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Abstract Mathematical morphology is a nonlinear image processing methodology
based on the computation of supremum (dilation operator) and infimum (erosion
operator) in local neighborhoods called structuring elements. This paper deals with
computation of supremum and infimum operators for symmetric positive definite
(SPD) matrices, which are the basic ingredients for the extension mathematical
morphology to SPD matrices-valued images. Approximation to the supremum and
infimum associated to the Löwner ellipsoids are computed as the asymptotic cases
of nonlinear averaging using the original notion of counter-harmonic mean for SPD
matrices. Properties of this approach are explored, including also image examples.

1 Context, Aim and State-of-the-Art

Mathematical morphology is a nonlinear image processing methodology originally
developed for binary and greyscale images [13]. It is based on the computation
of maximum

V
(dilation operator) and minimum

W
(erosion operator) in local

neighborhoods called structuring elements [14]. That means that the definition
of morphological operators needs a partial ordering relationship � between the
points to be processed. More precisely, for a real valued image f W E ! R,
the flat dilation and erosion of image f by structuring element B are defined
respectively by ıB.f /.x/ D ˚

f .y/ W f .y/ DV
zŒf .z/�; z 2 Bx

�
and "B.f /.x/ Dn

f .y/ W f .y/ DW
zŒf .z/�; z 2 LBx

o
, where Bx � E is the structuring element

centered at point x 2 E, and LB is the reflection of structuring element with respect
to the origin.
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Theory of morphological operators has been formulated in the general framework
of complete lattices [11]: a complete lattice .L ;�/ is a partially ordered set L
with order relation �, a supremum written

W
, and an infimum written

V
, such that

every subset of L has a supremum (smallest upper bound) and an infimum (greatest
lower bound). Let L be a complete lattice. A dilation ı W L ! L is a mapping
commuting with suprema, i.e., ı

�W
i Xi

� D W
i ı .Xi /. An erosion " W L ! L

commutes with infima, i.e., ı
�V

i Xi

� DV
i ı .Xi /. Then the pair ."; ı/ is called an

adjunction on L if for very X; Y 2 L , it holds: ı.X/ � Y , X � ".Y /.
Matrix and tensor valued images appear nowadays in various image processing

fields and applications [15]: structure tensor images representing the local orien-
tation and edge information [10]; diffusion tensor magnetic resonance imaging
(DT-MRI) [5]; covariance matrices in different modalities of radar imaging [4];
etc. In this paper we are interested in matrix-valued images considered as a spatial
structured matrix field f .x/ such that f W E � Z

2; Z3 �! SPD.n/, where E is
the support space of pixels and, in particular, we focuss on (real) symmetric positive
definite n � n matrices SPD.n/. The reader interested in positive definite matrices
is referred to the excellent monograph [6]. More precisely, let A D fAigNiD1 be
a finite set of N matrices, where Ai 2 SPD.n/, we are aiming at computing the
supremum sup .A/ D A_ and the infimum inf .A/ D A^ matrices, such that A_,
A^ 2 SPD.n/. As mentioned above, if the operators sup .A/ and inf .A/ are defined,
dilation and erosion operators are stated for any image f 2 F .E;SPD.n// and any
structuring element.

Extension of mathematical morphology to matrix-valued images has been previ-
ously addressed according to two different approaches. The first one [9] is based on
the Löwner partial ordering �L: 8A;B 2 SPD.n/, A �L B , B � A 2 SPD.n/,
and where the supremum and infimum of a set of matrices are computed using
convex matrix analysis tools (penumbral cones of each matrix, minimal enclosing
circle of basis, computation of vertex of associated penumbra matrix). There is a
geometrical interpretation viewing the tensors SPD.n/ as ellipsoids: the supremum
of a set of tensors is the smallest ellipsoid enclosing the ellipsoids associated
to all the tensors; the infimum is the largest ellipsoid which is contained in all
the ellipsoids. The second approach [8] corresponds to the generalization of a
morphological PDE to matrix data. Finding the unique smallest enclosing ball of
a set of points in a particular space (also known as the minimum enclosing ball or
the one-center problem) is related to the Löwner ordering in the case of SPD.n/

matrices [1, 3].
We have recently shown in [2] how the counter-harmonic mean [7] can be used

to introduce nonlinear operators which asymptotically mimic dilation and erosion.
In particular, we have proved in [2] the advantages of the counter-harmonic mean
against the classical P -mean to approximate supremum and infimum. The extension
of P -mean to SPD.n/ matrices was considered in [12] for diffusion tensor imaging.
We introduce in this paper how the extension of counter-harmonic mean to SPD.n/

matrices is very natural and leads to an efficient operator to robustly approximate
the supremum/infimum of a set of matrices.
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2 Counter-Harmonic Mean for SPD Matrices

The counter-harmonic mean (CHM) belongs to the family of the power means [7].
We propose a straightforward generalization of CHM for SPD.n/ matrices.

Definition 1. Given A D fAigNiD1, a finite set of N matrices, where Ai 2 SPD.n/,
the symmetrized counter-harmonic matrix mean (CHMM) of order P , P 2 R, is
defined by

�P .A/ D
 

NX

iD1

AP
i

!�1=2  NX

iD1

APC1
i

! 
NX

iD1

AP
i

!�1=2

(1)

The asymptotic values of the CHMM with P ! C1 and P ! �1 can be
used to define approximations to the supremum and infimum of a set of matrices.

Definition 2. The supremum and the infimum of a set A D fAigNiD1 of SPD.n/

matrices are defined respectively as

A_ D sup .A/ D lim
P!C1 �P .A/ ; (2)

and

A^ D inf .A/ D lim
P!�1 �P .A/ ; (3)

Proposition 1. Given a set A of SPD.n/ matrices, the following properties hold.

(i) CHMM of A is a rotationally invariant operation for any value of P (including
P ! ˙1).

(ii) CHMM of A is for any value of P (including P ! ˙1) invariant to scaling
transformations, i.e., multiplication by a real constant ˛ 2 R.

(iii) CHMM of A produces a symmetric positive definite matrix for any value of P
(including P ! ˙1).

(iv) Due to the fact that the CHMM is not associative, sup.A/ and inf.A/ do not
yield dilation and erosion operators over SPD.n/ (they do not commute with
the “union” and the “intersection”).

Proof. (i) Let us consider that the rotation is given by the matrix O 2 SO.n/. We
know from linear algebra that the P -th power AP of a diagonalized matrix is
achieved by taking the P -th power of the eigenvalues:

AP D V diag
�
.�1.Ai //

P ; � � � ; .�n.Ai //
P
�
V T:

On the other hand, since
PN

iD1 A
P
i is positive definite, there exists an orthog-

onal matrix VP and a diagonal matrix �P such that
PN

iD1 A
P
i D VP�PV

T
P .

Hence, if we apply the rotation, we have
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NX

iD1

.OAiO
T/P

!�1=2  NX

iD1

.OAiO
T/PC1

! 
NX

iD1

.OAiO
T/P

!�1=2

D
 

NX

iD1

OAP
i O

T

!�1=2  NX

iD1

OAPC1
i OT

! 
NX

iD1

OAP
i O

T

!�1=2

D
 

O

 
NX

iD1

AP
i

!

OT

!�1=2  

O

 
NX

iD1

APC1
i

!

OT

! 

O

 
NX

iD1

!

AP
i O

T

!�1=2

D �
OVP�PV

T
P O

T
��1=2 �

OVPC1�PC1V
T
PC1O

T
� �

OVP�PV
T
P O

T
��1=2

Considering the fact that OOT D I and that OVP 2 SO.3/, we can write

O

 
NX

iD1

AP
i

!�1=2  NX

iD1

APC1
i

! 
NX

iD1

AP
i

!�1=2

OT

and consequently

�P
�
fOAiO

TgNiD1

�
D O�P

�fAigNiD1

�
OT

(ii) By considering scaling by parameter ˛ 2 R, ˛ ¤ 0, we have

�P
�
f˛Ai gNiD1

�
D
 

NX

iD1

.˛Ai /
P

!�1=2  NX

iD1

.˛Ai /
PC1

! 
NX

iD1

.˛Ai /
P

!�1=2

D ˛�P=2

 
NX

iD1

AP
i

!�1=2

˛PC1

 
NX

iD1

APC1
i

!

˛�P=2

 
NX

iD1

AP
i

!�1=2

D ˛�P=2˛PC1˛�P=2

 
NX

iD1

AP
i

!�1=2  NX

iD1

APC1
i

! 
NX

iD1

AP
i

!�1=2

D ˛�P
�
fAi gNiD1

�

(iii) By construction, the P -th power AP and the inverse square root A�1=2 have
positive eigenvalues whenever A has. Similarly, the sum and the product of
positive definite matrices preserves also the positiveness.

(iv) Let consider two sets of SPD.n/ matrices A D fAigNiD1 and A0 D fAj gMjDNC1.
Due to the fact that the counter-harmonic matrix mean is not associative, it
cannot be ensured that there exist always a value of P such that

lim
P!C1 �P

�fAkgMkD1

�
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is equal to

lim
P!C1 �P

�

lim
P!C1 �P

�fAigNiD1

�
; lim
P!C1 �P

�
fAj gMjDNC1

��

and consequently the operators sup.A/ do not commute with “supremum”.
A similar result is observed for the erosion.

The following result gives a spectral interpretation of asymptotic cases in
SPD.2/.

Proposition 2. Given A D fAigNiD1, a finite set of N matrices, where Ai 2 SPD.2/.
Let �.Ai/ and �.Ai / (with �.Ai/ � �.Ai / � 0) be the two eigenvalues of Ai . Then

A_ D sup .A/ D lim
P!C1 �P .A/ ;

is a SPD.2/ matrix with eigenvalues �.A_/ and �.A_/, where �.A_/ D
max .�.A1/;�.A2/ � � ��.AN //, and its corresponding eigenvector is the
eigenvector of A_, and the remaining eigenvalue �.A_/ is the second largest
eigenvalue from f�.Ai/; �.Ai /g; the corresponding eigenvector is the orthogonal
to the major one.

A spectral characterization of A^ is obtained by replacing largest by smallest
eigenvalues. We conjecture that this result may be extended to SPD.n/, n > 2,
but the proof is not straightforward.

Proof. Let us write each SPD.2/ matrix in the form A D Vi diag .�i�i / V
T
i such

that �i � �i > 0 and where the rotation matrix is parameterized by the angle �i :

Vi D
�

cos �i � sin �i
� sin �i cos �i

�

:

Hence we have

NX

iD1

APC1
i D

 PN
iD1 �

PC1
i cos2 �i C�PC1

i sin2 �i
PN

iD1.�
PC1
i ��PC1

i / cos �i sin �iPN
iD1.�

PC1
i ��PC1

i / cos �i sin �i
PN

iD1 �
PC1
i cos2 �iC�PC1

i sin2 �i

!

:

The eigenvalues of
PN

iD1 A
PC1
i are given by

.�.P C 1/;�.P C 1//

D1

2

"
NX

iD1

�PC1
i cos2 �i C �PC1

i sin2 �i C
NX

iD1

�PC1
i cos2 �i C�PC1

i sin2 �i
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˙
n
 

NX

iD1

�PC1
i cos2 �i C �PC1

i sin2 �i �
NX

iD1

�PC1
i cos2 �i C�PC1

i sin2 �i

!2

C 4

 
NX

iD1

.�PC1
i ��PC1

i / cos �i sin �i

!2 o1=2
3

5 ;

which can be simplified to

.2N /�1
PN

iD1

�
�PC1

i C �PC1
i

�

˙.2N /�1

r�PN
iD1

�
�PC1

i � �PC1
i

�
cos.2�i /

�2 C
�PN

iD1

�
�PC1

i � �PC1
i

�
sin.2�i /

�2
:

We are interested in the limit case:

�.A_/D lim
P!C1�.P /�1=2�.PC1/�.P /�1=2 D lim

P!C1
�.P C 1/

�.P /
D max f�ig :

For the second eigenvalue, we first consider the product

�.P C 1/�.P C 1/ D .4N 2/�1

 
NX

iD1

�
�PC1

i C �PC1
i

�
!2

� .4N 2/�1

 
NX

iD1

�
�PC1

i � �PC1
i

�
cos.2�i /

!2

� .4N 2/�1

 
NX

iD1

�
�PC1

i � �PC1
i

�
sin.2�i /

!2

:

By the invariance under scaling, we can consider without loss of generality that
�1 D �2 D � � ��n D 1 and �i � 1. We also assume �1 D �2 D � � � ; �n D 0

and �j ¤ 0, j D n C 1; n C 2; � � � ; N . As ˛.P C 1/ D Pn
iD1 �

PC1
i , with 1 �

˛.P C 1/ � N , is the dominant term, and considering defining the element

M D max .�nC1;�nC2; � � � ; �N ; �1; � � � ; �N / ;

then we can approximate

�.P C 1/�.P C 1/ D Cte �˛.P C 1/MPC1 CMPC1 O.1/

Finally, we have

�.A_/ D lim
P!C1

˛.P C 1/MPC1 CMPC1 O.1/

˛.P /MP CMP O.1/
D M:
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Original Image

(a) u ∈ F (E R) (b) f ∈ F (E SPD(2)) (c) P= 0

(d1) P= 2 (d2) P= 10

(e1) P= −2 (e2) P= −10

Fig. 1 Counter-harmonic matrix mean based processing of SPD.2/ matrix-valued image:
(a) initial gray-level image from retina vessels, (b) corresponding structure tensor image, (c–e)
tensor filtered image by CHMM �P .A/, for different values of order P . The local neighborhood
(structuring element B) is a square of 3� 3 pixels

Figure 1b depicts an example of SPD.n/ matrix-valued image. This image
corresponds to the structure tensors obtained from the gray-level image Fig. 1a,
representing the local orientation and edge information, which is computed by
Gaussian smoothing of the dyadic product ruruT of an image u.x; y/ [10]. Using
the symmetrized counter-harmonic matrix mean operator �P .A/ computed in local
neighborhoods, various values of P are compared. In particular, P D 0 in Fig. 1c
which corresponds to the arithmetic mean filtered image, P D 2 and P D 10

in Fig. 1d1, d2 are pseudo-dilations, P D �2 and P D �10 in Fig. 1e1, e2 can
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be considered as pseudo-erosions. It is natural to consider that the matrices A_
and A^, associated respectively to the limit cases P D 10 and P D �10, can
be interpreted geometrically similarly to the supremum/infimum associated to the
Löwner ordering: A_ “tends to be” the smallest ellipsoid enclosing the ellipsoids of
A and A^ “tends to be” the largest ellipsoid which is contained in all the ellipsoids.
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