
85A. Bikner-Ahsbahs and S. Prediger (eds.), Networking of Theories as a Research 
Practice in Mathematics Education, Advances in Mathematics Education, 
DOI 10.1007/978-3-319-05389-9_6, © Springer International Publishing Switzerland 2014

    Abstract     The chapter briefl y introduces the theoretical framework of Abstraction 
in Context (AiC) by referring to the data from Chap.   2    . AiC provides a model of 
nested epistemic actions for investigating, at a micro-analytic level, learning processes 
which lead to new (to the learner) constructs (concepts, strategies, …). AiC posits 
three phases: the need for a new construct, the emergence of the new construct, and 
its consolidation.  

  Keywords     Theories   •   Abstraction in context   •   Epistemic actions  

6.1         Abstraction in Context – An Overview 

 Abstraction in Context (AiC) has been developed over the past 15 years with the 
purpose of providing a theoretical and methodological approach for researching, 
at the micro-level, learning processes in which learners construct deep structural 
mathematical knowledge. Theoretically, AiC attempts to bridge between cognitive 
and situated theories of abstraction, as well as between constructivist and activity 
oriented approaches. Methodologically, AiC proposes tools that allow the 
researcher to infer learners’ thought processes. Since we can only give an overview 
of AiC in the limited space available here, we refer the interested reader to more 
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detailed treatments of the theory (Schwarz et al.  2009 ), the methodology (Dreyfus 
et al.  2015 ), and their relationship (Hershkowitz  2009 ) that have recently been 
given elsewhere. 

 AiC is a theoretical framework rather than a full-fl edged theory, because its 
strength lies in suitably choosing and interpolating between elements from cognitive 
and situated approaches as well as activity theoretical and constructivist elements, 
and in the development of methodological tools that take these varied aspects 
into account. 

6.1.1     Principles 

6.1.1.1     Focus on Abstraction 

 Understanding the processes by which students construct abstract mathematical 
knowledge is a central concern of research in mathematics education. In schools, 
abstraction may occur in a variety of curricular frameworks, classroom environ-
ments, and social contexts. The attention to such a variety of contexts requires a 
hybrid reference to theoretical forefathers that belong to different traditions, 
Freudenthal and Davydov. Freudenthal ( 1991 ) describes what mathematicians 
have in mind when they think of abstraction. He has brought forward some of the 
most important insights to mathematics education in general, and to mathematical 
abstraction in particular. These insights led his collaborators to the idea of “vertical 
mathematization.” Vertical mathematization is a process by which learners reorganize 
previous mathematical constructs within mathematics and by mathematical means 
in such a manner that a new abstract construct emerges. In vertical reorganization, 
previous constructs serve as building blocks in the process of constructing. Often these 
building blocks are not only reorganized but also integrated and interwoven, thus 
adding a layer of depth to the learner’s knowledge, and giving expression to the 
composite nature of mathematics. 

 Davydov was one of the most prominent followers of the historical cultural theory 
of human development initiated by Vygotsky. For Davydov ( 1990 ), scientifi c 
knowledge is not a simple expansion or generalization of people’s everyday experi-
ence. It requires the cultivation of particular ways of thinking, which permit the 
internal connections of ideas and their essence to emerge; the essence of the ideas 
and their connections then, in turn, enrich reality. According to Davydov’s “method 
of ascent to the concrete,” abstraction starts from an initial, simple, undeveloped and 
vague fi rst form, which often lacks consistency. The development of abstraction 
proceeds from analysis, at the initial stage of the abstraction, to synthesis. It ends 
with a consistent and elaborated form, to which the essence of the ideas and their 
connections lend concreteness. Hence, it does not proceed from concrete to abstract 
but from an undeveloped to a developed form. 

 AiC adopts vertical mathematization and ascent to the concrete as the essential 
characteristics of processes of abstraction. It investigates how these processes occur 
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in a specifi c learning environment, a particular social context, and a given curricular 
context. Giest ( 2005 ) points out that Activity Theory is most suitable for this since 
it proposes an adequate framework for considering processes that are fundamentally 
cognitive while taking social and other contextual aspects into account. In Activity 
Theory, individual actions occur in context and make sense only within the activity 
in which they take place. The kinds of actions that are relevant to abstraction are 
epistemic actions – actions that pertain to the knowing of the participants and that 
are observable by participants and researchers. In addition, outcomes of previous 
activities naturally turn to artifacts in further ones, a feature which is crucial to tracing 
the genesis and the development of abstraction through a succession of activities 
that might form part of a curriculum. 

 As researchers in the tradition of Freudenthal, we are a priori attentive to certain 
constructs afforded by the activities we observe. In tune with Davydov and a 
cultural- historical theory of development, we also look at other constructs that may 
emerge from classroom activities. This is well expressed by Kidron and Monaghan 
( 2009 ) when dealing with the need that pushes students to engage in abstraction, 
a need which emerges from a suitable design and from an initial vagueness in which 
the learner stands:

  … the learners’ need for new knowledge is inherent to the task design but this need is an 
important stage of the process of abstraction and must precede the constructing process, the 
vertical reorganization of prior existing constructs. This need for a new construct permits 
the link between the past knowledge and the future construction. Without the Davydovian 
analysis, this need, which must precede the constructing process, could be viewed naively 
and mechanically, but with Davydov’s dialectic analysis the abstraction proceeds from an 
initial unrefi ned fi rst form to a fi nal coherent construct in a two-way relationship between 
the concrete and the abstract – the learner needs the knowledge to make sense of a situation. 
At the moment when a learner realizes the need for a new construct, the learner already has 
an initial vague form of the future construct as a result of prior knowledge. Realizing the 
need for the new construct, the learner enters a second stage in which s/he is ready to build 
with her/his prior knowledge in order to develop the initial form to a consistent and elaborate 
higher form, the new construct, which provides a scientifi c explanation of the reality. 
(Kidron and Monaghan  2009 , pp. 86–87) 

 Hence we postulate that the genesis of an abstraction passes through a three- stage 
process: the need for a new construct, the emergence of the new construct, and the 
consolidation of that construct.  

6.1.1.2     Focus on Context 

 The C in AiC stands for context. According to AiC, processes of abstraction are 
inseparable from the context in which they occur. Therefore, it was unavoidable to 
mention context already in the previous subsection. For AiC, the focus is on the 
students’ processes of construction of knowledge. The “context” integrates any piece 
of the present and past environment that can infl uence the individual processes of 
construction of knowledge. As we show in Chap.   10     on context/milieu there are 
different approaches towards “context” in different didactic cultures. For AiC, 
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artifacts are conceived as a part of the context. In another theory which privileges the 
cultural and social dimensions, artifacts are constituents of mathematical activity. 
For AiC, context has many components. One of them is the social context, often 
including peers or a teacher; another is the historical context, which refers to the 
students’ prior experiences in learning mathematics; a third is the learning context, 
which includes, among others, curricular factors, socio- mathematical norms, and 
technological tools. In any specifi c activity, tasks given to the students are an 
essential part of the context. 

 Chapter   10     of this book deals in depth with the role of context in processes of 
abstraction. In order to avoid repetitions, we therefore keep this subsection very 
short and only mention that the context situates processes of abstraction for the 
learners, while allowing the researcher to focus on the learners’ cognitive actions in 
the given context or situation. Hence, context is the notion that allows AiC to bridge 
between a cognitive and a situated approach.   

6.1.2     Questions 

 AiC was developed in response to a question that arose in the framework of a 
research-based curriculum development project (Hershkowitz et al.  2002 ), namely 
for what mathematical concepts and strategies students achieved in-depth under-
standing and retained them in the long term. Hence, the design of task sequences 
lies at the origin of the questions asked by the originators of AiC, and remains one 
of their concerns. The research questions AiC attempts to answer include:

•    Given a sequence of tasks, what are the intended constructs – the mathematical 
methods, concepts, and strategies – that the designers intended the students to 
construct when carrying out the task-based activities? How are these intended 
constructs structured, how are they related to each other, and how are they based 
on previous constructs?  

•   For each of the intended constructs, how did the students go about actually 
constructing it, and how does each student’s construct compare with the 
intended one? Is it partial, and in what sense?  

•   Did the students construct alternative or non-intended constructs? Which ones?  
•   What was the origin for the students’ motivation to construct; from where did 

their need for a new construct originate?  
•   Which previous constructs were used and consolidated during the constructing 

process?  
•   What were the characteristics of the constructing process? Was it sudden or 

prolonged, continuous or interrupted? Were several constructing processes 
developing in parallel? If so, how did they interact and infl uence each other 
(see, for example, Dreyfus and Kidron  2006 )?  

•   What role did contextual factors play in the process? For example, did groups of 
students co-construct, and if so, were the group members’ constructs compatible 
in the sense that they can continue co-constructing in the following tasks?  
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•   Did technological tools play a role in the constructing processes, and what role?  
•   What can we learn from the students’ constructing processes about the design of 

the activities, in particular their micro-design?   

As indicated by the last question, one of the aims is to improve the design of 
sequences of activities, in particular their micro-design. Micro-design includes all 
local aspects of design from the choice of a particular real-life setting for a task and 
the potential mathematical limitations imposed by that setting, via the degree of 
openness of a task, the balance between its qualitative and quantitative aspects, and 
the degree to which students are encouraged to justify their decision and actions, 
down to a specifi c choice of words or a specifi c formulation of a question.  

6.1.3     Key Theoretical Constructs and Methodology 

 Theory and methodology are closely intertwined in AiC (Hershkowitz  2009 ). 
Therefore we cannot describe the key theoretical constructs of AiC, the epistemic 
actions, without also describing the key methodological aspects of AiC, as the 
methodology’s main purpose is the identifi cation of students’ epistemic actions. It is 
important to point out the dynamic character of the theory: the analyses to identify 
abstraction processes through the unveiling of its epistemic actions not only helped 
in the understanding of learners’ cognitive processes, the theory as well as the 
methodology underwent successive refi nements (Kidron and Dreyfus  2010a ,  b ; 
Dreyfus and Kidron  2006 ). The more technical aspects of the methodology are 
described elsewhere (Dreyfus et al.  2015 ). 

6.1.3.1     The Dynamically Nested Epistemic Actions Model 

 The central theoretical construct of AiC is a theoretical-methodological model, 
according to which the emergence of a new construct is described and analyzed by 
means of three observable epistemic actions: recognizing (R), building-with (B), 
and constructing (C). Recognizing refers to the learner seeing the relevance of a 
specifi c previous knowledge construct to the problem at hand. Building-with 
comprises the combination of recognized constructs, in order to achieve a localized 
goal such as the actualization of a strategy, a justifi cation, or the solution of a problem. 
The model suggests constructing as the central epistemic action of mathematical 
abstraction. Constructing consists of assembling and integrating previous constructs 
by vertical mathematization to produce a new construct. It refers to the fi rst time the 
new construct is expressed or used by the learner. This defi nition of constructing 
does not imply that the learner has acquired the new construct once and forever; the 
learner may not even be fully aware of the new construct, and the learner’s construct 
is often fragile and context-dependent. Constructing does not refer to the construct 
becoming freely and fl exibly available to the learner: becoming freely and fl exibly 
available pertains to consolidation. 

6 Introduction to Abstraction in Context (AiC)



90

 Consolidation is a never-ending process through which a student becomes 
aware of his or her constructs, the use of the constructs becomes more immediate 
and self- evident, the student’s confi dence in using the construct increases, the 
student demonstrates more and more fl exibility in using the construct (Dreyfus 
and Tsamir  2004 ), and the student’s language when referring to the construct 
becomes progressively more elaborate. Consolidation of a construct is likely to 
occur whenever a construct that emerged in one activity is built-with in further 
activities. These further activities may lead to new constructs. Hence consolidation 
connects successive constructing processes and is closely related to the design of 
sequences of activities. 

 In processes of abstraction, the epistemic actions are nested. C-actions depend 
on R- and B-actions; the R- and B-actions are the building blocks of the C-action. 
At the same time, the C-action is more than the collection of all R- and B-actions 
that contribute to the C-action, in the same sense as the whole is more than the sum 
of its parts. The C-action draws its power from the mathematical connections, which 
link these building blocks and make them into a single whole unity. It is in this sense 
that we say that R- and B-actions are constitutive of and nested in the C-action. 
Similarly, R-actions are nested within B-actions since building-with a previous 
construct necessitates recognizing this construct, at least implicitly. Moreover, a 
lower level C-action may be nested in a more global one, if the former is made for 
the sake of the latter. Hence, we named the model the dynamically nested epistemic 
actions model of abstraction in context, more simply the RBC-model, or RBC+C 
model using the second C in order to point at the important role of consolidation. 
The RBC-model is the theoretical and micro-analytic lens through which we 
observe and analyze the dynamics of abstraction in context.  

6.1.3.2     A Priori and a Posteriori Analyses 

 As part of the AiC methodology, an effort is made to foresee trajectories of students’ 
learning: an a priori analysis of the activities (Ron et al.  2010 ) is carried out before 
data are collected. Early contacts with the TDS team have reinforced our habit to 
systematically carry out a priori analyses. Assumptions are fi rst made about the 
previous knowledge of the students, about constructs they are expected to have 
acquired during earlier activities (and which may be more or less available to them). 
Then the question is asked what knowledge constructs are required to deal with 
each task and to complete it to the designer’s or teacher’s satisfaction; we also ask 
what constructs might be helpful but not necessary to deal with the task. We are 
particularly interested in constructs that have not been relevant in previous activities 
carried out by the same students. It is our working assumption that the new con-
structs that emerge for the students when dealing with the task are closely linked 
to the intended ones. The intended constructs are of course to be distinguished 
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from what students actually construct during the activities, although a close 
correspondence between intended constructs and learners’ actual constructs may be 
expected if the design and the a priori analysis are adapted to the learner. 

 The a priori analysis has a considerable infl uence on the a posteriori RBC- analysis 
of the data collected, usually by audio and video recordings, from students carrying 
out the activities. Therefore, we give an operational defi nition for each intended 
construct, which fi xes under what circumstances the researcher will say that a 
student is using or expressing a construct that corresponds to the intended one. 
One aim of the a priori analysis is to focus, at least initially, the researchers’ attention 
on the intended constructs, while keeping an open mind for possible alternative or 
unintended constructs during the ensuing a posteriori RBC micro-analysis of students’ 
knowledge-constructing processes.    

6.2     Illustrating Abstraction in Context in the Case of Carlo, 
Giovanni, and the Exponential Function 

 The aim of this section is to illustrate the main notions of AiC as introduced above 
by means of an excerpt from the work of Carlo and Giovanni. However, for reasons 
to be explained below, this aim can only be partly realized. 

6.2.1     A Priori Analysis 

 As usual in AiC research, we begin with an a priori analysis. Chapter   4     includes an 
a priori analysis for Tasks 1 and 2, carried out by the TDS team. They identifi ed nine 
constructs C 1 –C 9 , and we assume that had we carried out such an analysis, we would 
have ended up with a similar list of constructs. We therefore adopt their analysis, 
and continue here with an a priori analysis of Task 3. Task 3 is very open, and there-
fore there are not many detailed indications about the constructs that might have 
been intended by the designer and/or teacher. However, given the quantities that can 
be varied in the Dynamic Geometry Software (Fig.   2.3    , Chap.   2    ) and the instructions 
given in the task which relate to this variation, we propose the following constructs 
as those which the designer/teacher probably intended the students to construct: 

  C 10     For any given P, that is, locally, as Δ x  tends to zero, the slope of the secant 
tends to the slope of the tangent; the slope of the secants and the tangent are 
all positive (for  a  > 1).   

  C 11     As P moves on the graph, the slopes of the corresponding secants (and hence 
the slope of the tangent) vary. As  x  grows (P moves to the right), the slope of 
the tangent grows (for  a  > 1). As  x  decreases (P moves to the left), the slope of 
the (secants and the) tangent decreases to zero (for  a  > 1).   
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  C 12     As  a  increases, the slope of the secant (for given  x , P) increases (and 
consequently the slope of the tangent increases as well). As  a  decreases 
towards 1, the slope of the secant decreases towards 0. As  a  becomes smaller 
than 1, the slope of the secant (and consequently of the tangent) becomes 
negative; the function is decreasing rather than increasing. The parts of C 10  
that depend on  a  > 1 have to be adapted for  a  < 1.   

 We stress that these are the constructs that we as AiC researchers found in our a 
priori analysis. They are not necessarily identical to what the teacher in fact intended, 
and they may, of course, be different from what the students actually constructed 
when working on the task. 

 In the present case, we learned from the answers of the teacher as reported in 
Sect.   2.2.2     that the intended constructs resulting from our a priori analysis are com-
patible with the declarations of the teacher, and that according to the teacher they are 
within reach of the students, given the previous knowledge of the class and the socio-
mathematical norms that are characteristic for the class, such as explorations that 
favor the production of conjectures and should motivate their validation as well as 
argumentation in support of conjectures (see the answer to question 1 in Sect.   2.2.2    ). 

 We further note that these intended constructs give general formulations and 
properties of the resulting constructs in the specifi c case of the exponential function. 
From the teacher’s answers (Sect.   2.2.2    ), we know that this activity was given 
as preparation before the notion of derivative had been formally introduced: 
“The worksheet […] is situated […] before the formal approach to the concept of 
derivative of a polynomial function. […] The activity intends to clarify the principal 
features of increasing behaviours and of exponential functions. In particular, it 
intends to explain the reason why at the increasing of  x  an exponential of base 
greater than 1 will increase, defi nitively, more than any other polynomial function 
of  x , whatever grade of the polynomial. In the project, exponential functions and 
sequences are used to cope with problem situations coming out from exponential 
models” (the teacher’s answer to question 17 in Sect.   2.2.2    ). So again, our “guess” 
was confi rmed after the event. 

 We note fi nally that as researchers we should always expect students to develop 
other constructs than the ones provided by the a priori analysis. Here especially, 
because of the open formulation of the task, we may expect constructs different 
from C 10 , C 11 , and C 12  to emerge for the students. Examples of such “other” 
constructs in the present case are the following:  

 C 11′     As P gets closer to y = 0, the function can be approximated by the secant line.   
  C*    The exponential function can be approximated by many small lines with an 

increasing slope that join together.   

 The fi rst of these has been called C 11′  because it is a complementary construct    to 
(the second part of) C 11 . On the other hand, C* constitutes a transition from a local 
to a global view: a construct that seems rather independent of the constructs C 10 , C 11 , 
and C 12  which were identifi ed a priori; it has therefore been assigned a separate 
notation. The alternative constructs C 11′  and C* will play a role in the a posteriori 
analysis below.  
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6.2.2     Need for Extension of Data 

 In AiC, we focus on particular kinds of curricula (see Schwarz et al.  2009 ) and 
within these, on tasks with a high potential for supporting the construction of 
knowledge that is new to the learner. This requires the elaboration of sequences of 
activities that offer the students opportunities to learn well defi ned mathematical 
ideas, for example the notion of integral as an accumulating quantity; or that order 
is relevant when rolling two dice and therefore getting a 1 and a 4 is twice as likely 
as getting two 4’s, etc. It also requires the elaboration of further activities to apply 
these ideas as tools in familiar contexts or as tools in contexts that necessitate the 
elaboration of new ideas. What is common to all these learning aims is that they 
include adding new connections between students’ previous knowledge, hence adding 
depth to the students’ understanding and integrating their knowledge in ways not 
available to them before. In brief, the design intends to create a didactical sequence 
aimed at vertical reorganization of students’ knowledge. 

 Most of the tasks that the two students in the analyzed video, Giovanni and 
Carlo, were asked to work on are not of this kind. These tasks require more 
phenomenological observation than explanations of the phenomena. For example, 
Tasks 3a and 3b ask the students to describe the phenomena that occur as Δ x  tends 
to zero; these tasks do not require any kind of justifi cation. This suggests that the 
students had previously experienced the limiting process and were now asked to 
recall it, and possibly reconstruct it in the case of a new example they may not have 
dealt with yet; from the point of view of AiC, no new construction was required but 
the students were offered an opportunity to consolidate some of their previous 
constructs. In Task 3, the students were asked to “Describe briefl y the fi gure, moving 
fi rst P, then  Δx  (changing its length), then A; write briefl y your observations on the 
sheet.” This formulation suggests that the students had never explored before what 
happens when varying the parameters  x , Δ x , and  a , and hence that the teacher 
intended that, in the course of this exploration, his students would meet situations 
they had never met before. This would offer the students an opportunity to construct 
new (to them) knowledge but as long as the requirement is descriptive rather than 
explanatory or connective, this new knowledge is simply an addition to existing 
knowledge and no need for vertical reorganization would arise. Even in tasks with 
more potential, such as studying the effect of changing  x  on the slope of the linear 
function that best approximates the function  y  =  a   x  , the stress in the task formulation 
is on  how  rather than on  why . This may have served the teacher’s plans: it may 
have provided a common background for the class to use as basis for a teacher-led 
whole-class discussion in the next lesson. However, such tasks focusing on phenom-
enological descriptions are not where we can observe the type of knowledge 
construction in which AiC researchers are primarily interested. This knowledge 
construction may then happen during the whole-class discussion. In fact, due to 
the excellent preparation the students were given, it is likely to happen, but we do not 
have data about this. Therefore, an AiC analysis of most of the data we have is 
inappropriate and unlikely to yield results about processes of constructing new 
knowledge by vertical reorganization.  
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6.2.3     A Posteriori Analysis 

 We present here our attempt at analyzing the preceding part of the students’ work on 
Task 3, namely transcript lines 249–301 (see   Appendix    ). Unsurprisingly, we will 
not be able to identify any constructing actions. 

 The students start on Task 3 in line 249. Until line 281, they identify parts of the 
situation on the screen. Only in line 281 do they fi nally read the task. Until then, a 
main issue in the discussion focuses on identifying the segment PH with  Δx . This 
identifi cation is not a mathematical relationship but a given of the task. The students 
need to make this identifi cation in order to get access to the situation, but this is not 
an epistemic action providing them insight into mathematical connections or 
relationships. It is a preparatory action and is of interest to us only as such. 

 In what follows, the students make purely phenomenological observations of 
what happens as one of the parameters varies, in accord with what they were asked 
to do in the task. They fi rst seem to vary P; they seem to observe phenomena but do 
not draw any conclusions; all they say is that QH changes as a consequence of 
changing P. This could potentially have led to insights such as “the slope changes”; 
“the slope of the secant changes”; “the slope of the tangent changes”; “the derivative 
changes” – all depending on the preparation of the students and the requirements of 
the task. Had the students reached such insights, we would have claimed that they 
recognized some of their previous constructs as relevant to the present situation, 
and possibly that they built-with them a dynamic image. But the task does not 
require such insights and the students’ utterances do not indicate such insights. 
Our interpretation of these utterances is that the students’ thinking did not include 
such insights. 

 Then, in line 285, Carlo seems to refer to the fact that Giovanni now changes the 
 Δx  instead of P. This leads to a mathematically more signifi cant observation that 
might later become useful, namely that “it approaches slowly … slowly … a tangent” 
(lines 287, 289, 291, 292). From the point of view of AiC, we might identify this 
as recognizing a previous construct (tangent) as relevant in the current context. 
This recognizing action might then act as a seed for a subsequent constructing 
action, possibly of C 10 . The role of such seeds for later constructing actions has been 
discussed elsewhere (Kidron et al.  2010 ). 

 Several more observations are made subsequently, namely what happens when 
 Δx  increases (lines 294–296) or what is the quality of the tangent approximation 
when P moves to the left or to the right (lines 298–301). The students correctly 
observe that as P moves to the left, the approximation is better than when P moves 
to the right. These observations later become relevant. However, at this stage 
they are cumulative. They do not require nor provoke any vertical reorganization. 
They are not used for a purpose like solving a problem or justifying a mathematical 
relationship, and therefore no building-with actions occur. They do not even qualify 
as recognizing actions since such an epistemic action, as defi ned above, implies that 
the students recognize a specifi c previously constructed mathematical concept or 
strategy. 
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 As a consequence of what we wrote in the previous section, the tasks given to 
Giovanni and Carlo were such that only in very few excerpts of the protocol might 
an RBC analysis be expected to yield constructing actions; moreover, these excerpts 
are all concentrated in lines 302–347, and will be analyzed in Chaps.   9     and   10     
because they are the same data on which two different networking processes are 
described in these chapters. Readers who would like to see an RBC analysis that is 
independent of the data used in this monograph, and demonstrates how such an 
analysis works in a case where it is appropriate, are referred to the literature, for 
example to Dreyfus et al. ( 2015 ), which focuses on the methodology. 

 In this chapter, we gave a brief introduction to Abstraction in Context (AiC). We 
described our view of abstraction as it is grounded in the work of Freudenthal and 
Davydov, and the notion of context as it is pertinent for AiC. We introduced the idea 
of epistemic action as it emerges from Activity Theory and the dynamically nested 
epistemic actions model, which is the key theoretical construct underlying our 
methodology. In the second part of this chapter, we attempted to demonstrate our 
methodology using the data of Carlo and Giovanni, and explained why this attempt 
was only partially successful. We are aware that the present description has its limi-
tations and refer the reader to longer and deeper descriptions available in the litera-
ture (Dreyfus et al.  2015 , and references therein; Schwarz et al.  2009 ).      
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