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Aims and Scope

The fundamental questions arising in mechanics are: Why? How? and How much?
The aim of this series is to provide lucid accounts written by authoritative
researchers giving vision and insight in answering these questions on the subject of
mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it
includes the foundation of mechanics; variational formulations; computational
mechanics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations
of solids and structures; dynamical systems and chaos; the theories of elasticity,
plasticity and viscoelasticity; composite materials; rods, beams, shells and mem-
branes; structural control and stability; soils, rocks and geomechanics; fracture;
tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts
are monographs defining the current state of the field; others are accessible to final
year undergraduates; but essentially the emphasis is on readability and clarity.
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Preface

It is not by one way alone that we can arrive at so sublime a mystery
(attributed to Quintus Aurelius Symmachus, 384)

Conceived as a series of more or less autonomous essays, this book exposes the
initial developments of continuum thermo-mechanics in a post-Newtonian period
extending from the creative works of the Bernoullis to the First World War, i.e.,
roughly during first the ‘‘Age of reason’’ and next the ‘‘Birth of the modern
world.’’ The emphasis is rightly placed on contributions from the ‘‘Continental’’
scientists (the Bernoulli family, Euler, d’Alembert, Lagrange, Cauchy, Piola,
Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq,
the Cosserat brothers, Caratheodory) in competition with their British peers
(Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main
breakthroughs as well as the secondary ones. It highlights the role of scientists who
left essential prints in this history of scientific ideas. It shows how the formidable
developments that blossomed in the twentieth century (and perused in a previous
book of the author: ‘‘Continuum Mechanics Through the Twentieth Century,’’
Springer SMIA series, Dordrecht, 2013) found rich compost in the constructive
foundational achievements of the eighteenth and nineteenth centuries. The pre-
WWI situation is well summarized by a thorough analysis of treatises (Appell,
Hellinger) published at that time. English translations of most critical texts in
French or German are given for the benefit of the readers.

Heartfelt thanks go to Professor G. M. L. Gladwell, Editor-in-Chief, who again
welcomed a book by the author in his formidable series, to Nathalie Jacobs and
Cynthia Feenstra for their friendly editing at Springer in Dordrecht, and to the
technical team at SPS in Chennai for its professional expertise. Personal thanks are
due to Professor James Casey in Berkeley, Professor Carmine Trimarco in Pisa,
and Dr. Martine Rousseau in Paris for offering a friendly constructive criticism of
several essays (in particular, on Cauchy, Piola and the Cosserats), and, last but not
least, to the home linguist, Eleni, whose incommensurable expertise in past and
modern European languages was instrumental in the writing of this book.

Paris, March 2014 Gérard A. Maugin
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Chapter 1
General Introduction: About the Contents
and Form of this Book

Abstract This general introduction gives the motivation that led the author to
write this book. It provides a general overview of the contents while justifying the
peculiar choice of the various essays that reconstruct the history oriented exami-
nation of the most fundamental developments from the early eighteenth century to
the dawn of the twentieth century. It also gives essential elements of a relevant
bibliography concerning the main actors of our play.

In the early 1990s, my wife—who was then a freelance translator for the European
Union in Luxemburg and Brussels—and I conceived the following project. Having
remarked that many historians of science and epistemologists in the English-
speaking world knew less and less foreign languages, we thought of providing an
English translation of some landmark scientific texts published before World War
One (WWI) in French, German and Italian.1,2 The subject matter would be the

1 The reader must know that in the nineteenth century all English scientists knew French and/or
German. Also, most American scientists had received a classical education (with Latin and
Greek) in good colleges. Even much more recently, when I was a graduate student at Princeton in
the late 1960s, I had to pass exams in two foreign languages for my PhD (I took French and
German). These obligations have disappeared (or Chinese and Russian have become more
popular). Obviously, most papers are now published in English and many books in English are
published by non English speakers or are translated from other languages, scientific quality
obliged.
2 In the late seventeenth century and the eighteenth century, the international languages were
Latin and French. Swiss scientists such as the Bernoullis could write in French or Latin, Euler
could communicate in French, German and Latin. Lagrange could obviously communicate in
both Italian and French. The French, as usual, had a difficulty with foreign languages, being
convinced of the superiority of their own language. An exception was Voltaire who had spent
some (forced) time in England, but his mistress Emilie du Châtelet translated Newton’s Principia
from the Latin version. English was not practiced outside the UK and the recent American
colonies. Newton could only communicate in Latin with foreign scientist visitors such as Abbé
(Antonio) Conti during the dispute about the invention of differential calculus by Newton and
Leibniz; all this to say that a basic knowledge of Latin is necessary to study the primary sources
of the period.
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thermo-mechanics of continua from the eighteenth century to WWI.3 The original
selection of texts comprised texts by d’Alembert, Lagrange, Cauchy, Piola,
Kirchhoff, Duhem, the Cosserat brothers, Caratheodory, and Hellinger. We started
to work on elements of translation from some of these texts. But our occupations,
especially mine with my intense works on configurational forces and heavy
administrative duties as Head of a large institute at the University Pierre et Marie
Curie, hindered any rapid progress in this project.

In the years 2010–2012 I wrote a kind of short historical perspective of the
developments of continuum thermo-mechanics in the second half of the twentieth
century (cf. [42]) which I had witnessed and contributed to actively. To introduce the
subject I had first to review succinctly what had been achieved in the two foregoing
centuries. I started to write short essays on different French scientists (Cauchy,
Duhamel, the Cosserat brothers), and this rekindled my interest in the old project of
the 1990s. But, in the mean time, the whole landscape had evolved drastically.
In particular, English translations had been produced by other people for the relevant
works of d’Alembert [16], Lagrange [34], Duhem [19], Caratheodory [11], and
the Cosserats [43], and an English translation from the Italian of Piola’s collected
works is in progress (cf. [46]). Only Cauchy, Duhamel, Kirchhoff, and Hellinger
remained non-translated into English. This completely remodelled my strategy
which has resulted in the present series of essays that now collectively contribute to a
rather complete, albeit condensed, historical view of the development of continuum
thermo-mechanics from the early eighteenth century to WWI.

The essays in this volume follow the logic of the flow of time. Most of the
essays concern the nineteenth century. But the first essay deals with the devel-
opment of main ideas in the field between John Bernoulli (1667–1748) [7] and
Joseph-Louis Lagrange (1736–1813) [35]. This necessarily involves Daniel
Bernoulli (1700–1782) [6], Jean Le Rond d’Alembert (1717–1783), and Leonhard
Euler (1707–1783) [21]. With these people most of the solid bases of calculus and
the most relevant principles of mechanics are established. The second essay dis-
cusses the foundational work [12–14] of Augustin-Louis Cauchy (1789–1857) and
its consequences on the future development of continuum mechanics, with an
English translation of his seminal paper. The next essay logically concerns further
developments based on previous works by d’Alembert, Lagrange and Cauchy with
the original viewpoint of Gabrio Piola (1794–1850), George Green
(1793–1841) [25], and Gustav Kirchhoff (1824–1887) [33] on the notion of stress,
what prepares the way for the theory of nonlinear continuum mechanics to be
expanded in the twentieth century. Then a short essay is devoted to the pioneering
work considering the coupling between continuum mechanics and heat
conduction—basically, thermo-elasticity—by J. M. C. Duhamel (1797–1872) in

3 It is not by mere chance that the selected period corresponds, in the modern view of global
history, to ‘‘The Birth of the Modern World 1780–1914’’ by the Cambridge historian C.A. Bayly
(Blackwell History of the World, J. Wiley, UK, 2004; see also J. Osterhammel, Die Verwandlung
der Welt: Eine Geschichte des 19. Jahrhunderts, C.H. Beck, München 2009).
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France and Franz Neumann (1798–1895) in Germany. The mathematical devel-
opment of elasticity theory in the expert hands of Gabriel Lamé (1795–1870),
Alfred Clebsh (1833–1872), Adhémar Barré de Saint-Venant (1797–1886), and
Joseph Boussinesq (1842–1929) is the object of an essay. The vision of von
Helmholtz (1821–1894) [28] largely accepted by Pierre Duhem (1861–1916) is
discussed in another essay. This was written for the centennial meeting after the
death of Helmholtz (1894) held in Berlin in 1994 [40]. The logical bases of
thermo-statics and thermo-dynamics as formalized by Constantin Caratheodory
(1873–1950) are reported in the next essay. The creative ideas of the Cosserat
brothers about generalized continua are then perused on the basis of their book
published in 1909. As to the synthetic approach [20, 38] in the framework of
energetics proposed by Pierre Duhem following along a line created by W.
J. Macquorne Rankine (1820–1872) [47], H. von Helmholtz (1821–1894) [28] and
Josiah W. Gibbs (1839–1903) [22, 23], we examine it in a long essay comple-
mented by English translations of essential parts of his texts. This concludes the
perusing of the most creative works.

The last two essays have a different nature. They concern syntheses in the form
of courses or encyclopaedia articles by Paul Appell (1855–1930) in France [1] and
Ernst Hellinger (1883–1950) in Germany [27]. These two essays are in the form of
critical and analytical reviews of these two works that are supposed to present
globally the achievements of the nineteenth century and therefore allow us to
apprehend the contemporary reception of previously discussed works, as of the
dawn of the twentieth century for a kind of conclusion. On this occasion we
provide an English translation of part of Hellinger’s remarkable—but rather
neglected—memoir that captures in a few pages most of the landmark advances of
the nineteenth century.

The visible recurring themes are finite deformations for deformable solids and
variational formulations (principle of virtual work, virtual velocities, and analytic
mechanics) [39, 41]. This is not very ‘‘Newtonian’’—nor very ‘‘Truesdellian’’ in
modern terms—, but it reflects the continental line—versus the Newtonian one—
that developed with Leibniz and the expansion of the calculus of variations on the
continent and survived during an extended period of time. Contributions by British
scientists are mentioned and discussed in the course of various essays (but they
obviously did not enter our original plans of the 1990s). In all, the present book
may be considered a ‘‘prequel’’ to my book of 2013 [42].

In so far as possible we have tried to refer to primary sources, sometimes
available in editions of collected works of some of the most famous scientists (e.g.,
the Bernoullis [6, 7], Euler [21], Lagrange [35], and Cauchy [15]). In gathering
useful information as secondary sources, we have benefited from the existing
biographies of Cauchy [3], d’Alembert [8, 26], Euler [50], the Bernoullis [4, 5],
Lagrange [9, 29], Duhem [30], and Kirchhoff (in [32]), as also from well written
historical introductions in some books by scientists such as Lagrange [34], Barré
de Saint-Venant [2], and Love [36], and historical discussions on the developments
of mechanics by Todhunter [52, 53], Duhem [19], Mach [37], Jouguet [31], Dugas
[18], Whittaker [57], Timoshenko [51], Truesdell and Toupin [56], Oravas and
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McLean [44, 45], Szabò [49], Truesdell [54, 55], Darrigol [17], Soutas-Little [48]
and Capecchi [10], and finally the valuable—but unequal—scientific biographies
in Gillispie [24] and the accurately informed MacTutor History of Mathematics
Archive at the University of St-Andrews, UK, on the web [58]. For French sci-
entists who were members of the Academy of Sciences in Paris, eulogies have
been published by some fellow academicians. This is the case for Barré de Saint-
Venant, Duhem, and Boussinesq.

The bibliography that follows lists most primary sources used in this book as
well as historical sources of a secondary nature. Short complementary information
is given within square brackets. Detailed references are given at the end of each of
the other chapters.
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Chapter 2
A Glimpse at the Eighteenth Century:
From John Bernoulli to Lagrange

Abstract This essay tries to answer the following question: ‘‘What happened to
Mechanics between Newton and Lagrange?’’, hence during what is commonly
called the century of the enlightenment or Age of Reason. This period where
knowledge and learning are the main incentive for intellectuals—of which phi-
losophers and scientists are most representative—, witnessed an evolution that
went from the mechanics of point particles (or massive objects seen as such) with
Newton to the first elements of continuum mechanics in the hands of Euler and
Lagrange. The most famous contributors between these scientists are Jacques
(Jacob) Bernoulli, John (Johann) Bernoulli, Daniel Bernoulli, Pierre Varignon,
Jean Le Rond d’Alembert, Pierre de Maupertuis, and Leonhard Euler. We peruse
the works and the contributions to the formulation and consolidation of various
principles by these ‘‘mechanicians’’ on the basis of primary sources—sometimes
with original English translations—and accounting for comments by Lagrange and
more recent historians–mechanicians such as Jouguet and Truesdell. This period is
marked by a great emphasis placed on the notion of living forces, the exploitation
of the principle of virtual work, and the expansion of the calculus of variations,
which all characterize the ‘‘continental’’ development of the principles of
mechanics as opposed to the Newtonian vision. This essay is a prerequisite to the
examination in other essays of all what was to be expanded in the thermo-
mechanics of continua during the nineteenth century.

2.1 John Bernoulli and the Principle of Virtual Work

In his discussion on the role of mathematics in science, Truesdell [40, p. 99] asks the
following question: ‘‘Before 1788 (cf. Lagrange [31]) and after 1687 (cf. Newton)
something had happened to mechanics. What was it?’’ This in fact is the subject
matter of the present essay. Lagrange [31, 2nd part of his historical introduction]
declares that all really started in this period with the work of John Bernoulli
(1667–1748) and his apprehending of the principle of virtual work. John (Jean or

G. A. Maugin, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries,
Solid Mechanics and Its Applications 214, DOI: 10.1007/978-3-319-05374-5_2,
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Johann) Bernoulli is the most remarkable member of the Bernoulli family (or
dynasty) [4, 22]. He provides a bridge between the Newtonian period of the ending
seventeenth century and the new developments that we are going to discuss here. To
be fair, however, we must first acknowledge the contribution of his elder brother
James (Jacques or Jacob) Bernoulli (1655–1705) who may have been less creative
than John, but nonetheless played an essential role in the dissemination of integral
calculus (he coined the word ‘‘integral’’), in the establishment of the theory of
probabilities, and in solving critical problems in mechanics (the isochronous curve,
the elastica).

John, with all his bad temper and his unhealthy jealousy, was nonetheless an
inspiring mentor. He was instrumental in the adoption of Leibniz’s successful
differential notation for differential calculus on the continent instead of Newton’s
fluxions. This, unfortunately, created a kind of dichotomy between British and
continental developments in mathematics and applications, that was resolved only
in the nineteenth century with the adoption of Leibniz’s notation by Cambridgians
under the influence of French pedagogues. So we can say that John Bernoulli was a
‘‘Leibnizian’’ as opposed to a ‘‘Newtonian’’. In spite of his strabismus toward
Newton, Truesdell had to recognize the mathematical genius and creativity of John
(cf. [39, 40]). He had an important epistolary exchange with French mathemati-
cians, e.g., Marquis de l’Hôpital (1661–1704)1 and Pierre Varignon (1654–1722).
He defended in 1694 a doctoral thesis in medicine, but this may have been a
première in biomechanics since in it John discussed the movement of muscles.

Main discoveries in mathematics by John Bernoulli are: the exponential cal-
culus, trigonometry treated as a branch of analysis, the study of geodesics, the
celebrated solution of the brachistochrone (the catenary), an introduction of the
treatment of minima and a foundation for the calculus of variations (to inspire
Euler), and more important from the viewpoint of this essay, the enunciation of the
principle of virtual work (cf. [5, 6]). This matter is thoroughly discussed by
Capecchi [11, pp. 199–209] that we do not need to repeat in detail. In this work
John was a Leibnizian, reformulating Leibniz’s notion of dead force by intro-
ducing the elementary increase f dx, where dx is an infinitesimal virtual dis-
placement of the point of application of the force f in its direction, so that we
would write this as the inner product f � dx in modern jargon. It is here an

1 Both de l’Hôpital and Varignon are known French mathematicians, the first one having left his
name attached to the famous ‘‘rule of l’Hôpital’’ and the second having created the ‘‘law of the
parallelogram of forces’’ in statics, much before the notion of vectors was invented. John
Bernoulli taught the first one on calculus (against a good stipend) by visiting him in France and
then continuing by correspondence. De l’Hôpital published a book based on the lessons he had
received from Bernoulli. This was the natural cause of a dispute for which Bernoulli had a special
talent, but here he was probably right. In the case of Varignon, met in Paris in 1692, the mutual
friendship seems to have been sincere, in spite of the somewhat touchy character of Bernoulli
who did not hesitate to rebuke his friend on occasions. We must also note that Bernoulli had a
fruitful correspondence with the great Leibniz. This was the most major correspondence which
Leibniz ever carried out. Decidedly, Bernoulli was a great letter-writer like many scientists and
intellectuals of the time.
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infinitesimal pulse that defines the new quantity which is an infinitesimal energy
increase or mechanical work in the future work of Coriolis, more than a hundred
years later—here we should not oversee that eighteenth century scientists had no
notion of what we call mechanical work. Living forces (‘‘vis viva’’ = mv2) in the
sense of Leibniz are the results of the summation of this work over elementary
pulses in time, so that, noting that if f = p = mv, then pdx = mv � vdt = mv2dt we
can write an expression of the type

Z
p dx / mv2: ð2:1Þ

Depending on the observer this can be viewed as a mathematical theorem or a
principle of conservation. According to Capecchi [11, p. 201] it is practically
universally acknowledged that what we now call the principle of virtual work finds
its origin in John’s considerations. This is what Lagrange was referring to as the
principle of virtual velocities in 1788 [29–31]. As a matter of fact, Bernoulli refers
to a law of virtual work in a letter of 1714 to a naval engineer named Bernard
Renau d’Elizaray (Capecchi [11], p. 203), and he defines well his notion of virtual
velocities in exchanges of letters with Varignon in the period 1714–1715, and in
his discourse ‘‘on the laws of the communication of motion’’ of 1728 (Chap. 3,
p. 20) reproduced in his collected works [8, vol 3]: ‘‘The virtual velocity is the
element of velocity that every body gains or loses, of a velocity already acquired
during an infinitesimal interval of time, according to its direction’’ (English
translation from the French by Capecchi).

We shall return to John Bernoulli’s works in fluid mechanics in the next two
sections mostly devoted to his son, Daniel.

2.2 ‘‘Bernoulli’s Theorem’’ by Daniel Bernoulli

Daniel Bernoulli (1700–1782) is the second son of John. He is universally known
for his ‘‘theorem’’ although he did many other works in hydrodynamics, mathe-
matics, statistics and physics. He studied in Basel, Heidelberg and Strasbourg. Not
so strangely for the time, he obtained a doctoral degree in anatomy and botany
(1721). He spent most of his professional career in St. Petersburg (for nine years)
and Basel (for almost fifty years). He was a close friend of Euler.

Some unavoidable words must be said about this famous theorem because it
relies on consequences of the conservation of energy. It happens that we know a
letter from Daniel Bernoulli to Christian Goldbach (1690–1764) dated from
Moscow July 17, 1730 (reproduced in pp. 220–221 in Truedsell [39]), where
Daniel develops in French the arguments leading to his ‘‘theorem’’. He appeals
there to the conservation of energy to show that there exists a relation (his nota-
tion; this looks like a differential equation but it is not)
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v
dv

dx
¼ a� v2

2c
; ð2:2Þ

where v0 ¼
ffiffiffi
a
p

is a reference velocity, the acceleration of gravity is equal to 1/2 in
the chosen system of units, and the quantity cvdv/dx is the accelerating force (i.e.,
an internal pressure per unit density). This is established by relating the speed of a
steady flow of an incompressible fluid (water) in a tube to the pressure this fluid
exerts on its walls. The increment dv is the impulsive increment of speed of the
water flowing with speed v in traversing the elementary distance dx as ‘‘if the tube,
supposed horizontal, were suddenly to dissolve into thin air at point x’’ (Trues-
dell’s words). In modern notation this can be transcribed as the well known
equation

pþ 1
2

q v2 þ q g h ¼ const:; ð2:3Þ

thanks to the mentioned identification with internal pressure (a notion that Daniel
Bernoulli did not possess). There is no need to emphasize the importance of
Eq. (2.3) in hydrodynamics (think of the Venturi effect: when velocity of the flow
increases, then the pressure falls) and aerodynamics where the theorem is used in
the proof of the existence of lift on an airfoil. This is beautifully exposed by
Anderson [2]. This was not the only result of Daniel who produced a fundamental
book on hydrodynamics written in 1734 [9]. This scientific achievement caused a
burst of envy and jealousy from the shameless John Bernoulli against his own son,
publishing a competitor book with the title Hydraulica in 1739. He anti-dated the
date of writing this opus to 1732 to pretend to (a false) priority! However, it must
also be acknowledged that John’s book has many merits. In particular, this book
offers the first successful use of the balance of forces to determine the motion of a
deformable body. This was possible for John because he had recognized that ‘‘the
fluid on each side of an infinitesimal slice pressed normally upon that slice, with a
varying force which was itself a major unknown’’ [39, p. 121]. With this we are
very close to the notion of internal pressure and a concrete view of contiguity of
action in continuum mechanics in a line that both Euler in the period 1749–1752
and Cauchy in the period 1823–1828 will expand. Also, John was the first to
practically give the modern form (2.3) to his son’s theorem. Bernoulli [10] also
discussed the principle of living forces at the time of the death of his father. To be
on the safe side, the paranoid John edited himself his collected works in 1742 [8].

2.3 D’Alembert and the Metaphysical Notion of Force

Daniel Bernoulli’s work also triggered some envy from a young French philoso-
pher-mathematician, Jean Le Rond d’Alembert (1717–1783). Thus in 1744, this
gentleman, well educated in the best college in Paris, but mostly self-taught in
mathematics, published his own book on the emerging fluid mechanics [16].

10 2 A Glimpse at the Eighteenth Century: From John Bernoulli to Lagrange



According to Truesdell [39, p. 227], this entry of a newcomer in the field ‘‘added
nothing to the subject’’.2

But several objective facts must be recorded. In contributions that rapidly
followed this opus, d’Alembert (e.g., [17]) achieved correct partial differential
equations for axially symmetric and plane flows (of the type now called irrota-
tional flows). This is one of the first considerations of a two-dimensional motion of
a continuum. He had already introduced for the first time the notion of partial
differential equations in a previous work of 1743 on the mechanics of a heavy
hanging rope. As noticed by Truesdell [39, p. 228], d’Alembert does not speak of
‘‘pressure’’ but of ‘‘forces’’ that are viewed as ‘‘reversed accelerations’’. This fits
well in d’Alembert’s vision of reducing hydrodynamics to hydrostatics in accord
with the general approach to mechanics that he introduced in his celebrated
Treatise on dynamics [15] written when he was hardly 26. This treatise is a much

2 Because Euler was his great hero, Truesdell in all his writings (e.g., [39, 40]) has a tendency to
belittle the contributions of d’Alembert on whatever subject, sometimes with innuendos verging
on defamation. This kind of idée fixe is not supported by many other writers, in spite of the
admitted unclear, confusing, and somewhat verbose, and probably too hastily written, works of
d’Alembert. But he often pioneered new ideas and wrote these works when he was only 26 or
27 years old, and without much formal education in the field. Furthermore, d’Alembert himself
had a tendency to grant a higher value to his contributions to the belles-lettres, among the latter,
discourses [19] at the Académie Française in his mature age when he has become ‘‘perpetual’’
secretary of this academy. His preliminary discourse (i.e., Introduction) of 1751 to the great
Encyclopaedia is a remarkable literary piece. Naturally, the French have a tendency to
overestimate d’Alembert. I remember receiving as a prize, when in primary school, a book
written at the end of the nineteenth century, the purpose of which was to introduce the youth to
the oeuvres of the most representative French scientists (they preferably had to be republican and
atheist). This included Lagrange, Lazare Carnot, Chevreul, obviously Pasteur, Marcellin
Berthelot, and d’Alembert as a first exemplary contributor. My favourites were Pasteur (he saved
young kids from the rabies—I did not know he had also improved the production of beer) and the
chemist Chevreul (the latter for three reasons: he died when he was 103; he was born in my native
city, and he brought light to the house of many people by inventing the artificial stearic candle). I
could not understand what was said of d’Alembert. But many years later I discovered that I was
scientifically descending in a straight line from d’Alembert according to Mathematics Genealogy.
Moreover, in response to the granting of the name of Diderot to our twin University (Paris VII) I
decided to call d’Alembert our Institute of Mechanics, Acoustics and Energetics at the University
of Paris VI—that had gained the good name of Pierre and Marie Curie in the mean time. Very
little is known about d’Alembert’s formation in mathematics. From available documents (in
particular, one written by d’Alembert late in his life, his personal notes preserved at the Academy
of Sciences in Paris, and studies by specialists of Diderot and d’Alembert such as Pfeiffer [38], it
is thought that d’Alembert had only a limited formal education—given in Latin by a rather
incompetent teacher - in mathematics while an adolescent at Collège Mazarin (also called
‘‘Collège des Quatre Nations’’). He was caught by an irrepressible taste for mathematics while he
was studying law and then started aborted studies in medicine. It is surmised that he studied by
himself L’Hôpital, Varignon, John Bernoulli, Maupertuis, and the Principia of Newton (but this is
mostly geometrical while d’Alembert will become an analyst). He thus submitted his first
(unpublished) memoir on mathematics to the Academy in 1739 (aged 21), and then published in a
row famous lengthy works on the bases of dynamics (his famous treatise at age 26), fluid
mechanics, the theory of winds, and the vibrations of strings in an interval of some seven years!
Not bad for an autodidact, notwithstanding Truesdell’s appraisal.
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discussed matter, and obviously demolished by Truesdell as incomprehensible by
him (probably himself a too much Newtonian adept to start with). It is of interest to
note the full (ambitious) title and sort of summary of the treatise (translation from
the French): ‘‘Treatise on dynamics, in which the laws of equilibrium and motion
of bodies are reduced to the smallest number and are proved in a new way, and
where a general principle for finding the motion of several bodies which react
mutually in any way’’ is given. Not a bad abstract!

It is true that, following Leibniz, d’Alembert thinks of the notion of ‘‘force’’
(especially in Newton’s gravitation theory) as an obscure, metaphysical and un-
necessary primary notion. Thus all is first to be granted to kinematics. With this he
is banishing entirely the Newtonian view of mechanics (even the name of Newton
is not mentioned). This agrees well with John Bernoulli’s introduction of the
principle of virtual work, where forces are nothing but coefficients of virtual
variations. But what d’Alembert added was a re-interpretation of inertial forces as
the negative of ‘‘forces’’, thus giving to dynamics the form of statics on the basis of
a principle of virtual ‘‘powers’’. The problem with this author is that, as correctly
remarked by Truesdell, he is extremely difficult to read. We thus admire the
thorough analysis and deep interpretation that Jouguet [28] could give of the
contents of the Treatise on dynamics. To give a taste to the reader we give
in Appendix A attached to this essay an English translation of some parts of
d’Alembert’s introduction to his treatise. This text shows the central thinking,
methodology, and ambition—not always truly satisfied in the treatise—of the
project. Anyway, we should remember d’Alembert’s principle according to which:
‘‘If we consider a system of material points connected together so that their masses
can acquire different respective velocities whenever they move freely or
altogether, the quantities of motion gained or lost in the system are equal’’.
A flavour of d’Alembert’s statement of his principle is given in Appendix B. It is
clear that the modern interpretation of such a text is a challenge for most of us.
This is nonetheless what is achieved by Jouguet [28, pp. 197–202]. With this
d’Alembert provided the bases on which Lagrange was going to build his grand
scheme of mechanics. He had also an interest in the theory of music. Perhaps that
he was distracted by, interested in, too many fields to compete creatively with his
contemporary Euler in mechanics.

Note that the famous d’Alembert paradox about the vanishing dragging force on
a cylinder placed in a flowing perfect fluid was proved in 1750. This is contrary to
common experience. A resolution could be given only with the introduction of
discontinuities in the flow field and the notion of wake.

In solid mechanics, d’Alembert also introduced the notion of space-time partial
differential equation yielding the wave equation and its paradigmatic solution in
1746. In his later years he published in the form of contributions to some collected
works (e.g., [18, 20]). He had much influence on Lagrange whom he mentored in
Paris; he obviously discussed with Euler as they often disagreed on many par-
ticular points. But, contrary to John Bernoulli, he always remained a gentleman in
spite of controversies for which he seems to have developed a special gift for
getting involved in. His two main disciples were Pierre-Simon Laplace in analysis
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and probabilities and Nicolas de Condorcet in economics and statistics. In math-
ematics he is known for the «theorem of d’Alembert» that says that ‘‘any poly-
nomial of degree n with complex coefficients has exactly n (not necessarily
distinct) roots in the set of complex numbers’’ (the theorem was really proved by
C.F. Gauss in the nineteenth century) and for his study of the convergence of
numerical series. In astronomy, he studied the three-body problem and the pre-
cession of equinoxes in 1749. In this he is a precursor of his disciple Laplace.

2.4 The Notion of Internal Pressure and the Fundamental
Equations of Hydrodynamics

We certainly agree with Truesdell that Leonhard Euler (1707–1783), the greatest
mathematician of the eighteenth century, stands much above d’Alembert in both
mathematical creativity and physical intuition. This Euler proved in practice by
developing expertly the calculus of variations, solving so many problems, and
presenting a theory of fluids that remains intact till our present time, at least for
perfect fluids. We cannot peruse the whole work of Euler in the mechanics of
continua. This has been achieved by more knowledgeable specialists (among them
Truesdell who edited many of the original works in the edition by Orell Füssli
Verlag, Basel, and Birkäuser, Basel, in a total of 73 volumes). We are satisfied
with a focus on some problems of fluid and solid mechanics.

For us the main two ingredients in fluid mechanics are the notion of internal
pressure, and the construction of the field equations for perfect fluids on the
understanding that the notion of field has really been introduced. This is indeed the
case. For the first ingredient, we may conjecture with Truesdell [39, p. 230] that
Euler, while residing at the Berlin Academy since 1741 to become later on its
president after the death of Maupertuis, carefully read the prize essays submitted
by d’Alembert in 1746 and 1750. This ‘‘gave him the final impulse to the creation
of the general hydrostatics and hydrodynamics’’. This was also much influenced by
the recent progress in the theory of hydraulics by the Bernoullis, father and son.
Thus pressure was seen as the action from all sides and from neighbouring ele-
ments of fluid on an isolated element of fluid (a ‘‘particle’’). In modern term, it is
isotropic and, with Euler, will be viewed as a normal force acting on an element of
surface. The notion of contiguity is thus definitely reached. Furthermore, it
becomes a true field that depends on both space and time in the general case of
dynamics.

The second argument requires from Euler to think in Newtonian terms to write
in 1750 a general principle of linear momentum (for whatever body or ensemble of
‘‘particles’’ and not only for a point particle like in Newton), principle that we
write here in the condensed form

F Bð Þ ¼ _M Bð Þ ð2:4Þ
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for any portion B of a body, where F is the resultant force, M is the total linear
momentum, and a superimposed dot denotes the time-rate of change. This was
expressed by Euler in differential form, a form that suited the mechanics of con-
tinua. Now, we cannot do better than reproduce the original text of Euler (Para-
graphs XV and XVI of [25], in the old French orthography, but read just like actual
French once the writing conventions are known):

XV. Maintenant je pofe pour abréger (there were misprints, here corrected, in two of these
component equations. GAM):

X ¼ du

dt

� �
þ u

du

dx

� �
þ v

du

dy

� �
þ w

du

dz

� �
; Y ¼ . . .; Z ¼ . . .; ðaÞ

& l’équation différentielle qui détermine la preffion p eft

dp

q
¼ P dxþ Q dyþ R dz� X dx� Y dy� Z dz ; ðbÞ

dans laquelle le tems r est fuppofé conftant. Or l’autre équation tirée de la continuité du
fluide est:

dq

dt

� �
þ d:qu

dx

� �
þ d:qv

dy

� �
þ d:qw

dz

� �
¼ 0; ðcÞ

& ce font les deux équations qui contiennent toute la Théorie tant de l’équilibre que du
mouvement des fluides, dans la plus grande univerfalité qu’on puiffe imaginer.
XVI. Lorsqu’il eft question de l’équilibre, on n’a qu’à faire évanouïr les trois viteffes u,
v & w, & puisque alors les quantités X, Y, & Z, évanouïffent aussi, toute la Théorie de
l’équilibre des fluides est contenuë dans ces deux équations:

dp

q
¼ P dxþ Q dyþ Rdz; ðdÞ

le tems t étant conftant, &

dq

dt

� �
¼ 0: ðeÞ

Today’s student easily identifies q with the density q, (X, Y, Z) as the com-
ponents of the acceleration and (P, Q, R) as the components of the body force per
unit mass, so that Eqs. (a) through (d) are none other than

c ¼ dv

dt
:¼ ov

ot
þ v � rð Þv; ða0Þ

q
dv

dt
¼ qf �rp; ðb0Þ

oq
ot
þr � qvð Þ ¼ 0; ðc0Þ
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and

rp ¼ qf; ðd0Þ

in modern intrinsic notation. This says it all. But what about boundary conditions
required by this set of equations for complete solution in space? Euler had already
pondered this matter before and the only possibility is that pressure corresponds to
a normal force acting on a surface. We will need the ingenious work of Cauchy in
the period 1822–1828 to offer a larger possibility, although the solid case to be
discussed also after Euler already hints at a more general situation.

This discussion on fluids may make the reader believe that Euler had no notion
of a tangential force. But this is not true because Euler himself dealt with this
notion in a problem that had been examined by James (Jacob) Bernoulli a long
time before, the elastica (flexible elastic one-dimensional object). On considering
the equilibrium of a cut out part of this elastica Euler found that a shear force is
generally necessary in addition to tension to maintain the balance of this element.
He obtained in 1771 the correct governing system of dynamical equations that
require considering not only curvature v (as done by Bernoulli) but simultaneously
both normal V and tangential T components of the stress in the form (where s is the
arc length)

dT

ds
� Vv ¼ �Bt þ q€xt;

dV

ds
þ Tv ¼ �Bn þ q€xn;

dM

ds
� V ¼ 0: ð2:5Þ

Here M is the bending moment and the B’s are the components of an applied
(body) force. In modern intrinsic notation (2.5) reads (cf. [3])

dS

ds
þ B ¼ q €x ð2:50Þ

with a stress ‘‘vector’’ defined by S ¼ Ttþ Vn. More remarkably, Euler in 1774
also proposed for this problem a principle of contiguity (contact action), which we
can express in this notation as

Sþ ¼ �S�; ð2:6Þ

where the plus and minus signs refer to the effect of the material on the opposite
sides at the point of junction. This obviously is equivalent to the natural boundary
condition (here a junction or continuity condition). Equations (2.50) and (2.6)
anticipate the equations of Cauchy for both the field and (natural) boundary
equations. The engineer Charles Augustin de Coulomb (1736–1806) also recog-
nized the notion of shear stress at about the same time as Euler by examining the
effect of ‘‘both normal and tangential forces acting on the cross section of a beam
subject to transverse terminal load’’ (cf. [39, p. 236]). Anyhow, the reasoning of
Euler yielded what is now known as the Euler-Bernoulli theory of beams with a
bending moment given by M = - EId2w/dx2, while plane sections remain plane
and there is no shear deformation.
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2.5 Linear Momentum and Moment of Momentum:
Newtonian Versus Variational Formulations

Equation (2.4) reflects the adoption by Euler of Newton’s viewpoint concerning
the law of linear momentum. But for a rigid continuous body or a system of rigidly
linked point particles (with invariant distances between them), one needs to
account for a possible mechanical response in rotation. This is a materialization of
Newton’s third law (‘‘to each action there is always an equal reaction’’). It is Euler
[24] who formulated this law of moment of momentum, which dynamically
involves the notion of angular momentum along with the notion of inertia about a
certain centre of mass. That is, in addition to a law of the form (2.4) we will have
to satisfy a law

C ¼ _J; ð2:7Þ

where C is the total torque acting upon the body and J is the total moment of
momentum or angular momentum, both being taken with respect to the same fixed
point. Both laws (2.4) and (2.7) are valid for discrete systems or continuous bodies.
They constitute the laws of Mechanics of Euler; he correctly set forth these as
applicable to any part of every body in a memoir published in 1776 [26]. It is the
evaluation of J which requires the introduction of the notion of rotary inertia about
the mentioned fixed point. According to Truesdell [39, p. 129], Euler’s principle of
moment of momentum remains even today a ‘‘subtle and often misunderstood’’
(by physicists, not by Truesdell!) law. However it is of universal and everyday use
(think of the orientation of satellites seen as rigid bodies in the first approximation,
and the application of this law in the mechanics of robots with the introduction of
appropriate kinematic descriptors including, beyond Euler’s angles, Cayley-Klein
parameters, quaternions, orthogonal matrices, and spinors). This Eulerian
mechanics of rigid bodies will be perfected to the utmost by scientists such as
Lagrange, Poinsot, Poisson and others. We do not deal further with this matter but
note that the symmetry of the Cauchy stress in most of modern continuum
mechanics is a consequence of the law (2.7) [41].

We cannot close this perusal of Euler’s formidable contributions to mechanics
without evoking the fact that, albeit a strict Newtonian from many viewpoints [cf.
Eq. (2.4) above, and also (2.7) that complements the original Newtonian view],
Euler is also one of the true creators of the calculus of variations, which he never
hesitated to use in specific problems (e.g., in the buckling problem). Because of
this, he is at the root of the variational approach of Lagrange (see next section).
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2.6 Calculus of Variations and Analytical Mechanics:
Lagrange

Joseph-Louis Lagrange or Giuseppe Ludovico Lagrangia (1736–1813) is neither
Newtonian nor Leibnizian or d’Alembertian; he is above all—if we are allowed
the joke—Italian (and perhaps Frenchman by adoption), and also a shy and very
quiet man who, contrary to some of his colleagues, succeeded to live through the
French revolution without any political involvement. He disliked getting involved
in controversies and, according to J.-B. Fourier (of series and heat-conduction
fame)—a demanding student in the first year of the Ecole Normale—, he always
answered by a non-committed ‘‘je ne sais pas’’ (I don’t know) to all questions
asked by students. But he is only second to Euler in the class of mathematicians of
the eighteenth century. His creativity blossomed in all fields of mathematics,
mechanics of fluids, solids, and celestial mechanics. Apart from C. F. Gauss
(1777–1855), only Cauchy may match his inventiveness in mathematics in the
successive Revolution, Empire and Restauration periods (1780–1830). Because of
limited space, here we can only focus on some of his contributions to mechanics.
His canonical equations of motion in arbitrary systems of coordinates are so
beautiful and powerful in all of physics3 that it is often believed that they were
God-given like the Holy Scriptures (but with publication via Lagrange’s hands of
the celebrated book of 1788 [31]). The real story deviates from this ideal vision in
the sense that Lagrange was strongly influenced by, among others, John Bernoulli,
Maupertuis, d’Alembert, and Euler. In modern terms, Lagrange’s works do not
create a new paradigm (in the sense of Thomas Kuhn), neither do they provoke an
epistemological rupture (according to the expression of Gaston Bachelard). Fur-
thermore, contrary to the principle of virtual velocities by d’Alembert, his famous
equations are restricted to the case of non-dissipative processes (cf. the discussion
in [34]) at least until the introduction of a dissipation potential by Lord Rayleigh.

The genesis of Lagrange’s equations requires some re-construction, which was
more or less told by Lagrange himself in the long historical introduction to the two
parts of his book. This greatly simplifies our task. In fact, Lagrange dutifully
produces in his introduction a rather extended history of the developments of
mechanics through the ages, starting with Archimedes, Stevin, Galilei, Descartes,
Huyghens, and Roberval, of course on the basis of what was known in his time (the
mechanics of the middle ages will be unearthed and thoroughly examined by
Pierre Duhem only at the end of the nineteenth century). Because of the

3 Some physicists place Lagrange equations simultaneously at the top and the base of all of
mechanics; This is the case in the first volume of the celebrated course of theoretical physics by
Lev D. Landau and Evgeni F. Lifshitz in the former Soviet Union—with many foreign
translations—and the standard, much admired, successful and continuously reprinted book on
‘‘Classical Mechanics’’ by Herbert Goldstein in the USA—first edition 1950—, but unjustly
criticized by Truesdell [40, pp. 144–147] as not Newtonian enough. James C. Maxwell was a
great admirer of Lagrange and did not hesitate to use Lagrange’s formalism to study self and
mutual inductance in his treatise on electricity ad magnetism.
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composition of his book, Lagrange considers separately the cases of statics and
dynamics. Concerning the first half of the eighteenth century, he has to pay his
tribute to the works of John Bernoulli, Maupertuis, and d’Alembert. We give in
Appendix C the English translation of what we think to be the most important
statements of this introduction, which provides a magisterial overview and analysis
of the principles of mechanics in the eighteenth century.

In the case of statics, Lagrange emphasizes the role played by the ‘‘principle of
the lever’’ (in some sense, an ancestor of the principle of virtual displacement) and
that of the composition of forces (‘‘from which one concludes that any two powers
(he means ‘‘forces’’) that act simultaneously on a body (Lagrange means a
‘‘point’’), are equivalent (equipollent) to one force that is represented, in magni-
tude (Lagrange uses the word ‘‘quantity’’) and direction, by the diagonal of the
parallelogram of which the sides represent the magnitude and direction of the two
given powers’’ [31, p. 10]). Anyway, Lagrange clearly concludes that the principle
of virtual work as given by John Bernoulli is the most powerful tool. At the end of
his study of statics, he develops the hydrostatics of incompressible fluids.

In the case of dynamics, Lagrange thoroughly scrutinizes the various principles
proposed since Newton, avoiding none (see Appendix C). In practice he will
combine the principle of virtual work with d’Alembert’s astute proposal to view
inertial forces as negative applied forces, i.e., a kind of reformulation of Newton’s
law appropriately multiplied by virtual velocities and summed over all bodies
composing the system. The step that will glorify this work among physicists is the
consideration of a kinematical description by means of generalized systems of
coordinates (see Fourth Section, p. 282 on, in which we witness for the first time
the appearance of the functional derivative—in page 285). There follows from this
the introduction of the quantity T - V, where T is the kinetic energy and V is the
potential of interacting forces (this will later be called a Lagrangian L) and, using
an argument on the homogeneity of functions (due to Euler), he proves the con-
servation of the integral T ? V, which contains the principle of living forces. By
invoking the calculus of variations he further shows the validity of Maupertuis’
principle of least action. In a sense, with this work Lagrange has unified in a
construct typical of an analyst all what concerns the mechanics of systems of
points in the absence of dissipative processes. He also provides interesting
applications to the oscillations of a linear system of bodies (pp. 320–380).

Lagrange died in 1813, but he had already prepared an extension of his Analytical
mechanics in a second volume. This was completed (from Lagrange’s papers) and
edited by J. Binet (1786–1856), G. Prony (1755–1839) and S. F. Lacroix
(1765–1843). This is reproduced in Lagrange [33] as reprinted from the third and
fourth editions with comments and additions by Joseph Bertrand (1822–1900) and
Gaston Darboux (1842–1917)—with more than sixty pages of notes by V. Puiseux
(1820–1883), J.-A. Serret (1819–1885), O. Bonnet (1819–1892), J. Bertrand, A.
Bravais (1811–1863), and Lagrange himself. What is of highest interest for us here
is, apart from many solutions and applications to rotational motions and celestial
mechanics, the development of Lagrange’s view of the fluid mechanics of incom-
pressible and compressible fluids (pp. 250–312). Readers will not be surprised that
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Lagrange adopts here what will become known as the ‘‘Lagrangian’’ kinematical
description (p. 253 on). That is, he introduces the initial coordinates (a, b, c) of a
fluid ‘‘particle’’ to be later in time at placement (x, y, z). Thus,

x ¼ �x a; b; c; tð Þ; etc:

He thus write the continuity equation as (in modern notation)

dm ¼ q dx dy dz ¼ const: or q0 ¼ qJ:

He introduces a scalar ‘‘Lagrange’’ multiplier to account for incompressibility.
He obtains thus the three equations of balance of linear momentum equations in
the ‘‘Lagrangian’’ format. But he also shows how to revert to an Eulerian
description (Equation F in p. 264). He is quite honest in admitting that it may be
easier to deal with Euler’s format (p. 265). He does the same for compressible
fluids where pressure will now be a constitutive quantity.4 He concludes this
second volume with simple wave problems in one dimension (e.g., in a flute or an
organ pipe).

In this book and previous works (e.g., in Mémoires sur le calcul des variations,
Torino, 1760), Lagrange greatly contributes to the definite form of what may be
called the d-calculus, that is, the calculus of variations. As already mentioned, this
was initiated by Euler in the period 1755–1760 in his study of maxima and
minima. This author even introduced what is now called the Euler-Lagrange
equations, of which the above recalled Lagrange equations are a special case.
Dahan-Dalmenico [14] has critically examined this contribution of Lagrange to
one of the most useful and efficient tools in theoretical physics.

It is hard not to express admiration in view of Lagrange’s book. This is a true
monument that is beautifully organized and practically happily concludes the
development of the principles of mechanics through the eighteenth century.
Lagrange has a style of his own, being fully analytical, somewhat formal (even to
the taste of Truedsell [39, p. 132]) and using no argument of geometry. He is even
proud of the fact that no figures illustrate his exposition (although a few illus-
trations may have been welcomed). Lagrange in fact introduced a privileged tool
for the ‘‘algebraïzation’’ of Mechanics. The second important point is that
Lagrange, after some previous works by Clairaut [13] and Maupertuis [37] but
above all with his introduction of generalized coordinates, really inaugurates an
era where the recognition of invariance in mathematical physics has become
fundamental. No wonder that perhaps with some exaggeration W. R. Hamilton
called the Mécanique Analytique a ‘‘kind of scientific poem’’.

4 In the period 1825–1848, Gabrio Piola (1794–1850), an ardent supporter of his ‘‘compatriot’’
Lagrange, will follow the same line of approaching first the equations of motion for finitely
deformable bodies (elasticity) in a reference configuration and then transforming them to the
actual configuration for the sake of comparison with Cauchy’s format of 1828. To do that Piola
had to use what is now called an inverse ‘‘Piola transformation’’ of the stress (see [35]). From this
we infer that Lagrange had already used a similar transformation (in a rather unidentified manner)
for perfect fluids.
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2.7 The Age of Reason: Conclusion and Things to Come

The period we spanned in this essay practically corresponds to what is called in
history the Age of Enlightenment or the Age of reason (in French, the ‘‘Siècle des
lumières’’, in German, the ‘‘Aufklärung’’). What is usually meant by this
denomination is a period in which one thinks of reforming society by using reason
and to advance knowledge through the scientific method. Scientific thought is
promoted together with a challenge of ideas that are too much grounded in tra-
dition and faith. One of our heroes in this essay, d’Alembert, epitomizes the
enlightened scientist who simultaneously wants to improve society and teach it
through a pharaonic enterprise such as the production of the great ‘‘Encyclopédie’’
(ou Dictionnaire raisonné des sciences, des arts et des métiers) directed by him
and Denis Diderot (1713–1784), and sold (by subscription) all over Europe in
about 20,000 copies in spite of the bulk of thirty-five volumes. About a hundred
‘‘philosophers’’ (today we would say ‘‘intellectuals’’ of all kinds) contributed to
this formidable enterprise, including Voltaire (1694–1778), J.-J. Rousseau
(1712–1778), and Montesquieu (1689–1755). Many of the contributions on sci-
entific subjects are due to d’Alembert himself.

The enlightenment influenced both American and French revolutions and
inspired among others the American Declaration of Independence and the French
Declaration of the Rights of Man and of the Citizen. Baruch Spinoza (1632–1677; a
philosopher much appreciated by scientists such as Albert Einstein) and John Locke
(1632–1704) were inspirations for this movement that spread all over Europe and
European colonies in the Americas. In Germany, Immanuel Kant in 1784 tried to
answer the question: ‘‘Was ist Aufklärung?’’ A partial answer is ‘‘Sapere aude’’
(dare to know). It has mostly to do with the advance of knowledge in all forms. From
the scientific viewpoint, Newton may have sparked the original steps of the
movement in the early 1700s. It is symptomatic that we technically concluded the
present essay with the publication of Lagrange’s ‘‘Analytic Mechanics’’ in 1788, just
one year before the French revolution (perhaps not always the best realization of the
Enlightenment). We can now summarize the achievements in mechanics in this
remarkably active period with the following list:

• the formulation of integral calculus (introduction of the term ‘‘integral’’; Jacob
Bernoulli)

• the principle of virtual work (John Bernoulli, Lagrange [32])
• the parallelogram of forces (Varignon)
• Bernoulli’s theorem (Daniel Bernoulli in 1730 [9])
• the general equations of hydraulics [7]
• the concept of shear stress (John Bernoulli, Euler)
• the principle of least action [36, 37]
• two-dimensional motion/partial differential equations [16]
• the wave equation (d’Alembert)
• d’Alembert’s principle of virtual velocities [15, 20, 32]
• the notion of internal pressure as a field (D’Alembert; Euler [25])
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• the fundamental equations of hydrodynamics [25]
• the principle of linear momentum [24]
• the equations of motion of rigid bodies (Euler)
• the principle of moment of momentum [24]
• the calculus of variations (John Bernoulli [6], Euler [23], Lagrange [29, 30])
• analytic mechanics [31].

In the transition period5 of the French revolution, Lazare Carnot (1753–1823),
both a successful politician (the ‘‘organizer’’ of the victory in 1792 as a kind of
Minister of War and scientific adviser to the Convention) and an engineer-scientist
by formation at the Military Engineering school of Mézières (the ancestor of the
Ecole Polytechnique) pondered the principles of mechanics with a specific interest
in their applications to mechanical ‘‘machines’’ (cf. [12]). Carnot was essentially a
disciple of d’Alembert since in his book of 1803 (originally published 1783, p. 47)
he wrote about ‘‘a metaphysical and obscure notion, that of force’’. He simply
states the following alternative [12, Introduction]: ‘‘There are two ways to
envisage Mechanics, in its principles. The first one is to consider it as the theory of
forces, i.e., the causes that impress the motions. The second one is to consider it as
the theory of movements in themselves. Carnot prefers the second avenue. A
thorough examination of the principles as enunciated by Carnot is given by
Jouguet [28, pp. 72–77, 203–210]. Since Carnot’s essay was originally published
in 1783, we may consider that its contents somewhat anticipated Lagrange, but
certainly not with the same acuity and success. Jouguet [28, pp. 203–210] also
discussed the presentation of the principles of mechanics by Fourier [27] in his
‘‘Mémoire sur la statique…’’. Other scientists who pondered the principle of
virtual velocities in the early nineteenth century are André-Marie Ampère
(1775–1836) and Louis Poinsot (1777–1859) both in 1806 (cf. [1]).

The things to come in the nineteenth century were:

• the general notion of stress (Cauchy in the period 1822–1828) to be perfected by
Piola, Kirchhoff and Boussinesq

• nonlinear deformations (Cauchy, Green, Piola, Kirchhoff, Boussinesq)
• the notion of mechanical work (Coriolis)
• the notion of thermo-mechanical couplings (Duhamel, 1837; F. Neumann)
• Heat conduction (Fourier)
• the creation of thermo-statics and thermo-dynamics (Sadi-Carnot, Kelvin,

Clausius, Mayer, Helmholtz)
• the mathematics of elasticity (Lamé, Clebsch, Saint-Venant, Boussinesq, Love,

the Cosserats)
• the equations for viscous fluids (Navier, Saint-Venant, Stokes)
• criteria of plasticity (Tresca, Lévy, Saint-Venant, 1870s)

5 This is a transition period because it witnessed the creation of a new way to teach engineering
sciences in the class room in combination with solid mathematical bases in the ‘‘Grandes Ecoles’’
of which the Ecole Polytechnique is the paragon (creation 1794).
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• the anisotropy of deformable solids (Duhamel, F. Neumann, Voigt)
• visco-elasticity (Kelvin, Maxwell, Voigt, Boltzmann)
• the science of energetics (Rankine, Duhem, Mach)
• the notion of internal degrees of freedom (Duhem, the Cosserats)

All these are the objects of study of the remaining essays in this book.

Appendix A

Partial English Translation of J. Le Rond d’Alembert, (1743), Traité de dynami-
que, 1st Edition, David, Paris (1743) [after the reprint of the second augmented
edition of 1758 by Gauthier-Villars Publishers, in two volumes, Paris, 1921] by
Gérard Maugin. Translator’s remarks are placed within square brackets in the main
text. This is a verbatim translation without any ambition of literary prowess.

From the preliminary discourse

PP XVIII – XIX [on motion and extension]

………….
The motion and its general properties are the first and principal object of

mechanics; this science supposes the existence of motion, and we shall assume it
as well advocated and recognized by all physicists. Concerning the nature of
motion, philosophers, on the contrary, are much more divided on its definition. I
admit that nothing seems more natural than to conceive of the motion as the
successive application of the mobile to the different parts of infinite space, that we
imagine as the locus of bodies [Here d’Alembert thinks essentially of point par-
ticles]; but this idea supposes a space of which parts are impenetrable and
immobile, but everybody knows that the Cartesians (a sect which, indeed, does not
exist any more), do not dissociate space from bodies and that they regard extension
and matter as a unique thing. We must admit that starting from such a principle,
motion would be the most difficult thing to conceive, and that a Cartesian would
soon better come to negate its existence than to try to define its nature. Finally,
how much absurd this opinion of philosophers may look, and with so little clarity
and precision there are in the metaphysical principle on which they made the effort
to lean, we will not try to refute it here; we shall be satisfied with remarking that,
to have a clear idea of motion, we cannot avoid distinguishing, at least in thought,
two kinds of extension: one, that must be regarded as impenetrable and that
properly constitute the bodies; the other which, simply considered as extension,
without examining on whether it is penetrable or not, provides the distance from
one body to another one, and the parts of which can be considered as fixed and
immobile, can serve to judge of the rest or motion of bodies. It is therefore always
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allowed to us to conceive of an infinite space as the locus of bodies, either real or
hypothesized, and to regard motion as the transport of a mobile from one place to
another one in space.

………….

PP XXVI – XXVII [on principles and the primary role of motion]

………….
If the principles of the force of inertia, of the compounded [or ‘‘composed’’]

motion and of equilibrium differ essentially from one another, as we cannot avoid
to agree, and from another side these three principles suffice to mechanics, then
this is to have reduced this science to the smallest possible number of principles
that to have built on these principles all the laws of motion of bodies in any
circumstances, as I tried to do in this treatise.

Concerning the proofs of these principles in themselves, the scheme I have
followed to grant them all the clarity and simplicity that they likely deserve, has
always been to deduce them from the consideration of the motion alone [this
indicates the marked preference of d’Alembert for kinematics over the notion of
forces], viewed in the simplest and clearest manner. All that we perceive distinctly
well in the motion of a body is that it traverses a certain space and it takes a certain
time to achieve this. This, therefore, is the only idea from which we must extract
all principles of mechanics, when we want to prove them in a neat and precise
manner; thus we shall not be surprised that, as a consequence of this way of
thinking, I have, so to say, distracted the view from the motive causes [author’s
emphasis] to uniquely envisage the motion that produced them; that I have pro-
scribed the forces inherent in the body, obscure and metaphysical beings, that are
capable only to dispense darkness on a science so clear by itself.

It is for this reason that I thought appropriate not to enter the examination of the
famous question of living forces.

…………….

PP XXIX- XXX [on equilibrium, virtual velocities, and vis viva]

…………….
But everybody agrees on the fact there is equilibrium between two bodies when

the product of their masses by their virtual velocities, that is, the velocities with
which they have a tendency to move, are equal from both sides. Thus, at equi-
librium the product of mass by velocity, or what is equivalent, the quantity of
motion, can represent the force. All agree also on the fact that in a retarded motion
the number of overcome obstacles is like the square of the velocity, so that a body
that closed a spring with a certain velocity will, for example, close four springs
like the first one with a doubled velocity….From this the partisans of the living
forces [vis viva] conclude that the force of bodies that actually move is generally
the product of mass by the square of the velocity.
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…………….

PP XXXVII – XXXIX [on the contents of the treatise]

…………….
Having given to the reader a general idea of the object of this work, it remains

to say a word about the form that I thought appropriate to give to it. I have tried in
the first part, as much as possible, to express the principles of mechanics in a form
accessible to the people of the trade; but I could not avoid the use of differential
calculus in the theory of varying motions [i.e., non-uniform motions]; I am forced
to do that by the nature of the subject. Moreover, I have done in such a way as to
encapsulate [obviously not a term in use at the time of d’Alembert] in this first part
a sufficiently large number of things in a rather little space, and if I did dot enter
any detail in the relevant matter, it is only because I remained focused on the
exposition and development of the essential principles of mechanics, and having
for purpose to reduce this work to what new ingredients it can contain, I did not
thought appropriate to enlarge it with an infinity of particular propositions that can
easily be found elsewhere.

The second part, in which I propose to treat of the laws of motion between
bodies, is the largest part of the work. That is what led me to give to this book the
title of ‘‘Traité de dynamique’’. This name, that properly signifies the science of
powers or motive causes, could at first seem inadequate since I envisage
Mechanics rather like the science of effects than that of causes [this is the most
important point for d’Alembert; exit the notion of force to start with]; nonetheless
as the word ‘‘Dynamics’’ is very much used among scientists to designate the
science of the motion of bodies, which act among themselves in whatever way, I
thought to keep the term, in order to announce to geometers by the very title of this
treatise that I envisage principally to aim at perfecting and enlarging this part of
Mechanics. As it is no less curious than difficult, and relevant problems compose a
very large class, the most famous geometers have particularly dealt with it for the
last few years; but they succeeded until now to solve only a small number of
problems of this class, and only in particular cases. Most of the solutions they
provided to us rest on principles that nobody has ever proved in a general manner,
such as, for example, that of the living forces. I therefore thought to spend some
time on the subject, and show how to solve the questions of dynamics by a unique
very simple and direct method which consists only in the already above mentioned
combination of the principle of equilibrium and of the compounded motion. I show
the exploitation of this in a small number of selected problems, some already
known, and others entirely new, and finally others even badly solved by the best
mathematicians [notice that d’Alembert is rather avaricious with citations; he does
not give names].

The elegance of a solution to a problem consisting above all in exploiting only a
few direct principles, one should not be surprised that the uniformity that prevails
in all my solutions, and that I have principally in view, renders them a little longer
than if I had deduced them from less direct principles. The proof that I would have
been obliged to give of these principles would indeed have distracted me from the
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brevity that I had searched by using them, and the largest part of the present book
would have reduced to a shapeless accumulation of problems that did not deserve
to see light, in spite of the variety that I tried to expand and the difficulties that
accompany each of them.

Also, as this second part is mostly aimed at those who, already learned in
differential and integral calculus, have become familiar with the principles
established in the first part, or are already familiar with solutions of problems
known and ordinary in Mechanics, I must tell that, in order to avoid circumlo-
cutions, I have often used the obscure term of force [that the author strongly
dislikes], and other terms that are commonly used when treating the motion of
bodies; but I never pretended to attach to these terms more ideas than those which
result from the principles that I proved, either in the [introductory] Discourse or in
the first part of this treatise.

Finally, from the same principle that leads me to the solution of all problems of
Dynamics I deduce also several properties of the centre of gravity, some of them
entirely new, the others having only been proved in a vague and obscure manner,
and I conclude this book with a proof of the principle that is commonly called the
conservation of living forces [the theorem of the kinetic energy].

Appendix B

English Translation of the ‘‘principle of d’Alembert’’ as given by him in his Traité
de dynamique, 1st Edition, David, Paris (1743) [after the reprint of the second
augmented edition of 1758 by Gauthier-Villars Publishers, in two volumes, Paris,
1921, pp. 82-83] by Gérard Maugin. Translator’s remarks are placed within square
brackets in the main text. This is a verbatim translation without any ambition of
literary prowess.

Definition. — In what follows I shall call motion of a body [here he means a
point] the velocity of this same body considered on account of its direction, and
call quantity of motion, in the ordinary sense, the product of mass by velocity.

General problem. — Let a system of bodies be disposed in any manner with
respect to one another, and let us suppose that we impose to each of these bodies a
particular motion that it cannot follow because of the action exerted by other
bodies: find out the motion that each body will take.

Solution. — Let A, B, C, &c. the bodies that compose the system, and suppose
that we imposed motions [here d’Alembert means velocities] a, b, c, &c that are
forced, because of the mutual action, to change in the motions a, b, c, &c. It is
clear that we can regard the motion a impressed on body A as composed of the
motion a that it took and another motion a; that we can equally regard the motions
b, c, &c. as composed of motions, b, b, c, c, &c, from which there follows that the
motion of the bodies A, B, C, &c., among them would have been the same if,
instead of giving impulses a, b, c, &c., one would have given simultaneously the
double impulsions a, a; b, b; c, c; &c. But, by superimposition, the bodies A, B, C,
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&c. have by themselves taken the motions a, b, c, &c. Therefore, the motions a, b,
c, … must be such that they do not disturb the motions a, b, c,…, i.e., if the bodies
have received only the motions a, b, c, &c. these motions should have destroyed
themselves mutually and the system would have remained at rest.

From this there results the following principle to find out the motion of several
bodies that interact among themselves: Decompose the motions a, b, c, &c
impressed on each body, each in two other motions a, a; b, b; c, c; &c that are
such that that if we had imposed to the bodies only motions a, b, c, &c, they could
have conserved their motion without reciprocal hindrance and that we had
impressed only motions a, b, c, &c. the system would have remained at rest; it is
clear that a, b, c, &c are the motions that the bodies will take by virtue of their
action. Q. E. D.

Appendix C

Partial English translation of J.-L. Lagrange (1788), Méchanique analitique, 1st
Edition, Veuve Desaint, Paris (1788) [after the reprint of the second revised edition
of 1811/1815 with new title ‘‘Mécanique analytique’’ in two volumes, Veuve
Courcier, Paris; reprinted by Gabay, Paris, 1997, from the fourth edition edited by
J. Bertand and G. Darboux] by Gérard Maugin. Translator’s remarks are placed
within square brackets in the main text. This is a verbatim translation without any
ambition of literary prowess.

P 10 [on the principle of composition of forces]

………
The second fundamental principle of statics is that of the composition of forces.

It is based on the supposition: that if two forces act simultaneously on a body
[Lagrange means a ‘‘point’’], along different directions, then these forces are
equivalent to a unique force capable of impressing to the body the same motion as
the two forces would give him separately. But a body that we make move uni-
formly along two different directions simultaneously necessarily takes a path that
is along the diagonal of the parallelogram of which it would have followed sep-
arately the two sides by virtue of each of the motions. From this one concludes that
any two powers [he means ‘‘forces’’] that act simultaneously on a body [Lagrange
means a ‘‘point’’], are equivalent to one force that is represented, in magnitude
[Lagrange uses the word ‘‘quantity’’] and direction, by the diagonal of the paral-
lelogram of which the sides represent the magnitude and direction of the two given
powers’’. This is in what the principle called the composition of forces consists.

This principle suffices by itself to determine the laws of equilibrium in all cases;
because, by composing all forces two by two, we must arrive at a unique force that
is equivalent to all forces, and this, consequently, must vanish in the case of
equilibrium, if there is no fixed point in the system. But if there is such a point, the
direction of this unique force must go through this fixed point. This is what we can

26 2 A Glimpse at the Eighteenth Century: From John Bernoulli to Lagrange



see in all books on statics, and particularly in the ‘‘Nouvelle Mécanique’’ by
Varignon, where the theory of machines [e.g., pulleys] is deduced uniquely from
the principle we just spoke about.

…………….

PP17-18 [on the principle of virtual velocities]

…………….
Now I come to the third principle, that of virtual velocities. By ‘‘virtual

velocity’’ one must understand the velocity that a body in equilibrium is ready to
receive, whenever equilibrium is broken, that is, the velocity that the body would
really take in the first instant of its motion, and the considered principle consists in
that the powers [he means ‘‘forces’’] are in equilibrium when they are as the
inverse ratio of their virtual velocities, estimated along the direction of these
powers.

If we examine the conditions of equilibrium in the lever and other machines, it
is easy to recognize this law that the weight and the power are always in the
inverse ratio of the space that each of these can travel in the same time: however, it
seems that the ancients were not aware of this.

……………

PP 20-21 [on the principle of virtual velocities cont’d]

The principle of virtual velocities can be rendered quite general in the following
manner:

If any system of bodies or points as we want, is acted upon by any system of
powers, is in equilibrium, and we give to this system any small motion, then by
virtue of the fact that each point travels an infinitesimally small space that
expresses its virtual velocity, the sum over powers each multiplied by the space
that the point where it is applied travels along the direction of the same power, will
always be equal to zero, regarding as positive the small distances followed in the
direction of the powers and as negative those travelled in the opposite direction
[Emphasis by Lagrange].

In so far as we know, John Bernoulli was the first to have perceived this great
generality of the principle of virtual velocities, and its usefulness to solve problems
of statics. This is what we witness in his letters to Varignon, dated 1717, and that
the latter placed at the head of New Mechanics, a section entirely devoted to
showing the truth and uses of this principle by the different applications.

The same principle then inspired the principle that Maupertuis proposed in the
Mémoires de l’Académie des Sciences de Paris for the year 1740, under the name
of the law of rest [Cf. Maupertuis, 1740], and that Euler developed further and
rendered more general in the Mémoires de l’Académie de Berlin for the year 1751.
Finally, it is the same principle that provides a basis for the principle that Cour-
tivron [probably Marquis de Courtivron (1717–1785) specialist of optics] gave in
Mémoires de l’Académie des Sciences de Paris for the years 1748 and 1749.

And, in general, I believe that I can venture to say that all general principles that
could eventually be discovered in the science of equilibrium, will be none other
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than the same as the principle of virtual velocities, envisaged in a different manner,
and of which they will differ only in their expression.

Moreover, this principle is not only very simple and very general by itself, but it
also has the precious and unique advantage to be translated in a general formula
which comprises all problems that we can propose concerning the equilibrium of
bodies. We shall expose this formula in its whole extent: we shall even try to
present it in an even more general manner than done until now, and give of it new
applications.

As to the nature of the principle of virtual velocities, we must agree with the
opinion that it is not sufficiently obvious by itself to be erected as a primary
principle, but we can view it as the general expression of equilibrium, deduced
from the previously mentioned two principles.

………….

PP 223-224 [on d’Alembert’s dynamics and other principles of dynamics]

………….
The Treatise on dynamics by d’Alembert, which was published in 1743, put an

end to kinds of challenges, by offering a direct and general method to solve, or at
least to put in equations, all problems of dynamics that we can imagine. This
method reduces all laws of motion of bodies to those of the equilibrium, and thus
gives to dynamics the form of statics. We have already remarked that the principle
used by Jacques [Jacob] Bernoulli in the search for a centre of oscillations, had the
advantage to make this search depend on the condition of equilibrium of a lever;
but it was reserved to d’Alembert to envisage this principle in a general manner,
and to give to it all the simplicity and fruitfulness that it deserved.

If we impress to several bodies motions that are forced to change as a result of
their mutual action, it is clear that we can regard these motions as composed of
those they will really take and of motions that are destroyed; from what it follows
that the latter must be such that the animated bodies be in equilibrium under their
own motions.

This is the principle that d’Alembert gave in his Treatise on dynamics and of
which he made a fruitful usage in several problems, and above all in that of the
precession of equinoxes. This principle does not readily provide the equations
needed for the solution of problems of dynamics, but it teaches how to deduce
them from conditions of equilibrium. Therefore, by combining this principle with
ordinary principles of the equilibrium of the lever, or of the composition of forces,
we can always find the equations for each problem; but the difficulty to determine
the forces that must be destroyed, as well as the laws of equilibrium among these
forces, often renders cumbersome and laborious the application of the principle;
and the solutions that follows are most often more complicated than those that
would be deduced from less simple and less direct principles, as we can be con-
vinced in the second part of the same Treatise on Dynamics.

…………..
In the first part of this work, we have reduced the whole of statics to a unique

general formula that provides the laws of equilibrium for any system of bodies
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acted upon by as many forces as we like. Thus, we shall also reduce to a unique
general formula the whole of dynamics; because, to apply to the motion of a
system of bodies the formula of its equilibrium, it will suffice to introduce forces
that arise from the variations of the motions of each body, and that must be
destroyed. The development of this formula, on account of conditions that depend
on the nature of the problem, will give all the equations needed for the determi-
nation of the motion of each body; and it will remain to integrate these equations,
what is a matter of analysis.

One of the advantages of the relevant formula is to offer immediately the
general equations which contain the principles or theorems known under the
names of conservation of living forces, conservation of the centre of gravity,
conservation of the moment of rotation or principle of areas, and the principle of
the least quantity of action. These principles must be considered like general
results of the laws of dynamics, rather than primary principles in this science; but
as they are often employed as such in the solution of problems, we are due to speak
about them here, by indicating in what they consist, and to whom scientists, in
order to leave nothing untouched in this preliminary exposition of the principles of
dynamics.

The first of these four principles, the one concerning the conservation of living
forces, was found by Huyghens, but in a form slightly different from the one that it
receives now. ……..

Until now this principle was viewed as a simple theorem of mechanics; but
when John Bernoulli adopted the distinction made by Leibniz between dead forces
or pressures which act without actual motion, and living forces which accompany
this motion, as well as the measure of the latter by the product of mass and the
square of the velocity, he saw in the principle in question only a consequence of
the theory of living forces, and a general law of nature according to which the sum
of the living forces of several bodies is conserved while these bodies act mutually
on each other by simple pressures, and is constantly equal to the simple living
force that results from the action of actual forces that move the bodies. He gave to
this principle the name of conservation of living forces, and he used it with success
to solve some problems which had not been solved before, and of which the
solution looked difficult by direct methods.

………….
The great advantage of this principle is to provide immediately a definite

equation between the velocities of bodies and the variables that determine their
position in space; do that when by the nature of the problem, all these variables
reduce to a unique one, this equation suffices to solve it completely, and this is the
case of the problem of the centre of oscillations. In general, the conservation of
living forces always provides a first integral of the different differential equations
for each problem, what is of utmost usefulness on several occasions.

The second principle is due to Newton who, at the beginning of his Principes
mathématiques [Principia mathematica], proves that the state of rest or motion of
the centre of gravity of several bodies, is not altered by the reciprocal action of
these bodies, whatever; so that the centre of gravity of the bodies that act on each
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other in any manner either by means of threads or levers, or by the law of
attraction, etc, without any action nor any external obstacles, is always at rest or
moves uniformly along a straight line.

Since then, d’Alembert has given to this principle a larger extent by making it
known that if each body is acted upon by an accelerating force that acts along
parallel lines or are directed toward a fixed point, and acts proportionally to the
distance, the centre of gravity must follow the same line as if the bodies were free;
to what we can add that the motion of this centre generally is the same as if all
forces of bodies, whatever, were applied along its own direction.

It is visible that this principle is used to determine the motion of the centre of
gravity, independently of the respective motions of the bodies, and so that it can
always provide three definite equations relating the coordinates of bodies and the
time, which equations will be the integrals of the differential equations of the
problem.

The third principle is much less old than the preceding two ones, and seems to
have been discovered simultaneously by Euler, Daniel Bernoulli [son of John] and
d’Arcy [Patrice, Comte; 1725–1779], but in different forms. According to the first
two of these authors, this principle consists in the fact that in the motion of several
bodies about a fixed point, the sum of the product of the mass of each body by it
velocity of circulation about this centre and by its distance from this centre, is
always independent of the mutual action that the bodies exert on one another, and
is conserved in as much there are neither action, nor external obstacles. Daniel
Bernoulli gave this principle in the first volume of the Memoirs of the Berlin
Academy published in 1746, and Euler gave it during the same year in the first
volume of his Opuscules. ……The principle of d’Arcy [21], as given to the
Académie des Sciences in the memoirs of 1647 (published in 1752) ……is a
generalization of a beautiful theorem of Newton on the areas described by any
centripedal forces. ….. He made of it a kind of metaphysical principle which he
called the conservation of action to oppose it, or to substitute it to, the principle of
least action…..

Now I come to the fourth principle that I call the principle of least action by
analogy with the principle that Maupertuis [37] gave under this denomination…..
This principle, only envisaged analytically, consists in the fact that in the motion
of bodies interacting with one another, the sum of the masses by the velocities and
by the travelled spaces is a minimum. This author deduced from it the laws of
reflection and refraction of light as well as those of the shock of bodies in two
memoirs in 1744 [36] and 1746 [37].

But its applications are much too specific to serve to establish its truth as a
general principle. They indeed have something vague and arbitrary that can only
render uncertain the consequence that we could deduce from the exactness of the
said principle. That is, it seems to me that we should be wrong in granting to this
principle the same status as to the other principles that we just exposed….. This
principle, combined with that of the living forces and expanded along the rules of
the calculus of variations directly provides all equations that are necessary for the
solution of each problem; and from this is born an equally simple and general
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method to treat the questions that concern the motion of bodies; but this method is
itself only a corollary of the method that is the object of the second part [on
dynamics] of the present book, and has simultaneously the advantage to be
extracted from the first principles of Mechanics.
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Chapter 3
What Happened on September 30, 1822,
and What Were its Implications
for the Future of Continuum Mechanics?

Abstract This contribution offers a discussion about the notion of stress in a
general continuum as initially proposed in a magisterial paper by Cauchy in 1822
(but published only in 1828) without using arguments involving molecules. This is
here presented in its historical context. Cauchy’s view is the currently accepted
view among mechanicians and engineers although attempts (including by Navier
and Cauchy himself) to start from a molecular description in the manner of
Newton and Laplace were constantly offered in both nineteenth and twentieth
centuries. The discussion introduces other secondary stress definitions such as
those by Piola, Kirchhoff, and more recently Eshelby. The question naturally arises
of what happens with the possibility to introduce other internal forces such as
hyperstresses (in so-called gradient theories) and couple stresses (e.g., in Cosserat
continua), and whether some introduced stresses have associated with them a
meaningful boundary condition. Also pondered is the question whether one can
identify a stress concept in physical approaches still considering interactions
between point particles (lattice dynamics, kinetic theory, nonlocal theory, statis-
tical-mechanics approach). The chapter is concluded by a more in depth discussion
of the notion of stress-energy-momentum, culminating in that of pseudo-tensor of
energy-momentum in gravitation theory.

3.1 Introduction

Augustin Louis Cauchy (1789–1857) was a brilliant French mathematician with an
extremely wide scope of interests including mathematical physics and theoretical
mechanics as well as pure questions of algebra (theory of permutations) and
analysis (complex analysis and theory of residues). Extremely prolific, he had a
production that compares well both in quality and quantity with those of Leonard
Euler (1707–1783)—a predecessor in many points- and his contemporaries Carl F.
Gauss (1777–1855) and A. Cayley (1821–1895). Born in August 1789 practically
one month after the fall of the Bastille (July 14, 1789), he certainly did not become
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a revolutionary. On the contrary, politically, he remained all along his life a
convinced legitimist—i.e., in favour of a king in the line of the dynasty (the
Bourbons) of pre-revolution times. The reader may wonder what is the relationship
of this political inclination with his scientific works and career. Indeed, although
formed as an ‘‘ingénieur-savant’’1 in the best schools created by the French
Revolution and Republic and strengthened by Napoleon, he benefited from the fall
of the latter and the return of the Bourbon kings in 1815 in being given the
positions—which he deserved on a purely technical professional basis—of other
scientists who lost their positions for political reasons. Among the positions he was
granted we single out that of teaching a course on mechanics at the Faculty of
Sciences in Paris in 1821. This, according to Belhoste [1, p. 92], may have
‘‘provided the inspiration for further research in mathematical physics’’, in par-
ticular the mechanics of continua, although he had already taught some mechanics
at the Ecole Polytechnique and at the Collège de France. The second fact which
may a priori seem irrelevant to a scientific discussion, is the marriage of Cauchy
with a certain Miss Aloïse de Bure in 1818. This, as we shall see, had a definite
consequence on the manner of publishing his works by Cauchy. Now, the title of
the present chapter does not question what happened all over the whole world, but
more precisely what happened on that precise day of 1822 at the Academy of
Sciences in Paris.

3.2 Preliminary Remarks

In 1822, at age thirty three, Cauchy was already an internationally recognized
mathematician when, on September 30, he read a memoir on continuum
mechanics to the Paris Académie. This was to be the foundational paper in that
field of mechanics. This may be referred to as his first theory (CAUCHY-1) of
general continuum mechanics although he had published before papers on fluid
mechanics and he was much interested in the possibility of an elastic medium to
transmit waves. That now celebrated date of September 30, 1822, was only the
presentation of a theoretical framework that was really published in print only six
years later in 1828 in an extended and corrected form. As a matter of fact, Cauchy
did not even give a true reading or lecture on the contents of his paper in 1822, nor
did he leave a copy with the Académie.2 Only a kind of abstract was given in the
bulletin of January 1823 of a learned Paris society, the Société Philomatique [this

1 For this notion of ingénieur-savant (‘‘engineer-scientist’’) see [22, 10].
2 This has been checked in the files of the session of September 30, 1822 with the kind help of
the Librarian (Mrs Florence Greffe) of the Paris Academy of Sciences. This date was mentioned
by Truesdell [45], but also much before by Duhem (p. 78, Footnote 2, of Duhem [14]). The
original record of this session is reproduced at the end of this chapter. It simply says that Cauchy
read about his research (probably just the basic ideas) that was to be printed as a long abstract
four months later in the Bulletin of the Société Philomatique.
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is translated into English in the Appendix]. There might have been quarrels of
priority with C.L.M.H. Navier (1785–1836)—another great elastician and fluid
dynamicist—that delayed the real publication (see [1, pp. 97–98]). All his life
Cauchy, an already mentioned prolific author, flooded the Académie with notes
and memoirs, so much that the Académie at a point decided to fix an upper limit to
the number of such contributions that any member could submit! This is where the
importance of in-laws should not be overlooked. It happens that Cauchy’s wife
Aloïse was the daughter and niece of the de Bure brothers, Marie-Jacques and
Jean-Jacques, renowned Parisian booksellers and publishers. Cauchy frequently
used this possibility an as expedient way to publish in print his own lectures at
Polytechnique and also many of his memoirs. This was the case of his landmark
paper of 1822 on continuum mechanics which was published in 1828 (cf. Cauchy
[4]) in the second volume of ‘‘Exercices de Mathématiques’’, a kind of privately
produced series published between 1826 and 1830. Cauchy was the only author
published in this surprising scientific periodical.

3.3 The Main Contents of Cauchy’s 1822/1828 Memoir

What we call the first theory (CAUCHY-1) of general continuum mechanics and
elasticity of Cauchy is a purely phenomenological continuum theory which does
not use the notion of constituent ‘‘molecules’’ and at-a-distance interactions
between them (contrary to the second theory of Cauchy; see below). Cauchy did
not build on an uncultivated ground.3 Euler had already introduced the (restricted)
idea that interactions between parts of a fluid were of the contact form and
materialized in a single scalar, the hydrostatic pressure p. In modern terms, it is
said that the applied traction t at a point of a regular surface is aligned with the
local unit normal n to that surface, i.e.

t ¼ �p n: ð3:1Þ

This applies to so-called Eulerian fluids that present no viscosity. The basic idea
propounded by Cauchy in 1822 was to generalize (3.1) to all kinds of continua (see
the spot-on general title of the abstract published in Cauchy [3]; full memoir
Cauchy [4]. His reasoning is that in this state of generalization the relation (3.1) is
replaced by a linear relationship (a linear vector relation in the language of Gibbs

3 The reader will be interested in Truesdell’s vision of Cauchy’s elaboration of the concept of
stress in his Essay ‘‘The creation and unfolding of the concept of stress’’ in pp. 184–238 in
Truesdell [45] (this was underlined by J. Casey, private communication). However, in contrast to
the present study that emphasizes the story of the concept of stress from and after Cauchy,
Truesdell deals with the conceptual stages that led to Cauchy’s notion of stress, with works by
brilliant predecessors such as Stevins, Galileo Galilei, the Bernoullis, d’Alembert, Euler, Young,
and Fresnel. Cauchy himself is parsimonious with citations, and refers to very few scientists with
the exception of his contemporary Fresnel.
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and Heaviside; cf. Crowe [10]), and not a simple proportionality. That is, in
modern intrinsic and Cartesian tensorial notations,

t ¼ r:n and ti ¼ rijnj; i; j ¼ 1; 2; 3: ð3:2Þ

Equation (3.1) corresponds to the special case r ¼ �p 1 or rij ¼ �p dij where
dij is Kronecker’s delta. This can be viewed as a specific constitutive assumption
(i.e., the selection of a specific continuum, the Eulerian fluid). The object r is the
(Cauchy) stress tensor. Of course it was identified with the mathematical notion of
tensor (which itself smells of its mechanical origin) only much later by Woldemar
Voigt. In his generalization Cauchy considers that the applied traction t can be at
any angle to the unit normal to the tangent plane of a surface cut in the material
body, thus allowing for a contact action of the shear type as well as pressure. The
true genial point resides in the absolutely general standpoint and its evident
conceptual simplicity. To prove (3.2) Cauchy relied on a reasoning involving a
special small volume of matter, in his celebrated tetrahedron argument, now
reproduced in all introductions to continuum mechanics.4 It was also proved in
most cases (no applied couples) that this Cauchy stress is symmetric, having thus
only six independent components at most in standard Euclidean physical space.
Relying on an argument already introduced by Euler (by looking for the equi-
librium of an elementary parallelepiped) the following local dynamical Cauchy
equation of motion could be obtained (here in modern notation) [44, 47, 48]

q a ¼ qf þ div r; ð3:3Þ

where vector a denotes the acceleration, q is the matter density, f is an external
body force per unit mass, and the symbolism div denotes the divergence operator
applied to the tensor r. Cauchy could not use this vocabulary as the operation of a
divergence was essentially introduced by George Green [21] in electromagnetism
in the same year in a practically unknown publication. But if we combine Cau-
chy’s lemma (3.2) and Green’s divergence theorem we have the following
exploitable result:

Z
oB

t ds ¼
Z

oB
r:n ds ¼

Z
B

div r dv; ð3:4Þ

for a simply connected volume B bounded by a regular surface qB. Applying this
to the following global balance law of linear momentum,

d

dt

Z
B

q v dv ¼
Z

B
q f dvþ

Z
oB

t ds; ð3:5Þ

and localizing this on account of an assumed continuity of fields over B, we are led
to the local (Cauchy) balance of linear momentum as Eq. (3.3) with a ¼ dv=dt,
what is the modern way of reaching (3.3).

4 See a more technical and rigorous exposition in Noll [39].
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Remark 3.1 Very often in the engineering literature the expression balance laws
and equations of conservation are used interchangeably. Like in financial
accounting, ‘‘balance’’ carries with it the notion of incoming and outgoing stuff.
That is why a quantity like r is sometimes referred to as a flux.

Remark 3.2 Written in the appropriate coordinate system and in the absence of
body source term, an equation such as (3.3) can also be written in the form

o

ot
p� div r ¼ 0: ð3:6Þ

This can be referred to as a mathematical conservation law. In particular, with
vanishing second term we can say that the quantity p is strictly conserved in time
as

op=ot ¼ 0: ð3:7Þ

But in statics (no time dependence of fields) or in quasi-statics (possible
dependence on time but neglecting acceleration terms), we have the ‘‘equilibrium’’
equation

div r ¼ 0: ð3:8Þ

The three possibilities embodied in Eqs. (3.6)–(3.8) can be compared to the
Newtonian equation of point-particle motion:

*General Newton equation (point of constant mass):

m a ¼
X

a

Fa; ð3:9Þ

where Fa; a ¼ 1; 2; . . . is a system of acting forces;
*Statics (Varignon, parallelogram of forces):

X
a

Fa ¼ 0; ð3:10Þ

*Inertial motion (Descartes):

d

dt
p ¼ 0; p ¼ mv; ð3:11Þ

*D’Alembert’s formulation of (3.9):
X

a

Fa þ Fa ¼ 0; Fa ¼ �ma: ð3:12Þ

With these different forms—of which (3.9) and (3.12) are strictly equivalent—
we have interpretations at variance depending on the chosen emphasis. With
account of the special case (3.10) we have a tendency to consider Newton’s
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equation (3.9) as a definition for the acceleration force. With the special case
(3.11) we suffer from another temptation, that of considering (3.9) as a conser-
vation law of linear momentum that is not strictly respected because of the
presence of impressed forces. As to (3.12), it is d’Alembert’s clever ‘‘rewriting’’
trick to give all ‘‘forces’’ the same status, as understood in his principle of virtual
power.

A more or less similar discussion can be envisaged for the continuum Eq. (3.6)
through (3.8). What is the primary quantity appearing in these equations? For
engineers avoiding a dynamical framework—Eq. (3.8) possibly with an added
body force-, the Cauchy stress appears as primary, essentially through the Cauchy
Lemma (3.2). But for physicists interested in dynamics, the interpretation of (3.6)
as a nonstrict conservation law for linear momentum prevails, the notion of
associated flux being only secondary. Finally, with the view of a discriminating
physicist and parodying (3.12), we can formally rewrite (3.3) as

Fext þ Fint þ Fa ¼ 0; ð3:13Þ

where

Fext ¼ qf; Fint ¼ divr; Fa ¼ �qa; ð3:14Þ

are volume forces of external, internal, and acceleration origin, respectively. In
writing (3.13) we distinguish between external forces reserved to at-a-distance
action (e.g., gravitation, electromagnetism) acting per unit quantity of matter and
internal forces that account for contact action via the second of (3.14) and the
notion of Cauchy stress. This ‘‘definition’’ indicates that Fint is defined up to a
divergence-free second-order tensor. But the associated natural boundary condi-
tion still involves only the initial stress and applied traction. However, this remark
makes one ponder the case of an infinite body and the second Cauchy’s theory
(CAUCHY-2) of elasticity proposed by Cauchy in 1828 on the basis of molecular
considerations [5]. Remember that Cauchy’s work of 1822/1828 also proposed a
definite theory of linear isotropic elasticity that provides an expression for r in
terms of infinitesimal strains, with two elasticity coefficients.5 This was proposed a
priori to close the obtained system of differential equations in terms of the elastic
displacement gradient. This a priori construct that involves a representation the-
orem—also attributed to Cauchy—for a second-order tensor is referred to as
Cauchy’s elasticity by Truesdell, Toupin and Noll [47, 48]. Nowadays, this is
justified by applying a thermodynamic argument and the consideration of an
elasticity potential (in fact following George Green who thereby becomes our
second hero).

5 This was done after correction by Cauchy himself of his initial proposal with only one
coefficient; for a general anisotropic body this would yield twenty one independent coefficients at
most but its application to specific symmetries requires more group-theoretic reasoning unknown
to Cauchy.
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3.4 Cauchy’s Stress and Hyperstresses

A naturally raised question is what happens to the Cauchy lemma (3.2) when one
has to consider a surface that presents irregularities such as an edge where the unit
normal may not be uniquely defined. One may also question what happens when in
addition to the normal at a regular but curved surface, one tries to account for the
geometrical description of the said surface at the second order, thus involving the
curvature and the surface variation of the unit normal, hence also the introduction
of the tangential derivative. It took some time to ponder these questions and obtain
rigorous answers. This was rigorously achieved by Noll and Virga [40] and del-
l’Isola and Seppecher [11] with an advantage to the latter authors for the brevity of
their argument—see also [12] for a more general case. Avoiding the difficult
technical points for which we refer the reader to the original authors, we note that
these considerations inevitably lead to envisaging the notion of surface tension
described within the continuum mechanics framework. In addition to the notion of
stress à la Cauchy this yields the introduction of the notion of hyperstress. This is
represented by a third order tensor that is the thermodynamical dual of the second
gradient of the displacement vector in elasticity or the second gradient of the
velocity in fluids (or the gradient of the density in a ‘‘perfect’’ fluid). This was
recognized early in the theory of surface tension by Korteweg [24] and much more
recently by Casal [2]. In the case of elasticity, basing on a variational formulation,
it was probably Le Roux [28] who first introduced the notion of second gradient
theory remarking in the application that the interest for such a formulation appears
only for problems with a spatially non-uniform strain. The Cauchy lemma is not
used in these energy approaches. As a matter of fact, a formulation such as the
principle of virtual power bypasses the Cauchy lemma. Indeed consider that the
power of internal forces expended in a virtual velocity field v̂ is written as a linear
form (for a whole body B)

P̂int Bð Þ ¼
Z

B
fiv̂i þ rij v̂i;j þ � � �
ffi �

dB: ð3:15Þ

In modern continuum mechanics it is assumed that internal forces for which one
needs to construct constitutive equations must be objective (independent of the
observer—contrary to externally applied forces and inertial forces that are not
subjected to this constraint). So must be the case of their dual partners in (3.15).
This rules out the term linear in the velocity itself and the term linear in the skew
part of the gradient of the velocity. Being satisfied with a first-order gradient
theory, this reduces (3.15) to the expression (here the minus sign is conventional)

P̂int Bð Þ ¼ �
Z

B
rijD̂ji

ffi �
dB; D̂ji :¼ 1

2
v̂j;i þ v̂i;j

ffi �
: ð3:16Þ

Thus tensor r can only be symmetric in this case. In the absence of other
internal force (e.g., due to electromagnetic effects), it can therefore be identified to
the Cauchy stress when the formulation of the principle of virtual power accounts
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for the power expended by an applied traction at the regular boundary of B. Pur-
suing the expansion indicated by the ellipsis in (3.15) will allow one to introduce
stresses of higher order, in particular the already mentioned hyperstress. We refer
to Germain [20] and Maugin [31] for these extensions. This short exercise shows
that a weak formulation like the principle of virtual power offers great advantages
over the Cauchy type of approach, in particular to obtain a good set of natural
boundary conditions at surfaces, corners and apices.

Hyperstresses of another type may be introduced to which a Cauchy type of
argument applies. This is the case in media with so-called internal degrees of
freedom where each material point, in addition to its translation, is equipped with
an internal deformation (called micro-deformation) which in some cases is simply
reduced to an internal rigid rotation. This is the case of so-called Cosserat con-
tinua. Indeed, the Cosserat brothers were led to consider the possible existence of
internal couples [6]. They more or less were forced to do that by imposing an
invariance (so-called Euclidean invariance) on a Lagrangian-Hamiltonian for-
mulation, which invariance treats on an equal footing translations and rotations.
This gave rise to the possible existence of a new type of internal force, the couple
stress, along with that of stress, and as a consequence the possibility to have non-
symmetric stresses (cf. Le Corre [27]). Such couple stresses also satisfy a lemma of
the Cauchy type. But again, the principle of virtual power accounting for the
presence of a new velocity field related to the micro-deformation is the most
elegant and safe way to deduce all field equations and associated boundary con-
ditions in such a theory.

Gradient theories with hyperstresses and Cosserat media now are part of gen-
eralized continuum mechanics of which the main characteristic property in effect is
to deviate from Cauchy’s 1822/1828 pioneering vision (cf. Maugin [33]).

3.5 Stress as a Secondary Notion

In the late 1820s, Cauchy [5], in competition with Navier and Poisson and with a
view to envisage anisotropic bodies, decided to construct a linear elasticity theory
using arguments involving a molecular picture with kind of interactions à la
Newton between molecules. This CAUCHY-2 approach bypasses the basic notion
of stress tensor. But the general form of the action (repulsion or attraction) of
neighbouring molecules on a prototype one must be assumed. The reasoning then
consists in making approximations in the infinite series of the involved finite
differences to extract no nonsensical continuum equations. This can be achieved
only by assuming a specific regular symmetry (a lattice) thus conducing to a
generally anisotropic representation of the stress tensor by identification. This
recovery of the notion of stress was proposed by Cauchy in his second paper of
1828. However, this does not provide the same number of elasticity coefficients as
the first Cauchy’s theory because of some constraints brought by the symmetries of
molecular interactions (the famous Cauchy-Born relations). Cauchy was to apply
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his elasticity theory to specific mechanical elements (plates, rods) and to the theory
of light propagation in a supposedly elastic medium serving as a support of light
vibrations (the ill-fated ‘‘ether’’). One of his successes was a theory of reflection
and refraction at the boundary between two media. This second line fits well in the
grand scheme to create a universal molecular physics by Laplace in the manner of
Newton in point mechanics and by Ampère in electromagnetism.

Nowadays Cauchy’s second theory is considered as obsolete while the first
theory is the accepted one. But CAUCHY-2 germinally contains the modern
theory of lattice dynamics as developed by Max Born and Theodor von Kármán in
the early twentieth century and now a tenet of solid-state physics. This identifi-
cation of a stress in a continuum limit of a particle-like theory is not proper to
lattice dynamics. It appears where an internal force can be identified as the
divergence of a second order tensor [cf. the second of (3.14)], which will then be
called ‘‘stress’’. This is the case in the kinetic theory of fluids where after an
appropriate expansion in terms of a small characteristic parameter, a continuum
equation of linear momentum can be constructed in the series of moments deduced
from the Boltzmann equation (see books on kinetic theory). But we must
remember that there is no principle requiring the justification of continuum
equations from a molecular description, as a logical continuum theory may be
entirely autonomous. Nonetheless, the true physicist will be more than happy to be
able to establish such a correspondence. The search for this identification is not
vain; it progresses constantly and meets some success in a rigorous mathematical
framework.6

Still another case where the notion of stress can only be secondary is that of
materials of which the response exhibits a strong nonlocal nature. That is, in
principle, the mechanical (or other) response at a material point depends on the
values of independent variables (e.g., strains) at points at a far distance form this
point, with a natural decrease of influence with increasing distance. This intro-
duces in continuum mechanics a vision à la Newton-Laplace well illustrated by the
book of Eringen [17]. Any cut in the material to apply Cauchy’s argument would
suppress the prevailing action at-a-distance. No wonder, therefore, that such
models are usually first constructed in an infinite body and more than often jus-
tified by a lattice-dynamic theory with long-distance (with far-neighbour interac-
tion) forces (See e.g. [25]).

From the above we see that there are cases where a computation from a
molecular theory allows one to identify a stress tensor at a bulk point via an
equation of the type of the second of (3.14), i.e.,

Fint � divr: ð3:17Þ

6 This is beautifully demonstrated in the recent book of Murdoch [36] after the statistical-
mechanics theory of liquids by John G. Kirkwood (1907–1959) where the liquids’ properties are
calculated in terms of the interactions between molecules.
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This is true only modulo a divergence-free tensor. An example of this is the
introduction of Maxwell stresses in electromagnetism. This can be first illustrated
by a simple field theory in which the basic field equation is none other than the
Gauss-Poisson equation for the potential / and electric charge density q:

r2/ ¼ �q: ð3:18Þ

In multiplying both sides of this equation by the vector r/ and performing
elementary manipulations, we are led to the equation of the electrostatic force
acting on q as

Fe ¼ qE � divre; re :¼ E� E� 1
2

E21; ð3:19Þ

where E ¼ �r/ is a quasi-static electric field and the symmetric tensor re may be
called the Maxwell stress for such fields [35]. For a vanishing q in vacuum this
short proof shows that a divergence-type of conservation law with vector com-
ponents can be associated with the scalar Laplace equation [cf. (3.18)]—a fact
more than often ignored, but intimately related to Noether’s theorem when (3.18)
is deduced from a variational principle (see below). In a general magnetized,
electrically polarized and conducting continuum a rather long argument starting
with the expression of the elementary force acting on electric charges in—
relatively slow—motion (the celebrated Lorentz force) allows one to show that the
corresponding ‘‘internal force’’ due to electromagnetic fields in a deformable
continuum is formally given by an expression of the type

Fem ¼ div rem � o

ot
pem; ð3:20Þ

where the electromagnetic stress tensor rem is generally not symmetric and pem is a
linear electromagnetic momentum for dynamical fields. Expressions of these
together with the accompanying energy expression can be found in Maugin [32,
Chap. 3] after an evaluation made by Maugin and Collet in 1972 and Maugin and
Eringen in 1977. In this approach both quantities rem and pem appear as secondary
notions. But the representation (3.20) is a patent mark of the ambiguity in inter-
pretation carried by electromagnetic fields that can alternately be considered as
giving rise to at-a-distance (à la Newton-Laplace) or contact (à la Euler-Cauchy)
forces.

3.6 Stress as Part of Stress-Energy-Momentum

It is natural to turn next to a space-time formulation propounded by relativistic
studies in the twentieth century. First, a naïve consideration puts us on the right
track. For instance, [42, 43] introduced an object, now called the Piola-Kirchhoff
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stress, from the Cauchy stress by the transport/convection (or ‘‘pull back’’) defi-
nition (so-called Piola transformation)

T ¼ JFF�1r or TK
:i ¼ JFXK

;j rji; ð3:21Þ

where F�1 :¼ oX=ox ¼ foXK=oxjg is the inverse deformation gradient, and
JF :¼ det F, where F is the direct deformation gradient between a reference
configuration KR (with material coordinates XK, K = 1, 2, 3). Equation (3.3) with
f = 0 is then shown to take the following mathematically strict conservation form:

o

ot
q0við Þ � o

oXK
TK
:i ¼ 0; ð3:22Þ

where q0 = qJF is the matter density at KR.
The object T, not a traditional tensor since having «feet» in two different

spaces, stands for a force in the actual configuration Kt computed per unit area of
the reference configuration. With (3.22) one is tempted to introduce a space-time
parametrization (Xa = (XK, X4 = t)) such that (3.22) reads equivalently

o

oXa
T a
:i ¼ 0; Ta

:i ¼ TK
:i ; T

4
:i ¼ �q0vi

ffi �
: ð3:23Þ

The first of these has the look of a true (divergence-like) conservation law but it
is not really fully space-time in nature since its components still are in three-
dimensional physical space. To reach a completely space-time equation one should
unite (3.23) with the conservation of energy. As we know now, this was achieved
in the first years of the 1900s with Minkoswki’s four-dimensional formulation of
special relativity. In modern terms this is introduced by noting xa = (xi, x4 = ct)
with a hyperbolic space-time metric gab of signature (+, +, +, -) and noting ua,
a = 1, 2, 3, 4, the ‘‘world’’ velocity such that gabuaub ? c2 = 0. Here c is the
velocity of light in vacuum taken as a standard of velocity. A definite step forward
was taken by Carl Eckart [15] in a paper that is a real pearl, when he proposed that
for general continuous matter energy, momentum and stresses could be accom-
modated in a single notion, the stress-energy-momentum space-time tensor Tab

within a completely covariant format by using systematically the resolution of any
space-time object into ‘‘proper’’ components. That is,

Tab ¼ c�2xuaub þ c�2uaqb þ paub � tba ð3:24Þ

where

x � c�2uaTabub; qb � �uaTacPb
:c; p a � �c�2P a

:cT
cbub; tba � �Pb

:cP
a
:dTdc:

ð3:25Þ

Here Pab is the spatial projector such that

Pab :¼ gab þ c�2uaub ¼ Pba; uaP a
:b ¼ 0; P a

:bPb
:c ¼ Pa

::c: ð3:26Þ
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These are, respectively, a definition, an orthogonality property,7 and the con-
dition of idempotence. The four elements present in the canonical decomposition
(3.25) are but ‘‘spatial’’ covariant forms of the energy density, energy (heat) flux,
momentum density, and (Cauchy) stress. The identification of tba as the relativistic
generalization of Cauchy’s stress is shown by applying the projector P.b

c to the
general balance law (here a strict conservation law)

o

oxa
Tab ¼ 0; ð3:27Þ

in order to obtain its essentially spatial component, i.e., orthogonal to uc according
to the second of (3.26). Now the identification with Cauchy’s stress is not so
obvious. The matter was pondered by scientists such as Van Dantzig [49] and
Costa de Beauregard [7–9]. We refer the reader to these authors. Expression (3.24)
does not generally imply that tba is symmetric. But we note that Tab is a powerful
generalized notion of rich contents compared to the simple stress notion.

Furthermore, in standard general relativity, minimal coupling requires to
replace the partial derivative in (3.27) by a covariant derivative. That is,

raTab ¼ 0; ð3:28Þ

wherera is computed in the space-time varying metric gab which is solution of the
celebrated Einstein’s gravitation equation

Aab :¼ Rab �
1
2

Rgab ¼
8pk

c4
Tab; ð3:29Þ

where Rab is the Ricci curvature, R is the scalar curvature of space-time, and k is
Newton’s gravitation constant. The right-hand side of (3.29) provides the source of
energy and momentum (of various origins—including mechanical stresses—in
particular from electromagnetism in magnetized and electrically polarized bodies;
see [18], Vol. 2, Chap. 15); but note that the unknown gab itself is involved in Tab

so that only a laborious iteration procedure can help obtain, if ever, a solution of
(3.29) for the metric. Equation (3.29) requires that Tab be symmetric, since this is
the case of the Einstein tensor Aab.8

7 As a young researcher I used to call ‘‘PU’’ tensorial objects those that are essentially space-like
although written in full covariant form. They satisfy typical orthogonality conditions such as the
second of (3.26). The hidden play of words was that PU = ‘‘Perpendicular to the world velocity
u’’ = ‘‘Princeton University’’ for which the author has a definite affection. It is this property that
allows for the identification of the space-time tensor tab with Cauchy’s stress of classical
continuum mechanics [cf. the last of Eq. (3.25)] [See [30], and papers published between 1971
and 1980 in C.R. Acad. Sci. Paris, Journal of Physics (UK), Ann. Inst. Henri Poincaré (Paris),
Journal of Mathematical Physics (USA) and J. General Relativity and Gravitation].
8 The history of the successive missed and successful steps in the production of Eq. (3.29) in the
1910s is a formidable scientific adventure involving, not only Einstein—as we could believe from
modern hagiographic treatments—but also Marcel Grossmann, Max Abraham, Gustav Mie, David
Hilbert and Emmy Noether, a story that remains to be fully investigated and understood [In particular,
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3.7 The Nec Plus Ultra: The Eshelby Stress and the Pseudo
Tensor of Energy-Momentum

Both Cauchy stress and the first Piola-Kirchhoff stress present the invaluable
feature to have associated with them natural boundary conditions on the stress.
This follows directly from Cauchy’s fundamental lemma. But there are other stress
tensors that are more directly related to the concepts of energy and energy-
momentum and with which no direct simple boundary conditions are associated.
These tensors are often deduced from the original Cauchy and Piola-Kirchhoff
stresses via some manipulation. The first of these is the second Piola-Kirchhoff
stress deduced from the first through the following definition (complete pull-back
of the Cauchy stress to the reference configuration):

S :¼ T:F�T i:e:; SKL ¼ TK
:i XL

;i ¼ JFXK
;i r

ijXL
;j : ð3:30Þ

The interest for this fully material stress tensor is its ‘‘energy’’ contents as, for
Green’s elasticity deduced from a potential function W per unit reference volume,
it is shown that

S ¼ oW

oE
; W ¼ W Eð Þ; E ¼ 1

2
C� 1Rð Þ; C :¼ FT F: ð3:31Þ

But there is no direct meaningful boundary condition involving only S except in
small strains where S readily reduces to the Cauchy stress.

The second stress in this class is the material Eshelby stress b [19] which can be
introduced thus. Apply F.L

i to Eq. (3.22) and account for the fact that for an elastic
body W ¼ ~W Fð Þ and T ¼ o ~W=oF. This manipulation provides a mathematically
strict conservation law (for homogeneous bodies) in the form

o

ot
P� divR b ¼ 0; ð3:32Þ

wherein we have set

P ¼ �q0v:F; b :¼ � L1R þ T:Fð Þ

with

L ¼ 1
2

q0v2 �W : ð3:33Þ

(Footnote 8 continued)
were Einstein’s equations first written down by Hilbert with the help of Noether since only
Eq. (3.29)—with all terms present—could be in agreement with Noether’s invariance theorem
that associates a conservation laws with a ‘‘good’’ field equation in a variational treatment (see
Sect. 3.7 about the Eshelby stress)? Indeed, while the general covariance of the basic Eqs. (3.29)
and (3.28) is a tenet (see the discussion in Norton [41]), the Noetherian relationship between these
two—field and conservation (in that order)—equations is an acknowledged requirement.
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The last quantity is akin to a Lagrangian density. This hints at a possible deri-
vation of b via a Lagrangian-Hamiltonian variational principle, in which, in effect,
application of the Noether’s [38] theorem for material space translations provides
(3.32) automatically via ‘‘Noether’s identity’’. The main interest in the conservation
Eq. (3.32) is its role in capturing field singularities—for instance in the theory of
fracture—since quantities such as the so-called material momentum (or pseudo-
momentum) P and the Eshelby stress b are at least second order in the motion and the
associated deformation. Tensor b can be rewritten in two alternate forms as

b ¼ � L1R þ C:Sð Þ ¼ �L1R þ FT :
oL

oF
: ð3:34Þ

The first of these shows the relationship of b with the Mandel stress M :¼
F:T ¼ C:S which plays a definite role as driving force in many material structural
rearrangements (e.g., in finite-strain plasticity, growth; see [29, 34]). The second of
(3.34) exhibits the field-theoretic origin of the notion of Eshelby stress in pure
elasticity. This was recognized early by J. D. Eshelby who called b the energy-
momentum tensor of elasticity or Maxwell stress of elasticity. The last denomi-
nation holds good by analogy with a tensor such as in (3.19)2. The first coinage is
not entirely correct since b remains three-dimensional (essentially ‘‘spatial’’—i.e.,
3D—albeit ‘‘material’’) while the notion of energy-momentum (see above)
requires a four-dimensional treatment. In spite of its usefulness demonstrated at
length in our book [34], the nonsymmetric material tensor b is not associated with
a physically obvious boundary condition.9

But the remark concerning the second of (3.34)—a canonical formula in ana-
lytical mechanics—naturally takes us back to a relativistic treatment such as in
general relativity. It is not difficult to show that (3.34)2 indeed is minus the purely
space-like part of a four-dimensional energy-momentum tensor as deduced in a four-
dimensional formulation.10 Pondering now the case of Einstein’s general relativistic
theory of gravitation, we must realize, as emphasized by Landau and Lifshitz in their
remarkable ‘‘Theory of fields’’ [26, Section 100] that the covariant form (3.28) does
not in general express a conservation law of any truly meaningful physical quantity.
The reason for this is that, on account of the expression of the covariant divergence in
terms of the usual divergence (3.28) reads [here g = det (gab)]

9 Some authors (e.g., [23]) have proposed to consider Eq. (3.32) as autonomous being posited—
for any material behaviour—as a general balance law—a ‘‘new’’ equation of physics—by some
kind of trick involving a boundary flux of energy together with stresses. The artificiality of this
type of reasoning as well as the erroneous concept of the novelty of (3.32) in physics is shown in
the Appendix A5.2 of our book [34]. Furthermore, we have also shown that an equation such as
(3.32) with a possibly nonvanishing right-hand side could be established without a variational
formulation at hand and no application of any Noether theorem (Chap. 5 in Maugin [34])—but
with a mimicking of Noether’s identity. This fortifies the view of the secondary nature of stresses
such as M or b compared to the Cauchy stress.
10 For this see Eq. (4.26) in Maugin [34] and select the /a there as the three components of the
direct motion x ¼ �xðX; tÞ between the reference (material) configuration and the actual
(physical, i.e., Eulerian) one.
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raTa
:b ¼

1ffiffiffiffiffiffiffi�g
p

o

oxa

ffiffiffiffiffiffiffi�g
p

Ta
:b

� �
� 1

2
oglm

oxb
Tlm ¼ 0: ð3:35Þ

The quantity which must be conserved is the 4D (four-dimensional) momentum
of matter plus gravitational field. But the latter is not included in T.b

a by its very
definition. In other words, this 4D momentum must be the canonical four-
momentum associated with the whole physical system. This means that the cor-
responding conservation law must present a flux (‘‘stress-energy-momentum ten-
sor’’) that includes a term that accounts for the gravitational effect. A possible
solution is given by Landau and Lifshitz [26] where the additional contribution to
the energy-momentum tensor is called the pseudo-energy momentum tensor of
gravitation. We denote by G.b

a this new object so that the looked for local con-
servation law should read

o

oxa

ffiffiffiffiffiffiffi�g
p

Ta
:b þ Ga

:b

� �h i
¼ 0 ð3:36Þ

Accordingly, the four-momentum defined by

Pa ¼ 1
c

Z ffiffiffiffiffiffiffi�g
p

T ab
: þ G ab

:

ffi �
dAb ð3:37Þ

will be conserved, where dAb is a space-time surface element and the integration is
taken over any infinite space-time hypersurface that contains the whole of three-
dimensional space. Here Gab is symmetric although not a true tensor (hence the
denomination of pseudo-tensor). The Landau-Lifshitz definition of Gab may be
given as

Gab ¼ 1
2 �gð Þ

c4

8pk

o2

oxloxm
�gð Þ gabglm � galgbm

ffi �ffi �
: ð3:38Þ

As usual with his characteristic economy of words and formulas and his ded-
ication to the beauty of the said equations, ([13], Eq. (32.5))11 Paul Dirac estab-
lishes a formula for G.b

a by applying Noether’s theorem to the Lagrangian density
Lg of the gravitational field with

G a
:b
ffiffiffiffiffiffiffi�g
p ¼ oLg

ogcd;a
gcd;b � Lgg a

:b: ð3:39Þ

One obtains thus

2 8pk=c4
ffi �

G a
:b
ffiffiffiffiffiffiffi�g
p ¼ Ca

lm � g a
m Cr

lr

� �
glm ffiffiffiffiffiffiffi�g
pffi �

;b�Lgg a
b ; ð3:40Þ

where the C’s are Christoffel’s symbols. This is Einstein’s [16] proposal that may
have been inspired by contemporary works by David Hilbert and Emmy Noether.

11 See also the problem proposed in Landau and Lifshitz [26] at the end of their Section 100.
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Contrary to the Landau-Lifshitz definition, the Einstein-Dirac pseudo-tensor Gab is
not symmetric. Of course (3.39) reminds us of the second of formulas (3.34) since
these are canonical definitions in field theory.

In practice, the spatial part of (3.37) is obtained by considering the hypersurface
x4 = const. so that we have the 3D space integral

Pi ¼ 1
c

Z ffiffiffiffiffiffiffi�g
p

Ti4 þ Gi4
ffi �

dV: ð3:41Þ

In the absence of gravitational field, this establishes a correspondence with the
balance of a canonical momentum obtained in Eq. (3.32). This closes our disqui-
sition about the notion of stress started with Cauchy’s 1822/1828 pioneering work.

3.8 Conclusion

As witnessed by the above given exposition there is a long way between Cauchy’s
inception of the stress concept and Einstein-Dirac’s pseudo tensor of stress-energy-
momentum. We have explored this evolution in a rather pedestrian manner. What
fundamentally remains from this is the essential role played by stress tensors or
energy-momentum tensors that appear as true fluxes so that a corresponding
physically meaningful conserved quantity (momentum) can be constructed. This is
satisfied by Cauchy’s initial construct of the stress because it provides at once the
associated natural mechanical boundary conditions. This also holds for the first
Piola-Kirchhoff stress, but not for derived definitions such as those of the second
Piola-Kirchhoff stress, Mandel stress and Eshelby’s stress in classical continuum
mechanics. It is this kind of physical-theoretical argument which materialized in
the introduction of the pseudo-tensor of energy-momentum in Einstein’s gravita-
tion theory as shown in the foregoing section. Having recurrently emphasized the
role of Noether’s theorem [37, 38], we also note that Cauchy’s original proposal of
1822 and Green’s divergence theorem (possibly generalized to space-time)
accordingly remain the two basic tenets of continuum theory in spite of all pro-
gress achieved since that innocuous—but memorable for our community—day of
September 30, 1822. We can say that 1828, with the inception of Green’s diver-
gence theorem and Cauchy’s detailed presentation of his lemma, was a true annus
mirabilis for continuum mechanics, providing thus the fons et origo of this science.
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Appendix A

Augustin L. Cauchy (1789–1857)

The ‘‘birth certificate of modern continuum mechanics’’: Cauchy’s reading of
his ideas at the September 30, 1822 session of the Académie des Sciences in Paris
(Procès verbal de l’Académie des Sciences, Tome VII, Décembre 1822,
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Imprimerie d’Abbadia, Hendaye, 1916; kindly provided by Mrs Florence Greffe,
Acad. Sc. Paris; May 2013) The remarkable roster of scientists among the above
list of attending academicians is stupendous: e.g., Fourier, Magendie, Berthollet,
Chaptal, Lamark, Laplace, Lacroix, Cauchy, Cuvier, Legendre, Prony, Poisson.

Appendix B

A. L. Cauchy—1823: Researches on the equilibrium and internal motion of solid
bodies or fluids, whether elastic or non-elastic.

Bulletin of the Société Philomatique, pp. 9–13, 1823, Paris.
(Translation from the French by G.A. Maugin)

The present researches were undertaken on the occasion of the publication of a
memoir by M. Navier on August 14, 1820. Its author, with a view to establishing
the equilibrium equation of an elastic plane, had considered two kinds of forces,
some produced by dilatation or contraction, and the other by the flexion of this
plane. Moreover, he had supposed, in his computations, that both these forces are
perpendicular to lines or faces on which they are exerted. It seemed to me that
these two kinds of forces could be reduced to one kind only, which should be
always called tension or pressure, and is of the same nature as the hydrostatic
pressure exerted by a fluid at rest on the surface of a solid body. However, the new
‘‘pressure’’ will not always be perpendicular to the faces on which it act, and is not
the same in all directions at a given point. Expanding this idea, I arrived soon at
the following conclusions.

If in a solid body, whether elastic or not elastic, we succeed to render rigid—in
thought. [GAM]—and invariable a small volume element bounded by any sur-
faces, this small element will be subjected on its different faces and in any point of
each of these, to a determined pressure or tension. This pressure or tension will be
of the same type as the pressure that a fluid exerts on an element of the boundary of
a solid body, save for the difference that the pressure exerted by a fluid at rest on
the surface of a solid body is directed normal to this surface, from the outside to
the inside, and is independent at each point of the orientation of the surface with
respect to the coordinate planes, while—in our case [GAM]—the pressure or
tension exerted at a given point can be oriented perpendicularly or obliquely to this
surface, sometimes from the outside to the inside if there is condensation [i.e.,
contraction, GAM] and sometimes from the inside to the outside if there is dila-
tation, and it can depend on the angle made by the surface with the relevant planes.
Furthermore, the pressure or tension exerted on any plane can easily be deduced, in
both amplitude and direction, from the pressures or tensions exerted on three given
orthogonal planes. I had reached this point when M. Fresnel, who came to me to
talk about his works devoted to the study of light and which he had presented only
in part to the Institute, told me that, on his own, he had obtained laws in which
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elasticity varies according to the various directions issued from a unique point, a
theorem similar to mine. However, the theorem in question was far from being
sufficient for my projected object of study, at that period, that was to formulate the
general equations of equilibrium and internal motion of a body; and it is only in
recent times that I succeeded to establish the proper new principles that yielded
this result, and that, now, I will make known.

From the above mentioned theorem, it follows that the pressure or tension at
each point is equivalent to the inverse of the vector radius of an ellipsoid. Three
pressures or tensions that we call principal correspond to the three axes of this
ellipsoid, and we can show [This remark here is in agreement with the last
researches of M. Fresnel (See the Bulletin of May 1822)] that each of these is
perpendicular to the plane on which its acts. Among these principal pressures or
tensions there are a maximum pressure or tension and a minimum one. The other
pressures or tensions are distributed symmetrically about these three axes.
Moreover, the pressure or tension normal to each plane, i.e., the component,
perpendicular to a plane, of the pressure or tension exerted on this plane, is
proportional to the inverse of the squared vector radius of a second ellipsoid.
Sometimes, this second ellipsoid is replaced by two hyperboloids, one with one
sheet, the other with two sheets, which have the same centre, the same axes, and
are asymptotic at infinity with a common second- degree surface, of which the
edges point in the direction for which pressure or normal tension reduces to zero.

This being said, if we consider a solid body of varying shape and subjected to
arbitrary accelerating forces, in order to establish the equilibrium equations of this
solid body it will be sufficient to write that there is equilibrium between the motive
forces that act on an infinitesimal element along three axes of coordinates, and the
orthogonal components of external pressure or tension that act on the faces of this
element. We will thus obtain three equations of equilibrium that include, as a par-
ticular case, the corresponding equations for the equilibrium of fluids. But, in a
general case, these equations contain six unknown functions of the coordinates x, y,
z. It remains to determine the value of these six unknown quantities. But the solution
of this last problem varies with the nature of the body and its more or less perfect
elasticity. Now we shall explain how one can solve this problem for elastic bodies.

When an elastic body is in equilibrium by virtue of arbitrary accelerating
forces, one must assume that each molecule has been displaced from the position it
occupied when the body was in its natural state. As a consequence of these
displacements, there are around each point different condensations or dilatations in
different directions. But it is clear that each dilatation produces a tension, and each
condensation produces a pressure. Furthermore, I prove that the various conden-
sation or dilatation about this point, decreased by or augmented of the unit,
become equal, up to the sign, to the vector radii of an ellipsoid. I call principal
condensations or dilatations those that occur along the axes of this ellipsoid, about
which the others are distributed symmetrically. This being set, it is clear that in an
elastic body, tensions or pressures depending only on the condensations or dila-
tations, are directed in the same directions as the principal condensations or dil-
atations. In addition, it is natural to assume, at least when the displacements of
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molecules are small, that the principal tensions or pressures are proportional to the
principal condensations and dilatations, respectively. Admitting this principle, we
arrive immediately at the equilibrium equations of an elastic body. In the case of
very small displacements, the component, perpendicular to a plane, of the pressure
or tension exerted on that plane, always is in the same ratio with the condensation
or dilatation that occurs in the same direction, and the formulas for equilibrium
reduce to four partial differential equations of which each one determine separately
the condensation or dilatation in volume, while each of the others serves to fix the
displacement parallel to one of the coordinate axes.

The equations of equilibrium of an elastic body being set, it is now easy to
deduce by ordinary means the equations of motion. The latter still are four in
number, and each of them is a linear partial differential equation with an added
variable term. These equations are integrated by use of methods that I exposed in a
previous memoir. One of these equations contains only the unknown that repre-
sents the condensation or dilatation in volume. In the particular case where the
acceleration force becomes constant and keeps everywhere the same direction, this
equation reduces to the propagation of sound in air, with the only difference is that
the constant it contains, instead of depending on the height of a supposedly
homogeneous atmosphere, depends on the linear dilatation or condensation of a
body in a given pressure. One must conclude from this that the speed of sound in
an elastic body is constant, like in air, but it varies from one body to another one
depending on the matter of which it is made. This constancy is all the more
remarkable that the displacements of molecules considered successively in fluids
and elastic solids obey different laws.

My memoir is concluded by the formation of the equations of the internal
motion of solid bodies completely devoid of elasticity. To arrive at this it is
sufficient to suppose that in these bodies the pressures or tensions about a point in
motion do not depend any more on the total condensations or dilatations that
correspond to the absolute displacement measured from the initial positions of the
molecules, but only, after any lapse of time, on the very small condensations or
dilatations that correspond to the respective displacement of the different points
during a short interval of time. One therefore finds that the volume condensation is
determined by an equation similar to that governing heat, what establishes a
remarkable analogy between the propagation of the caloric [the supposed ‘‘fluid’’
carrying heat. GAM] and the vibrations of a body entirely devoid of elasticity.

In a forthcoming memoir, I shall give the application of the obtained formulas
to the theory of elastic plates and strings.
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Chapter 4
Piola and Kirchhoff: On Changes
of Configurations

Abstract The seminal contribution of Gabrio Piola to the foundations of
continuum mechanics is critically examined directly on the basis of his publica-
tions (1825–1848). This emphasizes the original approach of Piola who favoured a
direct projection on the material configuration (where material particles are
‘‘labelled’’), this yielding the now well known Piola–Kirchhoff stresses in the so-
called Piola format of continuum mechanics. Piola is a follower of Lagrange and
Poisson, much more than of Cauchy. But he established the connection of his
equations with those of the more familiar Euler–Cauchy format (expressed in the
actual configuration) of elasticity. Kirchhoff, much more known than Piola
because of his renowned works in electricity, spectroscopy and thermo-chemistry,
also contributed to the same format as Piola, hence his name attached to that of
Piola. The works of Piola acquired a well deserved recognition and an excellent
range of applications with the expansion of nonlinear elasticity, the modern theory
of material inhomogeneities and the notion of configurational forces.

4.1 Introduction

It is agreed upon [33] that Euler and Lagrange are responsible for the introduction
of two kinematical descriptions of the motion of deformable continua, empha-
sizing the dependence on actual or initial (Lagrangian) coordinates. In their time,
this was particularly well exploited in fluid mechanics. However, with the con-
sideration of possible finite deformations, essentially by Cauchy in France [6] and
Green in the UK [10], in the framework of elasticity, the relationship between two
configurations—the actual one after deformation and perhaps one chosen appro-
priately to label the ‘‘material particles’’ in a convenient way—became a necessity.
It was to be the role of Gabrio Piola in Italy and Gustav Kirchhoff in Germany to
clarify this matter, so that the two names are often associated to designate certain
entities, e.g., the Piola–Kirchoff stress tensors. This possible duality between two
kinematic descriptions of course entails the possibility to write the basic equations

G. A. Maugin, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries,
Solid Mechanics and Its Applications 214, DOI: 10.1007/978-3-319-05374-5_4,
� Springer International Publishing Switzerland 2014
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governing the dynamics of continua in two formats, that are now called the Euler–
Cauchy and Piola–Kirchhoff formats as they involve the use of different—or
‘‘transformed’’—tensorial objects (in particular as regards the stress). Of essential
importance here is the relationship between tensorial objects expressed in the two
different formats. This was practically solved by Piola with the introduction of the
(now called) Piola transformation, a notion also referred to as pull-back operation
(and its inverse the pull-forward [18]). Here we shall critically examine how Piola
constructed ‘‘his format’’ of equations by perusing his original works of the period
1825–1848 [24–27] . This format acquires its full importance in the formulation of
the theory of material inhomogeneities [20] and the theory of configurational
forces [21]. It is in fact our involvement in the expansion of these theories that
kindled our interest in the original papers of Piola.

4.2 Piola’s Contribution

4.2.1 Some Words of Caution

Gabrio Piola (1794–1850) is an Italian mathematician who was an enthusiastic
disciple of Joseph Louis Lagrange (1736–1813), the well known Italian-French
mathematician. He is, therefore, an ardent supporter of variational formulations in
the Euler–Lagrange tradition. He is the author of generally lengthy memoirs. We
must admit that these papers are difficult to read, in reason both of the obsolete
mathematical terms and the somewhat antiquated Italian language. We shall focus
attention on the memoirs of 18361 and 1845 with some comments on that of 1833. In
doing so we have decided to translate in modern (intrinsic or indicial) notation many
of Piola’s mathematical expressions written at a time when neither vector nor tensor
notions existed. Thus the motion mapping is given by Piola by the application

a; b; cð Þ ! x; y; zð Þ

at fixed time, and the summation is indicated by a big S (that we replace by a more
familiar R). However we shall refer to Piola’s equations by an indication such as
[26, p. 259, Eq. 137]. Note that Piola’s notation for motion and deformation is still
used by the Cosserat brothers as late as 1909 (who are not much easier to read
[22]). Also, it is remarkable that Piola demonstrates an unconscious capture of a
hidden algorithm so that he does not always need to write all components of a
vector or tensor equation explicitly, but he gives a hint of this matter to the reader.
For the sake of simplification, we do not make any distinction between covariant
and contravariant tensors, assuming Cartesian systems of coordinates. But this is
not altogether correct.

1 A microfilm copy of the memoirs of 1836 and 1845 was kindly provided to us in 1991 by the
Municipal Library of Modena during our stay as a visiting professor of the Italian CNR in Pisa.
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4.2.2 The Strategy of Piola

In perusing Piola’s works from 1825 to 1848, we can distinguish three main lines
that combine together to form a well defined strategy.

The first one is an attempt at avoiding the consideration of infinitesimals—as used
by Lagrange—in the conception of the kinematics of moving points, but considering
as first principle the superposition of motions. This is a line he developed in his
competition essay of 1825 [24]. This follows the works of other Italian mathema-
ticians such as Magistrini and Riccardi who criticized Lagrange’s use of virtual
velocities. This viewpoint studied by Capecchi [3, 4] appears somewhat strange to
modern minds, although it does yield the classical form of the equation of motion of
a free material point. We shall not dwell further in this matter.

The second line is the a priori consideration of the motion of an ensemble of
points in interaction, following Poisson (and also the second theory of continua of
Cauchy), and then passing to a limit providing equations for a continuum, with an
appropriate definition of what will later on be called the first Piola–Kirchoff stress
tensor. This will be examined in greater detail herein below. This is developed at
length in Piola [26]. Note that Piola there refers frequently to French mathema-
ticians and mechanicians (Cauchy, Laplace, Poisson, Legendre, Lacroix, and of
course Lagrange, hardly a Frenchman to him).

The third line is none other than an application of the Euler–Lagrange varia-
tional formulation accounting for possible mathematical constraints such as that
due to rigidity. This necessitates the introduction of Lagrange multipliers [26]
which are revealed to look like stress tensors. Of course here Piola follows the
teaching of his master Lagrange (see the latter’s lectures in Lagrange [17]. As
shown by Piola [27], in the case of deformable bodies, this formulation in fact
leads to the introduction of true stress tensors (Piola stress or Cauchy stress
depending on the original definition of rigidity) in a rather formal manner that
reminds us of the formulation of the principle of virtual power by Germain [9] or
Maugin [19] where linear continuous forms on a set of generalized velocities are
introduced a priori with ‘‘stresses’’ as co-factors. Such an approach permits the
deduction of the accompanying natural boundary condition involving the stress. As
noted by Truesdell and Toupin [33, p. 596, Footnote 3], this was the first deduction
of such conditions from a variational principle. Piola’s approach will be briefly
described in the following paragraphs.

4.2.3 Introduction of the ‘‘Piola Format’’ by Piola

Following Poisson, Piola [26] considers identical point particles of unit mass that
we can label að Þ. Each one is initially at position denoted by a; b; cð Þ with label að Þ
and after motion at position x; y; zð Þ with label að Þ. In modern notation this would

yield the change of position as x að Þ
i or x að Þ function of X að Þ

K or X að Þ, in Cartesian
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tensor notation and intrinsic notation, respectively. Thus the kinematic description

may be said to be referential. With externally applied force f að Þ, and a model of
interactions between particles (called ‘‘molecules’’) whose exploitation is some-
what obscure, Piola is able to write a variational formulation of the following type
(p. 173, Eq. (15))

X
i

X
a

d2x að Þ
i

dt2
� f að Þ

i

 !
dx að Þ

i þ
X

i

X
a;b

/ Sa;b
ffi �

dSa;b ij ¼ 0 ð4:1Þ

where the S’s—whose details are irrelevant—depend on the relative distances
between particles, hence on the xi. For arbitrary variations of the xi this formally
yields equations of motion of individual particles in the form [26, p. 189, Eq. (41)]

f að Þ
i � d2x að Þ

i

dt2
þ I að Þ

i ¼ 0; a ¼ 1; 2; . . . ð4:2Þ

where I að Þ
i is the interaction force with other particles that we do not elaborate

further. The ‘‘tour de force’’ of Piola rests in the approximation of these interaction
terms (pp. 175–200) and passing to some kind of continuum limit that brings the
generic local equation of motion to the vectorial form [26, p. 201, Eq. (56)]

f � o2x

ot2
þ divXT ¼ 0; ð4:3Þ

where T is an object with nine independent components (for it has no symmetries)
and the modern symbol divX means the divergence operator with respect to the
referential coordinates a; b; cð Þ i.e., XK . Obtaining (4.3) involves the neglect of
supposedly small terms. Equation (4.3) can also be written as

fi �
o2xi

ot2
� o

oXK
TKi ¼ 0; ð4:4Þ

in Cartesian tensor analysis.
The change of position and its inverse (assuming invertibility in agreement with

Lagrange) can be noted [26, p. 202, Eqs. (58)–(59)]

x; y; zð Þ functions of a; b; cð Þ and time t

and

a; b; cð Þ functions of x; y; zð Þ and time t

or in modern notation

x ¼ �x X; tð Þ and X ¼ �X x; tð Þ: ð4:5Þ

Let J denote the Jacobian determinant of the first of these transformations (this
is denoted H by Piola, p. 204), i.e.,
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J ¼ det F; F ¼ FiK ¼
o�xi

oXK

� �
: ð4:6Þ

For a continuum, this is as if (4.3) or (4.4) had been written for a body of
referential mass density q0 ¼ 1. If this is not the case, q0 has to be introduced and
(4.3) has to be rewritten as

q0 f � o2x

ot2

� �
þ divXT ¼ 0: ð4:7Þ

Then Piola would like to compare his equation of motion with the formulation
obtained by Cauchy [6] and Poisson [29] in the actual configuration. To do this he
needs some work since he must pass to the spatial parametrization of the Eulerian
type in terms of the actual position x; y; zð Þ or x ¼ xi; i ¼ 1; 2; 3f g. He shows
that he can introduce a geometrical object r (noted K by Piola) such that [26,
p. 204, Eq. (60)]

rij ¼ J�1 o�xi

oXK
TKj or r ¼ J�1F T: ð4:8Þ

Reciprocally (Piola 1936, p. 205, Eq. (63))

T ¼ JF�1 � r or TKi ¼ J
o�XK

oxj
rji: ð4:9Þ

He establishes identities like [26, p. 205, Eq. (62)]

divXT ¼ J divxr; ð4:10Þ

where divx means the divergence with respect to the x; y; zð Þ or x ¼
xi; i ¼ 1; 2; 3f g space parametrization. This involves proving the identities

rx � J�1F
ffi �

¼ 0 and rX � JF�1
ffi �

¼ 0: ð4:11Þ

Noting that in his format the mass conservation reads (p. 211, Eq. (72) with
C—which Piola does not yet call density—standing for q)

q0 ¼ Jq; ð4:12Þ

where q is the actual density at x; y; zð Þ, Piola finally shows that Eq. (4.7) above
renders the equation of motion (p. 212, Eq. (74))

q f � d2x

dt2

� �
þ divxr ¼ 0: ð4:13Þ

This he identifies with the equation obtained by Cauchy [6, p. 166] or Poisson
[29, VIII, p. 387; X, p. 578]. Accordingly, r is none other than the Cauchy stress
tensor for any continuum, whether solid or fluid, while T deserves to be called the
Piola stress (first Piola–Kirchhoff stress in modern jargon). The word density
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(‘‘densità’’) here is used for the quantity J�1 since q0 ¼ 1 for Piola. Equilibrium is
obtained by making the acceleration term vanish in Eq. (13)—[26, p. 215,
Eq. (79)].

What is original here with Piola is that he has formulated what we call the
‘‘Piola format’’ of the basic equations of continuity—Eq. (4.12)—and of balance
of linear momentum. His ‘‘format’’ involves two configurations with a preference
for the referential one for the space parametrization. It is sometimes called the
material formulation [21] since X refers directly to the material ‘‘points’’ that
belong to the ‘‘material manifold’’. The only inconvenience is the appearance of
geometrical objects such as F and T that have two ‘‘feet’’ in different configura-
tions and will later on be called two-point tensor fields—i.e., tensors depending on
two ‘‘points’’—by Einstein or, here precisely double vectors. But it must be
understood that all computations are effected by Piola with all explicit scalar
components of the introduced objects since he has no notion of a tensor (only
introduced in the 1880s by Voigt).

The celebrated Piola transformation here is represented by Eq. (4.9) that is
even made clearer when applied to a vector field. Let v a vector field with com-
ponents in the actual framework x ¼ xi; i ¼ 1; 2; 3f g. The associated vector field
V in the framework X ¼ XK ; K ¼ 1; 2; 3f g is defined by accounting both for the
deformation and the volume change; that is:

V ¼ JF�1 � v: ð4:14Þ

This is the Piola transformation—or pull back to the reference configuration.
The inverse operation is called the push forward from reference configuration to
actual configuration. Equation (4.9) that defines the first Piola–Kirchhoff stress is
thus only a partial Piola transformation of the Cauchy stress. This is the rather
troubling matter (with many students). But this manipulation allows one to obtain
an equation of motion (4.7) with good partial differential derivatives in the space-
time parametrization XK ; tð Þ while this equation still has components in the actual
configuration where data in forces are prescribed. For the transformation of
boundary conditions on stresses one will have to wait for the formulas obtained by
Nanson [23] for the transformation of oriented surface elements. It is not forbidden
to construct the full pull-back of the Cauchy stress by completing the transfor-
mation (4.9) by defining the fully material stress S by {T = transposed; [25,
Eq. (45)]; [26, Eq. (132)]}

S ¼ T � F�T or SKL ¼ TKiF
�1
iL ¼ J

oXK

oxi
rij

oXL

oxj
: ð4:15Þ

This is called the second Piola–Kirchhoff stress in modern continuum
mechanics. It is a true material tensor; it is symmetric by construction if the
Cauchy stress is symmetric (which is more than often the case). In contrast, it does
no make mathematical sense to speak of the symmetry or non-symmetry of T. The
thermodynamic importance of S will be made clear soon in Green’s elasticity
derived from a potential.
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Piola still has to be more precise with the notion of matter density. He ponders
this notion in his Chap. IV (p. 218 on) where, basically, it is mass divided by
volume—valid only for a homogeneous volume—as otherwise the correct defi-
nition should involve a limit procedure applied to an infinitesimal element of
matter at each point. Note that for Newton it was mass that was defined by density
multiplied by volume. Starting from Eq. (4.12) and noticing that in Piola’s time q0

may at most be a function of a; b; cð Þ or X, and not a function of time (this is no
longer true in the modern theory of material growth [21, Chap. 10]), a laborious
computation leads Piola to the equation of continuity in the Eulerian form (Piola,
p. 235, Eq. 105):

oq
ot
þrx � qvð Þ ¼ 0; ð4:16Þ

where v ¼ dx=dt is the velocity. Thus (4.16) and (4.13) correspond to (4.12) and
(4.7), respectively.

The rest of the impressive Piola’s paper of 1836 concerns the introduction of
the displacement for a continuum and the notions of dilatation and condensation
(in Cauchy’s sense), and many more considerations on the molecular description
of the material, whose purpose in principle is to deduce explicit expressions for the
interactions introduced in Eq. (4.1) above—in particular with the notion of pres-
sure, and a theory of fluids in concurrence with one expanded by Poisson [30,
p. 524]. This goes beyond the present focus.

4.2.4 Stresses as Lagrange Multipliers

As a good disciple of Lagrange, Piola exploits the technique of multipliers to
account for constraints. Lagrange had done this for the constraint of incom-
pressibility introducing thus a scalar multiplier that is a mechanical pressure. In
Piola [25], the author wants to do it for the constraint of rigidity of extended
bodies, perhaps as a preparation for the case of deformable bodies [27]. The
formulation he offers is quite original albeit a little bit involved. We consider again
Piola’s original notation a; b; cð Þ and x; y; zð Þ for the initial and final positions of
any point in the body. The a priori motion is written by Piola as

x ¼ f þ a1aþ b1bþ g1c; y ¼ gþ a2aþ b2bþ g2c; z ¼ hþ a3aþ b3bþ g3c;

ð4:17Þ

which contains twelve scalar parameters. In modern vector and matrix notation
this reads

xi ¼ gi þ
X3

K¼1

aiKXK ; i ¼ 1; 2; 3: ð4:18Þ
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For a true rigid body motion the number of parameters must be reduced to six
(three translations and three rotations). Then by astute manipulations (Piola does
not possess the notion of matrix) that look terrible to modern eyes, Piola, by
eliminating the parameters, succeeds to express the conditions of orthogonality
and normality in differential forms for the function xi ¼ �xi XKð Þ. Two alternate
forms are obtained that we rewrite (here in modern notation) as

�eij ¼
X3

K¼1

FiKFjK � dij ¼ 0 ð4:19Þ

and

�EKL ¼
X3

i¼1

FiKFiL � dKL ¼ 0; ð4:20Þ

where the deltas are Kronecker symbols and FiK :¼ o�xi=oXK . In setting

eij ¼ �eij=2; EKL ¼ �EKL=2; ð4:21Þ

we recognize with the first part of (4.19) and (4.20) the definition of the left and
right Cauchy–Green strain tensors of non-linear continuum mechanics up to a
factor � [33], i.e., in intrinsic notation (with the notation of Maugin [20])

e ¼ 1
2

c�1 � 1
ffi �

; E ¼ 1
2

C� 1Rð Þ ð4:22Þ

with

c�1 :¼ F � FT ; C :¼ FT � F: ð4:23Þ

The rigid-body conditions (4.19) and (4.20) read

c�1 ¼ 1; C ¼ 1R; ð4:24Þ

where 1R is the unit tensor in the reference configuration. C�1, the inverse of C, is
called the Piola (material) finite strain. The tensor c, inverse of c�1, is called the
(spatial) Finger finite strain. (c�1 is sometimes noted B so that c would be B�1).

Conditions (4.24) are integrated forms while it is usual to express the rigidity
condition in time differential form (in terms of the rate of strain) equivalent to
Killing’s theorem, e.g.,

_C ¼ 0 ð4:25Þ

or in variational form dC ¼ 0 or dE ¼ 0:
The total virtual work of body forces (per unit mass) for a body of referential

volume V0 is given by

dW ext ¼
Z

V0

q0f � dx dV0: ð4:26Þ
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If this body is to be rigid, then either one of the mathematical constraints (4.19)
and (4.20) must be taken into account. Following Lagrange [17], this is done by
introducing Lagrange multipliers, here tensors of components kij or KKL so that the
principle of virtual work for equilibrium is written in any of the following two
forms (with summation over repeated indices and dm ¼ q0dV0 ¼ qdVÞ:

Z
V

qf � dx dV �
Z

V
kijdeijdV ¼ 0 ð4:27Þ

or
Z

V0

q0f � dxdV0 �
Z

V0

KKLdEKLdV0 ¼ 0: ð4:28Þ

This is the essence of Piola’s argument rewritten in modern formalism. Piola
prefers the ‘‘material’’ formulation (4.28) over the Eulerian formulation (4.27).
Transformation of (4.28) on account of (4.20, 4.21) and localization yield a local
equilibrium equation in the form

o

oXK
Gki þ q0fi ¼ 0; GKi :¼ KKLFiL or G :¼ K � FT : ð4:29Þ

Note that kij and KKL are related by

KKL ¼ J
oXK

oxi
kij

oXL

oxj
; ð4:30Þ

a relation similar to (4.15). The introduced tensorial Lagrange multipliers can be
interpreted as ‘‘reaction internal forces’’ needed to maintain the rigidity of the
body. These internal forces are undetermined for a rigid body.

Of course the natural question is what happens for a deformable body. This was
answered by Piola in his long memoir of 1848 (but presented in 1845). This is
more formal in the sense that the reaction internal forces become the true stresses
in action in the body. They are introduced as coefficients of the variation of strains
in a linear form. That is (4.28) in principle is replaced by

Z
V0

q0f � dx dV0 �
Z

V0

SKLdEKLdV0 ¼ 0; ð4:31Þ

yielding instead of (4.29)

o

oXK
Tki þ q0fi ¼ 0; TKi :¼ SKLFiL or T :¼ SFT ; ð4:32Þ

where T indeed is the first Piola–Kirchhoff stress. But this is not entirely correct
because there can be a traction t acting on the boundary of the body so that,
introducing also acceleration forces to obtain the dynamical case (4.31) should be
re-written as
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Z
V0

q0€x � dxdV0 ¼
Z

V0

q0f � dx dV0 �
Z

V0

SKLdEKLdV0 þ
Z

oV0

t � dx dS0: ð4:33Þ

This is quite similar to the formulation of the principle of virtual power used in
modern times by Germain [9] and Maugin [19] —see also Truesdell and Toupin
[33, p. 596, Eq. (232.4)]—that considers the right-hand side of Eq. (4.33) as a
linear continuous form on virtual velocities including that of the gradient of the
motion. Equation (4.33) allows one to obtain the local balance of linear momen-
tum—here in the Piola format (4.7)—as also the accompanying natural boundary
condition for stresses. It seems that Piola was really the first to deduce the stress
boundary condition from a variational principle [27, Part 2, p. 52]. The original
variational principle by Piola goes back to 1833 (Part 3) and 1848 (Part 2,
pp. 34–38, 46–50). Hellinger [11, Chap. 4, Paragraph 3d] also dealt with the same
variational principle. In addition, Piola formulated analogous variational principles
for one-dimensional and two-dimensional systems [27, Chap. 7]. This can be
compared with variational formulations by the Cosserat brothers [7]. Pierre Duhem
[8] formulated a principle of virtual work that looks very much like the one of
Piola for equilibrium [4, p. 390].

To conclude this point, we recall that George Green (1793–1841) introduced in
his celebrated memoir of 1839 the same finite-strain tensors as Cauchy, hence the
association of the two scientists in the denomination of these tensors. Furthermore,
he simultaneously introduced the notion of strain energy W per unit of referential
volume, W ¼ W Eð Þ, such that

d
Z

V0

W Eð ÞdV0 ¼
Z

V0

dW Eð ÞdV0 ¼
Z

V0

S : dEdV0 ð4:34Þ

and

S ¼ oW

oE
or SKL ¼

oW

oEKL
: ð4:35Þ

That is why the second Piola–Kirchhoff stress is also referred to as the energetic
stress while T may also be called the nominal stress because it is evaluated per
unit area in the reference configuration although it still behaves as a vector in the
actual configuration.

Among the Italian disciples of Piola we must count Eugenio Beltrami
(1836–1900) and to a lesser degree Enrico Betti (1823–1892). Like Lamé, Bel-
trami was a great amateur of curvilinear coordinate systems and his differential
methods favoured the early development of tensor calculus in Italy. More to our
point, in the application of the principle of virtual work (e.g., in Beltrami [1]), he
considered internal forces (stresses) and deformations as dual variables, which is
our modern view point with the notion of separating duality between two vector
spaces (e.g., in Maugin [19]). As to Betti, although having started as a ‘‘Newto-
nian’’, he later on based his continuum mechanics on potential energy, strains and
the principle of virtual work [2]. This is discussed by Capecchi [4, pp. 392–393].
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4.3 The Role of Kirchhoff

Kirchhoff (1824–1887) is one of the German giants in continuum mechanics for
the 19th century, although his reputation in electricity, spectroscopy, black-body
radiation, and thermo-chemistry is at the same if not higher prestigious level. It is
in Königsberg that Kirchhoff took lectures with Neumann, a specialist of the
strength of materials. He later became a professor of physics in Breslau, Heidel-
berg and finally Berlin. Kirchhoff made many important contributions to contin-
uum mechanics and the mechanics of structures [31]. For instance, he proposed a
correct model for the bending of plates by means of a variational principle. The
two-dimensional equation was deduced from a variational principle (principle of
virtual work) in which a reduced potential energy accounts for a set of basic
kinematic hypotheses concerning the section of the plate normal to the middle
surface and the neglect of any stretching of the elements of the middle plane for
small deflections. This much improved the tentative theory proposed earlier by
Sophie Germain (1776–1831). This is now referred to as Kirchhoff–Love theory of
plates after Love (1863–1940) who extended Kirchhoff’s approach to the case of
thin shells. Kirchhoff also studied theoretically and experimentally the vibrations
of plates on the basis of his model. He also subsequently extended his theory of
plates to include the case of not too small deflections.

If Kirchhoff is cited here it is because he also considered finite deformations,
especially in Kirchhoff [14] —apparently independently of Piola—which is also
reported in his lectures on mechanics in Kirchhoff [16]. He was thus led [14,
pp. 763–764 and p. 767] to introducing stress tensors similar to those of Piola,
hence the two names jointly attached to these geometric objects, even though the
role of Kirchhoff in this very subject seems rather minor compared to that of Piola.
Both Kirchhoff [14], and later on Poincaré [28; Paragraph 40], explained the ‘‘non-
symmetry’’ of T, but the present notation is clear enough. We can also note that if
the Cauchy stress is symmetric, then we can also say that T is symmetric with
respect to F, because the local equation of moment of momentum (in the absence
of internal spin, applied couple, and microstructure [7] r ¼ rT also reads

F � T ¼ F � Tð ÞT : ð4:36Þ

It must be emphasized that Kirchhoff’s works in elasticity were among his first
scientific works in the late 1840s and early 1850s, and then on and off during the
rest of his career. Thus in 1850, he wrote down a variational principle which looks
somewhat like Piola’s one recalled in Eq. (4.31) above. However the second term
was expressed in terms of the principal dilatations (in Cauchy’s words)—Kirchhoff
[13]. This was further expanded in Kirchhoff [15], the most important paper by
Kirchhoff in elasticity according to Todhunter [32, p. 63]. Jungnickel and
McCormmach [12, p. 295] rightly remark that his work in elasticity provided
useful analogies for his works in electricity.
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4.4 Conclusion

The interest for the developments recalled in the foregoing two sections mainly
rests on two ingredients: one is the importance given to objects defined partially or
entirely in the reference configuration such as the Piola–Kirchhoff stress tensors,
clearly of utmost interest to Piola. The other is Piola’s and Kirchhoff’s interest in
variational formulations of the type of the principle of virtual work. These for-
mulations remained fashionable and efficient for a large part of the nineteenth
century as evidenced by the works and lecture notes of Clebsch [5], Duhem [8],
Poincaré [28], the Cosserat brothers [7], and Hellinger [11]. Concerning the first
ingredient, it is with the development of non-linear elasticity in the 1930s–1950s
in Italy, the UK and the USA—as richly illustrated in the encyclopaedia synthesis
of Truesdell and Toupin [33]—that the necessity of clearly distinguishing between
the actual configuration and a reference one was made clear to all students in
continuum mechanics. This has become common practice. More recently, this
fruitful approach to the deformation theory in general was enhanced by an
inclusive definition of material inhomogeneity: this is the possible continuous or
discontinuous dependency of material properties (e.g., elasticity) on the material
point X itself, an ‘‘element’’ of the material manifold (this view was forcefully
emphasized in Maugin [20]). A corollary of this was the required consideration of
the full projection of all field equations on this material manifold leading to a true
‘‘material’’ mechanics of continua in the Piola–Kirchhoff format and the system-
atic introduction of the (completely material) Eshelby stress tensor as the most
relevant internal-force concept and its application in the form of configurational
forces to the theory of defects. This is amply documented in our treatise [21] which
owes much in spirit to Eshelby (1916–1981), but also retrospectively much to the
original thinking of Piola that we tried to capture in the present contribution.
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Chapter 5
Duhamel’s Pioneering Work
in Thermo-elasticity and Its Legacy

Abstract This is a short introduction to the original chapter published in 1837 by
the French mathematician J. M. C. Duhamel, in which the first equations of
thermo-mechanical couplings or thermo-elasticity are introduced for three-
dimensional elastic bodies. This contribution offers a short discussion of the basic
ideas behind Duhamel’s historical chapter, the strategy applied by Duhamel for
combining ideas from Navier’s elasticity and Fourier’s theory of heat propagation,
the illustration by the solution of general equations in some well-chosen problems,
and the heritage of Duhamel in thermo-mechanical sciences.

5.1 The Roots of Duhamel’s Contribution

Jean-Marie-Constant Duhamel (1797–1872) was, starting in 1830, an assistant and
then professor (1834) of analysis and mechanics at the celebrated Ecole Poly-
technique in Paris. Contrary to other luminaries such as Cauchy, Navier, Coriolis
and others, he was not an ‘‘engineer-scientist’’, having not graduated from this
school (he was expelled from it in 1816 with all his class of 1814 for political
reasons). That may explain why he became a pure mathematician! His works deal
with partial differential equations with special attention to their applications in the
theory of heat, rational mechanics, and acoustics. In 1834 he defended a Doctoral
thesis in mathematics at the Sorbonne with title ‘‘Théorie mathématique de la
chaleur’’ (Mathematical theory of heat). This collected the works he had done on
this subject matter since the late 1820s. His style was mathematical, in fact ahead
of experiments on the subject matter. His main interest was in combining the (then
recent) works of Poisson and Navier (on elasticity) and Fourier (on heat) in a

This contribution is a revised and much extended version of a contribution entitled Duhamel’s
pioneering work in thermo-elasticity published in the Springer Encyclopaedia of Thermal
stresses (cf. Hetnarski 2014).

G. A. Maugin, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries,
Solid Mechanics and Its Applications 214, DOI: 10.1007/978-3-319-05374-5_5,
� Springer International Publishing Switzerland 2014
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single framework. Thus was born thermo-elasticity. He also pioneered in the study
of anisotropic continuous media by envisaging anisotropy of heat conduction. In
this last case he was influenced by Cauchy and his ellipsoids of strains and stresses
by examining what happened along principal axes of the conduction tensor, a
property also envisaged by Liouville. His main opus related to the present subject
is a celebrated long paper [8]—see Fig. 5.1—in which the full expression of
thermo-elasticity (of course, not his word; he rightly uses the expression ‘‘thermo-
mechanical phenomena’’ or its French equivalent) was given together with the
solution of exemplary problems.

5.2 Basic Ideas of Duhamel’s 1837 Paper

Nineteenth century scientists explain well in their long introduction what they are
going to expose to their readers. This is the case of Duhamel, what greatly sim-
plifies the job of future reviewers. To justify his endeavour Duhamel remarks from
the beginning that it is commonly admitted that bodies produce heat when they are
compressed and they absorb heat when they are dilated. Accordingly, there should
exist a difference between specific heats at fixed volume and at constant pressure.
Although Louis Gay-Lussac (1778–1850) and others had done corresponding
experiences in air, there did not exist yet at the time such experimental records for
solids. Duhamel claims that his theoretical approach suggests such experiments. In
harmony with his premises, and contrary to Fourier, he therefore wants to account
for the change in distance between ‘‘molecules’’ (now we would say ‘‘material
points’’) during heat conduction. He concludes that the evaluation of the observed
increase in temperature should be done in two steps, a first one during which all
‘‘material points’’ are kept fixed, and a second step in which the matter density is
altered. From this there should follow an alteration in Fourier’s heat propagation
equation, and a dual coupling between thermal and deformation effects, thus
introducing for the first time thermo-mechanical couplings, for there are relative
changes in position of ‘‘molecules’’ in a non-homogeneously heated solid. The
essence of thermo-elasticity resides in these spot-on introductory remarks. He also
remarks that in many cases the temperature distribution may be evaluated inde-
pendently of mechanical quantities, a working hypothesis still used in many
modern problems of thermo-elasticity.

5.3 Duhamel’s Strategy and Equations
of ‘‘Thermo-elasticity’’

Of course Duhamel never uses terms such as strains and stresses. Neither can he
rely on any well-set principles of thermodynamics (that are not yet established, nor
even proposed at the time of his writing). What he does is that he carefully applies
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Fig. 5.1 The first paper on thermo-elasticity Duhamel [9]
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his proposed strategy, attempting with success to find what additional terms should
appear in the already known equations of Fourier and Navier. Therefore, he first
examines the equilibrium of a body of arbitrary shape, establishing that for a body
subjected to the same instantaneous pressure at all its surface points, the value of
the observed linear contraction is obtained by dividing the value obtained if there
was no produced heat by the ratio of the two specific heats (at fixed pressure and
fixed volume). Then he considers the case of a solid thread whose two bases are of
arbitrary shape and it is submitted to an almost instantaneous traction without any
load on its lateral surface. He determines thus the decrease in temperature that
results from this load as well as the change in length and the lateral shrinking of
the thread. But this instantaneous equilibrium is immediately altered by the heating
of the thread that causes a change in length. The difference between the first and
second values of the stretch is in the ratio of unity to the inverse ratio of the two
specific heats. This provides a way to determine one of the specific heats knowing
the other. The last example in order to fortify his argument concerns a hollow
sphere that is subjected to unequal pressures on its inside and outside surfaces.
This example offers him an opportunity to exploit his general equations in such a
spherical symmetry. He also treats the case of the (slow) cooling of a free sphere,
in which one may assume that the whole process occurs through a succession of
equilibria. But these equilibria are different from those that would exist if there
was no heat expanded during the decrease in distance between the ‘‘molecules’’.
The speed of cooling is thus reduced. In solving this problem Duhamel exhibits his
dexterity in solving difficult problems in analysis presented by the reciprocal
influence of mechanical and thermal effects.

The complete system of equations that Duhamel establishes and treats in the
application consists of Navier’s equations with additional terms due to dilatation,
the corresponding (Cauchy) natural boundary conditions on stresses, and Fourier’s
equation with coefficient accounting for the ratio of the two specific heats.
Although his notation (of course no tensor notation not yet invented at the time) is
notably different from the modern one, an experienced ‘‘thermo-elastician’’ would
be able to identify his equations.

5.4 Comments and Further Developments

The first remark is that Duhamel’s approach, although based on a few acceptable
assumptions, is purely mathematical, and thus is in the best tradition of Fourier,
Poisson and Cauchy. It is ahead of any clear formulation of the principles of
thermodynamics. Duhamel exploits continuity arguments which he justifies by the
fact that finite differences between separated ‘‘molecules’’ can be approximated by
differentials. The possibility to consider some anisotropy in heat conduction (see
another work by Duhamel [7]) pioneers in the theory of anisotropic solids, and thus
crystallographic structures.
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Duhamel and others’ contributions to the theory of thermal propagation in
solids have been pondered by Bachelard [2] in a nice critical monograph. As to
Truesdell [22, Sect. 44], he misses Duhamel’s 1837 paper but he correctly remarks
that in the absence of the concept of thermo-elastic energy, we miss the important
point whether deformation occurs in isothermal or adiabatic conditions.

It would not be fair to other contributors to attribute to Duhamel the whole
merit of the formulation of thermo-elasticity. In particular, it is necessary to
acknowledge the excellent work of Franz E. Neumann (1798–1895) in Germany,
so that Duhamel’s equations are sometimes referred to as the Duhamel–Neumann
equations, in particular by Timoshenko [21]. Contrary to Duhamel, Neumann was
both a theoretician and an experimentalist. Among his many achievements we
must emphasize his fruitful work on the double refraction in stressed transparent
bodies, which makes him one of the creators of photo-elasticity. He, in fact, used
this technique to verify his theoretical results in thermo-elasticity (see Neumann
[16]). Furthermore, Neumann mentored remarkable German contributors to
mechanics, e.g., Gustav R. Kirchhoff, Alfred Clebsch, and Woldemar Voigt. The
latter author, just like his master, contributed to thermo-elasticity by clearly dis-
tinguishing between isothermal and isentropic deformations in crystals (see his
book: Voigt [24]). It was natural for Pierre Duhem (1861–1916), a passionate
supporter of thermodynamics, to clearly specify the various possible conditions
whether an elastic solid in finite strains was a heat conductor or not. This he
applied in an original study of the propagation of discontinuity waves of any order
(in the classification of Hadamard) in thermo-elastic materials [9]. This was
revisited by Truesdell [23], and other authors [6]. In the meantime, Léon Brillouin
(reported in [4], but works in the 1920s) had also dealt with this matter, while
Signorini ([20] 1943 on) produced in the 1940s an extensive definite work on
finite-strain thermo-elasticity.

Most of the above works remain at a rather theoretical level. But thermo-
mechanical couplings acquired a significant importance with the use of many
metallic parts submitted to high temperature in railway technology and aeronau-
tics. This may explain the intense production of solutions of specific problems
(concerning structural elements) starting the 1940s. This led to the production of
now standard books devoted to linear thermo-elasticity, among these, Melan and
Parkus [14], Parkus [18], Boley and Weiner [3], Chadwick [5], Nowacki [17],
Parkus [19], and more recently Hetnarski [10] and Hetnarski and Eslami [12]. To
these should be added the formidable encyclopaedia of thermal stresses edited by
Hetnarski [11] that considers all aspects, theoretical and applied, linear and non-
linear, as well as generalized laws of heat conduction (allowing for a finite speed
of propagation of heat).

To close this brief survey of the evolution of the field over some 170 years, it
must be remarked that thermo-elasticity results in the presence of internal stres-
ses—or eigenstresses (according to the terminology introduced by E. Kröner in the
1950s)—and is thus a quasi-plastic phenomenon (presence of strains and thus
elastically associated stresses in the absence of mechanical loading). In the non-
linear framework, just like in elasto-plasticity, this led to the consideration of a
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multiplicative decomposition of the total deformation gradient into elastic and
thermal ‘‘gradients’’ (this recurs to an addition for small strains). This is due to
Mićunović ([15] 1974 on). Of course, the importance of finite-strain thermo-
elasticity for the study of phase transformations cannot be overlooked (cf.
Abeyaratne and Knowles [1]. Metallo-thermo-mechanics—according to the term
coined by Inoue [13]—is the standard domain of application at the dawn of the
twenty-first century.

5.5 Conclusion

Duhamel’s paper of 1837 was a breakthrough when it was published, and as one
may declare, it was the first paper ever in the field of coupled fields in continuum
mechanics. Though, it did not contain any significant thermodynamics. But the
existence of coupled thermo-mechanical phenomena was an obvious fact. As a
faithful follower of Cauchy and other ‘‘savants-engineers’’, Duhamel attacked the
problem as a mathematician, although perhaps guided by existing experiments
concerning air. Neumann and Voigt were closer to the physical world (and
experiments) in their approach to the problem. Yet we must recognize that it took
some rather long time for technological applications to require the analytical
solution—in the absence of computers—of special situations in a linear theory. It
is with Duhem, Brillouin and Signorini, and then the Truesdellian School that a
neat non-linear framework was formulated. Modern developments are essential in
the treatment of the dynamics of phase transformations, in thermo-plasticity, and
now in more complex theories of coupled fields where mechanical, thermal,
magnetic, and/or electric fields interact markedly.
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Chapter 6
From Cauchy to Boussinesq via Barré de
Saint-Venant

Abstract The nineteenth century witnessed a development of continuum
mechanics that went from Cauchy’s introduction of the notion of stress (tensor) to
the introduction of seminal ideas about plasticity and turbulence. Here the
emphasis is placed on the works of Barré de Saint-Venant and Boussinesq who
contributed mostly to elasticity, but also to the theory and flow of viscous fluids.
These works are exemplary of the period, involving little or no thermodynamics,
while demonstrating a high dexterity in mathematical manipulations. Saint-Venant
is more an engineer-mathematician in the line of engineers-scientists formed at the
celebrated Ecole Polytechnique, while Boussinesq appears more as a specialist of
astute mathematical modelling, the ancestor of modern phenomenological
asymptotic modelling. They received in their time unanimous international rec-
ognition from the scientific community. But, in retrospective, these two authors
did not receive further the attention they clearly deserve, perhaps due to their style
of publication and the irreversible passing of time, though their names remain
attached to famous principles and approximations.

6.1 Introduction

If we think of the most important contributors to continuum mechanics in the
nineteenth century—being aware of the difficulty and biases of the exercise—, we
inevitably list the following scientists: Cauchy, Navier, Lamé, Saint-Venant, and
Boussinesq. This comes to mind because they all had a wide expertise in the field
(both in fluids and solids) and all with a definite dexterity in mathematics.
Remembering our student’s time, we note that they all received direct attributions
related to some of their achievements, such as: Cauchy’s stress tensor, Navier-
Stokes’ equations, Lamé’s coefficients of elasticity, Saint-Venant’s problem, and
Boussinesq’s approximation. This is corroborated by the number of citations to
elasticians by A. E. H. Love in his celebrated book on the mathematical theory of
elasticity (Love [69], 4th edition); in decreasing order: Saint-Venant, Rayleigh,
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Michell, Lamb, Kelvin, Kirchhoff, Boussinesq, Chree, Clebsch, Cauchy, Voigt,
Stokes, and Lamé. Here Lord Rayleigh, Lord Kelvin (W. Thomson), Gabriel
Stokes and Horace Lamb are well known British mathematical physicists;
Kirchhoff, Clebsch and Voigt [89] are interrelated German scientists (they all
studied with Franz E. Neumann), and J. H. Michell (1863–1940) is an Australian
mathematician—who was first a student of E. J. Nanson in Melbourne (remember
Nanson’s formulas in non-linear continuum mechanics) and, after studying in
Cambridge, published many works on all kinds of elastic structures before 1902
(after which he never published any more papers). Love’s citation list may be
biased by his marked interest in the elasticity of rods and problems such as torsion
and flexion, in the solution of which both Saint-Venant and Michell excelled. This
was also the case of Charles Chree (1860–1928) in his young age, but this scientist
is better known as a geophysicist and meteorologist.

The fact that all scientists named in our first list are French and very often with
the same mixed engineering-science formation is not due to chance. All, save
Boussinesq, are ‘‘ingénieurs-savants’’ according to Grattan-Guiness’ classification
[60] (see Maugin [72], Chap. 1). In addition, Cauchy, undoubtedly the greatest of
them, is also a true creative mathematician with an interest in all parts of math-
ematical sciences. Boussinesq is à part, having not benefited from a formation in a
‘‘grande école’’, but having had the chance to be mentored by Saint-Venant. This
does not mean that we should disregard other engineers and scientists, especially
Green, Kelvin, Stokes and Love in the UK, and Kirchhoff, Clebsch, and von
Helmholtz in Germany, some of them in direct competition with their French
colleagues, but always with a welcomed inspiration from them and an expressed
great admiration. However, there exists an Ariadne’s thread that connects the cited
French scientists, a thread that we shall unwind or untangle. Since we already
discussed the innovative role of Cauchy in continuum mechanics elsewhere [73],
the emphasis will be placed on Barré de Saint-Venant and Boussinesq with a brief
reminder on Cauchy and Lamé. Other seminal contributors such as Piola and
Kirchhoff are examined in a different chapter.

6.2 Cauchy and Lamé

If we consider in succession Cauchy, Lamé, Saint-Venant and Boussinesq, we must
recognize the essential differences between these four scientists. Cauchy
(1789–1857) is undoubtedly the creator of the notion of stress tensor—the fons et
origo of continuum mechanics—thus providing a foundation to a general theory of
continua, whether fluid or solid, whether elastic or inelastic, as clearly stated in the
title of his original contributions [46, 47]. Furthermore, his basic theory of defor-
mations, his introduction of the notions of ellipsoids of strains and stresses and
accordingly principal stresses, strains and stretches, and his views on the notions of
linearity and isotropy also contribute to our common required background.

78 6 From Cauchy to Boussinesq via Barré de Saint-Venant



The contributions to elasticity problems, both in statics and dynamics, by Cauchy
but also by his contemporaries, C. M. L. Navier (1785–1836) and S. D. Poisson
(1781–1840), are fundamental. Gabriel Lamé (1795–1870) and Saint-Venant
(1797–1886), although born in the same period, had a longer life and thus provide a
bridge with the next generation, in particular J. V. Boussinesq (1842–1929). This
generation will contribute to a transition to the active period of systematization and
consolidation covering the late nineteenth century and the early twentieth century, a
period with which A. E. H. Love (1863–1940) in the UK, and Pierre Duhem
(1861–1916), Henri Poincaré (1854–1912) and the Cosserat brothers [Francois
(1852–1914) and Eugène (1866–1931)]—all contributors to the theory of elasticity
in various forms—must be associated.

Another way of qualifying our scientists of interest is to attribute ‘‘principles’’
to Cauchy, ‘‘solutions of problems’’ to Lamé and Saint-Venant, and ‘‘modelling’’
to Boussinesq. But this is an over simplification which nonetheless contains some
truth. The rapid development in this overall period of time makes a big difference,
if we remember that it is Lamé who published the very first book devoted to
elasticity [66], and also introduced systematically the use of curvilinear coordi-
nates [67]. Concerning Lamé’s book on elasticity we cannot avoid citing Tod-
hunter from his ‘‘History of elasticity’’ ([85]; as cited by Timoshenko [84], p. 117):
‘‘The work of Lamé…affords an example which occurs but rarely of a philosopher
of the highest renown condescending to employ his ability in the construction of an
elementary treatise on a subject of which he is an eminent cultivator.’’ Thus Lamé
became an inescapable reference to all future contributors to elasticity, among
them Saint-Venant and Boussinesq, although these last two authors had a broader
range of scientific interests than Lamé who nonetheless also published in physics
and the theory of light. All authors of course referred to Cauchy with due respect.
The reader interested in Cauchy will benefit from reading the beautiful book of
Belhoste [44] and the thorough analysis of Cauchy’s mathematical style in
mechanics by Dahan-Dalmenico [54].

6.3 Barré de Saint-Venant

6.3.1 On his Name

This scientist is always presented as Adhémar Jean Claude Barré de Saint-Venant
(1797–1886). But his only correct naming should be (cf. Crowe [53], p. 81):
Adhémar Barré, Comte de Saint-Venant, so that the name in a Republican manner
simply is Adhémar Barré. Accordingly, calling him simply Saint-Venant is the old
aristocratic way of friendly use restricted among (true or false) nobility. Above all,
it is not St-Venant (as often written by Truesdell). This designates a Catholic saint,
whereas Saint-Venant is the name of a small place in France (an ecclesiastic
property nearby Niort in west central France). However, we shall follow common
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(aristocratic) usage damaging thus our democratic reputation. Going even further,
for brevity in citation we shall use the abbreviation BSV followed by the year of
publication.

6.3.2 Some Biographical Elements

Although educated according to the best standards of the period (Ecole Poly-
technique and Ecole Nationale des Ponts et Chausées (civil engineering)), Saint-
Venant had a rather unusual career, apparently initially hindered by some political
facts—he was a royalist opposed to the return of Napoleon in 1815. As a matter of
fact, he was not granted in time the diploma of Polytechnique in 1816. A direct
consequence of this is that he did not join the much wanted Corps des Ponts et
Chaussées (with an admission to the corresponding school) to which he deserved
to belong. In place of this ideal path, he joined the ‘‘Corps des Poudres et Sal-
pêtres’’. That sounds a little obsolete and an archaism if we forget the importance
of these matters in artillery and the attack of fortresses by ‘‘sappers’’. The Corps of
Powders’ engineers (the mention of ‘‘Saltpeters’’ had logically disappeared) sur-
vived until the twentieth century. As a matter of fact, its engineers were instru-
mental in devising the French A and H bombs in the 1950–1970s; the Ecole
Nationale Supérieure des Poudres, a school of specialization for a selected group
of some alumni of Polytechnique, was incorporated in the 1970s, along with the
school of Naval engineers (Ecole du Génie Maritime), in a new ‘‘grande école’’,
the Ecole Nationale Supérieure des Techniques Avancées (for short ENSTA)—with
dependence on the Ministry of National Defence—, an educational system of
which the French have the secret, if not the envied privilege.

This odd formation took Saint-Venant to the world of chemistry for 6 years
after what he was granted in 1823 the permission to join the School of Ponts et
Chaussées without entrance examination (due to his excellent student’s records at
Polytechnique) and finally joining the much desired corps. Graduating at the top of
his class he then spent some 20 years in various state duties of civil engineering
(until 1848). But simultaneously, he succeeded Coriolis as a professor at the
School of Ponts et Chaussées and started publishing research papers in mechanics
and the strength of materials, an activity that he pursued, never at rest, until his
death, aged 89, in 1886. His last publication in the Comptes Rendus of the French
Academy of Sciences was dated January 02, 1886—probably presented on
December 24, 1885—while he died on the 6th of the same month. He had become
a member of the Paris Academy of Sciences in 1869, on Poncelet’s seat, at a
relatively late age of 71 for a scientist of this magnitude.

As already noticed Saint-Venant taught at the Ponts et Chaussées school, but
for a short time only (1837–1842). More surprising is the fact that he entered a
competition to teach at the National Institute of Agronomy where he stayed only
for 2 years (1850–1852). From 1852 to his death he devoted his full time to
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research. From these two aborted experiences we conclude that either he was not
successful with students or he finally disliked teaching as too elementary.

6.3.3 Saint-Venant’s Scientific Achievements

If we remember that Love cited Saint-Venant no less than forty seven times in his
book, it is easily realized that reporting Saint-Venant’s scientific contributions is
not an easy task. Writing a true scientific biography of this engineer-scientist is a
required duty that remains to be done. We shall evoke only a few aspects of these
contributions and try to delineate some general features that make Saint-Venant an
original individual. He published continuously scientific notes and memoirs from
1839 to his death in 1886 (for books, see below). These numerous contributions
are a mix of ‘‘intuition, pragmatism and mathematical rigour’’ (as noticed by
Maisonneuve [70], p. 187). He worked mainly in mechanics: elasticity, hydro-
statics and hydrodynamics. This list provides a template for an organized perusal
of his works.

6.3.3.1 Elasticity

This is the domain of continuum mechanics to which his name is attached in
priority. First of all is his mathematical formulation of the compatibility conditions
in small-strain elasticity. Here the basic question is how to determine the three
independent components of an elastic displacement from the six components of a
symmetric strain (the symmetrized spatial gradient of the displacement): there
must exist three conditions satisfied by the strain in order to allow for this spatial
integration. Nowadays, these conditions, known as the Navier-Saint-Venant con-
ditions are written in Cartesian tensor notation as (eij denotes the strain compo-
nents and a comma followed by a Latin index stands for the partial space
derivative):

eij;kl þ ekl;ij � eik;jl � ejl;ik ¼ 0: ð6:1Þ

This was later reworked by Michell and Beltrami. But in modern, times,
Eq. (6.1) is recognized as the condition that the elastic material manifold be flat,
and thus with vanishing Riemannian curvature. It happens that in three dimensions
this is given by the vanishing of the so-called Einstein tensor Aij defined from the
curvature tensor by (eajk is Levi-Civita’s permutation symbol)

Aab ¼
1
4
eajkebmqRjkmq ¼ �eajkebil

o2ekl

oxjoxi
; ð6:2Þ

from which (6.1) follows at once.
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Saint-Venant was also involved in the discussion concerning the correct number
of elasticity coefficients. Although he considered himself a disciple of Cauchy,
Navier and Poisson—not a bad choice—he first followed Navier and Poisson in
their choice of one constant only for isotropic elasticity. This error was due to
Navier’s consideration of a discrete model with too much symmetry in the
interactions between constituent ‘‘particles’’ [The great Cauchy faced the same
problem with his second theory [48] of elasticity that may be considered the
ancestor of ‘‘discrete’’ continuum mechanics]. Similarly, for a general anisotropic
(or aelotropic) elastic body, Saint-Venant first favoured the so-called ‘‘restricted’’
theory involving only fifteen constants, while with the energy approach of Green
[62]—and also the opinion of Lamé—we know that twenty one is the correct
number. Of course Saint-Venant corrected his wrong appraisal but it took him
some time to do so.

But the magisterial work of Saint-Venant in elasticity that easily erases this
error of appreciation in the number of elasticity coefficients, is provided by his
solutions of general problems in torsion and flexure. Here he remains the unique
master admired by all mechanicians over Europe. He had a special interest in the
mechanical response of structural elements (rods, plates) under prescribed loading
on their ends and faces. First, very early, in his course at the Ponts et Chausées in
1842, he introduced the notion of warping BSV [6]. That is, normal sections of a
loaded rod do not remain plane. This is a much improved sophistication in the
description of the potential torsional deformation of elastic structures such as non-
circular cylinders and the bending of beams. He approached this problem of
combined torsion and flexure of long rods with a very fruitful intuitive idea that we
try to describe without the help of formulas: in linear elastostatics it is thought that
the difference in effect of two equipollent (i.e., with same resultant) load systems
confined to a small part of a boundary becomes negligible away from that
boundary. For instance, in the case of the deformation of a prism or a cylinder, we
assume that a system of forces is applied only at the two bases. Now, if the
transverse dimensions are small compared to the length of the body, the differ-
ences in the distribution of forces on the bases produce only local perturbations. As
a consequence a practically identical state characterized by longitudinal fibres
exerting only tangential actions on their neighbours, or directed along the length,
takes place after a short distance from the bases. Exploiting this idea translated into
analysis and using the hypothesis of no surface pressure exerted on the lateral
faces, Saint-Venant succeeded in justifying from elasticity the accepted laws of
flexure and torsion in the strength of materials (see in particular, BSV [9, 11]).

This met an exceptionally good immediate reception, especially outside France.
Thus Clebsch in Germany coined the expression ‘‘Saint-Venant problem’’ for this
approach, and later on, with the enthusiasm of a close disciple, Boussinesq called it
‘‘Saint-Venant’s principle’’. But with the passing of time we think that the use of
‘‘principle’’ was an exaggeration. We must agree with Maisonneuve [70], himself
a mathematician specialist of the problem, that it was more a well thought working
hypothesis than anything else, but a very fruitful one indeed. Nowadays, all
mathematical considerations of Saint-Venant’s problem are necessarily based on
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reasoning involving asymptotic analysis and good applied functional analysis that
provides a rational measure of the considered approximations (e.g., works by
R. J. Knops in the UK).

Saint-Venant did not publish a book by himself, but it is noted by Timoshenko
[84], p. 108) that the best résumé of Cauchy’s theory of elasticity was given by
Saint-Venant in the two chapters (pp. 616–762) that he contributed to Moigno’s
book of (1868).1 Also, according to the same author ([84], p. 109), Saint-Venant
gave the final form of the definition of Cauchy’s stress in a short note (BSV [4]).
Finally, according to Truesdell ([87], pp. 252–253), the historical perspective on
research in the strength of materials and elasticity given by Saint-Venant in his
edition of Navier (BSV [13]) remains ‘‘the fullest and most accurate history of
linear elasticity in the first six decades of the nineteenth century’’.

6.3.3.2 Anelastic Behaviour

In testing elastic materials to a sufficiently high mechanical load a kind of limit—the
elastic limit—appears after which one can hardly control the deformation. In 1D one
simply reaches a level, say r0, of stress (force per unit area of the section of the
sample), at which one loses the control of the elongation. We now say that we
observe plastic flow, while mathematically in modern terms we formalize this by
saying that we lose the uniqueness in the response in deformation (cf. [71]). But real
materials are three-dimensional, the stress is a more complex object (tensor) than a
scalar, and the datum of one single scalar to characterize the entry into the plastic
regime is not always sufficient. One must think in terms of a convenient represen-
tation of a tensorial state of stress and deformation. Thanks to Cauchy who related
this to the representation in terms of ellipsoids, we also know that the length of
principal axes of the ellipsoids representing stresses and strains are convenient
representations of the actual mechanical state. It is at this point that we must
introduce the seminal work of Henri E. Tresca2 who conducted in the early 1870s a
series of fine experiments on metals whereby he constructed in an appropriate
representation of the principal stresses the elastic limit of the said metals [86].

Three important remarks are in order: first, it is noticed that no change in
volume (so called isochoric deformation in the modern jargon) is observed during

1 François Moigno (1804–1884), known as Abbé Moigno, was a catholic priest, who, after being
professor of mathematics and leaving the Jesuit order, became Chaplain of the Lycée Louis-le-
Grand in Paris (probably the best Lycée in France for the preparation to the entrance examination
in ‘‘grandes écoles’’ such as Polytechnique). A prolific and never tired author, he is mostly known
as a populariser of science. He was a friend of Cauchy—whom he considered his master—,
Ampère and Arago. Among his many books are one on Lessons on differential and integral
calculus, and one on Lessons on Analytical Mechanics (Moigno [75]; the book in which Saint-
Venant contributed two additional chapters).
2 Henri E. Tresca (1814–1885), a French mechanical engineer, was a professor at a Paris
institution known as the Conservatoire National des Arts et Métiers (for short, CNAM) where he
conducted experiments on the strength of metals. He is also known as a specialist of metrology.
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plastic deformation; second, the directions of the principal stresses coincide with
those of the principal strains (this assumes an isotropic response); third, the
maximum shearing (or tangential) stress at a point is equal to a specific constant.
This can be written as sM = k. In mathematical terms, we have

Supa;b ra � rb

�� �� ¼ 2k; a; b ¼ 1; 2; 3; ð6:3Þ

where the Greek indices label the principal stresses. Introducing the tangential
stresses, this can also be expressed by the following set of three inequalities:

2 s1j j � r2 � r3j j � k; etc; ð6:4Þ

by circular permutation. In an astute plane representation this is represented by a
hexagon. The interior domain (a convex domain with angular corners) is the
domain of elasticity. Although the criterion provided by (6.4) gives good results in
the case of metals, this definition of the elastic limit by pieces of intersecting
straight lines offers some difficulties in analytic treatment of problems. Nonethe-
less, Saint-Venant, with his mathematical dexterity, gave a clear mathematical
formulation of these results BSV [20, 21, 23]. Moreover, he was able to give the
first solution of exemplary problems of elasto-plasticity such as: the torsion of a
circular shaft, the plane deformation of a hollow circular cylinder under the action
of an internal pressure, etc. These are problems that we still give students to solve
without the help of a computer (see, e.g., Maugin [71], Appendix). Saint-Venant
also paid special attention to the works and modelling proposed by Maurice Lévy
(1838–1910) for ductile materials BSV [19, 24]. Lévy [68] had proposed to discard
the elastic behaviour—as negligible for some materials—and to consider only the
plastic one, thus in so-called rigid-plastic bodies. This is a rather highly singular
behaviour since nothing happens to the strain, not even an elastic one, in so far as
the plasticity threshold is not reached and then we have an uncontrolled plastic
flow occurring along a plateau in stress. Well known mechanicians such as Prandtl
and von Kármán were to solve other problems of elasto-plasticity in the early
twentieth century.

6.3.3.3 Dynamics and Impact

All along his life Saint-Venant demonstrated an interest for dynamical processes
and the theory of impact in particular. We owe to him publications on the lateral or
longitudinal impact of bars in the period 1853–1854 [10] and about 1866—see
Timoshenko ([84], pp. 179–180) for greater detail. In these he established the
resulting vibration modes after impact. He returned to this subject matter in his
later life, aided by A. A. Flamant3 (BSV [29]; also in an Appendix in the French

3 Alfred-Aimé Flamant (1839–1915) is a French civil engineer (formation: Polytechnique
followed by Ponts & Chaussées) who taught in different schools in Lille and Paris. He had an
essentially administrative career after supervising large projects. He considered himself a disciple
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translation of Clebsch). Flamant published some of the last results in the form of
numerical curves after the death of Saint-Venant (cf. [58]). W. Voigt improved the
interpretation of the experiments of longitudinal impact of prismatic bars by
assuming that the two bars are separated by a layer of transition with ad hoc
mechanical properties. Later on it was proved that Saint-Venant’s theory is fac-
tually pretty good, disagreement between theory and experience being initially due
to the difficulty of realization of the experiment ([84], p. 346 and p. 420). The
interest of these studies for military problems is obvious.

6.3.3.4 Fluid Mechanics

Nowadays, the name of Saint-Venant is more often associated with the mechanics
of deformable solids than with fluid mechanics. But he readily contributed to
different aspects of fluid mechanics. Along these we must single out his derivation
of the constitutive equations for isotropic viscous fluids. He was a disciple of
Navier and Poisson in a primary description by ‘‘particles’’, but he eschewed
completely Navier’s molecular approach and was able to derive correctly the so-
called Navier-Stokes equations in 1843 BSV [3], that is, two years before Stokes
whose famous paper was read in [82]. This he humbly pointed to Stokes in a post
script to a letter of January 22, 1862 (Cf. [87], pp. 224–228). Accordingly, these
celebrated equations should be referred to as the Navier-Saint-Venant-Stokes
equations. It must however be noted that, contrary to Stokes, Saint-Venant did not
give applications of his equations. Still the Saint-Venant paper presents interesting
features pointed out by Anderson ([1], p. 91): ‘‘That 1843 paper was the first to
properly identify the coefficient of viscosity and its role as a multiplying factor for
the velocity gradients in the flow. He further identified those products as viscous
stresses acting within the fluid because of friction. Saint-Venant got it right and
recorded it. Why his name never became associated with these equations is a
mystery; certainly it is a miscarriage of technical attribution’’ (see also [76]).

Other problems of fluid mechanics treated by Saint-Venant belong to a large
spectrum of research: the flow of air, the flow from a container through an orifice
[26], d’Alembert’s paradox, the speed of sound in air, the theory of periodic liquid
waves [17], the motion of fluid in shallow water BSV [22], the theory of solitary
waves BSV [28], the effects of swell and lapping (in French, ‘‘clapotis’’; BSV [22]).
All these publications are short notes to the Comptes Rendus, a common practice of
many French scientists at the time. In the case of shallow water and solitary waves,
the original equations deduced by Saint-Venant—and therefore presently called
‘‘Saint-Venant’s equations’’—missed a term that Bousisnesq will introduce and

(Footnote 3 continued)
of Saint-Venant—and in fact a co-worker of Saint-Venant during the last years of this scientist;
he befriended Boussineq during his stay in Lille in the period 1879–1883. He simplified Bous-
sinesq’s theory of granular materials. His name is also attached to the solution of a famous
problem (force applied perpendicularly to the edge a semi-infinite elastic plate of unit thickness).
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could in this corrected form account for the physical reality of the ‘‘long wave’’
observed in 1834—but reported only in 1844—by John Scott Russell (1808–1882).

6.3.3.5 Vector Calculus

Historian of science Crowe [53] produced an unsurpassed history of the creation
and development of vectorial algebra and calculus in the nineteenth century. The
great heroes there are Hamilton, Gibbs, Heaviside and Grassmann. The first three
authors are related to the creation of quaternions, and vector analysis per se, with
the notion of scalar and vector products, dyadics, the gradient, divergence and curl
operators, and the nabla symbol. With the German scientist Grassmann4 and his
publication of an original book in [59], we have at hand the masterpiece of a lonely
character who creates a whole new field of mathematics, including vector spaces
and exterior algebra. True recognition of Grassmann’s achievements in this field
came only more than 40 years after his original publication with the concept of
vector spaces and multi-linear algebra (e.g., by A. N. Whitehead).

Some controversy between Grassmann and Saint-Venant took place when the
latter published a kind of vector calculus in BSV [5]. Saint-Venant ‘‘had discov-
ered vectorial addition, subtraction, differentiation, and also a multiplication
similar to the modern cross product, the major difference being that Saint-Venant’s
product was, like Grassmann’s, not another vector, but a spatially oriented area’’
(Crowe [53], p. 82). In the discussion of priority—mainly through an exchange of
letters, sometimes, via Cauchy—Saint-Venant claimed that his idea came to him
as early as 1832, but he did not feel the need to write it down before 1845.
However, he seems to have tried the application of his formalism in the lectures he
gave at the Agronomical Institute in 1851, obviously not the most appropriate
place for the exposition of a new algorithm. This again shows some lack of
appreciation and realism from the part of Saint-Venant. He never returned to this
matter except in connection with the theory of ‘‘algebraic keys’’ BSV [8], an
algebraic method originally developed by Cauchy in 1853, also in competition
with Grassmann’s idea of ‘‘outer multiplication’’ (Grassmann, perhaps suffering
from some paranoia, also made a claim of priority). Remarkably, Saint-Venant
made no priority claim for himself or for Grassmann, just granting a geometrical
interpretation to the dry manipulations of Cauchy.

4 Hermann Günther Grassman (1809–1877) is what is commonly called a polymath. That is, he
excelled in various branches of knowledge including mathematics, linguistics (with translations
from the Sanskrit), physics and general scholarship. Self educated in mathematics and physics, he
is now best known for his seminal contribution to the foundation of the theory of vectorial
structures with the publication (1844) of his book with self explaining title: ‘‘Die lineale
Ausdehnungslehre, ein nuer Zweig der Mathematik’’ (that is: The theory of linear extension, a
new branch of mathematics’’). In spite of his achievements, Grassmann remained a teacher in
high school for all his life, but one of his sons (out of eleven children of which seven survived to
reach adulthood) became a professor of mathematics at the University of Giessen, thus realizing
one of his father’s dreams.
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Saint-Venant’s contribution to this field of ‘‘geometric calculus’’ did not meet
great success. Still, Jouguet, writing in 1924 (2nd part, p. 240), cites ‘‘Saint-
Venant, Grassmann and Hamilton’’ as the main three contributors to the field to
which, personally, we would add Gibbs and Heaviside (see also Coffin [50]).

6.3.3.6 Principles of Mechanics

As mentioned below, Saint-Venant did not write himself a book or complete
course of lectures that would have left an organized exposition of his general views
on the principles of mechanics. Fortunately, E. Jouguet,5 in his ‘‘Lectures on
Mechanics—Mechanics taught from original authors’’ [64] analysed for us in
detail and gave the most important citations from Saint-Venant, from a now
inaccessible text published in an eulogy of du Buat (a celebrated eighteen-century
(1734–1809) specialist of hydraulics; BSV [15]). The reason of this publication
was that at the time Saint-Venant was interested in the flow through an orifice and
the flow in canals and rivers, the very area of scientific contributions by du Buat.
Contrary to, e.g., Duhem, Saint-Venant was an ‘‘atomist’’. This he clearly dem-
onstrated in his approach to both deformable solids (following Poisson) and fluids
(in a manner close to Navier’s vision). Accordingly, like G. Kirchhoff [65] and
E. Mach, he grants a privileged status to the notions of mass and points: ‘‘bodies
move like systems of points,… those elementary points of which we suppose
bodies are made..’’, quite a formal viewpoint. As to forces, ‘‘they never enter
data—that are sensitive things—nor in the looked for solution. We introduce them
to solve the problem, and then eliminate them so that in the end we have only
times and distances or velocities just as when we started’’ (BSV cited by Jouguet
[64], p. 77), naturally comparing Saint-Venant to d’Alembert and Carnot who, as
we know, wanted to evacuate from mechanics this obscure, metaphysical, notion
of force). Saint-Venant’s first presentation of these ideas was given in a short note
BSV [5] and expanded in BSV [7] of which the title emphasizes the basic role of
kinematics. We can imagine the surprise of the students of the Agronomical
institute where this was delivered; this may explain the short-lived teaching
experience of Saint-Venant in this institution, in fact closed in 1852. For more
comments we refer the reader to Jouguet for which there exists a recent facsimile
reprint.

5 Emile Jouguet (1871–1943) with a formation acquired at Polytechnique and the Paris School of
Mines probably is the most successful direct disciple of Duhem. Complementing the Rankine-
Riemann-Hugoniot theory of shock waves, Jouguet has created the theory of detonation waves
with application to high explosives (Cf. the now well known Chapman-Jouguet condition). He
became a professor at both schools where he had studied. The cited book Jouguet [64] of which
the relevant part ‘‘L’organisation de la mécanique’’ was first published in 1909 was favourably
reviewed by E.B. Wilson in the Bull Amer Math Soc 18: 32–33, 1911. Wilson himself was a
former PhD student of Gibbs. He wrote at the early age of 21 the first book on vector analysis
(often presented as Gibbs’) and became a professor of pure mathematics first at MIT and then at
Harvard. He has also reviewed the Cosserats’ book of 1909 (see Maugin [72]).
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6.3.3.7 Publication of Books

When we peruse the complete roster of publications—with about one hundred
notes and memoirs—by Saint-Venant we are struck by two evident facts: like
many other French prolific authors of the nineteenth century (including Cauchy,
Poincaré and Duhem), he published many short notes in the Comptes Rendus of the
Paris Academy. Their length and number per year were limited by the rules of the
Academy. But unlike other authors who published afterwards much longer
memoirs giving details and complements to the short announcement notes, or even
lengthy books, Saint-Venant published either in odd places (somewhat like the
Cosserat brothers) or incorporating his own results in other authors’ book or in the
French translation of a foreign book. This demonstrates a kind of rarely met
modesty, if not a certain disinterest for an efficient communication. We already
mentioned his contribution to Moigno’s course in analytical mechanics. The
second case is illustrated by Saint-Venant’s edition (1864) of the lectures of Navier
on the application of mechanics at the Ponts et Chaussées School [13]. Not only
did he include there a remarkable historical survey of elasticity, but he also added
so many of his own remarks and results that dealt with his work in the elementary
theory of the strength of materials (e.g., bending of beams). Comments on the
physical theory of elasticity (e.g., about the number of elasticity constants) are
given in Appendices III and V to Navier.

A special attention must be paid to Saint-Venant’s translation (with the help of
A. A. Flamant) from the German of Clebsch’s book on elasticity [27], when Saint-
Venant was already more than 80 years old. This matter first deserves some
comments on the style and interests of Clebsch.6 Clebsch was destined to become
one of the best pure mathematicians in Germany during his short life, mentoring
people such as Felix Klein. As a very young scientist he had to work in continuum
mechanics (for both fluids and solids). Surprisingly, he wrote (1861–1862) the
second book on elasticity ever after Lamé’s pioneering book: Theorie der Elas-
tizität fester Körper. He did this dutifully including recent results such as those of
Kirchhoff on the mechanics of thin bars and Saint-Venant on torsion and bending,
the ‘‘Saint-Venant’s problem’’ (his coining). The contents of the original version of
Clebsch’s book are carefully discussed by Timoshenko ([84], pp. 255–260) to
whom we refer the reader for technical details.

6 Alfred Clebsch (1833–1872) was a student of Franz E. Neumann in Königsberg. He wrote a
thesis in fluid mechanics. He became a professor at the Polytechnicum in Karlsruhe when he was
only twenty five after spending a short time at the University in Berlin. It is while at Karlsruhe
that he wrote his famous book on elasticity (1862)—Theorie der Elastizität fester Körper—when
there existed only one such book, by Lamé, available. The mathematical inclination of Clebsch
and his remarkable gift for it resulted in Clebsch becoming a professor of pure mathematics and
ending his brief career as one of the best German mathematicians of his period (works on
variational problems, Abelian functions, invariant theory, and algebraic geometry) in Göttingen
after teaching in Giessen. His famous students include Max Noether and Felix Klein
(1849–1925).
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Although Clebsch in principle wrote for engineers, he did it with special
emphasis on mathematical methods of solutions, often losing the physical aspect.
The book reflects Clebsch’s mathematical inclination, very much like Cauchy’s,
and is much too abstract to promote any interest from engineers. The studied
problems often are of little practical interest and, of course, Clebsch shows no
interest in numerical applications. In spite of the originality and very existence of a
remarkable book—there was none of the type before except Lamé’s—it was
completely transformed to a true book for the engineering elastician (but still with
a good command of mathematics) by Saint-Venant’s translation into French. Saint-
Venant added so many remarks, justifications, examples (both physical and
numerical) and complements that the bulk of the book tripled in translation,
becoming more his book than Clebsch’s. It must be realized that more than 20
years had passed between the original German publication and the print of the
French translation. Many of these new results were indeed due to Saint-Venant as,
for instance, the treatment of beams with various shapes of cross section and the
study of forced vibrations in bars. Still it must also be acknowledged that Cle-
bsch’s original text contained innovative points such as the plane state of stresses
in transverse sections of rods and a rather general discussion in the analysis of
trusses with the consideration of the displacement of hinges as unknown quantities.
In conclusion, it would be fair to attribute co-authorship to Clebsch and Saint-
Venant to the French text although A. A. Flamant referred to it casually as the
‘‘augmented Clebsch’’ (other authors call it the ‘‘annotated Clebsch’’).

To the above unusual variety of tackled subjects we should add two that lay a
little outside his usual preoccupations: one is an incursion in thermo-mechanical
problems (thermo-elasticity as created by J. M. C. Duhamel in France and
F. E. Neumann in Germany BSV [25]), and the other where he envisaged the
possibility to account for higher-order (than one) gradients of the elastic
displacement BSV [16]. This, in some sense, is a première in the so-called theory
of generalized continua to be fully developed only in the 1960–1970s after an
attempt by J. Le Roux in the 1910s. This may be justified in a very accurate
approach to torsion that necessarily exhibits spatially non-uniform strains.

The never tired Saint-Venant also wrote many reports on a quantity of memoirs
submitted by other scientists to the Academy. As noted before, his scientific
activity ceased only with his death at the age of 89. Two of his disciples and
friends, Boussinesq and Flamant [43], wrote a notice on his life and works (see
also [80]). But he receives only a two-column entry in the Dictionary of Scientific
Biography (General Editor: C. C. Gillispie), again an unmerited lack of attention
(as noticed by Truesdell [87], Footnote, p. 519), given the magnitude of Saint-
Venant’s oeuvre.
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6.4 Boussinesq: A Disciple of Saint-Venant

6.4.1 Contributions to Fluid Mechanics

Joseph V. Boussinesq (1842–1929) is nowadays mostly referred to for his work in
fluid mechanics, although in his own time, the emphasis was placed on the
mechanics of deformable bodies. This shift may be due to the fact that Boussinesq’s
achievements in solid mechanics have been directly incorporated in the standard
engineering curriculum without any further reference to the original works, while
his works in fluid mechanics resonate more with some contemporary interests and
methods (convection, the ‘‘Boussinesq approximation’’, non-linear waves). A rich
and enlightening description of Boussinesq’s contribution in fluid mechanics has
been given by Bois [30]. It was more than natural for former professors of fluid
mechanics in Lille—Bois [30] and Zeytounian [91]—to write such laudatory
contributions as Boussinesq had a long and fruitful part of his career there
(1873–1886). We in fact refer to them for the case of fluid mechanics in which both
are recognized experts. We also refer to Bois for biographical elements, of which
some are also available on the web, and to the Dictionary of Scientific Biography of
1970–1990. Nonetheless, we cannot avoid giving a flavour of two of Boussinesq’s
achievements in this frame.

One is related to the unsatisfactory solution (see above) given by Saint-Venant
for the shallow-water and solitary-wave problem. What Boussinesq [32] estab-
lished by cleverly eliminating the behaviour in depth to the benefit of the longi-
tudinal one, was a wave equation containing both dispersion and non-linearity
terms in the form
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where u is the deviation from horizontal of the fluid surface, x is the longitudinal
coordinate along the flow, and a and b are two scalar coefficients. It is the
appropriate balance between the effects of dispersion (fourth-order space deriva-
tive) and non-linearity which allows for a mathematical reproduction of the long
wave, called solitary wave, observed by Scott Russell. Other authors (e.g., Lord
Rayleigh) worked on the same theme, but it was due to Korteweg and De Vries in
the Netherlands to derive in 1895 a non-linear evolution equation—the celebrated
KdV equation—which is none other than the first-order one-directional equation
associated with the Boussinesq equation (in modern terms, by means of the
reductive perturbation method). A Boussinesq type of equation was also derived
by its author in the dynamics of 1D elastic bodies [41, 90]. This is now most often
introduced in the lattice dynamics of crystals. Various generalizations for micro-
structured crystals and different approximations have led to the introduction of a
true ‘‘Boussinesq paradigm’’ (cf. [49]) in non-linear wave propagation.
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The second breakthrough of Boussinesq in fluid (thermo-) mechanics is rep-
resented by the so-called Boussinesq approximation. To explain this in simple
words paraphrasing the words of Boussinesq ([41], Foreword), it must be noticed
that in the motion of heavy fluids (i.e., fluids under the action of gravity) caused by
heat, volumes and densities are approximately conserved although the variation of
these quantities is effectively due to these heat phenomena. This results in the—
Boussinesq’s—observation that it is possible to neglect variations of the density,
wherever it is not multiplied by gravity, while keeping their product in the com-
putations. This we may appropriately call the ‘‘art of modelling’’, something hated
by Pierre Duhem, but in which Boussinesq revealed himself to be a master. What
is really at work in this study of hydrodynamic convection is an excellent
appraisal—some would say a flair—of the relative magnitude of different terms in
the relevant equations and a special focus on singular cases where relevant
parameters enter in competition, something that will later on be incorporated in the
consideration of non-dimensional numbers (e.g., Mach’s, Froude’s and Rayleigh’s
numbers) and asymptotic analysis. But Boussinesq’s purpose is to simplify
equations while keeping the essentials of the characteristic and most critical
phenomena, and thus the importance of the ‘‘art of what to neglect’’. This was to
have a brilliant future in the whole of phenomenological physics in spite of
Duhem’s unjustified criticism of irrationality.

Other fields of fluid mechanics approached by Boussinesq are: (1) the modelling
of viscous flows and (2) the modelling of turbulence.

In the first of these he was led to formulating an expression for the force exerted
by a viscous fluid on an immerged moving solid body. Here Boussinesq [36, 37]
corrected Stokes’ original formula by an additional term. Basset in the UK
rediscovered this correction by accounting for a time-varying motion of the solid
body, while C. Oseen in Sweden contributed anew to this expression which is
nowadays known as the Boussinesq-Basset-Oseen (or BBO) equation.

In the second of these adventures in the domain of viscous flows, Boussinesq
first tried to express a stress-deformation relationship with a dependence on vortex
agitation for relatively rapid flows. With this he had identified the basic problem.
However, before Reynolds’ pioneering work in the 1880s he formulated a closure
hypothesis—involving a turbulent viscosity—for turbulent Navier-Stokes equa-
tions. This is known as ‘‘Boussinesq’s hypothesis’’ [34, 40]. This is documented in
Schmitt [81].

More on Boussinesq contribution to fluid mechanics can be found in Darrigol
[55].

6.4.2 Contributions to the Mechanics of Deformable Solids

If we are to trust Love and Timoshenko, Boussinesq is primarily a successful
contributor to the theory of elasticity and the strength of materials. This is certainly
true if we count the twenty citations of works by Boussinesq in Love’s classic
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treatise. Here we must distinguish between works directly related to elasticity and
those that tried to model a more involved mechanical response.

In pure linear elasticity, Boussinesq first exhibits an unsurpassed dexterity at
bringing the complementary or final mathematical solutions to problems started
but left unresolved by former scientists. We cannot list all these problems but
examples (after Love) are: solution of the problem of the plane and a theory of
local perturbations according to which the effect of a force applied in the neigh-
bourhood of any point of a body falls off very rapidly when the distance from the
application point increases; using potential energy to find the response in extension
of a longitudinal filament (a problem started by Kirchhoff); the longitudinal impact
of a massive body upon one end of a rod after Hugoniot; elastic equivalence of
statically equipollent systems of load following Kirchhoff; the problem of isostatic
surfaces after Lamé; ‘‘simple solutions’’ (coinage by Boussinesq) with the help of
potentials; response of a half elastic space to a pressure load applied over any area;
problem of a load applied at a point of a boundary of any shape, in particular
straight; analogy with problems of hydrodynamics; distribution of maximum
shearing stress on a boundary; uniform stress along a beam; longitudinal impact
problem on a rod (after Saint-Venant). Although many of these problems seem at
first to be disconnected and are often briefly described in a multitude of short notes
to the Academy of Sciences in Paris, their unity resides in the powerful use of
potentials and convolution (see the incredible treatise of Boussinesq [37] on the
subject—with more than seven hundred pages!). That is, contrary to Saint-Venant,
Boussinesq did not hesitate to write bulky volumes offering a synthesis of some
works or an exposition of a common mathematical method (such as the exploi-
tation of potentials).

The most popular problem solved in this manner is the ‘‘punch’’ Boussinesq
problem concerning a concentrated force applied at a point of the otherwise free
surface of a semi-infinite elastic space (see [37, 39]). In modern terms this implies
a Dirac mass at the application point. Much later on this will be generalized as the
‘‘Mindlin problem’’: determine (analytically) the stresses in an elastic half-space
subjected to a sub-surface point load. It receives applications in geotechnical
engineering. This was a kind of ‘‘tour de force’’ by Raymond Mindlin in 1936.
Some time still later, Jean Mandel solved the problem of soil deformation under a
load accounting for what is called consolidation (expulsion of water from the soil
in time), obviously a situation more realistic than the standard Boussinesq problem
in many geophysical settings (for these see [74], Chaps. 4 and 7).

It is probably under the influence of Saint-Venant—who acted as some kind of
godfather, guide and supporter through the academic system (see the letters
exchanged between Saint-Venant and Boussinesq in 1868 in Bois and Verdier
[31])—that Boussinesq devoted some of his research to the behaviour and
mechanical response of some granular materials involved in soil mechanics [33].
Such media partake of both solid and fluid behaviours. W. Maquorn Rankine had
given an unsatisfactory modelling that Boussinesq proposed to improve by con-
sidering the Lamé elasticity coefficients to depend on the pressure in the ground.
This is but a small correction. But it allows Boussinesq to obtain a definite solution
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to the problem of the equilibrium of a sand hill that exhibits two cases of collapse
of the hill, one (corresponding to the fracture limit with a vanishing external
pressure on the external sides of the hill) already obtained by Rankine, and another
one by excess of pressure. This remains a historical landmark in soil mechanics
and geotechnics.

In addition to the above cited works in the field of continuum mechanics per se,
Boussinesq published a lengthy treatise on analysis for applications to mechanics
and physics [38]. Like Saint-Venant, but unlike contemporaries like Hertz, Poin-
caré and Duhem, Boussinesq does not show much interest in the discussion of the
principles of mechanics—although he sometimes ponders the right questions (e.g.,
[42])—, and his main scientific interests are confined to macroscopic physics.
Biographic elements are to be found in Picard [77] and Felix [57]; Boussinesq’s
own partial description of his work is given in Boussinesq [35].

Considered after the passing of time, we see Boussinesq not as a true initiator of
theories, but as one of the best analysts of problems of elasticity and fluid
mechanics where, with his acute scrutiny of problems, he knows what is most
essential and what should be kept in the final analysis to obtain meaningful results.
This is mathematical modelling at its utmost level. This vision will be adopted by
many mechanicians and applied mathematicians in the second part of the twentieth
century with a rigorous application of asymptotic analysis.

6.5 Conclusion

A paper was recently published in the Notices of the American Mathematical
Society (Vol. 60, no. 7, August 2013, pp. 886–904) with the provocative title: ‘‘Is
mathematical history written by the victors?’’ My own answer, whether in math-
ematics or mechanics—and a fortiori in political history—is an unambiguous YES.
The obvious reason for that is that if one tries to publish an original history that
falls beside the viewpoint of the ‘‘victors’’, it will never be accepted for publication
since the victors usually have at their command all means of publication: spe-
cialized journals, review journals, and editorship of series of books.

Thus, if we peruse the lectures, treatises and syntheses published by French
scientists at the end of the nineteenth century and the first years of the twentieth
century we find many references to Saint-Venant and Bousinesq. This includes
authors such as Henri Poincaré (1892), Duhem [56], Brillouin [45], Appell ([2],
but first edition in 1900), Jouguet ([64], but first edition in 1909) and the Cosserat
brothers [51, 52]. This is also the case of Hellinger [63] and Voigt [89] in Germany
and Todhunter [85], Thomson and Tait [83] and Love ([69], but augmented several
times) in the UK. Many results of Saint-Venant and Boussinesq were naturally
included in the standard expositions of the strength of materials (as evidenced in
[84] without the need of precise references. Perhaps that the spirit and works of
these two authors became the object of some cult in French grandes écoles.
Unfortunately, we must also admit that the researches—if any—entertained there
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in the relevant field were not at the level of this cult. We have commented else-
where [74, Chap. 7] on this fatal weakness. The flame was taken over by active
engineers in the network of Technischen Hochschulen in Germany and the
expanding departments of engineering in famous universities and institutes in the
USA (Brown, M.I.T., Stanford, Columbia, CALTECH, etc.). Their members had
to write the corresponding chapters of this history and they unavoidably took less
notice of works produced in French, a language of which the universal character
remained only in diplomacy, and this for a limited time only. Cauchy was of
course an unavoidable reference, although obviously not read. With the ebb and
flow of the ocean on beaches and costal rocks, the statues of Saint-Venant and
Boussinesq were cleaned of any unnecessarily attached parasite sea fruits and there
finally remained, like in history books for children, almost legendary figures to
which expressions like ‘‘Saint-Venant principle’’ and ‘‘Boussinesq’s approxima-
tion’’ are attached. There was an effort done by Truesdell and Toupin [88] in their
monumental encyclopaedia article to correct this tendency.7 A special case is
Boussinesq, whose name was saved from oblivion with the recent expansion of
non-linear wave studies.
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Chapter 7
Helmholtz Interpreted and Applied
by Duhem

Abstract Gibbs and Helmholtz provide the strongest scientific influences on
Duhem’s works in what is now called mathematical physics. With the help of
examples exhibiting this influence in thermo-mechanics and electrodynamics, it is
shown that this conduced Duhem and his followers to a definite style and practice
of physical science marked by abstraction and mathematical rigor. This has
practically become the rule while helping to classify the numerous, linear or non
linear, effects and giving rise to fruitful developments, in continuum physics.

7.1 Hermann von Helmholtz and Pierre Duhem

When Hermann von Helmholtz (1821–1894) dies in Berlin in 1894, the same year
as Heinrich Hertz of electrodynamics fame, Pierre Duhem (1861–1916) is only
thirty three years old and moving from one teaching position in Rennes to a
professorship of theoretical physics at the University of Bordeaux.1 But he has
already published in 1886 one of his most original books [9], a short treatise on
thermodynamic potentials and their application to what he calls ‘‘chemical
mechanics’’ and electric phenomena. This book appears to be some kind of
matured rewriting of an aborted thesis project which he wrote and presented in

Unpublished contribution to the Wissenschaftliche Veranstaltungen aus Anlass des 100.
Todestages von Hermann von Helmholtz. Fachkolloquien zu Themen Helmholtzscher
Traditionen, 10 September 1994, Humboldt-Universtät zu Berlin (Thermodynamik: Von den
Berliner Anfängen zu Modernen Entwicklungen). Most of the bibliographical material needed
in this study was gathered while the author was a member of the Wissenschaftskolleg zu Berlin
(1991–92). He received there the help of a formidable library service.

1 Excellent biographical sketches of P. Duhem are given in Jaki [31], Brouzeng [4], and Miller
[42]

G. A. Maugin, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries,
Solid Mechanics and Its Applications 214, DOI: 10.1007/978-3-319-05374-5_7,
� Springer International Publishing Switzerland 2014
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1884 while being a third year student at the celebrated Ecole Normale Supérieure,
having not yet obtained his formal Master’s degree, nor passed the difficult
competition exam called the Agrégation (formally, Lycée teaching diploma).
Unfortunately for Duhem, this project included a somewhat harsh argument
against Marcellin Berthelot, then ‘‘Pope’’ of French ‘‘republican’’ physics, but
conceptor of the ill-fated principle of maximal work, whereby the heat of reaction
defines the criterion for the spontaneity of chemical reactions. Rightly, but per-
haps without the respect and touch of hypocrisy that would have been more suited
in such occasions Duhem, building on of the notion of free energy dear to
Helmholtz and also known to J. W. Gibbs who called it ‘‘available energy’’,
denounced Berthelot’s theory as a fraud, and properly defined the required cri-
terion in terms of the free energy. The thesis was rejected. An enmity between
Berthelot and Duhem followed from which Duhem never fully recovered, having
his academic career impeded for his whole life. Duhem obtained his doctoral
degree with another subject (theory of magnetism) and a different jury (involving
Henri Poincaré) in 1888.

Pierre Duhem, like many other physicists of the period, was interested in the
whole of phenomenological physics, the physics of his time—a pre-quantum
time -, and was particularly keen on problems of electromagnetism and electro-
dynamics. With the discovery of Heinrich Hertz about electromagnetic waves and
his will to capture the whole of physics in a somewhat rigorous framework, he
turned to the study of the foundations of the theory of electrodynamics. His rapid
conclusion was that Maxwell’s work was more the work of an inspired artist than
that of a logician (which Maxwell had never claimed to be) and if something
deserved the respect of a true mathematician or mathematical physicist, it was the
electrodynamic theory set forth by Helmholtz, although perhaps there was more in
it than necessary (see below). While Poincaré [44] exposed all theories in a
detailed, cautious and balanced manner—which announces his conventionalism—
in his lectures at the Sorbonne, Duhem, true to himself, wrote a pamphlet against
Maxwell [14] in which he had to acknowledge Maxwell’s obvious genius and
ingenuity (in introducing the notion of displacement current) while exposing his
sloppiness to the scientific world: Maxwell achieved something great, but not in a
form admissible to a professional of mathematical physics. This is the viewpoint
that Duhem was to illustrate first on this particular example, and that some irra-
tional nationalistic tendencies were to develop in an open attack of the English
way of practicing science, and where German (in particular Helmholtz) and
obviously French science got the best share in an analysis which was nonetheless
to bring an original and creative viewpoint in epistemology [15].

A few years before his untimely death in 1916, Duhem [16] published a for-
midable treatise on energetics or general thermodynamics in which he naturally
praised the German school of energetics in which Helmholtz was incorporated as a
precursor. Furthermore, basing on the concept of free energy, this beautiful work
presented a thorough discussion of stability which would sixty years later be taken
over by a whole school of continuum thermo-mechanics. That school, under the
leadership of Clifford Truesdell, developed, at the image of the best analysts of the
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nineteenth century and Duhem himself, a rational approach which, like all
‘‘rigidifications’’, was instantaneously fruitful but may have brought some damage
in the long run (think of the Bourbaki style in mathematics). Here also, Duhem had
a debt to Helmholtz via Hertz and his enterprise of rationalization of mechanics as
shown in his small book on the principles of mechanics [27]. From this we gather
that Helmholtz inspired or for the least shared, some of the views expressed by
Hertz, especially in using Hamilton’s dynamic principle. This was to develop in a
true theory of fields in which the notion of force would ultimately be banished.

In the remainder of this contribution we shall examine in greater detail the four
instances and subject matters at which the intellectual trajectories of von Helmholtz
and Duhem clearly crossed each other. These views, methods, attitudes toward
scientific practice, sometimes only hinted at by Helmholtz and more forcefully
expressed by the sanguine Duhem, have necessarily influenced our own practice
and our view of mathematical physics in general and the way we teach it and
write papers in particular; That is, a style has developed which has built on the
peculiarities exhibited by our grand predecessors. This is all the more true in a field
such as continuum thermodynamics which may rightly be considered as a modern
expression of energetism, but without the limitations and blinkers too often put
forward by its contempters.

7.2 Free Energy (‘‘Freie Energie’’)

Nowadays all our (good) students know the difference between internal energy
and free energy, the latter being also called Helmholtz energy, although no per-
sonal name seems to be attached to the former, being more the result of collective
thinking and appraisal. They essentially know when each of these prevails in the
thermodynamic description of systems, for isentropic conditions in the first case,
isothermal ones in the second case. This obviously has drastic consequences even
in the most modern researches and applications of thermo-mechanics. For exam-
ple, while P. Hugoniot (1851–1887) clearly shows the relationship between his
celebrated jump conditions across shock waves and the notion of internal energy
(work generalized by P. Duhem himself in 1901), coherent transition fronts in
elasticity, describing transitions of the martensitic-ferroelastic type in conductors
of heat, involve the free energy of the deformable material, hence a function of
strain and temperature, as shown by the author and co-workers.2 That is, the

2 In shock waves for one-dimensional motions in fluids the Hugoniot jump relation reads

H :¼ eþ ph is½ � ðaÞ

where e s; gð Þ is the internal energy per unit mass, a function of specific volume s and specific
entropy g; p is the thermodynamical pressure, h ¼ ›e=›g [ 0 is the thermodynamic temper-
ature, \..[ is the mean value of a quantity at the shock, and [..] its jump. The best known
disciple of Duhem was E. Jouguet, a specialist of shock and detonation waves, and explosives.
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driving force acting locally on the transition front is essentially the jump in free
energy, or a quantity akin to that. The same holds true for electromechanical or
magneto-mechanical transition fronts. In contrast, for shock waves, whether in
solids or in fluids, it is the internal energy, function of strain or volume and entropy
which provides a basis for a discussion of the existence of shocks by means of the
so-called Hugoniot function. Duhem was instrumental in these developments
through his teaching and the introduction of several welcomed concepts. Appar-
ently, he pondered such questions as that of thermodynamic potentials while still
in secondary school/gymnasium under the supervision of his physics teacher Jules
Moutier. The works that he expanded in the period 1884–1900 in this field clearly
are extensions and elaborations of the pioneering work of Gibbs and Helmholtz.
He had read both authors while in college, especially the first part of Helmholtz
[25]. He was also quite aware of the work of the French geologist François
Massieu (1832–1896). It is him who gave to Massieu’s characteristic functions
[34] the name of thermodynamic potentials, while he treated systematically all
types of thermodynamic systems involving as well thermoelectricity, capillarity,
mixtures of perfect gases, those of liquids, solutions in gravitational fields and
magnetic fields, freezing points, etc.

Duhem acknowledged his immense debt to Gibbs and Helmholtz when, in
Duhem [17], he described in detail his scientific trajectory in the presentation of
his works while a candidate for election to the Paris Academy of Sciences. In the
1960s, the Truesdellian-Nollian school of rational thermodynamics took over the
axiomatic approach of Duhem to introduce a priori in full dynamics notions which
are usually defined only in thermostatics, e.g. temperature, entropy, and free
energy. Much celebrated papers by Coleman and Noll [8] in fact introduced the
statement of the second law of thermodynamics in which the time rate of change of
free energy is present as the so-called Clausius-Duhem inequality, a mathematical
restriction imposed on a large class of material behaviors.3

But in his pursuit of a general thermodynamics that started with a full
exploitation of Helmholtz’ freie Energie, Duhem accomplished much more in that
he also introduced seminal notions and powerful methods which were to bring
efficient results in the second part of the twentieth century. Among the methods we

(Footnote 2 continued)
For one-dimensional phase-transition fronts (this dimensionality is chosen for illustrative purpose
only) in solids, the driving force acting on the front reads:

F ¼ � W e; hð Þ � rh i : e½ � ðbÞ

where W is the free energy per unit volume, a function of strain e and temperatureh, the entropy
per unit volume is given by S ¼ �›W=›h, and r is the stress. H = 0 at shocks whereas F is in
general not zero at irreversibly progressing phase-transition fronts. Both F and the nonzero
propagation velocity V of the front satisfy jointly at the front the second law of thermodynamics
in the form F.V [ 0 or = 0 (for the exact three-dimensional theory in conductors of heat see
[39]).
3 Much more on rational thermodynamics is to be found in Truesdell [46].
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should emphasize the systematic use of Euler’s theorem for homogeneous func-
tions.4 The celebrated Gibbs-Duhem equation, of relatively innocent outlook in
our much more mathematically trained society, was the result of this use. It may
not be altogether ridiculous to recall that this technique reduces the derivation of
relations among partial molar properties of a solution to the repeated application of
this theorem. Among the notions unequivocally introduced by Duhem we find
those of normal variables of state and the embryonic form of what was to become
known as internal variables of state in recent times. Normal state variables are
composed of a set including entropy and a remainder set vb; b ¼ 1; 2; . . .; n

ffi �
according to which the first law of thermodynamics in Gibbs’ form can be
expressed as

dE ¼ xþ u ; ð7:1Þ

where x and u are the elementary work and heat received by the system in such a
way that

u ¼ h dS; x ¼
Xn

b¼1

sb dvb; ð7:2Þ

where S is the entropy and the s0bs are thermodynamic forces associated with the
v0bs. That is, there is no dS in x and this, together with the positiveness of the dual

variable, the temperature h, makes S singular among the state variables. Indeed, E,
the internal energy, is a thermodynamic potential in the sense of Duhem, in such a
way that

h ¼ ›E=› S; sb ¼ ›E=›vb : ð7:3Þ

Manville [32, p.225], in assessing Duhem’s contribution to thermodynamics,
says that Duhem based on an idea of Helmholtz while introducing the notion of
normal variables.

Although Duhem was not equipped to solve the problem of what he called the
‘‘nonsensical’’ (abérrantes) branches of mechanics—those branches where dissi-
pation is the most important mechanism at play, one may find in some of his
penetrating writings [12]—cf. Manville [32], p. 303; Truesdell [46], p. 39—the
germ of the notion of internal variable of state. Without digressing too much on
this we simply note that these are additional variables of state whose introduction
reflects our lack of complete control of microscopic mechanisms (e.g. dislocation
movement) which are responsible for some macroscopically irreversible mani-
festations (e.g. plasticity and hardening in metals, magnetic hysteresis in ferro-
magnets). Although measurable by a ‘‘gifted’’ experimentalist once they have been
identified (this is the crux of the matter), these variables are not controllable so
that they clearly distinguish themselves from the more classical observable

4 This is rightly emphasized by Miller [42], p. 229.
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variables of state that are controlled by body or surface actions—cf. Maugin and
Muschik [38] for a lengthy analysis.

By gathering the properties of convexity, Euler’s identity for homogeneous
functions of degree n, the powerful notion of Legendre transform and more
generally Legendre-Fenchel transform, normal variables and internal variables
with the local statement of the second law that carries his name, we are now able to
formulate in a coherent, mathematically correct, and efficient manner a true
thermo-dynamics of complex irreversible processes of which Duhem could only
dream of. To achieve this, the school of de Donder, Prigogine, Meixner, de Groot
and others had, in the mean time, to formulate the second law in an operative form,
the celebrated bilinear (in ‘‘fluxes’’ and ‘‘velocities’’) form of the dissipation
inequality (which is not limited to linear dissipative processes as too often
advertised). Also potent in these developments was the axiomatization of ther-
mostatics by Caratheodory [6] and Born [2]; here also, with Miller [42, p.229], we
must reckon the pioneer role of Duhem [10] who essentially gave the correct
definitions relating to the first law [see above Eqs. (7.1)–(7.3)], what marks the true
beginnings of the axiomatization of branches of science outside pure mathematics.
Duhem paid a special tribute to Helmholtz in this regard (see Duhem [17, p. 75];
also Duhem [16]). Nowadays, most teachers of continuum thermo-mechanics5

follow in their practice the grand avenue opened by Clausius, Helmholtz, Duhem,
Caratheodory and, more recently, among others, P. Bridgman, J. Kestin,
C. A. Truesdell, W. Muschik, and I. Müller.

7.3 Helmholtz-Duhem Electrodynamics

One uncompleted project of Pierre Duhem was the incorporation of electricity and
magnetism, including nonlinear dissipative effects such as hysteresis, in his broad
energetic view. This he never achieved as bears witness his monumental treatise of
1911. But in his search for this development he inevitably faced the various
theories that were available in his time.

If we make exception of the early French and Italian works (Coulomb, Poisson,
Ampère, Mossotti), we find essentially two avenues along which electromagnetism
developed: one led by Faraday in England, which gave rise to W. Thomson’s
(Kelvin) and Joule’s works, and Maxwell’s brilliant synthesis and further devel-
opments by the ‘‘Maxwellians’’ (Cf. [30]), the other in Germany with, after Gauss,
people like Neumann, Kirchhoff, Weber, Riemann, and Helmholtz. In other words,

5 This is exemplified by the author’s course that deals with strongly nonlinear dissipative
processes Maugin [36]. This style of thermodynamical exposition is to be found in the Journal of
Non-Equilibrium Thermodynamics, de Gruyter, Berlin. The book by Bridgman [3] was
instrumental in this development, especially in influencing Joseph Kestin from whom we all
more or less learned our ‘‘thermodynamics’’. The points of view of Duhem, Bridgman and Kestin
are examined in parallel and comparison in the book [37].
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in the scrutiny of, at the time, recent works, Duhem was confronted with scientific
works expanded in various cultural and educational backgrounds and environ-
ments that differed from the French one, different ‘‘national styles’’ following one
of his favorite expressions. It is probably during this thorough analysis of available
works that he realized how different were the attitude and practice of various
scientists in forming ideas, conceiving models in general, and assessing the role of
scientific constructs.

Like all potential readers, and the few who indeed passed to the act, Maxwell’s
[40] treatise on electricity and magnetism seemed to Duhem to be full of con-
tradictions, non rigorous developments, errors in sign, and lacking true experi-
mental foundations (a point Duhem emphasized in spite of his own tenuous contact
with experiments). The main question is whether we can reach the mathematical
form of physical laws through mere divination, helped in this by a strong incli-
nation towards aesthetics and a love of symmetry, or through a logical unwinding
of arguments of which pure mathematics offers a paragon (in its final written form
at least) with a view to reflect, but not to explain, physical reality; to ‘‘save the
phenomena’’ according to Plato’s celebrated formula. In Maxwell, his ‘‘bête
noire’’’, and perhaps even more in W. Thomson (Lord Kelvin), Duhem detects
the prototypically British ‘‘ample and shallow’’ mind (Duhem [15, Chap. 4]).
According to Duhem, this, obviously, unfavourably compares with the typically
French ‘‘narrow and deep’’ scientific mind which he naturally considers to be far
more superior in so far as scientific development is concerned; this despite all
evident successes and creativity of British physics in the nineteen century! The
fact that we find both types on both sides of the Channel (to him the French
mathematical physicist Boussinesq belongs to the ‘‘British’’ class, op. cit. p.89) did
not deter Duhem from his general ‘‘theory’’ which, therefore, must be considered
in a true statistical way. The irony of all this is that finding an electromagnetic
theory to his own taste in the German background, especially in the form expanded
by Helmholtz in the 1870s, Duhem generously classified German science on the
French ‘‘narrow-deep’’ minded side: ‘‘To a Frenchman or a German, a physical
theory is essentially a logical system’’ [15, p. 78]. This is to be considered a
compliment in the mouth of Duhem. With the explosion of World War One, he
changed his mind towards most German scientists whom he then relegated in the
rigourless ample-shallow type, but for a few exceptions such as Helmholtz. That
does not sound very serious at all.

More seriously, it is true that the introduction of the displacement current in
electrodynamics always looks like magic to the inexperienced observer.6 Thanks
to it, some symmetry is established between electric and magnetic phenomena,
from which there results a wave equation, with finite speed of propagation for
electromagnetic waves. The latter are purely transverse as experimentally checked

6 Duhem [15, English translation, p. 79] claims that Maxwell justifies the introduction of the
displacement current by means of two lines:‘‘ The variation of the electric displacement should be
added to the current in order to obtain the total movement of the electricity’’.
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by Hertz in 1888. By the same token optics was given a full electromagnetic basis.
At this point it may be relevant to remind the reader that most researchers in
elasticity theory in the 1820s–1840s (e.g. G. Green and A. L. Cauchy who were
perfect models in Duhem’s view of mathematical physics) were motivated by the
construction of a model of continuum capable of supporting transverse vibrations
at it was already known that luminous vibrations in transparent media are essen-
tially transverse (cf. A. Fresnel), while the only continuum whose behavior was
well understood before the introduction of the notion of stress (tensor) could only
support longitudinal vibrations (acoustic waves in the most restricted way).

Now back to Helmholtz and to what Duhem considers a good logico-deductive
construct, one that does not disturb the French and German minds. Helmholtz,7

himself dissatisfied with Maxwell’s approach, proposed an electromagnetic theory
which precisely allows for the propagation of both transverse and longitudinal
perturbances. An extra parameter (compared to Maxwell’s framework) thus
appears in that theory. If it is true (in fact a discussed matter) that, by an appro-
priate choice of values of parameters, Maxwell’s equations appear as a special case
of Helmholtz’s theory—i.e. transverse fluxes propagate with the velocity of light if
one adopts the Faraday-Mossotti hypothesis, Duhem, in the faith of experiments
which proved to be wrong, believed that there were experiments showing that
longitudinal fluxes can also be propagated, at the velocity of light as well, this
fixing the value of Helmholtz’s additional parameter. We all know that ‘‘Max-
well’s equations’’—as Hertz and Heaviside liked to call Maxwell’s theory in a
reductive manner—have triumphed. But it is still believed that the logical deri-
vation of Maxwell’s equations from a continuum point of view comes best through
what Miller [42, p. 231] definitely calls the ‘‘Helmholtz-Duhem’’ theory with the
proper choice of constants.8 More than this precise derivation, it is perhaps the
general attitude towards theoretical constructs which should bring some lesson

7 This is mainly exposed in Helmholtz [24]—also (Helmholtz [26], posthumous). In modern
times, this theory has been discussed several times, e.g. by Hirosize [29] and Buchwald [5, see
Chap. 21]. Strangely enough, none of the modern commentaries cites Duhem’s thorough
analysis, perhaps because Duhem went through some purgatory period and the original work in
French was never reprinted or translated. For the information of the reader, Helmholtz’s
equations using potentials read (in modern notation).

r2U ¼ 1� kð Þr ›/=›tð Þ � 4pJ;

r:U ¼ �k ›/=› t ;

r2/ ¼ �4pqf ; ›qf =›t
� �

þr:J;

where U and / are a vector potential and a scalar potential, and k is a constant to be found
by means of experiments conducted on an open circuit. It is to be noted that the time rate
of change of / affects U by virtue of the continuity equation. This, in fact, is a hindrance
in the reduction of Helmholtz’ to Maxwell’s equations. We recommend Buchwald’s
discussion as very enlightening, especially in so far as the ‘‘Maxwell limit’’ is concerned.

Duhem’s analysis is also briefly given in his Duhem [17, pp. 147–150].
8 This is contended by Roy [45], and. O’Rahilly [43, Chap. 5]; See also Buchwald [5, Chap. 21].
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especially in teaching practice or in establishing well-framed mathematical-
physical theories.

Duhem [17, pp. 147–150] comments that the superiority of Helmholtz’s elec-
trodynamic doctrine stems from its application of logical rules of thought, a
standpoint that Poincaré [44], Hertz [28], and Boltzmann [1] seem to share to some
extent. His attitude towards mathematical rigour and generalization are reflected in
many formal approaches to continuum physics, in particular thermodynamics, in
the 1960s–1980s, essentially through the works of the Truesdellian-Nollian school
and its imitators. A concern to be as general as possible and a fear to miss an effect
or coupling, how small it may be, are thus responsible for an inflation in length and
breadth which is not commensurate with to the obtained results. The introduction
of the so-called ‘‘principle of equipresence’’9 in the formulation of constitutive
equations by C. A. Truesdell, although a useful guideline in several cases, reflects
this kind of abuse and often un-necessary generality, the said principle being
violated or negated in many cases (hence not a principle at all, at most a pre-
cautionary measure). The same holds true of the manifested will to introduce as
wide as possible classes of constitutive equations which are functionals over
elapsed time (hereditary processes) and space (strong nonlocality). In many
instances, these can be dispensed with from the beginning with some physical
insight which has nothing to do with Maxwell’s magic, but is closely related to his
ingenuity.

7.4 Stability

Largely under the influence of Gibbs, a life concern and recurrent research theme
of Duhem has been the stability of equilibrium for a variety of circumstances. He
synthesized his results on this and his general theory about it in his treatise on
energetics of 1911. In this ambitious endeavour, as we know now in pure
mechanics, potential energy plays a fundamental role. Therefore, in a thermody-
namic background, it is the thermodynamic potentials, Helmholtz’s freie Energie
or the available energy of Gibbs in isothermal systems, which capture the
essentials of this property of stability. Early in his research Duhem concentrated on
isothermal and isentropic stabilities of classical thermodynamics. He was very
successful with sufficient conditions but much less with necessary ones. He tried to
extend his results to all types of continua including elastic bodies and viscous
systems [11]. But the difficulty was beyond the knowledge of the period. Such
questions have in fact been rigorously resolved only recently. Coleman [7] and
Ericksen [18–20] have been instrumental in dealing with these aspects of stability
theory.

9 We remind the reader that this ‘‘principle’’ recommends to enter the whole set of independent
field variables as possible arguments in all constitutive equations.
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What is perhaps more striking is the visionary insight that Duhem brought to
this study by showing familiarity with Lyapunov’s works, although with some
(forgivable) confusion. In that he pioneered the use of Lyapunov’s functions that
would become an essential ingredient in the modern studies of Glansdorff and
Prigogine [23]10 as the problem of the response of a system to spontaneous
fluctuations is related to the Le Châtelier-Braun principle, itself clarified by
Duhem’s study of the displacement out of equilibrium. Even more striking is the
fact that some of his studies on hysteretic phenomena clearly anticipate modern
formulations of elastoplasticity or magnetic hysteresis by setting forth a local
stability criterion of the Drucker type (this gives the sign of the slope at any point
of the hysteresis response) and a global one (over a complete cycle—this in fact
imposes the sense in which the cycle is described) of the Ilyushin type.11 These
studies, interesting and farsighted as they were, remained practically ignored until
scientists interested in the general phenomenon of hysteresis re-discovered them.12

7.5 Conclusions

The influence of Gibbs and Helmholtz on Duhem’s passionate interest in ther-
modynamics, on his general view of energetics, and in specific aspects of his
research, is obvious.13 Regarding Helmholtz more particularly, we have already
noted that Duhem inherited from him the notion of free energy, or more generally,

10 See Chap. 4 in Glandsdorff and Prigogine [23] for the stability according to Gibbs and
Duhem. The general theory of the stability of thermodynamic equilibrium makes use of the
Gibbs-Duhem approach and the balance of entropy. Chapters 6 and 7 deal with systems out of
equilibrium. The minimum property of the dissipation function has been established by
Helmholtz for a linear viscous fluid. The relationship between the Le Châtelier-Braun principle
and Duhem’s work on the displacement out of equilibrium is reported in Manville [32,
pp. 259–260].
11 The original works of P. Duhem on hysteretic systems are published in 1901 in the Zeitschrift
für physikalisch Chemie and in the Mémoires présentés à la Classe de Sciences de l’Académie de
Belgique. The most relevant equations are best expressed by Manville [32]—apparently the finest
and sharpest analyst of Duhem’s scientific works—e.g. his Eq. (9) in p. 310, dA.da [ 0, and his
un-numbered equation in p. 313: Integral of A da [ 0 for an isothermal closed cycle, are identical
to the expressions of Drucker’s and Ilyushin’s local and global stability conditions of modern
plasticity with hardening—compare to Eqs. (5.75) and (5.88) in Maugin [36], pp. 108 and 111,
respectively, where the proof relies on the convexity of the free energy with respect to a, and the
convexity of the homogeneous positive dissipation potential in A, the thermodynamical force
associated to a. This applies to so-called generalized standard (thermodynamic) materials whose
two basic potentials (free energy and dissipation) exhibit these properties. Duhem did not possess
the last concept but he had a rather clear view of incremental laws exhibiting hysteresis as shown
by Manville’s [32] equations in pp. 307–310.
12 Thus Duhem’s works now belong in all respectable bibliographies on hysteresis, e.g. Visintin
[48] and Mayergoz [41].
13 To Manville [32], p. 197 Gibbs and Helmholtz are not dissociable in Duhem’s vision.
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thermodynamic potentials, that of normal variables of state, and elements of his
general approach to the stability of equilibrium. Duhem saw in Helmholtz not only
a forerunner of what he calls ‘‘énergétique’’, but also the prototype of what a good
and efficient mathematical physicist should be. This is practically manifested in
Duhem’s reception of competing theories of electromagnetism in which he pre-
ferred Helmholtz’s ideas, although quite forgotten today (but not in Duhem’s
time), to the somewhat ‘‘amateurish’’ presentation of Maxwell. This was not so
much a matter of contents than one of presentation and interpretation. Duhem’s
and Helmholtz’s views on the need for an abstract and logically ordered theory
coincided more or less. Is it not Helmholtz14 who, writing the foreword to Hertz’s
Principles of Mechanics [27], confesses that ‘‘I remain attached to this latter mode
of presentation (‘‘very general representation of facts and their laws by the system
of differential equations of physics’’), and I place more confidence in it than in the
other (‘‘mechanical explanations and models à la Maxwell-Thomson’’).

In [14, 15] Duhem sees Helmholtz’s works as the ultimate step in ‘‘the
developments which abstract theory has undergone from Scholasticism to Galileo
and Descartes; from Huygens, Leibniz and Newton to d’Alembert, Euler, Laplace,
and Lagrange; from Sadi Carnot and Clausius to Gibbs and Helmholtz’’ (Duhem
[15], p. 305). We surmise that this list would have been fully endorsed by
C. A. Truesdell with the obvious addition of the marvelous Cauchy. A close
examination of this list reveals that all participants concurred, although at different
historical times, in creating what may be actually referred to as the nonlinear
theory of fields in the sense of Truesdell and Noll [47] or continuum physics in the
sense of Eringen [21]. In this, while adding his personal touch to many arduous
points and innovating on specific problems, Duhem was an efficient intermediary
between the last great ‘‘all-round’’ scientists of the nineteenth century and the
continuum theorists of the late twentieth century, especially in continuum thermo-
mechanics. As a talented and stubborn propagandist in the defense of this cause he
was more than influential on our practice and vision of Isaac Newton in his own
time. In lower spheres, all our teaching and research practice in continuum thermo-
mechanics is inevitably marked by Gibbs, Helmholtz and Duhem, through the
concept of free energy and the constant use of the Clausius-Duhem inequality as a
constraint imposed on the evolution of all types of phenomena, including severely
nonlinear ones. Thermo-elasticity, the theory of defects, the rheology of solutions
of macromolecules, and the progress of phase-transition fronts make constant use
of thermodynamic restrictions and styles of reasoning that belong to this line of
scientists. In a hundred years, a message—that one that Helmholtz expressed
vividly in his foreword to Hertz’s text—has gone through: we practice mathe-
matical physics in a definite style which is both serene and efficient, in a language
that has become accessible to all scientists trained throughout the World. But we
would like to add a very personal remark. It is commonly agreed with Duhem that
a true ‘‘scientific’’ work in a field of natural science makes use of a concise

14 Cf. Hertz [27], quoted by Duhem [14, 15], p. 100.
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language, with accompanying concentrated objectivity and convincing logic; it
must suppress feelings, do not digress into metaphysics, and do not try to find
meaning beyond the visible phenomena. But literacy and a good sense of humour
are not forbidden, for both author and reader must still share together that exquisite
feeling of the true existential pleasure found in the practice of science.
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Chapter 8
About the Cosserats’ Book of 1909

Abstract The Cosserat brothers published in 1909 an original book where they
favour a variational formulation of continuum mechanics together with an
invariance which they call ‘‘Euclidean invariance’’ of the Lagrangian-Hamiltonian
action. This strategy places on an equal footing translations and possible rotational
degrees of freedom, yielding in a natural way what is now commonly called the
theory of Cosserat or oriented—or polar—continua with asymmetric stresses and
the new notion of couple stresses. Here their landmark work is replaced in its
epoch making context underlining the influences they benefited from and the
influence they have exerted on their direct contemporaries and much later on (in
the second-half of the twentieth century). The sociological scientific environment
of the early twentieth century and the typical publication strategy of the time are
outlined, explaining thus the Cosserats’ own strategy. The further reception of
their work from 1909 to the Second World War and the revival of interest in it in
the nineteen-fifties are examined critically. Finally, the formalization of their work
in a new landscape of continuum thermo-mechanics created essentially by
Truesdell is evoked together with other influences and further developments.

8.1 Preliminaries

Year 2009 witnessed the commemoration of the centennial of the publication of
their (now) celebrated book on the ‘‘Theory of deformable bodies’’ [13]. Cele-
brations took place in Paris in the form of a EUROMECH Colloquium with many
participants from Germany and Russia although attendants came from the world
over (Proceedings edited by Maugin and Metrikine [55]), as also at the National
‘‘Ponts et Chaussées’’ school as one of the authors, François Cosserat
(1852–1914), was an alumnus from that school. A fac-simile edition of the original
book was published on that occasion (2010) with interesting historical comments
by M. Brocato and K. Chatzis. This opus by the Cosserat brothers was their longest
common contribution to the science of mechanics. The way this was published as

G. A. Maugin, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries,
Solid Mechanics and Its Applications 214, DOI: 10.1007/978-3-319-05374-5_8,
� Springer International Publishing Switzerland 2014
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also the general approach of the brothers concerning this field and their own
professional activities require some comments as it appears that neither François
nor his young brother Eugène (1866–1931) were professional mathematicians in
the field of mechanics. But they were enlightened amateurs with all technical
abilities and background of true professionals. Both became members of the Paris
Academy of Sciences (François in 1896, and Eugène in 1919). François was even
elected President of the French Society of Mathematics (Société Mathématique de
France) in 1913 one year before his death. Still the way they published is
somewhat unusual and also concentrated in time in the period 1896–1914 with the
death of François.

François Cosserat was educated at the Ecole Polytechnique in Paris with a
further specialization in civil engineering at the Ecole Nationale des Ponts et
Chaussées. This curriculum in the best mathematical and mechanical tradition was
typical of many great French ‘‘engineers-scientists’’ of the nineteenth century
(among them, Cauchy, Navier, Lamé, Duhamel, Coriolis, Clapeyron, Poncelet,
Liouville, Arago and Barré de Saint-Venant). He had a professional career in the
fast growing development of railways with the Nord and then the East companies
of Railways in France. Eugène, his younger brother by 14 years, was educated in
mathematics at the Ecole Normale Supérieure in Paris and became a professional
(mathematical) astronomer with a career spent almost entirely in Toulouse in the
south–west of France. As such he had to teach courses in analysis, astronomy and
celestial mechanics.

From 1896 till the death of François in 1914, the Cosserats published together
no less than 21 works in the field of theoretical mechanics. Out of these, 14 were
short notes—of three or four pages—to the Paris Academy of Sciences. Apart from
their long original memoir of 1896 [12] published in Toulouse in a true serial
journal,1 their other publications in the field are scattered in odd places, often as
supplements or comments to books by more acknowledged institutional authors:
one is a note in the lecture notes of Gabriel Koenigs (published in 1897)—cf. the
review by Lovett [43] and citation below—, one is a note of 37 pages in Vol. 1 of
Chwolson’s Treatise of Physics in its French translation [10, pp. 236–273], another
one is a note of seventy two pages in Appell’s Treatise of Rational Mechanics [3,
Vol. III, pp. 557–629], still another one is an adaptation in French of an article by
Aurel Voss (1845–1931) in German on the principles of rational mechanics in the
Encyclopédie des sciences mathématiques pures et appliquées (the original is the
Encyklopaedie der mathematischen Wissenschaften), Vol. IV, pp. 1–187—pub-
lished in 1915 [14] after Francois’s death, and finally their now most celebrated
opus is a supplement to Chwolson’s Treatise of Physics [11, Vol. II,
pp. 953–1173], also published with a new pagination (vi+226 pages) as a separate
book by Hermann Editeurs in Paris. As noticed by its American reviewer [77], it is

1 This original paper considers finite strains following G. Green, Kirchhoff and Boussinesq, and
already uses the notion of mobile frame. It is a much cited paper by Appell [3] and Truesdell and
Toupin [74].
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not clear why the Cosserats included their memoir in the translation of Chwolson’s
treatise, a treatise that lacks any general theoretical treatment of mechanics while
the Cosserats’ memoir deals with the foundations of analytical mechanics. They
may have used this just as a good opportunity. Accordingly, the book version is
preferably considered without the rest of Chwolson’s nonetheless highly valuable
treatise. NASA had an English translation of it made in 1968 as a result of a
revival of interest in generalized continuum mechanics in the 1960s.

The review of Lovett [43] is particularly enlightening concerning the note added by the
Cosserats to the Koenigs’ lecture notes of 1897. Citing Lovett: The introduction of this
note is peculiarly fortunate for it is high time that kinematics should comprehend the study
of deformation and of deformable spaces. The authors have included in their extract
certain generalities on curvilinear coordinates, the deformation of a continuous medium
in general, infinitely small deformation, use of the mobile trieder [sic], and the case where
the non-deformed medium is referred to any curvilinear coordinates.

It seems that the two brothers, together with the husband, E-V. Davaux, of
François’ daughter, also an alumnus of Ecole Polytechnique with a specialization
in naval engineering, were very active in translations from the Russian, German
and English (including a translation of J. W. Gibbs’s ‘‘Elementary principles in
statistical mechanics’’ published only in 1932). For Chwolson’s treatise, transla-
tion may have been done from the Russian and/or the already existing German
translation. Note that it was usual in the nineteenth century and the early twentieth
century to include comments and possible personal additions to a translation from
an original book. The best example of this usage is provided by Barré de Saint-
Venant’s [5] French translation of A. Clebsch’s Theorie der Elastizität fester
Körper in such a way that the bulk of the book tripled in translation, resulting in a
book that was more his than Clebsch’s. But in the case of Chwolson’s treatise, the
Cosserats’ supplements do not shed any light on Chwolson’s original contents of
Vols. 1 [10] and 2 [11]; they seem out of place, as rightly noted by Wilson [76, 77]
who nonetheless emphasized their intrinsic importance.

As to the many Notes to the Comptes Rendus of the Paris Academy of Sciences,
it was at the time a traditional way to announce a result in brief form so as to
provide a priority mark. Cauchy is well known for the flood of such notes that he
sent to the Academy. This was also the case of Henri Poincaré and Pierre Duhem
among others. Of course, this cannot replace a lengthy well argumented paper with
full derivations as many such notes are extremely cryptographic and thus hard to
grasp due to their imposed brevity. With all these caveats we can now turn to the
real object of this contribution, the ‘‘book of 1909’’.2

2 Orest Danilovich Chwolson (1852–1924)—also written Khvol’son—was a Professor of
physics in St Petersburg. He is the author of a five-volume treatise on physics that was translated
into German and French in the early twentieth century. The world renowned theoretical physicist
Lev D. Landau had a strongly positive appraisal of this treatise.
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8.2 The Main Contents of the Cosserats’ Book

According to a recent investigation on Google Scholar the Cosserats book is cited
about 1,500 times. It is a required citation in the introduction of papers dealing
with modern oriented or polar continua. But we can safely assume that very few
citers have ever seen the book and, of course, even less have read it, reducing the
number of the happy few to small integers. There are good reasons for this. First
the language, French, would be a common obstacle. But most of the difficulty
comes from the state of mind of the authors and their notation since neither tensor
nor direct intrinsic notations are used by these authors. We estimate that the book
would be reduced to about 80 pages had a direct notation been used in the modern
way. But intrinsic vector notation, not to speak of tensor notation, hardly existed at
the time.3 Also, the bias of the authors to work successively for bodies of one, two
and three dimensions, if it may have helped the contemporary readers to grasp the
basic ideas of their approach, considerably lengthens the progression. The
advantage of working at this rhythm is a possible direct comparison with works by
famous engineers of the eighteenth and nineteenth centuries who dealt with elastic
rods and surfaces. Indeed, in a very professional manner akin to that entertained by
previous authors such as Lagrange or Barré de Saint-Venant, the brothers are very
generous in accurately citing previous contributors. As proved in many footnotes,
the most cited such authors from a relatively old past are Navier, Poisson, Fresnel,
Lamé, Helmholtz, Carnot, F. Reeds and Barré de Saint-Venant. Cauchy, although
the universally acknowledged founder of general continuum mechanics, is seldom
cited perhaps because he does not use variational principles and therefore is more
in the Newtonian tradition of the postulate of balance laws. Gabrio Piola
(1794–1850) would have been welcomed in the roster of citations because he uses
Lagrangian variational principles and is an aficionado of changes of reference
configuration (cf. the Piola transformation). But the Cosserats, like most of the
French authors of the period, seem to have ignored him.

The most cited contemporary authors certainly are W. Thomson (alias Lord
Kelvin) and P. G. Tait (cf. their ‘‘Treatise on Natural Philosophy’’, [71]), Pierre
Duhem (1861–1916; cf. his course on hydrodynamics, elasticity and acoustics,
[18]), H. Poincaré (1854–1912), Paul Appell (1855–1930), J. Bertrand
(1822–1900), G. Darboux (1842–1917), and sometimes W. Voigt (1850–1919). It
is less than anecdotic to note that Darboux, Appell and Koenigs were the three
members composing the Jury of the doctoral thesis of Eugène. The deepest
influences perceived through the unfolding of the book seem to be those of
Lagrange and Hamilton for the variational formulation and the notion of action,
Green [30] for the notion of potential energy of deformation, and Darboux [16, 17]

3 Gibbs’ [28] book was the first of its type giving an articulated introduction to vector analysis.
This may however be a wrong attribution since the book in fact is E. B. Wilson’s redaction with
an enriched rendering of Gibbs’ lectures in vector analysis at Yale; Wilson was only 22 years old
when the book was published (see pp. 228–229 in Crowe [15]).
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for the theory of surfaces, curvilinear coordinates and the mobile triad. The
employed notion of groups, a première in continuum mechanics, is not connected
with any obvious citation, although we surmise that the views of S. Lie and
H. Poincaré may have been influential concerning this very point. Furthermore, the
Cosserats are aware of general discussions on the nature and interpretation of the
principles of mechanics (works on this subject by Hertz, Poincaré, Mach and
Duhem in the period 1890–1909) as shown in many of their footnotes.

In our opinion the best analysis of the book remains the original review written
by Wilson4 [77] from M.I.T, a luminous text that we shall often paraphrase.
Wilson had the right state of mind to capture the essential arguments of the
Cosserats. First he considers the book as a contribution to the analytical mechanics
of continua, and this is spot on. In effect, the very object of the book is the
deduction of what we now call ‘‘field equations’’ of continua of one, two or three
dimensions, from a Lagrangian-Hamiltonian principle of the general form

d
Z

T

Z

V

WdVdt ¼ 0; ð8:1Þ

where T is a time interval, V is a bounded volume element (a filament, a surface or
a volume) in the considered physical space, and W is a known function of well-
chosen arguments. In standard variational mechanics W is made explicit in terms
of an identified kinetic energy and a potential energy so that W is the Lagrangian
‘‘volume’’ (i.e. lineal, surface or true 3D volume) density where the notion of mass
(here density) is a basic one. The Cosserats wanted to remain in a sufficiently
general framework that may possibly include various types of dynamics (even the
special relativistic one with an appropriate definition of the mass).

The importance of the notion of action present in (8.1) was emphasized by
William R. Hamilton (1805–1865) and Hermann von Helmholtz (1821–1894). But
essential to the Cosserats’ presentation is their initial remark that the action
(energy multiplied by time) as introduced by P. L. Moreau de Maupertuis
(1698–1759) is invariant under the group of Euclidean displacements. This
requirement systematically applied to (8.1) provides the notion of Euclidean
action in the Cosserats’ formalism. From this should be deduced the basic local
balance laws of linear momentum, angular momentum and energy, corresponding
to the seven parameters (spatial translation and rotation, time translation) of the
Euclidean group in E3 (completed in a ten-parameter group if we include the
definition of the centre of mass). What the Cosserats do is to implement this
approach in a well tempered manner with the successive examination of one-
dimensional bodies (straight line or curved filament), two-dimensional bodies
(deformable surfaces such as plates and thin shells (not their vocabulary)) and
three-dimensional bodies, with the possible extension to true dynamics (i.e.,
accounting for inertial effects). Whether this is a good pedagogical way is a

4 For this see, e.g., Kelvin, reported in Thomson and Tait, Second edition (1879).
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disputed matter in modern continuum mechanics where the equations governing
slender bodies are rather deduced from the three-dimensional ones by means of
some asymptotic procedure associated with the relative smallness of some
dimensions.

As remarked by Wilson [77, p. 242], the Cosserats’ book may have proposed
‘‘the most general and unifying theory of mechanics’’ so far (as on 1909). Probably
under the influence of Darboux, the Cosserats considered that the ‘‘fundamental
geometric element in their system is not the point, but the point carrying a system
of rectangular axes, that is, the tri-rectangular triedral angle’’. This is obvious in
the case of ‘‘an elastic filament that differs from a geometric curve in the way in
which a continuous series of rectangular triedral angles differs from the locus of
the vertices of the angles’’. In this case the function W should be ‘‘a function of the
coordinates of the vertex but also a function of the nine direction cosines of the
edges of the angle, and of the first derivatives of these coordinates and direction
cosines with respect to time’’ (in the dynamical case) or the arc length in the case
of the elastic filament. All these are Wilson’s words.

This function W that is invariant under transformations that belong to the
Euclidean group, is said to be an Euclidean action density and multiplied by the
increment of time dt is the Euclidean action in the time interval dt. For the filament
the reasoning can replace dt by an element ds0 of arc. In this vision the case of
straight rods and curves is approached by considering a mobile triad of vectors of
which one element is tangent to the line or curve. In the case of two-dimensional
bodies the mobile triad has one vector in the plane tangent to the mean surface of
the object. In the three-dimensional case the triad has no preferred direction to start
with except by convention in a reference configuration. Then the passing from the
motion of an elastic medium of dimension k to the equilibrium of an elastic
medium of dimension k ? 1 is, or should be, ‘‘well known to all student of
mechanics’’ [77, footnote in p. 243]: ‘‘It is this analogy which enables the authors
(the Cosserats) to give a uniform treatment to dynamic and static problems of
different nature’’. That is quite remarkable and seldom considered by most of us as
Wilson is rather optimistic concerning this point.

We shall not dwell in detail with the Cosserats’ treatment which is somewhat
repetitive and not very attractive in modern terms.5 What is also absolutely
important is that this enforcement of the Euclidean group structure leads the
Cosserats to consider on an equal footing invariance under spatial translations and
spatial rotations. That is how they are led to considering nonsymmetric stress
tensors and the presence of body couples and of a new internal force called
coupled stress tensor in modern jargon. If some notions may have been readily
interpreted for the one- and two-dimensional cases in terms of what was known in
the strength of structural elements in the nineteenth century, the three-dimensional
case comes up as a new notion, although it is remarked that Kelvin and Voigt may

5 For this unpleasant aspect to modern eyes, see, for instance, the fantastic and frightening aspect
of the individual-component equations in pp. 157–172 of the book of 1909.
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have hinted at the presence of body couples. For instance, the formidable equi-
librium equations printed in page 137 of the Cosserats’ book in the 3D case are
now written with an inherent economy of symbols as the equations of equilibrium
for stresses r and couple stresses l in the form

r � rþ F ¼ 0; ð8:2Þ

and

r � lþ rA þ C ¼ 0; ð8:3Þ

where r is the nonsymmetric stress tensor, rA is its antisymmetric (or skew) part, l is
the third-order couple stress tensor, and F and C are volume densities of externally
applied force and couple (the latter in tensor skew symmetric form), respectively.
The Cosserats’ note [13, p. 137] that Eq. (8.3) with l ¼ 0 was evoked by W. Voigt in
a work of 1887 that dealt with the elasticity of crystals involving polarized molecules
[75]. This may have prompted Ericksen [22] to envisage a modelling of anisotropic
fluids and liquid crystals by means of a field of so-called ‘‘director’’ (one unit vector
attached to each material point), clearly a special case of Cosserat continuum. The
most obvious case of Eq. (8.3) with l ¼ 0 is that obtained in anisotropic electro-
magnetic continua as amply documented in our book [48]. The Cosserats are aware
of Lord Kelvin‘s former attempts6 and the contemporary one of Larmor [39] to build
a model of elasticity able to transmit transverse (light) waves but they do not seem to
know the work of MacCullagh [45] on the same matter. Passing to the dynamic
version of Eqs. (8.2) and (8.3), i.e.,

r � rþ F ¼ q _v ð8:4Þ

and

r � lþ rA þ C ¼ q _S; ð8:5Þ

where v is the matter velocity and S is an internal spin (angular momentum), and a
superimposed dot denotes the time derivative, is not as trivial a matter as thought
by Wilson.7 As a matter of fact, one had to await a work by Eringen [25], to
understand that in parallel with the conservation of mass density, the good con-
struction of (8.5) requires the consideration of a law of conservation of rotational
inertia (per unit mass).

From the above-given short analysis we can encapsulate the Cosserats’ main
contribution in their lengthy memoir of 1909 in two main ingredients. One of these
is the deduction of field equations such as (8.2) and (8.3)—which were to yield the
fruitful notion of Cosserat continuum in the 1950s–1970s. The second ingredient,

6 The reader may consult Maugin [52] for a historical perspective.
7 To apply his argument we would have needed to know a four-dimensional static case, whatever
that may be.
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perhaps more important from the general viewpoint of mathematical physics, is the
exemplary use of variational principles and a simultaneous application of a group
theoretical argument, and this before the proof of her famous theorem by Noether
[59]. As emphasized by Wilson in his deeply thought review [77, p. 246], an
advantage of the Cosserats’ approach is the association it provides ‘‘with the
transfer of any deductive-intuitional physical science to the corresponding formal-
deductive mathematical discipline’’. This is all the best for mathematically
inclined mechanicians of the continuum. Correlatively, it yields a loss in the
physical intuition while the latter is also a creative asset: mathematical rigorous
form and physical innovation may be antagonistic. From the point of view of the
kinematics and deformation theory of the continuum, the Cosserats have learnt
their lesson in the finite-strain theory from Green, Kirchhoff, Boussinesq and
Duhem. Unfortunately, apart from very general formulas for the W function, they
have not provided any more information on possible constitutive equations.
Apparently they were not so much interested in problem solutions although their
original memoir of 1896 and some of their Notes to the Comptes Rendus hinted at
progress in the solution of elasticity problems, in two-dimensions in particular. In
the memoir of 1909 only the one and two-dimensional models are close to engi-
neering concepts as they allow for a representation of the twisting of rods and
shells in addition to their bending as noted by Ericksen and Truesdell [24, p. 297].
Bearing in mind these different characteristic properties, it is salient to examine the
contemporary reception of their work and what was more useful in it for further
developments, much later in the 1950s–1970s.

8.3 Reception and Influence of the Cosserats’ Book

Parodying the title of a famous work concerning Leonardo da Vinci by Duhem [20],
we could ask ‘‘who did the Cosserats read and who read them?’’ From above made
remarks we can safely state that Maupertuis, Lagrange, Hamilton and Kirchhoff must
have been primary sources for the bases of the Cosserats’ thesis. Much closer to them
their contemporaries such as L. Kronecker, G. Koenigs. P. Duhem, H. Poincaré,
L. Lecornu (Professor of Mechanics at Polytechnique), and G. Darboux have played
an essential role in the formation of the authors’ background. The same can be said
concerning the teachers whom both brothers had in analysis and geometry either at
Polytechnique or at the Sorbonne. Foremost among them is the influence of Darboux
with the idea of the mobile triad of vectors. In the case of Duhem, Truesdell had
repeatedly pointed out that the idea to attach a triad of rigid vectors (so-called
‘‘directors’’) at each material point in order to describe the orientational changes in
some kind of internal rotation goes back to Duhem [19]. But no trace in the Cosserats’
opus seems to directly indicate such a borrowing.

The immediate (say in the pre-WWI and early post-WWI period) reception of
the Cosserats’works is obvious among mathematically oriented scientists. Of
course, Appell who welcomed an addition by the Cosserats in his own treatise of
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1909 on rational mechanics easily sided with the Cosserats. Wilson,8 as a student
of Gibbs and a true mathematician, manifests a true enthusiasm for their work as
proved by his most favourable review. Cartan [8], the French geometer of Lie-
group fame and author of creative developments in modern differential geometry,
immediately appreciated the consideration of group arguments in the Cosserats’
vision while noting the rich possibility to include the action of distributed couples
along with more classical contact forces. This was also true of Ernest Vessiot,
another specialist of group theory, who succeeded François Cosserat as president
of the French Society of mathematics. On a less ‘‘provincial’’, albeit Parisian level,
Heun [34] in his article in the German Encyclopaedia of Mathematics presented a
kind of compaction of the Cosserats’ arguments for the mechanics of rods. As to
Hellinger [33], in a remarkably concise but well informed article to the same
encyclopaedia, he correctly captured the new trends in continuum mechanics by
accurately citing the most recent works by Boltzmann, Duhem and the Cosserats.
But this was published in a tragic period not so favourable to scientific commu-
nication. The corresponding volume of this encyclopaedia was never translated
into French while all other preceding volumes had been.

One must await a work [68] by Joachim Sudria (1875–1950) to witness an
approach truly in the Cosserats’ tradition with an unambiguous reference to the
notion of Euclidean action. This work was published in Toulouse in a journal in
which the Cosserats had published in 1896 and of which Eugène Cosserat was the
long time editor (in fact ‘‘Secretary’’) until 1930. It is in this journal that Buhl [7]
published an eulogy of Eugène pointing out his role and the influence of Eugene’s
initial works in geometry in the writing of the papers in common with his older
brother François.

Sudria [69] published an up dated version of his memoir as a short monograph.
Truesdell told (cf. [4] that it is while perusing works of the 1930s in continuum
mechanics that he unburied Sudria’s memoir of 1935. Then,—following the
(probably unknown to him) advice of Rabbi Rashi of Troyes in Burgundy: ‘‘Ask
your master his sources’’ (my citation, GAM)—Truesdell went back in time to
uncover the Cosserats’ book of 1909. In his usual somewhat grandiloquent style,
Truesdell [73] states that ‘‘the Cosserats’ masterpiece stands as a tower in the
field’’. But he also mentions that ‘‘it attracted little attention in its own day and was
soon forgotten’’. This remark may be due to Truesdell’s ignorance of citations by
French physicists, mathematicians and engineers in the 1920s–1940s [e.g., L.-M.

8 Edwin Bidwell Wilson (1879–1964) was an American mathematician-physicist who had been
a PhD student of J. W. Gibbs at Yale, and became Professor of mathematics first at M.I.T (when
he wrote the review of the Cosserats) and then at Harvard. He co-authored a book on vector
analysis with Gibbs (first edition, 1901, then several further editions). He was interested in the
general principles of physics and mechanics (e.g., relativity), in advanced calculus, and in the
differential geometry of surfaces in hyperspaces. Later in his life he contributed much to the
developing studies in mathematical economy mentoring Paul A. Samuelson in Keynesian macro-
economy. He was well equipped, both intellectually and technically, to apprehend the
quintessence of the Cosserats’ works.
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Roy, J. Delsarte, J. Pacotte, G. Matisse, P. Sergescu, E. Jouguet, and above all
R. L’Hermite who places the Cosserats in the top group together with Lamé,
Clebsch, Saint-Venant and Duhem while noting the complexity of the Cosserats’
development and the lack of possible direct applications save in the one-dimensional
case; cf. [6] (Reprint of the Cosserats’ book), p. xxxix]. This takes us directly to the
second half of the twentieth century with a frantic rebirth of studies on generalized
continuum mechanics.9

Following the early considerations by Voigt, French crystallographers showed
some interest for the case of nonsymmetric stress tensors in the mid 1950s (cf. [40,
41]). But the first manifestations of the use of ‘‘directors’’, the set of unit vectors
attached to each material point in the line of Duhem and the Cosserats, are in
works by Ericksen and co-workers [23, 24] dealing with structures of one or two
spatial dimensions10 with explicit reference to the Cosserats’ book. This would
later on be taken over in works by Green and Naghdi [29]. Then a busy period
developed in the 1960s–1970s with the introduction of various models of gen-
eralized continua, all more or less first basing on a kind of microscopic description.
Among these models, some were identified with the so-called Cosserat continua,
as essentially governed by Eqs. (8.4) and (8.5), but also christened with other
names such as ‘‘oriented media’’ or ‘‘micropolar continua’’ [50]. It has become
traditional to refer to Aero and Kuvshinskii [1], Palmov [62] and German authors
such as Günther [32], Neuber [58], and Schaefer [65] as pioneers in the field. It
became a moral, more than technical, obligation to refer to the Cosserats’ book as
demonstrated in practically all contributions to the proceedings [38] of a landmark
international symposium held in 1967 in Freudenstadt (Black Forest, Germany).
These proceedings were rightly dedicated to the Cosserats and Elie Cartan. Of
course this feverish citation business was more paying lip service than anything
else since most authors had never read—nor even seen—the Cosserats’ book.
Grioli [31] appears as an exception in not referring to any Cosserats’ work. But we
do not know if this was by pure honesty or mere ignorance that this author acted.

Explicit reference to—and exploitation of—Euclidean action is much more rare
in continuum mechanics. Here we underline the work of Toupin [72] on oriented
(Cosserat) continua and our own work [46] on the more general case of so-called
micromorphic elastic bodies. This variety of continua was introduced in a landmark
paper by Eringen and Suhubi [26]. It is equivalent to a Duhem kind of kinematic
description with three deformable ‘‘directors’’ and relative-angle changes between
these directors in the course of deformation: the microstructure itself is deformable
and is in fact subjected to a homogeneous micro-deformation (represented by six
additional internal degrees of freedom). The case of rigid micro-rotation and no
micro-deformation then corresponds to the Cosserat continuum. A modelling
somewhat equivalent to the Eringen-Suhubi one was proposed by Mindlin [56]. In
the case of Cosserat continua there appears the problem of the most convenient

9 See Maugin [52] for a historical perspective.
10 Cf. Ericksen and Rivlin [23], Ericksen and Truesdell [24].
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mathematical representation of the micro-rotation. This is best solved by consid-
ering orthogonal transformations and their own representation by an angle and the
unit direction of an axis of rotation in the manner of Gibbs [28]—and ‘‘our’’
Wilson—as shown by Kafadar and Eringen [37]. This was duly exploited by
Kafadar [36] in an original approach to the classical problem of the ‘‘elastica’’—and
thus back to the spirit of Cosserats’ treatment of one-dimensional elastic curves.

The writer was for the first time exposed to a research course involving
‘‘directors’’ in the lectures delivered by a Serbian scientist, Rastko Stojanovic, in
Udine (Italy) in July 1970 (cf. Stojanovic lecture notes at the C.I.S.M. referred to
as [66]. This was directed at the continuum representation of defective bodies. This
gave him the idea to draw an analogy with deformable continua endowed with a
continuous distribution of magnetic spins such as in the micromagnetic theory of
ferromagnetism, a fashionable subject matter at the time. Then he applied the
Euclidean action method of the Cosserats to deduce all relevant coupled field
equations, including an equation formally identical to Eq. (8.5) but with all terms
bearing a magnetic interpretation (cf. [47], Chap. III; also [53]). This was recently
revisited in C.I.S.M. lecture notes [51]. Cherry on top of the cake, a four-
dimensional relativistic theory of oriented media was constructed by comple-
menting the triad of spatial ‘‘directors’’ in the Duhem-Cosserat style by the unit-
normalized world velocity into a true four-tuple with a view to incorporate spin
effects in relativistic continuum mechanics11 with local Lorentz invariance
replacing the Cosserats’ invariance requirement [54].

8.4 Concluding Remarks

In recent times most of the Cosserats’ work involving a nonsymmetric stress and
couple stresses have been formalized in a modern context often under the title of
asymmetric elasticity (cf. [60]) or polar or microplar media of the elastic type (cf.
[27], Teodorescu [70]) or of the fluid type (cf. [44, 67]) with mathematical results
of the same degree of refinement as those dealing with classical continua.12 The
theory of such polar elastic materials has been fully incorporated in the modern
framework of configurational forces [49] with the help of Noether’ theorem. The
formulation of the deformation nonlinear theory of finite-strain Cosserat elasticity
has been much clarified by Pietraszkiewicz and Eremeyev [63]—also Eremeyev
and Pietraszkiewicz [21]—, and the most recent lecture notes highlight all fun-
damental geometrical properties and most interesting applications of Cosserat
continua (cf [2]). A rapid search on Google provides instantaneously more than

11 For this 4D generalization see Maugin [47, Chap. VI] and Maugin and Eringen [54].
12 We use this opportunity to mention the seldom cited book of Jaunzemis [35] where elements
of generalized continua are nicely introduced. Jaunzemis’ career was interrupted by his untimely
death at the age of 48 in 1973.
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two hundred thousand entries about the Cosserats, although the most recent ref-
erences concern a local politician from Amiens, the native city (in Picardie, North
West of France) of the Cosserat brothers, thus undoubtedly a family connection.
But the Amiens textile company specialized in the production of velvet, created in
1794, and of which the parents of the celebrated brothers were the owners, finally
closed down in 2012. As to the heritage of the notion of ‘‘Euclidean action’’, it is
more diffuse as the Cosserat notion appears somewhat obsolete in a period of full
enforcement of Noether’s invariance theorem. Concerning this point, we can cite
Levy [42] as a general appraisal of this aspect of the Cosserats’ works:

Cosserat’s theoretical research, designed to include everything in theoretical physics that
is directly subject to the laws of mechanics, was founded on the notion of Euclidean action
[least action] combined with Lagrange’s ideas on the principle of extremality and Lie’s
ideas on invariance in regard to displacement groups. The bearing of this original and
coherent conception was diminished in importance because at the time it was proposed,
fundamental ideas were already being called into question by both the theory of relativity
and progress in physical theory.

But, nowadays, ‘‘Euclidean action’’ experiences a flourishing vitality in its
acception granted in theoretical physics such as in the functional integrals of
quantum physics (cf. [57]).

This concludes the present investigation of the subject. But we note that
Pommaret [64], a disciple of Vessiot in group theory, and in a sense a ‘‘grand-son’’
of François Cosserat—with whom he shares the same elite education—has
expanded never tired efforts to publicize the works of the Cosserats and their
relevance to modern group theory in mathematical physics.

PS. Additional biographic information on the Cosserats and their works can be found in
Levy [42] , O’Connor and Robertson [61], and Brocato and Chatzkis ([6]; preceding the
reprint of the Cosserats’ book). Remarks on the Cosserats’ work and Duhem’s influence
can also be found in Casey and Crochet [9].

Appendix A

Partial English Translation of E. and F. Cosserat, ‘‘Théorie des Corps Déform-
ables’’, Hermann, Paris, 1909, by Gérard A. Maugin (Only the First Chapter on
General considerations is translated; original footnotes are reported to the end and
numbered consecutively. Translator’s remarks are placed within square brackets in
the main text. This is a verbatim translation without any ambition of literary
prowess (Figs. 8.1, 8.2, 8.3).

124 8 About the Cosserats’ Book of 1909



Fig. 8.1 First page of the Cosserats’ book of 1909 (Hermann, Paris, 1909) (Note the reference to
Green, Kelvin and the Treatise on Natural Philosophy)
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Fig. 8.2 François Cosserat
(1852–1914) in his uniform of
the Ecole Polytechnique
around 1871 (Source http://
www-history.mcs.st-andrews.
ac.uk/Cosserat-Francois.html)

Fig. 8.3 Sketchy portrait of
Eugène Cosserat
(1866–1931) in his fifties
(Source http://www-history.
mcs.st-andrews.ac.uk/
PictDisplay.html)
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Theory of Deformable Bodies

by MM. E. and F. Cosserat

Preface
This volume contains the development of a note on the Theory of the Euclidean

action that Appell has thought appropriate to introduce in the second edition
[1909] of his Treatise on Rational Mechanics. The reproduction of an appendix to
the French edition of the Treatise of Physics of Chwolson, explains several
peculiarities of the editing and the reference that we make to a previous work on
the dynamics of the point and of a rigid body, which is here also combined with
the work of the Russian scientist. We took advantage of this new print to correct
several mistakes in our text.

Presently, we do not seek to deduce all the consequences of the general results
that we will obtain; throughout, we make the effort only to rediscover and clarify
the classical theories. In order for this kind of checking of the theory of the
Euclidean action to appear more complete, in each part of our exposition we will
have to establish the form that the equations of deformable bodies take when one is
limited to the consideration of infinitely close states; however, this is a point that
we have already addressed, with all necessary details, in our first memoir on the
Theory of elasticity that we wrote in 1896 (Annales de la Faculté des Sciences de
Toulouse, Vol. X). Moreover, we suppose that the magisterial lessons of G.
Darboux on the general theory of surfaces are completely familiar to the reader.

Our researches will make sense only when we have shown how one may
envision the theories of heat and electricity by following the already followed path.
We devoted two notes to this subject in Volumes III and IV of Chwolson’s treatise.
The subdivision, to use a pragmatic language, appears to be a scientific necessity;
nevertheless, one must not loose sight of the fact that it answers deep questions.
We have tried to provide an idea of these difficulties in our note on the Theory of
slender bodies published in 1908 in the Comptes Rendus of the Académie des
Sciences and whose contents were also mentioned by Appell in his treatise.

E. & F. COSSERAT

I.- General considerations

1. Development of the idea of a continuous medium – The notion of
deformable body has played an important role in the development of the-
oretical physics during the last century [i.e., 19th century], and Fresnel1

must be considered as one of the precursors of the present theory of
elasticity, on an equal stand with Navier, Poisson and Cauchy2. Under the
influence of Newtonian ideas, only discrete systems of points were still
considered at the time of these scientists. Continuous punctual systems
appeared with the memorable researches of G. Green3. Since then, one has
tried to enlarge the conception of Green, which is not sufficient to provide

Appendix A 127



its full power to the theory of luminous waves. Lord Kelvin4, in particular,
worked hard to define continuous media at each point of which a moment
can be exerted. The same trend is emphasized with Helmholtz5, of whom
the controversy with J. Bertand6 concerning the theory of magnetism is
very characteristic. We can go back to the origin of this evolution, on the
one hand, with conceptions introduced in the strength of materials by
Bernoulli and Euler7, and on the other hand, to the theory of ‘‘couples’’ due
to Poinsot8. Thus we are naturally led to gather, under the same geometrical
definition, various concepts of deformable bodies that we meet nowadays
in natural philosophy [i.e., physics]. A deformable line is a continuous set
equipped with one parameter of trihedrons, a deformable surface with a set
of two parameters, and a deformable [3D] medium with three parameters
qi. In the presence of motion, one must add the time t to these three
geometric parametersqi. The mathematical continuity that we assume in
such a definition, leaves untouched at each point the trace of an invariable
[i.e., rigid] solid; therefore, we can foresee that from a mechanical view-
point moments will appear that are well known and are studied, since Euler
and Bernoulli, along elastic lines and on surfaces, and that Lord Kelvin and
Helmholtz have tried to embed in a three-dimensional space.

2. Difficulties presented by the application of the inductive method in
mechanics.

The primary form of mechanics is inductive; this is what one clearly perceives
in the theory of deformable bodies. This theory has first borrowed from the
mechanics of invariable [rigid] bodies the propositions relative to the notion of
static force, that were applied with the principle of solidification [‘‘rigidification’’
due to Cauchy]; then the relation between the effort and the deformation was
hypothetically first established (generalized Hooke’s law), and then only one
looked a posteriori under what conditions this was conserved (Green). Carnot9

already mentioned, one century ago, the defect of this method, where it is con-
stantly called for a priori notions, and where the followed path is not always safe.
The static force in fact does not have the effect of a constructive definition, in our
classical form of mechanics, and the influence of the reform that Reech10 proposed
regarding that matter in 1852 remained practically unknown until our present time.
Perhaps that this is due to the long uncertainty in which elasticians remained
concerning the rational foundation that can be attributed to Hooke’s law. Analo-
gous hesitations have indeed been manifested, almost in the same form, in other
domains of physics11.

In order to escape from these difficulties, Helmholtz tried to construct what is
called an energetics, that relies on the principle of least action and on the very idea
of energy, the force, whatever its nature, becoming then a secondary notion of
deductive origin. But the principle of a minimum in natural phenomena12 and the
concept of energy13 itself bring us to confront the defects of the inductive method.
Why a minimum and what definition to be granted to energy to avoid having
simply a physical theory, but a truly mechanical theory? Helmholtz does not seem
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to have left an answer to these questions. However, he contributed to establish
more completely than done before the distinction between the two notions, energy
and action, that apparently are identified in classical dynamics. We believe that
one must start from the latter [the action] to make perfectly precise the views of
Helmholtz and to give to mechanics, or more generally, theoretical physics, a
perfectly deductive form.

3. Theory of Euclidean action

When we are concerned with the motion of a point, the essential element that
enters the definition of action is the Euclidean distance between two infinitesimally
close positions of the mobile point. We have shown previously14 that one can
deduce from this single notion all fundamental definitions of classical dynamics,
those of quantity of motion [linear momentum], of force and of energy.

Here we propose to establish that we can follow an identical path in the study of
the static deformation or the dynamics of discrete systems of points and continuous
bodies, and that we arrive thus to the construction of a general theory of action in
both extension and motion, that embraces all that, in theoretical physics, is directly
governed by the laws of mechanics.

Here also, the action will be the integral of a function of two infinitesimally
close elements in time and in the space of the considered medium. Introducing the
condition of invariance under the group of Euclidean displacements and defining
the medium, as indicated in the first paragraph above, the density of action at a
point will have the same remarkable form that the one already met in the dynamics
of the point and of invariable bodies. Let, with the notations of the Leçons of M.
Darboux, ni; gi; nið Þ, pi; qi; rið Þ be the geometric velocities of translation and
rotation of the elementary trihedron, and n; g; nð Þ, p; q; rð Þthe corresponding
velocities relative to the motion of this trihedron; The action will be the integral

Z t2

t1

Z
. . .

Z
W qi; t; ni; gi; ni; pi; qi; ri; n; g; n; p; q; rð Þdq1; . . .; dqi. . .dt:

It will suffice to consider the variation of this action to be led to the definition of
the quantity of motion, those of efforts and moment of deformation, of the external
force and moment, and finally those of the energy of deformation and of motion,
via the intermediary of the notion of work.

In this theory, statics will become entirely autonomous, in agreement with the
views of Carnot and Reech; we will simply have to take for this purpose a density
of action W independent of the velocities n; g; nð Þ; p; q; rð Þ, that is, to consider a
body devoid of inertia, or else a body with inertia on the condition to regard
deformation as a reversible transformation in the sense of M. Duhem. On the other
hand, having recourse to the notion of hidden arguments [i.e., arguments that do
not appear explicitly in W], we will recover all the concepts of mechanical origin
that are employed in physics, for instance, those of flexible and inextensible lines
[strings], flexible and inextensible surfaces, invariable [i.e., rigid] bodies, as also
less particular definitions as proposed for a deformable line since D. Bernoulli and
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Euler till Thomson and Tait, for the deformable surface since Sophie Germain and
Lagrange till Lord Rayleigh, and for the deformable media since Navier and Green
till Lord Kelvin and W. Voigt.

Envisaging both deformation and motion, we shall arrive in a purely deductive
manner at the idea that is contained in the principle of d’Alembert, which relates
only to the case where an action of deformation separates fully from the kinetic
action. Finally, if we suppose that the deformable body is not submitted to any
action from the external world and if we introduce, as a consequence, the fun-
damental notion of isolated system, of which M. Duhem15, and the M. Le Roy16

have shown the necessity for a rational construction of theoretical physics, we
shall naturally be led to the idea of a minimum that Helmholtz had already con-
sidered as a starting point, while simultaneously there will appear the principle of
conservation of energy, which is at the basis of our present scientific system.

4. Critique of the principles of mechanics.- As we just sketched it, the
theory of Euclidean action brings a first contribution to the critique of the
principles of mechanics.

Its generality allows one to foresee that there are singular phenomena, both in
the action on the motion and in the deformation of extension, for example the
aspect of solids in a plastic state or near fracture, and that of fluids submitted to
large forces. In ordinary circumstances, this generality can be reduced by the
consideration of a state that is infinitesimally close to the natural state; this is a
point that we already mentioned in our preceding note.

But we can still assume that one or two dimensions of the deformable body
become infinitesimally small and then envisage what is called a slender body18.
This notion was developed in 1828 by Poisson, also a short time afterwards, by
Cauchy; their aim, like that of all elasticians preoccupied later by this arduous
question, was to build a passage between the distinct theories of bodies with one,
two and three dimensions. We know that an important part of the works of Barré
de Saint-Venant and Kirchhoff is related to a discussion of the researches by
Poisson and Cauchy. However, these scientists, and then their followers, did not
exhibit the true difficulty of the matter; this difficulty resides, generally, in the fact
that the zero value of the introduced parameter is not an ordinary point, as
admitted by Poisson and Cauchy, not even a pole, but an essential singular point.
This important fact justifies the separate studies of lines, surfaces and [3D] media
that the reader will find in the present work19.

[Here the Cosserats touch upon a fundamental problem that concerns singular
perturbations; this matter will be solved only in the 1960s-1980s for the limit
reduction to slender bodies with the correct asymptotic methods (in particular
‘‘asymptotic integration’’ and the ‘‘zoom technique’’) developed by Gol’denveizer
in Russia, Ambartsumian in Armenia, Berdichevsky in Moscow, and Ph. Ciarlet
and Destuynder in France].

In concluding these preliminary observations, we shall remark that the theory of
Euclidean action relies on the notion of differential invariant taken in its simplest
form. If we enlarge this notion in such a way as to understand the idea of
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differential parameter, modern theoretical physics appears as an immediate
extension, from the Eulerian viewpoint, of mechanics per se, and we are naturally
led to the principles of the theory of heat and to the actual electric doctrines. This
new field of research, in which here we start to enter by deducing from the
consideration of deformable bodies the idea of radiation of energy, will be
explored more completely in a further work [This ambitious programme was never
really formulated; F. Cosserat died in 1914]. We shall thus introduce a new pre-
cision in the views of H. Lorentz20 and H. Poincaré21 in what is called the prin-
ciple of reaction in mechanics.

(Original) Notes

1. Fresnel, Oeuvres complètes, Paris, 1866; see the introduction by E.
Verdet.

2. See Isaak Todhunter and Karl Pearson, A history of the theory of elasticity
and the strength of materials, from Galilei to the present time, Vol. I,
Galilei to Saint-Venant, 1886; Vol. II, Part I and II, Saint-Venant to Lord
Kelvin, 1893. This remarkable work contains a very complete and precise
analysis of the works by the founders of the theory of elasticity.

3. G. Green, Math. Papers, edited by N.M. Ferrers, facsimile reprint, Paris,
A. Hermann, 1903.

4. Lord Kelvin, Math. and Phys. Papers, Vol. I, 1882; Vol. II, 1884, Vol. III,
1890; Reprint of papers in electrostatics and Magnetism, 2nd edition;
Baltimore Lectures on Molecular Dynamics and the Wave Theory of
Light, 1904; W. Thomson and P.G. Tait, Treatise on Natural Philosophy,
First edition, Oxford 1867; 2nd edition, Cambridge, 1879-1883.

5. Helmholtz, Vorles. über die Dynamik diskreter Massenpunkte, Berlin ,
1897; Vorles. über die elektromagnetische Theorie des Lichtes, Leipzig,
1897; Wiss. Abhandl. Three volumes, Leipzig, 1892-1895.

6. J. Bertrand, C.R. 73, p.865; 75, p. 860; 77, p. 1049; See also H. Poincaré,
Electricité et optique, II, Les théories de Helmholtz et les expériences de
Hertz, 1891, p. 51 ; 2nd edition, 1901, p.275.

7. See Todhunter and Pearson – op. cit.
8. Auguste Comte, Cours de philosophie positive, 6th edition, Paris, 1907;

Vol. I, p. 338: « Whatever, in truth, the fundamental qualities of the con-
ception of M. Poinsot, with respect to statics, one must nonetheless rec-
ognize, it seems to me, that it is above all for perfecting dynamics that it is
essentially destined; and I can assure you, considering this point, that this
conception has not exerted its most important influence so far’’.

9. Carnot, in his essay of 1783 on ‘‘Machines in general’’ that became in 1793,
Les Principes fondamentaux de l’équilibre et du mouvement , has searched
to reduce mechanics to principles and precise definitions devoid of any
metaphysical character and of any vague terms about which philosophers
quarrel without reaching any understanding. This reaction led Carnot a
little too far, since he went to the point of contesting the legitimacy of the
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expression of force, for him an obscure notion, and to which he wanted to
substitute exclusively the idea of motion. For the same reason, he could not
admit as rigorous any of the known derivations of the rule of the paral-
lelogram of forces, ‘‘the very existence of the word force, in its expression,
rendering this derivation impossible, by the nature of things itself’’ (Ch.
Combes, Ed. Phillips and Ed. Collignon, Exposé de la situation de la
mécanique appliquée, Paris, 1867).

10. F. Reech, Cours de mécanique, d’après la nature généralement flexible et
élastique des corps, Paris, 1852. This work was written by the illustrious
Marine engineer in view of the reform of the teaching of mechanics at
Ecole Polytechnique. Since then, his ideas were exposed by J. Andrade,
Leçons de mécanique physique, Paris, 1898, and by Marbec, Chief
engineer in the Navy, in his elementary teaching of mechanics at the
school of ‘‘Maistrance’’ [forming non-commissioned officers as mechan-
ical specialists in the French Navy; GAM] in Toulon (1906). See also J.
Perrin, Traité de Chimie physique, les principes, Paris, 1903.

11. The remark by Lord Kelvin, in his Baltimore Lectures, p. 131, on the
work of Blanchet, is particularly of interest in this regard; he mentions that
Poisson, Coriolis and Sturm (C.R. 7, p. 1143), as well as Cauchy, Liou-
ville and Duhamel (1841) have accepted without objection the 36 coef-
ficients that Blanchet had admitted in the generalized Hooke law. Lord
Kelvin also has opposed from the same viewpoint the law of at-a-distance
force of Weber, in the first edition of the Natural Philosophy. More
recently, the application of the static adiabatic law to the study of waves
of finite amplitude has been criticized for the same reason by Lord Ray-
leigh, and we know that Hugoniot has proposed a dynamic adiabatic law.

12. Maupertuis himself felt the danger of the principle that he introduced when
he wrote in 1744: ‘‘We do not know enough what is the purpose of nature,
and we can misinterpret the quantity of motion that we must regard as its
expense, in the production of its effects’’; Lagrange first has intended to
make of the principle of least action the basis of his analytical mechanics,
but later on he recognized the superiority of the method which consists in
considering virtual works.

13. Hertz, Die Prinzipien der Mechanik, etc., 1894; See especially the
introduction.

14. Note sur la dynamique du point et du corps invariable, Tome I, page 236.
15. P. Duhem, Commentaire aux principes de la thermodynamique, 1892; La

théorie physique, son objet et sa structure, 1906.
16. E. Le Roy, La science positive et les philosophies de la liberté, Congrès

int. de philosophie, T.I., 1900.
17. E. and F. Cosserat, Sur la mécanique générale, C.R., 145, p. 1139, 1907.
18. E. and F. Cosserat, Sur la théorie des corps minces, C.R., 146, p. 169,

1908.
19. It must be that the interest and the importance of the theories of lines and

deformable surfaces are today so badly appreciated that the

132 8 About the Cosserats’ Book of 1909



Encyclopaedia of pure and applied mathematics [Enz. math. Wiss.],
presently published in Germany, grants them no room. W. Thomson and
Tait have avoided to omit them in their Natural Philosophy, and they
presented them before the theory of three-dimensional elastic bodies.
Similarly, P. Duhem, Hydrodynamique, Elasticité, Acoustique, Paris,
1891.

20. H. Lorentz – Versuch einer Theorie der electrischen und optischen Ers-
cheinungen in bewegten Körpern, Leiden, 1895; reprinted in Leipzig in
1906, Abhandl. über theoretische Physik, 1907; Encycl. der Math. Wis-
senschaften, V2, Elektronen Theorie, 1903.

21. H. Poincaré, Electricité et optique, 2nd edition, 1901, p. 448.
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Chapter 9
Caratheodory: Thermodynamics
and Topology

Abstract In 1909 there appeared a truly unidentified object in the landscape of
thermodynamics. It was an axiomatic formulation of the first and second laws of
thermodynamics with geometric and analytic arguments by the mathematician
Constantin Caratheodory. This practically ignored the well known experimental
factual bases (with heat engines) posed by Carnot and Kelvin, to the benefit of a
powerful exploitation of Pfaffian differential forms. This is very convincing to
mathematically oriented minds as it introduces the notions of entropy and thermo-
dynamic in a purely mathematical framework, the inverse of temperature playing the
role of integrating factor. The present essay analyses the contribution of Carathe-
odory, its reception by his contemporaries, and the influence it had on some spe-
cialists of continuum thermo-mechanics in the second half of the twentieth century.

9.1 Introduction

The reader may be surprised to see here the present essay related to a mathe-
matician who is little known in the world of mechanics, and whose works may
seem very abstract and lacking physics as very much axiomatic, while thermo-
dynamics is most often viewed as a physical science based on experience. But to
give a personal opinion, I find it much easier to give a course on analytical
mechanics (in the rather axiomatic tradition of Lagrange) than to try to present in
a very convincing way the principles of thermodynamics to a classroom of stu-
dents. The precision brought by Caratheodory in his paper of [7] (English trans-
lation in Kestin [16])—revisited also in [8]—is of great help. We adopted it in our
course [20] as this was also done by Germain [12] following Buchdahl [4, 5], one
of the best analysts of Caratheodory’s contribution to thermodynamics.1

1 Hans A. Buchdahl (1919–2009) was a theoretical physicist who taught at the University of
Tasmania (1942–1962), Australia, and then at the Australian National University (1962–1985).
He tried to make Caratheodory’s approach to thermodynamics more appetizing to English
speaking physicists.

G. A. Maugin, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries,
Solid Mechanics and Its Applications 214, DOI: 10.1007/978-3-319-05374-5_9,
� Springer International Publishing Switzerland 2014
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Caratheodory’s presentation did not escape the attention of people like Hellinger
who carefully scrutinized the landscape of continuum mechanics in the pre World-
War-One period.

For quite a long time thermodynamics dealt only with heat and mechanical
work, the latter in the most elementary form, force multiplied by displacement. But
the development of continuum mechanics for more complex behaviours, started
with thermo-elasticity and continued with the consideration of visibly irreversible
processes (very viscous fluids, visco-elasticity, plasticity, creep), that required
envisaging constraints brought on these behaviours by the second law. In time, it
has become customary to build continuum mechanics on the bases of a general
thermodynamic background, hence the coinage of the neologism of continuum
thermo-mechanics and the general science of energetics.

The problem at stake is the following one. Having some notions from the early
works [e.g., Sadi Carnot’s [10] and Thomson (Kelvin)’s [28] papers], define in a
precise mathematical form what are the thermodynamic evolutions that are
admitted and what states are accessible or not accessible. In this context, Cara-
theodory is responsible for the introduction of the notion of thermodynamic adi-
abatic accessibility. His main mathematical instrument is provided by the theory
of the differential representation of first order systems as introduced by J. F. Pfaff
(1765–1825) in a famous paper published in 1813–1814 [22], and, in modern
terms, arguments of topology. We remind the reader that following the rediscovery
of Carnot’s original (and at first practically ignored) book of 1824 [10] by
Thomson (Lord Kelvin 1824–1907) during a stay in Paris, the first law (called
principle in French or German) of thermodynamics was proposed almost simul-
taneously by three scientists, Kelvin in the UK, J. R. Mayer (1814–1878) and von
Helmholtz (1821–1894) in Germany. This expresses a law of conservation (of
energy). The second law of thermodynamics was proposed by R. Clausius
(1822–1888) and reflects an evolution, said to be irreversible in time, which may
have only one direction, toward the future. This is known as the Arrow of Time.
One special scalar quantity is introduced to represent this effect, the entropy.

That is, the first law specifies that energy can be exchanged between physical
systems in the form of heat and thermodynamic work, more precisely: A change in the
internal energy of a closed thermodynamic system is the difference between the heat
supplied to the system and the amount of work done by the system on its surroundings.
This is mathematically formulated as the principle of conservation of energy. But
energy, if indeed conserved, changes its nature in most physical evolutions. This yields
the second law according to which energy can only be degraded. Thus: the second law
that deals with entropy, expresses some limitation on the amount of work that can be
delivered by a thermodynamic system to an external system.

This represents what is known as irreversibility. It is basically expressed as:
Heat cannot spontaneously flow from a colder region to a hotter location. This is
the expression of a universal principle of decay observable in nature that is
mathematically expressed by a forbidden decrease in entropy. The latter is a
measure of how much this decay process has progressed. This can also be referred
to as the principle of Carnot (whose author, nonetheless, had no notion of entropy).
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At this point we must recall what is an axiom in physics? An axiom—or postu-
late—here is the statement of self-evident facts and thus, does not need any proof. It
is at the starting point of reasoning. This is the definition given by ancient Greeks. In
conformity with this definition Caratheodory proposes an axiomatic system for
equilibrium thermodynamics. In doing so he fulfils his program to provide ther-
modynamics with ‘‘logical order and an intellectual clean up’’ (his own words),
following along the path of the example provided by the axiomatic formulation of
geometry by Euclid. As to a principle, it is a law or rule that has to be followed such
as the law of nature or the way a system is constructed. The principles of such a
system are understood by its users as the essential characteristics of the systems.
Finally, a corollary follows from previously enunciated statements (such as theo-
rems). This reminder of definitions is useful in the following discussion.

9.2 On Caratheodory

Constantin Caratheodory (Jaqaheodxqg9 ) (1873–1950) was born in Berlin of
Greek parents. He was educated in Belgium (Lycée, Engineering military school).
He then worked as a civil engineer in Egypt while educating himself in mathe-
matical analysis. He completed his formal education in mathematics in Berlin and
then Göttingen under the supervision of Herrmann Minkowski. He published in
1909 a celebrated axiomatics of thermodynamics that is the object of this essay,
introducing the notion of thermodynamic adiabatic accessibility, a work acclaimed
by Max Planck and Max Born. He was extremely mobile since during the period
1908–1920 he was a professor successively in Bonn, Hannover, Breslau, Göttin-
gen, and Berlin; then he taught in Smyrna, Athens, Munich, and finally Berlin until
1950. He has published famous mathematical works in analysis with many theo-
rems and conjectures bearing his name. More on his life and the totality of his
work is to be found in various biographies published in Greece (cf. [9, 26]).

9.3 The Standard Formulation

This is the formulation of thermostatics as accepted in physics and engineering
before Caratheodory’s axiomatic formulation (cf. [21]). According to Carnot [10],
a heat engine is a device that converts heat into mechanical work, and temperature
controls the flow of heat between two systems. The notion of efficiency is defined
thus. The heat engine works between a high (hot) temperature TH and a low (cold)
temperature TC. The work per cycle, Wcycle, done by the heat engine is equal to the
difference between the heat energy qH put in the system at high temperature and
the heat energy qC ejected at the low temperature in this cycle. The efficiency of
the engine is then defined by
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Eff ¼ Wcycle

qH
¼ qH � qC

qH
¼ 1� qC

qH
: ð9:1Þ

Carnot’s theorem and the fact that any cycle can be composed of any number of
smaller cycles result in that the ratio qC/qH is a function of the respective tem-
peratures at which they occur. This function is a monotonic function f(T) which by
convention can be put equal to T itself. Thus (9.1) yields

Eff ¼ 1� TC

TH
: ð9:2Þ

Then efficiency is 1 or 100 % for TC = 0. Otherwise it is always less than 1.
Because of (9.1) and (9.2) we can write

qH

TH
� qC

TC
¼ 0: ð9:3Þ

The generalization of this result is none-other than the Carnot-Clausius theorem
which relates entropy, heat and temperature. Indeed, entropy is a well defined
quantity at thermodynamic equilibrium (thermo-statics) only. Inspired by the
works of Carnot, Clausius has shown that the line integral

H
dQ=T—involving a

heat increment dQ at temperature T—for reversible processes is independent of the
path. Accordingly, the differential

dS ¼ dQ=T ¼ dqrev=T

defines a state function S which is called the entropy. Indeed we have (theorem of
Carnot-Clausius)

Zstate 2¼state 1

state 1

dQ=T ¼
Zstate 2

state 1

dS ¼ Sðstate 2Þ � Sðstate 1Þ ¼ 0 ð9:4Þ

Clausius also found that at each stage of a cycle work and heat are not equal but
their difference must be a state function (now called the internal energy e) that
vanishes once the cycle is completed. In terms of differentials, if pressure p is the
only external parameter associated with volume V, we will have the fundamental
relation: de ¼ TdS� pdV . This of course shows that entropy and temperature form
a conjugate pair of thermodynamic variables. But, in fact, this relation is always
true, even if irreversibilities appear in the considered system.

When states at the beginning and end of a cycle differ with a loss of efficiency
in the thermal machine, the result (9.4) is invalidated. As a consequence of Car-
not’s works on the efficiency of thermal machines, Clausius found that for such an
evolution

Sðstate 2Þ[ Sðstate 1Þ ð9:5Þ

so that entropy can only grow if T2 \ T1. As a matter of fact, the entropy change
between two thermodynamic states, state 1 and state 2, is generally made of two
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parts: one part DintS relating to a lack of thermal insulation and to mass exchanges
(this may also be referred to as entropy change due to interactions with the
‘‘surroundings’’ of the system) and the other part DiS due to the processes taking
place inside the system. That is, instead of (9.5) we should write

Sðstate 2Þ � Sðstate 1Þ ¼ DintSþ DiS; ð9:6Þ

with

DintS ¼ 0 ð9:7Þ

when the system is thermally insulated (this corresponds to an adiabatic path for
the state change) and

DiS ¼ 0 for reversible changes;

DiS [ 0 for irreversible changes;

DiS\0 for impossible changes:

ð9:8Þ

This is the essence of the second law of thermodynamics. For pure adiabatic
processes, the DiS in Eq. (9.8) can be replaced by DS by virtue of (9.7). This is the
essence of thermostatics as at the end of the nineteenth century.

Equivalent to the Carnot-Clausius theorem we can cite the following principle:
Principle of Kelvin [28]: It is impossible to devise an engine which, working in

a cycle, produces no other effect than the extraction of an amount of heat from a
reservoir and its complete conversion into mechanical work [this is equivalent to
the impossibility of the perpetuum mobile of the second type].

9.4 Caratheodory’s Work

The above sketched out arguments have been mathematically formalized by C.
Caratheodory in his paper of 1909. Following Caratheodory, we can also say that
the reciprocal of temperature plays the role of an integrating factor (a mathe-
matical notion) for heat. Accordingly we can write

T ¼ dqrev

dS
: ð9:9Þ

For a system in which entropy S is a function SðeÞ of its energy, then

1
T
¼ dS

de
: ð9:10Þ

Note that Carnot based his reasoning on thermometry and calorimetry. Cara-
theodory will follow a different path, being foreign to experiments and obviously
to imaginary heat engines. Here we scrutinized the main arguments used by
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Caratheodory in his original work which relies on the consideration of Pfaffian
forms.2

We remind the reader that Pfaff’s problem consists in the integration of partial
differential equations of the form x ¼ 0 where3

x ¼
Xn

k¼1

fk x1; . . .; xnð Þ dxk: ð9:11Þ

Now it must be understood that Caratheodory’s approach is axiomatic. As such
its does not prove the bases of thermodynamics; it postulates them. We briefly
analyse this approach constantly keeping in mind this axiomatic nature. In his
introduction, he cites a very few predecessors (Mayer, Joule, Clausius, Thomson,
Bryan). Because of the axiomatic nature of the work, he has to give precise
definitions in his first true section [7, pp. 357–362].4 He has to rely on Gibbs to
introduce the notions of phases and the corresponding ‘‘state coordinates’’ xi that
we now call ‘‘state parameters or variables’’ in an (n ? 1)-dimensional Cartesian
space. These ‘‘coordinates’’ characterize the system S for which we can define
equivalent systems. Clearly, x0 will play a specific role. Then the statements of the
first and second laws for systems made of several phases are introduced as AXIOM
I and AXIOM II (Sect. 2I).

The first axiom (top of p. 363) tells that in an adiabatic change (no heat
exchange with the outside), the difference in total internal energy (i.e., summed
over phases) between final and initial state is related only to the work A (for
‘‘Arbeit’’) received from the outside. The second axiom (bottom of p. 363) con-
cerns the non-accessibility of neighbouring states that can be reached through an
adiabatic transformation from a known state. We see that in this form both axioms
invoke the notion of adiabatic transformations granting to these a paramount

2 Johann Friedrich Pfaff (1765–1825) is a German mathematician. He studied mathematics and
physics first in Göttingen and then in Berlin. From 1788 to 1810 (closure of the University) he
occupied a chair at the University of Helmstedt (in the short-lived Kingdom of Westphalia
founded by Napoleon). Then he went to Halle. He was a specialist of analysis with works on
partial differential equations, special functions and the theory of series. His most well known
work is the one he published on ‘‘Pfaffian’’ forms in 1815 [22]. This is a theory of equations in
total differentials. This was later developed by Jacobi, Lie, and others to finally yield the modern
Cartan calculus of exterior differential forms. Gauss studied with Pfaff in Helmstedt; he held a
high opinion of Pfaff. The term ‘‘Pfaffian’’ was introduced by A. Cayley.
3 As an example, in 2D let x ¼ Xdxþ Ydy. If the following condition—first established by
H. A. Schwarz (1843–1921)—is satisfied: oX=oyð Þ � oY=oxð Þ ¼ 0, then the Pfaff equation is
exact and there exists a function F x; yð Þ such that x ¼ dF. This can be generalized to
n dimensions. In 3D the condition is that of irrotationality (fk are the components of a gradient)
and F is path independent. For an arbitrary n this line of reasoning leads to exterior differential
calculus as expanded by Elie Cartan (1869–1951). When exact integrability is not a priori
satisfied, then there still exists the possibility to multiply the x equation by a so-called
integration factor to obtain an integrable expression. This is what is exploited by Caratheodory
in his introduction of temperature.
4 References are to the original German edition.
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importance. The notion of neighbourhood obviously connects with topology
(analysis situs as called at the time of Caratheodory). Then we come to the
introduction of Pfaffian forms [cf. Eq. (9.11)]. For an adiabatic evolution between
time t0 and time t, Caratheodory writes (p. 386) the first axiom as

e x0; x1 tð Þ; . . .; xn tð Þf g � e0 þ A tð Þ ¼ 0: ð9:12Þ

The expression for the work A is given by

A tð Þ ¼
Z t

t0

DA; ð9:13Þ

where DA is the Pfaffian form [cf. Eq. (9.11)]

DA ¼
Xn

i¼1

pidxi: ð9:14Þ

Whence (12) takes on the following differential form [Caratheodory’s Eq. (14),
p. 367]:

deþ DA ¼ 0: ð9:15Þ

Then a discussion is given in terms of parametric curves in the (n ? 1)-space of
‘‘state coordinates’’ that can represent admissible transformations between two
states. We advise the reader to look at technical developments in our book [20,
pp. 28–34] that is more readable than Caratheodory’s original, and that closely
follows Buchdahl. The general adiabatic quasi-static evolution of a system is then
written as

deþ DA ¼ oe
on0

dn0 þ
Xn

i¼1

Xidxi ¼ 0; ð9:16Þ

wherein

Xi ¼
o e
oxi
þ pi: ð9:17Þ

This is equivalent to having introduced the multiplier M, such that

M
ox0

on0
¼ oe

ox0
; x0 ¼ x0 n0; x1; . . .; xnð Þ: ð9:18Þ

The adiabatic quasi-static evolutions correspond to x0 = const. Following a
section dealing with the formal introduction of arguments on thermal effects,
Sects. 7 and 8 (pp. 375–377) intend to introduce the notions of absolute temper-
ature and entropy (that are dual notions as we know). This is related to the
determination of the multiplier M. With proper identification with the absolute
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temperature T of classical thermodynamics, the final form of the total differential
of the energy function is obtained as [13]

de ¼ T dS� DA; ð9:19Þ

where S is identified to the entropy of Clausius. It is noted that e, S and DA are
additive (‘‘extensive’’ in modern terms) which is note the case of T. The new term
is none other than the heat variation dQ so that we have

dS ¼ dQ

T
; ð9:20Þ

if both e and S are to be state functions in agreement with the classical approach
(9.10). Accordingly, the reciprocal of temperature is an integrating factor to make
(9.19) a true exact differential form. The crux of this ‘‘derivation’’—using a
reductio at absurdum proof—is the application of AXIOM II in the discussion of
admissible curves in the state space, followed by an appropriate re-scaling to
introduce the thermodynamic temperature. The result can be stated in the form of
Carnot’s theorem:

There exits a universal scaling of temperature T, called thermodynamic tem-
perature or absolute temperature and a function of state S(xi) called the entropy of
the system, such that

dQ ¼ TdS; S ¼ S xið Þ; T [ 0; inf T ¼ 0; ð9:21Þ

and the entropy of a combination of thermally simple systems is the sum of the
entropy of each of these systems. S is defined up to an additive constant (often
considered as equal to zero in the limit as T goes to zero).

Whenever entropy increases, then we have to face irreversible evolutions.
Caratheodory’s paper (Sects. 10 through 13) concludes with an attempt at con-
necting the formally introduced notions of energy, entropy and temperature to
experimental facts. This will convince only those permeable to mathematical
axiomatic arguments.

9.5 Reception of Caratheodory’s Axiomatics

The mathematical dexterity of Caratheodory was recognized at once by his con-
temporaries. This does not entail a full agreement with his formulation. This was
the case of the reception of his works and comments on it by well known physicists
such as Max Born [2] and Max Planck [23] who obviously criticized Caratheodory
for his lack of physics. In more recent times, apart form Buchdahl who found a real
mission in explaining Caratheodory’s work to the philistines, we find more serious
attacks by those who claim that his axiomatics is de facto not independent of
previous principles. Born and Planck view Caratheodory’s approach with sym-
pathy; still they express some reserve while comparing it with a more traditional
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formulation because of the evident lack of contact with experimental facts. Quite
typically, the notion of heat is not primary and appears only when adiabatic
restriction is removed. Much more important from the point of view of logic is the
fact that some authors claim that Caratheodory’s approach is not independent from
previous formulations. This is the case of members of the great Belgian-Dutch
school (i.e., of the theory of irreversible thermodynamics) who prove that Cara-
theodory’s axiomatics is not independent from the above recalled principle given
by Kelvin in his early work [28]. This is the case of Landsberg [18] and Titulaer
and van Kampen [27]. What certainly remains is the formal elegance of Cara-
theodory’s formulation (and not derivation). As to what led Caratheodory to
endeavour this formal treatment—that is now recognized as equivalent to the
Carnot-Kelvin-Clausius approach—, this may be due to the friendship with Max
Born and the influence of David Hilbert, but we will never know for sure.

9.6 Toward Irreversible Thermodynamics

First as a prerequisite we must acknowledge that the notions of temperature and
entropy introduced either in the form of Carnot’s theorem or in the axiomatics of
Caratheodory are well defined only in thermo-statics. The challenging problem in
the twentieth century was to go over to true thermo-dynamics with the possible
occurrence of non-adiabatic transformations and the occurrence of dissipation of
energy. Here two main schools are in opposition to solve this challenge in a more
or less satisfactory manner. One school may be called that of the adventurous
scientists (non-pejorative qualification by Paul Germain in oral presentations in the
early 1970s), and the other one being that of the cautious scientists (but no disdain
for this group). This last group builds on the acquisitions of thermo-statics and,
therefore, envisages only slight deviations from thermodynamic equilibrium. A
basic axiom there is the axiom of local equilibrium state according to which ‘‘each
part of a material system can be approximately considered at each time as being in
thermal equilibrium’’. This will give rise to the theory of (linear) irreversible
processes (T.I.P) in the 1940s–1960s. The first group feels free from any argu-
ments of thermo-statics: it a priori assumes the existence of entropy and temper-
ature even far outside thermo-dynamic equilibrium. This is represented by the
Coleman-Noll-Truesdell approach of the 1960s–1970s—cf. Truesdell [29]. At an
intermediate stage, we find those who favour the introduction of internal variables
of thermodynamic state to describe dissipative effects. Kestin, the present author,
and many other authors who deal with strongly dissipative and singular behaviours
such as plasticity, visco-plasticity, damage, creep, and phase transformations, have
favoured this approach that is the slightest deviation for the T.I.P while bringing to
the theory a very high efficiency in practical applications. Of course, the above
mentioned axiom of local equilibrium state has to be replaced by one dealing with
‘‘local accompanying states’’ (i.e., for each instantaneous value of the internal
variables). For all these we refer the reader to our book [20].
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Additional relevant bibliography includes: Antoniou [1], Bridgman [3], Callen
[6], Falk and Jung [11], Giles [14], Landé [17], Marshall [19], Pogliani and
Berberan-Santos [24], Redlich [25], and Turner [30], some of which fully adhere
to Caratheodory’s geometric-analytical vision of thermodynamics (as evidenced
by the very title of these contributions).

References

1. Antoniou OE (2002) Caratheodory and the foundations of thermodynamics and statistical
Physics. Found Phys 32(4):627–641

2. Born M (1921) Kritische Betrachtungen zur traditionellen Dastellung der Thermodynamik.
Physik Zeit 22:218–224, 249–254, 282–286

3. Bridgman PW (1943) The nature of thermodynamics. Harvard University Press, Cambridge
4. Buchdahl HA (1960) The concepts of classical thermodynamics. Amer J Physics 28:196–201
5. Buchdahl HA (1966) The concepts of classical thermodynamics. C.U.P, UK
6. Callen HB (1960) Thermodynamics. Wiley, New York
7. Caratheodory C (1909) Untersuchgen über die Grundlagen der Thermodynamik. Math Ann

67:355–386 [There exists an English translation by J. Kestin in: Kestin (ed. 1976) p 206 on]
8. Caratheodory C (1925) Über die Bestimmung der Energie und der absoluten Temperatur mit

Hilfe von reversiblen Prozessen. Sitz Preuss Akad Wiss (Berlin) Phys Math Kl, pp 39–47
9. Caratheodory-Rodopoulou S, Vlahostergiou-Vasbateki D (2000) The wise Greek of Munich.

Athens
10. Carnot S (1960) Reflections on the motive power of fire and on machines fitted to develop

that power (English translation from the French edition of 1824 by R. H. Thurston). Dover,
New York

11. Falk G, Jung H (1959) Axiomatik der Thermodynamik. In: Flügge S (ed) Handbuch der
Physik, Bd. III/2, Springer, Berlin, pp 119–75

12. Germain P (1973) Mécanique des milieux continus, vol I. Masson, Paris
13. Gibbs JW (1876–1878) On the equilibrium of heterogeneous substances, Parts 1 and 2. Trans

Connecticut Acad Arts Sci 3:108–248 (1876); 3:343–520 (1878)
14. Giles R (1964) Mathematical foundations of thermodynamics. Pergamon Press, Oxford
15. Kestin J (1966) A course in thermodynamics. Blaisdell, Waltham, Mass. (Reprint,

Hemisphere, Washington, 1979)
16. Kestin J (ed) (1976) The second law of thermodynamics: benchmark papers on energy, vol 5.

DH&R, Pennsylvania
17. Landé A (1926) Axiomatische Begründung der Thermodynamik durch Caratheodory. In:

Handbuch der Physik, Bd. IX, Chapter 4. Julius Springer, Berlin
18. Landsberg PT (1964) A deduction of Caratheodory’s principle from Kelvin’s principle.

Nature 201:485–486
19. Marshall TW (1978) A simplified version of Caratheodory thermodynamics. Amer J Phys

46:136–237
20. Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors: an

introduction. World Scientific, Singapore
21. Maugin GA (2013–2014) Articles ‘‘Classical thermodynamics’’, ‘‘Entropy and

thermodynamic temperature’’, ‘‘Continuum thermodynamics’’. In: Hetnarski RB (General
ed) Encyclopedia of thermal stresses. Springer, Berlin-Dordrecht

22. Pfaff JF (1814–1815) Methodus generalis, aequationes differentiarum particularum, necnon
aequationes differentiales vulgares, utrasque primi ordinis inter quotcumque variabiles,
complete integrandi. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin
(1814–1815) (there exists a German translation)

146 9 Caratheodory: Thermodynamics and Topology



23. Planck M (1926) Über die Begrundung des zweiten Hauptsatzes der Thermodynamik. Sitz
Berlin Akad Wiss 53:453–463

24. Pogliani L, Berberan-Santos MN (2000) Constantin Caratheodory and the axiomatic
thermodynamics. J Math Chem 28(1–3):313–324

25. Redlich O (1968) Fundamental thermodynamics since Caratheodory. Rev Mod Phys
40:556–563

26. Spandagos E (2000) The life and works of Constantine Caratheodory. Aithra, Athens
27. Titulaer UM, Van Kampen NG (1965) On the deduction of Caratheodory’s axiom from

Kelvin’s principle. Physica 31:1029–1032
28. Thomson W (Lord Kelvin) (1851) Trans Roy Soc Edinburgh; Also Lord Kelvin:

Mathematical and Physical papers I (1882), p 174
29. Truesdell CA (1984) Rational thermodynamics, 2nd edn. Springer, New York (Enlarged

edition)
30. Turner LA (1961) Comments on Buchdahl’s treatment of thermodynamics. Amer J Phys

29:40–44

References 147



Chapter 10
On Duhem’s Energetics or General
Thermodynamics

Abstract Pierre Duhem is an unavoidable figure if one wants to scrutinize the
progress in the mixed science of mechanics and thermodynamics in the period
1880–1920. He is a prolific writer and a never tired propagandist of the global
science of energetics. Here we examine his main contribution, its novelty and its
inherent limitations in the light of two remarkable synthetic and/or critical works,
his treatise on energetics (Traité d’énergétique ou de thermodynamique générale.
Gauthier-Villars, Paris, 528+504 pages, 1911) and his series of papers (Duhem in
L’évolution de la mécanique. A. Joanin, Paris, 1903) on the ‘‘Evolution of
Mechanics’’ (of which we also provide a partial translation). These works are
replaced in their socio-scientific background with its main sources (Gibbs and
Helmholtz) and its possible interaction with, and influence on, contemporary
scientists. A particular emphasis is put on Duhem’s style and interests that are
strongly influenced by his combined epistemological, philosophical and historical
vision. We concentrate on the specialized fields examined and tentatively
improved by Duhem in the ‘‘Evolution of mechanics’’, with a personal interest in
those ‘‘nonsensical branches’’—friction, false equilibria, permanent alterations,
hysteresis—that Duhem tries to attach to the former Gibbs’ statics and Helmholtz’
dynamics by way of subtle generalizations. In this analysis we account for the
enlightening comments of contemporaries (E. Picard, J. Hadamard, O. Manville),
of his various biographs, and of Duhem’s own perusal (Duhem in Notice sur les
titres et travaux de Pierre Duhem, 1913) of his oeuvre. We conclude with modern
developments which provide answers to queries of Duhem that now appear as too
much in advance on their time.

10.1 Introduction

Pierre Duhem (1861–1916), probably one of the most powerful intellects of his
period, is a remarkable character. He combines in one person a brilliant and sharp
mind, a prolific writer and contributor to phenomenological physics, the champion

G. A. Maugin, Continuum Mechanics Through the Eighteenth and Nineteenth Centuries,
Solid Mechanics and Its Applications 214, DOI: 10.1007/978-3-319-05374-5_10,
� Springer International Publishing Switzerland 2014
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of energetics, a philosopher of science, and the true creator of the history of
medieval science. To delineate somewhat the scientific landscape of the relevant
period—to fix ideas, 1880–1920—we note that his great contemporaries are,
among others, Josiah W. Gibbs (1839–1903), Herrmann von Helmholtz
(1821–1894), Henri Poincaré (1854–1912), Ernst Mach (1838–1916) [46], Jacques
Hadamard (1865–1963), Henrik A. Lorentz (1853–1928), Albert Einstein
(1879–1955), Max Planck (1858–1947), James C. Maxwell (1831–1879) and Lord
Kelvin (1824–1907) in the UK, and Joseph V. Boussinesq (1842–1929) in France.
Gibbs and Helmholtz are his heroes (cf. [52]). Poincaré and Hadamard are
mathematician friends; Mach is a fellow traveller on the road to energetism.
Lorentz and Planck are ‘‘atomists’’ and partisans of particles and of molecules (the
worst that can be for Duhem). Einstein is beyond the understanding of Duhem (and
of many others at the time—but this is not a valid excuse). As to Maxwell (his
‘‘bête noire’’), Kelvin and Boussinesq, although Duhem had to recognize their
creativity, they rely too much on the notion of (mechanical) models to be con-
sidered serious and exemplary ‘‘theoretical’’ physicists. In all his works Duhem
avoids the use of words such as ‘‘particles’’ and ‘‘molecules’’, hence his a priori
rejection of Lorentz and Planck. This agrees with Duhem’s profound dislike for
hidden motions of hypothetical masses.

Duhem is one of the most prolific authors in his period of activity (roughly
1880–1915); he published twenty-two books in forty-five separate volumes, as
well as nearly 400 articles and book reviews in scientific and philosophical
journals [56]. He corresponded with about 500 correspondents in all scientifically
active countries during his life. His outstanding production can be divided in three
large fields: phenomenological physics (elasticity, acoustics, electromagnetism,
and physical chemistry—which he usually calls ‘‘theoretical physics’’ and would
probably be better designated nowadays as ‘‘mathematical physics’’ because of its
definitely marked style), epistemology and philosophy of science, and history of
science (with an emphasis on old cosmology—view and explanation of the
world—and the sciences of the Middle Ages). Practically, no actual scientist can
peruse the whole of this multi-faceted production, because we do not—and can-
not—have the vast knowledge and cultural education of these late nineteenth-
century scientists.

For the curious reader, we mention that several biographies of Duhem have
been written, some hagiographic, some more reasonably scholarly but also biased
by some religious and philosophical vision: e.g. Ariew [2], Brouzeng [9], Humbert
[39], Jaki [40] and Pierre-Duhem [59]. But to know him better from the scientific
viewpoint which is our main concern, we shall mostly refer to the eulogy by Picard
[58] and the thorough review of Duhem’s work on physics by Manville [47].
Picard was a pure mathematician but with a good understanding of Duhem’s
works. Manville was a direct disciple of Duhem in Bordeaux; he is sometimes
much clearer than Duhem himself. To this we must add Hadamard’s [36] kind
appraisal of Duhem’s contributions to mathematics.
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10.2 On Duhem’s Style and General View of Science

Here, we can only focus on some aspects of his works on phenomenological
physics although one cannot avoid acknowledging the inevitable interrelations
between his physics and his epistemological views (his religious opinions and
political views, strongly as they may have been expressed and so much influential
on his life and vision of the world, are to be left out). Even such a limited perusal is
difficult for several reasons: an obvious one is that science and more particularly
physics was not written in Duhem’s time as they are written now. A second reason
is that Duhem, in particular, writes in a very literary (sometimes verbose) style,
making extremely long sentences and involving much repetition. He makes an
abusive use of semi-colons (as shown in the texts that we translated in the
Appendices; Note that this was in the fashion of the time if you consider with
sympathy Proust’s style). This makes it difficult to follow some of the expanded
arguments.

But above all, Duhem, being a pioneer in the field he develops, introduces new
words and expressions that have not necessarily passed in our own scientific
vocabulary. In what follows, we have to face expressions used in a nonconven-
tional manner such as ‘‘mechanics’’ (when he means a phenomenological theory
involving in some sense the notion of ‘‘motion’’), ‘‘doctrines’’ (where he means
types of approach, or simply theories), ‘‘motion’’ (by which he means not only
classical local motion but also alterations such as during the fusion of ice, or phase
transformations), ‘‘velocities’’ (sometimes meaning reaction rates), and ‘‘false
equilibria’’ (that are his own invention). ‘‘Gibbs’ or Helmholtz’ mechanics’’ does
not necessarily refer to mechanics in our accepted sense. Thus some interpretation
is necessary. Many of his statements would have been much better expressed with
few mathematical symbols. But it happens that Duhem’s physics was ahead of the
mathematics that would have been best fitting. Duhem was a classical analyst, by
what we mean someone trained essentially for dealing with standard ordinary and
partial differential equations. He was missing our present knowledge (that is still
by force limited) in differential geometry, functional analysis, dynamical systems,
and convex analysis. Many of the questions he raised and the horizons he opened
would find an answer and a broadening in these fields of mathematics, as amply
proved by successful developments in the rational mechanics of continua in the
second part of the twentieth century (see [54, 66, 67]).

In the philosophy and methodology of science Duhem wrote two remarkable
books, one on the Aim and Structure of Physical Theory (original French—Duhem
[25, 26]) and the other with a title repeating Plato’s moto ‘‘To save the phenom-
ena’’ (original French—Duhem [27]—with Greek title). In the first of these he
exposes at length the under determination of theory by fact, the rejection of
metaphysics and models (as used by, e.g., Kelvin and Maxwell in the UK and
Boussinesq in France), and natural classification, rather than explanation, as the
very object of physical theory (this can be discussed); according to Duhem, ‘‘a
physical theory is not an explanation; it is a system of mathematical propositions
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which has for aim to represent, as simply, completely and exactly as possible an
example of experimental laws’’.

The contents of the second book are clearly explained by its title. Science is
elaborated so as to ‘‘save the appearance’’ of actually occurring phenomena; its
formulas should not contradict experience. This is the only good criterion of truth.
This vision is close to true pragmatism and is not so far from Poincaré’s con-
ventionalism. Metaphysics is foreign to pure science. All this had a definite
influence on Duhem’s own science, the development of which he sees with a high
degree of continuity, and as a collective enterprise. This last point justifies his
constant use of the plural (collective and not ‘‘royal’’) ‘‘we’’ and not the personal
‘‘I’’, referring [29] appropriately to a citation from Blaise Pascal’s Pensées.1

About pragmatism, we should ponder the words of Miller [56]: ‘‘While for
other doctrines a new truth is a discovery, for the pragmatic scientist, it is an
invention’’.2

For our main concern in this contribution, the most relevant writing of Duhem
is the one on the ‘‘evolution of mechanics’’ [24]. In one chapter of this opus,
Duhem examined what, at the time, he called the ‘‘nonsensical’’ branches of
mechanics. What he means by this somewhat eccentric expression are the fields of
physics, mechanics and electromagnetism that do not fit yet in his general
framework of thermodynamics. It is interesting to note the list of these fields to
which we shall return in Sect. 10.4: so-called false equilibria, friction, hysteresis
phenomena, and electro-magnetic theory in materials. These are precisely dissi-
pative phenomena such as thermodynamically irreversible reactions, plasticity,
visco-elasticity, memory effects, etc. Now looked upon with our present knowl-
edge, this sounds like a tentative proposal of research programme for the next
generation, something quite equivalent in its own field to the Erlangen program
(1872) of Felix Klein in geometry and the list (1900–1902) of unsolved—at the
time—problems proposed by David Hilbert in pure mathematics—that in fact
included the axiomatization of the whole of physics—in particular, Mechanics—as

1 In the original French: «Certains auteurs, parlant de leur Ouvrages, disent: mon livre, mon
commentaire, mon histoire, etc.… Ils sentent leurs bourgeois qui ont pignon sur rue, et toujours
un «chez moi» à la bouche. Ils feraient mieux de dire: notre livre, notre commentaire, notre
histoire, vu que d’ordinaire il y a plus en cela du bien d‘autrui que du leur». In translation:
‘‘Certain authors, in speaking of their works, say: my book, my commentary, my history, etc.
They smack of these bourgeois homeowners, with ‘‘my house’’ always on their lips. They should
rather speak of: our book, our commentary, our history, etc., since, generally speaking, there is far
more in them of others than of their own’’ (cf. [29], in translation).
2 It is interesting to ponder the confusion between ‘‘discovery’’ and ‘‘invention’’. Usually,
‘‘discovery’’ refers to finding (un-covering) something that pre-existed (e.g., the laws of physics)
while ‘‘invention’’ refers to something entirely new (essentially in technology). But in French law
the person who ‘‘discovers’’ by chance a treasury (say a box full of old gold coins) is legally
called the ‘‘inventor’’ (and not the ‘‘discoverer’’) of this treasure! But the ‘‘un-covering’’ relates to
something that was hidden. Think of the first view of the hidden face of the moon, once the
human kind could go around the moon. Of course, the so-called hidden face existed before! Was
it ‘‘discovered’’ or ‘‘invented’’? This is a conundrum that we propose to the reader.
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Problem no. six. We shall focus on this specific point, providing the reader with
partial English translations of the above referred to text and of the introduction to
his magisterial treatise on energetics (cf. Appendices A and B).

10.3 Some of Duhem’s Creative Works
in Thermo-mechanics

Nowadays Duhem is still the subject of many studies in epistemology and phi-
losophy of science in spite of his neglect or belittling by well known historians and
philosophers of science such as Clagett [11], Koiré [43], Bachelard [3–5] (and his
‘‘epistemological fracture’’), and Kuhn [44] (and his ‘‘paradigm shift’’)—all more
or less partisans of a ‘‘discontinuous’’ evolution of science. In contrast, his hard
science is seldom explicitly discussed, either because its main interest was not
captured or because it is implicitly accepted and therefore no longer referred to in
detail. Duhem is mostly recognized as one of the creators of physical chemistry
(with Gibbs) and a forceful contributor to energetics, placing the works of William
J. Macquorne Rankine (1820–1872) [61], Rudolph Clausius (1822–1888), Herr-
mann von Helmholtz (1821–1894), Ernst Mach (1838–1916) [46], and Wilhelm
Ostwald (1853–1932) at the top of his list of favourite sources and/or competitors.
Duhem’s view on the unifying role of energetics or general thermodynamics in all
of physical sciences (mechanics, electricity and magnetism, heat, etc.) is masterly
but quite lengthily expanded in his treatise on ‘‘energetics’’ or ‘‘general thermo-
dynamics’’ [28] which he wrote as some kind of definite treatise. This, as we shall
see, has a strong flavour of axiomatic nature that will influence Clifford A.
Truesdell and his followers in the 1950s–1960s.

10.3.1 Physical Chemistry

Duhem is undoubtedly one of the creators of physical chemistry and thermo-
chemistry together with Gibbs, van t’Hoff, Ostwald, and Arrhenius. Gibbs and
Duhem corresponded; Duhem [16] wrote the first critical analysis of the Gibbsian
theory [34] of equilibrium of heterogeneous substances, and one of Duhem’s
doctoral students came from the USA to pursue the Gibbs-Duhem line, a suffi-
ciently rare fact at the time to deserve being underlined. This culminated in the
labelling of a fundamental law for solutions as the Gibbs-Duhem equation. Fol-
lowing Helmholtz and F. J. D. Massieu (1832–1896)—an altogether too much
neglected scientist (but see Massieu’s fundamental work of 1869 [48])—Duhem
makes a systematic use of the notion of potential—or characteristic function—
where (according to [56, p 229]) ‘‘others were still using osmotic pressure as a
measure of chemical affinity and using artificial cycle to prove theorems’’.
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One of Duhem’s fruitful ideas was to consider reactions rates as (generalized)
velocities; this yielded the notion of thermodynamic variables having no inertia,
hence governed by first-order differential equations in time, and in the end
resulting in forces proportional to the ‘‘velocity’’, a much Aristotelian sounding
concept in the view of many. Inspired by the rational mechanics of John Bernoulli,
d’Alembert and Lagrange, he could then apply the general notion of virtual
variations and virtual work not only in physics but also in chemistry. This also led
Duhem to use the expression ‘‘motion’’ for so many evolving situations and that of
‘‘mechanics’’ for many physical alterations. It is in this sense that one must
interpret Duhem’s general expressions such as ‘‘Gibbs’ mechanics’’ [i.e.,
‘‘chemical mechanics’’] and ‘‘Helmholtz’ mechanics’’ (see the frequent use of
these expressions in Appendices A and B below). But the appropriate introduction
of potentials allowed Duhem—by analogy with rational mechanics—to envisage
the importance of the problem of maxima and minima in the study of the stability
of chemical equilibria. In his typical generalization and application of concepts in
various branches of knowledge Duhem did not hesitate to introduce this notion of
stability in epistemology while commenting on problems of instability studied by
Hadamard.

Duhem was generous in the diffusion of his views in physical chemistry. His
first opus on the subject [15] is an epoch making one—although he was still an
assistant at the ENS in Paris. He also wrote a short introductory course [19],
‘‘elementary’’ lessons for chemists [23], and a so-called ‘‘elementary’’ treatise of
chemical mechanics, based on thermodynamics (in four volumes, Duhem [21]) for
a total of more that 1,400 pages and dealing with all aspects of the subject
(including the continuity of liquid and gaseous states, the dissociation of perfect
gases, vaporization, homogeneous solutions, dissolutions, two-component mix-
tures, and heterogeneous systems).

10.3.2 Fluid Mechanics, Viscous Fluids

Usually Pierre Duhem is not remembered as a contributor to fluid mechanics. But
this vision is erroneous. As a matter of fact, he was instrumental in developing
some critical points (cf. First volume of Duhem [17]). Among these we note: (1) in
the case of nonviscous fluids, problems of hydrodynamic stability with the first
application of general theorems going further than Lyapunov and Hadamard, and
the problems of buoyancy with much improvement over the former analysis of
Bouguer, Euler, and Abbé Bossut; here also Duhem applies the notion of virtual
displacement to the problem of the stability of floating bodies going further than
the analysis by Lagrange and Lejeune-Dirichlet; (2) in the case of viscous fluids,
Duhem paid special attention to the possible propagation of waves. Some time
before, Christoffel and Hugoniot had given a precise definition to the notion of
waves. J. Hadamard [35] perfected the approach by defining (the order of) a wave
front in terms of the quantities that are continuous—so-called invariants across the
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front—or discontinuous across them. For perfect compressible fluids this yields the
two longitudinal and transverse waves. But Duhem, a passionate of thermody-
namics, clearly specifies the various possible conditions whether the fluid is heat
conductor (velocity according to Newton) or not (in which case it is Laplace’s
formula that applies). This he extended to discontinuity waves of any order (in the
classification of Hadamard).

But the main discovery of Duhem in this field is that no true discontinuity wave
can propagate in a viscous fluid; shock waves in the sense of Riemann cannot
exist. Accordingly, what we can observe in air (a slightly viscous fluid) are not true
discontinuity waves with vanishing thickness across which the derivatives of the
velocity would vary abruptly, but are in fact extremely thin layers, that Duhem
calls ‘‘quasi-waves’’ (nowadays we say ‘‘structured shock waves’’) across which
the velocity varies very rapidly although continuously. E. Jouguet (1871–1943), a
direct disciple of Duhem, then showed that an almost sudden increase of entropy
takes place through this layer. All this input in the theory of fluid mechanics is well
abstracted by Duhem [29] himself in his notice written a few years before his
untimely death. He also introduced the notion of what we now call contact
discontinuities.

Finally, it is generally forgotten that it is Duhem who proved the celebrated
inequalities to be satisfied by the viscosity coefficients k and l of Navier-Stokes
equations (3k ? 2l C 0, l C 0) the same year as Stokes, from the non-negativity
of the corresponding dissipation.

10.3.3 Deformable Solids

Duhem is probably better known in solid mechanics than in fluid mechanics. A
reason for this may be the direct influence he had on some well known contem-
poraries such as Poincaré and the Cosserat brothers [13] (see also Hellinger [38]),
and the fact that he was much interested in large deformations, the study of which
had a tremendous development some 50 years later on.

When Duhem reports his investigations in elasticity he is aware of, and praises,
the main works by George Green, G. Kirchhoff, W. Thomson (Lords Kelvin), W.
Voigt (considering isothermal and adiabatic deformations), and J. V. Boussinesq
on elements of nonlinear elasticity; the Cosserat brothers have formulated a rig-
orous theory (1896), and Hadamard has applied it to obtain a beautiful theorem—
Duhem’s words [29, p. 100]—concerning wave propagation. Thus Duhem ‘‘kept
alive a correct finite elasticity inspired by other workers’’ [56]. In the course of
these works, Duhem was the first to study the relationships between waves in
isothermal and adiabatic finitely deformed systems without viscosity. Again, the
specific interest of Duhem in thermodynamic properties led him to establish
conditions of stability and those of the existence of waves (in the sense of Had-
amard): no true shock waves can exit in the viscous non-linear thermo-elastic
bodies (a result already shown in viscous fluids; see above). In these studies he is
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also led to introducing the notion of ‘‘ondes-cloisons’’ [‘‘partition (-wall) waves’’,
GAM] through which there is no exchange of matter. These waves are similar to
contact discontinuities (no discontinuity in the velocity). They separate the volume
of the considered body into cells, so that Duhem notes their resemblance with H.
Bénard’s cells in a fluid where large differences in temperature generate convec-
tion currents and the formation of cells. All this is well documented in notes
published in the Ann. Ecole Normale Supérieure between 1904 and 1906, but also
in the collection of papers gathered in his book on ‘‘Researches in elasticity’’
(Duhem [25, 26]; fourth part on waves in viscous and non-viscous media), while
his first works in elasticity are presented in the second volume of Duhem [17]
which reproduces courses he delivered early in his career in Lille.

Solids in plastic deformation are dissipative with possible permanent alterations
and hysteresis. This will be briefly examined in Sect. 10.4 below.

10.3.4 General ‘‘Thermo-mechanics’’ and Thermodynamic
Potentials

The general attitude of Pierre Duhem towards what we now call «thermo-
mechanics»—emphasizing thus the intimate relationship between thermodynamics
and the rational mechanics of continua—is the extensive use of the notion of
potential.

First among his contribution was his complementary study of Gibbs’ relation
that is now known as the Gibbs-Duhem equation: this thermodynamic relationship
expresses changes in the chemical potential of a substance (or mixture of sub-
stances in a multi-component system) in terms of changes in the temperature h and
the pressure p of the system. The chemical potential l represents the Gibbs’ free
energy per molecule of the substance; the change in l is the amount of energy per
molecule available to do work for a process such as in a chemical reaction at
constant temperature and pressure. The celebrated Gibbs-Duhem equation reads
thus:

N dl ¼ �S dhþ V dp;

where N is the number of molecules of the substance, S is the entropy of the
system, and V is the volume. This equation follows from a combined application of
the first and second laws of thermodynamics. In practice, it means that if the
chemical potential is known for each substance under one set of conditions, then
this equation can be integrated to find the corresponding chemical potential under
a different set of conditions. A modern application would be the evaluation of the
amount of energy that a car battery can deliver. The relationship is thus of uni-
versal application if we account for the rich variety of useful chemical reactions.

The other applications of the notion of potential are more subtle. First, fol-
lowing Helmholtz, and also Massieu [48], Duhem recognized the importance of
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the notion of characteristic function, or potential. Also in the path of Helmholtz,
Duhem enforced the notion of normal variables of state, according to which
entropy is given a special status among the list of independent variables appearing
in the relevant potential (nowadays, the internal energy) [this distinction is of
importance if we remember that the dual of entropy is none other than the ther-
modynamic temperature, obviously a very original quantity].

Among the other notions of potential considered by Duhem, we must single out
those of ‘‘internal thermodynamic potential’’ (equivalent to the potential in
rational mechanics), ‘‘available energy’’ (useful energy according to Kelvin and
equal to the free energy of Helmholtz), ‘‘ballistic energy’’ (cf. [29, p. 87])
(practically equivalent to the modern notion of total potential energy) with the
related problem of minimization, and that of ‘‘oeuvre’’ (in fact, total energy).
Duhem is one of the first to define heat in terms of energy and work [both
Caratheodory, and also Born [6] will follow along this line].

Concerning thermo-mechanical variables, Duhem introduced the notion of
variables exhibiting no inertia, and thus to be governed by differential equations of
the first order in time. In Duhem’s own words, chemical ‘‘mechanics’’ is the
typical domain of application of this concept. Although this smells of some
Aristotelian mechanics (‘‘force’’ proportional to the ‘‘velocity’’—i.e., rate of
change), this will have a glorious descent with the modern notion of internal
variable of state (See Sect. 10.5 below). Anyhow, most of these notions, with some
unavoidable evolution in the employed vocabulary, permeate the whole of modern
continuum thermo-mechanics (cf. [53]).

10.3.5 Contributions to Mathematics

This is just to complement the preceding paragraphs. Hadamard, a friend of Du-
hem, wrote a very kind and obviously benevolent appraisal of Duhem’s contri-
butions to mathematics (cf. [36]). Of course, he does not claim that Duhem is a
creative mathematician because Duhem did not create new mathematical concepts,
and his mathematics is that of the field of differential and integral calculus (i.e.,
standard analysis); but Duhem was aware of the recent developments in the field,
in particular concerning problems of maxima and minima, e.g., a certain famil-
iarity with Lyapunov’s studies.

What is most characteristic of Duhem is his mathematical style, in a line that will
yield the formulation of mathematical physics in the twentieth century, and provide
inspiration to some members of the community of rational continuum physics
(including the present writer in his youth). Hadamard, but also Picard [58],
emphasizes the rigour given by Duhem to theorems in elasticity, thermo-elasticity,
and general theorems for Navier-Stokes fluids and the finite elasticity in (Kelvin-
Kirchhoff-Neumann) bodies. As noticed by Miller [56], ‘‘No wonder that Duhem’s
contemporaries often remarked that many of his papers opened with the barest of
assumptions followed by a series of theorems, with little motivation for the proposed
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‘‘axioms’’ and hardly any appeal to experiment’’. This style was going to influence a
whole school mainly in the USA (cf. [54], Chap. 5, and Sect. 10.5 below). On a more
trivial level, it is relevant to note that Duhem was the first good exploiter of Euler’s
theorem on homogeneous functions in physics. This also will prove useful later on,
especially in the thermo-mechanics of elasto-plasticity (cf. [50]).

10.4 Short Analysis of Some Exemplary Writings

For the purpose of illustration and test of our understanding of Duhem’s style of
writing, we consider in greater detail two of his works for which we provide partial
translations into English (Appendices A and B) [Some comments are directly
inserted in the text of the English translation, within square brackets].

10.4.1 On the General Treatise on Energetics

First, as an unavoidable obligation, we consider the introduction to Duhem’s
formidable treatise on energetics of 1911 (Appendix A below). It is no question to
envisage a full translation of the whole treatise (a seldom read opus in any case)
that would provide a rather dull and boring reading to most modern readers who,
anyway, do not have the keys to decipher the code of Duhem’s specific vocabu-
lary. As we see it, this introduction defines clearly the aim of the treatise by
shedding light on its main purpose. It recalls the objective followed by what
Duhem calls ‘‘theoretical physics’’ [this is not our current assumption of the term]:
From given physical data, extract new physical laws. It emphasizes the prevailing
role played by general principles, for instance, the principle of conservation of
energy and the principle of Carnot [a primitive form of the second law for heat
machines]. Duhem reminds the reader that Rational Mechanics was for a long time
the basic ‘‘code’’ for the general principles of physics. But he wants to account, not
only for changes in the local motion of objects and in their geometrical form [this
was the subject matter of rational mechanics], but also for changes in other
‘‘qualities’’ or states exhibited by material bodies. This includes thermal, chemical
and electromagnetic ones, indeed all what is now the object of phenomenological
physics.

The ideal frame for such a global vision is provided by energetics (in the sense
of Macquorne Rankine who provided an outline of this general framework
Rankine [61, 62]) or, in other words, general thermodynamics [a term clearly
preferred by Duhem] since all physical effects, whatever, must comply with the
two basic laws of thermodynamics. Later on, the local form of the second law will
be called the Clausius-Duhem inequality by Truesdell and his followers, putting
thus Duhem on an equal footing with Clausius, the true creator of the second law.
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Then Duhem, following his philosophical and epistemological inclination, cannot
avoid specifying his views on the relationship between theory and experiments:
‘‘theoretical physics’’ remains free of choosing its own path (see Duhem’s [25, 26]
‘‘Aim and Structure of Physical Theory’’), the relevant principles remaining
themselves without logical support, but nonetheless with a historical one.

The reader will find in Capecchi [10, Sect. 18.1]) a brief but deeply thought
analysis of the contents of the first part (first ‘‘tome’’, devoted to non-dissipative
systems) of Duhem’s treatise. This we shall not repeat, noting simply that
Capecchi attempts to define what Duhem understands by the rather unclear notion
of ‘‘oeuvre’’ (in this author’s translation, ‘‘activity’’): essentially a generalization
of mechanical work.

10.4.2 On the Evolution of Mechanics

The second work of Duhem that deserves a closer examination is his series of
papers on the Evolution of Mechanics because, on the one hand, it is normally
written for the layman [we would rather say the enlightened amateur], and on the
other hand, it poses queries that will have to be answered in the future. This series
of papers was an immediate success with early translations into Polish and German
[but the first English translation had to wait for more than seventy years, thus
showing the distance between British physics and Duhem’s one]. We provide in
Appendix B our own English translation of essential parts of Chapter VII of this
opus. The whole of this series provides pleasant and informative reading but with
the charm of an old-fashioned style.

In Chapter I Duhem presents the various kinds of mechanical explanations with
the identification of Aristotelian, Cartesian, Newtonian, and Leibnizian view-
points. Chapter II is devoted to analytical mechanics with due consideration of
virtual velocities, d’Alembert, Lagrange, Poisson, Boscovich, Navier, Cauchy, and
Gauss. Chapter III is devoted to the mechanical theories of heat and electricity
including the essential contributions of Clausius, Helmholtz, Boltzmann and Gibbs
for the theory of heat, and of Faraday, Maxwell and Helmholtz for electromag-
netism. We have dealt with Duhem’s preference of Helmholtz’ approach over that
of Maxwell in Maugin [52]—also Chap. 7 in this book. Chapter IV deals with
atomism and what Duhem calls the return to Cartesianism. In this line he cites
William Thomson (Kelvin), Maxwell, Heinrich Hertz, Boltzmann, and Bous-
sinesq, a line for which he shows no great sympathy (cf. his harsh criticism of the
use of mechanical models). In contrast, he sketches the foundations of thermo-
dynamics in Chapter V, rendering full justice to Macquorne Rankine. Here he
emphasizes the fact that ‘‘it is possible to speak about physical quantities in the
language of algebra’’ (p. 301). It is here that he introduces the notion on virtual
variation (‘‘modification’’) applied to all kinds of physical quantities, as also the
general notion of alteration (e.g. change of state) generalizing thus the notions of
‘‘motion’’ and ‘‘equilibrium’’ to non-mechanical concepts. The conservation of
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energy and the relationship between work and quantity of heat are underlined.
‘‘Reversible’’ modifications are then considered and the limitations brought by the
Carnot principle (positive sign of the external work during a cycle) complete this
magisterial vision.

Chapter VI on general «statics» and «dynamics» is central in that it defines
what Duhem usually calls ‘‘Gibbs’ mechanics’’ and ‘‘Helmholtz’ mechanics’’. It is
badly needed to understand the more thought-provoking last chapter. Advocating
the consideration of normal variables of state because the latter provide the sim-
plest formulation of thermodynamics, Duhem rightly emphasizes the role of the
characteristic function of Massieu. This is—in varied naming—the ‘‘available
energy’’ for Gibbs and Maxwell, the ‘‘free energy’’ for Helmholtz, and the
‘‘internal thermodynamic potential’’ for Duhem. From this quantity one can
deduce the necessary and sufficient conditions for a system to remain in equilib-
rium under the action of external bodies maintained at the same temperature as this
system. Accordingly, the mathematical form of this assertion is obtained by
considering a virtual modification that does not change the temperature. This is in
the spirit of Lagrange’s variations. With F denoting the free energy and A the
external action, this equilibrium condition for a normal variable a typically reads

A ¼ oF

oa
: ð10:1Þ

Both spirit and methods of Lagrange’s statics have been transferred to this
Gibbsian formulation, including, if necessary, the introduction of side conditions
(mathematical constraints). Its fertility is most obvious in the study of qualitative
properties such as in electricity and magnetism. Its greatest success, however, was
in the theory of chemical mixtures with the proposal of the rule of phases by Gibbs
himself. With Eq. (10.1), thermodynamics acquires a large extension, much
beyond the mechanical aspects envisaged by Lagrange. In particular, it allows one
to determine calorific properties. This follows from the fact that once we know the
internal potential of a system, then we can compute its internal energy. Further-
more, an infinitesimally small reversible modification is none other than a virtual
modification issued from an equilibrium state. The heat produced in this operation
can be determined from the internal potential, and divided by temperature, it
(Clausius) provides the associated decrease in entropy (i.e., dS = dQ/h).

Equation (10.1) will be completed by an ‘‘acceleration term’’ Ja if the state
variable a is endowed with an appreciable inertia and the system is in ‘‘motion’’
[meaning in general by this an ‘‘evolution in time’’]. This ‘‘dynamics’’ would be
obtained by applying d’Alembert’s principle. But there may also exist viscous
phenomena which make that, in the absence of inertia, return to equilibrium is
delayed [This is akin to relaxation]. These viscous effects will always result in a
non-negative working in any real evolution. This is locally written as -vada C 0
with the sign convention of Duhem for ma. With both inertia and viscosity—
represented by a term ma—Eq. (10.1) is replaced by
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Aþ Ja þ ma ¼
oF

oa
; ð10:2Þ

remembering that this is strictly valid only for a constant temperature. This is
Duhem’s elaboration of ‘‘Helmholtz’ mechanics’’ with further works in Krakow in
Poland by Władysław Natanson (1864–1937; see [63]) in the period 1896 on. In
Eq. (10.2), we must reckon that Ja will involve second-order time derivatives,
while the ‘‘viscous’’ contribution ma will depend, not only on temperature, but also
on the generalized velocity associated with variable a. The problem of initial
conditions is therefore posed. The latter reduces to knowing only the initial state if
the normal variable a has negligible inertia. Such variables are extremely
important in many chemical systems or systems exhibiting material changes (e.g.,
phase transformations).

But the information contained in the above exposed principles and equations is
insufficient to solve the whole dynamical problem at hand. The needed additional
relations are based on the computation and sign of the produced heat and resulting
entropy change. This is nothing but the celebrated Clausius inequality that will
later be known as the Clausius-Duhem inequality. To end with this chapter, it is
natural, as done by Duhem, to ask what is the relationship of (10.2) with the
equation governing the kinetic energy (the ‘‘living force’’ in the old vocabulary)?
We can think of multiplying all terms in (10.2) by an infinitesimal change in a, i.e.,
da. This will yield

�dKa þ Adaþ mada ¼ oF

oa
da; ð10:3Þ

remembering that Ka is the kinetic energy associated with a, -dKa is the decrease
in kinetic energy, and the partial derivative of F was computed at constant tem-
perature so that the right-hand side of (10.3) is not the full variation of F. It is this
remark that made Duhem introduce the notion of useful energy. Indeed, we can
rewrite (10.3) as

dKa � Ada ¼ �dF � Sdhþ mada; ð10:4aÞ

or

dKa � Ada ¼ �dE þ hdSþ mada; ð10:4bÞ

with

S ¼ � oF

oh
; E ¼ F þ Sh: ð10:5Þ

The first of these is the definition of entropy, while the second introduces the
internal energy. Duhem calls the left hand side of (10.4a) or (10.4b) the variation
of useful (available) energy U. We see that U is none other than F for isothermal
evolutions (dh = 0), and none other than E for isentropic evolutions (dS = 0),
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both in the absence of viscous effects. If we remember that -vada C 0, then we
also see that (10.4a, b) yields3

�mada ¼ Ada� d Ka þ Fð Þ � Sdh� 0 ð10:6aÞ

or

�mada ¼ Ada� d Ka þ Eð Þ þ hdS� 0: ð10:6bÞ

The notion of useful energy receives its whole importance in discussions
relating to the stability of an equilibrium state where isothermal and isentropic
stabilities are quite different. According to Duhem, it is a postulate due to
Helmholtz (‘‘the heat capacity is positive in all systems’’) that resolves the matter.

10.4.3 On Permanent Alterations and Hysteresis

Now we can have a closer look at Chapter VII of Duhem’s ‘‘Evolution of
Mechanics’’ for which we give a partial English translation in Appendix B below.
This offers a direct continuation and generalization of the contents of Chapter VI.
This chapter is quite ahead of its time and introduces queries than could not find an
answer in the early twentieth century. But, altogether, we can say that Duhem is on
the right track by underlining some branches of mathematical physics which, at the
time, appear more or less as nonsensical (‘‘aberrantes’’), i.e., not yet fully absorbed
in the general science of energetics. We shall concentrate on four kinds of phe-
nomena: friction, false equilibria, permanent alterations, and hysteresis phenom-
ena, leaving aside the case of electromagnetism to which we have contributed
many research works and several books certainly in a perspective that Duhem
would have appreciated [33, 49, 55] since entirely based on a thermo-mechanical
vision.

The phenomena of interest are precisely dissipative ones such as thermody-
namically irreversible reactions, plasticity, visco-elasticity, and memory effects.
The first section of this chapter concerns friction and chemical false equilibria. If

3 In modern continuum thermo-mechanics, a transcription of these two equations for a whole
body B reads (cf. [50], p. 39, Eqs. 2.54 and 2.55):

Uintr ¼ Pext �
d

dt

Z
B

1
2
qv2 þ F :; h0ð Þ

ffi �
dv� 0 ðNaÞ

and

Uintr ¼ Pext �
d

dt

Z
B

1
2
qv2 þ F :; S0ð Þ

ffi �
dv� 0 ðNbÞ

for isothermal and isentropic transformations, respectively. Here Uintr is the total intrinsic dis-
sipation and Pext is the power expanded by external forces.
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friction is an easily comprehended phenomenon, the phenomenon of false equi-
libria—an expression coined by Duhem—is difficult to grasp; perhaps that they
should better be called quasi-stable equilibria. In order to introduce this notion,
Duhem first clearly defines the notion of reversible changes and then, by way of
examples, the theory of mixtures and friction, he develops the notion of false
equilibrium (see below) for which a new ‘‘mechanics’’ (he means thermo-
mechanics) is needed. For this one must go farther than Gibbs and Helmholtz who
exploited the notion of potential. This will ultimately yield the idea of irreversible
changes. This irreversibility is defined by negation of reversibility. Miller [56,
p. 228] says that Duhem gave ‘‘the first precise definition of a reversible process;
earlier versions by others (unfortunately often preserved in today’s textbooks) are
too vague’’…‘‘The reversible process between two thermodynamic states A and
B of a system is an unrealizable limiting process. The limit of the set of real
processes for getting from A to B is obtained by letting the imbalance of forces
between the system and the surroundings at each step tend toward zero. Each
member of this set of real processes must pass through non-equilibrium states, or
else nothing would happen’’. Duhem also emphasizes the relative appraisal of
what is a state of equilibrium. We now return to his original text, p. 418.

To illustrate his discussion, Duhem considers a thermodynamic system with only
one normal variable of state, say a. We remind the reader that the notion of normal
variable of state was introduced by Duhem following an idea of Helmholtz: a system
of normal variables of state va in the functional dependence of internal energy
density E does not include entropy g which, serving to define temperature, is con-
sidered as a very special variable, i.e., E = E(g, va); in terms of the free energy, this
endows the thermodynamic temperature with a special status and we shall write
F = F(h, va). The action of friction—to which we are naturally accustomed—is
always positive (with the sign convention of Duhem) and ‘‘will depend, just like the
action of viscosity, on the absolute temperature, the variable a, and the generalized
velocity _a ¼ da=dt’’. However, contrary to what happens for viscosity, ‘‘it will also
depend on the external action A’’. Also, ‘‘it will not vanish with the generalized
velocity; the latter going to zero, the action of friction will tend to a positive value g’’.
The additional term to be added to Eq. (10.2) above—written for a—will have a sign
that depends on the sign of the generalized velocity. We can summarize Eqs. (10.3)
and (10.4b) of Duhem in the single equation:

Aþ J þ v� sign _að Þf ¼ oF

oa
: ð10:7Þ

With the same working hypotheses, the corresponding equilibrium condition
‘‘will no longer be represented by an equality, but by a double inequality that
expresses that the absolute value of the difference A - qF/qa is not larger than g’’,
i.e., [Eq. (5) in Duhem]

A� oF

oa

����
����� g: ð10:8Þ

10.4 Short Analysis of Some Exemplary Writings 163



Here Duhem says only a few words on the equation of living forces [equation of
kinetic energy], noting that ‘‘it is only necessary to add the work of friction to the
work of viscosity. The former, like the latter, is always negative. We also do not
deal with the Clausius-inequality which remains exact in the new dynamics. Here
also, the work of friction is just being added to the work of viscosity. Other
consequences of the laws just formulated, and more particularly the condition of
equilibrium, will require a little more attention.

Now, Gibbs’ statics, as recalled above, ‘‘would require the difference A - qF/
qa to vanish, and therefore having [this is a truism] value between -g and +g. The
equilibrium states predicted by this Statics, and that are usually called states of true
equilibrium, are thus among those that are predicted by the new Statics; But the
latter announces the existence of an infinity of other equilibrium states, that we
designate by the name of false equilibria’’. Citing Duhem in our translation: ‘‘If the
value of g is large, then the states of false equilibrium spread on both sides of those
of true equilibrium, in a large domain. They will shrink close to the states of true
equilibrium whenever the value of g is small. If this value becomes sufficiently
small, then the states of false equilibrium will be so close to those of true equi-
librium that experiments would no longer distinguish them; practically, the Statics
of systems with friction would be undistinguishable from Gibbs’ statics’’. We can
say with Duhem that ‘‘Gibbs’ Statics and Helmholtz’ Dynamics are limit forms of
the Statics and Dynamics of systems with friction; these tend to those when the
action of friction becomes infinitesimally small’’. This remark is not a simple view
of the mind; it acquires a particular interest in the study of chemical equilibria.
This will be exploited by E. Jouguet in his theory of explosions. But Duhem also
tries to illustrate his notion of false equilibrium by some mechanical example, such
as the possibility, when considering the problem of the possible rolling of a small
ball down a rough hill, that in addition to the true equilibrium at the top of the hill,
the small ball may stop for short instants along the rough slope. But in the rest of
this section Duhem expands a better example from chemical physics. Miller [56,
p. 230] rightly comments that ‘‘real false equilibria can also be considered as
instances of extremely slow reaction rates’’. This seems to be the viewpoint
adopted nowadays.

Section II of this chapter rings a more familiar bell to our ears, for it deals with
permanent ‘‘alterations’’ and hysteresis effects that may be closer to our own
plasticity, visco-plasticity and creep concepts. Here Duhem first gives a general
idea of what permanent alterations are. He emphasizes the role of infinitesimally
slow evolutions, adapting in accordance temperature and external actions. Again,
one must go beyond Gibbs’ statics and Helmholtz’ dynamics. That is, one must
elaborate on the generalization of Eq. (10.2) or its incremental form that seems to
be more appropriate. More precisely, Duhem discusses the possible generalization
of the following incremental form that follows from equilibrium [Eq. (10.1)]

dA ¼ d
oF

oa
: ð10:9Þ
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Here we remind the reader that qF/qa is computed at constant temperature while
noting that systems exhibiting permanent alterations (e.g., residual strains) are
quite different from those exhibiting viscosity [but in modern thermo-mechanics
we also envisage a mix of the two effects as visco-plasticity]. The permanent
alterations envisaged by Duhem are exhibited when an unloading (decrease in the
‘‘cause’’) following a loading, does not bring the system back to its initial virgin
state. We must thus distinguish between the two possibilities of the incremental
law that will generalize (10.9) depending on whether we are increasing or
decreasing the ‘‘cause’’. For sufficiently slow evolutions, Duhem proposes to
generalize (10.9) by [cf. Duhem’s Equations (7) and (7b)]

dA ¼ d
oF

oa
þ h sign dað Þ daj j; ð10:10Þ

where the quantity h may still depend on the state of the system and also on the
external action A. Equation (10.10) may seem to be both enigmatic and ad hoc to
most readers. It is however in direct line with mathematical works on hysteresis of
the 1970s–1990s (see [7, 51]). To find more elaboration by Duhem on (10.10) and
applications one should consult the original works of Duhem published in 1901 in
a rather odd place (Belgium). Here Duhem is satisfied with the cases of defor-
mations, residual magnetization, magnetic hysteresis, and analogous properties for
electric polarisation in dielectrics. Duhem emphasizes the interest of his consid-
erations in metallurgical treatments (tempering, annealing, etc.). But much more is
also to be found in the exhaustive and clear analysis of Manville [47]. The latter
author remarks that it is difficult to summarize the works of Duhem and his co-
workers (doctoral students: Marchis, Saurel, Pélabon, Lenoble) on permanent
alterations and the somewhat 400 pages of various memoirs (in particular the
seven published in Belgium in 1896, 1897 and 1901) in a short text [20, 22]. But
some of the facts and properties recalled by Manville shed light on some aspects
that will be of great interest for further comparison with modern developments.

First, for an isothermal infinitesimal transformation we can rewrite (10.10) as

dA ¼ o2F

oa2
daþ �h daj j: ð10:11Þ

For an ever increasing value of a, da = |da|, and (10.1) yields the differential
equation

dA

da
¼ o2F

oa2
þ �h a;A; hð Þ; ð10:12Þ

which defines a family of ascending curves in the plane (A, a). By the same
reasoning, with ever decreasing value of a, we will define a family of descending
lines; This vision allows one to build closed cycles and to define a line of ‘‘natural
states’’. We note that for an infinitesimal modification that causes the passing of a
state (a0, A0, h) to a state (a1, A1, h) (10.11) also yields

10.4 Short Analysis of Some Exemplary Writings 165



A1 � A0 ¼
o2F

oa2
a1 � a0ð Þ þ �h

X
daj j: ð10:13Þ

If the external action recovers its initial value, then A1 = A0, and (10.13) yields the
‘‘permanent’’ alteration

a1 � a0ð Þ ¼ �
�h a;A; hð Þ
o2F=oa2
� �X daj j: ð10:14Þ

The condition

�h a;A; hð Þ ¼ 0 ð10:15Þ

defines the line of natural states in the plane (A, a) for a given temperature.
The second important remark is that from the law of displacement of the

equilibrium (a stability condition about an equilibrium: cause and effect vary in the
same sense), the perturbing work in passing from (A, a) to (A ? dA, a ? da) must
be non negative (Eq. (9), p. 310, in Manville [47])

dA:da� 0: ð10:16Þ

This has for immediate consequence that the slopes of the curves in the (A, a)
plane must always be in the same sign whether on increasing or decreasing
A. Consequently, the end points of a hysteresis cycle in the plane (A, a) are always
sharp and cannot be rounded.

A third remark concerns the extension of Clausius’ theorem for a non-reversible
closed cycle. The quantity

Z
dS ¼

Z
dQ

h

over a cycle ought to be non-negative. With constant temperature, this reduces to
the condition

Z
dQ� 0:

Equivalence between heat and work yields that dQ = Ada for an isothermal cycle,
and thus

Z
closed cycle

A:da� 0: ð10:17Þ

This clearly dictates the sense in which hysteresis cycles are necessarily followed
in the plane (A, a).

In practice it was soon discovered that many hysteresis cycles (especially in the
mechanics of deformations) are slightly rounded at their ends. The explanation of
this phenomenon in contradiction with (10.16) is to be found in the likely presence
of small viscous effects. Duhem had several graduate students working out the
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experimental facets of this research on permanent alterations (Theses of Marchis4

and Pélabon in 1898, and of Saurel and Lenoble in 1900; see in particular [45]).
Results were not very conclusive from the quantitative point of view. Only a
general qualitative agreement was found (cf. [47, p. 350]). Sophisticated experi-
mental techniques and accurate measurement possibilities were not yet available at
the time, so that these studies were probably too ambitious and in some sense
doomed. Here are Duhem’s own words: ‘‘It seems that no theory of permanent
alterations can obtain from experiments more than qualitative and somewhat vague
confirmations’’ (as cited by [47, p. 599]).

In page 423 of his ‘‘Evolution of mechanics’’ Duhem in fact goes more deeply
in the notion of natural state and that of residual fields, and then he discusses the
possible dynamics—we admit hard to apprehend—in which the standard appli-
cation of d’Alembert’s principle is at fault, referring to works by Henri Bouasse
(1866–1958; a French physicist in Toulouse, South–west of France) and the noted
German physicist Max Wien (1866–1938).

In the long Section III, pp. 424–427, Duhem considers the general thermody-
namics of electromagnetic bodies. He ponders the notions of electromagnetic
energy, electric displacement, electromagnetic induction, electrodynamic forces,
properties of the system which have no inertia associated with the relevant vari-
ables, in spite of the existence of generalized velocities duly associated with such
variables, electrodynamic potential, electrokinetic energy, and Ohm’s effect con-
sidered as a viscosity. He pays an emphatic tribute to Helmholtz. He clearly
expresses his irreconcilable appraisal of Maxwell’s vision. This, of course, appears
to be outdated and certainly not very objective.

The long conclusion (pp. 427–429) of this study is typical of the style of Duhem
and of his talent. He provides a rather literary synthesis of the contents of the
whole work. He does not hesitate to compare the construction of his successive
theories—his New ‘‘Mechanics’’—to the ‘‘sanguine sketches’’ of Raphael that are
on exhibit at the Louvre museum. There you can examine at leisure the formidable
advances of the work of Raphael by successive approximations ‘‘starting from a
rough sketch and then improving the details at each successive stage and finally
producing a masterpiece that finally causes the admiration of all’’ (p. 428). This
may be a bit exaggerated when applied to one’s own work. But Duhem is certainly
right in defending his progressive complexification of the approach by including
more and more ‘‘nonsensical’’ branches that badly require some formalisation and
a sound thermodynamic basis. Indeed, the physical world is complex, and its

4 Lucien Marchis (1863–1941), interested in all means of transformation of energy and
transportation, became a professor at the University of Paris in 1910 when a chair financed by the
(armament) magnate Basil Zaharoff was created especially for him at the Sorbonne. This was
endowed with a substantial amount of money that allowed the collection of a formidable roster of
books on aerostation (balloons, Zeppelins) and the beginning of aviation from all over the world.
This chair was transformed into a Chair of Aviation and then a Chair of Aerodynamics after the
Second World War. Our Institute inherited this formidable collection of which we became the
curators.
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phenomenological approach cannot be over simplified—in particular mathemati-
cally—even though its very nature ignores the notions of particles and molecules.
In agreement with Duhem’s epistemological vision, the construction of this New
Mechanics goes further than Gibbs and Helmholtz but it is still guided by
Lagrange and d’Alembert on a rational, mostly mathematical, path. This is the
credo of Duhem at a time that is not so ready to accept it. Examining its immediate
reception and its delayed legacy is our next endeavour.

10.5 Influence on Contemporaries and Later on

Duhem’s original works are seldom directly cited in the beginning of this twenty-
first century, i.e. about one century after these works. Indeed, we must realize the
extraordinary rapid evolution of his main fields of concern, continuum mechanics
in the large and electromagnetism, in this lapse of time. We have surveyed this
progress in a recent book [54]. But much of this progress has been made possible
thanks to his critical thinking, his embryonic studies, and his deepest works. His
own contemporaries followed and applied his works and he did much to advertise
and popularise them through his many writings and his huge correspondence with
fellow scientists from the world over. The sheer bulk output of his numerous works
was of course efficient for this, but the resonance of his works with many interests
of the time was also a determining factor. The only obstacle to this swarming of
ideas may have been his aerial view, much above the head of many of the less
universal thinkers among his contemporaries, and also his personal style, with its
inherent complexity and sometimes obscurity already highlighted in Sect. 10.2.

In dealing with this influence we must distinguish between the direct reception
by contemporaries, the acceptance and exploitation of seminal ideas, the deep-
ening of the ideas of irreversible thermodynamics, and the renascence of some of
Duhem’s ideas in the emergence of a true thermo-mechanics with its successful
application to the so-called ‘‘non-sensical’’ branches of mechanics.

In the period 1890–1920 the most cited works of Duhem are those on elasticity,
waves and physical chemistry. Like for Poincaré, the writing of lecture notes is the
occasion for Duhem to revisit the corresponding scientific matter and to introduce
new developments. This is particularly the case of his early book (Hydrodyna-
mique, élasticité, acoustique, 1891 [17]). The revisited results and proofs given in
this opus are often cited by Poincaré, the Cosserat brothers [13], Appell [1] and
Hellinger [38]. The most original part deals with finite strains and, later on, the
application of Hadamard’s classification of discontinuity waves [35] to elasticity
and thermo-elasticity. This will have a glorious descent with works by Truesdell
[64] and those gathered in Coleman et al. [12]. Another work of influence was the
one devoted to stability and the notions of available and ballistic free energy. This
was taken over by Ericksen [31, 32, p. 9].

Physical chemistry, the domain of excellence of Duhem, obviously received
most attention. In this line, combining this very field and arguments of wave
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propagation, E. Jouguet (1871–1943) is probably the most successful direct dis-
ciple of Duhem—see in particular Jouguet [41, 42]. Complementing the Rankine-
Riemann-Hugoniot theory of shock waves, Jouguet has created the theory of
detonation waves with application to high explosives. Here the now well known
Chapman-Jouguet condition states that the detonation propagates at a velocity at
which the reacting gases just reach the sound velocity (in the frame of the leading
shock wave) as the reaction ceases. Chapman and Jouguet (circa 1900) in fact
stated this condition for an infinitesimally thin detonation front (remember there is
no more a true discontinuity front). The physics of this process will be improved
by Zel’dovich (USSR), von Neumann (USA) and Döring (Germany) during the
Second World War, giving rise to the so-called ZND model.

As to seminal ideas, they are of different magnitude and sometimes relevant
more to hearsay than anything else. The idea of normal variables of state was
readily incorporated in thermo-statics (Caratheodory, Born). The idea of internal
variables of state to be fully exploited in the 1970–1990s is, according to Truesdell
[65, p. 39], to be found in Duhem [28], although we think that Bridgman [8] was
more articulate and more successful, in particular with his own influence on the
thinking of J. Kestin. It is also said that it is Duhem [18] who may be responsible
for the idea to enrich the kinematics of continua by adding to each material point a
set of ‘‘directors’’ (unit vectors) in order to provide internal degrees of rotation, an
idea that will be fully developed by the Cosserat brothers in their very original
book of 1909 [14] (this book introduces the notion of what are now called Cosserat
media). According to Edelen [30, p. 44], the notion of non-local continua—
another path to generalized continuum mechanics where the dependence of stress
and body force at a point on the state of the whole body must be considered—may
also be traced back to this decidedly imaginative work of Duhem [18]. Finally, we
must record that Duhem was instrumental in fruitfully exploiting the notion of
homogeneous functions in thermodynamics (more on this to follow below).

The flame of Duhem’s approach to general thermodynamics was successfully
carried over by Th. De Donder (1872–1957) and other physicists from the Neth-
erlands and Belgium between 1930 and 1970, resulting in the now commonly
admitted theory of irreversible processes (S. de Groot, P. Mazur, I. Prigogine)—
for short T.I.P [60]. However, both Duhem and these scientists did not possess the
mathematical tools—such as convex analysis and nonlinear optimization—to deal
with some of the properties (plasticity, hysteresis), so that they could deal only
with linear irreversible processes. The solution would come in the 1970s–1980s
for nonlinear irreversible processes (see below). We simply note that in T.I.P the
residual non-negative dissipation is obtained as a bilinear expression in ‘‘forces’’’
and ‘‘generalized velocities’’. The closure hypothesis is a linear expression of one
of these in terms of the other with signs respecting the second law, hence the linear
qualification certainly most often valid for a very small departure from thermo-
dynamic equilibrium (for which the axiom of local thermodynamic state holds
good). This makes the dissipation quadratic, i.e. homogeneous of degree two in the
velocities (think of Rayleigh’s dissipation potential). But some of the ‘‘nonsensi-
cal’’ effects are of a different nature, often involving the notion of threshold or

10.5 Influence on Contemporaries and Later on 169



maximum critical load, and with the strange property of a dissipative effect not
depending on the speed at which the cause is applied. Typically, this is what
happens in the plastic response of materials not sensitive to the strain rate: ‘‘plastic
deformation appears to be a process of energy dissipation but at constant state’’
(Bridgman). As a consequence, the corresponding dissipation is a homogenous
function of degree one only (in the velocity), obviously a case not manageable by
Duhem and standard T.I.P.

Now we can examine how Duhem’s ‘‘nonsensical branches of mechanics’’
received a satisfactory thermodynamically admissible framework by abandoning
some of the working hypotheses of—but deviating the least from—T.I.P, but in
fact corroborating some of Duhem’s mathematical proposals in Chapter VII of his
‘‘Evolution of Mechanics’’. Plasticity, visco-plasticity, creep, damage, phase
transformations, magnetic and electric hystereses are among these phenomena that
attracted most of the attention of mechanicians of materials and applied mathe-
maticians in the last forty years. The thermodynamic answer to the paradoxical
situation created by plastic like behaviours was to be found in the consideration of
thermodynamics with internal variables of state and properties of convexity
applied to both the internal energy and a pseudo potential of dissipation. Note that
the word ‘‘convexity’’ practically never appears in Duhem’s writings. But this is an
essential notion that appropriately replaces a usual notion such as quadraticity. The
non-linear thermodynamics of deformable bodies is based on this notion.

As to internal variables of state (Bridgman, Kestin, Gurtin and Coleman), they
are identifiable representative parameters of the resulting macroscopically irre-
versible process. Although being measurable by a gifted experimentalist, they are
not directly controllable by external actions, and they obviously are not equipped
with an inertia (remember Duhem’s variables without inertia). They evolve only
under the influence of an evolution of the observable variables, e.g. the local state
of stress. Without elaborating further this field of thermo-mechanics (see details in
[53]), it suffices to notice that some basic re-interpretation of thermodynamics is
necessary, in particular an axiom of local accompanying state (Kestin) has to
replace the axiom of local state of classical thermodynamics. The short but
remarkable note by Moreau [57] was essential in introducing the required math-
ematical notion of convexity, and consequently variational inequalities. Then the
French school (Germain, Mandel, and their students; also Ziegler [68] in
Switzerland) was instrumental in establishing the corresponding formalism. Of
particular efficiency was the model presented by Halphen and Nguyen [37] of so-
called ‘‘generalized standard materials’’. Denoting by a the set of relevant internal
variables—this denomination cannot be due to pure chance—it was then possible
on the basis of convexity arguments and the existence of a pseudo-dissipation
function of appropriate degree of homogeneity to prove some of the mathematical
results of Duhem, e.g., Eqs. (10.16) and (10.17) above. For example, with the
anelastic (plastic) infinitesimal strain ep

ij considered as an internal variable of state
(a reasonable hypothesis), equations similar to (10.16) and (10.17) are proved in
the form
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_rij _eij� 0; ð10:18Þ

and
Z

closed srain cycle
rijdeij� 0: ð10:19Þ

The first of these is known as the local stability condition of Drucker and the
second as Ilyushin’s postulate in the community of plasticity, but now they are
proved on a thermodynamic basis. More on this and the cases of magnetic and
electric hysteresis is to be found in Maugin [50, 51, 53]. This constitutes a true
neo-Duhemian approach.5

It appears thus that with appropriate notions of convexity and homogeneity, the
proposed programme of Duhem concerning his ‘‘nonsensical branches’’ of
mechanics could be fulfilled. The unanswered question here is whether Duhem’s
writing was very much influential in these developments. We must avoid here the
temptation of ‘‘precursoritis’’; we must admit that we do not know for sure if the
thinking of people like J. Kestin—who read French and was the most knowl-
edgeable specialist of all types of thermodynamics—J. Mandel and others was
directly influenced by Duhem or by one of his disciples. For instance, Jouguet was
a professor of mechanics at both Polytechnique and the school mines in Paris when
Mandel was a student in these two schools. Jouguet who had a marked interest in
the historical development of mechanics and thermodynamics, must have more
than simply mentioned the works of his mentor, so that there might have been
more continuity than we originally thought.

In retrospective, we must recognize that Duhem’s work in physical chemistry
‘‘provided a whole generation of French physicists and chemists with their
knowledge of chemical thermodynamics’’ [56, p. 228]. But Miller also wrote [56,
p. 232] that ‘‘by mid [twentieth] century Duhem’s scientific work had been almost
completely forgotten’’. As to the famous ‘‘nonsensical branches’’, he says that ‘‘as
of this writing [56, p. 229] there is no really adequate thermodynamic theory of
such systems, although interest in this subject has recently been revived’’. We hope
to have sufficiently documented the spot on recent developments herein and in
various works to disapprove Miller’s mild appraisal.

5 Personal touch. In (at the time, 1975) secrete document (report on my French Doctoral Thesis
in Mathematics), a well known French mathematician (great geometer also interested in the
history of physics), André Lichnerowicz, classified my approach to the thermo-mechanics of
relativistic continua as neo-Duhemian—but I had not yet read Duhem in those times. When I
could read this document after a law was passed giving access to all such personal matters, I felt
that this was intended to be derogatory by its author (I may be misinterpreting), who could not
figure out how much I later became pleased with such a classification.
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10.6 Conclusion

Duhem may have been, with Poincaré, Bouasse and some others, the last scientists
to tackle all branches of phenomenological physics simultaneously. This may even
be truer of Duhem than of his colleagues because of his all embracing energetic
vision. These are bygone days. Furthermore, no doubt that Maxwell’s theory of
electromagnetism on the one hand and the triumph of atomic theories on the other
have put shades on some of his work and diminished the relative importance of his
contributions in some fields of science. However, the main purpose of the present
contribution was not to exhibit the belated success of his vision—although this is
not to be neglected—but to show how his work contributed in a timely and critical
manner to the development of phenomenological physics at a turning moment of
its history, between the mathematical works of the nineteenth century ‘‘giants’’
(Green, Cauchy, Kelvin, Kirchhoff, Helmholtz, Stokes, Maxwell, Saint-Venant,
Boussinesq and Voigt), the consolidation of true engineering sciences (for which
Duhem shows no specific interest), the return to experimental bases and molecular
considerations, and the emergence of quantum and relativistic physics. The wealth
and significance of Duhem’s works remain astonishing to our eyes if we accept to
have a benevolent look. Surprisingly enough, as shown in the preceding section,
some of his most discussed and misunderstood works seem now to be in resonance
with fruitful recent developments. This of course teaches a lesson: the full success
of a mathematical theory of nature occurs only with the simultaneous availability
of ad hoc mathematical tools, the conception of appropriate experimental devices
and, now, the exploitation of successful numerical techniques. Unfortunately, the
original work on energetics by Duhem could not comply yet with the last three
requirements. In contrast, the present theory of the ‘‘mechanics of materials’’ does,
although certainly inspired by Duhem’s premature achievements.

Appendix A

Partial English Translation of P. Duhem, ‘‘Traité d’énergétique ou thermodyna-
mique générale’’, Gauthier-Villars, Paris, 1911, by Gérard A. Maugin [Only the
Introduction and small parts of Chapter I: ‘‘Définitions préliminaires’’, are trans-
lated in order to give a flavour of Duhem’s style and exposition. Original foot-
notes, if any, are reported to the end and numbered consecutively. Translator’s
remarks are placed within square brackets in the main text. This is a verbatim
translation without any ambition of literary prowess.

Traité d’énergétique ou thermodynamique générale

Treatise of energetics or general thermodynamics

By Pierre DUHEM
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Introduction

1. Of thermodynamics or energetics

Theoretical physics represents by means of quantities (grandeurs) the proper-
ties of the bodies that it studies. Methods of measurement allow one to place in
correspondence, with a more or less broad approximation, each intensity of a
property with a particular determination of the quantity that represents this
property. Through the methods of measurement, each physical phenomenon cor-
responds to a set of numbers, each physical law corresponds to one or several
algebraic relations between various quantities, each set of concrete bodies to a
system of quantities, to an abstract and mathematical scheme.

Theoretical physics has constantly to solve the following problem: From given
physical data, extract new physical laws; either it proposes to show that the latter,
already directly known, are none other than consequences of the former, or it
proposes to announce laws that the experimentalist has not yet observed.

To treat this problem theoretical physics combines given laws together, that
concern particularly certain physical properties and certain bodies, in agreement
with rules issued from general principles that are supposed to hold true for all
properties and all bodies.

For example, it wants to show that if we know the law of pressure of the
saturated vapour of a liquid, and the laws of compressibility and dilatation of a
liquid and its vapour, then one can fix the law according to which the heat of
vaporisation varies; to this purpose, its combines the first laws along the rules of
the principle of conservation of energy and the principle of Carnot, principles that
are supposed to apply to all bodies and all of their properties.

It is the system of these general principles that we propose to expose here.
For a long time, physicists have assumed that all properties of bodies reduced,

in the last analysis, to combinations of figures [geometrical forms] and local
motions. The general principles to which all physical properties must obey, were
none other than the principles that govern the local motions, i.e., the principles that
compose rational mechanics. Rational mechanics was the code for the general
principles of physics.

The reduction of all physical properties to combinations of figures and motion
or, following commonly used denomination, the mechanical explanation of the
Universe, seems today to be condemned. It is not so for a priori reasons, whether
metaphysical or mathematical. It is condemned because it has been so far just a
project, a dream, and not a reality. Despite immense efforts, physicists never
succeeded to conceive an arrangement of figures and of local motions that, treated
following the rules of rational mechanics, give a satisfactory representation of a
somewhat extended set of physical laws.

Is the attempt at a reduction of all physics to rational mechanics, an always vain
attempt in the past, destined to succeed one day? Only a prophet could answer this
question positively or negatively. Without prejudging the meaning of this answer,
it appears wiser, provisionally, to renounce their efforts, fruitless until now,
towards the mechanical explanation of the Universe.
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Therefore, we are going to attempt at a formulation of the corpus of general
laws to which all properties must obey, without assuming a priori that these
properties are all reducible to a geometrical figure and a local motion. Accord-
ingly, the corpus of these general laws will no longer reduce to rational mechanics.

In truth, the geometrical figure and the local motion remain physical properties;
they are in fact those that are the most immediately accessible. Our corpus of
general laws must apply to these properties, and, being applied to the latter, it must
recover the rules that govern the local motion, the rules of rational mechanics. The
latter must, therefore, result from the corpus of general laws that we propose to
constitute; it must be what follows when we apply these general laws to particular
systems where we account only for the figure of bodies and their local motion.

The code of the general laws of physics is known nowadays under two names:
the name of thermodynamics and the name of energetics.

The name of thermodynamics is intimately attached to the history of this sci-
ence; its two main principles, the principle of Carnot and the principle of con-
servation of energy, were discovered when studying the motive power in machines
exploiting fire. This name is also justified by the fact that the two notions of work
and quantity of heat are constantly at play in the reasoning through which this
theory develops.

The name of energetics is due to Rankine1; the idea of energy being the first
that this theory has to define, the one to which most other used notions are
attached; this name seems to us as well chosen as that of thermodynamics.

Without deciding which naming is preferable to the other, we shall use both as
equivalent to one another.

2. On the logical significance of the principles of energetics

The logical character of the principles that we are going to formulate and group
together must be borne in mind2.

These principles are pure postulates; we can state them as we please, on the
condition that the statement of each of them is not self contradictory, and that the
statements of the various principles are not in reciprocal contradiction.

The character with which we recognize that the whole set of the so formulated
principles constitute a good theoretical physics is the following one: applying this
set of principles to formulas that represent exact experimental laws, we can deduce
new formulas which, in turn, represent other exact experimental laws.

The experimental control of the set of principles of energetics is thus the only
criterion of truth of this theory.

Indeed, this control can be done only on the whole set of principles of ener-
getics taken in its totality or, for the least, on extended parts of this set. It would be
impossible to submit to the control of experiment one isolated among these
principles, or even a small number of these principles. Any experiment, simple as
it may be, involves in its interpretation very many and diverse principles. We will
often have the opportunity to recognize this fact in the course of this exposition.

The experimental control can only concern the whole set of ultimate conse-
quences of the theory; it estimates if this set of consequences provides, or does not

174 10 On Duhem’s Energetics or General Thermodynamics



provide, a satisfactory representation of these experimental data; but in so far as
the theory has not produced the set of these last consequences, we cannot call for
this control, as this would be premature; hence the following rule which will be of
frequent usage in the sequel of our studies: In the course of it exposition, a
theoretical physics is free to choose the path that it likes, in so far as it avoids any
logical contradiction; in particular, it does not need to account for any experi-
mental fact; it is only when it has reached the end of its development that its
ultimate consequences can and must be compared to experimental laws.

To say that the principles of energetics are pure postulates and that no logical
constraint limits our right to choose them arbitrarily, is not to say that we will
formulate them by chance. On the contrary, we shall be very strictly guided in the
choice of these statements, knowing well that it would suffice to alter any thing for
the experimental check of the consequences to become at fault at some point.

We are assured by this guideline by our knowledge of the past of science.
Principles have been formulated that were proved to be in gross contradiction with
experiment; other principles were then substituted to them, which have received a
partial confirmation, although an imperfect one; then they were modified, cor-
rected, guaranteeing for each change a more exact agreement of their corollaries
with facts. We are assured that the clothing of which we cut the forms will fit
exactly the body it must dress because the blueprint has been tried and retouched
many times.

Each of the principles that we shall state presents thus no logical proof; but it
would carry a historical justification; we could, before stating it, enumerate the
principles of differing forms that were tried before it, and which could not fit
exactly reality, that we have been forced to reject or to correct until the whole
system of energetics adapts in a satisfactory manner to the set of physical laws.
The fear of an excessive length will forbid us the exposition of this historical
justification.

Notes by Duhem

1. J. Macquorne Rankine, Outlines of the science of energetics (Glagow Philo-
sophical Society Proceedings, Vol. III, no.6, 2 May 1855). – J. Macquorne
Rankine, Miscellaneous scientific papers, p. 209.

2. We will limit ourselves to giving here a very concise résumé of what we
expanded in the following book: La théorie physique, son objet et sa structure,
Paris, 1906 [English translation: The aim and structure of physical theory,
Princeton University Press, New Jersey, 1954; paperback reprint, 1991]. This
work can be viewed as a kind of logical introduction to the present treatise.
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Appendix B

Partial English Translation of P. Duhem, ‘‘L’évolution de la mécanique – Part VII –
Les branches aberrantes de la thermodynamique’’, Revue genérale des sciences,
pp. 416-429, Paris, 1903, by Gérard A. Maugin [Only small parts of this lengthy
contribution are translated; Original footnotes, if any, are reported to the end and
numbered consecutively. Translator’s remarks are placed within square brackets in
the main text. This is a verbatim translation without any ambition of literary
prowess.

Duhem P. (1903), L’évolution de la mécanique (published in seven parts in:
Revue générale des sciences, Paris; as a book, A. Joanin, Paris) [There exists
already an English translation: The evolution of mechanics, Sijthoof and Noord-
hoff, 1980, to which we had no access].

L’évolution de la Mécanique

The Evolution of Mechanics

VII- The nonsensical branches of thermodynamics

I.- Friction and chemical false equilibria

From the original text, p. 418:
That outside systems of which the equilibrium states can always be classified in

reversible changes, there exists an infinity of other systems of which the statics is
not that of Gibbs, and the dynamics not that of Helmholtz, and that, among such
systems, are precisely those exhibiting friction?

Therefore, the laws according to which systems with friction evolve or remain
in equilibrium, require a specific formulation. This formulation, we will not ask it
to chance. The formulation imposed to statics by Gibbs and to dynamics by
Helmholtz was shown to be admirably fruitful; it is natural to conserve its type as
much as possible; to deduce the new formulation from the old one by means of
additions and modifications as light as possible; this is the idea that guided us
when we built the mechanics of systems with friction.

It would not be easy to expose the latter with entering details that the present
writing should not involve. However, let us try to draw a summary sketch and, to
that purpose, we restrict ourselves to the study of a system such that only one
normal variable, apart from temperature, suffices for its definition. Let a represent
this unique variable. If F, A, J, v are, respectively, the internal potential [energy],
the external action, the inertial force, and the action of viscosity, then according to
Helmholtz’ dynamics at each instant we can write the equality

Aþ J þ v ¼ oF

oa
: ð3Þ

This equality, the general law of motion [probably ‘‘evolution’’ would be better]
of the system, implies the law of its equilibria, a law in conformity with Gibbs’
statics.
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The equilibrium of systems with friction does not agree with Gibbs’ statics;
Equality (3) does not apply to them; but we can try to modify it in such a way that
it will be extended to such systems.

To that purpose, we continue to attach to each state of the system a quantity
F that is determined without ambiguity through the knowledge of this state. To this
quantity that we still call internal potential, we will continue to attach internal
energy and entropy by means of previously known relations; the external action,
the inertial force and the action of viscosity will remain defined just as before; but
these elements will no longer be sufficient to set forth the equation governing the
system. It will be necessary to know a new element, the action of friction f.

This action, always positive, will depend, just like the action of viscosity, on the
absolute temperature, the variable a and the general velocity _a ¼ da=dt; but
contrary to what happens for the generalized velocity, it will also depend also on
the external action A; furthermore, it will not vanish with the generalized velocity;
the latter going to zero, the action of friction will tend to a positive value g.

In order to govern the motion of the system, we will no longer have a unique
equation, but two distinct equations; the first of these should be used only when the
generalized velocity _a ¼ da=dt is positive; it will take the following form:

Aþ J þ v� f ¼ oF

oa
: ð4Þ

The second of these equations will read:

Aþ J þ vþ f ¼ oF

oa
: ð4bÞ

This one will be reserved to the case when the generalized velocity _a ¼ da=dt is
negative.

As to the equilibrium condition, it will no longer be represented by an equality,
but by a double inequality that expresses that the absolute value of the difference
A - qF/qa is not larger than g:

�g�A� oF

oa
� g: ð5Þ

We rapidly go over the equation of living forces [equation of kinetic energy];
we can only repeat here practically all what was said when studying the dynamics
of Helmholtz; it is only necessary to add the work of friction to the work of
viscosity. The former, like the latter, is always negative. We also do not deal with
the Clausius inequality which remains exact in the new dynamics. Here also, the
work of friction is just being added to the work of viscosity. Other consequences of
the laws just formulated, and more particularly the condition of equilibrium, will
require a little more attention.

Gibbs’ statics would require the difference A - qF/qa to vanish, and therefore
having value between -g and +g. The equilibrium states predicted by this Statics,
and that are usually called states of true equilibrium, are thus among those that are
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predicted by the new Statics; But the latter announces the existence of an infinity
of other equilibrium states, that we designate by the name of false equilibria.

If the value of g is large, then the states of false equilibrium spread on both sides
of those of true equilibrium, in a large domain. They will shrink close to the states
of true equilibrium whenever the value of g is small. If this value becomes suf-
ficiently small, then the states of false equilibrium will be so close to those of true
equilibrium that experiments would no longer distinguish them; practically, the
Statics of systems with friction would be undistinguishable from Gibbs’ statics.

This is only a particular application of the following remark: Gibbs’ Statics and
Helmholtz’ Dynamics are limit forms of the Statics and Dynamics of systems with
friction; these tend to those when the action of friction becomes infinitesimally
small.

This remark is not a simple view of the mind; it acquires a particular interest in
the study of chemical equilibria1.

Note 1. We have given an exposition of the theory of chemical equilibria accounting for
friction and the principal applications of this theory in the following works: Théorie
thermodynamique de la viscosité, du frottement et des faux équilibres chimiques, Paris,
1896 – Traité élémentaire de mécanique chimique fondée sur la thermodynamique, Vol. II,
T. I, Paris, 1897; Thermodynamque et chimie, leçons élémentaires à l’usage des chimistes;
Leçons XVII, XIX and XX, Paris, 1902.

[In the rest of this Chapter Duhem expands an example from chemical physics].

II. Permanent alterations and hysteresis

[Here Duhem first gives a general idea of what permanent alterations are. He
emphasizes the role of infinitesimally slow evolutions, adapting accordingly
temperature and external actions]

__
[From page 421]
The theory of systems capable of permanent alterations will thus be distinct

from general mechanics for which, with Gibbs and Helmholtz, we have sketched
the principles; but it will also differ from the mechanics of systems with friction; it
will be a new branch of mechanics.

How is this new mechanics to be constituted?
Only the principal thought is of concern to us here; the detail of formulas is not

needed; we restrict ourselves to the study of a simple case that will allow for a
better transparency of the frame of ideas. As object of our analysis, let us choose a
system defined by a single normal variable, apart from temperature; for example a
thread [wire] under tension of which the length will be this normal variable, while
the pulling weight will be the corresponding external action.

First let us give certain infinitesimal variations to the temperature and the
pulling weight; the length of the thread will suffer an infinitesimally small
increase. Then let us give to both temperature and pulling weight variations equal
in absolute value to the preceding ones, but with opposite sign so that these two
quantities recover their original value. The length of the thread is reduced, but this
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decrease does not have the same absolute value as the preceding lengthening,
because the thread suffers a permanent deformation. Thus, in the course of an
infinitely slow alteration, a linear algebraic relation determines the infinitely small
variation of the length of the thread when we impose infinitely small variations to
temperature and pulling weight; but this relation must not have the same form
when the thread elongates or when it contracts; a certain equality must be written
when the normal variable suffers a positive variation, and another one when this
variation is negative.

What guide will help us to discover the form of these two equalities? It is the
theory itself, which cannot be sufficient to treat permanent alterations, but which
proved to be so fruitful in the study of systems with reversible modifications. We
shall look for a construction of this new mechanics in such a way that it is as close
as possible to that theory, that it follows from it by a very slight transformation,
that it be one of its generalizations, that the Statics and Dynamics of systems
admitting no permanent alterations be regarded as limit forms of the Statics and
Dynamics of systems with very weak permanent alterations. In a nutshell, we shall
follow the same method as that which was given by the theory of systems with
friction.

When a system presenting no permanent alteration is subjected to an infinitely
slow modification, i.e., a reversible evolution, the equilibrium conditions are
satisfied at each instant; if the state of the system depends on a single normal
variable a, then at each instant the external action A equals the derivative of the
internal potential F with respect to a; this we are taught by equality (1) [i.e.,
A = qF/qa]

For coordinated infinitely small variations of the temperature, the external
action and the normal variable, there therefore exists the relation

dA ¼ d
oF

oa
; ð6Þ

by virtue of the fact that the always equal quantities A and qF/qa suffer simulta-
neously equal increases. According to this relation, if we change the sign of these
variations without changing their absolute value, then we change the sign of the
variation suffered by the normal variable without changing its own absolute value;
this way we express the reversibility of the infinitely slow modification.

These peculiarities cannot be met in a system capable of permanent alterations;
each of the elements of which the succession composes an infinitely slow modi-
fication cannot be governed by equality (6); we must substitute to this equality two
distinct relations, one valid when the normal variable increases, and the other valid
when this variable decreases.

In the first case, we substitute to equality (6) the relation:

dA ¼ d
oF

oa
þ h da; ð7Þ
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In the second case, we substitute to (6) the relation

dA ¼ d
oF

oa
� h da: ð7bÞ

The quantity h, of which the introduction in these equations distinguishes
systems capable of permanent alterations from those not capable of these, depends
on the state of the system, and also on the external action A.

It is obvious that it suffices to give to this quantity h a very small value so that
inequalities (7) and (7b) differ very little from the equality (6); the permanent
alterations of the system then are very little sensitive, and its infinitely slow
modifications are almost reversible; thus, systems without permanent alterations
and capable of reversible modifications are precisely limit forms of systems
subjected to small permanent alterations.

For systems without permanent alterations, a simple rule allows us to deduce
from the internal potential the knowledge of the internal energy, and thus, the
quantity of heat involved in an infinitely slow modification. Nothing forbids the
extension of this rule to systems with permanent alterations. Joint to what was
previously given, it will provide the essential principles on which the Statics of
such systems relies2. With some accessory hypotheses, all inspired by the desire to
make the small branch (‘‘rameau’’) of Thermodynamics as similar as possible as its
master branch, this will complement these principles.

Note 2. We have devoted six memoirs to this Statics under the general title: Les défor-
mations permanentes et l’hystérésis (Mémoires in-4� de l’Académie de Belgique, t. LIV,
1895; t. LVL, 1898; t. LXII, 1902) and eight memoirs published under the title: Die
dauernden Aenderungen und die Thermodynamik, Zeitschrift für physikalishe Chemie, Bd.
XXI, XXIII, 1897; XXVIII, 1899; XXXIV, 1900; XXXVII, 1901), etc.

What are the applications of this new Statics?
A first category of permanent alterations is formed by elastic deformations. The

traction, torsion and flexion cause deformations that do not disappear with the
cause that produced them; these deformations, known and observed at all times
since Antiquity, find in the above given principles, their theoretical explanation.

[Here Duhem mentions examples from residual magnetization, magnetic hys-
teresis, and analogous properties for electric polarisation in dielectrics].

……
[continued from p. 422].
Essential as it is in the study of elasticity and the theory of magnetism, hys-

teresis is destined to play a very important role in ‘‘chemical mechanics’’ ……
It is without doubt to permanent alterations of this kind that must be attached

the effects of tempering, annealing, and hardening that complicate so strangely the
study of metals and their industrial combinations. Quite often, these effects result
from both elastic hysteresis and chemical hysteresis; only the simultaneous con-
sideration of these two hystereses, can somewhat untangle these phenomena, in
appearance inextricable, that present some bodies; such as Nickel based steels of
which M. Ch.-E. Guillaume has analyzed the strange properties, or the platinum-
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silver alloy of which the electric resistance manifests so curious residual varia-
tions, as observed by M. H. Chevallier.

This superposition of chemical hysteresis and elastic hysteresis makes the laws
of dilatation of glass singularly complex; the observation of the displacement of
the zero point of thermometers had not revealed, first to Desprez and then to M.
Ch.-Edmond Guillaume much more than this extreme complexity; numerous and
patient measurements, guided by the thermodynamics of permanent modifications,
have finally allowed M. L. Marchis to put some order in this chaos [Guillaume,
Chevallier, Desprez and Marchis were doctoral students of Duhem in Bordeaux].

……
[continued from page 423]
……
In a system subjected to permanent alterations, the quantity h, that we name

coefficient of hysteresis, does not vanish in general. The two equalities (7) and (7b)
are thus distinct from one another; if we suppose that the system suffers, with an
infinite slowness an infinitely small alteration due to certain variations in the
temperature and the external action, we will not be able, by inverting those
variations, to reverse the modification and to bring the system back to its initial
state.

But what is not generally true may become true in certain particular cases; by
associating in an appropriate manner the values of the normal variable, of tem-
perature and of the external action, we can make the coefficient of hysteresis
vanish; when these values are thus associated, we say that the system is placed in a
natural state; in general, if we take the system in any state, defined by a certain
value of the normal variable and a certain value of temperature, we can submit it to
an external action so that this state becomes a natural one.

[Here Duhem goes more deeply in the notion of natural state and that of
residual fields, and then he discusses the possible dynamics in which the standard
application of d’Alembert’s principle is at fault, referring to works by Henri
Bouasse (1866-1958; a French physicist in Toulouse, South-west of France) and
the noted German physicist Max Wien (1866-1938)].

III. Electrodynamics and electromagnetism

[In this long section, pp. 424-427, Duhem considers the general thermodynamics
of electromagnetic bodies. He ponders the notions of electromagnetic energy,
electric displacement, electromagnetic induction, electrodynamic forces, proper-
ties of the system which have no inertia associated with the relevant variables, in
spite of the existence of generalized velocities duly associated with such variables,
electrodynamic potential, electrokinetic energy, Ohm’s effect considered as a
viscosity. He pays an emphatic tribute to Helmholtz. He clearly expresses his
irreconcilable appraisal of Maxwell’s vision. This, of course, appears to be out-
dated and certainly not very objective].
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Conclusion (pages 427-429).

[Here Duhem offers a rather literary synthesis of the contents of the whole work.
He goes all the way to compare the construction of his successive theories to the
‘‘sanguine sketches’’ of Raphael on exhibit at the Louvre [museum] where you can
see the work by successive approximations of this master painter, starting from a
rough sketch and then improving the details at each successive picture and finally
producing a masterpiece that finally causes the admiration of all. This is the way
his new Mechanics, unique though complex, emerges from his own mind].

[continued from page 428, 2nd column]:
The old Mechanics pushed to the extreme the simplification of its fundamental

hypotheses. It had condensed these hypotheses in a unique presupposition: All
systems are reducible to a set of material points and solid bodies which move in
agreement with Lagrange’s equations. And even more with Hertz, it went further
by erasing real forces from its equations.

The new Mechanics [i.e., Duhem’s] is not imbued of such a simplification of its
principles; it does not avoid to increase the complication of its fundamental hypoth-
eses; it admits terms of varying nature and form in its equation, terms of viscosity,
friction, hysteresis, electro-kinetic energy, while the old Mechanics excluded from its
formulas such symbols, as in contradiction with its unique principle.

But reality is more complex, infinitely so; each new improvement in experi-
mental methods, by scrutinizing more thoroughly the facts, discovers in them new
complications. Human mind, in its weakness, although trying hard to work toward
a simple representation of the external world, suffices to place the image in front of
the object and to compare them in good faith in order to realize that this simplicity,
so forcefully desired, is an un-captured chimera, an unrealizable utopia.

……
[continued from page 429, first column]:
This capability to mould facts and to capture their finest detail was acquired by

the new Physics by giving up some of the requirements that rigidified the old
Mechanics. Among these requirements, the first and most essential one was the
one that intended to reduce all properties of bodies to quantities, figures and local
motions; the new Physics rejects totally this requirement; it admits in its reasoning
the consideration of these qualities; it endows the notion of motion with the
generality that Aristotle granted to it. This is the secret of its marvellous com-
pliance. Indeed, with this it gives up the consideration of hypothetical mechanisms
that the natural philosophy of Newton disliked, the research of the masses and
hidden motions of which the only object is to explain the qualities in geometrical
terms. Freed from this work that Pascal proclaimed uncertain, painstaking and
useless, it can, in all freedom, devotes its efforts to more fruitful endeavours.

……
The creation of this Mechanics, based on thermodynamics, is thus a reaction

against atomistic and Cartesian ideas – not foreseen by those who most contributed
to it – to the deepest principles of peripatetician doctrines.

……
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The expansion of Mechanics is thus a true evolution; each stage of this evo-
lution is the natural corollary of previous stages; it is pregnant of future stages. The
meditation of this law must me the comfort of the theoretician. It would be
presumptuous to imagine that the system toward which he contributes will escape
the common fate of systems that were before, and will deserve to last longer than
them; But, without any vain verbiage, he is right in thinking that his efforts will not
be sterile, that across centuries the ideas that he sowed and made germinate, will
continue to grow and bear fruits.

P. Duhem,
Corresponding member of the Institute [Academy of Sciences, Paris],
Professor of Theoretical physics at the Science Faculty in Bordeaux.
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Chapter 11
A Course of Continuum Mechanics
at the Dawn of the Twentieth Century
(Volume III of Appell’s Treatise
on Rational Mechanics)

Abstract The treatise on rational mechanics published in French by Paul Appell
starting in 1900 is a unique monument in the mathematical literature of the Pre-
World War One period. Here we critically peruse the volume devoted to contin-
uum mechanics (Volume III). This critical examination is performed in the light of
what was known at the time, what were the fashionable themes in continuum
mechanics in the early twentieth century, what mathematical techniques were
preferred, and what was the naturally influential environment (especially among
French mathematicians). All these gave a special tune and contents to a treatise
that bears the print of its time, especially with an emphasis on subject matters such
as potential theory, the consideration of complex variables, the interest for vorti-
ces, barotropic and ‘‘barocline’’ fluids, and new notions such as those put forward
by J. Hadamard in wave propagation, by H. Villat and V. Bjerknes in fluid
mechanics, and the many references to contemporary works by J.V. Boussinesq,
A. Barré de Saint-Venant, H. Poincaré, P. Duhem, and the Cosserat brothers. In
contrast, we note the few references to foreign works, the non-exploitation of the
then recently proposed vectorial and tensorial concepts, and the lack of interest in
dissipative behaviours, whether in fluids or in solids, this in accord with the
bannered ‘‘rationality’’ of the treatise.

11.1 Prolegomena: On Paul Appell

The mathematician and mechanician Paul Appell (1855–1930) epitomizes the
successful scientist of the French third Republic at the ‘‘Belle époque’’ (i.e. the
20 years before World War One): he presents two parallel careers, one as a true
scientist and pedagogue and the other as a man of power in the educational system
together with an involvement in some political and socio-cultural matters (see the
Appendix). Along the first line, he is not as powerful a creative mathematician as his
contemporaries Jacques Hadamard (1865–1963) and Paul Painlevé (1863–1933)—
and of course Henri Poincaré (1854–1912), obviously an apart genius. He is more
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traditional in his choice of problems and implementation of solutions than Had-
amard who later on became influential in the creation of the Bourbaki School. On the
other hand, Painlevé went much farther than Appell in his political involvement
going all the way as to become prime minister during World War One and even to be
a candidate to the presidency of the Republic. From the point of view of applications
Appell was closer to civil engineering while Painlevé, although not himself directly
involved in such developments, demonstrated a true interest in the recent progress of
aeronautics (he created a Ministry of Aviation). Despite and perhaps because of all
these objective facts, Appell wrote the most advanced treatise (the object of this
contribution) for the period in what was recognized as the utmost field of application
of mathematical analysis, rational mechanics. No other treatise of this magnitude
was ever published in France after this opus.

11.2 Setting the Stage

Our object of study here is the celebrated ‘‘Treatise on Rational Mechanics’’ of
which the first edition was published in French in 1900 after teaching of this matter
by Appell for fifteen years at the Sorbonne. A second edition was published in
1909, a third in 1921, a fourth in 1926, a fifth in 1932, and a sixth published in
1941 and edited by Georges Valiron (1884–1955).1 A final volume V was pub-
lished later on but essentially written by René Thiry (1886–1968), himself pro-
fessor of mechanics at the Sorbonne. The present study refers to the third edition as
published by Gauthier-Villars in Paris and reprinted in facsimile form by Editions
Gabay, Paris, 1991. This edition, together with the supplement written by the
Cosserat brothers for the second edition of 1909 and joined by Gabay to this
reprint, is selected as being the most representative one, providing a snapshot of
our field as of the relevant period, almost a hundred years ago. We have com-
mented elsewhere [26, Chap. 2] about the state of general mechanics, and more
particularly continuum mechanics at the time. This is characterized as a transition
period between the contributions of the French, English and German ‘‘classics’’
(e.g., Cauchy, Navier, Duhamel, Lamé, Green, Gauss, Stokes, Maxwell, Kelvin,
Kirchhoff, Neumann, Clebsch, Barré de Saint-Venant) and the twentieth century
(post WWI). This period is permeated by a feeling of achievement and fulfilment
in spite of the emerging quantum physics and relativistic mechanics and the very
attractive notion of elementary particle. Furthermore, this is accompanied by a
mature reflection on the bases of mechanics by such scientists-philosophers as
Hertz, Mach, Poincaré, Duhem and Hamel. Here we focus attention on our spe-
cialty, continuum mechanics, as presented in Volume Three entitled ‘‘Equilibre et
mouvement des milieux continus’’ (‘‘Equilibrium and motion of continuous

1 G. Valiron is a scientific ‘‘grand father’’ of the writer via Paul Germain according to
Mathematical Genealogy.
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media’’), an opus of some six hundred seventy pages (without the Cosserats’
supplement). These are Chaps. XXVIII–XXXIX of the total treatise. It can only be
compared to the long article by C. A. Truesdell and R. A. Toupin published in
1960 in the Handbuch der Physik edited in Germany by S. Flügge [34]. These
authors in fact often cite Appell’s treatise.

Inevitably, Appell’s exposition refers to the above cited ‘‘classic’’ scientists of
the early and mid nineteenth century as definite contributors. These famous per-
sonalities are usually referred to simply by their family name or a name attached to
a theorem or a typically solved or simply proposed problem. But Appell must also
account for some of his contemporary fellow scientists. Among them we identify
Joseph Bertrand (1822–1900; mathematician), Gaston Darboux (1842–1917,
specialist of the theory of surfaces), François-Félix Tisserand (1845–1896; spe-
cialist of celestial mechanics), Joseph V. Boussinesq (1842–1929; all round
mechanician of the continuum), François Cosserat (1852–1914, mathematician
and astronomer), Eugène Cosserat (1866–1931; civil engineer), Léon Lecornu
(1854–1940; professor of mechanics at Ecole Polytechnique and himself author of
a treatise on mechanics published in three volumes in the period 1914–1918),
Marcel Brillouin (1854–1948; mechanician and physicist), Henri Poincaré
(1854–1912; the innovative great mathematician), Emile Picard (1856–1941;
famous analyst), Gabriel Koenigs (1858–1931; also the author of a known course
on mechanics), Henri Bénard (1874–1933; physicist of ‘‘convection’’ fame),
Victor Robin (1855–1897; known for his boundary condition), Pierre Duhem
(1861–1916; mathematical physicist, epistemologist and historian of science),
Jacques Hadamard (1865–1963; the prototype of absentminded mathematician),
and Henri Villat (1879–1972; specialist of fluid mechanics). Poincaré,2 Duhem,
Brillouin, Hadamard, Villat and the Cosserat brothers are the most frequently cited
authors. Very few foreign authors of this period are cited, but we note the recurring
names of Lord Rayleigh (1842–1919), Elwin B. Christoffel (1829–1900), Eugenio
Beltrami (1835–1899), Enrico Betti (1823–1892), Tullio Levi-Civita (1873–1941),
Alfred B. Basset (1854–1930), A. E. H. Love (1863–1940; the celebrated elasti-
cian), Kazimierz Zorawski (1866–1953), and V. Bjerknes (1862–1951; Norwegian
fluid dynamicist, designer of climate models and meteorologist). Appell will
welcome in his treatise lengthy contributions by the Cosserats, Villat and Bjerknes.
All these male authors are usually referred to in the text by a respectful ‘‘M.’’ (for
Monsieur) and not mentioning their first names. There is no need to introduce a
corresponding abbreviation for female authors who are here inexistent (although
Sophie Germain and Sofia Kovaleskaya as past authors may have been included at
some point).

2 The reader may be somewhat surprised to see so many references to works by Poincaré on
continuum mechanics. In truth, Poincaré delivered at the Sorbonne many one-semester lecture
courses on various aspects of continuum physics, renewing the contents every year and bringing
each time a synthetic and critical view illustrated by worked out problems. These lectures were
usually put in book form by some of the—obviously very few—auditors (see Poincaré [28–30])
while Poincaré was busy with his own deep mathematical researches.
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11.3 The Contents of Appell’s Volume on the Mechanics
of Continua

11.3.1 Some Words of Introduction

It must be realized that Appell’s treatise is a formidable enterprise with very few
competitors in the world save for some volumes of the German Encyclopaedia of
Mathematics (Enz. Math. Wiss.) edited by Felix Klein and Conrad H. Müller early
in the twentieth century—but written by a large group of authors—, and obviously
the chapters on mechanics in the Handbuch der Physik edited by S. Flügge in the
1950s–1960s, but also written by many contributors (among them: C. A. Truesdell,
R. A. Toupin, W. Noll, R. Berker, etc.) [33, 34]. Volume III of Appell’s is
squeezed between Volume I (devoted to statics and dynamics of the point, about
600 pages) and Volume II (devoted to the dynamics of systems and analytical
mechanics; about 570 pages) on the one hand, and Volume IV (concerning
equilibrium figures of homogeneous and heterogeneous liquid masses, Figures of
the Earth and planets; about 630 pages), on the other hand, all this complemented
by a Volume V published later on (1933 and 1955; about 200 pages) and devoted
to Elements of Tensor calculus, planned by Appell—for the edition of 1926—but
effectively written by René Thiry (1886–1968), a student of H. Villat and a pro-
fessor of mechanics at the Sorbonne. This last volume of great value includes
elements of Riemann, Weyl, Eddington and Cartan geometries, all of interest in
general relativity and other geometric generalizations of gravitation theory as also
in the theory of structural defects (for Cartan’s spaces with torsion). In all, this
adds up to some two thousands and five hundred pages! But we analyze here only
Volume III and its supplement by the Cosserats.

The overall redaction of this part of the treatise is lengthy, quite detailed,
accompanied by exercises with given solutions, and historical comments and up
dated references to contemporary works. It is clear that arguments used in deri-
vations were polished in the course of many years of teaching. In the case of the
mechanics of deformable solids problems are clearly related to civil engineering.
In the case of fluid dynamics there is no allusion to the need of theoretical con-
siderations in the emerging aerodynamics as a mathematical branch of hydrody-
namics so that a critical work like that of Prandtl [31] on the boundary layer is
completely missed. But there is a sure interest in the theory of barotropic fluids and
in the propagation of discontinuity waves of which shock waves are the most well
known examples. This is probably due to the influence of Hadamard for whom
Appell clearly manifests a strong admiration. Dissipative processes are hardly
mentioned (e.g., for viscous fluids or plasticity in the cased of solids). This cor-
relates well with the marked interest of Appell for the theory of potential, the
realm of nondissipative mechanical behaviours. All this seems to be the general
background and framework in which Appell’s treatise must be appreciated and
sometimes contrasted with.
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11.3.2 Vector Analysis and Potential Theory

The first two chapters of Volume III of the treatise (Chaps. XXVIII and XXIX)—
viewed as some kind of prerequisites—bear a strong print of Newtonian and
nineteenth-century mathematical physics. They naturally call for the proof of
standard theorems of what is now called vector analysis: Green’s and Stokes’
theorems and Green function, and their application to potential theory, a favourite
subject of Appell, with applications to Newtonian attraction, Ampère’s theory of
magnetism, Faraday’s, Maxwell’s and Gauss’ works. In potential theory proper,
emphasis is placed on harmonic functions, Dirichlet’s principle, and Dirichlet and
Neumann boundary conditions. An example of detailed treatment is that granted to
the computation of a potential due to a homogeneous ellipsoid (after Dirichlet).
References are often made to the courses on analysis by French contemporary
mathematicians such as Poincaré, Boussinesq and Bertrand. Examples of appli-
cations are borrowed from Tisserand (in celestial mechanics), Poincaré (theory of
the potential) and Kelvin, Maxwell (including from this author’s treatise on
magnetism and electricity), Lipschitz, Riemann, Sommerfeld, Levi-Civita and
Betti (for applications in heat conduction, electromagnetism and mechanics).

These chapters deal with vector fields, but without the relatively new conve-
nient intrinsic vector notation of Gibbs and Heaviside. As a matter of fact, Appell
is conscious of this shortcoming as he refers (pp. 26–27) to this ‘‘special notation’’
for which he advises the reader to look at the recent French translation of the book
by Coffin [12] (an ardent advocate of this ‘‘notation’’) and also the Italian authors
Burali-Forti and Marcolongo.3 This clearly indicates the little enthusiasm dem-
onstrated by French physicists, engineers and mathematicians—since no true
French reference on the subject can be cited by Appell—and the frequent difficulty
met by French scientists to readily adopt in their lectures advances and notations
proposed by foreigners (this also applies to Maxwell’s electrodynamics and Ein-
stein’s special relativity, in spite of the works by Poincaré).

11.3.3 Equilibrium and Internal Motion of a Continuous
Mass

The very title of this short Chap. XXX (20 pages) of primary importance indicates
that the author will closely follow Cauchy’s magisterial introduction of the con-
cept of stress (cf. Cauchy [10] with a similar terminology). Only general equations
are concerned. In accord with Cauchy—generalizing the case considered by Euler
-, the ‘‘effort’’ per unit surface (called ‘‘traction’’ or ‘‘tension’’ by Cauchy, and
‘‘stress’’ in English by Rankine in elasticity) may be obliquely applied. Its linear

3 For these see the remarkable book on the history of vector analysis by Crowe [15].
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relation to the local unit normal yields (in modern terms) the notion of ‘‘stress
tensor’’—a word not yet used by Appell although introduced by W. Voigt some
twenty years before. Appell could have used the expression of ‘‘linear vector
function’’ in the sense of Gibbs. But he does refer to the expression of the ‘‘effort’’
in terms of the director cosines of the normal—his Eq. (4) in page 134—as a
‘‘linear and homogeneous function’’ of these (p. 133) after the 1828 proof of
Cauchy exploiting the epoch-making ‘‘tetrahedron argument’’. Because of this lack
of use of a condensed and mathematically justified wording, Appell is bound to
repeatedly refer to these famous ‘‘six quantities’’ (in fact the six independent
component of a symmetric second-order tensor). Here also we witness the shyness
or reluctance with which French scientists adopt terms of foreign origin. The result
indeed is the general equilibrium or dynamic equations of continua without further
constitutive assumption. Also in the line of Cauchy, Appell considers the ‘‘ellip-
soid of efforts’’ and possible changes of coordinates but not alluding to tensor
transformations. More recent references are to the Cosserat brothers [13] and
Brillouin [8].

11.3.4 Hydrostatics and Stability

The next much longer chapter (Chap. XXXI) with about ninety pages deals with
hydrostatics, obviously a very special case already dealt with in the eighteenth
century. The main notion here is that of ‘‘characteristic equation’’—nowadays
called ‘‘equation of state’’ or ‘‘constitutive relation’’—relating pressure, density,
and perhaps an additional argument such as temperature or a degree of salinity.
Traditional considerations are those relating to level surfaces, barometric formulas,
and Archimedes’ principle. What are more impressive are the lengthy discussions
about figures of equilibrium of masses of fluids and the related question of their
stability. Here Appell necessarily refers to the buoyancy problem, the old geo-
metric considerations of Bouguer [7] and Charles Dupin, and the (then) recent
studies of Guyou [18], Duhem and Poincaré (in various memoirs for the last two
authors).

11.3.5 Deformation of Continua

With this Chap. XXXII Appell returns to general notions based on geometry
although the expression ‘‘differential geometry’’ is never used. He naturally bases
his presentation on the original work of Cauchy [10, 11], but also frequently refers
to recent works by Love, Darboux, Poincaré and the Cosserats [13]. Of course he
meets with the ‘‘strain tensor’’ the same wording difficulty as with the stress tensor.
Principal dilatation and stretches are casually introduced as well as the notion of
homogeneous deformation. The continuity equation is practically proved in the
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Lagrange-Piola format (q0 = qJ)—cf. Sect. 664. But in contrast he pays only lip
service to the notion of compatibility condition, although dealt with before by
Navier and Saint-Venant and more recently by E. Cesaro and V. Volterra—cf. the
note in Sect. 673 simply referring to a paper by Riquier [32].

11.3.6 Kinematics of Continua

With the intervention of the time variable combined with the previously intro-
duced sketchy theory of deformation comes the kinematics of continua in
Chap. XXXIII. Here again Appell grants (p. 278) to Cauchy the role of founder of
this kinematics, although he has to acknowledge the primary role played by Euler
and Lagrange. Indeed, in what we think to be a rather modern approach, Appell
deals at some length with both sets of Eulerian and Lagrangian variables. Like
many Frenchmen, he does not seem to be much aware of the inclusive views
expanded by Piola in Italy and Kirchhoff in Germany in the middle of the nine-
teenth century. In this line he compares the continuity condition in Eulerian and
Lagrangian-Piola-an formats. It is also at this point that he introduces for the first
time the notion of vorticity as a mean rotation (following Cauchy), but he also
cites (Sect. 706) the definition of this vector by Boussinesq (true kinematic defi-
nition in terms of the instantaneous rotation of a triad of principal directions) and
by Stokes (a mechanical definition related to internal friction in fluids). This
manifests a specific interest in a notion that Appell will duly exploit in further
chapters, an interest shared by many mechanicians of the period after the pio-
neering works of Helmholtz, Kelvin and others. Furthermore, irrotational motion
brings him back to one of his favourite subjects, potential theory.

What remains most original in this chapter is the introduction of Hadamard’s
classification of propagating discontinuities in continua. This surprisingly occupies
more than twenty pages and follows the remarkable work of Hadamard [19] on
general properties of wave propagation. Hadamard cleverly distinguished, in a true
three-dimensional framework, between dynamic and kinematic aspects of the
phenomenon previously described by Riemann, Christoffel and Hugoniot for
essentially one-dimensional motions in a fluid. He classifies moving discontinu-
ities in terms of the order of the space and time derivatives of a field that suffer a
true discontinuity. Thus a discontinuity surface across which the medium velocity
and the strain are discontinuous is a discontinuity surface of the first order (a shock
wave in usual jargon) while one across which the acceleration (second-order time
derivative of the motion) is discontinuous is called a discontinuity surface of the
second order or ‘‘acceleration wave’’. Jump conditions at the crossing of such
surfaces replace the field equations across the surface while usual (continuous)
field equations remain valid—but obviously with different field values—on either
sides of the surface. As we know now irreversible thermodynamics is a necessary
ingredient in a good appraisal of this singular phenomenon of propagation.
Truesdell and co-workers will capitalize on this type approach in the 1960s–1970s
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in order to explain the formation of shock waves from weaker discontinuities such
as acceleration waves, especially in deformable solids.4

11.3.7 General Theorems of the Dynamics of Perfect Fluids

General theorems that govern the dynamics of perfect fluids are the object of the
rather long Chap. XXXIV. Only pressure appears as an internal force in the mass
of fluid. Remarkably enough Appell gives the Lagrange format of the equations of
motion, together with Lagrange’s theorem when a velocity potential exists. He
introduces the notion of sound speed by examining the propagation of a second-
order discontinuity wave in the classification of Hadamard. As to the Eulerian
format of these dynamic equations, it is exposed at length with a beautiful example
(spherical layer around a solid spherical nucleus) borrowed from his contemporary
Basset [5]. Changes of coordinates are discussed in both Lagrangian and Eulerian
formats. So-called permanent motions (with velocity field constant in time) are
examined along with fluid filaments and Bernoulli and Torricelli theorems. Irro-
tational such motions are considered in particular. The chapter concludes with the
principle of images (e.g. that of a source with respect to a plane) in the manner of
Lord Kelvin.

11.3.8 Theory of Vortices

As already remarked the theory of vortices is a subject of great interest to Appell.
No wonder, therefore, that he devotes more than seventy pages to the subject
(Chap. XXXV). Of course, Helmholtz is the main contributor with the original
theorems that he proved in 1858. But works by Kirchhoff, Kelvin, Rayleigh and
Poincaré (see the book on vortices by Poincaré [29]) are also often cited. The
considered fluid is viewed as perfect. A primary notion is that of circulation. A
fundamental result is that the flux of vorticity across a fluid surface is constant in
time. The celebrated theorem of Helmholtz states the conservation of vorticity
surfaces. Vortex lines play a fundamental role. Problems of connectivity of such
lines are much relevant. Geometric proofs are favoured. What is more original (but
perhaps in the air at the time of the publication of the treatise) is the strong analogy
between vortex loops and electric-field lines (cf. p. 432; and again in p. 459 with
the magnetic force). A long discussion about vortex loops follows occupying
seventeen pages. The determination of the velocity field from vortices is examined
at length. Altogether a rare mention—in the treatise—of experimental works is

4 The present author will even formulate systematically the relevant kinetic and dynamic
compatibility conditions in a covariant relativistic framework (cf. [24]).
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given in a short section (Sect. 777) following studies by M. Brillouin. Mathe-
matically oriented considerations on the analytic description of vortex surfaces by
the German mathematician Clebsch are paid some attention, while, we admit, we
do not know about the geometric problem posed by a certain Transon5 to which six
pages are devoted. In all, this sounds like rather classical material. The accom-
panying exercises are based on problems by Lagrange, Helmholtz, M. Lévy, H.
Poincaré, Beltrami and Clebsch.

11.3.9 Parallel Flows

Fluid motions parallel to a given plane are extensively considered in a
Chap. (XXXVI) of almost ninety pages. It must be understood that these are
motions that depend only on two planar coordinates, the whole picture being time
invariant by translation in the orthogonal direction. The vorticity vector then is
orthogonal to the family of parallel planes. The resulting essentially two-dimen-
sional picture lends itself well to the introduction of a velocity potential and the
exploitation of complex variables, obviously a technique with intricacies much
enjoyed by Appell and his contemporaries (remember that France is the country of
Cauchy, the inventor of the theory of residues). But here a short pose shows that
Appell—short Sect. 789 in pp. 487–488—is aware of the notion of solitary wave
as observed in 1834 and reported in 1844 by Scott-Russell, and whose mathe-
matical solution owes much to Boussinesq and Lord Rayleigh.6

Of particular interest are the vortex motions of a liquid and the related problem
of the evolution of vortex tubes. A remarkable canonical (in the sense of Hamil-
ton’s formulation) form is introduced here (pp. 497–503) for a function H that
defines the coupling between two vortex tubes. This may look as supererogatory in
such a treatise, but it probably reflects a personal interest of the author as also his
proximity with Poincaré (cf. [29]). Some simple free-surface wave problems are
studied (Gerstner trochoïdal waves for swell). However, in a move typical of
Appell, the author then makes a gift of some forty pages to Henri Villat7 in the
third edition of the treatise for an exposition of this author’s works on the

5 Probably this is Abel E. Transon (1805–1876) a brilliant student at Ecole Polytechnique and
Ecole des Mines in Paris, who became mostly interested in problems of geometry.
6 Boussinesq and Rayleigh are dutifully cited, but Appell does not mention Korteweg and de
Vries (1885) who are now given most of the credit for the typical solitary-wave solution, which
was to gain an extraordinary renown in the 1960s–1970s with the use of computer simulations
and the invention of the inverse-scattering method.
7 H. Villat (1879–1972) became first a professor of rational mechanics in Strasbourg, and then a
professor of fluid mechanics at the Faculty of Sciences in Paris, while also teaching at the
National School of Aeronautics, nicknamed ‘‘Sup’ Aero’’. His course there gave rise to a classic
book in fluid mechanics [35]. He was the founder of the Institute of Fluid Mechanics of the
University of Paris. This was an ancestor of the Institut Jean Le Rond d’Alembert organized by
the writer of this contribution.
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irrotational motion of a liquid in contact with a fixed obstacle, and the ensuing
problems posed by the notion of wake. The importance of such a problem is easily
realized for the navigation of ships, and—as we known now—for the forthcoming
developments of both theoretical and experimental aerodynamics.8 Here, due to
the essential two-dimensionality of the problem, this is but the realm of the
exploitation of complex variables and complex-valued functions for which Villat
shows an unmatched dexterity dealing with conformal mappings of various types
in agreement with Kirchhoff, Riemann and Picard. The consideration of discon-
tinuous plane motions of a liquid allows one to eliminate d’Alembert’s paradox
thanks to the introduction of stagnation points, attached streamlines and a rear
wake of dead flow. This is magisterially dealt with by Villat who concludes with
formulas for the pressure force and moment exerted by the flow on the obstacle.
We cannot help but feel a great admiration for the cleverness of these evaluations
in hydrodynamics. Most references are of course to Villat’s own publications in a
remarkably wide range of scientific journals (cf. pp. 559–560)—a rather seldom
practice for the period.

11.3.10 Barocline Fluids

Barotropic fluids are those for which the state equation (characteristic equation)
reads f(p, q) = 0. Accordingly level surfaces for pressure and density coincide.
Barocline fluids are those for which this characteristic equation contains an
additional variable, say, temperature or a degree of salinity. The interest for such a
situation is obvious in atmospheric air—the domain of meteorology per se—with
the influence of temperature and humidity in altitude and in oceanography with
variation in the salinity with depth. This yields the notion of stratified flows where
circulation and vortex formation are critical parameters. The Norwegian scientist
Bjerknes9 was responsible for a large part (34 pages) of the redaction of this
Chap. XXXVII. This author pays a specific attention to analogies with electric and
magnetic phenomena (e.g., magnetic induction replacing the fluid velocity).

8 In this respect see Anderson [1].
9 Vilhelm Bjerknes (1862–1951) is a Norwegian fluid dynamicist and meteorologist who was
first an assistant to Heinrich Hertz in Bonn (1890–1891), and then specialized in hydrodynamics
and created a true school of meteorology in Bergen and Oslo. He definitely influenced other fluid
dynamicists such as Ekman and Rossby. He is largely responsible for the progress made in
meteorology in the first half of the twentieth century. His early contact with Hertz probably
kindled his life long side interest in electrodynamics. Together with other Norwegian scientists
(cf. [6]), he wrote a splendid lengthy—in all, 864 pages—monograph on physical hydrodynamics
and its applications to dynamic meteorology. His father Carl Anton Bjerknes was a precursor in
the same field of fluid dynamics, already using hydrodynamic analogies to interpret Maxwell’s
electromagnetism.
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Appell seems to be responsible for the writing of the remaining part of this chapter
with extension of the theory of vortices and generalizations of formulas for the
fluid circulation, this being complemented by bibliographic recommendations.

11.3.11 Elements of Elasticity Theory

With a chapter of 48 pages, we see that elasticity was not a field of utmost interest
for Appell. He in fact first reports the bare essentials often referring the reader to
more competent specialists such as Boussinesq, M. Brillouin and the Cosserat
brothers for more recent works. The presentation of linear elasticity leans heavily
on the original work of Cauchy for the general relationship between infinitesimal
strains and stresses—exploiting the relationship between two quadrics. He natu-
rally focuses on the case of homogeneous isotropic linear elastic media with only
two elasticity coefficients, the Lamé coefficients. Still he mentions the possibility
of anisotropy and shows the reduction to twenty one elasticity coefficients in a
general case (cf. pp. 612–615). Duhem [17] are called upon for the proof of the
inequalities to be satisfied for the positive definiteness of the quadratic form of the
elastic energy. He refers to the Cosserats for the question of mixed boundary
conditions and a uniqueness theorem. The only ‘‘energy theorem’’ mentioned is
the one on reciprocity due to Betti. Three examples of problems are treated in
detail referring to the lessons of Gabriel Lamé on the mathematical theory of
elasticity.10 These are exercises which are still given today to students, e.g., the
equilibrium of a cylindrical tube.

The rest of the chapter deals with more advanced matter. This includes in brief
form (but over some five pages) some of the considerations by the Cosserats and
Poincaré on the ‘‘spectrum’’ of solutions of static equilibrium problems, following
the rewriting of these equations for the displacement of Cartesian components ui

by the Cosserats as (in our notation)

Dui þ nrih ¼ gi; ð11:1Þ

where h is the dilatation, h = riui, and n = (k + l)/l, and with prescribed values
at a boundary. By an adequate formal expansion this can be compared to the
solutions of Laplace and Helmholtz equations, including with orthogonality
properties of two distinct solutions. This type of problems and formulations will
wait some sixty-seventy years to be expanded by Russian mathematicians in St
Petersburg. Another problem of importance for further research is that of the
theory of slender bodies and the basic problem of Saint-Venant (for instance the
torsion of a straight cylinder). Here again Appell refers to the works published by

10 The book of Lamé [21] was unique in its class before the publication of a book by Clebsch in
Germany. The latter was in fact translated into French, commented upon and much enriched (so
as to triple in volume) by de Saint-Venant [16].
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the Cosserats in various notes at the Comptes Rendus of the Paris Academy in the
years 1907–1908. The chapter concludes with the proof of the formulas for
the speed of longitudinal and transverse waves in isotropic linear elasticity, the
‘‘ether’’ (no longitudinal waves) and perfect fluids (no transverse waves) being
extreme cases. In the listed problems we find again a classic (due to Lamé), that of
the equilibrium of a thick spherical layer with different pressures applied on the
outer and inner surfaces.

One remark concerns the relationship of elasticity with the more engineering
like strength of materials. Appell apologizes (Sect. 834) for not treating this
aspect, even superficially, explaining that in this volume he consumed the avail-
able space with the contributions of Villat and Bjerknes. What is more surprising is
that, even cursorily, he does not mention the possible existence of an elasticity
limit, nor does he allude to the existence of plasticity criteria although these were
formulated some forty years before (by Tresca in 1872 and Barré de Saint-Venant
in 1873), not to speak of the most recent criterion proposed by Huber in Poland in
1904 (but published in French) and von Mises in 1913 in Germany. This is all the
more surprising that Maurice Lévy, one of the engineers-scientists who is other-
wise often cited for other problems, was also responsible for the introduction of the
notion of rigid-plastic behaviour (no elastic response at all) in 1871.11 Perhaps that
Appell considers that this matter does not enter (yet) the framework of rational
(continuum) mechanics.

11.3.12 On Viscous Fluids

This Chap. XXXIX on the equations of motion, of a viscous fluid is especially
poor. It is extremely brief (less than 5 pages) and the names of Navier, Stokes and
Barré de Saint-Venant are hardly cited. In analogy with the introduction of Cau-
chy’s elasticity in the foregoing chapter, the linear (Newtonian) fluid constitutive
equations are presented as an expansion limited to the first order in the six inde-
pendent components of the symmetric part of the velocity gradient. Conditions of
symmetry are evoked but not formulated to justify the reduction to two viscosity
coefficients for isotropy. Perfect fluids governed by pure pressure (no shear) and
Stokesian fluids are noted as a final point. The reader is referred to Boussinesq,
Basset, Kirchhoff and Poincaré for further theoretical developments. Poiseuille is
mentioned for the flow in capillaries. There is no mention of such notions as the
Reynolds number (albeit introduced in 1883) and transition to turbulence. The
situation is quite similar to the one of elasticity versus plasticity in the above
examined chapter, but here the question resides in the transition between laminar
and turbulent flows. In Appell’s view, these subject matters did not yet belong to
rational mechanics.

11 See historical remarks in the book of Maugin [25].
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11.4 The Cosserats’ Theory of Euclidean Action

Although this supplement written by the Cosserat brothers was not reprinted in the
considered third edition of the treatise, we appreciate that the publisher of the
facsimile reprint thought good to join a copy of this supplement to this reprint.
This was a nice move as it offered an opportunity to the reader—who until recently
had no access to the 1909 book of the Cosserats—to study in a shortened version
the main revolutionary ideas expanded by the brothers in 1909. We do not enter
the detail of this contribution since we analysed this famous but unread book in
greater detail in a separate work [27]. In a nutshell, however, we remind the reader
that the Cosserats propose a kind of analytical mechanics of finitely deformable
bodies basing on the notion of Lagrangian-Hamiltonian action and the application
to it of a group-theoretical reasoning, the invariance of the action under the group
of Euclidean transformations (translations and rotations alike). It is this equal
footing between translations and rotations that necessarily led the brothers to
envisage the possibility of the existence of so-called couple stresses in parallel
with the usual notion of stress, the latter then becoming non-symmetric. This will
have a brilliant future and blossom in the second half of the twentieth century. If
we mention this supplement here, it is because Appell himself, in the preface—
written in 1908—to the second edition of his treatise in 1909, expressed an
unbounded enthusiasm for the Cosserats’ work on this Euclidean action, an
enthusiasm matched by that of the American mathematician who reviewed their
work, Wilson [36]. It is therefore strange that Appell, in his preface—written in
1920—to the third edition of his treatise, justifies the suppression of the Cosserat’s
supplement by claiming that limited available space forced him to this move as he
wanted to offer some space to Villat and Bjerknes. We do not think that this is a
sustainable argument in a global work of this extensive size. We rather surmise
that Appell had realized that in spite of the intrinsic depth of the Cosserats’
reasoning, the subject was not so much successful, too hard to be grasped by most
mechanicians not trained in mathematical physics at the time, and so probably in
advance of its time, while Villat’s and Bjerknes’ works were more in resonance
with the fashionable scientific developments of the period. He may also have
thought that there was no longer need for the Cosserats’ supplement since prac-
tically the same text had appeared in two other media (Chwolson’s encyclopaedia
and separate book form with a new pagination) and in the same year of 1909 (see
[14]), and the book version was still available.

11.5 Concluding Comments

Perusing our foregoing comments we recognize that Appell is very much repre-
sentative of his own epoch, concerning both the selection of treated subjects and the
choice of mathematical techniques. His basic reference in the general notions of
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continuum mechanics remains the great Cauchy. In comparison, Navier, also a great
elastician and fluid dynamicist, receives much less attention. The genius of Cauchy
is even more enhanced by the fact that the main contributing mathematical technique
is the consideration of complex variables—and the ensuing residues theorem, a
technique also due in great part to Cauchy. This is obviously related to the funda-
mental two-dimensional setting of many problems posed in both fluid dynamics and
elasticity. Potential theory also appears as an essential tool in which Appell finds a
field at his own level of interest (shared by others scientists of the period, e.g.,
Poincaré). In comparison, the techniques introduced by J.-B. Fourier, powerful as
they were, are hardly mentioned due to the weak interest expressed for dynamics in
the wave-frequency domain. Also pregnant in many parts of the volume is the great
admiration expressed by Appell for some precursors, e.g., Lamé and Barré de Saint-
Venant, but also for some of his fellow mathematicians, in particular, Boussinesq,
Duhem, Poincaré and Hadamard. For closer contributors, we must account for the
importance granted to the Cosserat brothers (in the foundations of continuum
mechanics and many subtle aspects of deformable solids), Bjerknes for hydrody-
namics, and Villat for the theory of wakes. He finds in Villat another great specialist
of the use of complex-valued functions, while Poincaré, Villat and Bjerknes clearly
satisfy his marked interest for the theory of vortices. Dealing with a book on
‘‘rational’’ mechanics we find here very few applications to, and mentions of,
experiments. Whatever smells too much of this yet ‘‘non-rational’’ framework is
discarded or not even mentioned. This applies to behaviours beyond pure elasticity
and perfect fluidity. The contents of the next volume (Volume IV) published in
1921—and not examined in the present contribution—comfort this appraisal with an
overemphasis—about 630 pages—on the study of the equilibrium figures of fluid
ellipsoids and applications to celestial bodies.

Finally, Appell as an active creative mathematician belongs to a period where
vector and tensor analyses are not a subject of teaching in French universities,
though there are local researches conducted along these lines following Ricci and
Levi-Civita. Probably under the influence of the success met by Einstein’s general
relativity after the proof of validity of some of its consequences (in particular the
deflection of light rays by heavy masses), Appell realized that something on tensor
analysis should be added to his treatise if one wants to go further than classical
rational mechanics. He was already old and sick when this came up in 1925 so that
he commissioned René Thiry to write this additional part as a volume V devoted to
‘‘Elements of tensor calculus: geometric and mechanical applications’’.12 13 On
perusing the contents of this volume we see the extent of the ambitious framework

12 See Appell [4].
13 In France it is only with a book (Brillouin [9] by Léon Brillouin (1889–1969)—a renowned
physicist and son of M. Brillouin—that tensors and continuum mechanics were firmly associated.
But the book is better known in the USA in its English translation than in France. A definite
introduction to tensor analysis was successfully given by Lichnrowicz with a first edition in 1946,
and a seventh in [23]. It is in this book that most French students of mathematical physics
(including the present writer) were exposed to tensor analysis in the period 1950–1970.
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provided by Appell for its redaction. Of course re-writing Volume III in that spirit
would have been a formidable enterprise that no immediate successor of Appell
would endeavour. One had to await such treatises as those of Truesdell, Toupin
and Noll in the new Handbuch der Physik edited by S. Flügge after World War II
[33, 34] for something more or less equivalent, with a nice complement on tensors
by J. L. Ericksen in Truesdell and Toupin [34].

A.1 Appendix: Biography of Paul Appell

The following elements of the biography of Appell may be of enlightening
interest. He came from a catholic family from Alsace. He left Alsace for Nancy
when Alsace was occupied by the Prussian following the 1870–1871 Franco-
Prussian war. He became friend with Henri Poincaré (1854–1912) in Nancy; they
remained long life friends. He graduated in mathematics from the famous Ecole
Normale Supérieure (ENS) in Paris, and obtained his Doctoral degree in this
matter in 1876. He followed the teachings of several influential scientists: J.B.
Serret, Gaston Darboux, Charles Hermitte, Joseph Bertrand, Maurice Lévy and
Urbain Leverrier. After being lecturer at the ENS he obtained the Chair of Rational
Mechanics at the Sorbonne in 1885, but also taught (we suppose) more applied
matters at the engineering school known as the Ecole Centrale des Arts et Man-
ufactures (for short, Ecole Centrale de Paris or ECP). His mathematical works (in
the order of 200 publications; cf. [3]) were essentially in projective geometry,
algebraic functions, differential equations and complex analysis. He occupied at
some different or simultaneous times, such powerful positions as: Dean14 of the
Paris Faculty of Sciences (1903–1920), Rector15 of the Academy of Paris
(1920–1925), President of the council of the University of Paris, President of the
French Society of Mathematics, and Member of the Paris Academy of Sciences.
He was a visiting professor at Harvard and Rome. During WWI he created the
‘‘National Research Fund’’ to be considered the ancestor of the actual CNRS
(National Centre for Scientific Research). He founded in 1920 the ‘‘Cité Interna-
tionale Universitaire de Paris’’ (CIUP) to accommodate foreign students and
visiting scholars.16 Philosophically he was an atheist while politically he would be

14 The title of ‘‘Dean’’ practically corresponds to the actual title of President.
15 The administrative title of ‘‘Rector of Academy’’ corresponds, for education, to that of
‘‘Prefect of Department’’ for other matters, but the ‘‘Academy’’ here refers to a larger region than
a single department. He is the local representative in charge of implementing the views of the
Minister of Education on the organization of education et al levels in State-own schools.
16 The ‘‘Cité Internationale Universitaire de Paris’’ (CIUP) is a campus like condominium
devised to accommodate foreign students. It comprises a general purpose building equipped with
cafeterias, restaurants, concert and theatre halls, swimming pool and accommodations for visiting
foreign professors. Most buildings for students were built in the course of time with the help of
donations from philanthropists and industrialists or foreign governments. This was a unique
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classified as belonging to the left of the political spectrum, having been a
‘‘Dreyfusard’’17 and an ardent defender of the separation between the State and the
Church (in France this is called ‘‘radicalism’’ not to be mistaken for the meaning
granted to this word in the USA). He had strong nationalist feelings (especially
concerning his beloved Alsace) but proved also to be a true internationalist (being
involved in the League of Nations in Geneva, and founding the CIUP). In all,
Appell demonstrated an amazing level of activity in teaching, research, editing and
public service.
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Chapter 12
A Successful Attempt at a Synthetic View
of Continuum Mechanics on the Eve
of WWI: Hellinger’s Article
in the German Encyclopaedia
of Mathematics

Abstract This essay analyses the comprehensive nature of a remarkable synthesis
published by Hellinger (Die allgemein ansätze der mechanik der kontinua.
Springer, Berlin, pp. 602–694, 1914) in a German encyclopaedia. In this contri-
bution Hellinger, a mathematician, succeeds in capturing the progress and sub-
tleties of all what was achieved during the nineteenth century, accounting for most
recent works and also pointing at forthcoming developments. On this occasion, the
scientific environment of Hellinger is perused and the style of Hellinger and his
excellent comprehending of continuum mechanics are evaluated from a document
that is a true landmark in the field although often ignored.

12.1 Introduction

In the nineteenth and twentieth centuries German scientists and engineers have
developed a special taste for the composition of impressive encyclopaedias and so-
called ‘‘Handbucher’’ (Handbooks). A typical Handbuch (in fact a Taschenbuch)
in mechanical engineering has been the very popular one by Hütte with many
foreign translations, but this was more a catalogue of prescriptions, standards, and
elementary formulas of mathematics and strength of materials. Famous collections
of the ‘‘Handbuch der Physik’’ have been edited by Geiger and Scheel between
1926 and 1933 [18] and by Flügge between 1955 and 1988 [17]. Mathematicians
did not escape this trend. In particular, renowned mathematicians such as Felix
Klein (1849–1925) and Conrad H. Mueller (1857–1914) contributed their wide
experience and many friendly connections to the creation and edition of a mon-
umental encyclopaedia of mathematics under the German title ‘‘Encyklopädie der
mathematischen Wissenschaften mit Einschluss ihrer Anwendungen’’—in brief:
Enz. Math. Wiss. (EmW)—published by B. G. Teubner (Verlag) in Leipzig
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between 1907 and 1914 [31].1 Various mathematicians and physicists were called
to contribute to this vast enterprise. Part Four of Volume Four was devoted to
Mechanics (Mechanik).2 In that Volume the burden of writing Article 30 on the
General bases/formulation (principles) of continuum mechanics (‘‘Die allgemeinen
Ansätze der Mechanik der Kontinua’’) fell on Ernst Hellinger then in Marburg. The
Encyclopaedia is well-documented with scholarly articles. It is aimed at the spe-
cialist. Concerning the whole EmW, it is salient to note the following appreciation
of I. Grattan–Guiness (2009), the famous historian of sciences: ‘‘Many of the
articles were the first of their kind on their topic, and several are still the last or the
best. Some of them have excellent information on the deeper historical back-
ground. This is especially true of articles on applied mathematics, including
engineering, which was stressed in its title’’. This particularly applies to Hellin-
ger’s contribution.

Ernst Hellinger (1883–1950) had been educated in Heidelberg, Breslau and
Göttingen and was a doctoral student of David Hilbert. This indicates that he was a
rather pure mathematician whose most famous mathematical accomplishments
were in integral and spectral theories. He became a professor in Frankfurt am Main
but he left Germany for the USA in 1939 and then taught at Evanston, Illinois. The
writing of this contribution in continuum mechanics in 1913 [26]3 may have been a
parenthetical episode in his career. Nonetheless, he was much interested in vari-
ational formulations (as shown by the forthcoming perusal of his contribution) and
even introduced the notion of two-field variational principle now referred to as the
Hellinger-Reissner variational principle in elasticity (cf. [53]). Nonetheless, we
surmise that his formation with Hilbert led him to view continuum mechanics as
one of the physical sciences to be formalised and given an axiomatic framework,
an orientation that will be materialized later on by the Truesdellian school with
Noll (cf. [48]). Although not a full time mechanician, Hellinger was able to capture
in a rather concise contribution all recent and promising advances by keeping a

1 This monumental work was translated into French [43] and edited under the direction of J.
Molk—a mathematician specialist of elliptic functions—and P. Appell—a reputed mathematician
himself the author of a magisterial treatise on rational mechanics (cf. [1]). A full facsimile reprint
of this French translation was produced by Editions Gabay in Paris in the years (1991–1995). But
only one volume (exactly IV/4, the presently examined one) was never translated into French, and
therefore does not exist in the Gabay reprint. The reason for this phenomenon is not clear. Of
course, its date of publication, 1914, was not the most appropriate one given the beginning of
World War One. Another possible explanation given by J. Gabay is that P. Langevin, adviser for
the translation of the Encyclopaedia after WWI, was not much in favour of phenomenological
physics in the sense of Duhem et al. Together with Eleni Maugin, I produced a (non-published)
partial translation from the German to English of Hellinger’s contribution.
2 Timoshenko [47, p. v] in his history of the strength of materials refers to this volume for an
extended bibliography.
3 Of course Hellinger’s theoretical contribution was complemented by other more specific and
applied ones such as those of Heun [29] on the general bases and methods of the mechanics of
systems, Voss [52] on the general principles of mechanics, and von Kármán [30] on the physical
bases of the mechanics of solids.
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sufficiently high standpoint, a balanced neutrality, and an acute insight, and this, in
our opinion, much more than some professional mechanicians who kept too much
with well established subject matters. In order to help the reader not accustomed
with reading in German, a partial translation in English of Hellinger’s contribution
is provided in an Appendix.

12.2 The Scientific Environment

Although Hellinger was essentially foreign to the engineering spirit, in writing his
opus of 1914 he gathered a rich past and contemporary documentation and
accounted for most of the recent works in the field of theoretical continuum
mechanics. He was not building in a vacuum, but this voluntary embedding in a
medium other than his own is altogether remarkable. Of course the influence of his
mentor David Hilbert may have played a fundamental role in his clear interest for
the general and somewhat axiomatic aspects, so that he must have been familiar
with the then recent attempt of Hamel [24] to delineate the structure and principles
of mechanics (as of the beginning of the twentieth century), and the recently
published treatise on ‘‘energetics’’ by Duhem [12] with its pre-Truesdellian flavour
which may have been to his taste. This is corroborated by his frequent citations of
these two authors. But he also knows the impressive treatise of Appell [1] on the
rational mechanics of deformable bodies and the German synthetic texts of Heun
[29, Voss [52], and Voigt [51].

Being basically a mathematician and a great admirer of Lagrange, Hellinger is
also very much concerned with variational formulations in the works of W.
Thomson (Lord Kelvin), Kirchhoff and, above all, the Cosserat brothers [7, 8, 40].
The last connection may have been through his reading of the Third volume of
Appell’s treatise [1] in which there is a supplement written by the Cosserats. The
appeal to group symmetries in the line of Sophus Lie and Henri Poincaré by the
Cosserats may have been very attractive to him. But he also considered the pos-
sible occurrence of dissipation with the notion of dissipation potential introduced
by Rayleigh, and even time-dependent (memory-like) behaviours in the manner of
Boltzmann [2]. The recent work of Hadamard [23] on wave propagation has also
left a strong print. Finally, in contrast with many other writers of the period who
remain in the classical (Newtonian) framework, Hellinger has already integrated in
his views the revolutionary ideas of Einstein in 1905 on relativity and Minkowski
[42] on space-time. All these remarks are based on the citations of these authors by
Hellinger as checked in the many footnotes to his contribution. This is the general
background and favourable scientific environment in which this perspicacious
author has framed his article.
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12.3 The Contents of Hellinger’s Article

12.3.1 Introductory Remark

Hellinger’s article is only ninety two pages in print. Nonetheless, it succeeds in
providing a rather complete survey of the field both with its established bases, its
recent successes and some view of things to come. This friendly neutrality with
which the author looks upon his assigned duty—in principle perusing a vast
domain of knowledge with about a hundred fifty years of history and a vivid
contemporary activity—is conducted with no a priori prejudice as a result—we
surmise—of Hellinger being a somewhat outside observer. Hellinger is rather
generous but also very accurate with citations. He cites many authors, whatever
their nationality, but is clearly most influenced by works published within the
thirty years before his synthesis, say in the period 1880–1910. Perhaps because of
this ‘‘actuality’’, he does not confine himself to the well established fields (linear
elasticity and Eulerian fluids), but he often venture in newly expanded fields of
interest such as finite deformations, oriented (Cosserat) bodies, capillarity, for-
mulation of thermo-mechanics, analogy with electrodynamics, and even relativ-
istic continuum mechanics.

From a historical viewpoint, our perusal of this beautiful contribution should
not be influenced by our own education in the field (rough period 1960s–1970s)
and our knowledge accumulated over an active professional period of some forty
five years that witnessed many developments. But it happened that many of these
rich developments in a vivid period of research more or less coincide with many of
the points touched upon by Hellinger. We do not think that this kind of resonance
between Hellinger’s approach to our field of interest and our own view is so much
due to an influence that this author would have exerted on the generations that
followed his own. Indeed, Hellinger’s text may have been read by German sci-
entists between the two World Wars. But we must notice that his article was
published in an encyclopaedia of mathematics, in a style that is permeated by the
rigorous thinking of a mathematician—far from engineering interests—and that
the text was not translated in any foreign language. It just happened that a spirit
close to that of Hellinger re-appeared in our period of activity, and this of course
greatly facilitates our apprehending of his exposition.

12.3.2 The Layout and Articulation of the Contribution

Every synthetic work in a field has to respect a definite agenda. This particularly
applies to an article in an encyclopaedia of which the readership is not so well
delineated. In the present case a tradition has settled that the progression in the
presentation of the subject matter follows an almost fixed order (as exemplified in
many textbooks on continuum mechanics), geometric background being
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introduced first, followed by kinematics and the theory of deformations, then
kinetics and the general laws of mechanics, general classes of mechanical
behaviours and a few more specific examples, and finally (but not always) some
more exotic extensions. Hellinger’s approach is more difficult to grasp because he
is ahead of his time while simultaneously following some masters such as
Kirchhoff, Helmholtz, Clebsch and Barré de Saint-Venant, and he has thoroughly
gone through the then recent works by W. Voigt, J. V. Boussinesq, E. and F.
Cosserat, H. Poincaré, and P. Appell, authors who are very often accurately cited.
In reason of the imposed exercise, Hellinger’s text is extremely dense. Instead of
perusing his contribution just in its order of presentation—the easy way—we have
preferred to examine various points, that recur in the whole text and seem to
emphasize Hellinger’s repeated interest in some specific aspects as an exemplary
mathematician (obviously not the point of view of an engineer).

12.4 The Identified Fields of Marked Interest of Hellinger

12.4.1 On General Principles of Mechanics and General
Equations

This is not an original point of departure in Sect. 12.2. Hellinger builds on the
commonly admitted bases of Newtonian mechanics in the tradition set forth by
Euler, Lagrange, Cauchy, but with modern references to Brill [5]; Duhem [12];
Voigt [51], and other contributions to the same encyclopaedia by, e.g., Voss [52] and
Heun [29]. He clearly indicates his favoured view of Hilbert and Hamel [24, 25] —
later on formalized in Hamel’s contribution to the Handbuch der Physik in 1927 —
for axiomatization and the consideration of a general thermodynamic framework by
Duhem [12]. He also heavily borrows from the treatise of Appell [1] and the recent
works by the Cosserat brothers ([7, 8], and their numerous notes in the Comptes-
Rendus of the Paris Academy of Sciences). But Hellinger does not hesitate to
introduce the relativistic Einstein–Minkowski’s vision in the last section of his
contribution.

Formally, Hellinger is much more attached to the Lagrangian-Hamiltonian var-
iational formulation than to the classical Newtonian type of approach that relies on a
statement of laws of equilibrium or dynamics. This he shows even for the bases of
statics where he readily implements the principle of virtual work (Sects. 12.3 and
12.4). This may be one of the reasons why this work is not so much cited in the
‘‘Anglo-Saxon’’ literature dominated by Newton’s vision and made popular in
continuum mechanics by the Truesdellian school in the 1960s. But Hellinger cannot
avoid discussing the notion of force as a polar vector (p. 613) and the clever intro-
duction of the concept of stress by Cauchy (Cauchysche ‘‘Drucktheorem’’; p. 615).
On this occasion, Hellinger, above all a mathematician, acknowledges the usefulness
of the notions of vector analysis and dyadics—linear vector functions—in the line of
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J. W. Gibbs (cf. [21]) and the matrix calculus of Cayley (p. 613). He also refers to
‘‘tensor components of a dyad’’ (Tensorenkomponenten) after Voigt’s lectures on the
physics of crystals (p. 624). This is to be contrasted with the rather shy attitude of
contemporary authors (e.g., Appell [1]; see my own appraisal in Maugin [41]).

Hellinger’s presentation of equilibrium equations in the Eulerian framework
with the associated natural boundary conditions (reflecting Cauchy’s postulate)—
Eqs. (5a) and (5b), p. 617—is rather modern. But he also gives what may be
considered the Piola-Kirchhoff format as Eqs. (9a) and (9b) in p. 618, after what
looks like a Piola transform for the stress in Eq. (8). He indeed refers to the work
of Piola [44] in p. 620. For the symmetry of the Cauchy stress, he refers (p. 619) to
Hamel who calls this the ‘‘Boltzmannsches Axiom’’ for ‘‘die Symmetrie der
Spannungsdyade’’. Reductions to the two-dimensional (e.g., plates) and one-
dimensional cases (e.g., rods, filaments)—in Eqs. (18a) and (18b) in p. 622 for this
last case—are given following the Cosserats.

12.4.2 On Variational Formulations

For a mathematician like Hellinger the attraction to the beauty, economy of thought,
and efficacy of variational formulations is inevitable. Hellinger, a follower of
Lagrange, Piola, Hamilton, Kirchhoff, Helmholtz and the Cosserats, in fact starts by
emphasizing the exploitation of the principle of virtual perturbations (‘‘virtuellen
Verrückungen’’; p. 611 on)—virtual work (a weak formulation in the modern jar-
gon). To the risk of creating an anomalous connection with modern standards, we
perceive in these perturbations the notion of test functions (see Maugin [35, 37]).
Note that Hellinger gives a mathematically correct definition of what is a material
variation by considering an infinitesimal parameter noted r (and not e like in modern
treatments; cf. pp. 607–608). As a matter of fact Hellinger’s statement (7) in p. 612
is, but for different symbols, just the same as in a modern formulation where the
principle of virtual powers (for statics) is written for a massive body as

P�vol þ P �int þ P�surf ¼ 0; ð12:1Þ

where the three terms refer to volume, internal and surface forces, respectively.
The Cauchy stress is introduced in the second term as a co-factor. A power of
inertial (acceleration) forces is added in the right-hand side of Eq. (12.1) in the
dynamical case. The second term is transformed with the help of Green’s diver-
gence theorem [22] to yield a divergence term in the bulk and Cauchy’s natural
boundary condition at the surface. Hellinger emphasizes the equivalence of the
statement (1) with Newton’s laws (cf. p. 630).

In dynamics we have D’Alembert’s principle per se (d’Alembertschen Prinzips,
p. 629) and this yields the looked for equations such as Eq. (2) in p. 630. On
introducing the kinetic energy, Hellinger is led to the principle of least action
(p. 633) of Maupertuis and Hamilton. Gauss’ principle of least constraint is also
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evoked in the same page with the possibility to account for non-holonomic con-
straints. The general nature of such formulations is clearly acknowledged
including with due reference to the Cosserats. With the assumed existence of a
strain potential Hellinger touches upon the favourite subject matter of Kirchhoff,
Boussinesq, Duhem [10], Poincaré and the Cosserats (pp. 643–651). This led him
to examine some questions related to stability in agreement with Dirichet and
above all Born [3], as also Italian authors such as Menabrea and Castigliano. He
introduces appropriately the notions of canonical transformation (p. 657) and
Legendre transformation (function H in p. 654). This leads him to say a few words
about minimum principles and stability. Unknown multipliers (interpreted some-
times as stresses or ‘‘reaction forces’’) are introduced wherever a mathematical
constraint is imposed (e.g., incompressibility), following ideas of the French
mathematician J. Bertrand and also D. Hilbert (see pp. 661–663). Ideal fluids
accept a characteristic equation p ¼ p qð Þ when, following Hadamard [23], the
potential reduces to a function of the Jacobian of the deformation. In presence of
some dissipation Hellinger follows an idea of Rayleigh to consider a potential of
dissipation (p. 657). This will later be formalized even for plasticity (dissipation
function homogeneous of order one only) in works of the 1970s–1980s (see, e.g.,
Maugin [36]).

Apart from the extensions to oriented media (his Paragraph 4b, and Paragraph
4.4 below), Hellinger touches two other extensions of the principle of virtual
perturbations that were to bear fruits later on. One is the possibility of considering
higher-order space derivatives of perturbations. This was envisaged early by
Le Roux [33]—apparently unknown to Hellinger—to account for effects of spa-
tially non-uniform strains (such as in torsion) in small-strain elasticity. This would
later on be expanded in the so-called gradient theory of continua [Cf. works by R.
D. Mindlin in the 1960s, and above all: Germain [19], for the second gradient, and
Maugin [35] for a general framework, using the principle of virtual power without
knowledge of Hellinger’s contribution]. The other is the possibility to account for
the existence of unilateral constraints during the variation (Cf. Paragraph 4c). This
was to be expanded in the theory of variational inequalities in the mechanics of
continua (Cf. e.g., Duvaut and Lions [13, 14]).

Finally, it is often said (cf. Washizu [53]) that Hellinger contributed to the
variational formulation of continuum mechanics (elasticity) by introducing before
Reissner [45] the notion of two-field variational principles. In these both dis-
placement and stresses are varied, allowing a relatively easy accounting of
boundary conditions of mixed type. Reissner—educated in Germany and himself
the son of a reputed mathematical physicist—must have heard of, if not studied,
Hellinger’s contribution. However, he proudly told the present writer that ‘‘he did
not see why Hellinger’s name was attached to his own name for this notion’’. It is
true that we could not locate where Hellinger introduced this notion. But the
association may come from the fact that—as noted above—Hellinger duly con-
siders Legendre transformations of the energy potential, introducing a kind of
complementary energy.
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12.4.3 On Finite Strains and Elasticity

Hellinger follows the tradition established by Piola, Kirchhoff, Boussinesq and the
Cosserats by always considering the case of finite strains, linear elasticity being
only an approximation. This is exemplified at many stages in his contribution. First
both actual (noted x; y; z) and referential or material (Lagrangian) coordinates
(noted a; b; c) are introduced. This later on allows for the introduction of the Piola
transformation (8) in p. 618 with a clear algorithm in spite of the absence of tensor
notation. The Piola-Kirchhoff form of the equilibrium equations follows at once as
Eq. (9a, b). This also applies to Cosserats’ media (p. 624–625). In the case of
Green elasticity for which there exits a strain potential, the Cauchy-Green’s finite
strain is duly introduced (cf. Eq. (12.1) in p. 663). An example of higher order
(than quadratic) strain energy function is given in p. 665. The exact constitutive
equations for Cauchy’s stress tensor in finite strains are given as Eq. (5) in p. 645
in Boussinesq’s form while Piola’s form is given in p. 654 together with Max
Born’s 4 equations in terms of a potential in stresses—Eqs. (22a, b) in p. 654—
after introduction of the complementary energy by means of a Legendre trans-
formation. The resulting compatibility condition for the finite deformation gradient
is given in Eq. (24) in p. 655 in a form due to von Kármán. In the case of isotropic
materials Hellinger rightfully calls for the invariance under orthogonal transfor-
mations (p. 664) and the resulting dependency of the strain energy on the basic
invariants that are factors in the Cayley-Hamilton theorem. He evokes on this
occasion the possible existence of self-stresses. Citations to Boussinesq, Duhem,
Poincaré, the Cosserats, Helmholtz and J. Finger abound. All these now seems
quite familiar to students who followed the masters of continuum mechanics in the
1960s–1980s—e.g., in the books of Truesdell and Toupin, Green and Zerna,
Leigh, Eringen, etc., in the USA and those of Goldenblatt, Novozhilov, Lurie,
Sedov, Ilyushin and others in the Soviet Union—this includes the present writer.

As a true mathematician, Hellinger views small-strain elasticity as a theory of
perturbations introducing wherever necessary a small parameter (noted sigma and
not epsilon) that indeed indicates the smallness of strains about an undeformed
state [cf. Eq. (3’) in p. 608].

4 The name of Max Born (1882–1970) is most often associated with the matrix formulation of
quantum mechanics (with P. Jordan and W. Heisenberg) and his statistical interpretation of the
wave function in Schrödinger’s equation for which Born received a belated Nobel Prize in 1954.
But Born had defended a Ph.D. thesis (1906) on the ‘‘stability of the elastica in a plane or space’’
(to which Hellinger refers). He was also most active in studies related to relativity after 1905 (see
here Paragraph 4.8). He was among the initial developers of the lattice dynamics of crystals and
contributed much to optics. His friendship with Hellinger dated back to their undergraduate-
student years in Breslau (‘‘Wrocław’’ in Polish) in the early 1900s. He mentored many of the
known theoretical physicists of the 1920s and 1930s while in Göttingen. Finally, he was
instrumental in the publication by Caratheodory [6] of an axiomatics of thermodynamics (Born
suggested a formulation of the second law, the so-called ‘‘inaccessibility of states’’).
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12.4.4 On Oriented Media

From the very beginning of his exposition Hellinger envisages the possible exis-
tence of internal degrees of freedom of the type proposed by the Cosserats in 1909.
For instance, introducing the basic physical parameters of a continuum, together
with the notion of density (p. 609), he feels quite natural to consider the possible
attachment to each material point (the ‘‘Quantum der Materie’’ with material
coordinates in his own language; p. 606) of an oriented trihedron or triad of rigid
vectors (ein ‘‘rechtwinkliges Axenkreus’’) likely to represent the varying orienta-
tion of ‘‘molecules’’—as proposed by Voigt [50] and possibly by S.D. Poisson
much earlier in 1842 (cf. footnote in p. 609). This yields the notion of ‘‘Medien mit
orientierten Teilchen’’ (pp. 609–610) in the manner of the Cosserat brothers (and
perhaps Duhem [11], p. 206; see Maugin [39]).

Then in considering a variational formulation (principle of virtual work),
Hellinger naturally generalizes it to the case including local orientational kine-
matic properties (pp. 623–627) with specialization to two-dimensional and one-
dimensional cases. The concept of couple-stress tensor [‘‘Drehmoment’’ (dyade)]
then appears naturally. The author recurs to this framework of ‘‘generalized
continua’’ on many occasions, in particular when considering the Green type of
elasticity based on the existence of a potential for strains (pp. 646–651) with the
application of the Cosserats’ concept of ‘‘Euclidean action’’. He returns to the
notion of ‘‘generalized continuum’’ while dealing with analogies with the equa-
tions of light propagation and electrodynamics (the MacCullagh ‘‘ether’’ of 1839
[34]—an elastic medium able to transmit only transverse waves (light) in agree-
ment with Fresnel’s observations—the deduction of Maxwell equations by iden-
tifying elastic displacement and electric field on the one hand and vorticity with
magnetic induction on the other and as done by authors such as Kelvin or J.
Larmor—see pp. 675–681). Of course this is now rather obsolete and was already
evaporating in thin air at the time of Hellinger after the works of Lorentz, Poincaré
and Einstein. But Hellinger’s attitude is above all witness of a marked interest in
the rich modelling potentiality offered by continuum mechanics—although
sometimes along paths with dead-end—leaving the final choice to true physicists.

We must note that, just like most authors until 1966, Hellinger does not see that,
similar to density with its conservation law (cf. Eq. (12.7) in p. 609 in the
Lagrange-Piola format), there must exist a conservation law associated with the
inertia of the new orientational degrees of freedom. This missed step was resolved
much later by Eringen [15].

12.4.5 On One-Dimensional and Two-Dimensional Bodies

Hellinger always considers two-dimensional and one-dimensional material bodies
(‘‘Platten und Drähte’’) as special cases. In this he does not follow the Cosserat
brothers who work more with an increase in spatial dimensions than with a
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successive reduction. Much more than that, in pp. 658–660, he shows his appre-
hension of the true mathematical problem at the basis of this reduction in
dimensions by introducing small parameters (this time noted e) that are repre-
sentative of the slenderness in thickness or of two (small) lateral dimensions of the
considered material structure. Equation (12.2) in p. 659 is typical of this
‘‘asymptotic’’ approach that will later on be the source of an efficient asymptotic
derivation of equations for plates, shells and rods in the expert hands of
Gold’denveizer, S.A. Ambartsumian, V.L. Berdichevsky, Ph. Ciarlet and others.
Furthermore, Hellinger does not hesitate to introduce the Gaussian parametrization
of curved surfaces to treat two-dimensional bodies [cf. pp. 620–621; in particular
Eq. (14a, b)]. For one-dimensional elastic bodies, he is naturally led to mentioning
the Bernoulli-Euler problem of the elastica (pp. 667–668) with the only surviving
material coordinate taken as the arc-length along the curve. One had to await the
remarkable work by A. E. H. Love (later perfected by R. D. Mindlin) to correctly
deduce a quasi-one dimensional dynamical theory of rods with the strange lateral
inertia term (the print left by the asymptotic procedure in passing from three
dimensions to the rod-like picture).

12.4.6 On Thermodynamics and Dissipative Behaviours

In his introduction (p. 604) Hellinger clearly expresses his opinion that the
‘‘mechanics of deformable media, as an autonomous discipline, comprises under
formal statements, next to the usual theory of elasticity and hydrodynamics, all the
related physical manifestations in the considered continuously extending bodies’’.
The development of these ideas has certainly been influenced by the discipline of
thermodynamics which, in principle, tries ‘‘to embrace the totality of physics’’ (my
translation). Here Hellinger is obviously influenced by his recent reading of
‘‘energetists’’ such as Pierre Duhem with his magisterial treatise of 1911 [12]. The
latter may have been read by a handful of happy few.5 What Hellinger tries in his
Sect. 15 (pp. 682–695) is to incorporate the dual notions of entropy and thermo-
dynamic temperature in his fundamental variational formulation. Entropy is con-
sidered as an extensive quantity (i.e., proportional to the quantity of matter). Then
a term dQ—Equation (12.1) in p. 683—representing the ‘‘Wärmezufuhr’’ with
variation of the entropy and co-factor none other than the temperature is to be
added to the purely mechanical variation mentioned above at point 4.2. With the
introduction of a potential for thermoelastic processes this yields the thermal
definition of the temperature (in modern terms: the derivative of internal energy
with respect to entropy) and, more surprisingly for the period, Maxwell’s

5 When in 1992, during a one-year stay in Berlin, I borrowed Duhem’s [12] opus from the library
of the former Kaiser Wilhelm Institute in east Berlin, I discovered that this copy of the books had
never been read (pages were not cut out but they were damaged by the water poured by firemen
during the fire of the Institute that occurred during the Russian Army take over of Berlin in 1945).
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compatibility condition for second-order derivatives of the energy in thermo-
elasticity in finite strains (Eq. (5) in p. 684; in modern notation this reads

oT

oS
¼ oh

oF
; ð12:2Þ

where F is the deformation gradient and T is the first Piola-Kirchhoff stress).
In a more general context Hellinger comments on other coupled effects such as

temperature and capillarity, pyro-electricity and thermo-chemical processes as
considered by J. W. Gibbs in his original works of 1876–1878. He does not
mention piezoelectricity although this is already more than thirty years old
(experimental discovery by the Curie brothers in 1881) when he writes his
contribution.

The above mentioned variational formulation that includes the notion of
entropy and temperature is seldom considered. However, Sedov’s [46] generalized
variational principle—also discussed in Maugin [35]—is along the same line.

For truly dissipative phenomena such as viscosity, in spite of his familiarity
with Duhem’s treatise which does not propose yet a solution (the future ‘‘theory of
irreversible processes’’), Hellinger is reduced to invoking the notion of dissipation
potential à la Rayleigh, as in the case of G.G. Stokes’ viscous fluids (cf. p. 671).
But he is aware of the existence of more sophisticated models of viscosity. Such a
model is the one proposed by Boltzmann [2] in the form—‘‘elastischen Nac-
hwirkung’’—of hereditary integrals [see p. 641 and Eq. (5) in p. 672] for which
Hellinger also cites very recent works, in particular by Vito Volterra up to year
1913 (the year Hellinger completed his manuscript). This shows the concern of
this author to be up to date until the last moment. Finally, he also mentions the
possible occurrence of a plastic behaviour with a simple plasticity criterion in
terms of principal stresses which recalls the Tresca criterion—Inequalities (7) in
p. 673—although he refers for these to a work of 1909 by A. Haar and Th. von
Kármán. More general or singular behaviours are simply referred to as ‘‘halb-
platische’’ oder ‘‘vollplastische’’ Zustände (no need for translation).

What is strange is that Hellinger does not comment on the then recent Cara-
theodory [6] axiomatization of thermodynamics as suggested by his own friend M.
Born, a contribution that is purely in the analytical line and would certainly had
been to Hellinger’s liking.

12.4.7 On Newly Studied Behaviours

This is just mentioned for the sake of completeness since hereditary materials, half
plastic or fully plastic materials, are already evoked in the preceding paragraph.
But Hellinger also pays some attention to the phenomenon of capillarity in
pp. 674–675 for which a rather not commonly referenced work is by the mathe-
matician of ‘‘relativity fame’’, Herrmann Minkowski (see below).
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Hellinger, although not pursuing the line further, gives the exact mathematical
definition of material inhomogeneity (dependence of material properties on the
material coordinates; see top of p. 639). General anisotropic elastic materials
(crystals) with at most twenty one independent elasticity coefficients are men-
tioned for the linear case. In the case of finite strains, like all authors since Cauchy
he focuses on the case of isotropy with the resulting introduction of the principal
invariants of strains (p. 664) in the strain-energy function. This is purely academic
as Hellinger and all other authors of the period could not guess that only rubber-
like materials and then finitely-deformable soft biological tissues would provide in
time the realm of application of this material description (see Maugin [38]).

12.4.8 On Relativistic Continuum Mechanics

In his attempt at a large conspectus of the State of the Art in 1913, Hellinger
included (Sect. 16, pp. 685–694) comments on the most recent developments
concerning the relativistic mechanics of continua. This is rather exceptional for the
period; in particular if we compare with other well established authors in
mechanics (e.g., Appell). This may have aroused his sensibility of mathematician.
He seems to be well aware of the original developments by Voigt, Lorentz, and
Poincaré on the group structure of special-relativistic transformations. The Lor-
entz-Poincaré group was a good subject of interest with the works of Minkowski
[42], A. Sommerfeld, and F. Klein. His friend Max Born may have had some
influence on Hellinger’s interest in the field since Born (especially, [4]) and
Herglotz [28] seem to be his main sources for the basic definitions and the problem
of the possibility of ‘‘rigid-body motion’’ in relativity.

Most of Hellinger’s discussion is about the essential differences between the
Lorentz-Poincaré group and the Galilean-Newtonian group of space-time trans-
formations. But he is also particularly interested in two points. One is the possible
re-formulation of the Cosserats’ action principle in space-time in agreement with
Minkowski and Herglotz (cf. Eq. (13a, b) in p. 693) with a space-time parame-
trization that combines material coordinates and a propertime (a parameter along
the world line following Minkowski’s description) and a total virtual variation for
internal forces (components of the energy-momentum tensor). The second point is
the possible definition of the notion of rigid-body motion, a much discussed matter
being given the existing bound on velocities, with the possible local (i.e., differ-
ential) solution given by Born and Herglotz in space-time. Allusion to relativistic
continuum mechanics will later be given in a bibliographic appendix by Truesdell
and Toupin [49, pp. 790–793]. The present writer is one of the very few to have
devoted a full albeit brief chapter to relativistic continuum mechanics in a treatise
(cf. Eringen and Maugin [16], Vol. 2, Chap. 15; see also the historical perspective
in Maugin [38], Chap. 15).
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12.5 Conclusion

In his introduction—written in 1913—Hellinger claims that there exists no text-
book or monograph in the literature on the specific subject treated in his contri-
bution although there do exist textbooks and treatises of a general nature, but the
latter do not emphasize the bases and various possibilities offered by the scheme of
continuous matter. He does not intend to treat applications and specific problems.
He confines himself to the essentials, ‘‘die allgemeinen Ansätze’’ in his own
words. His viewpoint is that analytical mechanics (exploitation of variational
formulations) is ‘‘the most uniform and efficient manner to approach the general
problem of describing a large variety of descriptions of deformable media’’ in
agreement with recent authors like the Cosserats and the initial standpoint of G.
Green with an energy potential. This is the type of approach (principle of virtual
work, d’Alembert’s principle [9], Lagrange-Hamilton action principle [32], etc.)
that suits best his essentially mathematical vision. The pregnant brevity of this
approach possesses a ‘‘high heuristic value for the exploration of new areas. This is
particularly stressed through the intimate relation of such variational principles
with thermodynamics’’. Furthermore, this allows one to place in evidence the
invariant theoretical nature of the considered problems with the notion of trans-
formation groups. This gives a very ‘‘modern’’ print that helps us understand his
exposition without too much effort. This ‘‘modernity’’ is striking in spite of the
somewhat obsolete notation. Its opens up horizons to many models that will have
to wait progress in some branches of pure and applied mathematics for a full
blossom (e.g., large deformations, media with internal degrees of freedom, cap-
illarity, hereditary processes, multi-field phenomena).

His mathematical inclination leads him to accept unhesitatingly all new
mathematical tools of the period (vector and tensor analysis, matrix calculus,
differential geometry, perturbations). The only part that is still missing is convex
analysis to be much developed in the 1950s–1970s. But, overall, Hellinger is very
successful in his endeavour. This is our appraisal one hundred years later.
Unfortunately, we were not able to locate any substantial review or criticism of his
contribution in the few years following its publication so that we have no precise
idea of the quality and extent of its reception among professional circles, mech-
anicians and mathematicians. This may exist in some periodical bulletin of a
mathematical society. It is therefore with modern eyes, perhaps themselves
influenced by Hellinger’s writing—a kind of feedback—that we evaluate it. This is
an inevitable bias that we willingly acknowledge.

Following the Cosserat brothers, Hellinger’s view of the domain of interest of
continuum mechanics is essentially the mechanics of deformable bodies, by which
must be understood the case of deformable solids. This is in contrast with treatises by
famous authors such as Appell [1], where most contents rather deal with fluids. At
the time fluid mechanics has become a rather autonomous field of study limited to
perfect fluids and the Navier-Stokes equations, with specific mathematical tech-
niques of which the use of complex variables has become endemic. But some recent
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developments of theoretical fluid mechanics such as the asymptotic method
involved in the theory of the boundary layer by L. Prandtl could have been to the
taste of an analyst like Hellinger. It is only with the birth of the science of rheology
(concerning whatever can flow to a larger or smaller extent) and the notion of non-
Newtonian fluids in the 1920s in the expert hands of E. C. Bingham (1878–1945) and
M. Reiner (1888–1976) that fluids will return to the general stage of continuum
mechanics. Liquid crystals, with a behaviour clearly classified in 1922 by Georges
Friedel (1865–1933) and exhibiting mixed crystal (ordered state) and fluid (flow)
characteristics with directional properties, will also enter this general framework
with a natural connection with generalized continua of the Duhem-Cosserat type
established in the 1960s–1970s. This could not be imagined by Hellinger who
remains essentially an analyst, as shown by his other very successful contribution to
the same Encyclopaedia of mathematics in co-operation with a friend of student days
in Breslau and Göttingen, O. Toeplitz (cf. Hellinger and Toeplitz [27]).

In conclusion, we find in Hellinger’s brilliant and very informative contribution
all elements and remarks that we would like to deliver—even though superfi-
cially—to our mathematically oriented students in an introductory course of high
level (e.g., something similar to what Germain tried to do in his course at Ecole
Polytechnique, 1986 [20]); many students then thought that this was too much
superficial, although all aspects of further developments in specialized short
courses were outlined.

Appendix A

Partial translation from the German to English of Hellinger’s contribution to
the EmW (by Eleni and Gérard A. Maugin, � 2013).

Note: pages of original are indicated at the top left. Modern notations (cf. Maugin
[38]) are sometimes given within squared brackets [..] along with Hellinger’s
notation. Footnotes are not given in full, being just replaced in the main text by a
name and a year within brackets for a reference to an author. Some translator’s
remarks within square brackets are indicated by the initials GAM. Abbreviation
EmW means this encyclopaedia.

The general basic laws of continuum mechanics
By E. Hellinger, Marburg A.I.

Contents

1. Introduction
2. The notion of continuum

a) The continuum and its deformation
b) Adjunction of physical parameters, density and orientation in particular
c) Two- and one-dimensional continua
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I. The basic laws of statics

3. The principle of virtual perturbations

a) Forces and stresses
b) Survey of the principle of virtual perturbations
c) Application to continuously deformable continua
d) Relations with rigid bodies
e) Two- and one-dimensional continua in three-dimensional space

4. Extensions of the principle of virtual perturbations

a) Presence of higher perturbation derivatives
b) Media with oriented particles (not translated here)
c) Presence of side conditions

II. The basic laws of kinetics [dynamics]

5.

a) The equations of motion of the continuum
b) Transition to the so-called Hamiltonian principle
c) The principle of least constraint
d) Formulation of more general cases (not translated here)

III. The form of constitutive laws (not translated here)
A. Formulation of general types

6. The types of forces from the deformations
7. Media with one characteristic response function

a) Potential
b) Potential for media with orientational degrees of freedom
c) Potential for two- and three-dimensional continua
d) The meaning of a true (real) minimum
e) Direct determination of stress components

8. Limit cases of the ordinary three-dimensional continuum

a) Infinitely thin plates and strings
b) Media with side conditions

B. Special cases

9. True elasticity theory
10. Dynamics of ideal fluids
11. Internal friction and elastic after effects
12. Capillarity
13. Optics
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14. Relationship wit electrodynamics
15. Addition of thermodynamic considerations
16. Relationship with the theory of relativity.

Bibliography

For the time being [Hellinger’s words, GAM] there are no textbooks or mono-
graphs in the literature on the specific subject treated here. In order to avoid
repetition we have compiled a list of the most frequently cited works:

A. von Brill (1909).
E. and F. Cosserat (1909).
P. Duhem (1911).
G. Hamel (1912)
J.L. Lagrange (1788) and in Oeuvres complètes, Vol.11 and 12. edited by G.
Darboux, Paris 1988/89.
W. Voigt (1895/96).
Cf. also Voss, Stäckel, Heun and Müller-Timpe in the EmW, Vol. IV.
————
p 602

1. Introduction

The purpose of the present work is to give, from a uniform point of view, a
comprehensive overview of the various forms taken by the different basic laws
used in order to determine the evolution in time or even the state of equilibrium in
an isolated spatial domain of ‘‘continuum mechanics’’ as a whole, i.e., the
mechanics and physics of continuously extending media. Moreover, we shall
always keep in mind only those types of continua that do not possess, thanks to
restricting conditions, a particularly large number of continuous degrees of free-
dom. The possibility of expressing in a comparable form the basic equations of
various disciplines has already been noticed in the past.

p 603

The ‘‘mechanistic’’ theories of physics which would have reduced the physical
existence to the manifestation in the form of motion have considered the quantity
of matter from a formal-mathematical point of view, permitting thus to exhibit the
equations of physics as special cases of the equations of a general system of
varying masses in motion, as also of mass points. They must also make evident
these analogies.

Next to the truly mechanical theories, which present more or less detailed
pictures of the structure of matter, there has been an attempt, almost from the
beginning, but more particularly from the middle of the nineteenth century, to
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adopt a specific method from analytical mechanics in the manner of J.L. Lagrange;
in order to bring under the same general principles all the considered problems,
there has been an effort to reduce the fundamental laws of an ever larger number of
physical disciplines, to the form of those principles. From a purely phenomeno-
logical viewpoint, this could permit the identification of notions - energy, forces,
etc. - entering them with certain physical entities. For systems with a finite large
number of degrees of freedom, this development is mainly connected with research
undertaken on cyclical systems and their applications in the reciprocal laws of
mechanics by W. Thomson (Lord Kelvin), J.J. Thomson and H. von Helmholtz.

Eventually, even Lagrange applied his principles to some continuous systems
(liquids, flexible strings and plates, etc.). After further elaboration of these
approaches, particularly with the development of the theory of elasticity associated
with A.L. Cauchy, as well as under the influence exerted by the development of
other physical, particularly optical, theories, people became more and more
accustomed to considering even continuous systems as autonomous objects of
mechanics (with an infinite number of degrees of freedom), since although these
systems stand in formal analogy to the old point mechanics, they can perfectly well
be treated independently. The ‘‘mechanics of deformable continua’’, as an
autonomous discipline, comprises under the formal statements, next to the usual
theory of elasticity and hydrodynamics, all the related physical manifestations in
the continuously extending media considered here.

p 604

The development of these ideas has certainly been influenced by the discipline of
thermodynamics which, in principle, tries to embrace the totality of physics and,
this way, by putting forward everywhere the general energy function, hence a
potential, it naturally yields analogous forms to the fundamental equations of
various fields.

All these relations have been treated in the literature of mechanics and physics
in many different ways. A lot of what was said in particular in the field of point
mechanics, as also of systems with an infinite number of degrees of freedom, can
be immediately extended to the continuous systems. Let us mention already the
names of only a few authors who have paid special attention to the relations that
we will discuss here and that we will often have the occasion to cite in the sequel:
W. Voigt (1895–1896), P. Duhem (1911), and E. and F. Cosserat (1909) (For
development of a similar kind, what follows has been influenced in many ways by
some of the lectures given in Göttingen by D. Hilbert.)

The purpose of this work demands that, in what follows, the pure formal-
mathematical factor stands in the foreground, by formulating the statements as
well as their combinations in a homogeneous and in a, as simple and elegant, way
as possible. The research of the mechanical and physical significance of the
quantities and equations as well as the proper analytical-mathematical theory are
included in various contributions to volumes IV and V—of the present encyclo-
paedia—where the various disciplines are discussed.

Bibliography 221



As a uniform mathematical formulation, which is the easiest to apply to the
totality of all individual laws, we have used the variational principle. However, we
find unsatisfactory the form that we observe as a rule in the calculus of variations,
and where the unknown functions are determined in such a way that a certain
defined integral containing them, acquires an extremal value. Here we find much
more preferable the form that yields the variational computation as a necessary
condition of the extremal and which has always been expressed by the principle of
virtual work: ‘‘Let there be an ordered set of quantities X; . . .;Xa; . . . dependent on
the unknown function x of a; . . .; c and their derivatives; these functions should
satisfy the condition that a determined integral of a linear form represented by
these X; . . .;Xa; . . . as coefficients, of the arbitrary functions dx; . . . of a; . . .; c and
their derivatives

Z
. . .

Z
Xdxþ . . .þ Xa

o dx

da
þ . . .

ffi �
da. . .dc

or a sum of such integrals – vanishes identically for all dx; . . . (or else for all those
satisfying certain auxiliary conditions).’’

The advantage offered by the application of such a variational principle as a basis,
as compared to other possible formulations, or even by taking into consideration the
fundamental laws, is mainly that the variational principle is able to determine by a
single formula the behaviour of the medium under consideration, in all places and at
any instant of time, and especially to cover, besides the equations within the
enclosed volume, both the boundary conditions and the initial conditions. Moreover,
in its pregnant brevity, it is, in a way, much more transparent than the basic laws and,
consequently, it possesses a substantial heuristic value for the exploration of new
areas, for the expression of other generalisations, etc. This is particularly stressed
through the intimate relation of the variational principle with thermodynamics. On
the other hand, its claim to generalisation is of demonstrative value for the foun-
dations of physical theories. But the variational principle, through the acceptance of
coordinate transformations, has also another advantage against the explicit (field)
equations; it often permits an easier understanding of the invariant theoretical
nature of the considered problem, the question about the transformation groups
which it leaves unaltered, with no need to introduce any special symbolism.

After an introductory discussion of the notion of continuum and its kinematics we
shall present in the first chapter of this work the basic statements of statics, and in the
second those of the kinetics, but regardless of the kind of the force effects that one of
them exerts on the continuum. The nature of these force effects, and especially their
dependence on the position and the motion of the continuum (dynamics), will be
discussed in the third chapter, in which we classify the various disciplines; finally, in
the same chapter we shall give a short draft of the relation with the laws of ther-
modynamics on the one hand, and, on the other, we shall stress the behaviour of
some statements under transformations of the space and time coordinates and also
the interpretation of the relativistic theory of electrodynamics.

p. 606
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2. The Notion of Continuum
2a. The continuum and its deformation

The general three-dimensional extending continuous medium to which the fol-
lowing considerations apply means - abstraction made of specific properties of
matter - a set of material ‘‘particles’’ which (a) are individually identifiable and (b)
fill continuously the space within a regular bounded domain. The first property can
be expressed by the fact that each particle is identified thanks to three parameters
a, b, c (in modern terms, a labelling with material coordinates XK ; K ¼ 1; 2; 3) so
that under any condition that we may consider the medium, they always occupy a
different place; the variable volume V0 of these (particles labelled) a, b, c enclosed
within the regular surface S0, characterises the quantity of matter considered here.
The second requirement means that the positions of all particles fills (after
deformation and motion) a volume V bounded by the regular surface S. If the
position of a particle is determined by its Cartesian coordinates
(x; y; z ¼ xi; i ¼ 1; 2; 3f g), then such a condition can be given analytically by the
three following functions of a, b, c

x ¼ x a; b; cð Þ; y ¼ y a; b; cð Þ; z ¼ z a; b; cð Þ xi ¼ xi XK
� �� �

ð1Þ

which map V0 into V and whose functional (Jacobian) determinant

D ¼ o x; y; zð Þ
o a; b; cð Þ J ¼ det

o xi

oXK

� 	
 �
ð2Þ

inside V0 does not vanish and is taken positive. We can take a fixed ‘‘final’’
(actual) position for a, b, c; then x� a; y� b; z� c, are the components of the
translation suffered by each particle in its transition to position (1) and the func-
tions (1) become continuous functions of a, b, c as long as we assume that the
initially neighbouring particles always remain neighbours. Moreover, we can
always suppose that the functions (1) possess enough derivatives with respect to
their arguments; disruptions of continuity can be found only at singular points,
lines and surfaces (Cf. Voss, Vol 4/1 of EmW, No.9). We shall generally not
repeat similar assumptions about further physical occurrences of representative
functions.

Each function system (1) fully describes a definite state of deformation of the
continuum. Generally speaking, every deformation solution, i.e., every triplet of
functions (1) that satisfies the just mentioned continuity conditions, is considered
admissible. Restrictions in p. 607 the kind of possible functions will express
specific properties of special materials. In any case, the partial derivatives of the
functions (1) determine, as we know, the translations, rotations and form changes
that suffer every small volume element during deformation (Cf. Abraham, in
EmW, IV-14, no. 16).

The basis for the research of the equilibrium solution of any deformation
process (1) is obtained by superimposing on it a so-called infinitesimally small
virtual perturbation, called virtual to the extent that it enters arbitrarily in the real

Bibliography 223



existing deformation case [cf. Voss EmW IV-1 No. 30; Voigt (1895–96) and C.
Neumann (1879)]. In order to define this notion in a precise mathematical form,
without giving up the usual convenient designation and use of the ‘‘infinitesimally
small’’ quantity, we consider to begin with one of the deformation on which is
superimposed another deformation depending upon a parameter r, with vanishing
deformation for r ¼ 0, which carries the particle from the original position
x; y; zð Þ to the position

�x ¼ xþ n x; y; z; rð Þ;

[same with x; y; zð Þ and n; g; fð Þ]. This way n; g; fð Þ are functions of x; y; zð Þ and of
the parameter r, which can vary in any small neighbourhood of r ¼ 0. Thanks to
(1), after elimination of x; y; zð Þ, we can also write the newly introduced defor-
mations in the other form

�x ¼ �x a; b; c; rð Þ; where �x a; b; c; 0ð Þ ¼ x x; y; zð Þ: ð3Þ

If f is any of the deformation functions (1) and we consider their derivatives as
independent expressions, then we generally note as its ‘‘variation’’ the expression

df x; . . .; xa; . . .ð Þ ¼ o

or
f �x; . . .;�xa;...

� �ffi �
r¼0

; where xa ¼
ox

oa
; . . .;

yet, during the differentiation a, b, c remain constant; the operation d commutes
with the differentiation with respect to a, b, c:

d
of

oa
¼ o dfð Þ

oa
:

If the three functions

o�x

or

����
r¼0

¼ on
or

����
r¼0

¼ dx x; y; zð Þ; same for x; y; zð Þ

which, thanks to (1), can be considered as function of x; y; zð Þ, do not vanish
identically in x; y; zð Þ, then, following the usual stability postulate, we can write

�x ¼ xþ r dx x; y; zð Þ; same for x; y; zð Þ; ð30Þ

if r is chosen so small that r2 is sufficiently small compared to r, the so given
infinitesimally small virtual perturbation of the continuum is then determined up to
the factor r by the three functions dx; dy; dz of x; y; z. We can immediately classify
this perturbation under the notion of ‘‘infinitesimally small deformation’’, as
studied in the kinetics of continua (Cf. Abraham, EmW IV-14, No. 18) and we also
find that the ‘‘virtual form changes’’ [‘‘strains’’, GAM] of these volume elements
derived from it, are determined by the following six quantities

odx

ox
;
o dy

oy
;
o dz

oz
;
o dy

oz
þ o dz

oy
;
o dx

oz
þ o dz

ox

o dx

oy
þ o dy

ox
ð4Þ
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and their ‘‘virtual rotations’’ by

1
2

odz

oy
� ody

oz

� 	
;

1
2

o dx

oz
� o dz

ox

� 	
;
1
2

ody

ox
� odx

oy

� 	
; ð40Þ

regardless of the r factor.
A motion of the continuum will be interpreted as a consequence of a depen-

dence of the deformation functions upon the time parameter t, and accordingly
expressed through the three deformation functions

x ¼ x a; b; c; tð Þ; y ¼ y a; b; c; tð Þ; z ¼ z a; b; c; tð Þ xi ¼ xi XK ; t
� �� �

ð5Þ

always depending upon t; these, as functions of all four variables in the necessary
neighbourhood, are constant and differentiable. For fixed a, b, c (5) represents the
trajectory of a certain specific particle.

Just as exposed above, by including in the formulas only the variable t, next to the
motion (5) we also introduce the group of motions for r ¼ 0, that was omitted in (5),

�x ¼ �x a; b; c; t; rð Þ ¼ x þ rdx x; y; z; tð Þ; same for x; y; zð Þ

for small values of the parameter r and we note dx; dy; dzas the definitions of the
virtual perturbations superimposed on the motion (5).

2b. Adjunction of Physical Parameters, Density and Orientation in Particular

Each physical property of a medium can be described by one or more functions of
a; b; c; t which enter in the deformation functions.

In what follows we shall make general use of one such property, the presence of
an invariable mass m for every volume element V0 of the medium, which, as an
integral over V0, is expressed as a characteristic density function q0 ¼ q0 a; b; cð Þ
of the medium. By transition to the deformed location (1)

q ¼ q0

D
q ¼ J�1q0

� �
ð7Þ

results as the true mass density q of the distribution of the medium, and the mass in
the part V 0 of V is

m ¼
ZZZ

V 0ð Þ
q dx dy dz ¼

ZZZ
V 00ð Þ

q0da db dc:

The variations of the continuum’s location in relation to the behaviour of such an
adjunction of a physical parameter are not yet firmly laid down. In the meantime, we
always leave the mass of such an elementary quantity of matter, i.e., the function
q0 a; b; cð Þ unchanged by a virtual perturbation and we replace the density q by

�q ¼ �q x; y; z; rð Þ ¼ qþ rdq x; y; zð Þ; ð8Þ

so that regarding the continuity condition (cf. EmW IV-15, No.7 p.59 on, A.E.H. Love)
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dq0 ¼ d qDð Þ or dqþ q
o dxð Þ
ox
þ q

o dyð Þ
oy
þ q

o dzð Þ
dz
¼ 0:

The same thing will be valid in the case of motion, i.e., q0 a; b; cð Þ remains
independent of t and q will be given as in (7).

There is another basic notion which belongs here and which we will use very
often, that is, the idea that for every particle of the continuum, the various
directions attached to it possess different characteristic meanings, and that, for
this reason, the specification of its orientation belongs essentially to the descrip-
tion of the situation of the continuum. This kind of representations was developed
in the molecular theory, where the bodies of crystalline structure were viewed as
molecules; S.D. Poisson (1842) in particular has applied it in order to establish a
better theory of elasticity. Recently, E. and F. Cosserat [1907; Théorie des corps
déformables, 1909; Heun in EmW IV-11, Part II]) without any reference to
molecular representations have treated extensively such continua equipped with a
definite orientation in every particle.

p 610

In a more general way, this notion of oriented particles of the continuum can be
formulated analytically [Cf. a remark by P. Duhem 1893 p. 206], since we can
think of each particle a; b; c of the continuum as equipped with a trihedron (triad;
GAM) of axes at right angles and these three axes have each director cosines
ai; bi; ci i ¼ 1; 2; 3ð Þ in order to describe fully the state of such a medium, next to
the functions (1) we must also recognize as functions of a; b; c three independent
parameters k; l; m (e.g., the Eulerian angles) that define the orientation of such a
medium in relation to the coordinate system x; y; z:

k ¼ k a; b; cð Þ; l ¼ l a; b; cð Þ; m ¼ m a; b; cð Þ: ð9Þ

Now, every virtual perturbation of the continuum shall be connected with a
virtual rotation of this trihedron; this way, we get as a basis a group of rotations
depending on a parameter r and with vanishing r ¼ 0, starting from the position
(9) and replace k; l; m, being restricted to sufficiently small values of r, by

�k ¼ �k a; b; c; rð Þ ¼ kþ rdk a; b; cð Þ same for k; l; mð Þ: ð10Þ

In this manner it is always possible to interpret k; l; m as well as dk; dl; dm
either as functions of a; b; c or, with the help of (1), as function of x; y; z. The
variations themselves da1; . . .; dc3 of the director cosines of the three axes are
linear homogeneous functions of dk; dl; dm obtained through the differentiation
with respect to r of the explicit expressions of a1; . . .; c3; the components
dp; dj; dq of the virtual rotation angle velocity in the three axes, are connected
with da1; . . .; dc3 through the formulas

dp ¼ b1dc1 þ b2dc2 þ b3dc3 ¼ � c1db1 þ c2db2 þ c3db3ð Þ etc ð11Þ

dai ¼ cidj� bdqi; i ¼ 1; 2; 3; etc; ð110Þ
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Incidentally, in contrast with the symbol d used until now, these are not vari-
ations of certain definite functions of a; b; c, but become simultaneously linear
homogeneous functions of dk; dl; dm; we set

dk ¼ l1dpþ m1djþ n1dq; etc: ð12Þ

p 611

This way, dp; dj; dq (given as functions of a; b; c or x; y; z) define also the
virtual rotation of the continuum [These are well known kinematic methods of the
theory of surfaces (cf. also EmW, Vol. III D3 No.10; G. Darboux, Leçons sur la
théorie générale des surfaces) that E. and F. Cosserat have applied (detailed
exposition in their ‘‘Théorie des corps déformables’’, 1909)].

All these formulas can be extended immediately to the case of motion via the
inclusion of the time parameter t.

2c. Two- and one-dimensional continua

By the suppression of one or two of the three parameters a; b; c, we also obtain
immediately the statements for the treatment of two- and one-dimensional con-
tinua embedded in three-dimensional space [In a certain sense these problems are
simpler than those we meet with in three-dimensional media; in fact some of them
belong to the problems of continuum mechanics which have received early a very
detailed treatment (cf. P. Stäckel in EmW IV-6, Nos. 22-24, also K. Heun in EmW
IV-11, No.19, 20)]. In any case, their position is given by

x ¼ x a; bð Þ or x ¼ x að Þ ½same for x; y; zð Þ�; ð13Þ

The parameters vary in an area S0 (respectively, along a curve C0) of the plane
a� b (respectively a line of arc length a) which through (13) is based upon a
surface S (respectively a curve C). Here also we can assign to each particle a triplet
of directions, orthogonal to each other [Cf. E. and F. Cosserat, Chapters II and III,
1909], defined by the functions

k ¼ k a; bð Þ; respectively k ¼ k að Þ ½same for k; l; mð Þ�: ð14Þ

12.8 The Basic Laws of Statics

3. The principle of virtual perturbations
3a. Forces and stresses

In order to construct the dynamic properties of the continuum upon this kinematic
scheme, we shall rely upon the notion of work. The totality of the forces and
stresses of all kinds which affect the continuum, because of its previous defor-
mation conditions, of its position [‘‘placement’’, GAM] in space or of some
external circumstances - initially considered as a whole without regard to their
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origin—is in one expression, since they achieve, in every virtual perturbation, a
‘‘virtual work’’dA; this is for us of primary importance and we define it as follows:
let dA be given as a linear homogeneous function of the totality of values of the
perturbation components inside the continuum; and let it be a scalar quantity
independent from the choice of the coordinate system. The coefficients, with which
each value of dx ; dy; dz enters in dA, are the definition parts of the single active
force system; the fact that p 612 these are independent from the virtual pertur-
bations (i.e., the linearity of dA) makes us think that, due to their smallness, these
perturbations do not modify the usual force effects exerted on each particle. In
order to cover the totality of the laws of continuum mechanics, it is necessary to
start from the most general expression of the already described types for dA, that
consists of the sum of the linear functions of the quantities dx; dy; dz and their
derivatives, in any single point of these expressions, on the line, surface and
volume integrals which may compose such an expression. We rather consider, at
the beginning, an expression - that we shall later elaborate—that consists of a
volume integral extending over the whole region V of the continuum, and also an
outer-surface integral extending over its surface S; this way, the first one contains a
linear form of the nine derivatives of dx; dy; dz with respect to x; y; z [Such
statements for the virtual work have been developed earlier, as obvious general-
isations of the formulas of point mechanics, for many special problems…..]:

dA ¼ dA1 þ dA2 þ dA3; ð1Þ

with

dA1 ¼
ZZZ

Vð Þ
q Xdxþ Ydyþ Zdzð ÞdV ½dA1 ¼

ZZZ
Vð Þ

qfidxidV �

dA2 ¼�
ZZZ

Vð Þ
Xx

odx

ox
þ Xy

ody

oy
þ . . .þ Zz

odz

oz

� 	
dV dA2 ¼ �

ZZZ
Vð Þ

rij dxið Þ;jdV

" #

dA3 ¼
ZZ

S

�Xdxþ �Ydyþ �Zdzð ÞdS dA3 ¼
ZZ

S

�tidxidS


 �
:

The fifteen coefficients present here, - factors of the already discussed pertur-
bation quantities—will be, for every deformation of the considered medium,
definite finite continuous functions of x; y; z or a; b; c, along with their derivatives,
everywhere, with the eventual exceptions of certain surfaces. The obvious meaning
of statement (1) then is that, in general, we will only take into consideration the
continuously distributed forces over space as well over singular surfaces and the
continuously distributed stresses.
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Initially, the first and last terms in dA are constructed in a very much analogous
way with the well known work expressions of point mechanics, except that the
factor present now is the mass of the volume element qdV (respectively the surface
element dS; so X; Y; Z are to be thought of as components of the acting forces on
the mass unit of the medium, and �X; �Y ; �Z as components of the forces acting per
unit surface on the outer surface, at the proper point. Since dx; dy; dz are the
Cartesian projections of a polar vector and since dA, as a scalar, remains invariant
under coordinate transformations, these forces are also polar vectors.

Actually, the integral dA2 is characteristic of continuum mechanics. The nine
coefficients Xx; . . .; Zz - in the known designation of Kirchhoff [1855, also works
1882, p.287] that measure the influence of the single determining parts of the
virtual deformation by the performed work, will be understood as the components
of the stress state at the point in question, calculated according to its influence
upon the unit volume. Their behaviour, during the coordinate transformations,
results from the remark that the nine derivatives odx=ox; . . .; odz=dz of the vector
components behave during orthogonal coordinate transformations like the nine
products of two vectors (a so-called dyad) [Here Hellinger refers to F. Klein,
Abraham, Gibbs and Wilson, Heun, and to Cayley’s matrix calculus; GAM]

X1:X2; . . .; Y1:Y2; . . .; Z1:Z2

p 614

while the bilinear combination Xx:odx=oxþ . . . remains invariant. Therefore, if we
want to speak of stress dyads, the stress components must be transformed again as
dyad components. It is possible to decompose any dyad in a (symmetric) com-
ponent consisting of six elements (a tensor triple [Cf. Voigt’s terminology;
Abraham in EmW IV-14, No.17])

Xx; Yy; Zz;
1
2

Yz þ Zy

� �
;
1
2

Zx þ Xzð Þ; 1
2

Xy þ Yx

� �
½r ijð Þ ¼

1
2

rij þ rji

� �
� ð2Þ

and as (skew symmetric) component of three elements

Zy � Yz;Xz � Zx; Yx � Xy ½r ij½ � ¼
1
2

rij � rji

� �
� ð20Þ

representing an axial vector. This splitting corresponds to the emphasis given in
Section 2 to the two separate statements (4) and (4’) of the virtual deformations of
the continuum, and when the integrands of dA2 are split in the same way

X
xyz;XYZð Þ

Xx
odx

ox
þ 1

2
Yz þ Zy

� � ody

oz
þ odz

oy

� 	
þ Zy � Yz

� � 1
2

odz

oy
� ody

oz

� 	ffi �

[where the indication below the summation sign means that the summing
expression consists of cyclical exchanges of x; y; z and X; Y; Z].
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What follows here in particular is that the six quantities (2) determine that part
of the stress that performs work in an infinitesimally small proper form change of
the continuum [the strains. GAM] and therefore the true elastic effects, while the
vector (2’) makes possible the determination of the part (that performs work), by
the virtual rotation of the volume elements, again without form change, and so the
rotation moment determined by the stress condition. Moreover, from the negative
sign in (1), it results that with positive Xx the performed work is positive even with
negative odx=dx, which is then measured as positive pressure.

p 615

In order to obtain finally from the statement (1) the meaning of the stress com-
ponent as surface forces [Cf. C.L. Navier, G. Green], we think of the part of the
calculated virtual work reached by the stresses inside a part VI of the continuum
delimited by the closed surface SI , i.e., the part of the integral dA2 extended over
VI ; if the stress components inside VI are all, without exception, continuous, then
by partial integration and application of the ‘‘Gauss theorem’’ (see EmW Chapter
IV-14, p.12), this goes over to

ZZZ
VI

X
xyz;XYZð Þ

oXx

ox
þ oXy

oy
þ oXz

oz

� 	
dxdV

þ
ZZ

SIð Þ

X
xyz;XYZð Þ

Xx cos nxþ Xy cos nyþ Xz cos nz
� �

dxdSI ;

where n means the rotated normal’s direction of the surface SI under VI at the
position of the element dSI . By comparison with (1), it follows that the stress
condition in VI performs the same virtual work, i.e., it acts exactly as if, next to the
volume forces in VI , upon the surface element dSI of SI , computed per unit surface,
we had in action the force

Xn ¼ Xx cos nxþ Xy cos nyþ Xz cos nz; ðX; Y; ZÞ ½�ti ¼ rijnj�: ð3Þ

This ‘‘pressure theorem’’ of Cauchy, by specialisation of the direction of n,
yields, as we know, the meaning of the nine components [Cf. Müller-Timpe in
EmW IV-23, No.3a; Helmholtz, 1902].

3b. Survey of the principle of virtual perturbations

Based on the constructions of the above notions, it is possible to transpose
immediately the Principle of virtual perturbations, governing the statics of dis-
crete mechanical systems to continuum mechanics: In a determined case of
deformation, a continuous medium, in which there are present certain volume
forces X. . . and outer surface forces �X. . . and a certain stress condition Xx. . ., is
then and only then in equilibrium when the total virtual work of these forces and
stresses for each virtual perturbation which is compatible with the conditions
somehow imposed on the continuum, vanish:
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ZZZ
Vð Þ

q
X

ðxyz;X;Y;ZÞ
Xdx�

X
ðxyz;XYZÞ

Xx
odx

ox
þ Xy

ody

oy
þ Xz

odz

oz

� 	8<
:

9=
;dV þ

ZZ
S

X
ðxyz;XYZÞ

�XdxdS ¼ 0:

ð4Þ
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Actually, J.L. Lagrange had already conducted this transformation, when he
established as the basis of his analytical mechanics the [John] Bernoulli principle
of virtual perturbations; for him, an obvious consequence of the validity of this
principle in the point mechanics, is its applicability in his available problems of
continuum mechanics, where he always preferred to represent the work expression
by a transformation of the limit of the discontinuous system out of or through
direct intuition. Ever since, in the further development of the bounding areas of
continuum mechanics people have shown a preference for the principle of virtual
perturbations; often, they also have, just like Lagrange, relied on the idea that the
continuum could be approached through a system of an infinite number of mass
points, and that, at the same time, all physical effects in the continuum could be
approached through equivalent effects in this approximate system; actually, it
seems that the axiomatic specification of this relationship which, for the con-
vertibility of these analogies, needs to postulate, above all, the necessary conti-
nuity requirements by strict deduction, does not seem as yet to have been obtained.
In the meantime, for continuum mechanics, we prefer and place on top as the
highest axiom the initially formulated principle itself. And we adopt this stand-
point so much more willingly when we consider that the representation of the
continuously extending media is much more natural than the abstract ‘‘mass
points’’ of the point mechanics [Recently, this view had been particularly sup-
ported by G. Hamel, 1908, p.350 - also Hamel’s textbook of 1912 where he gives a
complete axiomatics of continuum mechanics, that resolves a basic principle like
the one used here in a series of independent propositions]. The certainty of the
correctness of this axiom is based on one hand on the fact that such a statement
corresponds to our general ideas and thinking habits about physics, but mainly on
the fact that it is appropriate enough to sufficiently represent the facts of
experience.

3c. Application to continuously deformable continua

The well known formal operations of the calculus of variation show how easily we
can, in many cases, transform the principle of virtual perturbations in a great
number of equations between forces and stresses. As a start, if we consider only as
typical the sufficiently continuous deformable medium, which is in no way
restricted by side conditions, then the condition (4) for every system of continuous
functions dx; dy; dz is fulfilled. The transformation of (4) by partial integration, if
the forces, stresses and their partial derivatives are always continuous in V, yields
then the equations
p 617
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1) at every point in the domain V

oXx

ox
þ oXy

oy
þ oXz

oz
þ qX ¼ 0 ðX; Y; ZÞ orij

oxj
þ qfi ¼ 0


 �
ð5aÞ

2) at every point of the bounding surface S with outer pointing normal directions n

Xx cos nxþ Xy cos nyþ Xz cos nz ¼ �X rijnj ¼ �ti
� �

: ð5bÞ

Therefore, along with the boundary surface condition, we obtain the so-called
‘‘stress equations’’, that offer necessary and sufficient conditions, so that a deter-
mined system of forces and stresses acting at a certain position in a freely
deformable continuum be in equilibrium [These equations are similar to those of
A.L. Cauchy, 1828.] Certainly, these conditions are by no means sufficient for us to
determine the stress and force components: in order to do this we must introduce the
relations that we will treat later, and which emphasize the dependence of the forces
and stresses from the actually existing deformation or from other external sources
(Cf. Stäkel in EmW IV-6, No.26, and Müller-Timpe in EmW IV-23, No.3b).

In (4) and (5) the independent variable coordinates are in the deformed con-
figuration [Hellinger uses ‘‘condition’’. GAM] of the continuum, and the force and
stress components find their evident meaning as effects upon mass units and with
respect to the surface unit of the medium in a deformed configuration. In contrast
to this, following S.D. Poisson’s works [Poisson 1829, 1831; This difference has
often been overlooked, since at closer examination of infinitesimally small
deformations of a stressless quiet state, it actually vanishes so it has only been
shown to advantage in the development of the theory of elasticity with finite
deformations] people often use a; b; c, interpreted as coordinates at the initial site
of the medium, as independent variables; it is true that this leads to components of
lesser immediate physical importance, but from the analytical point of view it is
more convenient for many purposes. This happens namely when we set [This is
Nanson’s formula in modern treatments. GAM]

kdS0 ¼ dS; ð6Þ

and Equation (4) becomes

ZZZ
V0ð Þ

q0

X
ðxyz;X;Y ;ZÞ

Xdx�
X

ðxyz;XYZÞ
Xa

odx

oa
þ Xb

ody

ob
þ Xc

odz

ocz

� 	8<
:

9=
;dV0 þ

ZZ
S0

X
ðxyz;XYZÞ

�XkdxdS0 ¼ 0

ð7Þ
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and therefore

D:X ¼ Xa
ox

oa
þ Xb

oy

ob
þ Xc

oz

oc
ðX; Y ; Z; x; y; zÞ rij ¼ J�1TK

i

oxj

oXK


 �
: ð8Þ

Moreover, as it follows by resolution and comparison with (3), Xa; Ya; Za, the
components of the surface forces acting upon an element of the surface a ¼ const:,
thanks to the stress condition in the material lying to the side of increasing a, are
calculated upon the unit surface in the actual position in the space a� b� c [CF.
Müller-Timpe in EmW IV-23, No.9, and also the elaborate presentation (pre-
dicting of course the symmetry of the stress dyad) by E. ad F. Cosserat, 1896]. Just
like (5a) and (5b) result from (4), from (7) there results a new form of the equi-
librium conditions:

oXa

oa
þ oXb

ob
þ oXc

oc
þ q0X ¼ 0 in V0ðX; Y ; ZÞ ½

o

oXK
TK
:i þ q0fi ¼ 0� ð9aÞ

and

Xa cos n0aþ Xb cos n0bþ Xc cos n0c ¼ k�X on S0; ðX; Y ; ZÞ ½NKTK
i ¼ k�ti�; ð9bÞ

where n0 means the outer normal direction to the surface element dS0 in the space
a� b� c.

[In modern treatments, Equations (9a) and (9b) are referred to as the Piola-
Kirchhoff format of the equilibrium equations. GAM].

3d. Relations with rigid bodies

It is also possible to derive the equilibrium conditions (5) in a somewhat different
manner, from the principle (4). We obtain then the relationship with the ‘‘Rigid-
ification principle’’ of A.L. Cauchy [cf. Cauchy, 1822 and 1828; Stäkel in EmW
IV-6, No.26, Müller-Timpe in EmW, IV-23, No.3b], often used in the composition
of his works. That is, each piece cut off the deformed continuum, under the
influence of the intervening volume forces on its inside and of the intervening
forces (3) on its outer surface, must be like a rigid body in equilibrium. To this
purpose, we only need to consider certain discontinuous perturbations which, of
course, will destroy the coherence of the continuously deformable continuum and
which initially do not need to make dA vanish; but we can succeed if we approach
it through a group of continuous virtual perturbations.

p 619

So we approach a perturbation, which has in a domain V1 of V constant values
dx ¼ a; dy ¼ b; dz ¼ c with the boundary surface S1, but outside V1 it vanishes
(i.e., a translation of the domain V1) by steady virtual perturbations, while V1 will
be surrounded by any small domain V2; inside this dx; dy; dz of a; b; c decrease
constantly to zero. For such a virtual perturbation it follows from (4):
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ZZZ
V1ð Þ

q Xaþ Ybþ Zcð ÞdV1 þ
ZZ

S1ð Þ
Xnaþ Ynbþ Zncð ÞdS1 þ

ZZZ
V2ð Þ

X
xyz;XYZð Þ

qX þ oXx

ox
þ oXy

oy
þ oXz

oz

� 	
dx dV2 ¼ 0

where n denotes a component in dS1 of V1. If we let V2 become smaller and
smaller, then the last integral will become sufficiently small as the X; Xx and their
derivatives remain finite and since a; b; c are whichever, there result the three
equations

ZZZ
V1ð Þ

qXdV1 þ
ZZ

S1ð Þ
XndS1 ¼ 0 ðX; Y ; ZÞ: ð10Þ

These are exactly the equations, in the above mentioned sense - through the
application of the so-called strong-point principle (‘‘Schwerpunktsatzes’’) - that
govern the piece V1 seen as rigid and cut out of the continuum. Because of the
arbitrariness of the domain V1, it is easy to obtain from (10) the equations (5a) (Cf.
Müller-Timpe in EmW, IV-23m, p.23).

If we proceed in the same manner with a rigid rotation of a part of domain V1

with the components qz� ry; rx� pz; py� qx, then we have the following
equations:
ZZZ

V1ð Þ
q Zy� Yzð Þ þ Yz � Zy

� �
dV1 þ

ZZ
S1ð Þ

Zny� Ynzð Þ dS1 ¼ 0; X; Y; ZÞð Þ

ð11Þ

This can only fully agree with the equilibrium of a domain V1 as a rigid body, if
we set opposite to the moments of the forces X; Y; Z, distributed in space, and to
the surface forces Xn ; Yn; Zn, another rotation moment affecting directly the
volume element, calculated as the vector element (2’) of the stress dyad. If then we
postulate the surface part in the usual form, so that the sum of moments of the
volume and surface forces vanishes, then we obtain immediately the symmetry of
the stress dyad [Hamel has included this requirement in his axiomatics of the
mechanics of volume elements under the expression ‘‘Boltzmann’s axiom’’].

p 620

In close relationship with this fact, there is another interpretation of the principle
of virtual rotations which, from the outset, considers as given only the real force,
the mass forces X; Y; Z and the surface forces�X; �Y ; �Z; it is the following easily
improved formulation of G. Piola [Modena Mem., 1848]: For the equilibrium it is
necessary that the virtual work of the specified forces

ZZZ
Vð Þ

Xdxþ Ydyþ Zdzð ÞdVþ
ZZ

Sð Þ
�Xdxþ �Ydyþ �Zdzð ÞdS

vanishes for all pure translational virtual perturbations of the entire domain
V. These auxiliary conditions for the perturbations are mainly expressed by the
nine partial differential equations
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odx

ox
¼ 0;

odx

oy
¼ 0; . . .;

odz

oz
¼ 0:

then, according to the well known calculation of variations, we can introduce nine
necessary Lagrangian factors [multipliers, GAM] �Xx;�Xy; . . .;�Zz, and thus we
obtain exactly the equations (4) of the former principle, proving this way the
components of the stress dyad as Lagrange multipliers of certain rigidity condi-
tions. Of course, they are not determined through this variational principle; they
rather play exactly the same role as the internal stresses in the static undetermined
problem of the mechanics of rigid bodies [Cf. also Stäckel in EmW IV-6, no.26,
p. 550, and Müller-Timpe in EmW IV-23, no.3b, p.24].

If we actually impose the same requirement for all rigid motions of V (instead
of for translations only), then we obtain exactly the Piola statement repeated in
Vol. IV that according to the six auxiliary conditions it yields only six Lagrangian
multipliers and so a symmetric stress dyad.

3e Two- and one-dimensional continua in three-dimensional space

All the foregoing statements can be immediately proved for the two- and one-
dimensional continua embedded in a three-dimensional space, as it was mentioned
at the end of Paragraph 2(32). The only modification is that the dimension of the
integration domain changes, and that instead of the derivatives of the virtual
perturbations along the three space coordinates, these enter along the two or one
coordinates, respectively, inside the deformed medium.

p 621

To begin with, let us consider in detail a two-dimensional continuum that, in the
deformed configuration, forms a coherent surface-part S with a border curve C; let
there be upon S - for the sake of simplicity – a system of orthogonal parameters
u and v that define the length and surface elements given by

ds2 ¼ E du2 þ G dv2; dS ¼ h du dv; h ¼
ffiffiffiffiffiffiffi
EG
p

;

and q denotes the surface density of the mass over S. Then we consider the virtual
work

dA ¼
ZZ

Sð Þ

X
ðxyz;XYZÞ

qXdx� Xuffiffiffiffi
E
p odx

ou
þ Xvffiffiffiffi

G
p odx

ov

� 	ffi �
dSþ

Z

Cð Þ

X
ðxyz;XYZÞ

�X dx ds:

ð12Þ

Here X; Y; Z and �X; �Y; �Z mean the components of the force attached to the
mass unit over S, respectively to the length unit along C; over the surface Xu; . . .
permit the development of expressions very analogous to the Xx; . . . On the one
hand, they produce certain forces attached to the mass distributed over S, and on
the other, a stress condition prevailing over S, so that, thanks to the stress con-
dition, a force

Bibliography 235



Xt ¼ Xu cos t; uð Þ þ Xv cos t; vð Þ ð13Þ

is exerted on each line element lying along C on one side per unit length; here t
means the normals’ orientation of the element.

For media allowing all kinds of continuous perturbations, it is possible to
resolve the condition dA ¼ 0 of the principle of virtual perturbations into six
equilibrium conditions; we transform then dA by the well-known methods of
partial integration:

1
h

o
ffiffiffiffiffiffiffiffiffi
GXu
p

ou
þ o

ffiffiffiffiffiffiffiffi
EXv
p

ov

� 	
þ qX ¼ 0 on S; ðX; Y; ZÞ ð14aÞ

Xu cos tuþ Xv cos tv ¼ �X along C; ðX; Y ; ZÞ: ð14bÞ

Here t means the orientation standing normally to C in the surface S, and turned
away from the surface-part under consideration. But it is also easy to transform
these equations to the initial parameters a; b, when from the transformed equations
of the virtual work we obtain

p 622

dA ¼
ZZ

S0ð Þ

X
ðxyz;XYZÞ

q0X � Xa
odx

oa
þ Xb

odx

ob

� 	ffi �
da dbþ

Z

C0ð Þ

X
xyz;XYZð Þ

�Xdx
ds

ds0
ds0

ð15Þ

and so

h
o u; vð Þ
o a; bð ÞXu ¼ Xa

ou

oa
þ Xb

ou

ob
; ðX; Y; Z; u; vÞ: ð16Þ

By comparing with (13) it follows that Xa; . . ., thanks to the stress condition,
means the forces acting on a line element a ¼ const:; b ¼ const calculated over
the length unit in the a� b domain.

In one-dimensional continua things are presented in much the same way [CF. E.
and F. Cosserat, Corps déformables, Chap. II, as well as K. Heun in EmW IV-11,
No.19 and P. Stäckel in EmW IV-6, No. 23]. If s 0� s � lð Þ is the length of the arc
on the curve built in the deformed shape, then we get

dA ¼
Z l

0

X
xyz;XYZð Þ

qXdx� Xs
odx

os

ffi �
ds þ

X
xyz;XYZð Þ

�Xds

2
4

3
5
������
s¼l

s¼0

; ð17Þ

where the meaning of the various quantities is given much as usual, and by
arbitrary continuous variations the equilibrium conditions read as

236 12 A Successful Attempt at a Synthetic View of Continuum Mechanics



dXs

ds
þ qX ¼ 0 for 0� s � l; ðX; Y ; ZÞ ð18aÞ

Xs ¼ �X at s ¼ 0; s ¼ l; ðX; Y; ZÞ: ð18bÞ

Here also, it is sometimes advisable to introduce the initial parameter a as
independent, by using the formula

dA ¼
Z l0

0

X
xyz;XYZð Þ

q0Xdx� Xa
odx

os

ffi �
daþ

X
xyz;XYZð Þ

�Xds

2
4

3
5
������
a¼l0

a¼0

; Xs
ds

da
¼ Xa: ð19Þ

4. Extensions of the principle of virtual perturbations
4a. Presence of higher perturbation derivatives (partial translation only)

It is possible to add a whole series of extensions to the statement of the principle of
virtual perturbations formulated in Section 3, which allows now, to the greatest
extent, to include all the laws concerning continuum mechanics. The first thing
consists in admitting in the virtual work the existence of a linear form of the
eighteen [spatial] second-order derivatives of the virtual perturbations, e.g.,
o2dx=ox2, per element of volume. In fact, we have introduced here some problems
related to these expressions, where it would seem necessary to let the energy
functions depend on the second derivatives of the deformation functions. To begin
with, this applies to the one- and two-dimensional continua considered (strings and
plates [Cf. the discussion of the statement of the potential in Paragraphs 7a, p.645
and also 8a, p.660].

[Here it seems that Hellinger was not aware of such developments by Le Roux
in France in 1911–1913; Cf. Maugin [38], Chapter 13. GAM.].

……
……

4b. Media with oriented particles (not translated here)

[In this section Hellinger generalizes the presentation of foregoing sections to the
case including the Cosserats’ trihedron. He essentially relies on the works of W.
Voigt (complementing S.D. Poisson’s original idea), the Cosserats, J. Larmor, and
K. Heun in EmW, IV-11, Nos. 19 and 20. He also considers the special cases of
two- and one- dimensional bodies. GAM].

……
……

p 627

4c. Presence of side conditions

Until now the principle of virtual perturbations has been used mainly in those
cases where the continuum was continuously deformable, in every possible way.
But in the formulation of the principle there are immediately included such
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continua whose mobility is restricted by all kinds of conditions; actually, some of
the first problems treated by Lagrange [Cf. his Mécanique Analytique, 1st part,
Section V, Chapter III (non-extensible strings), Section VIII (incompressible flu-
ids).] concern this very case. These conditions are expressed in the first place by
equations for the functions (1) and (9) of Section 2, describing the deformations.
In these, besides their functions as such, we can also have their derivatives with
respect to a; b; c. The equation

x a; b; c; x; y; z; xa; . . .; zc; k; l; m; ka; . . .; mcð Þ ¼ 0; xa ¼
o x

oa
. . . ð13Þ

is then typical for every point in the body V0. It is then possible to set similar
expressions for parts of the body, bounding surfaces, etc. In any case, the possible
deformations and the possible rotations (if needed) of the added [Cosserats’] tri-
hedron restricted in this way, or are required to satisfy definite relations between
rotations of the trihedron and deformation (for example, a certain orientation of the
trihedron relative to space or the medium; see above p. 626). The presence of
a; b; c in (13) means that the type of conditions may change from one particle to
another. If then we apply to (13) the varied deformation, Section 2, (3) or (10), we
obtain through differentiation with respect to r

p 628

dx ¼
X
x;y;zð Þ

ox
ox

dxþ ox
oxa

dxa þ . . .

� 	
þ
X
k;l;mð Þ

ox
ok

dkþ oxa

oka
dka þ . . .

� 	
¼ 0

ð14Þ

and since according to Section 2, p.608, the dxa. . . agree with the derivatives of
dx; . . ., thereexists here a linear homogeneous condition for virtual perturbations.

So the principle of virtual perturbations requires that dA vanishes for all
functions dx; . . . satisfying (14). We can then if, by chance equations (14) do not
allow the elimination of one of the perturbation components, replace it by the
introduction of a Lagrange multiplier [This treatment was first introduced by
Lagrange in his Mécanique Analytique] k in such a way that

dAþ
ZZZ

Vð Þ
kdx dV ¼ 0 for all dx; . . .; ð15Þ

what corresponds exactly to the original principle. Eventually, when (13) applies
only at isolated surfaces and curves, or actually the continuum fills only one
surface or curve, instead of space integrals in (15) we have then surface or curve
integrals. The interpretation of the multiplier k as a ‘‘pressure’’ will be discussed
later on (Paragraph 8b, p. 662).

Finally, we should also consider the possibility, which is also well-known from
the mechanics of discrete systems, that there can occur ‘‘one-sided [‘‘unilateral’’ in
modern jargon. GAM] accompanying side conditions [constraints. GAM] in the
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form of inequalities - e.g., let the boundary surfaces of the continuum in their
motion be restricted only on one side: let the inside (inner) deformation quantities
be subjected to certain inequalities (somehow we think of bodies that allow no
compression beyond a certain boundary – or some similar arrangement). Then the
equilibrium will be given once more by Fourier’s principle of virtual perturbations
that, namely, for every system of virtual perturbations satisfying the side condi-
tions, the virtual work is negative or zero:

dA� 0:

[CF. Voss in the EmW, IV-1, No. 54; formulation by Gauss in 1830 regarding
from the start the extension of continua].

p 629

12.9 The Basic Laws of Kinetics [Dynamics]

5a. The equations of motion of the continuum

The task of kinetics is to establish which are the motions of which the continuum
is the object, as considered until now, when, somehow, certain force actions are
exerted on it in time or, on the opposite, which are the actions necessary for the
maintenance of a certain motion. At the same time, the action components are
thought of, like in statics, as coefficients of the work expression dA, while the
manner in which they depend on the function of motion will remain initially open.

At the beginning we will only be concerned with the ordinary media examined
in Section 3. The transition from statics to kinetics can be made exactly as in the
mechanics of discrete systems with the help of d’Alembert’s principle (see Voss in
the EmW IV-1, No.36); Passing to continuous systems is almost automatic if, as
we did in statics (p. 616), we let ourselves be led by the idea of a limit transition to
the continuum, by direct comparison, in the sense of what happens in the analogy
between systems of points and continua. Lagrange (cf. Méc. Anal., 2nd part,
Section XI, §1) also, when treating the problems of hydrodynamics, considered it
form the same point of view. It is possible then to express in terms corresponding
to d’Alembert’s formulation (Traité de dynamique, Paris, 1743; Voss in the EmW
IV-1, p.77) for the general mechanics of continua, the following principle: If we
consider the forces and stresses acting during the motion at a definite instant of
time on the volume V0 of the medium, then they are found to be in static equi-
librium, in the earlier sense, in so far as we attach to them, at any time, additional
forces whose components, calculated per unit mass of the continuum, are equal, by
comparison, to the components of the acceleration:
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� o2x

ot2
¼ �x00;� o 2y

ot2
¼ �y00;� o2z

o t2
¼ �z00:

Even if, in many ways, it proves advisable to place this principle at the summit
of kinetics, still the question remains open, in what independent constituents it can
be decomposed, and to what extent these are independent from the axioms of
statics – a question we faced in exactly the same manner in the mechanics of
discrete systems.

p 630

Let us remark briefly that this D’Alembert principle contains essentially, on one
hand, a statement equivalent to the second law of Newton, i.e., that the acceler-
ation of a volume element considered as free, is the same as the sum of all the
forces acting on it; but, on the other hand – something that Hamel (1908, p. 354;
also his Elementare Mechanik, p. 306ff) has thoroughly proven – i.e., that one of
these first constitutive elements contains, logically, perfectly independent
expressions: if the forces acting on a continuum are such the ensuing accelerations
on each particle, according to the second Newtonian law, are compatible with the
kinematic conditions of the system, then these accelerations also really occur. If
we cease to introduce the principle of virtual perturbations as an equilibrium
condition in the D’Alembert principle, then we obtain the variational principle
used by Lagrange (Méc. Anal., 2nd part, Section II) as the basic formulation of
dynamics. We imagine the motion for every instant t in Section 3, (6), on which is
superimposed an infinitesimally small virtual perturbation compatible with the
somehow constituting kinematic conditions at the instant t for the continuum; then
the virtual work performed by the sustaining forces must always vanish:

�
ZZZ

Vð Þ
q x00dxþ y00dyþ z00dzð Þ dV þ dA ¼ 0 ð1Þ

and this for every instant of time t in the course of the motion. In the case of a
rather continuously deformable body, the equations

qx00 ¼ qX þ oXx

ox
þ oXy

oy
þ oXz

oz
; ðx; y; z; X; Y ; ZÞ ð2Þ

follow; in the same way as in Paragraph 3c, as the equations of motion at any point
of the continuum and every time, while the boundary conditions (5b) of Sect. 3
persist for every time t. On the other hand, these equations define the motion only
when the relationship between the forces and stress components and the motion
functions is established [i.e., the constitutive equations, GAM].

Concerning now the kinematic side conditions, we refer exclusively to the case
of so-called holonomic conditions which contain no time derivatives of the motion
functions [If we try to handle the problems with non-holonomic conditions by
means of d’Alembert’s principle, then we must foresee in continuum mechanics,
just like in point mechanics, that the varied motion for small r satisfies the
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condition – and even more, condition equations for perturbations will clearly be
formally written by replacing the time differentiation by an operation; see below
p. 633). Cf. Voss in the EmW, IV-1, Nos. 35 and 38, and bibliography there,
particularly works by Hölder in 1896 and by Hamel in 1904]. Such a condition
differs from the one considered in Paragraph 4c only through the explicit presence
of t:

xða; b; c; x; y; z; xa; . . .; zc; tÞ ¼ 0: ð3Þ

p 631

For the virtual perturbations we shall consider no only the form of this condition in
time t; the varied position (for any small r) must satisfy the condition (3) for the
considered fixed value of t, so that through differentiation with respect to r
(‘‘variation of motion at fixed t’’) there follows

X
xyzð Þ

ox
ox

dxþ
X

xyz;abcð Þ

ox
oxa

dxa ¼ 0 for every t: ð30Þ

From this we obtain the equations of motion in the sense of Paragraph 4c

5b. Transition to the so-called Hamiltonian principle

Now we can also convert some very similar well known developments of point
mechanics of the d’Alembert principle into variational principles determining the
motion. The main object here is to transform the contributions due to the motion
(the sustaining forces) in the variation of a unique determined expression for each
motion path.

As with Lagrange [Méc. Anal., 2nd part, Section IV, art. 3], the basic identities
are

x00dx ¼ d

dt
x0:dxð Þ � d

1
2

x02
� 	

; ðx; y; zÞ

which follow through repeated differentiation from Section 2, (6), with respect to
the independent variables r and t. If we carry this into (1), and considering that the
operation symbols d/dt and d can be taken out of the integrals, regardless of the
factor q, since as according to the introduction of a; b; c as integration vari-
ables, the integration domain V0 as well as the remaining factor q0 are independent
from r and t, we obtain

� d

dt

ZZZ
Vð Þ

q
X
xyzð Þ

x0dx:dV þ dT þ dA ¼ 0 ð4Þ

introducing in this way, by abbreviation, the total kinetic energy

p 632
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T ¼ 1
2

ZZZ
V0ð Þ

q0

X
xyzÞð Þ

x02dV0 ¼
1
2

ZZZ
V0ð Þ

q
X
xyzð Þ

x02dV: ð5Þ

Equation (4) is the equation used by G. Hamel [Zeit. Math. Phys. 50(1904),
p.14] and K. Heun [Lehrbuch der Mechanik, Vol.1, Leipzig, 1906) and in EmW,
IV-11, No. 11] under the name of Lagrangian central equation, as the basis of the
mechanics of systems with a finite number of degrees of freedom, which is then
valid in the same sense in continuum mechanics [Cf. Heun in the EmW IV-11,
Nos. 19-21)], and is completely equivalent to (1): The motion takes place so that
for every virtual perturbation compatible with the somehow existing conditions at
every instant, the time derivative of the virtual work of the quantities of motion
(‘‘impulses’’) x0; y0; z0 per unit mass, is equal to the sum of the variations of the
kinetic energy and of the virtual work of the totality of the actions of forces [if in
addition we also vary the time parameter, then it becomes possible to carry over
the relation indicated by G. Hamel (Math. Ann., 59 (1904) p. 423, and K, Heun as
general central equation to continuum mechanics; cf. Heun, in EmW, IV-11, Nos.
19-21].

If we consider now the motion in the interval of time t0� t� t1, then (4) is valid
for every instant, and through integration with respect to t with the assumption that
the virtual perturbations vanish at the limits of the interval, it yields the so-called
Hamiltonian principle [This principle, after it became typical of point mechanics,
had been used very early for different specialized fields of continuum mechanics in
many different manners (see Voss EmW IV-1, No.42); we can also compare, apart
from the bibliography to be mentioned later for each discipline, A. Walter, Diss.
Berlin, 1868, as well as the comprehensive presentations in Kirchhoff’s Mechanik,
p.117ff and W. Voigt’s Kompendium, Vol. I, p. 227ff.]: If over the motion of the
continuum we superimpose some virtual perturbations compatible with the existing
conditions, which vanish exactly at t0 and t1, then the time integral of the sum of
virtual work and the variation of the kinetic energy over the interval t0; t1, vanishes
also:

Z t1

t0

dT þ dAð Þ dt ¼ 0: ð6Þ

Since in (6) the virtual perturbations for every time interval can be chosen
arbitrarily, then it is all the more easy to conclude from (6), from (4) or from (1)
that these principles are fully equivalent.

From this principle it is further possible to derive directly the principle of least
action in its various forms [As an example, the considerations of O. Hölder in ‘‘Die
Prinzipien von Hamilton und Maupertuis’’, Gött. Nach. Math.-Phys. Kl, 1996,
p. 122ff, can be immediately extended to continua], but it seems that – regardless
of those cases referring to systems with finitely many degrees of freedom – we
have not as yet found any substantial application for it.
p 633
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5c. The principle of least constraint

It is also possible to transfer the inertial contribution of the d’Alembert principle,
without integration in time, in the variation, that depends on an expression for each
motion condition, determined only from the condition at instant t, where of course
the occurrence of second-order time derivatives must be allowed. This way was
created the Gauss principle of least constraint [CF. Gauss’s Werke V, p. 23. The
first analytic formulation of this principle, given only orally by Gauss, was pub-
lished by R. Lipschitz, J. für Math., 82 (1877), p.321ff; and a little later by J.W.
Gibbs in Amer. Journ. 2 (1879) p.49; for further bibliography see Voss in EmW
IV-1, No. 39], that recently A. von Brill has chosen as the starting point for a
systematic treatment of continuum mechanics (Cf. A. von Brill, 1909).

To reach this principle, we take the virtual perturbation of a group of varied
motions Section 2, (6), in the following particular way: Each particle a; b; c will
occupy at time t the same position and the same velocity as in the real motion, i.e.,
the following will be valid for each value of t:

dx a; b; c; tð Þ ¼ 0; dx0 a; b; c; tð Þ ¼ 0; ðx; y; zÞ ð7Þ

while the variations dx00; dy00 ; dz00 of the accelerations are different from zero. It
is now possible to use these three functions in every case as defining parts of the
perturbations happening in (1). In the case of a freely deformable continuum, this
is evident. But in the conditions of the form (3), this will yield through double
differentiation with respect to time,

X
ðxyzÞ

ox
ox

x00 þ
X

xyz;abcð Þ

ox
oxa

x00a þ . . . ¼ 0;

p 634

where the known functions of x; . . .; xa; . . ., and their first time derivatives are
indicated by the ellipsis. By variation, i.e., differentiation with respect to r, thanks
to (7) at the chosen time t, there follows

X
ðxyzÞ

ox
ox

dx00 þ
X

xyz;abcð Þ

ox
oxa

dx00a þ . . . ¼ 0;

and actually this is exactly the conditions represented above for dx. The intro-
duction of the functions dx00; . . . in (1) is then permitted and it yields, with a light
reformulation, the following new principle [Cf. Brill, op. cit.]: If we alter the real
motion of a continuum at a definite instant in such a way that the position and
velocity of every one particle remain preserved save that the acceleration of the
existing side conditions are modified accordingly, then the following integral sums
always vanish:
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�d
ZZZ

Vð Þ

1
2

q
X
xyzð Þ

x002þ
ZZZ

Vð Þ
q
X
XYZð Þ

Xdx00 �
X
XYZð Þ

Xx
odx00

ox

0
@

1
AdV

þ
ZZ

Sð Þ

X
XYZð Þ

�Xdx00dS

¼ 0: ð8Þ

This can be transformed to a Gaussian form

�d
ZZZ

Vð Þ

1
2
q
X

xyz;XYZð Þ
x00 � Xð Þ2dV �

ZZZ
Vð Þ

X
XYZ;xyzð Þ

Xx
odx00

ox

0
@

1
AdV

þ
ZZ

Sð Þ

X
XYZð Þ

�Xdx00dS ¼ 0: ð80Þ

The main significance of this principle, just like in point mechanics, consists in
the fact that it remains valid and fully unaltered also in systems with non-holo-
nomic side conditions. If there exists such a condition, in which next to the motion
functions and their spatial derivatives also occur the first time differential
quotients:

xða; b; c; x; y; z; xa; . . .; zc; x0; y0z0; x0a; . . .; z0c; tÞ ¼ 0

Then through single differentiation with respect to t, and by variation (differ-
entiation with respect to r) we obtain, thanks to (7)

X
ðxyzÞ

ox
ox0

dx00 þ
X

xyz;abcð Þ

ox
ox0a

dx00a þ . . . ¼ 0

which can be no more added as a side condition.
If x is especially linear in the velocities x0; . . .; x0a; . . .; then the result is sub-

stantially identical with the form in which, often, one does not consider the
d’Alembert principle with non-holonomic conditions and in so doing, instead of
the simple virtual perturbations introduced only formally, there also occur the
acceleration variations.

A further advantage of this principle as compared to the d’Alembertian one,
which however does not seem to have been exploited until now in continuum
mechanics, consists in that it offers an appropriate basis even for the treatment of
dynamic problems with the inequality type of side conditions: all we need to do is
to require that the expression (8) for all admissible variations of the acceleration in
agreement with the side condition at instant t, with fixed position and velocity of
the individual particles, be smaller or equal to zero, exactly like Gauss has already
remarked in point mechanics [Cf. Gauss, Werke, Vol. V, p.27].

[The rest of Hellinger’s contribution is not translated here].
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Chapter 13
Epilogue

Abstract This epilogue briefly summarizes the foregoing essays while emphasizing
the ways in which this critical perusal was approached, and what appears to be the
large themes that received a special magnification and, perhaps, a biased presen-
tation. It underlines the main breakthroughs as well as the secondary ones. It
highlights the role of scientists who left essential prints in this history of scientific
ideas. It finally outlines the observed timid beginnings of future theories of coupled
fields in thermo-mechanics.

13.1 On the Method

Nowadays, two sometimes irreconcilable approaches are considered in political
history. One, under the influence of structuralism, favours a global approach
epitomizing great movements of ideas and philosophical tendencies (with an
emphasis on general themes, sociological and economical background), and the
other still basing on chronology, dramatic events, national heroes, great names and
even myths for more ancient times, what provides a tempo that is useful to the
youth in forming a consolidated view of history.1 In the present book dealing with

1 If we compare the examined period with the one considered in our previous book [13] which
included the two World Wars of the twentieth century, we find that this was a relatively quiet one.
Of course there were wars. An important one, very much similar to World War One in extent and
casualties was the Seven-Years war (known as the French and Indian War in the USA) that
included England, the Netherlands, and Prussia on one side and France, Austria, Russia, and
Sweden on the other with battle fields on three continents (Europe, India, North and Central
America) and various seas. It lasted from 1756 to the Treatise of Paris in 1763. This date marks
the true birth of a powerful British Empire and the disappearance of French possessions in India
and North America (Canada, East of the Mississippi river; the rest of Louisiana, west of the
Mississippi river, from New Orleans to the Canadian boarder was sold to the USA by Napoleon in
1803), but with a status quo in Europe. Other conflicts were the Napoleonic wars, the wars of
independence in Italy and Greece, the British-Russian war, and the French-Prussian war of 1870,
and of course the war of independence in the USA and the unfortunate American Civil War in
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one aspect of the history of scientific ideas—as witnessed by the different essays—,
we have preferred a mixed attitude, sometimes emphasizing general themes such
as the evolution of the principles of mechanics—or of their wording—, Newtonian
versus ‘‘continental’’ viewpoints, combination of continuum mechanics and ther-
modynamics in a true ‘‘thermo-mechanics’’, and also paying more than justified
attention to some remarkable individuals who left their name attached to a theorem
or a principle, although these persons are not truly sanctified. Here chronology
plays an important role. It is obviously cogent to know that Daniel Bernoulli’s
celebrated theorem came before Cauchy’s postulate on stresses, and the true
understanding of the conservation of energy, or that the Navier-Saint-Venant-Stokes
equations, although involving dissipation, were written down independently of the
second law of thermodynamics that was not yet clearly expressed. In the last case
this has left a print since there still are many workers in viscous fluids, and even
more in non-Newtonian fluids, who practically do not refer to thermodynamics.2

The main result of our mixed attitude has been a series of essays that generally
follow the arrow of time while underlining the role played by scientists who
brought seminal ideas and contributed the most remarkable breakthroughs. These
scientists are not unknown to the majority of students and practicing scientists,
because their names are classically attached to familiar theorems or commonly
used mathematical objects. Among the names that recur in the above-given essays,
we find those of: John and Daniel Bernoulli, Varignon, d’Alembert, Euler,
Lagrange, Cauchy, Lamé, Piola, Kirchhoff, Green, Duhamel, Neumann, Carnot,
Kelvin, Helmholtz, Clausius, Stokes, Maxwell, Saint-Venant, Boussinesq, the
Cosserat brothers, Duhem, Poincaré, and Caratheodory. Parodying what American
magazines do for film stars, these individuals form, in some sense, the ‘‘hall of
fame’’ of our discipline for the eighteenth and nineteenth centuries. These are all
first roles, although some secondary roles may have played a crucial part at some
specific time. An unavoidable filtering process took place with our biased

(Footnote 1 continued)
1861–1865. But all these did not alter much the scientific world where international exchanges
(e.g., between England and France or France and Germany) continued uninterrupted except in
case of physical impossibility (e.g., during a blockade). This is in sharp contrast with what
happened in the twentieth century. The great influential event in fact was the French Revolution
started in 1789, not because ‘‘it did not need savants’’, [Supposedly, this is what was said by some
philistine revolutionaries when the chemist Lavoisier lost his head (but he was not executed
because he was a scientist. Remember that Laplace, Lagrange, Monge, Coulomb, Lazare Carnot
and others went through this period without physical damage; d’Alembert had died of natural
causes in 1783).] but because it instituted a new type of framework for scientific studies with the
creation of engineering (polytechnic) schools, a model that was to spread all over the world
during the nineteenth century. This was particularly beneficial to the advances in continuum
mechanics and its application to mechanical and civil engineering along with implementation of
good mathematics (sometimes created for this very purpose) as illustrated by Cauchy, Navier,
Fourier, Ampère, Fresnel, Coriolis, Duhamel, Saint-Venant, Poincaré, etc., in France and the
disciples of F. Neumann (Kirchhoff, Clebsch, and Voigt) in Germany.

2 The inequalities to be satisfied by viscosity coefficients in order to guarantee a non-negative
dissipation, were in fact proved belatedly by Duhem toward the end of the nineteenth century.
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contemporary view since only the fruitful avenues have been retained, those
leading to dead ends being altogether ignored, perhaps unjustly because they also
play a role in the evolution of ideas. However, this is moderated by the last two
essays in which we have examined the appraisal by scientists Appell ([1]—but
initially 1909); and Hellinger [6] of the early twentieth century. This does not
necessarily coincide with our own appraisal one century later.

13.2 The Main General Themes and Breakthroughs

As shown by the scrutiny of original sources and the offered English translation of
some crucial texts, the two most important lines of development exposed in the
successive essays are the ‘‘continental’’ vision that emphasizes the consideration of
a principle of virtual motion or, in modern terms, a ‘‘weak’’ formulation—and the
more ‘‘Newtonian’’ approach based on the postulate of balance laws that follows
Euler. The last viewpoint is the approach still favoured by disciples of the late
Truesdell, an author who constantly expressed his (justified) admiration for
Newton and his successors in the United Kingdom. This is best exemplified by the
treatise of Truesdell and Toupin [19]. In contrast, under the influence of Leibniz
and John Bernoulli the ‘‘variational’’ approach, in different guises, has been
adopted by many scientists in France (d’Alembert, Lagrange, the Cosserats), Italy
(Piola), and Germany (Kirchhoff, Helmholtz, Hellinger). This approach had a
glorious destiny in mathematical physics, but also in engineering with the creation
of numerical methods based on it (finite-element method) and in mathematical
proofs based on weak formulations. Among the French exceptions who kept the
Newtonian-Eulerian line, we find Cauchy who remained in favour of a postulate of
balance laws as proved by his very argument concerning stresses—and also
Saint-Venant, Boussinesq and Appell because this has remained the traditional
expression of the principles of continuum mechanics in courses to students in
engineering. This ‘‘postulational’’ approach of balance laws recently gained some
additional favour with the implementation of the numerical method of finite
volumes.

In the period extending from John Bernoulli to Hellinger—almost two centu-
ries—breakthroughs have been numerous. They were listed at the end of Chap. 2
either in the form of realizations of the eighteenth century or as things to come in
the nineteenth century. But if one has to select among these the few most
important ones, then certainly one has to chose the formulation of the principles of
linear and angular momenta (for a collection of particles or a global body) by
Euler, the introduction of the general concept of stress by Cauchy, and the proposal
of the first and second laws of thermodynamics by Sadi Carnot, Kelvin, Mayer,
Helmholtz and Clausius. Those are all fundamental principles that still apply today
in the fashionable combination known as thermo-mechanics. They have found
natural extensions within relativistic physics (they even apply to black holes).
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According to the already mentioned two possible avenues this led to the following
two basic formulations for a deformable body made of a continuous material:

(1) along the ‘‘postulational’’ line: global statement of the two principles of
momenta in the Eulerian form, and the two laws of thermodynamics;

(2) along the ‘‘variational’’ line: a global statement of the principle of virtual
power, and the two laws of thermodynamics for real evolutions.

For the first line, see more particularly Truesdell and Toupin [19], Eringen [4],
and Maugin [11]. For the second line, see the critical essay by the author [12]
where it is emphasized that this line has to be preferred for theories of generalized
continua where extra balance laws are automatically taken care of by the principle
of virtual power. It also does not make use of the Cauchy postulate for stresses and
its generalization to the notions of hyperstresses and couple stresses is straight-
forward. Of course, the reader may find that this line receives an exaggerated
magnification in most of the previous chapters. But this emphasis is justified by
what permeates from the considered works, mostly in the ‘‘Continental’’ works
that were not written in English (see Chap. 1 for this deliberate choice and the
initial purpose of this series of essays).

Still, Cauchy certainly is the most remarkable among the cited scientists
because not only did he contribute the basic concept of continuum theories (see
Chap. 3), but, as a mathematician, he also created some of the most efficient tools
in the treatment of problems of continuum mechanics, such as in linear algebra and
its geometric representations, elements of group representations, rigorous defini-
tions of integrals and of limits, singular integrals and the notion of principal value,
and an invaluable application of complex variables with the theory of residues (see
[2]). This was particularly useful in two-dimensional problems of hydrodynamics
(see [1 in Chap. 11, 7, 8, 15]) and of linear elasticity (see [9, 14, 16]), and more
generally in potential theory.

We note that the most cited authors are, together with Cauchy and in chrono-
logical order: John Bernoulli, d’Alembert, Euler and Lagrange for the eighteenth
century, and Navier, Lamé, Clebsch, Maxwell, Saint-Venant and Boussinesq for
the nineteenth century. This is corroborated by Timoshenko [17] and Todhunter
[18] with a bias toward the application of solid mechanics to the strength of
materials. Indeed, while many of the perused works bear a strongly mathematical
style, applications were not neglected by the same scientists as a result of pro-
fessional obligations and a new interest in the mechanics of machines, mechanical
and civil engineering, and then construction using metallic structural elements. For
fluid mechanics which started as a ‘‘Swiss’’ specialty with the Bernoullis and
Euler, the nineteenth century witnessed the take over of this field by the British
school with stars such as Stokes and the Cambridgians in hydrodynamics. This has
remained until now a remarkably fruitful field in the United Kingdom. This is
illustrated by the lasting influence exerted by scientists like Lord Kelvin, Lamb [8]
and Osborne Reynolds (1842–1912), and the enduring supremacy enjoyed by
some journals such as the Journal of Fluid Mechanics. On the German side, we
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cannot overlook the influential works (in particular on vorticity) of Helmholtz—
who of course also radiates in other fields of physical and medical science—and of
Prandtl with the notion of boundary layer and the revolution it brought in the
emerging science of aeronautical flight. The French school is more reduced but we
particularly note Navier with his seminal works on viscous flows, Boussinesq with
his innovative ideas (modelling and mathematically justified approximations), and
Poincaré for his study of the equilibrium shapes of fluid masses. Many of these are
described at length and mathematically in the imposing treatise on rational
mechanics by Appell [1]. Much more on the history of hydrodynamics for the
relevant period can be found in Darrigol [3].

13.3 The Breakthroughs of Second Rank

There is no pejorative or belittling consideration in this classification. It simply is
that this is not so much related to principles, except for the laws of virtual work
and virtual power and the analytic mechanics of Lagrange (which, probably, would
not have existed without the pioneering work of Newton). We rank in this class the
formulation of the laws of Eulerian fluids, the laws of linear elasticity by Cauchy
and Navier, those of linear viscous fluids by Navier, Saint-Venant and Stokes, the
thermo-elasticity of Duhamel and Neumann, and the initial studies on visco-
elasticity by Kelvin, Maxwell, Voigt and Boltzmann, and those on plasticity by
Tresca, and Saint-Venant. Still in a different class, because of much delayed
recognition and applications only in the late twentieth century, we find the pro-
posal of continua with microstructure by Duhem and the Cosserat brothers.

13.4 The Timid Steps in Coupled Fields

We have seen that both Duhamel in France and F. Neumann in Germany pioneered
the theory of coupled fields in continuum mechanics by creating practically from
nought an embryonic theory of thermo-mechanical interactions. This may have
been premature as in fact in advance on the applications of well set laws of
thermodynamics. Potential applications were only very few at the time, being
limited to some problems posed by the then recent railway technology (over-
heating of metallic parts in motion). In so far as electro-magneto-mechanical
interactions—a subject matter dear to the writer—are concerned, one must realize
that very few such couplings had been identified when electromagnetic effects
themselves were not yet fully exposed. Historically, the first coupling is magne-
tostriction discovered by James Prescott Joule in 1847 (the same Joule as the one
of the Joule effect in electric conductors). Magnetostriction, an effect quadratic in
the magnetic field, in principle exists, but to a rather small extent, in many
materials (no specific material symmetry is required for its existence). The second
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coupling, of electro-mechanical nature, is linear piezoelectricity that was discov-
ered in 1881 by the Curie brothers in Paris. This effect, linear in the electric field,
requires a material symmetry with no centre of symmetry such as in quartz or
Rochelle salt. Technical applications of this effect had to await the First World
War with Paul Langevin and the conception of sonars in underwater acoustics for
the detection of submarines.

A true nonlinear combination of electrodynamics and continuum mechanics
respecting the laws of thermodynamics will be achieved only in the second half of
the twentieth century. We have given elsewhere [13, Chap. 12] elements of these
developments in a concise historical perspective. Advanced technical treatises
dealing at length with this rather complex but extremely rich theory are those of
the author [10] and Eringen and Maugin ([5], reprinted in 2012). To be complete
we should note that the interaction of light with deformable (transparent) matter
was discovered by David Brewster (1781–1868) in 1814–1815 when he found that
mechanical stresses induce temporarily in transparent solids directional properties
with respect to polarized light. It is the French engineer-scientist Augustin Fresnel
(1788–1827) who identified this property with the double refraction of crystals in
1822. This was readily applied by F. Neumann in his experiments on thermo-
elasticity. We have here the basis of the technique of photo-elasticity. More along
this line had to benefit from laser technology in the twentieth century.

Concerning another flourishing field of application of continuum thermo-
mechanics in the last fifty years, biomechanics and mechano-biology, only very
few hints at some early development in the perused period are the work of
Poiseuille on the flow of blood in 1844 (laminar flow in a cylindrical tube) and the
thesis work of John Bernoulli on the movement of muscles in 1694, although
Galileo Galilei (in Two new sciences) in 1638 had previously pondered the
mechanical strength of bones versus the size of animals. Again, one had to await
the second half of the twentieth century to see a true blossom of mathematical
studies and a realistic mechanical modelling in bio-thermo-mechanics (Cf. some
historical remarks in [13]). This concludes our adventures in the realm of con-
tinuum thermo-mechanics, between John Bernoulli and Ernst Hellinger, on a more
humane tune with the passing from the mechanics of inert matter to that of living
matter.
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