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Abstract We consider Uncertainty Quantification (UQ) by expanding the solution
in so-called generalized Polynomial Chaos expansions. In these expansions the
solution is decomposed into a series with orthogonal polynomials in which the
parameter dependency becomes an argument of the orthogonal polynomial basis
functions. The time and space dependency remains in the coefficients. In UQ two
main approaches are in use: Stochastic Collocation (SC) and Stochastic Galerkin
(SG). Practice shows that in many cases SC is more efficient for similar accuracy
as obtained by SG. In SC the coefficients in the expansion are approximated
by quadrature and thus lead to a large series of deterministic simulations for
several parameters. We consider strategies to efficiently perform this sequence of
deterministic simulations within SC.
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1 Polynomial Chaos for Dynamical Systems with Random
Parameters

We will denote parameters by p D .p1; : : : ; pq/
T and assume a probability space

.˝;A ;P/ given where A represents a � -algebra, P W A ! R is a measure and
p D p.!/ W ˝ ! Q � R

q . Here we will assume that the pi are independent.
For a function f W Q ! R, the mean or expected value is defined by

EpŒf .p/� D< f >D
Z
˝

f .p.!//dP.!/ D
Z
Q

f .p/ �.p/dp: (1)

The specific probability distribution density is given by the function �.p/. Because
P.˝/ D 1, we have < 1 >D 1. A bilinear form (with associated norm L2

�) is
defined by

< f; g >D
Z
Q

f .p/ g.p/ �.p/dp D< f g > : (2)

The last form is convenient when products of more functions are involved. Similar
definitions hold for vector- or matrix-valued functions f W Q ! R

m�n.
We assume a complete orthonormal basis of polynomials .�i /i2N, �i W Rq ! R,

given with < �i ; �j >D ıij (i; j;� 0). When q D 1, �i has degree i . To treat a
uniform distribution (i.e., for studying effects caused by robust variations) Legendre
polynomials are optimal in some sense; for a Gaussian distribution one can use
Hermite polynomials [17, 28]. A polynomial �i on R

q can be defined from one-
dimensional polynomials: �i .p/ D Qq

dD1 �id .pd /. Actually i orders a vector i D
.i1; : : : ; iq/

T .
We will denote a dynamical system by

F.x.t;p/; t;p/ D 0; for t 2 Œt0; t1�: (3)

Here F may contain differential operators. The solution x 2 R
n depends on t and

on p. In addition initial and boundary values are assumed. In general these may
depend on p as well.

A solution x.t;p/ D .x1.t;p/; : : : ; xn.t;p//T of the dynamical system becomes
a random process. We assume that second moments are finite: < x2

j .t;p/ > < 1,
for all t 2 Œt0; t1� and j D 1; : : : ; n: We express x.t;p/ in a Polynomial Chaos
expansion

x.t;p/ D
1X
iD0

vi .t / �i .p/; (4)
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where the coefficient functions vi .t / are defined by

vi .t / D< x.t;p/; �i .p/ > : (5)

A finite approximation xm.t;p/ to x.t;p/ is defined by

xm.t;p/ D
mX

iD0

vi .t / �i .p/: (6)

For traditional random distributions �.:/ convergence rates for jjx.t; :/ � xm.t; :/jj
for functions x.t;p/, that depend smoothly on p, are known (see [2] and [28]
for an expansion in Hermite or in Legendre polynomials, respectively). For more
general distributions �.:/ convergence may not be true. For instance, polynomials
in a lognormal variable are not dense in L2

�. For convergence one requires that the
probability measure is uniquely determined by its moments [8]. One at least needs
that the expected value of each polynomial has to exist.

The integrals (5) can be computed by (quasi) Monte Carlo, or by multi-
dimensional quadrature. We assume quadrature grid points pk and quadrature
weights wk , with 0 � k � K, such that

vi .t / D< x.t;p/; �i .p/ >�
KX

kD0

wk x.t;pk/ �i .pk/: (7)

Typically, Gaussian quadrature is used with corresponding weights. We solve (3)
for x.t;pk/, k D 0; : : : ; K (K C 1 deterministic simulations). Here any suitable
numerical solver for (3) can be used. By post-processing we determine the vi .t /
in (7).

As alternative approach, Stochastic Galerkin can be used. Then the sum (6) is put
into Eq. (3) and the residues are made orthogonal to the basis functions. This results
into one big system for the coefficient functions vi .t / [17,22,28]. Due to averaging,
this system does not depend on particular parameter values anymore.

2 Statistical Information and Sensitivity

We note that the expansion xm.t;p/, see (6), gives full detailed information when
varying p; it serves as a response surface model. From this the actual (and probably
biased) range of solutions can be determined. These can be different from envelope
approximations based on mean and variances.

Let �0 be the polynomial that is constant c; orthonormality implies that c D 1.
By further use of the orthogonality, the mean of x.t;p/ is given by
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EpŒx.t;p/� �
Z
Q

xm.t;p/�.p/ dp D< xm.t;p/ 1 >D< xm.t;p/ �0 >D v0.t/

(8)

(for the finite expansion with exact coefficients the equality sign holds).
This involves all pk together. One may want to consider effects of pi and pj

separately. This restricts the parameter space Q � R
q to a one-dimensional subset

with individual distribution densities �i .p/ and �j .p/. A covariance function of
x.t;p/ can also be easily expressed

EpŒ.x.t1;p/ � EpŒx.t1;p/�/T .x.t2;p/ � EpŒx.t2;p/�/� �
mX

iD1

vTi .t1/vi .t2/: (9)

Having a gPC expansion also the sensitivity (matrix) w.r.t. p is easily obtained

Sp.t;p/ D
�
@x.t;p/

@p

�
�

mX
iD0

vi .t /
@�i .p/
@p

: (10)

From this a relative sensitivity can be defined by

Sr
p.t;p/ D

"�
@xi .t;p/
@pj

� pj

xi .t;p/

�
ij

#
D Sp.t;p/ ı

"�
pj

xi .t;p/

�
ij

#
: (11)

It describes the amplification of a relative error in pj to the relative error in xi .t;p/
(here ı denotes the Hadamard product of two matrices).

The sensitivity matrix also is subject to stochastic variations. With a gPC
expansion it is possible to determine a mean global sensitivity matrix by

Sp.t/ D Ep

�
@x.t;p/

@p

�
�

mX
iD0

vi .t /
Z
Q

@�i .p/
@p

�.p/ dp: (12)

Note that the integrals at the right-hand side can be determined in advance and stored
in tables.

3 Failure and Tolerance Analysis

Failure may be defined after introducing a criterion function g.t; x.t;p//, e.g.,
g.t; x.t;p// � x.t;p/ � � , with a threshold � . Then failure is measured by a
function �

�.g.t; x.t;p/// D
�
0 for g > 0

1 for g � 0
: (13)
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The Failure Probability is then

PF.t/ D
Z

�.g.t; x.t;p/// �.p/ dp �
Z

�.g.t; xm.t;p/// �.p/ dp: (14)

In (14) the expression at the left of the approximation symbol may be obtained
using Monte Carlo methods for the original problems, probably speeded up by
methods like Importance Sampling [7,26]. In [26], after applying results from Large
Deviations Theory, also realistic, but sharp, upper bounds were derived involving the
number of samples that have to be drawn.

Alternatively, after having spent the effort in determining xm.t;p/ in (6) the
evaluation for different p is surprisingly cheap. Monte Carlo, Quasi Monte Carlo,
Importance Sampling can be used again for statistics, but at a much lower price
[21]. Determination of Failure Probability, however, deserves additional attention,
because the expansion xm.t;p/ in (6) may be less accurate in areas of interest for
this kind of statistics. The software tool RODEO of Siemens AG seems to be the
only industrial implementation of failure probability calculation that fits within the
polynomial chaos framework [20].

A hybrid method to compute small failure probabilities that exploits surrogate
models has been introduced by [18]. Their method can be slightly generalized
as follows. By this we can determine the effect of approximation on the Failure
Probability. To each sample zi we assume a numerically obtained approximation Qzi .
In addition g is approximated by Qg. The probabilities one checks are

QP".t/ D
Z

�
� Qg.t; Qz.t;p//C "

�
�.p/dp;

QQ".t/ D
Z

�
� � Qg.t; Qz.t;p// � "

�
�
� Qg.t; Qz.t;p// � "

�
�
�
g.t; z.t;p//

�
�.p/dp:

Note that in QP".t/ one deals with Qg.t; Qz.t;p// � �". In QQ" the first two factors
involve j Qg.t; Qz.t;p//j � ". The two quantities result in a Failure Probability
QPF .t/ D QP".t/C QQ".t/. The impact of the last factor in QQ" is that one additionally

evaluates the exact g.t; z.t;p// (or one approximates it more accurately) when its
approximation Qg.t; Qz.t;p// is small.

Now let

QD".t/ D
Z
j Qg.Qz.t;p//�g.z.t;p//j>"

�.p/dp

be the combined quality of both approximations. One should be able to make
this small. Note that j Qg.Qz.t;p// � g.z.t;p//j < j Qg.Qz.t;p// � Qg.z.t;p//j C
j Qg.z.t;p// � g.z.t;p//j. The first term needs Lipschitz continuity for Qg to deal
with Qz.t;p/ � z.t;p/, the second one deals with j Qg � gj. By this and exploiting the
finite probability measure one may assume, f.i., that QD".t/ < ıPF .t/, for 0 < ı < 1.
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One can proof (similar to [18], Theorem 4.1)

j QPF .t/ � PF .t/j < QD".t/ < ıPF .t/: (15)

One may order the (remaining) approximative samples Qg.i/.t/ D Qg.t; Qz.t;pi //

according to j Qg.i/.t/j and replace the smallest ones by g.i/.t/ D g.t; Qz.t;pi // and
reduce the set of (remaining) approximative samples accordingly. One can stop if
the Failure Probability does not change that much anymore [18]. This procedure
resembles algorithmic steps in [20].

4 Strategies for Efficient Stochastic Collocation

Stochastic Collocation implies that the problem has to be solved for a sequence (or
sweep) of parameter settings p0; : : : ;pK . One can obtain some benefit by exploiting
knowledge derived before.

In [16], the parameters pk are grouped in blocks and in each block one simulation
is made, say for pk0 . At the subset of the pk0 the solution x.t;pk0/ is calculated
at some higher accuracy (f.i., with a smaller stepsize h0). The solution is used to
estimate the truncation error of the time integration for x.t;pk/. One determines the
residue r.t; x.t;pk0// for x.t;pk0/ using the same integration method as intended
to be used for x.t;pk/, with stepsize h, but using pk0 in all expressions. By this
the discretization error for x.t;pk/ is estimated automatically when pk0 is close to
pk . By subtracting r.t; x.t;pk0// from the equations for x.t;pk/, one may expect a
larger stepsize h to be used then without this modification. Note that

r
�
t; x.t;pk/

� � r
�
t; x.t;pk0/

�

D @r
@x

�
t; x.t;pk/

� � �x.t;pk/ � x.t;pk0/
�C O.jjpk � pk0 jj2/

D @r
@x

�
t; x.t;pk/

� � @x
@p

� .pk � pk0/C O.jjpk � pk0 jj2/: (16)

Here the first factor equals the last Jacobian. The second factor is the sensitivity
matrix of the solution with respect to the parameter variation [13, 14]; it can be
estimated from its value at pk0 . When the usual error control is too pessimistic, this
approach may be an alternative.

In [25] also first the solution for pk0 is calculated for the next time discretization
point and used as predictor for the time step integration of the problems for other
pk . Here as well the prediction can be improved by additional sensitivity estimates.
If parameters are values for capacitors, inductors or resistors they are model bound.
Then hierarchy techniques [11] can be exploited to by-pass certain parts of the
circuit during the Newton iteration. Of course, the time step integration for the other
pk can be solved in parallel.
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In [2, 20] one builds an estimator by a moderately-sized gPC approximation

Qxm0 D
m0X
iD0

Qvi .t /�i .p/: (17)

As before the best Qvi .t / has Qvi .t / D
R

x.t;p/�.p/dp. We can approximate them by
a Least Squares procedure at each time t

min
Qvi .t/

R
.x.t;p/ � Qxm0

/2�.p/dp � min
Qvi .t/

KX
kD0

wk

�
x.t;pk/ �

m0X
iD0

Qvi .t /�i .pk/

�2

D min
y

jjMy � bjj22; where (18)

M D

0
B@
0
B@
p

w0

: : : p
wK

1
CA
0
B@

�0.p0/ : : : �m0.p0/
:::

:::

�0.pK/ : : : �m0.pK/

1
CA
1
CA˝ In;

b D .
p

w0xT .t;p0/; : : : ;
p

wKxT .t;pK//T ;

y D .QvT0 .t/; : : : ; QvTm0.t//
T :

In [2,20] one applies a Least Squares procedure (18) not for the final solution values
x.t;p0/, . . . , x.t;pK/, but after splitting the sequence in already determined values
x.t;p0/, . . . , x.t;p QK/, and approximated values Qx.t;p QKC1/, . . . , Qx.t;pK/. Clearly the
error �y is determined by �y D MC�b, where the �b comes from the errors in the
zk � p

wk Qx.t;pk/, k D QK C 1; : : : ; K. One can sort the zk and update the Qx.t;pk/

to final solution values x.t;pk/ for the � QK largest zk . This allows to update Qxm0

iteratively and the approximation values Qx.t;p QKC1/, . . . , Qx.t;pK/ may come from
the previous Qxm0

. Interpreting the values x.t;p0/, . . . , x.t;p QK/, Qx.t;p QKC1/, . . . ,
Qx.t;pK/ as coming from a function Ox.t;p/. Then for Ox.t;p/ the mean, variance and
sensitivity simply follow from the gPC expansion. The mean and variance can be
used to check their change after an update. Note that here one can exploit the average
sensitivity as well, which also simply follows from the gPC expansion. In this way
one can assure that one includes dominant parameters first. We finally note that the
approximations may come from (parameterized) Model Order Reduction.

5 Parameterized Model Order Reduction

Model Order Reduction (MOR) techniques can be applied to reduce the size of
the deterministic problems that have to be simulated using SC. For good general
introductions we refer to [1,5,23]. For parameterized MOR we refer to [3,9,10,24].
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We consider a linear system for circuit equations with capacitance matrix C D
C.p/, conductance matrix G D G.p/ and source u.t/ D u.t;p/ that involve
parameters p,

C.p/
dx
dt

C G.p/x.t;p/ D Bu.t;p/; (19)

y.t;p/ D BT x.t;p/:

Here y.t;p/ is some output result. This separation of p and x in the expressions in
each equation of (19) is quite common in circuit simulation (capacitors, inductors
and resistors depend on p), but for more general expressions (like when using
controlled sources) this may require some organization in the evaluation tree of
the expression handler. In [10] a parameterized system in the frequency domain
is considered in which the coefficient matrices have been expanded. We consider,
however, the nonexpanded form. Let s be the (angular) frequency. It is assumed that
a set p1;p2; : : : ;pK is given in advance, together with frequencies s1; s2; : : : ; sK .
In our case the p1;p2; : : : ;pK can come from quadrature points in SC. Let 	k D
.sk;pk/. Furthermore, let A D sC.p/C G.p/ and AX D B, where X is the Laplace
Transform of x. Similarly, let Ak D A.	k/ D skC.pk/C G.pk/ and AkXk D B.

A projection matrix V (with orthonormal columns vi ) is searched for such that
X.s;p/ � NX.s;p/ � V OX.s;p/ � PK0

iD1 ˛i .s;p/vi .
We assume that we have already found some part of the (orthonormal) basis,

V D .v1; : : : ; vk/. Then for any 	j that was not selected before to extend the basis
the actual error is formally given by Ej D X.	j / � Pk

iD1 ˛i .	
j /vi and thus for

the residue we have Rj D Aj Ej D B �Pk
iD1 ˛i .	

j /Aj vi . Note that the residues
deal with B and with x and not with the effect in y. For UQ one may consider a two-
sided projection here, which will bring in the effect due to the quadrature weights.
The method of [10] was used in [6] (using expansions of the matrices in moments of
p). In [6] the parameter variation in C and G did come from parameterized layout
extraction of RC circuits. In the extraction it was assumed that B, as well as the
fill-in patterns of C.p/ and of G.p/, did not depend on p. When B also becomes
dependent on p one should determine a basis for the range of B.p/. In fact one
needs MOR for multi-input, multi-output [4, 15, 27].

The selection of the next parameter introduces a notion of “dominancy” from an
algorithmic point of view: this parameter most significantly needs extension of the
Krylov subspace. To invest for this parameter will automatically reduce work for
other parameters (several may even drop out of the list because of zero residues).

We finally describe two ideas to include sensitivity in parameterized MOR. One
can calculate the sensitivities of the solution of the reduced system by adjoint
techniques as described by [13, 14]. Alternatively one can exploit the sensitivity
indication based on the gPC expansion of the combined list of exact evaluations and
outcomes of approximations as mentioned in Sect. 4.

If first order sensitivity matrices are available for C.p/ D C0.p0/ C C0.p0/p
and for G.p/ D G0.p0/ C G0.p0/p one can apply a Generalized Singular Value
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Decomposition [12] to both pairs .CT
0 .p0/; ŒC0�T .p0// and .GT

0 .p0/; ŒG0�T .p0//.
In [19] this was applied in MOR for linear coupled systems. The low-rank
approximations for C0.p0/ and G0.p0/ give way to increase the basis for the columns
of B of the source function. Note that by this one automatically will need MOR
methods that can deal with many terminals [4, 15, 27].

6 Conclusion

We have derived strategies to efficiently determine the coefficients in generalized
polynomial chaos expansions. When determined by Stochastic Collocation and
numerical quadrature this leads to a large number of deterministic simulations.
Parameterized Model Order Reduction is a natural choice to reduce sizes. In
selecting a next parameter for the subspace extension different options have
been described: residue size and options for sensitivity. For UQ however, one
should involve the influence of the quadrature weights and one may check the
contribution to global statistical quantities. A related algorithm can be used for
Failure Probabilities.

Acknowledgements The first and last author did part of the work within the project ARTEMOS
(Ref. 270683-2), http://www.artmeos.eu/ (ENIAC Joint Undertaking).
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