
Chapter 4
Piola and Kirchhoff: On Changes
of Configurations

Abstract The seminal contribution of Gabrio Piola to the foundations of
continuum mechanics is critically examined directly on the basis of his publica-
tions (1825–1848). This emphasizes the original approach of Piola who favoured a
direct projection on the material configuration (where material particles are
‘‘labelled’’), this yielding the now well known Piola–Kirchhoff stresses in the so-
called Piola format of continuum mechanics. Piola is a follower of Lagrange and
Poisson, much more than of Cauchy. But he established the connection of his
equations with those of the more familiar Euler–Cauchy format (expressed in the
actual configuration) of elasticity. Kirchhoff, much more known than Piola
because of his renowned works in electricity, spectroscopy and thermo-chemistry,
also contributed to the same format as Piola, hence his name attached to that of
Piola. The works of Piola acquired a well deserved recognition and an excellent
range of applications with the expansion of nonlinear elasticity, the modern theory
of material inhomogeneities and the notion of configurational forces.

4.1 Introduction

It is agreed upon [33] that Euler and Lagrange are responsible for the introduction
of two kinematical descriptions of the motion of deformable continua, empha-
sizing the dependence on actual or initial (Lagrangian) coordinates. In their time,
this was particularly well exploited in fluid mechanics. However, with the con-
sideration of possible finite deformations, essentially by Cauchy in France [6] and
Green in the UK [10], in the framework of elasticity, the relationship between two
configurations—the actual one after deformation and perhaps one chosen appro-
priately to label the ‘‘material particles’’ in a convenient way—became a necessity.
It was to be the role of Gabrio Piola in Italy and Gustav Kirchhoff in Germany to
clarify this matter, so that the two names are often associated to designate certain
entities, e.g., the Piola–Kirchoff stress tensors. This possible duality between two
kinematic descriptions of course entails the possibility to write the basic equations
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governing the dynamics of continua in two formats, that are now called the Euler–
Cauchy and Piola–Kirchhoff formats as they involve the use of different—or
‘‘transformed’’—tensorial objects (in particular as regards the stress). Of essential
importance here is the relationship between tensorial objects expressed in the two
different formats. This was practically solved by Piola with the introduction of the
(now called) Piola transformation, a notion also referred to as pull-back operation
(and its inverse the pull-forward [18]). Here we shall critically examine how Piola
constructed ‘‘his format’’ of equations by perusing his original works of the period
1825–1848 [24–27] . This format acquires its full importance in the formulation of
the theory of material inhomogeneities [20] and the theory of configurational
forces [21]. It is in fact our involvement in the expansion of these theories that
kindled our interest in the original papers of Piola.

4.2 Piola’s Contribution

4.2.1 Some Words of Caution

Gabrio Piola (1794–1850) is an Italian mathematician who was an enthusiastic
disciple of Joseph Louis Lagrange (1736–1813), the well known Italian-French
mathematician. He is, therefore, an ardent supporter of variational formulations in
the Euler–Lagrange tradition. He is the author of generally lengthy memoirs. We
must admit that these papers are difficult to read, in reason both of the obsolete
mathematical terms and the somewhat antiquated Italian language. We shall focus
attention on the memoirs of 18361 and 1845 with some comments on that of 1833. In
doing so we have decided to translate in modern (intrinsic or indicial) notation many
of Piola’s mathematical expressions written at a time when neither vector nor tensor
notions existed. Thus the motion mapping is given by Piola by the application

a; b; cð Þ ! x; y; zð Þ

at fixed time, and the summation is indicated by a big S (that we replace by a more
familiar R). However we shall refer to Piola’s equations by an indication such as
[26, p. 259, Eq. 137]. Note that Piola’s notation for motion and deformation is still
used by the Cosserat brothers as late as 1909 (who are not much easier to read
[22]). Also, it is remarkable that Piola demonstrates an unconscious capture of a
hidden algorithm so that he does not always need to write all components of a
vector or tensor equation explicitly, but he gives a hint of this matter to the reader.
For the sake of simplification, we do not make any distinction between covariant
and contravariant tensors, assuming Cartesian systems of coordinates. But this is
not altogether correct.

1 A microfilm copy of the memoirs of 1836 and 1845 was kindly provided to us in 1991 by the
Municipal Library of Modena during our stay as a visiting professor of the Italian CNR in Pisa.
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4.2.2 The Strategy of Piola

In perusing Piola’s works from 1825 to 1848, we can distinguish three main lines
that combine together to form a well defined strategy.

The first one is an attempt at avoiding the consideration of infinitesimals—as used
by Lagrange—in the conception of the kinematics of moving points, but considering
as first principle the superposition of motions. This is a line he developed in his
competition essay of 1825 [24]. This follows the works of other Italian mathema-
ticians such as Magistrini and Riccardi who criticized Lagrange’s use of virtual
velocities. This viewpoint studied by Capecchi [3, 4] appears somewhat strange to
modern minds, although it does yield the classical form of the equation of motion of
a free material point. We shall not dwell further in this matter.

The second line is the a priori consideration of the motion of an ensemble of
points in interaction, following Poisson (and also the second theory of continua of
Cauchy), and then passing to a limit providing equations for a continuum, with an
appropriate definition of what will later on be called the first Piola–Kirchoff stress
tensor. This will be examined in greater detail herein below. This is developed at
length in Piola [26]. Note that Piola there refers frequently to French mathema-
ticians and mechanicians (Cauchy, Laplace, Poisson, Legendre, Lacroix, and of
course Lagrange, hardly a Frenchman to him).

The third line is none other than an application of the Euler–Lagrange varia-
tional formulation accounting for possible mathematical constraints such as that
due to rigidity. This necessitates the introduction of Lagrange multipliers [26]
which are revealed to look like stress tensors. Of course here Piola follows the
teaching of his master Lagrange (see the latter’s lectures in Lagrange [17]. As
shown by Piola [27], in the case of deformable bodies, this formulation in fact
leads to the introduction of true stress tensors (Piola stress or Cauchy stress
depending on the original definition of rigidity) in a rather formal manner that
reminds us of the formulation of the principle of virtual power by Germain [9] or
Maugin [19] where linear continuous forms on a set of generalized velocities are
introduced a priori with ‘‘stresses’’ as co-factors. Such an approach permits the
deduction of the accompanying natural boundary condition involving the stress. As
noted by Truesdell and Toupin [33, p. 596, Footnote 3], this was the first deduction
of such conditions from a variational principle. Piola’s approach will be briefly
described in the following paragraphs.

4.2.3 Introduction of the ‘‘Piola Format’’ by Piola

Following Poisson, Piola [26] considers identical point particles of unit mass that
we can label að Þ. Each one is initially at position denoted by a; b; cð Þ with label að Þ
and after motion at position x; y; zð Þ with label að Þ. In modern notation this would

yield the change of position as x að Þ
i or x að Þ function of X að Þ

K or X að Þ, in Cartesian

4.2 Piola’s Contribution 57



tensor notation and intrinsic notation, respectively. Thus the kinematic description

may be said to be referential. With externally applied force f að Þ, and a model of
interactions between particles (called ‘‘molecules’’) whose exploitation is some-
what obscure, Piola is able to write a variational formulation of the following type
(p. 173, Eq. (15))

X

i

X

a

d2x að Þ
i

dt2
� f að Þ

i

 !
dx að Þ

i þ
X

i

X

a;b

/ Sa;b
� �

dSa;b ij ¼ 0 ð4:1Þ

where the S’s—whose details are irrelevant—depend on the relative distances
between particles, hence on the xi. For arbitrary variations of the xi this formally
yields equations of motion of individual particles in the form [26, p. 189, Eq. (41)]

f að Þ
i � d2x að Þ

i

dt2
þ I að Þ

i ¼ 0; a ¼ 1; 2; . . . ð4:2Þ

where I að Þ
i is the interaction force with other particles that we do not elaborate

further. The ‘‘tour de force’’ of Piola rests in the approximation of these interaction
terms (pp. 175–200) and passing to some kind of continuum limit that brings the
generic local equation of motion to the vectorial form [26, p. 201, Eq. (56)]

f � o2x

ot2
þ divXT ¼ 0; ð4:3Þ

where T is an object with nine independent components (for it has no symmetries)
and the modern symbol divX means the divergence operator with respect to the
referential coordinates a; b; cð Þ i.e., XK . Obtaining (4.3) involves the neglect of
supposedly small terms. Equation (4.3) can also be written as

fi �
o2xi

ot2
� o

oXK
TKi ¼ 0; ð4:4Þ

in Cartesian tensor analysis.
The change of position and its inverse (assuming invertibility in agreement with

Lagrange) can be noted [26, p. 202, Eqs. (58)–(59)]

x; y; zð Þ functions of a; b; cð Þ and time t

and

a; b; cð Þ functions of x; y; zð Þ and time t

or in modern notation

x ¼ �x X; tð Þ and X ¼ �X x; tð Þ: ð4:5Þ

Let J denote the Jacobian determinant of the first of these transformations (this
is denoted H by Piola, p. 204), i.e.,
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J ¼ det F; F ¼ FiK ¼
o�xi

oXK

� �
: ð4:6Þ

For a continuum, this is as if (4.3) or (4.4) had been written for a body of
referential mass density q0 ¼ 1. If this is not the case, q0 has to be introduced and
(4.3) has to be rewritten as

q0 f � o2x

ot2

� �
þ divXT ¼ 0: ð4:7Þ

Then Piola would like to compare his equation of motion with the formulation
obtained by Cauchy [6] and Poisson [29] in the actual configuration. To do this he
needs some work since he must pass to the spatial parametrization of the Eulerian
type in terms of the actual position x; y; zð Þ or x ¼ xi; i ¼ 1; 2; 3f g. He shows
that he can introduce a geometrical object r (noted K by Piola) such that [26,
p. 204, Eq. (60)]

rij ¼ J�1 o�xi

oXK
TKj or r ¼ J�1F T: ð4:8Þ

Reciprocally (Piola 1936, p. 205, Eq. (63))

T ¼ JF�1 � r or TKi ¼ J
o�XK

oxj
rji: ð4:9Þ

He establishes identities like [26, p. 205, Eq. (62)]

divXT ¼ J divxr; ð4:10Þ

where divx means the divergence with respect to the x; y; zð Þ or x ¼
xi; i ¼ 1; 2; 3f g space parametrization. This involves proving the identities

rx � J�1F
� �

¼ 0 and rX � JF�1
� �

¼ 0: ð4:11Þ

Noting that in his format the mass conservation reads (p. 211, Eq. (72) with
C—which Piola does not yet call density—standing for q)

q0 ¼ Jq; ð4:12Þ

where q is the actual density at x; y; zð Þ, Piola finally shows that Eq. (4.7) above
renders the equation of motion (p. 212, Eq. (74))

q f � d2x

dt2

� �
þ divxr ¼ 0: ð4:13Þ

This he identifies with the equation obtained by Cauchy [6, p. 166] or Poisson
[29, VIII, p. 387; X, p. 578]. Accordingly, r is none other than the Cauchy stress
tensor for any continuum, whether solid or fluid, while T deserves to be called the
Piola stress (first Piola–Kirchhoff stress in modern jargon). The word density
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(‘‘densità’’) here is used for the quantity J�1 since q0 ¼ 1 for Piola. Equilibrium is
obtained by making the acceleration term vanish in Eq. (13)—[26, p. 215,
Eq. (79)].

What is original here with Piola is that he has formulated what we call the
‘‘Piola format’’ of the basic equations of continuity—Eq. (4.12)—and of balance
of linear momentum. His ‘‘format’’ involves two configurations with a preference
for the referential one for the space parametrization. It is sometimes called the
material formulation [21] since X refers directly to the material ‘‘points’’ that
belong to the ‘‘material manifold’’. The only inconvenience is the appearance of
geometrical objects such as F and T that have two ‘‘feet’’ in different configura-
tions and will later on be called two-point tensor fields—i.e., tensors depending on
two ‘‘points’’—by Einstein or, here precisely double vectors. But it must be
understood that all computations are effected by Piola with all explicit scalar
components of the introduced objects since he has no notion of a tensor (only
introduced in the 1880s by Voigt).

The celebrated Piola transformation here is represented by Eq. (4.9) that is
even made clearer when applied to a vector field. Let v a vector field with com-
ponents in the actual framework x ¼ xi; i ¼ 1; 2; 3f g. The associated vector field
V in the framework X ¼ XK ; K ¼ 1; 2; 3f g is defined by accounting both for the
deformation and the volume change; that is:

V ¼ JF�1 � v: ð4:14Þ

This is the Piola transformation—or pull back to the reference configuration.
The inverse operation is called the push forward from reference configuration to
actual configuration. Equation (4.9) that defines the first Piola–Kirchhoff stress is
thus only a partial Piola transformation of the Cauchy stress. This is the rather
troubling matter (with many students). But this manipulation allows one to obtain
an equation of motion (4.7) with good partial differential derivatives in the space-
time parametrization XK ; tð Þ while this equation still has components in the actual
configuration where data in forces are prescribed. For the transformation of
boundary conditions on stresses one will have to wait for the formulas obtained by
Nanson [23] for the transformation of oriented surface elements. It is not forbidden
to construct the full pull-back of the Cauchy stress by completing the transfor-
mation (4.9) by defining the fully material stress S by {T = transposed; [25,
Eq. (45)]; [26, Eq. (132)]}

S ¼ T � F�T or SKL ¼ TKiF
�1
iL ¼ J

oXK

oxi
rij

oXL

oxj
: ð4:15Þ

This is called the second Piola–Kirchhoff stress in modern continuum
mechanics. It is a true material tensor; it is symmetric by construction if the
Cauchy stress is symmetric (which is more than often the case). In contrast, it does
no make mathematical sense to speak of the symmetry or non-symmetry of T. The
thermodynamic importance of S will be made clear soon in Green’s elasticity
derived from a potential.
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Piola still has to be more precise with the notion of matter density. He ponders
this notion in his Chap. IV (p. 218 on) where, basically, it is mass divided by
volume—valid only for a homogeneous volume—as otherwise the correct defi-
nition should involve a limit procedure applied to an infinitesimal element of
matter at each point. Note that for Newton it was mass that was defined by density
multiplied by volume. Starting from Eq. (4.12) and noticing that in Piola’s time q0

may at most be a function of a; b; cð Þ or X, and not a function of time (this is no
longer true in the modern theory of material growth [21, Chap. 10]), a laborious
computation leads Piola to the equation of continuity in the Eulerian form (Piola,
p. 235, Eq. 105):

oq
ot
þrx � qvð Þ ¼ 0; ð4:16Þ

where v ¼ dx=dt is the velocity. Thus (4.16) and (4.13) correspond to (4.12) and
(4.7), respectively.

The rest of the impressive Piola’s paper of 1836 concerns the introduction of
the displacement for a continuum and the notions of dilatation and condensation
(in Cauchy’s sense), and many more considerations on the molecular description
of the material, whose purpose in principle is to deduce explicit expressions for the
interactions introduced in Eq. (4.1) above—in particular with the notion of pres-
sure, and a theory of fluids in concurrence with one expanded by Poisson [30,
p. 524]. This goes beyond the present focus.

4.2.4 Stresses as Lagrange Multipliers

As a good disciple of Lagrange, Piola exploits the technique of multipliers to
account for constraints. Lagrange had done this for the constraint of incom-
pressibility introducing thus a scalar multiplier that is a mechanical pressure. In
Piola [25], the author wants to do it for the constraint of rigidity of extended
bodies, perhaps as a preparation for the case of deformable bodies [27]. The
formulation he offers is quite original albeit a little bit involved. We consider again
Piola’s original notation a; b; cð Þ and x; y; zð Þ for the initial and final positions of
any point in the body. The a priori motion is written by Piola as

x ¼ f þ a1aþ b1bþ g1c; y ¼ gþ a2aþ b2bþ g2c; z ¼ hþ a3aþ b3bþ g3c;

ð4:17Þ

which contains twelve scalar parameters. In modern vector and matrix notation
this reads

xi ¼ gi þ
X3

K¼1

aiKXK ; i ¼ 1; 2; 3: ð4:18Þ

4.2 Piola’s Contribution 61



For a true rigid body motion the number of parameters must be reduced to six
(three translations and three rotations). Then by astute manipulations (Piola does
not possess the notion of matrix) that look terrible to modern eyes, Piola, by
eliminating the parameters, succeeds to express the conditions of orthogonality
and normality in differential forms for the function xi ¼ �xi XKð Þ. Two alternate
forms are obtained that we rewrite (here in modern notation) as

�eij ¼
X3

K¼1

FiKFjK � dij ¼ 0 ð4:19Þ

and

�EKL ¼
X3

i¼1

FiKFiL � dKL ¼ 0; ð4:20Þ

where the deltas are Kronecker symbols and FiK :¼ o�xi=oXK . In setting

eij ¼ �eij=2; EKL ¼ �EKL=2; ð4:21Þ

we recognize with the first part of (4.19) and (4.20) the definition of the left and
right Cauchy–Green strain tensors of non-linear continuum mechanics up to a
factor � [33], i.e., in intrinsic notation (with the notation of Maugin [20])

e ¼ 1
2

c�1 � 1
� �

; E ¼ 1
2

C� 1Rð Þ ð4:22Þ

with

c�1 :¼ F � FT ; C :¼ FT � F: ð4:23Þ

The rigid-body conditions (4.19) and (4.20) read

c�1 ¼ 1; C ¼ 1R; ð4:24Þ

where 1R is the unit tensor in the reference configuration. C�1, the inverse of C, is
called the Piola (material) finite strain. The tensor c, inverse of c�1, is called the
(spatial) Finger finite strain. (c�1 is sometimes noted B so that c would be B�1).

Conditions (4.24) are integrated forms while it is usual to express the rigidity
condition in time differential form (in terms of the rate of strain) equivalent to
Killing’s theorem, e.g.,

_C ¼ 0 ð4:25Þ

or in variational form dC ¼ 0 or dE ¼ 0:
The total virtual work of body forces (per unit mass) for a body of referential

volume V0 is given by

dW ext ¼
Z

V0

q0f � dx dV0: ð4:26Þ
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If this body is to be rigid, then either one of the mathematical constraints (4.19)
and (4.20) must be taken into account. Following Lagrange [17], this is done by
introducing Lagrange multipliers, here tensors of components kij or KKL so that the
principle of virtual work for equilibrium is written in any of the following two
forms (with summation over repeated indices and dm ¼ q0dV0 ¼ qdVÞ:

Z

V
qf � dx dV �

Z

V
kijdeijdV ¼ 0 ð4:27Þ

or
Z

V0

q0f � dxdV0 �
Z

V0

KKLdEKLdV0 ¼ 0: ð4:28Þ

This is the essence of Piola’s argument rewritten in modern formalism. Piola
prefers the ‘‘material’’ formulation (4.28) over the Eulerian formulation (4.27).
Transformation of (4.28) on account of (4.20, 4.21) and localization yield a local
equilibrium equation in the form

o

oXK
Gki þ q0fi ¼ 0; GKi :¼ KKLFiL or G :¼ K � FT : ð4:29Þ

Note that kij and KKL are related by

KKL ¼ J
oXK

oxi
kij

oXL

oxj
; ð4:30Þ

a relation similar to (4.15). The introduced tensorial Lagrange multipliers can be
interpreted as ‘‘reaction internal forces’’ needed to maintain the rigidity of the
body. These internal forces are undetermined for a rigid body.

Of course the natural question is what happens for a deformable body. This was
answered by Piola in his long memoir of 1848 (but presented in 1845). This is
more formal in the sense that the reaction internal forces become the true stresses
in action in the body. They are introduced as coefficients of the variation of strains
in a linear form. That is (4.28) in principle is replaced by

Z

V0

q0f � dx dV0 �
Z

V0

SKLdEKLdV0 ¼ 0; ð4:31Þ

yielding instead of (4.29)

o

oXK
Tki þ q0fi ¼ 0; TKi :¼ SKLFiL or T :¼ SFT ; ð4:32Þ

where T indeed is the first Piola–Kirchhoff stress. But this is not entirely correct
because there can be a traction t acting on the boundary of the body so that,
introducing also acceleration forces to obtain the dynamical case (4.31) should be
re-written as
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Z

V0

q0€x � dxdV0 ¼
Z

V0

q0f � dx dV0 �
Z

V0

SKLdEKLdV0 þ
Z

oV0

t � dx dS0: ð4:33Þ

This is quite similar to the formulation of the principle of virtual power used in
modern times by Germain [9] and Maugin [19] —see also Truesdell and Toupin
[33, p. 596, Eq. (232.4)]—that considers the right-hand side of Eq. (4.33) as a
linear continuous form on virtual velocities including that of the gradient of the
motion. Equation (4.33) allows one to obtain the local balance of linear momen-
tum—here in the Piola format (4.7)—as also the accompanying natural boundary
condition for stresses. It seems that Piola was really the first to deduce the stress
boundary condition from a variational principle [27, Part 2, p. 52]. The original
variational principle by Piola goes back to 1833 (Part 3) and 1848 (Part 2,
pp. 34–38, 46–50). Hellinger [11, Chap. 4, Paragraph 3d] also dealt with the same
variational principle. In addition, Piola formulated analogous variational principles
for one-dimensional and two-dimensional systems [27, Chap. 7]. This can be
compared with variational formulations by the Cosserat brothers [7]. Pierre Duhem
[8] formulated a principle of virtual work that looks very much like the one of
Piola for equilibrium [4, p. 390].

To conclude this point, we recall that George Green (1793–1841) introduced in
his celebrated memoir of 1839 the same finite-strain tensors as Cauchy, hence the
association of the two scientists in the denomination of these tensors. Furthermore,
he simultaneously introduced the notion of strain energy W per unit of referential
volume, W ¼ W Eð Þ, such that

d
Z

V0

W Eð ÞdV0 ¼
Z

V0

dW Eð ÞdV0 ¼
Z

V0

S : dEdV0 ð4:34Þ

and

S ¼ oW

oE
or SKL ¼

oW

oEKL
: ð4:35Þ

That is why the second Piola–Kirchhoff stress is also referred to as the energetic
stress while T may also be called the nominal stress because it is evaluated per
unit area in the reference configuration although it still behaves as a vector in the
actual configuration.

Among the Italian disciples of Piola we must count Eugenio Beltrami
(1836–1900) and to a lesser degree Enrico Betti (1823–1892). Like Lamé, Bel-
trami was a great amateur of curvilinear coordinate systems and his differential
methods favoured the early development of tensor calculus in Italy. More to our
point, in the application of the principle of virtual work (e.g., in Beltrami [1]), he
considered internal forces (stresses) and deformations as dual variables, which is
our modern view point with the notion of separating duality between two vector
spaces (e.g., in Maugin [19]). As to Betti, although having started as a ‘‘Newto-
nian’’, he later on based his continuum mechanics on potential energy, strains and
the principle of virtual work [2]. This is discussed by Capecchi [4, pp. 392–393].
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4.3 The Role of Kirchhoff

Kirchhoff (1824–1887) is one of the German giants in continuum mechanics for
the 19th century, although his reputation in electricity, spectroscopy, black-body
radiation, and thermo-chemistry is at the same if not higher prestigious level. It is
in Königsberg that Kirchhoff took lectures with Neumann, a specialist of the
strength of materials. He later became a professor of physics in Breslau, Heidel-
berg and finally Berlin. Kirchhoff made many important contributions to contin-
uum mechanics and the mechanics of structures [31]. For instance, he proposed a
correct model for the bending of plates by means of a variational principle. The
two-dimensional equation was deduced from a variational principle (principle of
virtual work) in which a reduced potential energy accounts for a set of basic
kinematic hypotheses concerning the section of the plate normal to the middle
surface and the neglect of any stretching of the elements of the middle plane for
small deflections. This much improved the tentative theory proposed earlier by
Sophie Germain (1776–1831). This is now referred to as Kirchhoff–Love theory of
plates after Love (1863–1940) who extended Kirchhoff’s approach to the case of
thin shells. Kirchhoff also studied theoretically and experimentally the vibrations
of plates on the basis of his model. He also subsequently extended his theory of
plates to include the case of not too small deflections.

If Kirchhoff is cited here it is because he also considered finite deformations,
especially in Kirchhoff [14] —apparently independently of Piola—which is also
reported in his lectures on mechanics in Kirchhoff [16]. He was thus led [14,
pp. 763–764 and p. 767] to introducing stress tensors similar to those of Piola,
hence the two names jointly attached to these geometric objects, even though the
role of Kirchhoff in this very subject seems rather minor compared to that of Piola.
Both Kirchhoff [14], and later on Poincaré [28; Paragraph 40], explained the ‘‘non-
symmetry’’ of T, but the present notation is clear enough. We can also note that if
the Cauchy stress is symmetric, then we can also say that T is symmetric with
respect to F, because the local equation of moment of momentum (in the absence
of internal spin, applied couple, and microstructure [7] r ¼ rT also reads

F � T ¼ F � Tð ÞT : ð4:36Þ

It must be emphasized that Kirchhoff’s works in elasticity were among his first
scientific works in the late 1840s and early 1850s, and then on and off during the
rest of his career. Thus in 1850, he wrote down a variational principle which looks
somewhat like Piola’s one recalled in Eq. (4.31) above. However the second term
was expressed in terms of the principal dilatations (in Cauchy’s words)—Kirchhoff
[13]. This was further expanded in Kirchhoff [15], the most important paper by
Kirchhoff in elasticity according to Todhunter [32, p. 63]. Jungnickel and
McCormmach [12, p. 295] rightly remark that his work in elasticity provided
useful analogies for his works in electricity.
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4.4 Conclusion

The interest for the developments recalled in the foregoing two sections mainly
rests on two ingredients: one is the importance given to objects defined partially or
entirely in the reference configuration such as the Piola–Kirchhoff stress tensors,
clearly of utmost interest to Piola. The other is Piola’s and Kirchhoff’s interest in
variational formulations of the type of the principle of virtual work. These for-
mulations remained fashionable and efficient for a large part of the nineteenth
century as evidenced by the works and lecture notes of Clebsch [5], Duhem [8],
Poincaré [28], the Cosserat brothers [7], and Hellinger [11]. Concerning the first
ingredient, it is with the development of non-linear elasticity in the 1930s–1950s
in Italy, the UK and the USA—as richly illustrated in the encyclopaedia synthesis
of Truesdell and Toupin [33]—that the necessity of clearly distinguishing between
the actual configuration and a reference one was made clear to all students in
continuum mechanics. This has become common practice. More recently, this
fruitful approach to the deformation theory in general was enhanced by an
inclusive definition of material inhomogeneity: this is the possible continuous or
discontinuous dependency of material properties (e.g., elasticity) on the material
point X itself, an ‘‘element’’ of the material manifold (this view was forcefully
emphasized in Maugin [20]). A corollary of this was the required consideration of
the full projection of all field equations on this material manifold leading to a true
‘‘material’’ mechanics of continua in the Piola–Kirchhoff format and the system-
atic introduction of the (completely material) Eshelby stress tensor as the most
relevant internal-force concept and its application in the form of configurational
forces to the theory of defects. This is amply documented in our treatise [21] which
owes much in spirit to Eshelby (1916–1981), but also retrospectively much to the
original thinking of Piola that we tried to capture in the present contribution.
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