacological Effects on
Gastric Function”), shows a high affinity to brain
neurotensin receptors and is rapidly inactivated by
brain synaptic peptidases (Checler et al. 1990).
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Genetically Altered Monoamine
Transporters

Monoamine transporters, such as the dopamine
transporter, 5-hydroxytryptamine transporter,
and noradrenaline transporter, in the plasma mem-
brane provide effective control over the intensity
of monoamine-mediated signaling by recapturing
neurotransmitters released by presynaptic neurons
(Gainetdinov et al. 2002). These transporters act
also as molecular gateways for neurotoxins (Uhl
and Kiayama 1993; Miller et al. 1999; Vincent
et al. 1999).

Takahashi et al. (1997) found that heterozygote
animals of VMAT2 knockout mice display
reduced amphetamine-conditioned reward,
enhanced amphetamine locomotion, and
enhanced MPTP toxicity.
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Dopamine Transporter Knockout Mice
Many drugs exert their psychotropic action via
dopamine transporters (Amara and Kuhar 1993;
Giros and Caron 1993).

Dopamine transporter knockout mice, which
are generated by disruption of the gene encoding
the dopamine transporter by homologous recom-
bination (Giros et al. 1996; Sora et al. 1998), have
a distinct biochemical and behavioral phenotype.
At the neurochemical level, the homoeostasis of
dopamine-containing neurons is altered markedly,
including disrupted clearance of dopamine, an
elevated extracellular concentration of dopamine,
and dramatically decreased intraneuronal storage
of dopamine (Jones et al. 1998; Gainetdinov
et al. 1998; Benoit-Marand et al. 2000).

In response to the elevated dopamine-mediated
tone, both presynaptic and postsynaptic dopamine
receptors are downregulated (Giros et al. 1996),
but although autoreceptor functions are lost
(Jones et al. 1999), some postsynaptic responses
appear to be enhanced (Gainetdinov et al. 1999a;
Fauchey et al. 2000).

Dopamine transporter knockout mice are
hyperactive (Gainetdinov et al. 1999b; Spielewoy
et al. 2000) and have a much reduced body size
(Bossé et al. 1997). These animals have cognitive
deficits (Gainetdinov et al. 1999a, b), disrupted
sensorimotor gating (Ralph et al. 2001), and sleep
dysregulation (Wisor et al. 2001). Dopamine
transporter knockout mice appear to provide a
model of some aspects of manic behavior
(Ralph-Williams et al. 2003).

Abnormalities in skeletal structure (Bliziotes
et al. 2000) and altered regulation of gastrointes-
tinal tract motility (Walker et al. 2000) are also
observed.
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Serotonin Transporter Knockout Mice
The serotonin transporter has a key role in regu-
lating the intensity of 5-HT-mediated transmis-
sion and is the primary target for several
antidepressants and psychostimulants (Amara
and Kuhar 1993; Bengel et al. 1996).

Disruption of 5-HT uptake in serotonin trans-
porter knockout mice increases the extracellular
concentration of 5-HT sixfold and reduces intra-
cellular concentration by 60 % – 80 % (Fabre
et al. 2000).

Holmes et al. (2003) found that mice lacking
the serotonin transporter exhibit 5-HT1A receptor-
mediated abnormalities in tests for anxiety-like
behavior.

Lira et al. (2003) reported altered depression-
related behaviors and functional changes in the
dorsal raphe nucleus of serotonin-transporter-
deficient mice.

Marked desensitization of both presynaptic
and postsynaptic 5-HT1A receptors is observed
in electrophysiological studies (Gobbi
et al. 2001).

There is a significant decrease in 5-HT1A

receptor binding sites, mRNA, and protein in
some, but not all, 5-HT-containing brain areas.
Altered hypothermic and neuroendocrine
responses to 8-hydroxy-2-(di-n-propylamino)-
tetralin (8-OH-DPAT) are also reported
(Li et al. 1999).

Thermal hyperalgesia in mice after chronic
constrictive sciatic nerve injury was absent in
serotonin transporter-deficient mice (Vogel
et al. 2003).

Decreases in 5-HT1A and 5-HT1B receptor cou-
pling are observed, accompanied by disruption of
the neurochemical responses to the 5-HT1A
receptor agonist ipsapirone and the 5-HT1A/5-
HT1D receptor agonist GR127935 (Fabre
et al. 2000).

The hyperlocomotor effect of MDMA, but not
that of high doses of d-amphetamine, is disrupted
in serotonin receptor knockout mice (Bengel
et al. 1996).

In double knockout mice that lack the dopa-
mine transporter and have no or one copy of the
gene that encodes the serotonin transporter, no
place preference for cocaine was observed (Sora
et al. 2001).

References and Further Reading
Amara SG, Kuhar MJ (1993) Neurotransmitter

transporters: recent progress. Annu Rev
Neurosci 16:73–93

1362 M.J. Kallman



Bengel D, Murphy DL, Andrews AM, Wichems
CH, Feltner D, Heils A, Mössner R,
Westphal H, Lesch KP (1996) Altered brain
homeostasis and locomotor insensitivity to
3,4-methylenedioxy methamphetamine
(“Ecstasy”) in serotonin transporter-deficient
mice. Mol Pharmacol 53:649–655

Fabre V, Beaufour C, Evrad A, Rioux A,
Hanoun N, Lesch KP, Murphy DL,
Lanfumey L, Hamon M, Martres MP (2000)
Altered expression and functions of serotonin
5-HT1A and 5-HT1B receptors in knock-out
mice lacking the 5-HT transporter. Eur J
Neurosci 12:2299–2310

Gobbi G, Murphy DL, Lesch K, Blier P (2001)
Modifications of the serotonergic system in
mice lacking serotonin transporters: an in vivo
electrophysiological study. J Pharmacol Exp
Ther 296:987–995

Holmes A, Yang RJ, Lesch KP, Crawley JN, Mur-
phy DL (2003) Mice lacking the serotonin
transporter exhibit 5-HT1A receptor-mediated
abnormalities in tests for anxiety-like
behavior. Neuropsychopharmacology 28:
2077–2088

Li Q,Wichems C, Heils A, Van De Kar LD, Lasch
KP, Murphy DL (1999) Reduction of
5-hydroxytryptamine (5-HT1A)-mediated tem-
perature and neuroendocrine responses and
5-HT1A binding sites in 5-HT transporter
knockout mice. J Pharmacol Exp Ther
291:999–1007

Lira A, Zhou M, Castanon N, Ansorge MS, Gor-
don JA, Francis JH, Bradley-Moore M, Lira J,
Underwood MD, Arango V, Kung HF, Hofer
MA, Hen R, Gingrich JA (2003) Altered
depression-related behaviors and functional
changes in the dorsal raphe nucleus of seroto-
nin transporter deficient mice. Biol Psychiatry
54:960–971

Sora I, Hall FS, Andrews AM, Itokawa M,
Li XF, Wei HB, Wichems C, Lesch KP,
Murphy DL, Uhl GR (2001) Molecular
mechanisms of cocaine award: combined
dopamine and serotonin transporter
knockouts eliminate cocaine place prefer-
ence. Proc Natl Acad Sci U S A 98:
5300–5305

Vogel C, Mössner R, Gerlach H, Heinemann T,
Murphy DL, Riederer P, Lesch KP, Sommer C
(2003) Absence of thermal hyperalgesia
in serotonin transporter-deficient mice. J
Neurosci 23:708–715

Noradrenaline Transporter
Knockout Mice
The noradrenaline transporter has a role similar to
that of the dopamine transporter and the serotonin
transporter with respect to noradrenaline-
mediated transmission (Blakely et al. 1994).

Noradrenaline-transporter knockout mice have
been generated using homologous recombination
(Xu et al. 2000).

Wang et al. (1999) reviewed genetic
approaches to studying norepinephrine function
using knockout of the mouse norepinephrine
transporter gene.

The prolonged synaptic lifetime of noradrena-
line in noradrenaline transporter knockout mice
results in elevation of the extracellular concentra-
tion of noradrenaline and depletion of the
intraneuronal stores. In addition, in noradrenaline
transporter knockout mice, the α1-adrenoceptor
decreased in the hippocampus (Xu et al. 2000),
although α2A-adrenoceptor density did not change
in the spinal cord (Bohn et al. 2000).

Noradrenaline-transporter knockout mice have
a lower body weight and reduced locomotor
responses to novelty. In the tail-suspension test
used for screening antidepressant drugs, noradren-
aline transporter knockout mice behaved like
antidepressant-treated, wild-type animals, and no
additional effects of the antidepressants desipra-
mine, paroxetine, and bupropion were observed in
mutant mice in this test (Xu et al. 2000).

In the tail-flick assay, morphine induced
greater analgesia in noradrenaline transporter
knockout mice compared with wild-type mice
(Bohn et al. 2000).

In synaptosomes from the frontal cortex of
noradrenaline transporter knockout mice, cocaine
and nisoxetine had no inhibitory effect on the
uptake of dopamine, whereas in the nucleus
accumbens, the effectiveness of cocaine was
somewhat reduced. Uptake of dopamine in brain
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regions that have low levels of dopamine trans-
porter may depend primarily on the noradrenaline
transporter (Morón et al. 2002).

Locomotor responses to cocaine and amphet-
amine are elevated in noradrenaline knockout
mice, and chronic administration of cocaine did
not induce further sensitization. The enhanced
responses to psychostimulants in noradrenaline
transporter knockout mice correlate with the sup-
pression of presynaptic dopamine function and
supersensitivity to postsynaptic D2 and D3 recep-
tors (Xu et al. 2000).

Haller et al. (2002) studied behavioral
responses to social stress in noradrenaline trans-
porter knockout mice.
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In Vivo Tests

Golden Hamster Test

Purpose and Rationale
“Innate behavior” of many species including man
has been described by Lorenz (1943, 1966). The
“golden hamster test” (Ther et al. 1959) uses the
innate behavior of this species (Mesocricetus
auratus) for differentiation between neuroleptic
and sedative – hypnotic activity. The aggressive
behavior of male golden hamsters is suppressed
by neuroleptics in doses which do not impair
motor function.

Procedure
Ten to 20 male golden hamsters with an average
weight of 60 g are crowded together in
Makrolon(R) cages for at least 2 weeks. During
this time, the animals develop a characteristic
fighting behavior. For the test, single animals are
placed into glass jars of 2 l. In this situation, the
hamsters assume a squatting and resting position
during the day. If the animals are touched with a
stick or a forceps, they wake up from their day-
time sleep and arouse immediately from the rest-
ing position. If one tries to hold the hamster with a
blunted forceps, a characteristic behavior is
elicited: The hamster throws himself onto his
back, tries to bite and to push the forceps away
with his legs, and utters angry shrieks. Touching
the animals is repeated up to six times followed by
punching with the forceps. Only animals
responding to the stimulus with all three defense
reactions (turning, vocalizing, and biting) are
included into the test.

The test compounds are applied either subcu-
taneously, intraperitoneally, or orally. Six animals
are used for each dose.

Evaluation
The stimuli are applied every 20 min for 3 h. The
number of stimuli until response is recorded. Fur-
thermore, the suppression of the defense reactions
(turning, biting, and vocalizing) is evaluated. An
animal is regarded to be completely “tamed” if all
defense reactions are suppressed even after
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punching with the forceps at least once during the
test period.

After each stimulation, the “tamed” animal is
placed on an inclined board with 20� inclination.
Normal hamsters and hamsters tamed by neuro-
leptics are able to support themselves or to climb
on the board. Impaired motor function causes
sliding down. This experiment is repeated three
times after each testing of the defense reactions.
An animal’s coordination is considered to be dis-
turbed if it falls three times during two tests of the
experiments.

For each dose, the number of tamed hamsters
and the number of animals with impaired motor
function are recorded. Using different doses, ED50

values can be calculated for the taming effect and
for impairment of motor function.

The ED50 values of taming were 1.5 mg/kg for
chlorpromazine s.c. and 0.2 mg/kg for reserpine
s.c. Much higher doses (ten times of chlorproma-
zine and five times of reserpine) did not elicit
motor disturbances. On the contrary, while ED50

values of 10 mg/kg phenobarbital s.c. and
180 mg/kg meprobamate p.o. for the taming effect
were found, these doses already caused severe
motor disturbances. The taming dose of diazepam
was 10 mg/kg p.o. which already showed some
muscle-relaxing activity. The term “neuroleptic
width” indicates the ratio between the ED50 for
taming and the ED50 for motor disturbances. Only
for neuroleptic drugs are ratios found between 1:5
and 1:30.

Critical Assessment of the Method
The method has the advantage that neuroleptics
can easily be differentiated from sedative and
hypnotic drugs. Anxiolytics with pronounced
muscle-relaxing activity also show no significant
differences between taming and impaired motor
function. Moreover, the method has the advantage
that no training of the animals and no expensive
apparatus are needed.
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Influence on Behavior of the Cotton Rat

Purpose and Rationale
The “cotton-rat test” is another attempt to use the
innate behavior as described for several animal
species by Lorenz (1943, 1966) for the differenti-
ation of psychotropic drugs (Vogel and
Ther 1960). The cotton rat (Sigmodon hispidus)
is a very shy animal which conceals himself at
any time. This innate flight reflex is suppressed by
centrally active drugs. Simultaneous evaluation of
motor function allows the differentiation between
neuroleptic and sedative drugs.

Procedure
Cotton rats are bred in cages equipped with a clay
cylinder of 20 cm length and 10 cm diameter. This
cylinder is used by the animals for hiding,
sleeping, and breeding. Moreover, the animals
which bite easily can be transported from one
cage to another just by closing the cylinder on
both ends. For the test, young animals with a
body weight of 40 g are used. Young animals are
as shy as the old ones but less vicious. Neverthe-
less, leather gloves have to be used for handling of
cotton rats. Normal cages (25 � 30 � 20 cm)
with a wire lid are used. A tunnel of sheet metal
(half of a cylinder) 20 cm long and 7 cm high is
placed into the cage. The cotton rats hide imme-
diately in this tunnel. If the tunnel is lifted and
placed on another site of the cage, the cotton rats
immediately hide again.
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Three rats are placed in one cage and tested for
their behavior. Selective shaving of the fur enables
the observer to recognize each animal. If the rats
behave as described, they are then treated with the
test compound subcutaneously or orally. At least
six animals divided in two cages are used for each
dose of test compound or standard. Fifteen min
after application of the drug, the test period of
three h is started. The tunnel is lifted and placed
to another site. If the animals do not show the
immediate flight reflex, an airstream of short dura-
tion is blown through the wire lid. If the animal
still does not respond with the flight reflex, it is
considered to be positively influenced. After-
wards, the animal is placed on an inclined board
with 35� of inclination and tested for disturbance
of motor coordination. A normal animal is able to
climb upwards. If coordination is disturbed, the
rat slides down.

Evaluation
The test procedure is repeated every 15 min over a
period of 3 h. The animals which show at least one
suppression of the flight reflex during the test period
are counted as well as those who slide down on the
inclined board. Using different doses, ED50 values
are calculated for both parameters. The ratio
between these two ED50 values is regarded as “neu-
roleptic width” which is 1:20 for chlorpromazine
and 1:30 for reserpine, whereas ratios of 1:2 for
phenobarbital and 1:1.5 for meprobamate indicate
the absence of neuroleptic activity.

Critical Assessment of the Method
The method allows the differentiation of drugs
with neuroleptic activity against other centrally
active drugs. No training of the animals and no
expensive equipment are necessary.
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Artificial Hibernation in Rats

Purpose and Rationale
Giaja (1938, 1940, 1953, 1954) studied the effects
of reduced oxygen tension and cold environment
on rats. The animals were placed in hermetically
closed glass vessels which were submerged in ice
water. Due to the respiratory activity, the oxygen
tension diminishes and the carbon dioxide content
increases. Under the influence of cooling and of
hypoxic hypercapnia, the rectal temperature
falls to 15 �C, and the animal is completely anes-
thetized and immobilized. The rat can survive in
this poikilothermic state for more than
20 h. Complete recovery occurs after warming
up. This kind of artificial hibernation was aug-
mented by chlorpromazine (Courvoisier
et al. 1953; Giaja and Markovic-Giaja 1954).
Vogel (1959) and Ther et al. (1959, 1963) used
these observations for evaluation of neuroleptics
and opioid analgesics.

Procedure
Male Wistar rats weighing 100–150 g are
deprived of food with free access to tap water
overnight. The test compounds are injected sub-
cutaneously 15 min prior to the start of the exper-
iment. First, the rats are placed in ice-cold water to
which surfactant is added in order to remove the
air from the fur for 2 min. Then, the animals are
placed into hermetically closed glass vessels of
750 ml volume which are placed into a refrigera-
tor at 2 �C temperature. During the following
hour, the vessels are opened every 10 min for
exactly 10 s, allowing some exchange of air and
reducing the carbon dioxide accumulation. At
each time, animals are removed from the glass
vessel and observed for signs of artificial hiberna-
tion which are not shown by control animals
under these conditions. Treated animals, lying on
the side, are placed on the back and further exam-
ined. An animal is considered positive, when it
remains on the back, even if the extremities are
stretched out. In this state, cardiac and respiration
frequency are reduced, and the rectal temperature
has fallen to 12–15 �C. The rigor of the muscula-
ture allows only slow movements of the extremi-
ties. The animals recover completely within a few
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hours if they are brought to their home cages at
room temperature. Artificial hibernation is
induced dose-dependent by neuroleptics of the
phenothiazine type and by some opioid analgesics
like meperidine and methadone. In contrast, mor-
phine shows only slight activity.

Evaluation
Various doses are applied to groups of ten ani-
mals. Percentage of positive animals is calculated
for each group, and ED50 values with confidence
limits are estimated according to Litchfield and
Wilcoxon.
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Catalepsy in Rodents

Purpose and Rationale
Catalepsy in rats is defined as a failure to correct
an externally imposed, unusual posture over a
prolonged period of time. Neuroleptics which
have an inhibitory action on the nigrostriatal
dopamine system induce catalepsy (Costall and
Naylor 1974; Chermat and Simon 1975; Sandberg
et al. 1986), while neuroleptics with little or no
nigrostriatal blockade produce relatively little or
no cataleptic behavior (Honma and Fukushima
1976). Furthermore, cataleptic symptoms in
rodents have been compared to the Parkinson-
like extrapyramidal side effects seen clinically
with administration of antipsychotic drugs
(Duvoisin 1976).

Procedure
Groups of six male Sprague Dawley or Wistar rats
with a body weight between 120 and 250 g are
used. They are dosed intraperitoneally with the
test drug or the standard. Then, they are placed
individually into translucent plastic boxes with a
wooden dowel mounted horizontally 10 cm from
the floor and 4 cm from one end of the box. The
floor of the box is covered with approximately
2 cm of bedding material. White noise is
presented during the test. The animals are
allowed to adapt to the box for 2 min. Then,
each animal is grasped gently around the shoul-
ders and under the forepaws and placed carefully
on the dowel. The amount of time spent with at
least one forepaw on the bar is determined. When
the animal removes its paws, the time is recorded,
and the rat is repositioned on the bar. Three trials
are conducted for each animal at 30, 60, 120, and
360 min.

Evaluation
An animal is considered to be cataleptic if it
remains on the bar for 60 s. Percentage of catalep-
tic animals is calculated. For dose–response
curves, the test is repeated with various doses
and more animals. ED50 values can be calculated.
A dose of 1 mg/kg i.p. of haloperidol was found to
be effective.
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Critical Assessment of the Method
The phenomenon of catalepsy can be used for
measuring the efficacy and the potential side
effects of neuroleptics.

Modifications of the Method
Catalepsy induced by neuroleptic drugs can also
be measured by the PAW test, which measures
increase in forelimb and hindlimb retraction time
in rats (Ellenbroek et al. 1987, 2001; Ellenbroek
and Cools 1988, 2000; Prinssen et al. 1994, 1995).

The test is performed 30 min after intraperito-
neal injection of test drug. Male Wistar rats
weighing 220–300 g are placed on a Perspex
platform (30 � 30 cm with a height of 20 cm)
containing two holes for the forelimbs (40 mm)
and two for the hindlimbs (50 mm), and a slit for
the tail. The distance between the right and left
forelimb holes is 15 mm, and the distance between
forelimb and hindlimb holes is 55 mm. The rat is
held behind the forelimbs, and the hindlimbs are
gently placed in the holes. The forelimb retraction
time and the hindlimb retraction time are defined
as the time the animal needs to withdraw one
forelimb and one hindlimb, respectively. The
average forelimb retraction time and hindlimb
retraction time (the mean of three measurements)
is calculated for each rat.

Extrapyramidal syndromes after treatment
with typical and atypical neuroleptics were mea-
sured in nonhuman primates (Cebus monkeys) by
Casey (1989, 1991, 1993) and Gerlach and Casey
(1990).
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Pole Climb Avoidance in Rats

Purpose and Rationale
The pole-climb avoidance paradigm is an avoid-
ance escape procedure used to separate neurolep-
tics from sedatives and anxiolytics. Whereas
sedative compounds suppress both avoidance
and escape responding at approximately the
same doses, neuroleptic drugs reduce avoidance
responding at lower doses than those affecting
escape responding (Cook and Catania 1964).

Procedure
Male rats of the Long-Evans strain with a starting
body weight of 250 g are used. The training and
testing of the rats is conducted in a
25 � 25 � 40 cm chamber that is enclosed in a
dimly lit, sound-attenuating box. Scrambled
shock is delivered to the grid floor of the chamber.
A 2.8-kHz speaker and a 28-V light are situated on
top of the chamber. A smooth stainless-steel pole,
2.5 cm in diameter, is suspended by a counterbal-
ance weight through a hole in the upper center of
the chamber. A microswitch is activated when the
pole is pulled down 3mm by a weight greater than

200 g. A response is recorded when a rat jumps on
the pole and activates the microswitch. The rat
cannot hold the pole down while standing on the
grid floor because of the counterbalance tension
and cannot remain on the pole any length of time
because of its smooth surface. The activation of
the light and the speaker together is used as the
conditioning stimulus. The conditioning stimulus
is presented alone for 4 s and then is coincident
with the unconditioned stimulus, a scrambled
shock delivered to the grid floor, for 26 s. The
shock current is maintained at 1.5 mA. A pole
climb response during the conditioned stimulus
period terminates the conditioned stimulus and
the subsequent conditioned and unconditioned
stimuli. This is considered an avoidance response.
A response during the time when both the condi-
tioned and unconditioned stimuli are present ter-
minates both stimuli and is considered an escape
response. Test sessions consist of 25 trials or
60 min, whichever comes first. There is a mini-
mum intertrial interval of 90 s. Any time
remaining in the 30 s allotted to make the pole
climb is added to the 90 s intertrial interval.
Responses during this time have no scheduled
consequences; however, rats having greater than
ten intertrial interval responses should not be used
in the experiment. Before testing experimental
compounds, rats are required to make at least
80 % avoidance responses without any escape
failures.

Evaluation
Data are expressed in terms of the number of
avoidance and escape failures relative to the
respective vehicle control data. ED50 values can
be calculated using different doses.
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Footshock-Induced Aggression

Purpose and Rationale
The test as described by Tedeschi et al. (1959)
using mice which fight after footshock-induced
stimulation is useful to detect neuroleptics but
also shows positive effects with anxiolytics and
other centrally effective drugs. The method has
been used by several authors to test drugs
with neuroleptic activity. The test is described in
chapter “Tests for Anxiolytic Activity”.
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Brain Self-Stimulation

Purpose and Rationale
In several species, electrical stimulation of
selected brain loci produces effects which are
positively reinforcing and pleasurable (Olds and
Milner 1954; Olds 1961, 1972). Most of the data
available have been obtained from experiments

using rats with electrodes chronically implanted
in the median forebrain bundle at the level of
hypothalamus. Minute electrical pulses sustain a
variety of operant behaviors such as lever press-
ing. Neuroleptics have been shown to be potent
blockers of self-stimulation (Broekkamp and Van
Rossum 1975; Koob et al. 1978; Gallistel and
Freyd 1987). Conversely, compounds that facili-
tate catecholaminergic transmission such as
d-amphetamine and methylphenidate will
increase responding for such stimulation.

Procedure
Male Wistar rats (350–400 g) are anesthetized
with 50 mg/kg pentobarbital i.p. and their heads
placed on a level plane in a Kopf stereotactic
instrument. A midline incision is made in the
scalp and the skin held out of the way by muscle
retractors. A small hole is drilled in the scull with a
dental burr at the point indicated by the stereotac-
tic instrument for the structure it is desired to
stimulate. Using bregma as a reference point, the
electrode (Plastic Products MS303/1) is aimed at
the medium forebrain bundle according to the
atlas of Paxinos and Watson (1986), using the
coordinates of AP = �0.8 mm, Lat = +2.8 mm,
and DV = �7.2 mm below dura. The assembly is
then permanently affixed to the scull using
stainless-steel screws and bone cement.

After a minimum of 10 days for recovery, the
animals are trained to bar press for electrical stim-
ulation on a continuous reinforcement schedule in
a standard operant box outfitted with a single
lever. The reward stimulus is a train of biphasic
square-wave pulses generated by a Haer stimula-
tor (Pulsar 4i). The parameters are set at a pulse
duration of 0.5 ms with 2.5 ms between each pulse
pair. The train of pulses may vary between 16 and
30/s, and the intensity of the pulses that are deliv-
ered range from 0.1 to 0.5 mA using the lowest
setting that will sustain maximal responding.
After consistent baseline responding is obtained
for five consecutive 30-min session, the animals
are ready for testing with standard agents. Com-
pounds are administered 60 min. prior to testing.
All data are collected on both cumulative
recorders and counters.
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Evaluation
The number of drug responses is compared to the
number of responses made during each animal’s
30-min control session on the preceding day,
which is considered to be equal to 100 %. Testing
various doses, ED50 values with 95 % confidence
limits can be calculated.

Critical Assessment of the Method
Since there is sufficient evidence that self-
stimulation behavior is maintained by catechol-
amines, the method gives indirectly insight into
the catecholaminergic facilitating or blocking
properties of a compound. Active neuroleptic
drugs inhibit the self-stimulation behavior in
very small doses. The relative potency observed
in this test of clinically efficacious drugs parallels
their potency in the treatment of schizophrenia.

Modifications of the Method
Reinforcing brain stimulation by electrodes placed
in the medial forebrain bundle of rats is decreased
after lesion of the internal capsule in the region of
the diencephalic–telencephalic border. This decre-
ment in rewarding processing can be reversed by
antidepressant drugs (Cornfeldt et al. 1982).

Depoortere et al. (1996) used electrical self-
stimulation of the ventral tegmental area to study
the behavioral effects of a putative dopamine D3

agonist in the rat.
Anderson et al. (1995) examined the interac-

tion of aversive and rewarding stimuli in self-
stimulating rats in terms of duration and direction.
The rats were implanted with two moveable elec-
trodes, one in a region supporting self-stimulation
(the ventral tegmental area) and another in a
region supporting escape (the nucleus reticularis
gigantocellularis).

Kokkinidis et al. (1986) used amphetamine
withdrawal for a behavioral evaluation. Mice
implanted with stimulating electrodes in the lat-
eral hypothalamus demonstrated stable and reli-
able rates of self-stimulation responding. After
exposure to a chronic schedule of amphetamine
treatment, response rates were severely depressed.

Post-amphetamine depression of self-
stimulation from the substantia nigra can be

reversed by cyclic antidepressants (Kokkinidis
et al. 1980).

Moreau et al. (1992) reported that antidepres-
sant treatment prevents chronic unpredictable
mild stress-induced anhedonia as assessed by ven-
tral tegmentum self-stimulation in rats.
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Prepulse Inhibition of Startle Response

Purpose and Rationale
Prepulse inhibition is a model of sensorimotor
gating which can be assessed in both animals
and humans using the startle reflex response.
When a fixed startle-eliciting stimulus (i.e., the
pulse) is preceded by 30–500 ms by a weak,
non-startle-eliciting stimulus (i.e., the prepulse),
the magnitude of the startle response is signifi-
cantly reduced to the pulse alone. Schizophrenic
patients have decreased prepulse inhibition rela-
tive to normal control subjects, and this is thought
to reflect an impairment in their ability to filter
irrelevant sensory stimuli (Braff and Geyer 1990;
Geyer 1998). Similar reductions in prepulse inhi-
bition are produced in rats by administration of
psychotomimetic drugs such as the dopamine
agonists amphetamine and apomorphine or the
noncompetitive NMDA antagonists phencycli-
dine and dizocilpine (MK801) (Mansbach and
Geyer 1989; Swerdlow et al. 1998; Geyer
et al. 2001; Rowley et al. 2001; Weiss and Feldon
2001; Pouzet et al. 2002). Most antipsychotics
tested are able to antagonize prepulse inhibition
disruption produced by dopamine antagonists,
whereas prepulse inhibition disruption by
NMDA antagonists may be selectively sensitive
to antipsychotics with atypical features (Bakshi
and Geyer 1995; Bubenikova et al. 2005; Fox
et al. 2005). Haloperidol failed to block the effects
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of phencyclidine and dizocilpine prepulse inhibi-
tion of startle (Keith et al. 1991).

Feifel et al. (Feifel and Reza 1999;
Feifel et al. 1999a, b) tested the effects of a
neurotensin agonist on prepulse inhibition of star-
tle in rats.

Procedure
Male Sprague Dawley rats were treated with var-
ious doses of test compound or saline
s.c. Immediately afterwards, rats receive a second
s.c. injection consisting of 2 mg/kg
d-amphetamine, or 0.5 mg/kg apomorphine, or
0.1 mg/kg dizocilpine or saline. Then, 10 min
later, animals were placed in special startle cham-
bers (SR-LAB, San Diego Instruments, San
Diego, Calif., USA). Startle chambers consist of
a Plexiglas cylinder 8.2 cm in diameter, resting on
a 12.5 � 25.5 cm Plexiglas frame within a venti-
lated enclosure housed in a sound-attenuated
room exposed to 70-dB background noise. After
a 5-min acclimation period, acoustic stimuli were
presented via a speaker mounted 24 cm above the
animal. Acoustic stimuli consisted of a 120-dB
pulse by itself (pulse alone) or a 120-dB pulse
preceded by 100 ms by prepulses 3, 5, and
10 dB above background noise. There was an
average of 15 s between stimuli. A piezoelectric
accelerometer mounted below the Plexiglas
frame detected and transduced the motion
within the cylinder. Startle amplitude was defined
as the degree of motion detected by this acceler-
ometer. Each rat was tested on four separate occa-
sions separated by 7 non-test days. On each test
day, the dose of test compound was kept constant,
but the specific psychotomimetic agent was alter-
nated across test days in a counterbalanced
fashion.

Evaluation
Prepulse inhibition was calculated as the percent-
age of the pulse-alone startle amplitude using the
following formula: [1 (startle amplitude after
prepulse–pulse pair/startle amplitude after pulse
only)] � 100. Analysis of data was then carried
out using a three-factor repeated-measures analy-
sis of variance (ANOVA). Significant factor
results from the ANOVA were followed up with

separate one-way ANOVAs for each psychotomi-
metic agent and then, when indicated, with indi-
vidual group mean comparisons using post hoc t-
tests for multiple comparisons using the
Bonferroni method.

Modifications of the Method
Sipes and Geyer (1995) studied the disruption of
prepulse inhibition of the startle response in the
rat by DOI [(2,5-dimethoxy-4-iodophenyl)-2-
aminopropane hydrochloride], which is mediated
by 5-HT2A receptors. The authors suggested that
studies of the serotonergic substrates of prepulse
inhibition may provide a model of the possible
serotonergic role in the sensorimotor gating
abnormalities in patients with schizophrenia and
with obsessive-compulsive disorder.

Ellenbroeck et al. (1998) described the effects
of an early stressful life event on sensorimotor
gating in adult rats.

Andersen and Pouzet (2001) compared the
effects of acute versus chronic treatment with
typical or atypical antipsychotics on d-
amphetamine-induced sensorimotor gating defi-
cits in rats.

Heidbreder et al. (2000) used the prepulse inhi-
bition of acoustic startle for behavioral, neuro-
chemical, and endocrinological characterization
of the early social isolation syndrome.

Krebs-Thomson et al. (2001) reported that
postweanling handling attenuates isolation-
rearing disruption of prepulse inhibition in rats.

Weiss et al. (2001) studied the dissociation
between the effects of preweaning and/or
postweaning social isolation on prepulse inhibi-
tion and latent inhibition in adult Sprague
Dawley rats.

Dirks et al. (2003) reported reversal of startle
gating deficits in transgenic mice overexpressing
corticotropin-releasing factor by antipsychotic
drugs.

Andreasen et al. (2006) studied the effect of
nicotinic agents on prepulse inhibition (PPI) in
mice using a startle response/PPI system from
TSE Systems, Bad Homburg, Germany.

Lind et al. (2004) described prepulse inhibition
of the acoustic startle reflex in pigs and its disrup-
tion by d-amphetamine.
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N40 Sensory Gating

Purpose and Rationale
The N40 auditory-evoked potential has been
used to develop an animal model for the study
of sensory gating mechanisms (Boutros
et al. 1997a; Boutros and Kwan 1998). The
method has been applied to evaluation of psy-
chotropic compounds (Adler et al. 1986;
Boutros et al. 1994, 1997b). Bickford-Wimer
et al. (1990) localized one possible source of
the N40 waveform to the CA3 region of the
hippocampus.

Fox et al. (2005) used the N40 sensory gating
model in mice for evaluation of a potential
antipsychotic drug.

Procedure
Male DBA/2 mice were stereotaxically implanted
with tripolar stainless-steel wire head stages for
EEG recordings in the CA3 region of the hippo-
campus. The mice were first anesthetized with a
solution of 2.8 % ketamine, 0.28 % xylazine, and
0.05 % acepromazine. Three access holes for the
electrodes were made at AP �1.8 mm from the
bregma, and in a plane perpendicular to the suture,
ML 0.6 (cortical electrode), 1.6 (reference elec-
trode), and 2.6 mm electrode directed at the hip-
pocampus). The depth of the hippocampal
electrode tip was DV 1.65–1.70 mm below the
surface of the cortex. The depths of the cortical
and reference electrodes were DV 0.5 mm from
the surface of the skull, resulting in contact, but
not penetration, of the cortical tissue. The tripolar
electrode was lowered into position with a stereo-
taxic electrode holder and affixed using
cyanoacrylic gel and dental acrylic and two
anchor screws. Mice were allowed to recover for
3 days before commencement of the experiments.
Awake mice were recorded in acoustically iso-
lated chambers. Flexible tethers and electrical
swivels were used to convey EEG signals to dif-
ferential AC EEG amplifiers and allowed the mice
free movement within the chambers. The EEG
was amplified 1000 � with a 50- to 60-Hz notch
filter engaged, and high- and low-pass filters were
set at 1 and 100 Hz, respectively. Hippocampal
auditory-evoked potentials were generated by pre-
sentation of 60 sets of 3 kHz-paired tone bursts
from a speaker within the recording chamber at a
distance of 15–20 cm to the mouse. The first tone
of the pair is referred to as the conditioning stim-
ulus, and the second is referred to as the test
stimulus. The duration of both the condition and
test stimuli was 5 ms, with 0.5 s between the
stimuli and 20 s between pairs. Data acquisition
software recorded EEG signals 100 ms before and
for 899 ms after the initial conditioning stimulus.
The software averaged the 60-paired responses
into one composite-evoked response. Various
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doses of test drug were administered
i.p. 20–30 min before mice were placed into the
recording chambers and initiation of auditory-
evoked potential recording. Recording of paired
auditory potentials continued for two 20-min ses-
sions, each comprised of 60 paired stimuli. Each
mouse was administered every treatment dose and
a control vehicle treatment in a balanced order on
separate days with at least 48 h between treat-
ments. This within-subject design allowed each
mouse to serve as its own control. The hippocam-
pal response to auditory stimuli was identified as
the highest positive peak deflection in the ongoing
EEG at a latency of 10–20 ms after the stimulus
(P20), followed by the lowest negative peak
deflection in the ongoing EEG at 20–45 ms after
the stimulus (N40). The difference in amplitude
between P20 and N40 was defined as the N40
amplitude in microvolts.

Evaluation
N40 amplitudes were determined for both the
averaged conditioning and test-evoked potentials,
and a ratio was derived between the two responses
by dividing the test amplitude by the conditioning
amplitude (T/C ratio).

Modifications of the Method
Flack et al. (1996) studied sensory gating in a
computer model of the CA3 neural network of
the hippocampus.

Stevens et al. (1998) investigated changes in
auditory information processing after kainic acid
lesions in adult rats used as a model of
schizophrenia.
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Latent Inhibition

Purpose and Rationale
Latent inhibition has been recommended as an
animal model of schizophrenia (Feldon and
Weiner 1992; Swerdlow et al. 1996; Vaitl and
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Lipp 1997; Moser et al. 2000; Bender et al. 2001).
Latent inhibition refers to the retarded acquisition
of a conditioned response that occurs if the subject
being tested is first preexposed to the to-be-con-
ditioned stimulus without the paired uncondi-
tioned stimulus. Because the “irrelevance” of the
to-be-conditioned stimulus is established during
non-contingent preexposure, the slowed acquisi-
tion of the conditioned stimulus-unconditioned
stimulus association is thought to reflect the pro-
cess of overcoming this learned irrelevance.
Latent inhibition has been reported to be dimin-
ished in acutely hospitalized schizophrenia
patients. Several authors used the latent inhibition
model in rats to test psychotropic compounds
(Solomon et al. 1981; Feldon and Weiner 1991;
Moran and Moser 1992; De la Casa et al. 1993;
Lacroix et al. 2000; Alves et al. 2002). Trimble
et al. (2002) tested the effects of selective D1
antagonists on latent inhibition in the rat.

Procedure

Animals
Male Sprague Dawley rats weighing 300–400 g
were housed two to a cage under a 12-h reversed
cycle lighting with food and water ad libitum. All
experimental manipulations were carried out in
the dark phase of the dark/light cycle.

Apparatus
Modified metal Skinner boxes (24.5 � 24.5 �
21 cm measured from a raised grid floor) were
located in darkened, sound-insulated, ventilated
outer boxes. A removable water bottle was located
on one side of each Skinner box through a hole of
1.0 cm diameter, positioned 2 cm above the grid
floor. When water was not required, the water
bottle was removed. Licks at the spout of each
water bottle were recorded using a lickometer
(model 453, Campden Instruments, London,
UK). The preexposed stimulus was a flashing
light (10 s duration with three light flashes per
second) situated in the middle of the roof of each
Skinner box. The grid floor consisted of steel bars
(0.5 cm in diameter) spaced 1 cm apart. Shock
generators with scramblers were calibrated to pro-
duce 0.5-mA shocks via the grid floor.

Procedure
Rats were randomly assigned to experimental
groups and were allocated to a particular Skinner
box. They had experience of only that box for
the duration of the experiment. After adaptation
to the housing conditions for 1 week, rats
were placed immediately on a 23-h water
deprivation schedule that continued until the end
of the experiments. Food remained freely available.

Baseline Days (Days 15–19)
After 7 days on the water deprivation period,
5 days of pretraining commenced. Each rat was
placed in a Skinner box for 15 min. The water
bottle was present and each rat could drink freely.
After the baseline session was over, each rat was
returned to its home cage and allowed access to
water for 45 min.

Preexposure (Day 20)
With the water bottle removed, each rat was
placed in a Skinner box. Rats received ten stimu-
lus (flashing house-light) presentations of 10 s
duration (three light flashes per second) with a
fixed stimulus interval of 50 s. Afterwards the
rats were returned to their home cages and
allowed access to water for 1 h.

Conditioning (Day 21)
With the water bottle removed, each rat was
placed in a Skinner box. Then, 5 min later, each
rat received the first of two light footshock
pairings. House-light parameters were identical
to those of the preexposure period. The house-
light was immediately followed by the footshock
(0.5 mA, 1 s). The second light-shock pairing was
given 5 min later. After the conditioning period
had terminated, animals were returned to their
home cages and allowed access to water for 1 h.

Re-baseline Day (Day 22)
With the water bottle present, each rat was placed
in a Skinner box and allowed to drink as in the
baseline sessions.

Test Day (Day 23)
With thewater bottle present, each rat was placed in
a Skinner box and allowed to drink. When each rat

Neuroleptic Activity 1377



completed 75 licks, the flashing house-light was
presented and continued until 5 min had elapsed
from stimulus onset. Time bins of 30-s duration
commenced from the time of stimulus presentation,
and the number of licks made by each rat within
every time bin was recorded. This measure allowed
the pattern of drinking over the course of stimulus
presentation to be shown. The amount of suppres-
sion of licking for each rat was assessed using a
suppression ratio calculated from the time
(in seconds) to complete licks 51–75
(pre-stimulus) divided by the time (in seconds) to
complete licks 51–100 (pre-stimulus + stimulus
on). A suppression ratio of 0.01 indicates total
suppression of licking (no latent inhibition), while
a ratio of 0.5 indicates no change in licking rate
from the pre-stimulus period to the stimulus-on
period (latent inhibition).

DRUG Treatment
Test drugs or vehicle was administered by subcu-
taneous injection in various doses 30 min prior to
preexposure and conditioning.

Evaluation
Times to complete licks and the suppression ratios
were analyzed independently using a 2 � 6
ANOVA with main factors of preexposure and
drugs.

Modifications of the Method
Lehmann et al. (1998) studied the long-term
effects of repeated maternal separation on three
different latent inhibition paradigms.

Pouzet et al. (2004) reported that latent inhibi-
tion is spared by NMDA-induced ventral hippo-
campal lesions, but is attenuated following local
activation of the ventral hippocampus by intrace-
rebral NMDA infusion.

Bethus et al. (2005) examined the effects of
prenatal stress and gender in latent inhibition.
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Tests Based on the Mechanism
of Action

Amphetamine Group Toxicity

Purpose and Rationale
It is well known that aggregation of mice in small
cages greatly enhances the toxicity of amphetamine.
The death rate can be reduced by pretreatment with
neuroleptics. This phenomenon is generally
accepted as an indicator of neuroleptic activity.
The increased toxicity results from increased behav-
ioral activation due to aggregation inducing an
increase of circulating catecholamines. The mecha-
nism can be understood by the fact that amphet-
amine is an indirectly acting sympathomimetic
amine that exerts its effects primarily by releasing
norepinephrine from storage sites in the sympa-
thetic nerves. After administration of high doses of
amphetamine, mice exhibit an elevatedmotor activ-
ity which is highly increased by aggregation. This
increased behavioral activation is followed by death
within 24 h in 80–100 % of control animals. Neu-
roleptics reduce this death rate. In contrast,
non-neuroleptic sympatholytics and psychosedative
agents like the barbiturates do not produce a dose-
related protection. Moreover, anxiolytic agents like
benzodiazepines are also found to be ineffective in
the prevention of amphetamine group toxicity.

Procedure
Ten male mice of the NMRI-strain are used for
each group. They are dosed with the test com-
pound or the standard either orally or intraperito-
neally and all placed in glass jars of 18 cm
diameter. Untreated animals serve as controls.
The test has to be performed at room temperature
of 24 �C. Thirty min after i.p. or 1 h after oral
administration, the mice receive 20 mg/kg
d-amphetamine subcutaneously. The mortality is
assessed 1, 4, and 24 h after dosing.

Evaluation
Themortality of amphetamine-only treated animals
is at least 80 %. If less than 80 % die due to low
ambient temperature, the test has to be repeated.
The estimation of ED50 values for protection and
their confidence limits are calculated by probit
analysis of the data using the number of dosed
versus the number of surviving animals. Doses of
10 mg/kg chlorpromazine p.o. and 1 mg/kg halo-
peridol have been found to be effective.

Critical Assessment of the Method
The amphetamine group toxicity test has been used
by many investigators and has been found to be a
reliable method for detecting neuroleptic activity.
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Inhibition of Amphetamine Stereotypy
in Rats

Purpose and Rationale
Amphetamine is an indirect acting sympathomi-
metic agent which releases catecholamines from
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its neuronal storage pools. In rats the drug
induces a characteristic stereotypic behavior.
This behavior can be prevented by neuroleptic
agents.

Procedure
Groups of six Wistar rats with a body weight
between 120 and 200 g are used. They are injected
simultaneously with d-amphetamine (10 mg/kg s.
c.) and the test compound intraperitoneally and
then placed individually in stainless-steel cages
(40 � 20 � 18 cm). The control groups receive
d-amphetamine and vehicle. Stereotypic behavior
is characterized by continuous sniffing, licking or
chewing and compulsive gnawing. The animals
are observed 60 min after drug administration. An
animal is considered to be protected, if the stereo-
typic behavior is reduced or abolished.

Evaluation
The percent effectiveness of a drug is determined
by the number of animals protected in each group.
A dose–response is obtained by using ten animals
per group at various doses. ED50 values can be
calculated. The standard neuroleptic drugs have
the following ED50 values: chlorpromazine
1.75 mg/kg i.p. and haloperidol 0.2 mg/kg i.p.

Critical Assessment of the Method
Inhibition of amphetamine-induced stereotypies
in rats can be regarded as a simple method to
detect neuroleptic activity. However, this may
reflect the effects in the corpus striatum which
are thought to be responsible for the
Parkinsonism-like side effects of neuroleptics.

Modifications of the Method
Ljungberg and Ungerstedt (1985) described a
rapid and simple behavioral screening method
for simultaneous assessment of limbic and striatal
blocking effects of neuroleptic drugs. A low dose
of 2 mg/kg d-amphetamine i.p. induces both
increased locomotion, thought to reflect an
increased dopamine transmission in the nucleus
accumbens, and weak stereotypies, thought to
reflect an increased dopamine transmission in the
neostriatum. The behavior is measured in a com-
bined open-field apparatus with holes on the

bottom to measure nose-pocking and registration
of time spent in the corners. Neuroleptics with less
propensity to induce unwanted extrapyramidal
side effects can be differentiated from classical
drugs with more extrapyramidal adverse
reactions.

Segal and Kuczenski (1997) described an esca-
lating dose “binge” model of amphetamine psy-
chosis. Rats were exposed to escalating doses of
amphetamine (1.0–8.0 mg/kg) before multiple
daily injections of relatively high doses of the
drug (8 mg/kg every 2 h � 4 injections).

Atkins et al. (2001) described stereotypic
behaviors in mice selectively bred for high and
low methamphetamine-induced stereotypic
chewing.

Machiyama (1992) recommended chronic
methylamphetamine intoxication in Japanese
monkeys (Macaca fuscata) as a model of schizo-
phrenia in animals.

Ellenbroek (1991) described the ethological
analysis of Java monkeys (Macaca fascicularis)
in a social setting as an animal model for
schizophrenia.

Sams-Dodd and Newman (1997) described the
effects of the administration regime on the psy-
chotomimetic properties of d-amphetamine in the
Squirrel monkey (Saimiri sciureus).
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Inhibition of Apomorphine Climbing
in Mice

Purpose and Rationale
Administration of apomorphine to mice results in
a peculiar climbing behavior characterized ini-
tially by rearing and then full-climbing activity,
predominantly mediated by the mesolimbic dopa-
mine system (Costall et al. 1978). The ability of a
drug to antagonize apomorphine-induced
climbing behavior in the mouse has been corre-
lated with neuroleptic potential (Protais
et al. 1976; Costall et al. 1978).

Procedure
Groups of ten male mice (20–22 g) are treated
i.p. or orally with the test substance or the vehicle
and placed individually in wire-mesh stick cages.
Thirty min afterwards, they are injected s.c. with
3 mg/kg apomorphine. Ten, 20, and 30 min after
apomorphine administration, they are observed
for climbing behavior and scored as follows:

0 = four paws on the floor
1 = four feet holding the vertical bars
2 = four feet holding the bars

Evaluation
The average values of the drug-treated animals are
compared with those of the controls, and the
decrease is expressed as percent. The ED50-values
and confidence limits are calculated by probit
analysis. Three dose levels are used for each com-
pound and the standard with a minimum of ten
animals per dose level.

Critical Assessment of the Test
Similar to the enhancement of compulsive
gnawing of mice after apomorphine by antide-
pressant drugs, the suppression of climbing
behavior of mice after apomorphine can be used
for testing neuroleptic drugs. The test has been
modified by various authors.

In contrast to other strains of mice, apomor-
phine climbing is not induced in DBA2 mice
unless subchronic manipulations of brain dopa-
mine transmission are performed (Duterte-
Boucher and Costentin 1989).
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Inhibition of Apomorphine Stereotypy
in Rats

Purpose and Rationale
Apomorphine induces a stereotyped behavior in
rats, characterized by licking, sniffing, and
gnawing in a repetitive, compulsive manner,
which is an indication of striatal dopaminergic
stimulation (Anden et al. 1967; Ernst 1967;
Costall and Naylor 1973). Compounds which pre-
vent apomorphine-induced stereotypy antagonize

dopamine receptors in the nigrostriatal system
(Ljungberg and Ungerstedt 1978; Tarsy and
Baldessarini 1974). Furthermore, antagonism of
this behavior is predictive of propensity for the
development of extrapyramidal side effects and
tardive dyskinesias (Klawans and Rubovits 1972;
Tarsy and Baldessarini 1974; Christensen
et al. 1976; Clow et al. 1980).

Procedure
For screening, groups of six male Wistar rats with
a body weight between 120 and 200 g are used.
The test drug or the standard is administered
i.p. 60 min. prior to apomorphine dosage.
Apomorphine HCl is injected s.c. at a dose of
1.5 mg/kg. The animals are placed in individual
plastic cages. A 10 s observation period is used to
measure the presence of stereotypic activity such
as sniffing, licking, and chewing 10 min after
apomorphine administration. An animal is consid-
ered protected if this behavior is reduced or
abolished.

Evaluation
The percent effectiveness of a drug is determined
by the number of animals protected in each group.
With a group size of ten animals, dose–response
curves are obtained and ED50 values calculated.
ED50 values were found to be 0.2 mg/kg s.c. for
haloperidol and 5.0 mg/kg for chlorpromazine,
whereas clozapine was ineffective even at high
doses.

Modifications of the Methods
Puech et al. (1978) studied the effects of several
neuroleptic drugs on hyperactivity induced by a
low dose of apomorphine in mice.

Apomorphine induces stereotypic behavior in
a variety of species including pigeons. The symp-
toms in pigeons are manifested as pecking against
the wall of the cage or on the floor. Akbas
et al. (1984) described a method registering the
pecking after apomorphine by a microphone,
amplification through a pulse preamplifier, and
registration with a polygraph. The effect of apo-
morphine was dose-dependent decreased by
yohimbine and neuroleptics.
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Stereotyped behavior in guinea pigs induced
by apomorphine or amphetamine consisting in
continuous gnawing and sniffing of the cage
floor was described by Klawans and Rubovits
(1972) and used as an experimental model of
tardive dyskinesia.
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Yawning/Penile Erection Syndrome
in Rats

Purpose and Rationale
Yawning is a phylogenetically old, stereotyped
event that occurs alone or associated with
stretching and/or penile erection in humans and
in animals from reptiles to birds and mammals
under different conditions (Argiolas and Melis
1998). The yawning–penile erection syndrome
can be induced in rats by apomorphine and other
dopamine autoreceptor stimulants (Ståhle and
Ungerstedt 1983; Gower et al. 1984) and can be
antagonized by haloperidol and other dopamine
antagonists. Antagonism against this syndrome
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can be regarded as indication of antipsychotic
activity (Furukawa 1996).

Besides the dopaminergic system in this behav-
ior (Mogilnicka and Klimek 1977; Baraldi
et al. 1979; Benassi-Benelli et al. 1979; Nickolson
and Berendsen 1980; Gower et al. 1984, 1986;
Dourish et al. 1985; Doherty and Wisler 1994;
Kurashima et al. 1995; Bristow et al. 1996;
Fujikawa et al. 1996a; Asencio et al. 1999) also
the serotonergic (Baraldi et al. 1977; Berendsen
and Broekkamp 1987; Berendsen et al. 1990;
Protais et al. 1995; Millan et al. 1997), the cholin-
ergic (Yamada and Furukawa 1980; Fujikawa
et al. 1996b), the GABAergic (Zarrindast et al.
1995), the NO system (Melis et al. 1995, 1996,
1997a, b), and steroid aswell as peptide hormones
(Bertolini and Baraldi 1975; Bertolini et al. 1978;
Holmgren et al. 1980; Berendsen and Nickolson
1981; Berendsen and Gower 1986; Gully
et al. 1995) are involved (Argiolas andMelis 1998).

Procedure
Naive male Wistar rats, weighing 220–280 g, are
housed under controlled 12 h light–dark cycle
with free access to standard food pellets and tap
water. Rats are pretreated with subcutaneous
injection of the antagonist 30 min prior to injec-
tions of the agonist, such as apomorphine (0.02 to
0.25 mg/kg s.c.) or physostigmine (0.02 to 0.3
mg/kg s.c. or i.p.). After administration of the
agonist, rats are placed in individual transparent
Perspex cages. A mirror is placed behind the row
of observation cages to facilitate observation of
the animals for penile erections and yawns. Yawn-
ing is a fixed innate motor pattern characterized by
a slow, wide opening of the mouth. A penile
erection is considered to occur when the following
behaviors are present: repeated pelvic thrusts
immediately followed by an upright position and
an emerging, engorged penis which the rats pro-
ceed to lick while eating the ejaculate. The num-
ber of penile erections and yawns is counted for
30 min following the last injection.

Evaluation
The results are expressed as the mean number of
yawns and of penile erections per group � SEM.
The statistical significance is determined by

comparing the results of each group with the
results of the relevant control group using a non-
parametric rank sum test.

Critical Assessment of the Method
Ferrari et al. (1993) published some evidence that
yawning and penile erection in rats underlie dif-
ferent neurochemical mechanisms. Nevertheless,
the procedure can be regarded as a useful behav-
ioral tool to study putative antipsychotic activity
of new compounds.

Modifications of the Method
Two sublines of Sprague Dawley rats were bred
for high- and low-yawning frequency in males
(Eguibar and Moyaho 1997).

Apomorphine produced more yawning in
Sprague Dawley rats than in F344 rats (Tang and
Himes 1995).

Sato-Suzuki et al. (1998) evoked yawning by
electrical or chemical stimulation in the
paraventricular nucleus of anesthetized rats.

The yawning–penile erection syndrome in rats
can be elicited by injections of 50 ng NMDA or
AMPA (Melis et al. 1994, 1997b) into the
paraventricular nucleus of the hypothalamus or
intracerebroventricular injection of 50 ng oxyto-
cin (Melis et al. 1997a) or ACTH (Genedani
et al. 1994; Poggioli et al. 1998) or α-MSH
(Vergoni et al. 1998).

Champion et al. (1997) and Bivalacqua
et al. (1998) studied the effect of intracavernosal
injections of adrenomedullin and other peptide
hormones on penile erections in cats.

Dopaminergic influences on male sexual
behavior of rhesus monkeys were studied by
Pomerantz (1990, 1992).
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Inhibition of Mouse Jumping

Purpose and Rationale
Lal et al. (1975) described a jumping response in
mice after administration of L-dopa in amphet-
amine pretreated animals where the number of
jumps can be objectively counted. The mouse
jumping is due to dopaminergic overstimulation
similar to that seen in rats when stereotypy is
induced by higher doses of amphetamine. The
phenomenon can be blocked by neuroleptics.

Procedure
Male CD-1 mice weighing 22–25 g are injected
with 4 mg/kg d-amphetamine sulfate, followed
15 min later by an i.p. injection of 400 mg/kg
L-dopa. The mice spontaneously begin to jump
at a high rate. A median of 175 jumps can be
observed in these mice during 60 min. Since
mice do not show any jumping after saline admin-
istration, the responses after drug administration
are specific and can be measured automatically
through a pressure-sensitive switch closure or
properly positioned photoelectric beam disrup-
tions. Test compounds are administered 60 min
prior to L-dopa injection.

Evaluation
Jumps of mice treated with test drugs or standard
are counted and expressed as percentage of jumps
in amphetamine-/L-dopa-treated animals. Using
various doses, ED50 values with 95 % confidence
limits are calculated.

Critical Assessment of the Method
The method has been found to be sensitive and
rather specific for neuroleptic drugs.
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Antagonism Against MK-801-Induced
Behavior

Purpose and Rationale
Dizocilpine (MK-801), a noncompetitive NMDA
antagonist, induces a characteristic behavior in rat
andmice, which is regarded as amodel of psychosis
(Andiné et al. 1999). In mice MK-801 induces a
characteristic stereotypymarked by locomotion and
falling behavior through both dopamine-dependent
and dopamine-independent mechanisms (Carlson
andCarlson 1989;Verma andKulkarni 1992).Anti-
psychotic agents dose-dependently antagonize this
MK-801-induced behavior.

Procedure
Male CD-1 mice (20–30 g) are individually
placed in activity boxes lined with wire-mesh
flooring and allowed to acclimate for
60 min. The animals are then dosed with
compounds 30 min prior to subcutaneous admin-
istration of MK-801 at 0.2 mg/kg. The mice are
observed for locomotion and the presence of
falling behavior 15 min following MK-801
administration.

Evaluation
ED50 values and 95 % confidence limits are cal-
culated by the Litchfield and Wilcoxon method.

Modifications of the Method
Deutsch and Hitri (1993), Rosse et al. (1995),
Deutsch et al. (2002, 2003), and Mastropaolo
et al. (2004) described methods to measure the
MK-801-induced explosive behavior in mice,
called “popping.”
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Farber et al. (1996) showed that neuroleptic
drugs can prevent neuronal vacuolization and
necrosis induced by MK-801 (Fix et al. 1993).
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Phencyclidine Model of Psychosis

Purpose and Rationale
Phencyclidine (PCP)-induced symptoms in rats
are considered as a model of psychosis (Ogawa
et al. 1994; Halberstadt 1995; Steinpreis 1996;
Abi-Saab et al. 1998; Sams-Dodd 1998a; Jentsch
and Roth 1999; Phillips et al. 2000; Farber 2003;
Morris et al. 2005).

PCP-induced symptoms can be antagonized by
neuroleptic drugs (Witkin et al. 1997; Sams-Dodd
1998b; Javitt et al. 2004).

Cartmell et al. (1999) found that metabotropic
glutamate receptor agonists selectively attenuate
phencyclidine versus d-amphetamine motor
behaviors in rats.

Procedure
Behavior of male Sprague Dawley rats weighing
250–300 g was monitored while in transparent,
plastic shoebox cages of the dimensions
45 � 25 � 20 cm, with 1 cm depth of wood clips
as bedding, and a metal grill on the top of the cage.
Motor monitors consisted of a rectangular rack of
12 photobeams arranged in an 8 � 4 formation.
Shoe boxeswere placed inside these racks, enabling
the activity of the rat to be monitored in a home-
cage environment. The lower rackwas positioned at
a height of 5 cm, which allowed the detection of
PCP-induced head movements in addition to move-
ments of the body of the rat. Rearing activity was
detected by a second rack placed 10 cm above the
first. Rats were placed in the cage for an acclimation
period of 30 min, and then removed, administered
the test compounds s.c. or sterile water, and then
returned to the same cages. After 30 min, the rats
were given an s.c. injection of PCP or amphetamine
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or sterile water and once again returned to the cages.
Motor activity was monitored for the following
60 min resulting in the measurement of three dif-
ferent parameters: ambulations (pattern of beam
breaks indicating that the animal had relocated its
entire body), fine movements (nonambulatory
beam breaks), and time at rest. An indication of
rearing activity was detected in the upper rack of
photobeams.

Evaluation
Data were analyzed by a one-way ANOVA, and
then post hoc comparisons for each dose group
versus control or PCP alone or PCP and test
compound were made using Newman–Keuls mul-
tiple comparison test.

Modifications of the Method
Furuya et al. (1998) investigated the effects of a
strychnine-insensitive glycine site antagonist on
the hyperactivity and the disruption of prepulse
inhibition induced by phencyclidine (PCP) in rats.

Redmond et al. (1999) tested the effects of
acute and chronic antidepressant administration
on PCP-induced locomotor hyperactivity.

Boulay et al. (2004) tested a putative atypical
antipsychotic for improvement of social interac-
tion deficits induced by PCP in rats.
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Inhibition of Apomorphine-Induced
Emesis in the Dog

Purpose and Rationale
The blockade of centrally acting dopaminergic
mechanisms is considered to play a major role in
suppression of psychotic reactions in schizophre-
nia. Apomorphine, regarded as a direct dopami-
nergic agonist, produces a pronounced emetic
effect in dogs, and the blockade of apomorphine
emesis is used as an indication of dopaminergic
blockade. However, although both antiemetic
activity and antipsychotic activity are thought to
be due to dopaminergic blockade, the sites of
action are in different brain areas, and there is a
lack of complete correlation of these activities.

Procedure
Adult beagle dogs of either sex are used in treat-
ment groups of three to nine dogs/dose. The dogs
are given the test compounds in a gelatin capsule;
they are then dosed with 0.15 mg/kg apomorphine
s.c. at various intervals after administration of the
test compound. The dogs are first observed for
overt behavioral effects, e.g., pupillary response
to light, changes in salivation, sedation, tremors,
etc.; then, after the administration of apomor-
phine, the dogs are observed for stereotypic
sniffing, gnawing, and the emetic response. Eme-
sis is defined as retching movements followed by
an opening of the mouth and either attempted or
successful ejection of stomach content.

Evaluation
If the experimental compound is antiemetic in the
primary screen, the dose is progressively lowered

to obtain a minimal effective dose or an ED50

value. The ED50 values for haloperidol and chlor-
promazine were found to be 0.06 mg/kg p.o. and
2.0 mg/kg p.o., respectively. Clozapine was not
effective at doses between 2 and 10 mg/kg. p.o.

Critical Assessment of the Method
The method has been extensively used by several
laboratories. However, since nonclassical neuro-
leptics like clozapine did not show pronounced
activity, the test has been abandoned. Moreover,
tests in higher animals like dogs are limited due to
regional regulations.

References and Further Reading
Chipkin RE, Iorio LC, Coffin VL, McQuade RD,

Berger JG, Barnett A (1988) Pharmacological
profile of SCH39166: a dopamine D1 selective
benzonaphthazepine with potential antipsy-
chotic activity. J Pharmacol Exp Ther
247:1093–1102

Janssen PAJ, Niemegeers CJE (1959) Chemistry
and pharmacology of compounds related to
4-(4-hydroxy-4-phenylpiperidino)-butyrophe-
none. Part II – Inhibition of apomorphine
vomiting in dogs. Arzneim Forsch 9:765–767

Janssen PA, Niemegeers CJE, Shellekens HL
(1965) Is it possible to predict the clinical
effects of neuroleptic drugs (major tranquil-
izers) from animal data? Arzneim Forsch
15:1196–1206

Rotrosen J, Wallach MB, Angrist B, Gershon S
(1972) Antagonism of apomorphine-induced
stereotypy and emesis in dogs by thioridazine,
haloperidol and pimozide. Psychopharmacol-
ogy (Berl) 26:185–195

Purposeless Chewing in Rats

Purpose and Rationale
Purposeless chewing can be induced in rats by
directly acting cholinergic drugs or cholinesterase
inhibitors (Rupniak et al. 1983), which can be
blocked by antimuscarinic agents. The chewing
behavior has been proposed to be mediated
through central M2 receptors rather than via
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central M1 sites (Stewart et al. 1989). Chewing
can also be induced by chronic administration of
neuroleptics in rats (Clow et al. 1979; Iversen
et al. 1980). Purposeless chewing is mediated by
dopaminergic and nicotinic mechanisms.

Procedure
Male albino rats are housed 10 per cage at room
temperature and kept on a 12 h light–dark cycle.
For the experiments, rats are placed individually
in a large glass cylinder (height 30 cm, diameter
20 cm) at 21 � 1�C and allowed to habituate for
15 min before injection of drugs. The antagonists,
e.g., sulpiride or mecamylamine as standards, are
given at different doses 30 min before treatment
either with 0.01 mg/kg nicotine or 1 mg/kg pilo-
carpine i.p. Number of chewings are counted by
direct observation immediately after drug admin-
istration. The results are presented as number of
chews in a 30-min period.

Evaluation
Analysis of variance (ANOVA), followed by
Newman–Keuls tests, are used to evaluate the
significance of the results obtained. P < 0.05 is
considered as significant.

Modifications of the Method
Tremulous jaw movements induced by tacrine
(Cousins et al. 1999) can be antagonized by anti-
psychotic drugs (Betz et al. 2005; Ishiwarii
et al. 2005).
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Models of Tardive Dyskinesia

Purpose and Rationale
Tardive dyskinesia is a severe side effect of tradi-
tional neuroleptics affecting a considerable num-
ber of patients probably based on a genetic
disposition, being characterized by involuntary
movements of the oral region. Various authors
used rats as animal model for tardive dyskinesia,
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either after treatment with reserpine (Waddington
1990; Neisewander et al. 1994; Bergamo
et al. 1997; Queiroz and Frussa-Filho 1999;
Andreassen and Jorgensen 2000; Casey 2000;
Van Kampen and Stoessl 2000; Calvente
et al. 2002; Abílio et al. 2003; Peixoto
et al. 2003) or haloperidol (Takeuchi et al. 1998;
Harvey and Nel 2003; Naidu et al. 2003; Burger
et al. 2005). Several authors compared the effects
of different neuroleptics (See and Ellison 1990;
Tamminga et al. 1994) or studied potential antag-
onistic effects (Takeuchi et al. 1998; Queiroz and
Frussa-Filho 1999; Abílio et al. 2003; Naidu
et al. 2003; Peixoto et al. 2003).

Burger et al. (2005) found that ebselen attenu-
ates haloperidol-induced orofacial dyskinesia and
oxidative stress in rat brain.

Procedure
Male Wistar rats weighing 270–320 g were
injected s.c. once a week with 12 mg/kg haloper-
idol decanoate for 4 weeks. Another group was
pretreated with 30 mg/kg ebselen and received in
addition to haloperidol every other day an
i.p. injection of 30 mg/kg ebselen.

The animals were observed for the quantifica-
tion of orofacial dyskinesia just before haloperidol
administration and on the 7th, 14th, 21st, and 28th
day after the first administration of haloperidol.

Rats were placed individually in cages
(20 � 20 � 19 cm) containing mirrors under the
floor and behind the back wall of the cage to allow
behavioral quantification when the animal was
faced away from the observer. To quantify the
occurrence of oral dyskinesia, the incidence of
tongue protrusions, vacuous chewing movements
frequency, and the duration of facial twitching
were recorded for 15 min. Observers were blind
to drug treatment.

Evaluation
Data were analyzed by a three-way ANOVA,
followed, when appropriate, by univariate analy-
sis and Duncan’s post hoc test.

Modifications of the Method
Several authors used monkeys (Cebus apella or
Macaca speciosa) to evaluate the effect of

neuroleptics to induce tardive dyskinesia-like
symptoms (Gunne and Barany 1979; Domino
1985; Werge et al. 2003).
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Single-Unit Recording of A9 and A10
Midbrain Dopaminergic Neurons

Purpose and Rationale
Interactions with central nervous system dopa-
mine pathways are crucial for the expression of
antipsychotic effects seen with clinically effective
neuroleptics. These interactions also have a role in
the expression of several of the neurological side
effects seen with these agents. Extracellular
single-unit recording techniques of rat A9
(substantia nigra) and A10 (ventral tegmental
area) dopamine neurons show that after acute
treatment with neuroleptics, the number of spon-
taneously firing cells is increased in both areas.
After repeated treatment (21 days), a decrease was
found with all neuroleptics in the A10 neurons,
whereas in the A9 cell, only compounds with
clinically evident extrapyramidal side effects
induced a decrease. Clozapine which is believed
not to produce extrapyramidal side effects
resulted in the depolarization inactivation of A10
neurons but not A9 cells. The method provides a
prediction of a compound’s antipsychotic poten-
tial as well as potential neurological side effects
(Chiodo and Bunney 1983).

Procedure
Male Wistar rats weighing 280–360 g are anes-
thetized with chloral hydrate intraperitoneally.
The animal is mounted in a stereotaxic apparatus
(Kopf, model 900). The cranium is exposed,
cleaned of connective tissue, and dried. The
skull overlying both the substantia nigra (A9:
anterior (A) 3000–3400 μm, lateral
(L) 1800–2400 μm from lambda) and the ventral
tegmental area (A10: A 3000–3400 μm, L
400–1000 μm from lambda) (Paxinos and Watson
1986) is removed. Using the dura as point of
reference, a micropipette driven by a hydraulic
microdrive is lowered through the opening of the
skull at vertical 6000–8500 μm. Spontaneously
firing dopamine neurons within both the
substantia nigra and the ventral tegmental area
are counted by lowering the electrode into twelve
separate tracks (each track separated from the
other by 200 μm) in each region. The sequence
of these tracks is kept constant, forming a block of
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tissue which can be reproducibly located from
animal to animal.

Extracellular neuronal signals are sampled
using a single barrel micropipette approximately
one μm at its tip and filled with 2 M NaCl satu-
rated with 1 % pontamine sky blue dye (in vitro
impedance between 5 and 10 MΩ). Electrical
potentials are passed through a high-impedance
preamplifier, and the signal is sent to a window
discriminator which converts potentials above
background noise levels to discrete pulses of
fixed amplitude and duration. Only cell whose
electrophysiological characteristics match those
previously established for midbrain dopamine
neurons are counted. In an anesthetized rat, a
neuron is considered to be dopaminergic if it
displays a triphasic positive–negative–positive
spike profile of 0.4 to 1.5 mV amplitude and
2.5 ms duration, firing in an irregular pattern of
3 to 9 Hz with occasional bursts characterized by
progressively decreasing spike amplitude and
increasing spike duration.

At the end of each experiment, the location of
the last recorded track tip is marked by passing
25 microampere cathodal current through the
recording micropipette barrel for 15 min in
order to deposit a spot of dye. The rat is
sacrificed, and the brain is then removed, dis-
sected, and frozen on a bed of dry ice. Frozen
serial sections (20 μm in width) are cut, mounted
and stained with cresyl violet, and examined
using a light microscope.

Animals pretreated with vehicle prior to neu-
ronal sampling serve as controls. For animals that
are used in an acute single-unit dopamine neuron
sampling assay, test compounds are administered
intraperitoneally 1 h prior to the beginning of
dopamine neuron sampling. For animals used in
a chronic single-unit dopamine sampling assay,
the compounds are administered once a day for
21 days, and dopamine neuron sampling is started
2 h after the last dose on the 21st day.

Evaluation
Drug treatment groups are compared to vehicle
groups with a one-way ANOVA with a post hoc
Newman–Keuls analysis for significance.

Modifications of the Method
Nyback et al. (1975) tested the influence of tricy-
clic antidepressants on the spontaneous activity of
norepinephrine-containing cells of the locus
coeruleus in anesthetized rats.

Scuvée-Moreau and Dreese (1979) studied the
effect of various antidepressant drugs on the firing
rate of locus coeruleus and dorsal raphe neurons
of the anesthetized rat with extracellular
microelectrodes.

Using the method of single-unit recording of
spontaneous firing of locus coeruleus neurons in
rats, Cedarbaum and Aghajanian (1977) studied
the inhibition by microiontophoretic application
of catecholaminergic agonists.

Marwaha and Aghajanian (1982) examined in
single-unit studies the actions of adrenoceptor
antagonists at alpha-1 adrenoceptors of the dorsal
raphe nucleus and the dorsal lateral geniculate
nucleus and alpha-2 adrenoceptors of the nucleus
locus coeruleus.

Mooney et al. (1990) studied the organization
and actions of the noradrenergic input to the supe-
rior colliculus of the hamster using microionto-
phoretic techniques together with extracellular
single-unit recording.

Bernardini et al. (1991) studied in vitro with
brain slices of mice the amphetamine-induced and
spontaneous release of dopamine from A9 and
A10 cell dendrites.

Santucci et al. (1997) investigated the effects of
synthetic neurotensin receptor antagonists on
spontaneously active A9 and A10 neurons in rats.
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In Vivo Voltammetry

Purpose and Rationale
Various groups (Lane et al. 1979, 1987, 1988;
Blaha and Lane 1983, 1984, 1987; Crespi
et al. 1984; Marsden et al. 1984; Maidment
and Marsden 1987a, b; Armstrong-James and
Millar 1979, 1984; Kawagoe et al. 1993)
described in vivo voltammetry as an electro-
chemical technique that uses carbon fiber micro-
electrodes stereotactically implanted in brain
areas to monitor monoamine metabolism and
release. De Simoni et al. (1990) reported on a
miniaturized optoelectronic system for telemetry
of in vivo voltammetric signals in freely moving
animals.

Procedure
Carbon fiber working electrodes are made from
pyrolytic carbon fibers supported in a pulled glass
capillary (Armstrong-James and Millar 1979;
Sharp et al. 1984) and electrically pretreated for
simultaneous recording of ascorbic acid DOPAC
and 5-HIAA (Crespi et al. 1984).

Male Sprague Dawley rats weighing
270–340 g are anesthetized with a 2–3 % halo-
thane O2/NO2 mixture (1:1) and held in a stereo-
tactic frame. Reference and auxiliary electrodes
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are positioned on the surface of the dura through
1 mm holes drilled in the cranium and held in
place with dental cement. Holes, approx. 2 mm
in diameter, are drilled in the cranium above the
left or right nucleus accumbens and contralateral
anterior striatum, and the underlying dura is bro-
ken with a hypodermic needle. A working elec-
trode is lowered in one of the above regions and
cemented in place. A second electrode is then
implanted in the remaining structure. The coordi-
nates, measured from the bregma, are as follows:
nucleus accumbens–rostrocaudal +3.4 mm,
mediolateral � 1.4 mm, dorsoventral �7 mm,
striatum–rostrocaudal +2.8 mm, mediolateral
� 2.6 mm, and dorsoventral �5.5 mm.

Drugs are injected subcutaneously.
Voltammograms are recorded using a Princeton
Applied Research 174A polarographic analyzer
alternatively from each region every 5 min and
after a 1 h stabilization period.

Evaluation
Voltammetric data are expressed as percentage
changes from preinjection control values using
the mean of the last six peak heights before admin-
istration of drug as the 100 % value. However,
statistical analysis of the data is carried out on the
absolute peak heights using a paired Student’s
t-test to compare six preinjection control peak
heights with those after administration of drug at
selected time points.

Modifications of the Method
Swiergiel et al. (1997) constructed voltammetric
probes from stainless steel and fused silica tubing
sheathing carbon fibers and compared them with
commercially available glass-sealed IVEV-5 elec-
trodes. This type of electrodes can be easily
manufactured and does not require any special
equipment.

Parada et al. (1994, 1995) described a triple-
channel swivel suitable for intracranial fluid deliv-
ery and microdialysis experiments which can be
equipped with three electrical channels for in vivo
voltammetry and measurement of intracranial
temperature with a thermocouple.

Frazer and Daws (1998) used electrodes
coated with a perfluorinated ion exchange resin

(Nafion) to assess serotonin transporter function
in vivo by chronoamperometry whereby volt-
age is applied to the electrode in a pulsed manner
and the current obtained measured as a function
of time.
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Genetic Models of Psychosis

The Heterozygous Reeler Mouse

Purpose and Rationale
Reelin is an extracellular matrix protein secreted
by GABAergic interneurons that, acting through
pyramidal neuron integrin receptors, provides a
signal for dendritic spine plasticity. The gene
responsible for a mouse mutant strain is called
reeler (D’Arcangelo and Curran 1998; Lombroso
and Goldowitz 1998; Fatemi 2001; Pappas
et al. 2003). Heterozygous reeler mice that exhibit
a 50 % downregulation of reelin expression

replicate the dendritic spine and GABAergig
defects described in human schizophrenia (Larson
et al. 2003). The heterozygote reeler mouse was
recommended as a model for the development of a
new generation of antipsychotics (Tueting
et al. 1999; Rowley et al. 2001; Costa
et al. 2002). This view has been challenged by
Podhorna and Didriksen (2004).

Tomasiewicz et al. (1993) and Wood
et al. (1998) proposed NCAM-180 knockout
mice with a deletion of the neural cell adhesion
molecule variant (NCAM-180) displaying
increased lateral ventricle size and a reduced
prepulse inhibition of startle response as model
for schizophrenia.

Dirks et al. (2003) reported reversal of startle
gating deficits in transgenic mice
overexpressing corticotropin-releasing factor
by antipsychotic drugs.

Van den Buuse (2003) showed deficient
prepulse inhibition of acoustic startle in Hooded-
Wistar rats compared with Sprague Dawley rats,
suggesting that the Hooded-Wister line could be a
useful genetic animal model to study the interac-
tion of glutaminergic and dopaminergic mecha-
nisms in anxiety and schizophrenia.

References and Further Reading
Costa E, Davis J, Pesold C, Tueting P, Guidotti A

(2002) The heterozygote reeler mouse as a
model for the development of a new generation
of antipsychotics. Curr Opin Pharmacol
2:56–62

D’Arcangelo G, Curran T (1998) Reeler: new
tales on an old mutant mouse. Bioassays
20:235–244

Dirks A, Groenink L, Westphal KGC, Olivier JDA,
Verdouw PM, van der Gugten J, Geyer MA,
Olivier B (2003) Reversal of startle gating deficits
in transgenic mice overexpressing corticotropin-
releasing factor by antipsychotic drugs.
Neuropsychopharmacology 28:1790–1798

Fatemi SH (2001) Reelin mutations in mouse and
man: from reeler mouse to schizophrenia,
mood disorders, autism and lissencephaly.
Mol Psychiatry 6:129–133

Larson J, Hoffman JS, Guidotti A, Costa E (2003)
Olfactory discrimination learning deficit in

1398 M.J. Kallman



heterozygous reeler mice. Brain Res
971:40–46

Lombroso PJ, Goldowitz D (1998) Brain devel-
opment, VIII: the reeler mouse. Am J Psychi-
atry 155:1660

Pappas GD, Kriho V, Liu WS, Tremolizzo L,
Lugli G, Larson J (2003) Immunocytochemical
localization of reelin in the olfactory bulb of the
heterozygous reeler mouse. An animal model
for schizophrenia. Neurol Res 25:819–830

Podhorna J, Didriksen M (2004) The heterozy-
gous reeler mouse: behavioural phenotype.
Behav Brain Res 153:43–54

Rowley M, Bristow LJ, Hutson PH (2001) Cur-
rent and novel approaches to the drug treat-
ment of schizophrenia. J Med Chem
44:477–501

Tomasiewicz H, Ono K, Yee D, Thompson C,
Goridis C, Rutishauser U, Magnuson T
(1993) Genetic deletion of a neural cell adhe-
sion molecule variant (N-CAM-180) produces
defects in the central nervous system. Neuron
11:1163–1174

Tueting P, Costa E, Dwivedi Y, Guidotti A,
Impagnatiello F, Manev R, Pesold C
(1999) The phenotypic characterization of
heterozygous reeler mouse. Neuroreport
10:13291334

van den Buuse M (2003) Deficient prepulse inhi-
bition of acoustic startle in Hooded-Wistar rats
compared with Sprague–Dawley rats. Clin Exp
Pharmacol Physiol 30:254–261

Wood GK, Tomasiewicz H, Rutishauser U,
Magnuson T, Quirion R, Rochford J, Srivasta
LK (1998) NCAM-180 knockout mice display
increased lateral ventricle size and reduced
prepulse inhibition of startle. Neuroreport
16:461–466

The Hooded-Wistar Rat

Purpose and Rationale
Van den Buuse (2003), Lodge et al. (2003), and
Martin et al. (2004) suggested that the Hooded-
Wistar line (fawn-hooded rats) could be a useful
genetic animal model to study the interaction of

glutamatergic and dopaminergic mechanisms in
anxiety and schizophrenia.

Broderick (2002) compared hippocampal sero-
tonin and norepinephrine release during open-
field behavior in Sprague Dawley animals with
the Fawn-Hooded animals model of depression.
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