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General Considerations

Epilepsy is a disease of high prevalence, being well
known since thousands of years as “morbus sacer.”
In spite of intensive investigations, the pathophys-
iology of epilepsy is still poorly understood. Studies
with various animal models have provided ample
evidence for heterogeneity in the mechanisms of
epileptogenesis. New evidence derives from inves-
tigations of kindling, which involves the delivery of
brief, initially subliminal, electrical, or chemical
stimuli to various areas of the brain. After 10–15
days of once-daily stimulation, the duration and
intensity of afterdischarges reach a stable maxi-
mum, and a characteristic seizure is produced. Sub-
sequent stimulation then regularly elicits seizures.

Surveys of methods being used to test
compounds with anticonvulsant properties have
been provided by Toman and Everett (1964),
Woodbury (1972), Hout et al. (1973), Swinyard
(1973), Koella (1985), Meldrum (1986), Rump
and Kowalczyk (1987), Löscher and Schmidt
(1988), Fisher (1989), Rogawski and Porter
(1990), and Porter and Rogawski (1992).

Epilepsy becomes drug resistant in 20–30 % of
patients. Out of the animal models, the amygdala-
kindled rat seems to be a suitable approach
(Löscher 1997, 1998, 2002a, b). Furthermore,
the rat cortical dysplasia model is recommended
(Smyth et al. 2002).

Several biochemical hypotheses have been
advanced, involving the inhibitory GABAergic
system and the system of the excitatory amino
acids glutamate and aspartate. Excitatory recep-
tors have been divided into subtypes according to
the actions of specific agonists or antagonists.
Agents which reduce GABAA synaptic function
provoke convulsions. A convulsive state is
induced by the direct blockade of GABAA recep-
tors (e.g., to the action of bicuculline) or a
reduction in the GABA-mediated opening of
the chloride ion channel (e.g., by picrotoxin).
One major factor in epileptogenesis seems to be
a decreased function of GABAA synapses.

More recently, research has focused on the
therapeutic potential of blocking excitatory
amino acids, in particular, glutamate. Of the

three receptors of glutamate, the NMDA (N-
methyl-D-aspartate) receptor is considered one of
the most interested in epilepsy, and competitive
NMDA receptor antagonists are proposed as
potential antiepileptic drugs. Excessive excitatory
amino acid neurotransmission is thought to be
associated with the neuropathologies of epilepsy,
stroke, and other neurodegenerative disorders.
Antagonism of NMDA receptor function appears
to be the mechanism of action of some novel
anticonvulsant and neuroprotective agents. Excit-
atory amino acid receptors have been classified
into at least three subtypes by electrophysiologi-
cal criteria: NMDA, quisqualic acid (QA), and
kainic acid (KA) (Cotman and Iversen 1987;
Watkins and Olverman 1987).

Fabene and Sbarbati (2004) underlined the
value of in vivo MRI in different models of exper-
imental epilepsy.
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In Vitro Methods

[3H]-GABA Receptor Binding

See chapter “▶Tests for Anxiolytic Activity”.

GABAA Receptor Binding

See chapter “▶Tests for Anxiolytic Activity”.

GABAB Receptor Binding

See chapter “▶Tests for Anxiolytic Activity”.
The in vitro assays for GABAergic compounds

described in the chapter “▶Tests for Anxiolytic
Activity” (anxiolytics) are similarly used for eval-
uation of antiepileptic compounds.
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[3H]-GABA Uptake in Rat Cerebral
Cortex Synaptosomes

Purpose and Rationale
Roberts (1974) and others have proposed that
the inhibitory action of the amino acid
γ-aminobutyric acid (GABA) is the fine tuning
control for pacemaker neurons. Disruption of
this interplay due to inadequacies of the GABA
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system results in various disorders, in particular,
convulsive seizures (Roberts 1974; Korgsgaard-
Larsen 1985). The nonspecific action of
GABA-mimetics makes inhibition of the uptake
mechanism, which terminates the neurotransmit-
ter action, the ideal choice for increasing GABA’s
concentration at specific sites (Roberts 1974;
Tapia 1975; Meldrum et al. 1982; Brehm
et al. 1979). Demonstration of the high-affinity
mechanism that best reflects the in vivo condition
utilizes GABA-depleted cerebral cortex synapto-
somes (Ryan and Roskoski 1977; Iversen and
Bloom 1972; Roskoski 1978). Although the phys-
iological role of GABA transport systems is still
unclear, uptake inhibitors such as THPO [4,5,6,7-
tetrahydroisoxazolo-(4,5-C)pyridine-3-ol],
nipecotic acid, cis-4-hydroxynipecotic acid, and
guvacine exhibit anticonvulsant effects (Meldrum
et al. 1982; Brehm et al. 1979). Furthermore, a
number of neuroleptics have been shown to
inhibit GABA uptake (Fjalland 1978). In particu-
lar, fluspirilene was found to be equivalent to the
most potent uptake inhibitors known.

The assay is used as a biochemical screen for
potential anticonvulsants or GABA (γ-aminobutyric
acid) mimetic compounds that act by inhibiting
GABA uptake.

Procedure

Reagents
1. 0.5 M Tris buffer, pH 7.4.
2. Ringer’s solution + 10 mM Tris buffer, pH 7.4

containing.
– Glucose 10.0 mM,
– NaCl 150.0 mM
– KCl 1.0 mM
– MgSO4 1.2 mM
– Na2HPO4 1.2 mM

3. Depolarizing Ringer’s solution, pH 7.4 reagent
2 containing:
– KCl 56 mM
– CaCl21 mM

4. 0.32 M sucrose.
5. [3H]-GABA is diluted to 2.5 � 10�4 M with

distilled water. Forty microliters of this

solution in 1 ml of reaction mixture will yield
a final concentration of 10�5 M.

6. Test compounds.
A 10 mM stock solution is made up in

distilled water, ethanol, or DMSO and serially
diluted, such that the final concentration in the
assay ranges from 10�3 to 10�8 M. Total and
nonspecific controls should use solvent of test
compound.

Tissue Preparation
Male Wistar rats are decapitated and the brains
rapidly removed. Cerebral cortex is weighed and
homogenized in 9 volumes of ice-cold 0.32 M
sucrose using a Potter–Elvehjem homogenizer.
The homogenate is centrifuged at 1000 g for
10 min. The supernatant (S1) is decanted and
recentrifuged at 1000 g for 10 min. The pellet
(P2) is resuspended in 9 volumes of 0.32 M
sucrose and centrifuged at 24,000 g for 10 min.
Thewashed pellet is resuspended in 15 volumes of
depolarizing Ringer’s solution, incubated at 25 �C
for 10 min and centrifuged at 3000 g for 10 min.
The resulting pellet is resuspended in 15 volumes
of Ringer’s solution and is ready for use.

Assay
60 μl Ringer’s solution
100 μl vehicle or appropriate drug concentration
800 μl tissue suspension

Microcentrifuge tubes are set up in triplicate.
Nonspecific controls are incubated at 0 �C and
total at 25 �C for 10 min. 40 μl of [3H]-GABA
are added and the tubes are reincubated for
10 min. All tubes are centrifuged at 13,000 g for
1 min. The supernatant is aspirated and 1 ml of
solubilizer (Triton X-100 + 50 % EtOH, 1:4, v/v)
is added and mixed to dissolve pellets. Tubes are
incubated at 90 �C for 3 min, then centrifuged at
13,000 g for 15 min. 40 μl of supernatant is
counted in 10 ml Liquiscint scintillation cocktail.

Evaluation
Active uptake is the difference between cpm at
25 �C and 0 �C. The percent inhibition at each
drug concentration is the mean of three
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determinations. IC50 values are derived from
log–probit analysis.

References and Further Reading
Brehm L et al (1979) GABA uptake inhibitors and

structurally related “pro-drugs”. In: Krogsgaard-
Larsen P et al (eds) GABA-neurotransmitters.
Academic, New York, pp 247–261

Fjalland B (1978) Inhibition by neuroleptics of
uptake of3H GABA into rat brain synapto-
somes. Acta Pharmacol Toxicol 42:73–76

Gray EG, Whittaker VP (1962) The isolation of
nerve endings from brain: an electron micro-
scopic study of cell fragments derived by
homogenization and centrifugation. J Anat
(Lond) 96:79–88

Iversen LL, Bloom FE (1972) Studies of the
uptake of 3HGABA and 3H-glycine in slices
and homogenates of rat brain and spinal cord
by electron microscopic autoradiography.
Brain Res 41:131–143

Krogsgaard-Larsen P (1985) GABA agonist and
uptake inhibitors. Research Biochemicals
Incorporated – Neurotransmissions 1

Meldrum B et al (1982) GABA-uptake inhibitors
as anticonvulsant agents. In: Okada Y, Roberts
E (eds) Problems in GABA research from
brain to bacteria. Excerpta Medica, Princeton,
pp 182–191

Roberts E (1974) γ-Aminobutyric acid and ner-
vous system function – a perspective. Biochem
Pharmacol 23:2637–2649

Roskoski R (1978) Net uptake of L-glutamate and
GABA by high affinity synaptosomal transport
systems. J Neurochem 31:493–498

Ryan L, Roskoski R (1977) Net uptake of
γ-Aminobutyric acid by a high affinity synap-
tosomal transport system. J Pharm Exp Ther
200:285–291

Snodgrass SR (1990) GABA and GABA neurons:
Controversies, problems, and prospects. In:
Receptor site analysis. NEN, pp 23–33

Tapia R (1975) Blocking of GABA uptake. In:
Iversen I, Iversen S, Snyder S (eds) Handbook
of psychopharmacology, vol 4. Plenum Press,
New York, pp 33–34

GABA Uptake and Release in Rat
Hippocampal Slices

Purpose and Rationale
The GABA transporter, the subsynaptic GABAA

receptor, and the GABAB autoreceptor are
therapeutically the most relevant targets for
drug actions influencing GABAergic synaptic
transmission. Uptake inhibitors are potential
anticonvulsants.

Procedure
For measurement of GABA uptake, rat hippocam-
pal slices are cut with a McIlwain tissue slicer
(100-μm-thick prisms) and dispersed in ice-cold
Krebs–Ringer solution with HEPES buffer
(pH 7.4). Following two washes, slices
(15 mg) are incubated at 37 �C for 15 min in
the presence or absence of test compound.
[3H]-GABA is added, and samples are incubated
for an additional 5 min before filtration through
Whatman GF/F filters. Samples are then washed
twice with 5 ml ice-chilled 0.9 % saline. Dis-
tilled water is added, and samples are allowed to
sit at least 60 min before measured for radioac-
tivity by liquid scintillation spectroscopy.
Blanks are treated in an identical manner but
are left on ice throughout the incubation.

For measurement of GABA release, rat hippo-
campal slices are prepared and dispersed
in ice-cold HEPES-buffered (pH 7.2)
Krebs–Ringer solution and incubated with
0.05 μM [3H]-GABA for 15 min at 37 �C.
Following two washes, the slices are incubated
for an additional 15 min and finally
resuspended in medium. Tissue (10 mg) is incu-
bated at 37 �C for a 15 min release period in the
presence or absence of test compound. At the
end of the release period, the medium is sepa-
rated from tissue by centrifugation at 500 g for
approximately 1 min and poured into 0.5 ml of
perchloric acid (0.4 N). The tissue is homoge-
nized in 0.13 N perchloric acid. Radioactivity
in the samples is measured by using liquid
scintillation spectroscopy.
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Evaluation
For GABA uptake, IC50 values (μM) are
determined.

In GABA release experiments, results are
expressed as the amount of radioactivity released
as a percent of the total radioactivity.

Modifications of the Method
Roskoski (1978) studied the net uptake of GABA
by high-affinity synaptosomal transport systems.

Nilsson et al. (1990, 1992) tested GABA
uptake in astroglial primary cultures.

The isolated nerve-bouton preparation was
used to study GABA release (Jang et al. 2001;
Kishimoto et al. 2001; Akaike et al. 2002; Akaike
and Moorhouse 2003). The technique was devel-
oped by Drewe et al. (1988), Vorobjev (1991),
Haage et al. (1998), Rhee et al. (1999), and
Koyama et al. (1999).

The method is based on the local application
of mechanical vibration directly to the chosen
site of a brain slice and does not require the
enzymatic pretreatment of the tissue. The
mechanical vibration is applied via a glass rod
(0.5 mm in diameter) mounted on a piezoelectric
bimorph crystal at the site of the chosen brain
tissue. The dissociated cells are allowed to settle
at the bottom of a Petri dish for 20 min. The cell
bodies are usually 10–15 pm at their longest axis,
rounded or elongated in shape. Some cells
had remaining neurites up to 100 pm long.
The majority of cells had neurites less than
15 μm long.

In other studies (Koyama et al. 1999;
Kishimoto et al. 2001), a custom-built vibrating
stylus was placed in the appropriate region for
mechanical dissociation. The glass capillary
(1.5 mm o.d.) was pulled to a fine tip and fire
polished. The tip was placed within the appropri-
ate region by a manipulator. The vibrating stylus
was driven by an electronic relay, and the tip was
horizontally moved (excursions of 2–3 mm at
0.5–2 Hz) for 2 min.

Neurons with adherent functional synaptic ter-
minals were investigated by tight-seal whole-cell
recordings from the postsynaptic cells.
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Glutamate Receptors: [3H]CPP Binding

Purpose and Rationale
The ionotropic glutamate receptors are ligand-
gated ion channels that mediate the vast majority
of excitatory neurotransmission in the brain. The
family comprises three pharmacologically defined
classes that were originally named after

reasonably selective ligands: N-methyl-D-aspar-
tate (NMDA), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), and kainate
(Cotman and Iversen 1987; Watkins and
Olverman 1987; Collingridge and Lester 1989;
Monaghan et al. 1989; Carlsson and Carlsson
1990; Young and Fagg 1990; Nakanishi 1992;
Cunningham et al. 1994; Herrling 1994; Iversen
and Kemp 1994; Mayer et al. 1994; Meldrum and
Chapman 1994; Monaghan and Buller 1994;
Watkins 1994; Bettler and Mulle 1995; Fletcher
and Lodge 1995; Becker et al. 1998; Danysz and
Parsons 1998; Meldrum 1998; Chittajallu
et al. 1999; Dingledine et al. 1999; Hatt 1999;
Gallo and Ghiani 2000; Lees 2000; Meldrum
2000). It turned out that NMDA, AMPA, and
kainate receptor subunits are encoded by at least
six gene families as defined by sequence homol-
ogy: a single family of AMPA receptors, two for
kainate, and three for NMDA (Dingledine
et al. 1999; Mayer and Armstrong 2004).

The NMDA subtype is a hetero-oligomer
consisting of an NR1 subunit combined with one
or more NR2 subunits and a third subunit, NR3
(Loftis and Janowsky 2003). The receptor has two
amino acid recognition sites, one for glutamate
and one for glycine, both of which must be occu-
pied to promote channel opening. A variety of
drugs have been identified which block the chan-
nel selectively (Bräuner-Osboren et al. 2000;
Kemp and McKernan 2002).

The AMPA subtype is a hetero-oligomer
formed from combinations of iGluR1–4. Selec-
tive agonists and competitive antagonists acting at
the glutamate recognition site have been useful for
defining the physiological and pathophysiological
roles played by the receptor. AMPA receptor mod-
ulators have been discussed as cognitive
enhancers (Lynch 2004).

The kainate subtype consists of hetero-
oligomers, comprising five subunits (Hollmann
and Heinemann 1994; Huettner 2003).

Excessive excitatory amino acid neurotransmis-
sion has been associated with the neuropathologies
of epilepsy, stroke, and other neurodegenerative
disorders (Cotman and Iversen 1987; Watkins and

Anti-Epileptic Activity 1221



Olverman 1987; Parsons et al. 1998). Antagonism
of NMDA receptor function appears to be the
mechanism of action of some anticonvulsant and
neuroprotective agents (Löscher 1998; Tauboll and
Gjerstad 1998). The binding site for [3H]2-amino-
4-phosphonobutyric acid (AP4) may represent a
fourth site which is less well characterized
(Thomsen 1997). NMDA receptors are believed
to be coupled to a cation channel which converts
to an open state with NMDA receptor activation
(Kemp et al. 1987; Mukhin et al. 1997). The open-
ing and closing of this cation channel are also
modulated by glycine, Mg2+, and Zn2+. Dissocia-
tive anesthetics, such as phencyclidine (PCP) and
ketamine, and novel anticonvulsants, such as
MK-801, block the ion channel and are
noncompetitive NMDA receptor antagonists.
Competitive NMDA receptor antagonists, such as
CPP and the phosphono analogues of L-glutamate,
AP7, and AP5 (2-amino-5-phosphonopentanoic
acid), are inhibitors at the excitatory amino acid
binding site (Olverman et al. 1986; Davies
et al. 1986; Harris et al. 1986; Murphy et al. 1987;
Lehmann et al. 1987).

The following assay is used to assess the affinity
of compounds for the excitatory amino acid bind-
ing site of the NMDA receptor complex. [3H]CPP
3-[(�)-2-carboxypiperazin-4-yl]-1-phosphonic
acid is a structurally rigid analogue of the selective
NMDA receptor antagonist 2-AP7 (2-amino-7-
phosphonoheptanoic acid).

Procedure

Reagents
1. Buffer A: 0.5 M Tris HCl, pH 7.6

60.0 g Tris HCl
13.9 g Tris base
q.s. to 1 l with distilled water

2. Buffer B: 50 mM Tris HCl, pH 7.6
Dilute buffer A 1:10 with distilled water

3. L-Glutamic acid, 5 � 10�3 M
Dissolve 7.36 mg of L-glutamic acid (Sigma

G1251) with 10.0 ml distilled water. Aliquots
of 20 μl to the assay tube will give a final
concentration of 104 M.

4. [3H]CPP is obtained from New England
Nuclear, specific activity 25–30 Ci/mmol.

For IC50 determinations, a 200 nM stock solu-
tion is made with distilled water. Aliquots of
50 μl are added to each tube to yield a final
concentration of 10 mM.

5. Test compounds. A stock solution of mM is
made with a suitable solvent and serially
diluted, such that the final concentration in
the assay ranges from 10�5 to 10�8

M. Higher or lower concentrations may be
used, depending on the potency of the drug.

6. Triton X-100,10 % (v/v) (National Diagnos-
tics, EC-606). A stock solution of Triton
X-100, 10 %, can be prepared and stored in
the refrigerator. Dilute 1.0 ml of Triton X-100
to 10.0 ml with distilled water. On the day of
the assay, the tissue homogenate (1:15 dilu-
tion) is preincubated with an aliquot of Triton
X-100, 10 %, to give a final concentration of
0.05 % (v/v).

Tissue Preparation
Cortices of male Wistar rats are dissected over ice
and homogenized in ice-cold 0.32 M sucrose,
15 volumes of original wet weight of tissue, for
30 s with a Tissumizer setting at 70. The homog-
enate is centrifuged at 1000 g for 10 min (SS34,
3000 rpm, 4 �C). The supernatant is centrifuged at
20,000 g (SS34, 12,000 rpm, 4 �C) for 20 min.
Resuspend the pellet in 15 volumes of ice-cold
distilled water (Tissumizer setting 60, 15 s) and
spin at 7600 g (SS34, 8000 rpm, 4 �C) for 20 min.
Save the supernatant, swirl off the upper buffy
layer of the pellet and add to the supernatant.
Centrifuge the supernatant at 48,000 g (SS34,
20,000 rpm, 4 �C) for 20 min. Resuspend the
pellet with 15 volumes of cold distilled water
and centrifuge. Discard the supernatant and store
the pellet at �70 �C.

On the day of the assay, resuspend the pellet in
15 volumes ice-cold 50 mM Tris buffer, pH 7.6.
Preincubate the homogenate with Triton X-100 in
a final concentration 0.05 % (v/v) for 15 min at
37 �C with agitation. Centrifuge the homogenate
at 48,000 g (SS34, 20,000 rpm, 4 �C) for 20 min.
Wash the pellet an additional three times by
resuspension with cold buffer and centrifugation.
The final pellet is resuspended in a volume
20 times the original wet weight.
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Assay
1. Prepare assay tubes in triplicate.

380 μl distilled water
50 μl buffer A, 0.5 M Tris HCI, pH 7.6
20 μl L-glutamic acid, 10�4 M, or distilled

water, or appropriate concentration of inhibitor
50 μl [3H]CPP
500 μl tissue homogenate

2. Following the addition of the tissue, the tubes are
incubated for 20 min at 25 �C with agitation.
Place the tubes in an ice bath at the end of the
incubation. Terminate the binding by centrifuga-
tion (HS4, 7000 rpm, 4 �C) for 15 min. Return
the tubes to ice. Aspirate and then discard the
supernatant. Carefully rinse the pellet three times
with 1 ml ice-cold buffer, avoiding disruption of
the pellet. Transfer the pellet to scintillation vials
by vortexing the pellet with 2 ml scintillation
fluid, rinse the tubes twice with 2 ml, and add an
additional 4 ml scintillation fluid.

Evaluation
Specific binding is determined from the difference
of binding in the absence of presence of 10�4 M
L-glutamic acid and is typically 60–70 % of total
binding. IC50 values for the competing drug are
calculated by log–probit analysis of the data.

Modifications of the Assay

Glutamate (Non Selective)
The assay measures the binding of glutamate,
which binds non selectively to ionotropic gluta-
mate receptors including the NMDA, AMPA, and
kainate subtypes (Foster and Fagg 1987). In addi-
tion, glutamate binds to a family of metabotropic
glutamate receptors.

Whole brains (except cerebellum) are obtained
from male Wistar rats. A membrane fraction is pre-
pared by standard techniques. Ten mg of membrane
preparation is incubated with 1.6 nM [3H]L-gluta-
mate for 10 min at 37 �C. Non-specific binding is
estimated in the presence of 50 μM L-glutamate.
Membranes are filtered and washed three times to
separate bound from free ligand, and filters are
counted to determine [3H]L-glutamate bound.

Convulsions induced in mice by intravenous
injections of 2.0 mmol/kg L-glutamic acid can be

inhibited by glutamate antagonists (Piotrovsky
et al. 1991).

Glutamate AMPA
The assay measures the binding of [3H]AMPA (a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid), a selective agonist which binds to the
AMPA receptor subtype of glutamate-gated ion
channels (Honore et al. 1982; Olsen et al. 1987;
Fletcher and Lodge 1995).

Membranes are prepared from male rat brain
cortices by standard techniques. Fifteen mg of
membrane preparation is incubated with 5 nM
[3H]AMPA for 90 min at 4 �C. Nonspecific bind-
ing is estimated in the presence of 1 mM L-gluta-
mate. Membranes are filtered and washed three
times and the filters are counted to determine
[3H]AMPA bound.

Mutel et al. (1998) recommended [3H]Ro
48–8587 as specific for the AMPA receptor.

Fleck et al. (1996) described AMPA receptor
heterogeneity in rat hippocampal neurons. AMPA
receptor antagonists were described by Kohara
et al. (1998), Wahl et al. (1998), Kodama
et al. (1999), and Nielsen et al. (1999) and
reviewed by Chimirri et al. (1999).

Glutamate Kainate
The assay measures the binding of [3H]kainate, a
selective agonist that binds to the kainate
subtype of the ionotropic glutamate receptors in
rat brain (London and Coyle 1979; Clarke
et al. 1997).

Whole brains (except cerebellum) are obtained
from male Wistar rats. Fifteen mg of a membrane
fraction prepared by standard techniques is incu-
bated with 5.0 nM [3H]kainate for 1 h at 4 �C.
Nonspecific binding is estimated in the presence
of 1 mM L-glutamate. Membranes are filtered and
washed three times to separate free from bound
ligand, and filters are counted to determine
[3H]kainate bound.

Toms et al. (1997) and Zhou et al. (1997)
recommended [3H]-(2S,4R)-4-methylglutamate
as kainate receptor selective ligand.

Irreversible inhibition of high-affinity
[3H]kainate binding by a photoactivatable ana-
logue was reported by Willis et al. (1997).
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Worms et al. (1981) described the behavioral
effects of systemically administered kainic acid.

Hu et al. (1998) described neuronal stress and
seizure-induced injury in C57/BL mice after sys-
temic kainate administration.

Glutamate NMDA Agonist Site
The assay measures the binding of CGS 19755, a
selective antagonist, to the agonist site of the
NMDA receptor (Lehmann et al. 1988; Murphy
et al. 1988; Jones et al. 1989).
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NMDA Receptor Complex: [3H]TCP
Binding

Purpose and Rationale
The purpose of this assay is to determine the
binding affinity of potential noncompetitive
NMDA antagonists at the phencyclidine (PCP)
binding site which is believed to be within
or near the NMDA-regulated ion channel.
TCP, 1-[1-(2-thienyl)cyclohexyl]-piperidine, is a
thienyl derivative of PCP.

Excessive activity of excitatory amino acid
neurotransmitters has been associated with the
neuropathologies of epilepsy, stroke, and other
neurodegenerative disorders (Cotman and Iversen
1987; Watkins and Olverman 1987). Antagonism
of NMDA receptor function appears to be the
mechanism of action of some novel anticonvul-
sant and neuroprotective agents. Excitatory amino
acid receptors have been classified into at least
three subtypes by electrophysiological criteria:
NMDA, quisqualic acid (QA), and kainic acid
(KA) (Cotman and Iversen 1987; Watkins and
Olverman 1987). The binding site for [3H]2-
amino-4-phosphonobutyric acid (AP4) may
represent a fourth site which is less well charac-
terized. NMDA receptors are believed to be
coupled to a cation channel which converts to an
open state following activation (Kemp et al.
1987). The opening and closing of this cation
channel are also modulated by glycine, Mg2+,
Zn2+, and polyamines (Loo et al. 1986; Snell et al.
1987, 1988; Reynolds et al. 1988; Thomson 1989;
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Sacaan and Johnson 1989; Thedinga et al.
1989; Williams et al. 1989). Dissociative
anesthetics, such as phencyclidine (PCP) and
ketamine, and the neuroprotective agent MK-801
block the ion channel and are noncompetitive
NMDA receptor antagonists. Competitive NMDA
receptor antagonists, such as 3-[(�)-2-
carboxypiperazin-4-yl]-1-phosphonic acid (CPP),
and the phosphono analogues of L-glutamate,
2-amino-7-phosphonoheptanoic acid (2-AP7),
and 2-amino-5-phosphonopentanoic acid (2-AP5)
are inhibitors at the excitatory amino acid
recognition site.

Molecular cloning and functional expression
of rat and mouse NMDA receptors (Moriyoshi
et al. 1991; Meguro et al. 1992), a family of
AMPA-selective glutamate receptors (Keinänen
et al. 1990), and the metabotropic glutamate
receptors mGluR1–mGluR6 (Schoepp
et al. 1990; Masu et al. 1991; Abe et al. 1992;
Bashir et al. 1993; Nakajima et al. 1993; Tanabe
et al. 1993) have been reported.

Procedure I

Reagents
1. Buffer A: 0.1 M HEPES, pH 7.5

Weigh 23.83 g HEPES.
Add approximately 900 ml distilled water.
Adjust pH to 7.5 with 10 N NaOH.
q.s. to 1 l with distilled water.

2. Buffer B: 10 mM HEPES, pH 7.5
Dilute buffer A 1:10 with distilled water and

adjust pH to 7.5.
3. L-glutamic acid, 5 � 10�3 M

Dissolve 7.36 mg with 10.0 ml distilled
water.

Aliquots of 20 μl to the assay tube will give
a final concentration of 10�4 M.

4. Glycine, 5 � 10�4 M
Dissolve 3.75 mg with 10.0 ml distilled

water.
Dilute 1:10 with distilled water.
Aliquots of 20 μl to the assay tube will give

a final concentration of 10�5 M.
5. Phencyclidine HCl (PCP) is used for

nonspecific binding.
Dissolve 0.7 mg in 0.5 ml distilled water.

Aliquots of 20 μl to the assay tube will give
a final concentration of 10�4 M.

6. [3H]TCP is obtained from New England
Nuclear, specific activity 42–60 Ci/mmol. For
IC50 determinations, a 50 nM stock solution is
made with distilled water. Aliquots of 50 μl are
added to each tube to yield a final concentra-
tion of 2.5 nM.

7. Test compounds. A stock solution of 5 mM is
made up with a suitable solvent and serially
diluted, such that the final concentration in the
assay ranges from 10�5 to 10�8 M. Higher or
lower concentrations may be used, depending
on the potency of the drug.

Tissue Preparation
Cerebral cortex of male Wistar rats, 7–10 weeks
of age, is dissected over ice and homogenized in
ice-cold 0.32 M sucrose, 30 volumes of original
tissue weight, for 60 s with a Tissumizer setting at
70. The homogenate is centrifuged at 1000 g for
10min (SS34, 3000 rpm, 4 �C). The supernatant is
centrifuged at 20,000 g for 20 min (SS34, 12,000
rpm, 4 �C). The pellet is resuspended with cold
distilled water, to 50 volumes of original tissue
weight, using the Tissumizer, 60 s at setting of 70.
The homogenate is incubated at 37 �C for 30 min,
transferred to centrifuge tubes, and centrifuged at
36,000 g for 20 min (SS34, 16,500 rpm, 4 �C).
The pellet is again resuspended in 50 volumes
distilled water, incubated and centrifuged. All
resuspensions with the Tissumizer are for 60 s at
a setting of 70. The resulting pellet is resuspended
in 30 volumes of ice-cold 10 mM HEPES buffer,
pH 7.5, centrifuged, and washed once again
(resuspension and centrifugation) with buffer.
Following resuspension in 30 volumes of buffer,
the homogenate is frozen in the centrifuge tube
and stored at �70 �C until the day of the assay.

On the day of the assay, the homogenate is
thawed and centrifuged at 36,000 g for 20 min
(SS34, 16,500 rpm, 4 �C). The pellet is washed
three times by resuspension with ice-cold 10 mM
HEPES buffer, pH 7.5, centrifuged, and finally
resuspended in 30 volumes of buffer. Aliquots of
500 μl are used for each assay tube, final volume
1000 μl, and correspond to approximately 0.2 mg
protein.
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Assay
1. Prepare assay tubes in triplicate. For each test

compound, inhibition of [3H]TCP binding is
measured both in the absence (basal) and pres-
ence (stimulated) of 100 μM L-glutamic acid
and 10 mM glycine.

Basal Stimulated

380 μl 340 μl Distilled water

50 μl 50 μl Buffer A, 0.1 M HEPES, pH
7.5

20 μl 20 μl PCP (reagent A5) or distilled
water, or appropriate
concentration of inhibitor

0 μl 20 μl L-glutamic acid (reagent A3)

0 μl 20 μl Glycine (reagent A4)

50 μ 50 μl [3H]TCP (reagent A6)

500 μl 500 μ Tissue homogenate

2. Following the addition of the tissue, the tubes are
incubated for 120 min at 25 �C with agitation.
The assay is terminated by separating the bound
from nonbound radioligand by rapid filtration
with reduced pressure over Whatman GF/B fil-
ters, presoaked in 0.05 % polyethyleneimine,
using the Brandel cell harvesters. The filters are
rinsed once with buffer before filtering the tubes
and rinsed two times after filtration. The filters
are counted with 10 ml Liquiscint.

Evaluation
Specific binding is determined from the difference
of binding in the absence or presence of 10�4 M
PCP. Specific binding is typically 50 % of total
binding in basal conditions and 90 % of total
binding when stimulated by L-glutamic acid and
glycine. L-glutamic acid and glycine typically
increase specific binding to 300 % and 200 % of
basal binding, respectively. The combination of
L-glutamic acid and glycine typically produce a
greater than additive effect, increasing specific
binding to 700 % of basal binding. IC50 values
for the competing drug are calculated by
log–probit analysis of the data.

Protocol Modification for Crude Membrane
Homogenates
This modified procedure for the preparation of
membrane homogenates does not use extensive

lysing and washing of the tissue to remove endog-
enous L-glutamate, glycine, and other endoge-
nous compounds which enhance [3H]TCP
binding. This procedure may be used for rapid
screening of compounds for inhibition of [3H]
TCP binding site without specifically defining an
interaction at the ion channel or modulatory sites
of the NMDA receptor complex.

Procedure II

Reagents
1. Buffers A andB are prepared as described above.
2. Phencyclidine HCl is used for nonspecific

binding and is prepared as described above.
3. [3H]TCP is prepared as described above.
4. Test compounds are prepared as described above.

Tissue Preparation
Cortical tissue is dissected and homogenized in
30 volumes of 0.32 M sucrose, and a crude P2
pellet is prepared as described above. The pellet is
resuspended in 30 volumes of 10 mMHEPES, pH
7.5, centrifuged at 36,000 g (SS34, 16,500 rpm,
4 �C) for 20 min, and again resuspended in
100 volumes of buffer. This homogenate is used
directly in the assay in aliquots of 500 μl.

Assay
1. Prepare assay tubes in triplicate.

Volume Solution

380 μl Distilled water

50 μl Buffer A, 0.1 M HEPES, pH 7.5

20 μl PCP (reagent IA5) or distilled water,
appropriate concentration of inhibitor

50 μl [3H]TCP (reagent IA6)

500 μl Tissue homogenate

2. Following the addition of the tissue, the tubes
are incubated for 120 min at 25 �C with agita-
tion. The assay is terminated by rapid filtration
as described above. The filters are rinsed and
counted for bound radioactivity as above.

Evaluation
Specific binding is determined from the difference
of binding in the presence or absence of 10�4 M
PCP. Specific binding is typically 90 % of total
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binding. IC50 values for the competing drug are
calculated by log–probit analysis.

Modifications of the Method
Instead of [3H]TCP, radiolabeled [3H]MK-801
has been used as ligand (Wong et al. 1988; Javitt
and Zukin 1989; Williams et al. 1989).

Sills et al. (1991) described [3H]CGP 39653 as
a N-methyl-D-aspartate antagonist radioligand
with low nanomolar affinity in rat brain.

Nowak et al. (1995) reported that swim stress
increases the potency of glycine to displace
5,7-[3H]dichlorokynurenic acid from the
strychnine-insensitive glycine recognition site of
the N-methyl-D-aspartate receptor complex.

NMDA receptor cloning studies have shown
that NMDA receptors contain at least one of seven
different NMDAR1 subunits (NR1A–NR1G)
(Sugihara et al. 1992) and at least one of four
NMDAR2 subunits (NR2A–NR2D) (Kutsuwada
et al. 1992; Ishii et al. 1993). While the NR1
subunits are generated by alternative splicing of
a single gene, the NR2 subunits are products of
four highly homologous genes. Thus, there are
thousands of potential subunit combinations
yielding complexes of four or five subunits.

Grimwood et al. (1996) reported generation and
expression of stable cell lines expressing recombi-
nant human NMDA receptor subtypes, two cell
lines expressing NR1A/NR2A receptors, and one
cell line expressing NR1A/NR2B receptors.

NR2B selective NMDA antagonists were
described by Fischer et al. (1997), Kew
et al. (1998), Reyes et al. (1998), and Chenard
and Menniti (1999).

For discovery of novel NMDA receptor
antagonists, Bednar et al. (2004) developed a
high-throughput functional assay based on
fluorescence detection of intracellular calcium
concentrations. Mouse fibroblasts L(tk-) cells
expressing human NR1A/NR2B NMDA recep-
tors were plated in 96-well plates and loaded
with fluorescence calcium indicator fluo-3
AM. NR2B antagonists were added after stimula-
tion of NMDA receptors with 10 μM glutamate
and 10 μM glycine. Changes in fluorescence after
addition of the antagonists were fitted with a sin-
gle exponential equation providing kobs.
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Metabotropic Glutamate Receptors

Purpose and Rationale
In addition to ionotropic (AMPA, kainate, and
NMDA) receptors, glutamate interacts with a sec-
ond family of receptors, metabotropic or mGlu
receptors (Tanabe et al. 1992, 1993; Schoepp
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and Conn 1993; Hollmann and Heinemann 1994;
Nakanishi and Masu 1994; Okamoto et al. 1994;
Watkins and Collingridge 1994; Knöpfel
et al. 1995, 1996; Pin and Duvoisin 1995; Conn
and Pin 1997; Alexander et al. 2001; Skerry and
Genever 2001; DeBlasi et al. 2001; Pin and Acher
2002; Conn 2003). Three groups of native recep-
tors are distinguishable on the basis of similarities
of agonist pharmacology, primary sequence, and
G protein-effector coupling: Group I (mGlu1 and
mGlu5 and splice variants) are coupled via Gq/11

to phosphoinositide hydrolysis. Group II (mGlu2
and mGlu3) are negatively coupled via Gi/Go to
adenylyl cyclase and inhibit the formation of
cAMP following exposure of cells to forskolin
or activation of an intrinsic G protein-coupled
receptor (e.g., adenosine A2 receptor). Group III
receptors (mGlu4, mGlu6, mGlu7, and mGlu8)
also inhibit forskolin-stimulated adenylyl cyclase.

Various agonists and antagonists for
metabotropic glutamate receptors were described
(Ishida et al. 1990, 1994; Porter et al. 1992; Jane
et al. 1994; Watkins and Collingridge 1994;
Knöpfel et al. 1995; Annoura et al. 1996;
Bedingfield et al. 1996; Thomsen et al. 1996;
Acher et al. 1997; Doherty et al. 1997; Brauner-
Osborne et al. 1998; Kingston et al. 1998; Monn
et al. 1999; Jane and Doherty 2000). Schoepp
et al. (1999) reviewed pharmacological agents
acting at subtypes of metabotropic glutamate
receptors. Gasparini et al. (2002) described allo-
steric modulators of group I metabotropic gluta-
mate receptors as novel subtype-selective ligands
and their therapeutic perspectives.

Several radioligands for metabotropic gluta-
mate receptors were described:

• For subtype mGluR4a receptor by Eriksen and
Thomsen (1995),

• For group II mGlu receptors by Cartmell
et al. (1998), by Ornstein et al. (1998), and by
Schaffhauser et al. (1998).

Riedel and Reymann (1996) discussed the role
of metabotropic glutamate receptors in hippocam-
pal long-term potentiation and long-term depres-
sion and their importance for learning and
memory. Furthermore, possible roles in the

treatment of neurodegenerative disorders
(Nicoletti et al. 1996; Bruno et al. 1998) and of
Parkinson’s disease (Konieczny et al. 1998) were
discussed. Anticonvulsive properties (Atwell
et al. 1998; Thomsen and Dalby 1998; Gasparini
et al. 1999) as well as anxiolytic properties
(Helton et al. 1998) of metabotropic glutamate
receptor ligands were reported. Christoffersen
et al. (1999) found a positive effect on short-
term memory and a negative effect on long-term
memory of the class I metabotropic glutamate
receptor antagonist, AIDA, in rats.

Procedure
Cultured cells are prepared from the cerebral cor-
tex of 17-day-old embryos of Wistar rats. Prior to
the experiments, the culture is maintained for
8–12 days with minimum essential medium
(MEM) containing 5 % fetal calf serum and 5 %
horse serum.

For cyclic AMP assays, the cultured cellsx
are preincubated with HEPES-buffered
Krebs–Ringer solution containing 5.5 mM glu-
cose (HKR) for 1–1.5 h, then exposed to various
agonists for 15 min in the absence or presence of
10 μM forskolin. The content of cyclic AMP is
measured using a radioimmunoassay kit after
homogenization with 0.1 M HCl.

For phosphoinositide turnover assays, the
cultured cells are prelabeled with myo-1,2-[3H]
inositol in MEM for 8–10 h. The cells are washed
twice with HKR containing 10 mM LiCl and then
exposed to various agonists in HKR containing
10 mM LiCl for 30 min. The reaction is termi-
nated with 2 % trichloroacetic acid, and the
homogenized samples are analyzed for inositol
constituents by anion exchange chromatography
(Berridge et al. 1982). The extracts are applied to
columns containing 1 ml of Dowex 1 in the for-
mate form. The phosphate esters are then eluted
by the stepwise addition of solutions containing
increasing concentrations of formate.
Glycerophosphoinositol and inositol 1:2-cyclic
phosphate are eluted with 5 mM sodium
tetraborate plus 150 mM sodium formate. The
penultimate solution contains 0.1 M formic acid
plus 0.3 M ammonium formate, followed by
0.1 M formic acid plus 0.75 M ammonium
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formate, each of which removes more polar ino-
sitol phosphates. The 1 ml fractions eluted from
the columns are counted for radioactivity after
addition of 10 ml of Biofluor.

The percentage of radioactivity of inositol
phosphates to the total applied to the column is
calculated.

Evaluation
Dose–response curves for inhibition of forskolin-
stimulated cAMP formation and for percentage of
phosphoinositide hydrolysis are established for
each test compound.

Modifications of the Method
Thomsen et al. (1993, 1994) used baby hamster
kidney (BHK) cells stably expressing mGluR1α,
mGluR2, or mGluR4 for measurements of
phosphoinositol hydrolysis or cAMP formation.

Varney and Suto (2000) recommended func-
tional high throughput screening assay for the
discovery of subtype-selective metabotropic glu-
tamate receptor ligands.
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Excitatory Amino Acid Transporters

Purpose and Rationale
Glutamate is not only the predominant excitatory
neurotransmitter in the brain but also a potent
neurotoxin. Following release of glutamate from
presynaptic vesicles into the synapse and activa-
tion of a variety of ionotropic and metabotropic
glutamate receptors, glutamate is removed from
the synapse. This is achieved through active
uptake of glutamate by transporters located pre-
synaptically but also postsynaptically, or gluta-
mate can diffuse out of the synapse and be taken
up by transporters located on the cell surface of
glial cells. The excitatory amino acid transporters
form a gene family out of which at least five sub-
types were identified (Robinson et al. 1993; Seal
and Amara 1999). A role for glutamate trans-
porters has been postulated for acute conditions
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such as stroke, CNS ischemia, and seizure, as well
as in chronic neurodegenerative diseases, such as
Alzheimer’s disease and amyotrophic lateral scle-
rosis. Glutamate transport is coupled to sodium,
potassium, and pH gradients across the cell
membrane creating an electrogenic process.
This allows transport to be measured using
electrophysiological techniques (Vandenberg
et al. 1997).

Procedure
Complementary DNAs encoding the human glu-
tamate transporters, EAAT1 and EAAT2, are
subcloned into pOTV for expression in X. laevis
oocytes (Arriza et al. 1994; Vandenberg
et al. 1995). The plasmids are linearized with
BamHI, and cRNA is transcribed from each of
the cDNA constructs with T7 RNA polymerase
and capped with 5’,7-methyl guanosine using the
mMESSAGE mMACHINE (Ambion, Austin,
TX). cRNA (50 ng) encoding either EAAT1 or
EAAT2 is injected into defolliculated Stage
5 X. laevis oocytes. Two to 7 days later, transport
is measured by two-electrode voltage-clamp
recording using a GeneClamp 500 amplifier
(Axon Instruments, Foster City, CA) and a
MacLab 2e recorder (ADInstruments, Sydney,
Australia) and controlled using a pCLAMP 6.01
interfaced to a Digidata 1200 (Axon Instruments).
Oocytes are voltage-clamped at – 60 mV and
continuously superfused with ND96 buffer
(96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2,
1 mM MgCl2, and 5 mM HEPES, pH 7.5). For
transport measurement, this buffer is changed to
one containing the indicated concentration of sub-
strate and/or blocker. The voltage dependence of
block of glutamate transport is measured by
clamping the membrane potential at �30 mV
and then applying a series of 100 ms voltage
pulses from �100 to 0 mV and measuring the
steady-state current at each membrane potential.
This protocol is applied both before and during
the application of the compound in question and
then the baseline current at each membrane poten-
tial is subtracted from the current in the presence
of the compounds to get a measure for the
transport-specific current at the various membrane
potentials.

Evaluation
Current (I ) as a function of substrate concentra-
tion ([S]) is fitted by least squares to

I ¼ Imax S½ �= Km þ S½ �ð Þ

where Imax is the maximal current and Km is the
Michaelis transport constant. The Imax values for
the various substrates are expressed relative
to the current generated by a maximal dose of
L-glutamate in the same cell. Imax and Km

values are expressed as mean � standard
error and are determined by fitting data from
individual oocytes. The potent competitive
blockers are characterized by Schild analysis
(Arunlakshana and Schild 1959) and the Kb esti-
mated from the regression plot. The less potent
blockers are assumed to be competitive, and Ki

values calculated from IC50 values using the
equation

Ki ¼ IC50= 1þ glutamate½ �=Kmð Þ

where Ki is the inhibition constant, IC50 is the
concentration giving half maximum inhibition,
Km is the transport constant, and [glutamate] is
30 μM. The fraction of the membrane electric field
sensed by transport blockers when bound to the
transporters is estimated using the Woodhull
equation (Woodhull 1973),

Ki ¼ K0
i exp �ζδFE=RTð Þ

where Ki is the inhibition constant, Ki
0 is the inhi-

bition constant at 0 mV, ζ is the charge on the
blocker, δ is the fraction of the membrane
field, F is Faraday’s constant, E is the membrane
potential, R is the gas constant, and T is tempera-
ture in K.
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[35S]TBPS Binding in Rat Cortical
Homogenates and Sections

Purpose and Rationale
To screen potential anticonvulsant agents which
interact at the convulsant binding site of the ben-
zodiazepine/GABA/chloride ionophore complex
by measuring the inhibition of binding of
[35S]TBPS to rat cortical membranes.

TBPS, t-butylbicyclophosphorothionate, is a
potent convulsant which blocks GABAergic neu-
rotransmission by interacting with the convulsant
(or picrotoxin) site of the GABA/benzodiazepine/
chloride ionophore receptor complex (Casida
et al. 1985; Gee et al. 1986; Olsen et al. 1986;
Squires et al. 1983; Supavilai and Karabath 1984).
Picrotoxin, pentylenetetrazol, and the so-called
cage convulsants are believed to change the state

of the chloride channel to a closed conformation
and thereby block GABA-induced increases in
chloride permeability. Anticonvulsants, such as
the barbiturates and the pyrazolopyridines,
cartazolate, etazolate, and tracazolate, appear to
interact at depressant sites allosterically coupled
to the convulsant sites and facilitate the effects of
GABA on chloride permeability, by converting
the ionophore to the open conformation. Benzo-
diazepines interact at a separate recognition site to
modulate the actions of GABA. Convulsant
compounds and some anticonvulsants can inhibit
[35S]TBPS binding. These two classes can be
differentiated by their effects on dissociation
kinetics (Macksay and Ticku 1985; Trifiletti
et al. 1984, 1985). [35S]TBPS dissociates slowly,
half-life approximately 70 min, in a monophasic
manner in the presence of convulsant compounds;
anticonvulsants produce a biphasic dissociation,
with rapid and slow-phase components. It has
been postulated that the rapid and slow phases of
[35S]TBPS dissociation may correspond to the
open and closed conformation of the chloride
ionophore.

Procedure

Reagents
1. Buffer A: 0.05 M Tris with 2 M KCl, pH 7.4

6.61 g Tris HCl
0.97 g Tris base
149.1 g KCl
q.s. to 1 l with distilled water

2. Buffer B
A 1:10 dilution of buffer A in distilled water

(5 mM Tris, 200 mM KCl, pH 7.4)
3. [35S]TBPS is obtained from New England

Nuclear with a high initial specific activity,
90–110 Ci/mmol. For an inhibition assay with
a 2 nM final concentration of TBPS, a specific
activity of 20–25 Ci/mmol will provide suffi-
cient counts due to a high counting efficiency
(87 %) for 35S. The specific activity of
[35S]TBPS can be reduced with the addition
of 3–5 volumes (accurate measurement with a
Hamilton syringe) of an equimolar ethanolic
solution of non-radiolabeled TBPS (7.9 �
10�6 M). The new specific activity (Ci/mmol)
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is calculated by dividing the number of curies
by the number of mmols TBPS. Since [35S]
TBPS has a relatively short half-life, 87.1
days, the specific activity is calculated for
each assay, based on the exponential rate of
decay:

A0 = initial specific activity
A = specific activity at time t
t = days from date of initial calibration of

specific activity
t1/2 = half-life of [35S] in days (87.1)
For IC50 determinations, a 40 nM stock

solution is made with distilled water and
25 μl is added to each tube to yield a final
concentration of 2 nM in the assay.

4. Unlabeled TBPS is available from New
England Nuclear. A stock dilution of 7.923 �
10�6 M is prepared in ethanol.

5. Picrotoxin is obtained from Aldrich Chemical
Company. A solution of 5 � 10�4 M is pre-
pared with distilled water, with sonication if
necessary. Aliquots of 10 μl are added to assay
tubes to give a final concentration of 10�5 M.

6. Test compounds. A stock solution of 1 mM is
made up with a suitable solvent and serially
diluted, such that the final concentration in the
assay ranges from 10�5 to 10�8 M. Higher or
lower concentrations may be used, depending
on the potency of the drug.

Tissue Preparation
The whole cerebral cortex of male Wistar rats is
dissected over ice and homogenized with a
Tekmar Tissumizer, 20 s at setting 40, in 20 vol-
umes of 0.32 M sucrose, ice-cold. The homoge-
nate is centrifuged at 1000 g for 10 min (SS34,
3000 rpm, 4 �C). The supernatant is then
centrifuged at 40,000 g for 30 min (SS34, 20,000
rpm, 4 �C). The resulting pellet is resuspended in
20 volumes of ice-cold distilled water with two 6-s
bursts of the Tissumizer, setting 40. The homoge-
nate is centrifuged at 40,000 g for 30 min. The
pellet is washed (resuspended and centrifuged)
once with 20 volumes ice-cold buffer (Tris HCl
5 mM, KCl 200 mM, pH 7.4). The resulting pellet
is resuspended with 20 volumes buffer and frozen
at�70 �C overnight. The following day, the tissue
homogenate is thawed in a beaker of warm water,

approximately 15 min, and then centrifuged at
40,000 g for 30 min (SS34, 20,000 rpm, 4 �C).
The pellet is washed twice with 20 volumes of
ice-cold buffer, and then resuspended and frozen
at �70 �C for future use. On the day of the assay,
the homogenate is thawed and centrifuged at
40,000 g for 30min. The resulting pellet is washed
once with 20 volumes ice-cold buffer and finally
resuspended in 30 volumes buffer. Aliquots of
250 μl are used for each assay tube, final
volume 500 μl, and correspond to 8.35 mg
original wet weight tissue per tube, approximately
0.2 mg protein.

Assay
1. Prepare assay tubes in triplicate:

190 μl distilled water
25 μl Tris 0.05 M, KCl 2 M, pH 7.4
10 μl picrotoxin, 10�5M final concentration

or distilled water or inhibitor 25 μl [35S]
TBPS, final concentration 2 nM
250 μl tissue preparation, 1:30 homogenate

2. Following the addition of the tissue, the tubes
are incubated at 25 �C for 150 min with agita-
tion. The assay is terminated by rapid filtration
overWhatman GF/B filter circles, presoaked in
buffer, with 5 � 4 ml rinses of ice-cold buffer.
Vacuum filtration is performed with the
45-well filtration units to avoid contamination
of the Brandel harvesters with [35S]. The filters
are counted with 10 ml Liquiscint.

Evaluation
Specific binding is determined from the difference
between binding in the absence or presence of
10 mM picrotoxin and is typically 85–90 % of
total binding. The percent inhibition at each drug
concentration is the mean of triplicate determina-
tions. IC50 values for the competing drug are
calculated by log–probit analysis of the data.

Modifications for Dissociation Experiments
1. Prepare assay tubes as follows:

185 μl distilled water
25 μl Tris 50 mM, KCl 2 M, pH 7.4
10 μl test compound or vehicle

2. Add 250 ml tissue homogenate to tube s.
Vortex. Preincubate 30 min at 25 �C.
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3. Add 25 ml [35S]TBPS. Vortex. Incubate
180 min at 25 �C.

4. Add 5 ml picrotoxin (10�3 M) to give a final
concentration of 10�5 M. Vortex.

5. At various times after the addition of picro-
toxin (0–120 min), tubes are filtered and rinsed
as described above.

Modification for [35S]TBPS Autoradiography
1. Sections of rat brain, 20 mm thickness, are

collected onto gel-chrome alum-subbed slides,
freeze-dried for approximately 1 h, and stored
at �70 �C until used.

2. After thawing and drying at room temperature,
the sections are preincubated for 30 min in
buffer B.

3. Preparation of slide mailers for incubation:
(a) For scintillation counting:

2.47 ml distilled water
0.325 ml buffer A
3.25 ml buffer B 0.13 ml picrotoxin,

10�5 M final concentration or distilled
water or inhibitor

0.325 ml [35S]TBPS, final concentra-
tion 2 nM

6.50 ml final volume
(b) For autoradiography:

4.56 ml distilled water
0.60 ml buffer A
6.00 ml buffer B
0.24 ml picrotoxin, 10�5 M final con-

centration or distilled water or inhibitor
0.60 ml [35S]TBPS, final concentration

2 nM
12.0 ml final volume

4. Sections are incubated in slide mailers at room
temperature with [35S]TBPS in the absence or
presence of appropriate inhibitors for 90 min.

5. Slides are transferred to vertical slide holders
and rinsed in ice-cold solutions as follows: dip
in buffer B, two 5 min rinses in buffer A and a
dip in distilled water.

6. Slides are dried under a stream of cool air and
desiccated overnight at room temperature.

7. Slides are mounted onto boards with appropri-
ate [35S] brain mash standards.

8. In the dark room under safelight illumination
(GBX filter), slides are opposed to Kodak

X-OMAT AR film and stored in cassettes for
7–10 days.

9. Develop films as described in “X-OMAT AR
Film Processing.”

[35S]TBPS binding parameters

Slide-
mounted
sections

Cortical
homogenates

Assay
conditions

Tissue 20 p sections,
rat freeze-
dried, 1 h

Whole cortex, rat
1:30 homogenate
prepared with five
washes and two
freeze-thaw cycles

30 min No preincubation

Preincubation

Buffer 5 mM Tris,
200 mM KCl,
pH 7.4

5 mM Tris, 200 mM
KCl, pH 7.4

Incubation
time

90 min, 21–22
�C

150 min, 25 �C

Nonspecific 10�5 M
picrotoxin

10�5 M picrotoxin

Tissue
linearity

2.5–25 mg
tissue per
0.5 ml assay
tube

Equilibrium constants

KD (nM) 32.8 25.2

Bmax 1615 2020

(fmol/mg
prot)

Binding
kinetics

Association
kobs (min�1)

0.0496 0.0138

k + 1
(nM-min-1)

0.0164 0.0021

Dissociation
k–1 (min�1)

0.017 0.001

Dissociation
constant

1.03 4.73

k + 1/k –
1 (nM)
IC50M

Picrotoxin 2.8 � 10�7 3.4 � 10�7

TBPS 8.7 � 10�8 8.1 � 10�8

GABA 1.7 � 10�6 2.1 � 10�6

Pentobarbital 1.2 � 10�4 6.0� 10�4

Phenobarbital None at 10�3 None at 10�3

Clonazepam None at 10�6 None at 10�6
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[3H]glycine Binding in Rat Cerebral
Cortex

Purpose and Rationale
The amino acid glycine is a major inhibitory
transmitter in the vertebrate system. Glycinergic
synapses are particularly abundant in spinal cord
and brain stem, but are also found in higher
regions, including the hippocampus. The inhibi-
tory actions of glycine are potently blocked by
strychnine. Glycine modulates and may activate
the excitatory amino acid receptors of the NMDA
subtype (Thomson 1989; Laube et al. 2002).

The strychnine-sensitive, postsynaptic glycine
receptor is a ligand-gated chloride channel protein
that belongs to the nicotinic acetylcholine receptor
family. It is a pentameric transmembrane protein
composed of α and β subunits (Lynch 2004).

Glycine has been shown in vitro to potentiate
the effects of L-glutamate or NMDA on the stim-
ulation of [3H]TCP binding (Snell et al. 1987,
1988; Bonhaus et al. 1989) and [3H]norepineph-
rine release (Ransom and Deschenes 1988) and
in vivo to act as a positive modulator of the
glutamate-activated cGMP response in the cere-
bellum (Danysz et al. 1989; Rao et al. 1990). The
activation of NMDA receptors requiring the pres-
ence of glycine is necessary for the induction of
long-term potentiation (LTP), a type of synaptic
plasticity which may be fundamental to learning
processes (Oliver et al. 1990). A [3H]glycine
binding site in the brain has been identified and
characterized as a strychnine-insensitive site asso-
ciated with the NMDA receptor complex (Kessler
et al. 1989; Monahan et al. 1989; Cotman
et al. 1987). Autoradiographic studies have
shown a similar distribution of [3H]glycine and
[3H]TCP (NMDA ion channel radioligand) bind-
ing sites (Jansen et al. 1989). Compounds which
interact with the glycine site offer a novel mech-
anism of action for intervention with NMDA
receptor function.

Schmieden and Betz (1995) reviewed the phar-
macology of the inhibitory glycine receptor, the
agonist and antagonist actions of amino acids, and
piperidine carboxylic compounds.

Hyperekplexia is a hereditary neurological dis-
order in humans characterized by an excessive
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startle response which can be caused by mutations
in the α1 subunit of the heteropentameric inhibi-
tory glycine receptor (Rees et al. 2002). Becker
et al. (2002) generated transgenic mice resem-
bling this disease.

The following assay is used to assess the affin-
ity of compounds for the glycine binding site
associated with the N-methyl-D-aspartate
(NMDA) receptor complex using [3H]glycine as
the radioligand.

Procedure

Reagents
1. Buffer A: 0.5 M Tris maleate, pH 7.4 59.3 g

Tris maleate
q.s. to 0.51
Adjust pH to 7.4 with 0.5 M Tris base.

2. Buffer B: 50 mM Tris maleate, pH 7.4
Dilute buffer A 1:10 with distilled water;

adjust pH with 50 mM Tris maleate (acid) or
50 mM Tris base.

3. Glycine, 5 � 10�2 M
Dissolve 3.755 mg of glycine (Sigma

G7126) with 1.0 ml distilled water. Aliquots
of 20 μl to the assay tube will give a final
concentration of 10�3 M.

4. [3H]Glycine is obtained from New England
Nuclear, specific activity 45–50 Ci mmol. For
IC50 determinations, a 200 nM stock solution is
made with distilled water. Aliquots of 50 μl are
added to yield a final assay concentration of
10 nM.

5. Test compounds. A stock solution of 5 mM is
prepared with a suitable solvent and serially
diluted, such that the final concentrations in the
assay ranges from 10�4 to 10�7 M. Higher or
lower concentrations may be used, depending
on the potency of the compound.

6. Triton X-100,10 % (v/v) (National Diagnos-
tics, EC606). A stock solution of Triton
X-100, 10 %, can be prepared and stored in
the refrigerator. Dilute 1.0 ml of Triton X-100
to 10.0 ml with distilled water. On the day of
the assay, the tissue homogenate (1:15 dilu-
tion) is preincubated with an aliquot of the
10 % solution to give a final concentration of
0.04 % (v/v).

Tissue Preparation
Cortices of male Wistar rats are dissected over ice
and homogenized in ice-cold 0.32 M sucrose,
15 volumes of original wet weight of tissue, for
30 s with a Tissumizer setting at 70. Three cortices
are pooled for one preparation. The homogenate is
centrifuged at 1000 g for 10 min (SS34, 3000 rpm,
4 �C). The supernatant is centrifuged at 20,000 g
(SS34, 12,000 rpm, 4 �C) for 20 min. Resuspend
the pellet in 15 volumes of ice-cold distilled water
(Tissumizer setting 70, 15 s) and spin at 7600 g
(SS34, 8000 rpm 4 �C) for 20 min. The pellet is
resuspended with 15 volumes of cold distilled
water and centrifuged. Discard the supernatant
and store the pellet at �70 �C.

On the day of the assay, the pellet is resuspended
in 15 volumes ice-cold 50 mM Tris maleate, pH
7.4. Preincubate the homogenate with Triton X-100
in a final concentration of 0.04% (v/v) for 30min at
37 �C with agitation. Centrifuge the suspension at
48,000 g (SS34, 20,000 rpm, 4 �C) for 20 min.
Wash the pellet an additional three times by
resuspension with cold buffer and centrifugation.
The final pellet is resuspended in a volume 25 times
the original wet weight.

Assay
1. Prepare assay tubes in quadruplicate.

380 μl distilled water
50 μl buffer A, 0.5 M Tris maleate, pH 7.4
20 μl glycine, 10�3 M final concentration,

or distilled water or appropriate concentration
of inhibitor

50 μl [3H] glycine, final concentration
10 nM

500 μl tissue homogenate.
1000 μl final volume

2. Following the addition of the tissue, the tubes
are incubated for 20min in an ice bath at 0–4 �C.
The binding is terminated by centrifugation
(HS4, 7000 rpm, 4 �C) for 20 min. Aspirate
and discard the supernatant. Carefully rinse the
pellet twice with 1 ml ice-cold buffer, avoiding
disruption of the pellet. Transfer the pellet to
scintillation vials by vortexing the pellet with
2 ml scintillation fluid, rinse the tubes twice
with 2 ml, and add an additional 4 ml scintilla-
tion fluid.
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Evaluation
Specific binding is determined from the difference
of binding in the absence or in the presence
of 10�4 M glycine and is typically 60–70 % of
total binding. IC50 values for the competing com-
pound are calculated by log–probit analysis of
the data.

Modifications of the Method
Baron et al. (1996), Hofner and Wanner (1997),
Chazot et al. (1998) described [3H]MDL 105,519
as a high-affinity ligand for the NMDA associated
glycine recognition site.
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[3H]Strychnine-Sensitive Glycine
Receptor

Purpose and Rationale
The strychnine-sensitive glycine receptor is a
member of the family of ligand-gated ion channel
receptors. Within this family, the glycine receptor
is most closely related to the GABA receptor. Like
the GABAA receptor, the glycine receptor has an
inhibitory role, mediating an increase in chloride
conductance. However, in contrast to the GABAA

receptor, the glycine receptor is located mainly in
the spinal cord and lower brainstem, where glycine
appears to be the major inhibitory neurotransmit-
ter. Purification and molecular cloning has shown
that the glycine receptor is an oligomeric trans-
membrane protein complex composed of three α
and two β subunits. The inhibitory actions of gly-
cine are potently blocked by strychnine. In addi-
tion to strychnine, the steroid derivative RU5135
(Simmonds and Turner 1985), phenylbenzene-α-
phosphono-a-amino acid (Saitoh et al. 1996), and
5,7-dichloro-4hydroxyquinoline-3-carboxylic acid
(Schmieden et al. 1996) antagonize glycine
responses in cultured neurons or cells expressing
recombinant glycine receptors.

A glycine receptor agonist may be a potential
antispastic agent.

Procedure
Male Wistar rats weighing about 200 g are
sacrificed. About 220 mg of frozen pons and
medulla are homogenized in 2 � 10 ml ice-cold
50 mM potassium phosphate buffer, pH 7.1, by an
Ultra-Turrax homogenizer. The homogenate is
centrifuged for 10 min at 30,000 g at 0–4 �C in a
refrigerated centrifuge. The pellet is
rehomogenized in another 2 � 10 ml portion of
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the same buffer and recentrifuged as before. This
washing procedure is repeated a total of four
times. The final pellet is resuspended in
200 vol/g original tissue in ice-cold 50 mM potas-
sium phosphate buffer, pH 7.1, with or without
1000 mM NaCl, and used directly for binding
assays.

Binding assays consist of 1 ml tissue homoge-
nate, 50 μl test solution (water or 5 % v/v ethanol/
water is used for serial dilutions), 50 μl water, 5 %
ethanol/water or glycine solution (40 mM final
concentration), and 25 μl [3H]strychnine working
solution, final concentration 2 nM. The samples
are mixed well and incubated for 20 min in an ice
bath. Free and bound radioactivity are separated
by filtration through Whatman GF/C glass fiber
filters followed by washing with 2 � 10 ml
ice-cold 50 mM potassium phosphate buffer, pH
7.1. Tritium on the filters is monitored by conven-
tional scintillation counting in 3 ml Hydroluma.
Nonspecific binding is binding in the presence of
40mMglycine and is always subtracted from total
binding to give specific binding.

Evaluation
Ki values are calculated as

Ki ¼ IC50=1þ KD½ �= L½ �ð Þ

whereby IC50 are the concentrations that
inhibit by 50 % the specific binding of [3H]strych-
nine determined in two independent experiments
using at least three concentrations of the agent
in duplicate assays, [L] is the concentration
of the radioligand, and KD is the affinity
constant in the absence or the presence of
1000 mM NaCl.

NaCl shift used for differentiating glycine ago-
nists from glycine antagonists is the ratio Ki

1000 mM NaCl versus Ki 0 mM NaCl.
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Electrical Recordings from
Hippocampal Slices In Vitro

Purpose and Rationale
The transverse hippocampal slice has been
described as a well-defined cortical structure
maintained in vitro (Skrede and Westgard 1971).
The hippocampus slice has the advantage that
each slice may contain all hippocampal structures:
The chain of neurons goes from the perforant path
to granule cells of the dentate gyrus, through
mossy fibers to CA3 pyramidal cells and then
through Schaffer collaterals to CA1 cells with
their axons leaving the hippocampus through the
alveus. The pyramidal cells lie close together and
can be easily seen and penetrated with fine
microelectrodes.

Procedure
Male guinea pigs weighing 300–400 g are anes-
thetized with ether, the brains removed, and the
hippocampi dissected. Transverse slices of the
hippocampus (300–400 pm thick) are cut in par-
allel to the alvear fibers. After preparation, the
slices are submerged in 28 �C warm saline
which is equilibrated with 95 % O2 and 5 %
CO2. After a preincubation period of 2 h, slices
are transferred in a Perspex chamber (1.5� 4 cm)
and attached to the bottom consisting of optically
plain glass. The chamber is mounted on an
inverted microscope allowing detailed inspection
of the excised tissue. The slices are superfused by
an approximately 3-mm-thick layer of 32 �C
warm saline. Intracellular recordings are achieved

by means of micropipettes with tip diameters of
less than 0.5 pm which are filled with 3 mol/l
potassium chloride. Under microscopic control,
the tips of the micropipettes are placed within
the stratum pyramidale and moved by means of
a step motor-driven hydraulic microdrive. For
intracellular injections of drugs, e.g., pentylene-
tetrazol, via the recording microelectrode, a pas-
sive bridge is used. Alternatively, drugs are added
to the incubation bath.

Evaluation
The resting membrane potential and paroxysmal
depolarizations are recorded before and after
application of drugs.

Critical Assessment of the Method
The hippocampal slice has been one of the most
useful models for the study of basic mechanisms
underlying the epilepsies. The model has also
been recommended for screening of putative anti-
convulsant drugs.

Modifications of the Method
Harrison and Simmonds (1985) performed quan-
titative studies on some antagonists of N-methyl-
D-aspartate in slices of rat cerebral cortex
consisting of cerebral cortex and corpus callosum.

Tissue culture models of epileptiform activity
were described by Crain (1972).

Oh and Dichter (1994) studied the effect of a
GABA uptake inhibitor on spontaneous postsyn-
aptic currents in cultured rat hippocampal neurons
by the whole-cell patch-clamp method.

Blanton et al. (1989) described whole-cell
recordings from neurons in slices of reptilian and
mammalian cerebral cortex. Synaptic currents and
membrane properties could be studied in voltage
and current clamps in cells maintained within their
endogenous synaptic currents.

Gähwiler (1988) and Stoppini et al. (1991)
described methods for organotypic cultures of
nervous tissue. Hippocampal slices from 2 to
23-day old rats were maintained in culture at the
interface between air and the culture medium.
They were placed on a sterile, transparent, and
porous membrane and kept in Petri dishes in an
incubator. This yielded thin slices which remained
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one to four layers thick and were characterized by
a well-preserved organotypic organization. Excit-
atory and inhibitory synaptic potentials could be
analyzed using extra- or intracellular recording
techniques. After a few days in culture, long-
term potentiation of synaptic responses could
reproducibly be induced.

Using this method, Liu et al. (1995) studied
dopaminergic regulation of transcription factor
expression in organotypic cultures of developing
striatum of newborn rats.

Stuart et al. (1993) reported the implementa-
tion of infrared differential interference contrast
video microscopy to an upright compound micro-
scope and a procedure for making patch pipette
recordings from visually identified neuronal
somata and dendrites in brain slices.

Bernard and Wheal (1995) described an
ex vivo model of chronic epilepsy using slices of
rat hippocampus previously lesioned by stereotac-
tic injections of kainic acid. Extracellular popula-
tion spikes were recorded from the stratum
pyramidale of CA1 after stimulation by bipolar
twisted wire electrodes placed in the stratum
radiatum of CA1 area proximally to stratum
pyramidale near the recording electrode.

Using hippocampal slices prepared from brain
tissue of patients undergoing neurosurgery for
epilepsy, Schlicker et al. (1996) showed that the
serotoninergic neurons of the human hippocam-
pus are endowed with presynaptic inhibitory
autoreceptors.
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Electrical Recordings from Isolated
Nerve Cells

Purpose and Rationale
The use of the cell-attached patch-clamp configu-
ration to record action potential currents has
shown to have utility in the testing for drug
actions on ion channels in excitable cell mem-
branes (Kay and Wong 1986; McLarnon and
Curry 1990; McLarnon 1991).

Procedure

Preparation of Cultured Cells
The cultured cells are obtained from the hippocam-
pus or the hypothalamus of rat brain. The isolation
of the hippocampal CA1 neurons is performed
according to the procedure of Banker and Cowan
(1977). The dissociated hypothalamic neurons are
prepared according to Jirikowski et al. (1981). The
hippocampal and hypothalamic neurons that are
selected for electrophysiological recording are
bipolar in shape with the long axis dimension
between 10μm and 15 μm. The neurons are studied
over a period of 5–10 days after isolation.
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Electrophysiology
The cell-attached patch-clamp configuration is
used to record spontaneous action potentials in
the cultured neurons. The bath solution contains
140 mM NaCl, 5 mM KCl, 0.5 mM CaCl2, 1 mM
MgCl2, and 5 mM HEPES, pH 7.3. The compo-
sition of the patch pipette solution is the same as
the bath solution. The drugs used in the experi-
ments are added to the bath solution.

The patch pipettes (Corning 7052 glass) fabri-
cated using a specific patch pipette puller (PP-83;
Narishige, Tokyo) are fire-polished and filled
immediately prior to use. The resistance of the
pipettes is in the range 4–8 MΩ and the tip diam-
eters are between 1 and 2 pm. An axopatch ampli-
fier (Axon Instruments, Foster City, CA), with
low-pass filter set at 5 kHz, is used to record the
capacitative currents. After recording, at a sampling
frequency of 5 kHz, the data are stored on hard disk
or video tape for subsequent analysis. All data are
obtained at room temperature (21–24 �C).

Evaluation
The capacitative component of current recorded
by the patch pipettes is proportional to the rate of
change of membrane potential and can be
expressed as IC = CdV/dt, where C is the specific
membrane capacitance. Assuming a value of C of
1 μF/cm2 and a tip diameter of the patch pipette of
2 μm, the membrane area isolated by the patch
pipette is about 3 � 10�8 cm2. Using a value of d
V/d t of 100 mV/ms gives an approximate
expected magnitude of IC near 3 pA. When a
class III antiarrhythmic drug that blocks a delayed
rectifier K+ channel is added to the bath,
the portion of IC corresponding to the after-
hyperpolarization component of the action poten-
tial is completely abolished. The Na+ spike is not
altered by the drug. The cell-attached recordings
of IC can also be used to determine effects on the
Na+ spike when tetrodotoxin is included in the
bath solution. Thus, the spontaneous action poten-
tial can be used for evaluation of drug effects on
both K+ and Na+ channels in excitable membrane.

Modifications of the Method
Chen et al. (1990) measured current responses
mediated by GABAA receptors in pyramidal

cells acutely dissociated from the hippocampus
of mature guinea pigs according to the procedure
of Kay and Wong (1986) using whole-cell volt-
age-clamp recordings.

Caulfield and Brown (1992) studied inhibition
of calcium current in NG108–15 neuroblastoma
cells by cannabinoid receptor agonists using
whole-cell voltage-clamp recordings.

Gola et al. (1992, 1993) performed voltage
recordings on non-dissociated sympathetic neu-
rons from rabbit coeliac ganglia using the whole-
cell configuration of the patch-clamp technique
(Neher and Sakmann 1976; Sakmann and Neher
1983).

Stolc (1994) used the voltage-clamp technique
in internally dialyzed single neurons isolated from
young rat sensory ganglia to study the effects of
pyridoindole stobadine on inward sodium and
calcium currents and on slow non-inactivating
components of potassium outward current.

McGivern et al. (1995) examined the actions of
a neuroprotective agent on voltage dependent Na+

currents in the neuroblastoma cell line, NIE-115,
using the whole cell variant of the patch-clamp
technique.

Smith (1995) reviewed the use of patch and
voltage-clamp procedures to study neurotransmit-
ter transduction mechanisms.

Using whole-cell and perforated-patch record-
ings, Delmas et al. (1998) examined the part
played by endogenous G protein βγ subunits in
neurotransmitter-mediated inhibition of N-type
Ca2+ channel current in dissociated rat superior
cervical sympathetic neurons.

Gonzales et al. (1985) registered membrane
potentials with intracellular electrodes in cultured
olfactory chemoreceptor cells.
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Isolated Neonatal Rat Spinal Cord

Purpose and Rationale
The spinal cord of the neonatal rat is a useful
in vitro preparation, originally proposed by
Otsuka and Konishi (1974). In this preparation,
ventral root potentials of ten seconds of duration
can be recorded after supramaximal electrical
stimulation of the lumbar dorsal root. Variously
implicated in the generation of these slow ventral
root potentials are tachykinins, such as substance
P and neurokinin B (Yanagisawa et al. 1982;
Akagi et al. 1985; Otsuka and Yanagisawa 1988;
Guo et al. 1998) and agonists at the glutamate
receptor sites (Evans et al. 1982; Ohno and
Warnick 1988, 1990; Shinozaki et al. 1989; Ishida
et al. 1990, 1991, 1993; Woodley and Kendig
1991; Bleakman et al. 1992; King et al. 1992;
Thompson et al. 1992; Zeman and Lodge 1992;
Pook et al. 1993; Jane et al. 1994; Boxall
et al. 1996). These long-lasting reflexes are
thought to reflect a nociceptive reflex for several
reasons: the threshold of activation corresponds to
that of C fiber primary afferents (Akagi
et al. 1985); they can be depressed by opioids
(Yanagisawa et al. 1985; Nussbaumer
et al. 1989; Faber et al. 1997) and α2-adrenoceptor
agonists (Kendig et al. 1991); and a similar
response can be evoked by peripheral noxious
stimulation (Yanagisawa et al. 1995).

Procedure

Preparation of Spinal Cord
Male Wistar rats aged 6–9 days are used. Under
ether anesthesia, the spinal column is quickly
removed from the animal and placed in a Petri
dish, filled with oxygenated physiological
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solution. A laminectomy is performed on the dor-
sal surface of the spinal column at room temper-
ature. The spinal cord of the mid-thoracic to
mid-sacral level is then carefully removed from
the column and hemisected in the longitudinal
plane under a dissecting microscope. After
removal of the dura mater, the hemisected cord
is completely submerged in the recording cham-
ber (total volume: approximately 0.5 ml), which is
perfused with physiological solution (124 mM
NaCl, 5 mM KCl, 1.3 mM MgSO4, 2.5 mM
CaCl2, 1.2 mM KH2PO4, 15 mM NaHCO3,
11 mM glucose) at a flow rate of 1.5–2.5
ml/min. The perfusion medium is continuously
bubbled with a gas mixture of 95 % O2 and 5 %
CO2, and the temperature is kept at 25 � 0.5 �C.
The cut ends of the corresponding dorsal and
ventral roots in an L3–5 segment are fixed to a
pair of suction electrodes for stimulating and
recording. The preparation is stabilized in the
recording chamber for at least 90 min to allow
recovery from the dissection and the sealing of the
roots to suction electrodes.

Recording of Monosynaptic Reflexes
Test stimulations, composed of square wave
pulses of 0.05–0.2 ms duration and 5–30 V, are
applied to the dorsal root every 10 s. The dis-
charges of the corresponding ventral root are
recorded with a suction electrode, amplified and
monitored on an oscilloscope and stored on an
analogue data recorder or computer disks for
later analysis. The mean values for the waveform
of the monosynaptic reflex (amplitude, area, and
latency) are obtained from 6 to 18 successive
responses in each experiment before and during
application of drugs.

Recording of Single Motoneuron Activity
Test pulses (0.01–0.1 ms duration and 5–15 V) are
applied to the dorsal or ventral root every 2 s. The
activity of single motoneurons is recorded extra-
cellularly using glass microelectrodes (electrical
resistance approximately 10–30 MΩ) filled with
3 M sodium chloride or 2 M sodium acetate. The
microelectrode is inserted into the ventral part of
the cord through the hemisected surface while
monitoring the field potential. The motoneurons

in the ventral horn are identified by the short
and consistent latency of antidromic spikes
(1.66� 0.46 ms, n= 5), following the stimulation
of the ventral root. The motoneurons also produce
transsynaptic spikes with orthodromic stimulation
of the dorsal root, of which the latency is 10.26�
1.05 ms upon supramaximal stimulation. The
spike generation of motoneurons is displayed on
an oscilloscope and stored on magnetic tapes. The
spontaneous firing of the motoneuron is also mon-
itored on an oscilloscope and recorded through a
window discriminator and spike counter. The
mean number and latency of spikes and latency
of the dorsal root-elicited spikes are obtained from
20 to 40 successive responses in each experiment.
Comparisons are made before and 3–5 min after
application of drugs.

Evaluation
All data are expressed as the mean � SEM. Statis-
tical significance of the data is determined by
repeated measures analysis of variance (ANOVA)
and, when appropriate, Student’s t-test. AP value of
less than 0.05 is considered statistically significant.

Modifications of the Method
Smith and Feldman (1987) andWong et al. (1996)
described an in vitro neonatal rat brainstem/spinal
cord preparation. The brainstem and cervical spi-
nal cord were isolated from 0 to 4 days old ether-
anesthetized Sprague–Dawley rats. The en bloc
neuraxis was pinned down with ventral surface
upward in a recording chamber and superfused
continuously with artificial cerebrospinal fluid.
Respiratory activity was recorded with suction
electrodes from the C4 ventral root.
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Cell Culture of Neurons

Purpose and Rationale
Cell culture of neurons, especially of hippocampal
neurons, has become a widely used tool in phar-
macological studies (Banker and Cowan 1977;
Skaper et al. 1990, 1993, 2001; Araujo and
Cotman 1993; Brewer 1997, 1999; Brewer
et al. 1998; Li et al. 1998; Mitoma et al. 1998;
Semkowa et al. 1998, 1999; Chaudieu and Privat
1999; May et al. 1999; Hampson et al. 2000;
Novitskaya et al. 2000; Pickard et al. 2000;
Vergun et al. 2001).

The basic information on methodology of
cell culture of rat hippocampal neurons
was given by Banker and Cowan (1977). One
modification used by Skaper et al. (1990, 2001)
studying the role of mast cells on potentiation
by histamine of synaptically mediated
excitotoxicity in cultured hippocampal neurons
is described below.

Procedure

Preparation of Hippocampus
Timed pregnancies are obtained in female
Sprague–Dawley rats by daily checking vaginal
washings for sperm, the day on which sperm is
found being regarded as day 0. At the appropriate
stage of gestation, the pregnant rats are anesthe-
tized and the uterus removed to a sterile dish. The
remainder of the cell preparations is performed in
a sterile hood.

The brains are removed from the fetuses with a
pair of fine scissors, and the cerebral hemispheres
separated from the brain stem. When the hemi-
sphere of an 18–19-day-old fetus is viewed in a
dissecting microscope, the hippocampus can be
clearly seen on its medial surface. The hippocam-
pal fissure, usually marked by a conspicuous
group of blood vessels, indicates the approximate
junction between the hippocampus and the adjoin-
ing subicular and entorhinal cortex. The develop-
ing fimbria is seen as a white translucent band
along the free margin of the hippocampus. Before
separating the hippocampus from the hemisphere,
the meninges and adherent chorioid plexus are
carefully pulled off with fine forceps. At this
stage, the full depth of the hippocampal fissure
can be seen. Then with iridectomy scissors, the
hippocampus is separated from the adjoining cor-
tex by a cut parallel to the hippocampal fissure and
by transverse cuts at its rostral and caudal ends.

Cell Culture
Hippocampi isolated from embryonic rats (gesta-
tional age 17.5 days) are incubated with 0.08 %
trypsin and dissociated in neurobasal medium
containing 10 % heat-inactivated calf serum.
Cells are pelleted by centrifugation (200 g,
5 min) and resuspended in neurobasal medium
containing B27 (Life Technologies, Inc.) supple-
ments (with antioxidants), 25 μM glutamate,
1 mM sodium pyruvate, 2 mM L-glutamine,
50 U/ml penicillin, and 50 μg/ml streptomycin.
The cell suspension is plated onto poly-D-lysine
(10 μg/ml) coated 48-well culture plates at a den-
sity of 4.5 � 104 cells per cm2. Cultures are
maintained at 37 �C in a humidified atmosphere
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of 5 %CO2�95% air. After 5 days, one-half of the
medium is replaced with an equal volume of
maintenance medium (plating medium but
containing B27 supplements without antioxidants
and lacking glutamate). Additional medium
exchanges (0.5 volume) are performed every 3–4
days thereafter. Cells are used between 14 and
16 days in culture. During this period, neurons
develop extensive neuritic networks and form
functional synapses.

Mast cells are collected from the peritoneal
lavage of male Sprague–Dawley rats and isolated
over a bovine serum albumin gradient to >90 %
purity, as judged by toluidine blue and safranin
staining.

Neurotoxicity Assays
Cultures are washed once with Locke’s solution
(pH 7.0–7.4) with or without 1 mMMgCl2. Drug
treatments are carried out for 15–30 min (25 �C)
in a final volume of 0.5 ml. In the case of mast
cell neuron co-cultures, transwell inserts (3-μm
pore size, 9 mm diameter) are seeded with 5 �
104 mast cells in RPMI-1640 medium and placed
in 24-well plates overnight. Inserts with mast
cells are then placed into wells with hippocampal
cells. Mast cell activation is achieved using an
antigenic stimulus (0.3 μg /ml anti-DNP IgE/0.1
μg /ml DNP albumin). The mast cell-containing
inserts are removed at the end of the Mg2+ – free
incubation. After this time, all cell monolayers
are washed with complete Locke’s solution
and returned to their original culture medium
for 24 h. Cytotoxicity is evident during
24 h after the insult. Viable neurons have
phase-bright somata of round-to-oval shape,
with smooth, intact neurites. Neurons are
considered nonviable when they exhibit neurite
fragmentation and somatic swelling and
vacuolation. Cell survival is quantified 24 h
after the insult by a colorimetric reaction
with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT).

Evaluation
Data are analyzed by one-way ANOVA with
Student-Newman-Keuls post hoc test for differ-
ences between groups.

Modifications of the Method
Brewer (1997) reported the isolation and culture
of adult rat hippocampal neurons. Using different
proteases and special separation techniques, about
90,000 viable neurons could be isolated from each
hypothalamus at any age rat from birth to 24–36
months. Neurons were cultured for more than
3 weeks.

Flavin and Ho (1999) found that
propentofylline protects hippocampal neurons in
culture from death triggered by macrophage or
microglia secretory products.

To study neurite outgrowth in cultured hippo-
campal cells from Wistar rat embryos, 5000-well
cells were seeded in 8-well LabTec tissue culture
slides with a grown surface of permanox plastic
and grown in neurobasal medium supplemented
with B27 (Life Technologies, Inc.), 20 mM
HEPES, 0.4 % bovine serum albumin, penicillin
(100 IU/ml), and streptomycin (100 pg/ml)
(Novitskaya et al. 2000). For image analysis,
cells were fixed in 4 % paraformaldehyde and
stained for 20 min with Coomassie Blue R250.
Cover slides were observed in an inverted micro-
scope using phase contrast optics. To measure
neurite outgrowth from hippocampal neurons, an
unbiased counting frame containing a grid with a
number of test lines was superimposed on the
images of cells. The number of intersections of
cellular processes with the test lines was counted
and related to the number of cell bodies,
thereby allowing quantification of neurite length
per cell.

Cell culture experiments were also performed
with neuronal cells from other areas of the
brain besides the hippocampus.

Brain tissue samples of rat embryos containing
either septum plus preoptic area or
retrochiasmatic hypothalamus were dissociated
and cultured for 14 and 21 days by Jirikowski
et al. (1981). By means of immunofluorescence,
LHRH, α-MSH, vasopressin, and neurophysin-
containing hormones could be identified.

Sinor et al. (2000) studied NMDA and
glutamate-evoked excitotoxicity at distinct cellu-
lar locations in rat cortical neurons in vitro.

Canals et al. (2001) examined neurotrophic
and neurotoxic effects of nitric oxide on
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neuronal-enriched fetal midbrain cultures from
embryonic Sprague–Dawley rats.

López et al. (2001) investigated the release of
amino acid neurotransmitters in cultured cortical
neurons obtained from gestation day 19 rats by
nicotine stimulation.

Ehret et al. (2001) studied the modulation
of electrically evoked acetylcholine release in
cultured septal neurons from embryonic
Wistar rats.

Tang et al. (2001) found a lack of replicative
senescence in cultured rat oligodendrocyte pre-
cursor cells.

Yamagishi et al. (2001) used cultured rat cere-
bellar granule neurons as a model system for
studying neuronal apoptosis.

Noh and Koh (2000) prepared mixed mouse
cortical cultures containing both neurons and
astrocytes and pure astrocyte cultures, from fetal
(15 days of gestation) and neonatal (1–3 postnatal
days) mice.

Saluja et al. (2001) found that PPAR δ agonists
stimulate oligodendrocyte differentiation in glial
cell culture of mouse cerebra.

Uchida et al. (2000) succeeded to directly iso-
late clonogenic human central nervous system
stem cells from fresh human brain tissue, using
antibodies to cell surface markers and
fluorescence-activated cell sorting.

For further studies with brain cell cultures.
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In Vivo Methods

Electroshock in Mice

Purpose and Rationale
The electroshock assay in mice is used primarily
as an indication for compounds which are effec-
tive in grand mal epilepsy. Tonic hind limb exten-
sions are evoked by electric stimuli which are
suppressed by antiepileptics but also by other
centrally active drugs.

Procedure
Groups of 6–10 male NMRI mice (18–30 g) are
used. The test is started 30 min after i.p. injection
or 60 min after oral treatment with the test com-
pound or the vehicle. An apparatus with corneal or
ear electrodes (Woodbury and Davenport 1952) is
used to deliver the stimuli. The intensity of stim-
ulus is dependent on the apparatus, e.g., 12 mA,
50 Hz for 0.2 s have been used. Under these
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conditions, all vehicle-treated mice show the char-
acteristic extensor tonus.

Evaluation
The animals are observed closely for 2 min. Disap-
pearance of the hind leg extensor tonic convulsion
is used as positive criterion. Percent of inhibition of
seizures relative to controls is calculated. Using
various doses, ED50 values and 95 % confidence
interval are calculated by probit analysis.

ED50 values after oral administration are:

• Diazepam 3.0 mg/kg
• Diphenylhydantoin 20.0 mg/kg

Critical Assessment of the Method
The electroshock test in mice has been proven to
be a useful tool to detect compounds with anti-
convulsant activity.

Modifications of the Method
Cashin and Jackson (1962) described a simple
apparatus for assessing anticonvulsant drugs by
the electroshock seizure test in mice.

Kitano et al. (1996) developed the increasing-
current electroshock seizure test, a new method for
assessment of anti- and proconvulsant activities of
drugs in mice. A single train of pulses (square
wave, 5 ms, 20 Hz) of linearly increasing intensity
from 5mA to 30mAwas applied via ear electrodes.
The current at which tonic hind limb extension
occurred was recorded as the seizure threshold.
The method allows the determination of seizure
threshold current for individual animals.
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Pentylenetetrazol Test in Mice and Rats

See chapter “▶Tests for Anxiolytic Activity”.

Strychnine-Induced Convulsions
in Mice

See chapter “▶Tests for Anxiolytic Activity.”
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Picrotoxin-Induced Convulsions inMice

See chapter “▶Tests for Anxiolytic Activity”.

Isoniazid-Induced Convulsions in Mice

See chapter “▶Tests for Anxiolytic Activity”.
These tests, already described for evaluation of

the anticonvulsive activity of anxiolytics, can be
used and show activity for antiepileptics.

Many other agents induce seizures in animals
and have been used to test the anticonvulsant
activity of drugs (Stone 1972), e.g., glutarimides
(Hahn and Oberdorf 1960), pilocarpine (Tursky
et al. 1987), methionine sulfoximine (Toussi
et al. 1987), N-methyl-D-aspartic acid (Leander
et al. (1988), γ-hydroxybutyrate (Snead 1988).

Shouse et al. (1989) described mechanisms of
seizure suppression during rapid eye movement
(REM) sleep in cats. Spike–wave paroxysms in
the EEG accompanied by bilateral myoclonus of
the head and the neck were induced by
i.m. injection of 300,000–400,000 IU/kg sodium
penicillin G.
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Bicuculline Test in Rats

Purpose and Rationale
Seizures can be induced by the GAGAA antago-
nist bicuculline and are antagonized by known
antiepileptics.

Procedure
Female Sprague–Dawley rats are injected i.v. with
1 mg/kg bicuculline. At this dose, a tonic convul-
sion appears in all treated rats within 30 s after
injection. Test compounds are administered
orally 1 or 2 h before bicuculline injection.
Dose–response curves can be obtained.

Evaluation
Percentage of protected animals is evaluated.
ED50 values and 95 % confidence limits are cal-
culated by probit analysis.

Critical Assessment of the Method
Like the electroshock test, the bicuculline test is
considered to be relatively specific for
antiepileptic activity.
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Modifications of the Method
Czuczwar et al. (1985) studied the antagonism of
N-methyl-D,L-aspartic acid-induced convulsions
by antiepileptic drugs and other agents.
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4-Aminopyridine-Induced Seizures
in Mice

Purpose and Rationale
The K+ channel antagonist 4-aminopyridine is a
powerful convulsant in animals and in man. The
drug readily penetrates the blood–brain barrier and
is believed to induce seizure activity by enhancing
spontaneous and evoked neurotransmitter release.
Although both excitatory and inhibitory synaptic
transmission are facilitated by 4-aminopyridine, the
epileptiform activity induced by the drug is
predominantly mediated by non-NMDA-type
excitatory amino acid receptors. In mice, parenter-
ally administered 4-aminopyridine induces
clonic–tonic convulsions and lethality.

Procedure
Male NIH Swiss mice weighing 25–30 g are
allowed to acclimatize with free access to food
and water for a 24 h period before testing. Test
drugs are administered in various doses intraper-
itoneally 15 min prior to s.c. injection of
4-aminopyridine at a dose of 13.3 mg/kg which
was found to be the LD97 in this strain of mice.
Controls treated with 4-aminopyridine only
exhibit characteristic behavioral signs, such
as hyperreactivity, trembling, intermitted
forelimb/hind limb clonus followed by hind limb
extension, tonic seizures, opisthotonus, and death.
The mean latency to death at the LD97 is about
10 min. Groups of eight mice are used for
each dose.

Evaluation
The percentage of protected animals at each dose
is used to calculate ED50 values. Phenytoin-like
anticonvulsants such as carbamazepine and
broad-spectrum anticonvulsants such as pheno-
barbital and valproate are effective whereas
GABA enhancers such as diazepam, several
NMDA antagonists, and Cς2+ channel antagonists
such as nimodipine are not.

Critical Assessment of the Method
The profile of drugs effective in this seizure
model is distinct from other chemoconvulsant
models and more similar to those that
prevent tonic hind limb extension in the maximal
electroshock seizure test. The test is useful to
differentiate the mode of action of anticonvulsant
drugs.

Modifications of the Method
Morales-Villagran et al. (1996) described protec-
tion against seizures induced by intracerebral or
intra-cerebroventricular administration of
4-aminopyridine by NMDA receptor antagonists.
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3-Nitropropionic Acid-Induced
Seizures in Mice

Purpose and Rationale
3-Nitropropionic acid is a naturally occurring
toxin demonstrated to impair energy metabolism
via irreversible inhibition of a mitochondrial com-
plex II component, succinate dehydrogenase
(Alston et al. 1977; Ludolph et al. 1991).
3-Nitropropionic acid evokes seizures in mice
after i.p. injection of 100–200 mg/kg (Urbańska
et al. 1998, 1999). Urbańska et al. (1998) and
Zuchora et al. (2005) evaluated anticonvulsants
for their protective effect against 3-nitropropionic
acid-induced seizures.

Procedure
Male albino Swiss mice weighing 20–25 g were
injected i.p. with 210 mg/kg 3-nitropropionic
acid, which is equal to the ED97 dose (i.e., the
dose required to evoke seizures in 97 % of the
animals). Groups of eight mice received in addi-
tion various doses of the anticonvulsant drugs.
Percentage of animals with seizures and latency
until occurrence of seizures were determined.
Mortality rate was determined 2 h after injection
of 3-nitropropionic acid.

Evaluation
ED50 and LD50 values together with their confi-
dence limits were estimated by computerized
fitting of the data by linear regression analysis
according to Litchfield and Wilcoxon. Statistical
comparisons of latency data were performed by
means of one-way analysis of variance (ANOVA)
followed by adjustment of P value by the
Bonferroni method.
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Epilepsy Induced by Focal Lesions

Purpose and Rationale
Intrahippocampal injections of noxious agents or
certain cerebral lesions can induce seizures in
animals. Cavalheiro et al. (1982) studied the
long-term effects of intrahippocampal kainic
acid injections in rats.
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Procedure
Adult male Wistar rats are anesthetized with a
chloral hydrate/Nembutal mixture and placed in
a stereotactic apparatus. For injections, a 0.3 mm
cannula is inserted through a burr hole in the
calvarium. The coordinates for hippocampal
injections are based on a stereotactic atlas, e.g.,
Albe-Fessard et al. (1971). Kainic acid is
dissolved in artificial serum and infused in various
doses (0.1–3.0 μg) in a volume of 0.2 μl over a
period of 3 min. For recording, bipolar twisted
electrodes (100 μm) are positioned stereotaxically
and fixed on the skull with dental acrylic cement.
Depth recording sites include the dorsal hippo-
campus and amygdala ipsilateral to the injected
side. Surface electrodes are guided from jeweler’s
screws over the occipital cortex. An additional
screw in the frontal sinus serves as indifferent
electrode for grounding. Signals are recorded by
an EEG polygraph.

Evaluation
EEG recordings and observations of convulsive
seizures are performed during the acute phase and
during the chronic phase (up to 2 months) with
and without drug treatment.

Modifications of the Method
Several agents have been used as convulsants
after topical administration, e.g., application of
alumina cream (Kopeloff et al. 1942, 1955;
Ward 1972; Feria-Velasco et al. 1980), implanta-
tion of cobalt powder (Dow et al. 1962; Fischer
et al. 1967), injection of a colloidal gel of tungstic
acid (Blum and Liban 1960; Black et al. 1967),
topical application of penicillin (Matsumoto and
Marsan 1964), subpial injection of saturated
FeCl3 solution (Reid et al. 1979; Lange
et al. 1980), intracerebral injections of zinc sulfate
(Pei et al. 1983), intracerebral injection of anti-
bodies to brain gangliosides (Karpiak et al. 1976,
1981), microinjections of cholinergic agonists
(Ferguson and Jasper 1971; Turski et al. 1983),
topical application of atropine (Daniels and
Spehlman 1973), injection of tetanus toxin into
the hippocampus (Mellanby et al. 1984; Hawkins
andMellanby 1987), injection of strychnine in the

visual or somatosensory cortex (Atsev and
Yosiphov 1969), and electrophoretic application
of bicuculline from a fluid-filled microelectrode
(Campell and Holmes 1984).

Bernhard and Bohm (1955) and Bernhard
et al. (1956) evaluated the anticonvulsive effect
of local anesthetics in cats and monkeys. The head
was fixed in light Nembutal anesthesia, the parie-
tal areas exposed and covered with paraffin oil.
Stimulating electrodes were placed at the surface
of the parietal region. The cortex was stimulated
with repetitive square wave shocks (duration
1–3 ms) with a frequency of 25 per s for
5 s. In order to avoid muscular movements,
D-tubocurarine was given. Cortical after discharge
was registered before and after injection of local
anesthetics.

Cortical epileptic lesions were produced by
local freezing (Stalmaster and Hanna 1972;
Hanna and Stalmaster 1973; Loiseau et al. 1987).

Repetitive electrical stimulation of discrete
regions of the central nervous system has been
used as a convenient method for reproduction of
the ictal phenomena of epilepsy (Marsan 1972;
Racine 1972).

Remler and Marcussen (1986) and Remler
et al. (1986) studied the pharmacological response
of systemically derived focal epileptic lesions. A
defined area of left hemisphere of rats was radi-
ated by α-particles from a cyclotron destroying the
blood–brain barrier. After a period of 150 days
following irradiation, bicuculline was injected
intraperitoneally resulting in focal lesions with
EEG spikes and convulsions. Anticonvulsant
drugs decreased these effects.

Walton and Treiman (1989) and Walton
et al. (1994) described a model of cobalt-lesioned
rats in which status epilepticus was induced by
injection of homocysteine thiolactone.

Anderer et al. (1993) pointed out that restriction
to a limited set of EEG-target variables may lead
to misinterpretation of pharmaco-EEG results.

Krupp and Löscher (1998) developed a cortical
ramp-stimulation model allowing repeated deter-
minations of seizure threshold at short time inter-
vals in individual rats without inducing postictal
threshold increases.
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Kindled Rat Seizure Model

Purpose and Rationale
Kindling, first described by Goddard
et al. (1969), results from repetitive
subconvulsive electrical stimulation of certain
areas of the brain. Initially, local afterdischarge
is associated with mild behavioral signs; how-
ever, with continued stimulation, electrical activ-
ity presumably spreads, and generalized
convulsions occur. Although the pathogenesis
of kindled seizures is not fully understood, it
serves as a useful tool for investigating the effi-
cacy of experimental anticonvulsant agents.

Procedure
Adult female Sprague–Dawley rats (270–400 g)
are used. The rats are implanted with an elec-
trode in the right amygdala according to the
coordinates of Pellegrino et al. (1979): frontal,
7.0; lateral, �4.7; and horizontal, 2.5. At least
1 week has to elapse before electrical stimulation
of the brain is started. Afterdischarge threshold is
determined for each rat. Duration and amplitude,
behavioral seizure duration, and seizure stage are
recorded with increased stimuli afterdischarges.
Seizure severity is classified into five stages
(Racine 1972). Rats are considered to be kindled
on the first stimulation causing a stage 5 seizure
which is followed by at least two consecutive
stage 5 seizures.

The animals are tested on the day before and
after treatment with the test compound (i.p. or
orally). Amygdala stimulation is applied at vari-
ous time intervals.

Evaluation
The occurrence and the degree of seizures are
compared between control results and those after
administration of the test compound.

Critical Assessment of the Method
The kindled seizure model offers an approach to
study anticonvulsive drugs on the basis of a path-
ophysiological model. This method may give
more relevant results than the simpler methods
using maximal electroshock or chemically
induced convulsions.
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Modifications of the Method
Generalized convulsive seizures have been
induced by daily amygdaloid stimulation in
baboons (Wada and Osawa 1976) and in rhesus
monkeys (Wada et al. 1978).

The kindling effect can be produced by inter-
mittent administration of small doses of pentyl-
enetetrazol (Mason and Cooper 1972).

D€urm€uller et al. (1994) tested a competitive
(NBQX) and a noncompetitive (GYKI 52446)
AMPA antagonist and a competitive NMDA
antagonist (D-CPPene) against the development
of kindling and against fully kindled seizures in
amygdala-kindled rats.

Croucher et al. (1996) described a chemical
kindling procedure in rats by daily focal microin-
jection of NMDA into the right basolateral amyg-
dala and the inhibition of seizures by an NMDA
receptor antagonist.

Suzuki et al. (1996) studied the anticonvulsant
action of metabotropic glutamate receptor ago-
nists in kindled amygdala of rats.

Löscher et al. (1993), Ebert et al. (1997), and
Ebert and Löscher (1999) studied the effect of
phenytoin on the spread of seizures in the amyg-
dala kindling model in rats. Sprague–Dawley
rats implanted with a stimulation and recording
electrode in the basolateral amygdala showed
an increase in current intensity necessary for
eliciting afterdischarges of about 200 %
after administration of phenytoin, while seizure
severity at threshold was increased compared
to controls. Phenytoin-resistant kindled rats
are considered as a model of drug-resistant
epilepsy.

Löscher (1998) discussed the pharmacology of
glutamate receptor antagonists in the kindling
model of epilepsy.

The kindling procedure can also be used to
evaluate antidepressant drugs (Babington 1975).
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Posthypoxic Myoclonus in Rats

Purpose and Rationale
The syndrome of posthypoxic myoclonus in man
was described by Lance and Adams (1963). Lance
(1968), Fahn (1986), Truong et al. (1994), and
Jaw et al. (1994, 1995, 1996) reported on a
model in rats resembling this human disorder.

Procedure
Male Sprague–Dawley rats which fasted 12–24 h
prior to surgery are anesthetized with 100 mg/kg
ketamine i.p., supplemented by 0.4 mg/kg atro-
pine. The animal is placed on a circulating water
pad and kept at a constant body temperature by a
heating lamp. The rat is intubated and ventilated
with 30 % O2 in N2O. The femoral artery and vein
are cannulated for monitoring blood pressure and
delivery of drugs, respectively. Electrocardiogram
and blood pressure are recorded with a polygraph.
The rat is then paralyzed with 2 mg/kg
succinlycholine i.v., and ventilator settings are

Anti-Epileptic Activity 1265



adjusted to a rate of 60 strokes/min and a volume
of 7.5 ml/kg, which yields blood gases of
>150 mmHg pO2, 35–40 mmHg pCO2, and a
pH of 7.35–7.40. N2O is replaced with N2 and
an equilibrium period of 5 min is allowed.

Cardiac arrest is accomplished with a trans-
thoracic intracardiac injection of KCl and cessa-
tion of the respiration. Resuscitation is begun
10 min after the arrest by turning on the ventilator
(100 % O2), manual thoracic compressions, and
i.v. injections of 20 μg /kg epinephrine hydrochlo-
ride and sodium bicarbonate (4 mEq/kg). The rat
is then weaned from the ventilator over 2–4 h and
extubated.

Auditory-induced myoclonus: Rats are
presented with a series of 45 clicks from a metro-
nome (1 Hz, 95 dB, 40 ms), and the response to
each click is scored as follows: 0 = no response,
1 = ear twitch, 2 = ear and head jerk, 3 = ear,
head, and shoulder jerk, 4=whole body jerk, 6=
whole body jerk of such severity that it causes a
jump. The total myoclonus score of each rat is
determined by summing up the scores yielded
over 45 clicks.

Since rats ranging from 3 to 14 days post
cardiac arrest show similar susceptibility to audio-
genic stimulation, animals within this period are
used for pharmacological tests. Myoclonus scores
are assessed 30 min before and 60 min after intra-
peritoneal drug application.

Evaluation
Changes in myoclonus scores are analyzed by
paired two-tailed Student’s t-test.

Critical Assessment of the Test
Some anticonvulsant drugs, such as clonazepam
and valproic acid, were reported to be active in
this test; however, phenytoin is not. Posthypoxic
myoclonus may present a special pathological
condition.
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Rat Kainate Model of Epilepsy

Purpose and Rationale
Temporal lobe epilepsy is characterized by com-
plex partial seizures that involve and apparently
originate in the mesial temporal structures of the
limbic system. These complex partial seizures can
evolve into secondarily generalized, tonic–clonic
seizures. Patients become resistant to the treat-
ment with the usual antiepileptic drugs. The
kainate-treated rat is one of several models used
to study temporal lobe epilepsy. Examination of
the hippocampus and dentate gyrus from kainate-
treated rats has revealed a similar pattern of
neurodegeneration in the hippocampus and the
presence of mossy fiber sprouting in the inner
molecular level of the dentate gyrus. Several
authors used this model to find drugs for
treatment-resistant epilepsy (Bolanos et al. 1998;
Hellier et al. 1998; Longo and Mello 1998; Maj
et al. 1998; Bouilleret et al. 1999; Pitkänen
et al. 1999; Cilio et al. 2001; Madsen et al. 2001;
Ebert et al. 2002; Tamagami et al. 2004). Maj
et al. (1998) tested the activity of several drugs
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against kainate-induced status epilepticus and hip-
pocampal lesions in the rat.

Procedure
Male Wistar rates weighing 225–250 g are anes-
thetized with sodium pentobarbital (50 mg/kg
i.p.). They are implanted extradurally with elec-
trodes over the frontal and parietal cortex and with
a reference electrode on the cerebellum. Caution
is taken not to break the inner table of the diploe.
All the electrodes are connected to plugs and held
to the skull with dental acrylic cement. At least
7 days after surgery, rats are treated with either
saline or test drugs intraperitoneally. Then, 15 min
later, the rats receive a single i.p. dose of kainic
acid (10 mg/kg). EEG recordings and behavioral
observations are performed up to 240 min after
kainic acid administration. Status epilepticus is
defined as a sustained ictal EEG pattern lasting
20 min or longer without any interruption longer
than 1 min.

Seven days later, the rats are sacrificed, the
brains removed and immersed for 48 h in 10 %
formalin. Coronal sections (4 μm) are stained
with hematoxylineosin. Hippocampal injury is
assessed by counting the number of histologically
normal CA4 pyramidal neurons.

Evaluation
The percentage of animals protected from status
epilepticus is analyzed using Fisher’s exact test.
For calculation of the latency to status epilepticus
(min) and duration of status epilepticus (min), all
animals are included regardless of whether they
showed status epilepticus or not. The data are
evaluated by analysis of variance (ANOVA)
followed by Dunnett’s test. Neuronal counts
are analyzed using the Mann–Whitney
nonparametric test.

Modifications of the Method
Cilio et al. (2001) used immature rats to test the
anticonvulsant action and long-term effects of
gabapentin.

Hellier et al. (1998) used repeated low-dose
systemic treatment in order to reduce the mortality
associated with single injections with kainate.

Since intracerebroventricular administration of
kainic acid decreases hippocampal neuronal num-
ber and increases dopamine receptor binding in
the nucleus accumbens, kainic lesions have been
discussed as an animal model of schizophrenia
(Bardgett et al. 1995; Csernansky et al. 1998).

Humphrey et al. (2001) described methods for
inducing neuronal loss in preweanling rats using
an intracerebroventricular infusion of kainic acid.

Hu et al. (1998) investigated neuronal stress
and injury in C57/BL mice after systemic kainic
acid administration.

Bouilleret et al. (1999) tested recurrent seizures
and hippocampal sclerosis following intrahip-
pocampal kainate injection in adult mice.
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Pilocarpine Model of Epilepsy

Purpose and Rationale
Several post-status models are described in which
epilepsy develops after a chemically induced sta-
tus epilepticus, such as the kainate, the pilocar-
pine, and the lithium–pilocarpine model (Löscher
2002). Several modifications of the pilocarpine
and the lithium–pilocarpine model are reported
in the literature (Cavalheiro et al. 1991; Leite
and Cavalheiro 1995; André et al. 2001; Biagini
et al. 2001; Klitgaard et al. 2002; Leite et al. 2002;
Wallace et al. 2003; Arida et al. 2004; Leroy
et al. 2004; Lyon et al. 2004; Rigoulot
et al. 2004; Setkowicz et al. 2004). When rats
are pretreated with lithium chloride, status
epilepticus can be produced with a substantially
lower dose of pilocarpine, and rats display the
same clinical and EEG features of status
epilepticus as with pilocarpine alone (Honchar
et al. 1983). André et al. (2001) and Rigoulot
et al. (2004) tested antiepileptic drugs in the
lithium–pilocarpine model of epilepsy.

Procedure
Male Wistar rats weighing 225–250 g were anes-
thetized for electrode implantation by an
i.p. injection of 2.5 mg/kg diazepam and
1 mg/kg ketamine hydrochloride. Two single-
contact recording electrodes were placed on the
skull, one on each side of the parietal cortex, and
one bipolar deep-recording electrode was placed
in the right hippocampus (Vergnes et al. 1982).

One week after surgery, rats received 3 mEq/kg
lithium chloride i.p. On the following day,
1 mg/kg methylscopolamine bromide was admin-
istered s.c. to limit the peripheral effects of the
convulsant. Status epilepticus was induced by
injecting pilocarpine (25 mg/kg s.c.) 30 min after
methylscopolamine. Various doses of test drug
(i.p.) or 2.5 mg/kg diazepam (i.m.) were injected
at 1 h after the onset of status epilepticus. The
onset of status epilepticus corresponds to the
moment at which rats experience successive sei-
zures without recovery. Continuous spiking of the
EEG occurs 30–60 min after pilocarpine
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administration. The bilateral EEG cortical activity
and the unilateral EEG hippocampal activity were
recorded during the whole duration of status
epilepticus, and concurrent behavioral changes
were noted.

Quantification of neuronal damage was
performed 14 days after status epilepticus. Brains
of rats sacrificed in pentobarbital anesthesia were
removed, and coronal sections containing the hip-
pocampus from the anterior to the posterior level
were prepared. Quantification of cell density was
performed with a microscopic grid. The numbers
of cells obtained in 12 counted fields were
averaged.

Evaluation
Statistical analysis of neuronal damage and
epilepsy between the different groups was
performed by means of analysis of variance
followed by a post hoc Dunnett’s test for multiple
comparisons.

Modifications of the Method
Hort et al. (1999) studied the relation between
spontaneous recurrent seizures and the derange-
ment of cognitive function in pilocarpine-induced
status epilepticus,

Tang et al. (2004) recorded EEG in freely
moving mice after pilocarpine-induced status
epilepticus. A transmitter (TSE Systems, Bad
Homburg, Germany) was fixed on the electrode
socket by plug connection with wires attached to
the skull by two screws 3 days before pilocarpine
induction. The EEG signals were telemetrically
received via an HF receiver which passed the
signals to the computer.
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Self-Sustained Status Epilepticus

Purpose and Rationale
Status epilepticus causes neuronal damage that is
associated with cognitive impairment. Self-
sustained status epilepticus (SSSE) can be
induced in rats by electrical stimulation of the
perforant pathway (Halonen et al. 1996, 1999,
2001; Pitkänen et al. 1996; De Vasconcelos

et al. 1999; Mazarati et al. 1999, 2004). This
model is used to find antiepileptic drugs for
patients with therapy-resistant epilepsy. Pitkänen
et al. (1996), Halonen et al. (1996, 1999, 2001),
and Mazarati et al. (2004) studied the effect of
drugs on status epilepticus in rats.

Procedure
Under ketamine (60 mg/kg) and xylazine
(15 mg/kg) anesthesia, male Wistar rats weighing
260–280 g were implanted with a bipolar stimu-
lation electrode into the angular bundle of the
perforant path (0.5 mm anterior and 4.5 mm left
to lambda) and a bipolar recording electrode into
the ipsilateral dentate gyrus (3 mm posterior and
2.5 mm left to bregma). The depth of the electrode
was 3.5–4 mm from the brain surface and was
optimized by finding the maximal population
spike evoked from the dentate gyrus by stimuli
applied to the perforant path.

For induction of self-sustained status
epilepticus, perforant path stimulation was deliv-
ered using a Grass stimulator model 8800, for
30 min with the following parameters: 10-s,
20-Hz trains for 1 ms, 30-V pulses delivered
every minute, together with continuous 2 Hz stim-
ulation using the same parameters.

Test drugs were injected i.v. into the tail vein
either 20 min before perforant path stimulation, or
10 or 40 min after the end of perforant path stim-
ulation. Control animals were treated with saline.

Electrographic activity was acquired and ana-
lyzed off-line using Harmonie software (Stellate
Systems, Montreal), configured for automatic
detection and saving spikes and seizures. Analysis
of EEG was performed by a “blinded” unbiased
investigator. All seizure EEGs were reviewed
manually.

Evaluation
The following indices were used to quantify sei-
zure activity: duration of self-sustained status
epilepticus (= time between the end of perforant
path stimulation and the end of the last
electrographic seizure), cumulative seizure time
(the sum of the duration of all individual seizures),
number of seizure episodes, average duration of
individual seizures (cumulative seizure time
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divided by number of seizures), and number of
spikes per hour. Statistical analysis was carried
out with one-way ANOVA followed by
Newman–Keuls post hoc test, or, if the normality
test failed, ANOVA on ranks followed by
Mann–Whitney post hoc test.

Modifications of the Method
Brown et al. (1953) and Barton et al. (2001) char-
acterized the 6 Hz psychomotor seizure model of
partial epilepsy in rats.

Nissinen et al. (2000) described a model of
chronic temporal lobe epilepsy induced by elec-
trical stimulation of the lateral nucleus of the
amygdala in rats.

Walton et al. (1996) induced status epilepticus
in rats with actively epileptogenic cortical cobalt
lesions by administration of homocysteine
thiolactone.

Laurén et al. (2003) described selective
changes in gamma-aminobutyric acid type A
receptor subunits in the hippocampus in sponta-
neously seizing rats with chronic temporal lobe
epilepsy.

Brandt et al. (2003) studied epileptogenesis
and neuropathology after different types of
status epilepticus induced by prolonged electrical
stimulation of the basolateral amygdala in rats.
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Rat Model of Cortical Dysplasia

Purpose and Rationale
Epilepsy becomes drug resistant in 20–30 % of
patients. Cortical dysplasia is implicated as a
major contributing factor of many types of epilep-
tic disorders that are resistant to pharmacological
intervention (Becker 1991; Aicardi 1994). Several
animal models of cortical dysplasia with specific
clinical pathologies have been described (Amano
et al. 1996; Jacobs 1996; Jacobs et al. 1999; Lee
et al. 1997; Hirotsune et al. 1998; Chevassus au
Louis et al. 1999; Zhu and Roper 2000; Wenzel
et al. 2001; Benardete and Kriegstein 2002;
Morimoto et al. 2004; Jacobs and Prince 2005).

Baraban and Schwartzkroin (1995, 1996),
Baraban et al. (2000), and Smyth et al. (2002)
exposed rats in utero to methylazoxymethanol
(MAM).

Procedure
Dysplastic and control rats were generated by
injecting pregnant Sprague–Dawley rats on day
15 of gestation with 25 mg/kg i.p. MAM or vehi-
cle (10 % DMSO in 0.3 ml 0.9 % saline).

For in vitro studies, recordings were performed
using acute hippocampal slices from adult vehicle
or MAM-treated rats. Hippocampi were not dis-
sected out, and all slices included entorhinal cor-
tex and other overlying cortical structures. After
cutting, slices remained submerged in a holding
chamber containing oxygenated recording
medium (NaCF) consisting of (in mM):
124 NaCl, 3 KCl, 1.25NaH2PO4, 2MgSO4,
26 NaHCO3, 2 CaCl2, and 10 dextrose. A slice
was then transferred to a gas interface recording
chamber and perfused with oxygenated NaCF at a
flow rate of 2.5 ml/min at 33.5 �C. Borosilicate
glass electrodes were pulled, filled with 2 M NaCl
(2–8MΩ) and placed in the CA1 region of stratum
pyramidale and/or within neuronal heterotopias
under visual microscopic control. A monopolar-
stimulating electrode was placed in stratum
radiatum. Voltage was recorded with a Neurodata
IR-283 amplifier and monitored on a PC running
pCLAMP software. Spontaneous field activity
and evoked population spikes were stored on
hard disk for later blinded analysis. Interictal

epileptiform burst activity was initiated with per-
fusion of NaCF containing 4-aminopyridine
(100 μM), a potassium channel blocker known
to cause seizures in humans, and spontaneous
epileptiform activity in hippocampal slice prepa-
rations. The 4-aminopyridine in vitro seizure
model is based on blockade of A-type potassium
channels leading to the appearance of giant excit-
atory postsynaptic potentials generated by the
prolonged firing of pyramidal neurons in CA3
burst-generating regions of the hippocampus.
Burst frequency was determined by counting the
number of interictal epileptiform events per sec-
ond during a 3-min epoch before and after 60 min
of antiepileptic drug co-perfusion and was
expressed as Hz. Burst amplitude (1.5–6 mV)
was determined by measuring the average peak-
to-peak interval for ten consecutive representative
bursts during the same epoch. Evoked synaptic
responses were analyzed by averaging the number
of population spikes obtained on ten consecutive
sweeps recorded after stratum radiatum stimula-
tion (0.3–3-mA pulses 100 μs pulse width).
A downward voltage deflection �0.5 mV
superimposed on the population excitatory post-
synaptic potential (EPSP) was defined as a “pop-
ulation spike”; the number of population spikes
was compared for each slice during perfusion with
normal ACSF (baseline), ACSF plus
4-aminopyridine, and ACSF plus
4-aminopyridine and antiepileptic drug. For each
slice experiment, the population spike was moni-
tored every 15 min.

For in vivo studies, control andMAM-exposed
rats were administered with 15 mg/kg kainic acid,
a concentration that reliably produces acute sei-
zure activity. Behavioral activity was scored on a
six-stage scale (Germano and Sperber 1997). Ani-
mals were treated with 400 mg/kg i.p. valproate
30 min before kainate injection. Latencies to the
first sign of hyperexcitability and to the first
tonic–clonic seizure were recorded.

Evaluation
Dates were plotted graphically as “survival”
curves, and differences in mean latencies were
ranked and analyzed using a nonparametric
Kruskal–Wallis one-way ANOVA.

1272 M.J. Kallman



Critical Assessment of the Test
Since the MAM-exposed rats exhibit a dramati-
cally reduced sensitivity to commonly prescribed
antiepileptic drugs, this model is considered to be
relevant for drug-resistant epilepsy.

Modifications of the Method
Leré et al. (2002) described a model of “epileptic
tolerance” for investigating neuroprotection, epi-
leptic susceptibility, and gene expression-related
plastic changes. Expression of status epilepticus
was triggered by infusion of the excitotoxic
agent kainate in the right hippocampus of adult
rats. An appropriate dose of kainate was used
to cause brain damage to the homolateral, but
not contralateral, hippocampus. At various
times following the preconditioning insult,
kainate was then readministered into the
lateral ventricle, and neuroprotection was
observed in the contralateral side between 1 and
15 days later.
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Genetic Animal Models of Epilepsy

Purpose and Rationale
Several animal species exhibit epilepsy with
spontaneous recurrent seizures such as dogs,
rats, and mice (Löscher 1984). Serikawa and
Yamada (1986) described spontaneous epileptic
rats which are double mutants and exhibit both
tonic and absence-like seizures.

Procedure
Spontaneous epileptic rats are obtained by mating
the tremor heterozygous rat (tm/+) with the zitter
homozygous rat (zi/zi) found in a Sprague–Dawley
colony. The behavior of the spontaneous epileptic
rats is recorded weekly for 2 h on videotapes. The
frequency of tonic convulsions and wild jumping
occurring in the absence of external stimuli are
recorded. Under anesthesia, silver ball-tipped and
monopolar stainless steel electrodes are chronically
implanted in the left frontal cortex and hippocam-
pus. An indifferent electrode is placed on the fron-
tal cranium. The frequency of absence-like seizures
and tonic convulsions, as well as the duration of
each seizure, are measured on the EEG. A mild
tactile stimulus is given on the back of the animal
every 2.5 min to induce consistent tonic convul-
sions. Compounds are given i.p. or orally.

Evaluation
The number of seizures and the duration of each
seizure are obtained, and the total duration of the
seizures (number � duration) is calculated every
5 min before and after injection of the drug. Per-
cent changes between values before and after drug
administration are calculated.

Critical Assessment of the Test
Studies in spontaneous epileptic rats and other
genetic models are of value for an in-depth inves-
tigation of a potential antiepileptic drug.

Modifications of the Method
The tremor rat (tm/tm) was described as a model
of petit mal epilepsy (Serikawa and Yamada 1986;
Serikawa et al. 1987). Seki et al. (2002) attempted
to determine whether gene transfer of
aspartoacyclase inhibited absence-like seizures
in tremor rats using recombinant adenovirus.
Noda et al. (1998) and Iida et al. (1998) described
the NER rat strain (Noda epileptic rat) as a
genetic model in epilepsy research, which was
developed by inbreeding rats with spontaneous
tonic–clonic seizures in a stock of Crj:Wistar.

The genetic epileptic WAG/Rij rat has been
recommended as a useful model for general
absence epilepsy in humans (Van Luijtelaar and
Coenen 1986; Coenen et al. 1992; Budziszewska
et al. 1999; Van Luijtelaar et al. 2003; Sarkisova
et al. 2003; Bouwman and van Rijn 2004).
Danober et al. (1995, 1998), Deransart
et al. (2000), Lakaye et al. (2002), and Nehling
and Boehrer (2003) studied the GAERS rat, the
genetic absence epilepsy rat from Strasbourg,
which shows generalized nonconvulsive absence
seizures characterized by the occurrence of syn-
chronous and bilateral spike and wave discharges.

Amano et al. (1996) developed an epileptic rat
mutant with spontaneous limbic-like seizures
by successive mating and selection from an
inherited cataract rat.

Racine et al. (1999) reported selective breeding
of kindling-prone and kindling-resistant rats. The
selection of these strains was based on their rates of
amygdala kindling. From a parent population of
Long–Evans hooded and Wistar rats, the males
and females that showed the fastest and slowest
amygdala kindling rates were selected and bred.

Sarkisian et al. (1999) described seizures in the
flathead (FH) rat as a genetic model in early
postnatal development.

Tsubota et al. (2003) identified theWakayama
epileptic rat (WER) in a colony of Wistar rats, a
mutant exhibiting both tonic–clonic seizures and
absence-like seizures
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Several other genetic animal models have been
described (Löscher and Frey 1984; Löscher and
Meldrum 1984) showing epilepsy with spontane-
ous recurrent seizures, such as:

Dogs (Cunningham 1971; Edmonds et al. 1979)
Rats with petit mal epilepsy (Vergnes et al. 1982);

rats with two mutations, zitter, and tremor
(Serikawa and Yamada 1986; Xie et al. 1990);
and rats with absence-like states and spontane-
ous tonic convulsions (Sasa et al. 1988)

Tottering mice (Green and Sidman 1962;
Noebels 1979; Noebels and Sidman 1979;
Fletcher et al. 1966; Tehrani et al. 1997)

Leaner mutant mice with severe ataxia and atro-
phic cerebellum (Herrup and Wilczynsnki
1982; Heckroth and Abbott 1994),

The quaking mouse (Sidman et al. 1966;
Chermat et al. 1981) having deficiencies in
myelinization in the nervous system (Hogan
1977; Li et al. 1993; Bartoszewicz
et al. 1995) and alterations in the dopaminergic
(Nikulina et al. 1995) and α2-adrenergic
(Mitrovic et al. 1992) brain system

The stargazer mutant mouse which shows gen-
eralized non-convulsive spike–wave seizures
with behavioral arrest that resembles the clinical
phenotype of general absence epilepsy
(Noeberls et al. 1990; Di Pasquale et al. 1997)
with a disrupted Cacng2 gene (Letts et al. 2005)

The lethargic (lh/lh) mouse as a model of
absence seizures (Hosford et al. 1999)

There are models of epilepsy with reflex sei-
zures, such as:

Baboons with photomyoclonic seizures (Killam
et al. 1966, 1967; Stark et al. 1970; Naquet and
Meldrum 1972; Killam and Killam 1984;
Smith et al. 1991; Chapman et al. 1995)

Photosensitive fowls (Crawford 1969, 1970)
The Fayoumi strain of chickens (Fepi) (Batini

et al. 2004)
Audiogenic seizure-susceptible mice (Collins

1972; Seyfried 1979; Chapman et al. 1984;
Stenger et al. 1991)

Mechanically stimulated mice (Imaizumi
et al. 1959; Oguro et al. 1991)

The EL mouse which is a strain highly suscepti-
ble to convulsive seizures after repeated sen-
sory stimulation (Seyfried et al. 1986; King
and LaMotte 1989; Green and Seyfried 1991;
Wang et al. 1997; Suzuki 2004)

Audiogenic seizure-susceptible rats (Wistar
audiogenic rats WAR) (Consroe et al. 1979;
Reigel et al. 1986; Smith et al. 1991; Patel
et al. 1990; Scarlatelli-Lima et al. 2003; Galvis-
Alonzo et al. 2004; Magalhães et al. 2004)

The genetically epilepsy-prone rat GEPR
responding to acoustic stimulation has been
described by Ko et al. (1982), Dailey and Jobe
(1985), Dailey et al. (1989), Faingold (1988),
Faingold and Naritoku (1992), Faingold
et al. (1994), Jobe et al. (1992, 1995), and Laird
(1989). The inferior colliculus is strongly impli-
cated as a critical initiation site within the
neuronal network for audiogenic seizures. Two
strains were characterized: GEPR-3 exhibiting
moderate or clonic convulsions and GEPR-9
exhibiting more severe tonic extensor convulsions
(Dailey et al. 1996; Kurtz et al. 2001; Moraes
et al. 2005).

Gerbils with reflex seizures were described
by Thiessen et al. (1968), Loskota et al. (1974),
Majkowski and Kaplan (1983), Lee and Lomax
(1984), Bartoszyk and Hamer (1987), and Lee
et al. (1987).

Löscher et al. (1989) discussed the sz mutant
hamster as a genetic model of epilepsy or of
paroxysmal dystonia.

Quesney (1984) reported generalized photo-
sensitive epilepsy in cats after long-term intra-
muscular administration of low-dose penicillin.

Famula et al. (1997) and Oberbauer
et al. (2003) described the epidemiology of epi-
lepsy in tervurens (Belgian shepherd dogs) and
Srenk et al. (1994) in golden retrievers.

Seizure susceptibility was described in Dro-
sophila (Kuebler and Tanouye 2000; Kuebler
et al. 2001; Zhang et al. 2002).
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devoted on the role of brain-derived neurotrophic
factor (BDNF) (Lahteinen et al. 2002, 2003,
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