
Chapter 12
A Successful Attempt at a Synthetic View
of Continuum Mechanics on the Eve
of WWI: Hellinger’s Article
in the German Encyclopaedia
of Mathematics

Abstract This essay analyses the comprehensive nature of a remarkable synthesis
published by Hellinger (Die allgemein ansätze der mechanik der kontinua.
Springer, Berlin, pp. 602–694, 1914) in a German encyclopaedia. In this contri-
bution Hellinger, a mathematician, succeeds in capturing the progress and sub-
tleties of all what was achieved during the nineteenth century, accounting for most
recent works and also pointing at forthcoming developments. On this occasion, the
scientific environment of Hellinger is perused and the style of Hellinger and his
excellent comprehending of continuum mechanics are evaluated from a document
that is a true landmark in the field although often ignored.

12.1 Introduction

In the nineteenth and twentieth centuries German scientists and engineers have
developed a special taste for the composition of impressive encyclopaedias and so-
called ‘‘Handbucher’’ (Handbooks). A typical Handbuch (in fact a Taschenbuch)
in mechanical engineering has been the very popular one by Hütte with many
foreign translations, but this was more a catalogue of prescriptions, standards, and
elementary formulas of mathematics and strength of materials. Famous collections
of the ‘‘Handbuch der Physik’’ have been edited by Geiger and Scheel between
1926 and 1933 [18] and by Flügge between 1955 and 1988 [17]. Mathematicians
did not escape this trend. In particular, renowned mathematicians such as Felix
Klein (1849–1925) and Conrad H. Mueller (1857–1914) contributed their wide
experience and many friendly connections to the creation and edition of a mon-
umental encyclopaedia of mathematics under the German title ‘‘Encyklopädie der
mathematischen Wissenschaften mit Einschluss ihrer Anwendungen’’—in brief:
Enz. Math. Wiss. (EmW)—published by B. G. Teubner (Verlag) in Leipzig
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between 1907 and 1914 [31].1 Various mathematicians and physicists were called
to contribute to this vast enterprise. Part Four of Volume Four was devoted to
Mechanics (Mechanik).2 In that Volume the burden of writing Article 30 on the
General bases/formulation (principles) of continuum mechanics (‘‘Die allgemeinen
Ansätze der Mechanik der Kontinua’’) fell on Ernst Hellinger then in Marburg. The
Encyclopaedia is well-documented with scholarly articles. It is aimed at the spe-
cialist. Concerning the whole EmW, it is salient to note the following appreciation
of I. Grattan–Guiness (2009), the famous historian of sciences: ‘‘Many of the
articles were the first of their kind on their topic, and several are still the last or the
best. Some of them have excellent information on the deeper historical back-
ground. This is especially true of articles on applied mathematics, including
engineering, which was stressed in its title’’. This particularly applies to Hellin-
ger’s contribution.

Ernst Hellinger (1883–1950) had been educated in Heidelberg, Breslau and
Göttingen and was a doctoral student of David Hilbert. This indicates that he was a
rather pure mathematician whose most famous mathematical accomplishments
were in integral and spectral theories. He became a professor in Frankfurt am Main
but he left Germany for the USA in 1939 and then taught at Evanston, Illinois. The
writing of this contribution in continuum mechanics in 1913 [26]3 may have been a
parenthetical episode in his career. Nonetheless, he was much interested in vari-
ational formulations (as shown by the forthcoming perusal of his contribution) and
even introduced the notion of two-field variational principle now referred to as the
Hellinger-Reissner variational principle in elasticity (cf. [53]). Nonetheless, we
surmise that his formation with Hilbert led him to view continuum mechanics as
one of the physical sciences to be formalised and given an axiomatic framework,
an orientation that will be materialized later on by the Truesdellian school with
Noll (cf. [48]). Although not a full time mechanician, Hellinger was able to capture
in a rather concise contribution all recent and promising advances by keeping a

1 This monumental work was translated into French [43] and edited under the direction of J.
Molk—a mathematician specialist of elliptic functions—and P. Appell—a reputed mathematician
himself the author of a magisterial treatise on rational mechanics (cf. [1]). A full facsimile reprint
of this French translation was produced by Editions Gabay in Paris in the years (1991–1995). But
only one volume (exactly IV/4, the presently examined one) was never translated into French, and
therefore does not exist in the Gabay reprint. The reason for this phenomenon is not clear. Of
course, its date of publication, 1914, was not the most appropriate one given the beginning of
World War One. Another possible explanation given by J. Gabay is that P. Langevin, adviser for
the translation of the Encyclopaedia after WWI, was not much in favour of phenomenological
physics in the sense of Duhem et al. Together with Eleni Maugin, I produced a (non-published)
partial translation from the German to English of Hellinger’s contribution.
2 Timoshenko [47, p. v] in his history of the strength of materials refers to this volume for an
extended bibliography.
3 Of course Hellinger’s theoretical contribution was complemented by other more specific and
applied ones such as those of Heun [29] on the general bases and methods of the mechanics of
systems, Voss [52] on the general principles of mechanics, and von Kármán [30] on the physical
bases of the mechanics of solids.
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sufficiently high standpoint, a balanced neutrality, and an acute insight, and this, in
our opinion, much more than some professional mechanicians who kept too much
with well established subject matters. In order to help the reader not accustomed
with reading in German, a partial translation in English of Hellinger’s contribution
is provided in an Appendix.

12.2 The Scientific Environment

Although Hellinger was essentially foreign to the engineering spirit, in writing his
opus of 1914 he gathered a rich past and contemporary documentation and
accounted for most of the recent works in the field of theoretical continuum
mechanics. He was not building in a vacuum, but this voluntary embedding in a
medium other than his own is altogether remarkable. Of course the influence of his
mentor David Hilbert may have played a fundamental role in his clear interest for
the general and somewhat axiomatic aspects, so that he must have been familiar
with the then recent attempt of Hamel [24] to delineate the structure and principles
of mechanics (as of the beginning of the twentieth century), and the recently
published treatise on ‘‘energetics’’ by Duhem [12] with its pre-Truesdellian flavour
which may have been to his taste. This is corroborated by his frequent citations of
these two authors. But he also knows the impressive treatise of Appell [1] on the
rational mechanics of deformable bodies and the German synthetic texts of Heun
[29, Voss [52], and Voigt [51].

Being basically a mathematician and a great admirer of Lagrange, Hellinger is
also very much concerned with variational formulations in the works of W.
Thomson (Lord Kelvin), Kirchhoff and, above all, the Cosserat brothers [7, 8, 40].
The last connection may have been through his reading of the Third volume of
Appell’s treatise [1] in which there is a supplement written by the Cosserats. The
appeal to group symmetries in the line of Sophus Lie and Henri Poincaré by the
Cosserats may have been very attractive to him. But he also considered the pos-
sible occurrence of dissipation with the notion of dissipation potential introduced
by Rayleigh, and even time-dependent (memory-like) behaviours in the manner of
Boltzmann [2]. The recent work of Hadamard [23] on wave propagation has also
left a strong print. Finally, in contrast with many other writers of the period who
remain in the classical (Newtonian) framework, Hellinger has already integrated in
his views the revolutionary ideas of Einstein in 1905 on relativity and Minkowski
[42] on space-time. All these remarks are based on the citations of these authors by
Hellinger as checked in the many footnotes to his contribution. This is the general
background and favourable scientific environment in which this perspicacious
author has framed his article.
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12.3 The Contents of Hellinger’s Article

12.3.1 Introductory Remark

Hellinger’s article is only ninety two pages in print. Nonetheless, it succeeds in
providing a rather complete survey of the field both with its established bases, its
recent successes and some view of things to come. This friendly neutrality with
which the author looks upon his assigned duty—in principle perusing a vast
domain of knowledge with about a hundred fifty years of history and a vivid
contemporary activity—is conducted with no a priori prejudice as a result—we
surmise—of Hellinger being a somewhat outside observer. Hellinger is rather
generous but also very accurate with citations. He cites many authors, whatever
their nationality, but is clearly most influenced by works published within the
thirty years before his synthesis, say in the period 1880–1910. Perhaps because of
this ‘‘actuality’’, he does not confine himself to the well established fields (linear
elasticity and Eulerian fluids), but he often venture in newly expanded fields of
interest such as finite deformations, oriented (Cosserat) bodies, capillarity, for-
mulation of thermo-mechanics, analogy with electrodynamics, and even relativ-
istic continuum mechanics.

From a historical viewpoint, our perusal of this beautiful contribution should
not be influenced by our own education in the field (rough period 1960s–1970s)
and our knowledge accumulated over an active professional period of some forty
five years that witnessed many developments. But it happened that many of these
rich developments in a vivid period of research more or less coincide with many of
the points touched upon by Hellinger. We do not think that this kind of resonance
between Hellinger’s approach to our field of interest and our own view is so much
due to an influence that this author would have exerted on the generations that
followed his own. Indeed, Hellinger’s text may have been read by German sci-
entists between the two World Wars. But we must notice that his article was
published in an encyclopaedia of mathematics, in a style that is permeated by the
rigorous thinking of a mathematician—far from engineering interests—and that
the text was not translated in any foreign language. It just happened that a spirit
close to that of Hellinger re-appeared in our period of activity, and this of course
greatly facilitates our apprehending of his exposition.

12.3.2 The Layout and Articulation of the Contribution

Every synthetic work in a field has to respect a definite agenda. This particularly
applies to an article in an encyclopaedia of which the readership is not so well
delineated. In the present case a tradition has settled that the progression in the
presentation of the subject matter follows an almost fixed order (as exemplified in
many textbooks on continuum mechanics), geometric background being
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introduced first, followed by kinematics and the theory of deformations, then
kinetics and the general laws of mechanics, general classes of mechanical
behaviours and a few more specific examples, and finally (but not always) some
more exotic extensions. Hellinger’s approach is more difficult to grasp because he
is ahead of his time while simultaneously following some masters such as
Kirchhoff, Helmholtz, Clebsch and Barré de Saint-Venant, and he has thoroughly
gone through the then recent works by W. Voigt, J. V. Boussinesq, E. and F.
Cosserat, H. Poincaré, and P. Appell, authors who are very often accurately cited.
In reason of the imposed exercise, Hellinger’s text is extremely dense. Instead of
perusing his contribution just in its order of presentation—the easy way—we have
preferred to examine various points, that recur in the whole text and seem to
emphasize Hellinger’s repeated interest in some specific aspects as an exemplary
mathematician (obviously not the point of view of an engineer).

12.4 The Identified Fields of Marked Interest of Hellinger

12.4.1 On General Principles of Mechanics and General
Equations

This is not an original point of departure in Sect. 12.2. Hellinger builds on the
commonly admitted bases of Newtonian mechanics in the tradition set forth by
Euler, Lagrange, Cauchy, but with modern references to Brill [5]; Duhem [12];
Voigt [51], and other contributions to the same encyclopaedia by, e.g., Voss [52] and
Heun [29]. He clearly indicates his favoured view of Hilbert and Hamel [24, 25] —
later on formalized in Hamel’s contribution to the Handbuch der Physik in 1927 —
for axiomatization and the consideration of a general thermodynamic framework by
Duhem [12]. He also heavily borrows from the treatise of Appell [1] and the recent
works by the Cosserat brothers ([7, 8], and their numerous notes in the Comptes-
Rendus of the Paris Academy of Sciences). But Hellinger does not hesitate to
introduce the relativistic Einstein–Minkowski’s vision in the last section of his
contribution.

Formally, Hellinger is much more attached to the Lagrangian-Hamiltonian var-
iational formulation than to the classical Newtonian type of approach that relies on a
statement of laws of equilibrium or dynamics. This he shows even for the bases of
statics where he readily implements the principle of virtual work (Sects. 12.3 and
12.4). This may be one of the reasons why this work is not so much cited in the
‘‘Anglo-Saxon’’ literature dominated by Newton’s vision and made popular in
continuum mechanics by the Truesdellian school in the 1960s. But Hellinger cannot
avoid discussing the notion of force as a polar vector (p. 613) and the clever intro-
duction of the concept of stress by Cauchy (Cauchysche ‘‘Drucktheorem’’; p. 615).
On this occasion, Hellinger, above all a mathematician, acknowledges the usefulness
of the notions of vector analysis and dyadics—linear vector functions—in the line of
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J. W. Gibbs (cf. [21]) and the matrix calculus of Cayley (p. 613). He also refers to
‘‘tensor components of a dyad’’ (Tensorenkomponenten) after Voigt’s lectures on the
physics of crystals (p. 624). This is to be contrasted with the rather shy attitude of
contemporary authors (e.g., Appell [1]; see my own appraisal in Maugin [41]).

Hellinger’s presentation of equilibrium equations in the Eulerian framework
with the associated natural boundary conditions (reflecting Cauchy’s postulate)—
Eqs. (5a) and (5b), p. 617—is rather modern. But he also gives what may be
considered the Piola-Kirchhoff format as Eqs. (9a) and (9b) in p. 618, after what
looks like a Piola transform for the stress in Eq. (8). He indeed refers to the work
of Piola [44] in p. 620. For the symmetry of the Cauchy stress, he refers (p. 619) to
Hamel who calls this the ‘‘Boltzmannsches Axiom’’ for ‘‘die Symmetrie der
Spannungsdyade’’. Reductions to the two-dimensional (e.g., plates) and one-
dimensional cases (e.g., rods, filaments)—in Eqs. (18a) and (18b) in p. 622 for this
last case—are given following the Cosserats.

12.4.2 On Variational Formulations

For a mathematician like Hellinger the attraction to the beauty, economy of thought,
and efficacy of variational formulations is inevitable. Hellinger, a follower of
Lagrange, Piola, Hamilton, Kirchhoff, Helmholtz and the Cosserats, in fact starts by
emphasizing the exploitation of the principle of virtual perturbations (‘‘virtuellen
Verrückungen’’; p. 611 on)—virtual work (a weak formulation in the modern jar-
gon). To the risk of creating an anomalous connection with modern standards, we
perceive in these perturbations the notion of test functions (see Maugin [35, 37]).
Note that Hellinger gives a mathematically correct definition of what is a material
variation by considering an infinitesimal parameter noted r (and not e like in modern
treatments; cf. pp. 607–608). As a matter of fact Hellinger’s statement (7) in p. 612
is, but for different symbols, just the same as in a modern formulation where the
principle of virtual powers (for statics) is written for a massive body as

P�vol þ P �int þ P�surf ¼ 0; ð12:1Þ

where the three terms refer to volume, internal and surface forces, respectively.
The Cauchy stress is introduced in the second term as a co-factor. A power of
inertial (acceleration) forces is added in the right-hand side of Eq. (12.1) in the
dynamical case. The second term is transformed with the help of Green’s diver-
gence theorem [22] to yield a divergence term in the bulk and Cauchy’s natural
boundary condition at the surface. Hellinger emphasizes the equivalence of the
statement (1) with Newton’s laws (cf. p. 630).

In dynamics we have D’Alembert’s principle per se (d’Alembertschen Prinzips,
p. 629) and this yields the looked for equations such as Eq. (2) in p. 630. On
introducing the kinetic energy, Hellinger is led to the principle of least action
(p. 633) of Maupertuis and Hamilton. Gauss’ principle of least constraint is also
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evoked in the same page with the possibility to account for non-holonomic con-
straints. The general nature of such formulations is clearly acknowledged
including with due reference to the Cosserats. With the assumed existence of a
strain potential Hellinger touches upon the favourite subject matter of Kirchhoff,
Boussinesq, Duhem [10], Poincaré and the Cosserats (pp. 643–651). This led him
to examine some questions related to stability in agreement with Dirichet and
above all Born [3], as also Italian authors such as Menabrea and Castigliano. He
introduces appropriately the notions of canonical transformation (p. 657) and
Legendre transformation (function H in p. 654). This leads him to say a few words
about minimum principles and stability. Unknown multipliers (interpreted some-
times as stresses or ‘‘reaction forces’’) are introduced wherever a mathematical
constraint is imposed (e.g., incompressibility), following ideas of the French
mathematician J. Bertrand and also D. Hilbert (see pp. 661–663). Ideal fluids
accept a characteristic equation p ¼ p qð Þ when, following Hadamard [23], the
potential reduces to a function of the Jacobian of the deformation. In presence of
some dissipation Hellinger follows an idea of Rayleigh to consider a potential of
dissipation (p. 657). This will later be formalized even for plasticity (dissipation
function homogeneous of order one only) in works of the 1970s–1980s (see, e.g.,
Maugin [36]).

Apart from the extensions to oriented media (his Paragraph 4b, and Paragraph
4.4 below), Hellinger touches two other extensions of the principle of virtual
perturbations that were to bear fruits later on. One is the possibility of considering
higher-order space derivatives of perturbations. This was envisaged early by
Le Roux [33]—apparently unknown to Hellinger—to account for effects of spa-
tially non-uniform strains (such as in torsion) in small-strain elasticity. This would
later on be expanded in the so-called gradient theory of continua [Cf. works by R.
D. Mindlin in the 1960s, and above all: Germain [19], for the second gradient, and
Maugin [35] for a general framework, using the principle of virtual power without
knowledge of Hellinger’s contribution]. The other is the possibility to account for
the existence of unilateral constraints during the variation (Cf. Paragraph 4c). This
was to be expanded in the theory of variational inequalities in the mechanics of
continua (Cf. e.g., Duvaut and Lions [13, 14]).

Finally, it is often said (cf. Washizu [53]) that Hellinger contributed to the
variational formulation of continuum mechanics (elasticity) by introducing before
Reissner [45] the notion of two-field variational principles. In these both dis-
placement and stresses are varied, allowing a relatively easy accounting of
boundary conditions of mixed type. Reissner—educated in Germany and himself
the son of a reputed mathematical physicist—must have heard of, if not studied,
Hellinger’s contribution. However, he proudly told the present writer that ‘‘he did
not see why Hellinger’s name was attached to his own name for this notion’’. It is
true that we could not locate where Hellinger introduced this notion. But the
association may come from the fact that—as noted above—Hellinger duly con-
siders Legendre transformations of the energy potential, introducing a kind of
complementary energy.
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12.4.3 On Finite Strains and Elasticity

Hellinger follows the tradition established by Piola, Kirchhoff, Boussinesq and the
Cosserats by always considering the case of finite strains, linear elasticity being
only an approximation. This is exemplified at many stages in his contribution. First
both actual (noted x; y; z) and referential or material (Lagrangian) coordinates
(noted a; b; c) are introduced. This later on allows for the introduction of the Piola
transformation (8) in p. 618 with a clear algorithm in spite of the absence of tensor
notation. The Piola-Kirchhoff form of the equilibrium equations follows at once as
Eq. (9a, b). This also applies to Cosserats’ media (p. 624–625). In the case of
Green elasticity for which there exits a strain potential, the Cauchy-Green’s finite
strain is duly introduced (cf. Eq. (12.1) in p. 663). An example of higher order
(than quadratic) strain energy function is given in p. 665. The exact constitutive
equations for Cauchy’s stress tensor in finite strains are given as Eq. (5) in p. 645
in Boussinesq’s form while Piola’s form is given in p. 654 together with Max
Born’s 4 equations in terms of a potential in stresses—Eqs. (22a, b) in p. 654—
after introduction of the complementary energy by means of a Legendre trans-
formation. The resulting compatibility condition for the finite deformation gradient
is given in Eq. (24) in p. 655 in a form due to von Kármán. In the case of isotropic
materials Hellinger rightfully calls for the invariance under orthogonal transfor-
mations (p. 664) and the resulting dependency of the strain energy on the basic
invariants that are factors in the Cayley-Hamilton theorem. He evokes on this
occasion the possible existence of self-stresses. Citations to Boussinesq, Duhem,
Poincaré, the Cosserats, Helmholtz and J. Finger abound. All these now seems
quite familiar to students who followed the masters of continuum mechanics in the
1960s–1980s—e.g., in the books of Truesdell and Toupin, Green and Zerna,
Leigh, Eringen, etc., in the USA and those of Goldenblatt, Novozhilov, Lurie,
Sedov, Ilyushin and others in the Soviet Union—this includes the present writer.

As a true mathematician, Hellinger views small-strain elasticity as a theory of
perturbations introducing wherever necessary a small parameter (noted sigma and
not epsilon) that indeed indicates the smallness of strains about an undeformed
state [cf. Eq. (3’) in p. 608].

4 The name of Max Born (1882–1970) is most often associated with the matrix formulation of
quantum mechanics (with P. Jordan and W. Heisenberg) and his statistical interpretation of the
wave function in Schrödinger’s equation for which Born received a belated Nobel Prize in 1954.
But Born had defended a Ph.D. thesis (1906) on the ‘‘stability of the elastica in a plane or space’’
(to which Hellinger refers). He was also most active in studies related to relativity after 1905 (see
here Paragraph 4.8). He was among the initial developers of the lattice dynamics of crystals and
contributed much to optics. His friendship with Hellinger dated back to their undergraduate-
student years in Breslau (‘‘Wrocław’’ in Polish) in the early 1900s. He mentored many of the
known theoretical physicists of the 1920s and 1930s while in Göttingen. Finally, he was
instrumental in the publication by Caratheodory [6] of an axiomatics of thermodynamics (Born
suggested a formulation of the second law, the so-called ‘‘inaccessibility of states’’).
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12.4.4 On Oriented Media

From the very beginning of his exposition Hellinger envisages the possible exis-
tence of internal degrees of freedom of the type proposed by the Cosserats in 1909.
For instance, introducing the basic physical parameters of a continuum, together
with the notion of density (p. 609), he feels quite natural to consider the possible
attachment to each material point (the ‘‘Quantum der Materie’’ with material
coordinates in his own language; p. 606) of an oriented trihedron or triad of rigid
vectors (ein ‘‘rechtwinkliges Axenkreus’’) likely to represent the varying orienta-
tion of ‘‘molecules’’—as proposed by Voigt [50] and possibly by S.D. Poisson
much earlier in 1842 (cf. footnote in p. 609). This yields the notion of ‘‘Medien mit
orientierten Teilchen’’ (pp. 609–610) in the manner of the Cosserat brothers (and
perhaps Duhem [11], p. 206; see Maugin [39]).

Then in considering a variational formulation (principle of virtual work),
Hellinger naturally generalizes it to the case including local orientational kine-
matic properties (pp. 623–627) with specialization to two-dimensional and one-
dimensional cases. The concept of couple-stress tensor [‘‘Drehmoment’’ (dyade)]
then appears naturally. The author recurs to this framework of ‘‘generalized
continua’’ on many occasions, in particular when considering the Green type of
elasticity based on the existence of a potential for strains (pp. 646–651) with the
application of the Cosserats’ concept of ‘‘Euclidean action’’. He returns to the
notion of ‘‘generalized continuum’’ while dealing with analogies with the equa-
tions of light propagation and electrodynamics (the MacCullagh ‘‘ether’’ of 1839
[34]—an elastic medium able to transmit only transverse waves (light) in agree-
ment with Fresnel’s observations—the deduction of Maxwell equations by iden-
tifying elastic displacement and electric field on the one hand and vorticity with
magnetic induction on the other and as done by authors such as Kelvin or J.
Larmor—see pp. 675–681). Of course this is now rather obsolete and was already
evaporating in thin air at the time of Hellinger after the works of Lorentz, Poincaré
and Einstein. But Hellinger’s attitude is above all witness of a marked interest in
the rich modelling potentiality offered by continuum mechanics—although
sometimes along paths with dead-end—leaving the final choice to true physicists.

We must note that, just like most authors until 1966, Hellinger does not see that,
similar to density with its conservation law (cf. Eq. (12.7) in p. 609 in the
Lagrange-Piola format), there must exist a conservation law associated with the
inertia of the new orientational degrees of freedom. This missed step was resolved
much later by Eringen [15].

12.4.5 On One-Dimensional and Two-Dimensional Bodies

Hellinger always considers two-dimensional and one-dimensional material bodies
(‘‘Platten und Drähte’’) as special cases. In this he does not follow the Cosserat
brothers who work more with an increase in spatial dimensions than with a
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successive reduction. Much more than that, in pp. 658–660, he shows his appre-
hension of the true mathematical problem at the basis of this reduction in
dimensions by introducing small parameters (this time noted e) that are repre-
sentative of the slenderness in thickness or of two (small) lateral dimensions of the
considered material structure. Equation (12.2) in p. 659 is typical of this
‘‘asymptotic’’ approach that will later on be the source of an efficient asymptotic
derivation of equations for plates, shells and rods in the expert hands of
Gold’denveizer, S.A. Ambartsumian, V.L. Berdichevsky, Ph. Ciarlet and others.
Furthermore, Hellinger does not hesitate to introduce the Gaussian parametrization
of curved surfaces to treat two-dimensional bodies [cf. pp. 620–621; in particular
Eq. (14a, b)]. For one-dimensional elastic bodies, he is naturally led to mentioning
the Bernoulli-Euler problem of the elastica (pp. 667–668) with the only surviving
material coordinate taken as the arc-length along the curve. One had to await the
remarkable work by A. E. H. Love (later perfected by R. D. Mindlin) to correctly
deduce a quasi-one dimensional dynamical theory of rods with the strange lateral
inertia term (the print left by the asymptotic procedure in passing from three
dimensions to the rod-like picture).

12.4.6 On Thermodynamics and Dissipative Behaviours

In his introduction (p. 604) Hellinger clearly expresses his opinion that the
‘‘mechanics of deformable media, as an autonomous discipline, comprises under
formal statements, next to the usual theory of elasticity and hydrodynamics, all the
related physical manifestations in the considered continuously extending bodies’’.
The development of these ideas has certainly been influenced by the discipline of
thermodynamics which, in principle, tries ‘‘to embrace the totality of physics’’ (my
translation). Here Hellinger is obviously influenced by his recent reading of
‘‘energetists’’ such as Pierre Duhem with his magisterial treatise of 1911 [12]. The
latter may have been read by a handful of happy few.5 What Hellinger tries in his
Sect. 15 (pp. 682–695) is to incorporate the dual notions of entropy and thermo-
dynamic temperature in his fundamental variational formulation. Entropy is con-
sidered as an extensive quantity (i.e., proportional to the quantity of matter). Then
a term dQ—Equation (12.1) in p. 683—representing the ‘‘Wärmezufuhr’’ with
variation of the entropy and co-factor none other than the temperature is to be
added to the purely mechanical variation mentioned above at point 4.2. With the
introduction of a potential for thermoelastic processes this yields the thermal
definition of the temperature (in modern terms: the derivative of internal energy
with respect to entropy) and, more surprisingly for the period, Maxwell’s

5 When in 1992, during a one-year stay in Berlin, I borrowed Duhem’s [12] opus from the library
of the former Kaiser Wilhelm Institute in east Berlin, I discovered that this copy of the books had
never been read (pages were not cut out but they were damaged by the water poured by firemen
during the fire of the Institute that occurred during the Russian Army take over of Berlin in 1945).
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compatibility condition for second-order derivatives of the energy in thermo-
elasticity in finite strains (Eq. (5) in p. 684; in modern notation this reads

oT

oS
¼ oh

oF
; ð12:2Þ

where F is the deformation gradient and T is the first Piola-Kirchhoff stress).
In a more general context Hellinger comments on other coupled effects such as

temperature and capillarity, pyro-electricity and thermo-chemical processes as
considered by J. W. Gibbs in his original works of 1876–1878. He does not
mention piezoelectricity although this is already more than thirty years old
(experimental discovery by the Curie brothers in 1881) when he writes his
contribution.

The above mentioned variational formulation that includes the notion of
entropy and temperature is seldom considered. However, Sedov’s [46] generalized
variational principle—also discussed in Maugin [35]—is along the same line.

For truly dissipative phenomena such as viscosity, in spite of his familiarity
with Duhem’s treatise which does not propose yet a solution (the future ‘‘theory of
irreversible processes’’), Hellinger is reduced to invoking the notion of dissipation
potential à la Rayleigh, as in the case of G.G. Stokes’ viscous fluids (cf. p. 671).
But he is aware of the existence of more sophisticated models of viscosity. Such a
model is the one proposed by Boltzmann [2] in the form—‘‘elastischen Nac-
hwirkung’’—of hereditary integrals [see p. 641 and Eq. (5) in p. 672] for which
Hellinger also cites very recent works, in particular by Vito Volterra up to year
1913 (the year Hellinger completed his manuscript). This shows the concern of
this author to be up to date until the last moment. Finally, he also mentions the
possible occurrence of a plastic behaviour with a simple plasticity criterion in
terms of principal stresses which recalls the Tresca criterion—Inequalities (7) in
p. 673—although he refers for these to a work of 1909 by A. Haar and Th. von
Kármán. More general or singular behaviours are simply referred to as ‘‘halb-
platische’’ oder ‘‘vollplastische’’ Zustände (no need for translation).

What is strange is that Hellinger does not comment on the then recent Cara-
theodory [6] axiomatization of thermodynamics as suggested by his own friend M.
Born, a contribution that is purely in the analytical line and would certainly had
been to Hellinger’s liking.

12.4.7 On Newly Studied Behaviours

This is just mentioned for the sake of completeness since hereditary materials, half
plastic or fully plastic materials, are already evoked in the preceding paragraph.
But Hellinger also pays some attention to the phenomenon of capillarity in
pp. 674–675 for which a rather not commonly referenced work is by the mathe-
matician of ‘‘relativity fame’’, Herrmann Minkowski (see below).
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Hellinger, although not pursuing the line further, gives the exact mathematical
definition of material inhomogeneity (dependence of material properties on the
material coordinates; see top of p. 639). General anisotropic elastic materials
(crystals) with at most twenty one independent elasticity coefficients are men-
tioned for the linear case. In the case of finite strains, like all authors since Cauchy
he focuses on the case of isotropy with the resulting introduction of the principal
invariants of strains (p. 664) in the strain-energy function. This is purely academic
as Hellinger and all other authors of the period could not guess that only rubber-
like materials and then finitely-deformable soft biological tissues would provide in
time the realm of application of this material description (see Maugin [38]).

12.4.8 On Relativistic Continuum Mechanics

In his attempt at a large conspectus of the State of the Art in 1913, Hellinger
included (Sect. 16, pp. 685–694) comments on the most recent developments
concerning the relativistic mechanics of continua. This is rather exceptional for the
period; in particular if we compare with other well established authors in
mechanics (e.g., Appell). This may have aroused his sensibility of mathematician.
He seems to be well aware of the original developments by Voigt, Lorentz, and
Poincaré on the group structure of special-relativistic transformations. The Lor-
entz-Poincaré group was a good subject of interest with the works of Minkowski
[42], A. Sommerfeld, and F. Klein. His friend Max Born may have had some
influence on Hellinger’s interest in the field since Born (especially, [4]) and
Herglotz [28] seem to be his main sources for the basic definitions and the problem
of the possibility of ‘‘rigid-body motion’’ in relativity.

Most of Hellinger’s discussion is about the essential differences between the
Lorentz-Poincaré group and the Galilean-Newtonian group of space-time trans-
formations. But he is also particularly interested in two points. One is the possible
re-formulation of the Cosserats’ action principle in space-time in agreement with
Minkowski and Herglotz (cf. Eq. (13a, b) in p. 693) with a space-time parame-
trization that combines material coordinates and a propertime (a parameter along
the world line following Minkowski’s description) and a total virtual variation for
internal forces (components of the energy-momentum tensor). The second point is
the possible definition of the notion of rigid-body motion, a much discussed matter
being given the existing bound on velocities, with the possible local (i.e., differ-
ential) solution given by Born and Herglotz in space-time. Allusion to relativistic
continuum mechanics will later be given in a bibliographic appendix by Truesdell
and Toupin [49, pp. 790–793]. The present writer is one of the very few to have
devoted a full albeit brief chapter to relativistic continuum mechanics in a treatise
(cf. Eringen and Maugin [16], Vol. 2, Chap. 15; see also the historical perspective
in Maugin [38], Chap. 15).
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12.5 Conclusion

In his introduction—written in 1913—Hellinger claims that there exists no text-
book or monograph in the literature on the specific subject treated in his contri-
bution although there do exist textbooks and treatises of a general nature, but the
latter do not emphasize the bases and various possibilities offered by the scheme of
continuous matter. He does not intend to treat applications and specific problems.
He confines himself to the essentials, ‘‘die allgemeinen Ansätze’’ in his own
words. His viewpoint is that analytical mechanics (exploitation of variational
formulations) is ‘‘the most uniform and efficient manner to approach the general
problem of describing a large variety of descriptions of deformable media’’ in
agreement with recent authors like the Cosserats and the initial standpoint of G.
Green with an energy potential. This is the type of approach (principle of virtual
work, d’Alembert’s principle [9], Lagrange-Hamilton action principle [32], etc.)
that suits best his essentially mathematical vision. The pregnant brevity of this
approach possesses a ‘‘high heuristic value for the exploration of new areas. This is
particularly stressed through the intimate relation of such variational principles
with thermodynamics’’. Furthermore, this allows one to place in evidence the
invariant theoretical nature of the considered problems with the notion of trans-
formation groups. This gives a very ‘‘modern’’ print that helps us understand his
exposition without too much effort. This ‘‘modernity’’ is striking in spite of the
somewhat obsolete notation. Its opens up horizons to many models that will have
to wait progress in some branches of pure and applied mathematics for a full
blossom (e.g., large deformations, media with internal degrees of freedom, cap-
illarity, hereditary processes, multi-field phenomena).

His mathematical inclination leads him to accept unhesitatingly all new
mathematical tools of the period (vector and tensor analysis, matrix calculus,
differential geometry, perturbations). The only part that is still missing is convex
analysis to be much developed in the 1950s–1970s. But, overall, Hellinger is very
successful in his endeavour. This is our appraisal one hundred years later.
Unfortunately, we were not able to locate any substantial review or criticism of his
contribution in the few years following its publication so that we have no precise
idea of the quality and extent of its reception among professional circles, mech-
anicians and mathematicians. This may exist in some periodical bulletin of a
mathematical society. It is therefore with modern eyes, perhaps themselves
influenced by Hellinger’s writing—a kind of feedback—that we evaluate it. This is
an inevitable bias that we willingly acknowledge.

Following the Cosserat brothers, Hellinger’s view of the domain of interest of
continuum mechanics is essentially the mechanics of deformable bodies, by which
must be understood the case of deformable solids. This is in contrast with treatises by
famous authors such as Appell [1], where most contents rather deal with fluids. At
the time fluid mechanics has become a rather autonomous field of study limited to
perfect fluids and the Navier-Stokes equations, with specific mathematical tech-
niques of which the use of complex variables has become endemic. But some recent
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developments of theoretical fluid mechanics such as the asymptotic method
involved in the theory of the boundary layer by L. Prandtl could have been to the
taste of an analyst like Hellinger. It is only with the birth of the science of rheology
(concerning whatever can flow to a larger or smaller extent) and the notion of non-
Newtonian fluids in the 1920s in the expert hands of E. C. Bingham (1878–1945) and
M. Reiner (1888–1976) that fluids will return to the general stage of continuum
mechanics. Liquid crystals, with a behaviour clearly classified in 1922 by Georges
Friedel (1865–1933) and exhibiting mixed crystal (ordered state) and fluid (flow)
characteristics with directional properties, will also enter this general framework
with a natural connection with generalized continua of the Duhem-Cosserat type
established in the 1960s–1970s. This could not be imagined by Hellinger who
remains essentially an analyst, as shown by his other very successful contribution to
the same Encyclopaedia of mathematics in co-operation with a friend of student days
in Breslau and Göttingen, O. Toeplitz (cf. Hellinger and Toeplitz [27]).

In conclusion, we find in Hellinger’s brilliant and very informative contribution
all elements and remarks that we would like to deliver—even though superfi-
cially—to our mathematically oriented students in an introductory course of high
level (e.g., something similar to what Germain tried to do in his course at Ecole
Polytechnique, 1986 [20]); many students then thought that this was too much
superficial, although all aspects of further developments in specialized short
courses were outlined.

Appendix A

Partial translation from the German to English of Hellinger’s contribution to
the EmW (by Eleni and Gérard A. Maugin, � 2013).

Note: pages of original are indicated at the top left. Modern notations (cf. Maugin
[38]) are sometimes given within squared brackets [..] along with Hellinger’s
notation. Footnotes are not given in full, being just replaced in the main text by a
name and a year within brackets for a reference to an author. Some translator’s
remarks within square brackets are indicated by the initials GAM. Abbreviation
EmW means this encyclopaedia.

The general basic laws of continuum mechanics
By E. Hellinger, Marburg A.I.

Contents

1. Introduction
2. The notion of continuum

a) The continuum and its deformation
b) Adjunction of physical parameters, density and orientation in particular
c) Two- and one-dimensional continua
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I. The basic laws of statics

3. The principle of virtual perturbations

a) Forces and stresses
b) Survey of the principle of virtual perturbations
c) Application to continuously deformable continua
d) Relations with rigid bodies
e) Two- and one-dimensional continua in three-dimensional space

4. Extensions of the principle of virtual perturbations

a) Presence of higher perturbation derivatives
b) Media with oriented particles (not translated here)
c) Presence of side conditions

II. The basic laws of kinetics [dynamics]

5.

a) The equations of motion of the continuum
b) Transition to the so-called Hamiltonian principle
c) The principle of least constraint
d) Formulation of more general cases (not translated here)

III. The form of constitutive laws (not translated here)
A. Formulation of general types

6. The types of forces from the deformations
7. Media with one characteristic response function

a) Potential
b) Potential for media with orientational degrees of freedom
c) Potential for two- and three-dimensional continua
d) The meaning of a true (real) minimum
e) Direct determination of stress components

8. Limit cases of the ordinary three-dimensional continuum

a) Infinitely thin plates and strings
b) Media with side conditions

B. Special cases

9. True elasticity theory
10. Dynamics of ideal fluids
11. Internal friction and elastic after effects
12. Capillarity
13. Optics
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14. Relationship wit electrodynamics
15. Addition of thermodynamic considerations
16. Relationship with the theory of relativity.

Bibliography

For the time being [Hellinger’s words, GAM] there are no textbooks or mono-
graphs in the literature on the specific subject treated here. In order to avoid
repetition we have compiled a list of the most frequently cited works:

A. von Brill (1909).
E. and F. Cosserat (1909).
P. Duhem (1911).
G. Hamel (1912)
J.L. Lagrange (1788) and in Oeuvres complètes, Vol.11 and 12. edited by G.
Darboux, Paris 1988/89.
W. Voigt (1895/96).
Cf. also Voss, Stäckel, Heun and Müller-Timpe in the EmW, Vol. IV.
————
p 602

1. Introduction

The purpose of the present work is to give, from a uniform point of view, a
comprehensive overview of the various forms taken by the different basic laws
used in order to determine the evolution in time or even the state of equilibrium in
an isolated spatial domain of ‘‘continuum mechanics’’ as a whole, i.e., the
mechanics and physics of continuously extending media. Moreover, we shall
always keep in mind only those types of continua that do not possess, thanks to
restricting conditions, a particularly large number of continuous degrees of free-
dom. The possibility of expressing in a comparable form the basic equations of
various disciplines has already been noticed in the past.

p 603

The ‘‘mechanistic’’ theories of physics which would have reduced the physical
existence to the manifestation in the form of motion have considered the quantity
of matter from a formal-mathematical point of view, permitting thus to exhibit the
equations of physics as special cases of the equations of a general system of
varying masses in motion, as also of mass points. They must also make evident
these analogies.

Next to the truly mechanical theories, which present more or less detailed
pictures of the structure of matter, there has been an attempt, almost from the
beginning, but more particularly from the middle of the nineteenth century, to
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adopt a specific method from analytical mechanics in the manner of J.L. Lagrange;
in order to bring under the same general principles all the considered problems,
there has been an effort to reduce the fundamental laws of an ever larger number of
physical disciplines, to the form of those principles. From a purely phenomeno-
logical viewpoint, this could permit the identification of notions - energy, forces,
etc. - entering them with certain physical entities. For systems with a finite large
number of degrees of freedom, this development is mainly connected with research
undertaken on cyclical systems and their applications in the reciprocal laws of
mechanics by W. Thomson (Lord Kelvin), J.J. Thomson and H. von Helmholtz.

Eventually, even Lagrange applied his principles to some continuous systems
(liquids, flexible strings and plates, etc.). After further elaboration of these
approaches, particularly with the development of the theory of elasticity associated
with A.L. Cauchy, as well as under the influence exerted by the development of
other physical, particularly optical, theories, people became more and more
accustomed to considering even continuous systems as autonomous objects of
mechanics (with an infinite number of degrees of freedom), since although these
systems stand in formal analogy to the old point mechanics, they can perfectly well
be treated independently. The ‘‘mechanics of deformable continua’’, as an
autonomous discipline, comprises under the formal statements, next to the usual
theory of elasticity and hydrodynamics, all the related physical manifestations in
the continuously extending media considered here.

p 604

The development of these ideas has certainly been influenced by the discipline of
thermodynamics which, in principle, tries to embrace the totality of physics and,
this way, by putting forward everywhere the general energy function, hence a
potential, it naturally yields analogous forms to the fundamental equations of
various fields.

All these relations have been treated in the literature of mechanics and physics
in many different ways. A lot of what was said in particular in the field of point
mechanics, as also of systems with an infinite number of degrees of freedom, can
be immediately extended to the continuous systems. Let us mention already the
names of only a few authors who have paid special attention to the relations that
we will discuss here and that we will often have the occasion to cite in the sequel:
W. Voigt (1895–1896), P. Duhem (1911), and E. and F. Cosserat (1909) (For
development of a similar kind, what follows has been influenced in many ways by
some of the lectures given in Göttingen by D. Hilbert.)

The purpose of this work demands that, in what follows, the pure formal-
mathematical factor stands in the foreground, by formulating the statements as
well as their combinations in a homogeneous and in a, as simple and elegant, way
as possible. The research of the mechanical and physical significance of the
quantities and equations as well as the proper analytical-mathematical theory are
included in various contributions to volumes IV and V—of the present encyclo-
paedia—where the various disciplines are discussed.
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As a uniform mathematical formulation, which is the easiest to apply to the
totality of all individual laws, we have used the variational principle. However, we
find unsatisfactory the form that we observe as a rule in the calculus of variations,
and where the unknown functions are determined in such a way that a certain
defined integral containing them, acquires an extremal value. Here we find much
more preferable the form that yields the variational computation as a necessary
condition of the extremal and which has always been expressed by the principle of
virtual work: ‘‘Let there be an ordered set of quantities X; . . .;Xa; . . . dependent on
the unknown function x of a; . . .; c and their derivatives; these functions should
satisfy the condition that a determined integral of a linear form represented by
these X; . . .;Xa; . . . as coefficients, of the arbitrary functions dx; . . . of a; . . .; c and
their derivatives

Z
. . .

Z
Xdxþ . . .þ Xa

o dx

da
þ . . .

� �
da. . .dc

or a sum of such integrals – vanishes identically for all dx; . . . (or else for all those
satisfying certain auxiliary conditions).’’

The advantage offered by the application of such a variational principle as a basis,
as compared to other possible formulations, or even by taking into consideration the
fundamental laws, is mainly that the variational principle is able to determine by a
single formula the behaviour of the medium under consideration, in all places and at
any instant of time, and especially to cover, besides the equations within the
enclosed volume, both the boundary conditions and the initial conditions. Moreover,
in its pregnant brevity, it is, in a way, much more transparent than the basic laws and,
consequently, it possesses a substantial heuristic value for the exploration of new
areas, for the expression of other generalisations, etc. This is particularly stressed
through the intimate relation of the variational principle with thermodynamics. On
the other hand, its claim to generalisation is of demonstrative value for the foun-
dations of physical theories. But the variational principle, through the acceptance of
coordinate transformations, has also another advantage against the explicit (field)
equations; it often permits an easier understanding of the invariant theoretical
nature of the considered problem, the question about the transformation groups
which it leaves unaltered, with no need to introduce any special symbolism.

After an introductory discussion of the notion of continuum and its kinematics we
shall present in the first chapter of this work the basic statements of statics, and in the
second those of the kinetics, but regardless of the kind of the force effects that one of
them exerts on the continuum. The nature of these force effects, and especially their
dependence on the position and the motion of the continuum (dynamics), will be
discussed in the third chapter, in which we classify the various disciplines; finally, in
the same chapter we shall give a short draft of the relation with the laws of ther-
modynamics on the one hand, and, on the other, we shall stress the behaviour of
some statements under transformations of the space and time coordinates and also
the interpretation of the relativistic theory of electrodynamics.

p. 606

222 12 A Successful Attempt at a Synthetic View of Continuum Mechanics



2. The Notion of Continuum
2a. The continuum and its deformation

The general three-dimensional extending continuous medium to which the fol-
lowing considerations apply means - abstraction made of specific properties of
matter - a set of material ‘‘particles’’ which (a) are individually identifiable and (b)
fill continuously the space within a regular bounded domain. The first property can
be expressed by the fact that each particle is identified thanks to three parameters
a, b, c (in modern terms, a labelling with material coordinates XK ; K ¼ 1; 2; 3) so
that under any condition that we may consider the medium, they always occupy a
different place; the variable volume V0 of these (particles labelled) a, b, c enclosed
within the regular surface S0, characterises the quantity of matter considered here.
The second requirement means that the positions of all particles fills (after
deformation and motion) a volume V bounded by the regular surface S. If the
position of a particle is determined by its Cartesian coordinates
(x; y; z ¼ xi; i ¼ 1; 2; 3f g), then such a condition can be given analytically by the
three following functions of a, b, c

x ¼ x a; b; cð Þ; y ¼ y a; b; cð Þ; z ¼ z a; b; cð Þ xi ¼ xi XK
� �� �

ð1Þ

which map V0 into V and whose functional (Jacobian) determinant

D ¼ o x; y; zð Þ
o a; b; cð Þ J ¼ det

o xi

oXK

� 	
 �
ð2Þ

inside V0 does not vanish and is taken positive. We can take a fixed ‘‘final’’
(actual) position for a, b, c; then x� a; y� b; z� c, are the components of the
translation suffered by each particle in its transition to position (1) and the func-
tions (1) become continuous functions of a, b, c as long as we assume that the
initially neighbouring particles always remain neighbours. Moreover, we can
always suppose that the functions (1) possess enough derivatives with respect to
their arguments; disruptions of continuity can be found only at singular points,
lines and surfaces (Cf. Voss, Vol 4/1 of EmW, No.9). We shall generally not
repeat similar assumptions about further physical occurrences of representative
functions.

Each function system (1) fully describes a definite state of deformation of the
continuum. Generally speaking, every deformation solution, i.e., every triplet of
functions (1) that satisfies the just mentioned continuity conditions, is considered
admissible. Restrictions in p. 607 the kind of possible functions will express
specific properties of special materials. In any case, the partial derivatives of the
functions (1) determine, as we know, the translations, rotations and form changes
that suffer every small volume element during deformation (Cf. Abraham, in
EmW, IV-14, no. 16).

The basis for the research of the equilibrium solution of any deformation
process (1) is obtained by superimposing on it a so-called infinitesimally small
virtual perturbation, called virtual to the extent that it enters arbitrarily in the real
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existing deformation case [cf. Voss EmW IV-1 No. 30; Voigt (1895–96) and C.
Neumann (1879)]. In order to define this notion in a precise mathematical form,
without giving up the usual convenient designation and use of the ‘‘infinitesimally
small’’ quantity, we consider to begin with one of the deformation on which is
superimposed another deformation depending upon a parameter r, with vanishing
deformation for r ¼ 0, which carries the particle from the original position
x; y; zð Þ to the position

�x ¼ xþ n x; y; z; rð Þ;

[same with x; y; zð Þ and n; g; fð Þ]. This way n; g; fð Þ are functions of x; y; zð Þ and of
the parameter r, which can vary in any small neighbourhood of r ¼ 0. Thanks to
(1), after elimination of x; y; zð Þ, we can also write the newly introduced defor-
mations in the other form

�x ¼ �x a; b; c; rð Þ; where �x a; b; c; 0ð Þ ¼ x x; y; zð Þ: ð3Þ

If f is any of the deformation functions (1) and we consider their derivatives as
independent expressions, then we generally note as its ‘‘variation’’ the expression

df x; . . .; xa; . . .ð Þ ¼ o

or
f �x; . . .;�xa;...

� �� �
r¼0

; where xa ¼
ox

oa
; . . .;

yet, during the differentiation a, b, c remain constant; the operation d commutes
with the differentiation with respect to a, b, c:

d
of

oa
¼ o dfð Þ

oa
:

If the three functions

o�x

or

����
r¼0

¼ on
or

����
r¼0

¼ dx x; y; zð Þ; same for x; y; zð Þ

which, thanks to (1), can be considered as function of x; y; zð Þ, do not vanish
identically in x; y; zð Þ, then, following the usual stability postulate, we can write

�x ¼ xþ r dx x; y; zð Þ; same for x; y; zð Þ; ð30Þ

if r is chosen so small that r2 is sufficiently small compared to r, the so given
infinitesimally small virtual perturbation of the continuum is then determined up to
the factor r by the three functions dx; dy; dz of x; y; z. We can immediately classify
this perturbation under the notion of ‘‘infinitesimally small deformation’’, as
studied in the kinetics of continua (Cf. Abraham, EmW IV-14, No. 18) and we also
find that the ‘‘virtual form changes’’ [‘‘strains’’, GAM] of these volume elements
derived from it, are determined by the following six quantities

odx

ox
;
o dy

oy
;
o dz

oz
;
o dy

oz
þ o dz

oy
;
o dx

oz
þ o dz

ox

o dx

oy
þ o dy

ox
ð4Þ
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and their ‘‘virtual rotations’’ by

1
2

odz

oy
� ody

oz

� 	
;

1
2

o dx

oz
� o dz

ox

� 	
;
1
2

ody

ox
� odx

oy

� 	
; ð40Þ

regardless of the r factor.
A motion of the continuum will be interpreted as a consequence of a depen-

dence of the deformation functions upon the time parameter t, and accordingly
expressed through the three deformation functions

x ¼ x a; b; c; tð Þ; y ¼ y a; b; c; tð Þ; z ¼ z a; b; c; tð Þ xi ¼ xi XK ; t
� �� �

ð5Þ

always depending upon t; these, as functions of all four variables in the necessary
neighbourhood, are constant and differentiable. For fixed a, b, c (5) represents the
trajectory of a certain specific particle.

Just as exposed above, by including in the formulas only the variable t, next to the
motion (5) we also introduce the group of motions for r ¼ 0, that was omitted in (5),

�x ¼ �x a; b; c; t; rð Þ ¼ x þ rdx x; y; z; tð Þ; same for x; y; zð Þ

for small values of the parameter r and we note dx; dy; dzas the definitions of the
virtual perturbations superimposed on the motion (5).

2b. Adjunction of Physical Parameters, Density and Orientation in Particular

Each physical property of a medium can be described by one or more functions of
a; b; c; t which enter in the deformation functions.

In what follows we shall make general use of one such property, the presence of
an invariable mass m for every volume element V0 of the medium, which, as an
integral over V0, is expressed as a characteristic density function q0 ¼ q0 a; b; cð Þ
of the medium. By transition to the deformed location (1)

q ¼ q0

D
q ¼ J�1q0

� �
ð7Þ

results as the true mass density q of the distribution of the medium, and the mass in
the part V 0 of V is

m ¼
ZZZ

V 0ð Þ
q dx dy dz ¼

ZZZ
V 00ð Þ

q0da db dc:

The variations of the continuum’s location in relation to the behaviour of such an
adjunction of a physical parameter are not yet firmly laid down. In the meantime, we
always leave the mass of such an elementary quantity of matter, i.e., the function
q0 a; b; cð Þ unchanged by a virtual perturbation and we replace the density q by

�q ¼ �q x; y; z; rð Þ ¼ qþ rdq x; y; zð Þ; ð8Þ

so that regarding the continuity condition (cf. EmW IV-15, No.7 p.59 on, A.E.H. Love)
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dq0 ¼ d qDð Þ or dqþ q
o dxð Þ
ox
þ q

o dyð Þ
oy
þ q

o dzð Þ
dz
¼ 0:

The same thing will be valid in the case of motion, i.e., q0 a; b; cð Þ remains
independent of t and q will be given as in (7).

There is another basic notion which belongs here and which we will use very
often, that is, the idea that for every particle of the continuum, the various
directions attached to it possess different characteristic meanings, and that, for
this reason, the specification of its orientation belongs essentially to the descrip-
tion of the situation of the continuum. This kind of representations was developed
in the molecular theory, where the bodies of crystalline structure were viewed as
molecules; S.D. Poisson (1842) in particular has applied it in order to establish a
better theory of elasticity. Recently, E. and F. Cosserat [1907; Théorie des corps
déformables, 1909; Heun in EmW IV-11, Part II]) without any reference to
molecular representations have treated extensively such continua equipped with a
definite orientation in every particle.

p 610

In a more general way, this notion of oriented particles of the continuum can be
formulated analytically [Cf. a remark by P. Duhem 1893 p. 206], since we can
think of each particle a; b; c of the continuum as equipped with a trihedron (triad;
GAM) of axes at right angles and these three axes have each director cosines
ai; bi; ci i ¼ 1; 2; 3ð Þ in order to describe fully the state of such a medium, next to
the functions (1) we must also recognize as functions of a; b; c three independent
parameters k; l; m (e.g., the Eulerian angles) that define the orientation of such a
medium in relation to the coordinate system x; y; z:

k ¼ k a; b; cð Þ; l ¼ l a; b; cð Þ; m ¼ m a; b; cð Þ: ð9Þ

Now, every virtual perturbation of the continuum shall be connected with a
virtual rotation of this trihedron; this way, we get as a basis a group of rotations
depending on a parameter r and with vanishing r ¼ 0, starting from the position
(9) and replace k; l; m, being restricted to sufficiently small values of r, by

�k ¼ �k a; b; c; rð Þ ¼ kþ rdk a; b; cð Þ same for k; l; mð Þ: ð10Þ

In this manner it is always possible to interpret k; l; m as well as dk; dl; dm
either as functions of a; b; c or, with the help of (1), as function of x; y; z. The
variations themselves da1; . . .; dc3 of the director cosines of the three axes are
linear homogeneous functions of dk; dl; dm obtained through the differentiation
with respect to r of the explicit expressions of a1; . . .; c3; the components
dp; dj; dq of the virtual rotation angle velocity in the three axes, are connected
with da1; . . .; dc3 through the formulas

dp ¼ b1dc1 þ b2dc2 þ b3dc3 ¼ � c1db1 þ c2db2 þ c3db3ð Þ etc ð11Þ

dai ¼ cidj� bdqi; i ¼ 1; 2; 3; etc; ð110Þ
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Incidentally, in contrast with the symbol d used until now, these are not vari-
ations of certain definite functions of a; b; c, but become simultaneously linear
homogeneous functions of dk; dl; dm; we set

dk ¼ l1dpþ m1djþ n1dq; etc: ð12Þ

p 611

This way, dp; dj; dq (given as functions of a; b; c or x; y; z) define also the
virtual rotation of the continuum [These are well known kinematic methods of the
theory of surfaces (cf. also EmW, Vol. III D3 No.10; G. Darboux, Leçons sur la
théorie générale des surfaces) that E. and F. Cosserat have applied (detailed
exposition in their ‘‘Théorie des corps déformables’’, 1909)].

All these formulas can be extended immediately to the case of motion via the
inclusion of the time parameter t.

2c. Two- and one-dimensional continua

By the suppression of one or two of the three parameters a; b; c, we also obtain
immediately the statements for the treatment of two- and one-dimensional con-
tinua embedded in three-dimensional space [In a certain sense these problems are
simpler than those we meet with in three-dimensional media; in fact some of them
belong to the problems of continuum mechanics which have received early a very
detailed treatment (cf. P. Stäckel in EmW IV-6, Nos. 22-24, also K. Heun in EmW
IV-11, No.19, 20)]. In any case, their position is given by

x ¼ x a; bð Þ or x ¼ x að Þ ½same for x; y; zð Þ�; ð13Þ

The parameters vary in an area S0 (respectively, along a curve C0) of the plane
a� b (respectively a line of arc length a) which through (13) is based upon a
surface S (respectively a curve C). Here also we can assign to each particle a triplet
of directions, orthogonal to each other [Cf. E. and F. Cosserat, Chapters II and III,
1909], defined by the functions

k ¼ k a; bð Þ; respectively k ¼ k að Þ ½same for k; l; mð Þ�: ð14Þ

12.8 The Basic Laws of Statics

3. The principle of virtual perturbations
3a. Forces and stresses

In order to construct the dynamic properties of the continuum upon this kinematic
scheme, we shall rely upon the notion of work. The totality of the forces and
stresses of all kinds which affect the continuum, because of its previous defor-
mation conditions, of its position [‘‘placement’’, GAM] in space or of some
external circumstances - initially considered as a whole without regard to their
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origin—is in one expression, since they achieve, in every virtual perturbation, a
‘‘virtual work’’dA; this is for us of primary importance and we define it as follows:
let dA be given as a linear homogeneous function of the totality of values of the
perturbation components inside the continuum; and let it be a scalar quantity
independent from the choice of the coordinate system. The coefficients, with which
each value of dx ; dy; dz enters in dA, are the definition parts of the single active
force system; the fact that p 612 these are independent from the virtual pertur-
bations (i.e., the linearity of dA) makes us think that, due to their smallness, these
perturbations do not modify the usual force effects exerted on each particle. In
order to cover the totality of the laws of continuum mechanics, it is necessary to
start from the most general expression of the already described types for dA, that
consists of the sum of the linear functions of the quantities dx; dy; dz and their
derivatives, in any single point of these expressions, on the line, surface and
volume integrals which may compose such an expression. We rather consider, at
the beginning, an expression - that we shall later elaborate—that consists of a
volume integral extending over the whole region V of the continuum, and also an
outer-surface integral extending over its surface S; this way, the first one contains a
linear form of the nine derivatives of dx; dy; dz with respect to x; y; z [Such
statements for the virtual work have been developed earlier, as obvious general-
isations of the formulas of point mechanics, for many special problems…..]:

dA ¼ dA1 þ dA2 þ dA3; ð1Þ

with

dA1 ¼
ZZZ

Vð Þ
q Xdxþ Ydyþ Zdzð ÞdV ½dA1 ¼

ZZZ
Vð Þ

qfidxidV �

dA2 ¼�
ZZZ

Vð Þ
Xx

odx

ox
þ Xy

ody

oy
þ . . .þ Zz

odz

oz

� 	
dV dA2 ¼ �

ZZZ
Vð Þ

rij dxið Þ;jdV

" #

dA3 ¼
ZZ

S

�Xdxþ �Ydyþ �Zdzð ÞdS dA3 ¼
ZZ

S

�tidxidS


 �
:

The fifteen coefficients present here, - factors of the already discussed pertur-
bation quantities—will be, for every deformation of the considered medium,
definite finite continuous functions of x; y; z or a; b; c, along with their derivatives,
everywhere, with the eventual exceptions of certain surfaces. The obvious meaning
of statement (1) then is that, in general, we will only take into consideration the
continuously distributed forces over space as well over singular surfaces and the
continuously distributed stresses.
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Initially, the first and last terms in dA are constructed in a very much analogous
way with the well known work expressions of point mechanics, except that the
factor present now is the mass of the volume element qdV (respectively the surface
element dS; so X; Y; Z are to be thought of as components of the acting forces on
the mass unit of the medium, and �X; �Y ; �Z as components of the forces acting per
unit surface on the outer surface, at the proper point. Since dx; dy; dz are the
Cartesian projections of a polar vector and since dA, as a scalar, remains invariant
under coordinate transformations, these forces are also polar vectors.

Actually, the integral dA2 is characteristic of continuum mechanics. The nine
coefficients Xx; . . .; Zz - in the known designation of Kirchhoff [1855, also works
1882, p.287] that measure the influence of the single determining parts of the
virtual deformation by the performed work, will be understood as the components
of the stress state at the point in question, calculated according to its influence
upon the unit volume. Their behaviour, during the coordinate transformations,
results from the remark that the nine derivatives odx=ox; . . .; odz=dz of the vector
components behave during orthogonal coordinate transformations like the nine
products of two vectors (a so-called dyad) [Here Hellinger refers to F. Klein,
Abraham, Gibbs and Wilson, Heun, and to Cayley’s matrix calculus; GAM]

X1:X2; . . .; Y1:Y2; . . .; Z1:Z2

p 614

while the bilinear combination Xx:odx=oxþ . . . remains invariant. Therefore, if we
want to speak of stress dyads, the stress components must be transformed again as
dyad components. It is possible to decompose any dyad in a (symmetric) com-
ponent consisting of six elements (a tensor triple [Cf. Voigt’s terminology;
Abraham in EmW IV-14, No.17])

Xx; Yy; Zz;
1
2

Yz þ Zy

� �
;
1
2

Zx þ Xzð Þ; 1
2

Xy þ Yx

� �
½r ijð Þ ¼

1
2

rij þ rji

� �
� ð2Þ

and as (skew symmetric) component of three elements

Zy � Yz;Xz � Zx; Yx � Xy ½r ij½ � ¼
1
2

rij � rji

� �
� ð20Þ

representing an axial vector. This splitting corresponds to the emphasis given in
Section 2 to the two separate statements (4) and (4’) of the virtual deformations of
the continuum, and when the integrands of dA2 are split in the same way

X
xyz;XYZð Þ

Xx
odx

ox
þ 1

2
Yz þ Zy

� � ody

oz
þ odz

oy

� 	
þ Zy � Yz

� � 1
2

odz

oy
� ody

oz

� 	� �

[where the indication below the summation sign means that the summing
expression consists of cyclical exchanges of x; y; z and X; Y; Z].
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What follows here in particular is that the six quantities (2) determine that part
of the stress that performs work in an infinitesimally small proper form change of
the continuum [the strains. GAM] and therefore the true elastic effects, while the
vector (2’) makes possible the determination of the part (that performs work), by
the virtual rotation of the volume elements, again without form change, and so the
rotation moment determined by the stress condition. Moreover, from the negative
sign in (1), it results that with positive Xx the performed work is positive even with
negative odx=dx, which is then measured as positive pressure.

p 615

In order to obtain finally from the statement (1) the meaning of the stress com-
ponent as surface forces [Cf. C.L. Navier, G. Green], we think of the part of the
calculated virtual work reached by the stresses inside a part VI of the continuum
delimited by the closed surface SI , i.e., the part of the integral dA2 extended over
VI ; if the stress components inside VI are all, without exception, continuous, then
by partial integration and application of the ‘‘Gauss theorem’’ (see EmW Chapter
IV-14, p.12), this goes over to

ZZZ
VI

X
xyz;XYZð Þ

oXx

ox
þ oXy

oy
þ oXz

oz

� 	
dxdV

þ
ZZ

SIð Þ

X
xyz;XYZð Þ

Xx cos nxþ Xy cos nyþ Xz cos nz
� �

dxdSI ;

where n means the rotated normal’s direction of the surface SI under VI at the
position of the element dSI . By comparison with (1), it follows that the stress
condition in VI performs the same virtual work, i.e., it acts exactly as if, next to the
volume forces in VI , upon the surface element dSI of SI , computed per unit surface,
we had in action the force

Xn ¼ Xx cos nxþ Xy cos nyþ Xz cos nz; ðX; Y; ZÞ ½�ti ¼ rijnj�: ð3Þ

This ‘‘pressure theorem’’ of Cauchy, by specialisation of the direction of n,
yields, as we know, the meaning of the nine components [Cf. Müller-Timpe in
EmW IV-23, No.3a; Helmholtz, 1902].

3b. Survey of the principle of virtual perturbations

Based on the constructions of the above notions, it is possible to transpose
immediately the Principle of virtual perturbations, governing the statics of dis-
crete mechanical systems to continuum mechanics: In a determined case of
deformation, a continuous medium, in which there are present certain volume
forces X. . . and outer surface forces �X. . . and a certain stress condition Xx. . ., is
then and only then in equilibrium when the total virtual work of these forces and
stresses for each virtual perturbation which is compatible with the conditions
somehow imposed on the continuum, vanish:
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ZZZ
Vð Þ

q
X

ðxyz;X;Y;ZÞ
Xdx�

X
ðxyz;XYZÞ

Xx
odx

ox
þ Xy

ody

oy
þ Xz

odz

oz

� 	8<
:

9=
;dV þ

ZZ
S

X
ðxyz;XYZÞ

�XdxdS ¼ 0:

ð4Þ
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Actually, J.L. Lagrange had already conducted this transformation, when he
established as the basis of his analytical mechanics the [John] Bernoulli principle
of virtual perturbations; for him, an obvious consequence of the validity of this
principle in the point mechanics, is its applicability in his available problems of
continuum mechanics, where he always preferred to represent the work expression
by a transformation of the limit of the discontinuous system out of or through
direct intuition. Ever since, in the further development of the bounding areas of
continuum mechanics people have shown a preference for the principle of virtual
perturbations; often, they also have, just like Lagrange, relied on the idea that the
continuum could be approached through a system of an infinite number of mass
points, and that, at the same time, all physical effects in the continuum could be
approached through equivalent effects in this approximate system; actually, it
seems that the axiomatic specification of this relationship which, for the con-
vertibility of these analogies, needs to postulate, above all, the necessary conti-
nuity requirements by strict deduction, does not seem as yet to have been obtained.
In the meantime, for continuum mechanics, we prefer and place on top as the
highest axiom the initially formulated principle itself. And we adopt this stand-
point so much more willingly when we consider that the representation of the
continuously extending media is much more natural than the abstract ‘‘mass
points’’ of the point mechanics [Recently, this view had been particularly sup-
ported by G. Hamel, 1908, p.350 - also Hamel’s textbook of 1912 where he gives a
complete axiomatics of continuum mechanics, that resolves a basic principle like
the one used here in a series of independent propositions]. The certainty of the
correctness of this axiom is based on one hand on the fact that such a statement
corresponds to our general ideas and thinking habits about physics, but mainly on
the fact that it is appropriate enough to sufficiently represent the facts of
experience.

3c. Application to continuously deformable continua

The well known formal operations of the calculus of variation show how easily we
can, in many cases, transform the principle of virtual perturbations in a great
number of equations between forces and stresses. As a start, if we consider only as
typical the sufficiently continuous deformable medium, which is in no way
restricted by side conditions, then the condition (4) for every system of continuous
functions dx; dy; dz is fulfilled. The transformation of (4) by partial integration, if
the forces, stresses and their partial derivatives are always continuous in V, yields
then the equations
p 617
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1) at every point in the domain V

oXx

ox
þ oXy

oy
þ oXz

oz
þ qX ¼ 0 ðX; Y; ZÞ orij

oxj
þ qfi ¼ 0


 �
ð5aÞ

2) at every point of the bounding surface S with outer pointing normal directions n

Xx cos nxþ Xy cos nyþ Xz cos nz ¼ �X rijnj ¼ �ti
� �

: ð5bÞ

Therefore, along with the boundary surface condition, we obtain the so-called
‘‘stress equations’’, that offer necessary and sufficient conditions, so that a deter-
mined system of forces and stresses acting at a certain position in a freely
deformable continuum be in equilibrium [These equations are similar to those of
A.L. Cauchy, 1828.] Certainly, these conditions are by no means sufficient for us to
determine the stress and force components: in order to do this we must introduce the
relations that we will treat later, and which emphasize the dependence of the forces
and stresses from the actually existing deformation or from other external sources
(Cf. Stäkel in EmW IV-6, No.26, and Müller-Timpe in EmW IV-23, No.3b).

In (4) and (5) the independent variable coordinates are in the deformed con-
figuration [Hellinger uses ‘‘condition’’. GAM] of the continuum, and the force and
stress components find their evident meaning as effects upon mass units and with
respect to the surface unit of the medium in a deformed configuration. In contrast
to this, following S.D. Poisson’s works [Poisson 1829, 1831; This difference has
often been overlooked, since at closer examination of infinitesimally small
deformations of a stressless quiet state, it actually vanishes so it has only been
shown to advantage in the development of the theory of elasticity with finite
deformations] people often use a; b; c, interpreted as coordinates at the initial site
of the medium, as independent variables; it is true that this leads to components of
lesser immediate physical importance, but from the analytical point of view it is
more convenient for many purposes. This happens namely when we set [This is
Nanson’s formula in modern treatments. GAM]

kdS0 ¼ dS; ð6Þ

and Equation (4) becomes

ZZZ
V0ð Þ

q0

X
ðxyz;X;Y ;ZÞ

Xdx�
X

ðxyz;XYZÞ
Xa

odx

oa
þ Xb

ody

ob
þ Xc

odz

ocz

� 	8<
:

9=
;dV0 þ

ZZ
S0

X
ðxyz;XYZÞ

�XkdxdS0 ¼ 0

ð7Þ
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and therefore

D:X ¼ Xa
ox

oa
þ Xb

oy

ob
þ Xc

oz

oc
ðX; Y ; Z; x; y; zÞ rij ¼ J�1TK

i

oxj

oXK


 �
: ð8Þ

Moreover, as it follows by resolution and comparison with (3), Xa; Ya; Za, the
components of the surface forces acting upon an element of the surface a ¼ const:,
thanks to the stress condition in the material lying to the side of increasing a, are
calculated upon the unit surface in the actual position in the space a� b� c [CF.
Müller-Timpe in EmW IV-23, No.9, and also the elaborate presentation (pre-
dicting of course the symmetry of the stress dyad) by E. ad F. Cosserat, 1896]. Just
like (5a) and (5b) result from (4), from (7) there results a new form of the equi-
librium conditions:

oXa

oa
þ oXb

ob
þ oXc

oc
þ q0X ¼ 0 in V0ðX; Y ; ZÞ ½

o

oXK
TK
:i þ q0fi ¼ 0� ð9aÞ

and

Xa cos n0aþ Xb cos n0bþ Xc cos n0c ¼ k�X on S0; ðX; Y ; ZÞ ½NKTK
i ¼ k�ti�; ð9bÞ

where n0 means the outer normal direction to the surface element dS0 in the space
a� b� c.

[In modern treatments, Equations (9a) and (9b) are referred to as the Piola-
Kirchhoff format of the equilibrium equations. GAM].

3d. Relations with rigid bodies

It is also possible to derive the equilibrium conditions (5) in a somewhat different
manner, from the principle (4). We obtain then the relationship with the ‘‘Rigid-
ification principle’’ of A.L. Cauchy [cf. Cauchy, 1822 and 1828; Stäkel in EmW
IV-6, No.26, Müller-Timpe in EmW, IV-23, No.3b], often used in the composition
of his works. That is, each piece cut off the deformed continuum, under the
influence of the intervening volume forces on its inside and of the intervening
forces (3) on its outer surface, must be like a rigid body in equilibrium. To this
purpose, we only need to consider certain discontinuous perturbations which, of
course, will destroy the coherence of the continuously deformable continuum and
which initially do not need to make dA vanish; but we can succeed if we approach
it through a group of continuous virtual perturbations.

p 619

So we approach a perturbation, which has in a domain V1 of V constant values
dx ¼ a; dy ¼ b; dz ¼ c with the boundary surface S1, but outside V1 it vanishes
(i.e., a translation of the domain V1) by steady virtual perturbations, while V1 will
be surrounded by any small domain V2; inside this dx; dy; dz of a; b; c decrease
constantly to zero. For such a virtual perturbation it follows from (4):
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ZZZ
V1ð Þ

q Xaþ Ybþ Zcð ÞdV1 þ
ZZ

S1ð Þ
Xnaþ Ynbþ Zncð ÞdS1 þ

ZZZ
V2ð Þ

X
xyz;XYZð Þ

qX þ oXx

ox
þ oXy

oy
þ oXz

oz

� 	
dx dV2 ¼ 0

where n denotes a component in dS1 of V1. If we let V2 become smaller and
smaller, then the last integral will become sufficiently small as the X; Xx and their
derivatives remain finite and since a; b; c are whichever, there result the three
equations

ZZZ
V1ð Þ

qXdV1 þ
ZZ

S1ð Þ
XndS1 ¼ 0 ðX; Y ; ZÞ: ð10Þ

These are exactly the equations, in the above mentioned sense - through the
application of the so-called strong-point principle (‘‘Schwerpunktsatzes’’) - that
govern the piece V1 seen as rigid and cut out of the continuum. Because of the
arbitrariness of the domain V1, it is easy to obtain from (10) the equations (5a) (Cf.
Müller-Timpe in EmW, IV-23m, p.23).

If we proceed in the same manner with a rigid rotation of a part of domain V1

with the components qz� ry; rx� pz; py� qx, then we have the following
equations:
ZZZ

V1ð Þ
q Zy� Yzð Þ þ Yz � Zy

� �
dV1 þ

ZZ
S1ð Þ

Zny� Ynzð Þ dS1 ¼ 0; X; Y; ZÞð Þ

ð11Þ

This can only fully agree with the equilibrium of a domain V1 as a rigid body, if
we set opposite to the moments of the forces X; Y; Z, distributed in space, and to
the surface forces Xn ; Yn; Zn, another rotation moment affecting directly the
volume element, calculated as the vector element (2’) of the stress dyad. If then we
postulate the surface part in the usual form, so that the sum of moments of the
volume and surface forces vanishes, then we obtain immediately the symmetry of
the stress dyad [Hamel has included this requirement in his axiomatics of the
mechanics of volume elements under the expression ‘‘Boltzmann’s axiom’’].

p 620

In close relationship with this fact, there is another interpretation of the principle
of virtual rotations which, from the outset, considers as given only the real force,
the mass forces X; Y; Z and the surface forces�X; �Y ; �Z; it is the following easily
improved formulation of G. Piola [Modena Mem., 1848]: For the equilibrium it is
necessary that the virtual work of the specified forces

ZZZ
Vð Þ

Xdxþ Ydyþ Zdzð ÞdVþ
ZZ

Sð Þ
�Xdxþ �Ydyþ �Zdzð ÞdS

vanishes for all pure translational virtual perturbations of the entire domain
V. These auxiliary conditions for the perturbations are mainly expressed by the
nine partial differential equations
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odx

ox
¼ 0;

odx

oy
¼ 0; . . .;

odz

oz
¼ 0:

then, according to the well known calculation of variations, we can introduce nine
necessary Lagrangian factors [multipliers, GAM] �Xx;�Xy; . . .;�Zz, and thus we
obtain exactly the equations (4) of the former principle, proving this way the
components of the stress dyad as Lagrange multipliers of certain rigidity condi-
tions. Of course, they are not determined through this variational principle; they
rather play exactly the same role as the internal stresses in the static undetermined
problem of the mechanics of rigid bodies [Cf. also Stäckel in EmW IV-6, no.26,
p. 550, and Müller-Timpe in EmW IV-23, no.3b, p.24].

If we actually impose the same requirement for all rigid motions of V (instead
of for translations only), then we obtain exactly the Piola statement repeated in
Vol. IV that according to the six auxiliary conditions it yields only six Lagrangian
multipliers and so a symmetric stress dyad.

3e Two- and one-dimensional continua in three-dimensional space

All the foregoing statements can be immediately proved for the two- and one-
dimensional continua embedded in a three-dimensional space, as it was mentioned
at the end of Paragraph 2(32). The only modification is that the dimension of the
integration domain changes, and that instead of the derivatives of the virtual
perturbations along the three space coordinates, these enter along the two or one
coordinates, respectively, inside the deformed medium.

p 621

To begin with, let us consider in detail a two-dimensional continuum that, in the
deformed configuration, forms a coherent surface-part S with a border curve C; let
there be upon S - for the sake of simplicity – a system of orthogonal parameters
u and v that define the length and surface elements given by

ds2 ¼ E du2 þ G dv2; dS ¼ h du dv; h ¼
ffiffiffiffiffiffiffi
EG
p

;

and q denotes the surface density of the mass over S. Then we consider the virtual
work

dA ¼
ZZ

Sð Þ

X
ðxyz;XYZÞ

qXdx� Xuffiffiffiffi
E
p odx

ou
þ Xvffiffiffiffi

G
p odx

ov

� 	� �
dSþ

Z

Cð Þ

X
ðxyz;XYZÞ

�X dx ds:

ð12Þ

Here X; Y; Z and �X; �Y; �Z mean the components of the force attached to the
mass unit over S, respectively to the length unit along C; over the surface Xu; . . .
permit the development of expressions very analogous to the Xx; . . . On the one
hand, they produce certain forces attached to the mass distributed over S, and on
the other, a stress condition prevailing over S, so that, thanks to the stress con-
dition, a force
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Xt ¼ Xu cos t; uð Þ þ Xv cos t; vð Þ ð13Þ

is exerted on each line element lying along C on one side per unit length; here t
means the normals’ orientation of the element.

For media allowing all kinds of continuous perturbations, it is possible to
resolve the condition dA ¼ 0 of the principle of virtual perturbations into six
equilibrium conditions; we transform then dA by the well-known methods of
partial integration:

1
h

o
ffiffiffiffiffiffiffiffiffi
GXu
p

ou
þ o

ffiffiffiffiffiffiffiffi
EXv
p

ov

� 	
þ qX ¼ 0 on S; ðX; Y; ZÞ ð14aÞ

Xu cos tuþ Xv cos tv ¼ �X along C; ðX; Y ; ZÞ: ð14bÞ

Here t means the orientation standing normally to C in the surface S, and turned
away from the surface-part under consideration. But it is also easy to transform
these equations to the initial parameters a; b, when from the transformed equations
of the virtual work we obtain

p 622

dA ¼
ZZ

S0ð Þ

X
ðxyz;XYZÞ

q0X � Xa
odx

oa
þ Xb

odx

ob

� 	� �
da dbþ

Z

C0ð Þ

X
xyz;XYZð Þ

�Xdx
ds

ds0
ds0

ð15Þ

and so

h
o u; vð Þ
o a; bð ÞXu ¼ Xa

ou

oa
þ Xb

ou

ob
; ðX; Y; Z; u; vÞ: ð16Þ

By comparing with (13) it follows that Xa; . . ., thanks to the stress condition,
means the forces acting on a line element a ¼ const:; b ¼ const calculated over
the length unit in the a� b domain.

In one-dimensional continua things are presented in much the same way [CF. E.
and F. Cosserat, Corps déformables, Chap. II, as well as K. Heun in EmW IV-11,
No.19 and P. Stäckel in EmW IV-6, No. 23]. If s 0� s � lð Þ is the length of the arc
on the curve built in the deformed shape, then we get

dA ¼
Z l

0

X
xyz;XYZð Þ

qXdx� Xs
odx

os

� �
ds þ

X
xyz;XYZð Þ

�Xds

2
4

3
5
������
s¼l

s¼0

; ð17Þ

where the meaning of the various quantities is given much as usual, and by
arbitrary continuous variations the equilibrium conditions read as
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dXs

ds
þ qX ¼ 0 for 0� s � l; ðX; Y ; ZÞ ð18aÞ

Xs ¼ �X at s ¼ 0; s ¼ l; ðX; Y; ZÞ: ð18bÞ

Here also, it is sometimes advisable to introduce the initial parameter a as
independent, by using the formula

dA ¼
Z l0

0

X
xyz;XYZð Þ

q0Xdx� Xa
odx

os

� �
daþ

X
xyz;XYZð Þ

�Xds

2
4

3
5
������
a¼l0

a¼0

; Xs
ds

da
¼ Xa: ð19Þ

4. Extensions of the principle of virtual perturbations
4a. Presence of higher perturbation derivatives (partial translation only)

It is possible to add a whole series of extensions to the statement of the principle of
virtual perturbations formulated in Section 3, which allows now, to the greatest
extent, to include all the laws concerning continuum mechanics. The first thing
consists in admitting in the virtual work the existence of a linear form of the
eighteen [spatial] second-order derivatives of the virtual perturbations, e.g.,
o2dx=ox2, per element of volume. In fact, we have introduced here some problems
related to these expressions, where it would seem necessary to let the energy
functions depend on the second derivatives of the deformation functions. To begin
with, this applies to the one- and two-dimensional continua considered (strings and
plates [Cf. the discussion of the statement of the potential in Paragraphs 7a, p.645
and also 8a, p.660].

[Here it seems that Hellinger was not aware of such developments by Le Roux
in France in 1911–1913; Cf. Maugin [38], Chapter 13. GAM.].

……
……

4b. Media with oriented particles (not translated here)

[In this section Hellinger generalizes the presentation of foregoing sections to the
case including the Cosserats’ trihedron. He essentially relies on the works of W.
Voigt (complementing S.D. Poisson’s original idea), the Cosserats, J. Larmor, and
K. Heun in EmW, IV-11, Nos. 19 and 20. He also considers the special cases of
two- and one- dimensional bodies. GAM].

……
……

p 627

4c. Presence of side conditions

Until now the principle of virtual perturbations has been used mainly in those
cases where the continuum was continuously deformable, in every possible way.
But in the formulation of the principle there are immediately included such
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continua whose mobility is restricted by all kinds of conditions; actually, some of
the first problems treated by Lagrange [Cf. his Mécanique Analytique, 1st part,
Section V, Chapter III (non-extensible strings), Section VIII (incompressible flu-
ids).] concern this very case. These conditions are expressed in the first place by
equations for the functions (1) and (9) of Section 2, describing the deformations.
In these, besides their functions as such, we can also have their derivatives with
respect to a; b; c. The equation

x a; b; c; x; y; z; xa; . . .; zc; k; l; m; ka; . . .; mcð Þ ¼ 0; xa ¼
o x

oa
. . . ð13Þ

is then typical for every point in the body V0. It is then possible to set similar
expressions for parts of the body, bounding surfaces, etc. In any case, the possible
deformations and the possible rotations (if needed) of the added [Cosserats’] tri-
hedron restricted in this way, or are required to satisfy definite relations between
rotations of the trihedron and deformation (for example, a certain orientation of the
trihedron relative to space or the medium; see above p. 626). The presence of
a; b; c in (13) means that the type of conditions may change from one particle to
another. If then we apply to (13) the varied deformation, Section 2, (3) or (10), we
obtain through differentiation with respect to r

p 628

dx ¼
X
x;y;zð Þ

ox
ox

dxþ ox
oxa

dxa þ . . .

� 	
þ
X
k;l;mð Þ

ox
ok

dkþ oxa

oka
dka þ . . .

� 	
¼ 0

ð14Þ

and since according to Section 2, p.608, the dxa. . . agree with the derivatives of
dx; . . ., thereexists here a linear homogeneous condition for virtual perturbations.

So the principle of virtual perturbations requires that dA vanishes for all
functions dx; . . . satisfying (14). We can then if, by chance equations (14) do not
allow the elimination of one of the perturbation components, replace it by the
introduction of a Lagrange multiplier [This treatment was first introduced by
Lagrange in his Mécanique Analytique] k in such a way that

dAþ
ZZZ

Vð Þ
kdx dV ¼ 0 for all dx; . . .; ð15Þ

what corresponds exactly to the original principle. Eventually, when (13) applies
only at isolated surfaces and curves, or actually the continuum fills only one
surface or curve, instead of space integrals in (15) we have then surface or curve
integrals. The interpretation of the multiplier k as a ‘‘pressure’’ will be discussed
later on (Paragraph 8b, p. 662).

Finally, we should also consider the possibility, which is also well-known from
the mechanics of discrete systems, that there can occur ‘‘one-sided [‘‘unilateral’’ in
modern jargon. GAM] accompanying side conditions [constraints. GAM] in the
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form of inequalities - e.g., let the boundary surfaces of the continuum in their
motion be restricted only on one side: let the inside (inner) deformation quantities
be subjected to certain inequalities (somehow we think of bodies that allow no
compression beyond a certain boundary – or some similar arrangement). Then the
equilibrium will be given once more by Fourier’s principle of virtual perturbations
that, namely, for every system of virtual perturbations satisfying the side condi-
tions, the virtual work is negative or zero:

dA� 0:

[CF. Voss in the EmW, IV-1, No. 54; formulation by Gauss in 1830 regarding
from the start the extension of continua].

p 629

12.9 The Basic Laws of Kinetics [Dynamics]

5a. The equations of motion of the continuum

The task of kinetics is to establish which are the motions of which the continuum
is the object, as considered until now, when, somehow, certain force actions are
exerted on it in time or, on the opposite, which are the actions necessary for the
maintenance of a certain motion. At the same time, the action components are
thought of, like in statics, as coefficients of the work expression dA, while the
manner in which they depend on the function of motion will remain initially open.

At the beginning we will only be concerned with the ordinary media examined
in Section 3. The transition from statics to kinetics can be made exactly as in the
mechanics of discrete systems with the help of d’Alembert’s principle (see Voss in
the EmW IV-1, No.36); Passing to continuous systems is almost automatic if, as
we did in statics (p. 616), we let ourselves be led by the idea of a limit transition to
the continuum, by direct comparison, in the sense of what happens in the analogy
between systems of points and continua. Lagrange (cf. Méc. Anal., 2nd part,
Section XI, §1) also, when treating the problems of hydrodynamics, considered it
form the same point of view. It is possible then to express in terms corresponding
to d’Alembert’s formulation (Traité de dynamique, Paris, 1743; Voss in the EmW
IV-1, p.77) for the general mechanics of continua, the following principle: If we
consider the forces and stresses acting during the motion at a definite instant of
time on the volume V0 of the medium, then they are found to be in static equi-
librium, in the earlier sense, in so far as we attach to them, at any time, additional
forces whose components, calculated per unit mass of the continuum, are equal, by
comparison, to the components of the acceleration:
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� o2x

ot2
¼ �x00;� o 2y

ot2
¼ �y00;� o2z

o t2
¼ �z00:

Even if, in many ways, it proves advisable to place this principle at the summit
of kinetics, still the question remains open, in what independent constituents it can
be decomposed, and to what extent these are independent from the axioms of
statics – a question we faced in exactly the same manner in the mechanics of
discrete systems.

p 630

Let us remark briefly that this D’Alembert principle contains essentially, on one
hand, a statement equivalent to the second law of Newton, i.e., that the acceler-
ation of a volume element considered as free, is the same as the sum of all the
forces acting on it; but, on the other hand – something that Hamel (1908, p. 354;
also his Elementare Mechanik, p. 306ff) has thoroughly proven – i.e., that one of
these first constitutive elements contains, logically, perfectly independent
expressions: if the forces acting on a continuum are such the ensuing accelerations
on each particle, according to the second Newtonian law, are compatible with the
kinematic conditions of the system, then these accelerations also really occur. If
we cease to introduce the principle of virtual perturbations as an equilibrium
condition in the D’Alembert principle, then we obtain the variational principle
used by Lagrange (Méc. Anal., 2nd part, Section II) as the basic formulation of
dynamics. We imagine the motion for every instant t in Section 3, (6), on which is
superimposed an infinitesimally small virtual perturbation compatible with the
somehow constituting kinematic conditions at the instant t for the continuum; then
the virtual work performed by the sustaining forces must always vanish:

�
ZZZ

Vð Þ
q x00dxþ y00dyþ z00dzð Þ dV þ dA ¼ 0 ð1Þ

and this for every instant of time t in the course of the motion. In the case of a
rather continuously deformable body, the equations

qx00 ¼ qX þ oXx

ox
þ oXy

oy
þ oXz

oz
; ðx; y; z; X; Y ; ZÞ ð2Þ

follow; in the same way as in Paragraph 3c, as the equations of motion at any point
of the continuum and every time, while the boundary conditions (5b) of Sect. 3
persist for every time t. On the other hand, these equations define the motion only
when the relationship between the forces and stress components and the motion
functions is established [i.e., the constitutive equations, GAM].

Concerning now the kinematic side conditions, we refer exclusively to the case
of so-called holonomic conditions which contain no time derivatives of the motion
functions [If we try to handle the problems with non-holonomic conditions by
means of d’Alembert’s principle, then we must foresee in continuum mechanics,
just like in point mechanics, that the varied motion for small r satisfies the
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condition – and even more, condition equations for perturbations will clearly be
formally written by replacing the time differentiation by an operation; see below
p. 633). Cf. Voss in the EmW, IV-1, Nos. 35 and 38, and bibliography there,
particularly works by Hölder in 1896 and by Hamel in 1904]. Such a condition
differs from the one considered in Paragraph 4c only through the explicit presence
of t:

xða; b; c; x; y; z; xa; . . .; zc; tÞ ¼ 0: ð3Þ

p 631

For the virtual perturbations we shall consider no only the form of this condition in
time t; the varied position (for any small r) must satisfy the condition (3) for the
considered fixed value of t, so that through differentiation with respect to r
(‘‘variation of motion at fixed t’’) there follows

X
xyzð Þ

ox
ox

dxþ
X

xyz;abcð Þ

ox
oxa

dxa ¼ 0 for every t: ð30Þ

From this we obtain the equations of motion in the sense of Paragraph 4c

5b. Transition to the so-called Hamiltonian principle

Now we can also convert some very similar well known developments of point
mechanics of the d’Alembert principle into variational principles determining the
motion. The main object here is to transform the contributions due to the motion
(the sustaining forces) in the variation of a unique determined expression for each
motion path.

As with Lagrange [Méc. Anal., 2nd part, Section IV, art. 3], the basic identities
are

x00dx ¼ d

dt
x0:dxð Þ � d

1
2

x02
� 	

; ðx; y; zÞ

which follow through repeated differentiation from Section 2, (6), with respect to
the independent variables r and t. If we carry this into (1), and considering that the
operation symbols d/dt and d can be taken out of the integrals, regardless of the
factor q, since as according to the introduction of a; b; c as integration vari-
ables, the integration domain V0 as well as the remaining factor q0 are independent
from r and t, we obtain

� d

dt

ZZZ
Vð Þ

q
X
xyzð Þ

x0dx:dV þ dT þ dA ¼ 0 ð4Þ

introducing in this way, by abbreviation, the total kinetic energy

p 632
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T ¼ 1
2

ZZZ
V0ð Þ

q0

X
xyzÞð Þ

x02dV0 ¼
1
2

ZZZ
V0ð Þ

q
X
xyzð Þ

x02dV: ð5Þ

Equation (4) is the equation used by G. Hamel [Zeit. Math. Phys. 50(1904),
p.14] and K. Heun [Lehrbuch der Mechanik, Vol.1, Leipzig, 1906) and in EmW,
IV-11, No. 11] under the name of Lagrangian central equation, as the basis of the
mechanics of systems with a finite number of degrees of freedom, which is then
valid in the same sense in continuum mechanics [Cf. Heun in the EmW IV-11,
Nos. 19-21)], and is completely equivalent to (1): The motion takes place so that
for every virtual perturbation compatible with the somehow existing conditions at
every instant, the time derivative of the virtual work of the quantities of motion
(‘‘impulses’’) x0; y0; z0 per unit mass, is equal to the sum of the variations of the
kinetic energy and of the virtual work of the totality of the actions of forces [if in
addition we also vary the time parameter, then it becomes possible to carry over
the relation indicated by G. Hamel (Math. Ann., 59 (1904) p. 423, and K, Heun as
general central equation to continuum mechanics; cf. Heun, in EmW, IV-11, Nos.
19-21].

If we consider now the motion in the interval of time t0� t� t1, then (4) is valid
for every instant, and through integration with respect to t with the assumption that
the virtual perturbations vanish at the limits of the interval, it yields the so-called
Hamiltonian principle [This principle, after it became typical of point mechanics,
had been used very early for different specialized fields of continuum mechanics in
many different manners (see Voss EmW IV-1, No.42); we can also compare, apart
from the bibliography to be mentioned later for each discipline, A. Walter, Diss.
Berlin, 1868, as well as the comprehensive presentations in Kirchhoff’s Mechanik,
p.117ff and W. Voigt’s Kompendium, Vol. I, p. 227ff.]: If over the motion of the
continuum we superimpose some virtual perturbations compatible with the existing
conditions, which vanish exactly at t0 and t1, then the time integral of the sum of
virtual work and the variation of the kinetic energy over the interval t0; t1, vanishes
also:

Z t1

t0

dT þ dAð Þ dt ¼ 0: ð6Þ

Since in (6) the virtual perturbations for every time interval can be chosen
arbitrarily, then it is all the more easy to conclude from (6), from (4) or from (1)
that these principles are fully equivalent.

From this principle it is further possible to derive directly the principle of least
action in its various forms [As an example, the considerations of O. Hölder in ‘‘Die
Prinzipien von Hamilton und Maupertuis’’, Gött. Nach. Math.-Phys. Kl, 1996,
p. 122ff, can be immediately extended to continua], but it seems that – regardless
of those cases referring to systems with finitely many degrees of freedom – we
have not as yet found any substantial application for it.
p 633
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5c. The principle of least constraint

It is also possible to transfer the inertial contribution of the d’Alembert principle,
without integration in time, in the variation, that depends on an expression for each
motion condition, determined only from the condition at instant t, where of course
the occurrence of second-order time derivatives must be allowed. This way was
created the Gauss principle of least constraint [CF. Gauss’s Werke V, p. 23. The
first analytic formulation of this principle, given only orally by Gauss, was pub-
lished by R. Lipschitz, J. für Math., 82 (1877), p.321ff; and a little later by J.W.
Gibbs in Amer. Journ. 2 (1879) p.49; for further bibliography see Voss in EmW
IV-1, No. 39], that recently A. von Brill has chosen as the starting point for a
systematic treatment of continuum mechanics (Cf. A. von Brill, 1909).

To reach this principle, we take the virtual perturbation of a group of varied
motions Section 2, (6), in the following particular way: Each particle a; b; c will
occupy at time t the same position and the same velocity as in the real motion, i.e.,
the following will be valid for each value of t:

dx a; b; c; tð Þ ¼ 0; dx0 a; b; c; tð Þ ¼ 0; ðx; y; zÞ ð7Þ

while the variations dx00; dy00 ; dz00 of the accelerations are different from zero. It
is now possible to use these three functions in every case as defining parts of the
perturbations happening in (1). In the case of a freely deformable continuum, this
is evident. But in the conditions of the form (3), this will yield through double
differentiation with respect to time,

X
ðxyzÞ

ox
ox

x00 þ
X

xyz;abcð Þ

ox
oxa

x00a þ . . . ¼ 0;

p 634

where the known functions of x; . . .; xa; . . ., and their first time derivatives are
indicated by the ellipsis. By variation, i.e., differentiation with respect to r, thanks
to (7) at the chosen time t, there follows

X
ðxyzÞ

ox
ox

dx00 þ
X

xyz;abcð Þ

ox
oxa

dx00a þ . . . ¼ 0;

and actually this is exactly the conditions represented above for dx. The intro-
duction of the functions dx00; . . . in (1) is then permitted and it yields, with a light
reformulation, the following new principle [Cf. Brill, op. cit.]: If we alter the real
motion of a continuum at a definite instant in such a way that the position and
velocity of every one particle remain preserved save that the acceleration of the
existing side conditions are modified accordingly, then the following integral sums
always vanish:
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�d
ZZZ

Vð Þ

1
2

q
X
xyzð Þ

x002þ
ZZZ

Vð Þ
q
X
XYZð Þ

Xdx00 �
X
XYZð Þ

Xx
odx00

ox

0
@

1
AdV

þ
ZZ

Sð Þ

X
XYZð Þ

�Xdx00dS

¼ 0: ð8Þ

This can be transformed to a Gaussian form

�d
ZZZ

Vð Þ

1
2
q
X

xyz;XYZð Þ
x00 � Xð Þ2dV �

ZZZ
Vð Þ

X
XYZ;xyzð Þ

Xx
odx00

ox

0
@

1
AdV

þ
ZZ

Sð Þ

X
XYZð Þ

�Xdx00dS ¼ 0: ð80Þ

The main significance of this principle, just like in point mechanics, consists in
the fact that it remains valid and fully unaltered also in systems with non-holo-
nomic side conditions. If there exists such a condition, in which next to the motion
functions and their spatial derivatives also occur the first time differential
quotients:

xða; b; c; x; y; z; xa; . . .; zc; x0; y0z0; x0a; . . .; z0c; tÞ ¼ 0

Then through single differentiation with respect to t, and by variation (differ-
entiation with respect to r) we obtain, thanks to (7)

X
ðxyzÞ

ox
ox0

dx00 þ
X

xyz;abcð Þ

ox
ox0a

dx00a þ . . . ¼ 0

which can be no more added as a side condition.
If x is especially linear in the velocities x0; . . .; x0a; . . .; then the result is sub-

stantially identical with the form in which, often, one does not consider the
d’Alembert principle with non-holonomic conditions and in so doing, instead of
the simple virtual perturbations introduced only formally, there also occur the
acceleration variations.

A further advantage of this principle as compared to the d’Alembertian one,
which however does not seem to have been exploited until now in continuum
mechanics, consists in that it offers an appropriate basis even for the treatment of
dynamic problems with the inequality type of side conditions: all we need to do is
to require that the expression (8) for all admissible variations of the acceleration in
agreement with the side condition at instant t, with fixed position and velocity of
the individual particles, be smaller or equal to zero, exactly like Gauss has already
remarked in point mechanics [Cf. Gauss, Werke, Vol. V, p.27].

[The rest of Hellinger’s contribution is not translated here].
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