
Chapter 8
About the Cosserats’ Book of 1909

Abstract The Cosserat brothers published in 1909 an original book where they
favour a variational formulation of continuum mechanics together with an
invariance which they call ‘‘Euclidean invariance’’ of the Lagrangian-Hamiltonian
action. This strategy places on an equal footing translations and possible rotational
degrees of freedom, yielding in a natural way what is now commonly called the
theory of Cosserat or oriented—or polar—continua with asymmetric stresses and
the new notion of couple stresses. Here their landmark work is replaced in its
epoch making context underlining the influences they benefited from and the
influence they have exerted on their direct contemporaries and much later on (in
the second-half of the twentieth century). The sociological scientific environment
of the early twentieth century and the typical publication strategy of the time are
outlined, explaining thus the Cosserats’ own strategy. The further reception of
their work from 1909 to the Second World War and the revival of interest in it in
the nineteen-fifties are examined critically. Finally, the formalization of their work
in a new landscape of continuum thermo-mechanics created essentially by
Truesdell is evoked together with other influences and further developments.

8.1 Preliminaries

Year 2009 witnessed the commemoration of the centennial of the publication of
their (now) celebrated book on the ‘‘Theory of deformable bodies’’ [13]. Cele-
brations took place in Paris in the form of a EUROMECH Colloquium with many
participants from Germany and Russia although attendants came from the world
over (Proceedings edited by Maugin and Metrikine [55]), as also at the National
‘‘Ponts et Chaussées’’ school as one of the authors, François Cosserat
(1852–1914), was an alumnus from that school. A fac-simile edition of the original
book was published on that occasion (2010) with interesting historical comments
by M. Brocato and K. Chatzis. This opus by the Cosserat brothers was their longest
common contribution to the science of mechanics. The way this was published as
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also the general approach of the brothers concerning this field and their own
professional activities require some comments as it appears that neither François
nor his young brother Eugène (1866–1931) were professional mathematicians in
the field of mechanics. But they were enlightened amateurs with all technical
abilities and background of true professionals. Both became members of the Paris
Academy of Sciences (François in 1896, and Eugène in 1919). François was even
elected President of the French Society of Mathematics (Société Mathématique de
France) in 1913 one year before his death. Still the way they published is
somewhat unusual and also concentrated in time in the period 1896–1914 with the
death of François.

François Cosserat was educated at the Ecole Polytechnique in Paris with a
further specialization in civil engineering at the Ecole Nationale des Ponts et
Chaussées. This curriculum in the best mathematical and mechanical tradition was
typical of many great French ‘‘engineers-scientists’’ of the nineteenth century
(among them, Cauchy, Navier, Lamé, Duhamel, Coriolis, Clapeyron, Poncelet,
Liouville, Arago and Barré de Saint-Venant). He had a professional career in the
fast growing development of railways with the Nord and then the East companies
of Railways in France. Eugène, his younger brother by 14 years, was educated in
mathematics at the Ecole Normale Supérieure in Paris and became a professional
(mathematical) astronomer with a career spent almost entirely in Toulouse in the
south–west of France. As such he had to teach courses in analysis, astronomy and
celestial mechanics.

From 1896 till the death of François in 1914, the Cosserats published together
no less than 21 works in the field of theoretical mechanics. Out of these, 14 were
short notes—of three or four pages—to the Paris Academy of Sciences. Apart from
their long original memoir of 1896 [12] published in Toulouse in a true serial
journal,1 their other publications in the field are scattered in odd places, often as
supplements or comments to books by more acknowledged institutional authors:
one is a note in the lecture notes of Gabriel Koenigs (published in 1897)—cf. the
review by Lovett [43] and citation below—, one is a note of 37 pages in Vol. 1 of
Chwolson’s Treatise of Physics in its French translation [10, pp. 236–273], another
one is a note of seventy two pages in Appell’s Treatise of Rational Mechanics [3,
Vol. III, pp. 557–629], still another one is an adaptation in French of an article by
Aurel Voss (1845–1931) in German on the principles of rational mechanics in the
Encyclopédie des sciences mathématiques pures et appliquées (the original is the
Encyklopaedie der mathematischen Wissenschaften), Vol. IV, pp. 1–187—pub-
lished in 1915 [14] after Francois’s death, and finally their now most celebrated
opus is a supplement to Chwolson’s Treatise of Physics [11, Vol. II,
pp. 953–1173], also published with a new pagination (vi+226 pages) as a separate
book by Hermann Editeurs in Paris. As noticed by its American reviewer [77], it is

1 This original paper considers finite strains following G. Green, Kirchhoff and Boussinesq, and
already uses the notion of mobile frame. It is a much cited paper by Appell [3] and Truesdell and
Toupin [74].
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not clear why the Cosserats included their memoir in the translation of Chwolson’s
treatise, a treatise that lacks any general theoretical treatment of mechanics while
the Cosserats’ memoir deals with the foundations of analytical mechanics. They
may have used this just as a good opportunity. Accordingly, the book version is
preferably considered without the rest of Chwolson’s nonetheless highly valuable
treatise. NASA had an English translation of it made in 1968 as a result of a
revival of interest in generalized continuum mechanics in the 1960s.

The review of Lovett [43] is particularly enlightening concerning the note added by the
Cosserats to the Koenigs’ lecture notes of 1897. Citing Lovett: The introduction of this
note is peculiarly fortunate for it is high time that kinematics should comprehend the study
of deformation and of deformable spaces. The authors have included in their extract
certain generalities on curvilinear coordinates, the deformation of a continuous medium
in general, infinitely small deformation, use of the mobile trieder [sic], and the case where
the non-deformed medium is referred to any curvilinear coordinates.

It seems that the two brothers, together with the husband, E-V. Davaux, of
François’ daughter, also an alumnus of Ecole Polytechnique with a specialization
in naval engineering, were very active in translations from the Russian, German
and English (including a translation of J. W. Gibbs’s ‘‘Elementary principles in
statistical mechanics’’ published only in 1932). For Chwolson’s treatise, transla-
tion may have been done from the Russian and/or the already existing German
translation. Note that it was usual in the nineteenth century and the early twentieth
century to include comments and possible personal additions to a translation from
an original book. The best example of this usage is provided by Barré de Saint-
Venant’s [5] French translation of A. Clebsch’s Theorie der Elastizität fester
Körper in such a way that the bulk of the book tripled in translation, resulting in a
book that was more his than Clebsch’s. But in the case of Chwolson’s treatise, the
Cosserats’ supplements do not shed any light on Chwolson’s original contents of
Vols. 1 [10] and 2 [11]; they seem out of place, as rightly noted by Wilson [76, 77]
who nonetheless emphasized their intrinsic importance.

As to the many Notes to the Comptes Rendus of the Paris Academy of Sciences,
it was at the time a traditional way to announce a result in brief form so as to
provide a priority mark. Cauchy is well known for the flood of such notes that he
sent to the Academy. This was also the case of Henri Poincaré and Pierre Duhem
among others. Of course, this cannot replace a lengthy well argumented paper with
full derivations as many such notes are extremely cryptographic and thus hard to
grasp due to their imposed brevity. With all these caveats we can now turn to the
real object of this contribution, the ‘‘book of 1909’’.2

2 Orest Danilovich Chwolson (1852–1924)—also written Khvol’son—was a Professor of
physics in St Petersburg. He is the author of a five-volume treatise on physics that was translated
into German and French in the early twentieth century. The world renowned theoretical physicist
Lev D. Landau had a strongly positive appraisal of this treatise.
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8.2 The Main Contents of the Cosserats’ Book

According to a recent investigation on Google Scholar the Cosserats book is cited
about 1,500 times. It is a required citation in the introduction of papers dealing
with modern oriented or polar continua. But we can safely assume that very few
citers have ever seen the book and, of course, even less have read it, reducing the
number of the happy few to small integers. There are good reasons for this. First
the language, French, would be a common obstacle. But most of the difficulty
comes from the state of mind of the authors and their notation since neither tensor
nor direct intrinsic notations are used by these authors. We estimate that the book
would be reduced to about 80 pages had a direct notation been used in the modern
way. But intrinsic vector notation, not to speak of tensor notation, hardly existed at
the time.3 Also, the bias of the authors to work successively for bodies of one, two
and three dimensions, if it may have helped the contemporary readers to grasp the
basic ideas of their approach, considerably lengthens the progression. The
advantage of working at this rhythm is a possible direct comparison with works by
famous engineers of the eighteenth and nineteenth centuries who dealt with elastic
rods and surfaces. Indeed, in a very professional manner akin to that entertained by
previous authors such as Lagrange or Barré de Saint-Venant, the brothers are very
generous in accurately citing previous contributors. As proved in many footnotes,
the most cited such authors from a relatively old past are Navier, Poisson, Fresnel,
Lamé, Helmholtz, Carnot, F. Reeds and Barré de Saint-Venant. Cauchy, although
the universally acknowledged founder of general continuum mechanics, is seldom
cited perhaps because he does not use variational principles and therefore is more
in the Newtonian tradition of the postulate of balance laws. Gabrio Piola
(1794–1850) would have been welcomed in the roster of citations because he uses
Lagrangian variational principles and is an aficionado of changes of reference
configuration (cf. the Piola transformation). But the Cosserats, like most of the
French authors of the period, seem to have ignored him.

The most cited contemporary authors certainly are W. Thomson (alias Lord
Kelvin) and P. G. Tait (cf. their ‘‘Treatise on Natural Philosophy’’, [71]), Pierre
Duhem (1861–1916; cf. his course on hydrodynamics, elasticity and acoustics,
[18]), H. Poincaré (1854–1912), Paul Appell (1855–1930), J. Bertrand
(1822–1900), G. Darboux (1842–1917), and sometimes W. Voigt (1850–1919). It
is less than anecdotic to note that Darboux, Appell and Koenigs were the three
members composing the Jury of the doctoral thesis of Eugène. The deepest
influences perceived through the unfolding of the book seem to be those of
Lagrange and Hamilton for the variational formulation and the notion of action,
Green [30] for the notion of potential energy of deformation, and Darboux [16, 17]

3 Gibbs’ [28] book was the first of its type giving an articulated introduction to vector analysis.
This may however be a wrong attribution since the book in fact is E. B. Wilson’s redaction with
an enriched rendering of Gibbs’ lectures in vector analysis at Yale; Wilson was only 22 years old
when the book was published (see pp. 228–229 in Crowe [15]).
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for the theory of surfaces, curvilinear coordinates and the mobile triad. The
employed notion of groups, a première in continuum mechanics, is not connected
with any obvious citation, although we surmise that the views of S. Lie and
H. Poincaré may have been influential concerning this very point. Furthermore, the
Cosserats are aware of general discussions on the nature and interpretation of the
principles of mechanics (works on this subject by Hertz, Poincaré, Mach and
Duhem in the period 1890–1909) as shown in many of their footnotes.

In our opinion the best analysis of the book remains the original review written
by Wilson4 [77] from M.I.T, a luminous text that we shall often paraphrase.
Wilson had the right state of mind to capture the essential arguments of the
Cosserats. First he considers the book as a contribution to the analytical mechanics
of continua, and this is spot on. In effect, the very object of the book is the
deduction of what we now call ‘‘field equations’’ of continua of one, two or three
dimensions, from a Lagrangian-Hamiltonian principle of the general form

d
Z

T

Z

V

WdVdt ¼ 0; ð8:1Þ

where T is a time interval, V is a bounded volume element (a filament, a surface or
a volume) in the considered physical space, and W is a known function of well-
chosen arguments. In standard variational mechanics W is made explicit in terms
of an identified kinetic energy and a potential energy so that W is the Lagrangian
‘‘volume’’ (i.e. lineal, surface or true 3D volume) density where the notion of mass
(here density) is a basic one. The Cosserats wanted to remain in a sufficiently
general framework that may possibly include various types of dynamics (even the
special relativistic one with an appropriate definition of the mass).

The importance of the notion of action present in (8.1) was emphasized by
William R. Hamilton (1805–1865) and Hermann von Helmholtz (1821–1894). But
essential to the Cosserats’ presentation is their initial remark that the action
(energy multiplied by time) as introduced by P. L. Moreau de Maupertuis
(1698–1759) is invariant under the group of Euclidean displacements. This
requirement systematically applied to (8.1) provides the notion of Euclidean
action in the Cosserats’ formalism. From this should be deduced the basic local
balance laws of linear momentum, angular momentum and energy, corresponding
to the seven parameters (spatial translation and rotation, time translation) of the
Euclidean group in E3 (completed in a ten-parameter group if we include the
definition of the centre of mass). What the Cosserats do is to implement this
approach in a well tempered manner with the successive examination of one-
dimensional bodies (straight line or curved filament), two-dimensional bodies
(deformable surfaces such as plates and thin shells (not their vocabulary)) and
three-dimensional bodies, with the possible extension to true dynamics (i.e.,
accounting for inertial effects). Whether this is a good pedagogical way is a

4 For this see, e.g., Kelvin, reported in Thomson and Tait, Second edition (1879).
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disputed matter in modern continuum mechanics where the equations governing
slender bodies are rather deduced from the three-dimensional ones by means of
some asymptotic procedure associated with the relative smallness of some
dimensions.

As remarked by Wilson [77, p. 242], the Cosserats’ book may have proposed
‘‘the most general and unifying theory of mechanics’’ so far (as on 1909). Probably
under the influence of Darboux, the Cosserats considered that the ‘‘fundamental
geometric element in their system is not the point, but the point carrying a system
of rectangular axes, that is, the tri-rectangular triedral angle’’. This is obvious in
the case of ‘‘an elastic filament that differs from a geometric curve in the way in
which a continuous series of rectangular triedral angles differs from the locus of
the vertices of the angles’’. In this case the function W should be ‘‘a function of the
coordinates of the vertex but also a function of the nine direction cosines of the
edges of the angle, and of the first derivatives of these coordinates and direction
cosines with respect to time’’ (in the dynamical case) or the arc length in the case
of the elastic filament. All these are Wilson’s words.

This function W that is invariant under transformations that belong to the
Euclidean group, is said to be an Euclidean action density and multiplied by the
increment of time dt is the Euclidean action in the time interval dt. For the filament
the reasoning can replace dt by an element ds0 of arc. In this vision the case of
straight rods and curves is approached by considering a mobile triad of vectors of
which one element is tangent to the line or curve. In the case of two-dimensional
bodies the mobile triad has one vector in the plane tangent to the mean surface of
the object. In the three-dimensional case the triad has no preferred direction to start
with except by convention in a reference configuration. Then the passing from the
motion of an elastic medium of dimension k to the equilibrium of an elastic
medium of dimension k ? 1 is, or should be, ‘‘well known to all student of
mechanics’’ [77, footnote in p. 243]: ‘‘It is this analogy which enables the authors
(the Cosserats) to give a uniform treatment to dynamic and static problems of
different nature’’. That is quite remarkable and seldom considered by most of us as
Wilson is rather optimistic concerning this point.

We shall not dwell in detail with the Cosserats’ treatment which is somewhat
repetitive and not very attractive in modern terms.5 What is also absolutely
important is that this enforcement of the Euclidean group structure leads the
Cosserats to consider on an equal footing invariance under spatial translations and
spatial rotations. That is how they are led to considering nonsymmetric stress
tensors and the presence of body couples and of a new internal force called
coupled stress tensor in modern jargon. If some notions may have been readily
interpreted for the one- and two-dimensional cases in terms of what was known in
the strength of structural elements in the nineteenth century, the three-dimensional
case comes up as a new notion, although it is remarked that Kelvin and Voigt may

5 For this unpleasant aspect to modern eyes, see, for instance, the fantastic and frightening aspect
of the individual-component equations in pp. 157–172 of the book of 1909.
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have hinted at the presence of body couples. For instance, the formidable equi-
librium equations printed in page 137 of the Cosserats’ book in the 3D case are
now written with an inherent economy of symbols as the equations of equilibrium
for stresses r and couple stresses l in the form

r � rþ F ¼ 0; ð8:2Þ

and

r � lþ rA þ C ¼ 0; ð8:3Þ

where r is the nonsymmetric stress tensor, rA is its antisymmetric (or skew) part, l is
the third-order couple stress tensor, and F and C are volume densities of externally
applied force and couple (the latter in tensor skew symmetric form), respectively.
The Cosserats’ note [13, p. 137] that Eq. (8.3) with l ¼ 0 was evoked by W. Voigt in
a work of 1887 that dealt with the elasticity of crystals involving polarized molecules
[75]. This may have prompted Ericksen [22] to envisage a modelling of anisotropic
fluids and liquid crystals by means of a field of so-called ‘‘director’’ (one unit vector
attached to each material point), clearly a special case of Cosserat continuum. The
most obvious case of Eq. (8.3) with l ¼ 0 is that obtained in anisotropic electro-
magnetic continua as amply documented in our book [48]. The Cosserats are aware
of Lord Kelvin‘s former attempts6 and the contemporary one of Larmor [39] to build
a model of elasticity able to transmit transverse (light) waves but they do not seem to
know the work of MacCullagh [45] on the same matter. Passing to the dynamic
version of Eqs. (8.2) and (8.3), i.e.,

r � rþ F ¼ q _v ð8:4Þ

and

r � lþ rA þ C ¼ q _S; ð8:5Þ

where v is the matter velocity and S is an internal spin (angular momentum), and a
superimposed dot denotes the time derivative, is not as trivial a matter as thought
by Wilson.7 As a matter of fact, one had to await a work by Eringen [25], to
understand that in parallel with the conservation of mass density, the good con-
struction of (8.5) requires the consideration of a law of conservation of rotational
inertia (per unit mass).

From the above-given short analysis we can encapsulate the Cosserats’ main
contribution in their lengthy memoir of 1909 in two main ingredients. One of these
is the deduction of field equations such as (8.2) and (8.3)—which were to yield the
fruitful notion of Cosserat continuum in the 1950s–1970s. The second ingredient,

6 The reader may consult Maugin [52] for a historical perspective.
7 To apply his argument we would have needed to know a four-dimensional static case, whatever
that may be.
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perhaps more important from the general viewpoint of mathematical physics, is the
exemplary use of variational principles and a simultaneous application of a group
theoretical argument, and this before the proof of her famous theorem by Noether
[59]. As emphasized by Wilson in his deeply thought review [77, p. 246], an
advantage of the Cosserats’ approach is the association it provides ‘‘with the
transfer of any deductive-intuitional physical science to the corresponding formal-
deductive mathematical discipline’’. This is all the best for mathematically
inclined mechanicians of the continuum. Correlatively, it yields a loss in the
physical intuition while the latter is also a creative asset: mathematical rigorous
form and physical innovation may be antagonistic. From the point of view of the
kinematics and deformation theory of the continuum, the Cosserats have learnt
their lesson in the finite-strain theory from Green, Kirchhoff, Boussinesq and
Duhem. Unfortunately, apart from very general formulas for the W function, they
have not provided any more information on possible constitutive equations.
Apparently they were not so much interested in problem solutions although their
original memoir of 1896 and some of their Notes to the Comptes Rendus hinted at
progress in the solution of elasticity problems, in two-dimensions in particular. In
the memoir of 1909 only the one and two-dimensional models are close to engi-
neering concepts as they allow for a representation of the twisting of rods and
shells in addition to their bending as noted by Ericksen and Truesdell [24, p. 297].
Bearing in mind these different characteristic properties, it is salient to examine the
contemporary reception of their work and what was more useful in it for further
developments, much later in the 1950s–1970s.

8.3 Reception and Influence of the Cosserats’ Book

Parodying the title of a famous work concerning Leonardo da Vinci by Duhem [20],
we could ask ‘‘who did the Cosserats read and who read them?’’ From above made
remarks we can safely state that Maupertuis, Lagrange, Hamilton and Kirchhoff must
have been primary sources for the bases of the Cosserats’ thesis. Much closer to them
their contemporaries such as L. Kronecker, G. Koenigs. P. Duhem, H. Poincaré,
L. Lecornu (Professor of Mechanics at Polytechnique), and G. Darboux have played
an essential role in the formation of the authors’ background. The same can be said
concerning the teachers whom both brothers had in analysis and geometry either at
Polytechnique or at the Sorbonne. Foremost among them is the influence of Darboux
with the idea of the mobile triad of vectors. In the case of Duhem, Truesdell had
repeatedly pointed out that the idea to attach a triad of rigid vectors (so-called
‘‘directors’’) at each material point in order to describe the orientational changes in
some kind of internal rotation goes back to Duhem [19]. But no trace in the Cosserats’
opus seems to directly indicate such a borrowing.

The immediate (say in the pre-WWI and early post-WWI period) reception of
the Cosserats’works is obvious among mathematically oriented scientists. Of
course, Appell who welcomed an addition by the Cosserats in his own treatise of
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1909 on rational mechanics easily sided with the Cosserats. Wilson,8 as a student
of Gibbs and a true mathematician, manifests a true enthusiasm for their work as
proved by his most favourable review. Cartan [8], the French geometer of Lie-
group fame and author of creative developments in modern differential geometry,
immediately appreciated the consideration of group arguments in the Cosserats’
vision while noting the rich possibility to include the action of distributed couples
along with more classical contact forces. This was also true of Ernest Vessiot,
another specialist of group theory, who succeeded François Cosserat as president
of the French Society of mathematics. On a less ‘‘provincial’’, albeit Parisian level,
Heun [34] in his article in the German Encyclopaedia of Mathematics presented a
kind of compaction of the Cosserats’ arguments for the mechanics of rods. As to
Hellinger [33], in a remarkably concise but well informed article to the same
encyclopaedia, he correctly captured the new trends in continuum mechanics by
accurately citing the most recent works by Boltzmann, Duhem and the Cosserats.
But this was published in a tragic period not so favourable to scientific commu-
nication. The corresponding volume of this encyclopaedia was never translated
into French while all other preceding volumes had been.

One must await a work [68] by Joachim Sudria (1875–1950) to witness an
approach truly in the Cosserats’ tradition with an unambiguous reference to the
notion of Euclidean action. This work was published in Toulouse in a journal in
which the Cosserats had published in 1896 and of which Eugène Cosserat was the
long time editor (in fact ‘‘Secretary’’) until 1930. It is in this journal that Buhl [7]
published an eulogy of Eugène pointing out his role and the influence of Eugene’s
initial works in geometry in the writing of the papers in common with his older
brother François.

Sudria [69] published an up dated version of his memoir as a short monograph.
Truesdell told (cf. [4] that it is while perusing works of the 1930s in continuum
mechanics that he unburied Sudria’s memoir of 1935. Then,—following the
(probably unknown to him) advice of Rabbi Rashi of Troyes in Burgundy: ‘‘Ask
your master his sources’’ (my citation, GAM)—Truesdell went back in time to
uncover the Cosserats’ book of 1909. In his usual somewhat grandiloquent style,
Truesdell [73] states that ‘‘the Cosserats’ masterpiece stands as a tower in the
field’’. But he also mentions that ‘‘it attracted little attention in its own day and was
soon forgotten’’. This remark may be due to Truesdell’s ignorance of citations by
French physicists, mathematicians and engineers in the 1920s–1940s [e.g., L.-M.

8 Edwin Bidwell Wilson (1879–1964) was an American mathematician-physicist who had been
a PhD student of J. W. Gibbs at Yale, and became Professor of mathematics first at M.I.T (when
he wrote the review of the Cosserats) and then at Harvard. He co-authored a book on vector
analysis with Gibbs (first edition, 1901, then several further editions). He was interested in the
general principles of physics and mechanics (e.g., relativity), in advanced calculus, and in the
differential geometry of surfaces in hyperspaces. Later in his life he contributed much to the
developing studies in mathematical economy mentoring Paul A. Samuelson in Keynesian macro-
economy. He was well equipped, both intellectually and technically, to apprehend the
quintessence of the Cosserats’ works.
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Roy, J. Delsarte, J. Pacotte, G. Matisse, P. Sergescu, E. Jouguet, and above all
R. L’Hermite who places the Cosserats in the top group together with Lamé,
Clebsch, Saint-Venant and Duhem while noting the complexity of the Cosserats’
development and the lack of possible direct applications save in the one-dimensional
case; cf. [6] (Reprint of the Cosserats’ book), p. xxxix]. This takes us directly to the
second half of the twentieth century with a frantic rebirth of studies on generalized
continuum mechanics.9

Following the early considerations by Voigt, French crystallographers showed
some interest for the case of nonsymmetric stress tensors in the mid 1950s (cf. [40,
41]). But the first manifestations of the use of ‘‘directors’’, the set of unit vectors
attached to each material point in the line of Duhem and the Cosserats, are in
works by Ericksen and co-workers [23, 24] dealing with structures of one or two
spatial dimensions10 with explicit reference to the Cosserats’ book. This would
later on be taken over in works by Green and Naghdi [29]. Then a busy period
developed in the 1960s–1970s with the introduction of various models of gen-
eralized continua, all more or less first basing on a kind of microscopic description.
Among these models, some were identified with the so-called Cosserat continua,
as essentially governed by Eqs. (8.4) and (8.5), but also christened with other
names such as ‘‘oriented media’’ or ‘‘micropolar continua’’ [50]. It has become
traditional to refer to Aero and Kuvshinskii [1], Palmov [62] and German authors
such as Günther [32], Neuber [58], and Schaefer [65] as pioneers in the field. It
became a moral, more than technical, obligation to refer to the Cosserats’ book as
demonstrated in practically all contributions to the proceedings [38] of a landmark
international symposium held in 1967 in Freudenstadt (Black Forest, Germany).
These proceedings were rightly dedicated to the Cosserats and Elie Cartan. Of
course this feverish citation business was more paying lip service than anything
else since most authors had never read—nor even seen—the Cosserats’ book.
Grioli [31] appears as an exception in not referring to any Cosserats’ work. But we
do not know if this was by pure honesty or mere ignorance that this author acted.

Explicit reference to—and exploitation of—Euclidean action is much more rare
in continuum mechanics. Here we underline the work of Toupin [72] on oriented
(Cosserat) continua and our own work [46] on the more general case of so-called
micromorphic elastic bodies. This variety of continua was introduced in a landmark
paper by Eringen and Suhubi [26]. It is equivalent to a Duhem kind of kinematic
description with three deformable ‘‘directors’’ and relative-angle changes between
these directors in the course of deformation: the microstructure itself is deformable
and is in fact subjected to a homogeneous micro-deformation (represented by six
additional internal degrees of freedom). The case of rigid micro-rotation and no
micro-deformation then corresponds to the Cosserat continuum. A modelling
somewhat equivalent to the Eringen-Suhubi one was proposed by Mindlin [56]. In
the case of Cosserat continua there appears the problem of the most convenient

9 See Maugin [52] for a historical perspective.
10 Cf. Ericksen and Rivlin [23], Ericksen and Truesdell [24].
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mathematical representation of the micro-rotation. This is best solved by consid-
ering orthogonal transformations and their own representation by an angle and the
unit direction of an axis of rotation in the manner of Gibbs [28]—and ‘‘our’’
Wilson—as shown by Kafadar and Eringen [37]. This was duly exploited by
Kafadar [36] in an original approach to the classical problem of the ‘‘elastica’’—and
thus back to the spirit of Cosserats’ treatment of one-dimensional elastic curves.

The writer was for the first time exposed to a research course involving
‘‘directors’’ in the lectures delivered by a Serbian scientist, Rastko Stojanovic, in
Udine (Italy) in July 1970 (cf. Stojanovic lecture notes at the C.I.S.M. referred to
as [66]. This was directed at the continuum representation of defective bodies. This
gave him the idea to draw an analogy with deformable continua endowed with a
continuous distribution of magnetic spins such as in the micromagnetic theory of
ferromagnetism, a fashionable subject matter at the time. Then he applied the
Euclidean action method of the Cosserats to deduce all relevant coupled field
equations, including an equation formally identical to Eq. (8.5) but with all terms
bearing a magnetic interpretation (cf. [47], Chap. III; also [53]). This was recently
revisited in C.I.S.M. lecture notes [51]. Cherry on top of the cake, a four-
dimensional relativistic theory of oriented media was constructed by comple-
menting the triad of spatial ‘‘directors’’ in the Duhem-Cosserat style by the unit-
normalized world velocity into a true four-tuple with a view to incorporate spin
effects in relativistic continuum mechanics11 with local Lorentz invariance
replacing the Cosserats’ invariance requirement [54].

8.4 Concluding Remarks

In recent times most of the Cosserats’ work involving a nonsymmetric stress and
couple stresses have been formalized in a modern context often under the title of
asymmetric elasticity (cf. [60]) or polar or microplar media of the elastic type (cf.
[27], Teodorescu [70]) or of the fluid type (cf. [44, 67]) with mathematical results
of the same degree of refinement as those dealing with classical continua.12 The
theory of such polar elastic materials has been fully incorporated in the modern
framework of configurational forces [49] with the help of Noether’ theorem. The
formulation of the deformation nonlinear theory of finite-strain Cosserat elasticity
has been much clarified by Pietraszkiewicz and Eremeyev [63]—also Eremeyev
and Pietraszkiewicz [21]—, and the most recent lecture notes highlight all fun-
damental geometrical properties and most interesting applications of Cosserat
continua (cf [2]). A rapid search on Google provides instantaneously more than

11 For this 4D generalization see Maugin [47, Chap. VI] and Maugin and Eringen [54].
12 We use this opportunity to mention the seldom cited book of Jaunzemis [35] where elements
of generalized continua are nicely introduced. Jaunzemis’ career was interrupted by his untimely
death at the age of 48 in 1973.
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two hundred thousand entries about the Cosserats, although the most recent ref-
erences concern a local politician from Amiens, the native city (in Picardie, North
West of France) of the Cosserat brothers, thus undoubtedly a family connection.
But the Amiens textile company specialized in the production of velvet, created in
1794, and of which the parents of the celebrated brothers were the owners, finally
closed down in 2012. As to the heritage of the notion of ‘‘Euclidean action’’, it is
more diffuse as the Cosserat notion appears somewhat obsolete in a period of full
enforcement of Noether’s invariance theorem. Concerning this point, we can cite
Levy [42] as a general appraisal of this aspect of the Cosserats’ works:

Cosserat’s theoretical research, designed to include everything in theoretical physics that
is directly subject to the laws of mechanics, was founded on the notion of Euclidean action
[least action] combined with Lagrange’s ideas on the principle of extremality and Lie’s
ideas on invariance in regard to displacement groups. The bearing of this original and
coherent conception was diminished in importance because at the time it was proposed,
fundamental ideas were already being called into question by both the theory of relativity
and progress in physical theory.

But, nowadays, ‘‘Euclidean action’’ experiences a flourishing vitality in its
acception granted in theoretical physics such as in the functional integrals of
quantum physics (cf. [57]).

This concludes the present investigation of the subject. But we note that
Pommaret [64], a disciple of Vessiot in group theory, and in a sense a ‘‘grand-son’’
of François Cosserat—with whom he shares the same elite education—has
expanded never tired efforts to publicize the works of the Cosserats and their
relevance to modern group theory in mathematical physics.

PS. Additional biographic information on the Cosserats and their works can be found in
Levy [42] , O’Connor and Robertson [61], and Brocato and Chatzkis ([6]; preceding the
reprint of the Cosserats’ book). Remarks on the Cosserats’ work and Duhem’s influence
can also be found in Casey and Crochet [9].

Appendix A

Partial English Translation of E. and F. Cosserat, ‘‘Théorie des Corps Déform-
ables’’, Hermann, Paris, 1909, by Gérard A. Maugin (Only the First Chapter on
General considerations is translated; original footnotes are reported to the end and
numbered consecutively. Translator’s remarks are placed within square brackets in
the main text. This is a verbatim translation without any ambition of literary
prowess (Figs. 8.1, 8.2, 8.3).
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Fig. 8.1 First page of the Cosserats’ book of 1909 (Hermann, Paris, 1909) (Note the reference to
Green, Kelvin and the Treatise on Natural Philosophy)
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Fig. 8.2 François Cosserat
(1852–1914) in his uniform of
the Ecole Polytechnique
around 1871 (Source http://
www-history.mcs.st-andrews.
ac.uk/Cosserat-Francois.html)

Fig. 8.3 Sketchy portrait of
Eugène Cosserat
(1866–1931) in his fifties
(Source http://www-history.
mcs.st-andrews.ac.uk/
PictDisplay.html)

126 8 About the Cosserats’ Book of 1909

http://www-history.mcs.st-andrews.ac.uk/Cosserat-Francois.html
http://www-history.mcs.st-andrews.ac.uk/Cosserat-Francois.html
http://www-history.mcs.st-andrews.ac.uk/Cosserat-Francois.html
http://www-history.mcs.st-andrews.ac.uk/PictDisplay.html
http://www-history.mcs.st-andrews.ac.uk/PictDisplay.html
http://www-history.mcs.st-andrews.ac.uk/PictDisplay.html


Theory of Deformable Bodies

by MM. E. and F. Cosserat

Preface
This volume contains the development of a note on the Theory of the Euclidean

action that Appell has thought appropriate to introduce in the second edition
[1909] of his Treatise on Rational Mechanics. The reproduction of an appendix to
the French edition of the Treatise of Physics of Chwolson, explains several
peculiarities of the editing and the reference that we make to a previous work on
the dynamics of the point and of a rigid body, which is here also combined with
the work of the Russian scientist. We took advantage of this new print to correct
several mistakes in our text.

Presently, we do not seek to deduce all the consequences of the general results
that we will obtain; throughout, we make the effort only to rediscover and clarify
the classical theories. In order for this kind of checking of the theory of the
Euclidean action to appear more complete, in each part of our exposition we will
have to establish the form that the equations of deformable bodies take when one is
limited to the consideration of infinitely close states; however, this is a point that
we have already addressed, with all necessary details, in our first memoir on the
Theory of elasticity that we wrote in 1896 (Annales de la Faculté des Sciences de
Toulouse, Vol. X). Moreover, we suppose that the magisterial lessons of G.
Darboux on the general theory of surfaces are completely familiar to the reader.

Our researches will make sense only when we have shown how one may
envision the theories of heat and electricity by following the already followed path.
We devoted two notes to this subject in Volumes III and IV of Chwolson’s treatise.
The subdivision, to use a pragmatic language, appears to be a scientific necessity;
nevertheless, one must not loose sight of the fact that it answers deep questions.
We have tried to provide an idea of these difficulties in our note on the Theory of
slender bodies published in 1908 in the Comptes Rendus of the Académie des
Sciences and whose contents were also mentioned by Appell in his treatise.

E. & F. COSSERAT

I.- General considerations

1. Development of the idea of a continuous medium – The notion of
deformable body has played an important role in the development of the-
oretical physics during the last century [i.e., 19th century], and Fresnel1

must be considered as one of the precursors of the present theory of
elasticity, on an equal stand with Navier, Poisson and Cauchy2. Under the
influence of Newtonian ideas, only discrete systems of points were still
considered at the time of these scientists. Continuous punctual systems
appeared with the memorable researches of G. Green3. Since then, one has
tried to enlarge the conception of Green, which is not sufficient to provide
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its full power to the theory of luminous waves. Lord Kelvin4, in particular,
worked hard to define continuous media at each point of which a moment
can be exerted. The same trend is emphasized with Helmholtz5, of whom
the controversy with J. Bertand6 concerning the theory of magnetism is
very characteristic. We can go back to the origin of this evolution, on the
one hand, with conceptions introduced in the strength of materials by
Bernoulli and Euler7, and on the other hand, to the theory of ‘‘couples’’ due
to Poinsot8. Thus we are naturally led to gather, under the same geometrical
definition, various concepts of deformable bodies that we meet nowadays
in natural philosophy [i.e., physics]. A deformable line is a continuous set
equipped with one parameter of trihedrons, a deformable surface with a set
of two parameters, and a deformable [3D] medium with three parameters
qi. In the presence of motion, one must add the time t to these three
geometric parametersqi. The mathematical continuity that we assume in
such a definition, leaves untouched at each point the trace of an invariable
[i.e., rigid] solid; therefore, we can foresee that from a mechanical view-
point moments will appear that are well known and are studied, since Euler
and Bernoulli, along elastic lines and on surfaces, and that Lord Kelvin and
Helmholtz have tried to embed in a three-dimensional space.

2. Difficulties presented by the application of the inductive method in
mechanics.

The primary form of mechanics is inductive; this is what one clearly perceives
in the theory of deformable bodies. This theory has first borrowed from the
mechanics of invariable [rigid] bodies the propositions relative to the notion of
static force, that were applied with the principle of solidification [‘‘rigidification’’
due to Cauchy]; then the relation between the effort and the deformation was
hypothetically first established (generalized Hooke’s law), and then only one
looked a posteriori under what conditions this was conserved (Green). Carnot9

already mentioned, one century ago, the defect of this method, where it is con-
stantly called for a priori notions, and where the followed path is not always safe.
The static force in fact does not have the effect of a constructive definition, in our
classical form of mechanics, and the influence of the reform that Reech10 proposed
regarding that matter in 1852 remained practically unknown until our present time.
Perhaps that this is due to the long uncertainty in which elasticians remained
concerning the rational foundation that can be attributed to Hooke’s law. Analo-
gous hesitations have indeed been manifested, almost in the same form, in other
domains of physics11.

In order to escape from these difficulties, Helmholtz tried to construct what is
called an energetics, that relies on the principle of least action and on the very idea
of energy, the force, whatever its nature, becoming then a secondary notion of
deductive origin. But the principle of a minimum in natural phenomena12 and the
concept of energy13 itself bring us to confront the defects of the inductive method.
Why a minimum and what definition to be granted to energy to avoid having
simply a physical theory, but a truly mechanical theory? Helmholtz does not seem
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to have left an answer to these questions. However, he contributed to establish
more completely than done before the distinction between the two notions, energy
and action, that apparently are identified in classical dynamics. We believe that
one must start from the latter [the action] to make perfectly precise the views of
Helmholtz and to give to mechanics, or more generally, theoretical physics, a
perfectly deductive form.

3. Theory of Euclidean action

When we are concerned with the motion of a point, the essential element that
enters the definition of action is the Euclidean distance between two infinitesimally
close positions of the mobile point. We have shown previously14 that one can
deduce from this single notion all fundamental definitions of classical dynamics,
those of quantity of motion [linear momentum], of force and of energy.

Here we propose to establish that we can follow an identical path in the study of
the static deformation or the dynamics of discrete systems of points and continuous
bodies, and that we arrive thus to the construction of a general theory of action in
both extension and motion, that embraces all that, in theoretical physics, is directly
governed by the laws of mechanics.

Here also, the action will be the integral of a function of two infinitesimally
close elements in time and in the space of the considered medium. Introducing the
condition of invariance under the group of Euclidean displacements and defining
the medium, as indicated in the first paragraph above, the density of action at a
point will have the same remarkable form that the one already met in the dynamics
of the point and of invariable bodies. Let, with the notations of the Leçons of M.
Darboux, ni; gi; nið Þ, pi; qi; rið Þ be the geometric velocities of translation and
rotation of the elementary trihedron, and n; g; nð Þ, p; q; rð Þthe corresponding
velocities relative to the motion of this trihedron; The action will be the integral

Z t2

t1

Z
. . .

Z
W qi; t; ni; gi; ni; pi; qi; ri; n; g; n; p; q; rð Þdq1; . . .; dqi. . .dt:

It will suffice to consider the variation of this action to be led to the definition of
the quantity of motion, those of efforts and moment of deformation, of the external
force and moment, and finally those of the energy of deformation and of motion,
via the intermediary of the notion of work.

In this theory, statics will become entirely autonomous, in agreement with the
views of Carnot and Reech; we will simply have to take for this purpose a density
of action W independent of the velocities n; g; nð Þ; p; q; rð Þ, that is, to consider a
body devoid of inertia, or else a body with inertia on the condition to regard
deformation as a reversible transformation in the sense of M. Duhem. On the other
hand, having recourse to the notion of hidden arguments [i.e., arguments that do
not appear explicitly in W], we will recover all the concepts of mechanical origin
that are employed in physics, for instance, those of flexible and inextensible lines
[strings], flexible and inextensible surfaces, invariable [i.e., rigid] bodies, as also
less particular definitions as proposed for a deformable line since D. Bernoulli and
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Euler till Thomson and Tait, for the deformable surface since Sophie Germain and
Lagrange till Lord Rayleigh, and for the deformable media since Navier and Green
till Lord Kelvin and W. Voigt.

Envisaging both deformation and motion, we shall arrive in a purely deductive
manner at the idea that is contained in the principle of d’Alembert, which relates
only to the case where an action of deformation separates fully from the kinetic
action. Finally, if we suppose that the deformable body is not submitted to any
action from the external world and if we introduce, as a consequence, the fun-
damental notion of isolated system, of which M. Duhem15, and the M. Le Roy16

have shown the necessity for a rational construction of theoretical physics, we
shall naturally be led to the idea of a minimum that Helmholtz had already con-
sidered as a starting point, while simultaneously there will appear the principle of
conservation of energy, which is at the basis of our present scientific system.

4. Critique of the principles of mechanics.- As we just sketched it, the
theory of Euclidean action brings a first contribution to the critique of the
principles of mechanics.

Its generality allows one to foresee that there are singular phenomena, both in
the action on the motion and in the deformation of extension, for example the
aspect of solids in a plastic state or near fracture, and that of fluids submitted to
large forces. In ordinary circumstances, this generality can be reduced by the
consideration of a state that is infinitesimally close to the natural state; this is a
point that we already mentioned in our preceding note.

But we can still assume that one or two dimensions of the deformable body
become infinitesimally small and then envisage what is called a slender body18.
This notion was developed in 1828 by Poisson, also a short time afterwards, by
Cauchy; their aim, like that of all elasticians preoccupied later by this arduous
question, was to build a passage between the distinct theories of bodies with one,
two and three dimensions. We know that an important part of the works of Barré
de Saint-Venant and Kirchhoff is related to a discussion of the researches by
Poisson and Cauchy. However, these scientists, and then their followers, did not
exhibit the true difficulty of the matter; this difficulty resides, generally, in the fact
that the zero value of the introduced parameter is not an ordinary point, as
admitted by Poisson and Cauchy, not even a pole, but an essential singular point.
This important fact justifies the separate studies of lines, surfaces and [3D] media
that the reader will find in the present work19.

[Here the Cosserats touch upon a fundamental problem that concerns singular
perturbations; this matter will be solved only in the 1960s-1980s for the limit
reduction to slender bodies with the correct asymptotic methods (in particular
‘‘asymptotic integration’’ and the ‘‘zoom technique’’) developed by Gol’denveizer
in Russia, Ambartsumian in Armenia, Berdichevsky in Moscow, and Ph. Ciarlet
and Destuynder in France].

In concluding these preliminary observations, we shall remark that the theory of
Euclidean action relies on the notion of differential invariant taken in its simplest
form. If we enlarge this notion in such a way as to understand the idea of
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differential parameter, modern theoretical physics appears as an immediate
extension, from the Eulerian viewpoint, of mechanics per se, and we are naturally
led to the principles of the theory of heat and to the actual electric doctrines. This
new field of research, in which here we start to enter by deducing from the
consideration of deformable bodies the idea of radiation of energy, will be
explored more completely in a further work [This ambitious programme was never
really formulated; F. Cosserat died in 1914]. We shall thus introduce a new pre-
cision in the views of H. Lorentz20 and H. Poincaré21 in what is called the prin-
ciple of reaction in mechanics.

(Original) Notes

1. Fresnel, Oeuvres complètes, Paris, 1866; see the introduction by E.
Verdet.

2. See Isaak Todhunter and Karl Pearson, A history of the theory of elasticity
and the strength of materials, from Galilei to the present time, Vol. I,
Galilei to Saint-Venant, 1886; Vol. II, Part I and II, Saint-Venant to Lord
Kelvin, 1893. This remarkable work contains a very complete and precise
analysis of the works by the founders of the theory of elasticity.

3. G. Green, Math. Papers, edited by N.M. Ferrers, facsimile reprint, Paris,
A. Hermann, 1903.

4. Lord Kelvin, Math. and Phys. Papers, Vol. I, 1882; Vol. II, 1884, Vol. III,
1890; Reprint of papers in electrostatics and Magnetism, 2nd edition;
Baltimore Lectures on Molecular Dynamics and the Wave Theory of
Light, 1904; W. Thomson and P.G. Tait, Treatise on Natural Philosophy,
First edition, Oxford 1867; 2nd edition, Cambridge, 1879-1883.

5. Helmholtz, Vorles. über die Dynamik diskreter Massenpunkte, Berlin ,
1897; Vorles. über die elektromagnetische Theorie des Lichtes, Leipzig,
1897; Wiss. Abhandl. Three volumes, Leipzig, 1892-1895.

6. J. Bertrand, C.R. 73, p.865; 75, p. 860; 77, p. 1049; See also H. Poincaré,
Electricité et optique, II, Les théories de Helmholtz et les expériences de
Hertz, 1891, p. 51 ; 2nd edition, 1901, p.275.

7. See Todhunter and Pearson – op. cit.
8. Auguste Comte, Cours de philosophie positive, 6th edition, Paris, 1907;

Vol. I, p. 338: « Whatever, in truth, the fundamental qualities of the con-
ception of M. Poinsot, with respect to statics, one must nonetheless rec-
ognize, it seems to me, that it is above all for perfecting dynamics that it is
essentially destined; and I can assure you, considering this point, that this
conception has not exerted its most important influence so far’’.

9. Carnot, in his essay of 1783 on ‘‘Machines in general’’ that became in 1793,
Les Principes fondamentaux de l’équilibre et du mouvement , has searched
to reduce mechanics to principles and precise definitions devoid of any
metaphysical character and of any vague terms about which philosophers
quarrel without reaching any understanding. This reaction led Carnot a
little too far, since he went to the point of contesting the legitimacy of the
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expression of force, for him an obscure notion, and to which he wanted to
substitute exclusively the idea of motion. For the same reason, he could not
admit as rigorous any of the known derivations of the rule of the paral-
lelogram of forces, ‘‘the very existence of the word force, in its expression,
rendering this derivation impossible, by the nature of things itself’’ (Ch.
Combes, Ed. Phillips and Ed. Collignon, Exposé de la situation de la
mécanique appliquée, Paris, 1867).

10. F. Reech, Cours de mécanique, d’après la nature généralement flexible et
élastique des corps, Paris, 1852. This work was written by the illustrious
Marine engineer in view of the reform of the teaching of mechanics at
Ecole Polytechnique. Since then, his ideas were exposed by J. Andrade,
Leçons de mécanique physique, Paris, 1898, and by Marbec, Chief
engineer in the Navy, in his elementary teaching of mechanics at the
school of ‘‘Maistrance’’ [forming non-commissioned officers as mechan-
ical specialists in the French Navy; GAM] in Toulon (1906). See also J.
Perrin, Traité de Chimie physique, les principes, Paris, 1903.

11. The remark by Lord Kelvin, in his Baltimore Lectures, p. 131, on the
work of Blanchet, is particularly of interest in this regard; he mentions that
Poisson, Coriolis and Sturm (C.R. 7, p. 1143), as well as Cauchy, Liou-
ville and Duhamel (1841) have accepted without objection the 36 coef-
ficients that Blanchet had admitted in the generalized Hooke law. Lord
Kelvin also has opposed from the same viewpoint the law of at-a-distance
force of Weber, in the first edition of the Natural Philosophy. More
recently, the application of the static adiabatic law to the study of waves
of finite amplitude has been criticized for the same reason by Lord Ray-
leigh, and we know that Hugoniot has proposed a dynamic adiabatic law.

12. Maupertuis himself felt the danger of the principle that he introduced when
he wrote in 1744: ‘‘We do not know enough what is the purpose of nature,
and we can misinterpret the quantity of motion that we must regard as its
expense, in the production of its effects’’; Lagrange first has intended to
make of the principle of least action the basis of his analytical mechanics,
but later on he recognized the superiority of the method which consists in
considering virtual works.

13. Hertz, Die Prinzipien der Mechanik, etc., 1894; See especially the
introduction.

14. Note sur la dynamique du point et du corps invariable, Tome I, page 236.
15. P. Duhem, Commentaire aux principes de la thermodynamique, 1892; La

théorie physique, son objet et sa structure, 1906.
16. E. Le Roy, La science positive et les philosophies de la liberté, Congrès

int. de philosophie, T.I., 1900.
17. E. and F. Cosserat, Sur la mécanique générale, C.R., 145, p. 1139, 1907.
18. E. and F. Cosserat, Sur la théorie des corps minces, C.R., 146, p. 169,

1908.
19. It must be that the interest and the importance of the theories of lines and

deformable surfaces are today so badly appreciated that the
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Encyclopaedia of pure and applied mathematics [Enz. math. Wiss.],
presently published in Germany, grants them no room. W. Thomson and
Tait have avoided to omit them in their Natural Philosophy, and they
presented them before the theory of three-dimensional elastic bodies.
Similarly, P. Duhem, Hydrodynamique, Elasticité, Acoustique, Paris,
1891.

20. H. Lorentz – Versuch einer Theorie der electrischen und optischen Ers-
cheinungen in bewegten Körpern, Leiden, 1895; reprinted in Leipzig in
1906, Abhandl. über theoretische Physik, 1907; Encycl. der Math. Wis-
senschaften, V2, Elektronen Theorie, 1903.

21. H. Poincaré, Electricité et optique, 2nd edition, 1901, p. 448.
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