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    Abstract     The chapter briefl y introduces the Theory of Didactical Situations (TDS) 
by referring to the data from Chap.   2    . TDS provides a systemic framework for inves-
tigating teaching and learning processes in mathematics, and for supporting didacti-
cal design. The theory is structured around the notions of a-didactical and didactical 
situations and includes a corpus of concepts relevant for teaching and learning in 
mathematics classrooms.  

  Keywords     Theories   •   Theory of didactical situations  

     The Theory of Didactical Situations (named TDS in this volume) began to develop 
in the 1960s in France, initiated by Guy Brousseau who has led its development 
since that time. A fi rst synthesis was published in 1997 in English (Brousseau  1997 ) 
but the theory has since developed considerably in its conceptual notions as 
much as its research methodologies, as attested to for instance by the special issue 
of the journal  Educational Studies in Mathematics  (Laborde et al.  2005 ) or the 
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proceedings of the 2009 Summer School devoted to didactical engineering 
(Margolinas et al.  2011 ). Important aspects of these developments were motivated by 
the increasing investment of TDS in the study of ordinary classrooms, and many 
researchers worldwide have made contributions. This chapter introduces some main 
elements of TDS structured by principles, questions, methodologies, and key con-
structs as presented in Chap.   1     of this book, and invites the reader to make sense of 
these elements through the analysis of the two fi rst episodes of the video of Carlo 
and Giovanni, introduced in Chap.   2    . 

4.1     Theory of Didactical Situations: An Overview 

 TDS is a “home-grown” theory (Sriraman and English  2010 ); those who have con-
tributed to its development share with the initiator the conviction that the fi eld of 
mathematics education needs to develop its own theorizations and not just borrow 
and adapt theories developed in connected fi elds such as psychology, sociology, or 
anthropology. In the limited space allocated to this introduction, we focus on three 
characteristics that create the specifi c lens through which TDS considers the teach-
ing and learning of mathematics: the systemic nature of teaching and learning; the 
epistemology of mathematical knowledge; and the vision of learning as a combina-
tion of adaptation and acculturation. These characteristics determine the questions 
that TDS raises and tries to answer, as well as the methodologies it privileges. 

4.1.1     Principles 

 Since its beginnings, TDS has adopted a systemic perspective, conceiving the 
didactics of mathematics as the study of the conditions for the dissemination and 
appropriation of mathematical knowledge through educational institutions. This 
systemic perspective is refl ected in the organization of the theory around the idea 
of situation. A situation is itself a system, “the set of circumstances in which the 
student fi nds herself, the relationships that unify her with her milieu, the set of 
‘givens’ that characterize an action or an evolution” (Brousseau  1997 , p. 214). 
TDS is interested in  didactical situations , that is, those designed and utilized 
with teaching and learning aims. Brousseau distinguishes two possible perspec-
tives on didactical situations: a vision of these as the student’s environment orga-
nized and piloted by the teacher; and a broader vision including the teacher and 
the educational system itself. 

 A fi rst important characteristic of TDS is the attention it pays to mathematics and 
its epistemology. In the theory, this sensibility is expressed in different ways, notably 
through the reference to Bachelard’s epistemology and the didactic conversion of his 
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notion of  epistemological obstacle , and also through the notion of  fundamental situ-
ation . Referring to Bachelard’s studies in physics which led to a list of obstacles of 
epistemological nature, Brousseau ( 1997 , p. 83) extends its application to the fi eld of 
didactics of mathematics, defi ning epistemological obstacles as forms of knowledge 
that have been relevant and successful in particular contexts, including often school 
contexts, but that at some moment become false or simply inadequate, and whose 
traces can be found in the historical development of the domain itself (see also 
Schneider  2013 ). 

 A fundamental situation for a given concept is a mathematical situation or, 
better, a  family of mathematical situations  for which the concept constitutes a 
priori an optimal solution. This epistemological analysis, connecting mathematical 
knowledge and situations, constitutes what Brousseau calls today a  theory of 
mathematical situations , a fi rst level of modeling and analysis in TDS, the second 
one being that of  didactical situations . The well-known situation of puzzle 
enlargement (Brousseau  1986 ,  2008 ) can for instance be seen as a fundamental 
situation for linearity. 

 A second important distinction in TDS is linked to the following epistemological 
characteristic: mathematical knowledge is something that allows us to act on our 
environment, but the pragmatic power of mathematics is highly dependent on the 
specifi c language it creates, and on its forms of validation. This characteristic 
refl ects in TDS through the distinction between three particular types of situations: 
 situations of action ,  situations of formulation , and  situations of validation . The fi rst 
chapter in Brousseau ( 1997 ) illustrates this distinction taking as an example a suc-
cession of situations developed around the famous problem “Race to 20”, conceived 
as a fundamental situation for Euclidian division. 

 The third important characteristic refers to students’ cognitive dimension, 
particularly to the combination of the two processes  adaptation  and  acculturation . 
Regarding adaptation, Brousseau’s discourse shows an evident proximity with 
Piagetian epistemology:

  the student learns by adapting herself to a  milieu  which generates contradictions, diffi cul-
ties and disequilibria, rather as human society does. This knowledge, the result of the stu-
dents’ adaptation, manifests itself by new responses which provide evidence for learning. 
(Brousseau  1997 , p. 30) 

 But this adaptation is not suffi cient; acculturation is necessary to link students’ 
constructions with forms of knowledge that are socially shared, culturally embedded, 
and institutionally legitimated, being called “savoirs” in French. Such a change 
in the status of knowledge requires the teacher’s didactic intervention and can be 
achieved in many different ways (Brousseau  1997 ). 

 TDS key constructs take these two types of processes into account: independent 
adaptation through the notions of  a-didactical situation  and  milieu , acculturation 
through the notions of  didactical situation  and  didactical contract , and the relationships 
between these processes through the dual notions of  devolution  and  institutionalization  
(see Sect.  4.1.4 ).  
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4.1.2     Questions 

 The questions that TDS tries to answer are diverse but coherent with these princi-
ples. They regard:

•    the functioning of didactical systems, leading to the identifi cation of regularities, 
and their elaboration into didactical phenomena;  

•   the determination of fundamental situations associated with specifi c mathematical 
concepts, and their possible actualizations into didactical situations, taking into 
account the conditions and constraints of particular educational contexts;  

•   the dependence between situations and the progression of knowledge in particular 
domains, paying the necessary attention to both adaptation and acculturation 
processes.   

Even if TDS has the ultimate goal of improving students’ mathematics learning, the 
learner is not at the center of the theory. TDS gives priority to the understanding of 
how the conditions and constraints of didactical systems enable or hinder learning, 
and how the functioning of such systems can be improved.  

4.1.3     Methodologies 

 The systemic perspective and TDS ambition of developing didactics as a genuine 
fundamental and applied fi eld of research have also shaped the methodological 
development of the theory. Among the diversity of methodologies used in TDS, the 
systemic view led to being especially valued those methodologies giving access to 
the complexity of didactic systems, what resulted in an original concept: that of 
 didactical engineering  (Artigue  1989 ,  2013 ). It is a methodology which is struc-
tured around a phase of preliminary analysis combining epistemological, cognitive, 
and didactical perspectives, and aiming at the understanding of the conditions and 
constraints to which the didactical system considered is submitted, a phase of design 
and a priori analysis of situations refl ecting its optimization ambition; and, after the 
implementation, a phase of a posteriori analysis and validation. As pointed out by 
Artigue ( 2008 ), the TDS theoretical basis explains:

  the importance given in it to the  a priori  analysis, and the rejection of usual validation 
processes based on the comparison between the pre and post characteristics of experimental 
and control groups, at the benefi t of an internal comparison between the  a priori  analysis 
and the  a posteriori  analysis of classroom realizations. (Artigue  2008 , p. 11) 

 The TDS constructs mentioned above are essential tools for researchers to design 
situations and carry out a priori and a posteriori analyses. In the design of learning 
situations, for instance, particular attention is paid to the constituents of the milieu 
organized for the learner, and to the optimization of the possibilities it offers, both 
in terms of action and feedback, to foster the emergence of the targeted strategies 
and knowledge. Attention is also paid to the way the devolution process is organized. 
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An important part of the analyses is devoted to the situation itself: what mathematical 
sense can emerge from the interactions between the student and the milieu; is the 
situation suffi ciently accessible and effi cient to enable the student to have access, by 
adaptation, to an appropriate meaning of the target concept? This analysis often 
relies on an epistemological analysis of the concept at stake. 

 Since the 1990s, the increasing use of TDS for the study of ordinary classrooms 
has led to the development of new methodologies based on participative and 
naturalistic observations, but there is no doubt that didactical engineering, which 
has itself evolved as a methodology (Margolinas et al.  2011 ), remains the privileged 
methodology in TDS when a research project includes a design dimension.  

4.1.4      Key Constructs 

 We focus in this part on the key constructs necessary for making sense of the video 
analysis developed in section “Illustrating the theory through analysis of the video 
of Carlo, Giovanni, and the exponential function”, but do not enter into the recent 
developments of TDS. Complementary insights will be introduced in other chapters 
of the book. 

4.1.4.1     A-Didactical Situation and Milieu 

 The notions of  a-didactical situation  and  milieu  are attached to the vision of learning 
as an adaptation process and to the ambition of optimizing such a process. This 
means elucidating and creating the conditions for making the target mathematical 
knowledge emerge from students’ interaction with a milieu, as the optimal solution 
to a mathematical problem. As explained by Brousseau ( 1997 , p. 30), in a-didactical 
situations the students accept to take the mathematical responsibility of solving a 
given problem, and the teacher refrains from interfering and suggesting the target 
mathematical knowledge for making such adaptation processes possible. As 
Brousseau ( 1997 ) stresses:

  The student knows very well that the problem was chosen to help her acquire a new piece 
of knowledge, but she must also know that this knowledge is entirely justifi ed by the 
internal logic of the situation and that she can construct it without appealing to didactical 
reasoning. (p. 30) 

 Hence comes the name of  a-didactical situation , the prefi x “a” indicating that the 
situation has been temporally freed from its didactical intentionality. Initially, the 
development of TDS was tightly linked to the development of a-didactical situations, 
as evidenced by the impressive work that has been carried out in the experimental 
center COREM in Bordeaux since 1972. 

 The milieu is the system with which the students interact in the a-didactical situ-
ation and an essential role of the teacher or the researcher is to organize this milieu. 
It includes material and symbolic resources, possibly calculators, computer devices, 
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or all types of machinery. It conditions the  didactical variables  of the situation, that 
is to say those which affect the cost and economy of solving strategies. Learning 
being conceived as an adaptation process, the milieu must be a source of contradic-
tions, imbalances, what is captured through the idea of  antagonist milieu . The 
milieu must allow students to experience the limitations of their initial strategies, 
but its possibilities of action and feedback should also make possible an evolution 
towards winning strategies, which attest the construction of new knowledge. 

 Of course, these constraints impose desirable conditions on the problems them-
selves whose solving is the motive of such a-didactic interaction student–milieu as 
expressed in Brousseau ( 2008 , p. 249):

•    The mathematical knowledge aimed at should be the only good method of 
solving the problem.  

•   The assignment (i.e. the given task) should not refer to any of the knowledge that 
one wishes to have appear. It determines the decisions permitted, the initial state, 
and the gain or loss represented by the fi nal states.  

•   Students can start to work with inadequate “basic knowledge”.  
•   They can tell for themselves whether their attempt succeeded or failed.  
•   Without determining the solution, these verifi cations are suggestive (they favour 

some hypotheses, bring in some appropriate information, neither too open nor 
too closed).  

•   Students can make a rapid series of “trial and error” attempts, but anticipation 
should be favoured.  

•   Amongst the empirically acceptable solutions only one takes care of all objections.  
•   The solution can be found and tested by some of the students in a reasonable 

amount of time in an ordinary class, and swiftly shared and verifi ed by the others.  
•   The situation can be re-used, and will then provide some questions that relaunch 

the whole process.   

Naturally, these conditions describe an ideal and are rarely fulfi lled by real scenar-
ios. They constitute a theoretical reference for researchers, helping them to antici-
pate the a-didactical potential of a given scenario and its limitation, and to better 
understand the contingency of classroom realizations.  

4.1.4.2     Didactical Situation and Contract 

 Quite soon researchers relying on TDS acknowledged that a theory of mathematical 
and a-didactical situations is not suffi cient for approaching mathematics teaching 
and learning. The processes of  devolution  and  institutionalization  were introduced 
for connecting the acculturation and adaptation dimensions of the educational enter-
prise. Both are under the responsibility of the teacher. Through  devolution , the 
teacher makes her students accept the mathematical responsibility of solving the 
problem without trying to decode her didactical intention, and maintains it, creating 
thus the conditions for learning through adaptation. Through  institutionalization , the 
teacher helps students to connect the contextualized knowledge they have constructed 
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in the a-didactical situation to the target cultural and institutional knowledge and she 
organizes its decontextualization and transformation into “savoirs”. 1  She thus restores 
the intentionality of the didactic interaction, which was not prominent in the a-didactical 
situation, and makes acculturation possible. 

 Devolution is not easy and is in some sense paradoxical. In a didactical situation, 
the teacher being the voice of the institution has a precise learning aim in mind but, 
as pointed out by Brousseau ( 1997 , p. 41), “everything that she (the teacher) under-
takes in order to make the student produce the behaviours that she expects tends to 
deprive this student of the necessary conditions for the understanding and the learning 
of the target notion.” If the teacher tells the student what to do, the student cannot 
learn. In TDS, this paradox of devolution is linked to another essential construct, 
that of  didactical contract , which emerged from research work developed by 
Brousseau with students presenting elective failure in mathematics (Brousseau and 
Warfi eld  1999 ; Brousseau  1980 ). The concept of didactic contract expresses the fact 
that teacher–students interactions are subject to rules regarding the mathematical 
knowledge at stake. These constitute a set of reciprocal obligations and mutual 
expectations, and are the result of an often implicit negotiation. The rules of the 
didactical contract remain themselves mostly implicit, in contrast to an ordinary 
contract, and often only become visible when the contract is broken for one reason 
or another. The process of devolution is conceived as the negotiation by the teacher 
of a didactical contract that temporarily allows the transfer of responsibility regarding 
the knowledge aimed at from the teacher to the student. 

 This explains why often, in the literature, didactical situations are presented as 
made of an a-didactical situation and a didactical contract. The didactical contract is 
source of diverse phenomena and paradoxes. Very early, some of these have been 
identifi ed: the “Topaze” and the “Jourdain” effects, the metacognitive shift, the 
improper use of analogy, or the obsolescence of teaching situations. The Topaze 
effect will be discussed in Chap.   12    . 

 We now invite the reader to gain a deeper insight into the previously introduced 
concepts through the analysis of the video and its Episodes 1 and 2 with the two 
students Carlo and Giovanni. However, it must be said that this presentation of TDS 
is very basic. TDS is much more complex, and it is interesting to notice that many 
recent developments result from its use for understanding the functioning of 
ordinary classrooms: scale of didacticity in the didactical contract (Brousseau 
 1995 ), refi ned in different levels of granularity (Hersant and Perrin-Glorian  2005 ), 
vertical structuration of the milieu differentiating the students’ milieu and the teacher’s 
milieu (Margolinas  1998 ,  2002 ). Other developments such as the theory of joint 
action between students and teachers combine in an original way affordances both 
of TDS and ATD (Sensevy  2011 ; Sensevy et al.  2005 ).    

1   Brousseau distinguishes “knowledge” (“connaissances”: individual cognitive constructs) and 
“knowings” (“savoirs”: socially shared cognitive constructs) (Brousseau  1997 , p. 72). Thus 
“savoirs” are depersonalized, decontextualized forms of knowledge. They correspond to the forms 
in which the scholarly knowledge is expressed. 
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4.2     Illustrating the Theory Through Analysis of the Video 
of Carlo, Giovanni, and the Exponential Function 

 The classroom situation we analyze here with TDS was not conceived within this 
framework. As mentioned above, analyzing data from classrooms that were not 
designed within the TDS framework is now a current form of use of the theory. 

 For analyzing the data, we introduce three situations, associated with the three 
tasks and the work with the three dynamic geometry fi les. In this section, we con-
sider only Task 1 and Task 2, in which students are asked to work autonomously and 
in which the intervention of the teacher is minimal. An a-didactical analysis seems 
thus appropriate. For carrying it out, we try to characterize the milieu of the situa-
tions, anticipate what the interactions with this milieu are likely to produce, com-
pare this analysis with what we know about the mathematical aims of the teacher 
when proposing these tasks to the students, and question the potential of this situa-
tion for making the mathematical knowledge aimed at by the teacher emerge 
through autonomous adaptation. This a priori analysis is then contrasted with the a 
posteriori analysis of the video data. 

4.2.1     Initial Analysis 

 In the initial analysis, the use of TDS raised diffi culties for at least three reasons. 
First, the information initially provided was limited to the dynamic geometry fi les 
and the tasks, which was insuffi cient for developing the systemic analysis typical 
for TDS. The fi les are essential components of the milieu, but for anticipating the 
interaction they may produce, we needed information about the mathematical and 
instrumental knowledge that the students are able to engage in this interaction. 
Any a priori analysis makes hypotheses at this level considering a  generic student  
and her supposed experience; this involves a lot of knowledge about the whole 
educational system and the particular institution at stake. Of course, these hypoth-
eses are not necessarily fulfi lled by the actual individual student, infl uencing the 
real dynamics of the situation and its cognitive outcomes, as well as the teacher–
students interaction. The varying knowledge of individual students is a normal 
source of discrepancies with the a priori analysis, which are systematically looked 
for and questioned in the a posteriori analysis. In this video analysis, fi lling the 
gaps of the provided information was all the more diffi cult for us as the video 
concerned another educational culture with a different approach to exponential 
functions (in France, exponential functions are introduced in grade 12 as solutions 
of differential equations). 

 The second reason is the form of Task 1, which does not constitute a problem- 
situation in the sense of Brousseau ( 1997 , p. 214) but is an exploration task:

   Open with Cabri II the fi le “y = (2.7)^x”.  
  In this fi le you will see: the point  x  on the  x -axis and the point  y  = 2.7^ x , on the  y -axis.  
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  Move the point  x  on the  x -axis and check what happens to the point  y  = 2.7^ x  on the 
 y -axis; that is, observe how (2.7)^ x  varies as  x  is changing.  

  In order to make these observations, modify also the measure unit on the  y -axis of 
your worksheet. After some trials, use animation. Move the point  x  towards the 
left until arriving nearly to the end of the fi eld of variation of the negative  x ’s, 
and then animate with a spring the point  x  so that it moves from the left towards 
the right.  

  Share all the observations that you think interesting on the coordinate movement of 
the two points, and describe briefl y (but clearly) your argument on the sheet that 
has been given to you. (Task 1; see Sect.   2.1.3    , Fig.   2.1    )   

In this task, the expectations remain rather fuzzy. What criteria can students have for 
knowing that they have completed the task? Autonomous work of the students sup-
poses that an appropriate didactical contract has already been negotiated regarding 
such tasks, in particular helping students appreciate when they can consider that 
they have solved the task. However, no information on this point was provided in the 
initial data. 

 The third reason is the diffi culty of categorizing the situation according to the 
TDS categories: we fi rst categorized it as a  situation of action  as the interaction with 
the milieu obeys a  dialectics of action . Nevertheless, in this task,  formulation  has an 
explicit and important place, and the conjectures produced and made explicit in one 
task become elements of the milieu for the following ones. Thus the situation is 
more than a  situation of action . 

  Fig. 4.1    The dynamic geometry fi le for Task 1       
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 Despite these diffi culties, partially overcome thanks to the complementary infor-
mation obtained from the teacher, the use of TDS for the analysis of the video of 
Carlo and Giovanni was productive, as we show in the following subsections. 

4.2.1.1     Initial a Priori Analysis 

 We present the a priori analysis made with the initial information given before showing 
how it was refi ned taking into account the teacher’s answers to the questionnaire. Then 
we contrast it with the a posteriori analysis. Due to the role played by technology, we 
combine the affordances of TDS with those of the instrumental approach (Guin et al. 
 2004 ; Artigue  2002 ). In this context, the instrumental approach is useful for not under-
estimating the instrumental knowledge needed for a productive interaction with the 
milieu and for anticipating how mathematical knowledge and instrumental knowledge, 
instrumented and paper and pencil techniques, can be combined in the exploration 
process. One could think that instrumental needs are limited, as fi les in the Dynamic 
Geometry Software (DGS) are provided and used as black boxes. However, research 
shows that, even in that case, actions undertaken and interpretations of the feedback are 
highly dependent on the students’ state of instrumental genesis (Restrepo  2008 ). 

 Considering the exploration tasks proposed to the students, we tried to under-
stand what could result from the autonomous interaction of the students with the 
two DGS fi les for Task 1 and Task 2. The fi rst fi le (Fig.  4.1 ) displays a curve repre-
senting the exponential function of base 2.7. This curve has been obtained as the 
locus of a point P whose coordinates ( x ,  y ) are displayed. On the right upper side of 
the screen, an equality is added: 2.7^ x  = numerical value, this numerical value being 
the current value of 2.7^ x , thus the second coordinate of P.

   Students are asked to explore how  y  varies when  x  increases, then when  x  
decreases and takes negative values. They are also asked to prepare an animation 
and it is suggested that they can change the units. There is no doubt that the situation 
offers a rich potential for a-didactical interaction with the milieu, and that several 
conjectures can a priori emerge:  

 C 1 :    When  x  increases,  y  increases, too, and it increases more and more quickly.   
  C 2 :     When  x  approaches 0,  y  approaches 1 (and potentially the inference for  x  = 0, 

 y  = 1, even if this cannot be exactly observed).   
  C 3 :     When  x  approaches 1,  y  approaches 2.7, the number given in the task and visi-

ble on the screen (and potentially the inference for  x  = 1,  y  = 2.7 even if, once 
again, this cannot be exactly observed).   

  C 4 :     When  x  takes negative values which become smaller and smaller,  y  approaches 
more and more 0 and from some moment takes the value 0 (note that the fi nal 
part of this conjecture is not mathematically true but it corresponds to the mate-
rial evidence provided by exploration with the DGS fi le).   

 A good level of instrumental knowledge (Lagrange  2005 ; Artigue  2002 ) allows 
students to infer the above-mentioned conjectures, which go beyond what is observ-
able on the computer screen. It could also lead students to work on the conjecture 
C 4 , which may lead them to question the value 0 taken for negative  x , and to change 
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the semiotic register (Duval  1995 ), moving to the symbolic algebraic register for 
testing the conjectures and even producing proofs. But such a change requires both 
a change in semiotic register and a change in attitude: the move from a situation of 
action to a situation of validation. We hypothesize that this is not likely to appear 
unless the didactical contract has established and valued such attitudes. Conversely, 
limited instrumental knowledge concerning discretization processes and their 
graphical and numerical effects at the interface can lead students to lose time, for 
instance if they try to obtain the exact values 0 and 1 for  x . They can also lose time 
preparing the required animation which, in our opinion, does not add much to the 
a-didactical potential of the situation. The fact that the teacher asks for this anima-
tion and suggests to change the units, without giving any technical hint, leads us to 
hypothesize that the students have a good familiarity with the DGS. Nevertheless, if 
this familiarity has been built in geometry, students may not have developed the 
instrumental knowledge regarding discretization phenomena which is required 
when working with functions. We could go on with this a priori analysis, but 
considering space limitations move to the situation with Task 2. 

 In this episode (Fig.  4.2 ), the exploration process uses a second fi le. In this fi le, 
a horizontal half-line with a mobile point A on it has been added; there are thus two 
mobile points: A and P. The segment joining A to the origin of the half-line (on the 
 y  axis) is drawn and an expression “ a  = numerical value”, in which “ a ” can be inter-
preted as the measure of the length of the segment or the abscissa of A, is displayed. 
The curve on which P moves represents the exponential function of base  a  and the 
expression “ y  =  a ̂ numerical value” is also displayed, the numerical value being the 
current value of the abscissa of P. It is possible to get the exact value 1 for  a , and 
thus to see the horizontal line which makes the transition between increasing and 
decreasing exponentials.
   Task 2 is fuzzily described: students are simply asked to understand the base  a  of the 
exponential function. Nevertheless, the interaction with the milieu can be produc-
tive and through the move of point A and its effects on the curve, several new con-
jectures can emerge: 

  C 5 :     If  a  > 1 the exponential function is increasing and the more  a  increases, the 
more it becomes vertical (the more it increases quickly).   

  C 6 :    If  a  < 1 the exponential function is decreasing and the more  a  decreases, the 
more it decreases quickly.   

  C 7 :    For  a  = 1 the exponential function is constant (the curve is a horizontal line).   
  C 8 :    If  x  is close to 1,  y  is close to  a  (and potentially the inference if  x  = 1 then  y  =  a ). 
    C 9 :  

•      If  a  > 1 (respectively  a  < 1): When  x  takes negative values smaller and smaller 
(respectively positive values bigger and bigger),  y  approaches more and more 0 
and, from some moment, it takes the value 0 (the fi nal part of these conjectures 
is not mathematically true but it corresponds to the material evidence provided 
by exploration).  

•   And for  a  in a small interval around the value 1, the moment when  y  approaches 
(or “takes” as shown in the fi le) the value 0 increases and even is not visible on 
the screen for values of  a  very close to 1.      
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 According to their degree of instrumentation, the students can move the window or 
reduce the zoom display in DGS in order to make visible the part of the curve where 
the  x -axis seems to join the curve and thus conjecture that the function has the same 
shape in any case, except for  a  = 1. Otherwise, the limited screen window may lead 
students to conjecture that the function is of different type for values of  a  in a small 
interval around 1, not just for  a  = 1. 

 Of course different formulations of these conjectures are possible. Students can 
speak of functions or curves, or mix the two notions, and use a more or less math-
ematical language. Their formulations are a source of information on their compre-
hension of the notion of function but also on the didactical contract regarding 
mathematical discourse at this stage of the learning process. These formulations 
may also be infl uenced by the use of the instrument. As we did in the fi rst situation, 
we can investigate what is needed for going beyond conjectures based on graphical 
evidence. We do not detail this analysis for the second situation, but it shows once 
again that the emergence of proofs is rather improbable.   

4.2.2     Need for Extension of Data and Extended Analysis 

 For complementing the initial a priori analysis, we especially needed some more 
information about the didactical contract, the students’ mathematical and instru-
mental background, and the teacher’s expectations. The teacher’s answers to the 
questionnaire designed after the initial a priori analysis (Sect.   2.2.2    ) provided the 
necessary information. 

  Fig. 4.2    DGS screen confi guration for Task 2 (From Fig.   2.2    )       
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  The didactical contract:  The teacher’s answers confi rm that this kind of explo-
ration task is usual in his classrooms. We can thus suppose the existence of an 
established didactic contract for exploration tasks in a computer environment, 
making clear what can be the end of an exploration phase, the kind of writing 
expected, and the role of the teacher. These answers also show that, beyond its 
mathematical components, the didactical contract includes some general rules 
concerning students’ interactions: active interaction and collaborative supporting 
attitude, mutual listening; and concerning teacher–students interactions: the 
teacher enters in a working group if called by the students, if he realizes that they 
are stuck, or for provoking deeper refl ection on interesting ideas. 

  The students’ mathematical background:  This session represents the students’ 
fi rst encounter with (continuous) exponential functions but they have previously 
met discrete exponential dynamics and associated these to the invariance of the ratio 
of two consecutive terms. Students could thus mobilize this discrete vision of expo-
nentials and associated algebraic techniques in the exploration. This could help 
them question graphical evidence, for instance the fact that the exponential function 
actually reaches the value 0, or conjecture properties not directly accessible at the 
interface such as  a ̂ 1 =  a . 

  The students’ instrumental background:  The teacher’s answers confi rm the 
students’ familiarity with DGS – they have used it from the beginning of the year. 
We also learn that they have approached functions numerically, graphically, and 
symbolically using spreadsheets, Graphic Calculus and TI-Interactive, thus we can 
suppose that they have already faced discretization phenomena and questions linked 
to window framing. What is missing is information about the familiarity that stu-
dents have in working with DGS for studying functions, which requires different 
instrumental competences from those used for using DGS in geometry. The famil-
iarity gained with other technologies is not necessarily enough for ensuring a 
possible transfer to DGS. This can have an effect on the conjectures made, as 
explained in the initial a priori analysis. 

  The teacher’s expectations:  The teacher’s expectations regarding this situation 
which precedes the formal introduction of the derivative are high, up to an approach 
of the differential characteristic property of the exponential function. He writes:

  The activity intends to clarify the principal features of increasing behaviours and of exponen-
tial functions. In particular, it intends to explain the reason why at the increasing of  x  an 
exponential of base greater than 1 will increase, defi nitively, more than any other polynomial 
function of  x , whatever grade of the polynomial. In the project, exponential functions and 
sequences are used to cope with problem situations coming from exponential models. 
(Answer to question 17, see Sect.   2.2.2    ) 

 How the proposed exploration can lead students to the conviction that exponential 
functions with base greater than 1 dominate any kind of polynomial function is not 
evident. The a-didactic milieu seems too weak for leading to such a conviction without 
the teacher’s mediation, and even weaker for fi nding reasons for this phenomenon 
as expressed above by the teacher. 

 In the initial a priori analysis, we pointed out the possibility of different levels of 
language. It is interesting to note that the teacher is sensitive to this question of 
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language, and considers that he has an important role to play in the evolution of the 
linguistic expressions. He supports this position by a discourse involving the notion 
of semiotic game, which is extensively discussed in Chap.   3    . He also adds that he 
anticipates such a role for him only from Episode 3. We thus suppose that the didactic 
contract makes clear for students that they can express the results of the exploration 
in their own terms. Nevertheless, due to the familiarity already gained in the work 
with polynomial functions, we expect the use of mathematical terms for expressing 
and comparing function variations. 

 In the teacher’s answers no allusion is made to proof. We pointed out that the 
production of proofs for exponential variations did not seem accessible to the students 
without substantial teacher mediation. Considering the expectations he expresses 
and the role he anticipates for himself, we consider that his goal is not the production 
of proof. Rather, he wants the students to make sense of the variations of exponential 
functions and the role played by the exponential basis through exploration, and 
access some form of understanding supported by graphical evidence. This seems 
coherent with the vision he presents of the use of technology: “In my opinion 
technological tools have to be used to empower the possibility to experience the 
mathematical environment and mathematical objects” (answer to question 3, 
Sect.   2.2.2    ). 

4.2.2.1     A Posteriori Analysis 

 We synthesize now the results of the a posteriori analysis. We pay particular atten-
tion to the similarities and discrepancies detected in the comparison with the a priori 
analysis, and use this comparison for understanding the functioning of the specifi c 
didactic system at stake. We start the a posteriori analysis by comparing the 
students’ conjectures with our anticipations. 

  Students’ conjectures:  Most of the anticipated conjectures appear, but also some 
more. In fact, six conjectures are proposed by the students during the fi rst situation 
and fi ve during the second, which confi rms the a-didactical potential of these situa-
tions. Discrepancies between a priori and a posteriori analysis are mainly due to 
Carlo’s work in the semiotic register of algebraic expressions to which, in the a priori 
analysis, we only gave a role of control and validation. Indeed, we linked the produc-
tion of conjectures to the interaction with the DGS component of the milieu. The fi rst 
conjecture articulated regards the value of the function for  x  = 0 (C 2  in the a priori 
analysis). It emerges very early (line 3 of the transcript), is directly expressed by 
Carlo in terms of equality, and proved algebraically. Thus it does not result from the 
interpretation of the graphical representation. The students then test the effect of a 
change in the unit of the  y -axis and Giovanni notes that the form of the graph does 
not change (Giovanni, lines 16, 18) while Carlo seems sensitive to the change in the 
perception of the rate of growth. The second conjecture is articulated by Carlo imme-
diately after line 19 and expresses the fact that if 2.7 is replaced by 1, the graph 
becomes a straight line (C 7 ). This conjecture was anticipated but only for Task 2. The 
fi rst DGS fi le, indeed, does not allow the students to change the value of the basis of 
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the exponential. The conjecture thus necessarily results here from the connection 
made by Carlo between the perceptive change in the rate of growth and the algebraic 
fact that 1^ x  = 1 for every  x . The third produced conjecture is C 4 : when  x  goes towards 
negative values,  y  gets closer to 0 (Giovanni, line 40), and from some value on,  x  is 
always 0 (Giovanni, line 42). The students try to determine the value where the func-
tion reaches the value 0 (from line 111); however, for this conjecture we do not notice 
any attempt of control or validation in the algebraic register. The fourth conjecture 
states that the ratio  f (2)/ f (1) equals 2.7 (Carlo, line 90). Once again, it emerges from 
algebraic work and expresses the connection that students make between this situa-
tion and the work developed on discrete exponential models. Connecting 2.7 to par-
ticular values of the function, this conjecture plays the role given to C 3  in the a priori 
analysis, but does it in a way that suggests a deeper connection with the nature of 
exponential growth. The attempts made by the students for checking this conjecture 
in the DGS environment are not successful, due to uncontrolled discretization phe-
nomena. The fi fth conjecture is the fi rst concerning the variations of the function and 
refi nes C 4  (Giovanni, line 109): for negative  x , the function decreases towards 0. It 
apparently results from the manipulation of the software. For fi nding the exact value 
for which 2.7^ x  becomes 0, Giovanni moves the mobile point from the right to the 
left, which gives a perception of decrease. The sixth conjecture, a variant of C 1 , con-
nects variation and limits:  f ( x ) tends towards infi nity when  x  tends towards infi nity. 
Carlo justifi es this assertion by invoking the nature of exponential dynamics (line 
122) while Giovanni checks it with DGS (line 123). 

 While dealing with Task 2, the two students quickly understand that by increas-
ing the value of  a  they obtain exponential curves increasing more and more quickly 
(C 5 ). Giovanni expresses this conjecture in ordinary language: “If you change this… 
that is it becomes more tightened or it increases more or less” (Giovanni, line 152), 
and Carlo (line 153) goes on using a language more mathematical and involving the 
idea of increasing rate of change. Later on, when Carlo begins to write the report, 
another expression emerges: “For the same space, the differences are ever greater” 
(Carlo, line 192) which shows once again the infl uence of previous work on discrete 
dynamics. The second conjecture is C 7  (case  a  = 1) which was already articulated in 
the exploration of Task 1. It is expressed by Carlo as a confi rmation (line 173) but 
Giovanni does not seem so sure. The end of the episode is not easy to analyze from 
the transcript but it seems that at least three other conjectures are produced, express-
ing the decreasing nature of the exponential curve for  a  < 1 (C 6 ), and the fact that the 
curve never reaches the  x -axis (line 186). Carlo tries to mobilize the algebraic reg-
ister for justifying this conjecture but using 1 instead of  a  as the base of the expo-
nential: “If I raise 1 to any number I have not zero” (Carlo, line 199). Later on, 
another conjecture emerges expressing that when the base  a  tends towards 0, the 
curve gets closer to the  x -axis but does not touch it (lines 211–215). 

 Note that, for  a  = 2.7, exploring what happens when  x  decreases, the students 
conclude that  y  reaches 0, whereas in the second exploration they insist on the fact 
that for  a  < 1, when  x  increases,  y  decreases towards 0 but never takes this value. 
Apparently, they do not make any connection between the two situations. Subtle 
differences in the information provided at the interface for the two DGS fi les (in the 
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fi rst fi le, the  y  value is displayed and becomes 0 once  x  is about –5 for instance), in 
the way the questions are phrased and thus the exploration is carried out (leading to 
them paying more attention to the coordinates of P in the fi rst situation, and more 
attention to the global behaviour in the second), may have contributed to this. 

  The sharing of roles between students:  From the beginning, Giovanni takes the 
mouse and works with the computer while Carlo works mainly with paper and 
pencil and seems in charge of writing the report. In the fi rst minutes, it seems that 
he wants to pilot the DGS exploration from this external position, but quickly 
Giovanni establishes his autonomy. Even if the students collaborate, this sharing 
of roles creates an evident dissymmetry in their interactions with the milieu, with 
notable impact as shown above. In fact, we could say that they do not interact with 
the same milieu; only Giovanni interacts with the milieu of the a priori analysis. 
This seems the main source of discrepancy between the a priori and a posteriori 
analysis. We did not anticipate this sharing of roles, and nor did the teacher, although 
it appears frequently in group-work with technology. When questioned about it, the 
teacher considers that there is some dysfunction, the interaction between students 
respecting neither his ethical values nor his vision of cognitive development. 

  Instrumental issues:  Instrumental issues impact the students’ relationship with 
the milieu. Most of the instrumental diffi culties met by the students had been 
 anticipated in the a priori analysis, but not all of them, for instance those attached 
to the distinction between what is fi xed or what is not fi xed in the fi rst DGS 
 drawing. We supposed that, due to their familiarity with DGS, the students would 
not have diffi culties with this distinction. This was the case for Giovanni, who 
seemed to understand quickly that the curve was drawn through the use of a 
formula involving a value 2.7 (lines 30–32) that could be changed into another 
value. This was not the case for Carlo, who met serious problems, confusing 2.7 
with the unit of the  y -axis, and thinking thus that by changing the unit he could 
change the base of the exponential. Note that the diffi culties met by the students 
and anticipated in the a priori analysis were not expected by the teacher. We take 
this as a symptom of the general underestimation of the complexity of instrumental 
geneses, and of their mathematical and technical needs. The strong semiotic 
 sensitivity of the teacher did not fully compensate for that. 

  The role of the teacher:  The role of the teacher perfectly corresponds to the 
anticipation of the a priori analysis. During these two episodes, he only intervenes 
for solving a few technical problems, and the two students work in full autonomy.    

4.3     Conclusion 

 The video of Carlo and Giovanni comes from a classroom session that has not been 
designed within the frame of TDS. Nevertheless, these episodes present character-
istics which make an analysis through the lens of TDS and the instrumental approach 
fully pertinent. Students interact with a milieu offering a rich potential of actions 
and retroactions, and the experience of the students, both mathematical and 

M. Artigue et al.



63

instrumental, allows them to benefi t from this potential, in the autonomous mode 
which characterizes a-didactical situations. Moreover, the didactical contract makes 
clear the respective expectations of teacher and students, even if the written explora-
tion tasks do not seem precisely defi ned. 

 We developed thus our analysis using the usual techniques of TDS, that is to say, 
preparing an a priori analysis focusing on the determination of the cognitive potential 
of an a-didactic interaction with the milieu, for a  generic  and  epistemic  student, that 
is, a student accepting the a-didactical game and able to invest in it the mathematical 
and instrumental knowledge supposed by the teacher. We then compared the results 
of the a priori analysis with the a posteriori analysis of the video. In doing so, we 
showed that the tools we had used in the a priori analysis allowed us to make realis-
tic anticipations regarding the cognitive a-didactic potential of the two situations, 
and also to anticipate limitations and diffi culties underestimated by the teacher him-
self. Thanks to this technique, the students’ behavior becomes more understandable, 
and we can separate in the contingency of the actual realization what results from 
the logic of the situation from what results from other conditions. In particular, we 
can observe the discrepancies created by the fact that, in the a priori analysis one 
considers an epistemic and generic student, while in the reality of classrooms teachers 
work with individuals with different background and motivation, who enter more or 
less into the game proposed by the teacher and most often do it with different knowl-
edge from that supposed. In this case study, the two students accept the a-didactical 
game and the devolution process is successful. They behave as epistemic actors of 
the situation: they try to answer the questions posed by the teacher, using their 
mathematical knowledge for piloting and making sense of the exploration; they do 
not try to guess the answers expected by the teacher from some didactical hints (this 
phenomenon is the object of Chap.   12     on the Topaze effect). This being said, they 
interact differently with the milieu, in fact not exactly with the same milieu. 
Comparing the a priori and the a posteriori analysis, we point out new elements not 
envisaged in the a priori analysis, and identify their effects, both on the cognitive 
trajectory of each student and on the global trajectory of the group. 

 We do not pretend that this TDS analysis tells everything that is didactically 
pertinent about this part of the video. Nevertheless, through its specifi c lens, it sub-
stantially contributes to our understanding of the video. 

 In this conclusion, we also would like to come back to the issue of “signifi cant 
unit” for didactical analysis. The vision of what is a signifi cant unit always depends 
on the adopted theoretical framework. We were able to productively put TDS at the 
service of the analysis of the episode, but we want to stress again that what this 
video makes accessible is very limited with regard to the systemic perspective of 
TDS. What we access is a very small part of the teaching of exponential functions 
in this classroom and of what makes the teacher able to fulfi ll the aims he details in 
his answers to the questionnaire. We have access, for one particular group of 
students, to a moment of “fi rst meeting” (according to the ATD terminology) with 
exponential functions. They intervene through technological black-boxes that the 
students have to explore. Some statements emerge from this exploration whose 
mathematical status is not clear at this stage. How do these statements situate with 
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respect to the statements produced by other groups? How will the teacher exploit 
them? How will they be related both in their content and form to the institutional 
knowledge aimed at? And what use will be made of that knowledge, once institu-
tionalized? What level of technical operationality will be aimed at in the different 
semiotic registers? We just see a tiny part of a mathematical and didactical organization, 
something interesting and insightful but very insuffi cient for someone who would 
like to understand what can be the teaching and learning of exponential functions in 
such a context.     
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