
Chapter 3
What Happened on September 30, 1822,
and What Were its Implications
for the Future of Continuum Mechanics?

Abstract This contribution offers a discussion about the notion of stress in a
general continuum as initially proposed in a magisterial paper by Cauchy in 1822
(but published only in 1828) without using arguments involving molecules. This is
here presented in its historical context. Cauchy’s view is the currently accepted
view among mechanicians and engineers although attempts (including by Navier
and Cauchy himself) to start from a molecular description in the manner of
Newton and Laplace were constantly offered in both nineteenth and twentieth
centuries. The discussion introduces other secondary stress definitions such as
those by Piola, Kirchhoff, and more recently Eshelby. The question naturally arises
of what happens with the possibility to introduce other internal forces such as
hyperstresses (in so-called gradient theories) and couple stresses (e.g., in Cosserat
continua), and whether some introduced stresses have associated with them a
meaningful boundary condition. Also pondered is the question whether one can
identify a stress concept in physical approaches still considering interactions
between point particles (lattice dynamics, kinetic theory, nonlocal theory, statis-
tical-mechanics approach). The chapter is concluded by a more in depth discussion
of the notion of stress-energy-momentum, culminating in that of pseudo-tensor of
energy-momentum in gravitation theory.

3.1 Introduction

Augustin Louis Cauchy (1789–1857) was a brilliant French mathematician with an
extremely wide scope of interests including mathematical physics and theoretical
mechanics as well as pure questions of algebra (theory of permutations) and
analysis (complex analysis and theory of residues). Extremely prolific, he had a
production that compares well both in quality and quantity with those of Leonard
Euler (1707–1783)—a predecessor in many points- and his contemporaries Carl F.
Gauss (1777–1855) and A. Cayley (1821–1895). Born in August 1789 practically
one month after the fall of the Bastille (July 14, 1789), he certainly did not become
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a revolutionary. On the contrary, politically, he remained all along his life a
convinced legitimist—i.e., in favour of a king in the line of the dynasty (the
Bourbons) of pre-revolution times. The reader may wonder what is the relationship
of this political inclination with his scientific works and career. Indeed, although
formed as an ‘‘ingénieur-savant’’1 in the best schools created by the French
Revolution and Republic and strengthened by Napoleon, he benefited from the fall
of the latter and the return of the Bourbon kings in 1815 in being given the
positions—which he deserved on a purely technical professional basis—of other
scientists who lost their positions for political reasons. Among the positions he was
granted we single out that of teaching a course on mechanics at the Faculty of
Sciences in Paris in 1821. This, according to Belhoste [1, p. 92], may have
‘‘provided the inspiration for further research in mathematical physics’’, in par-
ticular the mechanics of continua, although he had already taught some mechanics
at the Ecole Polytechnique and at the Collège de France. The second fact which
may a priori seem irrelevant to a scientific discussion, is the marriage of Cauchy
with a certain Miss Aloïse de Bure in 1818. This, as we shall see, had a definite
consequence on the manner of publishing his works by Cauchy. Now, the title of
the present chapter does not question what happened all over the whole world, but
more precisely what happened on that precise day of 1822 at the Academy of
Sciences in Paris.

3.2 Preliminary Remarks

In 1822, at age thirty three, Cauchy was already an internationally recognized
mathematician when, on September 30, he read a memoir on continuum
mechanics to the Paris Académie. This was to be the foundational paper in that
field of mechanics. This may be referred to as his first theory (CAUCHY-1) of
general continuum mechanics although he had published before papers on fluid
mechanics and he was much interested in the possibility of an elastic medium to
transmit waves. That now celebrated date of September 30, 1822, was only the
presentation of a theoretical framework that was really published in print only six
years later in 1828 in an extended and corrected form. As a matter of fact, Cauchy
did not even give a true reading or lecture on the contents of his paper in 1822, nor
did he leave a copy with the Académie.2 Only a kind of abstract was given in the
bulletin of January 1823 of a learned Paris society, the Société Philomatique [this

1 For this notion of ingénieur-savant (‘‘engineer-scientist’’) see [22, 10].
2 This has been checked in the files of the session of September 30, 1822 with the kind help of
the Librarian (Mrs Florence Greffe) of the Paris Academy of Sciences. This date was mentioned
by Truesdell [45], but also much before by Duhem (p. 78, Footnote 2, of Duhem [14]). The
original record of this session is reproduced at the end of this chapter. It simply says that Cauchy
read about his research (probably just the basic ideas) that was to be printed as a long abstract
four months later in the Bulletin of the Société Philomatique.
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is translated into English in the Appendix]. There might have been quarrels of
priority with C.L.M.H. Navier (1785–1836)—another great elastician and fluid
dynamicist—that delayed the real publication (see [1, pp. 97–98]). All his life
Cauchy, an already mentioned prolific author, flooded the Académie with notes
and memoirs, so much that the Académie at a point decided to fix an upper limit to
the number of such contributions that any member could submit! This is where the
importance of in-laws should not be overlooked. It happens that Cauchy’s wife
Aloïse was the daughter and niece of the de Bure brothers, Marie-Jacques and
Jean-Jacques, renowned Parisian booksellers and publishers. Cauchy frequently
used this possibility an as expedient way to publish in print his own lectures at
Polytechnique and also many of his memoirs. This was the case of his landmark
paper of 1822 on continuum mechanics which was published in 1828 (cf. Cauchy
[4]) in the second volume of ‘‘Exercices de Mathématiques’’, a kind of privately
produced series published between 1826 and 1830. Cauchy was the only author
published in this surprising scientific periodical.

3.3 The Main Contents of Cauchy’s 1822/1828 Memoir

What we call the first theory (CAUCHY-1) of general continuum mechanics and
elasticity of Cauchy is a purely phenomenological continuum theory which does
not use the notion of constituent ‘‘molecules’’ and at-a-distance interactions
between them (contrary to the second theory of Cauchy; see below). Cauchy did
not build on an uncultivated ground.3 Euler had already introduced the (restricted)
idea that interactions between parts of a fluid were of the contact form and
materialized in a single scalar, the hydrostatic pressure p. In modern terms, it is
said that the applied traction t at a point of a regular surface is aligned with the
local unit normal n to that surface, i.e.

t ¼ �p n: ð3:1Þ

This applies to so-called Eulerian fluids that present no viscosity. The basic idea
propounded by Cauchy in 1822 was to generalize (3.1) to all kinds of continua (see
the spot-on general title of the abstract published in Cauchy [3]; full memoir
Cauchy [4]. His reasoning is that in this state of generalization the relation (3.1) is
replaced by a linear relationship (a linear vector relation in the language of Gibbs

3 The reader will be interested in Truesdell’s vision of Cauchy’s elaboration of the concept of
stress in his Essay ‘‘The creation and unfolding of the concept of stress’’ in pp. 184–238 in
Truesdell [45] (this was underlined by J. Casey, private communication). However, in contrast to
the present study that emphasizes the story of the concept of stress from and after Cauchy,
Truesdell deals with the conceptual stages that led to Cauchy’s notion of stress, with works by
brilliant predecessors such as Stevins, Galileo Galilei, the Bernoullis, d’Alembert, Euler, Young,
and Fresnel. Cauchy himself is parsimonious with citations, and refers to very few scientists with
the exception of his contemporary Fresnel.
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and Heaviside; cf. Crowe [10]), and not a simple proportionality. That is, in
modern intrinsic and Cartesian tensorial notations,

t ¼ r:n and ti ¼ rijnj; i; j ¼ 1; 2; 3: ð3:2Þ

Equation (3.1) corresponds to the special case r ¼ �p 1 or rij ¼ �p dij where
dij is Kronecker’s delta. This can be viewed as a specific constitutive assumption
(i.e., the selection of a specific continuum, the Eulerian fluid). The object r is the
(Cauchy) stress tensor. Of course it was identified with the mathematical notion of
tensor (which itself smells of its mechanical origin) only much later by Woldemar
Voigt. In his generalization Cauchy considers that the applied traction t can be at
any angle to the unit normal to the tangent plane of a surface cut in the material
body, thus allowing for a contact action of the shear type as well as pressure. The
true genial point resides in the absolutely general standpoint and its evident
conceptual simplicity. To prove (3.2) Cauchy relied on a reasoning involving a
special small volume of matter, in his celebrated tetrahedron argument, now
reproduced in all introductions to continuum mechanics.4 It was also proved in
most cases (no applied couples) that this Cauchy stress is symmetric, having thus
only six independent components at most in standard Euclidean physical space.
Relying on an argument already introduced by Euler (by looking for the equi-
librium of an elementary parallelepiped) the following local dynamical Cauchy
equation of motion could be obtained (here in modern notation) [44, 47, 48]

q a ¼ qf þ div r; ð3:3Þ

where vector a denotes the acceleration, q is the matter density, f is an external
body force per unit mass, and the symbolism div denotes the divergence operator
applied to the tensor r. Cauchy could not use this vocabulary as the operation of a
divergence was essentially introduced by George Green [21] in electromagnetism
in the same year in a practically unknown publication. But if we combine Cau-
chy’s lemma (3.2) and Green’s divergence theorem we have the following
exploitable result:

Z
oB

t ds ¼
Z

oB
r:n ds ¼

Z
B

div r dv; ð3:4Þ

for a simply connected volume B bounded by a regular surface qB. Applying this
to the following global balance law of linear momentum,

d

dt

Z
B

q v dv ¼
Z

B
q f dvþ

Z
oB

t ds; ð3:5Þ

and localizing this on account of an assumed continuity of fields over B, we are led
to the local (Cauchy) balance of linear momentum as Eq. (3.3) with a ¼ dv=dt,
what is the modern way of reaching (3.3).

4 See a more technical and rigorous exposition in Noll [39].
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Remark 3.1 Very often in the engineering literature the expression balance laws
and equations of conservation are used interchangeably. Like in financial
accounting, ‘‘balance’’ carries with it the notion of incoming and outgoing stuff.
That is why a quantity like r is sometimes referred to as a flux.

Remark 3.2 Written in the appropriate coordinate system and in the absence of
body source term, an equation such as (3.3) can also be written in the form

o

ot
p� div r ¼ 0: ð3:6Þ

This can be referred to as a mathematical conservation law. In particular, with
vanishing second term we can say that the quantity p is strictly conserved in time
as

op=ot ¼ 0: ð3:7Þ

But in statics (no time dependence of fields) or in quasi-statics (possible
dependence on time but neglecting acceleration terms), we have the ‘‘equilibrium’’
equation

div r ¼ 0: ð3:8Þ

The three possibilities embodied in Eqs. (3.6)–(3.8) can be compared to the
Newtonian equation of point-particle motion:

*General Newton equation (point of constant mass):

m a ¼
X

a

Fa; ð3:9Þ

where Fa; a ¼ 1; 2; . . . is a system of acting forces;
*Statics (Varignon, parallelogram of forces):

X
a

Fa ¼ 0; ð3:10Þ

*Inertial motion (Descartes):

d

dt
p ¼ 0; p ¼ mv; ð3:11Þ

*D’Alembert’s formulation of (3.9):
X

a

Fa þ Fa ¼ 0; Fa ¼ �ma: ð3:12Þ

With these different forms—of which (3.9) and (3.12) are strictly equivalent—
we have interpretations at variance depending on the chosen emphasis. With
account of the special case (3.10) we have a tendency to consider Newton’s
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equation (3.9) as a definition for the acceleration force. With the special case
(3.11) we suffer from another temptation, that of considering (3.9) as a conser-
vation law of linear momentum that is not strictly respected because of the
presence of impressed forces. As to (3.12), it is d’Alembert’s clever ‘‘rewriting’’
trick to give all ‘‘forces’’ the same status, as understood in his principle of virtual
power.

A more or less similar discussion can be envisaged for the continuum Eq. (3.6)
through (3.8). What is the primary quantity appearing in these equations? For
engineers avoiding a dynamical framework—Eq. (3.8) possibly with an added
body force-, the Cauchy stress appears as primary, essentially through the Cauchy
Lemma (3.2). But for physicists interested in dynamics, the interpretation of (3.6)
as a nonstrict conservation law for linear momentum prevails, the notion of
associated flux being only secondary. Finally, with the view of a discriminating
physicist and parodying (3.12), we can formally rewrite (3.3) as

Fext þ Fint þ Fa ¼ 0; ð3:13Þ

where

Fext ¼ qf; Fint ¼ divr; Fa ¼ �qa; ð3:14Þ

are volume forces of external, internal, and acceleration origin, respectively. In
writing (3.13) we distinguish between external forces reserved to at-a-distance
action (e.g., gravitation, electromagnetism) acting per unit quantity of matter and
internal forces that account for contact action via the second of (3.14) and the
notion of Cauchy stress. This ‘‘definition’’ indicates that Fint is defined up to a
divergence-free second-order tensor. But the associated natural boundary condi-
tion still involves only the initial stress and applied traction. However, this remark
makes one ponder the case of an infinite body and the second Cauchy’s theory
(CAUCHY-2) of elasticity proposed by Cauchy in 1828 on the basis of molecular
considerations [5]. Remember that Cauchy’s work of 1822/1828 also proposed a
definite theory of linear isotropic elasticity that provides an expression for r in
terms of infinitesimal strains, with two elasticity coefficients.5 This was proposed a
priori to close the obtained system of differential equations in terms of the elastic
displacement gradient. This a priori construct that involves a representation the-
orem—also attributed to Cauchy—for a second-order tensor is referred to as
Cauchy’s elasticity by Truesdell, Toupin and Noll [47, 48]. Nowadays, this is
justified by applying a thermodynamic argument and the consideration of an
elasticity potential (in fact following George Green who thereby becomes our
second hero).

5 This was done after correction by Cauchy himself of his initial proposal with only one
coefficient; for a general anisotropic body this would yield twenty one independent coefficients at
most but its application to specific symmetries requires more group-theoretic reasoning unknown
to Cauchy.
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3.4 Cauchy’s Stress and Hyperstresses

A naturally raised question is what happens to the Cauchy lemma (3.2) when one
has to consider a surface that presents irregularities such as an edge where the unit
normal may not be uniquely defined. One may also question what happens when in
addition to the normal at a regular but curved surface, one tries to account for the
geometrical description of the said surface at the second order, thus involving the
curvature and the surface variation of the unit normal, hence also the introduction
of the tangential derivative. It took some time to ponder these questions and obtain
rigorous answers. This was rigorously achieved by Noll and Virga [40] and del-
l’Isola and Seppecher [11] with an advantage to the latter authors for the brevity of
their argument—see also [12] for a more general case. Avoiding the difficult
technical points for which we refer the reader to the original authors, we note that
these considerations inevitably lead to envisaging the notion of surface tension
described within the continuum mechanics framework. In addition to the notion of
stress à la Cauchy this yields the introduction of the notion of hyperstress. This is
represented by a third order tensor that is the thermodynamical dual of the second
gradient of the displacement vector in elasticity or the second gradient of the
velocity in fluids (or the gradient of the density in a ‘‘perfect’’ fluid). This was
recognized early in the theory of surface tension by Korteweg [24] and much more
recently by Casal [2]. In the case of elasticity, basing on a variational formulation,
it was probably Le Roux [28] who first introduced the notion of second gradient
theory remarking in the application that the interest for such a formulation appears
only for problems with a spatially non-uniform strain. The Cauchy lemma is not
used in these energy approaches. As a matter of fact, a formulation such as the
principle of virtual power bypasses the Cauchy lemma. Indeed consider that the
power of internal forces expended in a virtual velocity field v̂ is written as a linear
form (for a whole body B)

P̂int Bð Þ ¼
Z

B
fiv̂i þ rij v̂i;j þ � � �
� �

dB: ð3:15Þ

In modern continuum mechanics it is assumed that internal forces for which one
needs to construct constitutive equations must be objective (independent of the
observer—contrary to externally applied forces and inertial forces that are not
subjected to this constraint). So must be the case of their dual partners in (3.15).
This rules out the term linear in the velocity itself and the term linear in the skew
part of the gradient of the velocity. Being satisfied with a first-order gradient
theory, this reduces (3.15) to the expression (here the minus sign is conventional)

P̂int Bð Þ ¼ �
Z

B
rijD̂ji

� �
dB; D̂ji :¼ 1

2
v̂j;i þ v̂i;j

� �
: ð3:16Þ

Thus tensor r can only be symmetric in this case. In the absence of other
internal force (e.g., due to electromagnetic effects), it can therefore be identified to
the Cauchy stress when the formulation of the principle of virtual power accounts
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for the power expended by an applied traction at the regular boundary of B. Pur-
suing the expansion indicated by the ellipsis in (3.15) will allow one to introduce
stresses of higher order, in particular the already mentioned hyperstress. We refer
to Germain [20] and Maugin [31] for these extensions. This short exercise shows
that a weak formulation like the principle of virtual power offers great advantages
over the Cauchy type of approach, in particular to obtain a good set of natural
boundary conditions at surfaces, corners and apices.

Hyperstresses of another type may be introduced to which a Cauchy type of
argument applies. This is the case in media with so-called internal degrees of
freedom where each material point, in addition to its translation, is equipped with
an internal deformation (called micro-deformation) which in some cases is simply
reduced to an internal rigid rotation. This is the case of so-called Cosserat con-
tinua. Indeed, the Cosserat brothers were led to consider the possible existence of
internal couples [6]. They more or less were forced to do that by imposing an
invariance (so-called Euclidean invariance) on a Lagrangian-Hamiltonian for-
mulation, which invariance treats on an equal footing translations and rotations.
This gave rise to the possible existence of a new type of internal force, the couple
stress, along with that of stress, and as a consequence the possibility to have non-
symmetric stresses (cf. Le Corre [27]). Such couple stresses also satisfy a lemma of
the Cauchy type. But again, the principle of virtual power accounting for the
presence of a new velocity field related to the micro-deformation is the most
elegant and safe way to deduce all field equations and associated boundary con-
ditions in such a theory.

Gradient theories with hyperstresses and Cosserat media now are part of gen-
eralized continuum mechanics of which the main characteristic property in effect is
to deviate from Cauchy’s 1822/1828 pioneering vision (cf. Maugin [33]).

3.5 Stress as a Secondary Notion

In the late 1820s, Cauchy [5], in competition with Navier and Poisson and with a
view to envisage anisotropic bodies, decided to construct a linear elasticity theory
using arguments involving a molecular picture with kind of interactions à la
Newton between molecules. This CAUCHY-2 approach bypasses the basic notion
of stress tensor. But the general form of the action (repulsion or attraction) of
neighbouring molecules on a prototype one must be assumed. The reasoning then
consists in making approximations in the infinite series of the involved finite
differences to extract no nonsensical continuum equations. This can be achieved
only by assuming a specific regular symmetry (a lattice) thus conducing to a
generally anisotropic representation of the stress tensor by identification. This
recovery of the notion of stress was proposed by Cauchy in his second paper of
1828. However, this does not provide the same number of elasticity coefficients as
the first Cauchy’s theory because of some constraints brought by the symmetries of
molecular interactions (the famous Cauchy-Born relations). Cauchy was to apply
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his elasticity theory to specific mechanical elements (plates, rods) and to the theory
of light propagation in a supposedly elastic medium serving as a support of light
vibrations (the ill-fated ‘‘ether’’). One of his successes was a theory of reflection
and refraction at the boundary between two media. This second line fits well in the
grand scheme to create a universal molecular physics by Laplace in the manner of
Newton in point mechanics and by Ampère in electromagnetism.

Nowadays Cauchy’s second theory is considered as obsolete while the first
theory is the accepted one. But CAUCHY-2 germinally contains the modern
theory of lattice dynamics as developed by Max Born and Theodor von Kármán in
the early twentieth century and now a tenet of solid-state physics. This identifi-
cation of a stress in a continuum limit of a particle-like theory is not proper to
lattice dynamics. It appears where an internal force can be identified as the
divergence of a second order tensor [cf. the second of (3.14)], which will then be
called ‘‘stress’’. This is the case in the kinetic theory of fluids where after an
appropriate expansion in terms of a small characteristic parameter, a continuum
equation of linear momentum can be constructed in the series of moments deduced
from the Boltzmann equation (see books on kinetic theory). But we must
remember that there is no principle requiring the justification of continuum
equations from a molecular description, as a logical continuum theory may be
entirely autonomous. Nonetheless, the true physicist will be more than happy to be
able to establish such a correspondence. The search for this identification is not
vain; it progresses constantly and meets some success in a rigorous mathematical
framework.6

Still another case where the notion of stress can only be secondary is that of
materials of which the response exhibits a strong nonlocal nature. That is, in
principle, the mechanical (or other) response at a material point depends on the
values of independent variables (e.g., strains) at points at a far distance form this
point, with a natural decrease of influence with increasing distance. This intro-
duces in continuum mechanics a vision à la Newton-Laplace well illustrated by the
book of Eringen [17]. Any cut in the material to apply Cauchy’s argument would
suppress the prevailing action at-a-distance. No wonder, therefore, that such
models are usually first constructed in an infinite body and more than often jus-
tified by a lattice-dynamic theory with long-distance (with far-neighbour interac-
tion) forces (See e.g. [25]).

From the above we see that there are cases where a computation from a
molecular theory allows one to identify a stress tensor at a bulk point via an
equation of the type of the second of (3.14), i.e.,

Fint � divr: ð3:17Þ

6 This is beautifully demonstrated in the recent book of Murdoch [36] after the statistical-
mechanics theory of liquids by John G. Kirkwood (1907–1959) where the liquids’ properties are
calculated in terms of the interactions between molecules.
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This is true only modulo a divergence-free tensor. An example of this is the
introduction of Maxwell stresses in electromagnetism. This can be first illustrated
by a simple field theory in which the basic field equation is none other than the
Gauss-Poisson equation for the potential / and electric charge density q:

r2/ ¼ �q: ð3:18Þ

In multiplying both sides of this equation by the vector r/ and performing
elementary manipulations, we are led to the equation of the electrostatic force
acting on q as

Fe ¼ qE � divre; re :¼ E� E� 1
2

E21; ð3:19Þ

where E ¼ �r/ is a quasi-static electric field and the symmetric tensor re may be
called the Maxwell stress for such fields [35]. For a vanishing q in vacuum this
short proof shows that a divergence-type of conservation law with vector com-
ponents can be associated with the scalar Laplace equation [cf. (3.18)]—a fact
more than often ignored, but intimately related to Noether’s theorem when (3.18)
is deduced from a variational principle (see below). In a general magnetized,
electrically polarized and conducting continuum a rather long argument starting
with the expression of the elementary force acting on electric charges in—
relatively slow—motion (the celebrated Lorentz force) allows one to show that the
corresponding ‘‘internal force’’ due to electromagnetic fields in a deformable
continuum is formally given by an expression of the type

Fem ¼ div rem � o

ot
pem; ð3:20Þ

where the electromagnetic stress tensor rem is generally not symmetric and pem is a
linear electromagnetic momentum for dynamical fields. Expressions of these
together with the accompanying energy expression can be found in Maugin [32,
Chap. 3] after an evaluation made by Maugin and Collet in 1972 and Maugin and
Eringen in 1977. In this approach both quantities rem and pem appear as secondary
notions. But the representation (3.20) is a patent mark of the ambiguity in inter-
pretation carried by electromagnetic fields that can alternately be considered as
giving rise to at-a-distance (à la Newton-Laplace) or contact (à la Euler-Cauchy)
forces.

3.6 Stress as Part of Stress-Energy-Momentum

It is natural to turn next to a space-time formulation propounded by relativistic
studies in the twentieth century. First, a naïve consideration puts us on the right
track. For instance, [42, 43] introduced an object, now called the Piola-Kirchhoff
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stress, from the Cauchy stress by the transport/convection (or ‘‘pull back’’) defi-
nition (so-called Piola transformation)

T ¼ JFF�1r or TK
:i ¼ JFXK

;j rji; ð3:21Þ

where F�1 :¼ oX=ox ¼ foXK=oxjg is the inverse deformation gradient, and
JF :¼ det F, where F is the direct deformation gradient between a reference
configuration KR (with material coordinates XK, K = 1, 2, 3). Equation (3.3) with
f = 0 is then shown to take the following mathematically strict conservation form:

o

ot
q0við Þ � o

oXK
TK
:i ¼ 0; ð3:22Þ

where q0 = qJF is the matter density at KR.
The object T, not a traditional tensor since having «feet» in two different

spaces, stands for a force in the actual configuration Kt computed per unit area of
the reference configuration. With (3.22) one is tempted to introduce a space-time
parametrization (Xa = (XK, X4 = t)) such that (3.22) reads equivalently

o

oXa
T a
:i ¼ 0; Ta

:i ¼ TK
:i ; T

4
:i ¼ �q0vi

� �
: ð3:23Þ

The first of these has the look of a true (divergence-like) conservation law but it
is not really fully space-time in nature since its components still are in three-
dimensional physical space. To reach a completely space-time equation one should
unite (3.23) with the conservation of energy. As we know now, this was achieved
in the first years of the 1900s with Minkoswki’s four-dimensional formulation of
special relativity. In modern terms this is introduced by noting xa = (xi, x4 = ct)
with a hyperbolic space-time metric gab of signature (+, +, +, -) and noting ua,
a = 1, 2, 3, 4, the ‘‘world’’ velocity such that gabuaub ? c2 = 0. Here c is the
velocity of light in vacuum taken as a standard of velocity. A definite step forward
was taken by Carl Eckart [15] in a paper that is a real pearl, when he proposed that
for general continuous matter energy, momentum and stresses could be accom-
modated in a single notion, the stress-energy-momentum space-time tensor Tab

within a completely covariant format by using systematically the resolution of any
space-time object into ‘‘proper’’ components. That is,

Tab ¼ c�2xuaub þ c�2uaqb þ paub � tba ð3:24Þ

where

x � c�2uaTabub; qb � �uaTacPb
:c; p a � �c�2P a

:cT
cbub; tba � �Pb

:cP
a
:dTdc:

ð3:25Þ

Here Pab is the spatial projector such that

Pab :¼ gab þ c�2uaub ¼ Pba; uaP a
:b ¼ 0; P a

:bPb
:c ¼ Pa

::c: ð3:26Þ
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These are, respectively, a definition, an orthogonality property,7 and the con-
dition of idempotence. The four elements present in the canonical decomposition
(3.25) are but ‘‘spatial’’ covariant forms of the energy density, energy (heat) flux,
momentum density, and (Cauchy) stress. The identification of tba as the relativistic
generalization of Cauchy’s stress is shown by applying the projector P.b

c to the
general balance law (here a strict conservation law)

o

oxa
Tab ¼ 0; ð3:27Þ

in order to obtain its essentially spatial component, i.e., orthogonal to uc according
to the second of (3.26). Now the identification with Cauchy’s stress is not so
obvious. The matter was pondered by scientists such as Van Dantzig [49] and
Costa de Beauregard [7–9]. We refer the reader to these authors. Expression (3.24)
does not generally imply that tba is symmetric. But we note that Tab is a powerful
generalized notion of rich contents compared to the simple stress notion.

Furthermore, in standard general relativity, minimal coupling requires to
replace the partial derivative in (3.27) by a covariant derivative. That is,

raTab ¼ 0; ð3:28Þ

wherera is computed in the space-time varying metric gab which is solution of the
celebrated Einstein’s gravitation equation

Aab :¼ Rab �
1
2

Rgab ¼
8pk

c4
Tab; ð3:29Þ

where Rab is the Ricci curvature, R is the scalar curvature of space-time, and k is
Newton’s gravitation constant. The right-hand side of (3.29) provides the source of
energy and momentum (of various origins—including mechanical stresses—in
particular from electromagnetism in magnetized and electrically polarized bodies;
see [18], Vol. 2, Chap. 15); but note that the unknown gab itself is involved in Tab

so that only a laborious iteration procedure can help obtain, if ever, a solution of
(3.29) for the metric. Equation (3.29) requires that Tab be symmetric, since this is
the case of the Einstein tensor Aab.8

7 As a young researcher I used to call ‘‘PU’’ tensorial objects those that are essentially space-like
although written in full covariant form. They satisfy typical orthogonality conditions such as the
second of (3.26). The hidden play of words was that PU = ‘‘Perpendicular to the world velocity
u’’ = ‘‘Princeton University’’ for which the author has a definite affection. It is this property that
allows for the identification of the space-time tensor tab with Cauchy’s stress of classical
continuum mechanics [cf. the last of Eq. (3.25)] [See [30], and papers published between 1971
and 1980 in C.R. Acad. Sci. Paris, Journal of Physics (UK), Ann. Inst. Henri Poincaré (Paris),
Journal of Mathematical Physics (USA) and J. General Relativity and Gravitation].
8 The history of the successive missed and successful steps in the production of Eq. (3.29) in the
1910s is a formidable scientific adventure involving, not only Einstein—as we could believe from
modern hagiographic treatments—but also Marcel Grossmann, Max Abraham, Gustav Mie, David
Hilbert and Emmy Noether, a story that remains to be fully investigated and understood [In particular,
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3.7 The Nec Plus Ultra: The Eshelby Stress and the Pseudo
Tensor of Energy-Momentum

Both Cauchy stress and the first Piola-Kirchhoff stress present the invaluable
feature to have associated with them natural boundary conditions on the stress.
This follows directly from Cauchy’s fundamental lemma. But there are other stress
tensors that are more directly related to the concepts of energy and energy-
momentum and with which no direct simple boundary conditions are associated.
These tensors are often deduced from the original Cauchy and Piola-Kirchhoff
stresses via some manipulation. The first of these is the second Piola-Kirchhoff
stress deduced from the first through the following definition (complete pull-back
of the Cauchy stress to the reference configuration):

S :¼ T:F�T i:e:; SKL ¼ TK
:i XL

;i ¼ JFXK
;i r

ijXL
;j : ð3:30Þ

The interest for this fully material stress tensor is its ‘‘energy’’ contents as, for
Green’s elasticity deduced from a potential function W per unit reference volume,
it is shown that

S ¼ oW

oE
; W ¼ W Eð Þ; E ¼ 1

2
C� 1Rð Þ; C :¼ FT F: ð3:31Þ

But there is no direct meaningful boundary condition involving only S except in
small strains where S readily reduces to the Cauchy stress.

The second stress in this class is the material Eshelby stress b [19] which can be
introduced thus. Apply F.L

i to Eq. (3.22) and account for the fact that for an elastic
body W ¼ ~W Fð Þ and T ¼ o ~W=oF. This manipulation provides a mathematically
strict conservation law (for homogeneous bodies) in the form

o

ot
P� divR b ¼ 0; ð3:32Þ

wherein we have set

P ¼ �q0v:F; b :¼ � L1R þ T:Fð Þ

with

L ¼ 1
2

q0v2 �W : ð3:33Þ

(Footnote 8 continued)
were Einstein’s equations first written down by Hilbert with the help of Noether since only
Eq. (3.29)—with all terms present—could be in agreement with Noether’s invariance theorem
that associates a conservation laws with a ‘‘good’’ field equation in a variational treatment (see
Sect. 3.7 about the Eshelby stress)? Indeed, while the general covariance of the basic Eqs. (3.29)
and (3.28) is a tenet (see the discussion in Norton [41]), the Noetherian relationship between these
two—field and conservation (in that order)—equations is an acknowledged requirement.
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The last quantity is akin to a Lagrangian density. This hints at a possible deri-
vation of b via a Lagrangian-Hamiltonian variational principle, in which, in effect,
application of the Noether’s [38] theorem for material space translations provides
(3.32) automatically via ‘‘Noether’s identity’’. The main interest in the conservation
Eq. (3.32) is its role in capturing field singularities—for instance in the theory of
fracture—since quantities such as the so-called material momentum (or pseudo-
momentum) P and the Eshelby stress b are at least second order in the motion and the
associated deformation. Tensor b can be rewritten in two alternate forms as

b ¼ � L1R þ C:Sð Þ ¼ �L1R þ FT :
oL

oF
: ð3:34Þ

The first of these shows the relationship of b with the Mandel stress M :¼
F:T ¼ C:S which plays a definite role as driving force in many material structural
rearrangements (e.g., in finite-strain plasticity, growth; see [29, 34]). The second of
(3.34) exhibits the field-theoretic origin of the notion of Eshelby stress in pure
elasticity. This was recognized early by J. D. Eshelby who called b the energy-
momentum tensor of elasticity or Maxwell stress of elasticity. The last denomi-
nation holds good by analogy with a tensor such as in (3.19)2. The first coinage is
not entirely correct since b remains three-dimensional (essentially ‘‘spatial’’—i.e.,
3D—albeit ‘‘material’’) while the notion of energy-momentum (see above)
requires a four-dimensional treatment. In spite of its usefulness demonstrated at
length in our book [34], the nonsymmetric material tensor b is not associated with
a physically obvious boundary condition.9

But the remark concerning the second of (3.34)—a canonical formula in ana-
lytical mechanics—naturally takes us back to a relativistic treatment such as in
general relativity. It is not difficult to show that (3.34)2 indeed is minus the purely
space-like part of a four-dimensional energy-momentum tensor as deduced in a four-
dimensional formulation.10 Pondering now the case of Einstein’s general relativistic
theory of gravitation, we must realize, as emphasized by Landau and Lifshitz in their
remarkable ‘‘Theory of fields’’ [26, Section 100] that the covariant form (3.28) does
not in general express a conservation law of any truly meaningful physical quantity.
The reason for this is that, on account of the expression of the covariant divergence in
terms of the usual divergence (3.28) reads [here g = det (gab)]

9 Some authors (e.g., [23]) have proposed to consider Eq. (3.32) as autonomous being posited—
for any material behaviour—as a general balance law—a ‘‘new’’ equation of physics—by some
kind of trick involving a boundary flux of energy together with stresses. The artificiality of this
type of reasoning as well as the erroneous concept of the novelty of (3.32) in physics is shown in
the Appendix A5.2 of our book [34]. Furthermore, we have also shown that an equation such as
(3.32) with a possibly nonvanishing right-hand side could be established without a variational
formulation at hand and no application of any Noether theorem (Chap. 5 in Maugin [34])—but
with a mimicking of Noether’s identity. This fortifies the view of the secondary nature of stresses
such as M or b compared to the Cauchy stress.
10 For this see Eq. (4.26) in Maugin [34] and select the /a there as the three components of the
direct motion x ¼ �xðX; tÞ between the reference (material) configuration and the actual
(physical, i.e., Eulerian) one.
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raTa
:b ¼

1ffiffiffiffiffiffiffi�g
p

o

oxa

ffiffiffiffiffiffiffi�g
p

Ta
:b

� �
� 1

2
oglm

oxb
Tlm ¼ 0: ð3:35Þ

The quantity which must be conserved is the 4D (four-dimensional) momentum
of matter plus gravitational field. But the latter is not included in T.b

a by its very
definition. In other words, this 4D momentum must be the canonical four-
momentum associated with the whole physical system. This means that the cor-
responding conservation law must present a flux (‘‘stress-energy-momentum ten-
sor’’) that includes a term that accounts for the gravitational effect. A possible
solution is given by Landau and Lifshitz [26] where the additional contribution to
the energy-momentum tensor is called the pseudo-energy momentum tensor of
gravitation. We denote by G.b

a this new object so that the looked for local con-
servation law should read

o

oxa

ffiffiffiffiffiffiffi�g
p

Ta
:b þ Ga

:b

� �h i
¼ 0 ð3:36Þ

Accordingly, the four-momentum defined by

Pa ¼ 1
c

Z ffiffiffiffiffiffiffi�g
p

T ab
: þ G ab

:

� �
dAb ð3:37Þ

will be conserved, where dAb is a space-time surface element and the integration is
taken over any infinite space-time hypersurface that contains the whole of three-
dimensional space. Here Gab is symmetric although not a true tensor (hence the
denomination of pseudo-tensor). The Landau-Lifshitz definition of Gab may be
given as

Gab ¼ 1
2 �gð Þ

c4

8pk

o2

oxloxm
�gð Þ gabglm � galgbm

� �� �
: ð3:38Þ

As usual with his characteristic economy of words and formulas and his ded-
ication to the beauty of the said equations, ([13], Eq. (32.5))11 Paul Dirac estab-
lishes a formula for G.b

a by applying Noether’s theorem to the Lagrangian density
Lg of the gravitational field with

G a
:b
ffiffiffiffiffiffiffi�g
p ¼ oLg

ogcd;a
gcd;b � Lgg a

:b: ð3:39Þ

One obtains thus

2 8pk=c4
� �

G a
:b
ffiffiffiffiffiffiffi�g
p ¼ Ca

lm � g a
m Cr

lr

� �
glm ffiffiffiffiffiffiffi�g
p� �

;b�Lgg a
b ; ð3:40Þ

where the C’s are Christoffel’s symbols. This is Einstein’s [16] proposal that may
have been inspired by contemporary works by David Hilbert and Emmy Noether.

11 See also the problem proposed in Landau and Lifshitz [26] at the end of their Section 100.
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Contrary to the Landau-Lifshitz definition, the Einstein-Dirac pseudo-tensor Gab is
not symmetric. Of course (3.39) reminds us of the second of formulas (3.34) since
these are canonical definitions in field theory.

In practice, the spatial part of (3.37) is obtained by considering the hypersurface
x4 = const. so that we have the 3D space integral

Pi ¼ 1
c

Z ffiffiffiffiffiffiffi�g
p

Ti4 þ Gi4
� �

dV: ð3:41Þ

In the absence of gravitational field, this establishes a correspondence with the
balance of a canonical momentum obtained in Eq. (3.32). This closes our disqui-
sition about the notion of stress started with Cauchy’s 1822/1828 pioneering work.

3.8 Conclusion

As witnessed by the above given exposition there is a long way between Cauchy’s
inception of the stress concept and Einstein-Dirac’s pseudo tensor of stress-energy-
momentum. We have explored this evolution in a rather pedestrian manner. What
fundamentally remains from this is the essential role played by stress tensors or
energy-momentum tensors that appear as true fluxes so that a corresponding
physically meaningful conserved quantity (momentum) can be constructed. This is
satisfied by Cauchy’s initial construct of the stress because it provides at once the
associated natural mechanical boundary conditions. This also holds for the first
Piola-Kirchhoff stress, but not for derived definitions such as those of the second
Piola-Kirchhoff stress, Mandel stress and Eshelby’s stress in classical continuum
mechanics. It is this kind of physical-theoretical argument which materialized in
the introduction of the pseudo-tensor of energy-momentum in Einstein’s gravita-
tion theory as shown in the foregoing section. Having recurrently emphasized the
role of Noether’s theorem [37, 38], we also note that Cauchy’s original proposal of
1822 and Green’s divergence theorem (possibly generalized to space-time)
accordingly remain the two basic tenets of continuum theory in spite of all pro-
gress achieved since that innocuous—but memorable for our community—day of
September 30, 1822. We can say that 1828, with the inception of Green’s diver-
gence theorem and Cauchy’s detailed presentation of his lemma, was a true annus
mirabilis for continuum mechanics, providing thus the fons et origo of this science.
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Appendix A

Augustin L. Cauchy (1789–1857)

The ‘‘birth certificate of modern continuum mechanics’’: Cauchy’s reading of
his ideas at the September 30, 1822 session of the Académie des Sciences in Paris
(Procès verbal de l’Académie des Sciences, Tome VII, Décembre 1822,
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Imprimerie d’Abbadia, Hendaye, 1916; kindly provided by Mrs Florence Greffe,
Acad. Sc. Paris; May 2013) The remarkable roster of scientists among the above
list of attending academicians is stupendous: e.g., Fourier, Magendie, Berthollet,
Chaptal, Lamark, Laplace, Lacroix, Cauchy, Cuvier, Legendre, Prony, Poisson.

Appendix B

A. L. Cauchy—1823: Researches on the equilibrium and internal motion of solid
bodies or fluids, whether elastic or non-elastic.

Bulletin of the Société Philomatique, pp. 9–13, 1823, Paris.
(Translation from the French by G.A. Maugin)

The present researches were undertaken on the occasion of the publication of a
memoir by M. Navier on August 14, 1820. Its author, with a view to establishing
the equilibrium equation of an elastic plane, had considered two kinds of forces,
some produced by dilatation or contraction, and the other by the flexion of this
plane. Moreover, he had supposed, in his computations, that both these forces are
perpendicular to lines or faces on which they are exerted. It seemed to me that
these two kinds of forces could be reduced to one kind only, which should be
always called tension or pressure, and is of the same nature as the hydrostatic
pressure exerted by a fluid at rest on the surface of a solid body. However, the new
‘‘pressure’’ will not always be perpendicular to the faces on which it act, and is not
the same in all directions at a given point. Expanding this idea, I arrived soon at
the following conclusions.

If in a solid body, whether elastic or not elastic, we succeed to render rigid—in
thought. [GAM]—and invariable a small volume element bounded by any sur-
faces, this small element will be subjected on its different faces and in any point of
each of these, to a determined pressure or tension. This pressure or tension will be
of the same type as the pressure that a fluid exerts on an element of the boundary of
a solid body, save for the difference that the pressure exerted by a fluid at rest on
the surface of a solid body is directed normal to this surface, from the outside to
the inside, and is independent at each point of the orientation of the surface with
respect to the coordinate planes, while—in our case [GAM]—the pressure or
tension exerted at a given point can be oriented perpendicularly or obliquely to this
surface, sometimes from the outside to the inside if there is condensation [i.e.,
contraction, GAM] and sometimes from the inside to the outside if there is dila-
tation, and it can depend on the angle made by the surface with the relevant planes.
Furthermore, the pressure or tension exerted on any plane can easily be deduced, in
both amplitude and direction, from the pressures or tensions exerted on three given
orthogonal planes. I had reached this point when M. Fresnel, who came to me to
talk about his works devoted to the study of light and which he had presented only
in part to the Institute, told me that, on his own, he had obtained laws in which
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elasticity varies according to the various directions issued from a unique point, a
theorem similar to mine. However, the theorem in question was far from being
sufficient for my projected object of study, at that period, that was to formulate the
general equations of equilibrium and internal motion of a body; and it is only in
recent times that I succeeded to establish the proper new principles that yielded
this result, and that, now, I will make known.

From the above mentioned theorem, it follows that the pressure or tension at
each point is equivalent to the inverse of the vector radius of an ellipsoid. Three
pressures or tensions that we call principal correspond to the three axes of this
ellipsoid, and we can show [This remark here is in agreement with the last
researches of M. Fresnel (See the Bulletin of May 1822)] that each of these is
perpendicular to the plane on which its acts. Among these principal pressures or
tensions there are a maximum pressure or tension and a minimum one. The other
pressures or tensions are distributed symmetrically about these three axes.
Moreover, the pressure or tension normal to each plane, i.e., the component,
perpendicular to a plane, of the pressure or tension exerted on this plane, is
proportional to the inverse of the squared vector radius of a second ellipsoid.
Sometimes, this second ellipsoid is replaced by two hyperboloids, one with one
sheet, the other with two sheets, which have the same centre, the same axes, and
are asymptotic at infinity with a common second- degree surface, of which the
edges point in the direction for which pressure or normal tension reduces to zero.

This being said, if we consider a solid body of varying shape and subjected to
arbitrary accelerating forces, in order to establish the equilibrium equations of this
solid body it will be sufficient to write that there is equilibrium between the motive
forces that act on an infinitesimal element along three axes of coordinates, and the
orthogonal components of external pressure or tension that act on the faces of this
element. We will thus obtain three equations of equilibrium that include, as a par-
ticular case, the corresponding equations for the equilibrium of fluids. But, in a
general case, these equations contain six unknown functions of the coordinates x, y,
z. It remains to determine the value of these six unknown quantities. But the solution
of this last problem varies with the nature of the body and its more or less perfect
elasticity. Now we shall explain how one can solve this problem for elastic bodies.

When an elastic body is in equilibrium by virtue of arbitrary accelerating
forces, one must assume that each molecule has been displaced from the position it
occupied when the body was in its natural state. As a consequence of these
displacements, there are around each point different condensations or dilatations in
different directions. But it is clear that each dilatation produces a tension, and each
condensation produces a pressure. Furthermore, I prove that the various conden-
sation or dilatation about this point, decreased by or augmented of the unit,
become equal, up to the sign, to the vector radii of an ellipsoid. I call principal
condensations or dilatations those that occur along the axes of this ellipsoid, about
which the others are distributed symmetrically. This being set, it is clear that in an
elastic body, tensions or pressures depending only on the condensations or dila-
tations, are directed in the same directions as the principal condensations or dil-
atations. In addition, it is natural to assume, at least when the displacements of
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molecules are small, that the principal tensions or pressures are proportional to the
principal condensations and dilatations, respectively. Admitting this principle, we
arrive immediately at the equilibrium equations of an elastic body. In the case of
very small displacements, the component, perpendicular to a plane, of the pressure
or tension exerted on that plane, always is in the same ratio with the condensation
or dilatation that occurs in the same direction, and the formulas for equilibrium
reduce to four partial differential equations of which each one determine separately
the condensation or dilatation in volume, while each of the others serves to fix the
displacement parallel to one of the coordinate axes.

The equations of equilibrium of an elastic body being set, it is now easy to
deduce by ordinary means the equations of motion. The latter still are four in
number, and each of them is a linear partial differential equation with an added
variable term. These equations are integrated by use of methods that I exposed in a
previous memoir. One of these equations contains only the unknown that repre-
sents the condensation or dilatation in volume. In the particular case where the
acceleration force becomes constant and keeps everywhere the same direction, this
equation reduces to the propagation of sound in air, with the only difference is that
the constant it contains, instead of depending on the height of a supposedly
homogeneous atmosphere, depends on the linear dilatation or condensation of a
body in a given pressure. One must conclude from this that the speed of sound in
an elastic body is constant, like in air, but it varies from one body to another one
depending on the matter of which it is made. This constancy is all the more
remarkable that the displacements of molecules considered successively in fluids
and elastic solids obey different laws.

My memoir is concluded by the formation of the equations of the internal
motion of solid bodies completely devoid of elasticity. To arrive at this it is
sufficient to suppose that in these bodies the pressures or tensions about a point in
motion do not depend any more on the total condensations or dilatations that
correspond to the absolute displacement measured from the initial positions of the
molecules, but only, after any lapse of time, on the very small condensations or
dilatations that correspond to the respective displacement of the different points
during a short interval of time. One therefore finds that the volume condensation is
determined by an equation similar to that governing heat, what establishes a
remarkable analogy between the propagation of the caloric [the supposed ‘‘fluid’’
carrying heat. GAM] and the vibrations of a body entirely devoid of elasticity.

In a forthcoming memoir, I shall give the application of the obtained formulas
to the theory of elastic plates and strings.
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