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Abstract Planning and optimal control of mechanical systems are challenging
tasks in robotics as well as in many other application areas, e.g. in automotive
systems or in space mission design. This holds in particular for hybrid, i.e. mixed
discrete and continuous dynamical models. In this contribution, we present an
approach to solve control problems for hybrid dynamical systems by motion plan-
ning with motion primitives. These canonical motions either origin from inherent
symmetry properties of the systems or they are controlled maneuvers that allow
sequencing of several primitives. The motion primitives are collected in a motion
planning library. A solution to a specific optimal control problem can then be found
by searching for the optimal sequence of concatenated primitives. Energy efficiency
often forms an important objective in control applications. We therefore extend the
motion planning framework by primitives that are motions along invariant manifolds
of the uncontrolled dynamics, e.g. trajectories on (un)stable manifolds of equilibria.
The approach is illustrated by an academic example motivated by an operating
scenario of an open-chain jointed robot.

1 Introduction

Planning problems arise in many technical applications and typically one is
interested in an optimal solution of the problem. Taking into account the dynamics
of the technical system, e.g. an industrial robot, there has to be found a solution
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trajectory to the dynamic optimal control problem fulfilling in addition required
start and final configurations (cf. e.g. [1]). Furthermore, the dynamics of a complex
technical system has to be modeled by an interaction of continuous time and discrete
event dynamics, thus by a hybrid system.

Optimal Control. An optimal control problem for a mechanical system with
configuration manifold Q and states x.t/ D .q.t/; Pq.t// 2 TQ is defined by a cost
functional J.x; u/ D R T

0
C.x.t/; u.t// dt , that has to be minimized. Constraints are

given by the system’s dynamics, e.g. the Euler-Lagrange equations

@L

@q
.q; Pq/ � d

dt

@L

@ Pq .q; Pq/C f .q; Pq; u/ D 0

with Lagrangian L and forces f depending on continuous time control inputs u.t/
and on .q; Pq/, by boundary conditions and typically further constraints on the states
and controls. There exists a number of approaches for numerically solving optimal
control problems (cf. e.g. [2] for an overview). For our computational example,
we use DMOC (Discrete Mechanics and Optimal Control, [3]), a method that
directly discretizes the problem such that a high dimensional constrained nonlinear
optimization problem is obtained which can be solved e.g. by sequential quadratic
programming (SQP, cf. e.g. [4]). Since these methods compute local optima only,
it is necessary to provide good initial guesses for the optimal control method and it
is beneficial to combine the method with global, e.g. planning techniques [5–7]. In
[5], Frazzoli et al. present the approach for motion planning with motion primitives
(cf. Sect. 2).

Hybrid Dynamics. The dynamic behavior of technical systems is typically mod-
eled by systems of continuous time differential equations. However, for an appro-
priate description of complex behavior and interactions, discrete effects have to be
additionally accounted for, leading to the general framework of hybrid systems.
Considering mechanical systems, there is a number of origins for hybrid effects:
a changing environment as well as varying internal parameters change the system’s
dynamics, obstacles lead to impacts or (de)coupling processes cause changes of
the system’s topology. Formally, a hybrid system can be defined by a finite family
of continuous subsystems Px D fi .x; u/; i D 1; : : : ; N (the vector fields origin
from different Lagrangian Li ) defined on subsets Xi (domains) of a common state
space and with the same control inputs. Switching between the subsystems is usually
restricted by guards and reset maps (cf. e.g. [8]). Then, a hybrid trajectory consists of
the continuous variables plus a discrete mode d.t/ 2 f1; : : : ; N g that defines which
subsystem is active. The optimal control of hybrid systems is of great interest, since
it includes an optimization of discrete and continuous variables leading to mixed-
integer programming problems (cf. e.g. [9]).

The remainder of this paper is structured as follows: in Sect. 2, we introduce
the different kinds of motion primitives and sketch the idea of motion planning with
primitives. Extensions for an application to hybrid mechanical systems are presented
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in Sect. 3. Finally, in Sect. 4, the method is illustrated by an academic model of an
open-chain jointed robot.

2 Motion Planning with Motion Primitives

The basic idea of motion planning with primitives (introduced in [5]) lies in
exploiting the inherent symmetries of a system. Mechanical systems often inhabit
symmetries, for example if they are invariant with respect to translations or
rotations. Formally, this means that there exists a Lie group G with a left-action
˚

TQ
g W TQ ! TQ; g 2 G on the state space which leaves the Lagrangian invariant,

L ı ˚
TQ
g D L for all g 2 G. Then, we call two trajectories equivalent, if they

are equal except for a symmetry transformation and a time shift. Symmetry helps to
reduce the complexity of the motion planning library since it is sufficient to store one
representative, a motion primitive, for all equivalent trajectories. Solving a motion
planning problem corresponds to a search for the optimal sequence in this library
represented by a maneuver automaton (cf. [5, 6]).

Trim Primitives. A special kind of primitives is given by trim primitives, which
are motions along the group orbits of G with a constant control value. Thus, the
trajectories can be simply described by .q; Pq/.t/ D ˚TQ.exp.�t/; x0/, u.t/ � u0
with � being an element of the Lie algebra corresponding to G, with the exponential
map exp. � / and some initial value x0 (cf. [5, 7] for details). In mechanical systems,
trims are also known as relative equilibria and they are closely related to the
conservation of momentum maps, the Noether theorem, and to symmetry reduction
procedures (see [7]). For a spherical pendulum (Fig. 1), trims are horizontal rotations
with constant velocity. In the lower half sphere, uncontrolled trims exist. A constant
additive control can be chosen to create trims with arbitrary rotational velocities at
any height.

Trajectories on (Un)stable Manifolds. The natural, i.e. uncontrolled dynamics
of a mechanical system provide motions that can be of great interest when
searching for energy efficient control maneuvers. In particular, trajectories on stable
manifolds of hyperbolic unstable fixed points are promising candidates since a stable
manifold contains all motions which tend to the corresponding equilibrium point (cf.
e.g. [10]). The unstable manifold, in contrast, shows the direction of expansion from
the equilibrium and is attractive. Formally, assuming Nx D . Nq; 0/ is an equilibrium
of the system and FL.x; t/ denotes the flow of the autonomous system defined by
the Lagrangian L, the local stable manifold is given by

W s
loc. Nx/ D fx 2 U jFL.x; t/ ! Nx for t ! 1 and FL.x; t/ 2 U 8t � 0g:

The global stable manifold W s can be governed by the preimages of the flow on
W s

loc. Nx/. (For the unstable manifold W u, the same holds in backward time (t � 0).)
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Fig. 1 For a simple spherical
pendulum, trim primitives are
horizontal rotations, but
(un)stable manifolds belongs
to purely vertical motions.
Thus, connecting maneuvers
as motion primitives are
required such that sequences
of primitives can be found

Fig. 2 Unstable manifold of
the up-up equilibrium of a
double pendulum (restricted
to vertical motions). Motion
primitives are generated by
choosing trajectories with
different time durations on
the manifold

To compute such manifolds numerically, we use the method GAIO (Global Analysis
of Invariant Objects, [11]), see Figs. 2 and 3 for single pendulum (cf. Fig. 1) and
double pendulum (cf. Fig. 4) manifold examples. In [7], it is explained in detail how
trajectories on manifolds can be chosen.

Connecting Maneuvers and Sequencing. Motion primitives of a third kind have
to be computed to build up the motion planning library, namely short controlled
maneuvers that connect trims with each other and trims to manifolds. This can be
done for example by the optimal control method DMOC (see [3]). In Fig. 1, all three
types of primitives for a simple spherical pendulum are sketched (we refer to [7] for
a detailed description).
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Fig. 3 The locked double pendulum (restricted to vertical motions) is a one degree of freedom
system with a one-dimensional unstable manifold. For the numerical computations, the locking
angle is set to 0:25�

Fig. 4 Model of a double spherical pendulum with four degrees of freedom and chosen coordi-
nates .�1; �2; �1; �2/. Actuation in both joints is assumed
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Fig. 5 Illustration and simulation of a hybrid trim for the pick and place scenario. The rotational
velocity P� is kept constant by the discontinuous, but piecewise constant control u

3 Motion Planning for Hybrid Mechanical Systems

In the motion planning framework, the hybrid properties of the system have to be
accounted for: in the first time, when computing the primitives (restricted domains,
limited time between switches), but also when searching for the optimal sequence
in the library. In general, there is a need for hybrid control maneuvers, which
connect primitives of the different continuous subsystems. For their computation
additional constraints on the state space due to the guards have to be considered
and an optimization of switching time has to be included (cf. Sect. 4 for illustrating
examples).

Symmetries also occur in hybrid systems (cf. e.g. [12]). In the following, we
restrict to a very specific case and assume that for two continuous subsystems,
switching back and forth is allowed and the subsystems inhabit the same symmetry
group G. We call a tuple of two pairs .�1; u1/ and .�2; u2/ a hybrid trim, if both
are trims in their state spaces and if it holds that x.t�/ D x.tC/, i.e. the state, in
particular the velocity before and after switching is the same. In Fig. 5, an example
is shown of a hybrid trim for a spherical pendulum which switches at the “pick”
and “place” locations between two different modes (cf. Sect. 4 for a more detailed
discussion.) By a hybrid control with switched constant control values, it is possible
to generate a hybrid trim trajectory with constant horizontal velocity P� , i.e. in this
example, we have �1 D �2 but u1 ¤ u2.
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Fig. 6 Example solution sequence for the industrial robot scenario consisting of motion primi-
tives. The scenario starts at the up-up position (subsystem f1 active), is pushed to the unstable
manifold (maneuver for f1), than switches to a locked mode (f2) and uses the corresponding
unstable manifold to go downwards; after a short maneuver leaving the safety region (f1), it rests at
the down-down position to change the tool and finally steers (maneuver for f1) to the rotational pick
and place motion, which is a hybrid trim (switching between f3 and f4). The solution sequence is
given in cartesian coordinates (cf. Fig. 4), red dots mark the switching between primitives

4 Example: An Academic Motion Planning Problem for an
Industrial Robot

An open chain jointed robot as used e.g. in production facilities can be modeled—
in an academic fashion allowing high simplifications on technical details—as a
spherical pendulum. Thus, to illustrate the presented motion planning approach,
we consider a double spherical pendulum with two-dimensional controls in both
joints (cf. Fig. 4, m1 D 20 kg, m2 D 8 kg, l1 D 1m, l2 D 0:5m, g D 9:81m=s2).
The Lagrangian and the equations of motion can be found e.g. in [7]; as the cost
functional we chose the control effort modeled as J.u/ D R T

0
u2.t/dt . The starting

point for the scenario is the up-up position. The final condition is a periodic motion
of the outstretched locked double pendulum, which is motivated by a pick and place
scenario (a hybrid trim) assuming that m2 is changed to 12 kg while the picked
object is moved (cf. Fig. 5). Before heading to the final condition, the robot has
to change the tool in the down-down equilibrium. Another kind of hybrid effect
is brought into the problem by defining a safety region for �1 2 Œ˙�=4;˙�=2�,
where the second link has to be locked (cf. Fig. 3). To compute energy efficient
control sequences, uncontrolled trajectories on the unstable manifolds (cf. Figs. 2
and 3) are used together with connecting control maneuvers. Thus, there are four
different subsystems (labeled by their different vector fields for shortness): a double
spherical pendulum (f1), a locked double pendulum (f2), and an outstretched locked
pendulum with m2 D 8 kg (f3) or m2 D 12 kg (f4). Figure 6 shows an example
solution sequence for the motion planning problem.

In conclusion, this example shows that the motion planning with motion primi-
tives method is particularly suited for an extension to hybrid systems: the flexibility
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of the method allows for incorporating motion primitives from each continuous
subsystem, the computational effort of deriving an optimal hybrid solution is
reduced by the motion planning library to finding a hybrid optimal sequence, and
the method exploits dynamical properties which are present in hybrid as well as
in ordinary mechanical systems. In future work, the approach has to be evaluated
further by larger examples with more or different kinds of hybrid effects. Then,
searching in the motion planning library will have to be performed by appropriate
methods, e.g. sampling based road map algorithms (cf. e.g. [6]).
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