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Preface

The use of optimization techniques is becoming essential to address rapidly
increasing stringency of requirements for automotive systems. In particular, there
is a growing interest in systematic optimization approaches that can be exploited
for automotive vehicle development at various levels. Against this background, a
workshop organized by the Austrian Center of Competence in Mechatronics
(ACCM) was held at the Johannes Kepler University in Linz from July 15 to 16,
2013. This workshop aimed to bring together specialists in optimization theory and
methods on one hand and practitioners from inside the automotive community.
The purpose was to foster an exchange of information and an open discussion
between representatives of different areas and approaches about the problems,
methods, tools and about applications of optimization in general, and dynamic
optimization, in particular.

The contents of this book are peer reviewed versions of selected workshop
contributions and are structured into four parts, starting with a survey on opti-
mization fundamentals and tailored methods, then followed by three parts
addressing different types of automotive optimization problems, at vehicle-to-
vehicle and inter-vehicle applications level, at single vehicle powertrain optimi-
zation level and finally at purely engine-related level.

Neither the workshop nor this collection of contributions would have been
possible without the support of several people (in particular Daniela Hummer and
Sandra Pfistermüller). Thanks are due also to the reviewers of the single chapters
who have done an important and essential work.

v



Organization

Steering Organization

Austrian Center of Competence in Mechatronics, Linz, Austria

Hosting Organization

Johannes Kepler University Linz, Austria

Programme Committee

Luigi del Re Johannes Kepler University Linz, Austria
Ilya Kolmanovsky University of Michigan, USA
Maarten Steinbuch Eindhoven University of Technology, The Netherlands
Harald Waschl Johannes Kepler University Linz, Austria

Organizing Committee

Daniela Hummer Johannes Kepler University Linz, Austria
Harald Waschl Johannes Kepler University Linz, Austria

vii



Referees

I. Besselink S. Onori
P. Colaneri J. P. Pauwelussen
A. G. De Jager J. Ploeg
S. Di Cairano A. Y. Pogromski
M. C. F. Donckers A. Rao
L. Eriksson A. Saccon
L. F. P. Etman M. Sassano
D. Filev A. Schilling
D. J. Guerriero Tome Antunes A. Sciarretta
R. Gupta R. Shorten
I. Haskara T. Stanger
E. Hellström M. Steinbuch
H. Hjalmarsson G. Steinmaurer
T. Hofman S. Szwabowski
M. Huang M. Tanelli
M. Jankovic P. Tunestal
N. Killingsworth T. A. C. Van Keulen
M. Lazar Y. Wang
C. Manzie F. Willems
K. McDonough K. Zaseck

viii Organization



Contents

Part I Optimization Methods

1 Trajectory Optimization: A Survey . . . . . . . . . . . . . . . . . . . . . . . 3
Anil V. Rao
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Trajectory Optimization Problem . . . . . . . . . . . . . . . . . . . . . 4
1.3 Numerical Methods for Trajectory Optimization. . . . . . . . . . . 5
1.4 Numerical Solution of Differential Equations. . . . . . . . . . . . . 6

1.4.1 Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Integration of Functions . . . . . . . . . . . . . . . . . . . . . 8

1.5 Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Methods for Solving Trajectory Optimization Problems . . . . . 9

1.6.1 Indirect Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Software for Solving Trajectory Optimization Problems . . . . . 15
1.8 Choosing a Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Applications to Automotive Systems. . . . . . . . . . . . . . . . . . . 17
1.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Extremum Seeking Methods for Online
Automotive Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Chris Manzie, Will Moase, Rohan Shekhar, Alireza Mohammadi,
Dragan Nesic and Ying Tan
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Review of Extremum Seeking . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Black-Box Extremum Seeking . . . . . . . . . . . . . . . . . 27
2.2.2 Grey-Box Extremum Seeking. . . . . . . . . . . . . . . . . . 29
2.2.3 Sampled Data Approaches . . . . . . . . . . . . . . . . . . . . 30

2.3 Application to Automotive Engine Calibration . . . . . . . . . . . . 31
2.4 Incorporation of Constraints. . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Summary and Future Opportunities. . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix

http://dx.doi.org/10.1007/978-3-319-05371-4_1
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec9
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec9
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec13
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec13
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec17
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec17
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec18
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec18
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec19
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec19
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec20
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Sec20
http://dx.doi.org/10.1007/978-3-319-05371-4_1#Bib1
http://dx.doi.org/10.1007/978-3-319-05371-4_2
http://dx.doi.org/10.1007/978-3-319-05371-4_2
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_2#Bib1


3 Model Predictive Control of Autonomous Vehicles . . . . . . . . . . . 41
Mario Zanon, Janick V. Frasch, Milan Vukov,
Sebastian Sager and Moritz Diehl
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Control and Estimation Problems . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Nonlinear Model Predictive Control . . . . . . . . . . . . . 42
3.2.2 Moving Horizon Estimation . . . . . . . . . . . . . . . . . . . 43

3.3 Efficient Algorithms for fast NMPC and MHE . . . . . . . . . . . 44
3.3.1 Online Solution of the Dynamic

Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Fast Solvers Based on Automatic Code Generation . . . 45

3.4 Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Chassis Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Tire Contact Forces: Pacejka’s Magic Formula . . . . . 47
3.4.3 Wheel Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.4 Vertical Forces and Suspension Model . . . . . . . . . . . 48
3.4.5 Spatial Reformulation of the Dynamics . . . . . . . . . . . 49

3.5 Control of Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . 50
3.5.1 MHE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 MPC Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.4 Treating Gear Shifts . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Conclusions and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Approximate Solution of HJBE and Optimal Control
in Internal Combustion Engines . . . . . . . . . . . . . . . . . . . . . . . . . 59
Mario Sassano and Alessandro Astolfi
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Hamilton-Jacobi-Bellman Equation and Optimal Control. . . . . 60
4.3 Dynamic Value Function and Algebraic �P Solution . . . . . . . . 61

4.3.1 Definition of Dynamic Value Function . . . . . . . . . . . 62
4.3.2 A Class of Canonical Dynamic Value Functions . . . . 64
4.3.3 Minimization of the Extended Cost. . . . . . . . . . . . . . 66

4.4 Optimal Control in Internal Combustion Engine
Test Benches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x Contents

http://dx.doi.org/10.1007/978-3-319-05371-4_3
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec19
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec19
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec20
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec20
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec21
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Sec21
http://dx.doi.org/10.1007/978-3-319-05371-4_3#Bib1
http://dx.doi.org/10.1007/978-3-319-05371-4_4
http://dx.doi.org/10.1007/978-3-319-05371-4_4
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_4#Bib1


Part II Inter and Intra Vehicle System Optimization

5 Intelligent Speed Advising Based on Cooperative Traffic
Scenario Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Rodrigo H. Ordóñez-Hurtado, Wynita M. Griggs,
Kay Massow and Robert N. Shorten
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Intelligent Speed Adaptation System. . . . . . . . . . . . . . . . . . . 78
5.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Methodology: First Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Selection of the Next Point of Interest
and the Next Vehicle . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Vehicular Density Estimation. . . . . . . . . . . . . . . . . . 81
5.4.3 Traffic Scenario Determination . . . . . . . . . . . . . . . . 81

5.5 Methodology: Second Stage. . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.1 Updating Speed in Virtual Next Vehicles . . . . . . . . . 84
5.5.2 Proposed Recommended Speed Scheme . . . . . . . . . . 85
5.5.3 Proposed Recommended Distance Scheme . . . . . . . . 86

5.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6.1 Traffic Scenario Determination . . . . . . . . . . . . . . . . 88
5.6.2 Recommended Speed . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.3 Recommended Distance . . . . . . . . . . . . . . . . . . . . . 91

5.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 91
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Driver Control and Trajectory Optimization Applied
to Lane Change Maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Patrick J. McNally
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Experiential Engineering . . . . . . . . . . . . . . . . . . . . . 94
6.1.2 Lane Change Problem. . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Model Based Engineering Environment
for Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 Determination of Driver Controls . . . . . . . . . . . . . . . 95
6.2.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.3 Offline Optimization Results . . . . . . . . . . . . . . . . . . 99

6.3 Virtual Prototyping Environment for Subjective Evaluation . . . 100
6.3.1 Driver Maneuvers in a Controlled Experiment . . . . . . 102

6.4 Driving Simulator Results (Online). . . . . . . . . . . . . . . . . . . . 104
6.4.1 Imposing Constraints on Simulated Driver Controls. . . 104

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Contents xi

http://dx.doi.org/10.1007/978-3-319-05371-4_5
http://dx.doi.org/10.1007/978-3-319-05371-4_5
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec13
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec13
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec14
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec14
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec15
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec15
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec16
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec16
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec17
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec17
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec18
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Sec18
http://dx.doi.org/10.1007/978-3-319-05371-4_5#Bib1
http://dx.doi.org/10.1007/978-3-319-05371-4_6
http://dx.doi.org/10.1007/978-3-319-05371-4_6
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-05371-4_6#Bib1


7 Real-Time Near-Optimal Feedback Control
of Aggressive Vehicle Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . 109
Panagiotis Tsiotras and Ricardo Sanz Diaz
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Aggressive Yaw Maneuver of a Speeding Vehicle . . . . . . . . . 112

7.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.2 Vehicle and Tire Model . . . . . . . . . . . . . . . . . . . . . 113
7.2.3 Optimal Control Formulation . . . . . . . . . . . . . . . . . . 116

7.3 Statistical Interpolation Using Gaussian Processes . . . . . . . . . 118
7.3.1 Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.2 Choice of Correlation Functions . . . . . . . . . . . . . . . . 121

7.4 Application to On-line Aggressive Vehicle
Maneuver Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.1 Feedback Controller Synthesis . . . . . . . . . . . . . . . . . 122
7.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Applications of Computational Optimal Control
to Vehicle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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Introduction

Most user requirements for technical products can be formulated in terms of a
constrained optimization problem. For instance one may wish to develop an engine
with the highest fuel efficiency under the constraints of providing the desired
torque characteristics and limiting noise, emissions, weight, size, cost, etc., given
by the legislators or set by the customer expectations.

In the case of automotive systems, most requirements must be met not only in
special, well-defined driving scenarios but also in a wide variety of environmental
and road conditions under the action of an unknown driver. Furthermore,
automotive systems exhibit significant production and lifetime deviations, which
makes the ‘real’ parameters frequently unknown. All this means that optimization
in the automotive context must include in some way the uncertainty–roughly
speaking, we are dealing with the optimization of partly unknown systems under
greatly unknown conditions.

Traditionally, automotive systems have been optimized rather heuristically, and
the impressive results are more the consequence of an enormous effort than of a
systematic optimal design. While commercial aspects–first of all the production
scale and the possibly catastrophic consequences of errors–have made this
approach viable and maybe even necessary, lately the interest in more systematic
approaches has been increasing driven by the need to reduce development time
and cost. This has led to two main directions: on one hand, tools for calibration
(tuning) support have been developed, based usually on local data-based models
and optimizations; on the other hand the academic work in the field of model-
based control has been gaining additional momentum and has found some
applications in production.

Between 15 and 16 July 2013, a workshop on the subjects of optimization in
automotive systems took place in Linz to assess the status and discuss ways to
improve the availability of optimization methods in the industrial practice. Since
optimization can be exploited at different design stages, starting from the system
design level and the selection of an optimal topology, to the operation level, and
the development of an optimal control strategy, many relevant topics were
addressed. Most attention, nevertheless, was given to the control-related optimi-
zation as it and the coupled problem of control and design optimization are
comparatively less studied and understood.

Luigi del Re, Ilya Kolmanovsky, Maarten Steinbuch
and Harald Waschl
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The book begins with a discussion of dynamic optimization techniques and
methodologies for automotive applications, and includes a basic introduction into
dynamic and trajectory optimization techniques (Chap. 1), and three more specific
methods which are extremum seeking (Chap. 2), Model Predictive Control (Chap. 3)
and an optimal nonlinear feedback regulation technique based on the Hamilton–
Jacobi–Bellman equation (Chap. 4). The latter approach is an example of a theo-
retically advanced methodology that has been shown to be effective for automotive
systems once combined with a suitable system identification method.

The book then proceeds to discuss automotive applications of dynamic
optimization and optimal control at various levels. At a very high level, significant
benefits are expected from its use to control the traffic flows and enforce their
fluidity as discussed in Chap. 5. Much can also be gained at the level of single
vehicle operation and active safety as discussed in Chaps. 6–8. While these three
contributions are mainly centered on handling and safety, two other contributions
(Chaps. 9 and 10) examine applications of dynamic optimization in assistant
systems for vehicle speed control.

Demonstrating optimization potential at powertrain level is pursued next. This
topic addressed especially in the context of hybrid electrical vehicles (HEVs), in
terms of topology optimization in Chap. 11, optimal energy management (Chaps.
12 and 13) where the latter contribution includes battery ageing which is a sig-
nificant consideration in view of battery ageing and cost.

Another application of dynamic optimization, now to coordinated control of
Diesel engine aftertreatment, is the topic of the contribution of Chap. 14. While
the use of dynamic optimization for HEV energy management is relatively well
understood, there is now a growing interest in the use of dynamic optimization to
achieve effective control of aftertreatment systems and emission reductions.

Finally the optimization of engine operation, a topic that has received many
theoretical but also industrial contributions is addressed. Specifically, Chap. 15
addresses the problem of optimal calibration of engine maps by learning methods
from an industrial point of view, and Chap. 16 presents development aspects of a
commercially available optimization tool for a similar task. Chapter 17 tackles the
problem of optimal control of homogeneous charge compression ignited (HCCI)
engines, while Chap. 18 in some sense closes the gap between the vehicle and
engine control addressing the optimal operation at vehicle level while taking into
account the engine operation.

Some general conclusions can be drawn from the discussion. Briefly, there is a
gap between academic and industrial communities. This gap is due to legacy issues
which make it difficult for industrial users to employ or test new optimization and
optimal control methods and the need of the academic community to address more
complex questions that incorporate more realistic models and system engineering
aspects and requirements.
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More in detail:

Scope Optimization is important in many different fields, but it
must be seen as a part of the development process, i.e. it
must take into account system engineering aspects and
support a sequential process of design, modelling and
optimization.

Models Not surprisingly, different kinds of models greatly affect
the complexity of the optimization task. As a general
trend, simple first principle-based models initially used
for design, are increasingly complex and accurate data-
based models that tend to deliver better results for
optimization replaced by more. Still, first principle
models tend to be used also for optimization and are in
fact preferred by some legacy users.

Industrial priorities Optimal control and dynamic optimization are becoming
more important in industry, yet so are related tasks, like
optimal calibration and tuning, that are frequently
overlooked by the academic community. Addressing
these related tasks can lead to immediate and direct
impact on industrial development processes. On the other
hand, the academic work is concentrating more on the
algorithmic solutions of the standard problems and these
solutions are of growing interest in new applications.

Need of hand-on proof For the final user, it is not easy to choose between
different approaches and to see the benefits of a specific
optimization method, especially because many algo-
rithms are developed under simplified conditions which
would not be realistic in the normal product operation.
There is a need to establish evaluation methods that take
into account implementation elements, robustness and
certifiability.

Adaptive methods Adaptive optimal methods are potentially an excellent
approach to improve the operation under real, changing
conditions, but methods are required to guarantee and/or
test their performance/convergence/safety under all con-
ditions. This is a critical point also in view of certification.
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Human in the loop Human interaction is an important factor for the
operation of optimal control-based systems, metrics to
evaluate subjective criteria are needed. Human behav-
iour and reactions can also be embedded in the
optimization chain.
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Chapter 1
Trajectory Optimization: A Survey

Anil V. Rao

Abstract A survey of numerical methods for trajectory optimization. The goal of
this survey is to describe typical methods that have been developed over the years
for optimal trajectory generation. In addition, this survey describes modern software
tools that have been developed for solving trajectory optimization problems. Finally,
a discussion is given on how to choose a method.

1.1 Introduction

Trajectory optimization is a process where it is desired to determine the path and the
corresponding input (control) to a dynamical system that meet specified constraints
on the system while optimizing a specified performance index. Typically, optimal tra-
jectory generation is performed off-line, that is, such problems are not solved in real
time nor in a closed-loop manner. Because of the complexity of most applications,
optimal trajectories are typically generated using numerical methods. Numerical for
trajectory optimization date back nearly five decades to the 1950s with the work
of Bellman [5–10]. Because complexity of modern applications has has increased
tremendously as compared to applications of the past, methods for trajectory opti-
mization continue to evolve and the discipline is becoming increasingly relevant in
a wide range of subject including virtually all branches of engineering, economics,
and medicine.

Numerical methods for trajectory optimization are divided into two major classes:
indirect methods and direct methods. In an indirect method, the first-order optimality
conditions from variational calculus are employed. The trajectory optimization prob-
lem is then converted into a multiple-point Hamiltonian boundary-value problem.
The HBVP is then solved numerically to determine candidate optimal trajectories
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called extremals. Each extremal solution of the HBVP is then examined to see if it
is a local minimum, maximum, or a saddle point, and the extremal with the lowest
cost is chosen. In a direct method, the state and/or control of the original trajectory
optimization problem is approximated by parameterizing the state and/or the con-
trol and the trajectory optimization problem is transcribed to a finite-dimensional
nonlinear programming problem (NLP). The NLP is then solved using well known
optimization techniques.

It is seen that indirect methods and direct method emanate from two different
philosophies. On the one hand, the indirect approach solves the problem indirectly
(thus the name, indirect) by converting the trajectory optimization problem to a
boundary-value problem. As a result, in an indirect method the optimal solution is
found by solving a system of differential equations that satisfies endpoint and/or
interior point conditions. On the other hand, in a direct method the optimal solution
is found by transcribing an infinite-dimensional optimization problem to a finite-
dimensional optimization problem.

The two different philosophies of indirect and direct methods have led to a di-
chotomy in the trajectory optimization community. Researchers who focus on indi-
rect methods are interested largely in the numerical solution of differential equations,
while researchers who focus on direct methods are interested primarily in the numer-
ical solution of optimization problems. While at first glance these two approaches
may seem completely unrelated, they have a great deal in common. As will be de-
scribed in the survey, recent years researchers have delved quite deeply into the
connections between the indirect and direct forms. This research has uncovered that
the optimality conditions from many direct methods have a well-defined meaningful
relationship. Thus, these two classes of methods are merging as time goes by.

1.2 Trajectory Optimization Problem

A fairly general trajectory optimization problem is posed formally as follows. Typ-
ically, the problem is divided into P phases [15] and the phases are connected in
some meaningful way. A multiple-phase trajectory optimization problem is posed as
follows. Optimize the cost functional

J =
P∑

k=1

[
Φ(k)

[
y(k)(t0), t0, y(k)

(
t f

)
, t f ; s

]
+

∫ t (k)
f

t (k)
0

L
[
y(k) (t) , u(k) (t) , t; s(k)

]
dt

]

(1.1)
subject to the dynamic constraints

ẏ(k) (t) = f
(

y(k) (t) , u(k) (t) , t; s(k)
)

, (1.2)

the boundary conditions,
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Indirect Methods

Direct Methods

Systems of
Nonlinear Equations

Numerical Solution of
Differential Equations Nonlinear Optimization

Fig. 1.1 The three major components of trajectory optimization and the class of methods that uses
each component

φ
(k)
min ≤ φ(k)

(
y(k)(t (k)

0 ), t (k)
0 , y(k)(t (k)

f ), s(k), t (k)
f

)
≤ φ(k)

max, (1.3)

the algebraic path constraints

c(k)
min ≤ c(k)

(
y(k) (t) , u(k) (t) , s(k), t

)
≤ c(k)

max (1.4)

and the linkage constraints (also known as phase continuity constraints)

L(s)
min ≤ L

(
y(ls )

(
t(ls )f

)
, u(ls )

(
t(ls )f

)
, s(ls ), t(ls )f , y(rs )(t(rs )

f ), u(rs )
(

t(rs )
f

)
, s(rs ), t(rs )

f

)
≤ L(s)

max,

(1.5)

where s ∈ [1, . . . , S] and S is the number of pairs of phases that are being linked. In
Eq. (1.5) the parameter S is the number of pairs of phases to be linked, rs ∈ [1, . . . , S]
and ls ∈ [1, . . . , S] are the right phases and left phases, respectively, of the linkage
pairs, rs ∞= ls (implying that a phase cannot be linked to itself), and s ∈ [1, . . . , S].

1.3 Numerical Methods for Trajectory Optimization

At the heart of a well-founded method for solving trajectory optimization problems
are the following three fundamental components: (1) a method for solving differ-
ential equations and integrating functions; (2) a method for solving a system of
nonlinear algebraic equations; and (3) a method for solving a nonlinear optimization
problem. Methods for solving differential equations and integrating functions are
required for all numerical methods in trajectory optimization optimal control. In an
indirect method, the numerical solution of differential equations is combined with
the numerical solution of systems of nonlinear equations while in a direct method the
numerical solution of differential equations is combined with nonlinear optimization.
A schematic with the breakdown of the components used by each class of optimal
control methods is shown in Fig. 1.1.
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1.4 Numerical Solution of Differential Equations

Consider the initial-value problem [30, 42, 92] (IVP)

ẏ = f(y(t), t), y(t0) = y0. (1.6)

Next, let [ti , ti+1] be a time interval over which the solution to Eq. (1.6) is desired.
Integrating Eq. (1.6), we can write

yi+1 = yi +
∫ ti+1

ti
ẋ(s)ds = yi +

∫ ti+1

ti
f(y(s), s)ds. (1.7)

The two most common approaches for solving differential equations are time march-
ing and collocation. In a time-marching method, the solution of the differential
equation at each time step tk is obtained sequentially using current and/or previ-
ous information about the solution. In a multiple-step time marching method, the
solution at time tk+1 is obtained from a defined set of previous values tk− j , . . . , tk
where j is the number of steps. The simplest multiple-step method is a single-step
method (where j = 1). The most common single-step methods are Euler methods,
while most commonly used multiple-step methods are the Adams-Bashforth and
Adams-Moulton multiple-step methods [30]. Euler backward and Crank-Nicolson
are examples of implicit methods whereas Euler forward is an example of an explicit
method. When employing implicit method, the solution at tk+1 is obtained using
a predictor-corrector where the predictor is typically an explicit method (that is,
Euler-forward) while the corrector is the implicit formula. Implicit methods meth-
ods are more stable than explicit methods [42], but an implicit method requires more
computation at each step due to the need to implement a predictor-corrector.

An alternative to a multiple-step time marching method is a multiple-stage method.
In a multiple-stage method, the interval [ti , ti+1] into K subintervals [τ j , τ j+1] where

τ j = ti + hiα j , ( j = 1, . . . , K ), hi = ti+1 − ti , (1.8)

and 0 ≤ α j ≤ 1, ( j = 1, . . . , K ). Each value τ j is called a stage . The integral from
ti to ti+1 can be approximated via quadrature as

∫ ti+1

ti
f(y(s), s)ds ≈ hi

K∑

j=1

β j f(y j , τ j ) (1.9)

where y j ≡ y(τ j ). It is seen in Eq. (1.9) that the values of the state at each stage
are required in order to evaluate the quadrature approximation. These intermediate
values are obtained as
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y(τ j ) − y(ti ) =
∫ τ j

ti
f(y(s), s)ds ≈ hi

K∑

l=1

γ jl f(yl , τl) (1.10)

The combination of Eqs. (1.9) and (1.10) leads to the family of K−stage Runge-
Kutta methods [15, 24, 25, 30, 50, 51, 92]. A Runge-Kutta method is called explicit
if γ jl = 0 for all l ≥ j and is called implicit otherwise. In an explicit Runge-
Kutta method, the approximation at tk+1 is computed using information prior to tk+1
whereas in an implicit Runge-Kutta method y(tk+1) is required in order to determine
the solution at tk+1. In the latter case, the solution is updated using a predictor-
corrector approach.

1.4.1 Collocation

Another way to solve differential equations is as follows. Suppose over a subin-
terval [ti , ti+1] we choose to approximate the state using the following K th-degree
piecewise polynomial:

Y(t) ≈
K∑

k=0

ai (t − ti )
k, t ∈ [ti , ti+1]. (1.11)

Suppose further that the coefficients (a0, . . . , aK ) of the piecewise polynomial
are chosen to match the value of the function at the beginning of the step, that is,

Y(ti ) = yi . (1.12)

Finally, suppose we choose to match the derivative of the state at the points defined
in Eq. (1.8), that is,

ẏ(τ j ) = f(y(τ j ), τ j ), ( j = 1, . . . , K ). (1.13)

Equation (1.13) is called a collocation condition because the approximation to
the derivative is set equal to the right-hand side of the differential equation evaluated
at each of the intermediate points (τ1, . . . , τK ). Collocation methods fall into three
general categories [15]: Gauss methods, Radau methods, and Lobatto methods. In a
Gauss method, neither of the endpoints tk or tk+1 are collocation points. In a Radau
method, at most one of the endpoints tk or tk+1 is a collocation point. In a Lobatto
method, both of the endpoints tk and tk+1 are collocation points.

As it turns out, Euler and Runge-Kutta methods can be thought of equivalently
as either time-marching or collocation methods. When an Euler or a Runge-Kutta
method is employed in the form of collocation, the differential equation is said to
be solved simultaneously because all of the unknown parameters are determined at
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the same time. Furthermore, collocation methods are said to simulate the dynamics
of the system implicitly because the values of the state at each collocation point
are obtained at the same time (as opposed to solving for the state sequentially as
in a time-marching method). In order to implement simultaneous simulation, the
discretized dynamics are written as defect constraints of the form

ζ j = ẏ(τ j ) − f(y(τ j ), τ j ). (1.14)

As an example, the defect constraints for the Crank-Nicolson method are given as

ζ k = yk+1 − yk − hk

2
(fk + fk+1) . (1.15)

In collocation (that is, implicit simulation) it is desired to find a solution such
that all of the defect constraints are zero. Finally, one of the key differences between
collocation and time-marching is that in collocation it is not necessary to use a
predictor-corrector because the values of the state at each discretization point are
being solve for simultaneously.

1.4.2 Integration of Functions

Because the objective is to solve a trajectory optimization problem, it is necessary
to approximate the cost function of Eq. (1.1). Typically, the cost is approximated
using a quadrature that is consistent with the numerical method for solving the
differential equation (for example, if one is using an Euler-forward rule for solving
the differential equation, the cost would also be approximated using Euler-forward
integration). The requirement for consistency in the approximation of the differential
equations and the cost can be thought of in another manner. Consider a one-phase
trajectory optimization problem. The cost functional

J = Φ(y(t0), t0, y(t f ), t f ) +
∫ t f

t0
L [y(t), u(t), t; s]dt (1.16)

can be converted to a Mayer problem by adding a state yn+1 and adding the differential
equation

ẏn+1 = g[y(t), u(t), t; s] (1.17)

with the initial condition
yn+1(t0) = 0. (1.18)

The cost functional of Eq. (1.16) would be given as

J = Φ[y(t0), t0, y(t f ), t f ; s] + yn+1(t f ) (1.19)
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and the resulting augmented system of differential equations would then be written
as

ẏ(t) = f[y(t), u(t), t; s],
ẏn+1 = L [x(t), u(t), t; s]. (1.20)

Equation (1.20) could then be solved using any well established numerical integration
method. Using this approach, is it seen that the method used to integrate Eq. (1.17)
must be the same method that is used to integrate

L [y(t), u(t), t; s].

1.5 Nonlinear Optimization

A key ingredient to solving trajectory optimization problems is the ability to solve
nonlinear optimization or nonlinear programming problems [4, 11, 21, 44] (NLPs).
An NLP takes the following general mathematical form. Determine the decision
vector z ∈ R

n that minimizes the cost function

f (z) (1.21)

subject to the algebraic constraints

g(z) = 0, (1.22)

h(z) ≤ 0, (1.23)

where g(z) ∈ R
m and h(z) ∈ R

p. The NLP may either be dense (that is, a large
percentage of the derivatives of the objective function and the constraint functions
with respect to the components of z are nonzero) or may be sparse (that is, a large
percentage of the derivatives of the objective function and the constraint functions
with respect to the components of z are zero). Dense NLPs typically are small (con-
sisting of at most a few hundred variables and constraints) while sparse NLPs are
often extremely large (ranging anywhere from thousands of variables and constraints
to millions of variables and constraints).

1.6 Methods for Solving Trajectory Optimization Problems

With the exception of simple problems, trajectory optimization problems must be
solved numerically. The need for solving optimal control problems numerically has
given rise to a wide range of numerical approaches. These numerical approaches are
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divided into two broad categories: (1) indirect methods and (2) direct methods. The
major methods that fall into each of these two broad categories are described in the
next two sections.

1.6.1 Indirect Methods

In an indirect method, the calculus of variations [3, 20, 23, 40, 56, 62, 67, 68, 91,
94, 97] is used to determine the first-order optimality conditions of the trajectory
optimization problem given in Eqs. (1.1)–(1.5). Unlike ordinary calculus (where
the objective is to determine points that optimize a function), the calculus of varia-
tions is the subject of determining functions that optimize a function of a function
(also known as functional optimization). Applying the calculus of variations to the
functional optimization problem given in Eqs. (1.1)–(1.5) leads to the first-order
necessary conditions for an extremal trajectory. The first-order optimality condi-
tions for a single-phase continuous-time trajectory optimization problem with no
static parameters are given as

ẏ = H T
λ , λ̇ = −H T

y , (1.24)

u∗ = arg min
u∈U

H , (1.25)

φ(y(t0), t0, y(t f ), t f ) = 0, (1.26)

λ(t0) = −Φy(t0) + νTφy(t0), λ(t f ) = Φy(t f ) − νTφy(t f ), (1.27)

H (t0) = Φt0 − νTφt0 , H (t f ) = −Φt f + νTφt f , (1.28)

μ j (t) = 0, when C j (x, u, t) < 0, j = 1, . . . , c,

μ j (t) ≤ 0, when C j (x, u, t) = 0, j = 1, . . . , c, (1.29)

where H = L + λTf − μTC is the augmented Hamiltonian, U is the feasible
control set and ν ∈ R

q is the Lagrange multiplier associated with the boundary
condition φ. Finally, it is noted that the solution to the optimal control problem may
lie along a singular arc [23] where the control cannot be determined from the first-
order optimality conditions. If a singular arc is a possibility, additional conditions
must be derived to determine the control along the singular arc.

Because the dynamics of Eq. (1.24) arise from differentiation a Hamiltonian,
Eq. (1.24) is called a Hamiltonian system [3, 66, 67]. Furthermore, Eq. (1.25) is
known as Pontryagin’s Minimum Principle [75] (PMP) and is a classical result to
determine theoptimal control. Finally, the conditions on the initial and final costate
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given in Eq. (1.27) are called transversality conditions [3, 23, 40, 62, 66, 68, 91, 93,
94] while the conditions on the Lagrange multipliers of the path constraints given in
Eq. (1.29) are called complementary slackness conditions [4, 11, 21]. The Hamil-
tonian system, together with the boundary conditions, transversality conditions, and
complementary slackness conditions, is called a Hamiltonian boundary-value prob-
lem (HBVP) [2, 3, 66]. Any solution (y(t), u(t), λ(t), μ(t), ν) is called an extremal
solution and consists of the state, costate, and any Lagrange multipliers that satisfy
the boundary conditions and any interior-point constraints on the state and costate.
In an indirect method extremal trajectories (that is, solutions of the HBVP) are de-
termined numerically. Because an indirect method requires solving a multiple-point
boundary-value problem, the original trajectory optimization problem is turned into
the problem of solving a system of nonlinear equations of the form

f(z) = 0,

gmin ≤ g(z) ≤ gmax.
(1.30)

The three two most common indirect methods are the shooting method, the
multiple-shooting method, and collocation methods. Each of these approaches is
now described.

1.6.1.1 Indirect Shooting Method

Perhaps the most basic indirect method is the shooting method [65]. In a typical
shooting method, an initial guess is made of the unknown boundary conditions at
one end of the interval. Using this guess, together with the known initial conditions,
the Hamiltonian system Eq. (1.24) is integrated to the other end (that is, either forward
from t0 to t f or backward from t f to t0). Upon reaching t f , the terminal conditions
obtained from the numerical integration are compared to the known terminal condi-
tions given in Eqs. (1.26) and (1.27). If the integrated terminal conditions differ from
the known terminal conditions by more than a specified tolerance ε, the unknown
initial conditions are adjusted and the process is repeated until the difference between
the integrated terminal conditions and the required terminal conditions is less than
some specified threshold.

1.6.1.2 Indirect Multiple-Shooting Method

While a simple shooting method is appealing due to its simplicity, it presents sig-
nificant numerical difficulties due to ill-conditioning of the Hamiltonian dynamics.
The reason for this ill-conditioning is that Hamiltonian systems have the property
that the divergence of the flow of trajectories must be zero, that is
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n∑

i=1

[
∂

∂xi

(
∂H

∂λi

)
+ ∂

∂λi

(
−∂H

∂xi

)]
≡ 0. (1.31)

Equation (1.31) implies that, in a neighborhood of the optimal solution, there exist
an equal number of directions along which the solution will contract and expand and
this expansion and contraction takes place at the same rate (the simultaneous expand-
ing and contracting behavior is due to the fact that many Hamiltonian systems admit
an exponential dichotomy [2]). As a result, errors made in the unknown boundary
conditions will amplify as the dynamics are integrated in either direction of time.
The shooting method poses particularly poor characteristics when the trajectory op-
timization problem is hyper-sensitive [76, 78, 79, 81, 82] (that is, when time interval
of interest is long in comparison with the time-scales of the Hamiltonian system in
a neighborhood of the optimal solution).

In order to overcome the numerical difficulties of the simple shooting method, a
modified method, called the multiple-shooting method [92], has been developed. In a
multiple-shooting method, the time interval [t0, t f ] is divided into M+1 subintervals.
The shooting method is then applied over each subinterval [ti , ti+1] with the initial
values of the state and adjoint of the interior intervals being the unknowns that need to
be determined. In order to enforce continuity, the following conditions are enforced
at the interface of each subinterval:

p(t−i ) = p(t+i ) ⇐⇒ p(t−i ) − p(t+i ) = 0, (1.32)

where p(t) is the combined state-costate vector, that is,

p(t) =
[

x(t)
λ(t)

]
.

The continuity conditions of Eq. (1.32) result in vector root-finding problem where
it is desired to drive the values of the difference between p(t−i ) − p(t+i ) to zero. It
is seen that the multiple-shooting method requires extra variables be introduced into
the problem (that is, the values of the state and adjoint at the interface points). Despite
the increased size of the problem due to these extra variables, the multiple-shooting
method is an improvement over the shooting method because the sensitivity to errors
in the unknown initial conditions is reduced by integrating over subintervals of the
original time domain t ∈ [t0, t f ]. Nevertheless, even multiple-shooting can present
issues if a sufficiently good guess of the costate is not used [48].

1.6.1.3 Indirect Collocation Methods

In an indirect collocation method, the state and costate are parameterized using
piecewise polynomials as described in Sect. 1.4.1. The collocation procedure leads
to a root-finding problem where the vector of unknown coefficients z consists of the
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coefficients of the piecewise polynomial. This system of nonlinear equations is then
solved using a root-finding technique (for example, Newton’s method).

1.6.2 Direct Methods

Direct methods are fundamentally different from indirect methods. In a direct method,
the state and/or control of the original optimal control problem are approximated in
some appropriate manner. In the case where only the control is approximated, the
method is called a control parameterization method [46]. When both the state and
control are approximated the method is called a state and control parameterization
method. In either a control parameterization method or a state and control parameteri-
zation method, the optimal control problem is transcribed to a nonlinear optimization
problem or nonlinear programming problem [4, 11, 15, 21, 44] (NLP).

1.6.2.1 Direct Shooting Method

The most basic direct method for solving trajectory optimization problems is the
direct shooting method. The direct shooting method is a control parameterization
method where the control is parameterized using a specified functional form. For
example, the control could be parameterized as

u(t) ≈
m∑

i=1

aiψi (t), (1.33)

where ψi (t), (i = 1, . . . , m) are known functions and ai , (i = 1, . . . , m) are the
parameters to be determined from the optimization. The dynamics are then satisfied
by integrating the differential equations using a time-marching algorithm. Similarly,
the cost function of Eq. (1.1) is determined using a quadrature approximation that is
consistent with the numerical integrator used to solve the differential equations. The
NLP that arises from direct shooting then minimizes the cost subject to any path and
interior-point constraints.

1.6.2.2 Direct Multiple-Shooting Method

In a manner similar to that for indirect methods, in a direct multiple-shooting method,
the time interval [t0, t f ] is divided into M+1 subintervals. The aforementioned direct
shooting method is then used over each subinterval [ti , ti+1] with the values of the
state at the beginning of each subinterval and the unknown coefficients in the control
parameterization being unknowns in the optimization. In order to enforce continuity,
the following conditions are enforced at the interface of each subinterval:



14 A. V. Rao

x(t−i ) = x(t+i ) ⇐⇒ x(t−i ) − x(t+i ) = 0. (1.34)

The continuity conditions of Eq. (1.34) result in vector root-finding problem where
it is desired to drive the values of the difference between x(t−i ) − x(t+i ) to zero. It is
seen that the direct multiple-shooting method increases the size of the optimization
problem because the values of the state at the beginning of each subinterval are pa-
rameters in the optimization. As with indirect multiple-shooting, the direct multiple-
shooting method is an improvement over the direct shooting method because the
sensitivity to errors in the unknown initial conditions is reduced by integrating over
subintervals of the original time domain t ∈ [t0, t f ].

1.6.2.3 Direct Collocation Methods

Arguably the most powerful methods for solving general trajectory optimization
problems are direct collocation methods. A direct collocation method is a state and
control parameterization method where the state and control are approximated using
a specified functional form. The two most common forms of collocation are local
collocation and global collocation. A local collocation method follows a procedure
similar to that of Sect. 1.4.1 in that the time interval [t0, t f ] is divided into S subin-
tervals [ts−1, ts], (s = 1, . . . , S) where tS = t f . In order to ensure continuity in the
state across subintervals, the following compatibility constraint is enforced at the
interface of each subinterval:

y(t−i ) = y(t+i ), (s = 2, . . . , S − 1). (1.35)

In the context of trajectory optimization, local collocation has been employed
using one of two categories of discretization: Runge-Kutta methods and orthogonal
collocation methods. Nearly all Runge-Kutta methods used are implicit [31–36, 49,
69, 88, 89] because the stability properties of implicit Runge-Kutta methods are
better than those of explicit methods. The seminal work on orthogonal collocation
methods in trajectory optimization is due to Reddien [84], where Legendre-Gauss
points were used together with cubic splines. Following on Reddien’s work, Cuthrell
and Biegler used LG points together with Lagrange polynomials [28, 29]. Interest-
ingly, Cuthrell [29] showed mathematically that the indirect transcription using LG
points was equivalent to the KKT conditions obtained from the NLP of the direct
formulation. In the 1990s, orthogonal collocation methods were developed using
higher-order Gauss-Lobatto collocation methods [38, 39, 54, 55]. Finally, the con-
vergence rates of an orthogonal collocation method using Legendre-Gauss-Radau
(LGR) points was studied [64].

Generally, employing direct local collocation leads to a large sparse NLP, where
the NLP contains potentially thousands to hundreds of thousands of variables and
constraints. Moreover, such large NLPs arise from trajectory optimization problems
that consist of hundreds of of states and controls. Because the NLP is sparse, however,
many of the derivatives of the constraint Jacobian are zero. This feature of local direct
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collocation makes it possible to solve such problem efficiently using appropriate NLP
solvers such as SNOPT [43, 45], SPRNLP [17], and KNITRO [26].

1.7 Software for Solving Trajectory Optimization Problems

A wide variety of software tools have been developed for solving trajectory optimiza-
tion problems. Most of these software programs use direct methods. One well known
software program employing indirect methods is BNDSCO [71] which employs a
multiple-shooting method. Perhaps the oldest software tool that employs direct meth-
ods is the Program to Simulate and Optimize Trajectories [22] (POST). POST was
originally developed to solve problems in launch vehicle trajectory optimization and
it still in use today for such applications.

The late 1980s saw a transformation in the available tools for solving trajectory
optimization problems. This transformation was coincident with the observation
of the power of direct collocation methods. The first well-known direct colloca-
tion software was Optimal Trajectories by Implicit Simulation [95] (OTIS). OTIS is
a FORTRAN software that has general-purpose capabilities for problems in aero-
nautics and astronautics. OTIS has been used widely in the aerospace and defense
industries and its theoretical foundations are found in Ref. [52]. Following shortly
after the development of OTIS is the program Sparse Optimal Control Software [18]
(SOCS). SOCS is a highly powerful FORTRAN software that is capable of solving
many highly challenging trajectory optimization problems (see Ref. [15] for highly
complex optimal control problems solved with SOCS). Some of the applications
solved using SOCS are found in Refs. [12–14, 16, 77]. Finally, three other direct col-
location FORTRAN programs are MISER [47], Direct Collocation [96] (DIRCOL),
Graphical Environment for Simulation and Optimization [1] (GESOP), and Nonlin-
ear Trajectory Generation [70] (NTG). Like OTIS and SOCS, DIRCOL and GESOP
use local direct collocation techniques while NTG is designed for rapid trajectory
generation of differentially flat systems.

In recent years, interest in the particular application of optimal control to space
flight has led to the development of several useful programs. One such program
is Mission Design and Analysis Software [87] (MIDAS) which is designed to solve
complex ballistic heliocentric transfer trajectories for interplanetary space flight mis-
sions. Another tool that has been recently developed is the NASA Generalized Mis-
sion Analysis Tool [61] (GMAT). Another tool that has been widely used in the last
several years is COPERNICUS [72, 73]. Both GMAT and COPERNICUS are de-
signed to solve trajectory optimization problems where the maneuvers can be treated
as either impulsive or finite-thrust burns.

While earlier software programs used compiled languages such as FORTRAN, in
recent years, MATLAB® has become increasingly popular for solving optimization
problems. The increased appeal for MATLAB emanates from the fact that MATLAB
is an extremely easy environment in which to program along with the fact that many
of today’s most powerful NLP solvers are now available for use in MATLAB® (for
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example, standalone MATLAB mex versions are now available for the NLP solvers
SNOPT [43, 45] and KNITRO [26]). In addition, the TOMLAB [19, 37, 57–60] pack-
age has facilitated additional solvers for use in MATLAB. In addition, because of
major computational improvements, the computational efficiency between MATLAB
and compiled languages is growing ever closer. Examples of MATLAB-based trajec-
tory optimization software programs include RIOTS_95 [90], DIDO [85], DIRECT
[98], PROPT [86], OPTCONTROLCENTRE [63], GPOPS [80], and GPOPS-II [74].

It is important to note that all of the trajectory optimization software programs
described above incorporate gradient methods for solving the NLP. In a less formal
manner, heuristic methods have also been used to solve trajectory optimization prob-
lems. For example, interplanetary trajectory optimization problems using a genetic
algorithm have been considered in Refs. [41, 53] while low-thrust orbit transfers
using a genetic algorithm have been studied in Refs. [27] and [83]. In addition, a
calculus of variations technique has been used together with a genetic algorithm to
optimize low-thrust Mars-to-Earth trajectories for the Mars Sample Return Mission
[99]. Thus, while gradient methods are somewhat the de facto standard for trajectory
optimization, the aforementioned research demonstrates that genetic algorithms may
be well-suited for some applications.

1.8 Choosing a Method

Choosing a method for solving a trajectory optimization problem is based largely
on the type of problem to be solved and the amount of time that can be invested
in coding. An indirect shooting method has the advantage that it is simple to un-
derstand and produces highly accurate solutions when it converges. Unfortunately,
indirect shooting is extremely sensitive to the unknown boundary conditions. In addi-
tion, indirect shooting requires the derivation of the first-order optimality conditions
of the trajectory optimization problem [see Eqs. (1.24)–(1.29]! While for simple
problems it may be possible to derive the first-order optimality conditions, deriv-
ing such conditions for complex optimal control problems is tedious, error-prone,
and sometimes impossible (for example, problem with table lookups). Furthermore,
the need to derive the optimality conditions makes implementing indirect shooting
difficult in a general-purpose software program. For example, if it was required to
derive first-order optimality conditions, a program such as POST would become
nearly impossible to use because every new problem would require the derivation
of these conditions! A multiple-shooting method overcomes some of the numerical
difficulties of standard shooting, but does not avoid the issue of having to derive the
optimality conditions.

The accuracy and robustness of a direct method is highly dependent upon the form
of direct method used. Direct shooting methods are very good for problems where
the control can be parameterized in a simple manner (for example, piecewise linear
functions of time) and the problem can be characterized accurately using a small
number optimization parameters. Software programs such as POST perform well
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on launch vehicle ascent trajectories because these problems can be approximated
accurately using simple control parameterizations. As the complexity of the problem
increases, it becomes more and more apparent that the workhorse for solving trajec-
tory optimization problems is the direct collocation method. The two main reasons
that direct collocation methods work so well is because highly complex problems
can be formulated and solved with today’s NLP solvers. The reason that the NLP
solvers can handle such complex problems is because they are designed to converge
with poor initial guesses (for example, straight line guesses in the state and control)
and are extremely computationally efficient because they exploit the sparsity of the
derivatives in the constraints and objective function.

In many cases, the solution of a trajectory optimization problem is a means to an
end, that is, the user does not want to know all of the details about a method, but
simply wants to use a software program to provide results so that a particular problem
of interest can be solved. If one does not wish to become an expert in the technologies
associated with trajectory optimization, it is advisable to obtain a canned software
package that allows a user to input the problem in an intuitive manner. Then the
software can simply be run on the problem of interest. It is always important to
understand, however, that canned software can have its issues when things go wrong
because the user may often not understand why.

1.9 Applications to Automotive Systems

The numerical methods provided in this survey are designed to generate reference tra-
jectories and corresponding reference controls for systems that have well developed
deterministic models. In the context of automotive systems, the methods described in
this paper would be of relevance to optimal control in systems where performance is
important. For example, state-of-the-art direct collocation software such as GPOPS-
II or SOCS could be employed to generate highly accurate trajectories to determine
the minimum lap time required in a in high-speed race car problem (for example, For-
mula One racing). In addition, the indirect methods described in this paper could be
the starting point for developing near-optimal feedback controllers for use in engine
design or in autonomous ground vehicles. Thus, the numerical methods described
in this survey could be used to generate solutions to a wide variety of problems in
automotive systems, and the particular numerical method employed would depend
upon the intended use of the solution.

1.10 Conclusions

A survey of numerical methods for solving trajectory optimization problems has been
given. The problem of solving optimal control problems has been decomposed into
the three key components of solving differential equations and integrating functions,
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solving nonlinear optimization problems, and solving systems of nonlinear algebraic
equations. Using these components, the two classes of indirect and direct methods
for solving optimal control problems have been described. Subsequently, important
computational issues have been discussed and several different software tools for
solving optimal control problems have been described. Finally, a brief discussion
has been given on how to choose a method.
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Chapter 2
Extremum Seeking Methods for Online
Automotive Calibration

Chris Manzie, Will Moase, Rohan Shekhar, Alireza Mohammadi,
Dragan Nesic and Ying Tan

Abstract The automotive calibration process is becoming increasingly difficult as
the degrees of freedom in modern engines rises with the number of actuators. This
is coupled with the desire to utilise alternative fuels to gasoline and diesel for the
promise of lower CO2 levels in transportation. However, the range of fuel blends
also leads to variability in the combustion properties, requiring additional sensing
and calibration effort for the engine control unit (ECU). Shifting some of the calibra-
tion effort online whereby the engine controller adjusts its operation to account for
the current operating conditions may be an effective alternative if the performance
of the controller can be guaranteed within some performance characteristics. This
tutorial chapter summarises recent developments in extremum seeking control, and
investigates the potential of these methods to address some of the complexity in
developing fuel-flexible controllers for automotive powertrains.

2.1 Introduction

Reciprocating engines are used in transportation and stationary power generation,
with diesel and gasoline representing the vast majority of the fuels used. Their envi-
ronmental impact is observable in the fact that the Australian transport sector con-
tributes approximately 15 % of national CO2 equivalent emissions [20], while this
ratio is slightly higher in the EU and US at 17.5 and 22 % respectively. Meanwhile,
over the period 1990–2007 the relative cost of oil has also risen nearly 300 % [33].
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The environmental impact of petroleum fuels has led to substantial consideration
and investigation of lower CO2 emitting alternatives. Regional dependencies dictate
that the best option from a fuel security and cost perspective are not unique with
the possible options including liquified petroleum gas, compressed natural gas and
various levels of ethanol blending with gasoline.

While the concern over the environmental ramifications of exhaust emissions
has been well publicised, the public health implications of emissions are only just
coming to light. A study by the Californian Air Resources Board [5] estimated 9,000
premature deaths during 2007 inCalifornia alone are attributable to particulatematter
of diameter less that 2.5 microns. By way of comparison, natural gas has less than
half the particulate matter of diesel [23], and liquefied petroleum gas (LPG) has 70%
fewer particulate emissions than gasoline [4].

Thedownside of both these andother alternative fuels, however, is that in unrefined
form their composition is variable. Consequently, subsequent operation can vary
markedly, for example a 20 % change in fuel consumption was observed across a
range of typical CNG blends in [10], while LPG can vary from propane-butane ratios
of 25:75–100:1, with emissions performance significantly impacted [24].

From the engine control systems perspective, the challenge of changing compo-
sition is reflected in Fig. 2.1. In this figure, the torque produced from an internal
combustion engine for spark sweeps on two CNG blends at a close to idle operating
condition are presented. Here, an incorrect (fixed) assumption on fuel composition
would lead to an incorrect MBT estimate used by the engine controller—leading
to efficiency degradation and possible increased coefficient of variation of indicated
mean effective pressure. The same scenario of lost optimality applies for other engine
inputs.

While this approach focuses on the immediate penalty associated with changing
fuel composition, the presence of hierarchical control algorithms in many of the
more complex powertrains can also lead to performance and efficiency degradation
if the composition is incorrectly modelled. One such example is investigated in [13],
where a turbocharged flex fuel engine is used in a hybrid power train with an optimal
Equivalent fuel Consumption Minimisation Strategy (ECMS) controller based on
Pontryagin’s Minimum Principle.

Figure 2.2 shows the fuel consumption maps mapped using E5 and E85 fuels for
the test engine. In this instance, it was found that incorrect assumptions of the fuel
consumption could lead to fuel efficiency degradation of the hybrid vehicle of up
to 30 % relative to the best possible performance obtained when the fuel map was
known perfectly and available to the ECMS-based hybrid power train controller.

Forfixed fuel operation, the traditional approach to engine control is to apply a look
up table approach whereby the inputs are predetermined for each engine operating
point using a lengthy calibration procedure. While many proposed engine control
approaches use dynamic engine models in the controller [22, 27], they typically
maintain look up tables to capture properties relating to in-cylinder dynamics such as
indicated efficiency. These multidimensional surfaces are obtained during a separate
calibration procedure. In both situations, if the fuel composition varies from that
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Fig. 2.2 Engine efficiency maps for a flex fuel engine running with (left) E05 and (right) E85 fuel

used during the calibration, the engine controller performs suboptimally and overall
engine performance may degrade.

As a consequence, it would appear there is a need to implement some form of
online optimisation to maximise the benefits promised by alternative fuels. However,
the inclusion of any such adaptive capability must be in conjunction with rigorous
guarantees on the performance of the closed loop system. With this in mind, recent
developments in extremum seeking methods appear a good potential solution candi-
date, and three main categories of extremum seeking algorithms are reviewed in the
subsequent section.
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Fig. 2.3 Basic SISO extremum seeking scheme exhibiting sinusoidal perturbation to plant input,
with high and low pass filters either side of demodulation step

This is then followed by a discussion of some of the automotive implementations
of extremum seeking algorithms currently reported in the literature, as well as an
outline of future possibilities for future research directions from both a theoretical
and application based perspective.

2.2 Review of Extremum Seeking

The first known examples of extremum seeking techniques date back to 1922 [12],
with several practical examples seen up until the 1950s, however the lack of formal
proofs and performance guarantees led to the approach being largely set aside of
several decades. This changed around the turn of the century with the development
of local stability results in [11] for the basic extremum seeker shown in Fig. 2.3.

This approach essentially uses a sinusoidal perturbation to perturb the input to
a dynamic plant with output y. The output is high pass filtered to remove any DC
offset, before being multiplied by the dither to demodulate the gradient estimate.
The gradient information can now be isolated by low pass filtering to remove all
components of the plant output that are harmonics of the dither frequency. The
resulting gradient estimate is then used in a gradient descent algorithm to push the
plant towards its minimum. Provided the plant has a smooth output function h(x) to
which the output converges uniquely then semi-global practical stability is achieved
with appropriate tuning of the parameters a, b, c, k and ω.

Following these initial results, many implementations of extremum seeking tech-
niques have followed and further refinements of the theoretical foundations have been
made.A comprehensive review of both the theoretical developments and applications
of extremum seeking over the period 1922–2010 is provided in [30].

The extremum seeking literature can now be broadly classified into three groups:
black-box approaches; grey-box approaches; and sampled data approaches. These
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Fig. 2.4 Generalised black box extremum seeking framework

have different implementations and subsystem requirements which will be discussed
in the following sections.

2.2.1 Black-Box Extremum Seeking

A guiding principle of the basic extremum seeking algorithm outlined above is that
no model information about the plant is required, leading to it often being referred to
as a black box scheme. Other approaches reported in the literature have considered
alternative components in place of the filters and gradient descent in Fig. 2.3, with
the essence of the majority of these black box approaches captured in Fig. 2.4, which
shows the dynamic plant connected to a gradient estimator, and finally the input to
the plant updated through an appropriate optimisation algorithm.

Although more formally stated in [18], the following requirements are placed on
the components of Fig. 2.4 in a general setting.

Plant: The plant dynamics, f (x, u) have an asymptotically stable equilibrium
described for each plant input u by the surface x = l(u). The input–output map
of the plant at equilibrium Q(u) := h(l(u)) is continuous and has a unique global
maximum, u∗.

Gradient estimator: Consider the first N -derivatives of Q(u) as represented in
the vector DN (Q), i.e.:

DN (Q) :=
[

d Q

du
, . . . ,

d N Q

duN

]T

(2.1)

The gradient estimator and dither signal must contains sufficient excitation of the
plant to provide sufficiently accurate estimation of DN (Q) over a finite time interval.
The dynamics of the gradient estimator may be represented as:
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˙̂DN (Q) = ε1F1(D̂N (Q), P, y) (2.2)

Ṗ = ε1F2(P, y) (2.3)

Here P represents the presence of potential auxiliary states in the estimator.
Unlike in the extremum seeking scheme of Fig. 2.3, the dither need not be sinu-

soidal, and is only necessary to ensure the first N gradients of the input–output
plant map can be estimated (assuming the chosen optimiser requires N derivatives).
Consequently, various dither alternatives such as square wave, triangular wave and
stochastic signals have been used. As with the dither signal, numerous gradient
derivative estimators have been proposed and successfully deployed, ranging from
combinations of first order filters [3, 19], through to Luenberger observers [15] and
Kalmanfilters [32]. The dynamics of the gradient estimator are controlled through the
tuning parameter ε1, representing for example the cut-off frequency of the high pass
filter or the gain used by a Luenberger observer. The suitable choice of ε1 typically
delivers time scale separation of the plant and estimator dynamics.

Optimiser: Consider the continuous optimisation algorithm operating on known
derivatives DN (Q) of a static map Q(z):

ż = ε2F3(z, DN (Q(z))) (2.4)

The chosen optimisation algorithm ensures that the output of the static map Q(z)
converges to the optimum value, Q(z∗), with some degree of robustness. Again
there are many possible choices for the optimiser, ranging from the gradient descent
approach shown in Fig. 2.3, to higher order optimisers such as Newton step [15] and
other variants, although all typically have tunable dynamics represented by ε2. As
with the gradient estimator, the choice of ε2 is used to ensure time scale separation,
this time between the gradient estimator and the optimiser.

This decomposition of the closed loop extremumseeking scheme enables the prac-
titioner to independently select the optimiser and gradient estimator from families of
possible options satisfying the requirements stated above. The overall convergence
of the system is then guaranteed by ensuring that the plant, gradient estimator and
optimiser occupy different time scales (formally stated in Theorem 1 of [18]). This is
achieved by selecting the gains such that the gradient estimator is sufficiently slower
than the plant, and the optimiser is sufficiently slower than the gradient estimator
to ensure time scale separation—therefore enabling the plant to be ‘seen’ as a static
map by the gradient estimator, and both components to be ‘seen’ as static by the
optimiser.

There is a tradeoff to be balanced in selecting the gains and dither, as smaller
values yield slower convergence but guarantee the convergence of the output will be
to a smaller vicinity of the optimum of the static map, Q(u).

The generality of the framework presented above is useful in guaranteeing conver-
gence and developing tuning rules despite very little knowledge of the plant. How-
ever, one potential drawback of this generality is the conservativeness of the result
particularly in terms of convergence rate, to ensure time scale separation between
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Fig. 2.5 Generalised it grey box extremum seeking framework

the major system elements. With greater specificity about the plant structure, and by
utilising particular schemes for gradient estimation and optimisation, faster conver-
gence properties can be obtained. Such approaches have been described for Wiener-
Hammerstein plants [14], and principally rely on plant input and output filters to
remove the need to wait for plant dynamics to settle before updating the extremum
seeking output. This allows for high frequency dithers to be employed and arbitrarily
fast (in the absence of noise) convergence to be achieved.

2.2.2 Grey-Box Extremum Seeking

The fast extremum seeking approaches of the previous section utilise knowledge
about the plant dynamics in the design of the input and output filters. In many prac-
tical applications however, there is knowledge of the basic form of the optimisation
surface, Q(u), to which the dynamics converge. The utilisation of this knowledge in
an extremum seeking context falls largely in the domain of the so-called grey box
approaches. Here, the surface Q(u), is parameterised in terms of a vector of unknown
parameters, θ, i.e.:

Q(u, θ) = Ψ (u)T θ (2.5)

Thus, by estimating θ potentially non-local information about the surface can be
obtained. In [1, 2], this approach was explored for specific instances of the parameter
estimator and optimiser, and then further generalised in [16] leading to a description
of the closed loop system in the form shown in Fig. 2.5.

The parallels with the generalised black box framework of Fig. 2.4 are clear, and
there exist similar requirements on the plant and optimiser in the grey box scheme,
although the following requirement for the parameter estimator replaces that for the
gradient estimator given above.

Parameter estimator: The parameter estimator can be represented in the general
form as states directly relevant to the parameter estimates and additional states within
the parameter estimator, i.e.:
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˙̂
θ = ε1G1(θ̂, P, y, u) (2.6)

Ṗ = ε1G2(P, y, u) (2.7)

The parameter estimator and dither signal combination needs to contains sufficient
excitation of the plant to provide estimation of the parameters within a finite time
interval. A thorough analysis of a number of different parameter estimation schemes
was conducted in [16], with possibilities for deployment including gradient algo-
rithms with and without integral costs along with least squares estimation variants.

By incorporating the parameter estimator in place of the gradient estimator, the
optimiser can potentially utilise differently structured optimisers thatmay take advan-
tage of the estimated map, while still satisfying the time scale separation of the black
box scheme. This reliance on time scale separation implies that substantial increases
in convergence rates over the black box approach are not necessarily forthcoming.

With this in mind, preliminary research has been made into algorithm specific
grey box approaches that lack the generality of the framework described above but
may have potential along the lines of the fast black box approaches described in the
previous section [26].

2.2.3 Sampled Data Approaches

The previous two categories of extremum seeking algorithms use continuous time
optimisation algorithms, and consequently only draw upon the discrete time opti-
misation field indirectly through the time scale separation providing the optimiser
can satisfy the requirements. An alternative viewpoint, drawing more directly on
nonlinear programming techniques, was first presented in [31], and is illustrated in
Fig. 2.6.

In this approach, the dynamic plant is treated as a system to be sampled, with
a finite number of sampled plant outputs used to estimate derivatives of the static
map before the control input is updated, and enabled the use of many discrete time
optimisation algorithms such as Finite Differencing and Simultaneous Perturbation
Stochastic Approximation (SPSA) [29]. The work was generalised further in [9],
where a different style of proof was used and required the discrete time optimisation
algorithm to be uniformly attractivewith respect to small additive disturbances, rather
than asymptotically stable as in [31]. The later approach also opens the possibility
for non-gradient based global optimisation algorithms such as Piyavskii-Shubert and
DIRECT to be rigorously deployed [8, 17] thereby reducing the requirement that the
plant have only one global optimum—albeit at significant convergence time penalties
relative to the local optimisation techniques.

As seen with the continuous extremum seeking approaches, there may be advan-
tages in forsaking generality of the sampled data approach and focusing on a specific
combination of discrete time optimiser and plant. In [28], a discrete time Hammer-
stien plant is subjected to an algorithm using a square wave dither with a two step
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Fig. 2.6 Generalised sampled data extremum seeking framework

averaging filter with the specific nature of the system enabling LPV techniques to be
used to generate an exponential stability result.

2.3 Application to Automotive Engine Calibration

One of the earliest applications of extremum seeking in the automotive calibration
context was in [25], where a grey box extremum seeking architecture was designed
and implemented for spark control on a gasoline spark ignition engine. The approach
assumed a quadratic map between the spark angle and indicated torque, similar to
Fig. 2.1. The parameters of the quadratic were then estimated using a recursive least
squares estimator, although the optimiser used attempted to immediately drive the
control input to the optimum level as calculated by the estimated parameters, and
consequently the time scale separation required for convergence guarantees in the
grey-box schemes of Sect. 2.2.2 was not present. Thus while successful results were
reported, the initial conditions of the parameter estimator need to be sufficiently close
to the true values for convergence to occur.

Addressing the multi-variable calibration problem from an extremum seeking
perspective was explored in [21]. This approach considered a sampled data imple-
mentation of extremum seeking (as in Sect. 2.2.3), with the actuation variables of
intake and exhaust valve timing along with the spark timing. From arbitrary initial
conditions, the calibration process using extremum seeking was found to take around
15 min to locate the optimum, largely impacted by the multivariable nature of the
problem and the noise associated with torque measurements requiring long averages
of measured data.

In-service alternative fuelled engines may experience regular fuel composition
changes, yet the opportunity to undertake manual recalibration is not present. The
growing interest in these engines has renewed interest in online calibration. One
recent implementation considered the situation for flex-fuelled engines [6] considers
a ES implementation in the class of black box systems described in Sect. 2.2.1 to
maximise fuel economy by adjusting the spark. This approach utilises a discrete
time version of the black box approach of the form given in Fig. 2.3, with a square
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wave perturbation. Unlike in [21], only the spark is changed and this single variable
nature of the optimisation coupled with the fact that the optimisation problem is
effectively ‘hot-started’ as the optimal spark will not vary significantly between
different ethanol-gasoline blends means the outcome is more positive in terms of
real world deployability.

In a similar vein, but with compressed natural gas blends as the fuel source, differ-
ent implementations of the grey box extremum seeking framework falling under the
framework of [16] were investigated as possible spark optimisation strategies. Exper-
iments are carried out for two blended pure methane and a blended gas consisting of
80 % methane, 9 % carbon dioxide, 8.5 % nitrogen, 2 % ethane and 0.5 % propane.
As with [25] and shown in Fig. 2.1, open loop tests demonstrate that a quadratic
polynomial approximation seems a good representation of the data, allowing the
following model to be used relating torque, τ , and spark α:

τ (α) = λ1α
2 + λ2α + λ3 (2.8)

Defining the regressor vectorφ = [α2 α 1]T , the grey box approach then involves
the selection and tuning of appropriate parameter estimator for θ := [λ1 λ2 λ3]T ,
and an optimiser to drive τ towards τ∗.

To demonstrate the flexibility afforded by the framework approach, experiments
were conducted using two different estimator-optimiser combinations. The first con-
sisted of recursive least squares parameter estimator and gradient based optimiser,
while the second consisted of a gradient based parameter estimator and a Jacobian-
matrix transpose optimisation metric. All parameter estimators and optimisers had
previously been shown to satisfy the theoretical requirements of the grey box frame-
work in [16], and the tuned algorithms are repeated below in (2.9)–(2.13). The dis-
crete nature of the presented algorithms reflects an emulation of the continuous time
versions of (2.6)–(2.7) and (2.4).

Gradient-based parameter estimator after tuning:

θ̂k+1 = θ̂k − [0.002 0.05 1]T (τk − φT
k θ̂k) (2.9)

Recursive least squares parameter estimator after tuning:

θ̂k+1 = θ̂k + Pkφk(τk − φT
k θ̂k) (2.10)

Pk+1 = Pk + (0.9Pk − Pkφ
T
k φk Pk) (2.11)

Gradient based optimiser after tuning:

α̂∗
k+1 = α̂∗

k + 10(2âk α̂
∗
k + b̂k) (2.12)

Jacobian matrix transpose optimiser after tuning:

α̂∗
k+1 = α̂∗

k − 75âk(2âkα̂
∗
k + b̂k) (2.13)
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The applied spark advance is then the current estimate of the optimal spark
advance, α̂∗

k , perturbed by a sinusoidal dither of amplitude one crank angle degree,
i.e.:

αk = α̂∗
k + sin(0.1kT ) (2.14)

All experiments to test these algorithms were conducted in the test cell of the
ACART Laboratory at the University of Melbourne. The engine tested a six cylinder
4L Ford Falcon BF MY2006 gasoline engine which is converted to operate with
natural gas.

In order to keep the speed and load of the engine constant, an eddy current
dynamometer is used which can only work as a brake and is not capable of motoring
the engine. The air-fuel ratio wasmaintained at an approximately stoichiometric con-
dition by adjusting the injection duration with feedback from a wide-band exhaust
oxygen gas sensor. The proposed algorithms were implemented in MATLAB. The
output of the MATLAB program were sent in realtime directly to the engine control
unit (ECU) via ATI Vision software, thereby adapting the stored calibration. The
delays in communication between the different software programs were measured
at approximately 6 ms, which was considered negligible in the context of this appli-
cation. Feedback torque was obtained through measurements from a load cell on
the dynamometer, although in the future could be replaced by in-cylinder pressure
sensors and appropriate combustion analysis. The torque measurement was averaged
over a period of three seconds to minimize the effects of combustion variability and
measurement noise. The sample rate used by the controller was set nominally to 5 s
so as to be longer than the torque measurement time.

The engine control unit was initially calibrated using the blended methane gas,
leading to an initial estimate of MBT at approximately 40◦ BTDC. The actual fuel
used in the engine was pure methane, and consequently the extremum seeking con-
trollers were required to adapt the spark to find the new MBT spark, which lies at
approximately 33◦ BTDC, although may vary slightly with engine temperature. The
adapted spark and resulting engine torque for each of the two extremum seeking
combinations are shown in Figs. 2.7 and 2.8.

In both instances, (although not shown) the parameter estimates also converge
to a vicinity of the ‘true’ values, and the spark converges to a close vicinity of the
optimum. To quantify the gains in efficiency the incorporation of these extremum
seeking approaches strategies may provide, the fuel flow rate of the engine running
with the initial spark advance at the specified operating point was compared to fuel
flow rate after convergence of the spark to the optimal value. This latter value was
corrected to allow for the torque difference although in practice this could be achieved
through modification to the throttle angle. Consequently it was found that the fuel
economy improved by approximately 3 % at this static operating condition.

To further demonstrate theflexibility of viewing extremumseeking as a framework
approach, a sampled data approach is also presented for the same engine. In this
approach, an ES scheme using a simple alternating dither signal a(−1)k is added
to the current estimate for the optimising value of the system input, and used as the
applied spark in place of (2.14). The resulting torque (after the two second averaging)
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Fig. 2.7 Grey box convergence for a recursive least squares parameter estimator and gradient based
optimiser (top) spark advance (bottom) measured and 2 s averaged engine torques

is multiplied by the signal (−1)k and passed through a two-step moving-average
FIR filter and discrete-time integrator. This advances the estimate for the optimising
value according to an approximate gradient ascent law, based on a two-point central
difference approximation applied to the engine spark-to-torque mapping. The entire
closed loop scheme is represented by the block diagram shown in Fig. 2.9.

Implementing this sampled data extremum seeking approach on the same engine
set up as described previously, with an initial estimate of MBT spark of 22◦ leads to
the results shown in Fig. 2.10. As previously observed for the grey box approaches,
convergence to the vicinity of the optimum spark and torque occurs and there is a
subsequent improvement in fuel economy of approximately 3 % at this operating
point relative to the case of no adaptation of the spark.

The convergence speed of the algorithms tested in this sectionwarrants discussion.
As shown in Figs. 2.7–2.10, the schemes take of order 100 s to converge to the
optimum at a fixed operating condition. On its own, this convergence time is not of
significant concern as the rate of change of fuel composition is much slower thereby
allowing even a 100 s transient to be deemed negligible if steady state operation is
considered.

During transient engine operation, such as might be considered during urban
driving, it is however unlikely that the engine will remain at a constant, non-idle
operating condition for periods of this duration. The convergence rate is a conse-
quence of the nature of the time scale separation requirement of the plant, esti-
mator and optimiser for the extremum seeking framework-based theory, which is
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Fig. 2.8 Grey box convergence for a gradient based parameter estimator and Jacobian matrix
transpose (top) spark advance (bottom) measured and 2 s averaged engine torques

Fig. 2.9 Proposed sampled data extremum seeking approach for optimal spark estimation on CNG
engine

principally centred on guaranteeing convergence using very relaxed requirements on
the components of the closed loop scheme. By being more restrictive in the selection
of these components, the tuning requirements can be modified and the convergence
rate can potentially be sped up using the faster extremum seeking approaches in the
vein of [14].

Finally, for the purposes of demonstration of the extremum seeking techniques,
brake torque has been directly measured and used as the feedback to be optimised
in these experiments. Such a measurement is clearly not directly available in an
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Fig. 2.10 Spark and torque progression under the proposed sampled data extremum seeking
approach with a = 1◦

on-road application, and so surrogate measurements must be employed depending
on the available sensor set.

2.4 Incorporation of Constraints

Not discussed in the methodology so far is the issue of constraint management.
For input constraints, if the plant inputs, ū, are required to lie within a set, Uc, the
optimiser can explicitly take this into account by projecting the new optimiser output,
ū proj onto the Pontryagin difference of the constraint set and the dither set, D i.e.:

Uc � D � {ū ∈ Rn | ū + d ∈ Uc,∀d ∈ D} (2.15)

ū proj = proj(ū, Uc � D) (2.16)

This ensures the dither is still able to persistently excite the system, even approach-
ing the constraint boundary, and the gradient or parameter estimates in the black or
grey box schemes are maintained.

In the context of the engine calibration problem, this might mean for example the
physical actuator limits are captured so that, for example, the spark is constrained to
occur within the compression stroke of that cylinder. These types of constraints are
rigorously enforceable.

On the other hand, state constraints are not so easily dealt with as generally there
is no concept of ‘state’ in the model used in an extremum seeking controller. In
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this case, an approximate solution is that the state constraints must be mapped to
input constraints, so that Uc in (2.15)–(2.16) becomes time varying and most likely
requires online estimation.

Again in the context of the online calibration problem, the spark timing in a
natural gas engine is often constrained by knock limitations. The occurrence of
knock is related to the fuel composition, which can be viewed as an internal state and
is clearly unknown from the problem definition. Knock detection algorithms (see e.g.
[7] and the references within) can be used to continually estimate the knock limit on
spark advance, which may then be used to update the constraint set Uc.

2.5 Summary and Future Opportunities

The recent development of extremum seeking frameworks has delivered consider-
able flexibility into the deployment of different algorithms to achieve convergence
to optimal performance in many applications. To the automotive community, this
appears to be highly relevant as the industry continues a progression towards alter-
native fuels exhibiting variable composition, thereby necessitating some form of
closed loop calibration being conducted during regular vehicle operation.

There remain a number of theoretical challenges and opportunities for research
in extremum seeking algorithms. These include research into increasing the conver-
gence rate without unduly compromising the region of attraction; dealing with map
uncertainty in grey box frameworks; handling state constraints within the various
frameworks; and identifying when certain frameworks might lead to better closed
loop performance.

Similarly, there are also application-centric issues for automotive calibration
including the deployment of the algorithms in transient driving conditions; imple-
menting someof the novel theoretical developments promising faster convergence for
online multivariable calibration; consideration of emissions in the cost function; and
the integration with model based techniques for faster offline calibration particularly
in highly actuated engines.
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Chapter 3
Model Predictive Control of Autonomous
Vehicles

Mario Zanon, Janick V. Frasch, Milan Vukov, Sebastian Sager
and Moritz Diehl

Abstract The control of autonomous vehicles is a challenging task that requires
advanced control schemes.NonlinearModel PredictiveControl (NMPC) andMoving
HorizonEstimation (MHE) are optimization-based control and estimation techniques
that are able to deal with highly nonlinear, constrained, unstable and fast dynamic
systems. In this chapter, these techniques are detailed, a descriptive nonlinear model
is derived and the performance of the proposed control scheme is demonstrated in
simulations of an obstacle avoidance scenario on a low-fricion icy road.

3.1 Introduction

Due to the well known vehicle-road dynamics, Model Predictive Control (MPC) is
an excellent tool for precise trajectory planning in autonomous vehicle guidance,
which can be of great importance in dangerous driving situations. High sampling
rates (i.e., in the range of tenths of Hertz) and long prediction horizons however,
which are required for a safe operation, pose a computational challenge, particularly
in combination with the involved nonlinear vehicle dynamics. Many recent chapter
chose a two-level MPC approach to overcome this computational challenge, being
composed of a coarse path planning algorithm with a long prediction horizon, and
a higher-fidelity path following algorithm on a shorter horizon, cf. [1–4]. Only very
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recently the computational feasibility of a challenging, realistic scenario using a
single MPC controller with a detailed nonlinear model was demonstrated in [5],
using auto-generated tailored C code based on the real-time iteration scheme [6] for
Bock’s multiple shooting method [7].

In the following, the results from [5] are extended and combined with the corre-
sponding Moving Horizon Estimation (MHE) scheme [8] for full state and paramter
observation in an realistic context. In particular we yet extend the vehicle model
used in [5, 8] by introducing a suspension model for a more realistic representation
of the driving behavior even in extreme situations. The MHE scheme has also been
modified to detect sudden changes in the road friction condition fast and reliably.

The description of the mathematical problem formulation is given in Sect. 3.2.
Section 3.3 provides a presentation of the real-time feasible algorithmic framework.
In Sect. 3.4, the vehicle model is derived, and simulation results are presented in
Sect. 3.5. Conclusions are drawn in Sect. 3.6.

3.2 Control and Estimation Problems

In order to formulate the control and estimation schemes let the system dynamics be
described by ordinary differential equations (ODE)

ẋ = f(x, u). (3.1)

where x(t) denotes the differential states and u(t) denotes the controls. The formu-
lations proposed in the following of the chapter can straightforwardly be extended
to systems governed by differential-algebraic equations DAE [9]. Parameters xp can
be considered as states with zero time derivative, i.e. ẋp = 0.

3.2.1 Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is an advanced control technique that
relies on the systemmodel to predict the system trajectory andminimize its deviation
fromagiven reference. The full nonlinearity of themodel can be taken into account by
NMPC and constraints depending on both states and controls can be easily enforced
in the problem formulation.

NMPC consists of solving the following dynamic optimization problem at every
time instant
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minimize
x,u

≤x(Tc) − xr(Tc)≤2PC

+
⎧ Tc

0
≤x(t) − xr(t)≤2QC

+ ≤u(t) − ur(t)≤2RC
dt (3.2a)

subject to ẋ(t) = f(x(t), u(t)), (3.2b)

x(0) = x̂(0), (3.2c)

q(x(t), u(t)) ∈ 0, t ∞ [0, Tc], (3.2d)

x(Tc) ∞ XTc , (3.2e)

where Tc is the prediction horizon. The objective function is usually formulated as a
least-squares (LSQ) objective (3.2a) penalizing the deviation from a given reference
xr(·), ur(·), where QC, PC ≈ 0 and RC ≡ 0 are weighting matrices, to be selected as
tuning parameters. The constraint (3.2b) enforces the system dynamics. The initial
condition (3.2c) imposes that the initial state coincides with the current estimate
x̂(0) and additional path constraints (3.2d) can be enforced. Finally, a terminal con-
straint (3.2e) can also be enforced.

The stability of MPC has been first proven for a steady-state reference under the
condition that Xt = {xr (Tc)}. In this context, the terminal cost ≤x(Tc) − xr(Tc)≤2PC
does not appear in the formulation. In many practical cases, this formulation can
be too restrictive and lead to infeasibility of the optimization problem, especially
when the control horizon Tc becomes short. To increase feasibility, the terminal
constraint can be relaxed to an ellipsoidal constraint centered around the reference
and a terminal cost needs to be added to the problem formulation. Stability can be
proven under some conditions on the choice of the weighting matrix PC and the
ellipsoidal terminal constraint XTc . An excellent survey on stability of MPC is given
in [10].

In practice, MPC is often implemented without terminal constraint (3.2e) and, in
many cases, also without terminal cost. In this case, stability has been proved in [11],
provided that the prediction horizon Tc is long enough.

3.2.2 Moving Horizon Estimation

The problem of estimating the current state given a set of measurements can be
formulated as an optimization problem. This idea is at the basis of the Kalman filter.
Moving Horizon Estimation (MHE) can be seen as an extension of the Kalman filter
that can take into account the full model nonlinearities and gives the opportunity to
enforce constraints. It is important to stress though, thatMHE relies on a deterministic
model and it does not need any specific assumption on the probability distribution
of the noise.

MHE consists in minimizing the mismatch between the measurements ỹ(t) com-
ing from the sensors and the ones predicted by the model measurement function
y(x(t), u(t)). This corresponds to the dynamic optimization problem
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minimize
x,u

⎪⎪x(−Te) − x̂(−Te)
⎪⎪2

PE
+

⎧ 0

−Te
≤y(x(t), u(t)) − ỹ(t)≤2QE

dt (3.3a)

subject to ẋ(t) = f(x(t), u(t)), (3.3b)

q(x(t), u(t)) ∈ 0, t ∞ [−Te, 0], (3.3c)

where Te is the estimation horizon. The cost function (3.3a) is usually formulated as
a least-squares term with the weighting matrix QE. Though MHE is a deterministic
observer, the probabilistic insight is very valuable for the choice of QE. In a sim-
ilar manner as for NMPC, the constraints (3.3b) enforce the system dynamics and
additional path constraints (3.3c) can be enforced.

Because of actuator noise and inaccuracy, the control inputs computed by the
controller ū may not be perfectly implemented by the system. Thus, in the proposed
formulation, the control inputsu are included as decision variables and their deviation
from ū is penalized, i.e. ≤u− ū≤2Qu

E
is added to the cost function. This can be achieved

by adding pseudo-measurements to the measurement function y(x(t), u(t)).
The so-called arrival cost [(first term in Eq. (3.3a)] has the important role of

summarizing past information in a quadratic term which depends on the initial state
x(−Te). For more details on the arrival cost see [12, 13].

3.3 Efficient Algorithms for fast NMPC and MHE

The nature of the NMPC and MHE problems (3.2a)–(3.2e) and (3.3a)–(3.3c) is a
dynamic optimization problem. The complexity of such problems makes it hard for
general-purpose solvers to compute solutions fast enough for a real-time implemen-
tation. Tailored numerical algorithms are thus needed to overcome these challenges
in a real-time application.

3.3.1 Online Solution of the Dynamic Optimization Problem

A variety of methods has been proposed for the efficient online (i.e., time-critical)
solution of dynamic optimization problems [6, 14–16]. While most methods are
targeted at problems from areas like chemical engineering with rather slow sam-
pling rates, one algorithm that has shown to be effective also for applications with
fast system dynamics, is the so called real-time iteration scheme [6]. This algo-
rithm is based on Bock’s direct multiple shooting method which was originally in-
troduced for the offline solution of optimal control problems [7]. Parametrizing the
control input functions by suitably chosen basis functions on a finite grid, the infinite-
dimensional optimization problem is discretized yielding a finite-dimensional non-
linear programming problem (NLP). Initial value problems are solved on each of
these so called shooting intervals by appropriate numerical integration routines. The
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resulting NLPs are highly structured and are originally solved using a sequential
quadratic programming (SQP) approach including a condensing step for projection
of the high-dimensional quadratic program (QP) on a significantly lower dimen-
sional problem. Alternatively, structure exploiting QP solvers have been proposed
recently [17]. In contrast to Bock’s original multiple shooting method, the real-time
iteration scheme performs only one linearization and one QP solution per sampling
time. Thus, significantly higher sampling rates can be achieved, yet contractivity
can still be guaranteed [18]. Furthermore, by performing the linearization based on
the previous iterate even before observing the new system state/measurement (initial
value embedding), feedback delays can be drastically reduced to simply the solution
time of a parametric QP [17, 19]. Still, the feedback law is a guaranteed first order
approximation of its converged optimal solution, even in the presence of an active
set change. More details on the real-time iteration scheme are provided in [6, 18].

3.3.2 Fast Solvers Based on Automatic Code Generation

Automatic code generation of tailored solvers has recently shown to significantly
reduce the computational times [20]. The ACADO Code Generation tool [21]
is part of the open-source software package ACADO Toolkit [22]—a toolkit for
automatic control and dynamic optimization. It implements the real-time iteration
scheme. The user interface allows one to specify nonlinear dynamic model equations
as well as general nonlinear objective and constraint functions. The code-generator
exports a generalized Gauss-Newton method for nonlinear MPC [20], and nonlinear
MHE [23].

The tool exploits problem structure and dimensions together with sparsity patterns
to remove all unnecessary computations and remove the need for dynamic memory
allocation. The tool generates self-contained ANSI-C compliant code, which can
be deployed on any platform supporting the standard C library. Branching in the
exported code is minimized leading to improved code locality, thus faster execution
times.

Recent extensions of the ACADO Code Generation tool include support for
implicit integrators for ODEs and differential algebraic equations (DAEs) [24, 25].
One of the inherent properties of the multiple shooting algorithm is that model
simulation and sensitivity generation can be performed on each shooting interval
independently. In other words, integration can be easily parallelized, by applying the
so called sharedmemorymodel. The toolkit can export the code which uses OpenMP
framework for parallelization.
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3.4 Vehicle Model

Both NMPC andMHE strongly rely on a mathematical model of the vehicle. Having
a descriptive model is hence fundamental to ensure good control and estimation
performance. In this chapter, a multibody model is proposed in which the chassis is
modeled as a rigid mass connected to the four wheels by suspensions. This model
extends the model previously proposed in [8].

The chassis position and orientation are defined in the X–Y plane of an absolute
reference frame E , while the velocities are given in the local x − y − z frame
e. The heave motion of the chassis is neglected and the four wheels are modeled
as independent bodies with only spinning inertia. Throughout the chapter, when
referring to quantities related to the wheels, subscripts fl, fr, rl, rr denote quantities
corresponding respectively to the front left, front right, rear left and rear right wheel.
For ease of notation, letF := {f, r},S := {l, r} andW := F ×S = {fl, fr, rl, rr}.

The control inputs are the steering rate δ̇, the accelerating torque T a and the four
braking torques of each wheel T b≥Φ, ∗ ≥ Φ ∞ W .

3.4.1 Chassis Dynamics

The equations of motion are written with respect to the vehicle’s center of gravity
(CoG). Reference frames E and e are chosen orthonormal, right-handed with the
z-axis pointing up, and the y-axis pointing left. The chassis equations of motion thus
are

mv̇x = mvyψ̇ + F x
fr + F x

fl + F x
rr + F x

rl + FD, (3.4a)

mv̇y = −mvx ψ̇ + F y
fr + F y

fl + F y
rr + F y

rl , (3.4b)

I zψ̈ = a(F y
fl + F y

fr) − b(F y
rl + F y

rr) + c(F x
fr − F x

fl + F x
rr − F x

rl ), (3.4c)

I y p̈ = T y
s , (3.4d)

I x r̈ = T x
s , (3.4e)

Ẋ = vx cosψ − vy sinψ, (3.4f)

Ẏ = vx sinψ + vy cosψ, (3.4g)

where m denotes the mass and I x , I y , I z the moments of inertia of the chassis. The
distances of the tires from the vehicle’s CoG are characterized by a, b and c, cf.
Fig. 3.1. The CoG is assumed to be located halfway between the left and right side
of the car. The vehicle’s yaw angle ψ is obtained by direct integration of ψ̇ as is the
steering angle δ from input δ̇. The drag force due to air resistance is denoted by FD ,
while F x·· , F y·· denote the components of the tire contact forces along the vehicle’s
local x and y axis. The suspension torques are defined as T x

s and T y
s .

The considered vehicle has front steering, thus
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Fig. 3.1 Tire forces and slip angles of the 4-wheel vehicle model in inertial coordinates. The tires’
directions of movement are indicated by green vectors

F x
fΦ = Fl

fΦ cos δ − Fc
fΦ sin δ, F y

fΦ = Fl
fΦ sin δ − Fc

fΦ cos δ, ∗ Φ ∞ S ,

F x
rΦ = Fl

rΦ, F y
rΦ = Fc

rΦ, ∗ Φ ∞ S ,

where Fl··, Fc·· denote the longitudinal and cornering tire forces respectively.

3.4.2 Tire Contact Forces: Pacejka’s Magic Formula

In this chapter it is proposed to compute the tire forces using Pacejka’s Magic For-
mula: a very accurate semi-empirical nonlinear tire model that is commonly used for
automotive applications. TheMagic Formula allows to compute the longitudinal and
cornering forces as a function of the longitudinal slip and slip angle, while taking into
account the effect of combined slip. The self-aligning torque Mz·· has a significant
contribution only at low speeds [26] and is assumed to be negligible in this chapter.
Longitudinal and cornering forces are thus computed as

⎨
Fl≥Φ, Fc≥Φ

⎢ = fP(α≥Φ,κ≥Φ,μ, Fz≥Φ), ∗ ≥ Φ ∞ W ,

where fP(·) denotes Pacejka’s tire model. The inputs to the Magic formula are: (a)
the side slip angle α··, defined, as displayed in Fig. 3.1, as the angle between the
wheel’s orientation and it’s velocity, (b) the longitudinal slip κ··, (c) the tire-road
friction coefficient μ and (d) the vertical load on the wheel Fz·· . The longitudinal slip
is defined as
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κ≥Φ = ω≥Φ Re − v≥Φ

v≥Φ

,

where v≥Φ is defined as the wheel velocity, ω≥Φ as the wheel rotational speed and Re
as the effective tire radius.

More details on the computation of slip angles and Pacejka forces can be found
in [26–28]; the precise model implementation used for this chapter, including all
parameters, can be found in [29].

3.4.3 Wheel Dynamics

The wheels being modeled as separate bodies with only one rotational degree of
freedom, the dynamic equations only dependon the accelerating andbreaking torques
T a·· and T b·· and on the longitudinal force Fl··. The rotational accelerations are given
by

ω̇≥Φ = 1
Iw (T a≥Φ + T b≥Φ − ReFl≥Φ), ∗ ≥ Φ ∞ W ,

where individual wheel braking is considered. For the acceleration torque a model
of the differential is considered, which, assuming rear-wheel drive, yields

T a
fΦ = 0, ∗ Φ ∞ S ,

T a
rΦ = T a

(
1 − ωrΦ

ωrl + ωrr

)
, ∗ Φ ∞ S .

3.4.4 Vertical Forces and Suspension Model

In this chapter, the suspension of the vehicle is assumed to only act on the roll and
pitch motions of the chassis. The rotation of the chassis is defined as

R = Ry(p)Rx (r) =
⎡

⎣
cos p 0 sin p
0 1 0

− sin p 0 cos p

⎤

⎦

⎡

⎣
1 0 0
0 cos r cos r
0 sin r − sin r

⎤

⎦,

where r and p denote the roll and pitch angles respectively.
The forces of the suspension due to the spring elasticity and damping are defined

respectively as

Fel≥Φ = −k≥φ≥Φ, Fd≥Φ = −D≥φ̇≥Φ, ∗ ≥ Φ ∞ W ,
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where k· and D· denote the elastic and damping constants of the suspension spring.
The suspension displacement is defined as φ≥Φ = Rζ≥Φ − ζ≥Φ,∗ ≥ Φ ∞ W , where ζ··
denotes the wheel position in the body reference frame e.

Denoting the rest vertical forces by F̄ z·· , the vertical forces Fz·· are given by

Fz≥Φ = F̄ z≥Φ + Fel≥Φ + Fd≥Φ, ∗ ≥ Φ ∞ W .

The torques acting on the chassis are given by

T y
s = −2

(
(kf + kr)c

2 sin r + c2(Df + Dr )wx

)
,

T x
s = −2

(
(kfa

2 + krb
2) sin p + (Dfa

2 + Drb
2)wy

)
.

3.4.5 Spatial Reformulation of the Dynamics

For a natural formulation of obstacles and general road bounds under varying ve-
hicle speed one can reformulate the model dynamics in the curvilinear coordinate
defined by the track centerline σ(s) = [Xσ(s), Y σ(s)]T , where s ∞ [s0, sf ] is a curve
parameterization of constant speed ≤ dσ

ds ≤ := 1. In particular, the global vehicle coor-
dinates X, Y , andτ are replacedbyoffset coordinates ey :=⎪⎪[X, Y ]T − [Xσ, Y σ]T

⎪⎪
2

and eψ := ψ − ψσ in distance and orientation from σ, with

ψσ(s) = atan2

(
dY σ(s)

ds
,

d Xσ(s)

ds

)

.

Instead of time t , the independent variable of the dynamic system is taken to be the
parametrization s ∞ [s0, sf ] of the reference curve σ.

The coordinate transformation mapping s: [t0, tf ] ⇐ [s0, sf ] is implicitly defined
by the vehicle’s velocity along σ. From geometric considerations, for the vehicle
velocity in σ-direction vσ = vx cos(eψ) − vy sin(eψ) and its projection onto the
reference curve σ̇, it holds that σ̇

vσ = ρσ

ρσ−ey , where ρσ is the radius of local curvature

of σ at s. From dσ
ds = 1, it follows σ̇ = dσ

ds · ds
dt = ṡ, and therefore the coordinate

transformation is defined by

ṡ = ρσ

ρσ − ey
(vx cos(eψ) − vy sin(eψ)).

For sufficiently small deviations ey from the centerline (more precisely, ey(s) <

ρσ(s)) the coordinate mapping is monotonous if vσ > 0, i.e. if the vehicle is driving
forward, and the vehicle state ξ is uniquely determined in the spatial coordinate
system for each s ∞ [s0, sf ]. The spatial dynamics of the state vector ξ can be
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expressed in relation to the time dependent dynamics through

ξ⇒ := dξ

ds
= dξ

dt
· dt

ds
= ξ̇ · 1

ṡ
,

The last equality holds by the inverse function theorem, which can be applied due to
monotonicity of the coordinate mapping s(t).

More details of the spatial coordinate transformation are provided in [5]. Note
that time information may be recovered by integrating dt

ds = 1
ṡ along σ, and inertial

coordinates are given by:

X = Xσ − ey sin(ψσ)

Y = Y σ + ey cos(ψσ)

ψ = ψσ + eψ.

3.5 Control of Autonomous Vehicles

In this section, theMHEandNPMPC schemes used for the simulations are presented.
Both schemes are based on a piecewise constant control parametrization and the
system dynamics f(x, u) are discretized over the shooting intervals using an implicit
Runge-Kutta method of order 2 [25].

3.5.1 MHE Formulation

The estimation horizon for MHE has been selected as SE = 10 m, divided into
N = 10 control intervals of uniform duration Sc = SE/N .

The available measurements come from an inertial measurement unit (IMU), a
GPS, force sensors on the suspensions, and encoders on the wheels and the steering
wheel. They are summarized in Table 3.1, together with their standard deviation σ.
The weighting matrix QE was chosen diagonal, with all diagonal elements matching
the square of the inverse of the standard deviation σi they correspond to, i.e. QEi,i =
(σi )

−2.
The arrival cost has been computed in a similar way as in [13], where the Kalman

update is computed in an efficient way and it is ensured that the norm of the arrival
cost weighting matrix PE is bounded from above.



3 Model Predictive Control of Autonomous Vehicles 51

Table 3.1 Available
measurements

Sensor Measurements Standard de-
viation σ

IMU Linear acceleration 10−2 m/s2

IMU Angular velocity 0.1 rad/s
GPS Position 10−2 m
Force sensor Vertical forces 5 × 102 N
Encoder Wheel rotational velocity 10−3 rad/s
Encoder Steering angle 10−3 rad

3.5.1.1 Friction Coefficient Estimation

In order to accurately estimate the friction coefficient μ, the model needs to account
for sudden changes in the road friction. This can be achieved by making the friction
coefficient time varying, using a first order model μ̇ = uμ.

Penalization of the variable uμ is needed in order to ensure that the estimate of μ
is not strongly affected by sensor noise. Penalizing uμ in a quadratic (L2) norm has
the effect of filtering out noise, but does not allow for fast detection of large jumps
in the friction coefficient. Jumps are better detected when penalizing the absolute
value of uμ (L1 norm), as large changes are penalized less than with a L2 penalty. In
this case, though, small variations of μ are filtered out together with the noise. The
Huber penalty combines the benefits of the L1 and the L2 penalty. It is defined by

H(x) =
{ 1

2 x2 |x | ≤ ρ

ρ(|x | − 1
2ρ) |x | ∈ ρ

. (3.5)

We refer to [30] for an algorithmically differentiable implementation using slack
variables.

3.5.2 MPC Formulation

The control horizon for NMPC has been selected as SC = 20 m, divided into
N = 20 control intervals of uniform duration Sc = SC/N . This longer horizon has
been chosen, to guarantee that the obstacles are seen sufficiently in advance to allow
for avoidance maneuvers, including stopping the vehicle in extreme conditions.

The weights Q and R have been chosen as diagonal matrices, with each element
selected in accordancewithTable 3.2. The units ofmeasure of theweights are selected
so as to yield a dimensionless cost. The terminal cost matrix PC has been taken as
the solution to the discrete algebraic Riccati equation using the proposed weighting
matrices Q and R.
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Table 3.2 Weights for NMPC

State or control ey , eψ vx , vy , ψ̇ r , p ωx , ωy ω·· T a, T b·· δ̇

Associated weight 1 10 1 1 1 10−4 1e2

3.5.2.1 Constraints with Feasibility Guarantee

For the inputs, the following constraints have been selected

0 ≤ T a ≤ T
a
, T b ≤ T b≥Φ ≤ 0 ∗ ≥ Φ ∞ W .

Byusing the spatial reformulation of themodel, the obstacle avoidance constraints
become simple bounds, defined as

ey ≤ ey ≤ ey . (3.6)

As this obstacle avoidance constraint drives the trajectory away from the reference,
theNMPCscheme avoids the obstacle by steering the vehicle as close to it as possible.
Bounds (3.6) thus become active. For a real system, the state estimate will always
be noisy due to measurement noise or model inaccuracy. Even the smallest violation
of constraint (3.6) might yield an infeasible NLP and make the controller unreliable.
Feasibility of the NLP can be guaranteed by reformulating the obstacle avoidance
constraints (3.6) using non-negative slack variables as

ey ≤ ey + uU
ey

, uU
ey

∈ 0,

ey ∈ ey − uL
ey

, uL
ey

∈ 0 .

In the proposed formulation, the slack variables uey =
[

uL
ey

uU
ey

]
are introduced on each

interval. They can be seen as a measure of the constraint violation corresponding to
each interval.

To penalize the constraint violation, two terms are added to the cost function
JNMPC, which becomes

JNMPC = ≤x(Tc) − xr(Tc)≤2PC +
⎧ Tc

0
≤x(t) − xr(t)≤2QC

+ ≤u(t) − ur(t)≤2RC

+ w1
T uey(t) + ≤uey(t)≤W2dt .

The proposed penalty on the slack variables implements the sum of an L1 and
an L2 norm, using positive (definite) weights w1 and W2, respectively. This choice
allows to add a stronger penalty for large constraint violations (effect of the L2 norm)
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Fig. 3.2 Vehicle trajectory for a straight reference (thin line) and obstacles (thick line). The MHE
estimates are shown in circles. The estimated friction coefficient is displayed in the bottom figure
(thick line), together with the actual friction coefficient (thin line)

while always having a nonzero gradient even when the constraints are not violated
(effect of the L1 norm).

3.5.3 Simulation Results

An obstacle avoidance simulation has been run to demonstrate the performance of
the proposed control scheme. TheNMPC andMHE schemes have been implemented
using the code generation tool of ACADO [20].

As displayed in Fig. 3.2, the vehicle is required to travel at a reference speed
vx = 10m/s while avoiding two 6 m long obstacles positioned at s = 43 m and
s = 123 m on a 200 m long straight road. The first obstacle has to be avoided on the
left and is 2mwide, while the second one needs to be avoided on the right and is 0.8m
wide. The road surface has a very low friction coefficient μ = 0.3, corresponding to
a snow-covered or icy road. After 80 m, the friction coefficient increases to μ = 0.5.

The trajectory obtained by applying the proposed control scheme to this scenario
is displayed in Fig. 3.2, top graph, where it can be seen that the controller is able
to avoid the obstacles. In Fig. 3.2, bottom graph, the estimated friction coefficient
is displayed. It can be noted that the Huber penalty (3.5) successfully rejects the
measurement noise, but still allows to detect the jump in the friction coefficient.
The jump is detected in an approximate way immediately after it occurs. After this
detection, MHE slowly corrects the inaccuracy. The MHE estimation error for the
state vector is displayed in Fig. 3.3, where it can be noted that all quantities are well
estimated. The greatest error is relative to ey , as the selected GPS noise is relatively
high.

All simulations have been run on an Intel Xeon CPU E5520 at 2.27 GHz. The
computational times are reported in Table 3.3.
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Fig. 3.3 Left figure estimation error for the load transfer φz· , the rotational velocities ω·· and the
steering angle δ. Right figure estimation error for the distance from the reference ey and eψ , and the
longitudinal and lateral velocities vx and vy

Table 3.3 Computational
times of preparation and
feedback phase

Preparation (ms) Feedback (ms)

MPC 15.2 5.8
MHE 16.6 5.0

3.5.4 Treating Gear Shifts

An important control in autonomous driving is the gear choice. It implies the in-
troduction of an integer valued control function η(s) ∞ {1, 2, . . . , ngears} and cor-
respodingly a switched dynamic system f (x(s), u(s), η(s)), usually involving gear
specific transmission ratios or degrees of efficiency. From the variety of approaches
that has been proposed to solve offline control problems with gear choices [31–33]
the one that is best suited in this online setting is described in [34]. It builds on a
partial outer convexification of the dynamics [35], i.e., the introduction of convex
multiplier controls ωi (s) ∞ {0, 1},∑ngears

i=1 ωi (s) = 1 and new dynamics

ẋ(s) =
ngears∑

i=1

ωi (s) f (x(s), u(s), i).

This reformulation allows to relax integral gear choices to continuous inputs ωi (s) ∞
[0, 1]which can be treated by the presented software framework. Althoughωi (s) can
take any value in the interval [0, 1], the optimal relaxed solution is often of bang-bang
type and hence a feasible input. The reason is the outer convexification which favors
the most effiicent gear with respect to acceleration both in an energy-optimal as in
a time-optimal setting, as explained in [32]. A possible exception are intervals with
a mismatch between the actuator time grid and optimal switching points, where a
rounding approach can be applied. For sufficiently fast actuators both ε-optimal [36]
and stable behavior [34] have been shown.
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If engine speed constraints need to be incorporated, a more elaborated approach
is necessary, see [37] for a survey of possible problem formulations and methods.

3.6 Conclusions and Outlook

This chapter proposed a framework for combined state and parameter estimation and
control of autonomous vehicles based on NMPC and MHE. The proposed schemes
have been tested in simulations and have shown to effectively control a stiff, highly
nonlinear model with 15 states and 6 controls on a low-friction road in an obstacle-
avoidance scenario.

Recent algorithmic developments made it possible to run those advanced control
and estimation techniques in real-time, with computational times in the order of
20 ms on a standard CPU.

The road-tire friction coefficient has been estimated by penalizing its variation
with a Huber norm and feasibility of path constraints subject to noise has been
guaranteed through a slack reformulation.

Future research will aim at extending the proposed framework to more complex
vehicle models that include gear shifts.
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Chapter 4
Approximate Solution of HJBE and Optimal
Control in Internal Combustion Engines

Mario Sassano and Alessandro Astolfi

Abstract Optimal control problems naturally arise in several kinds of applications,
including automotive systems. Unfortunately, the solution of such problems—which
hinges upon a partial differential differential equation, the so-calledHamilton-Jacobi-
Bellman (HJB) pde—might be hard or even impossible to determine in practice.
Herein, introducing the notion of Dynamic Value function, we propose a novel tech-
nique that consists in the immersion of the givenmodel into an extended state-space in
which the solution may be defined in a constructive manner. This leads to a dynamic
control law that approximates the optimal policy. The proposed approach is vali-
dated by means of a case study arising from the field of combustion engines, namely
optimal control of the torque and the speed of a test bench.

4.1 Introduction

Optimal control consists in steering the state of a dynamical system towards a desired
configuration while simultaneously minimizing a given criterion of optimality [3, 8].
Since the resulting control law allows to stabilize a desired equilibrium of the closed-
loop system—a task of paramount importance per se in the nonlinear context—as
well as to consider optimization objectives, such problems are rather pervasive in
control design applications, obviously including mechanical and automotive sys-
tems among the others [5]. It is well-known that the optimal control action is
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typically provided in terms of the solution of a partial differential equation, to so-
called Hamilton-Jacobi-Bellman (HJB) pde [2]. The analytic solution of such a (non-
linear) pdemight be difficult or even impossible to determine outside classes of rather
simple academic models. Therefore, several methods have been proposed in the lit-
erature to approximate, at least in a neighborhood of the desired equilibrium, the
optimal policy [1, 6, 9].

The main contribution of the chapter consists in the definition of the notion of
Dynamic Value function. These functions, similarly to the classical value functions,
are shown to be strongly related to the solution of an auxiliary optimal control prob-
lem, which approximates that of the original problem. Interestingly, the construction
makes use of a dynamic extension to the state of the system, hence yielding a dynamic
control law in place of the classical static optimal feedback.

The rest of the chapter is organized as follows. In Sect. 4.2 some basic definitions
and results concerning optimal control and its solution are reviewed. The notion of
DynamicValue function is introduced in Sect. 4.3 together with somemotivations for
its definition. The concept of (matrix) algebraic P̄ solution—which is instrumental
to the construction of a class of canonical DynamicValue functionswithout involving
the solution of any pde—is discussed in the same section. Finally, the performances of
the proposed control law are assessed bymeans of a practicallymotivated application
within the automotive framework. In particular, we consider the optimal control
problem for the torque and the speed of an internal combustion engine test bench
driven by an electric dynamometer.

4.2 Hamilton-Jacobi-Bellman Equation and Optimal Control

To provide the reader—who might not be familiar with the standard definitions and
notation of the classical optimal control problem—with a comprehensive framework,
we briefly review the basic ideas and results concerning the aforementioned optimal
control problem. Towards this end, consider a nonlinear dynamical system described
by equations of the form

ẋ = f (x) + g(x)u, (4.1)

with f : Rn ≤ R
n and g:Rn ≤ R

n×m smooth mappings, where x(t) ∈ R
n denotes

the state of the system and u(t) ∈ R
m the input. The infinite horizon optimal control

problem with stability consists in finding a control action u that minimizes the cost
functional

J (u) = 1

2

∫ ∞

0
(q(x(t)) + u(t)≈u(t))dt, (4.2)

where q : Rn ≤ R+ is a positive semi-definite function, subject to the dynamical
constraint (4.1), the initial condition x(0) = x0 and the requirement that the zero
equilibrium of the closed-loop system be locally asymptotically stable. Assuming
that q is at least twice continuously differentiable guarantees the existence of a,
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possibly not unique, matrix-valued function Q : Rn ≤ R
n×n, Q(x) = Q(x)≈ ≡ 0

for all x ∈ R
n , such that q(x) = x≈Q(x)x for all x ∈ R

n .

Assumption 1 The vector field f is such that f (0) = 0, i.e.x = 0 is an equilibrium
point for the system (4.1) when u(t) = 0 for all t ≡ 0.

Assumption 2 The nonlinear system (4.1) with output y = q(x) is zero-state
detectable, i.e. y(t) = 0 and u(t) = 0 for all t ≡ 0 imply that the state x(t)
converges to zero as time tends to infinity.

As a consequence of Assumption 1, there exists a, possibly not unique, continuous
matrix-valued function F : Rn ≤ R

n×n such that f (x) = F(x)x , for all x ∈ R
n . The

classical optimal control design methodology for system (4.1) relies on the solution
of the well-known Hamilton-Jacobi-Bellman (HJB) partial differential equation [2,
3, 8]

∂V

∂x
(x) f (x) − 1

2

∂V

∂x
(x)g(x)g(x)≈ ∂V

∂x
(x)≈ + 1

2
q(x) = 0, (4.3)

for all x ∈ R
n , together with the boundary condition V (0) = 0. The solution of the

HJB Eq. (4.3), if it exists, is the value function of the optimal control problem, i.e. it
is a function which associates to every point in the state space, x0, the optimal cost of
the trajectory of system (4.1) with x(0) = x0. The knowledge of the value function
on the entire state space permits the construction of the minimizing input, which is
defined in terms of the static state feedback uo = −g(x)≈(∂V (x)/∂x)≈.

Finally, it appears useful at this preliminary stage to recall that in the linearized
setting the solution of the optimal control problem is provided by a linear static state
feedback control law of the form uo = − B≈ P̄x , where P̄ ∈ R

n×n denotes the
symmetric positive definite solution of the algebraic Riccati equation P̄ A + A≈ P̄ −
P̄ B B≈ P̄ + Q̄ = 0, where the matrices A ∈ R

n×n, B ∈ R
n×m and Q ∈ R

n×n are
defined as

A � ∂ f

∂x

∣∣∣
x=0

= F(0), B � g(0), Q̄ � 1

2

∂2q

∂x2

∣∣∣
x=0

= Q(0). (4.4)

4.3 Dynamic Value Function and Algebraic P̄ Solution

In this chapter we consider a modified definition of optimal control problem and
therefore an alternative notion of its solution, as detailed in the following statements.

Problem 1 Consider system (4.1), with Assumptions 1 and 2, together with the
cost functional (4.2). The regional dynamic optimal control problem with stability
consists in determining an integer ñ ≡ 0, a dynamic control law of the form

ξ̇ = α(x, ξ),
u = β(x, ξ),

(4.5)
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with ξ(t) ∈ R
ñ,α : Rn ×R

ñ ≤ R
ñ,β : Rn ×R

ñ ≤ R
m,α(0, 0) = 0,β(0, 0) = 0,

smooth mappings and a set Φ̄ ≥ R
n × R

ñ containing the origin of Rn × R
ñ such

that the closed-loop system

ẋ = f (x) + g(x)β(x, ξ),

ξ̇ = α(x, ξ),
(4.6)

has the following properties.

(i) The zero equilibrium of the system (4.6) is asymptotically stable with region of
attraction containing Φ̄ .

(ii) For any ū and any initial condition (x0, ξ0) such that the trajectory of the sys-
tem (4.6) remain in Φ̄ the inequality J (β) ∗ J (ū) holds, where β is defined
in (4.5).

⇐
Note that Problem 1 may be interpreted as an auxiliary optimal control problem

associated to the extended system (4.1)–(4.5), with state (x, ξ), with respect to the
cost functional (4.2). Herein, we consider an approximate solution to the above
auxiliary optimal control problem.

Problem 2 Consider system (4.1), with Assumptions 1 and 2. The approximate
regional dynamic optimal control problem with stability consists in determining an
integer ñ ≡ 0, a dynamic control law described by (4.5), a set Φ̄ ≥ R

n × R
ñ

containing the origin of Rn × R
ñ and a function c : Rn × R

ñ ≤ R+ such that the
regional dynamic optimal control problem is solved with respect to the modified cost
functional

J (u) = 1

2

∫ ∞

0
(q(x(t)) + u(t)≈u(t) + c(x(t), ξ(t)))dt. (4.7)

⇐

4.3.1 Definition of Dynamic Value Function

From the above statements it appears evident that the approximation is twofold.
On one hand, we introduce a dynamic extension ξ, which leads to a dynamic state
feedback in place of the classical static state feedback, while on the other hand we
allow for an additional cost c in (4.7), which imposes a penalty on the state of the
dynamic extension aswell as the state of system (4.1).A straightforward consequence
of the latter relaxation is that partial differential inequalities may be solved in place of
equations. Therefore, an alternative notion of value function is defined accordingly.

Definition 1 Consider system (4.1), with Assumptions 1 and 2, together with the
cost functional (4.2). A Dynamic Value Function V is a pair (Dα, V ) defined as
follows.
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i) Dα is the dynamical system

ξ̇ = α(x, ξ) ,

u = −g(x)≈ ∂V

∂x
(x, ξ)≈, (4.8)

with ξ(t) ∈ R
n,α : Rn × R

n ≤ R
n,α(0, 0) = 0, sufficiently smooth mapping

and such that the zero equilibrium of α(0, ξ) is locally asymptotically stable.
ii) V : Φ ⇒ R

n × R
n is positive definite around the origin of Rn × R

n and such
that

H (x, ξ) � ∂V

∂x
f (x) + ∂V

∂ξ
α(x, ξ) + 1

2
q(x) − 1

2

∂V

∂x
g(x)g(x)≈ ∂V

∂x

≈
∗ 0,

(4.9)
for all (x, ξ) ∈ Φ .

To put the above definitions into perspective, in the following lemma we investi-
gate and characterize the relation between a Dynamic Value function and the solution
of the approximate regional dynamic optimal control problem.

Lemma 1 Consider system (4.1), with Assumptions 1 and 2, together with the cost
functional (4.2). Let V = (Dα, V ) be a Dynamic Value function for the system (4.1)
with respect to some non-empty open set Φ containing the origin of Rn ×R

n. Then
the dynamical system (4.8) solves the approximate regional dynamic optimal control
problem with stability, namely Problem 2, for all (x, ξ) ∈ Φ̃ , where Φ̃ is the largest
level set of the function V contained in Φ . �
Proof The claim follows straightforwardly by noting that, by (4.9), V is a con-
tinuously differentiable value function for the closed-loop system (4.1)–(4.8), with
respect to the cost functional (4.7). The additional cost c : Rn ×R

n ≤ R+ is defined,
by (4.9), as c(x, ξ) = −2H (x, ξ) ≡ 0 for all (x, ξ) ∈ Φ . Moreover, asymptotic
stability of the zero equilibrium of the closed-loop system (4.1)–(4.8) is proved by
lettingV be a candidateLyapunov function. In fact, the time derivative of the function
V along the trajectories of the system (4.1)–(4.8) yields

dV

dt
∗ −1

2
q(x) − 1

2

∂V

∂x
(x, ξ)g(x)g(x)≈ ∂V

∂x
(x, ξ)≈ ∗ 0 , (4.10)

where the first inequality is obtained by (4.9), which shows that all the trajectories
of the closed-loop system (4.1)–(4.8) remain bounded for all t ≡ 0. Moreover, by
LaSalle’s invariance principle the latter trajectories converge to a set, containing the
origin, such that

{(x, ξ) ∈ R
n × R

n : g(x)≈ ∂V

∂x
(x, ξ)≈ = 0} , (4.11)
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in which the system (4.1) reduces to ẋ = f (x). It can be shown now that x(t)
asymptotically converges to zero by combining (4.11) with Assumption 2. The proof
is concluded by showing that ξ(t) tends to zero by the stability properties of the
vector field α(0, ξ) and by standard arguments on interconnected systems. �

Remark 1 Lemma1entails that the knowledgeof a dynamic value functionprovides
a solution, i.e. the control law (4.8), to Problem 2, which is strongly related to the
original optimal control problem. Interestingly, the structure of the control law (4.8)
sheds a different light on the notion of solution of an optimal control problem by
allowing for dynamic state feedbacks which approximate or, in some cases, provide
the optimal solutions.

4.3.2 A Class of Canonical Dynamic Value Functions

While the interpretation of the concept of Dynamic Value function has already been
provided to the reader in the previous section, themotivation of the above discussions
will become clear in the rest of the chapter. This is, in fact, achieved by showing that a
class of canonical Dynamic Value functions may be constructively defined without
relying on the analytic solution of any partial differential equation or inequality.
Towards this end, we now formally introduce the notion of (matrix) algebraic P̄
solution, which is instrumental for the above construction.

Definition 2 Consider system (4.1) together with the cost functional (4.2). Let φ :
R

n ≤ R
n×n , φ(x) = φ(x)≈ ≡ 0 for all x ∈ R

n . A continuous matrix-valued
function P : Rn ≤ R

n×n , P(x) = P(x)≈ for all x ∈ R
n , is said to be a matrix

X -algebraic P̄ solution of Eq. (4.3) if

P(x)F(x) + F(x)≈ P(x) + Q(x) − P(x)g(x)g(x)≈ P(x) + φ(x) = 0 , (4.12)

for all x ∈ X ⇒ R
n , and P(0) = P̄ . If Eq. (4.12) holds for all x ∈ R

n , i.e.X = R
n ,

then P is a matrix algebraic P̄ solution.

Despite the fact that (4.12) follows the spirit of the so-called State Dependent Ric-
cati Equation, see [4] for a complete survey, the use that it is made of the resulting
solution P is significantly different from that of the SDRE approach. Nonetheless,
the Eq. (4.12) and its solution enjoy the desirable properties usually associated to
a state dependent solution of the Riccati equation. For instance, the solution P(x)

can be shown to be a positive definite matrix for all x ∈ R
n provided that the

pairs (F(x), Q(x)1/2) and (F(x), g(x)) are point-wise observable and controllable,
respectively, namely for each fixed value of the state x ∈ R

n . Note that the matrix
Acl(x) = F(x) − g(x)g(x)≈ P(x) denotes the state dependent representation of the
closed-loop system when only the algebraic input u = −g(x)≈ P(x)x is imple-
mented.
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Consider a matrix algebraic P̄ solution P introduced in Definition 2. It appears
evident that the mapping x ∧≤ P(x)x may not be integrable in the standard sense.
In fact, its Jacobian, which is different in general from the matrix P(x), may not
be a symmetric matrix. Therefore, exploiting the degree-of-freedom provided by
the dynamic extension in Definition 1, we consider herein an alternative notion of
integration of the above mapping, yielding

V (x, ξ) � 1

2
x≈ P(ξ)x + 1

2
‖x − ξ‖2R , (4.13)

with R = R≈ > 0 and ξ ∈ R
n .Note that a simpleSchur complement argument shows

that the function V in (4.13) is, at least locally, positive definite around the origin,
for any matrix R > 0. Moreover, the function is indeed globally positive definite
provided that the matrix P(x) is positive definite for all x ∈ R

n , as discussed in the
above comment.

The following result characterizes a class of canonical Dynamic Value functions,
whose construction relies on the notion of (matrix) algebraic P̄ solution. To provide
a concise statement, let τ : Rn × R

n ≤ R
n×n denote the jacobian matrix of the

mapping (x, ξ) ∧≤ 1/2P(ξ)x with respect to ξ whereas the matrix-valued function
α : Rn × R

n ≤ R
n×n is such that (x − ξ)≈α(x, ξ)≈ = x≈ (P(x) − P(ξ)), for all

(x, ξ) ∈ R
n ×R

n . Finally, consider thematrix-valued functionβ : Rn ×R
n ≤ R

n×n

defined as β(x, ξ) = (R − α(x, ξ))R−1τ(x, ξ).

Theorem 1 Consider system (4.1), with Assumptions 1 and 2, together with the cost
functional (4.2). Let1 P be a matrix algebraic P̄ solution of (4.1). Let the matrix
R = R≈ > 0 be such that

1

2
Acl(x)≈β(x, ξ) + 1

2
β(x, ξ)≈ Acl(x) < φ(x) + 1

2
β(x, ξ)≈g(x)g(x)≈β(x, ξ) ,

(4.14)
for all (x, ξ) ∈ Φ \ {0}, where Φ ⇒ R

n × R
n is a non-empty open set containing

the origin. Then, there exists k̄ ≡ 0 such that V in (4.13) satisfies the Hamilton-
Jacobi-Bellman inequality (4.9) for all (x, ξ) ∈ Φ and for all k > k̄, with ξ̇ =
−k(∂V (x, ξ)/∂ξ)≈. Hence V = (Dα, V ), with Dα defined as

ξ̇ = −k (τ(x, ξ)x − R(x − ξ)) ,

u = −g(x)≈ (P(x)x + (R − α(x, ξ))(x − ξ)) ,
(4.15)

and V as in (4.13), is a Dynamic Value function for the system (4.1) and, by Lemma
1, (4.15) solves the approximate regional dynamic optimal control problem for all
(x, ξ) ∈ Φ̄ , where Φ̄ is the largest level set of V contained in Φ . �
Proof A detailed proof of Theorem 1 may be obtained by directly adapting the
arguments of the proof of Theorem 3 in [7]. �

1 Without loss of generality we suppose that P is a matrix algebraic P̄ solution. In fact, if the
Eq. (4.12) holds for some X ≥ R

n the statement may be straightforwardly modified accordingly.
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Remark 2 The control law u in (4.15) is given by the sum of the algebraic input
discussed above and a dynamic compensation term, which deals with the mismatch
between the desired partial derivative P(x) and the actual partial derivative with
respect to x of the function V in (4.13). �

Remark 3 Let R = α(0, 0) = P̄ , then clearly β(0, 0) = 0. Note that the above
choice of the matrix R is such that V is, at least locally, positive definite. Provided
thatφ(0) > 0, sinceβ(0, 0) = 0 and by continuity of the functions in the inequality
(4.14), there exists a non-empty open neighborhood of the origin Φ̂ such that (4.14)
holds for all (x, ξ) ∈ Φ̂ . �

Remark 4 An alternative definition of the algebraic Eq. (4.12) may be given, which
allows to consider a single scalar algebraic inequality, in n unknowns, in place of the
matrix algebraic Eq. (4.12), in n(n + 1)/2 independent unknowns. More precisely,
we may consider the nonlinear system (4.1) and let σ : Rn ≤ R

n×n , σ(0) > 0,
x≈σ(x)x ≡ 0 for all x ∈ R

n . Then, a continuously differentiable mapping p :
R

n ≤ R
n×n is said to be an algebraic P̄ solution of Eq. (4.3) if

p(x) f (x) + 1

2
q(x) − 1

2
p(x)g(x)g(x)≈ p(x)≈ + 1

2
x≈σ(x)x ∗ 0 , (4.16)

together with the tangency condition ∂ p(x)/∂x |x=0 = P̄ . The corresponding
Dynamic Value function must be adapted to the alternative definition, yielding the
function Vs(x, ξ) � p(ξ)x + (1/2)‖x − ξ‖2R , and the dynamical system

ξ̇ = −k

(
∂ p

∂ξ
(ξ)x − R(x − ξ)

)
,

u = −g(x)≈ (p(ξ) + R(x − ξ)) .

(4.17)

Interestingly, the results of Theorem 1 may be equivalently proved by replacing
(4.13) with Vs and (4.15) with (4.17), respectively. �

4.3.3 Minimization of the Extended Cost

Two different—and in some respect alternative—ways to reduce the approximation
error of the dynamic solution (4.15) with respect to the optimal control law are
explored in this section. In particular, these two directions may be explored by con-
sidering the actual value of the cost paid by the optimal solution, on one hand, and
the structure of the cost which is minimized along the trajectories of the system, on
the other hand.

To begin with, note that, by definition of value function, V (x0, ξ0), where the
function V is defined in (4.13), provides the minimum value of the cost functional
(4.7) evaluated along the trajectories of the closed-loop system (4.1)–(4.15), initial-
ized at (x(0), ξ(0)) = (x0, ξ0). If, on one hand, the initial condition x0 of the original
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plant (4.1) is typically given a priori in practical applications, the initial condition ξ0
of the dynamic extension, on the other hand, may be arbitrarily selected. Therefore,
in order to minimize the actual cost paid by the dynamic solution (4.15), for a fixed
initial condition x0 of system (4.1), the initial condition ξ0 should be selected as
ξ∗
0 = argminξ V (x0, ξ).
The implications of the above considerations deserve particular attention, since

they provide the motivations for the second approach to reduce the approximation
error. As a matter of fact, the definition of value function entails that all the possible
trajectories for ξ(t), obtained for instance by modifying the gain k, yield the same
minimum value of the cost functional (4.7) provided that they share the same initial
condition ξ∗

0 . Nevertheless, it might be desirable to select one of these trajectories
according to some specific criterion. In particular, the following result explains how
the additional cost c can be minimized by letting the gain k in (4.15) be a function
of the states, i.e. k(x, ξ). Towards this end, define, for ε > 0, the open set Mε �
{(x, ξ) ∈ R

n × R
n : ‖τ(x, ξ) − R(x − ξ)‖ < ε} and consider the continuous

function

satδ(x) =
{

x, 0 ∗ |x | ∗ δ
sign(x)δ, |x | > δ

(4.18)

with x ∈ R and δ > 0.

Theorem 2 Consider system (4.1), with Assumptions 1 and 2, together with the cost
functional (4.2). Suppose that P is a (matrix) algebraic P̄ solution of the Eq. (4.3)
and let R be such that (4.14) holds in some non-empty open set Φ ⇒ R

n × R
n.

Consider the function V as in (4.13) with ξ obtained as the solution of (4.15) for
some constant k̂ > k̄. Let ε > 0 and k(x, ξ) in (4.15) be defined as

k(x, ξ) = satk̂ (m(x, ξ)) , (4.19)

with

m(x, ξ) �
(

∂V

∂ξ

∂V

∂ξ

≈)−1 (
∂V

∂x
f (x) + 1

2
q(x) − 1

2

∂V

∂x
g(x)g(x)≈ ∂V

∂x

≈)

.

(4.20)
Then the Dynamic Value function2 V ε = (Dε

α, V ε) is such that

{
cε(x, ξ) = 0 (x, ξ) ∈ Φ \ Mε,

cε(x, ξ) ∗ c(x, ξ) (x, ξ) ∈ Mε.
(4.21)

Proof. The claim is proved in two steps. First it is shown that the function m is
not saturated for all (x, ξ) ∈ Φ \ Mε, then that (4.21) holds. To begin with, rewrite
the function (4.19) as

2 The notation (Dε
α, V ε) and cε(x, ξ) describes the differential Eq. (4.15) and the function V (x, ξ)

in (4.13) with ξ obtained as the solution of (4.15)–(4.19) and the corresponding approximation error
defined as in Lemma 1, respectively.
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k(x, ξ) =
{

m(x, ξ), (x, ξ) ∈ Φ \ Mε

satk̂ (m(x, ξ)) , (x, ξ) ∈ Mε
(4.22)

and note that the function m is smaller than or equal to k̂ for all (x, ξ) ∈ Φ \Mε. In
fact in this set V is such that ‖∂V (x, ξ)/∂ξ‖2 ≡ ε2 and

∂V

∂x
f (x) + 1

2
q(x) − ∂V

∂x
g(x)g(x)≈ ∂V

∂x
− m(x, ξ)

∂V

∂ξ

∂V

∂ξ

≈
= 0 , (4.23)

where the equality is obtained by substitution of the functionm as in (4.19).Moreover,
by Theorem 1,

∂V

∂x
f (x) + 1

2
q(x) − ∂V

∂x
g(x)g(x)≈ ∂V

∂x
− k̂

∂V

∂ξ

∂V

∂ξ

≈
∗ 0 , (4.24)

for all (x, ξ) ∈ Φ . Therefore, subtracting (4.23) from (4.24) yields, in Φ \ Mε,
−(k̂ − m(x, ξ))‖∂V (x, ξ)/∂ξ‖2 ∗ −(k̂ − m(x, ξ))ε2 ∗ 0, hence m(x, ξ) ∗ k̂
and k(x, ξ) is not saturated outside the setMε. To show that (4.21) holds note that,
by (4.23), the function V satisfies the partial differential inequality (4.9) with the
equality sign for all (x, ξ) ∈ Φ \ Mε, hence cε = 0. Moreover, by the definition of
k(x, ξ) as in (4.19), k(x, ξ) ∗ k̂ for all (x, ξ) ∈ Mε. Finally, the proof is concluded
noting that since 0 ∗ cε(x, ξ) ∗ c(x, ξ) for all (x, ξ) ∈ Φ , then V ε = (Dε

α, V ε)

is indeed a Dynamic Value function. �
As a final remark, it is interesting to point out that the solution resulting from the

choice of k as in (4.19) minimizes the desired cost functional (4.2) for all the values
of (x, ξ) ∈ R

n ×R
n such that c(x, ξ) = 0, hence recovering the optimal solution to

the original problem.

4.4 Optimal Control in Internal Combustion Engine Test
Benches

Combustion engines are operated at test benches in the sameway as in a passenger car
or a heavy-duty truck, since the former allow to generate the same load a combustion
engine would undergo in normal operations. The crucial advantage in the use of a
test bench resides in the possibility of reproducing desired conditions in terms of
temperature and pressure, and, consequently, of drastically reducing the cost and
time required for development and configuration. In a vehicle the velocity and, by
means of the transmission, the rotational speed ωE result from the engine and the
load torques. For this reason the engine torque TE as well as the engine speed ωE

need to be controlled to operate a combustion engine on a test bench. In industrial
practice a test bench is usually controlled by means of two separate control loops:



4 Approximate Solution of HJBE and Optimal Control 69

the torque is often influenced by the accelerator pedal position α of the engine under
test, while the speed is controlled by the loading machine.

In the standard setting of a test bench, the combustion engine is connected via a
single shaft to a different main power unit. The latter may either be a purely passive
brake or an electric machine, which offers the possibility of an active operation.
In this situation, the accelerator pedal position α of the combustion engine and the
set value TD, set of the dynamometer torque provide the inputs to the test bench. A
simplified model of the entiremechanical systemcanbedescribedbyGruenbacher [5]

ṪE = −
(

c0 + c1ωE + c2ωE
2
)

TE + τ (ωE , TE ,α) , (4.25)

γϕ̇ = ωE − ωD, (4.26)

θE ω̇E = E − cγϕ − d (ωE − ωD) , (4.27)

θDω̇D = cγϕ + d (ωE − ωD) − TD, (4.28)

where γϕ is the torsion of the connection shaft while θE and θD denotes the inertias
of the combustion engine and the dynamometer, respectively. The contributions due
to the inertias of the adapter flanges, the damping element, the shaft torque measure-
ment device and the flywheel are already included in these values. The parameter c
characterizes the stiffness of the connection shaft, whereas d describes its damping.
Moreover, ci > 0, i = 1, . . . , 3 are constant parameters and τ : R×R×R ≤ R is
a nonlinear static function.

The employed electric dynamometer is modeled as a second order low-pass filter,
with dynamics significantly faster than those of the other components of the test
bench, hence they canbeneglected in the design.Within the rangeofmaximumtorque
and maximum rate of change, the torque of the dynamometer can be described by
TD = TD, set . Letting v = τ (ωE , TE ,α), the system (4.25)–(4.28) can be rewritten
as

ẋ = Ax + f (x) + Bu (4.29)

with

A =

⎛

⎜
⎜
⎝

−c0 0 0 0
0 0 1 −1
1
θE

− c
θE

− d
θE

d
θE

0 c
θD

d
θD

− d
θD

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 1

θD

⎞

⎟
⎟
⎠

f (x) =
(
−

(
c1 x3 + c2 x3

2
)

x10 0 0
)≈

,

where x(t) ∈ R
4, x = (

x1 x2 x3 x4
)≈ = (

TE γϕ ωE ωD
)≈, denotes the state of

the system and u(t) ∈ R
2, u = (

v TD, set
)≈, the input. The actual control input to

apply in order to generate the desired signal v, namely α, is then obtained in practice
by an approximate inversion of the nonlinear function τ .
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Towards the construction of the dynamic control law (4.17), we preliminary
let ei denote the regulation error of the component xi with respect to the corre-
sponding reference value, namely ei = xi − x∗

i , i = 1, . . . , 4, where x(t) ∈ R
4,

x = (
x1 x2 x3 x4

)≈ = (
TE γϕ ωE ωD

)≈, describes the state of the system. To
motivate the infinite-horizon scenario we suppose that the transient response of
system (4.25)–(4.28) in closed-loop with the dynamic control law to be designed
is significantly faster than the occurrence of step-changes in the desired reference
values.

Then, in the error coordinates, let q(e) = e≈Qe in the cost functional (4.2),
where the positive definite matrix Q ∈ R

4×4 weights the relative regulation errors.
Without loss of generality, let the algebraic P̄ solution of (4.16) be of the form
p(e) = e≈ P̄ + P(e), where P : R4 ≤ R

1×4 contains higher-order polynomials
of the error variable e. The matrix P̄ is the symmetric and positive definite solution
of the algebraic Riccati equation associated to the error system linearized around
the desired working point and the quadratic cost q(e). The proposed structure of the
algebraic P̄ solution P intuitively suggests that the linear solution e≈ P̄ is modified,
by the addition of the term P , in order to compensate for the nonlinear terms in
(4.25)–(4.28).

Exploiting the specific structure of the vector field f in system (4.29), we letP be
defined asP = (P1, 0, 0, 0). It is worth noting that this specific choice is arbitrary
and alternative choices may be explored. Then, the inequality (4.16) is solved with
respect to the unknownP1 obtaining a solution of the formP1(e) = N (e)D(e)−1,
with the function D : R4 ≤ R strictly positive for all the values of interest, namely
around the desired operating range, of the state variable x. Finally the control law
(4.17), with the matrix R selected according to the arguments of Remark 3, is vali-
dated on a high quality test bench simulator developed by the Institute for Design and
Control ofMechatronical Systems,KeplerUniversity, Linz. In addition to the dynam-
ics of the entire mechanical description the simulator also includes a more accurate,
genuinely nonlinear, data-based model of the combustion engine, limitations of the
dynamometer as well as disturbance effects. The combustion engine model takes
for instance the dynamics of the accelerator pedal and combustion oscillations into
account. Measurement noise similar to the one observed on an actual combustion
engine test bench is superimposed to all relevant values.

Since (4.17) has been designed for a rather simplified model, the control action
needs to be modified in order to cope with some of the nonlinearities of the com-
bustion engine. Thus, letting νi , i = 1, 2, denote the i-th component of (4.17) we
define the actual control inputs implemented on the combustion engine test bench as
ui = νi (e, ξ) + ki

∫ t
0 νi (e(τ ), ξ(τ ))dτ , for i = 1, 2. Additionally we let the gain k2

be a function of the derivative—which is implemented as s
δs+1 , with δ � 0—of the

regulation error for the speed of the engine, namely k2(ė3). In particular, the gain is
defined such that, when the regulation error of the engine speed changes too fast, the
integral action is negligible compared to the other components of the control signal.
This choice is reasonable, as shown in the simulations, and needed in order to avoid
an excessively aggressive reference profile for the torque of the dynamometer. Large
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Fig. 4.1 Top graph time histories of the engine torque TE determined by the control law (4.17)
(solid line) and with the control law in [5] (dashed line), together with the desired reference value
(dash-dotted line). Bottom graph time histories of the engine speed ωE determined by the control
law (4.17) (dark line) and with the control law in [5] (grey line)

errors between the desired and the measured engine speed and torque, due to changes
in the references, are mainly, and relatively rapidly, compensated by the action pro-
vided by the dynamic control law (4.17). Note that, locally around the origin, the
linear part of the dynamic control law is dominant with respect to higher-order terms,
hence the integrals provide a standard integral action.

In the simulations the control law (4.17) is compared with the control law devel-
oped in [5], which already shows significantly improved performances with respect
to existing standard implementations based on two separate control loops. The top
graph of Fig. 4.1 shows the time histories of the engine torque TE determined by
(4.17) (solid line) and by the control law in [5] (dashed line). The bottom graph of
Fig. 4.1 displays the time histories of the engine speedωE determined by (4.17) (solid
line) and by the control law in [5] (dashed line). Employing the controller developed
herein leads to a significant reduced overshooting of the engine torque TE when a
change of the operation point is required. Although the engine torque TE shows a
slightly increased rise time, the final value is reached approximately four times faster.
The coupling effect is also improved by the dynamic control law proposed, as it can
be appreciated from the bottom graph of Fig. 4.1. Note that the speed is corrupted by
additive disturbance caused by the resolution of the shaft encoders and by combustion
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Fig. 4.2 Top graph time histories of the accelerator pedal position α determined by the control law
(4.17) (solid line) and by the control law in [5] (dashed line). Bottom graph time histories of the
torque of the dynamometer TD determined by the control (4.17) (dark line) and by the control law
in [5] (grey line)

oscillations. Differences are also visible in the input signals generated by the control
laws, see Fig. 4.2. In fact at time t = 12s, the control (4.17) avoids an overshoot in
the accelerator pedal position α, which is an advantage from the polluting emissions
point of view, while requiring, on the other side, a more demanding behavior to the
electric dynamometer.

4.5 Conclusions

In this chapter we have approached the optimal control problem for nonlinear sys-
tems, the classical solution ofwhich is provided in terms of thewell-knownHamilton-
Jacobi-Bellman partial differential equation. We have introduced and discussed the
notion of Dynamic Value function which permits the construction of a dynamic
control law that approximates the optimal policy. The approximation error may be
minimized by initializing opportunely the internal state of the dynamic control law,
on one hand, and by steering the evolution of the dynamic extension in such a way
that the actual minimized cost resembles the desired cost. Interestingly, a class of
such functions may be constructed without involving the solution of any pde. Finally,
the applicability of the proposed dynamic control law has been tested and validated
on an interesting control problem within the automotive framework.
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Chapter 5
Intelligent Speed Advising Based on Cooperative
Traffic Scenario Determination

Rodrigo H. Ordóñez-Hurtado, Wynita M. Griggs, Kay Massow
and Robert N. Shorten

Abstract A novel system for safe speed recommendation, based on a cooperative
method for vehicular density estimation and on the intelligent determination of the
traffic scenario, is presented.

5.1 Introduction

At present, Intelligent Speed Adaptation (ISA) systems, as a part of Advanced Driver
Assistance Systems (ADASs), have become a fundamental part in the designing of
safe vehicle operation systems, with the aim of improving driver/pedestrian safety
using environmentally friendly applications [1]. Statistically, ISA systems always
represent an improvement in the reduction of CO2 emissions and fuel consumption,
and on saving/prediction of accidents (fatal, serious and slight) [1]. Advisory sys-
tems rely on the calculation of safe recommended parameters to be presented to
the driver using an appropriate display system [2]. Thus, in general, advisory ISA
methodology involves less algorithmic and analytical complexity, and constitutes
the first step towards more comprehensive (mandatory) systems, and the enhance-
ment of Adaptive Cruise Control (ACC) algorithms [3]. ISA systems can be greatly
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improved by including relevant information from different sources such as envi-
ronmental (weather, visibility, etc) and road (vehicular density, speed limits, etc)
information, thus resulting in more reliable systems [4]. A recent application based
on weather information can be found in [5]. Regarding road information, vehicu-
lar density represents a very important factor in designing systems for safe speed
advising, because from it, it is possible to obtain a more realistic awareness of the
general traffic situation [6]. In this sense, most ADASs involving vehicular den-
sity estimation techniques are based on the use of loop detectors [7, 8]. However,
there are many drawbacks in using this kind of dedicated infrastructure device: (1)
vehicular density is computed only for fixed road sections (between two consecutive
loop stations), i.e. the available information is space-discontinuous; and (2) density
variations cannot be properly detected at each location with a low density of loop
detector stations (but a high density of them is not desirable from the monetary point
of view) [7]. Moreover, if we think in terms of a decentralisd scheme, then vehicular
density should be estimated for each node belonging to the vehicular ad-hoc network
(VANET), making even less feasible the use of loop detectors. Thus, more practical
ways to estimate vehicular (traffic) density are required, such as the one presented
in [6]. With the above in mind, we propose a two-stage methodology for intelligent
speed advising: the first stage concerns traffic scenario determination based on a
cooperative methodology using vehicle-to-vehicle (V2V) communication for vehic-
ular density estimation, and a rule-based system (Sect. 5.4), and the second stage
concerns the calculation of safe parameters based on the proposed traffic scenario
determination (Sect. 5.5). Experimental validation is presented in Sect. 5.6, and we
conclude the chapter with Sect. 5.7.

5.2 Intelligent Speed Adaptation System

ISA systems can be classified as either static or dynamic. A static ISA system is a
system where the recommender is supported only on fixed/localised speed limits,
whereas a dynamic ISA system also uses environmental information to update the
recommended speed. ISA systems can also work in advisory, voluntary or mandatory
modes. In an advisory mode, the function of the ISA is to recommend a speed to the
driver, and in mandatory mode a control action is used to enforce the advised speed.
For dynamic-mandatory cases it has been shown that ISA systems are able to provide
safety benefits in terms of a reduction of up to 44 % in fatality [5]. Recent develop-
ments in ITS infrastructure have made possible the development of more advanced
ISA systems. In this chapter we describe one such a system. Our system allows the
inclusion of relevant available information using current traffic information and road
speed limits for calculating the recommended speed. We propose to use V2V com-
munication as amain tool for vehicular density calculation rather than loop detectors,
with the aim of obtaining space-continuous information through a cheaper approach
(as opposed to using dedicated infrastructure devices). Consequently vehicular den-
sity is used as one of the inputs of a rule-base reasoning engine designed to determine
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the current traffic scenario; the scenario that will be used to dynamically calculate
the final recommended speed. The main advantage of using such an inference engine
is the possibility of including expert knowledge in an easy and intuitive way via
IF-THEN rules. Finally, we assess our speed adaptation scheme using a traditional
safe policy applied to the resulting inter-vehicle distances.

5.3 Procedure

We are proposing a two-stage methodology for intelligent speed advising: (a) the
first stage focuses on traffic scenario determination, and (b) the second stage regards
safe parameters calculation. In the first stage we consider the problem from a spatial-
temporal perspective. We begin this process by defining a point of reference that
represents a point along the future trajectory of the vehicle for which the recom-
mender is being constructed. Thus, the following concepts arise:

• the Host Vehicle (HV) is the vehicle for which the recommendation is being con-
structed.

• the Next Point of Interest (NPI) is a coordinate in the near future of the Host
Vehicle’s evolution, i.e. a point located in the future trajectory of the Host Vehicle.

• the Next Vehicle (NV) is the (potentially virtual) vehicle that is currently closest
to the NPI.

Once the Next Vehicle has been selected, the calculation of the vehicular density
is obtained as the vehicle density in some prespecified area around the NPI. Due to
the spatial-temporal nature of the problem, vehicular density is calculated for both
the Host Vehicle and the NPI.

The current traffic scenario is determined by using the calculated vehicular density
and speed for both the Host and Next Vehicles, and the variation of the Host Vehicle
speed as the inputs of an inference engine. Our inference engine is made up by a set
of 28 IF-THEN rules.

For the second stage of the procedure, we propose to calculate the recommended
speed using aweighted formula that combines both theHost andNextVehicle speeds,
as well as density information.

Finally, once the recommended speed is obtained, we use a widely known policy
for safe recommended distance.

For ease of exposition, we make the following assumptions:

• our road setup is as depicted in Fig. 5.1:

– a five-section (S1–S5), two-lane (L1–L2), one traveling direction straight road;
– a 2D Cartesian system for spatial representation of the road (top view) where
the x axis is the direction of travel;

– a stationary bottleneck represented by the narrowing of the road (S3), emulating
a closed lane e.g. due to an on-road accident;
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Fig. 5.1 Road setup used

• and

A1 all vehicles belonging to the VANET have a compatible V2V system;
A2 all required information can be acquired using suitable devices/techniques, and

then transmitted using such a V2V system;
A3 processing times for V2V communication and outputs calculation are greatly

shorter than intervals between instants for speed recommendation.

5.4 Methodology: First Stage

In the first stage of the proposed ISAmethodology, the basic idea is to use V2V com-
munication to obtain an estimation of the vehicular density. With such information,
in addition to speed values and other relevant data, we determine the current traffic
scenario using a rule-based system.

However, as the traffic scenario determination is a spacial-temporal problem,
other sources of information must be considered in addition to the Host Vehicle
information. This demands the selection of a vehicle placed at a point in the ahead
road-section in which the Host Vehicle is traveling on, in order to represent a point
along the future trajectory of the Host Vehicle. Hereafter, such a point is the NPI,
and the vehicle representing the NPI will be referred to as the Next Vehicle (which
is not necessarily the vehicle immediately preceding the Host Vehicle).

5.4.1 Selection of the Next Point of Interest and the Next Vehicle

The NPI is a reference placed at a distance xahead in front of the Host Vehicle.
As we are considering a straight road collinear to the x axis, we define the NPI at
(xH + xahead , yH ), where (xH , yH ) is the position of the Host Vehicle.

In order to select the Next Vehicle to represent the NPI, we look inside a circle
with radius rN centered at (xH + xahead , yH ) as shown in Fig. 5.2. If no vehicles
are inside the circle (see Fig. 5.2b), then we let the Next Vehicle be a virtual vehicle
located at (xN , yN ) = (xH + xahead , yH ); otherwise the closest vehicle to the NPI
is selected (see Fig. 5.2a).
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Fig. 5.2 NPI location: a the next vehicle is the nearest vehicle to (xH + xahead , yH ), i.e. the blue
one, and b the next vehicle is a virtual vehicle located at (xH + xahead , yH )

5.4.2 Vehicular Density Estimation

The vehicular density estimation for any sampling node in the VANET can be carried
out based on [7], as follows: (1) the sampling node broadcasts a poll message, (2) all
nodes receiving the poll message respond to the sampling node with a reply message,
and (3) vehicular density δ for the sampling node is given by

δ (t) = nr + 1

A
, A =

{
πr2D, if 2rD ≤ WR = WL NL .

2rDWL NL , otherwise.
,

where nr is the number of returned replies inside the polling area A, WR is the road’s
width, WL is the lane’s width, and NL the total amount of lanes. Note that the factor
+1 is added to the factor nr to include the sampling node into the density equation.
However, if the sampling node is a virtual vehicle, then the vehicular density is not
1
A but rather zero (see Fig. 5.2b).

5.4.3 Traffic Scenario Determination

Once the vehicular density for both Host/Next Vehicles is calculated, we can use
that information in addition to the Host/Next Vehicle speeds in order to determine
the traffic scenario. In this chapter we proposed to use an inference engine for that
purpose, as explained in the following subsections.

5.4.3.1 Inference Engine Design

The inference engine consists of a (user-defined) knowledge base for assigning values
to the outputs according to the values of the inputs. Let us define the inputs/outputs
variables, to latter define the base of rules that relates them.
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Table 5.1 Membership functions

Type Variable Set Membership function

Input V̄H,N , δ̄H,V L [0 0 0.1 0.8]
H [0.1 0.8 1 1]

ΔVH (t) N [−100 − 100 − 7.5 − 2.5]
Z [−7.507.5]
P [2.5 7.5 100 100]

Output FT, AC, CT, PB, LC N [0 0 1]
Y [0 0.8 1 1]

Inputs/Outputs Definition

Five variables are chosen as inputs: the normalised Host Vehicle’s velocity (V̄H );
the normalised Next Vehicle’s velocity (V̄N ); the normalised vehicular density for
the Host Vehicle (δ̄H ); the normalised vehicular density for the Next Vehicle (δ̄N );
and the variation on the Host Vehicle’s velocity ΔVH (t) = VH (t) − VH (t − 1).
In addition, five variables are chosen as outputs: Free Traffic (FT); Approaching
Congestion (AC); Congested Traffic (CT); Passing Bottleneck (PB); and Leaving
Congestion (LC).

The sets Low (L) and High (H) are for the inputs V̄H,N and δ̄H,V , the sets Negative
(N), Zero (Z) and Positive (P) are for the input ΔVH (t), and the sets Not (N) and
Yes (Y) are for all the outputs. Membership functions are shown in Table 5.1.

Finally, the traffic scenario is classified according to the following equation:

T (t) = argmax(FT(t),AC(t),CT(t),PB(t),LC(t)).

Base of Rules

The rules Rk for relating the five inputs to the five outputs are of the form

Rk : IF input1 = •AND . . . inputi = •, THEN
(
output1 = •AND . . . output j

= •) ∗ wk,

according to values in Table 5.2, which are supported by applying both traffic flow
theory [9] and common sense to each particular case, and considering the values
taken for each input.

5.4.3.2 Normalisation of Variables

In order to provide a general interpretation of the rules, we use normalised values
instead of raw ones. Such a normalisation process depends on each kind of input, as
presented in the following subsections.



5 Intelligent Speed Advising Based on Cooperative Traffic Scenario Determination 83

Table 5.2 Base of rules for traffic scenario determination

Rule Inputs ΔV H Outputs Weight[
V̄H , δ̄H , V̄N , δ̄N

]
[FT, AC, CT, PB, LC]

1 [L, L, L, L] N [Y, N, N, N, N] 0.6
2 Z [Y, N, N, N, N] 0.6
3 P [N, N, N, N, Y] 1.0
4 [L,L,L,H] – [N, Y, N, N, N] 1.0
5 [L, L, H, L] N [Y, N, N, N, N] 1.0
6 Z [N, N, N, N, Y] 1.0
7 P [N, N, N, N, Y] 1.0
8 [L, L, H, H] – [N, Y, N, N, N] 1.0
9 [L, H, L, L] N [N, N, Y, N, N] 1.0
10 Z [N, N, N, Y, N] 1.0
11 P [N, N, N, Y, N] 1.0
12 [L, H, L, H] – [N, N, Y, N, N] 1.0
13 [L, H, H, L] – [N, N, N, Y, N] 1.0
14 [L, H, H, H] – [N, N, Y, N, N] 1.0
15 [H, L, L, L] N [N, Y, N, N, N] 1.0
16 Z [Y, N, N, N, N] 1.0
17 P [Y, N, N, N, N] 1.0
18 [H, L, L, H] – [N, Y, N, N, N] 1.0
19 [H, L, H, L] N [Y, N, N, N, N] 1.0
20 Z [Y, N, N, N, N] 1.0
21 P [N, Y, N, N, N] 1.0
22 [H, L, H, H] – [N, Y, N, N, N] 1.0
23 [H, H, L, L] N [N, N, Y, N, N] 0.8
24 Z [N, N, Y, N, N] 0.8
25 P [N, N, N, Y, N] 1.0
26 [H, H, L, H] – [N, N, Y, N, N] 1.0
27 [H, H, H, L] – [N, N, N, Y, N] 1.0
28 [H, H, H, H] – [N, N, Y, N, N] 1.0

Velocity Normalisation

This normalisation depends on the raw value of the velocity, theMaximum Individual
Speed (MIS) of the vehicle, and the Road Speed Limit (RSL) of the road section in
which the vehicle is traveling on. The normalised velocity is given by

V̄H,N (t) = min
(
αspeed ∗ ṼH,N (t) , 1

)
,

αspeed = 1

max
(

M I SH,N , RL SH,N
) , ṼH,N (t)

=
{

VH,N (t) , if M I SH,N > RL SH,V

f1
(

RL SH,V , M I SH,N , VH,N (t)
)

otherwise.
,
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Table 5.3 Maximum allowed density ( f2) given rD

rD 7.5 8.5 9.5 11 13 15 19.5 21
f2 (rD) 7 6 5.5 5 4.5 4.2 3.9 3.8

where f1 provides a value corresponding to the linear interpolation of the VH,N (t)
using a curve given by

{(
0, RL SH,V

)
,
(
0, M I SH,N

)}
. Note that min (•, 1) ensures

that the maximum value of V̄H,N (t) is 1 even when the velocity overcomes the
corresponding RL S.

Vehicular Density Normalisation

This normalisation depends on the rawvalue of the vehicular density, the polling radio
rD , and the Maximum Allowed Density (MAD) curve (constructed from Table 5.3).
The normalised vehicular density can be calculated as

δ̄H,N (t) = min
(
αdensi ty ∗ δH,N (t) , 1

)
, αdensi ty = 1

f2 (rD)
,

where the value of f2 (rD) (representing the MAD given rD) is calculated according
to a linear interpolation using data in Table 5.3 (obtained from simulation tests).
Again, min (•, 1) assures that the maximum value of δ̄H,N (t) is 1 even when the
vehicular density overcomes the corresponding estimated MAD.

5.5 Methodology: Second Stage

Once the traffic scenario is determined, we can use such information to design our
Advisory ISAmethodology.However, since the definition of the recommended speed
VR (and as a consequence, the recommended distance DR) should be based upon
both the determined traffic scenario and the Next Vehicle’s velocity (VN ), then we
first introduce a model for updating VN in cases of a virtual Next Vehicle.

5.5.1 Updating Speed in Virtual Next Vehicles

If a virtual Next Vehicle is chosen, then both the location and velocity of the Next
Vehicle have to be calculated from other sources rather than a real vehicle on the
road. Recall that we already assigned the location of such a virtual Next Vehicle
as (xH + xahead , yH ) (see Sect. 5.4.1), but a model for its velocity updating is still
missing. Thus, we propose a way to update VN similar to
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Table 5.4 Decision matrix for VN , αN V and αR

Traffic scenario FT AC CT PB LC

Value of VN 0.3 0.2 0.1 0.1 0.3
Value of αN V 1.4 0.7 0.9 0.9 1.4
Value of αR 0.7 0.7 0.7 0.45 0.7

VN (t) = αN V (t) ∗ VN (t − 1) ,

where αN V (•) is the evolution parameter, but including some particular consider-
ations. Our way for updating the normalised virtual Next Vehicle speed V̄N is then
given by

V̄N (t) = min
(
αN V (T (t − 1)) ∗ f

(
V̄N (t − 1)

)
, 1

)
, (5.1)

f
(
V̄N (t − 1)

) = max
(
V̄N (t − 1) ,VN (T (t − 1))

)
, (5.2)

where T (•) is the determined traffic scenario, and VN (•) is the minimum allowed
normalised speed for a virtual Next Vehicle. The inclusion of this minimum limit
speed, which is greater than zero, is to avoid V̄N = 0 which represents that the Host
Vehicle is approaching a stopped vehicle, which is not true because there are no real
vehicles around the NPI (see Fig. 5.2). Then, min (•, 1) in (5.1) is to guarantee that
V̄N never exceeds the maximum normalisation value 1, and max

(•,VN (•)
)
in (5.2)

is to guarantee that the virtual Next Vehicle is always moving at least at VN . Both
αN V and VN are design parameters, and reference values (obtained from simulation
tests) are given in Table 5.4.

Justification for values in Table 5.4 are as follows:

• Given previous Free-Traffic/Leaving-Congestion scenarios, it is assumed that the
virtual Next Vehicle can accelerate without problems. Thus,αN V = 1.4 represents
an increase of 40 % in VN , and VN = 0.3 sets a minimum value for V̄N at 0.3.

• Given previous Congested-Traffic/Passing-Bottleneck scenarios, it is assumed that
the virtual Next Vehicle could not have accelerated, and probably could have had
a small deceleration. Thus, αN V = 0.9 represents a decrease of 10 % in VN , and
VN = 0.1 sets a minimum value for V̄N at 0.1.

• Given a current Approaching-Congestion scenario, it is assumed that the virtual
Next Vehicle is indeed decelerating. Thus, αN V = 0.7 represents a decrease of
30 % in that VN , and VN = 0.2 sets a minimum value for V̄N at 0.2.

5.5.2 Proposed Recommended Speed Scheme

We propose a calculation method for the recommended cruise speed similar to the
one presented in [5], i.e. a convex linear combination with time-variant coefficients.
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However, here we calculate the recommended speed by combining two terms, the
Host Vehicle speed VH and the Next Vehicle speed VN , as follows

VR (t) = (αR (T (t))) ∗ VN (t) + (1 − αR (T (t))) ∗ VH (t) , (5.3)

where αR (•) is a time-variant weighting factor calculated from the decision matrix
presented in Table 5.4. Note that αR is a design parameter, so values in Table 5.4
were tuned from simulation tests. The justification for values of αR is as follows:

• Approaching-Congestion/Congested-Traffic scenarios should force the Host Vehi-
cle to slow down in order to travel at most around VN , which in general is a
real vehicle inside a dense platoon immediately ahead of the Host Vehicle. Then,
αR = 0.7 means that the recommended speed depends more upon VN than VH ,
causing VN to act like an upper bound.

• Free-Traffic/Leaving-Congestion scenarios should force the Host Vehicle to speed
up in order to reach VN , which is expected to be traveling in aFree-Traffic scenario.
Then,αR = 0.7means that the recommended speed dependsmore upon VN rather
than VH , causing VN to act like a goal speed.

• The Passing-Bottleneck scenario is determined based on the existence of a Next
Vehicle who is leaving the congestion with positive high ΔVN . However, here the
Host Vehicle is about to leave the traffic jam but is still inside it, so the recom-
mended speed should depend more upon VH than VN . Then, αR = 0.45 causes
VH to act like an upper bound.

According to (5.3), it is observed that VR always depends directly on both VH

and VN , so any noisy behaviour in either of them will be directly reflected on VR .
Thus, two additional processes have to be added: (1) a quantisation process, to avoid
a noisy recommended speed, and (2) a saturation process, to avoid recommending a
speed greater than the speed limit of the road on which the Host Vehicle is traveling.
With this we finally obtain VR ∈ min ({5 ∗ n} , RL SH ), with n = 1, 2, ....

5.5.3 Proposed Recommended Distance Scheme

We can assess the performance of our recommended speed scheme by evaluating the
usually adopted safe inter-distance policy [10]

DR (t) = h0 + h1V f (t) + h2

(
V 2

f (t) − V 2
l (t)

)
,

where DR is the recommended (safe) distance, h0 is the minimum safe distance
to the preceding vehicle, h1 is the minimal required headway time (usually set in
hs = 0.6 [s]), h2 is a problem-dependent weighting factor, Vf corresponds to the
speed of the Host Vehicle, and Vl to the speed of the preceding vehicle. However,
here the reference is the Next Vehicle, which does not necessarily coincide with the
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preceding vehicle. Thus, we have to take

Vl (t) = VN (t) ,

and h0 as the safe distance to the Next Vehicle, redefined as follows

h0 =
⌊

X N − (X H + Gmin)

LV + Gmin

⌋
∗ (LV + Gmin) + Gmin,

where Gmin is the minimum allowed gap (safe distance) between two consecutive
vehicles, and LV is the mean longitude of a vehicle in the network. Note that the
Approaching-Congestion, Congested-Traffic and Passing-Bottleneck scenarios are
of special interest, because only in these cases it is expected that there exists a high
density of vehicles between the Host Vehicle and the Next Vehicle (i.e., a higher
probability of collision).

Now, the recommended distance must be compared to the relative distance Xrel ,
measured as the difference between theHostVehicle’s position and theNextVehicle’s
position

Xrel = X N − X H .

Then by defining e = Xrel − DR, the case e ≥ 0 means that there is a safe
situation (the relative distance is greater than or equal to the recommended distance),
and thus the case e < 0 means that there is a non-safe situation.

5.6 Validation

To validate the proposedmethodology, we use SUMO to simulate thirty-one vehicles
with properties as in Table 5.5, which travel according to a modified Krauss car-
following model [11] on the road defined by Fig. 5.1 and Table 5.6. Vehicle 08
exhibits a special behaviour: it stops at Distance = 296 m (road section S4) for
100 s, after which it restarts its travel. The data obtained from SUMO was exported
to the Matlab environment Version 7.12.0.635 (R2011a).

The idea behind using vehicles with very high deceleration abilities is to obtain
data in extreme situations (i.e. the vehicles are very prone to having a collision), in
order to evaluate the performance of the proposed methodology in recommending
a safe speed early. In addition, speed restrictions on S2/S3 and S5 emulate realistic
behaviours around a traffic bottleneck and the variety of piecewise constant speed
limits along a same road, respectively.
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Table 5.5 Properties of simulated vehicles used in tests

Attribute Vehicle type
A B C

Vehicle’s ID 03, 09, 11, 13, 15, 17,
19, 23, 25, 27, 29, 31

04, 05, 07, 10, 12, 14,
18, 20, 24, 26,28.

01, 02, 06, 08, 16,
21, 22, 30

Length [m] 4.4 4.0 4.2
Max Speed [m/s] 40 30 16.677
Acceleration [m/s2] 3 2 1
Deceleration [m/s2] 10 10 10
Minimum Gap [m] 2.5 2.5 2.5
Sigma 0.5 0.5 0.5

Table 5.6 Properties of road
sections in Fig. 5.1

Section Length (m) Max speed (m/s)

S1 175 27.778
S2 5 0.7
S3 30 2.5
S4 235 27.778
S5 55 2.5

Fig. 5.3 Entire traffic scenario determination for vehicle 20 using LOM

5.6.1 Traffic Scenario Determination

The inference engine was implemented using the FL Toolbox for use with Matlab
[12], and tested using rN = 4 m, rD = 14 m, xahead = 32 m, WL = 3.5 m and
NL = 2. The obtained results for vehicle number 20 are presented in Fig. 5.3 using
the LOM (Last Of Maximum) method to calculate the outputs. With this method, all
the estimations have a certainty value of 1.0 (i.e. complete certainty).

The traffic scenario determination for the entire set of vehicles is shown in
Fig. 5.4a, b. From Fig. 5.4a, it can be concluded that almost all traffic scenarios
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Fig. 5.4 Entire traffic scenario estimation for all vehicles using LOM. a Vehicle versus distance.
b Vehicle versus velocity versus time

Fig. 5.5 Entire VR profile for vehicle 20 using the proposed methodology

immediately below a cut at Distance = 190 m (the medium point of the bottleneck)
are determined as a Passing-Bottleneck scenario (magenta), and that some vehicles
detect the new speed limit around Distance = 463 m as a Congested-Traffic sce-
nario (red) for a few seconds, just after the new speed limit’s commencement at
Distance = 445 m.

For its part, Fig. 5.4b shows thatmost of the velocities beneath a cut at V eloci ty =
10 [km/h] are successfully classified as either Passing-Bottleneck or Congested-
Traffic scenarios. Moreover, increasing velocities are suitably classified as either
Free-Traffic scenario (green) or Leaving-Congestion scenario (cyan), generally after
Passing-Bottleneck orCongested-Traffic scenarios, as confirmed in Fig. 5.4a. Finally,
decreasing velocities in Fig. 5.4b are successfully classified as an Approaching-
Congestion scenario (yellow) when a Passing-Bottleneck or Congested-Traffic sce-
nario is about to occur (also confirmed in Fig. 5.4a).
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Fig. 5.6 Analysis of VR for all vehicles in function of time. [Black sections: beyond road’s length].
a HV-speed/trafic-scenario porfiles. b Prevalence of the VR over VH porfile: Bule means VR > VH

Fig. 5.7 Analysis of VR for all vehicles in function of distance. Prevalence of the VR profile over
the VH profile: blue means VR > VH

5.6.2 Recommended Speed

Results for the particular case of Vehicle 20 (Fig. 5.5) show that the critical
Approaching-Congestion scenario is tackled properly by detecting the sudden (and
maintained) decreasing of VN at times 78 s and 177 s and then imposing an antici-
pated low VR . With this, the Host Vehicle can be warned of the oncoming traffic jam
early, and thus gains several seconds to perform a smoother braking action.

Another sudden decrease in VN occurs at 165 s, and a low speed is recommended
for a single instant. Such a decrease is not caused by any congestion, but by a stopped
vehicle (Vehicle 08) in the middle of a Free-Traffic scenario. Then, the VR profile
is momentarily affected, indicating the existence of an isolated stopped vehicle (the
estimated scenario remains as a Free-Traffic scenario during, and for some instants
after, such a detection).

The performance of all vehicles can easily be analysed from Figs. 5.6 and 5.7 with
a quick visual inspection, due to the colour-convention used: blue sections indicate



5 Intelligent Speed Advising Based on Cooperative Traffic Scenario Determination 91

Fig. 5.8 3D analysis of e = Xrel − Dr for all vehicles. Colored sections correspond to e < 0
(according the previous color convention). a Xret , Dr obtained from V f = VH . b Xret , Dr obtained
from V f in function of VR

that VR ≥ VH . Note that the section for VR < VH corresponding to the lower arrow
in Fig. 5.7 exhibits a pattern that in general coincides with Approaching-Congestion
scenarios, which can be explained as the approaching of the oncoming Congested-
Traffic/Passing-Bottleneck scenarioswith a suitable safe (low) speed. Twoother cases
in which VR < VH also happen can be better understood from Fig. 5.7: the middle
arrow indicates the detection of an isolated vehicle which is stopped in the middle
of the road (Vehicle 08); and the upper arrow represents the case in which a segment
of the road with a lower speed limit will be promptly reached.

5.6.3 Recommended Distance

Our DR schemewas testedwith data from both:(1) the original set-up (without taking
into account VR), and (2) the improved set-up (manual and isolated adjustment of
the speed according to our VR scheme) with h2 = 0.01, LV = 4.2, and Gmin [m] =
2.5 [m].

In Fig. 5.8a (original setup) we can see that many of the e < 0 cases are produced
in Approaching-Congestion scenarios. This is particularly interesting because, there,
VH is much faster than VN , producing large negative values for e (Fig. 5.8a), thus
resulting in a high probability of collision. In Fig. 5.8b (improved setup) we can see
that most of those dangerous situations are suitably tackled, and just a few of minor
e < 0 still remain.

Recall that in Cooperative ACC schemes the control law depends on the value of
e [10]: the smaller e value, the weaker action control (breaking effort) in tracking the
safety parameters. Thus, according to Fig. 5.8b, our recommended speed/distance
schemes provide high performance in terms of travelling in safe conditions.

5.7 Conclusions and Future Work

A new scheme for safe speed advising based on a cooperative and decentralised
methodology for traffic scenario determination was proposed. Its performance was
assessed using safe policies and supported by experimental tests via SUMOpackage.



92 R. H. Ordóñez-Hurtado et al.

Currently, efforts are focused on evaluating the proposed ISA system beyond the
used setup, i.e. using other realistic situations such as roads with curves and mobile
bottlenecks.

An immediate future task is to use the proposed methodology to design a
CooperativeACC systemby closing the speed/distance loops using the here proposed
VR and DR schemes and a suitable controller. For such a mandatory ISA we have
to be able to develop the corresponding analysis to guarantee string stability. In
addition, other kinds of information can be used to improve the performance of the
advisory system, such as meteorological (weather) and environmental (pollution)
information.
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Chapter 6
Driver Control and Trajectory Optimization
Applied to Lane Change Maneuver

Patrick J. McNally

Abstract The problem of driver control and trajectory optimization for the lane
change maneuver is approached through the application of the same design and
simulation tools used in the development of modern automobiles. The vehicle model
and driver control algorithms are combined with a genetic algorithm for trajectory
optimization to determine an optimal path for achieving an objective measure of
maximum speed. Results are compared with subjective results from a professional
driver using a new driver-in-the-loop system. The conclusion is integrated objective-
subjective simulation methods can be used earlier in the design to improve vehicle
handling performance.

6.1 Background

The process of engineering complex systems including automobiles has undergone a
dramatic change in the last two decades. A major reason for this fundamental change
is the development of computer based tools for design drafting, digital mock-up, and
simulation. Model-based engineering (MBE) elevates computer based models in the
engineering process to a central and governing role in the specification, design, inte-
gration, validation, and operation of a system [4]. All major automotive companies
have adopted MBE techniques to various degrees.

A Virtual Prototype is a computer simulation of a physical product that can be
presented, analyzed, and tested from concerned product life-cycle aspects such as
design/engineering [14].

Complete virtual prototyping environments which compare the simulated perfor-
mance of an automobile against a set of objective metrics are now available and
have become standard practice for handling performance, ride performance, and
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even durability [11, 12]. However, the subjective experience the individual feels
while driving the vehicle is as important as the performance metrics printed in a
magazine, and so a broader approach than virtual prototyping with objective mea-
sures is required. So far these subjective experiences have not been encapsulated in
objective metrics.

6.1.1 Experiential Engineering

The field of Experiential Engineering attempts to re-create the human environment
for driving the vehicle so that decisions requiring human perception (from emotions
or other difficult to measure inputs) can be made about the design of the vehicle.
To be successful, this environment must be utilized during the product development
process, in parallel with the vehicle’s technical development [8].

Our approach is to combine objective and subjective measurement into an in-
tegrated environment of engineering tools and processes, thereby accelerating the
vehicle development process. We refer to the objective tests as conducted via “of-
fline simulation” and subjective tests as conducted via “online simulation”, which
puts the vehicle operator “in-the-loop” of control.

6.1.2 Lane Change Problem

Determination of an optimal control strategy to conduct the ISO lane change ma-
neuver or obstacle avoidance maneuver has been studied for some time [3, 7, 9]. An
optimal preview control method is applied to the automobile path following prob-
lem in [9]. The method was applied to the closed loop simulation of an automobile
driver/vehicle system during a lane-change maneuver. The computer simulation re-
sults are compared with equivalent vehicle test measurements. In [7], the authors
consider open-loop and closed loop lane-change maneuvers and design time op-
timal steering controllers with nonlinear constraints. First, they generate a special
open loop lane-change steering signal which minimizes the period of lane-change
subject to constraints on the lateral acceleration and jerk magnitude. Then, they dis-
cuss how to implement those steering commands in the closed-loop system using a
lane-following controller.

Most recently, the problem was approached with a reduced vehicle dynamics
model and driver control model that is solved repeatedly on a moving prediction
horizon to yield near optimal setpoint trajectories for the full model [3]. A NLP
approach is used to solve the problem of finding the path and driver control for
the autonomous guidance problem. We take a similar approach here with a reduced
vehicle dynamics model that is solved repeatedly, however, the trajectory control
approach we take is more general and the application is toward the automobile
handling design problem. Also, we are looking for a solution to the design problem
that leads to a vehicle that gives a good “subjective” feeling of control.
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6.2 Model Based Engineering Environment for Objective
Evaluation

ADAMS/Car is an industry standard virtual prototyping solution for the design of
handling, ride, and durability characteristics of an automobile. The software effi-
ciently organizes and solves a complete set of differential and algebraic equations in
the time domain [1].

VI-CarRealTime is anADAMS/Car derivativemodel, specifically developed to al-
low the application of reduced order ADAMS/Car models to realtime problems such
as racing trackside simulation, fast optimization and design of experiments studies,
and hardware and driver in the loop simulation. The VI-CarRealTime model is a 14
DOF model representing 6 DOF’s for the vehicle and 2 DOF’s for each wheel. A
VI-CarRealTime model can be automatically extracted from an ADAMS/Car model
and automatically compared with the ADAMS/Car results for a series of standard
events [2].

6.2.1 Determination of Driver Controls

VI-Driver is a virtual prototype of a human driver that is designed to drive a simulated
vehicle model in a very simple and efficient way [5, 10]. The driver model has been
developed with the idea that the “driver” must be:

• robust enough to adapt to a wide range of vehicle characteristics
• simple to tune, and self-adapting whenever possible
• capable of driving on both limit and sub-limit maneuvers.

VI-Driver separates the lateral and longitudinal control problem into uncoupled
controllers, as shown in Fig. 6.1. Each control loop has a predictive (feed-forward)
and compensatory (feedback) control system. In the most general case, the lateral
controller takes a trajectory to follow as input, and a speed profile to match with the
longitudinal controller.

The target trajectory curve for lateral tracking is determined through the following
process. Refer to the trajectory model shown in Fig. 6.2.

Given a target curve γ which represents the trajectory that must be followed, we
define a connecting contour γc (in red) with the following constraints:

1. initial position (compatible with the vehicle position)
2. initial orientation (compatible with vehicle speed, vehicle side slip angle β)
3. final position (the reference trajectory evaluated at the preview distance D)
4. final orientation (smoothly joining the reference trajectory evaluated at the pre-

view distance D).

To fit these constraints, a cubic polynomial is used, and the coefficients are calculated
with the following relations:
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Fig. 6.1 VI-Driver lateral and longitudinal controllers

Fig. 6.2 Connecting contour for determining reference direction

[
γc(0, t)
∂ γc
∂x (0, t)

]
=

[
0
β

]
(6.1)

[
γ(D, t)
∂ γ

∂x (D, t)

]
=

[
L0

L2 − L1

]

Using the differential flatness property, the connecting contour is used as the
control input trajectory. The same property allows inverting that trajectory and cal-
culating the appropriate steering control action. The preview distance parameter, D,
can be adjusted to shape the input reference.

For directional control, the simplest vehicle model that captures the dynamical
effects of interest is the classical bicycle treated as a nonholonomic model, as shown
in Fig. 6.3.

VI-Driver’s lateral controller uses the bicycle model as the basis for implementing
a model predictive control technique [10]. Given the vehicle speed V, the side slip



6 Driver Control and Trajectory Optimization Applied to Lane Change Maneuver 97

Fig. 6.3 Classical bicycle
model used as reference for
lateral controller

angle β, the preview time (tp), and the preview distance D (computed as V · tp),
the principle provides a very good approximation of the steering angle necessary to
bring back the vehicle on the target path.

A final stage has been implemented, which compensates for the unmodeled lateral
dynamics. This yaw rate controller uses the reference path curvature and the actual
vehicle yaw rate to correct the steering action to bring the vehicle instantaneous
curvature as close as possible to the reference path curvature.

Because of unmodelled dynamics, disturbances and numerical integration noise,
the simulated vehicle almost always diverges from the global optimal trajectory
target. Nevertheless, the simplicity and the natural robustness of the lateral controller
provides correct steering action, and it has been observed to behave very realistically,
even in cases where the target trajectory cannot be followed due to excess‘ive side
slip. More advanced MPC methods which include slip prediction have also been
implemented for other work but at the sacrifice of computation speed [5].

6.2.2 Optimization Problem

The automotive manufacturer wishes to find the vehicle suspension and chassis de-
sign which executes the lane change maneuver in minimum time.

Formally, the design optimization problem is stated as:

Find u∗, pwhich causes
ẋ(t) = a(x(t),u(t),p)

T o f ollow an admissible tra jector y x∗ that minimizes the per f ormance measure
min(J ) = t f + w · v

Where u(t) is our (admissible) driver control, p is a vector of suspension and
chassis design parameters and the cost function is a weighted combination of final
maneuver time t f and vehicle speed v, a constant for our maneuver.

Towards this goal, we have constructed computational methods to solve the fol-
lowing two problems: (1) given a vehicle speed, find a feasible trajectory through
the set of cones so that no cones are hit, and (2) find the minimum time to execute
the lane change maneuver over all feasible trajectories through the set of cones.
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Fig. 6.4 Spline control points applied to ISO lane change trajectory

Fig. 6.5 Process flow for path and speed optimization

Problem 1 is setup with a population of trajectories, parameterized by a set of
trajectory spline points, as shown in Fig. 6.4. A simulation is run for each candidate
trajectory. Problem 2 is initiated by increasing the starting speed for the maneuver.

The two problems are solved automatically as one iteration. The number of
total iterations is set by the user. Ultimate convergence to the final combination of
maximum speed, minimum time, and correct trajectory is determined by reviewing
successive run results.

The overall process of simulated vehicle control, trajectory optimization, and
vehicle speed maximization is shown in Fig. 6.5. VI-Driver is used to control the
path of the vehicle through the cones at a constant speed.

The Press Maneuvers Optimizer block uses a genetic algorithm to generate a set
of target trajectories, parameterized by the spline points. For each iteration, a cone
interference check is made to verify if the target trajectory is feasible. If a simulation
results in a cone hit, all trajectories with the same spline segment are pruned out
and the dynamic simulation is not run. All trajectories that result in a successful
simulation without a cone hit are used as a starting set for the next generation.
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Fig. 6.6 Convergence of optimal solution for compact car lateral displacement, ISOLC

The start (constant) speed is increased and a new cycle begins. Depending on the
user specified number of refinements, additional generations are run for the trajectory
creation process. The event is completed when at least one combination of trajectory
and maximum speed is identified which runs completely without a cone hit situation.
The optimal is a weighted combination of highest speed and minimum time [15].

6.2.3 Offline Optimization Results

Simulations were run for three vehicle types to check the robustness of the algorithm;
a high performance sports car, a sport-utility vehicle, and a compact car. Also, two
cone layouts were examined; the ISO lane change layout and the Consumer Reports
lane change layout. The Consumer Reports layout is similar to Fig. 6.4 but with only
one pair of cones for the middle section.

The vehicle lateral displacement from the initial lane and the handwheel angle
(steer demand) are used to illustrate convergence and for later comparison with a
real driver. From Figs. 6.6, 6.7, 6.8, 6.9, it can be concluded that the optimization
converges to a steady state lateral displacement and steering profile in six genera-
tions of the trajectory optimization for the ISO lane change maneuver and within 3
generations for the Consumer Reports lane change maneuver.

Table 6.1 shows the convergence of the optimizer for lap time and speed for each
iteration of the ISO lane change maneuver. Note the unexpected change in maximum
lateral acceleration from iteration 2 to 3.

A vehicle’s characteristics, such as track width, wheel base, roll center height, and
other design parameters will have an effect on optimal lane change performance. The
results of the off-line optimization have been used to improve vehicle handling in
the lane change maneuver through design parameter changes [15].



100 P. J. McNally

Fig. 6.7 Convergence of optimal solution for compact, steer demand, ISOLC

Fig. 6.8 Convergence of optimal solution for compact, steer demand, CR LC

6.3 Virtual Prototyping Environment for Subjective Evaluation

The previous sections have illustrated a method for evaluating the handling charac-
teristics of a new vehicle to execute the lane change maneuver. The offline method
of evaluating a vehicle is an objective measure of performance, but as discussed
previously, vehicles are also evaluated for their subjective performance through a
customer test. New technology for the subjective evaluation of a vehicle for handling
characteristics during the early design stage was recently introduced [6]. This section
describes this new technology for subjective evaluation of the handling characteris-
tics of a vehicle.
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Fig. 6.9 Convergence of optimal solution for compact car yaw rate, CR LC

Table 6.1 Optimizer convergence results, ISLOC

Iteration 1 2 3 4 5 6

Lap time, seconds 7.14 6.78 6.03 5.87 5.82 5.78
Lateral accel. Max, G 0.761 0.786 0.752 0.79 0.793 0.802
Speed, avg, km/h 86.3 90.8 102.1 105.0 105.8 106.5

VI-DriveSim Dynamic is a high-fidelity, ‘hardware and driver-in-the loop’, full-
motion vehicle simulator developed for the simulation of vehicle handling response.
The simulator is the result of a collaborative effort between Multimatic, VI-grade,
Concurrent, SimCoVR, and Ansible Motion [6]. Two complete systems have been
built to date. Additionally, a complete new driving simulator design that also simu-
lates vehicle ride quality in addition to handling quality has now been developed [13]

VI-DriveSim Dynamic is an integration of real-time vehicle dynamics simulation
software, a six-degree-of-freedom (6DOF) motion platform, high-definition graph-
ics, state-of-the-art motion cueing and a highly configurable driver interface. (see
Figs. 6.10 and 6.11).

VI-CarRealTime provides real-time, high-fidelity, fully dynamic vehicle motion
simulation. VI-DriveSim is used to integrate the analysis engine with an immersive
graphics and high resolution visualization program. The motion platform utilizes an
innovative compact mechanism to provide decoupled lateral, longitudinal, and yaw
motion with large displacement capacity. The pitch, roll, and heave axes are less
important for handling dynamics and are coupled.

The resultant lateral, longitudinal, and yawmotions provide the driver’s vestibular
system with appropriate onset ‘cues’. The result is a superior response compared to
a hexapod. The visual cues are projected onto a 160◦, 1.5 m high, 4 m diameter
cylindrical screen, which moves in X–Y , while the projectors move in X–Y and
yaw, allowing for a large field of vision and a highly immersive viewing experience.
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Fig. 6.10 Driving simulator functional block diagram

To achieve the most realistic simulation, particular attention was also given to the
steering feedback.

Multimatic Technical Centre and their development driver have run hundreds of
real and virtual laps of the company’s lidar scanned and meshed test track, Calabo-
gie Motorsports Park, Ontario, with the company’s fully characterized parameter
or P-Car. The traces in the plot (Fig. 6.12) show excellent correlation, but more
importantly, their driver has repeatedly been able to demonstrate that even minor
mechanical and aerodynamic changes made on the P-Car can be discerned on the
simulator, and vice versa.

6.3.1 Driver Maneuvers in a Controlled Experiment

Prior to the offline optimization study, an experiment was conducted using a pro-
fessional driver-engineer from the manufacturer of the same compact car used in
the optimization study. This driver has a great deal of driving experience with the
compact car as well as other vehicles on a physical test course.

The first step of the experiment was to familiarize the driver with the motion
simulator environment and the vehicle model. The driver used a simulated skid pad
to conduct two types of maneuvers to familiarize himself with the vehicle: constant
radius cornering and the lane change maneuver. The driver results are for a double
lane change maneuver with a slightly longer layout than the Consumer Reports cone
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Fig. 6.11 The simulator’s highly immersive visual experience

Fig. 6.12 Correlation between theP-Car (blue) and the simulation (red). The plots showspeed (top),
steering angle (middle), and lateral acceleration (bottom) for one lap at Calabogie Motorsports Park

spacing. This layoutwasmore familiar to the driver but resulted in scaling differences
between the results that are discussed later.

As part of the experiment, changes to the vehicle setup were made to determine
if the driver had sensitivity to the change in the vehicle performance. The following
changes were made, each acknowledged by the driver:

• Gross vehicle weight change (Added 800 lbm)
• Roll Stiffness Distribution Change by adding 250N-m/deg rear roll stiffness.
• Reducing the rear lateral force compliance steer by 0.04deg
• Faster Steering from 16.3 to 15.0
• Rear Toe to Zero (From .38deg in).

The focus of this chapter is comparing the driver results on the simulator with the
optimization results, and not on the assessment of the driving simulator as a subjective
vehicle design tool. However, the ultimate intent is to use the driving simulator as a
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Fig. 6.13 Repeated ground track, professional driver, lane change

supplement to physical proving ground testing using a simulated vehicle model that
is closer to the final design than a physical prototype.

6.4 Driving Simulator Results (Online)

Figure 6.13 shows ground track results that are obtained from the driving simulator
as raw data. The vertical axis is lateral displacement and the horizontal axis is lon-
gitudinal displacement, both in meters. Because the driver has the ability to reset the
simulation at any time, he can decide to continue the event until the end or start over,
speeding up the learning process.

Figure 6.14 compares the results of the online simulation and offline simulation.
In addition to slight layout differences, the professional driver modulated the throt-
tle during the maneuver whereas the simulation was found to hold velocity better,
resulting in differences in scaling of the yaw rates. For now, we are considering the
general shape of the response to determine if the professional driver learns a similar
optimal path and control as the genetic and driver control algorithm.

Figure 6.15 compares the steering angle results of the online simulation, and
offline simulation. Again, differences between the offline and online experiment
account for differences in scaling of the yaw rates between the two simulations. For
now, we are considering the general shape of the steer angle response to determine
differences in learning between the professional driver and the genetic algorithm.

6.4.1 Imposing Constraints on Simulated Driver Controls

In an attempt to better match the actual driver performance, two adjustments were
made to the driver controls. The first adjustment was to increase the preview distance.
The preview distance increases the distance to fit a connecting contour, which was
expected to give a smoother control. As shown in Fig. 6.16, this adjustment results
in lower and smoother yaw rates at a penalty of a longer transit time.

The second adjustment was to increase the driver anticipation effect, used to
compensate for slower vehicle response due to inertia and compliance. An increase
in anticipation effect moves the starting reference point of the connecting contour by
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Fig. 6.14 Comparison of yaw rate, online and offline simulation

Fig. 6.15 Comparison of steering angle, online and offline simulation

an amount (AC · velocity). The results of this change are shown in Fig. 6.17. This
adjustment shows promise as it results in faster maneuver times and in lower driver
control requirements.

6.5 Conclusions

This paper has compared an objectivemethod of using simulation-based optimization
to determine the “best” automobile design for the lane change maneuver with a
subjective method which utilizes a driving simulator.

The objective method is based on running a series of simulations with a vehicle
model and determining both the driver steering control and a set of trajectory points
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Fig. 6.16 Effect of preview distance changes

Fig. 6.17 Effect of anticipatory compensation changes

to determine the minimum time maneuver. The subjective method uses the same
vehicle model running in a driver-in-the-loop simulation to allow an expert driver to
give an assessment of the vehicle.

The results of the two methods were compared, primarily with the intention of
improving the objective methods but also to illustrate a new vehicle design process
that utilizes both objective and subjective metrics early in the design process, before
the creation of physical prototypes. Work is in progress for a systematic comparison
using a thoroughly validated vehicle model on the same lane change course for both
offline and online simulations. Also, amathematical formalism is under development
for comparing objective and subjective results.
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Chapter 7
Real-Time Near-Optimal Feedback Control
of Aggressive Vehicle Maneuvers

Panagiotis Tsiotras and Ricardo Sanz Diaz

Abstract Optimal control theory Patrick J. can be used to generate aggressive ma-
neuvers for vehicles under a variety of conditions using minimal assumptions. Al-
though optimal control provides a very powerful framework for generating aggressive
maneuvers utilizing fully nonlinear vehicle and tire models, its use in practice is hin-
dered by the lack of guarantees of convergence, and by the typically long time to
generate a solution, which makes this approach unsuitable for real-time implemen-
tation unless the problem obeys certain convexity and/or linearity properties. In this
chapter, we investigate the use of statistical interpolation (e.g., kriging) in order to
synthesize on-the-fly near-optimal feedback control laws from pre-computed opti-
mal solutions. We apply this methodology to the challenging scenario of generating
a minimum-time yaw rotation maneuver of a speeding vehicle in order to change its
posture prior to a collision with another vehicle, in an effort to remedy the effects
of a head-on collision. It is shown that this approach offers a potentially appealing
option for real-time, near-optimal, robust trajectory generation.

7.1 Introduction

An enormous amount of work has been devoted during the past three decades to the
development of active safety systems for passenger automobiles. This effort has led
to the development of a plethora of active safety systems, such as ABS, TCS, ESP,
RCS, AFS and others [2, 11, 34, 39], many of which are now standard equipment in
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production vehicles. The main goal of all these systems is to help the driver avoid,
or prevent, the so-called “abnormal” driving scenarios (skidding, sliding, excessive
under/oversteer, etc). In these conditions, nonlinear effects dominate the vehicle
dynamics, and the tire friction is very close to (or exceeds) the adhesion limit(s).
Driving at the boundary of the adhesion limits of the tires leads to a reduced oper-
ational stability margin for the driver. The main goal of most current active safety
systems is therefore to restrict the operational envelope of the vehicle and the tires
inside a linear, well-defined, stable regime. This is, however, an overly conservative
approach. Enhanced stability comes at the cost of decreased maneuverability. There
are many realistic scenarios where the occurrence (or the post-effects) of a collision
can be alleviated by allowing (or even inducing) the vehicle to operate in its nonlinear
regime in a controlled manner.

The previous observations naturally lead one to investigate algorithms that exploit
the increased vehicle maneuverability brought about by operating the vehicle in
nonlinear and/or unstable regimes. By extending the region of validity of the future
generation of active safety systems one expects to increase their performance. In
our previous work [6, 7, 35–38] we have investigated the mathematical modeling of
vehicles operating in nonlinear and/or unstable regimes, and have demonstrated the
potential benefits of such an approach to achieve collision avoidance and mitigation
beyond what is possible with current active safety systems.

This point of view represents a philosophical departure from current practice, and
differs significantly in scope from standard active safety system design for passenger
vehicles. As a result—and understandably so—it brings along with it a slew of
unanswered questions; among them, the key question is how to generate the necessary
control actions (at the short time scales required) that are needed to perform such
extreme maneuvers. Indeed, most drivers—except perhaps expert professional, stunt
and race drivers—would have great difficulty initiating an aggressive maneuver and
controlling the vehicle throughout the whole maneuver duration.

Optimal control is a powerful framework that has been used successfully in many
engineering applications to generate feasible trajectories subject to constraints and
complicated system dynamics. The field of numerical optimal control has experi-
enced enormous advances during the recent years, to the point that we now have
reliable numerical algorithms to generate optimal trajectories for a variety of prac-
tical engineering problems [4]. Despite these advances, the current state-of-the-art
in numerical optimal control mainly focuses on generating only open-loop optimal
controllers. Furthermore, and unless the underline problem (dynamics, cost) obeys
certain convexity and/or linearity conditions, current trajectory optimizers do not
allow the computation of optimal trajectories in real-time, at least for applications
similar to the one we have in mind in this chapter, where the time allotted to solve the
problem is in the order of a few milliseconds. One example where fast computation
has become possible owing to the current advancement of embedded computing is
the area of Model Predictive Control (MPC), where successive linearizations of the
plant are used to generate a sequence of linear or convex optimization problems over
a finite horizon that can be solved very efficiently on-line [10]. In general, how-
ever, optimal solutions for general nonlinear systems and general cost functions are
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notoriously sensitive to the provided initial guesses and, in the absence of timely
re-planning, the robustness of these open-loop optimal control laws is questionable.

Consequently, several researchers have recently turned their attention to the gener-
ation of near-optimal trajectories using alternative methods, which bypass the exact
on-line computations required for the solution of complicated, nonlinear optimal con-
trol problems, opting instead for approximate, near-optimal solutions. One typical
approach uses interpolation over pre-computed optimal control actions for a variety
of initial conditions. Naïve interpolation, however, does not ensure feasibility—let
alone optimality—of the resulting interpolated trajectories. In [1], for instance, the
authors used traditional interpolation over pre-computed optimal trajectories. How-
ever, this method turns out to be inaccurate and time-consuming. Another, more
promising, approach is the one proposed in [14], where the optimal control prob-
lem is cast as one of metamodeling, in which the (unknown) map between control
inputs/system response pairs is generated implicitly via a series of computer ex-
periments. Specifically, the approach in [14] considers the solution to an optimal
control problem obtained by numerical methods as the output of such a metamodel
obtained by a series of off-line simulations. A vast number of publications about
metamodeling of computer experiments can be found in the literature. Most of them
are motivated by the low time-consuming optimization process, derived from having
a metamodel of a given simulation.

In contrast to [1], the framework in [14] is based on rigorous interpolation between
the off-line solutions (the “metamodel”) using ideas from statistical interpolation the-
ory via Gaussian processes, which in geostatistics it is also known as kriging [8, 16,
22, 33]. Kriging approximates a function observed at a set of discrete points with
a convex combination of the observations so as to reduce the least mean-squared
error (MSE), and is a special case of prediction using Gaussian processes [16, 22].
Although classical interpolation focuses on low-order polynomial regression, which
is suitable for sensitivity analysis, kriging is an interpolation technique that provides
better global predictions than classical methods [20, 33]. In this work, we use kriging
to construct a (near-)optimal feedback controller from off-line computed extremal
trajectories. Prior use of kriging has been focused mainly on simulation and meta-
modeling [18, 30, 32]. A brief overview of interpolation using Gaussian processes
and kriging is given in Sect. 7.3.

We apply a technique similar to the one proposed in [14] to obtain near-optimal
“feedback” controllers for the problem of minimum-time aggressive yaw maneuver
generation for a high-speed vehicle impeding a collision with another vehicle at an
intersection (T-Bone collision). Our results show that kriging interpolation is able to
generate very accurate parameterized trajectories in real-time, and hence it may be a
potential option for real-time, near-optimal trajectory generation under such extreme
driving conditions, where the time constraints do not allow the computation of an
exact optimal trajectory in a timely manner using current state of technology.

Prior similar work that uses parameterized trajectory generation includes [9],
which developed an algorithm to generate a whole set of trajectories between two pre-
computed solutions for two different initial conditions, and [31], where parameter-
ized trajectories were generated using experimental demonstrations of the maneuver.
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However, the control laws obtained in [9, 31] are open-loop and thus susceptible to
uncertainties in the initial conditions and unknown model parameters. The advantage
of the method described in this chapter is that the control is obtained as a function
of the actual state, hence is a “feedback” control.

The chapter is structured as follows. In the next section the problem to be in-
vestigated is introduced, along with the dynamical model of the vehicle and the tire
friction dynamics. Next, the optimal control problem is formulated, which is solved
over a discrete grid of initial conditions. This series of generated solutions at several
discrete points is stored in memory, and is used in Sect. 7.4 to generate a feedback
control by interpolating between the stored solutions on-line using kriging. For the
benefit of the uninformed reader, a brief summary of kriging theory as used in this
chapter is given in Sect. 7.3. In Sect. 7.4.2 we present numerical results from the
application of the proposed approach to the problem of T-Bone collision mitigation at
an intersection between two speeding vehicles, as a demonstration of the possibilities
enabled by the proposed approach for optimal on-line controller generation.

7.2 Aggressive Yaw Maneuver of a Speeding Vehicle

7.2.1 Problem Statement

One of the most lethal collisions between two speeding vehicles is the so-called “T-
bone” collision (Fig. 7.1), which occurs when one of the vehicles drives into the side
of the other vehicle [29]. The vehicle suffering the frontal impact is often referred to
as the “bullet” vehicle, while the one suffering the side impact is said to have been
“T-boned.” If there is inadequate side impact protection, the occupants of a T-boned
vehicle risk serious injury or even death.

Although the bullet vehicle is driving much faster, this collision scenario is spe-
cially dangerous for the driver or the side passenger of the target vehicle. This is
owing to the fact that the requirements in terms of frontal crashworthiness of cars on
the market nowadays is excellent [12]. Frontal-crash tests are carried out at veloci-
ties up to 64 km/h, with the result of the passengers cabin being almost intact. The
suitable design and choice of materials of the front part of the vehicle allows large
structural deformations and thus absorption of the residual energy during impact.
Moreover, the installation of frontal airbags, mandatory in the US since Septem-
ber 1998, has resulted in a great decrease of deaths and injuries owing to frontal
collisions. On the other hand, the side part of the chassis is structurally weak, and
large deformations would result in lethal injuries for the occupants. Unfortunately,
side airbags are currently available only in upscale or mid-range cars, although it is
envisioned that they will also become standard safety equipment for all passenger
vehicles in the future. Reference [13] offers a detailed study on occupant injuries
during side impact crashes. As expected, the most frequent source of severe injuries
is the contact between the chest and the door panel.
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Fig. 7.1 T-Bone collision

Car manufactures are aware of the high risk involved in side collisions. Volvo, for
instance, in 1991 introduced a special protection system against side collision named
Side Impact Protection System (SIPS). Other car manufacturers have introduced
similar passive safety systems.

In our previous work [6, 7] we investigated the possibility of mitigating the results
from an unavoidable T-Bone collision by using an aggressive yaw maneuver for the
incoming bullet vehicle. The proposed collision mitigation maneuver involves a
rapid yaw rotation of the bullet vehicle at an approximately 90 deg angle that brings
the longitudinal axes of the two vehicles into a nearly parallel alignment, in order
to distribute the residual kinetic energy of the collision over a larger surface area,
thus mitigating its effects. Although this represents a worst-case scenario, where
the target vehicle does not respond (a more optimal strategy would involve a rapid
yaw maneuver of the target vehicle as well), our initial study focuses only on the
case when the bullet vehicle is actively maneuvered during the pre-collision phase.
The generalization to the case when both vehicles collaboratively try to avoid the
collision will probably involve some vehicle-to-vehicle (V2V) communication and
it is left for future investigation. Henceforth, we thus only consider the problem
when only one (the bullet) vehicle is actively controlled. This problem was posed
in [6, 7] as a time-optimal control problem, and it was solved using pseudospectral
methods [25]. In the next two sections we briefly summarize the problem definition
and its numerical solution.

7.2.2 Vehicle and Tire Model

The model used in this chapter is the so-called “bicycle model” [26], augmented
with wheel dynamics. The nomenclature and conventions regarding this model are
shown in Fig. 7.2. The state is given by x = [u, v, r,ψ,ω f ,ωr ]T, where u and v are,
respectively, the body-fixed longitudinal and lateral velocities, r is the vehicle yaw
rate, ψ is the vehicle heading, and ω f ≥ 0 and ωr ≥ 0 are the angular speeds of the
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Fig. 7.2 Schematic of bicycle model

front and rear wheels, respectively. The system is controlled by u = [δ, Tb, Thb]T,
where δ is the steering angle and Tb, Thb denote the torques generated by the footbrake
and handbrake, respectively.

The equations of motion of the vehicle can be written as shown in (7.1)–(7.4)

u̇ = 1

m
(Fx f cos δ − Fy f sin δ + Fxr ) + vr, (7.1)

v̇ = 1

m
(Fx f sin δ + Fy f cos δ + Fyr ) − ur, (7.2)

ṙ = 1

Iz

(
Φ f (Fx f sin δ + Fy f cos δ) − Φr Fyr

)
, (7.3)

ψ̇ = r, (7.4)

along with the wheel dynamics

ω̇ f = 1

Iw
(Tbf − Fx f R), (7.5)

ω̇r = 1

Iw
(Tbr − Fxr R), (7.6)

where m, Iz are, respectively, the mass and yaw moment of inertia of the vehicle,
Iw is the rotational inertia of each wheel about its axis, R is the effective tire radius,
and Φ f , Φr are, respectively, the distances of the front and rear axles from the vehicle
center of mass. In (7.1)–(7.6) Fi j (i = x, y; j = f, r ) denote the longitudinal and
lateral force components developed by the tires, defined in a tire-fixed reference
frame.
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ax = u̇ − vr

Fxf = Fxf cos δ − Fyf sin δ Fxr

W = mg

Fzf Fzr

C.G.

f r

(Forces not drawn to scale)

Fig. 7.3 Longitudinal load transfer force distribution

These forces depend on the normal loads on the front and rear axles, Fz f and Fzr ,
given by

Fz f = mgΦr − hmgμxr

Φ f + Φr + h(μx f cos δ − μy f sin δ − μxr )
, (7.7)

Fzr = mgΦ f + hmg(μx f cos δ − μy f sin δ)

Φ f + Φr + h(μx f cos δ − μy f sin δ − μxr )
(7.8)

where h is the distance of the vehicle center of mass from the ground (see Fig. 7.3),
and where

μ j = D sin(C arctan(Bs j )), μi j = −(si j/s j )μ j , i = x, y; j = f, r, (7.9)

for some constants C, B and D. Expression (7.9) is a simplified version of the
well-known Pacejka “Magic Formula” (MF) [24] for the tire friction modeling, and
combines the longitudinal and lateral motion, thus intrinsically incorporating the
non-linear effect of the lateral/longitudinal coupling also known as the “friction
circle” (see Fig. 7.4), according to which, the constraint F2

x, j + F2
y, j ≤ F2

max, j =
(μ j Fz, j )

2 ( j = f, r) couples the allowable values of longitudinal and lateral tire
friction forces.

Incorporating the friction circle constraint is necessary for the correct modeling of
the dynamics occurring during the aggressive maneuvers we consider in this work.

In Eq. (7.9) si j denote the tire longitudinal and lateral slip ratios, given by

sx j = Vx j − ω j R

ω j R
= Vx j

ω j R
− 1, sy j = (1 + sx j )

Vyj

Vx j
, j = f, r, (7.10)

where the longitudinal and lateral velocity components, defined in the tire-fixed
reference frame, are given by
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Fig. 7.4 The friction circle
concept (from [19])

Vx f = u cos δ + v sin δ + rΦ f sin δ, Vy f = −u sin δ + v cos δ + rΦ f cos δ, (7.11)

Vxr = u, Vyr = v − rΦr , (7.12)

and s denotes the total slip, computed as s j = (s2
x j + s2

y j )
1
2 , ( j = f, r ). Finally, the

tire forces in (7.1)–(7.6) are computed by Fi j = Fzjμi j , (i = x, y; j = f, r).
Following current vehicle technology, it is assumed that handbrake torque is only

applied on the rear axle and the footbrake torque is distributed to both axles by a
factor γb, according to Tbf /Tbr = (1 − γb)/γb, so that Tbf = −(1 − γb)Tb and
Tbr = −γbTb −Thb. It is further assumed that the controls are bounded in magnitude
between upper and lower bounds as follows

δmin ≤ δ ≤ δmax, 0 ≤ Tb ≤ Tb,max, 0 ≤ Thb ≤ Thb,max, (7.13)

which define the allowable control constraint set, u ∈ U ⊂ R
3. For more details on

the vehicle and tire model used in this work, the reader is referred to [7, 35, 38].

7.2.3 Optimal Control Formulation

Assuming that the vehicle is initially moving on a straight line along the positive x
direction with velocity V0 = u(0), our main goal is to find the control input history
u(t) to bring the posture of the vehicle to ψ(t f ) = 90◦ as fast as possible. Without
loss of generality, it will be assumed that the angular velocity of the front and rear
wheels is such that a no-slip condition is satisfied, i.e., ω f (0) = ωr (0) = V0/R.

We therefore wish to solve the following optimal control problem
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Fig. 7.5 Pre-computed solutions for different initial vehicle velocities (dry asphalt case, corre-
sponding to μ = 0.8)

min
u∈U

J =
⎧ t f

0
dt, (7.14)

s.t. ẋ = f (x, u), (7.15)

x(0) = [V0, 0, 0, 0, V0/R, V0/R]T, (7.16)

ψ(t f ) = π/2, (7.17)

where f (x, u) is given by the right-hand side of (7.1)–(7.6) and, besides ψ, the rest
of final states are free.

This problem can be solved using a variety of numerical methods [3–5, 17, 23,
27, 28]. In this work, we have used the package GPOPS based on pseudospectral
methods to solve the previous optimal control problem [25]. The problem was solved
for a variety of initial conditions. A typical maneuver obtained by the solution of the
optimal control problem is shown in Fig. 7.5. For more details, the interested reader
is referred to [7]. Table 7.1 summarizes the vehicle model data and tire parameters
used in the numerical examples of Sect. 7.4.2.

In the sequel, we focus on generating optimal solutions for different values of
initial conditions by interpolating between the pre-computed optimal trajectories.
The interpolation method we use is based on representing the input (initial conditions)
and output [control commands obtained from the numerical solution of the optimal
control problem (7.14)–(7.17)] as a realization of a (hidden) Gaussian process. The
goal is then to find the unknown parameters of this Gaussian process in order to
predict the optimal control inputs for different problem parameters. Although we
only present the results for different initial conditions, the approach can be easily
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Table 7.1 Vehicle and tire data used in the numerical simulations

Variable Value Unit Variable Value Unit

m 1,245 Kg B 7 –
Iz 1,200 Kg m2 C 1.4 –
Iw 1.8 Kg m2 δmax = −δmin 45 deg
Φ f 1.1 m Tb,max 3,000 Nm
Φr 1.3 m Thb,max 1,000 Nm
h 0.58 m γb 0.4 –
R 0.29 m g 9.81 m/s2

generalized to the case of different vehicle or road parameters, as long as we have
enough data points within the range of the parameters of interest.

7.3 Statistical Interpolation Using Gaussian Processes

7.3.1 Basic Theory

The basic idea behind statistical interpolation is that the actual values for all possible
observations are a realization from an underlying stochastic process [16]. It is es-
sentially an interpolation technique over random data fields and it provides accurate
interpolation even if there is no a priori trend. Kriging is a common term referred to
the case when the underlying statistical process is Gaussian. The basic idea that dif-
ferentiates kriging from the traditional Generalized Least Squares (GLS) approach
is the assumption that, given a point where a prediction is to be made, points closer
to this new point should have a larger weight, i.e., they should have more influence
on the prediction than points that are further away. This implies that the interpolation
weights are not constant, but rather they must be specifically computed at each new
location.

A kriging interpolation model has the following features:

(a) It is unbiased, i.e., the expected value of the error is zero.
(b) It is optimal, in the sense that minimizes the variance of the error.
(c) It provides exact interpolation, i.e., the predicted output values at the already

observed points are equal to the observations.
(d) It is computationally very efficient, hence on-line implementation is feasible.

Below we briefly summarize the basic ingredients of the approach. The discussion
in this section is taken mainly from [15]. In order to understand how statistical
prediction works, let us consider a set of given locations X = [x1 . . . xN ] ∈ R

n×N

with xi ∈ R
n , where an unknown function y : R

n → R is observed. A simple
regression model is to assume that
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y(x) =
r⎪

k=1

βk fk(x) + z = f (x)Tβ + z, (7.18)

for some basis functions (regressors) f (x) = [ f1(x) . . . fr (x)]T, where β =
[β1 . . . βr ]T ∈ R

r is the vector of regression coefficients, and z ∈ R is the ob-
servation error. Let now y = [y(x1) . . . y(xN )]T = [y1 . . . yN ]T ∈ R

N be the vector
of observations. The generalized regression model given the data (y, x1, . . . , xN )

follows easily from (7.18)
y = F(X)β + z, (7.19)

where z = [z1 . . . zN ]T ∈ R
N is the vector of observation errors, and F(X) ∈ R

N×r

is the matrix of regressors, given by

F(X) = [ f (x1)
T . . . f (xN )T]T =

⎨

⎢⎢⎢⎡

f1(x1) f2(x1) . . . fr (x1)

f1(x2) f2(x2) . . . fr (x2)
...

...
. . .

...

f1(xN ) f2(xN ) . . . fr (xN )

⎣

⎤⎤⎤⎦ . (7.20)

In statistical prediction the errors z in (7.19) are modeled as a stationary covariance
stochastic process1 having the properties

E[z] = 0, (7.21)

cov[z] = E[zzT] = C = σ2R, (7.22)

where C, R ∈ R
N×N are the covariance and correlation matrices, respectively, de-

fined by
E[zi z j ] = Ci j = σ2Ri j (xi , x j ), i, j = 1, ..., N . (7.23)

where Ri j (xi , x j ) are stationary correlation functions to be defined later.
Suppose now that we want to predict the value y(x0) at the new location x0 ∈

co(x1, x2, . . . , xN ), where co(·) denotes convex hull. From (7.18), the predicted value
of y(x0) is then given by

y(x0) = f (x0)
Tβ + z0, (7.24)

where the scalar z0 represents the prediction error. Here is where kriging and GLS
differ. The later assumes that both the sample disturbances in (7.18) and the predictor
disturbance in (7.24) are independent, that is, cov[z, z0] = 0. However, in view of
the interdependence of disturbances in the samples (C has non-zero off-diagonal
elements), it seems more reasonable to assume that [15]

E[z0] = 0, (7.25)

1 A stationary covariance process has constant mean and variance and the covariance matrix depends
only on the distance between the corresponding inputs.
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cov[z0] = E[z2
0] = σ2, (7.26)

cov[z, z0] = σ2r(x0), (7.27)

where r(x0) ∈ R
N is the vector of correlations between z and z0.

Assuming now that the optimal linear predictor of (7.24) can be written in terms
of the observed values, one obtains

ŷ(x0) =
N⎪

i=1

wi yi = wTy, (7.28)

where w = [w1 . . . wN ]T ∈ R
N is the column vector of weights. The residual error

of the approximation is given by

ε(x0) = ŷ(x0) − y(x0) =
N⎪

i=1

wi yi − y(x0). (7.29)

In order to determine the optimal weights w kriging imposes the conditions [15, 20]

min
w

var[ε(x0)] s.t. E[ε(x0)] = 0, (7.30)

to obtain the Best Linear Unbiased Predictor (BLUP). In some texts [20, 21] the
criterion involves the minimization of the mean square error instead. It turns out that
both criteria are equivalent if the estimator is unbiased.

The minimization problem in (7.30) can be re-written as a quadratic programming
(QP) problem in the form

min
w

var[ε(x0)] = min
w

σ2(1 + wTRw − 2wTr(x0)),

subject to F(X)Tw − f (x0) = 0, (7.31)

whose solution is readily obtained as follows

w∗ = R−1(r(x0) − F(X)λ∗), (7.32)

λ∗ = (
F(X)TR−1 F(X)

)−1(
F(X)TR−1r(x0) − f (x0)

)
. (7.33)

Using the previous expressions, one may finally express the best linear unbiased
predictor of (7.28) as

ŷ(x0) = R−1
[
r(x0) − F(X)

(
F(X)TR−1 F(X)

)−1(
F(X)TR−1r(x0) − f (x0))

]
y.

(7.34)
A deeper insight in the predictor can be obtained by expressing (7.34) as
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ŷ(x0) = f (x0)
Tβ∗ + r(x0)γ

∗, (7.35)

where

β∗ = (F(X)TR−1 F(X))−1 F(X)TR−1y, γ∗ = R−1(y − F(X)β∗). (7.36)

The term β∗ is the GLS solution to the regression problem y ≈ F(X)β, also known
as Aitken’s GLS estimator [15]. From (7.35) it can be seen that, if independence of the
disturbances is considered,that is, r(x0) = 0, then the solution becomes equivalent
to GLS. Another important point is that β∗ and γ∗ are fixed for a given set of design
data x1, x2, . . . , xN and y. Thus the computational effort required to calculate the
value of the interpolated function at one point involves only the computation of two
vectors (by evaluating the regression basis functions and the correlation function)
and two simple products.

As mentioned previously, (7.35) is an exact interpolator, in the sense that it returns
the observed value at the design points. This can be easily shown from (7.35) by
choosing x0 = xi . Then r(xi ) is just the i th column of the correlation matrix R.
Hence R−1r(xi ) = ei where ei is the i th column of the identity matrix. It follows
that

ŷ(xi ) = f (xi )
Tβ∗ + r(xi )R−1(y − F(X)β∗)

= f (xi )
Tβ∗ + ei (y − F(X)β∗) (7.37)

= f (xi )
Tβ∗ + yi − f (xi )

Tβ∗ = yi .

7.3.2 Choice of Correlation Functions

It is important to emphasize that the accuracy of the method is highly dependent
on the choice of correlation functions in (7.23) and (7.27), since they determine the
influence of the observed values in the surrounding locations. These are not known
a priori, however, and they have to be estimated from the data. In order to find a way
to approximate the correlation functions, it is customary to assume that they can be
expressed as

Ri j (θ; xi , x j ) =
n∏

k=1

ρ(θ; x(k)
i , x(k)

j ) =
n∏

k=1

ρ(θ; |x(k)
i − x(k)

j |), (7.38)

for some parameter θ and xi , x j ∈ R
n with x(k) denoting the kth component of

the vector x. The expression (7.38) implies that multi-dimensional correlations are
expressed as a product of n one-dimensional correlation functions. Spatial correlation
functions depend on both the parameter θ and the distance between the considered
points Φ = |x(k)

i − x(k)
j |. In order to result in proper correlation functions Ri j , the
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coordinate correlation function ρ must satisfy 0 ≤ ρ(θ; Φ) ≤ 1 for all Φ ≥ 0.
Furthermore, it must satisfy ρ(θ; 0) = 1 and limΦ→∞ ρ(θ; Φ) = 0, encoding the fact
that far-away points have weaker or no correlation, whereas coincident points yield
maximum correlation.

The parameter θ determines how fast the correlation function goes to zero. This
parameter can be obtained using Maximum Likelihood Estimation (MLE). Figure 7.6
shows the effect of θ is the response surface for the function f (x, y) = x2 + y3. For
simplicity, a constant polynomial is selected as the general trend. Different kriging
models are built for different values of θ. The resulting metamodel representation
and the observation points for the decreasing values of θ are also shown in Fig. 7.6.

The spatial evolution according to the distance from the origin and the influence
of the parameter θ, for different correlation functions, is shown in Fig. 7.7. As it is
customary in practice, the state variables are normalized so that have unit length.
Consequently, the normalized support (|d| = Φ) of ρ is this figure is 0 ≤ |d| � 2.

7.4 Application to On-line Aggressive Vehicle Maneuver
Generation

7.4.1 Feedback Controller Synthesis

Using the method outlined in Sect. 7.2.3, a set of trajectories was computed offline
using five equidistant initial conditions corresponding to vehicle initial speeds V0 =
[40, 48, 56, 64, 72] km/h. The pre-computed open-loop optimal trajectories for
three of the cases considered are shown in Fig. 7.8.

We are interested in obtaining a controller able to perform the maneuver de-
scribed in Sect. 7.2.1 in a (near-)optimal manner for any initial velocity in the interval
40 km/h ≤ V0 ≤ 72 km/h. To this end, we use the interpolation expressions derived
in Sect. 7.3.1, specifically, Eq. (7.35). A separate interpolation model is needed for
each variable we want to interpolate. In this case we have a total of four interpo-
lating metamodels: three for the control signals and one more for the optimal final
time. A uniform discretization of the optimal trajectories provides the input data
X = [x1 . . . xN ], whereas the control commands δ, Tb, Tbh , and the final time t f

comprise the vector of the observed variables y at the same time instances. Given
now a state x0 = (u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)) of the vehicle trajectory at
some time tk , we obtain the required control inputs as a function of the current state
as follows

δ(tk) = ŷ1(x0) = κ1(u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)), (7.39)

Tb(tk) = ŷ2(x0) = κ2(u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)), (7.40)

Tbh(tk) = ŷ3(x0) = κ3(u(tk), v(tk),ψ(tk),ω f (tk),ω f (tk)), (7.41)
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Fig. 7.6 Influence of the parameter θ in the response surface. a θ = 1,000, b θ = 20, c θ = 5 d θ
obtained from MLE
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Fig. 7.8 Optimal open-loop state trajectories generated with GPOPS

where, for notational convenience, we have introduced, rather informally, the interpo-
lating functions κi (i = 1, 2, 3, 4) to denote the right-hand-side of (7.35). Similarly,
the optimal time to perform the maneuver from the current state is given by

t f (tk) = ŷ4(x0) = κ4(u(tk), v(t)k),ψ(tk),ω f (tk),ω f (tk)). (7.42)

Note from (7.39) to (7.41) that the approach yields, at each instant of time, a control
action that depends on the current state, that is, the resulting control has a feedback
structure. In essence, we have developed a tool for controller synthesis where the
open-loop optimal controllers are combined to a single feedback strategy. The dif-
ference with standard approaches is that this synthesis is not performed analytically,
but rather numerically, via an implicit interpolation of the pre-computed open-loop
control laws.

For all computations we have used the DACE toolbox for Matlab [21]. Both the
correlation functions and the allowable values for the parameter θ were determined by
trial and error. Constant and first order polynomials were sufficient for this problem,
along with cubic correlation functions (see Fig. 7.7). The optimal value of θ was
obtained using MSE, as explained in Sect. 7.3.2.
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7.4.2 Numerical Results

The family of near-optimal controls is shown in Fig. 7.9a–c. The red lines highlight
the pre-computed solutions used to obtain the interpolating metamodel.

These results show that the controller obtained using the proposed statistical in-
terpolation technique generates near-optimal solutions for the whole range of initial
velocities considered. In all simulations the trajectories reach the final constraint,
ψ = 90◦, as required. Furthermore, notice in Fig. 7.9a–c how the interpolated so-
lutions match the pre-computed ones at the trial sites. This is a consequence of the
exact interpolation property of the interpolation scheme, shown in (7.37). Notice also
that the solutions vary smoothly along the whole range of initial velocities.

The average to compute a single interpolation of all three controls was 1.2 ms (or a
rate of 800 Hz) on a Intel Pentium Core 2 Duo processor running at 2.4 GHz with 4 GB
of RAM. This rate is considered fast enough for real-time controller implementation.

The parameter θ that affects the behavior of the correlation functions is shown
in Fig. 7.10 for the case of the footbrake command. For very large values of θ the
solution tends to the GLS solution (r(x0) = 0 except at the observation points). The
oscillatory behavior for large values of θ observed in these figures is owing to the
fact that we have chosen a zero order polynomial for the footbrake, in which case the
interpolating terms tend to a superposition of impulse functions at the observed points
(see Fig. 7.7). As the value of θ is reduced, each observation increases its “region
of influence” over a larger area of the space, thus “averaging out” the contributions
from neighboring observation points.

It is also of interest to explore the positive attributes that arise from having a
controller in feedback form [see again (7.39–(7.41)]. Although there is no analytic
expression for the feedback controller, the control action is obtained as a function of
the current state. Feedback controllers are more desirable than open-loop controllers
since they can account for sudden changes in the state, unmodelled uncertainties, etc.
In order to evaluate the benefits of having a controller in a feedback form, a simulation
with a disturbance representing a 30 % reduction in the yaw rate at t = 0.6t f was
carried out. The comparison was performed at one of the trial locations where the
interpolated solution matches the pre-computed one, so the comparison is fair. The
initial velocity was chosen as V0 = 56 km/h. Figure 7.11 shows how the interpolated
control changes when the disturbance is applied and how the system is finally guided
to the final constraint despite the abrupt change in the state at t = 0.6t f .

7.5 Conclusions

The future generation of active safety systems for passenger vehicles will have to take
advantage of the nonlinearities of the vehicle and tire friction dynamics in order to
safely implement more aggressive obstacle avoidance maneuvers in the case of an im-
peding accident. Unfortunately, generating optimally such aggressive maneuvers—at
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the time scales required along with convergence guarantees—is still an elusive goal
with current trajectory optimizers. In this chapter we investigate the use of a statis-
tical interpolation technique based on Gaussian processes (e.g., kriging) to generate
near-optimal trajectories, along the corresponding control actions, from a set of off-
line pre-computed optimal trajectories. The resulting approach essentially generates
a metamodel of the action-response map based on the pre-computed optimal control
solutions. The resulting interpolation model emulates an optimal feedback controller,
as long as the initial conditions are contained in the convex hull of the off-line test
locations.

Our numerical results show that the resulting controller has excellent perfor-
mance, always guiding the system to the exact terminal constraint. Furthermore, the
controller is extremely fast to compute, since it is based on simple algebraic manip-
ulations and hence it is beneficial for all similar situations where decisions must be
taken within extremely short deadlines.
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Chapter 8
Applications of Computational Optimal Control
to Vehicle Dynamics

Joško Deur, Mirko Corić, Josip Kasać, Francis Assadian and Davor Hrovat

Abstract Modern vehicle dynamic control systems are based on new types of ac-
tuators, such as active steering and active differentials, in order to improve the over-
all handling performance including stability, responsiveness, and agility. Numerical
techniques of off-line optimization of vehicle dynamics control variables can con-
veniently be used to facilitate decisions on optimal actuator configurations and pro-
vide guidance for design of realistic, on-line controllers. This chapter overviews the
previous authors’ results of assessment of various vehicle dynamics actuator config-
urations based on application of a back propagation through time (BPTT) conjugate
gradient optimization algorithm. It is then focused on detailed optimization of active
front and rear steering control variables for various maneuvers and design specifica-
tions, where a nonlinear programming-based optimization tool is used.

8.1 Introduction

The conventional vehicle dynamics control systems are based on using wheel brakes
as actuators [13, 15]. By braking solely or predominantly one of the wheels, a proper
amount of active yaw torque is generated and at the same time the vehicle is de-
celerated, which contributes to the vehicle handling stability and responsiveness
(i.e. oversteer and understeer compensation, respectively). In recent years the active
chassis systems are being equipped with different types of additional actuators such
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as active steering or active differentials [7, 8, 10], which can provide superior han-
dling performance without being intrusive to the driver (no NVH disturbance unlike
for hydraulic brakes) and without affecting agility (minimal reduction of the vehicle
velocity).

In the early stage of active chassis hardware specification/selection, optimization
techniques can be used for assessment of various single- or multi-actuator chassis
configurations. More specifically, an open-loop optimal control algorithm is applied
to a proper nonlinear vehicle dynamics model to find time response of control vari-
ables that minimize the specified cost function (e.g. minimal trajectory following
error) under various equality and inequality constraints (e.g. limited control input
authority or state variable magnitude). At the same time, the optimization results can
be used as a benchmark for achievable performance of production-oriented (on-line)
control systems (e.g. model predictive control systems [5]) as well as to give good
insights that can facilitate control system design and calibration.

Although different control variable optimization algorithms have been used in
various automotive power train studies (e.g. dynamic programming for optimization
of hybrid electric power trains [2, 6] and nonlinear programming for turbocharger
power assist system optimization [12]), their application to vehicle dynamics control
field have been relatively scarce (with exceptions of, for instance, [9, 16] where
handling analyses were conducted). The authors’ recent chapter [4] have dealt with
assessment of various vehicle dynamics actuator configurations, based on the ap-
plication of a back propagation through time optimization (BPTT) algorithm [11].
Those assessment results are outlined in this chapter, as a background for presenting
a more recent active front and rear steering optimization study based on a funda-
mentally different nonlinear programming method implemented through TOMLAB
optimization platform [14].

8.2 Overview of Previous Optimization and Assessment Results

8.2.1 Optimization Algorithm

The general optimization problem is to find a control vector input u(t), 0 ≤ t ≤ tf ,
which minimizes the Bolza-type cost function J0 = Φ(̂x(tf )+∫ tf

0 F0(̂x(t), u(t))dt,
subject to nonlinear plant state equations ˙̂x = φ(̂x(t), u(t))dt, x̂(0) = x̂0, and subject
to the final conditions on the state vector b(̂x(tf )) = 0, and subject to the control
and state vector inequality constraints g(̂x(t), u(t)) ∈ 0 and equality constraints
h(̂x(t), u(t)) = 0.

In the previous work [4], the optimal control vector input u(t) was found by using
an iterative gradient descent algorithm with respect to control vector: u(l+1)(t) =
u(l)(t) − η ∂ J

∂u(l)(t)
, where the total cost function J included the basic (user-defined)

function J0 extended with the penalty terms for the final conditions, and the equality
and inequality constraints. The gradient ∂ J

∂u was calculated by utilizing the BPTT
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algorithm based on the plant model discretized in time using the Adams method [11].
The Jacobians were calculated numerically. The learning rate η was made time variant
using the Dai-Yuan conjugate gradient method, in order to improve the algorithm
convergence rate.

8.2.2 Vehicle Model

A 10-Degree of Freedom (DoF) vehicle dynamics model [8] with a full “magic”
formula tire model was implemented within the optimization program. The model
includes six state variables, which are related to the longitudinal (U ), lateral (V ), and
heave (W ) velocities, and roll (p), pitch (q), and yaw (r ) rates. The remaining four
state variables correspond to the rotational speeds of each wheel. In addition, six state
variables related to suspension submodel and vehicle trajectory in the inertial (X–Y)
coordinate system are used (roll, pitch, and yaw angles, heave displacement, and
vehicle X,Y position), as well as state variable(s) related to first-order lag term(s) de-
scribing the actuator dynamics. Thus, the overall nonlinear dynamics model includes
from 17 to 19 state variables and from 1 to 3 control variables, depending on the
number of actuators used in particular vehicle configuration.

Due to the paper length constraints, only the main model state equations, related
to the lateral velocity and yaw rate DOFs, are given:

M(V̇ + Ur) = Fyf + Fyr (8.1)

Izzṙ ∞= bFy f − cFyr − w

2
(Fx1 + Fx2 + Fx3 + Fx4) (8.2)

where M is the vehicle mass, Izz is the vehicle moment of inertia around the vertical
axis, b and c are the distances between the vehicle center of gravity and the front and
rear axles, respectively, w is the vehicle track (the distance between the left and right
wheel axes). Fx and Fy denote the longitudinal and lateral tire forces, respectively,
after being transformed from the tire to vehicle coordinate system. Here, the index
i = 1, . . . , 4 represent the tire number starting from the front-left tire towards the
rear-left tire in the clockwise direction, and the indices f and r refer to front and rear
axle, with Fy f = Fy1 + Fy2 and Fyr = Fy3 + Fy4. The sign conventions are such that
the yaw rate r is positive for counter-clockwise turning, where the wheels 1 and 3 are
inner wheels. For the sake of simplicity of presentation, the yaw rate state Eq. (8.2)
omits a roll cross-coupling term that is of secondary importance.

The tire model describes nonlinear, combined-slip tire static curves as functions
of the tire normal force Fzi , i = 1, . . . , 4, calculated from a nonlinear suspension
model, and the tire sideslip angle αi and the longitudinal slip ηi , given by:

αi = δi − arctan

(
Vi

Ui

)
(8.3)
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Fig. 8.1 Tire model static curves

ηi = Rωi − Ui

Ui
(8.4)

where ωi are the wheel rotational speeds, δi are the road wheel angles, R is the
effective tire radius, and Ui and Vi are the longitudinal and lateral wheel center
velocity components, respectively:

Ui = U + (−1)i w

2
r, V1,2 = V + br, V3,4 = V − cr (8.5)

The modeled tire static curves are shown in Fig. 8.1 The obtained tire forces
Fxti and Fyti are transformed into the vehicle coordinate system by using the wheel
steering input δi , thus obtaining the forces Fxi and Fyi that are fed into the state-space
model (see Eqs. 8.1 and 8.2).

The considered actuators include active front and rear steering (AFS and ARS),
active rear, front and, central differentials of limited slip and torque vectoring types
(ALSRD, TVRD, ALSFD, TVFD, ALSCD, and TVCD). The vehicle (a mid-size
sedan) is of rear wheel drive (RWD) type, except in the cases of using the front or
central differentials, when a FWD or 4WD configuration is considered, respectively.
The active differential torque transfer is subject to the following constraints [3, 10]:
(1) the ALSD cannot transfer the torque to faster wheel, and (2) the TVD can transfer
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Table 8.1 List of double lane change maneuver variants

No. Ti (Nm) μ Specifics

1 0 0.6 Initial understeer, then oversteer
2 350 1 Understeer under torque
3 250 0.6 Initial understeer, then instability

the torque to faster wheel (or faster axle for TVCD) only if the faster-slower wheel
relative speed difference is smaller than the Allowable Wheel Speed Difference
factor (AWSD = 28.6 % for the given TVDs). These constraints were conveniently
implemented through the vehicle model rather than via inequality constraints.

8.2.3 Formulation of Optimization Problem

The optimization study was conducted for three characteristic types of double lane
change maneuver (DLC; Table 8.1). The objective was to find the control inputs for a
given actuator configuration, which minimized the path following error given by the
cost function subintegral function F0 (̂x(t), u(t)) = Kh(Y −YR(X))2, where YR(X R)

is the DLC reference trajectory. This objective is subject to inequality constraints
(limits) on control input variables and sideslip angle β = arctan(V/U ) (20≈ and
15≈, respectively), as well as on the active front steering angle rate (to avoid largely
affecting the perceived driver torque feedback).

Maneuver 1 is defined as follows. The front steering input δ f is first optimized
to follow the given DLC reference path for the tire-road friction coefficient μ = 1
and zero driveline input torque (Ti = 0). The optimized variable δ f is then used as
an open-loop driver input (again with Ti = 0) for optimizations of vehicle dynamics
control inputs for the reference trajectory achieved in the first step, but reduced fric-
tion coefficient μ = 0.6. Due to the already saturated lateral tire forces (for μ = 1),
the friction reduction results in tendency of passive vehicle to initially understeer
and then strongly oversteer (see ‘no control’ response in Fig. 8.2a). Maneuver 2 uti-
lizes the same front steering input δ f and the reference trajectory, but it is applied
under the accelerating conditions (Ti = 350 Nm) and the nominal road condition
μ = 1. Obviously, in the presence of accelerating torque and unchanged driver
steering input, the passive vehicle is prone to understeer, particularly in the second
part of response (Fig. 8.2b). Maneuver 3 is similar to Maneuver 1. The main differ-
ence is that the optimization relates to a non-zero driveline torque (Ti = 250 Nm).
According to tire friction ellipse (Fig. 8.1), this reduces the rear (driven) tire lateral
forces, thus making the passive vehicle unstable (the sideslip angle β starts diverg-
ing around the peak trajectory point, see Sect. 8.3). Also, the initial understeer is
more emphasized than in Maneuver 1 (cf. Fig. 8.2a and c), because of the growth
of vehicle velocity and corresponding rise of achievable (stationary) turning radius
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Fig. 8.2 Trajectory following optimization results for three DLC maneuvers and ARS actuator

Rt = U 2/ay,sat for the given (saturated) lateral acceleration ay,sat = μg (see Eq. 8.1
and note that ay = V̇ + rU and (Fy f + Fyr )sat = Mgμ).

8.2.4 Optimization and Assessment Results

The optimization results for different single- and multi-actuator configurations and
the three DLC maneuvers are given in Table 8.2. The trajectory following accuracy
is characterized by the root-mean-square (RMS) error of Y (X)−YR(X). The vehicle
stabilization is reflected in the ability of suppressing the magnitude of sideslip angle
β. The agility is better if the traveled distance X (t f ) over the constant maneuver time
period is larger. Based on these indices, the different actuator configurations have
been ranked, with the final ranking/assessment results also included in Table 8.2.
The assessment results are briefly discussed below, with the reference to [4] for
more detailed elaboration.

According to the RMS data in Table 8.2 and also the trajectory plots in Fig. 8.2,
Maneuver 3 is the most difficult in terms of trajectory following accuracy. This is
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because it is hard to stabilize the accelerating passive vehicle on the low-μ surface
(see Table 8.1), and also to compensate for the initial understeer in the case of reduced
μ. Maneuver 2 is the least difficult, because the friction coefficient is the highest.

The active rear steering (ARS) provides the best overall performance, owing to
a high control authority of both yaw rate and lateral velocity/acceleration dynam-
ics (the control input δr = δ3,4 can influence both state Eqs. 8.1 and 8.2, through
the rear lateral forces F y3, 4). Although quite effective, the individual rear or front
torque vectoring differentials (TVRD or TVFD) are inferior to the ARS actuator.
This is because they directly influence only the yaw rate dynamics through gener-
ating difference in left and right longitudinal tire forces (see Eq. 8.2), and because
the longitudinal force generation is limited by a low normal load of inner tires. The
combined front TVD and rear TVD configuration provides excel-lent performance,
owing to the balanced front/rear axle torque distribution (for this 4WD configura-
tion) and increased TVD control authority (both axles generate the yaw torque).
However, when compared to the ARS actuator, the TVRD+TVFD configuration is
characterized by somewhat reduced agility (due to the certain decelerating action of
TVDs [3]) and increased sideslip magnitudes (due to strong yaw torque generation).
The central TVD can rarely contribute to the performance boost of the TVFD+TVRD
configuration.

The active front steering (AFS) is also among the best performers, but it is
consistently worse than the ARS actuator due to a lower control authority (see
Sect. 8.3). The AFS+TVRD and TVRD+TVCD controls have also been found to
be viable configurations, where the former provides a good trade off between the
performance and limited AFS control effort, and the latter improves the TVRD per-
formance for the throttle-on Maneuvers 2 and 3 due to its 4WD feature and additional
understeer and oversteer compensation imposed by TVCD. However, they do not of-
fer as significant improvement over the individual controls as the TVRD+TVFD
configuration.

The TVCD is inferior to TVFD or TVRD for the coasting Maneuver 1, because it
acts on the lateral tire forces indirectly—through spinning the front axle for oversteer
compensation or rear axle for understeer compensation. On the other hand, it gives
rather good performance for the accelerating Maneuvers 2 and 3, partly because of
its 4WD feature. The front and rear active limited slip differentials (ALSFD and
ALSRD) give worse performance than TVDs, which is explained by their limited,
zero-AWSD-related control authority: (1) the oversteer compensation is constrained
by the weakly-loaded inner wheel being spun above the outer wheel speed, and
(2) the understeer compensation is unfeasible (the torque cannot be transferred to
faster/outer wheel), unless the inner wheel tends to spin for an accelerating maneuver.
The ALSCD barely gives any improvements over the passive vehicle.

The presented comparative study has demonstrated that the BPTT optimization
algorithm can represent a useful tool for assessment of various vehicle dynamics
actuator configurations. However, certain issues have been observed in the optimiza-
tion results: (1) the optimization of some multi-actuator configurations give worse
(RMS error) results than in the case of corresponding single-actuator configuration
(see e.g. AFS+ALSRD configuration in Table 8.2), and (2) the optimization was
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inconsistent for the ALSRD actuator and Maneuver 3 (unrealistically high RMS er-
ror). The former can be explained by the fact that optimization ends in a local optimum
for more complex-multi actuator configurations (especially those with actuators of
different types). The latter can be caused by highly nonlinear clutch model used to
describe the active differential dynamics. In order to avoid issues with multi-actuator
configuration optimization, a more detailed ARS/AFS study has been conducted by
using the TOMLAB optimization platform (see Sect. 8.3).

8.3 Detailed Optimization for Active Steering Configurations

8.3.1 Optimization Algorithm

TOMLAB optimization platform is Matlab interface package for modeling, optimiza-
tion and optimal control [14]. It consists of modules for optimal control formulation
(PROPT), automatic differentiation (MAD) and variety of problem solvers (SNOPT,
KNITRO, CPLEX etc.). The user specifies state equations that are considered as
equality constraints, initial and final conditions, constraints and cost function. The
optimization approach is based on pseudospectral collocation method in which the
optimal control problem is discretized and transformed into large-scale nonlinear
programming (NLP) problem [1]. The solution takes polynomial form of nth order,
where n is the number of collocation (time grid) points specified by the user. The
number of grid points is significantly smaller than in the case of BPTT algorithm,
where a dense grid was needed to explicitly calculate the control input values at each
grid point. This difference may contribute to a lower local minima sensitivity of the
NLP algorithm when compared to its BPTT counterpart. The polynomial solution
needs to satisfy the discretized state equations and constraints in the collocation
points. If solver claims that solution is optimal, it satisfies necessary, not sufficient,
optimality conditions. In this work the large-scale sparse solver SNOPT is used,
which is based on the sequential quadratic programming (SQP) method. As SNOPT
uses nonlinear function gradients, calculated automatically by MAD, the problem
must be smooth (first-order differentiable) around the optimal solution.

8.3.2 Active Rear Steering (ARS)

The ARS optimization results are shown in Fig. 8.3 for the three DLC maneuvers
defined in Table 8.1, and a soft constraint imposed on the control input. The related
performance indices are given in first two rows of Table 8.3. The sign conventions
are such that negative ARS control input, the rear road wheel angle δr , contributes
to increase of positive yaw rate r . That is, the ARS actuator generates oversteer (or
compensate for understeer) if sgn(δr ) ≡= sgn(r), and the understeer is generated



140 J. Deur et al.

Table 8.3 Comparative optimization results for various active-steering configurations and different
maneuvers (using Tomlab tool)

Actuator Control input RMS (m) | β |max X (t f ) (m) | α |max ηmax (%) | Mz |max

configuration constraint (deg) (deg) (kNm)

(a) Maneuver 1
ARS Yes 0.112 4.58 103.9 9.2 0.06 8.0
ARS No 0.087 4.75 100.4 27.2 0.3 11.8
AFS Yes 0.137 5.26 104.4 9.4 0.04 10.3
ARS & AFS Yes 0.091 4.96 102.5 9.7 0.1 12.5
ARS & AFS No 0.031 17.7 92.4 37.3 0.4 16.7
ARS & AFS Weak 0.069 8.38 100.0 18.5 0.2 16.5
(b) Maneuver 2
ARS Yes 0.044 4.06 123.2 8.7 6.7 8.0
ARS No 0.017 4.20 118.0 32.1 37.8 22.0
AFS Yes 0.045 4.05 123.2 8.1 7.0 12.9
ARS & AFS Yes 0.030 4.66 122.2 9.4 11.0 11.3
ARS & AFS No 0.006 20.7 109.7 48.1 49.9 28.4
ARS & AFS Weak 0.027 4.69 121.7 10.0 5.8 19.8
(c) Maneuver 3
ARS Yes 0.176 4.75 116.6 9.8 12.3 9.0
ARS No 0.158 4.43 112.7 25.8 26.2 11.6
AFS Yes 0.229 5.14 118.6 10.3 3.7 10.1
ARS & AFS Yes 0.163 4.29 115.7 9.7 11.2 13.7
ARS & AFS No 0.101 17.86 105.2 32.0 47.7 16.9
ARS & AFS Weak 0.145 5.23 112.9 22.1 8.0 16.6

(i.e. oversteer is compensated for) if sgn(δr ) = sgn(r). Therefore, the δr and r
time responses in Fig. 8.3a (Maneuver 1) indicate that the control action is such that
there are three characteristic, relatively short periods of understeer compensation
(USC): t ≥ [0, 0.3], [1, 1.25] and [2.5, 2.7]s. The first USC action steers the vehicle
towards the reference path, with the note that the actual vehicle trajectory response
is delayed with respect to control action due to the influence of vehicle dynamics
(i.e. the ARS provides a preview control action during initially straight motion). The
second USC intervention results in “cutting” the trajectory around its peak point, in
order to minimize the trajectory following error in the absence of ability to accurately
follow the reference trajectory peak on the reduced-μ surface. The third USC action
is similar to the first one.

The USC actions result in characteristic peaks of the yaw torque, calculated as
Mz ∞= bFy f − cFyr (cf. Eq. 8.2), which provides boost of yaw rate r to generate
de-sired oversteer. Accordingly, each USC action provokes large rates of change of
the sideslip angle β (see Eq. 8.1 and recall that β = arctan(V/U )). In order to
effectively limit the sideslip angle β, and, thus, provide an ample stability margin
(compared to the passive/uncontrolled vehicle), each The USC interval is followed
by a relatively long interval of oversteer compensation (OSC). USC-related boosts
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Fig. 8.3 Optimization results for ARS actuator and three DLC maneuvers

of side slip angle, i.e. its large deviation, result in decelerating force on the vehicle,
thus somewhat affecting the agility (the end speed U (t f ) is reduced compared to
reference and uncontrolled vehicle, Fig. 8.3).

The lateral acceleration response ay tends to follow that of the reference vehicle
(related to μ = 1). However, since the lateral acceleration is limited to 0.6g for the
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reduced μ = 0.6, accurate following of the lateral acceleration peaks around 1g
is not possible, which is “compensated for” by wider and sharper edges of lateral
acceleration. This gives a characteristic square-wave-like shape of ay response. The
tire sideslip angles αi and lateral forces Fyi assume similar response shape (not
shown in Fig. 8.3), particularly for rear tires (i = 3, 4) over which the ARS actuator
has a direct control authority.

Since the high-μ Maneuver 2 is less critical than Maneuver 1 (Sect. 8.2), the ARS
control input magnitudes are rather modest in this case (Fig. 8.3b). The dominant
control action relates to 2nd USC during the interval t ≥ [1, 1.4]s (and related 2nd
OSC for t ≥ [1.5, 2.2]s), which compensates for the emphasized understeer behavior
after the trajectory peak point. Other response features are qualitatively similar as
described above for Maneuver 1, including the effect of square-wave shaping of
lateral acceleration (particularly, during the dominant 2nd USC action).

The results for Maneuver 3 (Fig. 8.3c and Table 8.3c) are qualitatively similar to
those of Maneuver 1, with the main difference that the control action is strongest
for this more critical maneuver. Due to inability of accelerated vehicle to follow the
sharp trajectory around the peak point, the 1st USC action (around t = 0.1 s) is
made stronger to overshoot the initial part of trajectory, i.e. to “cut” the trajectory,
to a larger extent than in Maneuver 1. Accordingly, the lateral acceleration response
widely saturates afterwards, as well, thus getting closer to the square-wave shape. The
2nd USC intervention (around t = 1s) is also stronger to provide a more emphasized
“cutting” of the trajectory around its peak point.

Table 8.3 indicates that the trajectory following error can be notably reduced when
the control input constraint is omitted. However, the control input δr then reaches
excessive values (and has rather oscillatory behavior), the tire operates deeply in
the unstable saturation region (large magnitudes of αi ), the vehicle side-slip angle
magnitudes increase for the acceleration Maneuvers 2 and 3, and the longitudinal slip
of inner rear/driven tire is large. Also, due to an extremely abrupt and high-magnitude
nature of (control input) response, the obtained optimization results could not have
been fully reproduced through post-optimization simulation (a certain trajectory drift
occurred).

8.3.3 Active Front Steering (AFS)

The AFS optimization results, with the soft control input constraint included, are
given in third rows of Table 8.3. These results, as well as previous ARS results, are
in a good agreement with the BPTT optimization results (cf. Tables 8.2 and 8.3).

Although the magnitudes of the control inputs φδ f and δr are comparable (see
Fig. 8.4), the AFS control performance is notably worse than the ARS one (Table 8.3).
This is explained by the fact that the driver already utilizes the front steering input to
a large extent, while the rear steering control action can effectively boost the unused
transient performance of rear tires. More specifically, the driver’s front steering effort
δ f = δ1,2 is directly transferred to the front tire sideslip angles α1,2 and, thus, to
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Fig. 8.4 Comparative ARS and AFS optimization results for Maneuver 3

the front lateral forces Fy1,2, while the rear tire sideslip angles α3,4 (and the related
forces Fy3,4, are built up indirectly through a lagged response of the lateral velocity
V (or the sideslip angle β) and the yaw rate r (see Eq. 8.3).

On the other hand, the ARS control action δr = δ3,4 can directly influence α3,4
and Fy3,4, thus significantly improving the lateral vehicle responsiveness. This is
illustrated by the comparative ARS and AFS responses of lateral forces Fyi (Fig. 8.4,
Maneuver 3), which shows the following (with particular attention to the 1st USC
event around t = 0.1 s): (1) the AFS action boosts the front lateral forces during
the transient interval, but it has a limited authority over the rear lateral forces, (2) the
ARS action makes the rear lateral forces response very fast and timely to assist the
AFS action in boosting the overall yaw torque and lateral acceleration response.

8.3.4 Four Wheel Steering (4WS = ARS & AFS)

When the ARS is combined with AFS in a 4WS configuration, the trajectory fol-
lowing RMS error can be reduced by 7–30 % depending on maneuver (Table 8.3,
regular input constraint). Here, the more critical the maneuver, the lower is the RMS
error reduction. Figure 8.5a shows the corresponding time responses for Maneuver
1. The supporting AFS action is manifested in a strong 1st OSC intervention around
t = 0.3 s, which has a counter-steering meaning, and supplemental 2nd and 3rd USC
intervention around 1.1 and 2.65 s, respectively. The counter-steering interventions
allows for a stronger 1st USC action by the ARS actuator, thus boosting the critical
first peak of (oversteer) yaw torque Mz and sideslip angle β when compared with
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Fig. 8.5 Comparative 4WS optimization results for cases of regular (a) and weak (b) constraint on
ARS and AFS control inputs, and Maneuver 1

ARS control only (cf. Figs. 8.3a and 8.5a and see also Table 8.3a). The β-boost
affects the agility to some extent (Table 8.3a).

The 4WS can reduce the trajectory following RMS error by 40–65 % if the control
input constraint is omitted (Table 8.3). However, this results in an unacceptable
high-magnitude oscillatory behavior of control inputs and other variables, as already
explained in Sect. 8.3.1. Also, the magnitudes of sideslip angle β and longitudinal
slip η are very high (a “drifting” vehicle with spinning inner rear wheel).

If a weak control input constraint is used, the RMS error can be reduced by 11–
24 % when compared to the regular input constraint (Table 8.3), with a generally ac-
ceptable, well-damped response (Fig. 8.5b), suppressed magnitudes of sideslip angle
β, and a characteristic, strong and impulsive response of the yaw torque Mz . How-
ever, the AFS control input magnitudes are high, particularly the counter-steering
one, which may not be convenient from the standpoint of perceived driver torque
feedback. Also, the agility is somewhat deteriorated due to the increased β-peaks,
particularly after the 1st USC phase.

8.4 Conclusion

The presented study has demonstrated that advanced algorithms of computational
optimal control can represent a useful tool for assessment of various vehicle dynamics
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actuator configurations and gain the insights into optimal control actions of those
actuators. The back propagation through time (BPTT) conjugate-gradient algorithm
and nonlinear programming (NLP)-based TOMLAB tool have given comparable
optimization results for single-actuator configurations, while the NLP approach has
proven to be more effective in multi-actuator configurations.

Among various single-actuator configurations the active rear steering (ARS) ac-
tuator gives the best overall performance, because of its ability to directly influence
the, otherwise unused/lagged, dynamic potential of rear tire lateral forces. The active
front steering (AFS) actuator can effectively assist the ARS actuator, but the related
performance boost is strongly related to an excessive AFS counter-steering action
that can affect the perceived driver torque feedback. When considering the active
differential application, it has been found out that the combined front and rear torque
vectoring differential (TVD) configuration has the ability of reaching the ARS con-
trol performance. The AFS & TVRD and TVRD & TVCD configurations have also
been found to provide good performance. The front or rear TVDs are inferior to
ARS, but they may approach the AFS performance. The active limited slip differ-
entials (ALSDs) are inferior to TVDs, particularly for maneuvers with emphasized
understeer behavior.
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Chapter 9
Stochastic Fuel Efficient Optimal Control
of Vehicle Speed

Kevin McDonough, Ilya Kolmanovsky, Dimitar Filev, Steve Szwabowski,
Diana Yanakiev and John Michelini

Abstract Stochastic dynamic programming (SDP) is applied to generate control
policies that adjust vehicle speed to improve average fuel economy without de-
grading, significantly, the average travel speed. The SDP policies take into account
statistical patterns in traffic speed and road topography. Specific problems of fuel ef-
ficient in-traffic driving and fuel efficient lead vehicle following are considered, and
it is shown how these problems can be treated within an SDP framework. Simulation
results are summarized to quantify fuel economy improvements, and experimental
results are reported for the fuel efficient lead vehicle following case. The properties
of vehicle speed trajectories induced by SDP policies are examined.

9.1 Introduction

Fuel efficient driving has emerged as one of the pathways to increasing fuel economy
of passenger cars. Fuel economy can be improved by driving at efficient speeds,
accelerating quickly, but smoothly, coasting, and burn and coast (also known as
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Pulse-and-Glide), see [22]. “Pulse-and-Glide” policies are particularly interesting in
view of their connections with periodic optimal control [7, 19, 20].

References [3, 6, 8, 10, 13, 21] describe the use of deterministic dynamic pro-
gramming and model predictive control to improve fuel economy. Systems that con-
trol vehicle speed based on electronic horizon have been introduced for commercial
heavy vehicle applications [5]. References [2, 14, 18] focus on stability and the
design of adaptive cruise control (ACC) systems.

Our approach to fuel efficient speed control [11, 12, 16, 17] in this and in previous
publications is based on the perspective that the vehicle operating environment (e.g.,
speed of vehicle(s) in front of our vehicle in traffic) is inherently stochastic due to
the uncertain nature of traffic. Even though for a known route, the road topography
is known, the road grade can also be treated as stochastic if the route being traveled
is not a priori known or to avoid relying on detailed topographic information. We
model the statistics of transitions in traffic speed and road grade by Markov Chain
models. With the knowledge of these statistics (e.g., specific to a certain geographic
region where the driver operates the vehicle), vehicle speed and following distance
can be optimized for best-on-average fuel economy and travel time performance
using Stochastic Dynamic Programming (SDP).

Such an SDP policy prescribes the optimal vehicle speed as a function of current
values of road grade, reference speed (“local” traffic speed, lead vehicle speed or our
vehicle speed) and distance to preceding vehicle for best-on-average performance in
terms of fuel consumption and travel time in a given geographic region. The SDP
policy is generated off-line using value iterations or linear programming (along with
appropriate approximations and simplifications) and is stored for on-line use. This
approach opens up a possibility of implementing fuel efficient vehicle speed control
at lower cost and complexity versus alternatives that use electronic horizon.

The previous solutions to fuel efficient vehicle speed control, with possible ex-
ception of [3, 21] which focused on the application of stochastic MPC, did not treat
the vehicle operating environment as stochastic. The present chapter summarizes and
unifies our results for fuel efficient in-traffic driving and fuel efficient following of
a vehicle driving at a constant speed, provides further details, discussion, analysis,
and includes previously unreported experimental results for the fuel efficient vehi-
cle following case. Because this chapter contains a summary of previous work, it
encompasses different simulations and vehicle experiments that track the evolution
of our study. Throughout this evolution, while the general approach remained the
same, tuning, settings, and models have changed because these modifications were
beneficial, e.g., to improve experimental vehicle drivability.

9.2 Modeling for SDP Policy Generation

The models used for SDP control policy generation include the representations for
vehicle dynamics, the stochastic models of road grade and traffic speed, and the
cost function and its separate components. The models and the optimization are all
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based on spatial discretization. That is, given a distance segment of length Δs, and
values of road grade, reference speed, host vehicle speed, and relative distance at the
beginning of the current segment, the models produce the values of these variables
at the start of the next distance segment.

9.2.1 Longitudinal Vehicle Dynamics

A simplified model for longitudinal vehicle dynamics has been adopted for control
policy generation. The controlled vehicle is referred to as the host vehicle, and its
velocity is denoted by v. The reference speed, vre f , represents either the local traffic
speed in the in-traffic driving scenario or the speed of the preceding (lead) vehicle in
the lead vehicle following scenario. Finally, the relative distance between the vehicles
is denoted by ρ. By v+

re f , v+, and ρ+ we denote reference vehicle speed, host vehicle
speed, and relative distance values one distance segment ahead.

The host vehicle speed is updated according to the following dynamic equation,

v+ = vre f + u, (9.1)

where u is a control input corresponding to an offset in the host vehicle speed relative
to traffic speed at the beginning of the next traffic segment. This model has been used
to generate SDP policies for our simulation case studies of fuel efficient in-traffic
driving and lead vehicle following.

For in-vehicle experiments, we replaced (9.1) with an alternative model,

v+ = v + u, (9.2)

where u is a control input corresponding to an offset in the host vehicle speed at
the next distance segment relative to the host vehicle speed at the previous distance
segment. The use of model (9.2) resulted in better drivability of the experimental
host vehicle.

An approximate model for relative distance dynamics is defined by

ρ+ = ρ + (v+ − v)ΔT, (9.3)

where

ΔT = 2Δs

v+
re f + vre f

, (9.4)

is (approximately) the time to travel the road segment of length Δs. We use Δs = 30
m to generate control policies in our simulation case studies. To provide faster control
updates and improve experimental vehicle safety, we reduced Δs to 15 m when
generating control policies for the vehicle experiments.
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In both the experimental vehicle testing and the computer simulations, we pro-
vided a set point speed, v+, to existing speed controllers and relied upon these existing
controllers to execute the necessary changes in speed.

9.2.2 Stochastic Models of Reference Speed and Road Grade

Transitions in reference speed and road grade are modeled using Markov Chains.
Transition probabilities are defined for changes in reference speed and road grade
over a road segment of length Δs,

P(v+
re f |vre f ), P(θ+|θ), (9.5)

with values of vre f and θ quantized to values on a discrete grid, vre f ≤ {0, 1, . . . , 36}
m/s, θ ≤ {−6,−5, . . . , 5, 6} %.

The identification of the transition probabilities has been performed from 16 data
sets collected on-board of an experimental vehicle. The vehicle has been driven along
a route on and around M-39 (mixed highway and city driving), in northbound and
southbound directions, during different times of day (in rush hour traffic and off-peak
hours traffic) and with the driver emulating two different driving styles (‘smooth’
and ‘aggressive’). Transition probability models have been identified using

P(x j | xi ) ∈ Nxi ,x j

Mxi

, (9.6)

where P(x j|xi ) is the approximate probability of transition of a variable x ≤ {vre f , θ}
from a discrete state xi to state x j , Nxi ,x j is the number of transitions from state xi

to state x j observed in the data, and Mxi is the total number of transitions out of
state xi . Figure 9.1 illustrates the transition probability matrices learned based on
one of the data sets. Note the near diagonal character of the model suggesting that
continuing with the same reference speed and grade, i.e., v+

re f = vre f and θ+ = θ,
is most likely. On the right side of Fig. 9.1 we observe more off-diagonal entries at
lower vehicle speeds as it takes longer in time for the vehicle to travel the distance
segment and thus more time is available to accelerate to different speeds.

Assuming that θ and vre f are independent, it follows that

P(θ+, v+
re f |θ, vre f ) = P(v+

re f |vre f )P(θ+|θ). (9.7)

Remark 1 For the in-traffic driving, we ultimately advocate a multi-model approach
where several transition probability models (TPMs) and SDP policies are developed
for different traffic types (e.g., rush hour traffic versus off-peak hour traffic) and
road types. A Kullback-Liebler (KL) divergence can be used to establish similarity
between currently observed transition probabilities and transition probability models
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Fig. 9.1 A surface plot of grade (left) and reference vehicle speed (right) transition probabilities

that have been stored and for which the corresponding SDP policy is available. The
SDP policy for the best matching TPM is then switched to for the on-board use.
References [9, 15] discuss an evolving models approach where multiple models are
generated to cover the drives of interest. However, [9, 15] do not generate SDP
policies.

9.2.3 Cost Function Constituents

The SDP problem uses an incremental cost function of the general form,

R = W̄ f + λT̄t + φ(ρ), (9.8)

where the constituents are the expected fuel consumption, W̄ f , over the segment of
length Δs, the expected segment travel time, T̄t , and the distance constraint violation
penalty, φ(ρ). The subsequent formulations of the SDP problem for the in-traffic
driving use (9.8) with φ(ρ) = 0. The constituents of the cost function are now
discussed.

9.2.3.1 Fuel Consumption

The general model for the fuel flow is of the form,

W f = W f (v, v+, θ, θ+), (9.9)

where v and θ are the vehicle speed and the road grade, respectively, at the beginning
of the current road segment of length Δs, while v+ and θ+ are the vehicle speed and
road grade, respectively, at the beginning of the next road segment of length Δs.

For the simulation case studies, the model (9.9) has been developed based on a
single hidden layer neural network and has the form,
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Fig. 9.2 Example of the training and testing data for the neural network model of the fuel flow
based on CARSIM data. Note only a small sample of the 7,000 data points was selected in each
plot for clarity

W f = σ2(w2σ1(w1unn + b1) + b2), (9.10)

where σ1 and σ2 are the hyperbolic and linear activation functions, respectively; w1
and w2 are the corresponding vectors of weights; b1 and b2 are the corresponding
vectors of biases; and unn = (v, v+, v+ − v, θ, θ+)T is the model input vector.
Using the trainbr function in MATLAB neural network toolbox, the neural network
was trained using Bayesian regularization back propagation applied to 16 vehicle
drives replicated in CARSIM environment. Roughly 14,000 data points were used
to generate the neural network −7,000 to train and 7,000 to test. See Fig. 9.2.

For the experimental vehicle testing, a physics-based fuel consumption model
representative of the 2007 Ford Edge experimental vehicle has been used. Note that
both models account for gear shifts and torque converter lock/unlock events.

The expected value of fuel consumption used in the incremental cost function
(9.8) has the form

W̄ f = Ev+,θ+[W f (v, v+, θ, θ+)]. (9.11)

9.2.3.2 Travel Time

The travel time of a road segment of length Δs can be approximated as
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Tt (v, v+) = 2Δs

v + v+ . (9.12)

The expected value of travel time used in the incremental cost function (9.8) has the
form,

T̄t = Ev+[Tt (v, v+)]. (9.13)

9.2.3.3 Distance Constraint Penalty

The penalty function for the distance constraint violation in (9.8) has one of the
following forms. The first form,

φ(ρ) =

⎧
⎪⎨

⎪⎢

κ if ρ > ρmax ,

κ if ρ < ρmin,

0 else,

(9.14)

was used for the simulations while the second form,

φ(ρ) =

⎧
⎪⎨

⎪⎢

(κeρ−ρmax − κ) if ρ > ρmax ,

(κeρmin−ρ − κ) if ρ < ρmin,

0 else,

(9.15)

was used for in-vehicle experiments. In the above, [ρmin, ρmax ] is the desired interval
in which the distance is to be maintained and κ > 0 is a parameter. The value of
κ = 10 has been used to generate SDP policies for fuel efficient vehicle following
for both simulations and experiments. Values of ρmin = 3 m and ρmax = 10 m have
been used for the simulations with (9.14) while values of ρmin = 5 m and ρmax = 15
m have been used for the vehicle experiments using (9.15). A switch was made from
(9.14) to (9.15) in order to eliminate discontinuities within the cost function.

We note that the minimum distance constraint is imposed to prevent host vehicle
colliding with another vehicle in front, while the maximum distance constraint is
imposed to improve driving comfort and reduce the impact of the host vehicle actions
on the flow of traffic around it. We do not attempt to take advantage of drag reduction
in close following even though in principle such a possibility can be realized by
prescribing a small value for ρmax . We also do not attempt to use asymmetric penalty
factors in (9.14) or (9.15) and equally weight both relative distance extremes as both
extremes are important for the safety of the host vehicle and surrounding traffic.
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9.3 Stochastic Dynamic Programming

SDP is used to generate best-on-average control policies. For the incremental cost
(9.8), the stochastic optimal control problem that SDP solves is of the form

J = E

⎡ ∞⎣

k=0

qk R(v(k), θ(k), ρ(k))

⎤
≈ min

u≤U
, (9.16)

subject to the model in Sect. 9.2 where 0 ≡ q < 1 is a discount factor introduced
to guarantee that the cost is finite and the set U denotes the set of feasible control
values. In (9.16), the value of q = 0.96 in order to approximate the average cost.

We use the value iteration approach [1] to solve the SDP problem. Under the
standard assumptions, the following iterations converge, as n ≈ ∞, to the value
function V ≥(vre f , v, θ, ρ),

Vn+1(vre f , v, θ, ρ) = minu≤U Qn(vre f , v, θ, ρ, u),

Qn(vre f , v, θ, ρ, u) =
R(vre f , v, θ) +

⎣
θ+, v+

re f qVn(v+
re f , v+, θ+, ρ+)P(v+

re f , θ
+ | vre f , θ),

V0(vre f , v, θ, ρ) = 0. (9.17)

The value iterations are performed numerically using standard gridding and linear
interpolation techniques.

9.4 Simulation Case Studies

To quantify the fuel economy benefits of the SDP approach, simulation case stud-
ies were implemented in a simulation environment based on CARSIM and Mat-
lab/Simulink. We used CARSIM to emulate a traffic analog vehicle that replicates
the data collection drives of our experimental vehicle. We also implement in CARSIM
the host vehicle responding to control inputs generated by SDP policy executed in
Simulink. The SDP policy was generated to prescribe the offset relative to reference
speed in (9.1),

u ≤ {−3,−2,−1, 0, 1, 2, 3} m/s.

The metrics used to evaluate the results are the percent mpg improvement and
percent difference in average vehicle speed. They are defined by

%mpgimp = mpgh − mpgt

mpgt
× 100, %vdi f f = v̄h − v̄t

v̄t
× 100, (9.18)
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Fig. 9.3 Left the percent fuel economy increase for the in-traffic driving case study in the non-
porous traffic case. Right the percent change in average speed

where mpgt , v̄t are, respectively, the fuel economy and the average speed of the traffic
analog vehicle, while mpgh , v̄h are, respectively, the fuel economy and the average
speed of the host vehicle. Positive values in %mpgimp indicate the fuel economy
improvements of the host vehicle and positive values in %vdi f f faster average speed
of the host vehicle sersus the traffic analog.

9.4.1 In-traffic Driving

For the in-traffic driving, vre f = vt . The value of the weight λ = 0.002 in (9.8) was
chosen after some tuning. We assumed φ(ρ) ∗ 0 in (9.8) at the stage of generation
of SDP policies. As a result, the SDP policy became independent of the relative
distance, ρ, which simplified its offline computation and online implementation.
When evaluating this SDP policy, two case studies of non-porous traffic and porous
traffic were considered.

9.4.1.1 Non-porous Traffic

In the non-porous traffic case, the host vehicle was not able to pass the traffic analog
vehicle and the brakes would be activated in the simulation to ensure there was no
collision. The non-porous traffic represented the worst case for the evaluation of SDP
policy. The results based on our 16 drives are summarized in Fig. 9.3. For the non-
porous traffic case, the average improvement in mpg is 2.97 % with an average drop in
average speed of 0.78 %. Slight positive values of the average speed difference on the
right of Fig. 9.3 for some of the drives indicate that the host and travel analog vehicles
ended up closer together at the end of the simulation than when the simulation was
started.
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Fig. 9.4 The time histories of traffic analog (dotted) and host vehicle (solid) speeds for the simu-
lation 6 in the non-porous traffic case

Figure 9.4 compares the vehicle speed time history of the traffic analog vehicle
and host vehicle for drive 6 where the largest fuel economy improvement has been
observed. The speed of the host vehicle with the SDP policy has fewer and smaller
abrupt changes and an overall “smoothed-out” character, especially for large acceler-
ations and decelerations. This conclusion is also confirmed by examining the vehicle
speed traces for other drives.

9.4.1.2 Porous Traffic

In the porous traffic case, the host vehicle is able to follow the SDP policy freely
passing or being passed by the traffic analog vehicle if needed. This case is consistent
with the cost function used for SDP policy generation and represents the best case
scenario. The results based on our 16 drives are shown in Fig. 9.5. For the porous
traffic case, the SDP policy achieved simultaneous improvement in mpg (average
improvement is 5.67 %) and an increase in average speed (average increase is 5.38 %).

Note that in the non-porous traffic case, the average speed for many of the simu-
lations is lower than the traffic analog. Though one can argue that some of the fuel
economy improvement can, in principle, be due to this reduction, it is clear from
the porous traffic case results show that simultaneous increases in average speed and
fuel economy are also feasible.
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Fig. 9.5 Left The percent fuel economy increase for the in-traffic driving case study in the porous
traffic case. Right The percent change in average speed

Table 9.1 Fuel economy improvement broken down between traffic conditions and traffic type

Traffic condition Traffic type Percent improvement in mpg

Rush hour Porous 8.98
Rush hour Non-porous 2.20
Off-peak Porous 2.39
Off-peak Non-porous 3.73

9.4.1.3 Rush Hour Versus Off-peak Traffic Conditions

Table 9.1 compares the average results over rush hour simulations (drives 1, 2, 5,
6, 9, 10, 13, 14) and off-peak traffic conditions (drives 3, 4, 7, 8, 11, 12, 15, 16).
In both the porous and non-porous cases, the fuel savings, as compared to the lead
vehicle, come from smoothing the accelerations and a reduction in the amount of
vehicle braking. This observation is consistent with the results that in the non-porous
case the host vehicle performs better than traffic during off-peak times while in the
porous case the host vehicle does better during rush-hour times.

9.4.2 Optimal Vehicle Following

We consider next the vehicle following scenario, where the host vehicle follows,
without passing, the lead vehicle that is driven at a constant speed, vre f , where
vre f ≤ {45, 50, 55, 60} mph. For this case, separate SDP policies with φ(ρ) ⇐= 0
in (9.15) and λ = 0.0012 in (9.8) were generated for each of four values of vre f .
Furthermore, the cases of uniformly zero grade along the route and non-zero grade
modeled stochastically, as discussed in Sect. 9.2.2, were considered separately. The
SDP policies are functions of ρ, v, and θ (in the non-zero grade case) and prescribe
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Fig. 9.6 Fuel economy improvement with SDP policies. The blue (first) set of bars are for the
non-zero grade policies and the red (second) set of bars are for zero grade

the offset u in (9.1). Note that the zero grade policies are basically deterministic
policies. The zero grade policies were simulated assuming zero grade while the non-
zero grade policies were simulated with the grade profile recorded over the same
route as in Sect. 9.2.2.

The fuel economy is improved with SDP policies, see Fig. 9.6. This improvement
is attributed to Pulse-and-Glide behavior (oscillation) of the host vehicle speed in-
duced by the SDP policies, see Figs. 9.7 and 9.8. The Pulse-and-Glide behavior has
been observed in both non-zero grade (Fig. 9.7) and zero grade (Fig. 9.8) simulated
drives. The sharp acceleration slope and more gradual deceleration (coasting) slope
in non-zero grade simulation become more regular in the zero grade case. The fuel
flow during sharp acceleration (pulse) exceeds fuel flow of the lead vehicle, but is
less during the deceleration (coasting) phase. This results in a lower overall fuel con-
sumption, seen in the right side of both Figs. 9.7 and 9.8 of the host vehicle compared
to the lead vehicle. Due to the distance constraint, average vehicle speeds of the host
and lead vehicles are nearly the same.

The fuel improvement mechanism of Pulse-and-Glide differs from that of accel-
eration smoothing. The acceleration smoothing limits the magnitude of the acceler-
ations based on prediction of the lead vehicle velocity. It keeps the host vehicle from
braking as much as traffic, potentially also avoiding unnecessary downshifts and
torque converter unlocks. With Pulse-and-Glide, the lead vehicle is assumed to be at
a constant and known speed, and the control policy takes advantage of differences
in efficiency between operating points in the engine map, and of efficiently executed
transients, to reduce fuel consumption.
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Fig. 9.7 Left time history of lead vehicle speed (dashed) and host vehicle (solid) for a part of the
drive with non-zero grade. Right fuel consumption versus distance traveled of lead vehicle speed
(dashed) and host vehicle (solid)
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Fig. 9.8 Left time history of lead vehicle speed (dashed) and host vehicle (solid) for a part of
the drive with zero grade. Right fuel consumption versus distance traveled of lead vehicle speed
(dashed) and host vehicle (solid)

9.5 Vehicle Experiments

The experimental testing of fuel efficient vehicle following was performed in a 2007
Ford Edge. The tests were performed along the M-39 highway portion of the same
route used for data collection in Sect. 9.2.2. We bypassed the vehicle speed set-
point fed to the vehicle cruise controller with the output of SDP policy running on
a dSPACE RTI 1005 board. The testing was restricted to vehicle speed following
scenario, where the lead vehicle driving at a constant speed was implemented as a
virtual vehicle (in software) while the host vehicle was the experimental vehicle.
This implementation permitted testing with a single available vehicle which did not
have a radar nor ACC. The vehicle was driven over the same route twice whenever
testing was performed, once with the regular cruise control and then with the SDP
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policy. This was done in order to reduce errors due to day-to-day fluctuations in fuel
economy.

After preliminary testing, to improve driving comfort we regenerated the SDP
policies to prescribe the offset to the current host vehicle speed (see (9.2)) rather than
to the lead vehicle speed, vre f , and restricted the offset values to a small range u ≤
{−2, 0, 2} mph to prevent large speed change requests. We additionally constrained
u by adding to U the constraint 50 ≡ v + u ≡ 60. We used λ = 0.0012 in the cost
(9.8) as this value improved vehicle drivability.

Over 12 drives on M-39 (half in northbound and half in southbound direction) with
vre f = 54 mph, the average fuel economy improvement is 4.51 % with a maximum
of 11.58 % and a minimum of −3.28 %. The maximum and minimum were observed
on the same day during which there was a strong wind that may have skewed the
results. Without these outliers, the average fuel economy improvement is 5.38 %.

Figure 9.9 shows the results of vehicle experiments for one of the drives. An
oscillating pattern, representative of Pulse-and-Glide, clearly emerges in the exper-
imental vehicle speed. The difference in the character of the response is attributed
to changes in SDP problem formulation that we made to improve vehicle drivability
and to the slow and asymmetric (between acceleration and deceleration) response
of the nominal cruise controller to the set-point provided by the SDP policy. Also
due to the nominal cruise controller response (unmodelled at the stage of generating
SDP control policies), the average speed of the host vehicle ended up below the
lead vehicle average speed. The distance ρ computed by a limited integrator in our
implementation was thus saturated at the upper bound, ρmax , during the tests.

The average speed difference over all 12 drives is −1.95 mph. To account for the
increased fuel economy due to a lower average speed, test drives were performed
using the standard cruise control set to 50, 52, and 54 mph in order to build a
relationship between a reduction in average speed and increase in fuel economy.
The resulting relationship is, on average, a 0.49 % reduction in fuel consumption for
every percent drop in average speed. This results in a corrected fuel consumption
improvement of 2.74 % when considering all of the tests and an improvement of
3.61 % when not considering the outliers.

9.6 Concluding Remarks

Fuel economy can be improved by optimal control of vehicle speed. One approach to
developing such a speed controller, that does not use an electronic horizon of preview
information, is through the stochastic modeling of traffic and terrain, and through
the application of stochastic optimal control. The chapter provided a demonstration
of this approach and showed that stochastic dynamic programming based policies
can improve fuel economy through the mechanisms of smoother accelerations in
in-traffic driving scenarios and through Pulse-and-Glide when following another
vehicle moving at a constant (or nearly) constant speed. While these fuel economy
improvement mechanisms have been discussed in previous literature, it is interesting



9 Stochastic Fuel Efficient Optimal Control 161

0 100 200 300 400 500 600 700 800
48

49

50

51

52

53

54

55

56

Time [s]

V
eh

ic
le

 S
pe

ed
 [

m
ph

]

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Distance Traveled [miles]

Fu
el

 C
on

su
m

ed
 [
ga

l]

Traffic
Host

Fig. 9.9 Left time history of vehicle speed from vehicle testing. Right cumulative flow of the host
vehicle (solid) versus lead vehicle (dashed)

that they also emerge in the process of solving a stochastic optimal control problem.
The simulation and experimental results in the chapter provide a quantification of
the benefits that can be achieved with this approach.

For the in-traffic driving, the smoothing of accelerations can be viewed as a way
to eliminate aggressive driver behaviors that are detrimental to fuel economy. In the
case of vehicle following, the lead car is not exhibiting any aggressive behaviors
and thus the optimization exploits a Pulse-and-Glide mechanism. Consequently, the
results of our case studies are not contradictory.

Much room remains for further research. This includes further vehicle experiments
and benefit quantification in relation to existing Adaptive Cruise Control (ACC)
systems. The issue of acceptability of Pulse-and-Glide type policies also requires
further study in terms of customer and traffic flow impact. Our experience in the
experimental vehicle suggests that driving comfort can be improved to a level that
can be acceptable to some customers, and the impact on traffic flow can be minimized
by a judicious choice of the cost and constraints.

We note that we have not pursued the development of a policy for in-traffic driving
with a distance constraint because such a policy depends on more state variables
and due to the curse of dimensionality is more complex to generate and store. The
development of such a comprehensive policy is left to future work.
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Chapter 10
Predictive Cooperative Adaptive Cruise
Control: Fuel Consumption Benefits
and Implementability

Dominik Lang, Thomas Stanger, Roman Schmied and Luigi del Re

Abstract Impressive improvements of efficiency and safety of vehicles have been
achieved over the last decade, but increasing traffic density and drivers’ age accentu-
ate the need of further improvements. The contributions summarized in this chapter
argue that a substantial additional fuel benefit can be achieved by extending the well
introduced Adaptive Cruise Control in a predictive sense, e.g. taking into account
a predicted behavior of other traffic components. This chapter starts by discussing
results on the potential benefits in the ideal case (full information, no limits on com-
puting power) and then examines how much of the potential benefits is retained
if approximate solutions are used to cope with a realistic situation, with limited
information and computing power. Two setups are considered: vehicles exchang-
ing a small set of simple data over a V2V link and the case of mixed traffic, in
which some vehicles will not provide any information, but the information must
be obtained by a probabilistic estimator. The outcome of these considerations is that
the approach is able to provide—statistically—a substantial fuel consumption benefit
without affecting negatively the driveability or the driver comfort like other methods,
e.g. platooning, would.
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10.1 Introduction

Classical vehicle design aims to fulfill the needs of a wide variety of potential drivers
in a wide variety of situations. While emissions and fuel consumption are deter-
mined under very well defined test conditions, actual consumptions and emissions
arise from the operation of generic drivers under generic conditions. Different driver
styles are known to affect very strongly the fuel consumption [1]. Advanced Driving
Assistance Systems (ADAS) and autonomous vehicles can do more than support
a different driving style, i.e. take a fuel optimal decision in real time considering
several boundary conditions. This chapter shows that this idea—which can be seen
as a seamless extension of normal adaptive cruise control (ACC)—offers a high fuel
benefit potential. It can be realized with different degrees of complexity and can be
used both in a connected traffic or—with some performance reduction—in a mixed
traffic environment with high predictability and comfort.

The driving force behind the development of ADAS has clearly been safety, as
in the case of anti-lock brake systems (ABS), first developed in 1929 for airplanes,
followed by traction control, electronic stability programs (ESP) and brake assistants
and many more (see [2] for an overview). Some ADAS have an impact on energy
efficiency, in particular the Cruise Control (CC), which enforces a constant driving
speed, and ACC [3–6], which additionally enforces a safe headway.

Recently, the focus has been extended to Cooperative ACC (CACC) [7–10] made
possible by modern communication possibilities. Still, the focus is mainly safety, at
the level of single vehicles, or fuel consumption, at the traffic level, by preventing
jams, scheduling gear shifts etc. Someworks have also addressed fuel efficiency, see.
e.g. in [7] for a Model Predictive Control (MPC) solution or [3] for a Pulse and Glide
(PnG) algorithm for a continuous variable transmission. Stochastic traffic models
have been examined in [11] and applied to stochastic DP [12, 13].

This chapter focuses on the minimization of fuel consumption in moderate, non-
congested traffic typical of a commuter travel. Computations and measurements are
done on the basis of the available test car and engine (BMW320d and N47).

10.2 Problem Statement

We consider the speed control of a vehicle with a target speed vre f in a multi vehicle
scenario in which it has to cope with other vehicles with an own speed profile, in
particular with a preceding one which acts as a disturbance, as shown in Fig. 10.1.
We shall assume the controlled car to be equipped with some distance measurement
device, e.g. radar. For simplicity, we shall not consider lane or gear changes. In this
case, the related problem can be stated intuitively as
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Fig. 10.1 Considered scenario, V2V communication is advantageous but optional

min
a(t)

Q f,T = min
a(t)

1

T

T∫

0

q f (v(t), a(t)) dt, (10.1)

where q f is the current fuel consumption depending on the vehicle’s speed v(t) and
acceleration a(t), T the observation time, all other conditions assumed to be equal
(path, temperature, pressure, humidity etc.).

10.2.1 Casting the Problem into the Mathematical Form

The basic dynamic equations of two vehicles moving within a string are given in the
simplest form by

Δẋ = vp − v

v̇ = a (10.2)

where vp is the velocity of a disturbing, preceding vehicle, a the acceleration and
Δx > 0 the inter-vehicle distance.

Fuel consumption of a Diesel engine can be approximated by a static map depend-
ing on the engine torque and the rotational engine speed or accordingly on vehicle
acceleration and vehicle speed, as shown in Fig. 10.2. The transient fuel consumption,
not covered by the static map,adds typically about 4 % [14]. Boundary conditions
can be derived by additional requirements.

A minimum distance is needed to prevent rear-end crashes. In [15] a historical
review on car following models and their underlying spacing policies is given and
in [16] collision avoidance capabilities of spacing policies are discussed.The most
common spacing policy used, e.g. in [10], is linearly depending on the vehicle speed v

Δx ≥ Δxmin,0 + hminv. (10.3)
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Fig. 10.2 Interpolated map of static fuel consumption, fixed gear, BSFC means brake-specific-
fuel-consumption, q f

where Δxmin,0 denotes the minimum inter-vehicle distance at stand still and hmin

is the time-headway. Maximum distance is not a typical boundary condition, as, if
the distance is large enough, both ACC and CACC would work as a standard CC.
However, in congested traffic it seems advisable to limit this quantity to prevent loss
of road capacity (and also to reduce frequency of third vehicle entering in the space
between the actual vehicle and the predecessor). A maximum inter-vehicle distance
is enforced by the constraint

Δx ≤ Δxmax,0 + hmax v, vP < vre f (10.4a)

v = vre f , vP ≥ vre f (10.4b)

considering the case that the speed of the preceding vehicle exceeds the reference
speed,Δxmax,0 being themaximumdistance at stand still and hmax the time headway
coresponding to the maximum inter-vehicle distance.

Additional boundary conditions have to be included to respect system inherent
limitations like maximum accelerating or decelerating power as well as maximum
and minimum speed of the vehicle

amin(v) ≤ a ≤ amax (v) (10.5a)

vmin ≤ v ≤ vmax (10.5b)

where amax and amin are the speed dependent maximum and minimum acceleration
and vmax and vmin denote the velocity limits of the vehicle.

Combining all this leads to the nonlinear optimization problem

min
a(t)

T∫

0

(
q f (v(t), a(t))

)
dt (10.6a)
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Table 10.1 Potential fuel benefits with respect to a preceding vehicle assuming perfect knowledge
of the future

Floating margin (m) 10 20 30 40 50 60 70 80

Potential fuel benefits (%) 9.2 14.7 18.3 20.2 22.1 23.9 24.4 25.7

s.t. ˙Δx(t) = vp(t) − v(t)

v̇(t) = a(t)

Δxmin,0 + hminv(t) ≤ Δx(t) ≤ Δxmax,0 + hmax v(t)

amin(v(t)) ≤ a(t) ≤ amax (v(t))

vmin ≤ v(t) ≤ vmax (10.6b)

Several other constraints can be introduced to ensure ride comfort and the acceptance
by a human driver, for example limitations of acceleration or jerk.

10.3 Assessment of Potential

This nonlinear optimization problem cannot be solved in real time, but an approx-
imate off-line numerical evaluation is possible in order to ascertain the potential
of the method, providing the problem is simplified by discretization in time (see
[22] for details). For this evaluation, we assume the preceding vehicle to follow a
trajectory as in the FTP-75 (between 640 and 1,140 s) shifted by 24 km/h to bet-
ter approximate a commuter traffic situation (assuming no jams). The behavior of
the controlled vehicle l is shown in Fig. 10.3, in which the bottom subplot depicts
the speed profile of the preceding vehicle, as well as the fuel optimal speed profile
while the top graph illustrates the corresponding inter-vehicle distance. The optimal
behavior corresponds to the expectations, the controlled vehicle uses the information
on the future speed profile of the preceding vehicle to smooth its own speed profile
by floating between a minimum and maximum bound. A floating margin of 20 m
leads to a fuel consumption reduction of approximately 14.7 % with respect to the
preceding vehicle. As portrayed in Table 10.1, the results show a strong dependency
on the allowed floating margin.1 The setup can be extended to a string of vehicles.

Figure 10.4 portrays the speed profiles of a string consisting of vehicles. As
expected, a further reduction in acceleration and deceleration maneuvers towards the
rear of the string is clearly visible. The effect on fuel economy is shown in Table 10.2.

1 maximum–minimum allowed distance.



168 D. Lang et. al

Fig. 10.3 The typical behavior of the optimized following vehicle. The optimized speed profile
of the succeeding vehicle is essentially smoothed and is floating between minimum and maximum
inter-vehicle distance

Table 10.2 Potential fuel benefits with respect to a predecessor in a string of vehicles assuming
perfect knowledge of the future (floating margin = 20 m)

Vehicle position in string 2 3 4 5 6 7

Potential fuel benefits (%) 14.7 23.4 28 31.3 32.9 33.4

10.4 Nonlinear Receding Horizon Optimization

The results shown in the preceding section hint at a large available potential, but
of course the implicit assumption of perfect knowledge of the future speed profile
of the predecessor is not realistic. Also on-line solution of the problem with a very
high number of manipulated variables (500) seems out of question for some time.
However, Table 10.1 shows that the potential fuel benefits approaches a saturation
for increasing floating margin, so that we might expect something similar as far as
the optimization time is concerned.

So we consider addressing the problem by a moving horizon strategy, as done in
model predictive control (MPC), see e.g. [18, 19]. Indeed, in MPC, only a relatively
short horizon is considered, thus a short stringof values of themanipulatedvariables is
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Fig. 10.4 Speed profiles of a string of vehicles (vehicle 1: string leader, vehicles 2–7: controlled
vehicles)

Table 10.3 Comparison of potential fuel benefits (floating margin = 40 m)

Prediction horizon 5 s 10 s 15 s 20 s 30 s 40 s unlimited

Potential fuel benefits (%) 2.8 12.3 17.1 18.6 19.2 19.7 20.2

computed, but only the first value is really used.At the next time step, the optimization
is repeated. Although it is well known that the strategy does not necessarily lead to
the optimal solution it is usually accepted as a sensible approximation. Figure 10.5
presents the dependency of the achieved fuel consumption benefit on the length of the
finite prediction horizon for differentmargins using a nonlinear solver of the receding
time version of the original problem. As expected, the same saturation occurs not
only in terms of floating margin, but also in terms of prediction time, albeit with
some cross dependency. Table 10.3 compares some of the obtained results to the
optimal solution depicted in Table 10.1. As the prediction horizon becomes longer,
the potential benefits converge to the optimal values.

The impact of the floating margin on traffic capacity is shown in Fig. 10.6 for an
average average vehicle length of 4 m. As expected, the traffic capacity decreases
with increasing floating margin, see Fig. 10.7.

10.5 Approximate Control Law Within the Linear MPC
Framework

While the solution of the preceding section is already easier to implement than
first one a further computational simplification can be obtained by using the linear
MPC framework, using local linearizations as proposed in [20]. Figure 10.8 shows



170 D. Lang et. al

Fig. 10.5 Dependency of the achieved fuel consumption benefit on the length of the finite prediction
horizon for different margins

Fig. 10.6 Traffic capacity with respect to the prediction horizon

the behavior of the MPC-CACC with respect to the preceding vehicle, comparing
speed and acceleration with a prediction horizon of 20 s and a control horizon 10 s.
All together the behavior of the MPC-CACC resembles the behavior and findings
presented by Sect. 10.3. The corresponding values of fuel benefit and the influence of
different prediction horizon, are presented in Table 10.4. As expected, fuel benefits
increase in a string, but converge also to a limit after a few vehicles as shown in
Table 10.5. The effect of floating margin is quite similar to those of Fig. 10.5.
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Fig. 10.7 Traffic capacity with respect to the provided margin

Table 10.4 Comparison of average fuel consumption and benefit of MPC-CACC with different
prediction horizons

Preceding MPC-CACC
vehicle PH = 5 PH = 10 PH = 15 PH = 20

l/100 km 4.71 4.19 3.95 3.85 3.85
Relative fuel benefit in (%) 11.04 16.14 18.28 18.27
Average capacity in vehicles/min 20.16 20.8 25.62 26.16
Average capacity in (%) 92.7 105.0 117.9 120.3

Table 10.5 Comparison of average fuel consumption and benefit of MPC-CACC within a string
of vehicles

Vehicle Preceding Following vehicle #
vehicle 1 2 3 4 5

l/100 km 4.71 3.85 3.61 3.49 3.45 3.42
In-line benefit in (%) 18.27 6.18 3.28 1.16 0.95

10.6 Approximate Control Law Utilizing an Identified
Hammerstein–Wiener Model

There is growing interest in applying MPC on more automotive issues, and pro-
gresses in algorithms and computational power make this choice the longer the more
realistic [21]. However, for practical applications a further approximation level may
be interesting based on the design of a fixed network whose output mimicries the
behavior of the optimal control without the corresponding computational burden.
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Fig. 10.8 Inter-vehicle distance including constraints and vehicle speed

Indeed, the optimal controller uses the velocity of the preceding vehicle vP as
input and delivers the optimal speed as output. If we use this quantity to compute
the optimal distance to the preceding vehicle Δx(t), and use vP as input and Δx(t)
as output, it turns out that a nonlinear Hammerstein–Wiener (nlHW, see Fig. 10.9)
model can be tuned to yield a good, cycle-independent approximation.

The nonlinearities of the identified model can be interpreted as an approximation
of the distance constraints imposed on the corresponding optimization problem [22].
Of course, such a fixed controller needs additional elements to take into account the
predictive action. This is recovered by adding a non causal smoothing filter, requir-
ing a prediction of approximately 10 s. The smoothing filter additionally ensures the
drivability of the approximated inter-vehicle distance. The schematic of this approx-
imation, including an external branch to prevent an offset is portrayed in Fig. 10.10.
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Fig. 10.9 Structure of nlHW

Fig. 10.10 Basic structure of approximate control

Fig. 10.11 Basic structure of safety layer with constraint enforcement controllers

Naturally, an additional safety layer is required to ensure the strict fulfillment of
the range bounds bymodifying the approximated vehicle acceleration, but this would
be needed in any real application anyway. The basic structure of the proposed safety
layer is shown in Fig. 10.11.



174 D. Lang et. al

Fig. 10.12 Optimal inter-vehicle distance and its approximation

Table 10.6 Comparison of potential consumption reductions

Prediction horizon (s) Benefits at different margins
10 m (%) 20 m (%) 30 m (%) 40 m (%)

10 9.9 11.4 11.9 12.3
15 10.8 14.4 16.3 17.1
20 11.2 15.1 17.5 18.6
30 11.3 15.3 18.4 19.2
40 11.3 15.3 18.5 20.2
Approximation 10.3 13.4 15.7 17

An example of an approximated inter-vehicle distance is displayed in Fig. 10.12.
The resultant potential fuel benefits are shown in Table 10.6. The approximated
solution yields benefits close to those achievable with a receding horizon of 15 s. A
more detailed discussion and further results can be found in [22].

10.7 Traffic Prediction Model From Data

All methods presented until now assumed some knowledge on the future behavior
of the preceding driver. This information, however, is usually not available. This
section presents some results on possible predictionmethods using a set of nonlinear,
autoregressive (NARX)models, both in the case of interconnected and nonconnected
vehicles using data gathered in suburban road traffic near to Linz, Austria. These
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Fig. 10.13 1 and 5 s ahead prediction, employing ‘V2V assisted approach’ and the ‘measurements
only approach’

Fig. 10.14 Comparison of of the prediction quality between the two approaches

models are given by

y(t + i) = fi (u(t), u(t − i)) (10.7)
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Fig. 10.15 Impact of imperfect prediction on fuel benefit

while y(t) = v(t) is the vehicle speed. As the traffic can include both connected
and independent vehicles, we need to consider both the case in which the preceding
vehicle transmits in real time a set of data (its position, speed as well as the acceler-
ation, gas, brake and clutch pedal positions) and the case in which only information
on position, speed and acceleration of the preceding vehicle can be used by mea-
surement or reconstructed by sensors on the controlled vehicle alone. Examples of
the performance of the predictors for 1–5 s ahead for both approaches are given in
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Fig. 10.13. The results correspond to the intuition that the estimate becomes less
precise for an increasing time distance. In addition to this, it is clearly visible that
the V2V approach yields more accurate results as shown in Fig. 10.14.

The top subplot in Fig. 10.15 shows results for a prediction horizon of 10 s using
hard constraints and the traffic estimation with V2V based estimation with a reduced
fuel benefit of 2.3% due to the imperfect prediction. However, the strong reduction is
also due to the hard constraints as—togetherwith the imperfect prediction—they lead
to sudden corrections as in the bottom subplot in Fig. 10.15. If the hard constraints
on the upper bound are relaxed, then more moderate acceleration (bottom subplot in
Fig. 10.15) are required, and a large part of the fuel savings is recovered (9.4 %).

10.8 Conclusions and Outlook

Coordinated control is receiving much attention, as the availability of cost effective
communication and computational systems allows new possibilities. There are dif-
ferent ways to exploit this new opportunity, andmuchwork is being done at the safety
or at the infrastructure level. However, as this exposition meant to explain, there are
many opportunities also at the local level, centered around the single vehicle, which
should be used as well.

The authors gratefully acknowledge the sponsoring of this work by the
COMET K2 Center “Austrian Center of Competence in Mechatronics (ACCM)”.
The COMET Program is funded by the Austrian federal government, the Federal
State Upper Austria and the Scientific Partners of ACCM.
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Chapter 11
Topology Optimization of Hybrid Power Trains

Theo Hofman and Maarten Steinbuch

Abstract Topology optimization methods for continuum systems (structural topol-
ogy, shape, material) are well-established. However, these methods do not apply
to non-continuum or dynamic systems with discrete components with unique char-
acteristics as with hybrid vehicles. This chapter examines the power train topol-
ogy and control design optimization problem at vehicle system level. The design
space related to power train and control system optimization level is rapidly increas-
ing with new developments in power train, auxiliary technologies, system architec-
tures (topologies) and cyber-physical systems. The multi-objective, mixed or hybrid
(continuous/discrete time) character on both coupled levels of the problem requires
relative long computation time. Therefore, it requires a bi-level (nested) or simul-
taneous system design approach. Since, sequential or iterative design procedures
fail to prove system-level optimality. In this chapter, some illustrative examples
are discussed related to nested control and design optimization problems related to
continuous/stepped-gear transmission shifting, power split control and/or in combi-
nation with topology optimization.

11.1 Introduction

The design of a hybrid vehicle propulsion system is a complex task. The problem
is often multi-objective (e.g., minimizing emissions, maximizing acceleration per-
forming while minimizing system and component costs) and requires solving control
and design problems that have continuous and discrete dynamics. In literature often
case studies are selected, where the technology or topology choice have been fixed
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based on engineering knowledge (or heuristics) and the size of components (kW,
kWh) is chosen as the main design variable. This simplifies the problem at hand, yet
may still impose difficulties and challenges related to the control design.

Analytical methods based on optimal control theory (Pontryagin’s Minimum Prin-
ciple, [1]) are very efficient in solving the control problem for a class of hybrid
vehicle systems [2–6]. However, difficulties arise when discrete-state variable, e.g.
engine on/off, or gear position with a stepped-gear box with comfort constraints, are
included in the design problem [7, 8]. Practically, these problems are circumvented by
calculating, e.g., separate Hamiltonian functions (or values) related to each discrete-
controlled state individually and accordingly are solved for the admissible control
input, which minimizes this set of Hamiltonian functions [9]. Inherently, a singular
solution for the optimal control may occur with this method [10], and heuristics is
required in choosing a particular mode resulting in a suboptimal solution.

The control problem is nonconvex, and often, e.g., the engine on/off and gear-
position state are optimized a priori, or by using simplified (heuristic) rules. The
remaining control problem and constraints are sometimes convexified to speed up
the design process [11].

11.1.1 Co-design Methods

In literature, some authors address the combined control and propulsion system
design [11–13]. Often the design space related to technology choice or topology
variation is limited to one or two main possibilities reducing the design space sig-
nificantly. However, in order to create fundamentally new configurations or topolo-
gies new and efficient methods are required. Particular if dynamics are important it
becomes very challenging to make proper design decisions [14, 15]. This process of
coupled system and control optimization can be done utilizing a sequential, iterative,
bi-level or simultaneous strategy [16]. In [17] the vehicle system design and control
are optimized in an iterative manner: first, the independent system design parame-
ters are selected using a Latin-Hypercube Sampling (LHS) method, and given a
(heuristic) controller the fuel economy subject to performance constraints are opti-
mized. Accordingly, at the optimal set of design parameters for the propulsion sys-
tem, the control rules for the system are optimized using deterministic Dynamic
Programming (DP). In a second iteration, again the optimal set of design parame-
ters is found given the updated controller. The process converges till a stopping
criteria related to the relative improvement is satisfied. From theory it follows that
the control and system design problems are coupled and that sequential or iterative
strategies fail to guarantee system-level optimality [16]. So far in literature, bi-level
or simultaneous strategies applied to the hybrid vehicle system design is limited. In
[18], the multiobjective design problem is nested where for every feasible system
design (topology and technology constant) the control design is optimized separately
using DP. Previously, in [19] also a multiobjective co-design (control and propulsion
system) for a parallel hybrid problem is addressed, yet using a rule-based control
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strategy (ADVISOR, [20]) limiting the achievable control performance. The nonlin-
ear Pareto frontier is computed and the sensitivity of the main design parameters to
the targets is systematically investigated. Particle swarm optimization, generic algo-
rithms, and deterministic search methods, such as Nelder-Mead simplex algorithm,
was also suggested as efficient search methods to solve optimal sizing problem. Yet,
the authors in [18] claim computing the separate objective values for different sizes
to be more efficient, since the sizing problem can be solved repeatedly with minimal
computational effort for any combination of weights.

11.1.2 Problem Definition: System Design Optimization

In this section, we would like to introduce the general system design problem, denoted
as P . In the following section of the article, this problem is used to derive the different
types of control and system design problems individually based on the analyzed case
under consideration, or assumptions. Let

Fi (dc) := Φ(x(t f ), t f ) +
⎧ t f

t0
L(x(t), u(t), t)dt for i ≤ {n + 1, . . . , N } (11.1)

and
dc := [uT (t) xT (t) t0 t f ]T (11.2)

be the controller design objectives and the vector of the controller design variables.
The control inputs and state variables are denoted as u(t) and x(t). The initial and
final times are denoted as t0 and t f respectively. The global system design problem
P is formulated as, minimization of the vehicle system Fi (dp) and controller design
objectives Fi (dc) to the system and controller design variables (dp, dc), which are
elements of all the feasible system/controller designs D . The system and controller
designs are subjected to (in-)equally (input and state) constraints denoted as hi (.)

and gi (.) respectively for i = {c, p}.

P :=

⎪
⎨⎨⎨⎨⎨⎨⎨⎢

⎨⎨⎨⎨⎨⎨⎨⎡

min
{dp,dc}≤D

: J = {F1(dp), . . . , Fn(dp), Fn+1(dc), . . . , FN (dc)}

subject to

D :=

⎪
⎨⎢

⎨⎡

dp, dc : h p(dp) = 0, gp(dp) ∈ 0, ẋ(t) = f (x(t), u(t), t, dp),

hc(x(t), u(t), t, dp) = 0, gc(u(t), t, dp) ∈ 0, gc(x(t), t, dp) ∈ 0

Φ(x(t f ), t f ) = 0, x(t0) = x0

⎣
⎨⎤

⎨⎦

(11.3)
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Fig. 11.1 Control and propulsion system design problems: a bi-level approach

The influence of physical system design on the control is accounted for by hc(.),
gc(.) and ẋ(t) to be a function of dp as well. Further, the formulation assumes that
all the state variables can be directly measured and that the physical system and
controller optimization objectives are separable [16].

11.1.3 Outline and Contribution of the Chapter

A bi-level optimization framework has been proven to identify a system optimal
solution. Traditionally, the outer loop optimizes the overall system performance by
varying the plant design. For every feasible plant design tested by the outer loop, the
inner loop calculates the optimal control for the given plant design [16]. In this work
(see also Fig. 11.1), a novel nested solution approach is discussed for

(i) a control design problem alone with discrete (outer loop using dynamic program-
ming) and continuous control inputs (inner loop using Pontryagin’s Minimum
Principle) reducing computation time significantly; and,

(ii) a novel co-design problem related to the control (using dynamic programming)
and the vehicle propulsion design (transmission technology choice, sizing of
power converters and topology, using a general purpose solver).

In the later case (ii), the general optimization problem P can also be formulated
as,

P :=

⎪
⎨⎨⎨⎨⎨⎨⎢

⎨⎨⎨⎨⎨⎨⎡

min
dp≤φ

: J = {F1(dp), . . . , Fn(dp), Fn+1(dc), . . . , FN (dc)}
subject to

φ :=
⎪
⎢

⎡

dp, d∞
c : h p(dp) = 0, gp(dp) ∈ 0,

d∞
c = arg min

dc:(dp,dc)≤D
{Fn+1(dc), . . . , FN (dc)}

⎣
⎤

⎦

(11.4)
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Under the assumption of the existence of a feasible combined physical system
and control design for every feasible physical system design. The backward coupling
from the control design to the physical system design (coupling parameters as output
from the control design to the general physical design problem) is ignored. The
solutions to the Eqs. (11.3) and (11.4) are mathematical equivalent [16].

The control design optimization problem, as described by case (i), including the
gear shift position (denoted as state x1), engine on/off (x2) and power split (x3) has
been visited by others [13], yet no comfort constraints on the gear shift command
has been taken into account (see Sect. 11.2).

COMBUSTION ENGINE (CE) CLUTCH
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BATTERY 
SYSTEM
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Fig. 11.2 Controlled switching topology: electric machine coupling is selectable (input and output
signals are included; the controlled-state variables xi for i ≤ {1, 2, 3, 4} are indicated by doubled-
headed arrows) [8]

In both discussed case studies, a single objective related to the control design,
i.e., fuel consumption, or CO2 emissions is used respectively. In case study (ii) (see
Sect. 11.3), also a performance constraint (acceleration performance) is imposed onto
the problem by an inequality constraint. Moreover, case study (ii), is an alternative
hybrid propulsion system model where not only the topology choice (pre-(PRE) or
post-coupled electric machine (POS) to the transmission) is as a propulsion design
variable separately analyzed, but also considered as a controlled-state variable (x4).
This is referred to as a switching topology (SWI) (see Fig. 11.2). In literature, so far
known to the authors, individually analyzed hybrid design models of static topology
cases can only be found. The results are based on previously published articles
(by the authors) and the corresponding optimizing problem is shown in Table 11.1.
Without loss of generality, the work proceeds to show with the nested approach that a
system-level optimality is guaranteed and proposes the integration of both problems
as future work (see Fig. 11.1). Finally, we state our conclusions and recommendations
in Sect. 11.4.
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Table 11.1 Control and propulsion design cases under consideration

dc: control dp: propulsion system

Section Gear ratio Engine on/off Power split Topology Technology EM size (kW) Ref.
11.2 x1 x2 x3 x4 = 1 AMT 6 [7]
11.3 x1 x2 x3 x4 {AMT, CVT} [0, 50] [8]

AMT Automated Manual Transmission; CVT Continuously Variable Transmission; EM Electric
Machine

11.2 Control Design Optimization: Gear Shift Strategies with
Comfort Constraints for Hybrid Vehicles

Similar to the problem presented by the authors in [13], we formulate our con-
trol design problem. Yet, an additional comfort constraint is added to the (discrete)
gear shift command limiting the admissible gear position [7]. Moreover, the main
contribution of this section is on an alternative computational efficient solution pro-
cedure, which will be discussed in the following parts of this section. Taking into
account physical constraints from the transmission, battery, engine and electric motor,
the optimal control problem under study consists in minimizing the fuel consump-
tion of the vehicle along a prescribed vehicle cycle. The gear position is defined as a
discrete state, denoted as x1. Further, let x2 ≤ {0, 1} be a discrete state representing
the state of the engine: x2 = 0 means the engine is off, while x2 = 1 means the
engine is on. Let x3 be a state corresponding to the state of charge of the battery.
We denote by x = {x1, x2, x3} ≤ X the state vector and define the control vector
u = {u1, u2, u3} ≤ U (x1, x2) by

u =

⎪
⎨⎢

⎨⎡

u1 the gear shift command,

u2 engine on/off command,

u3 battery power flow,

(11.5)

with

U (x1, x2) = {(u1, u2, u3) : u1 ≤ U1(x1), u2 ≤ U2(x2), u3 ≤ U3(x2)} (11.6)

where U1(x1) and U2(x2) are discrete values {−1, 0, 1} depending on x1 or x2
value. A full hybrid vehicle is considered, hence the engine can be stopped when the
torque is provided only the electric machine. Introducing the engine state allows to
take into account an extra fuel consumption corresponding to the necessary energy
to crank the engine [13]. If these losses are not engine state dependent, then the
optimal engine state (and corresponding engine on/off command) may follow from
the optimal power split minimizing the cost function. This similar assumption holds
for associated state dependent losses affecting the fuel consumption for the main
drive clutch (S1) or gear shift losses. Although, gear shift losses are neglected here,
the gear shift state is considered, since the following gear position x1(t+) depends
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on the current gear position x1(t) and the gear shift command u1(t) that limits the
admissible gear position state. The parallel hybrid topology is depicted in Fig. 11.2.
It is assumed that the vehicle wheel speed and acceleration as a function of time,
denoted as the disturbance (or external state) vector,

w(t) = [v(t), a(t)]T , (11.7)

are known. Let L(x(t), u(t), w(t)) be the instantaneous fuel consumption in (g/s),
given by

L(x(t), u(t), w(t)) =
{

L(u1(t), u3(t), w(t)) if x2(t) = 1 (engine running),
0 if x2(t) = 0 (engine stopped).

(11.8)
The continuous state x3(t) is a governed by

ẋ3(t) = f3(u3(t)). (11.9)

Accordingly, the dynamic optimization problem can be formulated as follows:

P1 :=

⎪
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎢

⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎡

min
u(t)≤U , x≤X

: J =
⎧ t f

t0
L(x(t), u(t), w(t)) dt

subject to

⎪
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎢

⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎡

g1 := u1(t) ≤ U1 = {−1, 0, 1} ≈ Z

g2 := x1(t) ≤ X1 = {1, . . . , 5} ≈ N
+

g3 := u2(t) ≤ U2(x2) =
{

{−1, 0} if x2 = 1

{0, 1} if x2 = 0
≈ Z

g4 := x2(t) ≤ X2 = {0, 1} ≈ Zn

g5 := u3(t) ≤ U3(x2) = {u3(x2), u3(x2)} ≈ R

g6 := x3(t) ≤ X3 = {x3, x3} ≈ R

g7 := x1(t
+) − x1(t) − u1(t) = 0

g8 := x2(t
+) − x2(t) − u2(t) = 0

g9 := ẋ3(t) − f3(u3(t)) = ẋ3(t) − u3(t) = 0

g10 := x1(t0) − x10 = 0; g11 := x1(t f ) − x1 f = 0

g12 := x2(t0) − x20 = 0; g13 := x2(t f ) − x2 f = 0

g14 := x3(t0) − x30 = 0; g15 := x3(t f ) − x3 f = 0

g16 := x1 f − x10 = 0; g17 := x2 f − x20 = 0

g18 := x3 f − x30 = 0;
(11.10)

The length of the optimization horizon is t f . The final-state penalty term is Φ(x(t f ),

t f ) = 0 (see Eq. (11.1)).
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1U

1L (u3 : u1,u2,x1,x2)

(u*3,x*3 : u1,u2,x1,x2)

(u1,u2,x1,x2) (u*3,x*3)

(u1,u2,x1,x2 : u*3,x*3)

(u*1,u*2,x*1,x*2 : u*3,x*3)

(u*, x*)

F1(dc)

f3(x3,u3)
u3

x3

f1(x1,u1)
f2(x2,u2)(u1,u2)

(x1,x2)

Fig. 11.3 Bi-level control design optimization: interactions between optimization levels and algo-
rithms. DP Deterministic Dynamic Programming; PMP Pontryagin’s Minimum Principle [7]

11.2.1 Bi-level Optimization: Control Problem

The above described problem (11.10) contains continuous and discrete dynamical
properties. In order to speed up the computation time, a bi-level optimization pro-
cedure is proposed. The original problem is cascaded into two hierarchical prob-
lem levels, where solutions to the upper level problem P ≡

1U requires that the lower
level problem P ≡

1L is optimized. The assumption is that both levels have a single
objective. The optimization problem has a two-way coupling, which is presented in
Fig. 11.3. The lower level problem is optimized for feasible discrete control vari-
ables and states from the upper level problem. On the other hand, the objective
function at the upper level is affected by solutions at the lower level. The opti-
mal variable values are denoted by ∞. The above described problem can be given
as follows [21, 22],

P ≡
1 :=





P ≡
1U :=

min
(u1,u2,x1,x2) j





P ≡
1L := min

(u3,x3)
: J ((u3, x3) : (u1, u2, x1, x2) j )

s.t.

⎪
⎨⎢

⎨⎡

gi ((u3, x3) : (u1, u2, x1, x2) j ) ∈ 0

(u3, x3) ≤ U3 × X3

(.) j := (u1, u2, x1, x2) ≤ {U1 × U2 × X1 × X2} ≥ V1








.

(11.11)
The subscript j is used to index the feasible NLP subproblems. Let us also define

the set V1 of all integer assignments (u1, u2, x1, x2)’s for which there exist feasible
solution in the (u3, x3) variables as

V1 =
{

(u1, u2, x1, x2) : ∗(u3, x3) ≤ U3 × X3 with gi (u, x) ∈ 0,

i ≤ {1, . . . , 18} ≈ N
+

}
. (11.12)
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11.2.1.1 Solution Procedure

In the following the solution procedure for the bi-level problem is given. As described
it has similarities with the bi-level procedure presented by [23]. Yet, the procedure
is adapted accordingly to the problem under investigation.

Algorithm 1. Bi-level optimization

Let the bi-level optimization problem be defined as in (11.11). A suitable method to
handle mixed-integer non-linear problems is deterministic Dynamic Programming
(DP). Hence, the upper level problem is solved using DP [24]. The lower level
problems contains continuous control variables and Pontryagin’s Minimum Principle
(PMP) is used. Then the solution procedure for such a problem can be defined as
follows.

1. Initialize the optimization method (DP) selected for the upper-level optimization:
since DP is a numerical algorithm used here to solve a continuous and discrete
control problem, the continuous-time model (11.9) must also be discretized. Let
the total discrete-time model describing the system dynamics be given by

xi (k + 1) = xi (k) + fi (xi (k), ui (k), w(k), k) · τt, k = {0, 1, . . . , n − 1}
(11.13)

for i ≤ {1, 2, 3}. The criterion to be minimized in discrete-time format and
expressed in a non-recursive form becomes,

min
u(k)≤U ,x(k)≤X

: J ⇐
{

Φ(x(0), 0) +
n−1∑

k=1

L ≡(x(k), u(k), w(k), k) · τt

}

(11.14)
with the small time step, denoted as τt , defined as the constant difference: τt ⇒
t (k + 1) − t (k). Final state penalty terms Φ(.) at t f ⇒ t (k = N ) related to the
constrained final states has been omitted in this analysis. Since, it is assumed
that the initial states equal the final states (g16 − g18). The initial fuel cost at
t0 ⇒ t (k = 0) is defined as Φ(x(0), 0). The second term relates to the cumulated
equivalent fuel-mass flow cost, denoted as L ≡, as a function of the control inputs
and states.

2. Compute optimal cost-to-arrive and trajectory-to-arrive matrices (J and H
respectively): after defining the objective function, a vector of optimization vari-
ables and constraints for the upper-level optimization problem (including the
lower-level optimization problem parameterized by the upper-level optimization
variables) then perform optimization as follows. Do for each calculation step for
time-indices k = 0 to n − 1, as follows.

a. Let vector (u1(k), u2(k), x1(k), x2(k)) j contain the current (feasible) values
for the optimization variables on the upper level and solve the dynamic
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process model, f1,2(u1,2(k), x1,2(k), k). Define the corresponding lower-
level optimization problem P ≡

1L at (u1(k), u2(k), x1(k), x2(k)) j .
b. Find the optimal input and state for the lower level (u∞

3(k), x∞
3 (k)) with PMP,

i.e., perform the optimization based on Algorithm 2 (see below).
c. Based on u∞

3(k) and x∞
3 (k), evaluate the objective function on the upper level

and provide the objective function value to the optimization method.

Based on the principle of optimality [24], DP is the algorithm, which evaluates
the optimal cost-to-arrive function J (x(k), k) at every node in the discretized
state-time space by proceeding forward-in-time:

i. with the initial cost calculation step

J (x(0), 0) = Φ(x(0), 0) (11.15)

ii. and, proceeds in time for each intermediate calculation step for time-indices
k = 1 to n − 1,

J (x1,2(k + 1), k + 1) =
min

(u1(k),u2(k))≤U1×U2

{
J (x1,2(k), k) +

L ≡(x1,2(k), u1,2(k), w(k), k : x∞
3 (k), u∞

3(k)) · τt

}

(11.16)

The optimal control (u∞
1(k), u∞

2(k)) is given by the argument that minimizes the
righthand side of Eq. (11.16) for each x1(k) and x2(k) of the discretized state-
time space (to simplify notation denoted as x1,2(k)). The time direction may also
be reversed1 and infeasible nodes are assigned with a very high (or, infinite) cost.
As an output of the algorithm (11.15)–(11.16) the associated optimal trajectory-
to-arrive at every node can be effectively stored in a matrix

H(k + 1,x
∞
1,2(k + 1)) = x∞

1,2(k), (11.17)

which contains the optimal state of the preceding time step (optimal control signal
map). This matrix is used to find the optimal control signals during a backward
simulation, starting from the given final states x∞

1,2(n) = x1,2(0) from g16 and
g17 of Eq. (11.10), to generate the optimal state trajectory with

x∞
1,2(k − 1) = H(k, x∞

1,2(k)) (11.18)

for k = {n, n − 1, . . . , 1}.
End Do

1 The backward-in-time algorithm starts at a given final state; either algorithm is convenient to used
when both (initial and final) states are fixed. The forward algorithm is more convenient as it will
optimize the final state.
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3. The optimal solutions for the bi-level optimization problem are J at (u∞
1(k), u∞

2(k),

x∞
1 (k), x∞

2 (k)) with the corresponding optimal lower-level optimization solution
L ≡ at (u∞

3(k), x∞
3 (k)).

Algorithm 2. Lower-level optimization

In the following the function H , called the Hamiltonian [1], defined as

L ≡(x3(k), u3(k), p(k),k : (u1(k), u2(k), x1(k), x2(k)) j ) ⇒ H (x3(k), u3(k), p(k), k)

= L((x3(k), u3(k), p(k), k)) · x2(k) + p(k) · [ f3(x3(k), u3(k), k)]
(11.19)

is used for convenience. The solution procedure is as follows.

1. Initialize the optimization method (PMP) at the given values for the costate p(k)

and control inputs and states (u1(k), u2(k), x1(k), x2(k)) j following from Algo-
rithm 1, step 2a.

2. Define the objective functions, a vector of the optimization variables and con-
straints in P ≡

1L for the given parameters (u1(k), u2(k), x1(k), x2(k)) j . Start the
optimization procedure as follows. Do for the given calculation step k, as follows.

a. Solve the dynamic process model, f3(u3(k), x3(k), k) with the current opti-
mization variables u3(k).

b. Evaluate objective L ≡ at u3(k) based on the state variables x3(k) for the given
parameters (u1(k), u2(k), x1(k), x2(k)) j .
End Do

3. Save the optimal values of the optimization variables u3(k) and the corresponding
state variable values x3(k), as well as L ≡, which is needed in Algorithm 1.

The above described solution procedure is shown in Fig. 11.4. To simplify the notation
the control input variables in the diagram are omitted. A constant costate value
satisfying the end constraint on the battery energy can not be found, since, e.g.,
engine on and off solutions can be found minimizing both the Hamiltonian (Hx2=1 =
Hx2=0)). To circumvent this problem, a mildly-tuned integrator I is used to update
the costate value p over time. The found solution is computed very efficiently using
the nonlinear nonconvex models and is close to global optimal (relative error < 0.4 %,
see next section).

In literature, other approximated methods may use convex modeling to solve the
problem. For example in [25] a heuristic strategy is used in a sequential manner
to solve for the discrete control inputs (gear position, x1, engine on/off, x2) and
accordingly a convex solver for the power split, x3; or, improved (in terms of accuracy
vs. computation speed) in [26] by iteratively updating the costate p using the output
of PMP (for engine on/off decision with the assumption switching the engine on
if Hx2=1 ∈ Hx2=0)) as the high-level problem and again a convex solver (for the
power split, x3) as the low-level problem.
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Algorithm 1: DP
(Gear position; Engine On/Off)

Algorithm 2: PMP
(Power split) x3

*(k)

x1
*(k)

x2
*(k)

L’

k = n - 1?

End

p(k+1) = p(k) + I (x3(0) - x3
*(k))

(x1(k),x2(k))j

(x(0),0)
{ p(0), I }

k = k + 1 

Fig. 11.4 Solution procedure

Table 11.2 Comparison of simulation results

Fuel (g) Time (s)

DP DP-PMP Rel. diff. [%] DP DP-PMP Reduction factor Cycle
300 301 0.4 3964 9 440 NEDC
473 474 0.4 4799 12 400 FTP75

11.2.2 Simulation Result: Bi-level Control Design

Based on the vehicle model and (physical) constraints given in [7], the above describe
problem P ≡

1 has been solved and the optimal control signals were computed. In
Fig. 11.5, the controlled states in inputs are shown as a function of time for the NEDC.
The difference between DP and DP-PMP method is found to be negligible small (less
than 0.4 %). Differences are also caused by numerical errors caused by griding the
state and input space. However, the computation time is significantly reduced from
approximately 4,000 to 9 s (factor 440).2 These results and for the FTP75 cycle
are listed in Table 11.2. In particular for large-scale complex propulsion system
optimization problems, this method can speed up the design procedure significantly.

2 HP EliteBook 8530w, Core 2 Due, CPU T9600 @ 2.8 GHz, RAM 4.0 GB
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e

3
1
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Fig. 11.5 DP-PMP simulation result for a parallel hybrid vehicle with discrete gear box and engine
start-stop [7]. Pe = engine power; u3 = battery power

11.3 Control and Propulsion System Design Optimization:
Topology, Transmission, Size and Control Optimization
for Hybrid Vehicles

In this section, the combined control and propulsions system optimization for a hybrid
vehicle is discussed [8]. The control problem is different from P1 of the previous
section: the topology selection (pre or post coupling electric machine to the transmis-
sion) is an additional control input. Moreover, the transmission technology, pushbelt
Continuously Variable Transmission (CVT) and Automated Manual Transmission
(AMT), and the sizing in terms of maximum output power for the electric machine
and engine are optimized. Again a bi-level method is used, where in this case at the
upper level the topology and sizing of the components is optimized, P ≡

2U , whereas
at the lower level the control problem P ≡

2L is optimized.
From literature [16] it follows that if the bi-level system design (plant)/controller

optimization strategy is convergent, then it is guaranteed to converge to an opti-
mal combined plant/controller design. Next, a scalar substitute objective function is
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defined as the weighted sum of the propulsion system objective (hybrid system cost,
which is proportional assumed with electric machine and battery size), denoted as
F1, and controller objective (fuel consumption costs), denoted as F2; and, the points
on the Pareto set will be generated by varying the weights wi . Given these conditions
the combined propulsion/controller optimization problem becomes:

P2 :=

⎪
⎨⎨⎨⎨⎨⎨⎨⎢

⎨⎨⎨⎨⎨⎨⎨⎡

min
{dp,dc}≤D

: J = wp · F1(dp) + wc · F2(dc)

subject to

D :=

⎪
⎨⎢

⎨⎡

dp, dc : gp(dp) ∈ 0, ẋ(t) = f (x(t), u(t), t, dp),

gc(dc, t, dp) ∈ 0

Φ(x(t f ), t f ) = 0, x(t0) = x0

⎣
⎨⎤

⎨⎦

(11.20)

and is similar to,

P ≡
2 :=





P ≡
2U :=

min
(dp) j





P ≡
2L := min

dc
: J = wp · F1((dp) j ) + wc · F2(dc)

subject to

⎪
⎨⎨⎨⎨⎨⎨⎢

⎨⎨⎨⎨⎨⎨⎡

gp((dp) j ) ∈ 0

gc(dc : (dp) j ) ∈ 0

hc(dc : (dp) j ) = 0

dc ≤ Uc × Xc

(dp) j := dp ≤ D ≥ V2









. (11.21)

Let us also define the set V2 of all integer assignments dp’s (engine and electric
machine power specification) for which there exist feasible solution in the dc variables
as

V2 =
{

dp : ∗dc ≤ Uc × Xc with gi (dc, dp) ∈ 0,

i ≤ {1, . . . , 24} ≈ N
+

}
. (11.22)

Complementary to the previous defined control problem, we introduce a new discrete
state related to the topology choice, denoted as x4 (see Fig. 11.2). If x4 = 1, then
the electric machine pre-coupled to the transmission and vice versa (post-coupled)
if x4 = 0. Moreover, the following inequality constraint related to the power speci-
fication of the electric machine is added. Finally, initial and final state constraints on
x4 are imposed.
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2U

2L (dc : dp)

(dc* : dp)

dp dc*

(dp : dc)

(dc*,dp*)

(dc*,dp*)

F1(dp);
F2(dc)

f(x,u,dp)
u

x

wp F1(dp)
+

wc F2(dc*)dp

J

Fig. 11.6 Bi-level control and propulsion system design optimization: interactions between opti-
mization levels and algorithms. DP Deterministic Dynamic Programming; GPS General Purpose
Solver [8]

gc

⎪
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎢

⎨⎨⎨⎨⎨⎨⎨⎨⎨⎡

g5 := u3(t) ≤ U3(x2, dp) = {u3(x2, dp), u3(x2, dp)} ≈ R;

g19 := u4(t) ≤ U4(x4) =
{

{−1, 0} if x4 = 1,

{0, 1} if x4 = 0
≈ Z;

g20 := x4(t
+) − x4(t) − u4(t) = 0;

g21 := x4(t0) − x40 = 0;
g22 := x4 f − x40 = 0;

gp

{
g23 := τt0−100 km/h(dp) − 11 = 0, acceleration time (s);
g24 := dp ≤ D ≈ {R : dp ≥ 0 ∧ dp − u3 = 0}

(11.23)

Under the assumption that the maximum battery power equals the absolute minimum
battery power, i.e., u3 = −u3.

11.3.1 Simulation Result: Bi-level Propulsion System and Control
Design

A General Purpose Solver (GPS) (e.g., sequential quadratic programming) can be
used in finding the optimal plant design in combination with DP for the control
design (see Fig. 11.6). Here, the responses of the objective functions F1(dp) (hybrid
system costs) and F2(dc) (fuel consumption costs) has been computed for three
topologies (pre-, post-coupled and switching topology) on two different drive cycles
(NEDC, CADC urban). The results are shown in Fig. 11.7 and the cost function
values are scaled with their maximum values. From observation it followed that for
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Fig. 11.7 Combined propulsion system and control design responses for different topologies and
two drive cycles. A Pareto optimal point for wp = wc = 0.5 is indicated with a circle. Pre =
Pre-coupled; Pos = Post-coupled; Swi = Switching topology. F1 = hybrid system cost; F2 = fuel
cost

any combination of the weighting factors wi with
∑

wi = 1 only a single solution
for the different optimal electric machine and engine sizes (sizes are constraint by
performance requirements, gp) can be found. The circle denotes the particular choice
of wp = wc = 0.5. Moreover, it can be observed that the switching (dynamic)
topology outperforms the static topologies.

For the automated manual transmission (AMT) the fuel benefit from a fixed pre-
or post coupled electric machine as a function of a constant transmission efficiency
is computed (on two drive cycles). The results are shown in Fig. 11.8. Moreover,
it can be observed that the optimal topology strongly depends on the transmission
characteristics and driving loads (cycle).

11.4 Conclusions

This work discussed two design frameworks based on bi-level optimization for the
control design with discrete and continuous control variables; and, for the co-design
of the vehicle propulsion system (topology, size, transmission technology) and con-
trol design for a parallel hybrid vehicle. In the last decade, significant control perfor-
mance improvement is realized by the transition from heuristic control design meth-
ods (fuzzy, rule based) to methods based on optimal control theory (e.g., equivalent
consumption minimization strategy—ECMS, PMP, DP). Traditionally, the vehicle
propulsion design (technology and topology selection, and sizing of power converter
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Fig. 11.8 The optimal topology depending on transmission efficiency and electric machine size
(kW)

and energy storage systems) is based on engineering intuition and creativity (heuris-
tics). To handle complexity and reducing the design space effectively, fixed topologies
(with technologies) are fitted on the solution rather than generating complete new
propulsion systems. In future, challenges are seen to develop new efficient design
methods for co-design (by integration of both discussed design problems) includ-
ing topology optimization, which creates the required transition from the (classical)
heuristic approaches to more optimal design based methods improving the overall
system design performance.
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Chapter 12
Model-Based Optimal Energy Management
Strategies for Hybrid Electric Vehicles

Simona Onori

Abstract Methods from optimal control theory have been used since the past decade
to design model-based energy management strategies for hybrid electric vehicles
(HEVs). These strategies are usually designed as solutions to a finite-time horizon,
constrained optimal control problem that guarantees optimality upon perfect knowl-
edge of the driving cycle. Properly adapted these strategies can be used for real-time
implementation (without knowledge of the future driving mission) at the cost of ei-
ther high (sometime prohibitive) computational burden or high memory requirement
to store high-dimensional off-line generated look-up tables. These issues have moti-
vated the research reported in this chapter. We propose to address the optimal energy
management problem over an infinite time horizon by formulating the problem as a
nonlinear, nonquadratic optimization problem. An analytical supervisory controller
is designed that ensures stability, optimality with respect to fuel consumption, ease
of implementation in real-time application, fast execution and low control parameter
sensitivity. The approach generates a drive cycle independent control law without re-
quiring discounted cost or shortest path stochastic dynamic programming introduced
in the prior literature.

12.1 Introduction

In response to the present and future environment and energy challenges worldwide
the automotive industry has been focusing on improving vehicle fuel efficiency.
Although there is no “silver-bullet” technology to replace the existing ones, at least
in the near future, one possible answer to the challenges posed by the automotive and
transportation sectors is found in electrification of both the mobility and transport
systems. New concepts and new technologies are being developed to realize efficient
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hybrid and electric vehicles suited for both individual and public mobility and for
goods distribution in urban areas [7]. This chapter deals with the energy management
in HEVs.

12.2 Optimization Problems in HEVs

From a design prospective, a hybrid powertrain is much more complicated than a
conventional powertrain as selection hybrid architecture (e.g., series, paralllel, power-
split [18]) and component sizing, is not always an easy task because of many design
options and the rapidly developing technologies in the automotive industries. Design
optimization tools, such as neural networks, genetic algorithms and particle swarm
optimization, have been successfully used for powertrain optimization design to
maximize fuel economy and minimize emission, weight and cost while guaranteeing
vehicle performance (see, for instance, [17], and references therein).

Given a predefined optimized powertrain, a second problem in a HEV is the power
split on-board of the vehicle. This is generally referred to as energy management
problem or supervisory vehicle control.

Realistic figures of achievable improvement in fuel economy in HEVs range from
10 % for mild hybrids to more 30 % for full hybridized vehicles [10]. This potential
can be realized only with a sophisticated control system that optimizes energy flow
within the vehicle. The adoption of systematic model-optimization methods using
meaningful objective functions has been the pathway to go in order to achieve near-
optimal results in designing the vehicle energy management system. In this chapter
we focus on model-based energy management strategy design techniques. The chap-
ter is organized as follows. In Sect. 12.3 we present a heavy-duty pre-transmission
hybrid truck model, which is used as a case study. Section 12.4 presents the standard
optimal energy management problem formulation. In Sect.12.5, we review results
from the literature to solve the optimal control problem. In the same section, we
present the basics of Pontryagin’s Minimum Principle (PMP), Equivalent Consump-
tion Minimization Strategy (ECMS) and Adaptive-PMP (A-PMP). Issues related to
the real-time implementation of A-PMP are analyzed that motivate the design of a
new energy management control framework presented in Sect. 12.6. Section 12.7
reports on some mathematical background used later in Sect. 12.8 where an ana-
lytical control law, referred to as nonlinear optimal control strategy (NL-OCS), is
presented. Section 12.9 presents a comparison in simulation of the NL-OCS against
PMP and A-PMP and the effectiveness of the new control design is shown both from
a calibration and implementation standpoint.
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Fig. 12.1 Power flow diagram of pre-transmission parallel HEV

12.3 Case Study: Pre-transmission Parallel Hybrid

A heavy-duty pre-transmission parallel HEV is used as a case study along the chapter.
The vehicle architecture and the power flow among the different components (the
arrowheads denote the positive power sign convention) are illustrated in Fig. 12.1.
The main specifications of the powertrain components are reported in Table 12.1.
With the clutch closed, the parallel mode of operation uses both the devices, engine
(ice) and motor (mot), to propel the vehicle and their speed is directly determined
by the vehicle velocity. The additional degree of freedom available in this mode is
used to optimize the vehicle energy usage. The torque/power balance equations are:

⎧
⎪

⎨

Tmot (t) + Tice(t) = Tgb(t) + Taccmech(t),
Pbatt (t) = Pmot,e(t) + Paccelec(t),
Φmot (t) = Φice(t) = Φgb(t).

(12.1)

where Tgb, Φgb are the instantaneous gearbox torque and speed; Tmot , Φmot are the
instantaneous electric motor torque and speed; Paccelec is the instantaneous electrical
accessory power and Pmot,e is the instantaneous electrical power at input/output
terminals of the electric motor. The battery power (Pbatt ) can be represented as a
function of engine power (Pice) and the requested power (Preq ) as:

⎢
Pbatt (t) = − 1

φmot
Pice(t) + 1

φmot
Preq(t),

Preq(t) = Pgb(t) + 1
φmot

Paccelec(t) + Paccmech(t).
(12.2)

The vehicle model has been implemented in PSAT (Powertrain Simulation Analysis
Toolkit) environment [1].

An analytical model of the engine fuel consumption, based on Willans line ap-
proximation is used [10], which expresses the engine chemical power (Pchem) as an
affine function of the engine power (Pice) and speed (Φice):

Pchem(t) = e0(Φice(t)) + e1(Φice(t)) · Pice(t) (12.3)
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Table 12.1 Vehicle
characteristics

Component Size

Vehicle mass 19,878 kg
Engine capacity 6.7 L Diesel
Engine power 194 kW
Motor power 200 kW
Battery energy capacity 7.5 kWh (27 MJ)
Electrical accessory 7 kW
Mechanical accessory 4 kW

where Pchem = ṁ f · QL H V [QL H V is the lower heating calorific value of diesel
in (kJ/kg)] is the chemical power input to the engine and Pice = TiceΦice is the
engine power output. The coefficient e0(Φice) represents the engine friction losses
and e1(Φice) the conversion efficiency of the machine. A good approximation of the
friction losses and conversion efficiency coefficients is given by expressing e0 and
e1 as a quadratic fitting with respect to engine speed [25], as:

⎡
e0(Φice(t)) = e00 + e01 · Φice(t) + e02 · Φ2

ice(t)
e1(Φice(t)) = e10 + e11 · Φice(t) + e12 · Φ2

ice(t)
(12.4)

where ei j > 0, i, j = 0, 1, 2 are the constant Willans line coefficients. Hence, the
fuel consumption rate can be written as:

ṁ f (t) = 1

QL H V
[e0(Φice(t)) + e1(Φice(t)) · Pice(t)] (12.5)

or:
ṁ f (t) = p0(Φice(t)) + p1(Φice(t))Pice(t) (12.6)

with p0(Φice(t)) = e0(Φice(t))

QL H V
, and p1(Φice(t)) = e1(Φice(t))

QL H V
.

Note: The Willans line fuel consumption rate model, together with a suitable de-
scription of the battery model, is used to reformulate the energy management control
problem as an infinite-time horizon optimal problem including stability in Sect. 12.8.

12.4 Problem Formulation

One important characteristic of the energy management problem is that the control
objectives are mostly integral in nature (for instance, fuel consumption, emissions
per mile of travel, battery life or a combination of the above, [9, 12, 16, 30]), while
the control actions are local in time. In addition to that, the control objectives are
subject to constraints which are both integral or global, such as maintaining battery
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SOC within a prescribed range, and local constraints, such as physical limitation of
the actuators. The very nature of this problem has made the task of finding a near-
optimal implementable solution a challenging goal motivating a wealth of research
over the past decade [23].

12.4.1 Optimal Energy Management Problem in HEVs

In this chapter, we consider the problem of minimizing the total mass of fuel, m f (g),
during a driving mission. This is equivalent to minimizing the following cost JT :

JT =
T⎣

0

ṁ f (u(t))dt (12.7)

where ṁ f (g/s) is the instantaneous fuel consumption rate, u(t) is the control action,
and T is the optimization horizon. The objective function (12.7) is minimized under
a set of both local and global constraints, as outlined in the following.
System Dynamics. The system dynamics is given in terms of SOC variation with
respect to time according to:

˙SOC(t) = −τ
I (t)

Qnom
(12.8)

where τ represents the Coulombic efficiency [10]; I (t) (A) is the current flowing
in (positive) and out (negative) of the battery and Qnom (Ah) is the nominal battery
charge capacity. The battery is modeled through the zero-th order equivalent circuit
model [28], whose parameters are: the equivalent resistance, Req and the open circuit
voltage, Voc. For the application at hand, i.e., charge sustaining HEVs, the battery is
used over a range of SOC (typically between 0.5 and 0.8 SOC), where the parameters
are not dependent on SOC [28]. Following the discussion in [28] we can express the
current I (t) as a function of Pbatt (t) and write the system dynamics as:

˙SOC(t) = −τ
Voc −

⎤
(Voc)2 − 4Req Pbatt (t)

2Req Qnom
. (12.9)

Global Constraints. In a charge sustaining HEV, the net energy from the battery
should be zero over a given driving mission, meaning that the SOC at the end of
the driving cycle, SOC(T ), should be the same as the SOC at the beginning of the
driving cycle, SOC(0), and equal to a reference SOC value, i.e., SOCref :

SOC(T ) = SOC(0) = SOCref . (12.10)
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SOC(t)

SOCmax

SOCmin

SOCref

SOC (0) =SOC (T ) =SOCref

Fig. 12.2 Typical optimal SOC behaviour obtained solving Problem 12.1

Condition (12.10) is justified mainly as a way to compare the results of different
solutions by guaranteeing that they start and reach the same level of battery energy.
In real vehicles, it is sufficient to keep the SOC between two boundary values.
Local Constraints. Local constraints are imposed on the state and control variables.
These constraints mostly concern physical operation limits, such as the maximum en-
gine torque and speed, the motor power, or the battery SOC . For the pre-transmission
parallel HEV powertrain local constraints are expressed as:

Pbatt,min ≤ Pbatt (t) ≤ Pbatt,max ,

SOCmin ≤ SOC(t) ≤ SOCmax ,

Tx,min ≤ Tx (t) ≤ Tx,max ,

Φx,min ≤ Φx (t) ≤ Φx,max , x = ice, mot. (12.11)

Tmot,min ≤ Tmot (t) ≤ Tmot,max

where the last two inequalities in (12.11) represent limitations on the instantaneous
engine and motor torque and speed, respectively; (·)min, (·)max are the minimum
and maximum value of power/SOC /torque/speed at each instant. Moreover, at each
instant the supevisory controller ensures that the total power request at the wheels is
satisfied.

Problem 12.1 The energy management problem in a charge sustaining HEV con-
sists in finding the optimal control sequence u∈ that minimizes the cost function (12.7)
while meeting the dynamic state constraint (12.9), the global state constraint (12.10)
and local state and control constraints (12.11).

Problem 12.1 by its very nature is a finite-time horizon (the cost function (12.7)
is being minimized over a finite time horizon [0, T ]), constrained (constraints on
the state and control are being enforced at each instant of time), nonlinear [the
system dynamics (12.9) are nonlinear], nonquadratic (the cost function is the fuel
consumption map of the engine), optimal control problem. We refer to Problem 12.1
as the standard HEV energy management problem. A typical SOC behavior resulting
from solving Problem 12.1 is shown in Fig. 12.2.
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12.5 Finite-Time Horizon Energy Management Strategies

Several approaches have been proposed over the years to solve Problem 12.1. Those
can be grouped into [24]:

• non-causal or non-realizable strategies. They require a priori knowledge of the
driving cycle and are not applicable in real conditions [e.g., Dynamic Programming
(DP), PMP];

• causal or realizable strategies. They do not require a priori knowledge of the driving
cycle and are developed with the primary objective of realizability and do not
guarantee optimality [e.g., Adaptive-PMP, Stochastic DP, rule-based, equivalent
consumption minimization strategy (ECMS)].

Although, the primary objective is to design and implement causal strategies
that can be eventually tested on real vehicles, the importance of finding non-causal
optimal solutions resides in that: (1) they provide a benchmark solution (global
optimum) any causal strategy can be compared against, and (2) properly modified
they can be used to develop on-line strategies [27, 28]. In [16], for the first time,
and in [4, 5] later, results from DP were analyzed with the aim of gaining insights to
generate reproducible rules to design a rule-based strategy capable to mimic the DP
behaviour. Although rule-based energy management strategies are relatively easy to
develop and implement in a real vehicle, a significant amount of calibration effort is
required to guarantee performances within a satisfactory range for any driving cycle.
Moreover, rules are not necessarily scalable to different powertrain architectures and
different component sizes. In addition to the DP [6, 31, 32], that finds the global
solution recursively going backwards in time using Bellman’s principle of optimality
[3], local optimization methods have also been extensively used to find the global
optimum. These methods can be used to find the optimum, by performing an offline
optimization when the drive cycle is known, and they are also employed to design
adaptive optimal strategies to achieve near optimal performances when the driving
cycle is unknown. Much of the literature on local optimization methods pertain to
PMP and/or ECMS [8, 27, 29].

The PMP [22] formulates and minimizes the Hamiltonian function (a function of
the instantaneous cost and the state constraint) at each instant to obtain the optimal
solution. PMP conditions, which in principles, are only necessary conditions of
optimality in the case of Problem 12.1 become also sufficient.1 This makes PMP a
design tool to find the global optimal solution. Given Problem 12.1, PMP states that
the optimal control solution u∈(t) must satisfy the following conditions:

• u∈(t) minimizes at each instant of time the Hamiltonian associated to the system:

H(u(t), SOC(t), α(t)) = α(t) · ˙SOC(t) + ṁ f (u(t))) (12.12)

i.e.:

1 Results from [13] and [14] prove the uniqueness of the solution of the optimal control problem
under the satisfied assumption of constant battery efficiency over the SOC range of operation.
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Fig. 12.3 Open-loop PMP-based energy management control scheme

u∈(t) = min
u∞U

H(u(t), SOC(t), α(t)) (12.13)

U is the set of admissible solutions;
• the optimization variable α(t), also known as adjoint state or co-state must satisfy

the dynamic equation along the optimal solution:

α̇(t) = − β H

βSOC

⎦⎦⎦⎦
u∈,SOC∈

(12.14)

The optimal control sequence generated by (12.13) operates in open-loop as shown
in Fig. 12.3.

Hence, the optimal solution u∈ can only be obtained in simulation where the
power request is known a-priori. In particular, the optimality of PMP resides in the
perfect knowledge of the optimal co-state α∈ whose value varies from cycle to cycle.
In [29] it is mathematically shown that the minimization of the Hamiltonian H is
equivalent to the minimization of an equivalent fuel consumption function, used in
the ECMS. ECMS, initially proposed by Paganelli et al. [21], is based on accounting
for the use of stored electrical energy, in units of chemical fuel use (g/s), such that
one can define an equivalent cost function taking into account the cost of electricity:

ṁ f,eq(t) = s(t)
Ebatt

Qlhv
· ˙SOC(t) + ṁ f (t) (12.15)

where Ebatt is the battery energy and s(t) is the equivalent factor that assigns a cost
to the use of electricity, and the equivalent cost function ṁ f,eq(t) is equivalent to
the Hamiltonian in PMP. If, on one hand, PMP/ECMS are practical tools to find the
optimal solution to Problem 12.1 using a forward looking simulator, they can also
been employed for real-time implementation.

In fact, the only control parameter in the PMP (or ECMS) is the co-state (or equiv-
alent factor), which is cycle-dependent. The key idea to use the PMP (or ECMS) as
a causal strategy resides in adapting the co-state as a function of driving conditions.
From the PMP solution one can observe that the variation of the co-state as driving
conditions change is correlated to the divergence of the actual SOC from its charge-
sustaining reference value [20]. This observation has led to the development of an
adaptation scheme based on feedback from SOC to be used in combination to the
minimization of H [20]. The role of adaptation is to update the value of the co-state
without using past driving information or prediction of future driving behavior, but



12 Model-Based Optimal Energy Management Strategies for Hybrid Electric Vehicles 207

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Hamiltonian function:

Normalized control u 

Hamiltonian

0 200 400 600 800 1000 1200
0

5

10

15

Time [s]

V
el

oc
ity

 [m
/s

]

Speed profile − Manhattan cycle

Speed
Evaluated points
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just using information of current SOC . For example, the adaptation can be per-
formed via PI-like controller [15], or via an autoregressive moving average (ARMA)
mechanism of the type [20]:

α(k) = α(k − 1) − α(k − 2)

2
+ K · (SOCref − SOC(k)) (12.16)

which allows the adaptation to take place at regular intervals of duration Ts, (t =
kTs, k = 1, 2, . . .), rather than at each time instant as in the case of PI-like based
correction.

12.6 Motivation for Infinite-Time Horizon Optimization

The real-time controller based on A-PMP (12.16) requires the Hamiltonian function
to be minimized instantaneously. This operation, that needs to be executed on-board
at each tick of the clock, despite being computationally expensive, can lead in some
cases to unpredictable no-optimal results, due to the fact that the Hamiltonian is in
many instances of the driving cycle not a convex function of the control variable,
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as one can see from Fig. 12.4. Different control values could be in principle equally
suitable in the minimization process, leading to a not unique solution of the optimal
control problem, thus causing undesirable chattering in the control outputs [26].
These issues have suggested to move towards a new research direction to find optimal
solutions that would not have such a detrimental behaviour when used in a real-time
setting. Inspired by Bernstein and Haddad’s work [2, 11] on theoretical results on
optimal nonlinear regulation problem involving non quadratic cost functionals, a first
attempt to propose a new control framework for the energy management problem
was done in [25]. The authors cast the energy management problem into a nonlinear
optimal regulation problem where the battery SOC is optimally regulated to its
reference target in the case of zero disturbance (Preq = 0). Preliminary results
showed the feasibility of the closed-form control law in the simple case of vehicle
at standstill and series hybrid architecture. Reduction in computational complexity
and decreased sensitivity of the control parameter with respect to driving conditions
were also showed. Nonetheless, two issues were not properly addressed in [25]: the
stability definition and the extension of finite-time cost function into an infinite-
time functional (needed to formally use the results from [2, 11]). In [19], a rigorous
framework is developed where stability of the energy management state trajectory
is finally defined while guaranteeing optimality by means of an analytical, cycle-
independent control law. The novel framework is summarized in the next section and
new simulation results comparing the performances of the new analitycal supervisory
controller against PMP (used as a benchmark) and A-PMP (for on-line strategies
comparison) are presented in Sect. 12.9.

12.7 From Finite-Time to Infinite-Time Horizon Optimal
Control Problem

The energy management problem is reformulated as a nonlinear-nonquadratic
infinite-time optimization problem. The new control framework consists in re-
thinking the standard finite-time optimal control problem in HEV (Problem 12.1)
as an infinite time horizon problem. To ensure optimality of vehicle operation when
t > T , the [0, T ] optimization horizon is extended into the infinite horizon [0, ≈],
leading to a new cost function, J≈ [19]:

J≈ =
≈⎣

0

ṁ f (u(t)) · g(t)dt (12.17)

by means of the scalar positive function, g(t):
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g(t) =
1 + τ

(
t

T

)q

1 +
(

t

T

)q 0 < τ < 1, q > 0 (12.18)

The role of the function g(t) is to penalize the action of the control u(t) for t > T
in order to approximate the finite-time cost JT defined in (12.7) to the infinite-time
functional (12.17). The system dynamics is reformulated in order to fit the problem
in the form used in [11] (as discussed in [19] ), where the nonlinear system is required
to be dissipative with respect to a supply rate function.

12.7.1 System Dynamics Reformulation

In the new control framework, a Lyapunov-based approach is used to obtain a state-
feedback control law to find the optimal torque/power split where the power requested
(Preq ) is regarded as a L2 disturbance. The battery state of energy (SO E), defined
as the amount of battery energy stored at the present time (E(t)) to the maximum
battery energy capacity (Emax ), is used as state variable in this discussion. SO E is
related to SOC by the following relationship [29]:

SO E(t) = SOC(t)
VL(t)

V max
oc

= E(t)

Emax
(12.19)

where VL is the battery terminal voltage and V max
oc the maximum open circuit voltage.

Hence, the SOE dynamics:

⎧
⎪

⎨
˙SO E = −φbatt

Pbatt

Emax
Emax = Qmax · V max

oc

(12.20)

Defining k = φbatt
Emax φmot

, the battery SO E error γ = SO Ere f − SO E is introduced,
whose dynamics is described as a function of the control input (Pice) and the distur-
bance (Preq ) by virtue of Eq. (12.2):

γ̇ = −k Pice + k Preq (12.21)

Note that in parallel mode the power requested is the sum of accessory powers
(Paccelec + Paccmecc) and the gearbox power (Pgb). When the vehicle is not moving
(v = 0), instead, the power requested Preq only accounts for the accessory loads
power. Thus, the disturbance power Preq is:
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Preq =
⎡

Pgb + φmot Paccelec + Paccmecc v > 0 ≡t ∞ [0, T ]
φmot Paccelec + Paccmecc v = 0 ≡t ∞ [T, ≈] (12.22)

Consider an open set Z ≥ R such that γ ∞ Z , a set U ≥ R such that Pice ∞ U ,
and a set W ≥ R such that Preq ∞ W and Preq in L2. The compact sets for the
control, state and disturbance are:

⎧
⎪

⎨

Z = [
SO Ere f − SO Emax , SO Ere f − SO Emin

]

U = [
0, Pmax

ice

]

W = {Preq : Preq ∞ L2}
(12.23)

Consider the following control system:

⎡
γ̇ = −k Pice + k Preq , γ(0) = γ0
z = γ

(12.24)

where γ = 0 is an equilibrium point of the autonomous system and z is the per-
formance output variable. Also consider the following functional cost [in virtue of
(12.6)]:

J≈ =
≈⎣

0

ṁ f (Pice(t))dt =
≈⎣

0

p0(Φice) + p1(Φice) · Pice(t)

QL H V
dt (12.25)

Problem 12.2 The infinite-time optimal energy management problem consists
in minimizing the cost function (12.25) under system dynamics (12.24), with state
and control variables lying in the compact sets Z and U , and Preq ∞ W .

Definition 12.1 Consider Problem 12.2 with Preq ∗ 0 and let λ(γ(t)) be its opti-
mal solution. Then the origin γ(t) = 0 of the closed-loop system under λ(γ(t)) is
asymptotically stable if γ(t) ⇐ 0 for t ⇐ ≈.

A typical SOC behavior obtained as a solution of Problem 12.2, is shown in Fig. 12.5.
It can be noticed that the global constraint used in Problem 12.1 requiring SOC(T )

to be equal to the reference value SOCref is not met in this case as the convergence
of SOC to SOCref is guaranteed only as t ⇐ ≈.

12.8 Infinite-Time Nonlinear Optimal Control Strategy
(NL-OCS)

With respect to the system (12.24) and the infinite cost function (12.25) [11] defines
the Hamiltonian function H as following:
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Fig. 12.5 Typical SOC profile as a solution of a infinite-time optimization problem including
stability

H(γ, Pice, α) = ṁ f (Pice) + ν(γ, Pice) + α · (k Pice) (12.26)

where ν(γ, Pice) is a positive scalar function (to be selected), and α is the co-state
variable. In order to have the Hamiltonian function zero at the minimum value, as
requested in [11], a shifting of the H is operated as follows:

H̄(γ, Pice, α) = H(γ, Pice, α) − p0(Φice) (12.27)

Theorem 12.1 Consider the system (12.24) with functional cost (12.25). Then, the
feedback control law P∈

ice(γ ) defined as:

P∈
ice = λ(γ ) =

⎢
2k2(μ4γ 3)2

(kμ4γ 3−p1(Φice) g(t))ε 2 γ > γ̄ ⇒ γ ≤ 0

γ 2 0 < γ ≤ γ̄
(12.28)

with γ̄ =
(

p1(Φice)

kμ4

) 1
3

, is such that:

1. the solution γ(t) = 0, t ≥ 0 of the closed-loop system is locally asymptotically
stable in accordance to Definition 12.1.

2. the adjoint performance functional J (γ, Pice(γ ))

J (γ, Pice) =
≈⎣

0

[
ṁ f (Pice) + ν(γ, Pice)

]
dt (12.29)

is minimized.

Proof Consider the candidate Lyapunov function

V (γ ) = 1

4
μ4γ 4, μ > 0 ∞ R (12.30)
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then we can define the storage function ν(γ, Pice) and the supply rate function
r(γ, Preq), associated to the system (12.24) and the Lyapunov function (12.30), as:

⎧
⎪

⎨

ν(γ, Pice) = 1

ε 2

(
βV

βγ

)2

k2 · (
1 + log(P2

ice)
)

r(γ, Preq) = ε 2 P2
req − γ 2

(12.31)

The proof of Theorem 12.1, following the same reasoning provided in [11], is based
on a series of sufficient conditions that ensure optimality and stability that are shown
to hold true when the optimal feedback control λ(γ ) = P∈

ice(γ ) is used.

1. The Lyapunov function V (γ ) assumes its minimum value of 0 at the origin.

V (0) = 0 (12.32)

2. V (γ ) is a positive definite function because it is a quadratic scalar function with
the minimum at the origin.

3. The optimal feedback control law is zero at the origin, i.e., from (12.28):

P∈
ice(0) = 0 (12.33)

4. The optimal control law (12.28) makes the origin γ(t) = 0 asymptotically stable
when Preq = 0, equivalently:

βV

βγ
· k P∈

ice(γ ) < 0, γ ∧= 0 (12.34)

In order to show (12.34), without loss of generality we consider Pbatt as new
control variable with Preq = 0. Thus:

P∈
batt =

⎢
− 2k2(μ4γ 3)2

(kμ4γ 3−n1(Φmot ) g(t))ε 2 γ > γ̄ ∈ ⇒ γ ≤ 0

−γ 2 0 < γ ≤ γ̄ ∈ (12.35)

where γ̄ ∈ =
(

−n1(Φmot )

kμ4

) 1
3

, and this makes (12.34) become:

μ4 · γ 3 · k · k P∈
batt (γ ) < 0, γ ∧= 0 (12.36)

In the domain 0 < γ ≤ γ̄ ∈, it is immediate to see that

− μ4 γ 3 k γ 2 < 0 (12.37)
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(t)(t) = 0
NL-OCS law 

(Eq. 1.28) 

P*
ice( )

Preq (t)

= f (P*

ice,Preq )

Fig. 12.6 Closed-loop energy management control scheme based on the analytical NL-OCL solu-
tion

In the domain γ > γ̄ ∈ ⇒ γ ≤ 0 denominator of (12.36) is positive when γ is
positive and negative otherwise, thus leading to:

⎡−μ4γ 3k · 2k2(μ4γ 3)2 < 0 γ > γ̄ ∈
μ4γ 3k · 2k2(μ4γ 3)2 < 0 γ ≤ 0

(12.38)

5. The Hamiltonian function (12.27) takes on the minimum value when the optimal
control law (12.28) is applied. The shifted hamiltonian H̄ ,

H̄

(

γ, P∈
ice,

βV

βγ

)

= ṁ f + ν(γ, P∈
ice) + βV

βγ
k P∈

ice(γ ) (12.39)

becomes

H̄ = p1 Pice + 1

ε 2k2
(
μ4γ 3

)2 (
1 + log(P2

ice)
)2 + μ4γ 3k Pice (12.40)

for the system (12.24) and cost function (12.25). It can be easily shown that the
closed-loop controller (12.28) is a minimum of the H̄ (the stationary first order
conditions and the second order convexity conditions are verified).

6. The passivity condition with respect to the disturbance input Preq requires that
the following inequality is satisfied:

(
βV

βγ

)

· k · Preq ≤ r(γ, Preq) + ṁ f + ν(γ, P∈
ice) (12.41)

A second order algebraic inequality in Preq is obtained which is verified when
ε ≤ ε̄ = 2.369. Q.D.E.

In virtue of Theorem 12.1, the origin γ = 0 of the closed-loop system is opti-
mally locally asymptotically stable when Preq = 0. Moreover, P∈

ice is optimal with
respect to the adjoint functional J (γ, Pice(·)), which is an upper bound for J≈.



214 S. Onori
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μ

Fig. 12.7 SOC trajectories from: (1) NL-OCS as μ varies (left) and (2) PMP as α varies (right)
for the Manhattan driving cycle

The optimal control law obtained from Theorem 12.1 is referred to as Nonlinear
Optimal Control Strategy (NL-OCS) and it is implemented according to the closed-
loop system scheme shown in Fig. 12.6. To the best knowledge of the author of this
article, this is the first time that an analytical supervisory controller is proposed to
solve the energy management problem in HEVs. In the optimal control law (12.28)
that operates from SOC feedback, the values of k, p1(Φice) are known from the
vehicle models, ε is a constant whose upper bound was obtained from the theorem’s
proof, and μ is the only calibration parameter that needs to be selected for on-board
implementation.

12.9 Strategies Comparison: Simulation Results

In this section, we first evaluate the novel closed-loop supervisory controller against
the benchmark solution from PMP and then we compare the NL-OCS against the real-
time implementable A-PMP to show the effectiveness of the proposed control-law for
on-board implementation. Offline simulations are performed to test the sensitivity of
the new model-based strategy against the calibration parameter μ. Results are shown
on the left plot of Fig. 12.7 where different SOC profiles from NL-OCS are shown
for different value of μ. On the left plot of Fig. 12.8 the fuel consumption (FC) is
plotted together with ∂SOC = SOC(T )− SOC(0) (for different driving cycles) to
measure the ability of the control law to guarantee charge-sustainability. On the right
hand side of Fig. 12.7 and Fig. 12.8 we show: (1) the solution obtained from PMP for
different values of the co-state α and, (2) the high sensitivity of charge-sustainability
to the co-state α.

It is well known, in fact, that performance of PMP is highly dependent on the co-
state α, both in terms of charge-sustainability and fuel consumption (see, for instance
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Fig. 12.8 NL-OCS: fuel consumption and ∂SOC = SOC(T ) − SOC(0) as a function of μ for
four different driving cycles (left). PMP: ∂SOC as a function of α for Manhattan driving cycle
(right)

Fig. 12.9 SOC profiles from PMP, NL-OCS and A-PMP

[28]). The results of this analysis are used to calibrate the NL-OCS for on-board
implementation. A combined driving cycle obtained by concatenating a Manhattan,
West Virginia Urban (WVU) Interstate, Heavy-Duty UDDS, and Manhattan driving
cycles is used to validate and compare the NL-OCS against the PMP solution and
the real-time controller A-PMP. The three SOC profiles are shown in Fig. 12.9 and
a quantitative analysis in terms of fuel economy and engine efficiency of the three
control strategies is reported in Table 12.2. Not only does the analytical control law
guarantee optimality (with values within 1 % from the PMP benchmark solution) for a
wide range of values of the control parameter μ (see, Fig. 12.8), but also it guarantees
low sensitivity against driving characteristics, making the performance of the new
strategy driving cycle independent. In addition, the calibrated NL-OCS also shows
better performance in terms of fuel consumption than the real-time A-PMP. Above
all, the main advantage of having an analytical solution is in the fast execution of the
control action as opposed to the computational burden required by the instantaneous
minimization operation of A-PMP. In [19], it is reported that the NL-OCS solution
is up to 5 times faster than the A-PMP. The NL-OCS can be implemented in the
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Table 12.2 Fuel consumption and engine efficiency comparison between the PMP, A-PMP and
NL-OCS solutions

Controller FC m f (kg) Norm. fuel cons. % ICE eff.

PMP 13.11 100 0.319
A-PMP 13.36 (< 2 %) 98.13 0.309
NL-OCS 13.24 (< 1 %) 99.02 0.310
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Fig. 12.10 Engine power map: Pice = f (Φice, γ )

form of a look-up table, by mapping the power issued by the control law (12.28) as
a function of γ and the engine speed Φice, as shown in Fig. 12.10.

12.10 Conclusions

In this chapter, we have first presented the standard formulation of the energy man-
agement problem in HEVs and reviewed the PMP and A-PMP methods. As a real-
time implementable strategy, if on one hand the A-PMP is very promising as it
performs near to the global optimum, on the other hand, the high computational
burden due to the instantaneous minimization can make the use of this strategy pro-
hibitive for in vehicle operation. A new framework centered around the theory of
nonlinear, nonquadratic optimal control has been developed and presented in this
chapter. An analytical, cycle-independent, state-feedback supervisory controller has
been proposed that achieves optimality with respect to an infinite time horizon perfor-
mance functional while guaranteeing asymptotic stability. The proposed control law
was implemented in a pre-transmission parallel hybrid heavy-duty vehicle and the
performances of the closed-loop system were compared to the benchmark solution
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provided by the PMP and the real-time solution provided by A-PMP. The advantages
offered by the newly designed solutions are: (1) low calibration effort (only one pa-
rameter needs to be calibrated); (2) low sensitivity to the control parameter; (3) fast
execution for on-board applications; (4) close-to-the-optimum performance despite
the driving mission.
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Chapter 13
Optimal Energy Management of Automotive
Battery Systems Including Thermal Dynamics
and Aging

Antonio Sciarretta, Domenico di Domenico, Philippe Pognant-Gros
and Gianluca Zito

Abstract Hybrid-electric vehicles (HEV) has been the subject of intensive research
as a field of application of optimal control in the past decade. In particular, researchers
have proven that energy management (or supervisory control) can be effectively
designed using optimal control-based techniques (Guzzella and Sciarretta, Vehicle
Propulsion Systems. Introduction to Modeling and Optimization. Springer, Berlin,
2013. Such methods have been applied to charge-sustaining hybrids implement-
ing various architecture, as well as, more recently, to plug-in hybrids (Stockar
et al. IEEE Trans Vehr Technol, 60(7):2949–2962, 2011; Sivertsson 2012). Plug-
in hybrids (PHEV) are characterized by much higher battery capacities and energies
than charge-sustaining hybrids, thus the proper description of battery behavior plays
an even more fundamental role in energy management design.

13.1 Introduction

Hybrid-electric vehicles (HEV) has been the subject of intensive research as a
field of application of optimal control in the past decade. In particular, researchers
have proven that energy management (or supervisory control) can be effectively
designed using optimal control-based techniques [1]. Such methods have been
applied to charge-sustaining hybrids implementing various architecture, as well as,
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more recently, to plug-in hybrids [2, 3]. Plug-in hybrids (PHEV) are characterized
by much higher battery capacities and energies than charge-sustaining hybrids, thus
the proper description of battery behavior plays an even more fundamental role in
energy management design. Usually, energy management aims at minimizing a cost
function that is fuel consumption (or a weighted sum of consumption and regulated
emissions), under a global constraint on the battery state of charge (SOC). Therefore,
battery dynamics is usually described only in terms of macroscopic SOC variation as
a function of current. However, the battery is a crucial component of HEV and PHEV
that affects significantly the cost and the performance of the whole system. While
installation cost is a consequence of the battery design, battery end of life induces
replacement costs if not matching vehicle lifetime. Moreover, as battery power and
energy capabilities deteriorate with aging, its buffer role tends to fade, decreasing
the energy efficiency of the powertrain with time. Battery aging is thus a key factor,
even more for PHEV, which depends on the design choices but also on the use of the
battery, i.e., on the energy management strategy adopted. Including aging in the cost
function to be minimized needs a proper modeling of the aging factors, particularly
capacity loss and internal resistance increase. A first attempt of integrating an aging
model in the cost function of an optimal-control based energy management was
reported in [4]. The aging model there used is sensitive to the current only, similarly
to a few other contributions [5]. However, a more accurate and experimentally vali-
datedmodel is needed to draw general conclusions. This chapter considersmainly the
capacity loss factor, which has been the subject of several experimental investigations
[6–8]. Such investigations pointed at the importance of both current and temperature
as the main capacity loss factors. The relevance of temperature implies an additional
dynamics, other than that of SOC, to be taken into account in the optimal control
solution. A few researches have dealt with battery temperature variations [9, 10],
without explicitly considering aging. Additional temperature states imply additional
costates in the optimal control solution, which are particularly difficult to treat both
in an online controller and in offline optimization, as it has been shown for other
thermal states, such as engine or catalyst temperatures [11]. For example, costate
own dynamics are unstable for stable state dynamics and this fact makes the opti-
mal solution very sensitive to the prediction of the costate values (online) or to the
guess of the initial costate values (offline, e.g., with shooting-like methods). As an
additional complexity, the established capacity loss models exhibit an internal state
that is the total ampere-hour (Ah) throughput, which is an equally undesired feature
from the viewpoint of the optimal control solution.

The contribution of this chapter is a simulation study, albeit based on experi-
mental measures, on the minimization of a mixed fuel consumption–battery aging
cost function during PHEV operation. A validated capacity loss model is modi-
fied in order to eliminate the Ah-throughput state. However, thermal dynamics are
explicitly considered in the optimal control problem and for this purpose a val-
idated lumped-parameter battery thermal model is used. Dynamic programming
(DP) and Pontryagin’s minimum principle (PMP) are compared to numerically com-
pute the optimal solutions, for various scenarii in terms of ambient temperature and
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optimization criterion. A specific analysis is conducted on the costate variations, in
view of an online implementation of the derived strategies.

13.2 Case Study and Motivation

The case study presented in this chapter is a plug-in parallel hybrid–electric demo car
designed by IFPEN. The baseline vehicle, a gasoline-engine utility vehicle (Renault
Kangoo), has been transformed to a full hybrid vehicle by integrating off-the-shelf
electric components (battery pack, DC–DC converter, and electricmotor) and replac-
ing the original manual gearbox with an entry-level automated manual transmission.
The electric motor has been coupled to the primary shaft of the transmission through
a gear reducer, thus ensuring a wide vehicle speed range for the pure electric mode.
A large Li-ion battery allows to obtain a range of about 33km in zero-emission mode
when running on a NEDC cycle limited to 55km/h. The characteristics of the main
vehicle components are resumed in Table 13.1.

The on-board vehicle energymanagement is based on an Equivalent Consumption
Minimization Strategy (ECMS) [1], a technique derived from optimal control theory
and PMP, see Sect. 13.4.2, using the engine fuel consumption as the minimization
criterion. The optimal torque split between the engine and the electric motor is
computed at a low frequency of 5–10 Hz. According to the ECMS, at each time step
the optimal split of the required wheel torque is chosen among a fixed (relatively
small) number of hybrid split values, and one purely electric mode. The optimal
torque split is computed making the assumption that the corresponding driveline
configuration is instantaneously available. This is not generally true, since transient
phases are required to change the driveline configuration as, for example, starting
and clutching the engine or performing a gear change.

Embedded implementation of the ECMS in a vehicle control unit (VCU) has
proved that is possible to approach the minimal fuel consumption whilst integrating
powertrain component limits as well as drivability constraints. Plausibility of ECMS
can be assessed by comparing the fuel consumption measured on an urban mission
profile with an a-posteriori optimization computed with DP, see Sect. 13.4.1) by
imposing the measured wheel torque demanded by the driver, vehicle speed profile,
as well as initial and final battery state of charge (SOC). Figure 13.1 shows such
a comparison in terms of fuel energy consumption and SOC. Fuel consumption is
measured from the injection signals in the engine controller. In the DP, engine on/off
state and gear are enforced to match the measured quantities.

It should be noted that the engine torque and motor torque setpoints issued by the
VCU are not always coincident with the raw output of the ECMS, since dynamic
corrections are made downstream of the ECMS to manage driveline transients. Such
corrections are not performed in the DP. However, the result presented shows that, at
least for this particular application, experimental fuel energy consumption andbattery
discharge are close to the optimal trajectories found with the DP. That is an inher-
ent effect of the PMP/DP assumptions (quasistatic modeling, absence of transient
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Table 13.1 Flex hybrid components main characteristics

Component Speed range (rpm) Voltage range (V) Power (kW) Capacity (Ah)

ICE 0–6,000 – 63 –
Electric motor 0–20,000 400–550 37 –
Battery – 145–216 – 39
DCDC – 400–600 40 –
Gearbox AMT (5 gears)
Vehicle 1,700kg curb weight
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Fig. 13.1 Comparison between measured (online ECMS) and DP traces: fuel energy (left); battery
SOC (right)

maneuvers). On the one hand, during transient maneuvers (engine stop/start, gear
change), PMP/DP overestimate fuel consumption because they assume that the pow-
ertrain is instantaneously in its setpoint configuration. On the other hand, PMP/DP
quasistatic modeling underestimates the fuel consumption during transients. These
contrasting effects are partially compensating, which explains the good agreement
of Fig. 13.1.

Standard optimal-based energy management considers only the fuel consumption
in the cost function to be minimized. However, resulting battery current can exhibit
a rather aggressive behavior, as shown in Fig. 13.4. The Root Mean Square (RMS)
of current is of about 40A in this test, or higher than C1 in terms of C-rate (peak
values are limited to C3). This fact enlightens the relevance of considering the aging
of the battery, of which current RMS is one important factor, in the global powertrain
energy management.

13.3 Optimal Control Problem Formulation

In [4], the fraction of battery life depleted was given as

1

�
σ(I (u(t), w(t)), ξ(t), θ(t)) · |I (u(t))|, (13.1)
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where I is the battery current, u is the set of controlled variables, w(t) is the set
of uncontrolled quantities related to the drive cycle, i.e., the required torque at the
wheels, the vehicle speed, etc., ξ is the battery SOC, θ is the battery temperature,
the function σ(·) is the severity factor, i.e., the relative aging effect with respect to a
nominal cycle, and � is the total Ah-throughput corresponding to the nominal cycle.
The severity factor was calculated using a postulated map.

In this chapter, battery life depletion is particularized as capacity loss and
described by the aging factor Y , yielded by a semi-physical model described in
Sect. 13.3.3. Consequently, the severity factor concept is replaced by the rate of
capacity loss, Ẏ . Using such a model, the optimal control problem consists in mini-
mizing the combined criterion

J = (1 − α)

∫ T

0
ṁ f (u(t)) · L H V dt + α

∫ T

0
β · Ẏ (I (u(t), w(t)), ξ(t), θ(t)) dt,

(13.2)
where β is a transformation coefficient to make the capacity loss rate dimensionally
compatiblewith the fuel consumption, andα is aweighting factor to adjust the relative
importance of the two cost contributions (α is arbitrary, while β has the meaning of
a physical parameter). For the pre-transmission parallel architecture considered in
this chapter, the variable u(t) is the engine torque.

Neglecting electrochemical andmechanical dynamics, the current I (t) is assumed
to be an algebraic function of u(t),w(t), ξ(t) and θ(t) (the latter two dependencies are
through the battery inner parameters). However, the two variables θ(t) and ξ(t) have
too relevant dynamics to be neglected, and therefore are treated as state variables.
Generally, the state equations are

ξ̇ = fξ (I (t)), (13.3)

θ̇ = fθ (ξ(t), θ(t), I (t)). (13.4)

The next three subsections will describe the models used to calculated the functions
ṁ f , I , Ẏ , fξ , and fθ .

Global constraints to the optimal control problem presented are on the initial
and final states, i.e., ξ(0) = ξ0, ξ(T ) = ξ f (SOC target value), θ(0) = θ0 (ambient
temperature),while θ(T ) is free.Of course, the state variables and the control variable
u are submitted to physical and drivability-based local constraints.

13.3.1 Powertrain Modeling

The calculations reported in this chapter are performed in an offline approach, where
a driving cycle is prescribed and assumed to be perfectly followed. The vector w(t)
contains values of wheel torque Tw(t) and wheel speed ωw(t). Gear n(t) is chosen
according to gear shift maps as a function of Tw and ωw. Consequently, the engine
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Fig. 13.2 Engine fuel map (right, [g/kWh]) and motor efficiency map (left) used in this study

speed isωe(t) = Rt (n(t))·ωw(t) and themotor speed isωm(t) = Rm ·Rt (n(t))·ωw(t),
where Rm is the motor reduction gear ratio and Rt the variable transmission ratio
including gearbox and final gear.

Engine torque Te(t) coincides with the controlled variable u(t) for this architec-
ture. Fuel consumption rate is evaluated from a quasistatic engine fuel map,

ṁ f (Te, ωe) = ṁ f (u, w), (13.5)

whose tabulated data are shown in Fig. 13.2. Engine torque andwheel torque demand
define motor torque,

Tm(t) = 1

Rm

(
Tw(t)

Rt (n(t))ηsign(Tw(t))
t

− Te(t)

)

, (13.6)

where ηt is the transmission efficiency. Motor electric power is evaluated from from
an efficiency map Pm(Tm, ωm) = Pm(u, w), whose tabulated data are shown in
Fig. 13.2.

Battery SOC and temperature, as well as aging factor rate, are evaluated from
the battery power Pb(t) = Pm(t), according to the battery models described in the
next sections. Note that, although the original democar presented in Sect. 13.2 is
equipped with a SAFT module of 54 series-arranged cells, the model considered in
this chapter refers to an A123System Li-ion cell, for which a sufficient amount of
experimental data was available. In order to match the original pack’s energy and
power, the number of cells arranged in series and parallel has been set to Ns = 58,
Np = 17.
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13.3.2 Battery Modeling

The state dynamics are described by modeling the cell with an equivalent circuit
approach. The state of charge ξ is computed based on the equivalence between the
electrochemical and electric charge, by means of an ampere-hour counting

ξ̇ = fξ (I (t)) = − I (t)

Cnom
, (13.7)

where Cnom is the cell nominal capacity (in C).
The cell current I (t) is evaluated from the definition of battery power Pb(t) =

I (t) · V (t) and the following model for the battery voltage:

V (t) = U0(ξ(t)) + R(ξ(t), θ(t)) · I (t), (13.8)

where the open circuit voltage U0 is a function of the state of charge and the internal
resistance R, capturing the ohmic, charge transfert and diffusion effects, is a function
of state of charge and temperature.

Thermal dynamics are described with a lumped-parameter thermal balance that
reads

θ̇ = fθ (ξ(t), θ(t), I (t)) = qgen − qtra − qcool

MC
, (13.9)

where

qgen(ξ(t), θ(t), I (t)) = R · I (t)2 + θ(t) · I (t) · dU

dθ
(ξ(t)), (13.10)

qtra(θ(t)) = h · A · (θ(t) − θ0), (13.11)

are the heat generated by the cell and the heat exchanged with the ambient, θ0 the
ambient absolute temperature, qcool is the heat provided by the cooling system, M
is bulk mass, C is calorific thermal capacity, h the heat transfer coefficient, A the
thermal exchange surface, dU

dθ
the entropic heat. The time constant of such dynamics

is thus of the order of MC/h A which, for the cell considered, amounts to about
800s. This value makes the thermal dynamics comparable with that of SOC (that is
almost a pure integrator).

The cooling system is modeled as it is realized in the original democar battery. A
thermostatic controller activates liquid coolant circulationwhen themeasured surface
battery temperature reaches an upper value. However, the electricity consumption of
the water pump is neglected in this study.

Battery pack characteristics are scaled from the corresponding cell values that
were identified experimentally on a commercial 2.3Ah A123 System LiFePO4 Li-
ion cell. In particular, U0 = Ns · U0,cell , R = Rcell · Ns/Np, M = Mcell · Ns · Np,
A = Acell · Ns · Np, dU/dθ = (dU/dθ)cell · Ns . Figure 13.3 shows the dependence
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Fig. 13.3 Open-circuit voltage (left) and entropic heat (right) of the A123 cell as a function of
SOC

of U0,cell and
( dU

dθ

)
cell , respectively, on the SOC [12]. More details on model and

parameter identification can be found in [12, 13].

13.3.3 Battery Aging Modeling

Due to several microscopic aging phenomena, Li-ion cells suffer a progressive
performance degradation, that usually implies cell capacity loss and impedance
increasing.The mechanisms leading to the capacity fade include the contact loss
of active material particle, metallic lithium plating, cracking formation in particles
and Solid Electrolyte Interphase (SEI) formation [13]. The relative impact of each
mechanism varies with the cell technology and usage [14]. In [6], a large experimen-
tal test campaign on the A123 System LiFePO4 Li-ion cell is described, consisting in
a large range of constant C-rates and temperatures charges and discharges. It shows
that the loss of active lithium associated with the anode degradation is a primary
cause of capacity fade for this technology of Li-ion of cell. An empirical cycle-life
model is also identified and validated on the experimental data. It assumes that the
percent of capacity loss is a function of temperature and C-rate (or, equivalently,
current), and can be expressed as

Qloss = B0 · exp
(

− Ea

Rθ

)
· Ahz (13.12)

where B0 and Ea are functions of C-rate, z = 0.55 is a constant parameter, and Ah
is the ampere-hour throughput, representing the amount of charge delivered by the
cell during cycling, that is

Ah =
∫ |I |

3,600 · Cnom
dt. (13.13)

The range of applicability of the proposed model correspond to experimental
test conditions, i.e. constant C-rate and constant temperature. For the purpose of
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this chapter, a generalization of life model to time-varying temperature and current
is necessary. The literature on this topic is still quite poor. RMS of current and
temperature over the cycle are used in [15]. Similarly, in [7] an effective temperature
and SOC are defined, taking the place of constant values.

Here a different approach is proposed. The Eq. (13.12) assumes that I and θ are
constant. It can be derived with respect to the time, giving

d Qloss

dt
= B0 · exp

(
− Ea

Rθ

)
· d(Ahz)

dt
= z · B0 · exp

(
− Ea

Rθ

)
· Ah(z−1) · d(Ah)

dt
.

(13.14)
As

d(Ah)

dt
= |I |

3,600
, (13.15)

it is
d Qloss

dt
= z · B0 · |I |

3,600
· exp

(
− Ea

Rθ

)
· Ah(z−1), (13.16)

that is proposed here as a general differential life model. A similar differential
approach has been proposed in [8], where the aging model has been experimen-
tally validated on several vehicle usage scenarios. Unfortunately, considering this
aging model for the optimization problem, introduces explicitly the Ah in the objec-
tive function, making the optimal control solution very computationally intensive.
As a consequence, in order to simplify the problem, the Eq. (13.12) is modified by
defining an auxiliary variable

Y = z · Q
1
z
loss = z · B

1
z
0 · exp

(
− Ea

z Rθ

)
· Ah. (13.17)

Applying the argumentations developed from Eqs. (13.14) to (13.16) to the new
variable Y , gives

Ẏ = z · B
1
z
0 · |I |

3,600
· exp

(
− Ea

z Rθ

)
, (13.18)

which allows to define an approximated capacity loss as

Q̃loss = Y z =
(∫

z · B
1
z
0 · |I |

3,600
· exp

(
− Ea

z Rθ

)
dt

)z

. (13.19)

Figure 13.4 compares Qloss as it predicted by (13.16) to Q̃loss predicted by
(13.19). The results refer to the cell current profile measured during the test dis-
cussed in Sect. 13.2. For the sake of completeness, the RMS approach is also shown
in the figure. The relationship between Qloss and Q̃loss appears to be monotonic.
Moreover, a sufficient quantitative agreement is observed between the reference and
the approximated capacity loss (a relative divergence of about 6% is observed after
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Fig. 13.4 Comparison between reference capacity loss Qloss and approximated capacity loss Q̃loss
(left) for a measured cell current profile (right)

1,200s). These considerations allow the use of the aging factor Y as an optimization
criterion in the rest of this study.

13.4 Optimal Control Problem Solution

The optimal control problem formulated in Sect. 13.3 is offline solved using two
different numerical techniques: dynamic programming and Pontryagin’s minimum
principle. While DP generally approaches better the global optimum (at least for
single-state problems), its computational burden increases dramatically with the
number of states. On the other hand, PMP needs initial values of the costates, which
however can be pre-tuned from the DP results, and its structure is closer to that of
an online-implementable solution.

13.4.1 Dynamic Programming

Dynamic programming is implemented following the DPM algorithm [16]. Time
step is 1 s. For the SOC state, 200 grid points equally spaced between 0 and 70% are
defined. A hard constraint on the final SOC ξ f is implemented, with a tolerance of
±1%. For the temperature state, 100 grid points equally spaced between θ0 − 5 and
θ0 +10 are defined. Final temperature is free. The control variable u is engine torque
and it is discretized in 23 values as follows. 20 values are equally spaced between the
engine minimum and maximum torque corresponding to the engine speed at current
time step. Additional three values are for ICE-only torque, zero torque, and ZEV
mode (both latter terms are zero, but in the ZEV case the engine speed is also set to
zero).

Discrete states, i.e., engine on/off state and gear engaged, are not considered in
the optimization in order to avoid excessive computational effort. Therefore, too
frequent engine start and stops cannot be regulated or avoided. This is a critical
point that has to be verified a posteriori and possibly treated using PMP. The gear
ratio is imposed with the drive cycle assuming the engine is on. If, however, the DP
chooses the ZEV mode, the engine is disengaged (its speed is set to zero) and the
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gearbox is set to the second gear. The gear shift laws are pre-computed as a function
of vehicle speed and acceleration pedal position. The latter is reconstructed from
the drive cycle by computing the wheel torque demand and using information on
maximum and minimum torque available from the powertrain at the current vehicle
speed.

Dynamic programming is executed either with both states (DP2) or with SOC
state only (DP1). In the latter case, first DP is executed using a temperature constant
and equal to θ0. The energy management law u(t) calculated in this way is then run
against the complete model with variable temperature, and results are accordingly
recorded.

13.4.2 PMP

Pontryagin’s Minimum Principle (PMP) is used in order to find a real-time imple-
mentable optimal solution to the energy management problem. The principle states
that the optimal control u(t) minimizes at each instant the Hamiltonian function,
which is derived from the criterion (13.2) and the state functions (13.3) as

H(u, w, ξ, θ, λξ , λθ ) = (1 − α) · ṁ f (u, w) · L H V + α · β · Ẏ (u, w, ξ, θ)

+ λξ Pech(u, w, ξ, θ) + λθ Pth(u, w, ξ, θ). (13.20)

In this definition of the Hamiltonian, the terms fξ and fθ are converted into
power units by multiplication by the factors −CnomU0 and −MC , respectively,
resulting in the battery electrochemical power Pech = U0 · I and thermal power
Pth = −(qgen − qtra − qcool), see Sect. 13.3.2.

Consequently, the adjoint state dynamics are given by the following equations:

CnomU0λ̇ξ = ∂ H
∂ξ

= α · β · ∂Ẏ
∂ξ

+ λξ
∂ Pech

∂ξ
+ λθ

∂ Pth
∂ξ

, (13.21)

MC λ̇θ = ∂ H
∂θ

= α · β · ∂Ẏ
∂θ

+ λξ
∂ Pech
∂θ

+ λθ
∂ Pth
∂θ

. (13.22)

PMP is executed either with both states (PMP2) or with SOC state only (PMP1).
In the latter case, λθ is identically set to zero. Moreover, the residual variation of λξ

is neglected, in order to recover the usual implementation of 1-state PMP, where λξ

is constant [1]. This approximation corresponds to neglect the influence of SOC on
the battery dynamics, see (13.21). As for the influence of SOC on the SOC dynamics
itself (the term ∂ Pech

∂ξ
), it is usually neglected in the literature (e.g., in [5]) by virtue of

the fact that charge-sustaining HEV only use a small amount of battery charge. In the
case of this chapter, however, the application under study is a PHEV that, by its very
nature, is designed to operate the battery over a wide range of SOC. Therefore, the
validity of the aforementioned assumption will be checked a posteriori by observing
the DP results, Sect. 13.5.1. Neglecting the term ∂Ẏ

∂ξ
is justified here by the particular

model used (13.18), where the dependency of the parameters on SOC was shown in
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Fig. 13.5 Vehicle speed (left) and wheel torque (right) for the driving cycle considered in this
study

[6] to be negligible. The same is not necessarily true for other battery chemistries.
In those cases, (13.21) must be integrated as done in [4].

Similarly to DP, the energy management laws calculated with both PMP1 and
PMP2 are later run against the complete model with variable temperature, and results
are accordingly recorded.

13.5 Optimal Control Problem Results

Simulation results will be presented in the next two sections for several scenarii in
terms of θ0 and α. The driving cycle is the same for all simulations and it consists of
a 15km-long fraction of a driving profile recorded in the Italian Alps, with altitude
variations [17]. Vehicle speed and wheel torque demand are shown in Fig. 13.5,
together with gear setpoint. The latter quantity is calculated from gear shift laws and
actually realized if the energy management strategy chooses the engine to be on (as
explained in Sect. 13.4.1). The initial SOC is set to 60 %, while the target SOC is
20 %.

13.5.1 Dynamic Programming Results

Table 13.2 summarizes the results obtained with DP1 and DP2 for an ambient tem-
perature θ0 = 20 ◦C. Besides the values of α that define each single scenario, the
table lists three metrics and four additional quantities. The three metrics are the total
cost J and its two components, namely, the fuel energy E f and the aging factor Y
weighted by the transformation coefficient β = 1 × 109. Since the final SOC is not
exactly the same for all the tests (a tolerance of±1%was enforced in the DP coding),
raw results outputted by the DP corrected to compensate for SOC deviations from
the target value of 20%. The correction rules are
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Table 13.2 Simulation results obtained with the DP for an ambient temperature of 20 ◦C
α DP J E f βY �J q f Qloss λ1(0) λ2(0) max�θ RM S(Pb)

(MJ) (MJ) (MJ) (%) (/hkm) (%/hkm) (◦C) (kW)

0 1 35.7 35.7 19.9 7.2 0.75 2.09 – 6.4 14.9
0 2 35.7 35.7 20.4 0.2 7.2 0.76 2.13 0.45 6.7 15.1
1/3 1 30.0 35.9 18.3 7.3 0.72 0.92 – 5.8 14.5
1/3 2 30.0 36.2 17.7 0.1 7.3 0.70 0.61 −2.52 5.6 14.3
2/3 1 23.6 37.0 16.9 7.5 0.69 −0.19 – 5.4 14.0
2/3 2 23.5 37.5 16.5 −0.3 7.6 0.68 −0.77 −5.26 5.0 13.7
1 1 16.6 41.3 16.6 8.4 0.68 −1.34 – 5.3 13.9
1 2 16.2 41.4 16.2 −2.2 8.4 0.67 −2.17 −8.06 4.5 13.1

E f = E f,raw + λα=0
ξ (0) · (0.2 − ξ(T )) · (CnomU0(ξ0, θ0)), (13.23)

βY = (βY )raw + λα=1
ξ (0) · (0.2 − ξ(T )) · (CnomU0(ξ0, θ0)), (13.24)

where the costate values λα=0
ξ (0) and λα=1

ξ (0) are the quantities shown in the table
for the scenarii α = 0 and, respectively, α = 1. The costate traces are calculated
from the value function outputted by the DP algorithm, according to their definition

λξ (t) = −∂V (t, ξ, θ)

∂ξ

∣∣∣∣
t,ξ∗(t),θ∗(t)

· 1

CnomU0(ξ0, θ0)
(13.25)

λθ (t) = −∂V (t, ξ, θ)

∂θ

∣∣∣∣
t,ξ∗(t),θ∗(t)

· 1

MC
, (13.26)

where the partial derivatives are calculated along the optimal state trace denoted by
starred variables and the scaling factors that make the costates non-dimensional are
added in the right-hand sides.

Togetherwith the absolute value of the cost J , also shownare the relative variations
when switching from DP1 to DP2. The last quantities listed in Table 13.2 are the
maximum rise of the battery temperature during the test, and the RMS of the battery
power, both being the main factors that increase capacity loss. Figure 13.6 shows
time variations of the two states and the two costates obtained with DP2 and the four
values of α considered.

Several considerations arise from the analysis of these results. Firstly, it is evident
that the weighting factor α plays a fundamental role in modifying the nature of the
solution. An increase of α clearly yields a decrease of βY , with a simultaneous
increase of E f . The transition from more fuel-efficient strategies (α = 0) to more
aging-reducing strategies (α = 1) is accompanied by a reduction of temperature
increase (max�θ ), also visible in Fig. 13.6, and a reduction of the root mean square
of the battery power (RM S(Pb)), as expected. Not shown in the table, the average
engine efficiency generally decrease with an increase of α. Starting from a baseline
strategy that is only sensitive to fuel consumption (α = 0), a significant reduction
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Fig. 13.7 Fuel energy versus
aging factor as calculated with
DP1 and DP2 (θ0 = 20 ◦C)
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of the aging factor is possible with increasing α, only with a relatively small fuel-
economy penalty. For example, switching to α = 1/3, βY can be decreased of about
10%,while E f increases only of 1.4%. The SOCcostateλξ is almost constant during
the cycle, which justifies the assumption introduced in Sect. 13.4.2 for the PMP
solution. Variations toward the cycle end are due to numerical reasons (unfeasible
states) and the emergence of regenerative braking (SOC is no longer regulated by the
control variable but by the disturbance). Its initial value decreases with an increase of
α and becomes negative for aging-reducing strategies. In fact,while fuel consumption
rate generally varies in the opposite direction as electric power consumption with
respect to u, aging factor rate exhibits the same trend (i.e., it is lowered by a lesser use
of the battery). The optimal compromise when the aging factor is the predominant
criterion is then found for negative values of the costate. The temperature costate λθ

has larger variations than the SOC costate and converges to zero at the end of the
cycle as predicted by the fact that terminal temperature is not constrained.

The effect of α on the two optimization criteria is made more visible in Fig. 13.7
that shows the curves E f –βY obtained with DP1 and DP2, respectively (note that
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Fig. 13.8 Variation of the
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battery temperature
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the data concerning DP1 are much numerous than those shown in Table 13.2). The
figure clearly shows the asymptotic behavior of E f and βY for α tending to 1 and
0, respectively. In contrast to charge-sustaining HEV [4, 5], the asymptotic value
for βY does not approach zero because a positive net battery use is imposed by the
charge-depleting PHEV operation. The DP2 curve should be deemed as the Pareto
frontier of the multi-objective minimization of fuel energy and aging factor, in the
sense that points below the curve cannot be found in principle. The DP1 curve is
an approximation of the DP2 curve obtained with a simpler algorithm. It should be
reminded that what differs between these two cases is only how DP evaluates the
energy management strategy. Once the latter is evaluated, final metrics such as E f

and βY are calculated by the two-state version of the system model in both cases.
Figure 13.7 and Table 13.2 show a very limited improvement with using DP2, facing
a much higher computational effort (for reference, running DP1 over the cycle takes
about 1 min on a 2.60 GHz personal computer, while DP2 takes approximately three
hours). The largest discrepancy is obtained for α = 1, where an improvement of
2–2.5% is obtained in the cost J with DP2.

This result can be explained with the following considerations. Denote J [U,Θ]
the functional dependency of the cost function on the energymanagement law and the
temperature profile (influence of SOC profile is neglected in this analysis). Denote
Uk , Θk , k = {1, 2} the profiles obtained with DP1 and DP2, while Θ0 is the con-
stant temperature profile. Consider the difference J [Uk,Θk] − J [Uk,Θ0]. When
α = 0, it vanishes since J = J [U ]. But such a difference increases for large α,
consequently to the variation of Ẏ with θ (illustrated in Fig. 13.8 for given values
of C-rate and SOC) and can reach, e.g., 20% for 20 ◦C. To explain why the differ-
ence J [U2,Θ2] − [U1,Θ1] is much lower, it can be analyzed as the sum of two
effects, (J [U2,Θ2] − J [U2,Θ1]) + (J [U2,Θ1] − J [U1,Θ1]). The first difference
is typically negative for α > 0 (controlled temperature profiles induce less aging).
However, the second term is typically positive for α > 0. In other terms, the benefit
obtained with the former effect is partially compensated by the latter, which can
explain the relatively low gains of using DP2 instead of DP1.

On the other hand, as DP2 is intrinsically less robust than DP1, and very sensitive
to the gridding parameters, interpolation functions, etc. [18], the “true" two-state
optimum may not be reached. Such a consideration motivates the use of a different
technique, namely, PMP, to verify the two-state case.
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Fig. 13.9 Relative differences in aging factor versus fuel energy as calculated by PMP1 and PMP2

13.5.2 PMP Results

As described in Sect. 13.4.2, the difficulty in executing PMP resides in the evaluation
of the values λξ (for PMP1 and PMP2) and λθ (0) (for PMP2) for each scenario. In
this study, the calibration of λθ (0) follows from the DP2 result, while λξ is evaluated
with a root-finding algorithm targeting the condition ξ(T ) = 0.2.

Figure 13.9 summarizes the optimization results obtained with PMP. The figure
shows thePareto frontiers for four ambient temperatures, namely, 5, 20, 35, and45 ◦C,
with PMP1 and PMP2, respectively. Results are qualitatively and quantitatively close
to those shown in Sect. 13.5.1, for instance, the addition of a second state is as more
beneficial as the weighting factor α increases. Two additional conclusions can be
drawn from these results. Firstly, larger relative improvements, with PMP2 with
respect to PMP1, are obtained for colder conditions. For example, the reduction
of βY with α = 1 is of only 1.5% at 45 ◦C, which is likely below the precision
of the model forecast, but increases to about 5% at 5 ◦C. The latter point is easily
explained observing the dependency of the aging factor rate Ẏ on the temperature θ ,
which is ∝ exp(−1/θ). Consequently, the relative variation 1

Ẏ
∂Ẏ
∂θ

∝ 1
θ2

exp(−1/θ),
which is a decreasing function of θ . A second conclusion is that also the slope of the
Pareto frontier in the neighborhood of the baseline strategy α = 0 decreases as the
temperature increases. In other terms, the ratio of aging reduction on consumption
increase is worse at larger temperatures.

Figure 13.10 shows the variation of the initial values of the costates λξ (0) and
λθ (0) as a function of θ and α, both with PMP1 and PMP2. As already observed,
an increase of α induces a less aggressive use of the battery and, consequently, the
SOC target is obtained with a smaller λξ (which, per se, favors battery discharge).
An increase of θ0 induces higher aging and thus is also accompanied by a decrease
of λξ , again to compensate battery underuse. Only slight differences can be observed
between the values ofλξ calculatedwithPMP1andPMP2.A similar trend is observed
for λθ (0), whose values are generally larger (in absolute value).
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Fig. 13.10 Costates (initial values) as a function of temperature and α

13.6 Conclusions

The study presented in this chapters has shown that energy management in HEV and
PHEV can be made sensitive to battery aging. Using a proper definition, an aging
factor can be adjoint to the fuel consumption into a combined cost function to be
minimized by the energy management law. By varying the relative weight of the
two cost functions, a more fuel-efficient or a less battery-aggressive strategy can be
obtained. For PHEV, a substantial improvement in battery aging is expected to be
obtained at the expense of a few percent deterioration of fuel economy.

The chapter has also discussed the nature of the optimal control solutions. The
comparison of single-state (SOC only) versus two-state (SOC and temperature) solu-
tions has shown that the former is sufficient in most cases, while the computational-
intensive addition of the temperature state has an added value only in the case of an
extremely aging-biased cost function. An explanation for this somehow surprising
evidence has been attempted. This result would suggest the use of single-state strate-
gies even to treat scenarios when minimization of aging is relevant. The behavior of
both costates has been explored as well.While the SOC costate is essentially constant
for an optimal solution, the temperature costate varies substantially in time, tending
to zero. Initial values of both costates have been shown to be monotonic functions
of ambient temperature, a property that could be useful in view of their estimation
in a real-time implementation of optimal control-based energy management.

The analyses and results presented have been computed for a given battery chem-
istry. Although not quantitatively generalizable to other battery systems, the main
trends shown are expected to remain valid. In particular, some simplifying assump-
tions introduced are expected to need reconsideration when treating the case of
chemistries with strongly SOC-dependent aging, combined with wide variations of
the SOC itself (as in PHEV).
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Chapter 14
Optimal Control of Diesel Engines with Waste
Heat Recovery System

Frank Willems, M. C. F. Donkers and Frank Kupper

Abstract This study presents an integrated energy and emission management strat-
egy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This
Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by
minimizing the operational costs associated with fuel and AdBlue consumption,
while satisfying tailpipe emission constraints. The main contribution of this work is
that the optimal solution is determined numerically for a given cycle and is compared
with a real-time implementable strategy. Also, the WHR dynamics are explicitly in-
cluded in the control design. In a simulation study, the potential of this IPC strategy
is demonstrated over the World Harmonized Transient Cycle. It is shown that the
real-time strategy can be applied with negligible loss of optimality. Using IPC, an
additional 3.5%CO2 reduction is achieved, while complying with the NOx emission
limit, when compared to a baseline strategy.
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14.1 Introduction

With the introduction of Euro-VI emission targets, current heavy-duty diesel engines
meet ultra-low emission levels. Although vehicles have become extremely clean,
fuel consumption levels have remained stable for the last two decades. To reduce fuel
consumption and tomeet upcomingCO2 targets, heavy-duty diesel engines equipped
withWasteHeat Recovery (WHR) systems seem very promising, especially for long-
haul truck applications. This WHR system allows energy to be recovered from heat
flows and to be converted into useful mechanical energy for propulsion. Up to 6 %
fuel consumption reduction has been demonstrated in [1, 2].

Most literature on WHR control focusses on low-level control, see, e.g., [3–7].
Only very few studies concentrate on energymanagement strategies for the complete
engine [8, 9]. For heavy-duty diesel engines with WHR system, studies that opti-
mize overall engine-aftertreatment-WHR system performance by minimizing total
operational costs and that explicitly deal with tailpipe emission constraints set by leg-
islation are lacking. We, therefore, present a cost-based optimization strategy, which
integrates energy and emissionmanagement: so-called Integrated PowertrainControl
(IPC). Contrary to earlier work on IPC in [10, 11], the optimal solution of Pontrya-
gin’s Minimum Principle is computed numerically and used as a benchmark for a
real-time implementable IPC strategy. Furthermore, WHR dynamics are explicitly
incorporated in the control model.

This work is organized as follows. First, the studied powertrain and applied mod-
els are presented in Sect. 14.2. Sections 14.3 and 14.4 discuss the developed IPC
strategies and their calibration, respectively. The results of these IPC strategies are
compared with the results of a baseline control strategy over a World Harmonized
Transient Cycle in Sect. 14.5. Finally, conclusions are drawn and directions for future
research are sketched.

14.2 System Description

Figure 14.1 shows a scheme of the examined engine platform. It is based on a state-of-
the-art 6 cylinder, 13 l, 340 kW Euro-VI diesel engine. This engine is equipped with
a turbocharger with Variable Turbine Geometry (VTG) and a high pressure Exhaust
Gas Recirculation (EGR) system with an EGR valve and EGR cooler. Furthermore,
an exhaust gas aftertreatment system is installed. This system consists of a Diesel
Oxidation Catalyst (DOC), a Diesel Particulate Filter (DPF) and an urea-based Se-
lective Catalytic Reduction (SCR) system. The DPF system filters the particulates
out of the exhaust flow. To avoid clogging of the filter, the trapped particulates are
burned by periodically injecting fuel upstream of the DOC (DPF regeneration). The
remaining NOx emissions downstream of the DPF system are converted into harm-
less products over the Cu-Zeolite SCR catalyst. For this catalytic process, ammonia
(NH3) is required. This is formed upstream of the catalyst by decomposition of the



14 Optimal Control of Diesel Engines 239

Fig. 14.1 Studied Euro-VI engine with WHR system

injected aqueous urea solution (tradename: AdBlue) in the hot exhaust gases. To
avoid unacceptable NH3 slip, an ammonia oxidation (AMOX) catalyst is installed.

The Euro-VI engine platform is extended with a Waste Heat Recovery (WHR)
system. This system is based on a Rankine cycle and recovers thermal energy from
both the EGR and exhaust gas flow using two evaporators. Note that the EGR evapo-
rator replaces the original EGR cooler. The expander converts this recovered thermal
energy into mechanical energy. It drives the two pumps and is directly connected
to the crank shaft, such that the recovered energy can be transmitted to the engine.
By using two bypass valves, the working fluid flow through the evaporators can be
individually controlled, such that the working fluid is in vapor state downstream of
the evaporators. Furthermore, an expander valve is present to bypass the expander
in case no engine torque is requested (e.g., during braking or gear shifting) and to
avoid damage of the expander (when the working fluid is in fluid or two phase state).

In what follows, a distinction is made between the simulation model, which aims
at describing the main system characteristics, and the control model, which is a
simplified version of the simulation model allowing for a real-time implementation
of the control strategy. By using simplified control models, the proposed control
strategy is assumed to be robust with respect to unmodeled dynamics.

14.2.1 Simulation Model

The simulation model, which is used in this chapter to model the powertrain, con-
sists of models of an engine, a high-fidelity aftertreatment system and a waste heat
recovery system. These models are described below in more detail.
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14.2.1.1 Engine

To describe the behavior of the exhaust gas mass flow ṁexh, the exhaust gas tem-
perature Texh, and the engine out NOx mass flow ṁNOx , steady-state engine maps
are used. These four-dimensional maps f (Ne, Φe, uEGR, uVTG) are constructed using
a validated mean-value engine model. For varying combinations of EGR valve po-
sition uEGR and VTG position uVTG, the fuel mass ṁf is varied such that the engine
torque Φe is realized (for constant engine speed Ne [rpm]).

14.2.1.2 Aftertreatment System

A high-fidelity aftertreatment model is implemented to simulate the DOC/DPF and
SCR system. This modular model is built up using one-dimensional submodels of a
pipe with urea decomposition, DOC, DPF, SCR, and AMOX catalyst. All catalyst
models are based on first principlemodeling and consist ofmass and energy balances.
By dividing the catalyst in various segments, these validated models describe the
spatial distribution of pressure, temperature and chemical components. More details
on the model approach and accuracy can be found in [12].

14.2.1.3 Waste Heat Recovery System

Assuming an ideal low-level WHR control system, the WHR system dynamics are
described by a first-order model with constant overall efficiency φWHR. This is in-
spired by the observed thermal dynamics in the studied engine. The recovered thermal
energy from both the EGR and exhaust gas flow is given by:

dQ̇WF

dt
= 1

τWHR

(
Q̇EGR,g + Q̇exh,g − Q̇WF

)
(14.1)

and the EGR and exhaust gas heat flows are defined by, respectively:

Q̇EGR,g = ṁEGR · cp,EGR · (TEGR,in − TEGR,out) (14.2)

Q̇exh,g = ṁexh · cp,exh · (TSCR − Ttp) (14.3)

This thermal energy is finally converted into mechanical power at the expander shaft:

PWHR = ΦWHR · αWHR =
⎧

φWHR · Q̇WF Φd,req > 0
0 Φd,req ≤ 0

(14.4)

with total required torque Φd,req andWHRoutput torque ΦWHR [see also Eq. (14.7)]. In
case no power is requested from the WHR system, the expander bypass is activated,
such that PWHR = 0.
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Table 14.1 Control model
parameters

Constant Unit Definition Value

c1 kg−1 cp,exh
CDOC

0.1163

c2 kg−1 cp,exh
CSCR

0.0512

c3 s × kg−1 h
CSCR

7.692 × 10−4

c4 Jg−1 K−1 φWHR · cp,EGR 100
c5 Jg−1 K−1 φWHR · cp,exh 100

Based on engine dynamometer data, a constant overall efficiency φWHR = 0.10,
a time constant τWHR = 60 s, and a constant post-WHR exhaust gas temperature
Ttp = 110 ◦C are chosen. Moreover, the values of TEGR,in and TEGR,out follow from
four-dimensional engine maps.

14.2.2 Control Model

This section presents the control model that is used in the optimal control strategy
of Sect. 14.3. For real-world implementation, this simplified model has to represent
the main system characteristics and has to be evaluated in real-time. Compared to
the simulation model, the main difference lies in the description of the aftertreatment
system. More precisely, the control model uses a simplified aftertreatment model,
which will be discussed below. Identical engine maps and a identical WHR model
as in the simulation model are used.

The thermal behavior of the total DOC-DPF-SCR-AMOX system is described by
two coupled differential equations, see Eq. (14.6). For the SCR conversion efficiency
φSCR, a combination of three stationary maps is used, which are determined for
different pre-SCR concentration ratios CNO2/CNOx = [0, 0.5, 1.0] and a specified
ammonia slip level. The individual SCR efficiency maps depend on the average SCR
catalyst temperature TSCR

◦C and space velocity SV 1/h:

SV = 3600
ṁexh

βexhVcat
(14.5)

with normal condition exhaust gas density βexh [g/m3] and SCR catalyst volume
Vcat [m3]. Using the predicted CNO2/CNOx ratio from a stationary DOC efficiency
map, the NOx conversion efficiency φSCR is computed by interpolation. Finally, the
control model incorporates the WHR dynamics, which are given by Eqs. (14.1)–
(14.4).

In summary, the control model is written in state space form ẋ = f (x, u, t):
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Fig. 14.2 Scheme of the engine control system

ẋ =

⎪

⎨⎨⎢

c1 ṁexh
(
Texh − TDOC

)

c2 ṁexh
(
TDOC − TSCR

) − c3
(
TSCR − Tamb

)

ṁNOx

(
1 − φSCR(TSCR, SV , CNO2/CNOx )

)

1
τWHR

(
c4 ṁEGR(TEGR,in − TEGR,out) + c5 ṁexh(TSCR − Ttp) − PWHR

)

⎡

⎣⎣⎤

(14.6)
with state variables x = [TDOC TSCR mNOx,tpPWHR]T , inwhichTDOC andTSCR denote
the DOC/DPF and SCR temperatures, respectively, mNOx,tp denotes the cumulative
tailpipe NOx mass, and PWHR denotes the WHR power. The model parameter values
that are used in this chapter are specified in Table 14.1.

14.3 Control Strategy

Figure 14.2 shows a scheme of the proposed engine control system. The main objec-
tive of this control system is to determine the settings for the inputs ṁf , ṁa, uEGR and
uVTG, such that fuel consumption is minimized within the constraints set by emission
legislation. By assuming ideal torque management, the requested engine torque is
determined from:

Φe,req = Φd,req − ΦWHR. (14.7)

In this control system, two subsystems can be distinguished: a supervisory con-
troller, which is described in this section, and a low-level SCR controller. Details
about this model-based ammonia storage controller can be found in [11].

To select suitable values for the aforementioned inputs, the Integrated Powertrain
Control (IPC) approach,whichwas first introduced in [13], is used. Thismodel-based
approach integrates energy and emission management by exploiting the synergy
between the engine, WHR and aftertreatment system. The developed IPC strategy
is compared with a baseline engine control strategy and with the optimal solution to
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the control problem, which serves as a benchmark. The examined control strategies
are described below.

14.3.1 An Optimal Control Approach to IPC

Following the IPC approach, the studied control problem is formulated in the optimal
control framework. We propose to minimize the total operational costs associated
with fuel and AdBlue consumption and active DPF regeneration, which can be ex-
pressed as follows:

min
u∈U

⎦ te

0
γf ṁf + γaṁa + γPMṁPM dt (14.8)

subject to Eqs. (14.6) and (14.7). In Eq. (14.8), u = [uEGR uVTG]T is the vector with
EGR and VTG valve positions, and U is the set of its allowable values. Moreover,
the following end point constraint on tailpipe NOx emission is imposed:

⎦ te

0
ṁNOx,tp dt ≤ ZNOx

⎦ te

0

1
3.6×106

Pd dt (14.9)

In these expressions, the diesel price γf = 1.34 × 10−3 [Euro/g], AdBlue price
γa = 0.50 × 10−3 [Euro/g], and fuel costs associated with active DPF regeneration
per gram of accumulated soot γPM = 7.10 × 10−2 [Euro/g] are used. By explicitly
taking into account the operational costs, it is easy to deal with variations in fuel and
AdBlue prices. Moreover, the AdBlue mass flow ṁa is determined by assuming that
all injected urea decomposes in ammonia and is available for NOx conversion. As
such, the desired AdBlue dosage ṁa g/s in Eq. (14.8) is given by:

ṁa = 2.0067 · φSCR(TSCR, SV , CNO2/CNOx ) · ṁNOx (14.10)

Finally, the engine-out NOx emission ṁNOx , the fuel mass flow ṁf , and the (equiv-
alent) cost of active DPF regeneration ṁPM are determined by four-dimensional
steady-state maps.

14.3.2 Optimal IPC Trategy

The optimal control problem presented in Sect. 14.3.1 can be solved by applying
Pontryagin’s Minimum Principle, see, e.g., [14]. This principle relies on a Hamil-
tonian, which entails the (integrand of the) objective function from Eq. (14.8), aug-
mentedwith Lagrangemultipliers λ and the state dynamics f (x, u, t) fromEq. (14.6):
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H(x, λ, u, t) = γf ṁf (u, t) + γaṁa(x, u, t) + γPMṁPM(x, u, t) + λT f (x, u, t)
(14.11)

The Pontryagin’s Minimum Principle gives two necessary (and, under some as-
sumptions on the objective function, also sufficient) conditions for uν ∈ U to be the
optimal control input along the optimal state trajectory xν. In particular, the optimal
uν ∈ U satisfies:

H(xν, λν, uν, t) ≤ H(xν, λν, u, t), for all u ∈ U (14.12)

where λ̇ = − εH
εx subject to λT (te)∂x(te) = 0. Note that Eq. (14.12) can be solved by

minimising Eq. (14.11) over all u ∈ U . The solutions to λ satisfy:

λ̇1 = c1ṁexhλ1 − c2ṁexhλ2 + dφSCR
dTDOC

ṁNOx

(
λ3 − c6γa

)
(14.13a)

λ̇2 = (c2ṁexh + c3)λ2 + dφSCR
dTSCR

ṁNOx

(
λ3 − c6γa

) − c5ṁexh
τWHR

λ4 (14.13b)

λ̇3 = 0 (14.13c)

λ̇4 = 1
τWHR

λ4 − dṁf
dPWHR

γf − dṁa
dPWHR

γa − dṁPM
dPWHR

γPM (14.13d)

subject to λ1(te) = λ2(te) = λ4(te) = 0. From Eq. (14.13a)–(14.13d), it can be
observed that the dynamics of λ1, λ2 and λ4 are unstable. Moreover, they have end-
point constraints. These two facts make the solution to this optimal control problem
difficult to implement in practice, as it requires the entire drive cycle to be known a
priori. Still, the optimal solution, given by Eq. (14.12) and (14.13a)–(14.13d), will
be studied in this work to benchmark the approximate and real-time implementable
solution that we will propose below. Note that λ3 is an undetermined constant (as
λ̇3 = 0, while no end-point constraint is given), which has to be tuned over a drive
cycle to ensure that Eq. (14.9) is satisfied.

14.3.3 Real-Time IPC Strategy

Asmentioned before, the optimal solution to the control problem is difficult to imple-
ment in real time (as the drive cycle has to be known a priori). In particular, the main
difficulty lies in solving Eq. (14.13a)–(14.13d), not in solving Eq. (14.12). Namely,
the latter is a minimisation problem that can be solved using standard nonlinear pro-
gramming routines. Therefore, a real-time implementable IPC strategy is proposed
that is based on approximating Eq. (14.13a)–(14.13d), such that it can be computed
using real-time available information.

In the approximate solution that we propose in this chapter, the expression for
Eq. (14.13c) is kept and its value is tuned over representative drive cycles (with
cold and hot starts), and the solutions to Eqs. (14.13a), (14.13b), (14.13d) are ap-
proximated. In particular, the expression for Eq. (14.13d) subject to λ4(te) = 0 is
approximated by a suitably chosen (possibly nonzero) constant, which is also tuned
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Fig. 14.3 Heuristic rule for
λ1 and λ2 [15]

over representative drive cycles. The expressions for Eqs. (14.13a), (14.13b) are
replaced by the heuristic, postulated rule that was proposed in [15]. This rule is il-
lustrated in Fig. 14.3 and is parameterized by λT , ψT1 and ψT2. It will be shown in
Sect. 14.5 that these approximations, which are essential for arriving at a real-time
implementable IPC strategy, will cause only minor loss of optimality.

The rationale of the parametrization of Fig. 14.3 is that the effort taken to heat up
the aftertreatment system should be proportional to the SCR conversion inefficiency.
In case the DOC temperature is not significantly higher than the SCR temperature, it
seems better to invest in raising the engine-out exhaust temperature rather than pro-
moting heat convection from the DOC/DPF to the SCR system (which corresponds
to a large λ1). The converse holds when the DOC/DPF temperature is significantly
higher than the SCR temperature (which corresponds to a large λ2).

14.3.4 Baseline Strategy

In order to compare the results from the optimal control formulation, a baseline
engine control strategy is proposed that mimics a state-of-the-art air management
strategy for a standard Euro-VI engine configuration (without WHR system). As in
[11, 15], this strategy is characterized by switching between two control modes:

1. Thermal management mode (M1) for rapid heat-up of the aftertreatment system
(TSCR < 200 ◦C);

2. Low NOx mode (M2) for normal operation (TSCR ≥ 250 ◦C).

A fundamental difference with IPC is that the baseline strategy relies on fixed
control settings u for each engine operating point (Ne, Φe). For both modes, these
settings are pre-determined in an off-line optimization procedure, which is often
based on stationary test conditions.

As we want to use the same control structure for both strategies in simulations,
two different sets of constant λ are used for the control modes (see Table 14.2). As
engine calibration is mainly optimized using steady state-measurements, anticipated
steady-state TDOC and TSCR values from the engine maps are used in the Hamiltonian
to evaluate the SCR efficiency maps.
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Table 14.2 Selected control parameters

Control strategy Control parameters
−λ1,M1 −λ1,M2 λ2 λ3 λ4

Baseline(-WHR) 1.40 × 10−3 0 0 0.218 0
Recal-WHR 1.36 × 10−3 0 0 0.200 0

ψT1 ψT2 −λT λ3 −λ4

Real-time 123 142 8.07 × 10−4 1.13 × 10−2 2.97 × 10−6

λ3,cold λ3,hot

Optimal 2.76 × 10−2 8.53 × 10−3

14.4 Control Design

This section discusses the calibration procedure of the optimal and real-time IPC
strategies. An overview of the selected control parameters is given in Table 14.2. For
details on the calibration of the baseline strategies, the interested reader is referred
to [11, 15]. Note that the baseline strategy will be applied to three cases:

• Conventional powertrain without WHR system (Baseline);
• Powertrain with WHR system using the same control strategy (Baseline-WHR);
• Powertrain with WHR system using a recalibrated control strategy (Recal-WHR).

As a result, two different sets of calibration parameters are used.

14.4.1 Optimal IPC Strategy

The optimal IPC strategy is completely determined by Eq. (14.12) and (14.13a)–
(14.13d). Because of this, and because λ1(te) = λ2(te) = λ4(te) = 0, only a value
for λ3 needs to be determined, such that Eq. (14.9) is satisfied for a given value for
ZNOx . This can be done, e.g., by performing a line search resulting in a cost-NOx
tradeoff curve (see also left-hand graph of Fig. 14.5). Note that, contrary to the real-
time IPC strategy, the optimal IPC strategy is not restricted to have the same λ3 for
both the cold and hot WHTC. The λ3 values that are given in Table 14.2 are tuned,
such that the Euro-VI target of ZNOx = 0.41 g/kWh is achieved for both the cold
and hot WHTC.

Despite the fact that the optimal solution does not require much tuning, numer-
ically obtaining a solution to the optimal control problem is more difficult. This is
due to the fact that the dynamics for λ1, λ2 and λ4 are unstable and have end-point
constraints. Numerically finding solutions to unstable differential equations is a te-
dious task, as not just the solution to the differential equation grows, but also the
approximation error of the numerical integration schemes. Therefore, the optimal
solution is computed using an iterative procedure: the so-called forward–backward
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sweeping method, which is adopted from [16]. For a given λ3 value, this iterative
procedure consists of repeatedly executing the following two steps:

(1) For given λ1, λ2, λ4, solve Eq. (14.6) with Eq. (14.12) from t = 0 to t = te
(2) For the x and u resulting from the previous step, solve Eq. (14.13a)–(14.13d) from

t = te to t = 0

The procedure has to be initialised with some λ1, λ2, λ4. Here, they are chosen to
be equal to zero. Under certain conditions, see [16], the algorithm converges, which
means that the optimal solution has been found. Note that the numerical complexity
of this iterative procedure is large, which is another reason why the optimal IPC
strategy is difficult to implement in real-time.

14.4.2 Real-Time IPC Strategy

The real-time implementable IPC strategy is tuned using a numerical programming
routine. In this chapter, we use the Nelder-Mead simplex algorithm. The objective is
to find the control parameters ψT1,ψT2, λT and λ3, such that the operational costs
are minimised over the hot WHTC. Simultaneously, the specified NOx engineering
target of 0.41 g/kWh has to be met for the weighted WHTC (where the cold and hot
cycle are weighted by 16 % and 84 %, respectively).

14.5 Simulation Results

To evaluate the performance of the controllers, simulations are done for the World
Harmonized Transient Cycle (WHTC). This test cycle specifies the requested engine
speed Ne and torque Φd,req, see Fig. 14.4. Three parts can be distinguished: urban
driving conditions (0–900 s), rural driving conditions (900–1380 s), and highway
driving conditions. As we focus on Euro-VI legislation, results have to be generated
for cold as well as hot cycle conditions. In case of a cold cycle, the initial SCR
catalyst temperature is set to 20 ◦C, whereas 200 ◦C is used at the start of the hot
cycle; engine and WHR system heat up are not modeled yet.

In this study, we focus on the results of the optimal and real-time IPC strategy.
For reference, also the results for the baseline strategies are presented. All cases are
compared with the standard Euro-VI engine without WHR system (Baseline). The
main results are summarized in Table 14.3.
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Fig. 14.4 World Harmonized Transient Cycle: specified torque Φd,req and engine speed Ne
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14.5.1 Overall Powertrain Results

Following the procedure described in Sect. 14.4.1, the total operational cost-NOx,tp
trade-off curves for the optimal IPC strategy are determined (see left-hand graph
of Fig. 14.5). In the remainder of this section, simulation results are shown that
correspond to a tailpipe NOx emission of 0.41 g/kWh for both cold and hot WHTC.
The diamonds in this figure indicate the results after tuning the real-time IPC strategy.

For the weighted WHTC results, the CO2–NOx,tp tradeoff is shown in the
right-hand graph of Fig. 14.5. All results are compared with the baseline (without
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Table 14.3 Overview of WHTC results

Quantity Control strategy
Baseline Baseline Recal Real-time Optimal

WHR WHR WHR WHR

NOx,eo(g/kWh)
Hot 3.67 3.55 3.63 5.42 5.62
Cold 3.80 3.67 3.74 5.42 4.61
Weighted 3.69 3.57 3.65 5.42 5.46
NOx,tp(g/kWh)
Hot 0.353 0.342 0.354 0.376 0.411
Cold 0.708 0.691 0.702 0.586 0.410
Weighted 0.410 0.398 0.410 0.410 0.410
NH3,max(ppm)

Hot 2 2 2 2 1
Cold 2 2 2 2 2
CO2 %
Hot 100 96.9 96.7 93.2 93.0
Cold 100 97.0 97.0 93.4 94.5
Weighted 100 96.9 96.8 93.3 93.3
Hot WHTC costs %
Fuel 97.1 94.1 93.9 90.5 90.3
AdBlue 1.1 1.1 1.1 1.8 1.9
PM 1.8 1.8 1.7 0.8 0.8
Total 100.0 97.0 96.7 93.1 93.0

WHR). This figure shows that simply adding a WHR system to the existing engine
(Baseline-WHR) results in 3.1 % CO2 reduction. However, only a minor perfor-
mance improvement is possible by exploiting the margin in tailpipe NOx emission
(Recal-WHR): additional 0.1 % CO2 reduction, which is due to the reduced fuel
consumption over the hot cycle (see Table 14.3). Both the real-time and optimal IPC
strategy are able to reduce CO2 emissions by an additional 3.5 %. From these results,
it is concluded that the real-time strategy is a promising practical implementation of
the optimal strategy. In total, the CO2 saving potential of the WHR system sums up
to 6.7 %.

14.5.2 Cold Cycle Results

To better understand the differences between the studied strategies, time traces of the
results are shown in Fig. 14.6. We focus on the cold cycle, since this cycle is more
challenging and the differences are more distinct here. For the baseline strategies,
EGR valve and VTG settings are fixed for each operating point (Ne, Φe) and each
engine mode. As can be seen from the SCR temperature plot, the controller switches
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Fig. 14.6 Cold WHTC results. Cumulative emission results and SCR temperature (left). Opera-
tional costs, fuel and AdBlue consumption and engine efficiency relative to the baseline (right)

from thermalmanagement to lowNOx mode around t = 550 s,whenTSCR ≥ 250 ◦C
(see also λ1 in Fig. 14.7). This leads to similar cumulative engine-out and tailpipe
NOx emissions for the three baseline strategies.

Based on the actual state of the engine, aftertreatment and WHR system, the
adaptive IPC strategy selects on-line the EGR valve and VTG settings that gives the
lowest operational cost. In the first part of the cold WHTC, this results in low engine
out NOx emissions due to relatively high EGR rates. After t = 600 s and especially
during the highway part, high SCR conversion efficiencies can be realized, so engine-
out NOx,eo emissions can be relaxed by reducing EGR flow: so-called EGR-SCR
balancing (see upper left-hand graphs in Fig. 14.6). This leads to a considerable
increase in engine out NOx,eo emissions, but the tailpipe NOx,tp emission target is
still met. This effect is even more pronounced for the optimal strategy.

In the bottom left-hand graph of Fig. 14.6, the engine power-to-total power ratio
Pe/Pd is plotted. Although EGR and exhaust mass flows and temperatures differ for
the studied control strategies, the observed differences are small. As expected, the
WHR contribution is largest in the high way part: average power output of PWHR =
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Fig. 14.7 Lagrange multipliers (cold WHTC)

4.9 kW for the IPC strategy. During the urban and rural part, the WHR system is
seen to be switched off frequently, according to Eq. (14.4).

The right-hand graphs of Fig. 14.6 show the corresponding fuel and AdBlue
consumption as well as the resulting operational costs over time. These results are
given relative to the baseline. At every time instant tk , the relative fuel consumption
is determined by:

ψFuel(tk) = 100 ×
∫ tk
0 ṁf − ṁf ,Baseline dt

∫ tk
0 ṁf ,Baseline dt

(14.14)

In a similarway, the relativeAdBlue and total operational costs are computed.As seen
from this figure, AdBlue injection starts around t = 400 s, when TSCR > 180 ◦C. In
the bottom right-hand graph, the moving average of the difference between engine
efficiency and baseline engine efficiency is shown:

ψφe,avg(tk) = φe,avg(tk) − φe,avg,Baseline(tk) (14.15)

where:

φe,avg(tk) =
∫ tk
0 Pe dt

∫ tk
0 Pfuel dt
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with Pfuel = ṁf × QLHV and the lower heating value QLHV of diesel.
As shown in the upper right-hand graphs of Fig. 14.6, implementation of theWHR

system reduces fuel consumption in all studied cases. For the baseline strategies, this
is achieved with only small changes in AdBlue consumption. The IPC strategies can
further reduce fuel consumption and total operational costs. By on-line adaptation of
the EGR valve and VTG settings, a cost optimal balance is found; although AdBlue
consumption is significantly increased, it only has a small (absolute) contribution
to the total operational cost due to its relatively low mass flow and cost. The cor-
responding high SCR efficiencies φSCR allow for high engine-out NOx emissions,
which are associated with reduced fuel consumption. Consequently, the reduced fuel
(and PM) costs compensate for the increased AdBlue costs. Results for the engine
efficiency illustrate that the adapted EGR-VTG settings in the IPC strategy lead to
1.0–1.5 % increase in engine efficiency compared to the baseline. This effect is most
dominant during the highway part. For the baseline strategies with WHR system,
efficiency improvements are negligible over the cold WHTC.

Figure 14.7 shows the resulting Lagrange multipliers for the examined strategies.
For the three baseline strategies, these values are chosen to be (switching) constants.
Note that λ4 = 0 for the baseline strategies, as the WHR dynamics are neglected in
these cases. Comparison of the IPC strategies learns that the chosen λ4 value in the
real-time strategy is a good approximation of the co-state dynamics associated with
the optimal case. This also holds for the λ1 dynamics. However, the implemented
heuristics for λ2 are not capable to approximate the corresponding optimal co-state
dynamics. In the optimal strategy, λ2 > λ1, which means that heat convection is
promoted to heat up the aftertreatment system. This only holds for short periods in
the real-time strategy; focus is on raising the exhaust gas temperature for most of
the time. Based on these results, this Lagrange multiplier is believed to have only a
minor effect on overall powertrain performance.

14.6 Conclusions and Future Work

Optimal control of a Euro-VI heavy-duty diesel engine with Waste Heat Recovery
(WHR) system is challenging due to the high number of sub systems, interactions
and requirements set by emission legislation. To optimize overall performance, an
integrated approach is required which combines energy and emission management.
Based on the Integrated Powertrain Control (IPC) approach, an optimal control strat-
egy is presented, which minimizes total operational costs and explicitly deals with
the tailpipe NOx emission constraint. Following Pontryagin’s Minimal Principle,
the optimal solution for a cold and hot WHTC is numerically determined using a
forward–backward sweepingmethod. Alternatively, a real-time implementable strat-
egy is proposed. From simulation results over the WHTC, it is concluded that the
optimal IPC strategy can be replaced by the proposed real-time strategy with negli-
gible loss of optimality. This IPC strategy outperforms the current baseline engine
control strategy: an additional 3.5 % CO2 reduction within the tailpipe NOx limit.
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Current research concentrates on the robustness of the IPC strategy performance
formodel uncertainties and varying duty cycles. Tests will be performed on an engine
dynamometer to demonstrate the potential of the proposed control strategy.
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Part IV
Optimization of the Engine Operation



Chapter 15
Learning Based Approaches to Engine Mapping
and Calibration Optimization

Dimitar Filev, Yan Wang and Ilya Kolmanovsky

Abstract In this chapter we consider a class of optimization problems arising in the
process of automotive engine mapping and calibration. Fast optimization algorithms
applicable to high fidelity simulation models or experimental engines can reduce the
time, effort and costs required for calibration.Our approach to these problems is based
on iterations between local model identification and calibration parameter (set-points
and actuator settings) improvements based on the learned surrogate model. Several
approaches to algorithm implementation are considered. In the first approach, the
surrogate model is defined in a linear incremental form and its identification reduces
to JacobianLearning. Then quadratic programming is applied to adjust the calibration
parameters. In the second approach, we consider a predictor-corrector algorithm that
estimates the change in theminimizer based on changing operating conditions before
correcting it. Case studies are described that illustrate the applications of algorithms.

15.1 Introduction

The chapter is concerned with automating the process of internal combustion engine
mapping and calibration using real-time optimization techniques. As the engine com-
plexity is growing to meet more stringent fuel economy and emissions regulations
and increasing customer demands for improved drivability, the interest in techniques
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Fig. 15.1 The surrogate model based learning and optimization algorithm

for reducing engine calibration time and effort has been rapidly increasing [4, 11–13,
18–21, 25].

The engine mapping process involves engine characterization to identify compo-
nent static response and calibration optimization which refers to determining optimal
set-points and actuator settings given current engine operating conditions. The set-
points are stored in look-up tables in the strategy or incorporated into the regression
models.

Several approaches have been proposed to address engine calibration optimiza-
tion. In more traditional approaches, the data are first collected from the engine, then
regressed and the optimization is performed on the resulting regression models to
find the optimal set-points and actuator settings. Extremum seeking, based on var-
ious types of optimization algorithms running in real-time on the engine, has been
exploited in [11, 13, 20, 21, 25]. Finally, techniques where transient data are rapidly
collected to identify a dynamic model and this dynamic model is used for static
calibration optimization have been recently developed [3]. Besides automotive
engines, calibration optimization of aircraft gas turbine engines has been also
considered [17].

In this chapter we discuss another approach to engine calibration which is based
on iteratively combining the local identification and local optimization steps. This
approach follows [7] (see also [8, 23]). Specifically,we employ real-time learning of a
surrogate model to locally characterize engine response around the current operating
point and then we perform an optimization update to improve the parameters and
actuator settings with respect to the identified surrogate model, see Fig. 15.1.

If the surrogate model is defined as a linear incremental form, the surrogate model
identification reduces to estimating the Jacobian and we employ the Jacobian Learn-
ing (JL) technique proposed in [7]. See also [8] for a related approach.

The approach of [7] has not been previously applied to engine calibration and
optimization problems. In this chapter, we present its extension to the case when
there are constraints, and we demonstrate its capability to rapidly find minimizers
based on a high fidelity GT-Power engine model.

A further extension of the algorithm is presented to achieve high accuracy in filling
the calibration tables when operating conditions are (slowly) varying. This extension
is based on treating the calibration optimization as a parameter-dependent optimiza-
tion problem [2, 6, 9, 19, 22], and applying a predictor-corrector approach. The
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predictor part of the algorithm feed-forward compensates for changes in the mini-
mizerwith changing engine operating conditionswhile the corrector part improves on
the predicted minimizer. As an illustration, the application of the predictor-corrector
algorithm to a series HEV model is considered.

The chapter is organized as follows. In Sect. 15.2, we highlight the mathematical
problem formulation. In Sect. 15.3, the JL-based optimization algorithm of [7] is
described. The results of applying this approach to a high fidelity engine model in
GT-Power using the co-simulation approach are presented in Sect. 15.4. Another
case study is considered in Sect. 15.5, where engine fuel consumption minimiza-
tion is performed on-board of a simulated series hybrid vehicle when the generator
power is maintained at a constant value during the learning and optimization phase.
In Sect. 15.6, we present the predictor-corrector algorithm and in Sect. 15.7 we
illustrate its application to engine fuel consumption minimization on-board of a sim-
ulated series hybrid vehicle when the generator power is slowly varying. Concluding
remarks are presented in Sect. 15.8.

15.2 Mathematical Problem Formulation

From a calibration perspective, a typical engine can be considered as aMIMOnonlin-
ear system with adjustable actuator settings and/or modes of operation as inputs, and
performance characteristics as outputs. The steady-state input-output relationship at
different steady state operating conditions can be described as

y = F(u, p), (15.1)

where the input vector u includes adjustable actuator settings—spark retard, intake
valve opening/closing (IVO/IVC) and exhaust valve opening/closing (EVO/EVC)
settings of the VCT actuator, throttle and wastegate settings, exhaust gas recircula-
tion valve opening (EGR), air-to-fuel ratio, etc.; output vector y consists of engine
performance characteristics—brake torque (equivalently, engine load), brake spe-
cific fuel consumption (BSFC), Crank Angle 50 (CA50), etc. and p is a vector of
operating conditions, e.g. engine speed and target engine brake torque (equivalently,
target engine load).

Many engine-related calibration problems can be reduced to minimizing a certain
function with respect to a part of variables:

Minimize Q(u, p) with respect to u, (15.2)

and often the function Q(u, p) can be specified as

Q(u, p) = ||F(u, p) − yt ||2Ω = (F(u, p) − yt )
TΩ(F(u, p) − yt ), (15.3)
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where yt is the vector of target values for the output vector, y, Ω = ΩT ≥ 0 is
weighting matrix, and for a vector z, ||z||2Ω = zTΩz.

In filling the calibration tables, the minimizer in (15.2) is sought in the form
dependent on p, i.e., in the form,

u = u∗(p). (15.4)

For instance, Q can represent a weighted sum of BSFC squared (for which the
corresponding BSFC target is zero) and squares of the deviation between some of
the components of the output vector y and a corresponding set of target values of
engine load, e.g. engine load and its target value, CA50 and its target, etc. We note
that we do not assume that the targets are achievable.

There are several distinct characteristics of the optimization problem (15.2) for
static engine calibration. Firstly, if the optimization is performed directly on an
experimental engine, the measurements of the function Q are uncertain due to sen-
sor measurement noise and due to deviations of engine operation from steady-state.
The latter source of noise is exacerbated if it is desirable to move rapidly through
the operating conditions, p, without waiting for engine to completely reach the
steady-state. This latter source of noise is also present if the optimization is
performed on an enginemodel, such as a high fidelityGT-Power enginemodel, where
in addition the evaluation of the function Q can be expensive due to slowmodel sim-
ulations. Consequently, special care is required in the application of the optimization
algorithms and techniques to engine-related optimization problems (15.2).

15.3 Jacobian Learning Based Optimization Algorithm

In this section we focus on the problem of engine mapping at steady state, for given
operating conditions, i.e. assuming p = const in (15.1). In this case, F is assumed
to be nonlinear but smooth, the output vector, y, represents a set of performance vari-
ables, e.g., Brake Specific Fuel Consumption (BSFC), engine load, Crank Angle 50
(CA50), etc. The engine mapping problem is decomposed to a set of local mappings
obtained at specific operating conditions, p,

y = F̃(u) = F(u, p), (15.5)

where u is an r -dimensional vector, and y is a q-dimensional vector.We are interested
in an approach for solving problem (15.2) that exhibits fast convergence so that it
can be repeatedly applied at different p.

Weconsider a local surrogatemodel based on a linearized time-varying (Jacobian)
approximation of the nonlinear input-output mapping F̃ in (15.5),

Δy(k) = J (k)Δu(k) (15.6)
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where
Δu(k) = u(k) − u(k − 1), Δy(k) = y(k) − y(k − 1),

and J (k) is the q × r Jacobian matrix defined by

Js, j (k) = ∂ys

∂u j
(k), 1 ≤ j ≤ r, 1 ≤ s ≤ q.

The surrogate model takes the form,

ŷ(k) = y(k − 1) + Ĵ (k − 1)(u(k) − u(k − 1)), (15.7)

where Ĵ (k) is the estimate of the Jacobian of F̃ at the time instant (k − 1). The
optimization algorithm solves the following Quadratic Programming (QP) problem,

u(k) = argmin(||yt − ŷ(k)||2Ω + ||u(k) − u(k − 1)||2Γ ), (15.8)

subject to (15.7) and the constraints on the range of actuator settings,

umin ≤ u(k) ≤ umax . (15.9)

Note that (15.8) includes a penalty on the increments of u which prevents the opti-
mization algorithm from taking too large steps that render the Jacobian approximation
Ĵ (k − 1) inaccurate. In our numerical experiments, we typically used Ω = I and
Γ = γ I, where γ is a tunable parameter in (15.8).

We note that the problem (15.8) with the simple box-like constraints (15.9) is a
low dimensional quadratic programming problem that can be easily solved using any
quadratic programming solver. In our numerical experiments, we use the functions
quadprog.m and lsqlin.m of Matlab. We also note that (15.8) without the constraints
on the ranges (15.9) is easily solvable and leads to an update of the form

u(k) = u(k − 1) +
(

ĴT(k − 1)Ω Ĵ (k − 1) + Γ

)−1

ĴT(k − 1)Ω(yt − y(k − 1))

= u(k − 1) + K (k − 1)(yt − y(k − 1)). (15.10)

Since
ĴT( Ĵ ĴT + ρ Iq×q)−1 = ( ĴT Ĵ + ρ Ir×r )

−1 ĴT,

the updates in (15.10) are similar to the one studied in [7] for the case r ≥ q, which
had the form,

u(k) = u(k − 1) + ĴT(k − 1)H

(
Ĵ (k − 1) ĴT(k − 1) + ρ Iq×q

)−1

(yt − y(k − 1))

= u(k − 1) + K̃ (k − 1)(yt − y(k − 1)), (15.11)
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where ρ > 0 and H is a diagonal q × q gain matrix. Note that both (15.10) and
(15.11) are variants of Levenberg-Marquardt optimization algorithm. The diagonal
matrix Γ > 0 in (15.10), typically chosen as Γ = ρ Ir×r , where Ir×r is the r × r
identity matrix, or the term ρ Iq×q in (15.11), where I is the q × q identity matrix,
play the role of the Tikhonov regularization matrices [24]. Their use improves the
numerical conditioning of the underlying inverse problem.

We employ the Kalman filtering for recursively learning Ĵ . Specifically, let Js

denote the sth row of the Jacobian, J, 1 ≤ s ≤ q. The following model is assumed
as a basis for estimating Ĵs,

Js(k + 1) = Js(k) + ws(k),

Δys(k) = Js(k)Δu(k) + vs(k), (15.12)

wherews(k) is the process noise representing the imprecision of the linearizedmodel
with zero mean and the covariance matrix, Qs ≥ 0, and vs(k) is the measurement
noise with zero mean and covariance matrix, Rs > 0. The Kalman filter updates take
the following form,

Ĵs(k) = Ĵs(k − 1) + Ls(k)

(
Δys(k) − Ĵs(k − 1)Δu(k)

)
,

Ls(k) = Ps(k − 1)Δu(k)

(
Rs + ΔuT(k)Ps(k − 1)Δu(k)

)−1

, (15.13)

Ps(k) = Ps(k − 1) − Ls(k)ΔuT(k)Ps(k − 1) + Qs .

The matrix Qs is a drift factor that is analogous to the forgetting factor in the com-
monly used form of the Recursive Least Squares (RLS) [1] and can be estimated from
the expected changes in the Jacobian. The advantage of using the drift factor versus
the exponentially forgetting factor is in the cases when the system is not excited
[7, 16]. It forces the covariance matrix, Ps (which essentially controls the variable
learning rate of the Kalman filter) to grow linearly rather than exponentially.

The advantage of (15.13) versus alternative techniques for estimating the Jaco-
bian (e.g., based on the center differences) is that it can be used with general input
excitation sequences; in many practical cases, the Jacobian can be estimated from
the optimization algorithm iterates. The use of nonlinear surrogate model rather than
(15.6) can be advantageous in specific problems; however, we found that (15.6) rep-
resents an effective choice, in general. Further comments on exploiting nonlinear
surrogate models are made in Sect. 15.6.
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15.4 Case Study 1: Application to Engine Mapping

In order to reduce the development time and costs, engine models are used more and
more frequently to evaluate engine designs without building the actual hardware. A
two step procedure is typically used to compare different engine designs: (1) optimal
settings of all actuators at different engine conditions (speed/load) are determined
that result in the best performance (e.g., minimum fuel consumption) at each con-
dition; (2) the overall performance is compared as quantified by a weighted sum of
performances at different engine conditions where the weighting factors may reflect
the time spent at a particular operating condition over a drive cycle. For Step 1,Design
of Experiments (DoE) based sweeping of actuator settings, followed by off-line data
processing is employed to find the optimal actuator settings at each engine conditions.
This approach is not very efficient, especially as new engine technologies are intro-
ducing significant numbers of new actuators. At the same time, more detailed engine
models that more accurately predict the response of the new engines are becoming
more complex and take increasingly longer time to simulate. Even though improve-
ments in computing hardware and parallel computing are alleviating the problem to
some extent, fast and smart searching/optimization methods applicable to simulation
models are highly desired to speed up this process.

For our case study, the JL-based algorithmdescribed in Sect. 15.3 has been applied
to rapidly determine the actuator settings that are optimal for each steady-state oper-
ating condition based on an engine model implemented in GT-Power. The GT-Power
is a well established engine CAE tool provided by Gamma Technologies and is a
popularmodeling software package used by engine designers and system developers.
Our algorithm has been implemented in Simulink and co-simulated with the engine
model running in GT-Power. The co-simulation environment has been setup so that
the engine model runs continuously, and model steady-state output data are sent to
the optimization algorithm, which then updates the Jacobian estimate (i.e., surrogate
model), and, consequently, the actuator settings as discussed in Sect. 15.3.

In this case study, the nonlinear vector function, F in (15.1), represents Brake
Specific Fuel Consumption (BSFC), Engine Load, and CA50 (defined as the crank
angle after top dead center at which 50% of fuel is burnt). The input vector u
represents throttle position, spark timing, intake cam timing, and exhaust cam timing.
The target vector yt for y prescribes the target of 0 for BSFC, the target load the
engine should be running at, and the target value for CA50 based on the standard
correlation between CA50 location and best fuel efficiency. The parameter vector p
comprises engine speed and target engine load.

Table 15.1 summarizes the results of an exemplar algorithm application. Our
engine model is running at fixed speed of 3,000 rpm. The CA50 target at this engine
speed is 5.54◦.The target engine loadvalues are 0.2,0.5, and0.8,which change every
time algorithm convergence is achieved. The targets, found optimal actuator settings,
achieved values of engine load, CA50 and BSFC, and the number of optimization
iterations are given for three load targets in Table 15.1.
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Table 15.1 Calibrated engine variables for 3,000 rpm and target engine loads of 0.2, 0.5 and 0.8

Rpm Load CA50 Throttle Spark Intake Exhaust Load CA50 BSFC Iterations
des des Spark cam cam

3,000 0.2 5.54 7.15 −75.00 27.00 34.88 0.20 5.66 1106.74 16
3,000 0.5 5.54 15.62 −39.91 9.00 39.00 0.50 5.63 285.62 4
3,000 0.8 5.54 90.00 −26.95 −32.30 39.00 0.80 5.51 253.77 10
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Fig. 15.2 Optimized intake and exhaust cam timings at different loads, when initialized at four
different combinations (both retarded, both advanced, and one retarded/one advanced)

Table 15.2 The intake and exhaust cam timings that deliver the best BSFC at different loads

Load 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Intake 387 387 327 327 327 366.8997 327
Exhaust 391.9614 399 399 399 399 383.7112 391.9786

We note that the cam timing optimization is challenging because the effects of cam
timing on the BSFC are not monotonic, and dependent on the engine torque outputs,
as shown in [14]. Therefore, applying the algorithm with different initial conditions
of the cam timings will yield local minimizers (that may not necessarily be global
minimizers). The conventional approach is to run a sweep of the intake/exhaust cam
timings to find the best BSFC, which is very time consuming. In this work, we
applied our JL-based algorithm but initialized the cam timings at several different
values; we then selected the actuator settings that gave the best BSFC over these
runs. Figure 15.2 shows the best IVO and EVC at different loads all at 3,000 rpm,
when initialized at four different initial values.

Combining all the results, the best intake and exhaust cam timings at each loads
are summarized in Table 15.2.

The results show that the optimal exhaust cam should be fully retarded or close
to being fully retarded for all the cases. The optimal intake cam is retarded at lower
loads, and advanced at higher loads. These results are consistent with [14].

The algorithm was applied next to the same engine model to complete a full map
that finds the best throttle/spark/intake cam timing/exhaust cam timing settings. The
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Fig. 15.3 Identifying a smooth CAM track through clustering the optimized CAM settings

algorithm runs fast and converges at all conditions, except for a high speed low load
target that is not a feasible operating point for this engine. It takes on average 12
iterations at each point.

The results of optimal CAM settings across all the speed/load points can be
summarized in Fig. 15.3. By clustering the CAM settings, we can obtain the CAM
track that can be implemented in production strategy so the actual CAM positions
are not commanded to change significantly during normal operations.

15.5 Case Study 2: On-board Fuel Consumption
Optimization in Series HEV

As another case study, we consider finding online engine operating points that min-
imize fuel consumption for the specified constant engine/generator power request,
Preq

eng in a series hybrid electric vehicle. We note that in hybrid electric vehicles, the
battery power can complement engine power during such a learning phase to ensure
the requested time-varying electric motor power at the wheels; thus learning of opti-
mal operating points can be performed on-board without causing driver disturbance.
As in [10], an estimate of the engine power can be used that is generated by an input
observer based on the measurements of the engine speed and generator power, where
the latter is estimated based on the measurements of the current in the generator. The
battery power output is controlled as to ensure that the wheel power matches the
driver demand by complimenting the estimated generator power. After learning is
completed, the optimal operating points can be used in the power smoothing strategy
proposed in [5, 15].
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Fig. 15.4 The time history of
BSFC improvement in a series
HEV

We consider the case when the engine has to meet the target of fixed engine
power, Preq

eng while minimizing the BSFC. The vector u consists of throttle angle,
spark timing, engine speed, intake valve opening and exhaust valve closing timing.
Note that the engine speed is varied by the optimization algorithm, and therefore,
the actual torque target varies with it, as shown in Fig. 15.5. With the assumption of
constant Preq

eng , the application of the JacobianLearning based optimization algorithm
of Sect. 15.3 yields the responses shown in Figs. 15.4, 15.5, 15.6, 15.7. The plots
show the power target is tracked andBSFC isminimized, while all actuators converge
to the optimal values.

In order to reduce battery State of Charge fluctuations during on-board learning
and reduce learning time, it is desirable to track the fuel consumption minimizer in
slow transients, i.e., when Preq

eng is slowly-varying. To realize such a functionality,
predictor-corrector algorithms are considered next.

15.6 Predictor-Corrector Algorithm

The updates in Sect. 15.3 can be generalized to the case of the parameter-dependent
optimization (15.2), (15.3) when parameters are slowly varying. With the surrogate
model based on estimated Jacobians, we assume that

Δy = ĴuΔu + ĴpΔp. (15.14)

This leads to the following update in the case of no control bounds,

u(k) = u(k − 1) +
(

ĴT
u (k − 1)Ω Ĵu(k − 1) + Γ

)−1

ĴT
u Ω

×
(

− Ĵp(k − 1)(p(k) − p(k − 1)) + yt − y(k − 1)

)
. (15.15)
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Fig. 15.5 The time history of engine power (top, left), engine torque and torque set-point (top,
right), and engine speed (bottom). Engine torque set-point is generated to achieve desired power

Fig. 15.6 The time history of spark timing and throttle position

Note that the update (15.15) incorporates prediction for the change in the solution
due to the parameter change which is due to the term, Ĵp(k − 1)(p(k) − p(k − 1)).
The Jacobian Ĵp is estimated with the Kalman filter using the same approach as for
Ĵu in Sect. 15.3.

In the case of constraints,
yc = g(u, p) ≤ 0, (15.16)
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Fig. 15.7 The time history of intake valve opening and exhaust valve closing

Jacobian Learning can be applied also to constraint learning based on a surrogate
constraint model,

Δyc = ĝuΔu + ĝpΔp. (15.17)

By denoting the vector of active constraints by superscript a, the update is based on
solving a system of linear algebraic equations,

ĴT
u (k − 1)Ω(y(k − 1) − yt ) + ĴT

u (k − 1)Ω Ĵp(k − 1)(p(k) − p(k − 1))

+ (JT
u (k − 1)Ω Ju(k − 1) + Γ )(u(k) − u(k − 1))

+ (ĝa
u (k − 1))T(λa(k) − λa(k − 1)) = 0

ĝa(u(k − 1), p(k − 1)) + ĝu(k − 1)(u(k) − u(k − 1))

+ ĝa
p(k − 1)(p(k) − p(k − 1)) = 0, (15.18)

with respect to u(k) and the vector of Lagrange multipliers of the active constraints,
λa(k). Care needs to be taken to handle changes in the set of active constraints. The
change in the set of active constraints can be detected if as a result of the update
(15.18) some of the components of the vector λa(k) become zero or negative or if
some of the constrained outputs predicted according to (15.17) change sign. In such
a case, (15.18) is applied with p̃(k) = αp(k) + (1 − α)p(k − 1) replacing p(k),

where 0 < α < 1 corresponds to the first predicted change in the sign of any of
Lagrange multipliers or constrained outputs (15.16); the corresponding λ̃a(k) and
ũ(k) are determined based on (15.18); (15.18) is re-configured for a different set
of active constraints; and the process is repeated with p(k − 1) replaced by p̃(k),

λa(k − 1) replaced by λ̃a(k) and u(k − 1) replaced by ũ(k).

As another extension, the surrogate model (15.14) can be replaced by a more gen-
eral nonlinear model and the minimization problem (15.2) can involve an arbitrary,
sufficiently smooth function Q(u, p), i.e., not necessarily (15.3). A more general
form of the predictor-corrector algorithm for minimizing the function Q(u, p) with
respect to u in the unconstrained case can be based on Newton’s method,
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u(k) = u(k−1)+ Q̂−1
uu (k−1)(−Q̂u(k−1)− Q̂up(k−1)(p(k)− p(k−1))), (15.19)

where the partial derivatives are evaluated at u(k−1) and p(k−1).The update (15.19)
requires that the Hessians of Q be estimated on-line. Under appropriate assumptions
and if gradients and Hessians of Q are accurately known, constants α > 0 and β > 0
can be found such that the tracking error of the minimizer satisfies a relation of the
form,

||u(k+1)−u∗(p(k+1))|| ≤ α||u(k)−u∗(p(k))||2+β||p(k+1)− p(k)||. (15.20)

This relation suggests strong, quadratic convergence properties to the minimizer if
p(k) stays constant and strong tracking properties of the minimizer if the parameter
p(k) is slowly-varying. In the constrained case, the Newton’s method can be applied
to the root finding problem resulting from KKT conditions augmented with an extra
equality constraint. We discuss a case study where this approach was followed in the
next section and leave it to future work to explore its details and properties further.

15.7 Case Study 2 (Cont’d): On-board Fuel Consumption
Optimization in Series HEV

The application of (15.19) to identification of Optimal Operating Points (OOP) line,
i.e., engine speed and engine torque values that minimize BSFC for a given Preq

gen , is
shown in Figs. 15.8, 15.9. Here u is the engine speed and p = Preq

gen is slowly varying
as shown in Fig. 15.8. The advantage of handling slowly varying Preq

gen during learning
is that battery SoC fluctuations are reduced. The function Q is the BSFC and the
surrogate model for it is assumed to be second order in the two variables (engine
speed u and p = Preq

gen ). Small amplitude random excitation has been added to u(k)

and p(k) to facilitate the identification of surrogate model parameters. The algorithm
is able to rapidly converge to OOL and follow it as the generator power is varied.
See [10] for further details. We note that a version of HEV model in Simulink was
used for experimentation with (15.19) differently from GT-Power model which we
used for the results in Sect. 15.5. The OOL is required for implementation of the
power smoothing strategy [5, 15], and as our results demonstrate, it can be learned
on-board without creating driver disturbance.

15.8 Concluding Remarks

In this chapter we have considered an iterative optimization approach that combines
the steps of real-time learning of a surrogate model and then performing optimization
with respect to the identifiedmodel. In the casewhen the surrogatemodel is given in a
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Fig. 15.8 The time history of
engine/generator power
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Fig. 15.9 The engine speed and torque superimposed on engine map

linear incremental form, we refer to such a method as Jacobian Learning (JL)-based.
The algorithm derivation has been presented and we demonstrated its application to
a case study of mapping an engine represented by a detailed GT-Power simulation
model. Results have shown that the proposed algorithm can be used as an efficient,
robust, and generic tool for fast engine calibration optimization in the case of fixed
operating conditions providing the optimal actuator settings in less than 20 iterations
for the engine model considered. Since the surrogate model is learned from data and
no assumption on the type of engine model is made, the methodology can be applied
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to virtually any type of engine, including diesel engines and aircraft gas turbine
engines.

We have also presented a case study showing that such an approach can be applied
on-board in an HEV, and considered its various extensions, including a potentially
faster predictor-corrector form of the algorithm, and the treatment of more general
types of surrogate models. These will be further considered in the future work.
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Chapter 16
Online Design of Experiments in the Relevant
Output Range

Nico Didcock, Andreas Rainer and Stefan Jakubek

Abstract Nonlinear system identification requires informative data obtained from
experiments in order to parameterise a model of the underlying process. As an
example for the automotive industry, good models for NOx and smoke emissions
are required to effectively calibrate modern combustion engines. With continuously
increasing complexity in terms of the number of variation channels available in the
engines the experimental effort provides a growing challenge for efficient calibra-
tion. Design of Experiments (DoE) refers to optimal excitation of the system in order
to maximise the knowledge gained for a process under investigation from a limited
amount of measurements. We introduce a methodology that omits measurements
unrelevant for calibration via pre-specification of restrictions on the inputs as well as
the outputs. Output restriction to a certain target region is obtained via a supervising
online model that is trained during the workflow. The distribution of input samples
obtained via this method is non-uniform over the pre-image of the target region. The
effectiveness of this concept is demonstrated for the modeling of NOx and smoke
emissions of a diesel engine.
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16.1 Introduction

Stationary optimisation of combustion engines is an important task especially at the
beginning of a calibration project. For heavy-duty engines it at the same time provides
the basis for stationary legislative testruns (e.g. ESC, the European Stationary Cycle).
For transient emission cycles representative stationary operating points form the base
for dynamic modeling procedures.

The increasing number of control parameters brings along new challenges for data
collecting procedures. Test-plans for the system exciting parameters are required to
minimise the amount of measurements while maximising the informative value of
the experiments. The goal of these experiments is usually to gain knowledge on emis-
sions such as NOx and smoke, or other variables, e.g. fuel consumption. Legislative
constraints however usually restrict emissions below some bounds, making large
amounts of combinations of control variables redundant for the experiment. In this
context online DoE is considered to be a very effective method in order to acceler-
ate the workflow of engine calibration. The term online refers to an adaptive process
where the experiment is planned during the workflow according to the current knowl-
edge obtained by the measurements. More specifically, an online evolving model is
used as it has been proposed in [1]. Here, the workflow is accompanied with the online
training of efficient methods to estimate the input-output relation, see Fig. 16.1 for
an illustration. This enables us to restrict a number of outputs to predefined, cus-
tom output ranges (COR) [2]. In each iteration step we invert the currently trained
model to find the pre-image of the COR regions. The design for future experiments
is then chosen to some distribution over this pre-image. Maximin-Euclidian-distance
designs would converge to a uniform distribution. Designs according to the input–
output distance lead to a distribution that is less dense for flat output behavior. The
model is re-trained after each measurement, thereby improving the model quality in
areas that are most relevant for calibration, see [3].

The procedure is demonstrated on verification results for NOx and smoke emis-
sions as well as fuel consumption. In Sect. 16.2 we introduce the problem we faced
using the state of the art DoE approaches. We give a precise description of our meth-
ods in Sects. 16.3 and 16.4. Sections 16.5 and 16.6 demonstrate model improvements
after applying the so called COR DoE procedure.

16.2 State of the Art Development Approach

To assess the benefits of the new method, which will be described in the following
sections, consider the following example of the a test plan evaluation of a modern
passenger car diesel engine in a single operating point. One standard optimisation
task on such common-rail engines is to optimise the fuel consumption while keeping
the legislative limits for NOx and soot emissions within the prescribed driving cycle.
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Online DoE

OnlineTraining

Structure evolution and
parameter optimization

Set of applied data
from previous cycle

new design point

Iterative DoE strategy:
sample selection in COR

from a candidate set

Application of
design point to
system input

current model, cf. equations

Incrementation of k

new training data

Fig. 16.1 Interaction between online DoE and online training for COR

Fig. 16.2 AVL CAMEO™ DoE screening procedure

The optimisation was performed w.r.t. to five varying control parameters (variation
parameters henceforth) within the ECU (engine control unit):

• Rail Pressure
• Main Injection Timing
• Boost Pressure
• EGR (Exhaust Gas Recirculation)
• Swirl Position.

To take into account constraints on the drivability, such as component tempera-
tures, cylinder peak pressure, combustion stability etc., we use the DoE-Screening
technique [4]. Here, the engine starts from a stable center point and changes the
ECU-settings step by step in starlike directions until system limits are reached or a
limit violation occurs. In case that a limit occurs, the strategy offers different reac-
tions and measures the variation point as near as possible to this limit, see Fig. 16.2
for an illustration. The ecu variations within the convex hull of the drivable points
and possibly within some external input restrictions then constitute the candidate
input set. The task for the DoE strategies is now to find the ecu variations within this
set that have maximum informative value for our purposes. Our measurements are
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Fig. 16.3 NOx and soot output estimation for random and pareto optimal inputs

double-checked via repetition measurements. This guarantees that we can assure the
quality of our measurement devises and a stable workflow of the engine.

As state of the art DoE method a D-optimal design (see e.g. [5]) was calculated
for the five variation parameters and measured using AVL CAMEO™, see [6]. Using
these 59 variation points (plus 8 repetition points) output models were built and the
output estimates for NOx and soot were calculated, see Fig. 16.3. The figure shows
how the output behaves for random sampling of input variations. Obviously, we are
most interested in the pareto optimal values in the bottom left area. A large amount
of input variations is therefore negleglible for calibration purpose and should be
avoided during the test run.

We performed additional measurements to verify the model quality for the opti-
mised input variations. As can be seen in Figs. 16.5 and 16.6, the fuel consumption
and NOx emissions for the verification variations (solid, gray points) can be pre-
dicted with the same quality the training data (circles). The achieved residuals are
at the same time comparable with the variance of the measured repetition points
(solid, black points) which indicates the model error is mainly measurement error.
However, evaluating the smoke emissions, it can be seen in figure Fig. 16.6 that for
some optimisation points the model underestimates the smoke values significantly.
Since these regions are highly relevant for calibration the model quality needs to be
particularly improved here. This motivated the development of a strategic DoE that
aims to improve model quality for relevant output areas. We performed additional
measurements to verify the model quality for the optimised input variations. As can
be seen in Figs. 16.5 and 16.4, the fuel consumption (BSFC) and NOx emissions for
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Fig. 16.4 Measured versus predicted plot for break specific fuel consumption (BSFC) after a D-
optimal design

the verification variations (solid gray points) can be predicted with the same quality
the training data (circles). The achieved residuals are at the same time comparable
with the variance of the measured repetition points (full, black points) which indi-
cates the model error is mainly measurement error. However, evaluating the smoke
emissions, it can be seen in figure Fig. 16.6 that for some optimisation points the
model underestimates the smoke values significantly. Since these regions are highly
relevant for calibration the model quality needs to be particularly improved here. This
motivated the development of a strategic DoE that aims to improve model quality
for relevant output areas.

16.3 Mathematical Background of the COR Design

We now present a general framework for model based DoE where the estimated
model is to be kept as general as possible. We commence with the task to draw a
finite sample from an input space U . We are interested in the estimation of the map
f : u ≤∈ y for some one dimensional output such as NOx , soot or BSFC. Let uk
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Fig. 16.5 Measured versus predicted plot for NOx after a D-optimal design

and yk denote the measurements of inputs and outputs, respectively. We assume that
the output has the form

yk = y(uk) = f (uk, θ) + ε(uk) = fk + εk

Let fk denote the deterministic component, depending on the parameters θ , and εk

the non-systematic measurement error. The parametric form of the model component
has to be chosen appropriately for the data. Examples are the linear-in-parameters
regression model fk = ϕ(uk)

T θ = ϕT
k θ for some regression vector ϕ and parame-

ters θ , neural networks or local linear models, see e.g. [7]. Noise is assumed to be
independent and identically distributed with zero mean and equal variance σ 2. The
model component is estimated from a sample S = [s1 . . . sn] where n denotes the
number of samples and sk denotes the index for the kth sample. The error covariance
depends heavily on the input design US = [us1 . . . usn ] where we use the equivalent
notations yS and εS . The output estimator ŷk = f (uk, θ̂ ) depends on the parame-
ter estimator θ̂ . The parameter variance and therefore the model variance depend
heavily on the inputs usk . In the OLS/GLS model the parameter covariance depends
exclusively on the inputs.
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Fig. 16.6 Measured versus predicted plot for smoke emissions after a D-optimal design

16.3.1 A Local Model Architecture

We briefly present a local model architecture that we have used for the estimation of
the mappings in the application example presented. We use a Takagi-Sugeno fuzzy
model architecture as in [8]. Locally, in a region indexed by j , the output for uk is
modeled as a full quadratic function of the input, the local estimate shall be denoted
ŷ j,k = ŷ j (uk). The validity function η j,k = η j (uk) denotes the proportion of the
local model estimate relative to the overall estimate which is then composed as the
weighted sum of I local outputs,

ŷk =
I∑

j=1

η j,k ŷ j,k

The coefficients θ j according to the regressor of the j th local model can be
estimated as the WLS estimator weights η j . The weights correspond to a partitioning
of the input space in regions that are dominated by one local model each. With a
growing number of observations the parameters of the model are updated and, if
necessary, the number of local models is increased incrementally, see [8] for details.
Note, however, that our proposed concepts are not restricted to this specific type of
model.
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16.3.2 State of the Art Designs

Ideal designs of input excitation signals maximise the information content of our
experiments. However it is not obvious what should be regarded as the informa-
tion content. Model based DoE maximises the information gain w.r.t. the precision
of the estimated parameters of some model structure, see [9] and [10] for details.
Model based DoE is basically related to Fisher’s concept of information. The Fisher
Information matrix in its general form is defined as

IF (θ, S) = E

{(
∂ log p(YS|US, θ)

∂θ

)T (
∂ log p(YS|US, θ)

∂θ

)}

Where YS = [ys1 ...ysn ] denotes the sample output. Its inverse, the Cramer-Rao-
Bound, is an upper bound for the covariance of any unbiased parameter estimator.
Optimal designs are based on optimising some functional on the Fisher matrix SF =
arg max

S
J (I (θ, S)) such as the determinant (D-optimality), the trace (A-optimality)

or the maximum value of the diagonal entry (G-optimality). In [11] it is pointed out
that D-optimal designs tend to lie on boundaries which we find mischievous since
the boundaries of our inputs tend to become undrivable. In comparison, so called
maximin designs use a distance measure to the design space as the informative value
or the experiment, e.g. the Euclidian distance,

d2(uk, u j ) =
√

(uk − u j )
T (uk − u j )

Maximin designs then fulfill

Smax min = arg max
S

min
uk ∞=ul≈US

d2(uk, ul)

See [11] for a general introduction to maximin designs. In particular it should be
noted that Euclidian maximin distance designs converge to a uniform distribution
over the input space. In [12] the equivalence between D-optimality and maximin
designs is shown when the distance measure is chosen appropriately.

16.3.3 Online Procedures

Our method differs substantially from these state-of-the-art DoE procedures. We
are not primarily interested in the training a model or a uniform coverage of the
input space. Our aim is to collect testbed data that is relevant for application and
we therefore need a procedure that incorporates knowledge on outputs such as NOx

emissions or exhaust temperature that are, more likely than inputs, constrained to
lie in some region of interest. In [13–16], DoE methods w.r.t. relevant output levels
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are presented. Here, one is interested in a certain (single) level set of the output, e.g.
where some system failure occurs. Model accuracies are improved for this critical
value of interest. We do not restrict our target outputs to one specific value but to an
applicable set of values. Moreover, the distribution of the design points in the input
space is not asymptotically uniform, but depends on the output as well. With our
method we obtain measurements that are more dense where the output is less flat.

We train our model with measurements from a standard initial design such as a
central composite designs (CCF) and a DoE screening procedure. These methods are
useful for determining the input space as the drivable area of the engine. After the
initial design we run an online design procedure where the measurements influence
the position of the following design points. At each time step we augment the sample
St by a number of observations such that St ≡ St+1 and USt ≡ USt+1 . The proposed
designs in Sect. 16.3.2 do not take into account the measurements YS since the
distance criteria in general depend on the inputs only. We find it important for our
design to leave out regions that are of no particular interest. Take for instance the
modeling of smoke particles then we are less interested in regions where the emission
rate is low but model accuracy in high emission areas becomes crucial.

16.4 Design Strategies

Although maximin designs in the input space are easy to calculate they suffer from
the drawback of entirely ignoring the structure of the model. Our work involves the
estimation of various output components of combustion engines where we found this
strategy inefficient due to the existence of trivial output areas that need not be explored
exhaustively. In order to reduce the number of observations to a minimum we want to
reject experiments that yield little information. We focus on two extensions to state
of the art methods. First, we want to omit design points in areas where the output
becomes trivial to avoid unnecessary costs. When the output is comparably flat we
need fewer observations than when the mapping is more complex. Second, bearing
legislative constraints in mind we constrain the experiment to yield measurements
in a relevant region. In the following we discuss the two extensions in detail.

16.4.1 A Distance Criterion in the Product Space

We modify the distance criterion according to [17]. We use a distance design with
respect to the inputs as well as the output. The method proved to measure the output
dynamics more efficiently than other concepts. Let X denote the product space of
inputs and estimated outputs U × ŷ with elements xk = (uk, ŷk) ≈ X and X S the set
which first components are the sample inputs. We define the input–output distance
as
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dI O(xk, x j ) =
√

(xk − x j )
T (xk − x j )

and the input output maximin design as

SI O−max min = arg max
S

min
xk ∞=xl≈XS

dI O(xk, xl)

This simple extension helps to concentrate the design in areas where the output is
less flat. Take for example an input region where the output grows fast with respect
to the input, then the distances will become comparably large. Therefore maximin
distances will concentrate on regions with higher output escalation, that is, where
the output either increases or decreases relatively fast. By reducing the number of
observations made in trivial regions we raise the relevant model performance relative
to the number of measurements.

16.4.2 The Custom Output Region (COR)

Second, we try to force the output measurement to lie in a given region of interest.
The calibration of combustion engines is subject to fulfill legislative constraints
and we therefore find high estimation precision required in the drivable areas with
relevant emission rates. Again, the design procedure depends on the estimated output
since we need to have an idea where the relevant emissions are located. Running an
online strategy we use the latest trained model to identify the inverse image of the
output region of interest. We force the design to be placed in this region in the next
design step. We commence from the candidate in put set uk ≈ U cand e.g. from the
previously described screening procedure, a model estimate ŷk as well as the Custom
Output Region, for example an interval COR = [ymin, ymax]. Next, we compute the
candidate set that is expected to lie in the COR and result in the final candidate set
Ucand,COR = {uk |uk ≈ Ucand, ŷk ≈ COR}. Finally, we calculate an input-output-
maximin design strategy over this set.

16.4.3 The iDoE Strategy

The methodology is illustrated on a simple academic example in Fig. 16.7. Large parts
of the input space map to a constant output that—by assumption—is not of interest.
In contrast, the relatively small areas where there is more fluctuation in the output
are considered highly relevant. A standard Maximin DoE Procedure is compared to
the IO-Maximin DoE procedure after the online application of ten design points. The
standard space filling approach fails to measure in the areas where the output shows
its characteristic behavior. Contrarily, if we apply a COR DoE and define the COR
region between 0.2 and 1 the points are distributed more in the non-trivial areas,
providing the model is good enough to estimate a precise pre-image of the COR.
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Fig. 16.7 Comparison of model and process after the online application design points with different
DoE

What can also be observed is that the distribution of the applied points is not uniform
in the input space. It is due to the modified distance criterion that design points are
applied evenly on the output graph.

We call the combination of these two extensions the iterative DoE (iDoE) strategy,
see [18]. The term iterative stresses the fact that the design sequence is updated after
every measurement through the estimation update of the output ŷ. Although both
extensions - the augmented distance criterion as well as the COR procedure—work
independently, we combine the tools to generate a powerful strategy that

• avoids unnecessary repetition points,
• favors areas with less flat output behavior
• generates outputs in a desired output range.

16.5 Improved Development Approach using the COR Design

We now demonstrate the usefulness of our methodology using the same diesel engine
as in Sect. 16.2. Since model building and therefore our online procedure requires
data, the method needs an initial design. A CCF (Central Composite Faced) design
which consisted of 42 variation points (plus 7 repetition points) was chosen. This
initial design was measured using the screening strategy, giving one measurement at
the variation point or near the drivability limit plus a second measurement on the way
back to the center point. Based on these 91 measurements a model was calculated
and online re-iterated during the iDoE test. The necessary measurement time for
the automated test was approximately 10 % higher compared to the state of the art
procedure. see Table 16.1. But after the application of only ten iterative design points
an acceptable model quality can be achieved for all relevant output regions.
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Table 16.1 Measurement time comparison for D-optimal design and COR DoE: additional time
spent on the online procedure can be seen as negligible

# Variation points Time/measurement (min) Total measurement time (min)

D-optimal 59 4 236
Repetition points 8 1 8

244
Startdesign 42 4 168
2nd measurement 42 1 42
Repetition points 7 1 7
iDoE 10 4 40
2nd measurement 10 1 10

267

Fig. 16.8 Measured versus predicted plot for smoke emissions after a COR design

Using the state of the art D-optimal design the verification measurements of the
optimised points resulted in residuals of up to 1.5 FSN (see Fig. 16.6). Using iDoE
and COR design, the highest residuals of the same verification measurements could
be reduced by 66 % to a maximum of 0.5 FSN (see Fig. 16.8) whereas the repetition
measurement of the (more stable) center point showed a measurement deviation of
±0.2 FSN.
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Fig. 16.9 Modeled ECU variation parameters

16.6 Further Improvement

Further improvement of the model accuracy for all models can be achieved when a D-
optimal initial design is chosen. For this example 47 measurements were performed
which is the suggested amount of points for 5 variation parameters expecting a 3rd
oder polynomial behavior.

Model accuracy can be improved if the ECU variation parameters are not directly
used as input channels for model estimation. Instead, we use channels that are,
from a physical understanding of the combustion process, more likely to explain
the response variables. E.g. the estimated ECU channels for boost-pressure, injec-
tion timing and EGR were exchanged by the measured intake-manifold pressure, the
MFB 50 % (mass fraction burned 50 %) which can be measured with an indicating
device (AVL IndiCom™) and the EGR rate, measured with an emission bench. The
necessary values for the according ECU channels are still available after the optimi-
sation in case models are calculated for them. This means that these original ECU
variation parameters are not seen as variation channels any more but as response chan-
nels during the optimisation. Usually already simple 2nd order polynomial model
approaches can fit their behavior well, this is illustrated in Fig. 16.9.

Finally, the model quality can be increased continuously when adding additional
iterative design points as described in Sect. 16.5. As a measure of model fit we
calculate a leave one out estimator, denoted R2 pred (predicted). During the testrun,
the R2 pred does not change significantly which shows that the model structure is
flexible enough for fitting the measurement data, see Fig. 16.10. A second measure,
the root mean squared error on verification points, denoted RMSE*, decreases the
more iterative points are measured. We see that the model quality in the relevant area
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Fig. 16.10 R2 and RMSE* for modeled smoke calculated for different numbers of iDoE points

Fig. 16.11 Model quality for smoke using physical variation parameters and 30 iterative design
points

becomes more accurate during the test. In this example, 30 iterative design points
would be sufficient to decrease the RMSE* to less than 0.2 FSN.
The measured versus predicted plot is shown in Fig. 16.11. The residual for the
worst verification point in this case is 0.3 FSN which means an improvement by
80 % compared to the state of the art procedure. The necessary measurement time
increases by ≥ 60 % (see Table 16.2) which is still reasonable and so 9 stationary
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Table 16.2 Measurement time comparison for D-optimal design and COR DoE with 30 iDoE
points

# Variation points Time/measurement (min) Total measurement time (min)

D-optimal 59 4 236
Repetition points 8 1 8

244
Startdesign 47 4 188
2nd measurement 47 1 47
Repetition points 7 1 7
iDoE 30 4 120
2nd measurement 30 1 30

392

Fig. 16.12 Model quality for BSFC using physical variation parameters and 30 iterative design
points

operating points (with 5 variation parameters) can be measured fully automatically
during one weekend.
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Fig. 16.13 Model quality for NOx using physical variation parameters and 30 iterative design
points

At the same time also all other models get improved in the relevant area by adding
iterative variation points. The result for the fuel consumption and NOx emission is
shown in Figs. 16.12 and 16.13.

16.7 Conclusion

We presented a procedure that calculates the optimal design of an experiment online
during the workflow. It proved especially useful for the calibration of combustion
engines where legislative restrictions require certain output values to be bounded. The
training of online estimators of these outputs allows us to improve model quality in
areas that are relevant for further steps. Pre-knowledge of the calibration engineer can
be entered in the early stage of the test design for achieving an adequate measurement
point distribution in critical areas which is a prerequisite for gaining realistic models
reflecting the real engine behavior.
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Another technique for improving the model quality is the usage of physical vari-
ation parameters which can be modeled with much higher accuracy. At the same
time all models like fuel consumption, emissions, pressures, temperatures, etc. are
improved and therefore very accurate estimations can be expected as result of the
optimisation. The original ECU variation parameters are treated as response channels
so that they are also outputs of the optimisation and can directly be used e.g. for the
calibration of ECU maps.
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Chapter 17
Optimal Control of HCCI

Per Tunestål

Abstract HCCI (Homogeneous Charge Compression Ignition) is a very control-
intensive combustion concept which has been studied for over a decade because
of its favorable combination of high efficiency and low emissions. Various optimal
control methods have been applied to HCCI and this chapter gives an overview of
them. Optimal control of HCCI can be divided into model based and non-model
based where MPC is an example of model based and extremum seeking control is
an example of non-model based control. The model-based methods can be divided
based on whether they use physics based or black box models. Finally a division
can be made based on whether the control aims for optimal set-point tracking of e.g.
combustion timing or whether it attempts to optimize an overall design criterion such
as fuel consumption. This chapter presents and characterizes a number of published
methods for optimal HCCI control and characterizes them according to the above
criteria.

17.1 Introduction

HCCI (Homogeneous Charge Compression Ignition) combustion has been studied
intensely for more than a decade because of its ability to combine high efficiency
with low emissions of particularly nitric oxides (NOx) and soot. One great difficulty
with HCCI is however, that it lacks direct control of ignition. Unlike spark ignition
combustion which is ignited by a spark and diesel combustion where ignition is
triggered by fuel injection, HCCI combustion has spontaneous ignition of a homo-
geneous charge which means that the charge conditions have to be very accurately
controlled in order to assure ignition at the right time.
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The problem with controlling HCCI combustion timing has been recognized by
many researchers [1, 2] and many different control methods have been devised. A
majority of the published solutions have applied linear control e.g. PID [3] or linear
state feedback [4] with simple, low-level, control objectives such as tracking a desired
combustion timing trajectory. The main merits with these linear control methods are
low complexity, robustness and tunability.

Perfect tracking of combustion timing is however, not interesting in itself but rather
a tool to achieve other goals. Such goals could be low fuel consumption and/or low
emissions. This is recognized by some of the optimal control methods where the
optimality criterion is specified directly in terms of e.g. fuel consumption. Another
shortcoming of the linear control methods is constraint handling. Constraints are
nonlinear artifacts and as such can not be handled by truly linear controllers. For this
reason special constraint handling is added e.g. integrator windup protection, often
with less than satisfactory results.

Constraint handling is thus another reason to apply optimal control methods
such as MPC (model predictive control) which is essentially online constrained
optimization. With MPC the constraints can be explicitly taken into account in the
optimization and thus there is no need to add separate constraint handling. This
chapter presents examples of extremum seeking control as well as MPC control to
illuminate the issues mentioned above.

17.2 Optimal Control of HCCI

17.2.1 Multi-output MPC of HCCI

In [4], Bengtsson et al. show the first example of MPC (Model Predictive Control)
applied to control of HCCI combustion. The modeling approach is system identifica-
tion of cylinder individual MIMO models using the subspace identification method.
Excitation was provided by individually designed PRBS (Pseudo-Random Binary
Sequence) signals on each input.

The test engine had a dual-fuel port injection system capable of injecting indi-
vidual quantities of ethanol and n-heptane to each cylinder. It also had a cylinder-
individual VVT (variable valve timing) system capable of changing the (IVC) intake
valve closing angle from cycle to cycle which was not used in this control imple-
mentation.

The input/output selections for the HCCI cylinder models are illustrated in
Fig. 17.1. The inputs selected for the cylinder models were fuel mass per cycle
(Wf ), fraction of ethanol (Rf ), inlet temperature (Ti) and engine speed (n). The out-
puts were combustion timing (α50), load (IMEPn) and maximum pressure derivative
(dp/dθ ). dp/dθ represents the combustion noise and a reasonable limit for the heavy
duty test engine in the study is 15 bar/CAD (crank angle degree).
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Fig. 17.1 The
multi-input/multi-output
HCCI engine cylinder model
used for multi-output MPC
control design [4]

Rf α50

Tin
n

Win HCCI engine IMEPn
dp
dθ

The MPC design took a fairly simplistic approach where α50 was kept as close
to TDC (top dead center) as possible in order to minimize HC (hydrocarbon) and
CO (carbon monoxide) emissions. The tracking error of IMEPn was also included
in the cost function. Hard constraints were applied on inputs and soft constraints on
outputs, most importantly dp/dθ which was given a soft constraint of 15 bar/CAD.

Figure 17.2 shows an experiment where multiple stepwise load changes are
applied. It can be seen that α50 is delayed when necessary to satisfy the constraint.
When it is impossible to delay α50 further the IMEPn tracking is sacrificed by reduc-
ing the fuel mass.

17.2.1.1 Discussion

The strength of this approach is that it can minimize a cost function subject to
multiple constraints which can be both simple input saturation constraints and output
constraints. In this example the cost function was very simple. A more complicated
cost function would have made the optimization problem more complex and the
computation time would have increased substantially.

17.2.2 Physics-Based MPC of HCCI Combustion Timing

In [6] Widd et al. takes a physics based approach to MPC control of HCCI com-
bustion. A central part is a sub-model describing the heat transfer between cylinder
gas, cylinder walls and engine coolant. The continuous heat transfer is modeled as
taking place at three specific time instances in each cycle: after intake/mixing, after
combustion and after the exhaust stroke. The heat transfer model is illustrated in Fig.
17.3. The individual durations of the heat transfer events were tuning parameters.

Ignition was modeled using a simplified Arrhenius rate threshold model were the
temperature was approximated by the TDC temperature. Compression and expan-
sion were modeled as isentropic processes and IMEPn could be derived from cycle
temperatures using ideal cycle analysis.

The inputs to the model were the inlet valve closing angle (θIVC) and Ti and the
outputs were IMEPn and combustion timing (θ50). The resulting model is of second
order and a linearization was used for the MPC design. The control objective was θ50
tracking but a small weight was introduced on θ r

IVC − θIVC , where θ r
IVC is a reference
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Fig. 17.2 Multiple load step changes illustrating the characteristics of the multi-output MPC con-
troller [5]

crank angle in the middle of the controllable range of the inlet valve closing angle,
in order to achieve a midranging [7] effect since Ti and θIVC are to some extent
redundant. Midranging is a heuristic control design method that can be used when
two control inputs affect the same output. If one of the control inputs has a high
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Fig. 17.3 Illustration of the heat transfer model used for physics based MPC control of HCCI
combustion [6]

Fig. 17.4 Illustration of the disturbance rejecting characteristics of the physics-based MPC con-
troller with respect to disturbances in engine speed, fuel enginery and EGR level [6]

bandwidth and the other one has a wide range, the slow control input can be used
to push the fast one towards the middle of its range and thus make sure that high
bandwidth control is always possible.

Due to the low model order short prediction and control horizons could be used
which kept the computational load at a reasonable level. Figure 17.4 shows a distur-
bance rejection experiment with the physics based MPC controller which is able to
reject disturbances in engine speed, fuel mass and EGR level.

17.2.2.1 Discussion

The physics-based approach to MPC is attractive since it provides modularity and
a component-based structure. E.g. if material of the cylinder liner is changed in
the presented example, only the heat-transfer part of the entire model is affected
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and everything else stays the same. For an identified black-box model, the entire
identification would have to be repeated with the new hardware.

In this example the inlet valve closing timing and the inlet temperature are some-
what redundant in controlling the combustion phasing and then a midranging func-
tionality can be obtained by adding a weak penalty to deviations in the intake valve
closing timing from a reference value in the middle of its range, thus assuring maneu-
verability at all times.

17.2.3 Hybrid MPC of Exhaust Recompression HCCI

In [8] Widd et al. take a similar physics based modeling approach is in [6] but
without the heat transfer model. The reason for omitting the heat transfer is that the
engine used in this case operates with exhaust recompression with a considerable
amount of burned gas retained from one cycle to the next. The heat transfer then
has a minor influence on the charge temperature and instead focus is on the effect of
NVO (negative valve overlap). NVO is the crank angle interval when both exhaust
valves and inlet valves are closed around gas exchange TDC. By varying the NVO,
the amount of retained burned gas and thus the charge temperature can be controlled.
As in [6], the model is of second order. In [8] it is noted that the combustion timing
behavior is quite different for early and late combustion timings respectively (see
Fig. 17.5) with more cycle-cycle variation and less damping in the case of late
combustion. For this reason different linearizations are used for early, mid and late
combustion timings respectively in order to improve the control performance.

Tracking control of θ50 is implemented both using switching LQ design and using
hybrid MPC and a comparison for a large setpoint change is shown in Fig. 17.6. It
can be seen that the hybrid MPC controller handles the setpoint change signifi-
cantly better and the reason is believed to be the fact that the hybrid MPC controller
can anticipate the system behavior by using the correct linearization when jumping
between early, mid and late combustion timing. The LQ controller can however, only
use one linearization at a time based on the present combustion timing.

17.2.3.1 Discussion

The hybrid MPC is suitable for cases when the operating range can be partitioned
into a small number of regions with similar system behavior within each region.
The MPC can then perform nearly optimally throughout the operating range and
even during transitions between regions. It can still be used for systems where the
necessary number of regions is larger but the memory requirement as well as the
identification effort will scale with the number of regions.
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Fig. 17.5 Combustion timing behavior at early and late combustion timing respectively [8]

17.2.4 Optimizing Gains and Fuel Consumption of HCCI Using
Extremum Seeking

In [9] a completely non-model based approach is taken where extremum seeking
control is used for both tuning of controller gains for combustion timing control
and subsequently for fuel consumption minimization by optimizing the combustion
timing. The extremum seeking control is defined in Fig. 17.7 and minimizes the cost
function J(θ) with respect to the parameter θ .

Extremum seeking calibration of the control parameters is achieved by defining
the cost function as the tracking error and performing repeated positive and negative
step changes of the combustion timing (CA50) setpoint. Figure 17.8 illustrates how
PI parameters and a feed forward gain are optimized in 1600 s using this approach.

Using the calibrated CA50 controller extremum seeking control of CA50 was
subsequently applied in order to minimize fuel consumption. Figure 17.9 shows how
the fuel-optimal CA50 is found in approximately 2,000 s.

17.2.4.1 Discussion

Extremum seeking is attractive since it does not require a system model. It can also
handle any type of cost function without local optima. The drawbacks with extremum
seeking is that it usually requires artificial excitation and the excitation normally
has to be of significantly lower frequency than the bandwidth of the system. Each
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Fig. 17.6 Comparison of large setpoint changes for MPC and LQ controllers [6]

Fig. 17.7 Discrete extremum seeking control with sinusoidal excitation and optimization of the
cost function J(θ) [9]

additional parameter to be optimized requires its own excitation frequency which
means slower convergence.

17.3 Conclusions

Four different optimal HCCI control methods have been presented of which three are
based on MPC. MPC is valuable for HCCI control mainly because of its ability to
explicitly handle constraints. MPC can be applied both to black-box models based on
system identification and to linearized physics-based models. When using piece-wise
linear models MPC can anticipate model switching which can greatly improve the
dynamic behavior for e.g. large setpoint changes. Second order models and relatively
short prediction and control horizons have been sufficient for the presented cases and
thus the resulting MPC designs have reasonable computational demands. Extremum
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Fig. 17.8 Extremum seeking calibration of PI and feedforward gains [9]

Fig. 17.9 Fuel consumption minimization using extremum seeking control of combustion
timing [7]

seeking control provides a completely non-model based alternative. The advantage
compared to MPC is that there is no need to derive and calibrate models but extremum
seeking is essentially to be considered as a steady-state calibration method since the
closed-loop bandwidth is a few orders of magnitude lower than for the presented
MPC methods.
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Chapter 18
Optimal Lifting and Path Profiles for a Wheel
Loader Considering Engine and Turbo
Limitations

Vaheed Nezhadali and Lars Eriksson

Abstract Time and fuel optimal control of an articulated wheel loader is studied
during the lift and transport sections of the short loading cycle. A wheel loader model
is developed including engine (with turbo dynamics), torque converter, transmission
and vehicle kinematics, lifting hydraulics and articulated steering. The modeling is
performed with the aim to use the models for formulating and solving optimal control
problems. The considered problem is the lift and transport section of the wheel loader
that operates in the short loading cycle, with several different load receiver positions,
while the considered criteria are minimum time and minimum fuel. The problem
is separated into four phases to avoid solving a mixed integer problem imposed by
the gearshifting discontinuities. Furthermore, two different load lifting patterns are
studied one with the lifting free and one with the lifting performed only in the last
30 % of the transport. The results show that the optimal paths to the load receiver are
identical for both minimum time and minimum fuel cycles and do not change when
the loading lifting pattern is altered. A power break-down during the wheel loader
operation is presented for the selected cycles of normal and delayed lifting where it
is shown that the cycle time remains almost unchanged when lifting is delayed while
the fuel consumption slightly decreases in minimum time transients.

18.1 Introduction

Wheel loaders (WL) consume significant amounts of fuel and usually operate in
loading cycles where the same task is executed repeatedly. In such operations, op-
timizing the maneuvers as well as reducing the fuel consumption in every single
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Fig. 18.1 Numbered sequence of actions in a short loading cycle between the loading point and
the load receiver, point 4 is called the reversing point, picture from Ref. [5]

cycle can significantly reduce the total production cost. This is therefore an interest-
ing application where optimal control can guide engineers in the development of an
efficient vehicle and users in how to utilize it efficiently.

A WL is a complex system, consisting of several subsystems with a power produc-
ing engine and several power consumers that compete about the power. Consumers
are for example lifting system, powertrain with torque converter and gearbox for
propulsion, as well as steering system which interacts with the powertrain in per-
forming an efficient transport mission. Optimal control of such a system provides
valuable knowledge about the optimum usage of the system dynamics. For example
minimum fuel (Min M f ) and minimum time (Min T ) operation solutions provide
valuable information, and enables manufacturers to point out bottle necks as well as
potential for improvements in the system design. Furthermore control algorithms and
strategies of autonomous WL control systems can also be developed and improved
by the optimal control results, see e.g. [7, 8, 11].

In this chapter, a WL is modeled as a nonlinear dynamic system with 9 states and 4
control inputs. The insight of modeling is to develop a model suitable for calculating
the optimal controls of the WL in the short loading cycle. The short loading cycle,
depicted in Fig. 18.1 is a frequent application of WLs where the optimal control
analysis of the vehicle operation gives much insight into reducing fuel costs and cycle
operation times. Different studies have been carried out to calculate the optimal WL
working path profile (trajectory) in a loading cycle [1, 6, 18, 19, 21]. Another path
is followed in [13] and [14] where optimal control is used for a fixed length short
loading cycle where the major dynamics (engine, lifting, powertrain, and longitudinal
motion) of the WL operation in the short loading cycle is studied. The results here
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extend the results in [13, 14] to also cover and solve the optimal WL path from
loading point to load receiver. The emphasis in the modeling section is to model
the components that have the largest power consumption during the WL operation,
while still using models that are compact enough for utilization in optimal control
problem formulation.

18.1.1 Outline

Section 18.2 describes the model of the wheel loader. The model is used, in Sect. 18.3,
to formulate two optimal control problems Min M f and Min T . These are formulated
so that they can be solved to obtain the trajectory and transients of the WL system. The
properties and requirements of the loading cycle and WL components are represented
as boundary conditions and path constraints in the problem. The change of gear ratio
during the WL operation introduces a discontinuity into the optimal control problem
which is remedied by dividing the cycle into multiple phases with constant gear ratio.

In Sect. 18.4 the solutions from the multi-phase optimal control problem, for sev-
eral different load receiver positions are presented. Optimal trajectories, with control
inputs and states are analyzed for the loading cycles. The power consumption by
different components during the WL operation is calculated and the power distri-
bution between various components is analyzed. The effect of changing the load
lifting strategy on the fuel consumption, cycle time and power distribution is also
studied. Finally the conclusions are given in Sect. 18.5. The symbols, parameters
and constants used in the following are summarized in the Tables 18.1, 18.2.

18.2 System Model

The WL model consists of three main sub systems namely powertrain, steering and
lifting, see Fig. 18.2. Vertical bucket acceleration Uab is selected as the control input to
the lifting system, and correlates to the hydraulic forces in the lifting cylinders which
are adjusted by the hydraulic valves. In the submodels for fuel injection, braking and
steering the control inputs are selected as fuel mass injected per combustion cycle
Um f , braking torque Ub, and the derivative of steering angle Ustr .

The state variables are selected to be engine speed ωice, intake manifold pressure
Pim , bucket height Hbuc, bucket lifting velocity Vbuc, steering angle δ, vehicle speed
V , heading angle θ and positions in X and Y directions determined by the differential
equations in (18.1)–(18.5).
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Table 18.1 List of symbols

Parameter Description Unit

ωice Engine speed rps
Tice Engine torque Nm
Um f Injected fuel per combustion cycle kg/cycle
Uab Vertical lifting acceleration m/s2

Ustr Derivative of steering angle rad/s
Ub Torque from service brakes Nm
Hbuc Height of the bucket m
Vbuc Vertical speed of the bucket m/s
θ Wheel loader heading angle rad
δ Steering angle rad
V Wheel loader speed m/s
X Wheel loader position in X m
Y Wheel loader position in Y m
Pim Intake manifold pressure Pa
Pstr Power consumed for steering W
Ptrac Power consumed for traction W
Pli f t Power consumed for lifting W
Pm Intake manifold pressure model Pa
Ftrac Traction force N
Froll Rolling resistance force N
ṁa Air mass flow kg/s
ṁ f Fuel mass flow kg/s
Tig Combustion generated torque Nm
T f ric Engine friction torque Nm
λ Air to fuel ratio indicator -
φλ Smoke limit -
φ Speed ratio in torque converter -
ωgb Gearbox rotational speed rps
Tpump Torque on pump side of torque converter Nm
Tturbine Torque on turbine side of torque converter Nm
Tgb Torque at gearbox input Nm
Tw Torque at wheels Nm
R Turning radius m
σ path curvature 1/m
Fload Required force for load lifting N
Lcyl Length of lift cylinder m
Acyl Cross section area of lift cylinder m2

Pcyl Pressure in lift cylinders Pa
Pcyl,max Maximum pressure in lift cylinders Pa
Q pump Hydraulic pump flow m3/s
vcyl,max Maximum lift cylinder speed m2

Vli f t,max Maximum lifting speed m2

(continued)
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Table 18.1 (continued)

Parameter Description Unit

Fw Boom weight N
Fp Applied force on lift pistons N
α Angular acceleration of boom rad/s2

Mo Sum of torques applied on boom Nm
M f Total mass of consumed fuel kg
T Cycle duration s
ti Phase duration (i ∈ {1, 2, 3}) s
ṡi State derivative -
Xend Load receiver position in X m
Yend Load receiver position in Y m
Ploss,G B Power losses in gearbox W
Ploss,T C Power losses in torque converter W
Peng,acc Power required for engine acceleration W

Table 18.2 Parameters and constants used in the model and optimal control problem formulation

Parameter Description Value Unit

Mbuc Mass of bucket 10,000 kg
ηli f t Efficiency of lift pump 0.9 –
ηvolumetric Volumetric efficiency of the lift pump 0.98 –
ηcycl,l Mechanical efficiency of the lift cylinder 0.95 –
ηgb Efficiency of gearbox 0.9 –
cr Rolling resistance 0.03 –
λmin Minimum air to fuel ratio 1.2 –
(A/F)s Stoichiometric air to fuel ratio 14.57 –
cp Steering power parameter 3e4 –
cp,1 Intake manifold pressure parameter −0.328 –
cp,2 Intake manifold pressure parameter −121.519 –
cp,3 Intake manifold pressure parameter 0.057 –
cp,4 Intake manifold pressure parameter 97,179.699 –
ct,1 Time constant parameter 38.5857 –
ct,2 Time constant parameter −0.6869 –
Ra Gas constant, air 287 J/kg K
Tamb Ambient temperature 300 K
Pamb Ambient pressure 101.57 kPa
ηvol, eng Volumetric efficiency of diesel engine 0.9 –
Mveh Mass of wheel loader 32,000 kg
Jw Wheel inertia 100 kg m2

rw Wheel radius 0.7 m
Mwheels Mass of wheels 4 ∗ Jw/(r2

w) kg

(continued)
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Table 18.2 (continued)

Parameter Description Value Unit

Iice Engine inertia 3 kg m2

ηgb Gearbox efficiency 0.9 –
ncyl Number of cylinders 6 –
Vd Engine displacement volume 13e-3 m3

γ Gearbox gear ratio [ −60, 0, 60] –
c f r1 Engine friction coefficient 0.7196 –
c f r2 Engine friction coefficient −0.1414 –
c f r3 Engine friction coefficient 0.3590 –
qlhv Heating value, diesel 42.9 e6 J/kg
nr Engine rev. per power cycle 2 –
ηig,ch Combustion chamber efficiency 0.6877 –
rc diesel engine compression ratio 17.3 –
γcyl Specific heat capacity ratio of cyl. gas 1.35004 –
Dpump Hydraulic pump displacement 220/1,900 L/round
r boom length 2.9 m
r1 boom length 1.7 m
xc dimension 0.19 m
yc dimension −0.3 m
G dimension 2.3 m
rpist lift piston radius 0.19/2 m
rrod lift rod radius 0.09/2 m
Pcyl,max max lift cylinder pressure 34 MPa
Ustr,min lower limit on Ustr −1 rad/s
Ustr,max higher limit on Ustr 1 rad/s
Ub,max higher limit on Ub 2e5 Nm
Um f,max higher limit on Um f 265 –
Uab,min lower limit on Uab −5 m/s2

Uab,max higher limit on Uab 5 m/s2

ωice,min lower limit on ωice 57 rps
ωice,max higher limit on ωice 230.38 rps

dωice

dt
= 1

Jice

(
Tice(Um f , ωice)

− Pli f t (Uab, Vbuc) + Pstr (Ustr ) + Ptrans(ωice, V )

ωice

)
(18.1)

d Pim

dt
= 1

τm(ωice)
(Pm(ωice, Tice) − Pim) (18.2)

d Hbuc

dt
= Vbuc,

dVbuc

dt
= Uab (18.3)

dV

dt
=

sign(V )
(

Ftrac(Ub,ωice) − Froll

)

Mtot
(18.4)

dδ

dt
= Ustr ,

dθ

dt
= V

R(δ)
,

d X

dt
= V cos(θ),

dY

dt
= V sin(θ) (18.5)
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Fig. 18.2 Building blocks of the WL system model and the interdependence between components.
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In the following sections, the component models of the WL system are presented.
Using the sign function in (18.4), same differential equation can be used during the
reversing (sign(V ) = −1) and forwarding (sign(V ) = +1) phases of the cycle.

18.2.1 Powertrain and Longitudinal Dynamics

The powertrain delivers the torque for vehicle traction to the wheels of the WL. The
powertrain model consists of sub models for diesel engine, torque converter (TC),
gearbox and the wheel that connects the powertrain to the longitudinal dynamics, see
Fig. 18.2. The control inputs to the powertrain model are fuel injection per combustion
cycle Um f and braking torque Ub, the states of the components are engine speed ωice,
intake manifold pressure Pim and vehicle speed V .

18.2.1.1 Diesel Engine

The engine model is a simplified version of the model in [22] which represents a 12
Liter 6 cylinder turbocharged diesel engine. The power required for lifting, steering
and traction in the WL model is generated by the engine. The engine dynamics are
represented by ωice and Pim , while the control input to the engine model being Um f .
The mass flows into the engine model stated in [kg/s] are air ṁa and injected fuel
ṁ f

ṁa = ηvol, eng Vd ωice Pim

4πRa Tamb
, ṁ f = 10−6

4 π
Um f ωice ncyl (18.6)

Engine gross indicated torque Tig is calculated based on the fuel mass per combustion
cycle and engine friction torque is modeled as a polynomial of engine speed.
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Tig(Um f ) = ηig qhv ncyl Um f 10−6

4 π
(18.7)

T f ric(ωice) = Vd 105

4π

(
c f r1 ωice

2 + c f r2 ωice + c f r3

)
(18.8)

Tice(Um f ,ωice) = Tig(Um f ) − T f ric(ωice) (18.9)

The increase in the intake manifold pressure depends on the mass flow over the
compressor which is strongly dependent on the turbocharger speed. When the driver
hits the accelerator pedal in a turbocharged diesel engine, the engine torque increases
transiently due to slower speed dynamics of the turbocharger [3]. The time that it
takes for the turbocharger speed build up is called turbo lag and it is accounted for
by modeling the intake manifold pressure as a function of engine speed and torque
including a variable time constant τm which depends on the engine speed.

Pm(ωice, Tice) = cp,1 ω2
ice + cp,2 Tice + cp,4 (Tice ωice)

2 + cp,3 (18.10)

τm(ωice) = ct,1 ω
ct,2
ice (18.11)

where the tuning parameters are cp,1,2,3,4, ct,1 and ct,2. The dynamics of the intake
manifold pressure is then described by the following differential equation

d Pim

dt
= 1

τm(ωice)
(Pm(ωice, Tice) − Pim) (18.12)

The relative air to fuel ratio λ is defined by

λ = (ṁa/ṁ f )

(A/F)s
(18.13)

In order to avoid division by zero in (18.13) when fuel is cut off (Um f = 0), φλ is
defined as

φλ = ṁa − ṁ f (A/F)s λmin (18.14)

where the λmin is set according to the smoke limits during the engine operation.

18.2.1.2 Torque Converter, Gearbox and Longitudinal Dynamics

TCs are used instead of using mechanical clutches to improve the drivability of
vehicles at the cost of adding an additional efficiency into the powertrain. A TC
transfers the engine torque to the wheels by means of a hydrodynamic coupling
between pump and turbine sides where the stator blades multiply the magnitude of
the transferred torque. When the TC transients are to be studied, differential equations
are used to describe the TC dynamics [10], however, for powertrain control study
only efficiency of the TCs is included in the models using efficiency look-up tables
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Fig. 18.3 TC characteristic curves ξ and κ define the operation mode depending on the speed
ratio φ

which are simpler for controller design, [9] and [23]. TC characteristics depend on the
speed ratio φ over the component, and here, functions are fitted to the experimental
data to model the TC. The transferred torque from the TC to the gearbox Tturbine is
calculated as follows

φ = ωgb

ωice
ωgb = V γ

rw

(18.15)

Tpump = ξ(φ) (
ωice

1,000
)2 Tturbine = κ(φ) (

ωice

1,000
)2 (18.16)

where ξ(φ) and κ(φ) are the TC characteristics depicted in Fig. 18.3. The TC is
modeled to operate in two different modes depending on the φ value. Mode I during
traction where the engine torque is transfered to the wheels for vehicle acceleration
(0 ≤ φ ≤ 1), and mode II where the turbine side overruns the pump side (φ > 1).
A rapid drop in the engine speed while the vehicle is moving (ωgb �= 0) results in
φ > 1 meaning that the kinetic energy is transferred from the gearbox side to the
engine side of the TC. A constant efficiency gearbox transfers the TC output torque
to the wheels.

Tgb = Tturbine Tw = Tgb ηgb γ (18.17)

where γ is the gearbox gear ratio. Vehicle longitudinal acceleration is calculated
by neglecting the aerodynamic resistive forces, due to low vehicle velocities, and
considering only the rolling resistance forces while including the wheel inertia as an
equivalent mass in the total mass of the vehicle.
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Froll = sign(V ) cr (Mveh + Mbuc) g, Ftrac = Tw − sign(V ) Tb

rw
, Tb = Ub

(18.18)

Mtot = Mveh + Mbuc + 4 Jw

r2
w

,
dV

dt
= sign(V ) (Ftrac − Froll)

Mtot
(18.19)

The sign operator defines the direction of WL travel in the reversing and forwarding
sections of the short loading cycle. The power required at the input to the TC, Ptrans ,
in order to generate the tractive force at wheels is calculated according to

Ptrans = Tpump ωice (18.20)

18.2.2 Steering and Ground Position

Articulated steering is used in WLs where the two main bodies of the vehicle are
connected by a revolute joint such that the front and rear axles are equidistant to
the articulation point. This type of steering is favorable in WLs as the front and rear
wheels move over the same trajectory easing the movement of vehicle on muddy
surfaces [18]. Figure 18.4 shows the geometry of the WL while turning. From the
system and control points of view, several studies have been performed on path
planning and trajectory optimization, e.g. [2, 12, 17], while many are specifically
dedicated to WLs path planning and optimization [1, 18, 19, 21]. Here, in the steering
system, WL position and heading angle are modeled using simple vehicle kinematics.
(X , Y ) and heading angle θ during load carrying from the loading point to the load
receiver are determined based on the vehicle speed V and steering angle δ while
the derivative of steering angle Ustr is the control input to the model. The steering
dynamics are then determined by

dθ

dt
= V

R
,

d X

dt
= V cos θ,

dY

dt
= V sin θ (18.21)

where R is the turning radius and (X, Y, θ) are calculated at point C, see Fig. 18.4,
which remains equidistant from the front and rear axles during the loading cycle. For
control purposes, the steering angle must remain continuous during the operation
which is ensured by selecting the steering angular velocity Ustr as the control input
to the steering system and bounding it within limits.

dδ

dt
= Ustr , Ustr,min < Ustr < Ustr,max (18.22)

Vehicle turning performance is specified as a minimum turning radius, Rmin . To
ensure that the model fulfills this, the following connection between R and δ is used
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Fig. 18.4 The position of WL
during the loading cycle is
determined for point C

R

C(x,y, )

/2

L/2

L/2

V

R = L

2 tan( δ
2 )

, σ = 1

R
(18.23)

where σ is the path curvature.
The hydraulic power required for steering Pstr is modeled as a quadratic function

of steering angular velocity meaning that there is no power demand for steering when
steering angle is unchanged.

Pstr = cpU 2
str (18.24)

where cp is the tuning parameter.

18.2.3 Lifting System

The lifting speed Vbuc and bucket position Hbuc, both in vertical direction, are de-
termined in the lifting system model. The control input to the model is the vertical
acceleration of the bucket Uab and the required power for lifting Pli f t is calculated
as follows

Fload = Mload (g + Uab), Pli f t = Fload Vbuc

ηli f t
(18.25)

where the load mass Mload is assumed to remain constant.
Lifting speed Vbuc is dependent upon engine speed, as the hydraulic pumps in

the lifting system rotate at the same speed as the engine until the flow in the pumps
becomes saturated at 1,500 rpm. Also, the maximum lifting acceleration is limited
by the maximum allowed pressure in the hydraulic system. In order to derive the
constraints on the lifting speed and acceleration, the boom geometry is analyzed.
While the boom is lifted, the displacement along the lift cylinders �Lcyl is multiplied
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Lcyl 
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Fig. 18.5 The boom geometry and acting forces during lifting (left), and the multiplication factor
between the lift cylinder and boom end displacement (right)

with a factor k resulting in vertical displacement �Hbuc at the end of the boom, see
Fig. 18.5-right. k is calculated as a function of the boom angle θ2 as follows

θ2 = sin−1(
Hbuc − G

r
), θ1 = tan−1(

r1 cos(θ2) − xc

r1 sin(θ2) − yc
) (18.26)

Lcyl =
√(

r1 cos(θ2) − xc
)2 + (

r1 sin(θ2) − yc
)2 (18.27)

k(θ2) = �(r sin(θ2))/�θ2

�Lcyl/�θ2
, r = r1 + r2 (18.28)

where G is the distance between the boom and body joint, point O , from the ground
level and r1, r2, θ1,2, xc and yc are illustrated in Fig. 18.5-left. Lifting is carried out by
means of lift cylinders where two identical hydraulic pumps deliver the fluid to the
system. The maximum displacement speed of the lift cylinders vcyl,max is determined
by the maximum amount of fluid Q pump pumped into them which is calculated as

Acyl = π (r2
piston − r2

rod), Q pump = min(ωice, 157) × Dpump,max ηvolumetric

(18.29)

vcyl,max (ωice) = Q pump ηcyl,l

Acyl
(18.30)

using the k factor calculated in (18.28) the maximum possible bucket lifting speed
at the end of the boom is determined as a function of the engine speed.

Vli f t,max (ωice) = k(θ2) vcyl,max (ωice) (18.31)

Forces acting on the boom, during lifting are depicted in Fig. 18.5. In order to calculate
the magnitude of the force exerted on the lifting cylinders, the torque equilibrium
equation is solved around joint O .
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Fw = Mboom (g + Uab) (18.32)

∑
Mo = Iboom α ⇒ Fp =

Iboom Uab
r + Fload r cos(θ2) + Fw

r
2 cos(θ2)

r1 sin(θ1 − θ2)
(18.33)

accordingly, the exerted pressure in the lifting system at any boom position and
bucket acceleration is calculated as

Pcyl(Uab, Hbuc) = Fp(Uab, Hbuc)

Apiston
(18.34)

It is noted that the bucket height Hbuc is selected as a system state since it is required in
(18.26), to determine the geometry of the boom θ2, which is needed when calculating
the maximum lifting speed and lift cylinder pressure.

18.3 Optimal Control Problem Formulation

The WL model developed in the previous section is utilized to formulate an optimal
control problem which is solved in order to obtain the Min T and Min M f transients
of the WL system. In this section, first the loading cycle requirements are described in
terms of boundary conditions of the optimization problem, then the path constraints
are defined and finally the formulated optimal control problems is presented.

Gear shifts during the loading cycle introduce a discontinuous variable, gear ratio,
into the problem. To avoid discontinuities in the problem and thus avoiding the need
to solve a mixed integer problem, the loading cycle is divided into four separate
phases where the gear ratio of the gearbox remains constant during each phase. The
first phase starts when the WL leaves the loading point and reverse gear is selected
to accelerate towards the reversing point, then in the second phase, the gearbox goes
into neutral and service brakes are used to stop the vehicle. This process is repeated
in the third and fourth phases with the difference that the WL moves in forward
direction. The short loading cycle requirements are described in terms of boundary
conditions in Table 18.3 where ṡi are the system states determined by the differential
equations (18.1)–(18.5) and ṡ = 0 at the end of the cycle ensures that the vehicle
reaches the load receiver at stationary condition.

The final position of the WL (Xend , Yend ) depends on the configuration of the
construction site. It is assumed that the WL starts reversing from the origin at the
loading point and the load receiver is located down to the left of the origin. The
working range of WL is constrained using the coordinates of the loading point and
load receiver as follows

X ≥ Xend , Y ≤ 0, 0 ≤ θ ≤ 2π (18.35)
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Table 18.3 The load carrying section of the short loading cycle is defined in terms of boundary
conditions in the optimal control problem

Time 0 Phase 1 reversing Phase 2 reversing Phase 3 forwarding Phase 4 forwarding
γ = −60 γ = 0 γ = 60 γ = 0
Ub = 0 Ub �= 0 Ub = 0 Ub �= 0
t−1 t+1 t−2 t+2 t−3 t+3 T

ωice 1, 500 [rpm] – – – – – – –
Pim 1.1 Pamb – – – – – – –
Hbuc 0.7 [m] – – – – – – 5 [m]
Vbuc 0 – – – – – – 0
V 0 – – 0 0 – – 0
Ustr 0 – – – – – – 0
δ 0 – – – – – – 0
θ 90◦ – – – – – – –
X 0 – – – – – – Xend

Y 0 – – – – – – Yend

ṡi – – – – – – – 0

The free variables t1, t2 and t3 are the gear shifting times which will be optimized

In order to avoid exerting uneven forces on the boom structure, the WL must be
perpendicular to the load pile (at t = 0, θ = 90◦) and load receiver at the beginning
and end of the cycle, [18]. At the beginning of the first phase, it is assumed that
the bucket is lifted as high as the wheel radius and since the engine has already
been producing power for bucket filling, the initial engine speed and intake manifold
pressure are set higher than the idling engine speed and ambient pressure respectively.
When the bucket is loaded and raised, the vehicle should not brake harshly in order to
avoid structural damages and this is ensured by adding the constraint on the vehicle
speed derivative. The smoke limiter constraint on φλ and other component limitations
according to the properties stated in [16] are defined as the following path constraints

0 ≤ φλ Vbuc ≤ Vli f t,max (ωice)

Rmin ≤ R(δ) Tice ≤ Tice,max (ωice)

ωice,min ≤ ωice ≤ ωice,max |V | ≤ Vmax

Pcyl(Uab, Hbuc) ≤ Pcyl,max −0.18 g ≤ dV

dt
δmin ≤ δ ≤ δmax Pamb ≤ Pim

Uab,min ≤ Uab ≤ Uab,max 0 ≤ Um f ≤ Um f,max

Ustr,min ≤ Ustr ≤ Ustr,max 0 ≤ Ub ≤ Ub,max

(18.36)

In order to ensure the continuity of the states between the successive phases, phase
connectivity constraints are applied to the problem. The bucket acceleration Uab and
steering angular velocityUstr are kinematic properties which cannot be discontinuous
for the sake of mechanical stability, therefore, the connectivity constraints are applied
on these control inputs as well.
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Uab, Ustr and si at start of phase j + 1 = Uab, Ustr and si at end of phase j(18.37)

i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, j ∈ {1, 2, 3}

The fuel consumption during the WL operation is calculated as

M f =
∫ t1

0
ṁ f dt +

∫ t2

t1
ṁ f dt +

∫ t3

t2
ṁ f dt +

∫ T

t3
ṁ f dt (18.38)

where ṁ f is obtained by (18.6). The optimal control problems formulated to calculate
the Min T and Min M f system transients and the phase shifting times t1, t2, t3 are

min
u(·) M f or min

u(·) T

s.t: ṡ = f (s, u) and constraints in (18.36), (18.37) and Table 18.1
(18.39)

Due to the complexity of the problem and number of states and control inputs,
solving the OCPs with methods such as Dynamic Programming or Pontryagin’s
Maximum Principle would require very large computational effort. Therefore, an
optimal control solver PROPT [20] is used to solve the problem in (18.39). The
solver employs pseudospectral collocation method [4] to solve the OCP where states,
controls and cost function are described in terms of high order polynomials satisfying
the constraints.

18.4 Results

The multi-phase optimal control problem in (18.39) subjected to the path constraints
and boundary conditions in (18.35)–(18.37) and Table 18.3 is solved for thirty differ-
ent load receiver positions (Xend , Yend ) which are evenly spread over a 20 × 20 m2

working area, and the Min M f and Min T transients and optimal trajectory of the
WL are calculated. The effects of imposing an alternative lifting pattern on the tran-
sients is analyzed and power distribution between the different components during
the operation is presented.

18.4.1 Optimal WL Trajectory from Loading Point to the Load
Receiver

The optimal WL trajectory from the loading point to the load receiver is found to
be nearly identical at different points of the working area for Min M f and Min T
transients. The results show that the minimum traveling distance between the loading
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Fig. 18.6 The optimal WL trajectory in the short loading cycle from the loading point to the load
receiver for Min M f and Min T transients are identical and depend only on the load receiver position
(left). The trajectory curvature remains continuous during the operation which is a necessity for
trajectory controller design (right)

point and the load receiver is selected in both Min M f and Min T solutions, although
the Min M f transients are almost twice as long as the Min T transients. Figure 18.6-
left, shows the optimal trajectories of the WL, and final heading angles corresponding
to the optimal orientation of the load receiver, at various load receiver positions. The
shortest and the longest trajectories are highlighted and the system transients will
be presented for them in the sequel. In the same figure, to the right, the trajectory
curvature (σ) is presented for the highlighted cycles where it is seen that it remains
continuous during the cycle. This is a necessity for trajectory controller design, [18,
19, 21], and is the result of using the constrained derivative of the steering angle Ustr

as the control input to the steering system. The curvature is zero at the beginning
where the WL leaves the loading point and also at the end of the cycle when the
vehicle reaches the load receiver.

18.4.2 Min M f and Min T System Transients

Figures 18.7 and 18.8 show the Min T and Min M f transients and the engine op-
erating points for the short and long cycles, highlighted in Fig. 18.6. According to
[15], a typical lift and transport operation consists of around 5 s reversing and 5 s
forwarding (for the same range of distance as in the shorter cycle here), while the
Min T transients are calculated to be only 8 s. The duration of Min M f transients
for the same cycle are nearly two times longer with 36 % lower fuel consumption.
In the Min T case, at the beginning of the first phase when the WL starts to move,
the increase in engine output torque is limited by the smoke limiter constraint which
is caused by the turbocharger speed build up effect with insufficient Pim resulting in
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Fig. 18.7 Engine operating points in time and fuel optimal transients with respect to the engine
torque limits for the short and long cycles (constant efficiency curves in blue and constant power
[kW] curves in gray)

low ṁa . The bucket lifting starts a bit later in order to leave all of the engine power for
faster vehicle acceleration and steering at the beginning. The steering angle rapidly
decreases to the lowest allowed value by the minimum curvature radius constraint
and remains unchanged until moments before reversing point where it goes towards
zero.

In the second phase, the engine is decoupled from the wheels when the gear is
shifted into neutral. All the engine power is used for lifting while higher engine speed
at the end of this phase is desirable, since the kinetic energy of the engine is going to
be used for faster vehicle acceleration at the beginning of the next phase via a rapid
drop in the engine speed.

In the Min T transients of the short cycle, half of the final bucket height is reached
during reversing and the rest in the forwarding section. In case of the long cy-
cle, the length of the reversing and forwarding sections of the cycle are unequal.
In the reversing section, faster dynamics of the steering angle occur in order to
position the vehicle quickly in the trajectory where less steering power would be
required during forwarding. Most of the engine power is allocated to vehicle ac-
celeration and steering without major load lifting during reversing. In the section
with forward movement, except short intervals at the beginning where vehicle is
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accelerated, the WL travels mostly on a straight line (no steering power required)
with a constant speed (small traction power required) where most of the engine power
remains untouched and available for fast load lifting.

In case of the short cycle and for both Min M f and Min T transients, the third phase
has similar dynamics as the first one in the sense that first the vehicle is accelerated
to high speeds and then the lifting starts.

The Min M f transients are similar for both short and long cycles in the sense that
high engine speeds are avoided and less rapid changes occur in Um f . But still Ustr
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has fast dynamics in order to ensure that the shortest trajectory to the load receiver
is traveled.

18.4.3 Delayed Lifting

Considering the uneven surfaces where WLs operate on, the risk of losing vehicle
stability increases when the loaded bucket is raised during the period that the vehicle
is moving. The results in Fig. 18.8 show that the load lifting begins early in the
reversing phase and the bucket is raised from its initial position during a long period
of the cycle. In this section, the problem formulated in (18.39) is solved with an
additional constraint limiting the bucket lifting to only the last 30 % of the cycle
duration ensuring that the bucket remains mostly on lower height levels. To study the
effects of the lifting pattern on the system transients and power distribution among
different components, the Min T and Min M f transients and power break down
between various components are analyzed.

18.4.3.1 Effects of Delayed Lifting on Min T and Min M f Transients

The optimal trajectory from the loading point to the load receiver in different po-
sitions remains the same as that of the normal lifting pattern and looks as depicted
in Fig. 18.6. The Min T and Min M f transients of the WL for the short and long
cycles are illustrated in Fig. 18.9 where lifting is delayed. The reversing section re-
mains similar to the previous case with the difference that after accelerating to high
speeds, no power is required for lifting and less engine torque is generated late in the
reversing section. The major difference happens, as expected, late in the forwarding
section where the vehicle is controlled to reach high speed before start of lifting in
order to leave most of the engine power for lifting in the rest of the cycle duration.
The fuel injection level increases to produce larger torque as the lifting starts and the
intake manifold pressure rises to deliver more air to the combustion chamber so that
more fuel can be injected without reaching the smoke limit.

18.4.4 Power Break Down

The power generated by the diesel is consumed for vehicle traction Ptrac, load lifting
Pli f t and vehicle steering Pstr . TC losses Ploss,T C also constitute a major portion
of power consumption and are calculated separately while the power loss due to
the efficiency of the lifting system is included in Pli f t . The diesel engine power is
required for traction when the traction force Ftrac is positive.
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lifting is delayed to the last 30 % of the cycle duration. Vertical lines are the phase boundaries

Ftrac = Mtot
dV

dt
+ Froll , Ptrac = Ftrac V when Ftrac > 0 (18.40)

The power loss in the gearbox is calculated as follows

Ploss,G B = 1 − ηgb

ηgb
Ptrac (18.41)

The loss of power in the TC is calculated as the difference between the input and
output powers of the TC as
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Ploss,T C = Tpump ωice − Tgb γ
V

rw

(18.42)

A part of the engine power is consumed to overcome the engine inertia Peng,acc

during engine acceleration. When the engine decelerates, Peng,acc becomes negative
meaning that the kinetic energy of the engine is delivered back to the system.

Peng,acc = Jice ωice
dωice

dt
(18.43)

Finally, the power balance in the system is described by the following equation

Tice ωice = Pli f t + Ptrac + Pstr + Peng,acc + Ploss,T C + Ploss,G B (18.44)
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The power distribution in the WL system during the Min T and Min M f transients
of the short and long cycles is illustrated on the left column of Fig. 18.10 where
Ploss,G B is lumped into Ptrac. The right column in the same figure shows the power
distribution for the case where lifting is delayed. It is interesting to note that by
changing the lifting pattern, the proportion of energy consumption remains almost
unchanged among different consumers and only the course of events gets shifted.
The increase in the cycle duration in case of delayed lifting is negligible, and the fuel
consumption remains nearly unchanged in the Min M f transients while it decreases
by 1.2 and 1.9 % in case of Min T transients of the short and long cycles respectively.
This implies that lifting can be performed closer to the load receiver in the loading
cycle without causing major losses in cycle duration or increase of fuel consumption
while better stability of the vehicle is achieved during the load carrying operation.

18.5 Conclusion

A wheel loader (WL) is modeled as an integration of three sub systems namely
powertrain, lifting and steering where the aim is to describe the main dynamics of the
subsystems with highest power consumption during the WL operation. The trajectory
generation for the WL from loading point to the load receiver is also included in the
model. The diesel engine is modeled including turbocharger limitations while the
number of state variables and control inputs are reduced by modeling the intake
manifold pressure as a function of engine speed and torque. The torque converter
is modeled by static characteristic curves and a constant efficiency gearbox is used.
The geometry of the boom is analyzed and the structural constraints during lifting
are modeled in the lifting system.

The loading cycle is divided into four phases with constant gearbox gear ratio
during each phase in order to avoid facing a mixed integer optimal control problem.
The minimum fuel (Min M f ) and minimum time (Min T ) dynamics of the system are
calculated by solving a multi-phase optimal control problem. The optimal trajectory
in the short loading cycle from loading point to the load receiver and the system
dynamics are calculated for several load receiver positions. An alternative load lifting
pattern where the lifting is delayed until the last 30 % of the cycle duration is studied.
The suggested lifting pattern ensures that the WL remains stable during load carrying
as the bucket remains on low height during most of the cycle time.

The optimal trajectory to the load receiver is found to be identical for the Min T
and Min M f transients and remains unchanged in case of the new lifting pattern
implying that the transport path and longitudinal motion can be solved separately.
However there is a coupling between them, as the steering consumes power during
the maneuver. The results of the power break down for the system components show
that when the vehicle starts from stand still in the minimum time transients, most
of the engine power is allocated to vehicle traction in order to enable fast vehicle
acceleration whereas lifting starts later when vehicle has reached high speed and
less power is required for traction. By delaying the lifting operation, the amount of
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distributed engine power among various components remains unchanged while the
course of events gets shifted. Finally, it is shown that when the load lifting is delayed,
the cycle time slightly increases in both Min T and Min M f solutions, however, the
positive side effect is that the fuel consumption decreases in the Min T case.

References

1. Alshaer B, Darabseh T, Alhanouti M (2013) Path planning, modeling and simulation of an
autonomous articulated heavy construction machine performing a loading cycle. Appl Math
Model 37:5315–5325

2. Egerstedt M, Hu X, Rehbinder H, Stotsky A (1997) Path planning and robust tracking for a
car-like robot. In: Proceedings of the 5th symposium on intelligent robotic systems, pp 237–243

3. Eriksson L, Nielsen L (2013) Modeling and control of engines and drivelines. Wiley, New York
4. Fahroo F, Ross IM (2008) Advances in pseudospectral methods for optimal control. In: AIAA

guidance, navigation and control conference and exhibit, pp 18–21
5. Filla R (2011) Quantifying operability of working machines. Dissertation, Linköping Univer-

sity, No. 1390
6. Filla R (2013) Optimizing the trajectory of a wheel loader working in short loading cycles. In:

The 13th Scandinavian international conference on fluid power, SICFP2013, 3–5 June 2013
7. Frank B, Skogh L, Filla R, Fröberg A, Alaküla M (2012) On increasing fuel efficiency by

operator assistant systems in a wheel loader. In: Proceedings of the international conference
on advanced vehicle technologies and integration, pp 155–161

8. Ghabcheloo R, Hyvönen M (2009) Modeling and motion control of an articulated-frame-
steering hydraulic mobile machine. In: 17th Mediterranean conference on control and automa-
tion, 24–26 June 2009

9. Janarthanan B, Padmanabhan C, Sujatha C (2012) Longitudinal dynamics of tracked vehicle:
simulation and experiment. J Terrramech 49:63–72

10. Kotwicki AJ (2012) Dynamic models for torque converter equipped vehicles. In: Proceedings
of the 14th ASME design engineering technical conference, pp 359–368

11. Koyachi N, Sarata S (2009) Unmanned loading operation by autonomous wheel loader. ICROS-
SICE international joint conference, Aug 2009, pp 18–21

12. Murray R, Sastry S (1993) Nonholonomic motion planning: steering using sinusoids. IEEE
Trans Autom Control 38(5):700–716

13. Nezhadali V, Eriksson L (2013) Modeling and optimal control of a wheel loader in the lift-
transport section of the short loading cycle. In: AAC’13—7th IFAC symposium on advances
in automotive Control

14. Nezhadali V, Eriksson L (2013) Optimal control of wheel loader operation in the short load-
ing cycle using two braking alternatives. In: IEEE VPPC—the 9th IEEE vehicle power and
propulsion conference

15. Nilsson T, Fröberg A, Åslund J (2013) Fuel and time minimization in a CVT wheel loader
application. In: AAC’13—7th IFAC symposium on advances in automotive control

16. Product brochure: Volvo L220G wheel loader (2012). http://www.volvoce.com/construction
equipment/na/en-us/products/wheelloaders/wheelloaders/L220G/Pages/specifications.aspx

17. Reeds JA, Shepp LA (1990) Optimal paths for a car that goes both forwards and backwards.
Pac J Math 145(2):367–393

18. Sarata S, Weeramhaeng Y, Tsubouchi T (2005) Approach path generation to scooping position
for wheel loader. In: Proceedings of the 2005 IEEE international conference on robotics and
automation, pp 1809–1814

19. Takahashi H, Konishi Y (2001) Path generation for autonomous locomotion of articulated
steering wheel loader. Comput Aided Civil Infrastruct Eng 16(3):159–168

http://www.volvoce.com/constructionequipment/na/en-us/products/wheelloaders/wheelloaders/L220G/Pages/specifications.aspx
http://www.volvoce.com/constructionequipment/na/en-us/products/wheelloaders/wheelloaders/L220G/Pages/specifications.aspx


324 V. Nezhadali and L. Eriksson

20. TOMLAB 7.9: http://www.tomdyn.com/
21. Tsubouchi T, Sarata S, Yuta S (1998) A practical trajectory following of an articulated steering

type vehicle. In: Zelinsky A (ed) Field and service robotics. Springer, London, pp 397–404
22. Walström J, Eriksson L (2011) Modeling engines with a variable-geometry turbocharger and

exhaust gas recirculation by optimization of model parameters for capturing non-linear system
dynamics. J Automobile Eng 225:960–986

23. Zhang Y, Zou Z, Chen X, Zhang X, Tobler W (2003) Simulation and analysis of transmission
shift dynamics. Int J Veh Des 32(3/4):273–289

http://www.tomdyn.com/


Author Index

A
Assadian, Francis, 131
Astolfi, Alessandro, 59

C
Corić, Mirko, 131

D
Deur, Joško, 131
di Domenico, Domenico, 219
Diaz, Diaz, 109
Didcock, Nico, 273
Diehl, Moritz, 41
Donkers, M.C.F., 237

E
Eriksson, Lars, 301

F
Filev, Dimitar, 257
Filev, Filev, 147
Frasch, Janick V., 41

G
Griggs, Wynita M., 77

H
Hofman, Theo, 181
Hrovat, Davor, 131

J
Jakubek, Stefan, 273

K
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