Global Analysis of a Nonlinear Model
for Biodegradation of Toxic Compounds
in a Wastewater Treatment Process

Neli Dimitrova

Abstract The paper presents rigorous mathematical stability analysis of a dynamic
model, describing biodegradation of toxic substances in a wastewater treatment
plant. Numerical simulations support the theoretical results.

1 Introduction

Toxicity of 1,2-dichloroethane (DCA), in particular for aquatic and atmospheric
biotic systems, has been recently recognized as a serious ecological problem [4].
DCA is difficult to remove from aquatic media by physico-chemical methods due
to its very low concentration. Therefore, biodegradation remains the only available
alternative. A microbial strain, recently recommended as a “novelty” and capable to
degrade DCA to its complete mineralization is Klebsiella oxytoca VA 8391 [3,4].
This strain was isolated from active sludge from a wastewater plant at the Luckoil
Neftochim Rafinery in Burgas, Bulgaria. The identification was validated by the
National Bank for Industrial Microorganisms and Cultures in Sofia, Bulgaria, and
the strain was registered under the code number stated above.

We consider a continuous bioreactor model for DCA biodegradation by Kleb-
siella oxytoca VA 8391 immobilized on granulated activated carbon. During the
microbial process the immobilized cells can detach from the solid surface and live
and grow in the liquid phase. The process is irreversible, i. e. free cells can not attach
again the solid particles. The model is developed and validated in [4] by authors’
own experiments.
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2 Model Description

The continuous flow bioreactor model describing DCA biodegradation by Kleb-
siella oxytoca VA 8391 immobilized on granulated activated carbon is presented by
the following differential equations [4]
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where the dot over the phase variables means % The functions w;(s) and [, (s) are
the specific growth rates of the free and the immobilized cells respectively, o (s) is
related to the adsorption capacity. The following functions are proposed in [4]:
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The growth rate functions 1 (s) and i, (s) exhibit inhibition, i.e. they achieve their
maximum at the point s™ = /kgk;. The function u,(s) is bounded and p,(s) < m,
is valid for all s > 0. The definition of the phase variables x, x;,,, s and p as well
as of the model parameters is given in Table 1.

In the bioreactor, the free cells are expected to consume easily the substrate
necessarily for their growth, but they are more keen to be carried out by the flow. On
the contrary, the immobilized cells have a more difficult access to the resources of
the bulk fluid, but are more resistent to detachment induced by the hydrodynamical
conditions. To predict this observation by the model, we assume that the following
inequality holds true (see also the hypothesis (HS5) below)

H1) my, <m

This inequality implies that i, (s) < wui(s) for all s > 0.
3 Equilibrium Points of the Model and Their Lyapunov
Stability

Denote by

¢(s) = D(s™ —5) —kra(l — pia(s))s
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Table 1 Definition of the model variables and parameters

Definitions Values
X1 Concentration of free cells [kgm™3] -
Xim Concentration immobilized cells [kg m—3] -
s Substrate (DCA) concentration [kg m™—3] -
P Product (chloride) concentration [kg m™3] -
D Dilution rate [h™!] 5.9
Kim Cell leakage factor [mh™1] 0.01
st Inlet substrate concentration s, [mmol/l] 0.05
B Biodegradation rate constant due to free cells [h™!] 0.001
Bim Biodegradation rate constant due to immobilized cells [h™] 0.0015
y Yield coefficient for free biomass production [(kg cells)/(kg substr.)] 71.6
k Parameter in the Langmuir isotherm 0.612
ks Saturation constant [kg m™3] 0.26
ki Substrate inhibition constant kg m™2] 0.984
kra Volumetric mass transfer coefficient for DCA for adsorption [h™!] 0.51
m Maximum specific growth rate for free cells [h™!] 0.972
my Surface concentration limit of DCA in the Langmuir isotherm [gkg™!] 0.63
Mim Maximum specific growth rate for immobilized cells [h™!] 0.18

the function included in the right-hand side of (3) and assume that the following
inequality is satisfied:

(H2) max{kra, my} < 1.

It is straightforward to see, that %qb(s) < 0 for all s > 0; moreover, there exists
a unique positive root & of ¢(s) = 0 such that {, < s” and further ¢(s) > 0 if
s €1[0,%],and ¢(s) < 0ifs > {.

The equilibrium points of the model are solutions of the form (xy, x;,, s, p) of
the nonlinear system, obtained from (1) to (4) by setting the right-hand sides equal
to zero. We are looking for equilibrium points with nonnegative components due to
physical evidence.

Proposition 1. Under assumptions (HI) and (H2), the equilibrium points of the
model are the following:

(l) EO = (Os 0’ CO? 0))

(ii) E; = (%, 0,&, %f")), i = 1,2, (with x;, = 0) where & are solutions
of wi(s) = D; E; exist if and only if D < maxg~g u1(s) = u; (s") and
¢(&) > 0.

(iii) F; = (xfi),xi(;),{i,p(")), i = 1,2, where {; are solutions of Wiu(s) = Kin,
@) _ kim$ (&) x(i) _ D—Ml(ii)x{i)
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Only lfklm = MaXs>0 /’Lim(s) = Wim (sm)’ D > /’Ll(é.l) and(ﬁ(é’l) > 0.
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The point Ey is called wash-out equilibrium. The existence of E; corresponds
to the case of free microbial culture without immobilized cells on the carrier.
Practically the most important equilibria are the internal points F;; the condition
kin < Wim(s™) describes the case of compensated immobilized cell leakage by
growth within the particles.

Let £ € {Ey, E1, Ey, F1, F>} be any one of the equilibrium points, described
above. Denote by J(E) the Jacobian of (1)—(4) evaluated at E. The eigenvalues of
J(E) are the roots of the following characteristic equation (/ denotes the (4 x 4)-
unit matrix) 0 = |J(E) —AI| = (=D — A)- (=A% + aA® — bA + ¢), where the
coefficients a = a(E), b = b(E) and ¢ = c(FE) can be computed explicitly, using
the well known invariants of the matrix J(E). Obviously, A4 = —D < 0 is an
eigenvalue of every equilibrium point £ € {Ey, E|, E», F}, F>}. This means that
there are no repelling steady states in the model. The other three eigenvalues are
the roots of the cubic polynomial g(1) = —A3 + aA? — bA + c. Using the Routh-
Hurwitz criterion [5] for determining the signs of the real parts of the roots of g(1),
we obtain the following

Proposition 2. Let the hypotheses (H1) and (H2) be satisfied.

() If w1 (&) < D and pim(Lo) < kin are fulfilled, the equilibrium point E is
locally asymptotically stable; otherwise E is a saddle.
(ii) Let the assumptions of Proposition 1(ii) be satisfied. If pim (&) < kim, i = 1,2,
then E| is locally asymptotically stable and E, is a saddle equilibrium point.
If wim&) > kim, i = 1,2, then E| and E; are saddle equilibrium points.
(iii) Let the assumptions of Proposition 1(iii) hold. Then F; is locally asymptoti-
cally stable and F, is a saddle equilibrium point.

4 Global Properties of the Solutions

The first three equations (1)—(3) do not depend on p. If we “compute” the solutions
x1(t), Xim(t), s(¢) and replace them in (4), we obtain a linear nonautonomous
equation for p of the form p = —D p + ¥ (¢), which can be integrated directly.
Therefore, we can omit the last equation (4) in the further considerations.

We impose additionally the following assumption on (1)—(3)

k
(H3) B1<Bim< 2L D>1—kia(l—my)
y

Proposition 3. Let the assumptions (HI)—(H3) be fulfilled. Then the set §2 =
{(xlvxi”h S) S 09 Xim = O7S = 0, Dsin =85+ ﬁlxl + .Bimxim} is POSitivel)’
invariant for the model; all solutions are uniformly bounded for all t > 0 and
thus exist fort € [0, +00).
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Experimental results show that the inlet substrate concentration s™ must be lower
than the one corresponding to the maximum specific growth rate, i.e. s should be
below the point s where substrate inhibition starts to be significant. Assume that
the following inequalities are fulfilled:

H4)  s" <™ kip < pim(&o)-

It is not difficult to see that under assumptions (H1)—(H4), s(¢) < { is valid for
all sufficiently large ¢ > 0. Moreover, since {y < s holds, assumption (H4) implies
that the functions w1 (s) and p;,(s) are monotone increasing for s € [0, o]. Our last
assumption is

(H4) D > /'Ll(sm) + kim

The hypotheses (H1)—(HS) and Proposition 1 imply that there exist only two
equilibrium points of (1)-(3) in £2, namely E, and Fj; thereby F; is locally
asymptotically stable, E( is a saddle equilibrium. We shall show that F; =
() 1) is globally asymptotically stable for the model.

1
(X} )’ Xim »
Theorem 1. Let the assumptions (HI)—-(HS5) be satisfied. Then the equilibrium

point Fy is globally asymptotically stable for (1)—(3) in the set S2.

Proof. Tt is enough to show that the stable manifold of E, lies exterior to the set
£2 (cf. [6]). The negative eigenvalues of Ey = (0,0, {y) are A; = (&) — D and
Ay = %q&(@o). Denote by u = (uy,uz,u3) and v = (vy, v3, v3) the corresponding

eigenvectors. It is easy to see that u, = 0 and quz = — (%Ml(fo) + ,31) uy within

q = (&) —D— %q&({‘o) > 0. Therefore, u cannot be directed inside the positive
octant. The same is valid for the eigenvector v, since the latter has the form v =
(0,0, v3) with v3 # 0. Therefore, the stable manifold of E, does not intersect the
interior of £2, which implies that F attracts all solutions with initial conditions in
£2,1i.e. Fy is a global attractor. This completes the proof.

5 Numerical Simulation

Consider the numerical coefficient values in Table 1 (last column). For these values,
all the assumptions (H1)-(HS) are satisfied, and therefore Theorem 1 holds true.

Figure 1 visualizes results from computer experiments with an initial point
(x1(0), xim(0), s(0), p(0)) from the set £2, i.e. satisfying Ds™ > s(0) + B1x1(0) +
Bimxim(0). The solid circles correspond to experimental measurements, taken
from [4].
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Fig. 1 Phase curves x;(¢) (left), s(t) (middle) and p(t) (right); the horizontal dashed lines pass
through the components of Fy. Solid circles denote experimental data

6 Conclusion

The paper presents global stability analysis of a practically validated ecological
model for wastewater treatment. Most of the results are obtained and proved in
[1,2]. The proof of the above Theorem 1 is new. Here, the computer simulations are
compared with experimental measurements.

The present mathematical analysis of the model (1)—(4) could be useful to outline
the parameter domain for stable operation of the microbial process in a continuously
stirred bioreactor.
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