
Chapter 12
Model-Based Optimal Energy Management
Strategies for Hybrid Electric Vehicles

Simona Onori

Abstract Methods from optimal control theory have been used since the past decade
to design model-based energy management strategies for hybrid electric vehicles
(HEVs). These strategies are usually designed as solutions to a finite-time horizon,
constrained optimal control problem that guarantees optimality upon perfect knowl-
edge of the driving cycle. Properly adapted these strategies can be used for real-time
implementation (without knowledge of the future driving mission) at the cost of ei-
ther high (sometime prohibitive) computational burden or high memory requirement
to store high-dimensional off-line generated look-up tables. These issues have moti-
vated the research reported in this chapter. We propose to address the optimal energy
management problem over an infinite time horizon by formulating the problem as a
nonlinear, nonquadratic optimization problem. An analytical supervisory controller
is designed that ensures stability, optimality with respect to fuel consumption, ease
of implementation in real-time application, fast execution and low control parameter
sensitivity. The approach generates a drive cycle independent control law without re-
quiring discounted cost or shortest path stochastic dynamic programming introduced
in the prior literature.

12.1 Introduction

In response to the present and future environment and energy challenges worldwide
the automotive industry has been focusing on improving vehicle fuel efficiency.
Although there is no “silver-bullet” technology to replace the existing ones, at least
in the near future, one possible answer to the challenges posed by the automotive and
transportation sectors is found in electrification of both the mobility and transport
systems. New concepts and new technologies are being developed to realize efficient
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hybrid and electric vehicles suited for both individual and public mobility and for
goods distribution in urban areas [7]. This chapter deals with the energy management
in HEVs.

12.2 Optimization Problems in HEVs

From a design prospective, a hybrid powertrain is much more complicated than a
conventional powertrain as selection hybrid architecture (e.g., series, paralllel, power-
split [18]) and component sizing, is not always an easy task because of many design
options and the rapidly developing technologies in the automotive industries. Design
optimization tools, such as neural networks, genetic algorithms and particle swarm
optimization, have been successfully used for powertrain optimization design to
maximize fuel economy and minimize emission, weight and cost while guaranteeing
vehicle performance (see, for instance, [17], and references therein).

Given a predefined optimized powertrain, a second problem in a HEV is the power
split on-board of the vehicle. This is generally referred to as energy management
problem or supervisory vehicle control.

Realistic figures of achievable improvement in fuel economy in HEVs range from
10 % for mild hybrids to more 30 % for full hybridized vehicles [10]. This potential
can be realized only with a sophisticated control system that optimizes energy flow
within the vehicle. The adoption of systematic model-optimization methods using
meaningful objective functions has been the pathway to go in order to achieve near-
optimal results in designing the vehicle energy management system. In this chapter
we focus on model-based energy management strategy design techniques. The chap-
ter is organized as follows. In Sect. 12.3 we present a heavy-duty pre-transmission
hybrid truck model, which is used as a case study. Section 12.4 presents the standard
optimal energy management problem formulation. In Sect.12.5, we review results
from the literature to solve the optimal control problem. In the same section, we
present the basics of Pontryagin’s Minimum Principle (PMP), Equivalent Consump-
tion Minimization Strategy (ECMS) and Adaptive-PMP (A-PMP). Issues related to
the real-time implementation of A-PMP are analyzed that motivate the design of a
new energy management control framework presented in Sect. 12.6. Section 12.7
reports on some mathematical background used later in Sect. 12.8 where an ana-
lytical control law, referred to as nonlinear optimal control strategy (NL-OCS), is
presented. Section 12.9 presents a comparison in simulation of the NL-OCS against
PMP and A-PMP and the effectiveness of the new control design is shown both from
a calibration and implementation standpoint.
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Fig. 12.1 Power flow diagram of pre-transmission parallel HEV

12.3 Case Study: Pre-transmission Parallel Hybrid

A heavy-duty pre-transmission parallel HEV is used as a case study along the chapter.
The vehicle architecture and the power flow among the different components (the
arrowheads denote the positive power sign convention) are illustrated in Fig. 12.1.
The main specifications of the powertrain components are reported in Table 12.1.
With the clutch closed, the parallel mode of operation uses both the devices, engine
(ice) and motor (mot), to propel the vehicle and their speed is directly determined
by the vehicle velocity. The additional degree of freedom available in this mode is
used to optimize the vehicle energy usage. The torque/power balance equations are:

⎧
⎨

⎩

Tmot (t) + Tice(t) = Tgb(t) + Taccmech(t),
Pbatt (t) = Pmot,e(t) + Paccelec(t),
ωmot (t) = ωice(t) = ωgb(t).

(12.1)

where Tgb, ωgb are the instantaneous gearbox torque and speed; Tmot , ωmot are the
instantaneous electric motor torque and speed; Paccelec is the instantaneous electrical
accessory power and Pmot,e is the instantaneous electrical power at input/output
terminals of the electric motor. The battery power (Pbatt ) can be represented as a
function of engine power (Pice) and the requested power (Preq ) as:

{
Pbatt (t) = − 1

ηmot
Pice(t) + 1

ηmot
Preq(t),

Preq(t) = Pgb(t) + 1
ηmot

Paccelec(t) + Paccmech(t).
(12.2)

The vehicle model has been implemented in PSAT (Powertrain Simulation Analysis
Toolkit) environment [1].

An analytical model of the engine fuel consumption, based on Willans line ap-
proximation is used [10], which expresses the engine chemical power (Pchem) as an
affine function of the engine power (Pice) and speed (ωice):

Pchem(t) = e0(ωice(t)) + e1(ωice(t)) · Pice(t) (12.3)
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Table 12.1 Vehicle
characteristics

Component Size

Vehicle mass 19,878 kg
Engine capacity 6.7 L Diesel
Engine power 194 kW
Motor power 200 kW
Battery energy capacity 7.5 kWh (27 MJ)
Electrical accessory 7 kW
Mechanical accessory 4 kW

where Pchem = ṁ f · QL H V [QL H V is the lower heating calorific value of diesel
in (kJ/kg)] is the chemical power input to the engine and Pice = Ticeωice is the
engine power output. The coefficient e0(ωice) represents the engine friction losses
and e1(ωice) the conversion efficiency of the machine. A good approximation of the
friction losses and conversion efficiency coefficients is given by expressing e0 and
e1 as a quadratic fitting with respect to engine speed [25], as:

{
e0(ωice(t)) = e00 + e01 · ωice(t) + e02 · ω2

ice(t)
e1(ωice(t)) = e10 + e11 · ωice(t) + e12 · ω2

ice(t)
(12.4)

where ei j > 0, i, j = 0, 1, 2 are the constant Willans line coefficients. Hence, the
fuel consumption rate can be written as:

ṁ f (t) = 1

QL H V
[e0(ωice(t)) + e1(ωice(t)) · Pice(t)] (12.5)

or:
ṁ f (t) = p0(ωice(t)) + p1(ωice(t))Pice(t) (12.6)

with p0(ωice(t)) = e0(ωice(t))

QL H V
, and p1(ωice(t)) = e1(ωice(t))

QL H V
.

Note: The Willans line fuel consumption rate model, together with a suitable de-
scription of the battery model, is used to reformulate the energy management control
problem as an infinite-time horizon optimal problem including stability in Sect. 12.8.

12.4 Problem Formulation

One important characteristic of the energy management problem is that the control
objectives are mostly integral in nature (for instance, fuel consumption, emissions
per mile of travel, battery life or a combination of the above, [9, 12, 16, 30]), while
the control actions are local in time. In addition to that, the control objectives are
subject to constraints which are both integral or global, such as maintaining battery
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SOC within a prescribed range, and local constraints, such as physical limitation of
the actuators. The very nature of this problem has made the task of finding a near-
optimal implementable solution a challenging goal motivating a wealth of research
over the past decade [23].

12.4.1 Optimal Energy Management Problem in HEVs

In this chapter, we consider the problem of minimizing the total mass of fuel, m f (g),
during a driving mission. This is equivalent to minimizing the following cost JT :

JT =
T∫

0

ṁ f (u(t))dt (12.7)

where ṁ f (g/s) is the instantaneous fuel consumption rate, u(t) is the control action,
and T is the optimization horizon. The objective function (12.7) is minimized under
a set of both local and global constraints, as outlined in the following.
System Dynamics. The system dynamics is given in terms of SOC variation with
respect to time according to:

˙SOC(t) = −α
I (t)

Qnom
(12.8)

where α represents the Coulombic efficiency [10]; I (t) (A) is the current flowing
in (positive) and out (negative) of the battery and Qnom (Ah) is the nominal battery
charge capacity. The battery is modeled through the zero-th order equivalent circuit
model [28], whose parameters are: the equivalent resistance, Req and the open circuit
voltage, Voc. For the application at hand, i.e., charge sustaining HEVs, the battery is
used over a range of SOC (typically between 0.5 and 0.8 SOC), where the parameters
are not dependent on SOC [28]. Following the discussion in [28] we can express the
current I (t) as a function of Pbatt (t) and write the system dynamics as:

˙SOC(t) = −α
Voc −

√

(Voc)2 − 4Req Pbatt (t)

2Req Qnom
. (12.9)

Global Constraints. In a charge sustaining HEV, the net energy from the battery
should be zero over a given driving mission, meaning that the SOC at the end of
the driving cycle, SOC(T ), should be the same as the SOC at the beginning of the
driving cycle, SOC(0), and equal to a reference SOC value, i.e., SOCref :

SOC(T ) = SOC(0) = SOCref . (12.10)
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SOC(t)

SOCmax

SOCmin

SOCref

SOC (0) =SOC (T ) =SOCref

Fig. 12.2 Typical optimal SOC behaviour obtained solving Problem 12.1

Condition (12.10) is justified mainly as a way to compare the results of different
solutions by guaranteeing that they start and reach the same level of battery energy.
In real vehicles, it is sufficient to keep the SOC between two boundary values.
Local Constraints. Local constraints are imposed on the state and control variables.
These constraints mostly concern physical operation limits, such as the maximum en-
gine torque and speed, the motor power, or the battery SOC . For the pre-transmission
parallel HEV powertrain local constraints are expressed as:

Pbatt,min ≤ Pbatt (t) ≤ Pbatt,max ,

SOCmin ≤ SOC(t) ≤ SOCmax ,

Tx,min ≤ Tx (t) ≤ Tx,max ,

ωx,min ≤ ωx (t) ≤ ωx,max , x = ice, mot. (12.11)

Tmot,min ≤ Tmot (t) ≤ Tmot,max

where the last two inequalities in (12.11) represent limitations on the instantaneous
engine and motor torque and speed, respectively; (·)min, (·)max are the minimum
and maximum value of power/SOC /torque/speed at each instant. Moreover, at each
instant the supevisory controller ensures that the total power request at the wheels is
satisfied.

Problem 12.1 The energy management problem in a charge sustaining HEV con-
sists in finding the optimal control sequence u∗ that minimizes the cost function (12.7)
while meeting the dynamic state constraint (12.9), the global state constraint (12.10)
and local state and control constraints (12.11).

Problem 12.1 by its very nature is a finite-time horizon (the cost function (12.7)
is being minimized over a finite time horizon [0, T ]), constrained (constraints on
the state and control are being enforced at each instant of time), nonlinear [the
system dynamics (12.9) are nonlinear], nonquadratic (the cost function is the fuel
consumption map of the engine), optimal control problem. We refer to Problem 12.1
as the standard HEV energy management problem. A typical SOC behavior resulting
from solving Problem 12.1 is shown in Fig. 12.2.
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12.5 Finite-Time Horizon Energy Management Strategies

Several approaches have been proposed over the years to solve Problem 12.1. Those
can be grouped into [24]:

• non-causal or non-realizable strategies. They require a priori knowledge of the
driving cycle and are not applicable in real conditions [e.g., Dynamic Programming
(DP), PMP];

• causal or realizable strategies. They do not require a priori knowledge of the driving
cycle and are developed with the primary objective of realizability and do not
guarantee optimality [e.g., Adaptive-PMP, Stochastic DP, rule-based, equivalent
consumption minimization strategy (ECMS)].

Although, the primary objective is to design and implement causal strategies
that can be eventually tested on real vehicles, the importance of finding non-causal
optimal solutions resides in that: (1) they provide a benchmark solution (global
optimum) any causal strategy can be compared against, and (2) properly modified
they can be used to develop on-line strategies [27, 28]. In [16], for the first time,
and in [4, 5] later, results from DP were analyzed with the aim of gaining insights to
generate reproducible rules to design a rule-based strategy capable to mimic the DP
behaviour. Although rule-based energy management strategies are relatively easy to
develop and implement in a real vehicle, a significant amount of calibration effort is
required to guarantee performances within a satisfactory range for any driving cycle.
Moreover, rules are not necessarily scalable to different powertrain architectures and
different component sizes. In addition to the DP [6, 31, 32], that finds the global
solution recursively going backwards in time using Bellman’s principle of optimality
[3], local optimization methods have also been extensively used to find the global
optimum. These methods can be used to find the optimum, by performing an offline
optimization when the drive cycle is known, and they are also employed to design
adaptive optimal strategies to achieve near optimal performances when the driving
cycle is unknown. Much of the literature on local optimization methods pertain to
PMP and/or ECMS [8, 27, 29].

The PMP [22] formulates and minimizes the Hamiltonian function (a function of
the instantaneous cost and the state constraint) at each instant to obtain the optimal
solution. PMP conditions, which in principles, are only necessary conditions of
optimality in the case of Problem 12.1 become also sufficient.1 This makes PMP a
design tool to find the global optimal solution. Given Problem 12.1, PMP states that
the optimal control solution u∗(t) must satisfy the following conditions:

• u∗(t) minimizes at each instant of time the Hamiltonian associated to the system:

H(u(t), SOC(t), λ(t)) = λ(t) · ˙SOC(t) + ṁ f (u(t))) (12.12)

i.e.:

1 Results from [13] and [14] prove the uniqueness of the solution of the optimal control problem
under the satisfied assumption of constant battery efficiency over the SOC range of operation.
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Fig. 12.3 Open-loop PMP-based energy management control scheme

u∗(t) = min
u∈U

H(u(t), SOC(t), λ(t)) (12.13)

U is the set of admissible solutions;
• the optimization variable λ(t), also known as adjoint state or co-state must satisfy

the dynamic equation along the optimal solution:

λ̇(t) = − ∂ H

∂SOC

∣
∣
∣
∣
u∗,SOC∗

(12.14)

The optimal control sequence generated by (12.13) operates in open-loop as shown
in Fig. 12.3.

Hence, the optimal solution u∗ can only be obtained in simulation where the
power request is known a-priori. In particular, the optimality of PMP resides in the
perfect knowledge of the optimal co-state λ∗ whose value varies from cycle to cycle.
In [29] it is mathematically shown that the minimization of the Hamiltonian H is
equivalent to the minimization of an equivalent fuel consumption function, used in
the ECMS. ECMS, initially proposed by Paganelli et al. [21], is based on accounting
for the use of stored electrical energy, in units of chemical fuel use (g/s), such that
one can define an equivalent cost function taking into account the cost of electricity:

ṁ f,eq(t) = s(t)
Ebatt

Qlhv
· ˙SOC(t) + ṁ f (t) (12.15)

where Ebatt is the battery energy and s(t) is the equivalent factor that assigns a cost
to the use of electricity, and the equivalent cost function ṁ f,eq(t) is equivalent to
the Hamiltonian in PMP. If, on one hand, PMP/ECMS are practical tools to find the
optimal solution to Problem 12.1 using a forward looking simulator, they can also
been employed for real-time implementation.

In fact, the only control parameter in the PMP (or ECMS) is the co-state (or equiv-
alent factor), which is cycle-dependent. The key idea to use the PMP (or ECMS) as
a causal strategy resides in adapting the co-state as a function of driving conditions.
From the PMP solution one can observe that the variation of the co-state as driving
conditions change is correlated to the divergence of the actual SOC from its charge-
sustaining reference value [20]. This observation has led to the development of an
adaptation scheme based on feedback from SOC to be used in combination to the
minimization of H [20]. The role of adaptation is to update the value of the co-state
without using past driving information or prediction of future driving behavior, but
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Fig. 12.4 Hamiltonian function H (bottom) evaluated for different instances of a Manhattan driving
cycle (top) [19]

just using information of current SOC . For example, the adaptation can be per-
formed via PI-like controller [15], or via an autoregressive moving average (ARMA)
mechanism of the type [20]:

λ(k) = λ(k − 1) − λ(k − 2)

2
+ K · (SOCref − SOC(k)) (12.16)

which allows the adaptation to take place at regular intervals of duration Ts, (t =
kTs, k = 1, 2, . . .), rather than at each time instant as in the case of PI-like based
correction.

12.6 Motivation for Infinite-Time Horizon Optimization

The real-time controller based on A-PMP (12.16) requires the Hamiltonian function
to be minimized instantaneously. This operation, that needs to be executed on-board
at each tick of the clock, despite being computationally expensive, can lead in some
cases to unpredictable no-optimal results, due to the fact that the Hamiltonian is in
many instances of the driving cycle not a convex function of the control variable,
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as one can see from Fig. 12.4. Different control values could be in principle equally
suitable in the minimization process, leading to a not unique solution of the optimal
control problem, thus causing undesirable chattering in the control outputs [26].
These issues have suggested to move towards a new research direction to find optimal
solutions that would not have such a detrimental behaviour when used in a real-time
setting. Inspired by Bernstein and Haddad’s work [2, 11] on theoretical results on
optimal nonlinear regulation problem involving non quadratic cost functionals, a first
attempt to propose a new control framework for the energy management problem
was done in [25]. The authors cast the energy management problem into a nonlinear
optimal regulation problem where the battery SOC is optimally regulated to its
reference target in the case of zero disturbance (Preq = 0). Preliminary results
showed the feasibility of the closed-form control law in the simple case of vehicle
at standstill and series hybrid architecture. Reduction in computational complexity
and decreased sensitivity of the control parameter with respect to driving conditions
were also showed. Nonetheless, two issues were not properly addressed in [25]: the
stability definition and the extension of finite-time cost function into an infinite-
time functional (needed to formally use the results from [2, 11]). In [19], a rigorous
framework is developed where stability of the energy management state trajectory
is finally defined while guaranteeing optimality by means of an analytical, cycle-
independent control law. The novel framework is summarized in the next section and
new simulation results comparing the performances of the new analitycal supervisory
controller against PMP (used as a benchmark) and A-PMP (for on-line strategies
comparison) are presented in Sect. 12.9.

12.7 From Finite-Time to Infinite-Time Horizon Optimal
Control Problem

The energy management problem is reformulated as a nonlinear-nonquadratic
infinite-time optimization problem. The new control framework consists in re-
thinking the standard finite-time optimal control problem in HEV (Problem 12.1)
as an infinite time horizon problem. To ensure optimality of vehicle operation when
t > T , the [0, T ] optimization horizon is extended into the infinite horizon [0, ∞],
leading to a new cost function, J∞ [19]:

J∞ =
∞∫

0

ṁ f (u(t)) · g(t)dt (12.17)

by means of the scalar positive function, g(t):
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g(t) =
1 + α

(
t

T

)q

1 +
(

t

T

)q 0 < α < 1, q > 0 (12.18)

The role of the function g(t) is to penalize the action of the control u(t) for t > T
in order to approximate the finite-time cost JT defined in (12.7) to the infinite-time
functional (12.17). The system dynamics is reformulated in order to fit the problem
in the form used in [11] (as discussed in [19] ), where the nonlinear system is required
to be dissipative with respect to a supply rate function.

12.7.1 System Dynamics Reformulation

In the new control framework, a Lyapunov-based approach is used to obtain a state-
feedback control law to find the optimal torque/power split where the power requested
(Preq ) is regarded as a L2 disturbance. The battery state of energy (SO E), defined
as the amount of battery energy stored at the present time (E(t)) to the maximum
battery energy capacity (Emax ), is used as state variable in this discussion. SO E is
related to SOC by the following relationship [29]:

SO E(t) = SOC(t)
VL(t)

V max
oc

= E(t)

Emax
(12.19)

where VL is the battery terminal voltage and V max
oc the maximum open circuit voltage.

Hence, the SOE dynamics:

⎧
⎨

⎩

˙SO E = −ηbatt
Pbatt

Emax
Emax = Qmax · V max

oc

(12.20)

Defining k = ηbatt
Emax ηmot

, the battery SO E error ζ = SO Ere f − SO E is introduced,
whose dynamics is described as a function of the control input (Pice) and the distur-
bance (Preq ) by virtue of Eq. (12.2):

ζ̇ = −k Pice + k Preq (12.21)

Note that in parallel mode the power requested is the sum of accessory powers
(Paccelec + Paccmecc) and the gearbox power (Pgb). When the vehicle is not moving
(v = 0), instead, the power requested Preq only accounts for the accessory loads
power. Thus, the disturbance power Preq is:
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Preq =
{

Pgb + ηmot Paccelec + Paccmecc v > 0 ∀t ∈ [0, T ]
ηmot Paccelec + Paccmecc v = 0 ∀t ∈ [T, ∞] (12.22)

Consider an open set Z ⊂ R such that ζ ∈ Z , a set U ⊂ R such that Pice ∈ U ,
and a set W ⊂ R such that Preq ∈ W and Preq in L2. The compact sets for the
control, state and disturbance are:

⎧
⎨

⎩

Z = [
SO Ere f − SO Emax , SO Ere f − SO Emin

]

U = [
0, Pmax

ice

]

W = {Preq : Preq ∈ L2}
(12.23)

Consider the following control system:

{
ζ̇ = −k Pice + k Preq , ζ(0) = ζ0
z = ζ

(12.24)

where ζ = 0 is an equilibrium point of the autonomous system and z is the per-
formance output variable. Also consider the following functional cost [in virtue of
(12.6)]:

J∞ =
∞∫

0

ṁ f (Pice(t))dt =
∞∫

0

p0(ωice) + p1(ωice) · Pice(t)

QL H V
dt (12.25)

Problem 12.2 The infinite-time optimal energy management problem consists
in minimizing the cost function (12.25) under system dynamics (12.24), with state
and control variables lying in the compact sets Z and U , and Preq ∈ W .

Definition 12.1 Consider Problem 12.2 with Preq ≡ 0 and let φ(ζ(t)) be its opti-
mal solution. Then the origin ζ(t) = 0 of the closed-loop system under φ(ζ(t)) is
asymptotically stable if ζ(t) → 0 for t → ∞.

A typical SOC behavior obtained as a solution of Problem 12.2, is shown in Fig. 12.5.
It can be noticed that the global constraint used in Problem 12.1 requiring SOC(T )

to be equal to the reference value SOCref is not met in this case as the convergence
of SOC to SOCref is guaranteed only as t → ∞.

12.8 Infinite-Time Nonlinear Optimal Control Strategy
(NL-OCS)

With respect to the system (12.24) and the infinite cost function (12.25) [11] defines
the Hamiltonian function H as following:
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Fig. 12.5 Typical SOC profile as a solution of a infinite-time optimization problem including
stability

H(ζ, Pice, λ) = ṁ f (Pice) + 	(ζ, Pice) + λ · (k Pice) (12.26)

where 	(ζ, Pice) is a positive scalar function (to be selected), and λ is the co-state
variable. In order to have the Hamiltonian function zero at the minimum value, as
requested in [11], a shifting of the H is operated as follows:

H̄(ζ, Pice, λ) = H(ζ, Pice, λ) − p0(ωice) (12.27)

Theorem 12.1 Consider the system (12.24) with functional cost (12.25). Then, the
feedback control law P∗

ice(ζ ) defined as:

P∗
ice = φ(ζ ) =

{
2k2(μ4ζ 3)2

(kμ4ζ 3−p1(ωice) g(t))γ 2 ζ > ζ̄ ∨ ζ ≤ 0

ζ 2 0 < ζ ≤ ζ̄
(12.28)

with ζ̄ =
(

p1(ωice)

kμ4

) 1
3

, is such that:

1. the solution ζ(t) = 0, t ≥ 0 of the closed-loop system is locally asymptotically
stable in accordance to Definition 12.1.

2. the adjoint performance functional J (ζ, Pice(ζ ))

J (ζ, Pice) =
∞∫

0

[
ṁ f (Pice) + 	(ζ, Pice)

]
dt (12.29)

is minimized.

Proof Consider the candidate Lyapunov function

V (ζ ) = 1

4
μ4ζ 4, μ > 0 ∈ R (12.30)
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then we can define the storage function 	(ζ, Pice) and the supply rate function
r(ζ, Preq), associated to the system (12.24) and the Lyapunov function (12.30), as:

⎧
⎪⎪⎨

⎪⎪⎩

	(ζ, Pice) = 1

γ 2

(
∂V

∂ζ

)2

k2 · (
1 + log(P2

ice)
)

r(ζ, Preq) = γ 2 P2
req − ζ 2

(12.31)

The proof of Theorem 12.1, following the same reasoning provided in [11], is based
on a series of sufficient conditions that ensure optimality and stability that are shown
to hold true when the optimal feedback control φ(ζ ) = P∗

ice(ζ ) is used.

1. The Lyapunov function V (ζ ) assumes its minimum value of 0 at the origin.

V (0) = 0 (12.32)

2. V (ζ ) is a positive definite function because it is a quadratic scalar function with
the minimum at the origin.

3. The optimal feedback control law is zero at the origin, i.e., from (12.28):

P∗
ice(0) = 0 (12.33)

4. The optimal control law (12.28) makes the origin ζ(t) = 0 asymptotically stable
when Preq = 0, equivalently:

∂V

∂ζ
· k P∗

ice(ζ ) < 0, ζ �= 0 (12.34)

In order to show (12.34), without loss of generality we consider Pbatt as new
control variable with Preq = 0. Thus:

P∗
batt =

{
− 2k2(μ4ζ 3)2

(kμ4ζ 3−n1(ωmot ) g(t))γ 2 ζ > ζ̄ ∗ ∨ ζ ≤ 0

−ζ 2 0 < ζ ≤ ζ̄ ∗ (12.35)

where ζ̄ ∗ =
(

−n1(ωmot )

kμ4

) 1
3

, and this makes (12.34) become:

μ4 · ζ 3 · k · k P∗
batt (ζ ) < 0, ζ �= 0 (12.36)

In the domain 0 < ζ ≤ ζ̄ ∗, it is immediate to see that

− μ4 ζ 3 k ζ 2 < 0 (12.37)
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(t)(t) = 0
NL-OCS law 

(Eq. 1.28) 

P*
ice( )

Preq (t)

= f (P*

ice,Preq )

Fig. 12.6 Closed-loop energy management control scheme based on the analytical NL-OCL solu-
tion

In the domain ζ > ζ̄ ∗ ∨ ζ ≤ 0 denominator of (12.36) is positive when ζ is
positive and negative otherwise, thus leading to:

{−μ4ζ 3k · 2k2(μ4ζ 3)2 < 0 ζ > ζ̄ ∗
μ4ζ 3k · 2k2(μ4ζ 3)2 < 0 ζ ≤ 0

(12.38)

5. The Hamiltonian function (12.27) takes on the minimum value when the optimal
control law (12.28) is applied. The shifted hamiltonian H̄ ,

H̄

(
ζ, P∗

ice,
∂V

∂ζ

)
= ṁ f + 	(ζ, P∗

ice) + ∂V

∂ζ
k P∗

ice(ζ ) (12.39)

becomes

H̄ = p1 Pice + 1

γ 2k2
(
μ4ζ 3

)2 (
1 + log(P2

ice)
)2 + μ4ζ 3k Pice (12.40)

for the system (12.24) and cost function (12.25). It can be easily shown that the
closed-loop controller (12.28) is a minimum of the H̄ (the stationary first order
conditions and the second order convexity conditions are verified).

6. The passivity condition with respect to the disturbance input Preq requires that
the following inequality is satisfied:

(
∂V

∂ζ

)
· k · Preq ≤ r(ζ, Preq) + ṁ f + 	(ζ, P∗

ice) (12.41)

A second order algebraic inequality in Preq is obtained which is verified when
γ ≤ γ̄ = 2.369. Q.D.E.

In virtue of Theorem 12.1, the origin ζ = 0 of the closed-loop system is opti-
mally locally asymptotically stable when Preq = 0. Moreover, P∗

ice is optimal with
respect to the adjoint functional J (ζ, Pice(·)), which is an upper bound for J∞.
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μ

μ
μ
μ
μ
μ

Fig. 12.7 SOC trajectories from: (1) NL-OCS as μ varies (left) and (2) PMP as λ varies (right)
for the Manhattan driving cycle

The optimal control law obtained from Theorem 12.1 is referred to as Nonlinear
Optimal Control Strategy (NL-OCS) and it is implemented according to the closed-
loop system scheme shown in Fig. 12.6. To the best knowledge of the author of this
article, this is the first time that an analytical supervisory controller is proposed to
solve the energy management problem in HEVs. In the optimal control law (12.28)
that operates from SOC feedback, the values of k, p1(ωice) are known from the
vehicle models, γ is a constant whose upper bound was obtained from the theorem’s
proof, and μ is the only calibration parameter that needs to be selected for on-board
implementation.

12.9 Strategies Comparison: Simulation Results

In this section, we first evaluate the novel closed-loop supervisory controller against
the benchmark solution from PMP and then we compare the NL-OCS against the real-
time implementable A-PMP to show the effectiveness of the proposed control-law for
on-board implementation. Offline simulations are performed to test the sensitivity of
the new model-based strategy against the calibration parameter μ. Results are shown
on the left plot of Fig. 12.7 where different SOC profiles from NL-OCS are shown
for different value of μ. On the left plot of Fig. 12.8 the fuel consumption (FC) is
plotted together with �SOC = SOC(T )− SOC(0) (for different driving cycles) to
measure the ability of the control law to guarantee charge-sustainability. On the right
hand side of Fig. 12.7 and Fig. 12.8 we show: (1) the solution obtained from PMP for
different values of the co-state λ and, (2) the high sensitivity of charge-sustainability
to the co-state λ.

It is well known, in fact, that performance of PMP is highly dependent on the co-
state λ, both in terms of charge-sustainability and fuel consumption (see, for instance
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Fig. 12.8 NL-OCS: fuel consumption and �SOC = SOC(T ) − SOC(0) as a function of μ for
four different driving cycles (left). PMP: �SOC as a function of λ for Manhattan driving cycle
(right)

Fig. 12.9 SOC profiles from PMP, NL-OCS and A-PMP

[28]). The results of this analysis are used to calibrate the NL-OCS for on-board
implementation. A combined driving cycle obtained by concatenating a Manhattan,
West Virginia Urban (WVU) Interstate, Heavy-Duty UDDS, and Manhattan driving
cycles is used to validate and compare the NL-OCS against the PMP solution and
the real-time controller A-PMP. The three SOC profiles are shown in Fig. 12.9 and
a quantitative analysis in terms of fuel economy and engine efficiency of the three
control strategies is reported in Table 12.2. Not only does the analytical control law
guarantee optimality (with values within 1 % from the PMP benchmark solution) for a
wide range of values of the control parameter μ (see, Fig. 12.8), but also it guarantees
low sensitivity against driving characteristics, making the performance of the new
strategy driving cycle independent. In addition, the calibrated NL-OCS also shows
better performance in terms of fuel consumption than the real-time A-PMP. Above
all, the main advantage of having an analytical solution is in the fast execution of the
control action as opposed to the computational burden required by the instantaneous
minimization operation of A-PMP. In [19], it is reported that the NL-OCS solution
is up to 5 times faster than the A-PMP. The NL-OCS can be implemented in the
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Table 12.2 Fuel consumption and engine efficiency comparison between the PMP, A-PMP and
NL-OCS solutions

Controller FC m f (kg) Norm. fuel cons. % ICE eff.

PMP 13.11 100 0.319
A-PMP 13.36 (< 2 %) 98.13 0.309
NL-OCS 13.24 (< 1 %) 99.02 0.310
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Fig. 12.10 Engine power map: Pice = f (ωice, ζ )

form of a look-up table, by mapping the power issued by the control law (12.28) as
a function of ζ and the engine speed ωice, as shown in Fig. 12.10.

12.10 Conclusions

In this chapter, we have first presented the standard formulation of the energy man-
agement problem in HEVs and reviewed the PMP and A-PMP methods. As a real-
time implementable strategy, if on one hand the A-PMP is very promising as it
performs near to the global optimum, on the other hand, the high computational
burden due to the instantaneous minimization can make the use of this strategy pro-
hibitive for in vehicle operation. A new framework centered around the theory of
nonlinear, nonquadratic optimal control has been developed and presented in this
chapter. An analytical, cycle-independent, state-feedback supervisory controller has
been proposed that achieves optimality with respect to an infinite time horizon perfor-
mance functional while guaranteeing asymptotic stability. The proposed control law
was implemented in a pre-transmission parallel hybrid heavy-duty vehicle and the
performances of the closed-loop system were compared to the benchmark solution
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provided by the PMP and the real-time solution provided by A-PMP. The advantages
offered by the newly designed solutions are: (1) low calibration effort (only one pa-
rameter needs to be calibrated); (2) low sensitivity to the control parameter; (3) fast
execution for on-board applications; (4) close-to-the-optimum performance despite
the driving mission.
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