
Chapter 1
Trajectory Optimization: A Survey

Anil V. Rao

Abstract A survey of numerical methods for trajectory optimization. The goal of
this survey is to describe typical methods that have been developed over the years
for optimal trajectory generation. In addition, this survey describes modern software
tools that have been developed for solving trajectory optimization problems. Finally,
a discussion is given on how to choose a method.

1.1 Introduction

Trajectory optimization is a process where it is desired to determine the path and the
corresponding input (control) to a dynamical system that meet specified constraints
on the systemwhile optimizing a specified performance index. Typically, optimal tra-
jectory generation is performed off-line, that is, such problems are not solved in real
time nor in a closed-loop manner. Because of the complexity of most applications,
optimal trajectories are typically generated using numerical methods. Numerical for
trajectory optimization date back nearly five decades to the 1950s with the work
of Bellman [5–10]. Because complexity of modern applications has has increased
tremendously as compared to applications of the past, methods for trajectory opti-
mization continue to evolve and the discipline is becoming increasingly relevant in
a wide range of subject including virtually all branches of engineering, economics,
and medicine.

Numerical methods for trajectory optimization are divided into twomajor classes:
indirect methods and direct methods. In an indirect method, the first-order optimality
conditions from variational calculus are employed. The trajectory optimization prob-
lem is then converted into a multiple-point Hamiltonian boundary-value problem.
The HBVP is then solved numerically to determine candidate optimal trajectories

A. V. Rao (B)

University of Florida, Gainesville, FL, USA
e-mail: anilvrao@ufl.edu

H. Waschl et al. (eds.), Optimization and Optimal Control in Automotive Systems, 3
Lecture Notes in Control and Information Sciences 455,
DOI: 10.1007/978-3-319-05371-4_1, © Springer International Publishing Switzerland 2014

4 A. V. Rao

called extremals. Each extremal solution of the HBVP is then examined to see if it
is a local minimum, maximum, or a saddle point, and the extremal with the lowest
cost is chosen. In a direct method, the state and/or control of the original trajectory
optimization problem is approximated by parameterizing the state and/or the con-
trol and the trajectory optimization problem is transcribed to a finite-dimensional
nonlinear programming problem (NLP). The NLP is then solved using well known
optimization techniques.

It is seen that indirect methods and direct method emanate from two different
philosophies. On the one hand, the indirect approach solves the problem indirectly
(thus the name, indirect) by converting the trajectory optimization problem to a
boundary-value problem. As a result, in an indirect method the optimal solution is
found by solving a system of differential equations that satisfies endpoint and/or
interior point conditions. On the other hand, in a direct method the optimal solution
is found by transcribing an infinite-dimensional optimization problem to a finite-
dimensional optimization problem.

The two different philosophies of indirect and direct methods have led to a di-
chotomy in the trajectory optimization community. Researchers who focus on indi-
rect methods are interested largely in the numerical solution of differential equations,
while researchers who focus on direct methods are interested primarily in the numer-
ical solution of optimization problems. While at first glance these two approaches
may seem completely unrelated, they have a great deal in common. As will be de-
scribed in the survey, recent years researchers have delved quite deeply into the
connections between the indirect and direct forms. This research has uncovered that
the optimality conditions from many direct methods have a well-defined meaningful
relationship. Thus, these two classes of methods are merging as time goes by.

1.2 Trajectory Optimization Problem

A fairly general trajectory optimization problem is posed formally as follows. Typ-
ically, the problem is divided into P phases [15] and the phases are connected in
some meaningful way. A multiple-phase trajectory optimization problem is posed as
follows. Optimize the cost functional

J =
P∑

k=1

[
Φ(k)

[
y(k)(t0), t0, y(k)

(
t f

)
, t f ; s

]
+

∫ t (k)
f

t (k)
0

L
[
y(k) (t) , u(k) (t) , t; s(k)

]
dt

]

(1.1)
subject to the dynamic constraints

ẏ(k) (t) = f
(

y(k) (t) , u(k) (t) , t; s(k)
)

, (1.2)

the boundary conditions,

1 Trajectory Optimization: A Survey 5

Indirect Methods

Direct Methods

Systems of
Nonlinear Equations

Numerical Solution of
Differential Equations Nonlinear Optimization

Fig. 1.1 The three major components of trajectory optimization and the class of methods that uses
each component

φ
(k)
min ≤ φ(k)

(
y(k)(t (k)

0), t (k)
0 , y(k)(t (k)

f), s(k), t (k)
f

)
≤ φ(k)

max, (1.3)

the algebraic path constraints

c(k)
min ≤ c(k)

(
y(k) (t) , u(k) (t) , s(k), t

)
≤ c(k)

max (1.4)

and the linkage constraints (also known as phase continuity constraints)

L(s)
min ≤ L

(
y(ls)

(
t(ls)f

)
, u(ls)

(
t(ls)f

)
, s(ls), t(ls)f , y(rs)(t(rs)

f), u(rs)
(

t(rs)
f

)
, s(rs), t(rs)

f

)
≤ L(s)

max,

(1.5)

where s ∈ [1, . . . , S] and S is the number of pairs of phases that are being linked. In
Eq. (1.5) the parameter S is the number of pairs of phases to be linked, rs ∈ [1, . . . , S]
and ls ∈ [1, . . . , S] are the right phases and left phases, respectively, of the linkage
pairs, rs �= ls (implying that a phase cannot be linked to itself), and s ∈ [1, . . . , S].

1.3 Numerical Methods for Trajectory Optimization

At the heart of a well-founded method for solving trajectory optimization problems
are the following three fundamental components: (1) a method for solving differ-
ential equations and integrating functions; (2) a method for solving a system of
nonlinear algebraic equations; and (3) a method for solving a nonlinear optimization
problem. Methods for solving differential equations and integrating functions are
required for all numerical methods in trajectory optimization optimal control. In an
indirect method, the numerical solution of differential equations is combined with
the numerical solution of systems of nonlinear equations while in a direct method the
numerical solution of differential equations is combinedwith nonlinear optimization.
A schematic with the breakdown of the components used by each class of optimal
control methods is shown in Fig. 1.1.

6 A. V. Rao

1.4 Numerical Solution of Differential Equations

Consider the initial-value problem [30, 42, 92] (IVP)

ẏ = f(y(t), t), y(t0) = y0. (1.6)

Next, let [ti , ti+1] be a time interval over which the solution to Eq. (1.6) is desired.
Integrating Eq. (1.6), we can write

yi+1 = yi +
∫ ti+1

ti
ẋ(s)ds = yi +

∫ ti+1

ti
f(y(s), s)ds. (1.7)

The twomost common approaches for solving differential equations are time march-
ing and collocation. In a time-marching method, the solution of the differential
equation at each time step tk is obtained sequentially using current and/or previ-
ous information about the solution. In a multiple-step time marching method, the
solution at time tk+1 is obtained from a defined set of previous values tk− j , . . . , tk
where j is the number of steps. The simplest multiple-step method is a single-step
method (where j = 1). The most common single-step methods are Euler methods,
while most commonly used multiple-step methods are the Adams-Bashforth and
Adams-Moulton multiple-step methods [30]. Euler backward and Crank-Nicolson
are examples of implicit methods whereas Euler forward is an example of an explicit
method. When employing implicit method, the solution at tk+1 is obtained using
a predictor-corrector where the predictor is typically an explicit method (that is,
Euler-forward) while the corrector is the implicit formula. Implicit methods meth-
ods are more stable than explicit methods [42], but an implicit method requires more
computation at each step due to the need to implement a predictor-corrector.

Analternative to amultiple-step timemarchingmethod is amultiple-stagemethod.
In amultiple-stagemethod, the interval [ti , ti+1] into K subintervals [τ j , τ j+1]where

τ j = ti + hiα j , (j = 1, . . . , K), hi = ti+1 − ti , (1.8)

and 0 ≤ α j ≤ 1, (j = 1, . . . , K). Each value τ j is called a stage . The integral from
ti to ti+1 can be approximated via quadrature as

∫ ti+1

ti
f(y(s), s)ds ≈ hi

K∑

j=1

β j f(y j , τ j) (1.9)

where y j ≡ y(τ j). It is seen in Eq. (1.9) that the values of the state at each stage
are required in order to evaluate the quadrature approximation. These intermediate
values are obtained as

1 Trajectory Optimization: A Survey 7

y(τ j) − y(ti) =
∫ τ j

ti
f(y(s), s)ds ≈ hi

K∑

l=1

γ jl f(yl , τl) (1.10)

The combination of Eqs. (1.9) and (1.10) leads to the family of K−stage Runge-
Kutta methods [15, 24, 25, 30, 50, 51, 92]. A Runge-Kutta method is called explicit
if γ jl = 0 for all l ≥ j and is called implicit otherwise. In an explicit Runge-
Kutta method, the approximation at tk+1 is computed using information prior to tk+1
whereas in an implicit Runge-Kutta method y(tk+1) is required in order to determine
the solution at tk+1. In the latter case, the solution is updated using a predictor-
corrector approach.

1.4.1 Collocation

Another way to solve differential equations is as follows. Suppose over a subin-
terval [ti , ti+1] we choose to approximate the state using the following K th-degree
piecewise polynomial:

Y(t) ≈
K∑

k=0

ai (t − ti)
k, t ∈ [ti , ti+1]. (1.11)

Suppose further that the coefficients (a0, . . . , aK) of the piecewise polynomial
are chosen to match the value of the function at the beginning of the step, that is,

Y(ti) = yi . (1.12)

Finally, supposewe choose tomatch the derivative of the state at the points defined
in Eq. (1.8), that is,

ẏ(τ j) = f(y(τ j), τ j), (j = 1, . . . , K). (1.13)

Equation (1.13) is called a collocation condition because the approximation to
the derivative is set equal to the right-hand side of the differential equation evaluated
at each of the intermediate points (τ1, . . . , τK). Collocation methods fall into three
general categories [15]: Gauss methods, Radau methods, and Lobatto methods. In a
Gauss method, neither of the endpoints tk or tk+1 are collocation points. In a Radau
method, at most one of the endpoints tk or tk+1 is a collocation point. In a Lobatto
method, both of the endpoints tk and tk+1 are collocation points.

As it turns out, Euler and Runge-Kutta methods can be thought of equivalently
as either time-marching or collocation methods. When an Euler or a Runge-Kutta
method is employed in the form of collocation, the differential equation is said to
be solved simultaneously because all of the unknown parameters are determined at

8 A. V. Rao

the same time. Furthermore, collocation methods are said to simulate the dynamics
of the system implicitly because the values of the state at each collocation point
are obtained at the same time (as opposed to solving for the state sequentially as
in a time-marching method). In order to implement simultaneous simulation, the
discretized dynamics are written as defect constraints of the form

ζ j = ẏ(τ j) − f(y(τ j), τ j). (1.14)

As an example, the defect constraints for the Crank-Nicolson method are given as

ζ k = yk+1 − yk − hk

2
(fk + fk+1) . (1.15)

In collocation (that is, implicit simulation) it is desired to find a solution such
that all of the defect constraints are zero. Finally, one of the key differences between
collocation and time-marching is that in collocation it is not necessary to use a
predictor-corrector because the values of the state at each discretization point are
being solve for simultaneously.

1.4.2 Integration of Functions

Because the objective is to solve a trajectory optimization problem, it is necessary
to approximate the cost function of Eq. (1.1). Typically, the cost is approximated
using a quadrature that is consistent with the numerical method for solving the
differential equation (for example, if one is using an Euler-forward rule for solving
the differential equation, the cost would also be approximated using Euler-forward
integration). The requirement for consistency in the approximation of the differential
equations and the cost can be thought of in another manner. Consider a one-phase
trajectory optimization problem. The cost functional

J = Φ(y(t0), t0, y(t f), t f) +
∫ t f

t0
L [y(t), u(t), t; s]dt (1.16)

canbe converted to aMayer problembyadding a state yn+1 and adding the differential
equation

ẏn+1 = g[y(t), u(t), t; s] (1.17)

with the initial condition
yn+1(t0) = 0. (1.18)

The cost functional of Eq. (1.16) would be given as

J = Φ[y(t0), t0, y(t f), t f ; s] + yn+1(t f) (1.19)

1 Trajectory Optimization: A Survey 9

and the resulting augmented system of differential equations would then be written
as

ẏ(t) = f[y(t), u(t), t; s],
ẏn+1 = L [x(t), u(t), t; s]. (1.20)

Equation (1.20) could then be solved using anywell established numerical integration
method. Using this approach, is it seen that the method used to integrate Eq. (1.17)
must be the same method that is used to integrate

L [y(t), u(t), t; s].

1.5 Nonlinear Optimization

A key ingredient to solving trajectory optimization problems is the ability to solve
nonlinear optimization or nonlinear programming problems [4, 11, 21, 44] (NLPs).
An NLP takes the following general mathematical form. Determine the decision
vector z ∈ R

n that minimizes the cost function

f (z) (1.21)

subject to the algebraic constraints

g(z) = 0, (1.22)

h(z) ≤ 0, (1.23)

where g(z) ∈ R
m and h(z) ∈ R

p. The NLP may either be dense (that is, a large
percentage of the derivatives of the objective function and the constraint functions
with respect to the components of z are nonzero) or may be sparse (that is, a large
percentage of the derivatives of the objective function and the constraint functions
with respect to the components of z are zero). Dense NLPs typically are small (con-
sisting of at most a few hundred variables and constraints) while sparse NLPs are
often extremely large (ranging anywhere from thousands of variables and constraints
to millions of variables and constraints).

1.6 Methods for Solving Trajectory Optimization Problems

With the exception of simple problems, trajectory optimization problems must be
solved numerically. The need for solving optimal control problems numerically has
given rise to a wide range of numerical approaches. These numerical approaches are

10 A. V. Rao

divided into two broad categories: (1) indirect methods and (2) direct methods. The
major methods that fall into each of these two broad categories are described in the
next two sections.

1.6.1 Indirect Methods

In an indirect method, the calculus of variations [3, 20, 23, 40, 56, 62, 67, 68, 91,
94, 97] is used to determine the first-order optimality conditions of the trajectory
optimization problem given in Eqs. (1.1)–(1.5). Unlike ordinary calculus (where
the objective is to determine points that optimize a function), the calculus of varia-
tions is the subject of determining functions that optimize a function of a function
(also known as functional optimization). Applying the calculus of variations to the
functional optimization problem given in Eqs. (1.1)–(1.5) leads to the first-order
necessary conditions for an extremal trajectory. The first-order optimality condi-
tions for a single-phase continuous-time trajectory optimization problem with no
static parameters are given as

ẏ = H T
λ , λ̇ = −H T

y , (1.24)

u∗ = arg min
u∈U

H , (1.25)

φ(y(t0), t0, y(t f), t f) = 0, (1.26)

λ(t0) = −Φy(t0) + νTφy(t0), λ(t f) = Φy(t f) − νTφy(t f), (1.27)

H (t0) = Φt0 − νTφt0 , H (t f) = −Φt f + νTφt f , (1.28)

μ j (t) = 0, when C j (x, u, t) < 0, j = 1, . . . , c,

μ j (t) ≤ 0, when C j (x, u, t) = 0, j = 1, . . . , c, (1.29)

where H = L + λTf − μTC is the augmented Hamiltonian, U is the feasible
control set and ν ∈ R

q is the Lagrange multiplier associated with the boundary
condition φ. Finally, it is noted that the solution to the optimal control problem may
lie along a singular arc [23] where the control cannot be determined from the first-
order optimality conditions. If a singular arc is a possibility, additional conditions
must be derived to determine the control along the singular arc.

Because the dynamics of Eq. (1.24) arise from differentiation a Hamiltonian,
Eq. (1.24) is called a Hamiltonian system [3, 66, 67]. Furthermore, Eq. (1.25) is
known as Pontryagin’s Minimum Principle [75] (PMP) and is a classical result to
determine theoptimal control. Finally, the conditions on the initial and final costate

1 Trajectory Optimization: A Survey 11

given in Eq. (1.27) are called transversality conditions [3, 23, 40, 62, 66, 68, 91, 93,
94] while the conditions on the Lagrange multipliers of the path constraints given in
Eq. (1.29) are called complementary slackness conditions [4, 11, 21]. The Hamil-
tonian system, together with the boundary conditions, transversality conditions, and
complementary slackness conditions, is called a Hamiltonian boundary-value prob-
lem (HBVP) [2, 3, 66]. Any solution (y(t), u(t), λ(t), μ(t), ν) is called an extremal
solution and consists of the state, costate, and any Lagrange multipliers that satisfy
the boundary conditions and any interior-point constraints on the state and costate.
In an indirect method extremal trajectories (that is, solutions of the HBVP) are de-
termined numerically. Because an indirect method requires solving a multiple-point
boundary-value problem, the original trajectory optimization problem is turned into
the problem of solving a system of nonlinear equations of the form

f(z) = 0,

gmin ≤ g(z) ≤ gmax.
(1.30)

The three two most common indirect methods are the shooting method, the
multiple-shooting method, and collocation methods. Each of these approaches is
now described.

1.6.1.1 Indirect Shooting Method

Perhaps the most basic indirect method is the shooting method [65]. In a typical
shooting method, an initial guess is made of the unknown boundary conditions at
one end of the interval. Using this guess, together with the known initial conditions,
theHamiltonian systemEq. (1.24) is integrated to the other end (that is, either forward
from t0 to t f or backward from t f to t0). Upon reaching t f , the terminal conditions
obtained from the numerical integration are compared to the known terminal condi-
tions given in Eqs. (1.26) and (1.27). If the integrated terminal conditions differ from
the known terminal conditions by more than a specified tolerance ε, the unknown
initial conditions are adjusted and the process is repeated until the difference between
the integrated terminal conditions and the required terminal conditions is less than
some specified threshold.

1.6.1.2 Indirect Multiple-Shooting Method

While a simple shooting method is appealing due to its simplicity, it presents sig-
nificant numerical difficulties due to ill-conditioning of the Hamiltonian dynamics.
The reason for this ill-conditioning is that Hamiltonian systems have the property
that the divergence of the flow of trajectories must be zero, that is

12 A. V. Rao

n∑

i=1

[
∂

∂xi

(
∂H

∂λi

)
+ ∂

∂λi

(
−∂H

∂xi

)]
≡ 0. (1.31)

Equation (1.31) implies that, in a neighborhood of the optimal solution, there exist
an equal number of directions along which the solution will contract and expand and
this expansion and contraction takes place at the same rate (the simultaneous expand-
ing and contracting behavior is due to the fact that many Hamiltonian systems admit
an exponential dichotomy [2]). As a result, errors made in the unknown boundary
conditions will amplify as the dynamics are integrated in either direction of time.
The shooting method poses particularly poor characteristics when the trajectory op-
timization problem is hyper-sensitive [76, 78, 79, 81, 82] (that is, when time interval
of interest is long in comparison with the time-scales of the Hamiltonian system in
a neighborhood of the optimal solution).

In order to overcome the numerical difficulties of the simple shooting method, a
modified method, called the multiple-shooting method [92], has been developed. In a
multiple-shootingmethod, the time interval [t0, t f] is divided into M+1 subintervals.
The shooting method is then applied over each subinterval [ti , ti+1] with the initial
values of the state and adjoint of the interior intervals being the unknowns that need to
be determined. In order to enforce continuity, the following conditions are enforced
at the interface of each subinterval:

p(t−i) = p(t+i) ⇐⇒ p(t−i) − p(t+i) = 0, (1.32)

where p(t) is the combined state-costate vector, that is,

p(t) =
[

x(t)
λ(t)

]
.

The continuity conditions of Eq. (1.32) result in vector root-finding problemwhere
it is desired to drive the values of the difference between p(t−i) − p(t+i) to zero. It
is seen that the multiple-shooting method requires extra variables be introduced into
the problem (that is, the values of the state and adjoint at the interface points). Despite
the increased size of the problem due to these extra variables, the multiple-shooting
method is an improvement over the shooting method because the sensitivity to errors
in the unknown initial conditions is reduced by integrating over subintervals of the
original time domain t ∈ [t0, t f]. Nevertheless, even multiple-shooting can present
issues if a sufficiently good guess of the costate is not used [48].

1.6.1.3 Indirect Collocation Methods

In an indirect collocation method, the state and costate are parameterized using
piecewise polynomials as described in Sect. 1.4.1. The collocation procedure leads
to a root-finding problem where the vector of unknown coefficients z consists of the

1 Trajectory Optimization: A Survey 13

coefficients of the piecewise polynomial. This system of nonlinear equations is then
solved using a root-finding technique (for example, Newton’s method).

1.6.2 Direct Methods

Directmethods are fundamentally different from indirectmethods. In adirectmethod,
the state and/or control of the original optimal control problem are approximated in
some appropriate manner. In the case where only the control is approximated, the
method is called a control parameterization method [46]. When both the state and
control are approximated the method is called a state and control parameterization
method. In either a control parameterizationmethod or a state and control parameteri-
zationmethod, the optimal control problem is transcribed to a nonlinear optimization
problem or nonlinear programming problem [4, 11, 15, 21, 44] (NLP).

1.6.2.1 Direct Shooting Method

The most basic direct method for solving trajectory optimization problems is the
direct shooting method. The direct shooting method is a control parameterization
method where the control is parameterized using a specified functional form. For
example, the control could be parameterized as

u(t) ≈
m∑

i=1

aiψi (t), (1.33)

where ψi (t), (i = 1, . . . , m) are known functions and ai , (i = 1, . . . , m) are the
parameters to be determined from the optimization. The dynamics are then satisfied
by integrating the differential equations using a time-marching algorithm. Similarly,
the cost function of Eq. (1.1) is determined using a quadrature approximation that is
consistent with the numerical integrator used to solve the differential equations. The
NLP that arises from direct shooting then minimizes the cost subject to any path and
interior-point constraints.

1.6.2.2 Direct Multiple-Shooting Method

In amanner similar to that for indirect methods, in a direct multiple-shooting method,
the time interval [t0, t f] is divided into M+1 subintervals. The aforementioned direct
shooting method is then used over each subinterval [ti , ti+1] with the values of the
state at the beginning of each subinterval and the unknown coefficients in the control
parameterization being unknowns in the optimization. In order to enforce continuity,
the following conditions are enforced at the interface of each subinterval:

14 A. V. Rao

x(t−i) = x(t+i) ⇐⇒ x(t−i) − x(t+i) = 0. (1.34)

The continuity conditions of Eq. (1.34) result in vector root-finding problemwhere
it is desired to drive the values of the difference between x(t−i) − x(t+i) to zero. It is
seen that the direct multiple-shooting method increases the size of the optimization
problem because the values of the state at the beginning of each subinterval are pa-
rameters in the optimization. As with indirect multiple-shooting, the direct multiple-
shooting method is an improvement over the direct shooting method because the
sensitivity to errors in the unknown initial conditions is reduced by integrating over
subintervals of the original time domain t ∈ [t0, t f].

1.6.2.3 Direct Collocation Methods

Arguably the most powerful methods for solving general trajectory optimization
problems are direct collocation methods. A direct collocation method is a state and
control parameterization method where the state and control are approximated using
a specified functional form. The two most common forms of collocation are local
collocation and global collocation. A local collocation method follows a procedure
similar to that of Sect. 1.4.1 in that the time interval [t0, t f] is divided into S subin-
tervals [ts−1, ts], (s = 1, . . . , S) where tS = t f . In order to ensure continuity in the
state across subintervals, the following compatibility constraint is enforced at the
interface of each subinterval:

y(t−i) = y(t+i), (s = 2, . . . , S − 1). (1.35)

In the context of trajectory optimization, local collocation has been employed
using one of two categories of discretization: Runge-Kutta methods and orthogonal
collocation methods. Nearly all Runge-Kutta methods used are implicit [31–36, 49,
69, 88, 89] because the stability properties of implicit Runge-Kutta methods are
better than those of explicit methods. The seminal work on orthogonal collocation
methods in trajectory optimization is due to Reddien [84], where Legendre-Gauss
points were used together with cubic splines. Following on Reddien’s work, Cuthrell
and Biegler used LG points together with Lagrange polynomials [28, 29]. Interest-
ingly, Cuthrell [29] showed mathematically that the indirect transcription using LG
points was equivalent to the KKT conditions obtained from the NLP of the direct
formulation. In the 1990s, orthogonal collocation methods were developed using
higher-order Gauss-Lobatto collocation methods [38, 39, 54, 55]. Finally, the con-
vergence rates of an orthogonal collocation method using Legendre-Gauss-Radau
(LGR) points was studied [64].

Generally, employing direct local collocation leads to a large sparse NLP, where
the NLP contains potentially thousands to hundreds of thousands of variables and
constraints. Moreover, such large NLPs arise from trajectory optimization problems
that consist of hundreds of of states and controls. Because theNLP is sparse, however,
many of the derivatives of the constraint Jacobian are zero. This feature of local direct

1 Trajectory Optimization: A Survey 15

collocationmakes it possible to solve such problem efficiently using appropriateNLP
solvers such as SNOPT [43, 45], SPRNLP [17], and KNITRO [26].

1.7 Software for Solving Trajectory Optimization Problems

Awide variety of software tools have been developed for solving trajectory optimiza-
tion problems. Most of these software programs use direct methods. One well known
software program employing indirect methods is BNDSCO [71] which employs a
multiple-shootingmethod. Perhaps the oldest software tool that employs directmeth-
ods is the Program to Simulate and Optimize Trajectories [22] (POST). POST was
originally developed to solve problems in launch vehicle trajectory optimization and
it still in use today for such applications.

The late 1980s saw a transformation in the available tools for solving trajectory
optimization problems. This transformation was coincident with the observation
of the power of direct collocation methods. The first well-known direct colloca-
tion software was Optimal Trajectories by Implicit Simulation [95] (OTIS). OTIS is
a FORTRAN software that has general-purpose capabilities for problems in aero-
nautics and astronautics. OTIS has been used widely in the aerospace and defense
industries and its theoretical foundations are found in Ref. [52]. Following shortly
after the development of OTIS is the program Sparse Optimal Control Software [18]
(SOCS). SOCS is a highly powerful FORTRAN software that is capable of solving
many highly challenging trajectory optimization problems (see Ref. [15] for highly
complex optimal control problems solved with SOCS). Some of the applications
solved using SOCS are found in Refs. [12–14, 16, 77]. Finally, three other direct col-
location FORTRAN programs are MISER [47], Direct Collocation [96] (DIRCOL),
Graphical Environment for Simulation and Optimization [1] (GESOP), and Nonlin-
ear Trajectory Generation [70] (NTG). Like OTIS and SOCS, DIRCOL and GESOP
use local direct collocation techniques while NTG is designed for rapid trajectory
generation of differentially flat systems.

In recent years, interest in the particular application of optimal control to space
flight has led to the development of several useful programs. One such program
is Mission Design and Analysis Software [87] (MIDAS) which is designed to solve
complex ballistic heliocentric transfer trajectories for interplanetary space flight mis-
sions. Another tool that has been recently developed is the NASA Generalized Mis-
sion Analysis Tool [61] (GMAT). Another tool that has been widely used in the last
several years is COPERNICUS [72, 73]. Both GMAT and COPERNICUS are de-
signed to solve trajectory optimization problems where the maneuvers can be treated
as either impulsive or finite-thrust burns.

While earlier software programs used compiled languages such as FORTRAN, in
recent years, MATLAB® has become increasingly popular for solving optimization
problems. The increased appeal for MATLAB emanates from the fact that MATLAB
is an extremely easy environment in which to program along with the fact that many
of today’s most powerful NLP solvers are now available for use in MATLAB® (for

16 A. V. Rao

example, standalone MATLAB mex versions are now available for the NLP solvers
SNOPT [43, 45] andKNITRO [26]). In addition, the TOMLAB [19, 37, 57–60] pack-
age has facilitated additional solvers for use in MATLAB. In addition, because of
major computational improvements, the computational efficiencybetweenMATLAB
and compiled languages is growing ever closer. Examples ofMATLAB-based trajec-
tory optimization software programs include RIOTS_95 [90], DIDO [85], DIRECT
[98], PROPT [86], OPTCONTROLCENTRE [63], GPOPS [80], and GPOPS-II [74].

It is important to note that all of the trajectory optimization software programs
described above incorporate gradient methods for solving the NLP. In a less formal
manner, heuristic methods have also been used to solve trajectory optimization prob-
lems. For example, interplanetary trajectory optimization problems using a genetic
algorithm have been considered in Refs. [41, 53] while low-thrust orbit transfers
using a genetic algorithm have been studied in Refs. [27] and [83]. In addition, a
calculus of variations technique has been used together with a genetic algorithm to
optimize low-thrust Mars-to-Earth trajectories for the Mars Sample Return Mission
[99]. Thus, while gradient methods are somewhat the de facto standard for trajectory
optimization, the aforementioned research demonstrates that genetic algorithmsmay
be well-suited for some applications.

1.8 Choosing a Method

Choosing a method for solving a trajectory optimization problem is based largely
on the type of problem to be solved and the amount of time that can be invested
in coding. An indirect shooting method has the advantage that it is simple to un-
derstand and produces highly accurate solutions when it converges. Unfortunately,
indirect shooting is extremely sensitive to the unknown boundary conditions. In addi-
tion, indirect shooting requires the derivation of the first-order optimality conditions
of the trajectory optimization problem [see Eqs. (1.24)–(1.29]! While for simple
problems it may be possible to derive the first-order optimality conditions, deriv-
ing such conditions for complex optimal control problems is tedious, error-prone,
and sometimes impossible (for example, problem with table lookups). Furthermore,
the need to derive the optimality conditions makes implementing indirect shooting
difficult in a general-purpose software program. For example, if it was required to
derive first-order optimality conditions, a program such as POST would become
nearly impossible to use because every new problem would require the derivation
of these conditions! A multiple-shooting method overcomes some of the numerical
difficulties of standard shooting, but does not avoid the issue of having to derive the
optimality conditions.

The accuracy and robustness of a direct method is highly dependent upon the form
of direct method used. Direct shooting methods are very good for problems where
the control can be parameterized in a simple manner (for example, piecewise linear
functions of time) and the problem can be characterized accurately using a small
number optimization parameters. Software programs such as POST perform well

1 Trajectory Optimization: A Survey 17

on launch vehicle ascent trajectories because these problems can be approximated
accurately using simple control parameterizations. As the complexity of the problem
increases, it becomes more and more apparent that the workhorse for solving trajec-
tory optimization problems is the direct collocation method. The two main reasons
that direct collocation methods work so well is because highly complex problems
can be formulated and solved with today’s NLP solvers. The reason that the NLP
solvers can handle such complex problems is because they are designed to converge
with poor initial guesses (for example, straight line guesses in the state and control)
and are extremely computationally efficient because they exploit the sparsity of the
derivatives in the constraints and objective function.

In many cases, the solution of a trajectory optimization problem is a means to an
end, that is, the user does not want to know all of the details about a method, but
simplywants to use a software program to provide results so that a particular problem
of interest can be solved. If one does not wish to become an expert in the technologies
associated with trajectory optimization, it is advisable to obtain a canned software
package that allows a user to input the problem in an intuitive manner. Then the
software can simply be run on the problem of interest. It is always important to
understand, however, that canned software can have its issues when things go wrong
because the user may often not understand why.

1.9 Applications to Automotive Systems

The numericalmethods provided in this survey are designed to generate reference tra-
jectories and corresponding reference controls for systems that have well developed
deterministic models. In the context of automotive systems, the methods described in
this paper would be of relevance to optimal control in systems where performance is
important. For example, state-of-the-art direct collocation software such as GPOPS-
II or SOCS could be employed to generate highly accurate trajectories to determine
theminimum lap time required in a in high-speed race car problem (for example, For-
mula One racing). In addition, the indirect methods described in this paper could be
the starting point for developing near-optimal feedback controllers for use in engine
design or in autonomous ground vehicles. Thus, the numerical methods described
in this survey could be used to generate solutions to a wide variety of problems in
automotive systems, and the particular numerical method employed would depend
upon the intended use of the solution.

1.10 Conclusions

Asurvey of numericalmethods for solving trajectory optimization problems has been
given. The problem of solving optimal control problems has been decomposed into
the three key components of solving differential equations and integrating functions,

18 A. V. Rao

solving nonlinear optimization problems, and solving systems of nonlinear algebraic
equations. Using these components, the two classes of indirect and direct methods
for solving optimal control problems have been described. Subsequently, important
computational issues have been discussed and several different software tools for
solving optimal control problems have been described. Finally, a brief discussion
has been given on how to choose a method.

References

1. GESOP & ASTOS (2003) The new generation of optimization software. Institute of Flight
Mechanics and Control of Stuttgart University

2. Ascher UM,Mattheij RM, Russell RD (1996) Numerical solution of boundary-value problems
in ordinary differential equations. SIAM Press, Philadelphia

3. Athans MA, Falb PL (2006) Optimal control: an introduction to the theory and its applications.
Dover Publications, Mineola, New York

4. Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms,
3 edn. Wiley-Interscience, New Jersey

5. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton
6. Bellman R (1962) Dynamic programming treatment of the travelling salesman problem. J

Assoc Comput Mach 9(1):61–63
7. Bellman R (1966) Dynamic programming. Science 1, 153(3731):34–37
8. Bellman R, Dreyfus S (1959) Functional approximations and dynamic programming. Math

Tables Other Aids Comput 13(68):247–251
9. Bellman R, Kalaba R, Kotkin B (1963) Polynomial approximation—a new computational

technique in dynamic programming: allocation processes. Math Comput 17(82):155–161
10. Bellman RE, Dreyfus SE (1971) Applied dynamic programming. Princeton University Press,

Princeton
11. Bertsekas D (2004) Nonlinear programming. Athena Scientific Publishers, Belmont, Massa-

chusetts
12. Betts JT (1993) Using sparse nonlinear programming to compute low thrust orbit transfers. J

Astronaut Sci 41:349–371
13. Betts JT (1994) Optimal interplanetary orbit transfers by direct transcription. J Astronaut Sci

42:247–268
14. Betts JT (2000) Very low thrust trajectory optimization using a direct sqp method. J Comput

Appl Math 120:27–40
15. Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM

Press, Philadelphia
16. Betts JT (2007) Optimal lunar swingby trajectories. J Astronaut Sci 55:349–371
17. Betts JT, HuffmanWP (1994) A sparse nonlinear optimization algorithm. J Optim Theory Appl

82(3):519–541
18. Betts JT, Huffman WP (1997) Sparse optimal control software—socs. Technical report MEA-

LR-085, Boeing information and support services, Seattle, Washington, July 1997
19. Björkman M, Holmström K (1999) Global optimization with the direct user interface for

nonlinear programming. Adv Model Simul 2:17–37
20. Bliss GA (1946) Lectures on the calculus of variations. University of Chicago Press, Chicago,

IL
21. Boyd S,Vandenberghe L (2004)Convex optimization. CambridgeUniversity Press, Cambridge
22. Brauer GL, Cornick DE, Stevenson R (1977) Capabilities and applications of the program to

optimize and simulate trajectories. Technical report NASA-CR-2770, National Aeronautics
and Space Administration

1 Trajectory Optimization: A Survey 19

23. Bryson AE, Ho Y-C (1975) Applied optimal control. Hemisphere Publishing, New York
24. Butcher JC (1964) Implicit runge-kutta processes. Math Comput 18(85):50–64
25. Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, New York
26. ByrdRH,Nocedal J,WaltzRA (2006)Knitro: an integrated package for nonlinear optimization.

In: Large scale nonlinear optimization. Springer, Berlin, pp 35–59
27. Coverstone-Carroll VL, Hartmann JW, Mason WJ (2000) Optimal multi-objective low-thrust

spacecraft trajectories. Comput Methods Appl Mech Eng 186(2–4):387–402
28. Cuthrell JE, Biegler LT (1987) On the optimization of differential-algebraic processes. AIChe

J 33(8):1257–1270
29. Cuthrell JE, Biegler LT (1989) Simultaneous optimization and solution methods for batch

reactor control profiles. Comput Chem Eng 13(1/2):49–62
30. Dahlquist G, Björck A (2003) Numerical methods. Dover Publications, Mineola, New York
31. Dontchev AL, Hager WW (1998) Lipschitzian stability for state constrained nonlinear optimal

control. SIAM J Control Optim 36:696–718
32. Dontchev AL, Hager WW (1998) A new approach to lipschitz continuity in state constrained

optimal control. Syst Control Lett 35:137–143
33. Dontchev AL, HagerWW (2001) The euler approximation in state constrained optimal control.

Math Comput 70:173–203
34. Dontchev AL, Hager WW, Malanowski K (2000) Error bounds for the euler approximation

and control constrained optimal control problem. Numer Funct Anal Appl 21:653–682
35. Dontchev AL, Hager WW, Veliov VM (2000) Second-order runge-kutta approximations in

constrained optimal control. SIAM J Numer Anal 38:202–226
36. Dontchev AL, Hager WW, Veliov VM (2000) Uniform convergence and mesh independence

of newton’s method for discretized variational problems. SIAM J Control Optim 39:961–980
37. Dotzauer E, Holmström K (1999) The tomlab graphical user interface for nonlinear program-

ming. Adv Model Simul 2:9–16
38. Enright PJ (1991) Optimal finite—thrust spacecraft trajectories using direct transcription and

nonlinear programming. PhD thesis, Department of Aerospace Engineering, University of
Illinois at Urbana-Champaign

39. Enright PJ, Conway BA (1996) Discrete approximations to optimal trajectories using direct
transcription and nonlinear programming. J Guidance Control Dyn 19(4):994–1002, Jul–Aug
1996

40. Fleming WH, Rishel RW (1982) Deterministic and stochastic optimal control. Springer, Hei-
delberg

41. Gage PJ, Braun RD, Kroo IM (1995) Interplanetary trajectory optimization using a genetic
algorithm. J Astronaut Sci 43(1):59–75

42. Gear WC (1971) Numerical initial-value problems in ordinary differential equations. Prentice-
Hall, Englewood Cliffs, New Jersey

43. Gill PE, Murray W, Saunders MA (2002) Snopt: an sqp algorithm for large-scale constrained
optimization. SIAM Rev 47(1):99–131

44. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, London
45. Gill PE, MurrayW, Saunders MA (2006) User’s guide for SNOPT version 7: software for large

scale nonlinear programming, Feb 2006
46. Goh CJ, Teo KL (1988) Control parameterization: a unified approach to optimal control prob-

lems with general constraints. Automatica 24(1):3–18
47. Goh CJ, Teo KL (1988) Miser: a fortran program for solving optimal control problems. Adv

Eng Softw 10(2):90–99
48. Grimm W, Markl A (1997) Adjoint estimation from a multiple-shooting method. J Optim

Theory Appl 92(2):263–283
49. HagerWW(2000) Runge-kuttamethods in optimal control and the transformed adjoint system.

Numerische Mathematik 87:247–282
50. Hairer E, Norsett SP, Wanner G (1993) Solving ordinary differential equations I: nonstiff

problems. Springer, New York

20 A. V. Rao

51. Hairer E,WannerG (1996) Solving ordinary differential equations II: stiff differential-algebraic
problems. Springer, New York

52. Hargraves CR, Paris SW (1987) Direct trajectory optimization using nonlinear programming
techniques. J Guidance Control Dyn 10(4):338–342

53. Hartmann JW, Coverstone-Carroll VL (1998) Optimal interplanetary spacecraft trajectories
via a pareto genetic algorithm. J Astronaut Sci 46(3):267–282

54. Herman AL (1995) Improved collocation methods with application to direct trajectory opti-
mization. PhD thesis, Department of Aerospace Engineering, University of Illinois at Urbana-
Champaign

55. Herman AL, Conway BA (1996) Direct optimization using collocation based on high-order
gauss-lobatto quadrature rules. J Guidance Control Dyn 19(3):592–599

56. Hildebrand FB (1992) Methods of applied mathematics. Dover Publications, Mineola, New
York

57. Holmström K (1999) New optimization algorithms and software. Theor Stoch Process
1–2:55–63

58. Holmström K (1999) The tomlab optimization environment in matlab. Adv Model Simul
1:47–69

59. HolmströmK, BjörkmanM (1999) The tomlab nlplib toolbox for nonlinear programming. Adv
Model Simul 1:70–86

60. HolmströmK,BjörkmanM,DotzauerE (1999)The tomlab opera toolbox for linear and discrete
optimization. Adv Model Simul 2:1–8

61. Hughes S (2008) Gmat—generalized mission analysis tool. Technical report, NASA Goddard
Space Flight Center, http://sourceforge.net/projects/gmat

62. Hull DG (2003) Optimal control theory for applications. Springer, New York
63. Jockenhovel T (2002) Optcontrolcentre, software package for dynamic optimization. http://

OptControlCentre.com/
64. Kameswaran S, Biegler LT (2008) Convergence rates for direct transcription of optimal control

problems using collocation at radau points. Comput Optim Appl 41(1):81–126
65. Keller HB (1976) Numerical solution of two point boundary value problems. SIAM, Philadel-

phia
66. Kirk DE (2004) Optimal control theory: an introduction. Dover Publications, Mineola, New

York
67. Leitmann G (1981) The calculus of variations and optimal control. Springer, New York
68. Lewis FL, Syrmos VL (1995) Optimal control, 2nd edn. Wiley, New York
69. Logsdon JS, Biegler LT (1989) Accurate solution of differential-algebraic optimization prob-

lems. Ind Eng Chem Res 28:1628–1639
70. MilamMB (2003) Real-time optimal trajectory generation for constrained dynamical systems.

PhD thesis, California Institute of Technology, Pasadena, California, May 2003
71. Oberle HJ, GrimmW (1990) Bndsco: a program for the numerical solution of optimal control

problems. Technical report, Institute of Flight SystemsDynamics, GermanAerospaceResearch
Establishment DLR, IB 515–89/22, Oberpfaffenhofen, Germany

72. Ocampo C (2003) An architecture for a generalized spacecraft trajectory design and optimiza-
tion system. In: Proceedings of the international conference on libration point missions and
applications, Aug 2003

73. OcampoC (2004) Finite burnmaneuvermodeling for a generalized spacecraft trajectory design
and optimization system. Ann NY Acad Sci 1017:210–233

74. PattersonMA, RaoAV (2013) GPOPS-II, a matlab software for solvingmultiple-phase optimal
control problems hp—adaptive gaussian quadrature collocation methods and sparse nonlinear
programming. ACM Trans Math Softw(in Revision) Sep 2013

75. Pontryagin LS (1962) Mathematical theory of optimal processes. Wiley, New York
76. RaoAV (1996) Extension of the computational singular perturbationmethod to optimal control.

PhD thesis, Princeton University
77. Rao AV, Tang S, Hallman WP (2002) Numerical optimization study of multiple-pass aeroas-

sisted orbital transfer. Optim Control Appl Methods 23(4):215–238

http://sourceforge.net/projects/gmat
http://OptControlCentre.com/
http://OptControlCentre.com/

1 Trajectory Optimization: A Survey 21

78. Rao AV (2000) Application of a dichotomic basis method to performance optimization of
supersonic aircraft. J Guidance Control Dyn 23(3):570–573

79. Rao AV (2003) Riccati dichotomic basis method for solving hyper-sensitive optimal control
problems. J Guidance Control Dyn 26(1):185–189

80. Rao AV, Benson DA, Darby CL, Francolin C, Patterson MA, Sanders I, Huntington GT (2010)
Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control
problemsusing the gauss pseudospectralmethod.ACMTransMathSoftw37(2,Article 22):39p

81. Rao AV, Mease KD (1999) Dichotomic basis approach to solving hyper-sensitive optimal
control problems. Automatica 35(4):633–642

82. Rao AV, Mease KD (2000) Eigenvector approximate dichotomic basis method for solving
hyper-sensitive optimal control problems. Optim Control Appl Methods 21(1):1–19

83. Rauwolf GA, Coverstone-Carroll VL (1996) Near-optimal low-thrust orbit transfers generated
by a genetic algorithm. J Spacecraft Rockets 33(6):859–862

84. Reddien GW (1979) Collocation at gauss points as a discretization in optimal control. SIAM
J Control Optim 17(2):298–306

85. Ross IM, Fahroo F (2001) User’s manual for DIDO 2001 α: a MATLAB application for
solving optimal control problems. Technical Report AAS-01-03, Department of Aeronautics
and Astronautics, Naval Postgraduate School, Monterey, California

86. Rutquist P, EdvallM (2008) PROPT:MATLABoptimal control software. TomlabOptimization
Inc, Pullman, Washington

87. Sauer CG (1989)Midas—mission design and analysis software for the optimization of ballistic
interplanetary trajectories. J Astronaut Sci 37(3):251–259

88. Schwartz A (1996) Theory and implementation of numerical methods based on runge-kutta
integration for solving optimal control problems. PhD thesis, Department of Electrical Engi-
neering, University of California, Berkeley

89. Schwartz A, Polak E (1996) Consistent approximations for optimal control problems based on
runge-kutta integration. SIAM J Control Optim 34(4):1235–1269

90. Schwartz A, Polak E, Chen Y (1997) Recursive integration optimal trajectory solver (RI-
OTS_95)

91. Stengel RF (1994) Optimal control and estimation. Dover Publications, Mineola, New York
92. Stoer J, Bulirsch R (2002) Introduction to numerical analysis. Springer, Berlin
93. Vinh N-X (1981) Optimal trajectories in atmospheric flight. Elsevier Science, New York
94. Vintner R (2000) Optimal control (systems and control: foundations and applications).

Birkhäuser, Boston
95. Vlases WG, Paris SW, Lajoie RM, Martens MJ, Hargraves CR (1990) Optimal trajectories by

implicit simulation. Technical report WRDC-TR-90-3056, Boeing Aerospace and Electronics,
Wright-Patterson Air Force Base, Ohio

96. von Stryk O (1999) User’s guide for DIRCOL version 2.1: a direct collocation method for the
numerical solution of optimal control problems. Technische Universitat Darmstadt, Darmstadt,
Germany

97. Weinstock R (1974) Calculus of variations. Dover Publications, Mineola, New York
98. Williams P (2008) User’s guide for DIRECT 2.0. Royal Melbourne Institute of Technology,

Melbourne, Australia
99. Wuerl A, Crain T, Braden E (2003) Genetic algorithm and calculus of variations-based trajec-

tory optimization technique. J Spacecraft Rockets 40(6):882–888

	1 Trajectory Optimization: A Survey
	1.1 Introduction
	1.2 Trajectory Optimization Problem
	1.3 Numerical Methods for Trajectory Optimization
	1.4 Numerical Solution of Differential Equations
	1.4.1 Collocation
	1.4.2 Integration of Functions

	1.5 Nonlinear Optimization
	1.6 Methods for Solving Trajectory Optimization Problems
	1.6.1 Indirect Methods
	1.6.2 Direct Methods

	1.7 Software for Solving Trajectory Optimization Problems
	1.8 Choosing a Method
	1.9 Applications to Automotive Systems
	1.10 Conclusions
	References

