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Preface

Large-scale complex systems, such as modern industrial processes, biological
systems, and social networks, are interconnected by different units or elements; the
system behavior is determined by the inter-relationship between every pair of the
elements as well as the local dynamics within each element. It is essential to
identify such inter-relationship, namely connectivity and causality, in order to
analyze influence mechanisms, structural properties, and overall dynamic
behavior.

In the control and automation community, connectivity and causality play a
vital role in modeling and analysis, especially for fault detection and hazard
analysis, because an abnormality can easily propagate within and between process
units due to material and information flow paths. Thus the problem of fault
detection and isolation for industrial processes is concerned with determination of
root causes and fault propagation. Connectivity and causality, as the key features
of process description, can be captured in two ways:

1. From process knowledge: Structural modeling based on first principles
structural models can be merged with adjacency/reachability matrices or
topology models obtained from process flow-sheets described in standard
formats.

2. From process data: Cross-correlation analysis, Granger causality and its
extensions, frequency domain methods, information-theoretic methods, and
Bayesian networks can be used to identify pairwise relationship and network
topology.

These methods rely on the notion of information fusion, whereby various types
of process operating data are combined with qualitative process knowledge to give
a holistic picture of the system.

In this book, we shall give an exhaustive overview of concepts and descriptions
of connectivity and causality in complex processes and a tutorial guide to classical
and recent research results on detection of connectivity and causality illustrated
with example applications. A study of the fusion of different information resources
for obtaining an acceptable process topology is also introduced.
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Some details are omitted in this book due to space constraints. Interested
readers should refer to the related literature. For questions, comments, and
suggestions, please write to Fan Yang at yangfan@tsinghua.edu.cn.

December 2013 Fan Yang
Ping Duan

Sirish L. Shah
Tongwen Chen
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Chapter 1
Introduction

Abstract In large-scale industrial processes and other complex systems, elements
are not independent. To describe the relationship between process variables, differ-
ent concepts, such as connectivity and causality, are often used. The background
and motivation of investigatingconnectivity and causality in complex systems are
discussed; these two concepts are clarified with examples. Causality describes the
cause-effect relationship between changes of process variables; while connectivity is
generally concerned with physical and information paths in a process. The causality
relationships can be described by process topology. A brief chapter preview is then
included to give a big picture of this brief, and to provide guidance for interested
readers to different topics covered in the brief.

Keywords Complex processes · Process variables · Causality · Connectivity ·
Correlation · Predictability · Directionality · Reachability · Process topology

The term causality has different connotations depending on its use in engineering
or medicine or philosophy. This aspect is well summarized in the following excerpt
from Wikipedia:

“Causality (also referred to as causation) is the relation between an event
(the cause) and a second event (the effect), where the second event is
understood as a consequence of the first.
In common usage, causality is also the relation between a set of factors
(causes) and a phenomenon (the effect). Anything that affects an effect is a
factor of that effect. A direct factor is a factor that affects an effect directly,
that is, without any intervening factors. (Intervening factors are sometimes
called ‘intermediate factors’.) The connection between a cause(s) and an
effect in this way can also be referred to as a causal nexus.

F. Yang et al., Capturing Connectivity and Causality in Complex Industrial Processes, 1
SpringerBriefs in Applied Sciences and Technology,
DOI: 10.1007/978-3-319-05380-6_1, © The Author(s) 2014



2 1 Introduction

Though the causes and effects are typically related to changes or events,
candidates include objects, processes, properties, variables, facts, and
states of affairs; characterizing the causal relation can be the subject of
much debate.
The philosophical treatment on the subject of causality extends over
millennia. In the Western philosophical tradition, discussion stretches
back at least to Aristotle, and the topic remains a staple in contemporary
philosophy.”

Connectivity on the other hand has different meaning in the context of mathe-
matics and computer science. It is related to graph theory, and more formally it is
defined in terms of connections between nodes or edges. In the context of process
topology, which is the main focus of the discussion here, it simply relates to mater-
ial and information flow connections between or within process units or sensors or
actuators or controllers. Thus connectivity is generally concerned with the physical
and information paths in a process whether they are direct or indirect. Most notably,
the direction of material or information paths or the “arrow of time” is not of interest
in establishing connectivity. On the other hand the temporal direction of causation is
of critical importance in causality analysis. This is also related to the second law of
thermodynamics which says that the “sum of effects can never have lower entropy
than the sum of causes”. It is this requirement of temporal ‘asymmetry’ in causality
detection which is the key difference between connectivity and causality.

The following example, as shown in Fig. 1.1a, illustrates the main differences
between these two similar concepts. ‘Pipe 1’ (with flow rate F1) is connected to
‘Tank’ and ‘Tank’ is connected to ‘Pipe 2’ (with flow rate F2); this is the flow path,
where the liquid is fed into the tank and then flow out. Valve ‘V’ is connected to
‘Pipe 2’ to control the flow rate by the valve opening. In terms of the information
flow path, the signal line is connected to ‘V’ to transmit the level signal L to the
valve. This connectivity is shown in Fig. 1.1b.

Connectivity is not limited to only industrial processes involving material and
information transfer. In other types of systems, connectivity may have different
meanings. For example, in neurosciences, neurons are connected by synapses due to
which electrical or chemical signals can be propagated. However, such propagation is
bidirectional. In summary, connectivity shows the material, energy, and information
propagation among individual elements and determines the topology of the system.

1.1 Concept of Causality

Elements in a system are not only connected to each other, they are mutually
dependent. To describe this dependency, we consider the cause-effect relationships
between them, namely, causality (also referred to as causation). Causality describes
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Fig. 1.1 Tank example.
a Schematic; b Connectiv-
ity; c Causality

the relationship between events or variables. Causality cannot exist without any
connectivity.

Recall the tank system example in Fig. 1.1a. This process follows the principle of
fluid dynamics; thus F1 influences L and L influences F2, the same as in a connectivity
graph, yet F2 also influences L , which is different from connectivity. For valve ‘V’,
we are concerned with its stem position, which determines the flow rate F2 in ‘Pipe
2’ and is controlled by the level L , transmitted by the signal line. This causality is
shown in Fig. 1.1c.

Intuitively, causality is part of our daily life; however, causality was not accepted
as a scientific concept until statisticians formulated the concept of a randomized
experiment to test causal relations from data [1]. The notion of causality is now
widely accepted as an independent concept and differs from other concepts such
as correlation; correlation does not imply causality. However, an explicit and exact
definition of causality is still difficult. We can give a non-exhaustive list of necessary
(but not sufficient) conditions to establish causality between two variables, X and
Y [2]. A necessary condition for causality requires that between variables x and y
there be a:

(1) a theoretical or common sense linkage;
(2) empirical association (correlation);
(3) elimination of common causes: some other variable must be ruled out as a cause

of the correlation;
(4) responsiveness: altering X leads to an alteration in Y ; and
(5) asymmetry: X must cause Y , and not vice vera.

Non-experimental studies can only address the first two conditions and partially
address the third one; whereas others have to be tested by statistical data analysis
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in the temporal domain. For this reason, time series analysis should be taken into
account to define causality.

Norbert Wiener was one of the first engineers to concieve a mathematical definition
of causality: “X could be termed as to ‘cause’ Y if the predictability of Y is improved
by incorporating information about X” [3]. Clive Granger adapted this definition into
a practical form: “we say that x(k) is causing y(k) if we are better able to predict
y(k) using all available information than if the information apart from x(k) had
been used” [4]. Although this definition does not explain all forms of causality, it
has practical utility and thus has been widely known as “Granger causality”.

There are other definitions of causality. Another important definition was proposed
by Judea Pearl in the probability framework [5]. We will not expand the details of
these definitions but focus on the physical meaning and practical use. Note that the
concept of causal models in control theory is a different concept; it only reflects the
physical realizability of models.

1.2 Connectivity, Correlation, and Causality

In the above list of necessary conditions for causality, the first condition is connec-
tivity, and the second one is correlation. Thus we know that the concept of causality
is based upon these two concepts and yet has additional attributes.

The difference between connectivity and causality can be illustrated by the fol-
lowing example: Two tanks can be connected via a pipe with a closed valve on
the connecting pipe. Under this condition, the levels in both tanks are noncausal or
completely independent of each other. Even if the valve is open, the levels may be
noncausal because there may be a control strategy to maintain the levels so that the
levels do not show correlation. Even if there is no valve on the connecting pipe, other
streams that feed fluid into the tanks and discharge fluid from the tanks can affect
the levels so that the levels may not show correlation. Therefore, causality cannot be
confirmed without analyzing the data.

Correlation does not imply causality either [6]. A typical example is that x and
y are both effects of a third variable z, as shown in Fig. 1.2a. Of course they are
correlated, which can be easily tested by investigating the data. However, there is no
causality between x and y because if we rule out their common cause z, x and y are
both independent. This can be explained by the third condition in the above list and
the third variable is called a confounding variable. The identification and treatment
of confounding variables is a well-known problem in causality analysis.

Now consider another case: if x causes y and y causes z, then x causes z, as
shown in Fig. 1.2b. However, there is a significant difference between correlation and
causality: we can say x causes y directly, which means that there is no other variable(s)
between them, and x causes z indirectly, which means the causality is based on an
intermediate variable y in this case; correlation has no such direct/indirect properties
and can be tested for any pair of variables. Another difference between correlation
and causality is directionality. Causality has directionality while correlation does not.
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Fig. 1.2 Simple topology of
three variables

(a) (b)

This is reflected in the fifth condition in the above list. One can say x is correlated
with y, which is equivalent to saying that y is correlated with x . Whereas if x causes
y, one cannot conclude that y causes x . Connectivity can be directed or undirected;
it depends upon what is transferred in the connected path.

If we only study the relationship between two variables, the confounding prob-
lem is irrelevant. What makes the problem difficult is the multivariate case with a
large number of elements or variables; to describe all the relations among them,
we construct a network with nodes representing elements or variables and branches
denoting their relations; we call this a topology. When we visualize a topology, we
may find it very complex, but it illustrates the internal qualitative structure of the
system and thus provides useful information for further studies and applications.

By taking into account the directionality, another concept is often useful for topol-
ogy based on connectivity or causality, namely, reachability [7], to include both direct
and indirect relations.

1.3 Preview of Chapters

In this chapter, we have briefly introduced some familiar and somewhat similar and
often confusing concepts, particularly connectivity and causality, and thus clarified
the research objective of this brief.

There are many areas that are related to the causality analysis. We will briefly
discuss several potential application areas in Chap. 2. In fact, the qualitative causality
information can assist in control design, fault diagnosis, alarm design and other issues
for large-scale complex systems.

Chapter 3 is dedicated to the description of connectivity and causality by mathe-
matical, graphical models, and ontological models.

Chapters 4 and 5, discuss how to capture connectivity and causality. For this
purpose, we usually have two resources that can be utilized. In Chap. 4, process
knowledge is considered. Based on first-principle structural models, we can obtain
equations to describe the structures of systems. The structural models can also be
described by qualitative matrices, namely, adjacency and reachability matrices, and
therefore the reasoning can be conducted by matrix computation. Apart from mathe-
matical descriptions, semantic web languages, as descriptions of human knowledge,
can also be used to describe process knowledge. From the extensible markup language
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(XML) or resource description framework/web ontology language (RDF/OWL) files,
one can extract topology information with the help of inference engines.

In Chap. 5, another resource, process data, is considered. There are quite a few
data-based methods in this category [8]. They were proposed initially in the bivariate
case to identify the cause and effect and then extended to the multivariate cases to
construct the topology. Thus, in terms of the general problems of identifying pair-
wise directionality and network topology determination, several common methods
are introduced. The simplest one is the cross-correlation analysis to compute the
lag-adjusted cross-correlation between every two variables. The temporal order is
considered, yet it cannot be extended to multivariate cases without an efficient way to
rule out confounding variables. Granger causality analysis is a widely used method
in neurosciences; it has some variants to adapt to nonlinear cases. Directed transfer
functions (DTF) and partial directed coherence (PDC) are typical frequency domain
methods. Based on information theory, transfer entropy can be used to measure the
mutual information transferred from one time-series to another; it is a general method
and does not need the linearity assumption. From probability theory, conditional
expectation is represented by the Bayesian chain rule according to the topology
information; thus a Bayesian network can also help us understand causality.

Simulation and real processes are taken as case studies in Chap. 6 where different
methods are illustrated and compared.

1.4 Chapter Summary

In this chapter, we have introduced the background and requirements of investigating
connectivity and causality in complex systems. These two concepts are clarified and
discussed. A brief chapter preview is included to give the big picture of this brief, and
to provide guidance for interested readers to various sections or chapters according
to their interests and needs.
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Chapter 2
Examples of Applications for Connectivity
and Causality Analysis

Abstract Connectivity and causality have a lot of potential applications, among
which we focus on analysis and design of large-scale complex industrial processes.
A direct application by establishing connectivity and causality is to build a topo-
logical model before parameter identification for complex industrial processes that
areusually multi-input, multi-output systems with many internal closed loops. In
abnormal situation management, process topology can be employed for root cause
analysis, risk analysis, and consequential alarm identification using the informa-
tion of fault propagation. These potential applications include both off-line analysis
andon-line diagnosis. In addition, process topology can eventually be used in design
of control structures because process topology determinesthe natural structure of the
distributed plant-wide control.

Keywords System identification · Closed loop · Vector autoregressive models ·
Root cause analysis · Hazard and operabilitystudy · Consequential alarms · Abnor-
mal situation ·Plant-wide control structures ·Process flow diagrams ·Sensor location

Among various applications of connectivity and causality, we will focus on analysis
and design of large-scale complex industrial processes. Existing studies have shown
great potential of applying connectivity and causality analysis to such cases; the
illustration of these applications will also highlight different approaches for causality
identification and analysis.

2.1 Topology Modeling and Closed-Loop Identification

A direct application by establishing connectivity and causality is to build a topology
model for a complex industrial process. Given process data, system identification is
the typical black-box modeling approach. If a known system structure is assumed,
there are plenty of methods to estimate parameters. However, in multivariate cases,

F. Yang et al., Capturing Connectivity and Causality in Complex Industrial Processes, 7
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structure identification is more important and should be performed before parameter
estimation. In particular, what we mean by structure here is not only the orders of
the local linear models, but also the linkage between variables.

When there are many process variables, it is unwise to separate them into inputs
and outputs, because each of them reveals some information of the system and can
thus be regarded as a state variable. As a result, traditional quantitative system iden-
tification techniques do not work well, and one way is to assume the topology before
estimating the orders and parameters of each closed-loop (bidirectional) path model,
namely, the local linear model between every two variables. However, there are too
many combinations according to the existence of a link between every two variables.
Thus, it is more reasonable to assume that each pair of variables are linked together
and then estimate the orders and parameters of the path model; if the results show
that the link is too weak, then such a link can be removed [9, 10]. This only requires
a single-input-single-output (SISO) framework to deal with every path. However for
a rigorous analysis, a multiple-input-multiple-output (MIMO) framework, such as a
vector autoregressive (VAR) model, should be considered because every variable in
a multivariate system may influence as well as be influenced by more than one vari-
able. The above idea suffers from a high computational burden, yet if the topology
is known a priori, then the computational burden can be lowered significantly. For
this purpose, topology modeling based on process connectivity capturing or process
data analytics would help.

2.2 Root Cause Analysis

When the system encounters an abnormal situation, there must be one or more ele-
ments showing abnormal symptoms or measurements. If there is only one abnormal
element, then this is a local fault in most cases and one should then look into the com-
mensurate part to figure out the problem. If there are multiple abnormal elements, we
should be aware that this could be due to some interaction that results in propagation
of the source fault. For example, in a pipe network, if an upstream valve is partially
blocked, then there will be a series of abnormal events downstream, e.g., reduction
of flow rate, decrease of liquid level, and even dry-out of a vessel. When an opera-
tor finds that there is something wrong in such a process, there may exist multiple
abnormal symptoms; to resolve this situation, the operator should not just tune the
valves associated with the vessel for example, because this may make the situation
even worse; instead he or she should find the root cause promptly and eliminate it.
Once the root cause is resolved, all the other issues disappear accordingly.

Given the topology, or connectivity/causality to be specific, a backward traversal
along the paths can be performed to find the root cause, namely, the original abnormal
element that causes all the other abnormal elements [17]. What we assume here is
that the fault should propagate along the established paths; this is the case most of
the times. Among other events the abnormal situations considered in the examples
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here and generally include cases such as deviation from normal values, oscillations,
sensor or actuator malfunction, process or equipment failure, and misoperation.

Take oscillating variables as an example, which is a typical plant-wide disturbance.
By using some data-driven methods, oscillating variables can be identified, which
are also called efficient nodes in the terminology of signed digraphs because they
are the nodes that should be studied. Jiang et al. [11] used a control loop digraph to
describe the topology of control loops and, by examining the domain of influence of
each control loop were able to find a ranked list of root cause variables to be those
that are able to reach all the other oscillating variables along the paths. For a survey
of this application, please refer to [5]. Similar work has also been reported in the
early study of [4].

2.3 Risk Analysis: HAZOP

Risk analysis is a way to examine a process to identify and evaluate problems that
may represent risks. As a representative qualitative approach, hazard and operability
study (HAZOP) is frequently applied to planned or existing processes in a structured
and systematic way. This task is carried out based on guide words by a series of team
meetings. If the topology is available, then this procedure can be relatively straight
forward and clear. There are several other studies that use signed digraphs or other
graph models for HAZOP study [14–16, 19]. In [20], HAZOP is considered as one
of the two main areas of the signed digraph technology (fault diagnosis as another
one, as mentioned in the previous section) by using the inference engine essentially
based on the search of process topology. Different from root cause analysis, such
search is a forward search to find the resulting consequence while the former is a
backward search to find the root. The purpose of HAZOP analysis is to find all possi-
ble consequences of any assumed faults. But if one wants to estimate the probability
of events, quantitative information needs to be incorporated. With such a scheme one
can obtain a computer-aided HAZOP analysis.

2.4 Consequential Alarm Identification

Alarm management is an emerging area in the process control community [8]. For
monitoring of complex industrial processes, a lot of alarms tags are configured for
all kinds of variables. For example, a process variable can trigger high/low alarms
to reflect its states. During abnormal situations, alarms should be raised to remind
operators to take actions. Ideally, one abnormal situation should trigger one and only
one alarm; however, because of redundancy, interactions and correlations between
variables even a single abnormal event will result in the annunciation of many alarms.
In addition, since a fault can propagate throughout the process, alarms also show up
in a specific order. This list of consecutive alarms may be dependent; thus we call
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them consequential alarms [13]. Consequential alarms over a very short period of
time often lead to are construed as alarm floods, leading to a dangerous situation
as the console operators or engineers may not be able to identify true root causes.
For this case, process topology would be of great help in describing the relationship
between alarm tags.

For on-line analysis, this is similar to the root cause analysis because the most
important task is to find the root cause of all related or consequential alarms. If the
root cause is resolved, then all the alarms can be removed. For off-line analysis, more
can be done, for example, to obtain and analyze alarm sequences of typical abnormal
situations [3, 12]. When an alarm flood occurs, the alarm sequence is recorded and
compared to recorded known sequences to find the most possible root causes so
that the previously known and successful alarm mitigation solution can be retrieved
immediately; this approach can also be adapted for on-line applications.

2.5 Plant-Wide Control Structure Design

Connectivity and causality reflect the essential nature of a process, so the above
applications are all based on a given topology and are aimed at analysis. Such topol-
ogy can eventually be used in design of control structures because process topology
determines the natural structure of the distributed plant-wide control. There are a few
studies in this area: Alabi used process flow diagrams (PFDs) in degrees of freedom
(DOF) analysis [1]; Cameron and Hangos discussed observability and controllabil-
ity studies based on structural information [6]; and Hangos and Tuza used graph-
theoretical models in optimal control structure selection [7]. These applications of
topology can serve as a precursor for other complex and quantitative applications.

Another application of process topology is its use in sensor location. For example,
graph models have been used to design feasible and optimal sensor location strategies
according to fault detectability and identifiability criteria [2, 18].

2.6 Chapter Summary

Several potential applications of process topology/connectivity and causality have
been introduced in this chapter, including modeling, analysis and control structure
design. These are just a few among many applications that are likely to be pursued
further in the future. It should be noted that qualitative topology has to be incorporated
with quantitative information before a comprehensive application, and the topology
should be adapted to different application requirements.

To develop a formal framework for these applications, we first need to formalize
the description of topology; this is the objective of the next Chap. 3.
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Chapter 3
Description of Connectivity and Causality

Abstract In this chapter, we discuss the description of two related yet different
notions—connectivity and causality. Connectivity shows a physical or information
linkage between process units; this linkage illustrates qualitative process knowledge
without using first-principle models. The main resources for establishing connectivity
are process flow diagrams (PFDs) and piping and instrumentation diagrams (P&IDs);
thus we need to convert them into standard formats, such as adjacency matrices,
digraphs, and semantic web models, which are easily accessible and computer-
friendly. Causality between process variables can be built through process data as
well as process knowledge; thus it can be described qualitatively, yet sometimes
with certain quantitative information, by structural equation models, matrices and
digraphs, and matrix layout plots.

Keywords Process flow diagrams · Piping and instrumentation diagrams ·
Adjacency matrices · Reachability matrices · Directed graphs · Semantic web ·
Extensible markup language · Resource description framework · Web ontology
language · Structural equation models · Matrix layout plots

We begin our discussion with the description of two related yet different notions—
connectivity and causality. For each of them, there are multiple formats; we will
show some typical ones.

3.1 Description of Connectivity

Connectivity shows a physical or information linkage between process units; this
linkage illustrates qualitative process knowledge without the needs of first-principle
models. The main resource for establishing connectivity are process flow diagrams
(PFDs) and piping and instrumentation diagrams (P&IDs); thus we need to convert
them into standard formats that are easily accessible and computer-friendly. In what
follows we introduce three main formats for this purpose.

F. Yang et al., Capturing Connectivity and Causality in Complex Industrial Processes, 13
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3.1.1 Adjacency Matrices

An adjacency matrix [6, 7] is a matrix form to express topology with directionality.
This notion of adjacency stresses that only one-step or direct connectivity is included
whilst the indirect relationship is excluded because it can be inferred.

For a system with n elements (xk, i = 1, . . . , n), an n ×n adjacency matrix A can
be defined. Each entry ai j is binary: if element xi is adjacent or directly connected
to element x j , then ai j = 1; otherwise ai j = 0.

Based on the adjacency matrix A, another binary matrix, reachability matrix R,
can be derived to describe both direct and indirect relationships. Even if xi is not
adjacent to x j , x j may still be reached by xi via other elements. If x j is reached by xi

via a third element xk , then it is called a 2-step reachability, to distinguish from the
adjacency as the 1-step reachability. Similarly, k-step reachability can be defined. It
can be proved that the k-step reachability can be described as the Boolean equivalent
of Ak , where the Boolean operator is defined as follows for each entry of the matrix:

(ai, j )
∂ =

{
1, ai, j ≈= 0,

0, ai, j = 0.
(3.1)

Thus, a reachability matrix is defined as:

R = (A + A2 + · · · + An)∂. (3.2)

The summation is from 1 to n because it can be proved that if two elements are not
reached from one to the other via n steps, then they cannot be reached via more steps.
In matrix R, each entry ri j means whether xi can reach x j .

Take a tank system with cascade control as an example, as shown in Fig. 3.1.
To show the adjacency between each pair of elements, such as the tank, pipes, and
controller, an adjacency matrix can be constructed, as shown in Fig. 3.2a. By matrix
computation, one can obtain the 2-step reachability (A2)∂ as shown in Fig. 3.2b,
1- or 2-step reachability (A + A2)∂ as shown in Fig. 3.2c, and finally the reachability
matrix R as shown in Fig. 3.2d.

3.1.2 Digraphs

As an alternative of the adjacency matrix A, when each element in the system is
expressed by a node and each ‘1’ entry is expressed by an arc linking two nodes
corresponding to the two indices in A, matrix A is converted into a directed graph
or digraph including n nodes. By this conversion, the connectivity is visualized and
can be better understood due to its intuitivity, because this digraph simply shows the
PFD or P&ID by converting each element into an abstract node. The connectivity of
the above example can be described by the digraph as shown in Fig. 3.3. Based on
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Fig. 3.1 Process schematic of a tank system with material (blue) and information (red) flow paths
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Fig. 3.2 a adjacency matrix A. b 2-step reachability matrix (A2)∂. c (A + A2)∂. d reachability
matrix R. Connectivity and reachability matrices of the tank system

this digraph, search methods in graph theory can be employed as an alternative to
matrix computation, and the results can also be visualized.

To test the reachability from one node to another, a traversal search can be made
to find paths between the two nodes. If there is no paths from xi to x j , then the
corresponding entry ri j in matrix R is ‘0’; otherwise, it is ‘1’, no matter how many
paths exist.
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Fig. 3.3 Digraph of the tank system

The graph representation is particularly beneficial when the matrix is sparse.
Moreover, some quantitative or dynamic factors can also be attached to the graph to
extend its model description, which is useful in some application areas.

3.1.3 Semantic Web Description

In addition to the above mathematical descriptions, with the development of the
Semantic Web, a new data model has come into use, namely, the ontology frame-
work, which is based on a combination of artificial intelligence and database tech-
niques. The ontology framework can be regarded as a conceptual model defined by a
computer understandable language to describe and categorize the units/resources or
linkages between units and their relationships. It translates the concepts defined and
understood by humans into semantics in the cyber world defined by classes and rules.
After this translation, new knowledge can be generated or discovered by machines
through an automated inference, which makes the representation more powerful and
useful [1]. By applying this technique to process modeling, the process connectivity
can be modeled on the basis of PFDs or P&IDs, which facilitates the modeling and
inferencing without using other special tools.

In terms of computer aided engineering exchange (CAEX) schema, eXtensible
Markup Language (XML) gives users sufficient freedom to further define syntaxes
and classes in their respective areas. An adjacency matrix can be constructed using the
parsed information from its CAEX description—XML files [3, 9]. For the purpose
of process topology description, however, a more uniform way is needed to define
the process units (considered as resources) and their connections. The combination
of Resource Description Framework (RDF) (http://www.w3.org/RDF/) and Web
Ontology Language (OWL) (http://www.w3.org/2004/OWL/) provides a general
method for conceptual description or modeling of information that is implemented in
web resources, using syntaxes. In addition to connectivity, this ontological model can
describe additional information such as constraints and conditions that are important
for process modeling in an interoperable way.

http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/
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Table 3.1 Classes of resources in the ontology framework

EQUIPMENT UNCONTROLLED_ELEMENT PIPE, TANK
CONTROLLING_ELEMENT AUTOMATIC_ELEMENT (PUMP, VALVE),

MANUAL_ELEMENT (MANUAL_VALVE)
MEASURING_ELEMENT FLOW_MEASUREMENT,

LEVEL_MEASUREMENT,
TEMPERAUTRE_MEASUREMENT

COMPUTER ANALOG_ELEMENT CONTROLLER, SELECTOR
DIGITAL_ELEMENT AND, OR, NOT
INFORMATION_CONNECTION
_ELEMENT
AUTOMATIC_ELEMENT PUMP, VALVE
MEASURING_ELEMENT FLOW_MEASUREMENT,

LEVEL_MEASUREMENT,
TEMPERAUTRE_MEASUREMENT

Based on the needs of process control, we first define resources by classes, which
can be divided into two groups: one is equipments in the physical world, includ-
ing process units and instruments; the other is computers or processors in the cyber
world. Some resources can belong to both worlds, resulting in the coexistence in
the two groups. From the control system perspective, sensors (transmitters), con-
trollers, and actuators should be included in the latter category; while the sensors
and actuators should also be contained in the former category because they are
physical equipment. The relationship between these resources in the class domain
is inheritance, namely, a subclass under a class inherits all the properties of the
class; of course, a class can belong to multiple classes and inherit all the properties
from them. For the tank system, a list of classes is shown in Table 3.1. Note that
both the physical linkage, PIPE, and the information linkage (signal line), INFOR-
MATION_CONNECTION_ELEMENT, are defined as classes. Next, properties are
assigned to resources; these resources are the subjects of the properties. In addition
to datatype and annotation properties, we define the following object properties to
describe the physical and information linkages:

• uncontrolledElement.measuringElement: linkage from an uncontrolled element to
a measuring element, e.g., the level of a tank measured by a sensor.

• uncontrolledElementOutlet.uncontrolledElementInlet: linkage from an uncon-
trolled element to another uncontrolled element, e.g., a tank connected to a pipe
as an outlet.

• uncontrolledElementOutlet.controllingElementInlet: linkage from an uncontrolled
element to a controlling element, e.g., a pipe connected to a control valve.

• controllingElementOutlet.uncontrolledElementInlet: linkage from a controlling
element to an uncontrolled element, e.g., a valve connected to a pipe.

• computer.computer: linkage from a computer to another computer, e.g., a controller
connected to a signal line (information connecting element).
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The domain and range of the properties should be defined as appropriate resources.
For the tank system example (Fig. 3.1), to build the OWL file, we add instances

of the above defined classes. Properties are assigned to them to define the con-
tents and inter-relationships. For example, the outlet of PIPE_1 is connected to
TANK_1; hence PIPE_1 has an object property, which is uncontrolledElementOut-
let.uncontrolledElement, to have the value of another instance, TANK_1. The ontol-
ogy can be visualized by OntoViz®, a plug-in for Protégé-OWL®, as shown in
Fig. 3.4.

To query ontology-based RDF/OWL files, SPARQL Protocol and RDF Query
Language (http://www.w3.org/TR/rdf-sparql-query/) can be used to capture useful
information and conduct inferences. SPARQL uses query triples as expressions with
logic operations such as conjunctions and disjunctions to perform inferences based
on semantics.

One can use SPARQL to test connectivity based on object properties. If one defines
a general object property and regards all the other object properties including physical
and information linkages as its subproperties, then the connectivity with specified
steps can be obtained. Moreover, by defining the object property as transitive, a
measure of reachability can be obtained directly to show the domain of influence
triggered by a change in one object.

3.2 Description of Causality

In addition to connectivity, causality between process variables should also be
described. Note that the modeling resources herein include process data as well
as process knowledge.

3.2.1 Structural Equation Models

Structural equation modeling (SEM) is a statistical technique for testing and estimat-
ing causal relations [8, 10]. A structural model shows potential causal dependencies
between endogenous/output and exogenous/input variables, and the measurement
model shows relations between latent variables and their indicators. For example, if
an endogenous variable y is influenced by exogenous variables x1 and x2 (assume
that all variables are normalized to have zero mean and unit variance), a regression
model can be built as y = py1x1 + py2x2 + pyεε and thus be depicted as a path
diagram in Fig. 3.5, where each parameter p is called a path coefficient, and ε rep-
resents the residual, that is, collective effect of all unmeasured variables that could
influence y. The directed arrows represent the influence of the exogenous variables
and the residual on the output variable, and the bidirectional arrow represents the
correlation between exogenous variables.

http://www.w3.org/TR/rdf-sparql-query/
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Fig. 3.4 Visualization of the tank system ontology exported by Ontoviz® with material flow
(blue) and information flow (red) paths

This model is a statistical model and is highly dependant upon the partition of
variables. What is more important is to obtain the topology of the system, where each
variable can be both input and output variables. Thus we usually use the following
descriptions.
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Fig. 3.5 Path diagram of a
structural model

3.2.2 Matrices and Digraphs

Similar to the matrix or digraph formats to describe connectivity, these models can
also be used to describe causality. We have mentioned that we can introduce other
information onto the arcs of a digraph model. Typically signs can be attached to the
arcs to describe positive (promotion) or negative (inhibition) relation. For example, if
the increase (decrease) of variable xi can cause the increase (decrease) of variable x j ,
then we define the sign as ‘+’. On the contrary, if the increase (decrease) of variable
xi can cause the decrease (increase) of variable x j , then we define the sign as ‘-’.
This model is called a signed digraph or signed directed graph (SDG). Normally
we use solid and broken lines to denote positive and negative relations respectively.
The formal definitions are as follows [4, 5, 11, 12]:

Definition 1: A SDG γ is the composite (G, ϕ) of

(i) digraph G0 that is the quadruple
(
N , A, δ+, δ−)

of
(a) a set of nodes N = {n1, n2, · · · , nm} ,

(b) a set of arcs A = {a1, a2, · · · , an} ,

(c) a couple of incident relations δ+ : A → N and δ− : A → N
that map each arc correspond to its original node and terminal
node, respectively, and

(ii) a function ϕ : A → {+,−}, where ϕ (ak) (ak ∈ A) is called the
sign of arc ak .

Definition 2: A pattern on the SDG model γ = (G, ϕ) is a function Ψ : N →
{+, 0,−}. The value Ψ (ν) (ν ∈ N ) is called the sign of node ν, i.e.

Ψ (ν) = 0, for |xν − xν | < εν,

Ψ (ν) = +, for xν − xν ≥ εν,

Ψ (ν) = −, for xν − xν ≥ εν,

where xν is the measurement of the variable ν, xν is the normal value,
and εν is the threshold.

Definition 3: Given a pattern Ψ on a SDG model γ = (G, ϕ), an arc a is said to
be consistent(with Ψ ) if Ψ

(
δ+a

)
ϕ (a) Ψ

(
δ−a

) = +. A path, which
is consisted of arcs a1, a2, · · · , ak linked successively, is said to be
consistent (with Ψ ) if Ψ

(
δ+a

)
ϕ (a1) · · · ϕ (ak) Ψ

(
δ−a

) = +.
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Fig. 3.6 SDG of the tank system with level control

Fig. 3.7 Example of a matrix layout plot

Recall the tank system example. This time we only focus on the level control and
related variables—inlet flow rate (F1), outlet flow rate (F2), and liquid level (L).
When the level is high, the valve will open to increase the outlet flow rate according
to the control law, and the result is the reduction of the level. Thus the SDG is as
shown in Fig. 3.6.

The graph model is the main description of causality and we will discuss the
modeling approaches and applications in the following chapters.

3.2.3 Matrix Layout Plots

Although causality is a qualitative description, it is often captured through quanti-
tative data analysis, leading to additional information. A typical method is partial
directed coherence (PDC), which has been developed and used in the neuroscience
area [2]. This method can be used for multivariate systems to extract the direct
causality between each pair of variables.
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In the frequency domain analysis, matrix layout plots are often used, as shown
in Fig. 3.7 (for details see Chap. 4). Each plot shows the information transfer from
one variable to another. It is to be noted that the cause variables are listed on the top
while the effect variables to be tested are on the left, which is not the same with the
matrix forms mentioned earlier.

3.3 Chapter Summary

Model description is the basis of all kinds of analysis. Thus various descriptions of
connectivity and causality have been briefly introduced in this chapter, which will be
discussed in detail in the next chapters via different modeling approaches and other
applications.

The descriptions in this chapter are limited to mathematical models and ontology
models; they can be understood by computers as well as humans. The benefit is that
they have potential to automate the modeling and analysis procedures. The ontology
work is still ongoing, but this description has many advantages and conforms to
World Wide Web Consortium (W3C) recommendations.
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Chapter 4
Capturing Connectivity and Causality from
Process Knowledge

Abstract Process knowledge is the most reliable resource for qualitative modeling
of complex industrial processes, which is typically expressed in natural language and
stored in human brains. We thus need to capture useful connectivity and causality
from such resources and convert the information into computer accessible formats.
From first-principle structural models, causality can be captured and expressed as
structural equations. From unstructured process knowledge and dynamic and alge-
braic equations, graphical models, in particular signed directed graphs and variants,
can be obtained. Graphic models are widely used due to their computer tractability
and human readability. Rule-based models are another alternative, which is used
in expert systems. When the process information is accessible in web language,
connectivity can be retrieved by query.

Keywords Process knowledge · First-principle models · Structural equation
modeling · Signed directed graphs · Dynamic and algebraic equations · Perfect
matching · Control laws · Bond graphs · Expert systems

Process knowledge is the most reliable resource for qualitative modeling of complex
industrial processes, which includes PFDs, P&IDs, and other expert knowledge that
is typically expressed in natural language and stored in human brains. In many cases,
process knowledge is not limited to qualitative information as first-principle models
or even grey-box models may also be available. Either qualitative information or
quantitative description is valuable resource to capture qualitative connectivity and
causality, even though some of the information may be missing. Our task is to capture
useful connectivity and causality from such resources and convert the information
into computer accessible formats.

F. Yang et al., Capturing Connectivity and Causality in Complex Industrial Processes, 23
SpringerBriefs in Applied Sciences and Technology,
DOI: 10.1007/978-3-319-05380-6_4, © The Author(s) 2014



24 4 Capturing Connectivity and Causality from Process Knowledge

4.1 Structural Modeling Based on First-Principle
Structural Models

A structural model shows potential causal dependencies between endogenous/output
and exogenous/input variables, and the measurement model shows relations between
latent variables and their indicators. As mentioned in Sect. 3.2.1, a directed arrow rep-
resents the influence of an exogenous variable or the residual on the output variable,
and a bidirectional arrow represents the correlation between exogenous variables.

Since the exogenous variables are not independent, there is some ambiguity about
the real or dominant path. Structural equation modeling (SEM) is a statistical tech-
nique for testing and estimating causal relations [22, 25]. Based on the statistical
analysis, components of direct and indirect relations can be evaluated via variance
decomposition [31]; this provides some indication of the model structure. Typically,
factor analysis, path analysis, and regression, as special cases of SEM, are widely
used in exploratory factor analysis, such as psychometric design. IBM® SPSS® Amos
(Analysis of Moment Structures) provides an easy-to-use program for visual SEM.

The limitations of this modeling approach are: (1) exogenous and endogenous
variables should be selected in advance as a hypothesis and the result highly depends
on this partition; (2) the causal relations described here are static relations; and
(3) only linear regression is considered. To overcome the last two limitations, dynamic
causal modeling embraces nonlinear and dynamic relationships [8]. This approach
is more suitable for confirmatory modeling than exploratory modeling to construct
a network topology, and suffers from a high dimension problem involving a large
number of variables; for this reason, we include it in this category although it is
essentially a combination of first principles and process data.

4.2 Construction of Adjacency and Reachability Matrices

As defined in Sect. 3.1.1, an adjacency matrix can be built manually based on process
connectivity knowledge. If the PFD or P&ID diagram is available, this is straightfor-
ward. By Boolean matrix computation, a reachability matrix can be obtained. This
can also be considered as an equivalent representation of a process graph [13].

4.3 Construction of Graphical Models

4.3.1 Modeling of SDGs

As an extension of process graphs, SDGs are established by representing process
variables as graph nodes and representing causal relations as directed arcs. An arc
from node x to node y implies that the variation of x may cause the variation of y.
For convenience, ‘+’, ‘−’, or ‘0’ is assigned to the nodes in comparison with normal

http://dx.doi.org/10.1007/978-3-319-05380-6_3
http://dx.doi.org/10.1007/978-3-319-05380-6_3
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operating value thresholds to denote higher than, lower than, or within the normal
region, respectively. Positive or negative influence between nodes is distinguished
by the sign ‘+’ (promotion) or ‘−’ (suppression), assigned to the arc.

A SDG can be built manually from first principles and mathematical models and
more practically from process knowledge including flowsheets [14, 15]. If we have
the differential algebraic equations (DAEs) as the process description, then we can
derive the structure and signs of the graph by specific methods briefly introduced
below [14].

A typical dynamic system can be expressed as a set of differential equations (DEs)

dxi

dt
= fi (x1, . . . , xn) , i = 1, . . . , n, (4.1)

where x1, . . . , xn are process variables. By Taylor series expansion near an operating
point x0

1 , · · · , x0
n , we obtain

dxi

dt
≈ fi

(
x0

1 , . . . , x0
n

)
+

n∑
j=1

∂ fi

∂x j

∣∣∣∣∣∣
x0

1 ,...,x0
n

(
x j − x0

j

)
, (4.2)

where fi (x0
1 , . . . , x0

n ) = 0. Equation (4.2) can be expressed in the following matrix
form:

d

dt

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ ≈

⎡
⎢⎢⎢⎢⎣

∂ f1

∂x1
· · · ∂ f1

∂xn
...

...
∂ fn

∂x1
· · · ∂ fn

∂xn

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x0

1 ,...,x0
n

⎡
⎢⎣

x1 − x0
1

...

xn − x0
n

⎤
⎥⎦ . (4.3)

The Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎣

∂ f1

∂x1
· · · ∂ f1

∂xn
...

...
∂ fn

∂x1
· · · ∂ fn

∂xn

⎤
⎥⎥⎥⎥⎦ (4.4)

can be described by a SDG whose signs of arcs are defined as

sgn(x j → xi ) = sgn

[
∂ fi

∂x j

∣∣∣∣
x0

i ,...,x0
n

]
, (4.5)

if the nodes correspond to the process variables. Thus the SDG in fact describes the
direct influences or sensitivities between process variables.
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Fig. 4.1 Step response of
different systems. a First-
order system, b Higher-order
system with its approximate
first-order system

In practical problems, the systems often have the following form as a DE:

an
dn x

dtn
+ · · · + a2

d2x

dt2 + a1
dx

dt
+ a0x = e, (4.6)

where x is the state and e is the disturbance. When n = 1, it is a first-order system:

dx

dt
= −a0

a1
x + 1

a1
e. (4.7)

The step response is shown in Fig. 4.1a. An arc is constructed from node e to node
x with a sign sgn [1/a1] and a self-cycle on the node x with a sign -sgn [a0/a1].
For higher-order systems, simplification can be made because the corresponding DE
includes different order derivatives of the same variable, which can be avoided for
the explicit physical meaning of the model. It can be approximated as a first-order
system with delay:

d

dt
x (t − τ) = −a∈

0

a∈
1

x (t) + 1

a∈
1

e (t) , (4.8)

where τ is the equivalent pure delay. Its step response is shown in Fig. 4.1b. The
method of constructing SDGs is the same as the former one, and the delay can be
included in dynamic SDGs [27].

Algebraic equations (AEs) are usually included in the mathematical models as
constraints and can also be transformed into SDGs [14] although they are non causal
in nature. Because there may exist multiple perfect matchings between equations
and variables, the corresponding SDGs may not be unique. Some treatment should
be made to remove the unsteady or spurious SDGs [14, 19].

Take a two-tank system as an example, as shown in Fig. 4.2a. Two tanks are
connected by a pipe; both tanks have outlet pipes, and Tank 1 has a feed flow. This
system can be described by the following set of DAEs:

C1
de2

dt
= f1 − f3 − f5,

C2
de7

dt
= f5 − f8,

f3 = 1

Rb1

√
l2, (4.9)
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Fig. 4.2 Two-tank system. a Schematic. C1 and C2 are cross-sectional areas of the two tanks
respectively. b SDG. e2 and e7 are the square roots of levels in the two tanks respectively

Fig. 4.3 Schematic and SDG of a tank system with controlled flowrates. a Schematic, b SDG

f5 = 1

R12
(
√

l2 −√l7),

f8 = 1

Rb2

√
l7,

where l2 and l7 are the levels in Tanks 1 and 2, f1, f3, f5, and f8 are flowrates, and
R12, Rb1, and Rb2 are the pipe resistances between Tanks 1 and 2 and the two outlet
pipes, respectively. Since li (i = 2 or 7) appears as the square root form, we use ei to
denote the square root. One can convert these equations to nodes and arcs to form a
SDG, as shown in Fig. 4.2b, where solid lines denote positive influences and broken
lines denote negative influences. Although no control is taken, there are still some
signal paths as shown in Fig. 4.2b.

In many cases, the SDGs are established by qualitative process knowledge and
experience. Figure 4.3a shows a tank with one inlet and two outlets, both under
control. The arcs from F2 to V2 and L to V3 in Fig. 4.3b describe the flow control and
level control loops respectively. Each control loop can be expressed by a negative
cycle in SDG because of the negative feedback action. This qualitative SDG can be
obtained directly from process knowledge and does not need the exact mathematical
equations. Sometimes the qualitative simulation and sensitivity experiments may
also help. The SDGs obtained by this method often include indirect causalities in
addition to direct ones, so the graph should be simplified and transformed so that all
the arcs stand for direct causalities. Some rules are summarized in [26].

The modeling procedure is often step by step. Take a continuous stirred tank
reactor (CSTR) system as another example, as shown in Fig. 4.4.
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Fig. 4.4 Schematic of a continuous stirred tank reactor system

First, the level in the tank is influenced by the inlet, outlet and recycle, so these
four variables have the relationship similar to the above examples (Fig. 4.5a). Next,
the outflow is associated with the reactor inner pressure PB and outlet pipe pressure
PT (Fig. 4.5b). For the heat exchanger, the temperatures are influenced by flowrates
(Fig. 4.5c). Since the reaction is irreversible and exothermic, the relations with con-
centrations should be included (Fig. 4.5d). When measurement and control are taken
into account, the complete SDG is shown in Fig. 4.5e.

The SDG model can be validated by process data [29]. For example, correlation
is a necessary condition of causality, so the cross-correlation between every two
measured variables can be used to validate the arcs in SDGs, and the directions
can also be obtained by shifting the time series (adding lags) to find the maximal
cross-correlation. Alternatively, probabilistic measure, such as transfer entropy, can
be used to obtain the causality and directionality [2]. These data-based methods will
be discussed in the next chapter.

In summary, the main steps of SDG modeling are: (1) Collect process knowledge,
especially P&IDs and equations; (2) build the material flow digraph by connectiv-
ity information between entities; (3) choose the key variables and give them signs
according to process knowledge; (4) add control arcs on the digraph to constitute the
SDG skeleton; (5) add other variables and arcs to form the entire SDG; (6) simplify
and verify the SDG by graph theory; and, finally, (7) validate the SDG with process
data and sensitivity experiments.
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Fig. 4.5 SDG modeling procedure of the CSTR system. a Unit SDG regarding the tank, b extended
SDG considering the pressure, c unit SDG regarding the heat exchanger, d extended SDG consid-
ering the concentrations, e extended SDG considering measurement and control

4.3.2 SDG Modeling in Control Systems

Control systems are a necessary part in industrial processes. The SDG modeling of
common controls will be discussed below by using the above method [28].

In control applications, PID control is the most common mode of control. As
shown in Fig. 4.6, a control loop is composed of a sensor, a controller, an actuator,
and a controlled plant. The deviation e of the set point r and the measurement value
xm of the controlled variable x , is the input signal to the controller, and the output of
the controller u is sent to the actuator and thus affects the controlled plant through
the manipulative variable q. This constitutes a closed loop. Because the controlled
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Fig. 4.6 Block diagram of a feedback control loop

variable may be affected by some disturbances or be coupled with other system
variables, the exogenous plant and variable xi are also added in Fig. 4.6. Assume that
the controlled plant and the controller are both linear amplifiers, namely, proportion
elements, with the positive gains k and ky , respectively. The control law of a PID
controller is:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = uP + uI + uD,

uP = kce,
duI

dt
= kce

τ
,

uD = kcτD · de

dt
,

(4.10)

where, kp is the positive proportion parameter, τI and τD are integral and differential
time constants, respectively.

According to the control law, the DAEs of the system are as follows:

xm = x + xmb, (4.11)

e = r − xm, (4.12)

uP = kce, (4.13)

duI

dt
= kce

τI
, (4.14)

uD = kcτD · de

dt
, (4.15)

u = uP + uI + uD + ub, (4.16)

q = kvu + qb, (4.17)

x = kq + a j x j , (4.18)

where subscript ‘b’ denotes bias. In the AE portion, there are two “perfect matchings”
[14] between the set of equations and the set of variables, as shown in Table 4.1,
whose corresponding SDGs are shown in Fig. 4.7, in which the nodes with shadow
are deviation nodes, arrows with solid and dotted lines denote signs ‘+’ and ‘−’,
respectively. It is noted that the node de/dt is an individual node with special function,
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Table 4.1 Perfect matchings between the AEs and variables

Equations Matched variables in Matched variables in
perfect matching (case 1) perfect matching (case 2)

(4.11) xm x
(4.12) e xm

(4.13) uP e
(4.15) uD uD

(4.16) u uP

(4.17) q u
(4.18) x q

Fig. 4.7 Two SDGs of the PID control loop. a Case 1, and b case 2

although it is the derivative of e. In applications, we generally assume that all changes
on nodes are step functions, because the SDGs are only used to analyze qualitative
trends. Hence de/dt can also be replaced by e, but its effect is limited to initial
response. Here the effect of de/dt on uD is the same as the effect of e on uP, but with
a shorter duration.

Equation (4.13) describes the controlled plant; thus the arc direction should be
from q to x according to the physical meaning, which shows the cause-effect rela-
tionship; so the case of Fig. 4.7b is removed. Moreover, if the plant shows some
dynamic characteristic, for example, the left-hand of the equation is dx/dt , then the
equation becomes a DE, and hence there is only one perfect matching, and the case
of Fig. 4.7b does not exist anymore. Using Fig. 4.7a, the initial response can be
analyzed, for example, if the set point r is increased, then e, uP, u, q, x , and xm will
become ‘+’ immediately, and uI will become ‘+’ gradually because the arc from e
to uI is a DE arc. This propagation path r → e → uP → u → q → x → xm is
consistent with the actual relations of information transfer. No matter whether the
case of Fig. 4.7b is reasonable, the analysis results of initial response by the two
SDGs are the same because there are no positive cycles within them. We summarize
this as the following rule:
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Fig. 4.8 Steady-state SDG of
a PID control loop

Rule 1: The fault propagation path of the initial response in a control loop is the
longest acyclic path starting from the fault origin in the path “set point → error →
controlling variable → controlled variable → measurement value → error”, which
is consistent with the information flow in the block diagram.

For the final response, the left-hand side of (4.14) is zero, so e = 0 in the steady
state, which can be obtained from the concept. Hence uP and uD are both zeros. The
above DAEs can be transformed into:

xm = x + xmb, (4.19)

xm = r, (4.20)

u = uI + ub, (4.21)

q = kvu + qb, (4.22)

x = kq + a j x j . (4.23)

Now the perfect matching is exclusive and the corresponding SDG is shown in
Fig. 4.8 that is the simplification of Fig. 4.7b. There are two fault propagation paths:
r → xm → x → q and x j → q → u → uI. If the set point r is increased, then
xm, x, q, u, and uI will all be increased in the steady state as long as the control action
is effective. However, if only xmb is increased, then xm will not be affected, but x will
be increased, that is the action of the control loop. We find that Fig. 4.7b also makes
sense as it reflects the information flow in steady state. From a physical viewpoint,
when the control loop operates, the controlled variable is determined by the set point,
and the controller looks like an amplifier with an infinite gain, whose input equals
zero and whose output is determined by the set point. This logical transfer relation
is opposite to the actual information relation.

Because the D action is restricted in the initial period, the fault propagation path
of PI control is the same as the one above. Because of I action, some variables show
compensatory response, for example, the response of xm due to xmb is limited at
initial stage. If there is only P action, then e is not zero in the steady state, and thus
uI and related arcs in Fig. 4.8 are deleted, and the initial response and steady-state
response can both be analyzed with this graph.

The rule of fault propagation analysis in steady state can be summarized as follows:
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Fig. 4.9 Block diagram of a cascade control system

Rule 2: The fault propagation path of the steady-state response in a control loop
is the path “set point → measurement value → controlled variable → controlling
variable” and “exogenous variable → controlling variable”.

When the control loop works, the above analysis shows the fault propagation paths
due to the output deviation of the sensor, controller, actuator, and other exogenous
variables. When the control loop does not function, there are two cases: (1) structural
faults, e.g., the failure of the sensor, controller or actuator causes a broken arc and the
control loop becomes open, (2) excessive deviation causes the controller saturation,
leading to the I action ineffective in removing the residual error, which is similar to
the P action case.

Based on the above analysis of the PID control loop, other control systems can
also be transformed into SDG forms.

Feedforward control is a supplement to feedback control. It is widely used in prac-
tice; it is easy to be treated according to the foregoing methods because it composes
paths but not cycles, hence leading to no multiple perfect matchings.

Split-range control means different control strategies are adopted at different value
intervals. Here the sign of the arcs or even the graph structure may change with the
variable values, which is realized by several controllers in a parallel connection.
This case is hard for SDG to deal with. We have to make some judgments as adding
inference, and modify the structure or use conditional arcs to cover all the cases [23].

Cascade control can be regarded as an extension of the single loop case. It can
be implemented directly by AEs, or by the combination of two single loops. For
example, the cascade control system in Fig. 4.9 has the steady-state SDG as shown
in Fig. 4.10, where the controlled variable of the outer loop u1 is the set point of the
inner loop r2.

Other control methods include ratio control and averaging control. Figure 4.11 is a
dual-element averaging control system whose objective is to balance two variables—
level and flow, the block diagram of which is shown in Fig. 4.12. We have

Px = PL − PF + PS + c, (4.24)
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Fig. 4.10 Steady-state SDG of a cascade control system

Fig. 4.11 Dual-element averaging control system

Fig. 4.12 Block diagram
of a dual-element averaging
control system

where Px is the pressure signal of the adder output, PL is the level measurement
signal, PF is the flow measurement signal, and PS is a tunable signal of the adder. In
the simplest case, flow process and its measurement are both positive linear elements,
and the level process is a negative linear element, so the steady-state SDG is shown
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Fig. 4.13 Steady-state SDG
of a dual-element averaging
control system

Fig. 4.14 Bond graph of a
two-tank system

in Fig. 4.13. Although there are multiple perfect matchings, the SDG has only one
negative cycle; thus we can analyze the fault propagation through the directed paths.

Thus we conclude the following rule:
Rule 3: The fault propagation path of a control system in steady state can be

combined from the ones of single-loop by combining the same nodes and adding
arcs by transforming AEs that describe the relationships.

4.3.3 Other Graphical Models

There are other graphical models that are commonly used to describe complex sys-
tems, and yet they have different forms with different meanings. Bond graphs [21]
and their extensions, such as temporal causal graphs [18], use different symbols to
further describe dynamic characteristics. More precisely, qualitative transfer func-
tions [12], differential equations [17], and trend analysis [9, 16] have been integrated
into causal graphs, and complex algorithms are introduced to improve their correct-
ness [4]. Similar or improved approaches have been investigated by many researchers
[1, 6, 10, 20].

The bond graph of the two-tank system is shown in Fig. 4.14, and the tempo-
ral causal graph is shown in Fig. 4.15. In the bond graph, there are two types of
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Fig. 4.15 Temporal causal graph of the two-tank system

junctions—common effort (0-) junctions and common flow (1-) junctions. The bond
graph describes the exchange of physical energy by bonds. A bond graph can be used
to derive the steady state model automatically; this property is similar with signal
flow graphs, which, as another graphical model, can be used for derivation of transfer
functions. The temporal causal graph converts the junctions and bonds in the bond
graph into nodes and arcs, and imposes labels on arcs to describe detailed temporal
effects such as integration and rate of change.

Compared to the SDG in Fig. 4.2b, the temporal graph provides more detailed
information and forms a quantitative model, while the SDG is only concerned with
the qualitative trends. Since exact models are often difficult to obtain for industrial
processes, SDG models are more appealing due to their simplicity.

4.4 Rule-Based Models

In addition to the above models to describe connectivity and causality information
from process knowledge, there are other methods that can be used, such as rules in
expert systems.

An expert system is a powerful tool in artificial intelligence by converting knowl-
edge into a set of IF-THEN rules. Kramer and Palowitch [11] used such rules to
describe SDG arcs and thus expert systems can be employed as a tool in this prob-
lem. Each arc can be described by a rule using logical functions p, m, and z:

(p AB) ≥ A −→ B (positive relation) ,

(n AB) ≥ A ��� B (negative relation) , (4.25)

(z AB) ≥ A B (zero relation) .

Therefore, a SDG can be converted into a set of rules. These rules can be expressed
in IF-THEN forms to make reasoning by rule reduction. Since only qualitative
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Fig. 4.16 Schematic of the
CAEX plant analyzer [31]

information is included, there may exist a lot of illusive results. To prevent this
disadvantage, some quantitative information, such as steady-state gain, is taken into
account to find dominant propagation paths [3].

4.5 Extracting Plant Topology from Web Language

P&IDs and other flowsheets are very important topological process knowledge
expression that can be standardized in a computer readable electronic form—XML
format. It has been implemented in some commercial CAD tools such as Aveva’s VPE
P&ID, Comos P&ID from Siemens, and SmartPlant P&ID from Intergraph accord-
ing to standards IEC/PAS 62424, ISO 10303-221 and ISO 15926 on the exchange
of engineering data [7]. The XML-based CAEX provides a common data format
for storage of object information. A tool has been developed to parse and extract
the connectivity information from an XML file [24, 31], named as the CAEX Plant
Analyzer. The schematic of this tool is shown in Fig. 4.16, where the CAEX & XML
can be parsed as well as plant disturbance analysis results for reasoning.

In Sect. 3.1.3, the RDF/OWL techniques were introduced as a semantic web
description of plant topology. This format includes more information and can be
used to query for more information. The topology information is a simple applica-
tion and can be extracted easily. With the progress of semantic web technology, this
emerging technique will have more applications.

The topology or connectivity obtained here includes both material flow paths
and information flow paths, which are needed for topology modeling. Although
the granularity is entity-based, which is not enough for the variable-based topology
modeling, this kind of topological information is fundamental and can be used as
references as well.

http://dx.doi.org/10.1007/978-3-319-05380-6_3
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4.6 Chapter Summary

Some common approaches to topology capture from process knowledge have been
introduced in this chapter, particularly the SDG model building. This procedure is
tedious and time-consuming because it is usually a manual procedure. Web language
extracted from CAD tools provides an opportunity to automate this procedure and
some preliminary work has shown this feasibility.

In practice, a large-scale system is composed of many elementary units, such as
tanks and heat exchangers. These generic unit models from various unit operations
can be developed and stored in a library for reuse. When building a model for a new
process, one can just connect the individual models using the connectivity informa-
tion from the plant topology by matching outlet variables of the upstream elements to
the input variables of the downstream elements [5]. In addition, hierarchical models
can be developed using the concept of divide and conquer [30].

All these approaches need the complete knowledge of the process, at least the
qualitative knowledge, which is not always available; thus we should also explore
topology capture using data-based methods.
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Chapter 5
Capturing Causality from Process Data

Abstract Data is a valuable resource for modeling and analysis. Process data is
a set of timeseries of process variables. In this chapter, we focus on the relation-
ship between different time series to capture causality in the process. For a pair of
process variables, various data-based methods can be applied to detect causality.
These methods can be categorized into three classes: lag-basedmethods, such as the
Granger causality and transfer entropy; conditional independence methods, such as
the Bayesian network; and higher order statistics, such as the Patel’s pairwise con-
ditional probability approach. In this work, we focus on the first group of methods,
which are the most commonly used, and then briefly discuss some remaining meth-
ods. Based on the results of pairwise causality analysis, one can construct a causal
network that is composed of the links between every two nodes. For multivariate sys-
tems, network topology can be determined by using statistical confounding analysis.

Keywords Big data · System identification · Cross correlation · Correlation color
maps · Granger causality · Directed transfer functions · Partial directed coherence ·
Transfer entropy · Bayesian network · Mutual validation

Data is a valuable resource for modeling and analysis. Process data is a set of time
series of process variables. In this chapter, we focus on the relationship between
different time series to capture causality in the process. Although the concept of big
data concentrates on correlation instead of causality [23], we still need to detect and
infer causality in the analysis of industrial processes with clear physical background.

In Chap. 1, we explained the notion of causality. For a pair of process variables,
various data-based methods can be applied to detect causality. These will be intro-
duced in the following sections. However, there are a lot of process variables in
a process. Based on the results of pairwise causality analysis, one can construct a
causal network that is composed of the links between every two nodes. If there are n
nodes in this network, there are n2 links that need to be checked. Because causality
is transitive, some causality relations can be explained by sequential direct causal
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relations. For example, the causality from A to C can be a combined result of causal
relations from A to B and from B to C ; pairwise data analysis cannot recognize this
difference. For such cases network topology can be determined by using statistical
confounding analysis.

These methods can be categorized into three classes [34]: lag-based methods, such
as Granger causality and transfer entropy; conditional independence methods, such
as Bayesian network; and higher order statistics, such as Patel’s pairwise conditional
probability approach [27]. In this work, the emphasis will be on the first group of
methods, which is the most commonly used, and briefly discuss some remaining
methods.

5.1 System Identification Approach

If we consider a pair of variables as a bivariate system, the closed-loop system iden-
tification methods can be applied to determine the path models. By checking the
existence of the paths, we can conclude the causality between the two variables.
Under the assumption of the model structure, both the model orders and parameters
need to be identified; to do this we propose the use of the augmented upper diag-
onal identification (AUDI) algorithm [24] and its extension—the interleaved data
pair upper diagonal (IDPUD) algorithm [17]—to identify the model order and the
parameters simultaneously.

Consider the following linear closed-loop model

A(z−1)z(k) = B(z−1)u(k) + v(k),

P(z−1)u(k) = Q(z−1)z(k) + w(k),
(5.1)

with



A(z−1) = 1 + a(1)z−1 + · · · + a(na)z−na ,

B(z−1) = b(d)z−d + · · · + b(nb)z−nb ,

P(z−1) = p(1)z−1 + · · · + p(n p)z−n p ,

Q(z−1) = q(c)z−c + · · · + q(nq)z−nq ,

(5.2)

where z(k) and u(k) are the output and input variables; v(k) and w(k) are white noise
sequences; a(i) and b(i) are parameters of the forward path model; p(i) and q(i) are
parameters of the backward path model; na , nb, n p, and nq are the corresponding
orders; c and d are the delays in the backward and forward paths, respectively.

Define the following interleaved data vectors as




ϕ(k) = [−z(k − n), u(k − n), . . . , −z(k − 1),−u(k − 1),−z(k)]T ,

h(k) = [−z(k − n), u(k − n), . . . , −z(k − 1), −u(k − 1)]T ,

g(k) = [−u(k − n), z(k − n), . . . , −u(k − 1),−z(k − 1)]T ,

(5.3)
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where

n � max
⎡
na, nb, n p, nq

⎢
. (5.4)

Then (5.1) can be rewritten as

z (k) = hT (k) · θ + v (k) , (5.5)

u (k) = gT (k) · α + w (k) , (5.6)

where

θ = [a (n) , b (n) , . . . , a (1) , b (1)]T , (5.7)

α = [p (n) , q (n) , . . . , p (1) , q (1)]T . (5.8)

Define a data product matrix

S (k) =
k⎣

j=1

ϕ ( j)ϕT ( j) . (5.9)

Then the augmented information matrix (AIM) is

C (k) = S−1 (k) . (5.10)

Decomposing the AIM into its UDUT form yields

C (k) = S−1 (k) = U (k) D (k) UT (k) , (5.11)

where the parameter matrix U (k) has the form

U (k) =

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 α̂(1)
1 θ̂

(1)
1 α̂

(2)
1 θ̂

(2)
1 · · · α̂

(n)
1 θ̂

(n)
1

1 θ̂
(1)
2 α̂

(2)
2 θ̂

(2)
2 · · · α̂

(n)
2 θ̂

(n)
2

1 α̂
(2)
3 θ̂

(3)
3 · · · α̂

(n)
3 θ̂

(n)
3

1 θ̂
(2)
4 · · · α̂

(n)
4 θ̂

(n)
4

1 · · · α̂
(n)
5 θ̂

(n)
5

1
...

...

1 θ̂
(n)
2n

1




, (5.12)
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and the loss function matrix D (k) has the form

D (k) = diag
⎧

J (0)
f (k) J (1)

b (k) J (1)
f (k) J (2)

b (k) J (2)
f (k) · · · J (n)

b (k) J (n)
f (k)

⎪
,

(5.13)
where superscripts “(i)” (i = 0, 1, 2, · · · , n) stand for the model orders. For instance,
θ̂
(n)
1 is the first parameter of the nth order model parameters. The subscripts “ f ” and

“b” represent the forward and backward paths, respectively.
Define

ϕT (k) U (k) = eT (k) , (5.14)

where

e (k) = ⎨e1 (k) , e2 (k) , . . . , e2n (k) , e2n+1 (k)
⎩T

. (5.15)

Equation (5.14) is equivalent to the following (2n+1) equations

0 ≈ z (k − n) ,

z (k − n) , u (k − n) ≈ u (k − n + 1) ,

z (k − n) , u (k − n) , z (k − n + 1) ≈ z (k − n + 1) ,
...

z (k − n) , u (k − n) , z (k − n + 1) , . . . , z (k − 1) ≈ u (k − 1) ,

z (k − n) , u (k − n) , z (k − n + 1) , . . . , z (k − 1) , u (k − 1) ≈ z (k) ,

(5.16)

where “≈” denotes the use of linear combination of the left hand side to fit the
right-hand side and ei (k) is the loss function value of the i th equation [25].

Define the forward path order

n f = max {na, nb} (5.17)

and the backward path order

nb = max
⎡
n p, nq

⎢
. (5.18)

Equation (5.14) describes a set of equalities. The forward path (5.5) is the n f th odd
column of (5.14). The order of (5.5) can be determined by the forward path loss
functions

(
J f (k)

)
, and its parameters, e.g., (5.7) is the corresponding odd column

of U (k). Meanwhile, the backward path (5.6) is the nbth even column of (5.14). The
order of (5.6) can be determined by the backward path loss functions (Jb (k)), and
its parameters, e.g., (5.8) is also the corresponding even column of U (k). For the
bivariate process in (5.1), if Q

(
z−1
) = 0, and R is block diagonal, it is causality-free

from z to u; if B
(
z−1
) = 0 and R is block diagonal, it is causality-free from u to z.
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Therefore the causality relationship between u and z can be anyone of the following
four types:

(i) If B
(
z−1
) = 0 , Q

(
z−1
) = 0 and R is block diagonal, then there is no causality

between u and z.
(ii) If B

(
z−1
) →= 0 , Q

(
z−1
) = 0 and R is block diagonal, then u is the cause and

z is the effect, but z cannot affect u.
(iii) If B

(
z−1
) = 0 , Q

(
z−1
) →= 0 and R is block diagonal, then z is the cause and

u is the effect, but u cannot affect z.
(iv) Otherwise, u can affect z, and z can also affect u; this is also known as bi-

directional causality.

Due to estimation errors, a hypothesis testing should be used to check if the
cross-regressive coefficients are close to zero to judge the causality [16].

The above ARMAX process with white noise can be extended to the case with
colored noise [18].

This method can be used for identification of the path models between any two
variables; in multivariate systems, however, the matrix decomposition is complex
because vector autoregressive (VAR) models should be used instead of the above
ARMAX model structure.

5.2 Cross-Correlation Analysis

For a multivariate system, it is easy to compute the correlation coefficient between
every two variables. This is practical for a preliminary study. However, as mentioned
in Chap. 1 correlation does not imply causality; a major difference is that correlation
does not show directionality. In this section, a lag-adjusted cross-correlation analysis
is introduced to give a similar sense of causality because the concept of temporal
direction or lags between the cause and effect is an important aspect of causality.

Assume that x and y are time series of n observations with means μx , μy and
variances σx , σy , respectively, then the cross-correlation function (CCF) with an
assumed lag k is:

φxy (k) = E[(xi − μx )(yi+k − μy)]
σxσy

, k = −n + 1, . . . , n − 1. (5.19)

The expectation can be estimated by the sample CCF as:

φ̂xy(k) =
{

1
n−k

∑n−k
i=1 (xi − μx )(yi+k − μy)/sx sy, k ∈ 0,

1
n+k

∑n
i=1−k(xi − μx )(yi+k − μy)/sx sy, k < 0.

(5.20)

where sx and sy are sample standard deviations of x and y, respectively.
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A value of the CCF is obtained by assuming a certain time delay for one of the
time series. Thus the maximum absolute value can be regarded as the real cross-
correlation and the corresponding lag as the estimated time delay between these
two variables. For mathematical description, one can compute the maximum and
minimum values φmax = maxk

⎡
φxy(k), 0

⎢ ∈ 0 and φmin = mink
⎡
φxy(k), 0

⎢ ≥ 0,
and the corresponding arguments kmax and kmin. Then the time delay from x to y is:

λ =
{

kmax, φmax ∈ −φmin,

kmin, φmax < −φmin,
(5.21)

(corresponding to the maximum absolute value) and the actual time delayed cross-
correlation is ρ = φxy(λ) (between −1 and 1). If λ is less than zero, then it means
that the actual delay is from y to x . Thus the sign of λ provides the directionality
information between x and y. The sign of ρ corresponds to the sign of the arc in the
SDG meaning whether the correlation is positive or negative.

By this definition, ρ is a statistical estimate and is inevitably prone to some uncer-
tainty due to disturbances, noise and the size of data windows. Therefore its value
should be judged with care. Even if the two time series are uncorrelated random noise
sequences, ρ may still likely be different from zero. Therefore the value of the CCF
between two variables should be checked against a threshold. Thus, if the correlation
between the two series is very weak, then the effect of the noise will dominate the
results. Therefore in correlation analysis, only those values which are significantly
larger than a user-defined threshold (e.g., ±0.2) are considered to be evidence of
correlations.

To sum up, based on estimation, the maximum CCF is defined as the time delayed
correlation coefficient (or correlation in brief), and the corresponding argument k is
defined as the estimate of time delay from x to y, from which we can find the cause and
the effect [4]. Of course, correlations are based on statistics under the assumption of
linearity, thus they need hypothesis tests to obtain the level of significance. Although
the estimates of correlation coefficients are not accurate, the directions are believable
for most cases. Although this method is practical and easy to compute, it has many
shortcomings, some of which are explained below:

• Nonlinear causal relationship does not necessarily show up in correlation analysis.
For example, if y equals the square of x with the time delay of one sample time,
where x is a superposition of a sine signal and a white noise, then, based on the
time-delayed cross-correlation, this obvious causality cannot be found because
all the values are small relative to a threshold, as shown in Fig. 5.1. This can be
explained because the true correlation should be zero.

• Correlation simply gives us an estimate of the time delay. The sign of the delay is
an estimate of the directionality of the signal flow path. The time delay, however,
is only an estimate. In addition, the trend in a time series is ignored, and values at
different time instants are regarded as samples of the same random event. Thus the
causality obtained by this measure is purely the time delay based on the estimate
of the covariance.
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Fig. 5.1 Cross-correlation
function for the case of non-
linear relationship between
two variables

Given all the lag-adjusted cross-correlations between any two variables, a cor-
relation color map (similar to the one proposed in [35]) can be constructed, whose
horizontal and vertical coordinates are both variables in the same order and the
color of each pixel shows the correlation between the two corresponding variables
according to a scaled color bar. This provides an intuitive way to observe correlation,
especially for identification of similar groups of variables.

In a system with many variables, pairwise analysis is not enough. Apart from
the pair of variables, other related variables can affect the correlation between the
two variables. Thus process knowledge should be taken into account to identify the
topology in the group of correlated variables. In any case, an apparent correlation
should be analyzed no matter whether the causality is direct or indirect.

5.3 Granger Causality Analysis

Regression is a natural way to test the relationship between variables. By taking
dynamics into account, the lags in the models reflect causality. A regression of a
variable on lagged values of itself is compared with the regression augmented with
lagged values of the other variable. If the augmentation is helpful for better regression,
then one can conclude that this variable is Granger-caused by the other variable.

This idea comes from [36] who proposed a notion of causality, “X could be termed
as to ‘cause’ Y if the predictability of Y is improved by incorporating information
about X”. However, Wiener’s idea lacked the machinery for practical implementa-
tion. Later, [14] adopted and formalized this idea in the context of linear regression
models. He pointed out that if the incorporation of the past measurements from one
time series can reduce the variance of the autoregressive prediction error of a second
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time series at the present time, then it is said that the first time series has a causal
influence on the second one.

Consider two stochastic processes Xt and Yt . Both of them can be modeled as a
vector autoregressive (VAR) process:

Xt =
∞⎣
j=1

a1 j Xt− j + ε1t , var(ε1t ) = Σ1, (5.22)

Yt =
∞⎣
j=1

d1 j Yt− j + η1t , var(η1t ) = Γ1. (5.23)

Jointly, they can be represented as

Xt =
∞⎣
j=1

a2 j Xt− j +
∞⎣
j=1

b2 j Yt− j + ε2t , (5.24)

Yt =
∞⎣
j=1

c2 j Xt− j +
∞⎣
j=1

d2 j Yt− j + η2t , (5.25)

where the noise terms are uncorrelated over time and their contemporaneous covari-
ance matrix is

Σ =
(

Σ2 Υ2
Υ2 Γ2

)
, (5.26)

where Σ2 = var(ε2t ), Γ2 = var(η2t ), and Υ2 = cov(ε2t , η2t ). If Xt and Yt are
independent, then

⎡
b2 j
⎢

and
⎡
c2 j
⎢

are zero; thus Υ2 = 0, Σ1 = Σ2, and Γ1 = Γ2.
The total interdependence between Xt and Yt is defined as

FX,Y = ln
Σ1Γ1

|Σ | , (5.27)

where | | represents the determinant of the enclosed matrix. According to this def-
inition, FX,Y = 0 when the two time series are independent, and FX,Y > 0 when
they are not.

Consider (5.22) and (5.24). The value of Σ1 measures the accuracy of the autore-
gressive prediction of Xt based on its previous values. The value of Σ2 represents
the accuracy of predicting the present value of Xt based on the previous values of
both Xt and Yt . According to the idea of Granger, if Σ2 is less than Σ1, then it is
said that Yt has a causal influence on Xt . This causal influence is defined as follows:

FY→X = ln
Σ1

Σ2
. (5.28)
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It is noted that, if FY→X = 0, there is no causal influence from Yt to Xt , and if
FY→X > 0, there is. Similarly, one can define causal influence from Xt to Yt as:

FX→Y = ln
Γ1

Γ2
. (5.29)

It is possible that the interdependence between Xt and Yt cannot be fully explained by
their interactions. The remaining interdependence is captured by Υ2, the covariance
between ε2t and η2t . This interdependence is referred to as an instantaneous causality
and is characterized by

FX ·Y = ln
Σ2Γ2

|Σ | . (5.30)

When Υ2 is zero, FX ·Y = 0; when Υ2 is not zero, FX ·Y > 0 .
The above definitions imply that

FX,Y = FX→Y + FY→X + FX ·Y . (5.31)

It is noted that the total interdependence between two time series Xt and Yt is decom-
posed into three components: two directional causal influences due to their interac-
tion patterns, and the instantaneous causality due to factors possibly exogenous to
the (X, Y ) system corresponding to the last term in (5.31).

Granger’s concept of causality has received a lot of attention. Indeed, natural time
series can also be interpreted in the frequency domain and so it is important to have a
spectral representation of causal influence. The major progress in this area was made
by Geweke, whose novel decomposition of the multivariate autoregressive process
leads to a set of causality measures which have a spectral representation and make
the interpretation more straightforward [11, 12].

Consider three processes Xt , Yt , and Zt . Suppose that a pairwise analysis reveals
a causal influence from Yt to Xt , in this case one can carry out the following steps
to discriminate whether this influence is direct (Fig. 5.2b), or is mediated by Zt (Fig.
5.2a). Firstly, let the joint autoregressive representations of Xt and Zt be

Xt =
∞⎣
j=1

a3 j Xt− j +
∞⎣
j=1

b3 j Zt− j + ε3t , (5.32)

Zt =
∞⎣
j=1

c3 j Xt− j +
∞⎣
j=1

d3 j Zt− j + γ3t , (5.33)

where the covariance matrix of the noise terms is

Σ3 =
(

Σ3 Υ3
Υ3 Γ3

)
. (5.34)
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Fig. 5.2 Two different
patterns of causality

Next consider the joint autoregressive representations of all three processes Xt , Yt ,
and Zt :

Xt =
∞⎣
j=1

a4 j Xt− j +
∞⎣
j=1

b4 j Yt− j +
∞⎣
j=1

c4 j Zt− j + ε4t , (5.35)

Yt =
∞⎣
j=1

d4 j Xt− j +
∞⎣
j=1

e4 j Yt− j +
∞⎣
j=1

g4 j Zt− j + η4t , (5.36)

Zt =
∞⎣
j=1

u4 j Xt− j +
∞⎣
j=1

v4 j Yt− j +
∞⎣
j=1

w4 j Zt− j + γ4t , (5.37)

where the covariance matrix of the noise terms is

Σ4 =
⎛
⎝Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz

⎞
⎠ . (5.38)

From these two sets of equations, we define the Granger causality from Yt to Xt

conditional on Zt to be

FY→X |Z = ln
Σ3

Σxx
. (5.39)

The intuitive meaning of the definition is that when the causal influence form Yt to Xt

is entirely mediated by Zt (Fig. 5.2a),
⎡
b4 j
⎢

is uniformly zeros, and Σ3 = Σxx . Then
we have FY→X |Z = 0, which means that no further improvement in the prediction of
Xt can be expected by including past measurements of Yt . On the other hand, when
there is a direct influence from Yt to Xt (Fig. 5.2b), the inclusion of past measurements
of Yt in addition to that of Xt and Zt results in better predictions of Xt , leading to
Σ3 > Σxx and FY→X |Z > 0.

In summary, Granger causality is a practical method with acceptable computa-
tional burden and has been used in real applications [40]. A Matlab toolbox titled
“Causal Connectivity Analysis” is available [32].



5.3 Granger Causality Analysis 51

The Granger causality method needs a regression model, leading to the following
disadvantages of this approach. First, a linear relation between x and y is assumed,
which can be quite restrictive. Second, the model accuracy affects the result, espe-
cially the predefined model order. There are some extensions of the basic Granger
causality concept, such as variants of the Wiener-Granger causality [6], to provide
more general forms.

5.4 Directed Transfer Function / Partial Directed Coherence
Analysis

A process can also be described in the frequency domain where the energy transfer
at every frequency can be shown. Based on this idea, several methods have been
developed, such as the directed transfer function (DTF) [19] and the partial directed
coherence (PDC) [1]. These quantities DTF and PDC are normalized measures of the
total and direct influence respectively between two variables in a multivariate process.
Conditioning is conducted to exclude the influence of the confounding variables [13];
this is very important under the multivariate framework [9].

Assume that there are n jointly stationary time series x1(k), x2(k), · · · , xn(k). As
for partial directed coherence (PDC), a jointly stationary multivariate process can
be described by an n-dimensional restraint VAR model as shown below, In this case
the model order and coefficients âi j (r)(r = 1, · · · , p) are estimated under a certain
criterion, such as least squares, based on these n time series:




x1(k) =∑r â11(r)x1(k − r) +∑r â12(r)x2(k − r) + · · · +∑
r â1n(r)xn(k − r) + ê1(k),

x2(k) =∑r â21(r)x1(k − r) +∑r â22(r)x2(k − r) + · · · +∑
r â2n(r)xn(k − r) + ê2(k),

· · · · · ·
xn(k) =∑r ân1(r)x1(k − r) +∑r ân2(r)x2(k − r) + · · ·+∑

r ânn(r)xn(k − r) + ên(k).

(5.40)

Apply Z transform to (5.40), and let z−1 = e− jω , then the frequency response of
the process in (5.40) can be written as

Â(ω)X(ω) = E(ω), (5.41)

where

Âi j (ω) = −
⎣

r

âi j (r)e− jωr , Âii (ω) = 1 −
⎣

r

âii (r)e− jωr , (5.42)

X(ω) = [x1(ω) x2(ω) . . . xn(ω)]T , (5.43)

E(ω) = [ê1(ω) ê2(ω) . . . ên(ω)]T . (5.44)
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The estimated PDC
∣∣π̂i j (ω)

∣∣ is defined to reflect the causality from x j (source
node) to xi (sink node) as [1]:

∣∣π̂i j (ω)
∣∣ �

∣∣∣ Âi j (ω)

∣∣∣√∑n
i=1

∣∣∣ Âi j (ω)

∣∣∣2
, (5.45)

in which the following normalization property holds:

0 ≥ ∣∣π̂i j (ω)
∣∣2 ≥ 1 and

n⎣
i=1

∣∣π̂i j (ω)
∣∣2 = 1, (5.46)

and
∣∣π̂i j (ω)

∣∣ is not zero when xi is influenced by x j directly.
In addition, we have

X(z) = A(z)−1E(z). (5.47)

Letting H(z) = A(z)−1, we get

H(ω) = A(ω)−1 =

⎤
⎥⎥⎥⎥⎦

h11(ω) h12(ω) · · · h1n(ω)

h21(ω)
. . .

. . . h2n(ω)
...

. . .
. . .

...

hn1(ω) · · · · · · hnn(ω)


 . (5.48)

Assume the covariance matrix of the innovations to be Σe = IN . Then we can
define the DTF as:

γi j (ω) = hi j (ω)√∑n
j=1

∣∣hi j (ω)
∣∣2 . (5.49)

The following normalization property holds:

0 ≥ ∣∣γi j
∣∣2 ≥ 1 and

n⎣
j=1

∣∣γi j (ω)
∣∣2 = 1. (5.50)

Both DTF and PDC can describe the directionality of the effect. DTF measures
the total effect of one series on another, which is useful for analyzing fault propaga-
tion; but it cannot give further information about whether there exists direct causal
influence. Nevertheless, PDC can provide this information, so we could use it to
reconstruct the process topology. For a clear visualization, a matrix layout plot is
used, as shown in Fig. 3.7.
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In addition to a visualization, [29] concluded that PDC is a powerful technique
to detect causal influences with respect to Granger causality and derived a signifi-
cance level for the test. However, there are still some unaddressed problems. Gigi
and Tangirala [13] did quantitative analysis on the strength of the causal influences
and proved that the total effect, in fact, consists of three components, namely, the
direct, indirect, and interference terms. The total effect can be quantified by the DTF,
whilst the direct effect is hard to quantify. Zhang et al. [41] also pointed out that the
distribution of PDC in the frequency domain remains unaddressed and PDC can-
not rank the relative interaction strengths. Baccala and Sameshima [1] asserted that
PDC reflects the relative rather than the absolute strength of influence because of
the normalization, making the causality given by PDC vulnerable to the number of
other signals that are influenced by the same source signals, that is, the causality
x j → xi may change if more (or less) signals are influenced by x j . To tackle this
disadvantage, a renormalized PDC (RPDC) was proposed by Schelter et al. [30],
which avoids normalization in its definition.

Let Σ and R denote the covariance matrices of the noise e(k) = [e1(k), · · · ,

en(k)]T and process x(k) = [x1(k), · · · , xn(k)]T , respectively. Define H � R−1,
and

X̂i j (ω) �
(

Re(Âi j (ω))

Im(Âi j (ω))

)
, (5.51)

Vi j (ω) �
p⎣

t,l=1

Hj j (t, l)Σi i

(
cos(tω)cos(lω) cos(tω)sin(lω)

sin(tω)cos(lω) sin(tω)sin(lω)

)
. (5.52)

The index RPDC is defined as [30]

λ̂i j (ω) � N X̂i j (ω)′V̂i j (ω)−1X̂i j (ω), (5.53)

where N is the number of data points and V̂i j (ω) is the estimate of Vi j (ω) by
substituting estimates Ĥ and Σ̂ for H and Σ in (5.52), in which Σ and R need to be
estimated based on e(k) and x(k).

Schelter et al. [30] provided the following important proposition: Under the null
hypothesis of

∣∣Ai j (ω)
∣∣2 = 0, for p ∈ 2 and ω →= 0 mod π, the RPDC λ̂i j (ω) follows

an approximate χ2 distribution with two degrees of freedom as N tends to infinity.
When p = 1 or ω = 0 mod π, the RPDC λ̂i j (ω) with V̂i j (ω)−1 being the generalized
inverse of V̂i j (ω) is an approximate χ2 distribution with one degree of freedom as
N tends to infinity.

The frequency domain methods have similar advantages as the corresponding
time domain methods (Granger causality methods). However, they provide a better
insight into the energy transfer description at different frequencies.
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5.5 Transfer Entropy Analysis

Both Granger causality and PDC are based on linear model structures that should
be identified first; this limits the application. In real cases, if the process cannot be
approximated by a linear model, then a more general method should be used. Transfer
entropy provides an information-theoretic method to test causality by measuring the
reduction of uncertainty. According to information theory, the transfer entropy from
stationary time series x to y is defined as [31]

t (y|x) =
⎣

yi+h ,yi ,x j

p(yi+h, yi , x j ) · log
p(yi+h |yi , x j )

p(yi+h |yi )
, (5.54)

where p means the complete or conditional probability density function (PDF), x j =
[x j , x j−τ , · · · , x j−(k−1)τ ], yi = [yi , yi−τ , · · · , yi−(l−1)τ ], τ is the sampling period,
and h is the prediction horizon. The transfer entropy is a measure of information
transfer from x to y by measuring the reduction of uncertainty while assuming
predictability. It is defined as the difference between the information about a future
observation of y obtained from the simultaneous observation of past values of both
x and y, and the information about the future of y obtained from the past values
of y alone. It gives a good sense of causality information without having to require
the delay information. From experience we can take τ = h ≥ 4, k = 0, and l = 1
for the initial trial, while the usual way is to test and compare several parameters,
especially τ and h. If the transfer entropies in two directions are considered, then
t (x → y) = t (y|x)− t (x |y) is used as a measure to decide the quantity and direction
of information transfer, namely, causality [5].

In (5.54), the PDF can be estimated by histogram or kernel methods [33], which
are nonparametric methods, to fit any shape of the distributions. Here the Gaussian
kernel method is used because it is more robust than the naive histogram-based
method. The Gaussian kernel function is defined as:

K (v) = 1√
2π

e− 1
2 v2

. (5.55)

Thus a univariate PDF can be estimated by

p̂(x) = 1

Nh

N⎣
i=1

K

(
x − xi

h

)
, (5.56)

where N is the number of samples, and h is the bandwidth chosen to minimize the
mean square error of the PDF estimation calculated by h = c · σ · N−1/5, where
c = (4/3)1/5 ≈ 1.06 according to a normal reference rule-of-thumb [20].

For the multivariate case (q-dimensional), the estimation of PDF is
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p̂(x1, x2, · · · , xq) = 1

Nh1 · · · hq

N⎣
i=1

K

(
x1 − xi1

h1

)
K

(
xq − xiq

hq

)
, (5.57)

where hs = c · σ(xis)
N
i=1 · N−1/(4+q) for s = 1, · · · , q, and other symbols are the

same as in the univariate case.
In order to detect direct and indirect pathways of the information transfer, the

definition of a direct transfer entropy (DTE) is introduced as follows.
Since the data analyzed here is uniformly sampled data, as obtained from processes

that are continuous, we only consider continuous random variables here. Given three
continuous random variables x , y, and z, let them be sampled at time instant i
as denoted by xi ∈ [xmin, xmax], yi ∈ [ymin, ymax], and zi ∈ [zmin, zmax] with
i = 1, 2, . . . , N , where N is the number of samples. The causal relationships between
each pair of these variables can be estimated by calculating transfer entropies [31].

Let yi+h1 denote the value of y at time instant i + h1, that is, h1 steps in the
future from i , and h1 is referred to as the prediction horizon; y(k1)

i = [yi , yi−τ1 , . . . ,

yi−(k1−1)τ1] and x(l1)
i = [xi , xi−τ1 , . . . , xi−(l1−1)τ1] denote embedding vectors with

elements from the past values of y and x , respectively (k1 is the embedding dimension
of y and l1 is the embedding dimension of x); τ1 is the time interval that allows the
scaling in time of the embedded vector, which can be set to be h1 = τ1 ≥ 4 as a
rule of thumb [5]; f (yi+h1 , y(k1)

i , x(l1)
i ) denotes the joint PDF, and f (·|·) denotes the

conditional PDF, and thus f (yi+h1 |y(k1)
i , x(l1)

i ) denotes the conditional PDF of yi+h1

given y(k1)
i , and x(l1)

i and f (yi+h1 |y(k1)
i ) denotes the conditional PDF of yi+h1 given

y(k1)
i . The differential transfer entropy (TEdiff) from x to y, for continuous variables,

is then calculated as follows:

Tx→y =
∫

f (yi+h1 , y(k1)
i , x(l1)

i ) · log
f (yi+h1 |y(k1)

i , x(l1)
i )

f (yi+h1 |y(k1)
i )

dw, (5.58)

where the base of the logarithm is 2 and w denotes the random vector [yi+h1 , y(k1)
i ,

x(l1)
i ]. By assuming that the elements of w are w1, w2, . . . , ws , the integral

∫
(·)dw

denotes
∫∞
−∞ · · · ∫∞

−∞(·)dw1 · · · dws for simplicity, and similarly for the following
integrals.

The transfer entropy from x to y can be understood as the improvement when
using the past information of both x and y to predict the future of y compared to only
using the past information of y. In other words, the transfer entropy represents the
information about a future observation of variable y obtained from the simultaneous
observations of past values of both x and y, after discarding the information about
the future of y obtained from the past values of y alone, as shown below and Fig. 5.3.

Tx→y = H(yi+h1 |y(k1)
i ) − H(yi+h1 |y(k1)

i , x(l1)
i ), (5.59)

where H(·) denotes Shannon entropy.
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Fig. 5.3 Physical meaning of
transfer entropy

Similarly, the TEdiff from x to z is calculated as follows:

Tx→z =
∫

f (zi+h2 , z(m1)
i , x(l2)

i ) · log
f (zi+h2 |z(m1)

i , x(l2)
i )

f (zi+h2 |z(m1)
i )

d, (5.60)

where h2 is the prediction horizon, z(m1)
i = [zi , zi−τ2 , . . . , zi−(m1−1)τ2 ] and x(l2)

i =
[xi , xi−τ2 , . . . , xi−(l2−1)τ2 ] are embedding vectors with time interval τ2, and denotes

the random vector [zi+h2 , z(m1)
i , x(l2)

i ].
The TEdiff from z to y is calculated as follows:

Tz→y =
∫

f (yi+h3 , y(k2)
i , z(m2)

i ) · log
f (yi+h3 |y(k2)

i , z(m2)
i )

f (yi+h3 |y(k2)
i )

dı, (5.61)

where h3 is the prediction horizon, y(k2)
i = [yi , yi−τ3 , . . . , yi−(k2−1)τ3] and z(m2)

i =
[zi , zi−τ3 , . . . , zi−(m2−1)τ3] are embedding vectors with time interval τ3, and ı denotes

the random vector [yi+h3 , y(k2)
i , z(m2)

i ].
If Tx→y , Tx→z , and Tz→y are all larger than zero, then we conclude that x causes

y, x causes z, and z causes y. In this case, we need to distinguish whether the causal
influence from x to y is only via the indirect pathway through the intermediate
variable z, or in addition to this, there is another direct pathway from x to y. We
define a direct causality from x to y as x directly causing y, which means there is a
direct information and/or material flow pathway from x to y without any intermediate
variables.

In order to detect whether there is a direct causality from x to y, we define a
differential direct transfer entropy (DTEdiff) from x to y as follows:

Dx→y =
∫

f (yi+h, y(k)
i , z(m2)

i+h−h3
, x(l1)

i+h−h1
)·

log
f (yi+h |y(k)

i , z(m2)
i+h−h3

, x(l1)
i+h−h1

)

f (yi+h |y(k)
i , z(m2)

i+h−h3
)

dv, (5.62)
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where v denotes the random vector [yi+h, y(k)
i , z(m2)

i+h−h3
, x(l1)

i+h−h1
]; the prediction

horizon h is set to be h = max(h1, h3); if h = h1, then y(k)
i = y(k1)

i , if h =
h3, then y(k)

i = y(k2)
i ; the embedding vector z(m2)

i+h−h3
= [zi+h−h3, zi+h−h3−τ3 , . . . ,

zi+h−h3−(m2−1)τ3] denotes the past values of z which can provide useful information
for predicting the future y at time instant i + h, where the embedding dimension m2

and the time interval τ3 are determined by (5.61); the embedding vector x(l1)
i+h−h1

=
[xi+h−h1 , xi+h−h1−τ1 , . . . , xi+h−h1−(l1−1)τ1] denotes the past values of x which can
provide useful information to predict the future y at time instant i + h, where the
embedding dimension l1 and the time interval τ1 are determined by (5.58). Note
that the parameters in DTEdiff are all determined by the calculation of the transfer
entropies for consistency.

The DTEdiff represents the information about a future observation of y obtained
from the simultaneous observation of past values of both x and z, after discarding
information about the future y obtained from the past z alone. This can be understood
as follows: if the pathway from z to y is cut off, will the history of x still provide
some helpful information to predict the future y? Obviously, if this information is
non-zero (greater than zero), then there is a direct pathway from x to y. Otherwise
there is no direct pathway from x to y, and the causal influence from x to y is all
along the indirect pathway via the intermediate variable z.

After the calculation of Dx→y , if there is direct causality from x to y, we need
to further judge whether the causality from z to y is true or spurious, because it is
possible that z is not a cause of y and the spurious causality from z to y is generated
by x , i.e., x is the common source of both z and y. As shown in Fig. 5.4, there are still
two cases of the information flow pathways between x , y, and z, and the difference
is whether there is true and direct causality from z to y.

Thus, DTEdiff from z to y needs to be calculated:

Dz→y =
∫

p(yi+h, y(k)
i , x(l1)

i+h−h1
, z(m2)

i+h−h3
)·

log
p(yi+h |y(k)

i , x(l1)
i+h−h1

, z(m2)
i+h−h3

)

p(yi+h |y(k)
i , x(l1)

i+h−h1
)

dv, (5.63)

where the parameters are the same as in (5.62). If Dz→y > 0, then there is true and
direct causality from z to y, as shown in Fig. 5.4a. Otherwise, the causality from z to
y is spurious, which is generated by the common source x , as shown in Fig. 5.4b.

For detailed discussion and calculation methods of this measure, please refer
to [8].

Compared to the approach based on cross-correlation, the transfer entropy
approach can be applied to more general conditions such as nonlinear relations.
In the nonlinear example in Sect. 5.2, causalities cannot be validated based on the
cross-correlation term. However, given the lag of 1, the transfer entropies from x to
y and vice versa are 0.27 and 0.01 respectively, thus the causality is from x to y,
which is consistent with the actual setting.
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(a) (b)

Fig. 5.4 Information flow pathways between x , y, and z with a a true and direct causality from z
to y and b a spurious causality from z to y (meaning that z and y have a common perturbing source,
x , and therefore they may appear to be connected or ‘correlated’ even when they are not connected
physically)

Transfer entropy shows the information transfer in each direction. Thus this
method provides more insight on causality for complex systems especially for the
case with recycles. In Fig. 5.5a, x and y are connected directly via a forward path
and a recycle path. In the forward channel from x to y, it is an AR model, i.e.,
y(i) + 0.5y(i − 1) = x(i − 5); whereas there also exists a feedback channel from y
to x , i.e., x(i) = 1−0.5y(i −1). Thus the information transfer lies in both channels.
If one is only concerned about the measure t (x → y), then the measure t (x → y)

(in Fig. 5.5b) indicates that the causality is from x to y. However, if the transfer
entropies t (y|x) (in Fig. 5.5c) and t (x |y) (in Fig. 5.5d) are studied, then both arcs
can be validated.

Barrett and Seth [2] noted that for Gaussian variables, Granger causality and
transfer entropy are entirely equivalent. Moreover, [15] extended this equivalence to
a weaker condition that is more practical.

To sum up, transfer entropy is a model-free method. There are several parameters
to be set by users, which provides some degrees of freedom. However, it has the
following main shortcomings. First, it is highly dependent on the estimation of PDFs
(although it may take any non-Gaussian forms); thus the computational burden is
very high. Second, the time delay cannot be estimated, and the arc signs in SDGs
cannot be obtained. Third, the assumption that the time series is stationary does not
hold often and thus the noise (may be nonstationary) is often greater than expected
These problems affect the computational results.

5.6 Bayesian Network Learning

The above methods are all lag-based. In addition to these, there are some other
methods that are based on Bayesian learning. They provide another point of view of
causality.

Random phenomena are everywhere in real life, including industrial processes.
Due to the existence of random noises, there are stochastic factors that can be studied.
The Bayesian network [7] provides a graph with probabilities, where nodes denote
fault modes as well as process variables, and arcs denote conditional probabilities.
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Fig. 5.5 Transfer entropy
measures. a Two variables
and their relations. b Trans-
fer entropy from x to y. c
Transfer entropy from y to
x . d Causality measure based
on transfer entropy which is
the difference between two
transfer entropies

Although the structure remains the same as an ordinary causal graph, both nodes
and arcs mean probabilities. The causality from x to y is described by a conditional
probability p(y|x) [37].

This model is also a general model, although the meaning is different from the
previous ones. It is to be noted that, in industrial processes, dynamics, or time fac-
tors, should be included, which is a key feature to capture causality. The traditional
Bayesian network has a fatal limitation that it should be a directed acyclic graph. In
a logical system with no time factors, this assumption makes sense, but in a dynamic
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process, cycles are very common. A cyclic causal discovery algorithm has been
developed [28] to allow the existence of cycles.

The major limitations of the application of Bayesian networks are: the physical
explanation of probabilities is not straightforward, which is sometimes unacceptable
by engineers; and the data requirement is hard to meet because one needs sufficient
data in all modes, including all fault modes, to build the model.

5.7 Other Methods

In addition to the above methods, there are alternative methods to capture causal-
ity between different time series. For example, predictability improvement [3, 10]
is another general method with the advantage of requiring a relatively short data
set. It computes the reduction of uncertainty of one variable with the help of the
other variable. Lungarella et al. and Smith et al. have summarized and compared
many methods to capture causality for bivariate series [34] and in a network [21]
respectively.

Each of these methods has its own advantages and limitations; they complement
each other and no one method is powerful enough to replace the others. Hence we
should try different methods to obtain reasonable results. In real applications, one
may mainly choose one method but sometimes use other methods to gain additional
insights or to validate the results.

Many pairwise data-based methods cannot capture the true causality. If both x and
y are driven by a common third variable, sometimes with different lags, one might
still find some causality. In fact, there is no causality between these two variables and
neither of them can have influence on the other if the third variable does not change.
Thus one needs to test all the pairs of variables to obtain their causality measures
and then construct the topological structure. The structure should be a mixture of the
typical serial structures and parallel structures. Indeed, the topology determination
needs additional information beyond pairwise tests.

5.8 Mutual Validation by Process Knowledge and Data

Process knowledge and process data are two means to capture causality information
in a process. Neither, however, is sufficient for practical use because of redundancy
and errors in the resulting models; we should combine them by mutual validation [38].

5.8.1 Using Process Data to Validate Knowledge Description

Causal networks constructed based on process knowledge are potentially better;
ideally, they can cover all possible paths. They also have the ability to avoid indirect
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Fig. 5.6 Schematic of a tank
process

K

F1

F2

L

Fig. 5.7 SDG of the tank
process

F1 L KF2 

relations by avoiding parallel paths. For example, if A can reach B and B can reach
C , then A can reach C . However, if the reachable path from A to C is just realized
by the serial connection of the two paths from A to B and from B to C , then the
direct arc from A to C can be deleted; otherwise there should exist sound reasons to
include different parallel paths to achieve the reachability from A to C , resulting in a
necessary arc. The major problem of such causal networks constructed from process
knowledge is lack of quantitative information to confirm its reliability. In fact, there
are usually redundant and irrelevant arcs that should be deleted.

There are many reasons for this redundancy, the essential one being that the con-
nectivity is merely a necessary condition for causality. While the detailed information
can also be obtained to exclude some arcs or choose dominant paths, the effort would
be multiplied because quantitative process knowledge is needed in addition to quali-
tative information. In the modular approach [26], this task is left to the user, although
semi-automated; it still relies on experience. Thus we limit the process knowledge of
concern to P&IDs, namely, qualitative connectivity information. Under this circum-
stance, complex structures, such as dividers, headers, or recycle loops, often lead to
ambiguous results that are difficult to improve according to qualitative information
because the intensity of each arc is unknown. This is an intrinsic problem of the SDG
model, although a few researchers have made some improvements [22, 26].

In general, it is difficult to exclude physically broken paths (e.g., valve block),
behaviourally uncertain loops (e.g., control loop), or extremely weak (due to atten-
uation of signals) paths. To validate the causal network, one should resort to process
data for quantitative evidence. If there is no data support for reachability, then the
causality should be excluded. For the simple tank system shown in Fig. 5.6 (the same
as Fig. 1.1), if the data of F1, F2, L , and K (take controller output as an alternative)
is available and sufficiently excited, then the arcs in Fig. 5.7 can be validated except
F2 → L because the control determines the value of L .
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5.8.2 Using Process Knowledge to Validate Data-Based Relations

Although there are several data-based methods to capture causality, many of them
have been developed to find the causality between two variables. Real systems,
however, are multivariate, the causality within which is shown as a network with
weights based on causality measures between every two variables. Thus a causality
matrix is obtained to reflect the magnitude of the causality of each pair of variables,
and the direction is determined by the time delay in correlation analysis or the sign of
measure in information transfer computation. The topology of the causal network,
however, also relies on the propagation relations by screening indirect relations.
According to [4], one of the two typical topologies (extreme cases) is generated
according to the number of nonzero entries in the first row and above the main
diagonal of the causality matrix, while the real topology is the combination of these
two topology forms. With the aid of correlation test and directionality test, one can
select the evident relations first and construct the network [39]. A method based
on correlation is proposed, which introduces the resulting quantitative information
obtained by CCF computations:

Step 1: In matrix P, select the maximum value in the elements that has not been
used and tested.
Step 2: Check the results of correlation test and directionality test. If the correlation
value fails to pass the tests, then stop, otherwise go on.
Step 3: Check the result of consistency test for all the variables in the existing arcs.
If it fails, then go to Step 5.
Step 4: Add an arc corresponding to this element with an estimated time delay.
The sign of the arc is determined by the sign of the element.
Step 5: Go to Step 1.

Nevertheless the resulting network may be incorrect or inconcise without validation
by the process knowledge.

One possible way to validate an acceptable causal network is to check the reacha-
bility between the two variables for evident causality; this can be realized by search-
ing consistent paths. This treatment, however, cannot exclude indirect relations; the
arcs are selected according to their magnitudes of causality. This problem has been
discussed in the previous sections. Even if it is possible to identify direct/indirect
relations from data analysis, it is not efficient without looking at process knowledge;
thus in most cases, one should make good use of process knowledge in the modeling
procedure.

For the tank system as shown in Fig. 5.6, based on the data of F1, F2, L , and K ,
one can easily obtain the causal relations from F1 to F2, from K to F2, and from F1
to K when the level control is in effect. These arcs can be validated by reachability
check. If the data set also includes transient response, then other causal relations,
such as from F1 to L , can be detected. The SDG can be constructed accordingly and
validated. The structure related to L is slightly different from Fig. 5.7 because of the
level control.
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5.9 Chapter Summary

We have briefly introduced several data-based causality capturing analysis methods
from process data. Pairwise analysis is basic and simple and serves as the foundation
for the analysis of multivariate systems. For this purpose, most of the methods,
including correlation analysis, Granger causality, and transfer entropy, are suitable
and efficient. For multivariate analysis, however, the computational burden is the
main bottleneck because the confounding treatment may greatly increase the scale
of the problem. Although the multivariate versions of the above methods can deal with
it theoretically, its computational burden prevents wide-spread practical application
of these methods. Therefore, we should make efforts to reduce the problem scale by
the idea of divide and conquer and focus on a smaller set of variables. On the other
hand, PDC and DTF can give a good interpretation of the causality among many
variables with an acceptable computational burden; thus they do offer a promising
alternative.

It is difficult to recommend the most suitable method for a specific problem
because each method has its own advantages and disadvantages. Some compar-
ative studies [34] have been conducted and the conclusions therein should be
referred to. Some toolboxes that incorporate different methods have been devel-
oped, e.g., BioSig (http://biosig.sourceforge.net) and eMVAR (http://www.science.
unitn.it/~nollo/research/sigpro/eMVAR.html).

Note that some methods are based on an estimation of model parameters, such as
Granger causality and PDC/DTF. Thus the influence of estimation adequacy on the
results should be evaluated because it is difficult to identify the model precisely. Due
to parsimony, simple model structures are preferred, such as ARMAX models.

Also note that the direct causality here is a relative concept; since the measured
process variables are limited, the direct causality analysis is only based on these
variables. In other words, even if there are intermediate variables in the connecting
pathway between two measured variables, as long as these intermediate variables are
unmeasured, we still state that the causality is direct between the pair of measured
variables.

The limitation of these methods should also be considered. Some methods require
the linearity assumption, which may be fulfilled only approximately in most real
cases. In highly nonlinear cases, more general methods should be applied, such as
transfer entropy.
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Chapter 6
Case Studies

Abstract Experimental and industrial case studies are provided to show the useful-
ness of the previously mentioned connectivity and causality analysis techniques for
capturing the direction of information flow and diagnosing the likely rootcause(s)
of plant-wide oscillations. For an experimental three-tank system, various methods,
including adjacency matrix, Granger causality, transfer entropy, and Bayesian net-
work, are applied to capture the connectivity and causality. For the Eastman process
with evident oscillation, the above methods are employed to find the faultpropa-
gation pathways and diagnose the root cause of certain disturbance or fault. For a
final tailings pump house process, process data and process knowledge are used to
build the process topology and to validate each other. Some suggestions for choosing
appropriate methods in practice are also given.

Keywords Plant-wide oscillations · Three-tank system · Eastman process · Final
tailings pump house · Inference · Causal maps · Data-driven methods · Fault prop-
agation · Validation

In this chapter, experimental and industrial case studies are provided to show the use-
fulness of the previously mentioned connectivity and causality analysis techniques
for capturing the direction of information flow and diagnosing the likely root cause(s)
of plant-wide oscillations.

6.1 Three-Tank System

First a 3-tank experiment was conducted, the schematic of which is shown in Fig. 6.1.
Water is drawn from a reservoir and pumped to tanks 1 and 2 by a gear pump and a
three way valve. The water in tank 2 can flow into tank 3. The water in tanks 1 and
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Fig. 6.1 Schematic of the 3-tank system

3 eventually flows into the reservoir. The experiment is conducted under open-loop
conditions.

The water levels are measured by level transmitters. We denote the water levels
of tanks 1, 2, and 3 by x1, x2, and x3, respectively. The flow rate of the pumped water
is measured by a flow meter; we denote this flow rate by x4. In this experiment,
x4 is set to be a pseudo-random binary sequence (PRBS). The sampled data of
3000 observations is analyzed. Figure 6.2 shows the normalized time trends of the
measurements. The sampling time is 1 s.

6.1.1 Adjacency Matrix Method

A directed graph or a digraph represents the structural relationships between discrete
objects [4]. The adjacency matrix is a common tool to represent digraphs, which
provides an effective way to express process topology. For this 3-tank system, we
take each variable xi as one node i for i = 1, 2, 3, 4 and add an edge from xi (node
i) to x j (node j) if xi can directly affect x j without going through any other nodes.
Figure 6.3 shows the directed graph of the 3-tank system. For example, the water in
tank 2 can flow down into tank 3, if the level of Tank 2, namely, x2, changes, then
the level of tank 3, namely, x3, will be affected directly. Thus, we add an edge from
x2 to x3. After a complete analysis of direct interactions between each pair of the
nodes, the directed graph of this process is obtained as shown in Fig. 6.3.
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Fig. 6.2 Time trends of measurements of the 3-tank system

Fig. 6.3 Directed graph of the 3-tank system
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Fig. 6.4 Adjacency matrix
and reachability matrix based
on the directed graph for the
3-tank system

(a)

(b)

Based on the directed graph, if there is a directed edge (an arc) from xi (node i)
to x j (node j), then the value of (i, j)th entry of the adjacency matrix is set to be
1; otherwise it is 0. We construct the adjacency matrix as shown in Fig. 6.4a. Note
that each node has a direct interaction on itself; thus, all the diagonal elements of
the table are set to be 1. The corresponding reachability matrix is shown in Fig. 6.4b.
From Fig. 6.4b we can see that x4 can reach all the other nodes while it cannot be
reached by any other nodes.

6.1.2 Granger Causality Method

We first apply time-domain Granger causality to capture the causal relationships
between these four variables. The Akaike information criterion (AIC) is chosen to
determine the model order. For the null hypothesis test, the significance level α is set
to be 0.01, which means that when the p-value is less than 0.01, the null hypothesis
that there is no causality from xi to x j is rejected with 99 % confidence level. After
calculation via the Granger causal connectivity analysis (GCCA) toolbox [5], the
causal relationships between the four variables are shown in Fig. 6.5, where the line
with an arrow indicates that there is unidirectional causality from one variable to the
other.

From Fig. 6.5, we can see that x4 causes x1 and x2, and x2 causes x3. These causal
relationships are consistent with the information and material flow pathways of the
physical 3-tank system (see Fig. 6.1) since the flow rate of the water out of the pump
decides the water levels of tanks 1 and 2, and the water level of tank 2 affects that of
tank 3. The Granger causality detection method also shows the causal relationship
from x2 to x1; the reason for this is that the flow rate of the water out of pump (x4)
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Fig. 6.5 Causal map for the
3-tank system via the Granger
causality method and the
Bayesian network inference
method

Table 6.1 Normalized transfer entropies for the 3-tank system

N T Ec
column 1→row 1 x1 x2 x3 x4

x1 NA 0.01 0.19 0.02
x2 0 NA 0.21 0.02
x3 0 0 NA 0.02
x4 0.23 0.21 0 NA

(a) (b) (c)

Fig. 6.6 Causal map for the 3-tank system based on a and b calculation results of TEs which
represent the total causality including both direct and indirect/spurious causality; c calculation
results of DTEs which correctly indicate the direct and true causality

affects water levels in both tanks 1 and 2 (x1 and x2), and the spurious causality from
x2 to x1 is generated by x4, that is, x4 is the common source of both x1 and x2.

6.1.3 Transfer Entropy Method

The direct transfer entropy (DTE) approach described in [1] is used for causality and
direct causality analysis. First the causal relationships between the four variables
are detected by calculating the normalized differential transfer entropies (TEs). The
calculation results are shown in Table 6.1. Note that the variables listed in column
one are the cause variables and the corresponding effect variables appear in the first
row.

For the normalized transfer entropies in Table 6.1, we can choose the threshold as
0.05: if the normalized transfer entropy is less than or equal to 0.05, then we conclude
that there is almost no causality. We can see that x1 causes x3, x2 causes x3, and x4
causes x1 and x2. The corresponding causal map is shown in Fig. 6.6a.

Now we need to determine whether the causality between x1 and x3 and between
x2 and x3 is true or spurious, as shown in Fig. 6.6b. To clarify this we first calculate
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the direct transfer entropy from x1 to x3 with intermediate variables x4 and x2 and
obtain D0

x1→x3
= 0, which means that there is no direct information/material flow

pathway from x1 to x3 and the direct link should be eliminated. Note that we do not
need to further detect whether the causality from x2 to x3 is true or spurious since
there is no intermediate variable or a common cause of both x2 and x3 any more
after the link from x1 to x3 is eliminated. The causality from x2 to x3 must be true
and direct. The corresponding causal map according to this calculation is shown in
Fig. 6.6c, which is consistent with the information and material flow pathways of
the physical 3-tank system (see Fig. 6.1).

6.1.4 Bayesian Network Structure Inference Method

The dynamic Bayesian network (BN) inference concept proposed in [10] is applied
to capture causality between the four variables. In order to include past information
of variables, the lag node order for each variable is chosen to be 3, which means that
each variable xi for i = 1, 2, 3, 4 is represented by three lag-compensated nodes:
xk

i , xk−1
i , and xk−2

i representing the current information of xi at the time instant k and
its past information at time instants k −1, k −2, respectively. Note that increasing the
lag order will increase the computational burden. The larger the order of lags within
a certain range, the more accurate the obtained structure is. Here a certain range is
similar to the embedding dimension of the embedding vectors with elements from
the past values of each variable, which includes all the useful past information of
each variable for forecasting other variables. BIC score function and K2 algorithm
are chosen to inference the BN structure. Details on the K2 algorithm can be found
in [10].

The causal relationships between the four variables via the BN structure inference
method are exactly the same as the results via the Granger causality method, as shown
in Fig. 6.5. As analyzed above, these causal relationships are consistent with the
information and material flow pathways of the physical 3-tank system (see Fig. 6.1).

6.2 Eastman Process

An important application of connectivity and causality analysis is to find the fault
propagation pathways and diagnose the root cause of certain disturbance or fault.
We use a benchmark industrial data set [2, 7] provided by the Advanced Controls
Technology group of Eastman Chemical Company, USA, to illustrate the effective-
ness of the commonly used causality detection methods. The Advanced Controls
Technology group identified a need to diagnose a common oscillation of about 2 h
(about 320 samples/cycle). It is assumed that this common oscillation is probably
generated within a certain control loop. The process schematic is shown in Fig. 6.7.
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Fig. 6.7 Process schematic with oscillating variables (pv’s and op’s) marked by solid circles

The process contains three distillation columns, two decanters and several recycle
streams.

Oscillations are present in the process variables (controlled variables), controller
outputs, set points, controller errors (errors between process variables measurements
and their set points) or in the measurements from other sensors. The plant-wide
oscillation detection and diagnosis methods can be used for any of these time trends
[6, 8]. Here we use process variables and controller outputs for root cause analysis; 14
controlled process variables along with 14 PID controller outputs are available. For
our study, 5040 sampled observations (from 28 h of data with the sampling interval
of 20 s) are analyzed. In this case study, FC, LC, PC and TC represent flow, level,
pressure and temperature controllers, respectively. We label the process variable and
the controller output by pv and op, respectively.

Figure 6.8 shows the normalized time trends and power spectra of the 14 process
variables (pv’s) and Fig. 6.9 shows the normalized time trends and power spectra of
the 14 controller outputs (op’s). The power spectra indicate the presence of oscillation
at the frequency of about 0.003 cycles/sample, corresponding to an approximate
period of 2 h. This oscillation propagates throughout the inter-connected units and
affects many variables in the process. Thus, our goal is to detect and diagnose the
root cause of this oscillation.

For oscillation detection, the spectral envelope method is applied to determine
which variables have oscillation at the frequency of 0.0032 cycles/sample. Details
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Fig. 6.8 Time trends and power spectra of measurements of process variables (pv’s)
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Fig. 6.9 Time trends and power spectra of measurements of controller outputs (op’s)

on the spectral envelope method can be found in [2]. Since this book focuses on
causality detection and its application to root cause diagnosis, we omit details of
oscillation detection and only show the detection result, that is, the pv’s and op’s of
the following eight control loops have common oscillations with 99.9 % confidence
level: LC1, FC1, TC1, PC2, FC5, LC2, FC8, and TC2. These control loops with
oscillating pv’s and op’s are marked by solid circles in Fig. 6.7.
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Fig. 6.10 Control loop digraph of the process from Eastman Chemical Company [3]

After detection of the plant-wide oscillation, we show and compare the usefulness
of the adjacency matrix method and three process data-based methods including the
Granger Causality method, the transfer entropy method, and the Bayesian network
inference method for root cause diagnosis of this oscillation.

6.2.1 Adjacency Matrix Method

For the adjacency matrix method, first we need to draw the control loop digraph of the
Eastman chemical process as reported in [3]. There are 14 PID controllers, we take
each controller as one node and add an edge from node i to node j if i.op can directly
affect j.pv without going through controller output of any other node. Figure 6.10
[3] shows the control loop digraph of the Eastman chemical process. For example,
node 1 and node 2 are the secondary and the master controllers in a cascade control
loop. If the OP of node 1 changes, then the pv of node 2 will be affected directly.
Similarly, the op of node 2 has a direct influence on the pv of node 1. Therefore,
we say that nodes 1 and 2 have direct interactions between them and we add edges
between nodes 1 and 2. Another example is the interaction from node 6 to node 9. If
the op of node 6 deviates, the pv of node 9 will be affected directly without going
through controller output of any other nodes. Therefore, we add an edge from node
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Fig. 6.11 Adjacency matrix and reachability matrix based on the control loop digraph

6 to node 9. After a complete analysis of direct interactions between each pair of the
nodes, the control loop digraph of this process is obtained as shown in Fig. 6.10.

Then, based on the control loop digraph, we construct the adjacency matrix as
shown in Fig. 6.11a. If there is an edge from node i to node j , then the (i, j)th entry
of the adjacency matrix is assigned a value of 1, otherwise it is assigned a value
of 0. Note that the op of each node/controller has a direct interaction on the pv of
itself; thus, all the diagonal elements of the table are set to be 1. The corresponding
reachability matrix is shown in Fig. 6.11b. The reachability matrix indicates the
influence of a controller on another controller: where ‘1’ denotes a link and ‘0’
indicates no connection. From Fig. 6.11b we can see that nodes 5 and 6 can reach all
the other nodes except node 13 and no other nodes can reach them.
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As mentioned above, we have already detected the oscillation frequency and
isolated eight process variables that have the common oscillation frequency. In
Fig. 6.11b, the controllers that have oscillating process variables are highlighted
in blue color. Based on the reachability matrix we conclude that: since loops 5 (LC2)
and 6 (FC4) can reach all the detected oscillatory loops and they cannot be reached
by any other oscillatory loops, the root cause should be either one of these control
loops: loop 5 or 6. Based on this conclusion, we can further investigate these two
loops and confirm possible root causes including an oscillatory disturbances, or tight
tuning of the control loop, or process or valve non-linearity. After further investiga-
tion by using the corresponding process data, it has been confirmed that valve stiction
in control loop 5 (LC2) was the root cause [2, 7]. We can see that the concepts of
adjacency matrix and reachability matrix have successfully suggested potential root
causes of plant-wide oscillations.

Note that the adjacency matrix method is a knowledge-based (process connectivity
or topology obtained from P&ID) method rather than a data-based method. It can be
carried out without using any data. After root cause candidates are obtained via the
adjacency matrix method, by using other data-based root cause diagnosis methods,
including valve stiction diagnosis methods and nonlinearity test methods, we may
confirm the root cause of plant-wide oscillations.

6.2.2 Data Driven Methods

It is assumed that if a variable does not show significant power at the common
oscillation frequency, then it does not belong to the group of likely root cause variables
[2]. Therefore, we only need to find the information flow pathways among the eight
process variables and eight controller outputs that have oscillations at the common
frequency. As long as we capture the oscillation propagation pathways between these
variables, the possible root causes can be determined. Here the Granger causality
method, the transfer entropy method and the Bayesian network inference method are
used for causality analysis.

6.2.2.1 Granger Causality Method

The time-domain Granger causality is applied to capture the information flow path-
ways among the 16 oscillating process variables. The BIC criterion is chosen to
determine the model order. For the null hypothesis test, the significance level α is set
to be 0.05, which means that when the p-value is less than 0.05, the null hypothesis
that there is no causality from xi to x j is rejected with 95 % confidence level. After
calculation, the causal relationships between the 16 oscillating variables are shown
in Fig. 6.12, where a green line with an arrow indicates that there is unidirectional
causality from one variable to the other, and a red line connecting two variables with-
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Fig. 6.12 Causal map of
16 oscillating variables
via the Granger causality
method. A green line with an
arrow indicates unidirectional
causality and a red line
connecting two variables
without an arrow indicates
bidirectional causality 1. LC1.pv

2. LC1.op 

3. FC1.pv 

4. FC1.op
5. TC1.pv

6. TC1.op

7. PC2.pv

8. PC2.op

9. FC5.pv

10. FC5.op

11. LC2.pv

12. LC2.op
13. FC8.pv

14. FC8.op

15. TC2.pv 

16. TC2.op

out an arrow indicates there is bidirectional causality (also called causality feedback)
between the two variables.

From the causal map in Fig. 6.12, we can see that there are two control loops, LC2
and PC2, that have causal effects to other loops but do not receive any significant
causal effects from any other loops. Thus, we conclude that control loops LC2 and
PC2 are the likely root cause candidates. Note that the red lines between LC2.pv
and LC2.op, and between PC2.pv and PC2.op indicate bidirectional causality which
is generated by the PID feedback control strategy in the control loops. Most of
these causal relationships can be validated by the process schematic. For example,
the bidirectional causality between FC1.op and LC1.op is generated by the cascade
feedback structure between these two loops.

The oscillation propagation pathways obtained from the causal map (see Fig. 6.12)
are shown in Fig. 6.13, where green arrows indicate unidirectional propagation path-
ways and orange double headed arrows indicate bidirectional propagation pathways.
Note that the bidirectional propagation pathways are generated by the cascade feed-
back control structure, which are consistent with the physical process. This figure
shows that LC2 can reach all the other loops except PC2, and PC2 can only reach
two loops, i.e., TC1 and FC5. We may conclude that the loop LC2 is the first root
cause candidate and the loop PC2 is the second root cause candidate. Figure 6.13
also shows that the oscillation of loop LC2 propagates to loops TC1, TC2 and FC8
first. By combining with the process schematic shown in Fig. 6.7, this means that the
oscillation of loop LC2 propagates to other loops through material flow pathways
from the left hand side decanter to columns 2 and 3. We can see that these oscillation
propagation pathways in Fig. 6.13 are consistent with the physical process. Since the
root cause of the plant wide oscillation is due to valve stiction in the actuator of the
control loop LC2, the causality analysis via the Granger causality method is effective
in determining the root cause candidate.
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Fig. 6.13 Oscillation propagation pathways obtained via the Granger causality method. Green
arrows indicate unidirectional propagation pathways and orange double headed arrows indicate
bidirectional propagation pathways

Fig. 6.14 Causal map of 16
oscillating variables via the
transfer entropy method. A
green line with an arrow
indicates unidirectional
causality and a red line
connecting two variables
without an arrow indicates
bidirectional causality

6.2.2.2 Transfer Entropy Method

The normalized differential TE described in [1] is used for causality analysis. We
calculated the normalized TE between each pair of the 16 oscillating variables. The
threshold for the normalized TE is chosen as 0.05: if the normalized TE is less than
or equal to 0.05, then we conclude that there is almost no causality. After calculation,
the causal relationships between the 16 oscillating variables are shown in Fig. 6.14.

From the causal map in Fig. 6.14, we can see that control loop LC2 has causal
effects on other loops but does not receive any significant causal effects from any other
loops. Thus, we conclude that control loop LC2 is likely the root cause candidate.
Note that the red line between LC2.pv and LC2.op indicates bidirectional causality
which is generated by the PID feedback controller in the control loop. Most of these
causal relationships can be validated by the process schematic.

The oscillation propagation pathways obtained from the causal map (see Fig. 6.14)
are shown in Fig. 6.15. This figure shows that the control loop LC2 can reach all the
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Fig. 6.15 Oscillation
propagation pathways
obtained via the transfer
entropy method. Green
arrows indicate unidirectional
propagation pathways and
orange double headed
arrows indicate bidirectional
propagation pathways

other loops and the oscillation in loop LC2 first propagates to loops TC1, LC1, TC2
and FC8. From Fig. 6.7, we can see that there are direct material flow pathways
from the decanter on the left hand side to columns 1, 2 and 3. Thus, the oscillation
propagation pathways obtained from the transfer entropy method are consistent with
the physical process.

We note that although the conclusion that the control loop LC2 is likely a root
cause candidate is consistent with the Granger causality analysis results, there is an
obvious difference between Fig. 6.12 and Fig. 6.14. Especially, causal relationships
between control loops PC2 and TC1 are found via the transfer entropy method. That
is why PC2 is no longer a root cause candidate according to Fig. 6.14. This conclusion
is consistent with the fact that there was valve stiction in the control loop LC2.

Although there is difference between Figs. 6.12 and 6.14, and between Figs. 6.13
and 6.15, and the conclusions on root cause candidates are not exactly the same, both
the Granger causality method and the transfer entropy method provide effective ways
to capture fault propagation pathways and locate the likely root cause candidates.

6.2.2.3 Bayesian Network Structure Inference Method

The dynamic BN inference concept proposed in [10] is applied to capture causality
between the 16 oscillating variables. In order to include past information of variables,
the lag node order for each variable is chosen to be 3. BIC score function and K2
algorithm [10] are chosen to inference the BN structure. If we include both process
variables and controller outputs, then we need to construct a BN structure with 48
nodes. The computational burden for this BN structure inference is large and probably
we cannot obtain the optimal structure. In order to obtain a more accurate structure
and decrease the computational burden, we only include the eight oscillating process
variables to inference the BN structure.

Figure 6.16 shows the causal relationships between eight oscillating variables.
From the causal map, we can see that there are two variables LC2.pv and FC1.pv that
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3. TC1.pv
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Fig. 6.16 Causal map of the eight oscillating process variables via the BN inference method. A
green line with an arrow indicates unidirectional causality and a red line connecting two variables
without an arrow indicates bidirectional causality

Fig. 6.17 Oscillation propagation pathways obtained via the BN inference method. Green arrows
indicate unidirectional propagation pathways and orange double headed arrows indicate bidirec-
tional propagation pathways

can reach other variables but do not receive causal effects from any other variables.
Thus, control loops LC2 and FC1 can be identified as the likely root cause candidates.

The oscillation propagation pathways obtained from the causal map are shown in
Fig. 6.17. This figure shows that LC2 can reach all the other loops except FC1, and
FC1 can reach all the other loops except LC2 and TC2. Thus, we may conclude that
loop LC2 is the first root cause candidate and loop FC1 is the second root cause candi-
date. Figure 6.17 also shows that the oscillation of loop LC2 propagates to loops TC2
and FC5 first. By combining this information with the process schematic shown in
Fig. 6.7, this means that the oscillation of loop LC2 first propagates through material
flow pathways from the decanter on left hand side to columns 2 and 3, and then prop-
agates to other loops. We can see that reasonable root cause candidates can also be
found based on the analysis results of the BN structure inference method. However,
some causal relationships are not captured. For example, the causal relationships
between loops LC1 and FC1 are not captured.
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In summary, for the three causality analysis methods, although there is difference
between the causal maps (see Figs. 6.12, 6.14, and 6.16), and between the oscilla-
tion propagation pathways (see Figs. 6.13, 6.15, and 6.17), and the conclusions on
root cause candidates are not exactly the same, all three causality detection methods
(the transfer entropy method, the Granger causality method, and the Bayesian net-
work inference method) are capable of capturing the fault propagation pathways and
locating the likely root cause candidates.

From the above two case studies, we find that causality analysis methods provide
an effective way to capture fault propagation pathways. However, the pros and cons
of the three data driven methods can be summarized as follows. The major advantages
of the Granger causality method are that its theoretical meaning is easy to understand;
and its application techniques are well developed. For example, the null hypothesis
test of causality is well defined. It is a relatively simple method to implement. A
limitation of the application of the Granger causality method is that this method
is based on AR models, which is suitable for linear multivariate processes, but the
problem of model misspecification may happen and thus the identified AR models
may not be convincing. If the model structure is incorrect, then the residuals can
hardly give evidence of causality between the signals considered in the models.

For the transfer entropy method, the major advantage is that it can be used for both
linear and nonlinear multivariate processes. Its application limitations are: a good
parameters determination procedure is needed since the transfer entropy is sensitive
to the parameters (e.g., h, k, and l), and the computational burden is large since we
need to estimate joint PDFs. Moreover, unlike Granger causality, the distribution of
the sample statistic is unknown, rendering significance testing to be difficult without
recourse to computationally expensive bootstrap method or the Monte Carlo method
by constructing resampling data or surrogate data. Thus, the transfer entropy method
is relatively difficult to implement.

For the BN structure inference method, a major advantage is that it can handle
the data with a short size, while both the Granger causality method and the trans-
fer entropy method require large data lengths. Disadvantages of the BN structure
inference method include the assumption that each observation is independent; this
assumption is too strict for industrial process data, and the computational burden is
large since we need to estimate the (conditional) PDFs of the data set. Moreover, the
results are sensitive to the lags in the nodes and score-based approaches are in gen-
eral not guaranteed to find the optimal solution. Thus, this method is also relatively
difficult to implement.

6.3 Final Tailings Pump House Process

Consider another industrial system, the final tailings pump house (FTPH) process
at an oil company in Alberta, Canada, to illustrate the modeling procedure and its
validation [9].
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Fig. 6.18 Partial flowsheet of the FTPH process (the texts have been made illegible for confiden-
tiality reasons)

6.3.1 Process Description

The flowsheet for this process is shown in Fig. 6.18, where some texts have been made
illegible and the control strategy is omitted for confidentiality reasons. The tailings
from upstream are pumped into a distributor and then processed in parallel cyclo-
packs and pump boxes, and finally discharged into the ponds. There are five parallel
lines from the cyclo-pack downstream, where lines A/B/C/E are structurally identical
while line D is distinct. Based on the pressure of the distributor, a prioritization
program is implemented on the parallel lines, and Line A is therefore the most
important.

The single-loop, cascade, and selective control strategies are applied, including:

• distributor pressure control;
• cyclo-pack pressure and underflow control by adjusting the number of cyclones

that are opened;
• gypsum addition flowrate control;
• pump box level control and discharge density control by adjusting cold process

water (CPW);
• pump box level control by adjusting pump speed;
• pump box discharge flowrate control by adjusting pump speed, and mature final

tailings (MFT) addition flowrate control.

For this process a SDG is constructed from process knowledge and is shown in
Fig. 6.19.

For simplicity, six key variables xi (i = 1, · · · , 6) in Line A are chosen, which
are y10, y16, y18, y21, y28, and y30 respectively, as indicated in Table 6.2. The
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Fig. 6.19 SDG of the FTPH process. Relationships between variables are shown as thick lines, and
control signal paths are shown as thin lines. Solid and dashed lines show positive (reinforcement)
and negative (reduction) causal relations respectively. The dotted line is a fault propagation path

Table 6.2 Key process variables in the FTPH process—Line A for causality analysis

Notation Tag name Description

x1 y10 Distributor pressure
x2 y16 Gypsum addition flow rate
x3 y18 Gypsum density
x4 y21 Sludge header pressure
x5 y28 Sump density
x6 y30 Sump level

corresponding subsection of the SDG (Fig. 6.20a) is extracted from the SDG in
Fig. 6.19; this can be easily done via the reachability check of the SDG model.

6.3.2 Using Process Data to Validate Knowledge Description

Based on the process data of the variables in Line A over a one week long period
(with 1 min sampling interval), the correlation color map obtained is displayed in
Fig. 6.20c. We use these data and corresponding time delays for SDG validation. For
example, the bottom left corner is a cluster of correlated variables. By checking the
P&ID, they are found to be associated with the level and density controls in the same
pump box.
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Fig. 6.20 SDG and its validation by cross-correlation analysis of the PVs: a subsection of the SDG
concerning the six important variables in which the thick lines are validated, b correlation color
map of the six important variables, c correlation color map of all the variables in Line A

One can focus on the cross-correlations and time delays between the six variables
for further analysis. They are shown by the following correlation matrix P (compris-
ing of all the correlation coefficients between two variables) and the causality matrix
Λ (comprising of all the estimated time delay λ’s from one variable to another).

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.28 −0.28 −0.18 0.39 0.41
1 0.36 −0.31 0.74 0.50

1 −0.14 0.10 −0.11
1 −0.25 −0.24

1 0.75
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.1)
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Λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− −271 220 32 49 5
− −360 2 1 1

− −357 359 −360
− 20 60

− −1
−

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6.2)

For example, the (i, j)th elements of P and Λ are the correlation and the estimated
time delay between variables i and j , respectively. Due to symmetric and anti-
symmetric properties of these two matrices, only the elements above the diagonal
are computed and shown here. Rather than looking at the correlation matrix in the
numerical form, it is better to look at the color coded correlation matrix as shown in
Fig. 6.20b which is a portion of Fig. 6.20c.

In (6.1), those values exceeding a pre-set threshold (such as 0.4) can be used to
validate some of the arcs in the subsection of the SDG shown in Fig. 6.20a as thick
lines. For example, the correlation from x5 to x6 is 0.75 and the time delay is -1, so
the arc from x6 to x5 is validated. Similarly, the arcs from x2 to x5, x2 to x6, x1 to x6,
and x1 to x5 are also validated. Note that very large time delays do not make sense
because they show the ineffectiveness of this measure and the computed correlation
is considered invalid.

There are still some arcs that have not been validated. Thus we resort to a more
general but more complex measure—transfer entropy. To obtain a rough insight, if
we look at the time trends, then we observe that the trends of x2 and x4 do not look like
the other four variables. This shows that, during this period, the relations associated
with x2 and x4 are not strong enough as validation. We have to examine more data
with sufficient excitement to check if there is a discernible relation between these
variables. However, the trends of the other four variables have apparent similarities
that should be definitely due to causality. In order to reduce the computational load,
we extract from the previous data set only 200 min worth of continuous data shown
in Fig. 6.21a.

The transfer entropy measure is used to compute the information transfer between
these four variables where τ is assumed to lie between 1 and 10. When τ is 9, the
transfer entropies from x1 to x6, from x3 to x5, and from x5 to x6 all reach their
individual maximum values: 2.01, 1.48, and 1.41. Thus the bidirectional relationship
between x5 and x6 is validated, and the reachability from x3 to x5 is also validated.
They are marked in Fig. 6.21b as thick lines.

By combing the above two methods, we found that most of the arcs have been
validated except from x4 to x6 and from x1 to x5. The former can be explained by the
process knowledge because x6 is the sump level, affected by quite a few variables
due to various feeds. The latter is an indirect relation, i.e., x1 and x5 are related
with the relay of x6. Since quantitative information is missing in the SDG model,
transitive property may be weakened due to the attenuation during the propagation.
The time-delayed cross-correlations from x1 to x6 and from x6 to x5 are 0.41 and
0.75 respectively, but from x1 to x5 it is 0.39, less than the above two; moreover, the
time delays of the above two are 5 and 1 respectively, while the indirect one is 49,
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Fig. 6.21 Time trends and validation results by transfer entropy: a time trends of four important
variables (1: x1; 2: x3; 3: x5; and 4: x6) in the process, b SDG and validated arcs (thick lines)
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Fig. 6.22 Causal network obtained by correlation analysis. The solid and the dashed lines are
positive and negative correlations respectively. The numbers are the estimated time delays

making the validation result of this arc unacceptable. Therefore, the data analysis is
usually used to only validate direct arcs.

6.3.3 Using Process Knowledge to Validate Data-based Relations

Starting from data-based methods, for example correlation analysis, one can obtain
the causal network. According to the procedure in Sect. 5.8.2, the maximum 0.75 in
(6.1) is selected at the first step, so there is an arc between x5 and x6, and the sign
is ‘+’. The corresponding element in Λ is -1 as shown in equation (6.2); thus the
direction is from x6 to x5. Similarly, the second arc is x2 → x5, and the third one
is x2 → x6. For the latter, because the two associated nodes have been used, the
consistency test should be undertaken. The time delays associated with the three arcs
are 1’s that are reliable. Other arcs are built one by one. Note that arc x1 → x5 is
ignored because the time delay is 49, which fails to pass the consistency test. The
obtained SDG is shown in Fig. 6.22.

http://dx.doi.org/10.1007/978-3-319-05380-6_5
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However, from the reachability analysis based on the SDG, arc x2 → x4 does
not make sense and should be deleted because there is no path connecting them.
From process knowledge, they are parameters on different pipes, and in the P&ID of
Fig. 6.18, they are independent. One explanation for this link is that there is another
cause or upstream unit resulting in the changes to both of them. This incorrect arc
may bring out wrong results if the root cause is x2 because x4 does not depend on it.

6.3.4 Application of SDGs in Fault Propagation Analysis

Given a validated SDG, the fault propagation can be analyzed qualitatively based
on consistent paths. This is important in any conclusive significant HAZOP analysis
and also in fault detection and isolation, especially the root cause analysis, where
SDGs can help.

In this case, a fault propagation path is shown by the dotted lines in Fig. 6.19
meaning that the pressure change in the distributor (x1) can affect the parameters in
cyclo-packs and pump boxes (x5 and x6) in turn. During the HAZOP study, all the
consistent paths should be considered and the corresponding consequences should
be evaluated. If the domain of influence of one variable is large, the intensity of
influence is strong, or the consequence is severe, then some appropriate measures
should be taken. In this case study, x1 is important because it has wide influence
on almost all downstream variables; thus the controller on it is well tuned and the
line prioritization is implemented to reduce the risk. On the other hand, root cause
analysis can be undertaken online; for example, when the variables on this path are
showing disturbances, then one can trace immediately the starting point and that may
be identified as the root cause of fault propagation. The automation of this procedure
will help operators quickly identify the symptom of the abnormal situation.

6.4 Chapter Summary

From the above cases, we have demonstrated the efficacy of description and connec-
tivity and causality capture methods. In real practice, methods should be selected and
properly used in terms of the feature and needs of the problem. The methods shown
in this chapter are recommended in this sequence, that is, one can first construct
the adjacency matrix or SDG based on process knowledge, and then use data-based
methods to capture causality; Granger causality can be the first choice due to its sim-
plicity, and transfer entropy can be used for highly nonlinear processes, and Bayesian
network and other methods can be used as references or top validate the results of
earlier analysis.
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Glossary

AE Algebraic equation
AIC Akaike information criterion
AIM Augmented information matrix
AUDI Augmented upper diagonal identification
CAEX Computer-aided engineering exchange
CCF Cross-correlation function
CSTR Continuous stirred tank reactor
DAE Differential and algebraic equation
DE Differential equation
DTE Direct transfer entropy
DTF Directed transfer function
FTPH Final tailings pump house
HAZOP HAZard and OPerability
IDPUD Interleaved data pair upper diagonal
MIMO Multi-input–multi-output
OWL Web ontology language
P&ID Piping and instrumentation diagram
PDC Partial directed coherence
PDF Probability density function
PFD Process flow diagram
RDF Resource description framework
SDG Signed digraph or signed directed graph
SEM Structural equation modeling
SISO Single-input–single-output
XML eXtensible markup language
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