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Preface

ECMI celebrated its 25th anniversary with its 17th conference held in Lund, Sweden
during what turned out to be the most beautiful summer week in the south part of
Sweden during 2012. With around 170 attendees, it was a conference on the smaller
side but maybe this, together with the festivities, contributed to a very creative and
open atmosphere that characterized it.

Showing what Mathematics in Industry can signify, these proceedings reflect
many of the topics presented and discussed during the five intense days of the
meeting: 23–27 July 2012. The breadth of the conference can also be appreciated
by reviewing some of the keynote talks, such as Kuna Huisman’s Decision Making
under Uncertainty, Fahime Nekka’s Information-Loaded Formalism to Assess the
Causal Effect of Drug Intake on Therapeutic Outcomes, Carsten Othmar’s Adjoint
Methods for Car Aerodynamics, or Alistair Fitt’s memorable closing lecture on the
Modelling of Disease and Medical Procedures in the Human Eye, where Alistair,
among other things, told us what a truly applied mathematician must be ready to go
through to get enough data to test a model. Medical experiments, that at the very
least sounded very uncomfortable, performed on your self being part of the criteria
for success was without doubt a novelty for many attendees in the auditorium.

In the middle of the conference week, during the half-day anniversary session,
Helmut Neunzert gave a talk on the History of ECMI, i.e., background, the
Mussbach meeting, general impact on education and society. For some in the
audience, Helmut’s talk slightly lifted the veil to legendary times, heard of, but never
experienced, and for others it brought back good memories of grand days when they
participated in something strikingly new with a circle of friends.

The 2012 Anile-ECMI prize was awarded during the conference to Franceso
Ferranti of Ghent University for his work on Parameterized Macromodeling and
Model Order Reduction of High-Speed Interconnects.

Many other inspiring talks were given during the week in the many parallel mini-
sessions, new problems were identified and started to be attacked during coffee
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vi Preface

breaks and evening dinner discussions, and new collaborations were initiated. If you
were not there, I guess that you have to ask someone who was. Or, you can, of
course, read these proceedings reflecting the 25th anniversary conference of ECMI.

Lund, Sweden Magnus Fontes
Wuppertal, Germany Michael Günther
Erlangen, Germany Nicole Marheineke



25 Years of ECMI

A View Back to Its Childhood

ECMI celebrated its 25th birthday during summer 2012; it is now a pretty young
lady (of course: ECMI is a woman!), quite strong and active. As it sometimes
happens at a birthday party, one of the grandfathers (ECMI has more than two) talks
about the past, a lively childhood, noteworthy escapades. Now, please join me as I
look back. Like a human being, an organization’s identity is shaped by its history.
I will share with you the story of ECMI and mediate on its purpose.

The story begins in Western Europe in 1985. The entire region was dominated
by pure mathematicians, interested in algebra, topology, geometry, analysis, etc.
The whole region? Well, no. Some small groups resisted, some “black points”
on the ivory tower could be found: People, who tried to escape, even cooperated
with industry: In Oxford, Linz and Kaiserslautern, Firenze and Bari, Eindhoven and
Amsterdam, Trondheim and Lappeenranta, Glasgow and Limerick. Unfortunately,
at that time, the Iron Curtain was still shut and the contacts with people from Eastern
Europe, who had similar ideas, were rare.

In Autumn 1985, Michiel Hazewinkel and Bob Mattheij called for a symposium
in Amsterdam and many came. Most were from the Netherlands, then the UK and
Ireland, some came from Italy, Germany and Austria, a few from Scandinavia, and
there was even a Slovene and a Pole. In the end, we thought it would be useful
to found a European organization, and I invited representatives of the countries
to a wine village in the Rhine valley (Mußbach). All invited came, worked a day
and a night—with the exception of some wine tasting—and by the end signed a
document (Fig. 1).

Bensoussan, by then INRIA president, was not much interested in education—he
and France left the ECMI family soon. Sundstrom changed his career, but Sweden
soon came with new people. Hodnett, Martens, Tayler, and Wacker participated in
the bringing-up of ECMI very much, but died during these 25 years—I will come
back to them a bit later. Fasano, Hazewinkel, Heilio, McKee, and I were present at
this birthday party in Lund.

vii



viii 25 Years of ECMI

Fig. 1 Birth of ECMI. (a) The first ECMI-map (The black pearls indicate the ECMI-places).
(b) The cradle of ECMI: Mußbach, Germany. (c) The 11 (grand-) fathers of ECMI
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Hazewinkel drafted the founding paper, where we agreed on the main goals.

The Charter Goals of ECMI. To promote and further the effective use of math-
ematics and closely related knowledge and expertise in industrial and management
settings. More specifically:

• Research: what is needed by industry and commerce, what is available, and what
can be done to fill up the gaps (database)

• Creation, organization, and quality control of a 2-year postgraduate course on
industrial and possibly management mathematics

• To encourage joint research ventures among the participating institutions.

Of course, there were many more points about conferences, newsletters, etc.
Hazewinkel’s preferences are visible—the database was his favorite topic, but never
realized. Nevertheless, he was the first ECMI president.

And then we started working, first about topic one, but soon the focus shifted
to education. The working group—the founders and some others—met four times
during ECMI’s first year, for example in Oberwolfach and Oxford. We discussed
details, such as an ECMI educational program should contain a course on PDE. But
what does “on PDE” really mean? More theory, more modelling, more numerics?
We realized how different the mathematical cultures in different European countries
were (are?)—each PDE course, in Italy, France, Germany, and the UK was quite
special. I myself learned from the Oxford people how important asymptotic analysis
is—whether they realized how important good numerics is for solving industrial
problems, I am not even sure today. When computing begins, thinking ends,
formulated my old friend Alistar Fitt, reflecting the Oxford opinion. Anyhow, we
learned from each other, we found good compromises, we established a quality
control for the educational programs checking spirit, student mobility, the use of
languages at different universities.

The first approved centers were Linz, Kaiserslautern, Oxford, Bari, and Eind-
hoven; Trondheim, Helsinki, Lungby, Milano, and others followed soon.

It’s important to note that there were quite different motivations for starting an
industrial math program. Why do we do, what we do? It is not at all easy to establish
an industrial math group or program. Just to use the name since it is “politically
correct” is not fair and it is not at all the idea of ECMI. Often, one has to leave a safe
career where you go on generalizing results you discovered during your Ph.D. time.
You have to leave the protected area of the university, to expose yourself to the
outer world, where your competence is not accepted a priori. You have to enter new
mathematical fields, since the problem you find does not fit into your research area.
You have to develop new teaching methods like modelling seminars, etc. You have
to fight with your colleagues who are most often very conservative. Why do you
want to do all that?

It may be interesting to detail some of the motivations of some ECMI founders.
Since those who are still active and have been present in Lund can speak for
themselves, I will take a closer look at three very important grandfathers, who
passed away during the first 10 years of ECMI, but influenced it very much:
Hansjörg Wacker, Henrik Martens, and Alan Tayler (Fig. 2).
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Fig. 2 Hansjörg Wacker, Henrik Martens and Alan Tayler

Hansjörg Wacker, ECMI President 1989–1990. Hansjörg Wacker (1939–1991)
was educated at the Technical University of Munich (TUM) and became full
professor at Johannes Kepler University in Linz in 1973.

His competence was in numerical analysis, more specifically continuation
methods. Why did he turn to industrial mathematics during the 1970s? According
to his student and later his successor Heinz Engl, it was his most important goal
to encourage mathematicians to come out of the ivory tower and to start cooper-
ating with industry, thus increasing the chances of math students for interesting
employments in industry. This was, indeed, his main concern: To help students,
to give them better chances. Many of us in Germany or Austria had studied 10
to 15 years after World War II: There were little chances for math graduates. We
expected to become high school teachers—what else? One had to convince the
slowly recovering industry that it was worthwhile to hire mathematicians. In Linz,
there was—and still is—a big steel company that could be convinced—and Hansjörg
succeeded. He was a man to visit companies, to form student groups who work on
problems discovered there, to inspire young colleagues. He was also very active
in helping foreign students—we, in Linz and Kaiserslautern, had the idea to help
foreigners in order to correct the image of the past (Fig. 3).

It was only consequent that ECMI established a Wacker prize for young students.
The first winner was Joachim Weickert, today a leading image processing expert in
Germany, who got one of the most prestigious German prizes, the Leibniz-prize,
3 years ago. One of the editors of this volume, Nicole Marheineke, also got the
Wacker prize in 2002.

Henrik Martens, ECMI President 1993. Henrik Martens (1927–1993) was born
in a little town on the Norwegian coast and escaped at age 15 from the German
occupation. He worked as a radio telegraphist on a ship, settled in New York in
1949, and worked as a technical assistant at Bell Labs, studying at the same time
to graduate as an electrical engineer at 29. While at Bell Labs, he began to study
mathematics and got his Ph.D. in 1962 at the Courant Institute. He was then a
very pure mathematician, specializing in compact Riemannian manifolds. In 1968,
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Fig. 3 Hansjörg Wacker with
Ferryanto from Indonesia.
Ferryanto, who studied in
Kaiserslautern and Linz, is
now head of quality control at
Ford in the USA

he returned to Trondheim and was appointed as professor at NTH. At Trondheim he
began to build a bridge between pure mathematics and engineering. I met him 1985
in Trondheim, we became close friends, vividly discussing mathematics, politics,
literature, philosophy while hiking in the Norwegian mountains. He died in 1993,
when returning from an ECMI board meeting at Como. His last activity was to see
Leonardo da Vinci’s “The Lord’s Last Supper.”

In 1986 he explained his motivation to start with industrial mathematics in
a paper called “The task ahead”: “We are witnessing an increasing invasion of
mathematics and mathematicians into the engineering environment. How do we
prepare our students for such a task? If we want to understand the issue, it
seems reasonable first to make some effort to understand how mathematics enters
engineering as a discipline, as a profession, and as an educational task.

“As a discipline [: : :]: My point, however, was to emphasize that the mathematics
that is relevant for contemporary technological problems extends far beyond
the boundaries of traditional applied mathematics, and it seems to me that all
this—whatever mathematics is useful to technology—deserves the (new) heading
industrial mathematics”.

“As a profession: The primary goal is to solve practical problems, not to prove
theorems [: : :]. We must convince ourselves that it is indispensable to simplify and
systematize the results obtained in a discipline in order to permit the most easiest
access for those who cultivate different (other) disciplines. [: : :] Modern technology
is a source of potentially interesting problems that it would be a serious mistake to
turn ones back on them.”

“As an educational task: It implies that we must find ways to train the students in
the important and difficult art of modelling. It implies that they must get experience
in team work and communication. Above all, it implies that they should be exposed
to a mathematical environment where these topics are cultivated and regarded as
important, for it is through the social mechanisms of the environment that attitudes
are transmitted. It is hardly possible to teach mathematics to users without a realistic
understanding of how mathematics is used. I think it can be put quite simply: To seek
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Fig. 4 “The first recorded
instance of industrial
mathematics occurred more
than 2,000 years ago in
Syracuse when Archimedes
ran naked through the streets
yelling Eureka.”; “We may
well see the emergence of
industrial mathematics as
member of a new
technological profession,
solidly rooted in the
mathematical sciences, but
with its own professional
profile and goals.” (Martens)

out whatever mathematics is relevant to technology, and make it available to the
engineer.”

This is a whole program—Henrik’s motivation was to give (even pure) math-
ematics the role in technology it earns. He himself was an educated engineer
who turned into a pure mathematician. His dream was to bring the two sides of
his thinking finally together. I remember his ironic smile when showing him this
picture, especially about the emergence (in a literal sense) of the first industrial
mathematician, cf. Fig. 4.

Alan Tayler. Alan Tayler (1931–1995) initiated the study groups with industry
in Oxford in 1967, 20 years before ECMI. He was the first and a real pioneer
for industrial mathematics in Europe. Why did he leave the ivory tower at such a
prestigious university as Oxford, and a very comfortable one at that?

In 1988 he wrote: “At this time there was much discussion worldwide about the
role of applied mathematics, and in Britain the Royal society produced a report
on the future of applied mathematics. This report was strongly influenced by the
Cambridge group and one of its proposals was to require the applied mathematician
to carry our experiments as part of research work, thus ensuring that theory and
application did not diverge. As a young lecturer, with some experience of very bright
mathematics students, this seemed to be totally inappropriate for Oxford where
high intellect often was paired in the same individual with practical incompetence,
and where graduate students waited to use their mathematics as soon as possible.
Nevertheless, I recognized the need for their problems, and mine, to be real ones and
not extensions to text book exercises. I looked therefore at the problems of interest
to faculty members in physics, engineering and chemistry, but found my colleagues
too busy or poorly motivated to communicate with me, an applied mathematician
with little knowledge of their specialist topic and rather dubious mathematical skills.
They would ask me to solve an equation, perform a mathematical manipulation,
explain the pitfalls of the use of complex variables, but would not give me their
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Fig. 5 Alan Tayler’s arguments for an industrial math group

problems, which is all very understandable. So I had to look elsewhere and decided
to approach research workers in industry and government laboratories.”

I believe that this is a perfect description of what many of us experienced—
and may still experience. No, our engineering colleagues will not give us their
problems—we have to find them ourselves. And he did not want to repeat textbook
exercises, they were boring. He wanted intellectual stimulation, new and exciting
problems. And, in fact, at an Oberwolfach conference in 1983, he showed in a
transparency how he was asking for help in establishing an industrial math group
and promising rewards for that help. These are the rewards in his own handwriting
(Fig. 5).

For him, mathematics was not the same as for Hansjörg and Henrik. He spoke
mainly about modelling, of asymptotic analysis. Numerics and algebraic geometry
were not the objects of his interest. A bit later, he explained, why we need a
European consortium—and it still holds (Fig. 6). Alan was extremely convincing, he
spread enthusiasm, was very friendly and inspiring. He brought Oxford into ECMI
and shaped ECMI very much.

The Three Main Reasons for ECMI. Now we have seen three main reasons for
industrial mathematics and for ECMI, personalized in three outstanding persons:

• Improving the chances for students,
• Promoting mathematics in society,
• Intellectual stimulation.
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Fig. 6 Alan Tayler’s view on ECMI

Fig. 7 Further ECMI-supporters: Sten Ackermans (1936–1995), Marcello Anile (1948–2007),
and Frank Hodnett (1939–2011) with Helmut Neunzert and others in Limerick (1991)

These reasons are still valid today, 25 years after ECMI’s birth. All ECMIsts, now
and in the future, should follow them. We see: To start industrial mathematics at
your university is not an easy way to political correctness, but a difficult and hard
way to a better math department.
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Before ending, I would like to mention some other important ECMI-supporters,
who passed away: Sten Ackermans (1936–1995), Marcello Anile (1948–2007),
and Frank Hodnett (1939–2011) (Fig. 7). They helped to establish ECMI in their
countries, in Eindhoven, Catania, and Limerick. They all gave ECMI a special
flavor, worked enthusiastically for ECMI—we miss them all. Marcello was also
a personal friend.

ECMI has an impressive past and I am sure, it has a good future. The “E,” the
“C” and the “M”—all are very strong. What we have to work for is to strengthen
the “I.” Without the “I,” we loose our uniqueness. But as “whole” ECMI, we are
unsubstitutable, we are unmistakable, we are—simply needed. Good luck, ECMI,
for the next 25 years and beyond.

Kaiserslautern, Germany Helmut Neunzert
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Part I
Circuits and Electromagnetic Devices

Overview

The section on Circuits and Electromagnetic Devices contains five contributions.
When going to nanoscales more details have to be modeled, for which additional
unknowns and corresponding equations have to be introduced. The phenomena
show dynamical behaviour and the equations involve nonlinear couplings. On the
one hand the mathematical properties of the overall system have to be reviewed. For
instance, do the new equations influence familiar statements, known at the macro
scale, on well-posedness? Can we cast this into topological checks on the structure
of the circuit network? How do we deal with multiscale effects, in time direction
also known as multirate behaviour? How do we model transport in full details to
allow for simulation of new materials? Can we identify local hotspots? How can we
efficiently deal with temperature effects?

The first paper covers modeling of nanoscale circuit devices that exhibit memory.
To model these within a circuit network additional unknowns have to be introduced
that deal with the time history. This leads to extended DAEs (Differential-Algebraic
Equations). The second paper considers index analysis for DAE systems, coming
from branch-oriented modeling (in contrast to nodal analysis), or from hybrid
circuit models, based on spanning tree concepts. The third paper concerns a multi-
dimensional generalization in modeling transport through a heterojunction between
materials in nanoscale organic photovoltaic devices. This is modeling on PDE-level.
Here coupled multiscale features arise. The fourth paper concerns the simulation of
nanoscale MOSFETs. Crystal heating is essential for a proper performance of the
device. The last paper also includes coupling to heat, this time in electromagnetic
heating. New techniques from dynamic iteration demonstrate that co-simulation can
efficiently deal with the multirate time behaviour.

The paper by Ricardo Riaza: Normal Hyperbolicity of Manifolds of Equilibria
in Nonlinear Circuits with Mem-Devices, deals with the network modeling of
memory effects in resistors, capacitors and inductors. The new elements are called
memristors, memcapacitances, and meminductors. For each device the effects are
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both nonlinear and dynamic, which can be modeled by an explicit linear differential
equation and a nonlinear algebraic equation. The differential equation covers the
time history of the memory effect. By this, the overall system of equations governing
the circuit network are again a system of DAEs. For the well-posedness of the
DC-problem (equilibrium point) conditions are formulated to guarantee that the
manifold of such equilibria is normally hyperbolic and that it attracts all nearby
trajectories. The paper has an extensive list of references.

Index analysis for DAEs of circuit networks usually is tuned to DAEs that
come from Modified Nodal Analysis. In the paper by Ignacio García de la Vega
and Ricardo Riaza: Index Analysis of Branch-Oriented and Hybrid Models of
Non-Passive Circuits, index analysis is considered for DAEs that come from branch-
oriented circuits or from hybrid formulations that are based on spanning tree
concepts. For the first class of DAEs a complete characterization of index one and
of index two is presented. For the second class of DAEs the cases of index zero and
index one are treated.

In the paper by Matteo Porro, Carlo de Falco, Riccardo Sacco and Maurizio Verri:
Multiscale Modeling of Heterojunction Organic Photovoltaic Devices, the modeling
leads to a system of semilinear PDEs and ODEs. The dynamics of the excitation
phenomena in the bulk leads to a parabolic problem that is coupled to an ODE that
involves dissociation/recombination of excitations, electrons and holes into bonded
pairs at the materials interface between the acceptor domain and the donor domain.
In the acceptor domain, transport of photogenerated electrons is described by a
second parabolic problem. In the donor domain there is a third parabolic problem
for the holes transport. Time-domain simulations for planar device geometries,
including a complex interface morphology, are shown.

The paper by Camiola V. Dario, Mascali Giovanni and Romano Vittorio:
Simulation of Nanoscale Double-Gate MOSFETs, considers subband modeling
based on the maximum entropy principle (MEP). Crystal heating is included, by
which the electrical properties of the device can be affected. By hot electrons a
phonon hot spot can be created, which increases the power density generated by
the integrated circuits. The crystal heating is involved by the lattice temperature
that enters the electron-phonon scattering and the production terms of the balance
equations for the electron variables. The charge transport in the subbands involves
non-parabolic effects through the Kane dispersion relation. Simulations are shown
for a MOSFET configuration with an upper gate and a lower gate and with source
and drain at the left and at the right, respectively. Time-domain simulation exploits
ADI (Alternating Direction Implicit) techniques.

In the paper by Christof Kaufmann, Michael Günther, Daniel Klagges, Matthias
Richwin, Sebastian Schöps and E. Jan W. ter Maten: Coupled Heat-Electromagnetic
Simulation of Inductive Charging Stations for Electric Vehicles, efficient simulation
of heat coupled to electromagnetic fields is considered. The interest by industry is
clearly reflected in the author list. Co-simulation is a well-established technique
to exploit multi-rate time integration. Here, within specific time windows, the
solution of the electromagnetic field can well be approximated by solving it in the
frequency domain. This solution can be improved by iteration techniques, similar
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to Dynamic Iteration. The current analysis involves only the dominant fourier
mode of the solution of the electromagnetic field, but it can easily be extended
to include more modes (like in Harmonic Balance). The authors also point out
generalization to systems that can be formulated with two time scales in the time
domain.

E. Jan W. ter Maten



Normal Hyperbolicity of Manifolds of Equilibria
in Nonlinear Circuits with Mem-Devices

Ricardo Riaza

Abstract The memristor and other mem-devices are displaying a great impact
on modern electronics. We examine in this communication certain dynamical
features of circuits with memristors, memcapacitors and meminductors, related to
the systematic presence of non-isolated equilibria in these nonlinear circuits.

1 Introduction

The memory-resistor or memristor is a nonlinear electronic device defined by a
nonlinear charge-flux relation, whose existence was predicted by Chua in 1971 [4].
A device with a memristive characteristic was actually designed at the nanometer
scale in 2008 [30]. The potential applications of this device in the design of
non-volatile memories, pattern recognition, adaptive and learning systems, signal
processing, etc., might make the memristor and related devices play a very
significant role in electronics in the near future, specially at the nanometer scale.
A lot of research is focused on this topic; cf. [2, 3, 6, 12–24, 26, 29, 31]. HP has
announced that commercial memory chips based on the memristor will be released
in 2013 [1]. The idea of a device with memory was extended to the reactive context
in 2009 by introducing memcapacitors and meminductors [7].

In this communication we examine certain local dynamical features of circuits
with such mem-devices. The form of the memristor constitutive relation is known
to be responsible for the existence of a center manifold of equilibria, as detailed
later; see e.g. [17]. These non-isolated equilibria will be displayed also by circuits
with memcapacitors and meminductors. Along the lines of the pioneering work of
Fiedler et al. [8–11], given an m-dimensional manifold of equilibria in any C1,

R. Riaza (�)
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continuous-time dynamical system, it is of interest to examine the normal hyper-
bolicity of such a manifold and the existence of bifurcations without parameters
when the normal hyperbolicity fails. The idea is that at least m eigenvalues of the
linearization about any of these equilibria do necessarily vanish: the manifold is said
to be normally hyperbolic if the remaining eigenvalues are not in the imaginary axis.

The analysis proceeds in two steps. Section 2 addresses the aforementioned
dynamical properties for circuits with memristors. Memcapacitors and meminduc-
tors are included in Sect. 3, and Sect. 4 briefly compiles some concluding remarks.

2 Circuits with Memristors

For the sake of simplicity we begin the analysis by considering circuits whose mem-
devices are only of memristive type. We will focus the attention on flux-controlled
memristors, defined by a relation of the form q D �.'/ [4]. By differentiating this
relation we get the current-voltage characteristic i D W.'/v, where W.'/ D � 0.'/
is the so-called memductance and depends on ' D R t

�1 v.�/d� . The memory effect
arises from the fact that the memductance (a generalization of the conductance of a
nonlinear resistor) keeps track of the device history because of its dependence on an
integral variable.

In terms of the loop and cutset matrices B , Q (see e.g. [5, 25]), such a circuit is
modelled by the differential-algebraic system

C.vc/v
0
c D ic (1a)

L.il /i
0
l D vl (1b)

'0
m D vm (1c)

0 D im �W.'m/vm (1d)

0 D ir � �.vr / (1e)

0 D Bcvc C Blvl C Bmvm C Brvr C BuVs C Bj vj (1f)

0 D Qcic CQlil CQmim CQrir CQuiu CQjIs: (1g)

The loop matrix B is split as .Bc Bl Bm Br Bu Bj / in the statement of Kirchhoff
laws within (1f) and (1g); note that Bc (resp. Bl ; Bm; Br , Bu, Bj ) corresponds to the
columns accommodating capacitors (resp. inductors, memristors, resistors, voltage
sources, current sources). The same applies to the cutset matrix Q. Additionally,
C and L stand for the capacitance and inductance matrices; resistors are assumed
to be voltage-controlled by the characteristic ir D �.vr/ and, for later use, the
conductance matrix � 0.vr / will be denoted as G. Finally, Vs and Is are the (DC)
sources.

The main result to be reported in this communication is the one stated in
Theorem 1 below. It extends to the memristive context the graph-theoretic analysis
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of qualitative properties carried out in [27,28]. Note that the presence of a manifold
of equilibria is an easy consequence of the fact that the variable 'm is not actually
involved in the equilibrium conditions which follow from forcing the right-hand
side of (1) to vanish.

Theorem 1. Assume that the capacitance, inductance, memductance and conduc-
tance matrices C , L,W , G in (1) are positive definite and that C , L are symmetric.
Suppose that at least one of the following two sets of topological conditions holds:

• the circuit does not have VC-loops, VL-loops or ICL-cutsets; or
• it does not have IL-cutsets, IC-cutsets or VCL-loops.

Then, locally around any equilibrium point the model (1) defines a local flow
whose dimension is defined by the number of memristors and reactive elements.
Additionally, there is a manifold of equilibria whose dimension is given by the
number of memristors and which is normally hyperbolic and attracts all nearby
trajectories.

The proof begins by showing that the number of eigenvalues in the matrix pencil
describing the linearization of (1) equals the number of memristors and reactive
elements, with a zero eigenvalue whose geometric and algebraic multiplicities are
given by the number of memristors. The remainder of the proof essentially proceeds
along the lines of [27, 28]: the absence of ICL-cutsets or VCL-loops rules out the
presence of purely imaginary eigenvalues, and the positive definite assumption on
the circuit matrices implies that all non-vanishing eigenvalues are actually located
in the left-hand complex plane.

3 Memcapacitors and Meminductors

The result reported above can be extended to circuits with reactive mem-devices [7].
A memcapacitor is a nonlinear device governed by a relation of the form

q D Cm.'/v; (2)

where the memcapacitance Cm depends on ' D R
v. A meminductor is defined by

' D Lm.q/i; (3)

and the meminductance Lm now depends on q D R
i . These devices can be added

to the previous model to yield

C.vc/v
0
c D ic (4a)

L.il /i
0
l D vl (4b)

'0
mc D vmc (4c)
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q0mc D imc (4d)

'0
ml D vml (4e)

q0ml D iml (4f)

'0
m D vm (4g)

0 D qmc � Cm.'mc/vmc (4h)

0 D 'ml � Lm.qml /iml (4i)

0 D im �W.'m/vm (4j)

0 D ir � �.vr / (4k)

0 D Bcvc C Blvl C Bmcvmc C Bmlvml C Bmvm C Brvr C BuVs C Bj vj

(4l)

0 D Qcic CQlil CQmcimc CQmliml CQmim CQrir CQuiu CQjIs:

(4m)

Now the subscripts mc and ml correspond to memcapacitors and meminductors,
respectively. As before, equilibrium points are defined by the vanishing of the right-
hand side of (4). It is easy to check that at equilibrium all voltages and currents in
memristors, memcapacitors and meminductors are null, and so they are qmc and 'ml
because of (4h)–(4i). It then follows that the number of null eigenvalues equals the
total number of mem-devices. As in the memristive case, the normal hyperbolicity
and exponential stability of the manifold of equilibria can be guaranteed in the
absence of the topological conditions arising in Theorem 1, provided that all
claims about capacitive (resp. inductive) elements are now understood to stand for
capacitors and memcapacitors (resp. inductors and meminductors).

4 Concluding Remarks

The results here reported provide a general framework which explains some of
the qualitative properties displayed by specific memristive circuits in [12, 17].
A systematic analysis of Hopf bifurcations without parameters in this context,
extending the results obtained in [17] for a specific example, is in the scope of future
research.

Acknowledgements Research supported by Project MTM2010 -15102 of Ministerio de Ciencia
e Innovación, Spain.
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Index Analysis of Branch-Oriented and Hybrid
Models of Non-passive Circuits

Ignacio García de la Vega and Ricardo Riaza

Abstract We extend in this communication previous index analyses of
branch-oriented and hybrid circuit models to a non-passive context. Specifically, in
the absence of coupling effects, we present a complete characterization of index
one and index two branch-oriented models, and index zero and index one hybrid
models. The results are based on the structure of the forests of certain circuit minors.

1 Introduction

Differential-algebraic equations (DAEs) are nowadays systematically used in circuit
simulation programs. This is a consequence of the fact that automatic methods to set
up circuit models in a nonlinear context naturally generate them as a combination
of both differential and algebraic equations. This is the case of nodal analysis
techniques, such as MNA, used in SPICE and its commercial variants [3–5, 10, 12].

In this context, a major problem is the characterization of the DAE index of the
circuit model. The index determines the numerical techniques that can be used in
the simulation of the dynamics and characterizes several analytical properties of the
circuit. Much research in this direction has been focused on the characterization of
the index of nodal models [2, 3, 10, 12]. Under passivity assumptions, the index of
nodal models is known to be not greater than two, according to the results in [3,12].

Recent research has been directed to so-called hybrid models, whose origin can
be traced back to [8] and which have been recently framed in a differential-algebraic
formalism [6, 7, 11]. The hybrid equations arise as a reduction of branch-oriented
models [9, 10], which avoid the use of node potentials in the formulation of the
model.
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The index analysis carried out in [9, 10] for branch-oriented models and in
[6, 7, 11] for hybrid systems applies to passive circuits, namely, to problems in
which all circuit matrices (capacitance, inductance, conductance and, in the eventual
presence of memristors, memductance) are positive definite. In this communication
we report an extension of these results to non-passive circuits, by means of
a non-trivial modification of the techniques introduced in [2]. In particular, as
detailed in Sect. 2, we accommodate in the analysis of branch-oriented models
both voltage- and current-controlled resistors and also topologically degenerate
configurations (leading to index two models), in contrast to [2] which only accounts
for voltage-controlled resistors and topologically nondegenerate configurations.
Section 3 extends the results to hybrid models.

2 Branch-Oriented Models

By expressing Kirchhoff laws in terms of a reduced cutset matrix Q and a reduced
loop matrixB (cf. e.g. [1,10]), the branch-oriented model of a nonlinear RLC circuit
with independent sources can be written as

C.vc/v
0
c D ic (1a)

L.il /i
0
l D vl (1b)

0 D Qrir CQgig CQlil CQcic CQuiu CQj is.t/ (1c)

0 D Brvr C Bgvg C Blvl C Bcvc C Buvs.t/C Bj vj (1d)

0 D vr � f .ir / (1e)

0 D ig � g.vg/; (1f)

where we are using the subscripts r and g for current-controlled and voltage-
controlled resistors, respectively, whereas l , c, u and j correspond to inductors,
capacitors, voltage sources and current sources.

Topologically nondegenerate configurations, characterized by the absence of
VC-loops (that is, loops composed of voltage sources and/or capacitors) and
IL-cutsets (cutsets defined by current sources and/or inductors) are known to
make (1) index one in a passive context [9]. The analysis when some of the resistors
may become locally non-passive (that is, when some of the components of the
characteristics f and g above may become negative at certain regions) is more
intricate; as an extension of the results in [2], Theorem 1 below provides a full index
one characterization in terms of proper trees, namely, spanning trees comprising all
voltage sources and capacitors and neither current sources nor inductors.

Theorem 1. Let the capacitance and inductance matrices C , L be non-singular. In
the absence of resistive coupling effects, the model (1) is index one if and only if:
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(a) the circuit exhibits neither VC-loops nor IL-cutsets; and
(b) the sum of product of the incremental conductances of voltage-controlled twig

resistors and the incremental resistances of current-controlled link resistors in
proper trees does not vanish.

VC-loops and IL-cutsets lead to topologically degenerate configurations, and a full
characterization of index two models for nodal analysis of non-passive circuits
was not feasible along the lines of [2]; actually, this is still an open problem.
For branch-oriented models such an index two characterization is possible, as
detailed in Theorem 2 below. In the statement of this result, we use three reduced
circuits, namely: the resistive minor obtained after short-circuiting voltage sources
and capacitors and open-circuiting current sources and inductors; the capacitive
minor defined by short-circuiting voltage sources and open-circuiting all other
circuit elements except for capacitors; and the inductive minor obtained after open-
circuiting current sources and short-circuiting all other devices except for inductors.

Theorem 2. Consider a topologically degenerate, well-posed circuit in which the
capacitance and inductance matrices are non-singular and which displays no
coupling effects. As in item (b) of Theorem 1, assume that the sum of conductance-
resistance products in the forests of the resistive minor defined above does not
vanish. Then the model (1) is index two if and only if

(i) neither the sum of capacitance products in the forests of the capacitive minor,
(ii) nor the sum of inductance products in the coforests of the inductive minor

do vanish.

3 Hybrid Circuit Models

Similar techniques can be used to characterize the index of so-called hybrid circuit
models. These arise as a reduction of the model (1), when Kirchhoff laws (1c)
and (1d) are based on a normal reference tree, that is, a spanning tree chosen to
comprise all voltage sources and no current source, to have as many capacitors as
possible, to include (among the ones satisfying the previous requirements) as many
voltage-controlled resistors as possible, and to have (among the previous ones) as
many current-controlled resistors as possible. As a byproduct, such a tree has as
few inductors as possible. For the sake of simplicity, we will disregard voltage and
current sources, so that the definition of a normal tree only involves the requirements
stated above for capacitors, inductors and resistors.

This working setting makes it possible to express Kirchhoff laws as

0

B
B
@

vcco

vgco

vrco

vlco

1

C
C
A D �

0

B
B
@

K11 0 0 0

K21 K22 0 0

K31 K32 K33 0

K41 K42 K43 K44

1

C
C
A

0

B
B
B
@

vctr

vgtr

vrtr

vltr

1

C
C
C
A
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and

0

B
B
B
@

ictr

igtr

irtr

iltr

1

C
C
C
A

D

0

B
B
B
B
@

K
T
11 K

T
21 K

T
31 K

T
41

0 K
T
22 K

T
32 K

T
42

0 0 K
T
33 K

T
43

0 0 0 K
T
44

1

C
C
C
C
A

0

B
B
@

icco

igco

irco

ilco

1

C
C
A ;

where the subscripts tr and co specify tree and cotree elements in a given normal tree.
As detailed in [6, 7, 11], hybrid models eliminate all variables except for vctr

, vgtr
,

irco
and ilco

, to write the circuit equations in the form

.C tr .vc tr
/CK

T
11Cco .�K11vc tr

/K11/v
0

c tr
D K

T
21hco .�K21vc tr

�K22vg tr
/CK

T
31irco

CK
T
41ilco

.Lco .ilco
/CK44L tr .K

T
44ilco

/K
T
44/i

0

lco
D �K41vc tr

�K42vg tr
�K43f tr .K

T
33irco

CK
T
43ilco

/

h tr .vg tr
/ D K

T
22hco .�K21vc tr

�K22vg tr
/CK

T
32irco

CK
T
42ilco

fco .irco
/ D �K31vc tr

�K32vg tr
�K33f tr .K

T
33irco

CK
T
43ilco

/:

(2)

As shown in [6, 7, 11], the index of this model does not exceed one in a passive
context. Again, this result can be extended to a non-passive setting in terms of the
spanning forests of the resistive, capacitive and inductive minors introduced above.
We make use of the so-called resistor-acyclic condition introduced in [6, 7, 11],
which captures the configurations in which every voltage-controlled resistor defines
a loop together with some capacitors, and every current-controlled resistor defines
a cutset together with some inductors, so that the model (2) has no algebraic
equations.

Theorem 3. In the absence of capacitive and inductive coupling, the hybrid
model (2) is index zero if and only if the resistor-acyclic condition is met, and the
sums arising in items (i) and (ii) of Theorem 2 do not vanish.

If the resistor-acyclic condition is not met, and the sums of capacitance and
inductance products arising in items (i) and (ii) of Theorem 2 do not vanish, then the
hybrid model (2) is index one if and only if the condition on the sum of conductance-
resistance products depicted in item (b) of Theorem 1 is met.

It is worth emphasizing that the elimination of, say, index two variables in the
branch-oriented model (1) provides a set of (hybrid) equations which retain the same
non-degeneracy requirements (namely, the ones stated in items (b) of Theorem 1 and
items (i) and (ii) of Theorem 2) in the index analysis, with the key difference that in
this case these requirements yield a model whose index does not exceed one.

Acknowledgements Research supported by Project MTM2010-15102 of Ministerio de Ciencia e
Innovación, Spain.
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Multiscale Modeling of Heterojunction Organic
Photovoltaic Devices

Matteo Porro, Carlo de Falco, Riccardo Sacco, and Maurizio Verri

Abstract In this communication, we present a computational model for heterojunc-
tion Organic Photovoltaic (OPV) devices consisting of a system of semilinear PDEs
and ODEs. The mathematical model is discussed, focusing on the transmission
conditions at material interfaces, together with the numerical method used for its
solution. Steady-state and transient simulations are performed on realistic devices
with various interface morphologies.

1 Introduction and Motivation

An important class of OPVs is that of Organic Solar Cells (OSCs). In the design
of efficient OSCs the impact of material interface morphology on performance
is currently considered to be of paramount importance. For this reason, material
scientists are putting much of their research effort into techniques for controlling
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interfaces down to the nanoscale, for example by studying materials that have
the ability to self-assemble into ordered nanostructures during the deposition
process. For the same reason, computational models that allow to estimate device
performance carefully accounting for the material interface geometry and the
phenomena occurring on it are in high demand. Previous approaches in this direction
can be found in [1] (for biplanar devices) and [8]. In this communication we present
our work aimed at extending the model of [1] to treat arbitrary multidimensional
morphologies.

2 Mathematical Model

Let ˝ be an open subset of Rd , d D 1; 2; 3, representing the geometrical model
of an OSC and � be the unit outward normal vector over the boundary @˝. The
device structure is divided into two open disjoint subregions, ˝n (acceptor) and ˝p

(donor), separated by a regular surface � on which �� is the unit normal vector
oriented from ˝p into ˝n. The cell electrodes, cathode and anode, are denoted as
�C and �A, respectively (see Fig. 1 for the 2D case).

Let X , n and p denote the volumetric densities of excitons, electrons and holes
in the cell, respectively, P be the areal density of bonded pairs and ' be the electric
potential. For any function f W ˝ ! R, let ŒŒf �� WD fn � fp , fn and fp being the
traces of f on � from ˝n and ˝p , respectively. Excitation phenomena occurring
in the bulk are described by the parabolic problem:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@X

@t
� r � .DXrX/ D G � X

�X
in ˝ n �

ŒŒX�� D 0 on �

ŒŒ��� �DXrX�� D �krecP � 2H

�diss
X on �

X D 0 on �C [ �A

X.x; 0/ D 0 8x 2 ˝:

(1a)

Dissociation/recombination of excitons, electrons and holes into bonded pairs at the
material interface is described by the ODE:

8
<

:

@P

@t
D 2H

�diss
X � .kdiss C krec/ P C 2H� np on �

P.x; 0/ D 0 8x 2 �:
(1b)

Transport of photogenerated electrons in the acceptor domain ˝n is described by
the parabolic problem:
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Fig. 1 Schematic
representation of the
mathematical domain

Table 1 Model parameters Symbol Parameter

�i , Di Mobility and diffusivity of species i , i D X; n; p

G Exciton generation rate
�X , �diss Exciton decay and dissociation times
krec, kdiss Bonded pair recombination and dissociation rates
� Electron-hole recombination rate constant
� Singlet exciton fraction
H Active layer thickness

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@n

@t
Cr � Jn D 0 in ˝n

Jn D �DnrnC �nnr' in ˝n

��� � Jn D �kdissP C 2H� np on �

�	n� � Jn C ˛nn D ˇn on �C

n.x; 0/ D 0 8x 2 ˝:

(1c)

A parabolic problem completely similar to (1c) describes hole transport in the donor
domain ˝p . The dependence of the electric potential and field on the space charge
density in the cell is described by the Poisson equation:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

r � .�"r'/ D �q n in ˝n

r � .�"r'/ D Cq p in ˝p

ŒŒ'�� D ŒŒ��� � "r'�� D 0 on �

' D 0 on �C

' D Vappl C Vbi on �A:

(1d)

A list of the model parameters with their corresponding physical meaning is reported
in Table 1. The PDE/ODE model (1) has been introduced in [3] and represents a
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Fig. 2 J � V characteristic for the finger-shaped heterostructure considered in [8]

multi-dimensional generalization of the 1D formulation proposed in [1]. System (1)
is completed by periodic boundary conditions on �n [ �p . We notice that the
dissociation and recombination processes occurring at the donor-acceptor interface
� are dealt with by the nonlinear transmission conditions (1a)3 and (1c)2, whose
dependence on the local electric field magnitude and orientation is contained in the
polaron dissociation rate constant kdiss [3].

3 Algorithms and Simulation Results

System linearization (by a quasi-Newton method) and approximation are carried
out by adapting the approach used in [2]. Time advancing is treated using Rothe’s
method and adaptive BDF formulas, while the exponentially fitted Galerkin finite
element method studied in [5] is used for spatial discretization. The interface
conditions at the donor-acceptor interface are taken care of by means of the
substructuring techniques described in [6].

Model (1) is here validated in both stationary and transient regimes. In a first
set of simulations, we study the finger-shaped heterostructure considered in [8].
Figure 2 shows the output current-voltage characteristics predicted by our model,
which is in excellent agreement with that computed in [8]. In a second set of
simulations, we test the model in the time-dependent case. Figure 3 shows the
cell current response under two different biasing conditions for a planar device
geometry similar to that studied in [1]. In a third set of simulations, we test the
ability of the model to describe the behaviour of a cell characterized by a complex
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Fig. 3 Contact current density transient at two different voltage regimes

Fig. 4 Free carrier densities for a device with complex morphology

interface morphology. Figure 4 shows the free carrier densities computed for a
“curly-shaped” geometry at short circuit working conditions. Ongoing activity is
devoted to the investigation of the working principles of the light-harvesting device
described in [4, 7].
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Simulation of Nanoscale Double-Gate MOSFETs

V. Dario Camiola, Giovanni Mascali, and Vittorio Romano

Abstract A nanoscale double-gate MOSFET is simulated by using a subband
model based on the maximum entropy principle (MEP).

1 Mathematical Model

The main aim of the paper is to simulate the nanoscale silicon double gate
MOSFET (hereafter DG-MOSFET) reported in Fig. 1, by including also the crystal
heating which can influence the electrical properties of the device and pose severe
restrictions on its performances. In fact phonons emitted by hot electrons create
a phonon hot spot which increases the power density generated by the integrated
circuits. This effect is becoming crucial by shrinking the dimension of the devices
which is now below 100 nm, a length comparable with the wavelength of acoustic
phonons [1, 2].

We consider a DG-MOSFET with length Lx D 40 nm, width of the silicon layer
Lz D 8 nm and oxide thickness tox D 1 nm. The nC regions are 10 nm long. The
doping in the nC regions is ND.x/ D NC

D D 1020 cm�3 and in the n region
is ND.x/ D N�

D D 1015 cm�3, with a regularization at the two junctions by a
hyperbolic tangent profile.

Due to the symmetries and the dimensions of the device, the transport is,
within a good approximation, one-dimensional and along the longitudinal direction
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Fig. 1 Schematics representation of the simulated DG-MOSFET

with respect the two oxide layers, while electrons are quantized in the transversal
direction. Six equivalent valleys are considered with a single effective mass m� D
0:32me , me being the free electron mass.

Since the longitudinal length is of the order of a few tenths of nanometers,
electrons as waves achieve equilibrium along the confining direction in a time which
is much shorter than the typical transport time. Therefore we adopt a quasi-static
description along the confining direction by using a coupled Schrödinger-Poisson
system which leads to a subband decomposition, while transport along the longitu-
dinal direction is described by a semiclassical Boltzmann equation for each subband.

Numerical integration of the Boltzmann-Schrödinger-Poisson system is very
expensive from a computational point of view, for computer aided design (CAD)
purposes (see references quoted in [3, 4]). In [3] we have formulated an energy
transport model for the charge transport in the subbands by including the non
parabolicity effects through the Kane dispersion relation. The model has been
obtained, under a suitable diffusion scaling, from the Boltzmann equations by
using the moment method and closing the moment equations with the Maximum
Entropy Principle (MEP). Scatterings of electrons with acoustic and non polar
optical phonons are taken into account. The parabolic subband case has been treated
and simulated in [4].

A further issue is to include the crystal heating by adding an equation for the
lattice temperature TL in the same spirit as in [5, 6]


cV
@TL

@t
� div ŒK.TL/rTL� D H; (1)

with 
 and cV silicon density and specific heat respectively.H is the phonon energy
production given by

H D �nCW C PS J �E; (2)
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Fig. 2 Electron density when the applied potential between source and drain is VSD D 0:1V and
source and gate are at the same potential

where PS plays the role of a thermopower coefficient, nCW is the electron energy
production term with n electron density, and J is the current. The electron density is
related to the surface density in each subband by the relation

n D
X

�


� j�� j2

where �� are the envelope functions obtained solving the Schrödinger-Poisson
system and the 
�’s are the average surface densities in each subband �. In [5] a
more general model for H has been proposed.

We stress that the lattice temperature enters into the electron-phonon scattering
and in turn in the production terms of the balance equations for the electron
variables. It is crucial to address the importance of the crystal heating on the electric
performance of the device.

2 Simulation Results

A suitable modification of the numerical scheme for the MEP energy transport-
Schrödinger-Poisson system developed in [4] can be used by including also
the discretization of the lattice temperature balance equation via an Alternating-
Direction-Implicit (ADI) approach. Since the characteristic time of the crystal
temperature is about one or two orders of magnitude longer than that of electrons, a
multirate time step method as in [6] is a suitable choice.

In Figs. 2 and 3 we report some preliminary results. We note that there is
a very high potential energy variation near the contacts. This could imply a
noticeable raise of the crystal energy kBTL around the drain and it is likely that
the lattice temperature can approach the silicon melting temperature. The presence
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of strong electric fields could pose severe restrictions on the source/drain and
source/gate voltages with stringent design constraints. These issues are currently
under investigation by the authors.
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Coupled Heat-Electromagnetic Simulation
of Inductive Charging Stations for Electric
Vehicles

Christof Kaufmann, Michael Günther, Daniel Klagges, Matthias Richwin,
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Abstract Coupled electromagnetic-heat problems have been studied for induction
or inductive heating, for dielectric heating, for testing of corrosion, for detection
of cracks, for hardening of steel, and more recently for inductive charging of
electric vehicles. In nearly all cases a simple co-simulation is made where the
electromagnetics problem is solved in the frequency domain (and which thus is
assumed to be linear) and the heat equation in the time domain. One exchanges data
after each time step (or after some change in the heat profile). However, the coupled
problem is non-linear in the heat variable. In this paper we propose to split the time
domain in windows in which we solve the electromagnetics problem in frequency
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domain. We strengthen the coupling by iterations, for which we prove convergence.
By this we obtain a higher accuracy, which will allow for larger time steps and also
for higher order time integration. This fully exploits the multirate behavior of the
coupled system. An industrial example illustrates the analysis.

1 Introduction

In todays development processes, simulation is becoming more and more important.
One predicts physical behavior precisely—even for multiphysics systems, where
many effects influence each other. In that sense the first prototypes can be replaced
by simulation. This is called virtual prototyping and speeds up time-to-market
considerably.

In this paper simulation of electromagnetic problems coupled with heat problems
is considered. Well known applications are induction heating [11, 13], dielectric
heating [8], e.g. used for microwave ovens, steel hardening of gears [10] and
detection of cracks or corrosion in ships. We focus on the design process of an
inductive charging station for electric vehicles.

In inductive charging the electromagnetic (EM) field is of main importance. It
induces eddy currents in massive conductors. At the power levels used for charging
of electric vehicles, these losses cause a significant amount of heat. The heat diffuses
and changes temperature and properties of the materials, and thus also the EM
field. These effects have to be considered in a two-way coupling: One way is the
generation of heat via eddy current losses resulting from the EM field. The other is
the influence of the temperature dependent material parameters on the EM field.

In contrast to [9] we focus here on the comparison of the different co-simulation
methodologies.

2 Modeling

A simple time-domain model consists of the curl-curl equation (1) for the electro-
magnetic problem and the heat equation (2) to describe the heat diffusion. It can be
stated as

r � .��1 r � A/C "
@2A
@t2

C .T /
@A
@t

D Jsrc (1)


 c
@T

@t
D r � .krT /CQ; (2)

in which the heat source density Q comes from the power loss terms caused by the
eddy current losses and the currents in the coil
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Q.A; T / WD .T /
@A
@t

� @A
@t

� Jsrc � @A
@t
: (3)

In (1) A is the magnetic vector potential, Jsrc is the source current density. The
electric conductivity  is material and temperature dependent. The other material
parameters (the magnetic permeability � and the permittivity ") are considered
here as constant in time and do not dependent on the temperature T , but vary
in space. For the heat equation, 
 and c are the mass density and the specific
heat density, respectively; k is the thermal conductivity. All materials are assumed
to be isotropic for simplicity of notation. Both equations must be equipped with
appropriate boundary conditions (BC). The heat equation requires an initial value
(IV) at start time.

3 Co-simulation

A simulation could be drawn out as one large system of equations, i.e. monolithic.
Solving this system with classical time stepping methods would require to follow
the demands of the fastest part of the system. In heat/electromagnetic problems
this is usually the EM field. Here we assume a harmonic source current density,
which determines the step size of the integrator. As first co-simulation scheme,
we consider the one, that is closest to the monolithic approach: single rate co-
simulation. Basically this is a Gauss-Seidel-type scheme, where each part uses the
same time steps. The scheme is illustrated in Fig. 1. The single rate co-simulation
approach is a simple and straight forward approach. Data of one part of the solution
can be given directly into the next one. Alternatively, outer iterations can be used to
increase the accuracy and stability. However, a lot of computational effort is spent
in both subsystems due to the uniform time step, although the slow part does not
need these steps. This observation is the base of the next scheme we consider.

The multirate co-simulation approach, illustrated in Fig. 2, makes use of the
different time scales of the heat and EM phenomenons. Since the source current
density (and thus magnetic vector potential) is faster changing than the temperature,
there are more time steps needed for the curl-curl equation than for the heat
equation. Clearly, here the advantage is the computational savings when solving
the heat equation. On the other hand this approach is less straightforward than the
single rate approach; one has to manage the more complex data transfer. A common
way is the introduction of synchronization time points �i , as shown in Fig. 2. This
requires to align the time stepping schemes of all subsystems. Another way to find
the data at the desired time point is interpolation. Finally, iteration is still possible in
this multirate approach, similar to dynamic iteration approaches, e.g. [1]. However,
the main part of the computational costs is the integration of the curl-curl equation,
which still has not changed in comparison to the single rate approach.
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EM

heat

ti ti+1 ti+8

Fig. 1 Single rate co-simulation approach, see also [5]

EM

heat

τ i τ i+1 τ i+2

Fig. 2 Multirate co-simulation approach with synchronization time points �i

3.1 Frequency-Transient Model

More elaborated modeling significantly reduces the high computational costs for
solving the curl-curl equation: for many applications it is accurate enough to average
the power transferred within a time window Œ�i ; �iC1�. Similarly, an averaged
temperature, QTi , is used for the conductivity M in the curl-curl equation. For
metals .T / is monotonically decreasing. The other material parameters (�, ") are
assumed to be constant. That allows to solve the curl-curl equation in the frequency
domain and to avoid the computation in time domain. We further assume that
Jsrc D OJsrc e

j!t . Then the coupled model for a time harmonic source current density
can be stated as

.j !M . QTi / � !2 "/ OAc Cr � .��1 r � OAc/ D OJsrc (4)


 c
@T

@t
D r � .krT /C QQi. QTi /; (5)

where

QQi. QTi / D M . QTi / !
2

2

�
�
� OAc. QTi /

�
�
�
2

c
� !

2
Im
� OAc. QTi / � OJsrc

�
: (6)
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EM

heat

τ i τ i+1 τ i+2

Fig. 3 Frequency-transient co-simulation approach, see also [5]

in which OAc D OAc. QTi / and OJsrc are the first Fourier coefficients of the magnetic
vector potential A and the source current density Jsrc, respectively. In (6) the norm is
the complex norm; the overline indicates the complex conjugate. For further details
of the derivation, see [9]. Please notice that there is still the parametric coupling from
the heat equation via the conductivity M to the curl-curl equation. Also the curl-
curl equation is still coupled to the heat equation via the source term QQi . Hence,
the coupling is still two-way. However, the curl-curl equation (4) has become a
purely algebraic equation whose solution depends on the temperature and, by this,
implicitly on time. The scheme is illustrated in Fig. 3. By computing the curl-curl
equation in frequency domain only one linear system is solved for one time step
of the heat equation. Especially for high frequencies this saves a huge amount
of computational time in comparison to the classical approaches. Also, the data
transfer is straightforward. This setup has been the basis for several coupled EM-
heat problems [3, 4, 8, 11], however typically without applying iterations.

When using an iterative scheme, convergence must be analyzed on beforehand.
For the frequency-transient approach with an implicit Euler scheme for the time
discretization of the heat equation, convergence can be proved [9]. This results in
the following theorem:

Theorem 1. We assume given BC and IV and for nonlinear materials, i.e., metals,
a conductivity  that is differentiable w.r.t. temperature T and @=@T < 0. Let the
exact (monolithic) solution be denoted by a� and t�, then the iteration is convergent
for h small enough with

�
�t.lC1/ � t�

�
� � c.!/ h

�
�t.l/ � t�

�
� ;

where c.!/ is uniformly bounded for ! > !0 and c.!/ D O
�
1
!2

�
for sufficiently

large !.

For metals this implies that there are no additional step size restrictions for !!1.
Then, for higher frequencies the step size can be larger. In fact this is in good
agreement with the high frequency applications found in literature.
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Proof. Here we summarize the steps of the proof; for details see [9]. We assume
the same space discretization for both subproblems to simplify notation. For the
discretization in space we propose a lowest-order Finite Element Method (FEM)
with Lobatto Quadrature or the Finite Integration Technique (FIT) [4, 12]. In the
quadratic Q-term, the value of T only depends on the temperature in a local
meshpoint. This simplifies the proof. For readability we drop the diacritic symbol O.

Let a and t denote the discretized magnetic vector potential and temperature,
respectively. At time �n we assume a; t given. Then at �nC1 D �n C h we iteratively
determine tl ) alC1 ) tlC1, etc. We assume that there is an exact solution without
splitting error at �nC1: a?; t?. The discretized curl-curl equation (4) becomes in FIT-
like notation [12]

Œj!M .tl / � !2M" C C>M�C�alC1 D jsrc;

with diagonal matrices for conductivity, permittivity and reluctivity, M , M", M� ,
discrete curl operators C, C> and source current jsrc. This gives an error equation

ŒX"� C j!Ml
 �.a

lC1 � a?/ D �j!ŒMl
 � M?

 � a
?;

where we define for convenience

X"� WD �!2M" C C>M�C; Ml
 WD M .tl /; M?

 WD M .t?/:

Thus alC1 D a? C R, where

R D �j!ŒX"� C j!Ml
 �

�1ŒMl
 � M?

 � a
?:

Hence

kRk < !kŒX"� C j!Ml
 �

�1k � kMl
 � M?

k � ka?k;
which asks for a uniform upper bound for the inverse operator and for Lipschitz
continuity of M . Then the alC1 are bounded.

The discretized version of the heat equation (5) is given in the following. For
simplicity we assume time discretization by the implicit Euler scheme, we focus
only on the quadratic term and disregard the other right-hand-side terms (rhs); jj:jj
is a vector of coordinate-wise norms

ŒM
;c � h QSMk
QS>�.tlC1 � t?/ D 1

2
h!2ŒMlC1

 kalC1k2 � M?
ka?k2�C rhs

D 1

2
h!2ŒMlC1

 ka? C Rk2 � M?
ka?k2 �C rhs

D 1

2
h!2ŒMlC1

 � M?
 � ka? C Rk2 CR C rhs

with R D 1

2
h!2M?

 Œ< a?;R > C < R; a? > C < R;R >�
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with material matrices M
;c and Mk and the discrete divergence and gradient
operators QS, �QS>, respectively [4]. It follows equivalently

ŒM
;c � h QSMk
QS>�.tlC1 � t?/ � 1

2
h!2ŒMlC1

 � M?
 � ka? C Rk2 D R:

We can rewrite

ŒMlC1
 � M?

 � ka? C Rk2 D Diag.ka? C Rk2/Vec.MlC1
 � M?

 /:

For the last term we can apply the mean value theorem coordinate-wise and thus get

Vec.MlC1
 � M?

 / D Diag.M0
;k/.t

lC1 � t?/:

Hence, for  0.T / < 0 we have convergence for h small enough, but with good
properties for varying !. This completes the summary of the proof. ut

4 Generalization

For an extended approach by Driesen and Hameyer [7], where also the complex
phasor is allowed to vary slowly, the proof can be extended. In this case the
curl-curl equation in frequency domain leads to a second order DAE after space
discretization. Hence the error equation for the curl-curl equation needs to be
integrated as well.

Another way of generalizing the frequency transient model is to include mul-
tifrequency excitation as needed, e.g., for non-smooth surfaces [10]. This is an
easy way to allow approximations for other periodic waveforms of source currents.
Other waveforms are important to approximate the current from power electronics,
that control the primary coil. This gives way to a Harmonic Balance approach
for the curl-curl equation. It also allows for including a nonlinear permeability �.
Otherwise the model can only be used for a working point of the magnetic material
curve.

A more general fully multirate time domain model, that exploits different time
scales, can be derived by using the MPDAE approach by Brachtendorf et al. [2].
By this, envelope simulation techniques from circuit simulation are applied to the
coupled EM-heat problem.

5 Numerical Example

In this section results of a simulation for a model of an inductive charging system
are shown. The simulation of a model with temperature independent conductivity,
which results in a single way coupling, will be compared to the two-way coupling.
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baFig. 4 Geometry of the
simulated model. From left to
right: ferrite (gray), primary
coil (blue), air, secondary coil
(blue), ferrite (gray), air, steel
slice (red). The left coil
represents the charging
station and the right coil the
coil behind the number plate
in the car (Comsol). (a) 3d
view on 2d-axisymmetric
geometry. (b) Cut view

The frequency-transient model is applied to an inductive charging system for
electric vehicles. The charging is done here through the number plate. The model
consists of two copper coils with ferrite and air in between. The primary coil
represents the charging station and the secondary coil the coil behind the number
plate in the vehicle. To account for the challenges of a real world prototype, a steel
bar with a constant permeability �r D 500 is added behind the secondary coil. It
models parts of the car body. The geometry is shown in Fig. 4.

The simulations have been run in Comsol [6] with appropriate settings to use
the frequency-transient model as described in this paper. Simulation time is set to
20 min, the coils have 20 windings. The primary coil is excited by a current of
25 A at a (moderate) frequency of 10 kHz. The secondary has a zero current (no-
load configuration). The conductivity  in the independent case was chosen to be at
room temperature (293.15 K), which is also the initial temperature.

The simulation with temperature independent conductivity shows a maximum
temperature of 387.92 K, see Fig. 5a. The maximum temperature in case of an
temperature dependent conductivity is 395.15 K, see Fig. 5b. The difference of about
7 K is due to the parameter coupling from the temperature to the curl-curl equation
via the conductivity.

Remark that for this simulation only 17 time steps were needed to compute the
results. When we compare that to simulating this problem with a monolithic model
and assume 10 time steps per period of the source current, 120 million time steps
would be necessary for simulation. This clearly shows the efficiency of simulation
of the frequency-transient model compared to approaches, where the EM subsystem
is solved in time domain.
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ba

Fig. 5 Simulation of inductive charging system for e-cars after 20 min. The plot shows the
temperature distribution (Comsol). (a) Temperature independent conductivity. (b) Temperature
dependent conductivity

6 Conclusions

A frequency-transient model tailored for coupled heat-electromagnetic problems
was described. An efficient multirate co-simulation approach was proposed for
solving it. For this algorithm a convergence theorem for an iterative approach
was proved for all frequencies. For metals and higher frequencies the speed of
convergence increases. The numerical example confirms this result. The theorem
also applies to approaches by Driesen and Hameyer [7] and implementations in
Comsol [6]. In particular it applies to many cosimulation approaches for high
frequency applications [3, 4, 8, 10, 11, 13]. From the analysis (see [9]) an optimal
step size can be derived.
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Part II
Environment

Overview

The section on Environment contains seven contributions. Mathematical modelling
and simulation in environmental science is a fast evolving field with the goal
to understand key environmental issues, like water and air pollution, improving
forecasts for environmental hazards, like earthquakes or volcanic eruptions. Next,
the scientific results must be presented in a suitable information format to meet
properly the needs of stakeholders and decision makers.

In this ECMI proceeding the first four papers are dealing with the problem
of water pollution, asking for the optimal location measurement station along
a river, modelling pollutant transport in groundwater flow and optimizing the
shape design of wastewater canals. Related to the last topic is the paper of Neli
Dimitrova on biodegradation of toxic substances in a wastewater treatment. The
fifth paper considers the Unified Danish Eulerian Model (UNI-DEM), a large scale
environmental model for long-range transport of air pollution. The last two papers
finally show promising mathematical models and three dimensional numerical for
volcano activities, either considering the hazard forecasting or the lava flow.

The first paper Optimal Location of River Sampling Stations: A Case Study by
Lino J. Alvarez-Vazquez, Aurea Martínez, Miguel E. Vázquez-Méndez, A.W. Pollak
and J. Jeffrey Peirce studies the optimal location of water pollution monitoring sta-
tions located along the length of the river by combining both numerical simulation of
shallow water equations and optimization techniques. Finally, the resulting method
is illustrated by a real case study of the Neuse River (North Caroline, USA).

The contribution by Neli Dimitrova: Global Analysis of a Nonlinear Model for
Biodegradation of Toxic Compounds in a Wastewater Treatment Process, presents
a rigorous mathematical stability analysis of a system of ordinary differential equa-
tions, describing the biodegradation of toxic substances in a wastewater treatment
plant. Hereby properties like the equilibrium points of the considered model and
their Lyapunov stability, the boundedness of solutions and their global asymptotic
stability are investigated. This analysis could be useful to determine the parameter
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domain for a stable operation of the microbial process in a continuously stirred
bioreactor. Finally, numerical simulations support the theoretical findings.

Pollutant transport in groundwater flow is a challenging topic due to the coupling
effects between the different ground layers. In the paper by Amjad Ali, Winston
L. Sweatman and Robert McKibbin: Pollutant Transport and its Alleviation in
Groundwater Aquifers, the authors propose a simplified model for the transport of
dissolved chemicals through groundwater aquifers. This simple model allows to
simulate the typical natural stratification and changes in physical properties of the
aquifer that occur between different geological layers. Finally the authors present
an example where an instantaneous release of pollutant occurs and it is afterwards
removed by the downstream release of a suitable pollutant removal agent.

In the fourth paper by Aurea Martínez, Lino J. Alvarez-Vázquez, Carmen
Rodríguez, Miguel E. Vázquez-Méndez and Miguel A. Vilar: Optimal Shape Design
of Wastewater Canals in a Thermal Power Station, the authors develop a strategy to
determine an optimal geometry design of canals in a wastewater treatment plants
of thermal power stations The underlying mathematical problem is stated as a
control-constrained optimal control problem of partial differential equations and
subsequently discretized via a characteristics/finite element method.

The paper by Zahari Zlatev, István Faragó and Agnes Havasi: Mathematical
Treatment of Environmental Models, describes UNI-DEM, a large scale environ-
mental model for long-range transport of air pollution which is a system of nonlinear
partial differential equations. Next, this model is split into three sub-models that are
transformed to ordinary differential equations by discretizing all spatial derivatives
using a simple linear finite element method. Each subsystem is solved by an
adequate ODE solver and finally a parallelization strategy is proposed.

In the paper by Gilda Currenti and Ciro Del Negro: Model-Based Assessment of
Geophysical Observations: From Numerical Simulations towards Volcano Hazard
Forecasting an integrated elastic 3-D model for magma migration and accumulation
within the volcano edifice is considered and solved numerically by finite elements.
The numerical model is validated using existing analytical solutions and was
applied later for interpreting data from the Etna volcano during unrest periods.
This approach calibrated with observable data might turn out useful in an accurate
volcano hazard assessment and in scenario forecasting.

Finally the contribution by Marilena Filippucci, Andrea Tallarico and Michele
Dragoni: Thermal and Rheological Aspects in a Channeled Lava Flow, deals with
the three dimensional numerical simulation of the cooling of a lava flow. Hereby
a 3D heat equation is solved numerically and the fraction of crust coverage is
determined assuming that the lava rheology is pseudoplastic and dependent on
temperature. The authors’ findings are validated using data from the Mauna Loa
(1984) lava flow indicating a strong link between the advective heat transport and
the cooling rate of the lava.

Matthias Ehrhardt



Optimal Location of River Sampling Stations:
A Case Study

Lino J. Alvarez-Vázquez, Aurea Martínez, Miguel E. Vázquez-Méndez,
A.W. Pollak, and J. Jeffrey Peirce

Abstract Usual methods for monitoring and controlling river pollution include the
establishment of water pollution monitoring stations located along the length of
the river. The point where each station is located (known as sampling point) is of
crucial importance if we want to obtain representative information about industrial
and domestic pollution in the whole river, not only in the sampling points. In this
work, the optimal location of sampling points is studied combining numerical
simulation and optimization techniques. Based on a one dimensional system
of partial differential equations, a mathematical formulation of the optimization
problem is proposed, and it is solved for a real case on Neuse River (North Caroline,
USA), where interesting conclusions are derived for the number of water quality
sensors and their respective locations.

1 Introduction

Surface water quality directly impacts communities depending on these sources for
potable use, recreation, agricultural supplies or commercial fishing. Water available
for these purposes can be drastically impacted by contamination from municipal and
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industrial discharges. One method for the effective monitoring and management of
surface water quality is the establishment of real time, in situ monitoring systems.
These systems provide the basis for future adaptive management schemes using
data about the transport and fate of contaminants across environmental regions.
Distributed monitoring systems are predicated on the development of new sensors
capable of monitoring the contaminants of interest. From a practical viewpoint, a
fundamental component of implementing this type of networks is the identification
of the optimal locations to deploy environmental sensors or establish sampling
sites [3, 13].

Numerous attempts at establishing standards for river sampling programs have
been suggested. In 1971, Sharp [12] proposed the use of topographical optimization.
This method, however, has been proven by Dixon et al. [4, 5] to not necessarily
produce optimal sampling locations. Traditionally, proximity to affected populations
or ease of access have ruled the installation of monitoring points, but the advent of
deployable real time water quality sensors allows quality to be monitored at any
point along the river. Ward [14] suggested placing sampling points near critical
quality points, but Hren et al. [7] concluded that a focus on critical points could lead
to biased assumptions about global water quality. A selection of good sampling sites
also allows data from those sampling points to be extrapolated for understanding the
distribution of contamination along the length of the whole river [1, 8]. Rather than
focusing on critical points, the locations of water quality sampling points ought to
be specific to the purposes of data collection about selected contaminants [11].

To illustrate the use of sampling program goals to direct the selection of optimal
sensor locations, our focus is limited to a single sample contaminant, fecal coliform
(FC) bacteria. Selecting this contaminant, the numerical model introduced by
Alvarez-Vázquez et al. [1] in 2006 is used to determine the optimal locations for
water quality sensors along a river for FC contamination sampling.

2 Setting of the Problem

The model developed by the authors in order to determine the optimal locations for
FC sensing in rivers consists of three main parts:

1. The river section of total length L is divided into N segments Œai�1; ai �, for
i D 1; 2; : : : ; N , with a0 D 0 and aN D L.

2. The average contamination in the transversal section 
.x; t/ (at location x and
at time t ) is simulated for each .x; t/ 2 Œ0; L� � Œ0; T �, where T represents the
length of the time interval. Contamination sources are modelled as point inputs
originating at known locations along the river reach.

3. The optimal sampling point in the i -th segment for i D 1; 2; : : : ; N is located
by identifying the point pi which minimizes the difference between 
.pi ; t/ and
the average concentration along that segment. This optimization problem seeks
to minimize the objective function J.p/ for p D .p1; p2; : : : ; pN /:
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J.p/ D
NX

iD1

Z T

0

.
.pi ; t/ � ci .t//2 dt (1)

where ci .t/ denotes the averaged concentration for all points located in the i -th
river segment Œai�1; ai �.

To compute the contamination at each location down river for each moment
in the simulation, the model simultaneously solves two sets of equations, for the
change in contamination due to FC loss and source input, as well as for river flow
and the advection of contamination downstream. Neglecting molecular diffusion,
the concentration of FC is obtained by solving the following initial-boundary value
problem:

@


@t
C u

@


@x
C k
 D 1

A

VX

jD1
mj ı.x � vj / in .0; L/ � .0; T /;


.0; t/ D 
0.t/ in Œ0; T �;

.x; 0/ D 
0.x/ in Œ0; L�;

9
>>>>=

>>>>;

(2)

where ı.x � b/ denotes de Dirac point representation of input contamination at
particular location b; for each j D 1; 2; : : : ; V , vj 2 .0; L/ is the point where the
j -th contamination source is located, and mj .t/ is the mass flow rate of coliform
concentration; k is the loss rate of coliform due to mortality, settling, etc.; and
A.x; t/ and u.x; t/ denote the wetted area of the river cross section and the average
water velocity, respectively. These parameters can be calculated by integrating the
classical 1D shallow water equations for each point .x; t/:

@A

@t
C @.Au/

@x
D

VX

jD1
qj ı.x � vj / in .0; L/ � .0; T /;

@.Au/

@t
C @.Au2/

@x
C gA

@�

@x
D

VX

jD1
qj Vj cos.ˇj /ı.x � vj /

CSf in .0; L/ � .0; T /;
A.L; t/ D AL.t/; u.0; t/ D u0.t/ in Œ0; T �;
A.x; 0/ D A0.x/; u.x; 0/ D u0.x/ in Œ0; L�;

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(3)

where qj .t/ is the flow rate corresponding to the j -th contamination source, Vj .t/ is
its velocity, and ˇj is the angle between the j -th wastewater discharge and the main
river; g is the gravity acceleration; Sf denotes the bottom friction stress (dependent
on the Chézy coefficient, the gravity, and the area of the wet section); and �.x; t/
represents the height of the water surface with respect to a fixed reference level.

As originally proposed by Alvarez-Vázquez et al. [1], the model requires the
number of segments N to be known. For this research, however, the value of N was
varied through multiple simulations to determine if different values of number N
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produced different optimal sensor locations along the river. Nevertheless, we must
bear in mind that the knowledge of river system and distribution of contamination
sources can also provide clues to a suitable range of N .

Thus, the problem of determining the optimal location of the sampling
points can be subdivided into N one-dimensional uncoupled problems: for each
i D 1; 2; : : : N , we need to obtain the point pi 2 Œai�1; ai �, minimizing the
corresponding part of the objective function:

Ji .pi / D
Z T

0

.
.pi ; t/ � ci .t//2 dt (4)

(that can be numerically computed, for instance, by the standard trapezoidal rule).
As it is well known, these N problems have solution, but no necessarily unique.

An optimal solution can be obtained by any simple one-dimensional optimization
method. In this work we have used the golden-section direct search method (see, for
instance, monograph [2] for complete details on formulation and convergence of the
optimization method).

3 Case Study and Final Results

The Neuse River was selected as the case study because of its vital public health and
economic importance to the Piedmont and Coastal Plain of North Carolina. Noted
as one of “America’s Ten Most Endangered Rivers” in 1995, 1996, 1997, and 2007,
the Neuse River supports a billion-dollar fishing industry after emptying into the
nation’s second largest estuary, the Pamlico Sound [6]. Meandering between open
pit lagoons which store waste from the country’s second largest swine industry, the
river is polluted by swine waste contamination when storms flood the region [10].
Storms which cause the Neuse to flood can lead to the direct mixing of swine waste
into river water, as experienced during the huge flooding caused by Hurricane Floyd
in 1999. Inputs to the model concerning river flow were selected using river gauge
data and historical records of flooding.

In this characterization of the case study, the results of optimal locations describe
where to put water quality sensors to best understand the impact of swine waste
on water quality. A short section of the river was selected to focus the analysis
of the model results (see Fig. 1). The selected river section is 53:5 km in length
and sits immediately before the Neuse’s discharge near the city of New Bern, NC.
This section was chosen because it contains a river gauge station and many swine
waste lagoons in the river’s floodplain. Using river gauge station data as inputs
demonstrates the opportunity to implement this model as part of the design of a
water quality monitoring system.

When applying our model to a river like the Neuse, inputs can be varied to study
how the optimal sensor locations change as a result of different river conditions.
The first model inputs that were varied between simulations included river flow and
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Neuse river (case of study)

Fig. 1 Case study for our analysis: Neuse River (NC) satellite image. In white, the river section
under study
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Linearized River
Optimal Sensor Locations
Swine Waste Lagoons

Fig. 2 Optimal water quality sensor locations from medium contamination scenario for all
allowed values of N D 1; : : : ; 4

contamination levels. River conditions included small, medium, large, and extra
large contamination levels and water flows. The fourth, most extreme case was
included to analyze how complete mixing of swine waste lagoons would impact
the location of optimal location of water quality sensors. The mixing of waste
lagoons’ entire contents into surface water is rare, but was well documented from
the inundation caused by Hurricane Floyd [6].

The second set of variables used in this analysis of this siting model corresponds
to the number of river segments N into which the selected 53:5 km section was
divided in this case study. Seven modelled contaminant sources are geographically
grouped into three distinct regions along the river reach (see Fig. 2), and simulations
were run for each flow scenario for the values N D 1; 2; 3; and 4.
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While Lettenmaier and Burges [9] concluded that the number of sampling points
was generally more important than the location of each sampling point or the
sampling frequency, varying N can allow an exploration into the importance of
the number of sampling points to this case study.

Using four different flows and contamination scenarios combined with four
different values of N produces an experimental design consisting of 16 model
simulations. Each of the four contamination scenarios varied the contamination flow
rates and water parameters such as water depth in the river and water velocity.

To illustrate our results, Fig. 2 shows that even as the number of modelled
segments increases up to N D 4, the suggested sensor locations always group
into three main regions. Comparing the results, for instance, for the case of
medium contamination suggest that three sensors placed within the regions 7,200–
8,700, 20,700–21,800, and 38,500–38,800 m provide optimal information about
the contamination along the entire river. (These regions boundaries are illustrated
by the pairs of vertical lines in Fig. 2). Achieved results are similar for the other
contamination scenarios, showing that a fourth sensor looks unnecessary.

As a final conclusion, we can say that the application of specific mathematical
models to optimize water quality sensor locations shows to be a powerful method
which can be used for any river. The proposed strategy consisting of solving the
optimization problem under multiple system scenarios provides the ability to study
how optimal sensor locations are affected by anticipated contamination events and
river flows.
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Global Analysis of a Nonlinear Model
for Biodegradation of Toxic Compounds
in a Wastewater Treatment Process

Neli Dimitrova

Abstract The paper presents rigorous mathematical stability analysis of a dynamic
model, describing biodegradation of toxic substances in a wastewater treatment
plant. Numerical simulations support the theoretical results.

1 Introduction

Toxicity of 1,2-dichloroethane (DCA), in particular for aquatic and atmospheric
biotic systems, has been recently recognized as a serious ecological problem [4].
DCA is difficult to remove from aquatic media by physico-chemical methods due
to its very low concentration. Therefore, biodegradation remains the only available
alternative. A microbial strain, recently recommended as a “novelty” and capable to
degrade DCA to its complete mineralization is Klebsiella oxytoca VA 8391 [3, 4].
This strain was isolated from active sludge from a wastewater plant at the Luckoil
Neftochim Rafinery in Burgas, Bulgaria. The identification was validated by the
National Bank for Industrial Microorganisms and Cultures in Sofia, Bulgaria, and
the strain was registered under the code number stated above.

We consider a continuous bioreactor model for DCA biodegradation by Kleb-
siella oxytoca VA 8391 immobilized on granulated activated carbon. During the
microbial process the immobilized cells can detach from the solid surface and live
and grow in the liquid phase. The process is irreversible, i. e. free cells can not attach
again the solid particles. The model is developed and validated in [4] by authors’
own experiments.

N. Dimitrova (�)
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev
Str., Bl. 8, 1113 Sofia, Bulgaria
e-mail: nelid@math.bas.bg

M. Fontes et al. (eds.), Progress in Industrial Mathematics at ECMI 2012,
Mathematics in Industry 19, DOI 10.1007/978-3-319-05365-3__7,
© Springer International Publishing Switzerland 2014

47

mailto:nelid@math.bas.bg


48 N. Dimitrova

2 Model Description

The continuous flow bioreactor model describing DCA biodegradation by Kleb-
siella oxytoca VA 8391 immobilized on granulated activated carbon is presented by
the following differential equations [4]

Px1 D .�1.s/ �D/x1 C kimxim (1)

Pxim D .�im.s/ � kim/ xim (2)

Ps D �
�
1

�
�1.s/C ˇ1

�

x1 �
�
1

�
�im.s/C ˇim

�

xim (3)

CD.sin � s/ � kLa.1 � �2.s//s

Pp D
�
1

�
�1.s/C ˇ1

�

x1 C
�
1

�
�im.s/C ˇim

�

xim � Dp; (4)

where the dot over the phase variables means d
dt . The functions �1.s/ and �im.s/ are

the specific growth rates of the free and the immobilized cells respectively, �2.s/ is
related to the adsorption capacity. The following functions are proposed in [4]:

�1.s/ D m1s

ks C s C s2=ki
; �im.s/ D mims

ks C s C s2=ki
; �2.s/ D m2s

k C s
:

The growth rate functions �1.s/ and �im.s/ exhibit inhibition, i.e. they achieve their
maximum at the point sm D p

kski . The function �2.s/ is bounded and �2.s/ < m2

is valid for all s � 0. The definition of the phase variables x1, xim, s and p as well
as of the model parameters is given in Table 1.

In the bioreactor, the free cells are expected to consume easily the substrate
necessarily for their growth, but they are more keen to be carried out by the flow. On
the contrary, the immobilized cells have a more difficult access to the resources of
the bulk fluid, but are more resistent to detachment induced by the hydrodynamical
conditions. To predict this observation by the model, we assume that the following
inequality holds true (see also the hypothesis (H5) below)

(H1) mim < m1

This inequality implies that �im.s/ < �1.s/ for all s > 0.

3 Equilibrium Points of the Model and Their Lyapunov
Stability

Denote by

�.s/ D D.sin � s/ � kLa.1 � �2.s//s
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Table 1 Definition of the model variables and parameters

Definitions Values

x1 Concentration of free cells Œkg m�3� –
xim Concentration immobilized cells Œkg m�3� –
s Substrate (DCA) concentration Œkg m�3� –
p Product (chloride) concentration Œkg m�3� –
D Dilution rate Œh�1� 5.9
kim Cell leakage factor Œm h�1� 0.01
sin Inlet substrate concentration s2 Œmmol/l� 0.05
ˇ1 Biodegradation rate constant due to free cells Œh�1� 0.001
ˇim Biodegradation rate constant due to immobilized cells Œh�1� 0.0015
� Yield coefficient for free biomass production Œ(kg cells)/(kg substr.)� 77.6
k Parameter in the Langmuir isotherm 0.612
ks Saturation constant Œkg m�3� 0.26
ki Substrate inhibition constant Œkg m�3� 0.984
kLa Volumetric mass transfer coefficient for DCA for adsorption Œh�1� 0.51
m1 Maximum specific growth rate for free cells Œh�1� 0.972
m2 Surface concentration limit of DCA in the Langmuir isotherm Œg kg�1� 0.63
mim Maximum specific growth rate for immobilized cells Œh�1� 0.18

the function included in the right-hand side of (3) and assume that the following
inequality is satisfied:

(H2) maxfkLa; m2g < 1.

It is straightforward to see, that d
ds�.s/ < 0 for all s � 0; moreover, there exists

a unique positive root �0 of �.s/ D 0 such that �0 < sin and further �.s/ � 0 if
s 2 Œ0; �0�, and �.s/ < 0 if s > �0.

The equilibrium points of the model are solutions of the form .x1; xim; s; p/ of
the nonlinear system, obtained from (1) to (4) by setting the right-hand sides equal
to zero. We are looking for equilibrium points with nonnegative components due to
physical evidence.

Proposition 1. Under assumptions (H1) and (H2), the equilibrium points of the
model are the following:

(i) E0 D .0; 0; �0; 0/;

(ii) Ei D
�

�.�i /
1
� DCˇ1 ; 0; �i ;

�.�i /

D

�

, i D 1; 2, (with xim D 0) where �i are solutions

of �1.s/ D D; Ei exist if and only if D � maxs>0 �1.s/ D �1 .s
m/ and

�.�i / > 0.

(iii) Fi D
�
x
.i/
1 ; x

.i/
im ; �i ; p

.i/
�

, i D 1; 2, where �i are solutions of �im.s/ D kim,

x
.i/
1 D kim�.�i /

ˇim.D��1.�i //Ckim

�
1
� DCˇ1

� , x.i/im D D��1.�i /
kim

x
.i/
1 and

p.i/ D x
.i/
1

D

��
1
�
�1.�i /C ˇ1

�
C
�
1
�
�im.�i /C ˇim

�
D��1.�i /

kim

�
; Fi exist if and

only if kim � maxs>0 �im.s/ D �im .s
m/, D > �1.�i / and �.�i / > 0.
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The point E0 is called wash-out equilibrium. The existence of Ei corresponds
to the case of free microbial culture without immobilized cells on the carrier.
Practically the most important equilibria are the internal points Fi ; the condition
kim � �im.s

m/ describes the case of compensated immobilized cell leakage by
growth within the particles.

Let E 2 fE0;E1;E2; F1; F2g be any one of the equilibrium points, described
above. Denote by J.E/ the Jacobian of (1)–(4) evaluated at E. The eigenvalues of
J.E/ are the roots of the following characteristic equation (I denotes the .4 � 4/-
unit matrix) 0 D jJ.E/ � �I j D .�D � �/ � .��3 C a�2 � b� C c/, where the
coefficients a D a.E/, b D b.E/ and c D c.E/ can be computed explicitly, using
the well known invariants of the matrix J.E/. Obviously, �4 D �D < 0 is an
eigenvalue of every equilibrium point E 2 fE0;E1;E2; F1; F2g. This means that
there are no repelling steady states in the model. The other three eigenvalues are
the roots of the cubic polynomial g.�/ D ��3 C a�2 � b�C c. Using the Routh-
Hurwitz criterion [5] for determining the signs of the real parts of the roots of g.�/,
we obtain the following

Proposition 2. Let the hypotheses (H1) and (H2) be satisfied.

(i) If �1.�0/ < D and �im.�0/ < kim are fulfilled, the equilibrium point E0 is
locally asymptotically stable; otherwise E0 is a saddle.

(ii) Let the assumptions of Proposition 1(ii) be satisfied. If �im.�i / < kim, i D 1; 2,
then E1 is locally asymptotically stable and E2 is a saddle equilibrium point.
If �im.�i / > kim, i D 1; 2, then E1 and E2 are saddle equilibrium points.

(iii) Let the assumptions of Proposition 1(iii) hold. Then F1 is locally asymptoti-
cally stable and F2 is a saddle equilibrium point.

4 Global Properties of the Solutions

The first three equations (1)–(3) do not depend on p. If we “compute” the solutions
x1.t/, xim.t/, s.t/ and replace them in (4), we obtain a linear nonautonomous
equation for p of the form Pp D �D p C  .t/, which can be integrated directly.
Therefore, we can omit the last equation (4) in the further considerations.

We impose additionally the following assumption on (1)–(3)

(H3) ˇ1 < ˇim <
kLa

�
, D > 1 � kLa.1 �m2/

Proposition 3. Let the assumptions (H1)–(H3) be fulfilled. Then the set ˝ D˚
.x1; xim; s/ W x1 � 0; xim � 0; s � 0;Dsin � s C ˇ1x1 C ˇimxim

	
is positively

invariant for the model; all solutions are uniformly bounded for all t � 0 and
thus exist for t 2 Œ0;C1/.
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Experimental results show that the inlet substrate concentration sin must be lower
than the one corresponding to the maximum specific growth rate, i.e. sin should be
below the point sm where substrate inhibition starts to be significant. Assume that
the following inequalities are fulfilled:

(H4) sin < sm, kim < �im.�0/.

It is not difficult to see that under assumptions (H1)–(H4), s.t/ < �0 is valid for
all sufficiently large t > 0. Moreover, since �0 < sin holds, assumption (H4) implies
that the functions �1.s/ and �im.s/ are monotone increasing for s 2 Œ0; �0�. Our last
assumption is

(H4) D > �1.s
in/C kim

The hypotheses (H1)–(H5) and Proposition 1 imply that there exist only two
equilibrium points of (1)–(3) in ˝, namely E0 and F1; thereby F1 is locally
asymptotically stable, E0 is a saddle equilibrium. We shall show that F1 D
.x
.1/
1 ; x

.1/
im ; �1/ is globally asymptotically stable for the model.

Theorem 1. Let the assumptions (H1)–(H5) be satisfied. Then the equilibrium
point F1 is globally asymptotically stable for (1)–(3) in the set ˝.

Proof. It is enough to show that the stable manifold of E0 lies exterior to the set
˝ (cf. [6]). The negative eigenvalues of E0 D .0; 0; �0/ are �1 D �1.�0/ �D and
�2 D d

ds�.�0/. Denote by u D .u1; u2; u3/ and v D .v1; v2; v3/ the corresponding

eigenvectors. It is easy to see that u2 D 0 and qu3 D �
�
1
�
�1.�0/C ˇ1

�
u1 within

q D �1.�0/ �D � d
ds�.�0/ > 0. Therefore, u cannot be directed inside the positive

octant. The same is valid for the eigenvector v, since the latter has the form v D
.0; 0; v3/ with v3 ¤ 0. Therefore, the stable manifold of E0 does not intersect the
interior of ˝, which implies that F1 attracts all solutions with initial conditions in
˝, i.e. F1 is a global attractor. This completes the proof.

5 Numerical Simulation

Consider the numerical coefficient values in Table 1 (last column). For these values,
all the assumptions (H1)–(H5) are satisfied, and therefore Theorem 1 holds true.

Figure 1 visualizes results from computer experiments with an initial point
.x1.0/; xim.0/; s.0/; p.0// from the set ˝, i.e. satisfying Dsin � s.0/C ˇ1x1.0/C
ˇimxim.0/. The solid circles correspond to experimental measurements, taken
from [4].
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Fig. 1 Phase curves x1.t/ (left), s.t/ (middle) and p.t/ (right); the horizontal dashed lines pass
through the components of F1. Solid circles denote experimental data

6 Conclusion

The paper presents global stability analysis of a practically validated ecological
model for wastewater treatment. Most of the results are obtained and proved in
[1,2]. The proof of the above Theorem 1 is new. Here, the computer simulations are
compared with experimental measurements.

The present mathematical analysis of the model (1)–(4) could be useful to outline
the parameter domain for stable operation of the microbial process in a continuously
stirred bioreactor.
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Pollutant Transport and Its Alleviation
in Groundwater Aquifers

Amjad Ali, Winston L. Sweatman, and Robert McKibbin

Abstract Dissolved chemicals are transported through groundwater aquifers by
a mixture of advection with the underlying fluid flow and dispersion within that
fluid. The aquifers can be modelled using a layered structure which simplifies the
calculation of vertical transport. This simplified model still allows for the natural
stratification which occurs in such systems and the changes in physical properties of
the aquifer that occur between different geological layers. Equations are presented to
calculate the subsequent concentration of the releases of chemicals into this system.
A particular example is considered where an instantaneous release of pollutant
occurs and it is subsequently remediated by the downstream release of a suitable
pollutant removal agent.

1 Introduction

Pollutants released at or below ground level can be transported elsewhere by the
flow of groundwater in subterranean aquifers. The pollution may occur as an
instantaneous release such as at the location of an accidental spill or it may be a
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more gradual release such as the seepage of toxins from pre-existing rubbish dump
sites. For some cases compensatory action may be taken to remediate the damaging
effects by injecting suitable reagents downstream of the pollution source. Examples
of groundwater contaminants include a variety of inorganic and organic chemicals
or bacteriological compounds. The remediating pollution removal agents could be,
for example, chemical oxidants such as oxygen, hydrogen peroxide, permanganate
and persulfate. We develop a model to include such effects, and present a simple
illustration of this new approach.

2 The Aquifer Dispersion Model

The model for the groundwater aquifer builds upon that developed in [1]. This
assumes that the aquifer can be discretised into a number of distinct layers each
of which has physical properties which do not depend upon height. The vertical
discretisation is partially motivated by the natural layers that occur underground due
to their geological formation. Such geological layers can have significant physical
differences and their effects are included in our model. However, in general the
thickness of an aquifer is very small compared to its lateral extent [2] and it is
not unreasonable to assume that the mechanism of material transport will not vary
greatly with height within thin homogeneous layers. It is possible to consider a
gradual horizontal variation in the thickness profiles of layers and their physical
properties within these models. The aquifer considered will be constrained at both
its base and top. It is also possible to consider the case where the groundwater flow
is unconstrained above with a phreatic surface.

Groundwater flows within the aquifer transporting dissolved or suspended
substances. We introduce a particular case where there are two such substances
present: a pollutant, perhaps from a leak or spill, and a pollutant removal agent,
introduced to react with and alleviate the pollutant. Within the aquifer the trans-
ported substances, pollutant or removal agents, move in a similar way. They are
transported both advectively with the groundwater flow and dispersively within the
fluid. Horizontally, we consider the transport within a single layer. Vertically, the
transport occurs between layers. Within a single layer the concentration varies with
horizontal position but is independent of height within the layer. The concentration
varies vertically between the different layers. As well as dispersive transfer of
pollutant between neighbouring layers, fluid flux through the layer interfaces may
carry (advect) dissolved pollutant with it across the layer interface.

Suppose, q.x; y/ D .qx; qy/ is the total volume flux vector of the fluid per unit
width through the whole aquifer at the horizontal position .x; y/ and qi is that in
the i th layer. Let Pi.x; y; z/ and Ri.x; y; z/ [M L�3] be respectively the averaged
concentrations of the pollutant and the removal agent over the layer thickness hi in
the i th layer of the aquifer. They satisfy
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where �i [-] is the porosity of the solid matrix of the aquifer in the i th layer,
DHi and DVi [L2 T�1] are respectively the coefficients of horizontal and vertical
dispersion, and ri .x; y/ is the directed interlayer fluid transfer from the i th layer to
the i C 1th layer normal to the layer interface. The interlayer dispersive transfer
coefficient between the i th and the i C 1th layer �i .x; y/ is estimated using
1=�i D hi=.2�iDVi /ChiC1=.2�iC1DViC1

/ for internal layer boundaries and �i D 0

at the base and top of the aquifer. The functions fP i .x; y; t/ and fRi .x; y; t/ are
respectively source terms for pollutant and removing agent at the point .x; y/ of
the i th layer averaged over the layer thickness, and kP and kR [(M L�3)�1 T�1] are
respectively the rates of decay of pollutant and pollutant removing agent as a result
of their chemical reaction. There is further discussion of the transport of a single
substance alone in [3]. We note, that as the pollutant and pollutant removal agent
are transported in a similar way, the equations for the two substances only differ in
their last two terms: the source term and interaction term.
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Table 1 Parameters used in the illustration (Fig. 1)

Parameter names Values Units

Total volumetric flux qx 10 m2 day�1

Porosity � 0.1 –
Horizontal dispersion coefficient DHi 0.2 m2 day�1

Vertical dispersion coefficient DVi 0.06 m2 day�1

Degradation rate coefficient for pollutant kP 3
�
kg m�3

�
�1

day�1

Degradation rate coefficient for pollutant removing agent kR 1
�
kg m�3

�
�1

day�1

3 An Illustration of the Model

We present an illustration of the model. For simplicity, each horizontal layer is
taken to be homogeneous and uniform in thickness. Five layers are used to represent
each of three geological strata. The middle of the aquifer is composed of sand and
gravel with permeability 10�9 m2 and the upper and lower layers are composed of
clean sand with permeability 10�10 m2 [4]. The values of other parameters used
are shown in Table 1. There is no interlayer fluid transfer (ri ), but there will be
dispersive transfer of the species due to concentration gradients across the layer
interfaces. The ratios of the vertical transverse dispersion constants to the horizontal
ones are small [5]. Variation in the y-direction has been suppressed and we consider
the concentration dependence solely in the x and z directions.

We consider an instantaneous release of 2 units of a pollutant, such as might
happen as the result of an industrial accidental spill. Figure 1 shows concentration
profiles for the pollutant at 3 and 6 days subsequent to its release. The point of
pollutant release is marked as a red rectangle. There are two simulations, with and
without pollutant removal agent. In the latter, after a 2-day delay, a pollutant removal
agent is released 10 m downstream of the site of pollutant release (marked as a green
rectangle in Fig. 1). This release is taken to be continuous with a constant rate of 2
units per day. In their interaction, each unit of pollutant removal agent can remove 3
units of pollutant. For this example, both the releases occur within the fourth layer
(about 2 m) below the top of the aquifer.

As the central layers of sand and gravel are more permeable than the clean sand
layers above and below, the underlying horizontal groundwater flow is more rapid
there. The corresponding advected pollutant and removal agent concentrations can
be seen in Fig. 1.

4 Conclusions

In this short paper, a simple model has been presented for calculating the concentra-
tions of a pollutant and a pollutant removal agent transported by groundwater flow
within an aquifer. An example illustrates the process, showing the effect of remedial
action.



Pollutant Transport and Its Alleviation in Groundwater Aquifers 57

x [m]

z 
[m

]
z 

[m
]

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

x [m]

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

x [m]

z 
[m

]
z 

[m
]

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

x [m]

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

b

a

Fig. 1 Contour plots of the concentration of the pollutant subsequent to release. The top pair of
graphs are for 3 days after the pollutant release and the bottom pair are for 6 days after. Within
each set, the top figure is a contour plot of what the pollutant concentration would be without any
pollutant removal agent and the bottom figure is the pollutant concentration having included the
effect of the pollutant removal agent. The release positions of the pollutant and pollutant removal
agent are marked as red and green rectangles, respectively
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Optimal Shape Design of Wastewater Canals
in a Thermal Power Station

Aurea Martínez, Lino J. Alvarez-Vázquez, Carmen Rodríguez,
Miguel E. Vázquez-Méndez, and Miguel A. Vilar

Abstract Inside the canals of wastewater treatment plants of thermal power stations
usually produces in a natural way a deposition of particles in suspension, which
causes a change in geometry of the bottom of channel, with the consequent
appearance of accumulated sludge and growth of algae and vegetation. This fact
may lead to a misfunction of the purification process in the plant. Our main
aim focuses on the optimal design of the geometry of such canals to avoid the
difficulties derived from these processes. The problem can be formulated as a
control-constrained optimal control problem of partial differential equations, and
discretized via a characteristics/finite element method. For a simplified case study
(canals of rectangular section), theoretical and applicable results are presented.

1 Introduction

A thermal power station is a facility used for generating electrical energy from the
energy released as heat, usually by combustion of fossil fuels like oil, natural gas or
coal. This heat is used by a thermodynamic cycle to move a conventional alternator
and produce energy.
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One problem faced by these plants is their need for cooling, as they need to
evacuate about half of the total thermal power. Conventional techniques need to
employ large amounts of water which is returned to environment after suffering a
significant temperature drop.

In these traditional systems, water in circulation that cools the condenser expels
the heat extracted to the atmosphere through cooling towers (large hyperboloid
shaped structures which identify these plants). We must take into account the need
to purge part of the salts contained in the evaporated water degrading its quality (in
the towers cooling, due to evaporation, increases saline concentration). So, to avoid
problems in the system, purges are made in the towers, and this removed liquid
effluent must also be treated. Because of these facts it is necessary to design and
build for the thermal power station a wastewater treatment plant in order to give a
specialized treatment of water that is generated.

A wastewater treatment plant of these characteristics is intended to obtain from
wastewater, using different physical, chemical or biological techniques, a effluent
water of improved quality characteristics, using as reference certain standard
parameters. Inside this treatment plant water transfers occur between different
containers through canals. In these canals usually produces in a natural way a
deposition of particles in suspension, which causes a change in geometry of the
bottom of channel, with the consequent appearance of accumulated sludge and
growth of algae and vegetation. This fact may lead to a bad operation of the
purification process in the plant. Our objective will then focus on the optimal design
of the geometry of such canals to avoid the problems outlined above.

2 Modelling and Resolution

In order to avoid problems arising from the accumulation of vegetation and sludge in
the canals of a wastewater treatment plant in a power station, we will try to optimize
the design of the section of these channels so as to minimize these negative effects.

When formulating the problem mathematically we need to deal with the hydro-
dynamics (the shallow water equations in the domain that forms the channel),
the transport of sediments (a convection-reaction-diffusion equation), and the
deposition of sediment in the canal bottom [4–10]. Thus, for a canal of length L and
for a time interval of length T , the state system modelling the sedimentation process
is given by the following set of coupled, nonlinear partial differential equations:
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with boundary conditions:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

A.L; t/ D AL.t/ in .0; T /
Q.0; t/ D Q0.t/ in .0; T /
c.0; t/ D c0.t/ in .0; T /

k
@c

@x
.L; t/ D cL.t/ in .0; T /

As.0; t/ D As0.t/ in .0; T /

(2)

and initial conditions:

8
ˆ̂
<

ˆ̂
:

A.x; 0/ D A0.x/ in .0; L/
Q.x; 0/ D Q0.x/ in .0; L/
c.x; 0/ D c0.x/ in .0; L/
As.x; 0/ D A0s .x/ in .0; L/

(3)

where A.x; t/ is the wet section (area of the canal section occupied by water),
As.x; t/ is the sedimented section, Q.x; t/ is the water flow rate across the
section (that is, Q D Au with u.x; t/ the averaged velocity of water), g is the
gravity acceleration, b.x/ gives canal bottom geometry, z.x; t/ is the height of
settled sediment (related to sedimented section by a bijective function As D S.z/
depending on section shape for the cases of known shapes: rectangular, circular,
trapezoidal, etc.), H.x; t/ is the height of water (in a similar way to previous case,
A D S.z CH/� S.z/), c.x; t/ is the concentration of sediment in suspension, k is
the diffusion coefficient, � is the sediment exchange rate with the bed (in this case
taken as � D �f

�
A.c��c/ with �f the settling velocity of sediment, � an adaptation

length and c� the sediment transport capacity), 
s is the density of sediment, and
� 2 Œ0; 1� represents the bed porosity.

We assume that, originally, the canal presents a rectangular shape with a widthD
and a depth E. In order to minimize the negative effects of sedimentation, we try to
obtain a new optimized trapezoidal section. At this point it is especially important
the choice of design variables. From the point of view merely geometric, there exist
two straightforward design variables (see Fig. 1): the width of the modified canal
bottom w, and the angle of the lateral wall ˛.

In this case, the function relating trapezoidal section a to height h is given by
function:

a D S.h/ D wh C tan.˛/

2
h2 (4)

whose inverse can be also easily computed:

h D S�1.a/ D
p

w2 C 2 tan.˛/a � w

tan.˛/
(5)
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D

E

w

a

Fig. 1 Original rectangular canal section (left). Optimized trapezoidal canal section (right)

In order to assure the operation and effectiveness of the canal and its structural
stability we need to impose several constraints on the design variables, for instance,
bound constraints on the control of the type:

w � w � w (6)

˛ � ˛ � ˛ (7)

By geometrical reasons, in our study we propose the values w D D
4
; w D D �E;

˛ D 0; and ˛ D �
4
:

Finally, since we are interested in reducing the accumulation of vegetation and
sludge in the canals of the wastewater treatment plant in a power station, we will
try to minimize the area of the sedimented section As . With this purpose in mind,
we define the objective function J.w; ˛/ to be minimized as:

J D 1

2

Z T

0

Z L

0

A2s dx dt (8)

Thus, a mathematical formulation of our optimization problem .P / can read as:
Finding the optimal design variables .w; ˛/ such that, satisfying the state system
(1)–(3) and the control constrains (6)–(7), minimize the cost function J given by (8).

3 A Case Study

As a first step in our study we present a simplified case: We assume both lateral
walls to be vertical (that is, we fix angle ˛ to 0), then the only design variable is the
width w of the canal (which presents now a rectangular section).

In this simplified case, function S (and its inverse) takes a much simpler form:

a D S.h/ D wh (9)

h D S�1.a/ D a

w
(10)
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Under these conditions, and introducing in a classical way an adjoint state
.r; p; s; v/, solution of the linear adjoint system [3]:
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with boundary conditions:
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and final conditions:
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r.x; T / D 0 in .0; L/
p.x; T / D 0 in .0; L/
s.x; T / D 0 in .0; L/
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(13)

we can derive an optimality condition in order to characterize the optimal solution
of problem .P /:

Theorem 1. Let w 2 Œw;w� be an optimal solution of the control problem .P /,
minimizing the objective function J.w/ given by (8) in the admissible interval Œw;w�.
Then, there exist .A;Q; c; As/, solution of the state system (1)–(3), and .r; p; s; v/,
solution of the adjoint system (11)–(13), such that:

. Qw � w/
Z T

0

Z L
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@

@x
.AC As/Ap dx dt � 0; 8 Qw 2 Œw;w�: (14)
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It is worthwhile remarking here that above optimality condition (14) gives, in
fact, an expression for the derivative of the cost function J , that can be used in the
numerical computation of the optimal solution [1, 2]. Some preliminary numerical
results for this simplified study case are currently being developed by the authors,
where the resolution of the state and the adjoint systems is performed by means of a
combination of the method of characteristics for upwinding the time derivative, and
the Lagrange finite element method for dealing with the space discretization [3].
These numerical results will be the subject of a forthcoming publication.
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Mathematical Treatment of Environmental
Models

Zahari Zlatev, István Faragó, and Ágnes Havasi

Abstract Large-scale environmental models can successfully be used in different
important for the modern society studies as, for example, in the investigation of the
influence of the future climatic changes on pollution levels in different countries.
Such models are normally described mathematically by non-linear systems of partial
differential equations, which are defined on very large spatial domains and have
to be solved numerically on very long time intervals. Moreover, very often many
different scenarios have also to be developed and used in the investigations. There-
fore, both the storage requirements and the computational work are enormous. The
great difficulties can be overcome only if the following four tasks are successfully
resolved: (a) fast and sufficiently accurate numerical methods are to be selected, (b)
reliable and efficient splitting procedures are to be applied, (c) the cache memories
of the available computers are to be efficiently exploited and (d) the codes are to be
parallelized.

1 Description of a Large Scale Environmental Model

For the sake of simplicity we shall restrict ourselves on the area of long-range
transport of air pollution and to a particular model (UNI-DEM, the Unified Danish
Eulerian Model, [9]), but most of the results can easily be extended to other
environmental models. UNI-DEM is described mathematically by the following
system of partial differential equations (PDEs):
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The different quantities involved in (1) are briefly described below:

• ci D ci .t; x; y; z/ is the concentration of the chemical species i at point .x; y; z/
of the space domain and at time t of the time-interval,

• u D u.t; x; y; z/, v.t; x; y; z/ and w D w.t; x; y; z/ are wind velocities (along the
Ox, Oy and Oz directions, respectively) at the spatial point .x; y; z/ and time t ,

• Kx D Kx.t; x; y; z/, Ky D Ky.t; x; y; z/ and Kz D Kz.t; x; y; z/ are diffusivity
coefficients at the spatial point .x; y; z/ and time t (it is often assumed that Kx

andKy are non-negative constants, while the calculation ofKz is normally rather
complicated),

• k1i D k1i .t; x; y; z/ and k2i D k2i .t; x; y; z/ are deposition coefficients (dry and
wet deposition respectively) of chemical species i at the spatial point .x; y; z/
and time t of the time-interval. It should be mentioned here that for some of
the species these coefficients are non-negative constants. The wet deposition
coefficients k2i are equal to zero when it is not raining.

• Ei.t; x; y; z/ is emission source for chemical species i at the spatial point
.x; y; z/ and time t of the time-interval.

2 Splitting the Model

The mathematical model defined by (1) is normally split (see [9]) into the following
three sub-models:

@c
.1/
i

@t
D �w

@c
.1/
i

@z
C @

@z

 

Kz
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@c
.3/
i

@t
D �Qi.t; x; y; z; c

.3/
1 ; c

.3/
2 ; : : : ; c

.3/
q /CEi.t; x; y; z/C .k1i C k2i /c

.3/
i ; (4)

The first of these three sub-models describes the vertical exchange. The second sub-
model describes the combination of the horizontal transport (the advection) and the
horizontal diffusion. The last sub-model describes the chemical reactions together
with the emission sources and the deposition terms.

Note that the three sub-models are fully defined by (2)–(4), but the splitting
procedure is not. It will be completely determined only when it is explained how
these sub-models are combined. The simple sequential splitting procedure is applied
in UNI-DEM. It is obtained in the following way. Assume that the space domain is
discretized by using a grid with Nx � Ny � Nz grid-points, where Nx , Ny and Nz

are the numbers of the grid-points along the grid-lines parallel to the Ox, Oy and
Oz axes. Assume further that the number of chemical species involved in the model
is Ns D q. Finally, assume that approximate values of the concentrations (for all
species and at all spatial grid-points) have been found for some t D tn. These
values can be considered as components of a vector-function c.tn; xi ; yj ; zk/ 2
R
Nx�Ny�Nz�Ns . The next time-step, time-step n C 1 (at which approximations of

the concentrations are found at tnC1 D tn C �t where �t is some increment),
can be performed by solving successively the three sub-models. The values of
c.tn; xi ; yj ; zk/ are used as an initial condition in the solution of (2). The solution
of (2) is used as an initial condition of (3). Finally, the solution of (3) is used as
an initial condition of (4). The solution of (4) is accepted as an approximation to
c.tnC1; xi ; yj ; zk/. In this way, everything is prepared to start the calculations in the
next time-step, step nC 2.

The major advantage of any splitting procedure based on the above three sub-
models is due to the fact that no extra boundary conditions are needed when (2)–
(4) are used. This is true not only for the sequential splitting procedure sketched
above, but also for any other splitting procedure based on the sub-models defined by
(2)–(4).

3 Choice of Numerical Methods

Assume that the spatial derivatives are discretized by some numerical algorithm
(it must be mentioned here that different numerical algorithms can be applied in
the different sub-models and this is one of the big advantages of using splitting
techniques: for each sub-model one can select the most suitable algorithm). Then
the three systems of PDEs represented by (2)–(4) will be transformed into three
systems of ODEs (ordinary differential equations):

dg.1/

dt
D f .1/.t; g.1//;

dg.2/

dt
D f .2/.t; g.2//;

dg.3/

dt
D f .3/.t; g.3//: (5)
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The components of functions g.m/.t/ 2 R
Nx�Ny�Nz�Ns , m D 1; 2; 3 are approxi-

mations at time t of the concentrations at all spatial grid-points and for all species.
The components of functions f .m/.t/ 2 R

Nx�Ny�Nz�Ns , m D 1; 2; 3 depend both
on quantities involved in the right-hand-side of (1) and on the particular numerical
algorithms that are used in the discretization of the spatial derivatives.

A simple linear finite element method is used to discretize the spatial derivatives
in (2) and (3). The spatial derivatives can also be discretized by using other numer-
ical methods as, for example, a pseudo-spectral discretization, a semi-Lagrangian
discretization (which can be used only to discretize the first-order derivatives, i.e.,
the advection part should not be combined with the diffusion part when this method
is to be applied) and methods producing non-negative values of the concentrations.

The first system of ODEs in (5) can be solved by using many classical time-
integration methods. The well-known � -method is currently used in UNI-DEM.

Predictor-corrector (PC) methods with several different correctors, which are
fully discussed in [6], are used in the solution of the second ODE system in (5).
The correctors are carefully chosen so that the stability properties of the method can
be enhanced. If the code judges the time-stepsize to be too large for the currently
used PC method (and may lead to unstable computations), then it switches to a more
stable (but also more expensive, because more corrector formulae are used in order
to obtain better stability) PC scheme. On the other hand, if the code judges that the
stepsize is too small for the currently used PC method, then it switches to a not so
stable but more accurate PC scheme (which is using less corrector formulae and,
therefore, is less expensive). In this way the code is trying both to keep the same
stepsize and to optimize the performance. More details about this strategy can be
found in [6].

The solution of the third system in (5) is much more complicated, because this
system is both time-consuming and very stiff. Often the QSSA (Quasi-Steady-
State-Approximation) method is used in this part of the model. It is simple and
relatively stable but not very accurate (therefore it has to be run with a small
time-stepsize). An improved QSSA method was implemented in UNI-DEM. The
classical numerical methods for stiff ODE systems (such as the Backward Euler
Method, the Trapezoidal Rule and Runge-Kutta algorithms) lead to the solution of
non-linear systems of algebraic equations and, therefore, they are normally more
expensive. On the other hand, these methods can be incorporated with an error
control and perhaps with larger time-steps. Partitioning can also be used. Some
convergence problems related to the implementation of partitioning have been
studied in [7]. More details about the numerical algorithms can be found in [9].

4 Applying Parallelization

Another great advantage of using splitting is the appearance of many natural parallel
tasks. It is easy to see that (a) the first system in (5) contains Nx � Ny � Ns
independent tasks (for each chemical compound, each system along a vertical grid-
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line can be treated independently), (b) the second system in (5) containsNx�Ny�Nz

independent tasks (the chemical compounds at each grid-point can be treated
independently of the chemical compounds at the other grid-points) and (c) the third
system in (5) contains Nz �Ns independent tasks (for each chemical compound the
system along a horizontal grid-plane can be treated independently). These parallel
tasks, which appear in a natural way when any splitting based on (2)–(4) is applied,
were efficiently exploited during the parallelization process. Furthermore, standard
parallel tools, OpenMP and MPI, have been extensively used. Much more details
can be found in [1, 9].

5 Applications

UNI-DEM has been used in many different studies (many of them are reported in
[9]). Investigations of the influence of the climate changes on pollution levels in
Europe [8] and Hungary with its surroundings [10] have recently been carried out.

6 Conclusions

Assume that Nx D Ny D 480;Nz D 10;Ns D 35 are used (this was the case in
[8, 10]). Then the number of equations is 80,640,000 and 213,120 time-steps are
needed to perform calculations with meteorological and emission data covering a
whole year. Moreover, calculations over a long time-period (16 years) were needed
in [8, 10]. It is clear that it was possible to resolve the enormous tasks only if (a)
efficient splitting procedures are used, (b) suitable numerical methods are selected
for each sub-model and (c) parallel computations are applied. It should nevertheless
be pointed out that further improvements in connection with the tasks related to
(a)–(c) are highly desirable.

Much more details about the mathematical treatment of large environmental
models can be found in [2]. More precisely the splitting techniques are treated in
[3,4], the organization of parallel computations described in [11] and the handling of
the most difficult part, the sub-model containing the chemical reactions is discussed
in [5]. Different applications of environmental models are also reported in [2].
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Model-Based Assessment of Geophysical
Observations: From Numerical Simulations
Towards Volcano Hazard Forecasting

Gilda Currenti and Ciro Del Negro

Abstract Geodetic, gravity and magnetic field changes, produced by mass and
stress redistributions accompanying magma migration and accumulation within the
volcano edifice, are numerically computed by an integrated elastic 3-D model based
on Finite Element Method (FEM). Firstly, comparisons are made between analytical
and numerical solutions to validate the numerical model and to estimate the pertur-
bations caused by medium heterogeneity and topographic features. Successively, the
integrated numerical procedure was applied to interpret geophysical observations
collected at Etna volcano during unrest periods. The obtained results highlight that
heterogeneity and topography engender deviations from analytical results in the
geophysical changes and, hence, the disregard of these complexities could lead to an
inaccurate estimate of source parameters in inversion procedure. The FEM approach
allows for considering a picture of a fully 3D model of Etna volcano, which
advance the reliability of model-based assessments of geophysical observations.
This approach, based on observable data and complemented by physical modeling
techniques, makes the step ahead in the volcano hazard assessment and in the
understanding of the underlying physics and poses the basis for future developments
of scenario forecasting.

1 Introduction

Volcano unrest generates a wide variety of geophysical signals, which can be
observed before and during eruptive processes. In particular, ground deformation,
gravity and magnetic changes in volcanic areas are generally recognized as reli-
able indicators of unrest, resulting from the magma accumulation and migration
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from depth. Continuous measurements of these geophysical signals are useful
for detecting magma recharging phases and imaging spatio-temporal evolution of
propagating dikes. These geophysical signals are generally interpreted separately
from each other and the consistency of interpretations from these different methods
is qualitatively checked only a posteriori. An integrated approach based on different
geophysical data should prove a more efficient and accurate procedure for inferring
magmatic sources and minimizing interpretation ambiguities.

Over the last decade at Etna volcano, where volcanological tradition is consol-
idated, and scientific and technological standards are highly advanced, geodetic,
gravity and magnetic investigations have been playing an increasingly important
role in studying the eruptive processes [2, 3, 5, 8, 10]. A series of analytical
solutions, based on a homogeneous elastic half-space model, have been devised
and widely used in literature [11, 12, 14] for modelling ground deformation, gravity
and magnetic variations due to volcanic sources. It is worth noting that Etna
volcano is elastically inhomogeneous, as indicated by geological evidences and
seismic tomography [4, 13], and that rigidity layering and heterogeneities are
likely to affect the magnitude and pattern of observed signals. To overcome these
intrinsic limitations and provide more realistic models, which allows considering
topographic effects as well as complicated distribution of medium properties, we
exploited the Finite Element Method (FEM). This procedure allows joint evaluation
of geophysical changes caused by dislocation and overpressure sources in a 3D
formulation.

The 2008 Etna eruption offers an exemplary case study to validate the capability
of the proposed integrated approach for imaging the intrusive process occurring in
the northern flank of the volcano [7,10]. The main objective is to solve the scientific
challenge of developing numerical models of the involved magmatic process, in
which the output from numerical predictions are compared with available geophysi-
cal observations to provide a quantitative estimate of the volcano internal state and to
constrain the active magmatic source. Numerical solutions for deformation, gravity
and magnetic fields are obtained by modelling the source intrusion as an extension
fracture driven by a magmatic overpressure, which is a realistic representation
of an intrusive dike. Combined geophysical investigations provide a quantitative
estimate of the source model parameters and the involved mechanisms helpful in
the assessment of volcano hazard.

2 Numerical Model

The deformation and stress field produced by magmatic sources usually occur very
slowly, so the rock is in static equilibrium and the displacement can be found by
solving the equations of equilibrium. In the case where rock behaves elastically,
the equations of equilibrium are coupled with constitutive Hooke’s law giving the
following set of equations [9]:
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r � � D 0

� D � tr.�/I C 2��

� D 1

2

�ru C .ru/T
�

(1)

where � and � are the stress and strain tensors, respectively, u the deformation
vector and � and � are the Lame’s elastic medium parameters. When the medium is
homogeneous Eq. (1) result in the Cauchy-Navier equation:

.�C �/r.r � u/C �r2u D 0 (2)

Subsurface stress and deformation fields caused by dislocation and pressure
sources necessarily alter the density distribution and the magnetization of the sur-
rounding rocks that, in turn, affects the gravity and the magnetic fields, respectively.
The gravity change �g can be calculated by solving the following boundary value
problem for the gravitational potential �g [1]:

r2�g D �4�G�


�g D �@�g
@z

(3)

where G is the gravitational constant and �
 is the density distribution change
given by:

�
 D �
1 � 
1r �u � u � r
0 (4)

On the right side of Eq. (4), the first term is the density change related to
the arrival of the new mass from depth, the remaining two from the linearized
version of the continuity equation for the material already present in the elastic
medium [1]. Particularly, the second term results from the volume change arising
from the compressibility of the medium and the third term originates from the
displacement of density boundaries in heterogeneous media. As for the magnetic
field, the piezomagnetic change can be described by the scalar potential formulation
[12]:

r2�m D 4�r � J

J D 3

2
ˇ� 0 � J0

(5)

where �m is the piezomagnetic scalar potential, J the magnetization change, J0 the
initial magnetization, ˇ the stress sensitivity and � 0 the deviatoric stress tensor.
Equations (1), (3) and (5) show that magnetic and gravity field changes are related to
the deformation and stress fields of the elastic medium. Therefore, the deformation
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field and the changes in potential fields produced by volcanic sources need to be
jointly modelled. Starting from the numerical solution of elastic deformation and
its derivatives (1), the gravity and piezo-magnetic changes are computed using
Eqs. (3) and (5) by FEM technique. FEM solutions strongly depend on numerical
parameters not known a priori, such as the domain extension, the mesh resolution
and the boundary conditions, and, hence, it is necessary to calibrate the model.
Preliminarily, some benchmark tests were carried out to compare the analytical
results with numerical ones assuming an homogeneous half-space medium [5–7].

3 3D Model of the 2008 Magmatic Intrusion at Etna

The numerical procedure was applied to model the magmatic intrusion occurring
along the north flank of Mt Etna on 13 May 2008. A fully three-dimensional elastic
Finite Element model of Mt Etna was designed to evaluate the ground deformation,
magnetic and gravity changes. A computational domain of 100 � 100 � 50 km is
considered for the deformation field calculations. The 3D topography of Mt Etna,
which is rather asymmetric with a prominent mass deficit in correspondence of Valle
del Bove, was taken into account using a Digital Elevation Model from the 90 m
Shuttle Radar Topography Mission (SRTM) data and a bathymetry model from the
GEBCO database (http://www.gebco.net/). The computational domain was meshed
into 215,009 isoparametric, and arbitrarily distorted tetrahedral elements connected
by 38,007 nodes. Lagrange cubic shape functions are used in the computations,
since the use of lower order elements worsens the accuracy of stress field solutions.
Zero displacements are assigned at the bottom and the lateral boundaries of the
domain, while the upper boundary representing the ground surface is stress free.
The intrusion source is simulated as a dislocation surface by introducing the mesh
nodes in pairs along the surface rupture and assigning a tensile opening between
pair nodes. In order to solve the Poisson’s Equations (3) and (5), the potential or
its normal derivatives are to be assigned at the boundaries of the domain, which is
extended along the z direction to 50 km to finally obtain a 100 � 100 � 100 km
computational domain for ensuring the continuity of the gravity and magnetic
potential on the ground surface. Along the external boundaries, zero gravity
potential is specified using Dirichlet boundary conditions, while the magnetic field
is assumed to be tangential by assigning a Neumann condition on the magnetic
potential. The magnetic problem is made unique by setting the potential to zero at
an arbitrary point on the external boundary. Heterogeneous distribution of magneto-
elastic properties is included in the model by considering seismic tomography
investigations [4] and geological models [13].

Numerical results are compared with geophysical observations from ground-
based stations (GPS, magnetic, and gravity data) and satellite platform (DInSAR
data from ENVISAT satellite) to constrain the source parameters of the magmatic
intrusion (Fig. 1). To improve the fit to the data and make the model more realistic,
we solved for a distributed opening model over the dislocation surface. The resolved

http://www.gebco.net/
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Fig. 1 Integrated numerical model to interpret DInSAR, GPS, magnetic and gravity data acquired
during the onset of the 2008 Etna eruption. Observed interferogram for the descending scene pair
ENVISAT 080507-080716 (a). Computed (b) and residual interferograms (c). Observed (blue
arrows) and computed (red arrows) displacements at the summit permanent GPS stations (d).
Computed magnetic (d, contour lines at 2 nT) and gravity (e, contour lines at 10�Gal) changes.
Opening distributions obtained from the inversion of geophysical data (f)

opening distribution shows that the intrusion is quite shallow with a mean opening
less than 2 m, likely to represent the zone of magma filled fracture in the northern
part of the volcano (Fig. 1). The model well fits the deformation pattern derived from
DInSAR and GPS data. The rewrapped modelled displacements from the distributed
opening model enhances the fringes gradient and resemble quite well the overall
feature of the DInSAR observations. The match between the observed and the
computed magnetic changes is quite good at most stations. The total gravity change
reaches a maximum amplitude of about 60�Gal in proximity of the intrusion where
unfortunately no data are available. Indeed, the computed gravity field vanishes
within 3–4 km from the magma intrusion and does not show significant changes at
the gravity benchmarks, where in agreement with the model, no gravity variations
were recorded.

4 Conclusions

A coupled numerical problem was set up to estimate ground deformation, gravity
and magnetic changes produced by stress redistribution accompanying magma
migration within the volcano edifice. The integrated numerical procedure was
applied to image the magmatic intrusion occurring in the northern flank of Etna
during the onset of the 2008 eruption. By giving a fairly complete picture of the mag-
matic intrusion, geophysical data combined with the numerical modelling procedure
have proven to be useful for interpreting the observations and constraining the
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magmatic source parameters. The FEM-based approach improves the reliability of
model-based inference of geophysical observations gathered during monitoring of
volcanic unrest contributing to a more accurate evaluation of the hazard assessment.
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Thermal and Rheological Aspects
in a Channeled Lava Flow

Marilena Filippucci, Andrea Tallarico, and Michele Dragoni

Abstract We investigated the cooling of a lava flow in the steady state considering
that lava rheology is pseudoplastic and dependent on temperature. We consider that
cooling of the lava is caused by thermal radiation at the surface into the atmosphere
and thermal conduction at the channel walls and at the ground. The heat equation is
solved numerically in a 3D computational domain. The fraction of crust coverage is
calculated under the assumption that the solid lava is a plastic body with temperature
dependent yield strength. We applied the results to the Mauna Loa (1984) lava flow.
Results indicate that the advective heat transport significantly modifies the cooling
rate of lava slowing down the cooling process also for gentle slope.

1 Introduction

In lava flows the mechanism of cooling and solidification plays a very important
role in controlling the flow dynamics. Heat convection (free and forced) is a
heat loss mechanism that acts for all the life time of sub-aerial lava flows. Heat
radiation, due to the proportionality with T 4, is the dominant mechanism of cooling
at high temperatures. Many authors agree that the transition between radiation-
dominated and convection-dominated cooling takes place when lava temperature
reaches about 400–600 ıC [2, 8, 9, 11, 12, 14, 15]. Heat advection as source of
heat has been neglected under particular conditions [2, 11, 14]. Keszthelyi and
Denlinger [11], studying the initial cooling of a pahoehoe lava flow neglected the
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effect of advection and explained this choice observing that advective heat, being
the product of velocity and temperature gradient in the flow direction, should be
zero everywhere. In fact, the molten lava is mostly isothermal and the temperature
gradient is negligible. Neri [14] neglected the effect of advection with respect to the
heat production due to crystallization in the solidification process of a cooling lava
flow. On the basis of surface temperature measurements of active pahoehoe flows,
Ball et al. [2] stated that the advective heat transport is unimportant as long as the
lava surface moves at the same velocity as the underlying layers but it becomes not
negligible once the velocity of the crust is smaller than the velocity of the underlying
lava. The importance of heat advection has been studied for volcanic conduits and
for lava flows by [6, 13] and numerically by [4]. Filippucci et al. [4] assumed that
lava rheology is a function of temperature and strain rate as retrieved by [10] and
assumed that lava cooling is caused by two different mechanisms: heat radiation
into the atmosphere and heat conduction through the channel levees and the ground.
Using two different effusion temperatures, the authors observed that, as an effect of
the heat advection, the hotter lava, although it is subjected to higher heat radiation
into the atmosphere, cools slower than the colder one because it flows faster. So the
advective heat transport strongly influences the cooling dynamics of the lava flow.
Filippucci et al. [4] used the geometrical and physical parameters of the Mt Etna
lava channel as described by [1]. We adopt the numerical code developed by [4] and
apply it to the Mauna Loa, 1984, basaltic ‘a’a lava channel flow whose geometrical,
physical and reological parameters are collected by [7]. Following [7], within the
upper reaches of the flow, all movement became concentrated in a central channel
of stable geometry over underlying slopes ranging between 1ı and 9ı. The aim is to
study the cooling of a lava flow with higher effusion temperature with respect to the
Mt Etna case study of [4] and flowing down on a gentle slope.

2 Dynamical, Rheological and Thermal Model

We consider a viscous fluid flowing in the x direction in an inclined rectangular
channel, with the cross section parallel to the yz plane. The width of the channel is
a and the thickness is h; the slope of the inclined plane is ˛. The channel and the
coordinate system are shown in Fig. 1. The flow is assumed laminar and subjected to
the gravity force. The fluid is assumed isotropic and incompressible, with constant
density 
. The equation of motion in the steady state is:


g sin˛ C @

@y

�

�a
@vx

@y

�

C @

@z

�

�a
@vx

@z

�

D 0 (1)

where vx is the x component of velocity, g is the acceleration of gravity and �a is
the apparent viscosity which depends on temperature T . The apparent viscosity of
a power-law fluid is:
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where both k and n depend on T . The dynamic boundary conditions are:
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2
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�

D 0 I vx.y;�h/ D 0 (3)

@vx

@y
.0; z/ D 0 I @vx

@z
.y; 0/ D 0 (4)

Lava viscosity depends on strain rate through Eq. (2). In particular, fluid consis-
tency k depends on T through an exponential function and the power-law exponent
n depends on T through a linear function as found by [10] and used by [4].
The empirical functions for rheological parameters have been retrieved by [10]
for the basaltic melt of Sommata (Vulcano island, Italy) as representative of the
pseudoplastic rheology:

k.T / D k0e
p1C p2

T (5)

n.T / D 1C p3 C p4T (6)

Values of the parameters p1, p2, p3 and p4 are in Table 1.
The numerical solution of (1), using the finite volume method, is given by [3].
We assume that lava starts cooling as it exits from the vent with an effusion

temperature T0. The high lava emissivity " and the high lava temperature T0 imply
that heat exchange at the lava surface occurs mainly by radiation into the atmosphere
[14]. We assume a radiative heat flux from the upper lava surface

qr D "T 4u (7)

where  is the Stefan-Boltzmann constant, " is the surface emissivity of lava and
Tu is the temperature of the upper surface z D 0. We assume that the atmospheric
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Table 1 Values of the model parameters

Parameter Description Value unit

a Channel width 5 m
cp Specific heat capacity 837 J kg�1 K�1

g Acceleration of gravity 9:8m s�2

h Channel thickness 5 m
qc Lateral and basal heat flux 1;000W m�2

k0 Rheological parameter 1Pa sn

p1 Rheological parameter �18:71
p2 Rheological parameter 33:4 103 K
p3 Rheological parameter �1:35
p4 Rheological parameter 0:85 10�3 K�1

K Thermal conductivity 3W K�1 m�1

L Channel length 100m
Ts Solidus temperature 1;253K
Te Effusion temperature 1;140K
˛1 Channel slope 5ı

˛2 Channel slope 9ı

"c Thermal emissivity 1


 Density 2;800 kg m�3

 Stefan constant 5:668108 W m2K4

� Thermal diffusivity 1:28 10�6 m2 s�1

temperature is negligible with respect to Tu. We assume that the conductive heat loss
through the levees and the ground can be represented by a constant heat flux qc (1)
as used by [4].

We neglect viscous dissipation and the heat of crystallization and therefore we do
not consider any internal heat source. The heat equation at the steady state is then:

vx
@T

@x
D �

 
@2T

@y2
C @2T

@z2

!

(8)

where � is the thermal diffusivity given by:

� D K


cp
(9)

whereK is the thermal conductivity and cp is the specific heat capacity. We assume
that K does not depend on temperature. The thermal boundary conditions are the
radiative heat flux qr at the upper surface, the constant heat flux qc at the levees and
at the ground and the symmetry of the problem with respect to the xz plane:
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T .x D 0/ D T0 (10)
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We consider a flow segment with length L (Fig. 1).
The numerical solution and tests of (8), using the finite volume method are given

by [4].
The advective term in the heat equation makes the temperature dependent on the

flow velocity, which in turn depends on temperature through the apparent viscosity
(2). So, the dynamical and the thermal problem are mutually dependent. Since we
consider only a short segment of a lava flow, the thickness can be assumed as
constant. This allows a reduction of the computational time cost required to solve
the 3D problem and avoids remeshing of the computational domain. The iterative
procedure to solve Eqs. (1) and (8) is made of the following steps:

1. set an initial value of temperature T .x; y; z/ in the domain;
2. compute k and n given by (5) and (6) in the domain;
3. solve the equation of motion (1) to obtain vx.x; y; z/ in the domain;
4. solve the heat equation (8) in the domain and update T .x; y; z/;
5. back to point (2).

Defining R as the sum of NCV residuals in L1 norm between the temperature T at
the present iteration and that at the preceding one T �:

R D
NCVX

kD1
jT � T �jk; (15)

the procedure stops if R falls below 10�4 K.

3 Results

We evaluated temperature and velocity fields for the steady state case assuming two
different channel slopes ˛1 and ˛2 (Table 1). First, we consider the case ˛ D ˛1.
Figure 2a shows the temperature contour map in the plane z D 0. Vertical profiles
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b

a

Fig. 2 Temperature T at the steady state for ˛ D ˛1. (a) Contour maps of T on the plane z D 0;
(b) thin line: vertical profile of T at the channel center (x D L, y D 0); thick line: vertical profile
of T at the channel levee (x D L, y D ˙a=2)

of temperature at y D 0 and y D ˙a=2 are in Fig. 2b. In Fig. 4 the velocity contour
maps at x D 0 (Fig. 4a) and at x D L (Fig. 4c), at z D 0 (Fig. 4b) and at y D 0

(Fig. 4d) are shown. As it can be observed the advective heat transport modifies
the temperature field so that T is maximum at the center of the channel surface,
where the velocity is maximum. It can be also observed that T is minimum at the
channel levees where the velocity is null. When the channel slope is ˛1, at x D L

the steady state lava temperature at the levees can reach T D 692 ıC while at the
center is equal to the effusion temperature, that is T D 1;140 ıC. The lava velocity
is approximately the same at the vent and at the channel outflow section. Secondly,
we consider the ˛ D ˛2 case. As before, contour maps and profiles of temperature
are in Fig. 3 while contour maps of velocity are in Fig. 5. When the channel slope is
˛2, at x D L the levees are at T D 717 ıC while the center is still at the effusion
temperature. As before, lava velocity does not decrease from the vent to the channel
outflow section but it is much lower than that pf the previous case. In both cases,
the maximum velocity is at the channel surface, that is at z D 0 indicating that lava
flow preserves the structure of the channel flow.
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a

b

Fig. 3 Temperature T at the steady state for ˛ D ˛2. (a) Contour maps of T on the plane z D 0;
(b) thin line: vertical profile of T at the channel center (x D L, y D 0); thick line: vertical profile
of T at the channel levee (x D L, y D ˙a=2)

4 Discussion and Conclusion

We consider a segment of the channel close to the vent and far from the flow front, so
that the flow dynamics is not influenced by the flow front. In the present model, we
assume that lava rheology is temperature and strain rate dependent, that lava flows
in an inclined rectangular channel under the gravity force and that lava cooling is
caused by two different mechanisms: heat radiation into the atmosphere and heat
conduction through the channel levees and the ground.

We neglect thermal convection since cooling of sub-aerial basaltic lava flows is
initially dominated by radiative cooling. Only on time scales of tens of minutes and
longer, heat loss via forced atmospheric convection (i.e. cooling by the wind) is
predicted to dominate and the transition from radiation-dominated to convection-
dominated cooling is found to be at about 400–600 ıC [8,11,14]. In our simulation,
we lower this threshold in a very thin part of the channel surface near the channel
levees for the steady state case, so the error due to this approximation is supposed
to be minimal.
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a b c

d

Fig. 4 Contour maps of velocity vx at the steady state for ˛ D ˛1. (a) Contour map on the plane
x D 0; (b) contour map on the plane z D 0; (c) contour map on the plane x D L; (d) contour map
on the plane y D 0

We study the cooling process in the steady state two different channel slopes ˛1
and ˛2.

The resulting temperature fields show that the two static zones close to the
channel levees that can be observed in [4] do not appear in this case study for both
the values of the channel slope. The reason is that the effusion temperature of Mauna
Loa lava flow is higher than the Etna lava flow. The temperature is lower than the
solidus temperature Ts for both the values of ˛ very close to che channel levees in a
very narrow zone, so it is expected that the upper crust forms at the channel levees
very far from the vent. This is confirmed by direct observation reported by [7] who
showed that the stabilized channel is 10 km long and only in the final part, in a zone
of the channel that is called transitional channel, a pahoehoe crust starts forms near
the channel levees, while in the central part of the channel lava flows with poorly
developed crust.

The temperature and strain dependent reological model of [10] gives very high
values of viscosity which translate in very high values of velocity, as it can be
observed in Figs. 3 and 5, even if it is evident the sensitivity of the solution to the
value of the channel slope ˛.

The two different values of the effusion temperature underline the role of
viscosity and of heat advection in the cooling process, since the steeper channel
flows much faster than the less inclined, although the differences among the two
values of ˛ are not so high. So the temperature dependence of the viscosity function
strongly affects the dynamics of the lava flow. Regarding the differences in the
thermal aspects of the two case studies, we cannot observe great differences because
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b c

d

a

Fig. 5 Contour maps of velocity vx at the steady state for ˛ D ˛2. (a) Contour map on the plane
x D 0; (b) contour map on the plane z D 0; (c) contour map on the plane x D L; (d) contour map
on the plane y D 0

of the proximity to the vent. The channel is approximately isothermal except for the
levees and ground where the cooling can be observed also in the first 100m, as it
can be seen in Figs. 2b and 3b.

As observed by [16] on active lava flows on Kilauea volcano, Hawaii, the high
temperatures at the center of the channel, where the crust is very thin, and the low
temperatures at the levees of the channel, where the crust is thicker and stable,
can explain how the gradual inwards growth of lateral crust may cause the tube
formation in the classic zipper fashion [5].
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Part III
Fibers

Overview

Fiber spinning, fiber suspension flows, fiber micro-structures are the topics of this
section Fibers. The dynamics and behavior of fibers play an important role in non-
woven production, glass-wool manufacturing and paper forming. In these processes
slender objects, such as oriented particles, elastic threads or viscous/viscoelastic
jets, move due to mechanical or aerodynamic forces and interact with each other,
outer boundaries and/or surrounding flows. The quality of fiber fabrics crucially
depends on the properties of the micro-structure.

The following nine contributions present new models and methods for different
aspects, bringing together asymptotics, stochastics and numerics.

The first two papers address the simulation of fiber spinning, using asymptotic
Cosserat formulations for the jet dynamics. In On Viscoelastic Fiber Spinning: Die
Swell Effect in the 1D Uniaxial UCM Model Maike Lorenz et al. investigate the
phenomenon of die swell occurring in drawing processes of viscoelastic jets. The
asymptotically derived upper convected Maxwell (UCM) model has an hyperbolic
character such that the existence regime of solutions depend crucially on the
physical parameters and the boundary conditions. These restrictions hold also
true in the viscous limit when the Weissenberg number vanishes (viscous string
model). The viscous Cosserat rod model that covers additional angular momentum
effects overcomes the restrictions of the string model and is valid for all possible
parameters. As it converges to the string model in the slenderness limit, it can be
understood as regularized string model. The partial and ordinary differential system
is highly stiff since it contains the slenderness parameter. In Numerical Treatment of
Non-Stationary Viscous Cosserat Rod in a Two-Dimensional Eulerian Framework
Walter Arne et al. propose a numerical scheme based on a semidiscretization with
finite volumes in space. The time integration is performed with stiffly accurate
Radau methods. Numerical results are shown for rotational spinning.

The third and fourth papers deal with fiber-fluid interactions. Due to the slender
geometry the effect of a single fiber on a surrounding flow field is small and
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neglected in the majority of cases. This yields a one-way coupling. However, when
considering fiber curtains or fiber bundles in a flow, there is the need of a two-way
coupling. In Asymptotic Modeling Framework for Fiber-Flow Interactions in a Two-
Way Coupling Thomas M. Cibis et al. present an asymptotic modeling framework
for such a two-way coupling between fibers and flow. It is based on slender-body
theory and the modeling of exchange functions in terms of drag forces and heat
sources. The exchange functions are incorporated in the conservation equations
for linear momentum and energy with respect to flow and fibers and satisfy a
generalized action-reaction principle. The concept is applied to a rotational spinning
process for glass wool production. In Efficient Simulation of Random Fields for
Fiber-Fluid Interactions in Isotropic Turbulence Florian Hübsch et al. consider a
fiber dynamics in a turbulent flow. The flow fluctuations are modeled as random
field in R

4 on top of a statistic k-� turbulence formulation and the interactions are
described as a one-way coupling with a stochastic aerodynamic drag force on the
fiber. The focus lies on the construction and efficient simulation/sampling of the
fluctuations, therefore the special covariance structure of the random field (isotropy,
homogeneity and decoupling of space and time) is exploited.

In On Stability of a Concentrated Fiber Suspension Flow by Uldis Strautins a
linear stability analysis of a fiber suspension flow in a channel domain is performed
using a modified Folgar-Tucker equation. Two kinds of potential instability are
identified: whereas one is associated with overcritical Reynolds number, the other
one is present for any Reynolds numbers since it is associated with certain
perturbations in fiber orientation field. The second type of instability leads to
initially growing transient perturbations in the micro-structure. It is shown that both
types of instability lead to instability of the bulk velocity field. The presence of
fibers increases the stability region.

The last three papers address the simulation and/or investigation of fiber micro-
structures. In Microstructure Simulation of Paper Forming Erik Svenning et al.
present a numerical framework designed to simulate a paper forming process.
This process includes strong fluid-structure interaction and complex geometries.
The fluid flow solver employs immersed boundary methods to compute the flow
around the fibers without the necessity of a boundary conforming grid. The fibers
are described by a Euler-Bernoulli beam equation. The contact is realized by a
penalty-based model. For production processes of nonwoven materials, a monolithic
numerical treatment is not possible for computational reasons due to the fiber
concentration and geometry. Hence, in Three-Dimensional Fiber Lay-Down in an
Industrial Application Johannes Maringer et al. propose surrogate fiber lay-down
models that describe the form of deposited endless fibers with help of stochastic
differential equations (degenerated diffusion processes). The model parameters are
estimated from the models of first principles (Cosserat theory for single fibers)
in combination with measurements of the resulting nonwoven. In the paper the
adaptation of a three-dimensional model to a typical industrial process is discussed.
Apart from such lay-down models there exist several other stochastic models for
fiber Microstructure s (system): systems of straight non-overlapping fibers, systems
of overlapping bending fibers, or fiber systems created by sedimentation. In 3d
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Modeling of Dense Packings of Bended Fibers Hellen Altendorf and Dominique
Jeulin present a stochastic model that generalizes the force-biased packing approach
to fibers represented as chains of balls. The starting configuration is a Boolean
system of fibers modeled by random walks, where two parameters in the multivariate
von Mises-Fisher orientation distribution control the bending. The points of the
random walk are associated with a radius and the current orientation. The resulting
chains of balls are interpreted as fibers. The final fiber configuration is obtained
as an equilibrium between repulsion forces avoiding crossing fibers and recover
forces ensuring the fiber structure. This approach can provide high volume fractions.
Alternatively, a intelligent placing strategy is exploited that turns out to be very
efficient for intermediate volume fractions.

Nicole Marheineke



On Viscoelastic Fiber Spinning: Die Swell Effect
in the 1D Uniaxial UCM Model

Maike Lorenz, Nicole Marheineke, and Raimund Wegener

Abstract This work deals with a stationary viscoelastic jet under gravitational
forces described by an upper convected Maxwell (UCM) model. For spinning
processes we demonstrate that a die swell-like behavior of the solution is in
general possible for the asymptotically derived one-dimensional model equations.
Nevertheless, to use the model for the prediction of a die swell appropriate boundary
conditions or the inclusion of further effects such as surface tension have to be
considered. Moreover, the regime of existence of solutions for drawing processes is
determined numerically.

1 Introduction

In the production of fibers a molten polymer is pressed out of a nozzle forming
a curved jet in a surrounding air flow. The spinning of such a viscoelastic jet can
be described as a three-dimensional free boundary value problem using an upper
convected Maxwell model. For simplicity, we neglect surface tension, temperature
and aerodynamic effects. Applying slender-body theory similar to [9], an asymptotic
one-dimensional model based on the transient, arc-length parameterized jet’s center-
line is derived in [8]. For time t 2 R

C
0 and arc-length parameter s 2 Œ0; L.t/�, this

dimensionless model is given by the balance of mass and momentum
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@tAC @s.uA/ D 0;

Re.@t .Av/C @s.uAv// D @s.A@s�/C Af;
(1)

the constitutive equations

We.@tp C u@sp C p@su/C p D �@su;
We.@t C u@s � .3p C 2/@su/C  D 3@su

(2)

and the dynamics of the center-line

@t� C u@s� D v; k@s�k D 1 (3)

with the cross-sectional area A, the momentum-associated velocity v, the intrinsic
velocity (speed) u, the pressure p, the stress component  and the center-line � . The
outer forces f are considered to be given. The evolution of the jet length is described
by dL.t/=dt D u.L.t/; t/withL.0/ D 0. The boundary conditions at the nozzle are

A.0; t/ D 1 u.0; t/ D 1

.0; t/ D 0

�.0; t/ D �0 @s�.0; t/ D �0;

and at the free end of the jet we have .L.t/; t/ D 0: The dimensionless parameters
are the Reynolds number Re and the Weissenberg number We denoting the ratio of
inertial forces and viscous forces and the ratio of relaxation time and process time,
respectively.

In this work we investigate the applicability and properties of the one-
dimensional model, in particular whether we can simulate a die swell. A die
swell, also called extrudate swell, is an effect observed in many extrusion processes
with viscoelastic fluids. Here, a fluid exits from a capillary into the air such that a
jet forms with a diameter significantly larger than the diameter of the nozzle [3],
for photos see [7]. A sketch is given in Fig. 1a. In fiber spinning processes the
forming of a die swell is undesirable since it changes the flow properties of the
non-Newtonian fluid and consequently the quality of the resulting fabric. Hence,
the understanding and prediction of this phenomenon is of interest to industry. So
far, simulations for the UCM fluid showing this effect are based on the full two- or
three-dimensional models, see e.g. [4].

The paper is organized as follows. First we derive the stationary model equations
from (1) to (3) for an arbitrary curved jet. They can be used for describing a spun
jet exposed to gravity. Then we investigate for the special uniaxial case (straight
jet)—where the jet is pointing in the direction of the gravitational force—, whether
the model allows for a die swell. In addition, we determine numerically the regime
of existence of solutions in the space of the dimensionless parameters.
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Fig. 1 Die swell in an extrusion process. Simulation results of the stationary uniaxial UCM model
(6) with b.1/ D �0:3, a.0/ D �1, Fr D 1;We D 2, and Re 2 Œ2; 3�. The plotted velocity is
related to the cross-sections by u D 1=A. (a) Sketch. (b) Simulations

2 Stationary One-Dimensional UCM Model for Straight Jets

Let us consider a fiber spinning process which lasts long enough such that the jet up
to a length L can be regarded as stationary. Without loss of generality let be L D 1.
Then, the corresponding stationary UCM model for s 2 Œ0; 1� is given by

@s� D �

q1 @s� D 1

u
f � 1

u
.f ��/�

q2 @su D  � We u f ��
@s D @su

�
Re u C 

u

�
� f ��

We @sp D �1
u
.@su.1C Wep/C p/

k�k D 1

q1 D Re u � 

u
; q2 D 3C We . C 3p/ � ReWe u2;

(4)

supplemented with appropriate boundary conditions. In order to obtain the model
we neglect the time dependence in (1)–(3) and convert it to a system of first order
ordinary differential equations (ODE). Therefore we introduce the tangent of the
jet �. Since the mass flux is constant, the cross-sectional area is related to the
velocity and drops out of the equations, i.e. A � 1=u > 0 holds.
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The solvability of this model is restricted and depends critically on the parameter
regime and the boundary conditions. The viscoelastic UCM model includes the
viscous case when We D 0. From the viscous case it is known that the term
q1, which is a monotonically increasing function in s, crucially determines the
applicability of the model equations, cf. [1, 2]. For q1.s/ D 0 a singularity occurs
that is only removable by help of an appropriate choice of closure conditions [6]. For
the viscoelastic model the term q2 leads additionally to limitations which are even
more difficult to predict since q2 is not monotone. In the uniaxial case of interest the
term q1 is not present and we can exclusively focus on q2.

A stationary uniaxial (straight) jet is described by

q2@su D  � WeBu

@s D @su
�

Reu C 

u

�
� B

We@sp D �1
u
.@su .1C Wep/C p/

q2 D 3C We . C 3p/ � ReWeu2:

(5)

We deduce this system of equations from (4) by setting � D .0; 0;�s/ in a
gravitational configuration where the outer forces are f D B.0; 0;�1/ and B D
Re=Fr2. Here, Fr is the Froude number which denotes the ratio of inertial and
gravitational forces. See also [5, 10] for an asymptotic derivation and for existence
and uniqueness results to Re D 0.

Depending on the boundary conditions the term q2 in (5) may limit the regime
of existence if it contains a root. Hence, we cannot expect solutions for the whole
parameter space .Re;Fr;We/, whereas the viscous model .We D 0/ has solutions
for all .Re;Fr/. Another difference to the viscous model is that the viscoelastic
model has solutions with a minimum in the velocity u for s 2 .0; 1/. For the viscous
model one can easily show that any extremal value of u in .0; 1/ is a maximum.
Since in the stationary case we have the relation A D 1=u for the cross-sectional
area A we investigate whether this behavior enables us to reproduce a die swell
which is observed in experiments with viscoelastic fluids.

For the numerical solution of the arising boundary value problems we use a
Runge–Kutta collocation method. The resulting systems of non-linear equations are
solved via Newton’s method [11].

2.1 Drawing Processes and Die Swell

This section addresses the question whether the uniaxial UCM model (5) allows for
solutions with a die swell. To simplify the investigations we restate (5) in terms of
b D  � WeB u and a D q2:
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@su D b

a

@sb D b

a

�
b C Reu2

u

�

� B

@sa D b

a
2We

�

BWe C b

u
� Reu

�

� Reu C 1

Weu
.3 � a/:

(6)

For the boundary conditions we impose

u.0/ D 1; b.1/ D D1; a.0/ D D2 (7)

for some D1 2 R and D2 2 R n f0g. In particular, we set D1 D 0 to achieve
a constant velocity end with @su.1/ D 0 or alternatively D1 D �WeB u.1/ for a
stress free end corresponding to .1/ D 0.

Definition 1. Let .u; b; a/ be a continuously differentiable solution of (6) for
arbitrary but fixed boundary conditions. We call s� 2 .0; 1/ a point where a die
swell occurs if @su.s�/ D 0 holds true and u.s�/ is a local minimum.

Among all possible solutions we are only interested in drawing processes as defined
below which we consider to be the physically relevant solutions in this scenario.

Definition 2 (Drawing Process). We call the solution of the ODE system (6) a
drawing process

• without die swell if @su.s/ > 0 for all s 2 Œ0; 1/,
• with die swell if there exists exactly one s� 2 .0; 1/with @su.s�/ D 0, @su.s/ < 0

for all 0 � s < s� and @su.s/ > 0 for all s� < s < 1.

With the following Lemmata we can exclude the occurrence of a die swell for the
boundary condition b.1/ D 0 (constant velocity end).

Lemma 1. Let .Re;Fr;We/ be given with B ¤ 0 and suppose that .u; b; a/
are continuously differentiable solutions of (6) for arbitrary but fixed boundary
conditions. Suppose that a ¤ 0 for all s 2 Œ0; 1�. Then b can have at most one
root on Œ0; 1�.

Proof. For any root s� in b we find that @sb.s�/ D �B. By continuity of b only one
root can occur.

Lemma 2. Let .Re;Fr;We/ and some D 2 R n f0g be given such that a.0/ D D

or a.1/ D D. Suppose that a continuously differentiable solution of (6) exists with
u.0/ D 1, b.1/ D 0 and a ¤ 0 for all s 2 Œ0; 1�. Then this cannot be a drawing
process with a die swell. Furthermore, this is only a drawing process if D > 0.

Proof. For a drawing process with a die swell a root of @su is required on .0; 1/.
This corresponds to a root in b at some s� 2 .0; 1/. Due to the boundary condition
and Lemma 1 this is not possible.
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If D < 0 also a < 0 holds true for all s 2 Œ0; 1� and hence b.1/ D 0 enforces a
minimum in u such that the velocity is monotonically decreasing on Œ0; 1�. This is
not a drawing process.

By the previous considerations we know that a die swell cannot occur for b.1/ D
0. Hence we impose the boundary condition .1/ D 0 ensuring a stress free end,
i.e. in terms of b; a we set b.1/ D �WeB u.1/ < 0. To ensure a drawing process
a needs to be negative and we choose a.0/ < 0. For given .Re;Fr;We/ we can
decide by the sign of b.0/ whether a numerically determined solution is a drawing
process with a die swell (b.0/ > 0) or without a die swell (b.0/ � 0). For all tested
parameter triples .Re;Fr;We/ the solutions belong to drawing processes without a
die swell. Nevertheless, we can impose b.1/ < 0, a.0/ < 0 and find parameters
for which a die swell occurs. One example is given in Fig. 1b for Fr D 1;We D 2,
b.1/ D �0:3, a.0/ D �1 and different Re. The velocity develops a clear minimum
and finally increases to values larger than the inflow velocity. This corresponds to
a jet with a diameter that first increases to values larger than the diameter of the
nozzle (cf. Fig. 1a).

2.2 Regime of Existence

The parameter regime .Re;Fr;We/ where solutions exist depends essentially on
the run of the non-monotone function q2 for given boundary conditions. For its
determination we have to detect the roots of q2. The stress free boundary condition
.1/ D 0 is not suited for a systematic search since q2 develops a root inside
the considered interval Œ0; 1�. On the contrary, for the constant velocity boundary
condition b.1/ D 0, i.e. (7) with D1 D 0 and D2 > 0, we find that the minimum
of q2 D a occurs at s D 1. Hence, for this case which excludes the occurrence of a
die swell, we can carry out a systematic numerical search in the three-dimensional
parameter space using the following approach: the aim is to find those parameters
.Re;Fr;We/ for which a solution of (7) exists with a.1/ D 0. For the numerical
treatment we consider We variable and impose the additional boundary condition
a.1/ D ı for 0 < ı � 1.

For ı D 0:1, D2 D 1 and Fr D 2 the numerical result is shown in Fig. 2a. The
blue curves visualize the limiting curves found for varying Re, the green circles
mark the parameters .Re;We/ 2 Œ10�2; 102� � Œ10�7; 6:2� for which numerical
solutions exist. One observes that the area enclosed by both limiting curves does not
allow for solutions. We also notice that we have to consider either We or Re variable
and combine both results to capture all regions of the limiting curve depending on
the gradient.

With a combined search we can additionally vary Fr and obtain the corresponding
limiting surface shown in Fig. 2b. In consistence with Fig. 2a no solutions can be
found for .Re;Fr;We/ inside the volume enclosed by the limiting surface. Close to
the viscous case (We � 1) no limitations occur. For moderate values of We only
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Fig. 2 Parameter regime of existence of solutions for u.0/ D 1, b.1/ D 0, a.0/ D 1. (a) Limiting
curves. (b) Limiting surface

small Reynolds numbers imply solutions whereas larger Reynolds numbers require
We to lie above the upper part of the limiting surface. This part grows more than
linearly in We for increasing Froude numbers. Increasing D2 leads to comparably
shaped limiting surfaces with a less restrictive regime of existence.

3 Conclusion and Outlook

The asymptotic upper convected Maxwell model allows for solutions forming a die
swell. For the stationary uniaxial gravitational spinning set-up the occurrence of
a die swell can be analytically excluded for the boundary condition of a constant
velocity end @su.1/ D 0 and no numerical examples are found for the stress free
end .1/ D 0. Nevertheless, for artificial boundary conditions the desired shape
can be obtained. It is still an open question whether reasonable boundary conditions
can be physically motivated to simulate the die swell or whether further effects such
as surface tension need to be included to obtain results that are comparable with
experimental data and meaningful for the prediction of a die swell.

In contrast to the uniaxial viscous model, the applicability of the viscoelastic one
is limited to certain parameter ranges due to the occurring roots of the non-monotone
function q2. This makes the simulation of some industrial spinning processes not
only difficult but impossible. The investigation of alternative asymptotic models
that overcome this problem is left to future work.
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Numerical Treatment of Non-stationary Viscous
Cosserat Rod in a Two-Dimensional Eulerian
Framework

Walter Arne, Nicole Marheineke, Andreas Meister, and Raimund Wegener

Abstract This work deals with the modeling and simulation of the dynamics of
a slender viscous jet as it arises in spinning processes. There exist two classes of
asymptotic one-dimensional models for such a jet, string and more complex rod
models, that are given by systems of partial and ordinary differential equations.
In this paper, we present non-stationary simulations of a rod in an Eulerian
framework for arbitrary parameter ranges of 2d spinning where the string models
failed so far. The numerical treatment is based on a finite volume approach with
mixed central, up- and downwinded differences, the time integration is performed
by a Radau method.

1 Introduction

Considering the spinning of highly viscous fluids, the unrestricted motion of a non-
stationary jet’s center-line plays an important role [1]. Typical industrial applications
are e.g. drawing, tapering and spinning of glass/polymer fibers [2, 3] or pellet
manufacturing [4,5]. For the numerical simulation there exist two classes of asymp-
totic one-dimensional models: string and rod models. Whereas the string models
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consist of balance equations for mass and linear momentum, the more complex
rod models also contain an angular momentum balance [6, 7]. The applicability
of the string model with asymptotically derived boundary conditions [8] turned
out to be restricted to certain parameter ranges. Already for jets in a stationary,
rotational 2d scenario no solutions exist for ReRb2 < 1 with Rossby number
Rb � 1 [9]; the numerical evidence of this inviscid bound was specified analytically
in [10]. The limitation can be partly overcome by a modification of the closure
conditions motivated by Hlod et al. [11, 12]. However, there is still a parameter
range for which an existence gap of string solutions is observed [10]. The viscous
Cosserat rod theory raises hope to open the parameter ranges of practical interest
and time-dependencies to simulation. Based on the work by Ribe [13] we developed
a modified incompressible Cosserat rod model [14] that reduces asymptotically to
the string equations for a vanishing slenderness parameter. So far, stationary rod
simulations have been applied successfully in the study of a fluid-mechanical sewing
machine [15] and the design of a glass wool production process [16]. In this paper,
we present non-stationary rod simulations for a 2d inflow-outflow problem in an
Eulerian framework. In long-time behavior they converge to the stationary results.
The applicability is unrestricted such that they allow the study of practically relevant
parameter ranges where the string models failed [8]. The proposed numerical
scheme can be generalized to arbitrary 3d flow situations, including inflow problems
with increasing jet length and free end [17].

The paper is structured as follows. Focusing on the rotational 2d spinning
scenario of [8, 10] we first introduce the Cosserat rod model. Then, we present the
numerical approach and finally discuss the simulation results.

2 Viscous Rod Model

In rotational spinning processes viscous liquid jets leave small nozzles located on
the curved face of a circular cylindrical drum rotating about its symmetry axis,
Fig. 1. They move and grow due to gravity and aerodynamic forces. At the nozzle,
the jet’s velocity, cross-sectional area, direction and curvature are prescribed. The jet
end is characterized by stress-free conditions for inner contact forces and couples.

This work aims at the numerical handling of the time-dependencies. Therefore
we focus on the rotational 2d scenario of [8,10,14] neglecting gravity, aerodynamic
forces, surface tension and temperature effects. Note that once the numerical
concept is established, these effects can be easily added as it is done for stationary
considerations [16]. We consider a jet of certain length, i.e. inflow-outflow set-up
with time-independent flow domain, and study the effects of viscosity and rotation
on the non-stationary jet’s center-line. Due to the slender geometry the jet dynamics
can be reduced to a one-dimensional description by averaging the underlying
balance laws over its cross-sections. The special Cosserat rod theory consists hereby
of two constitutive elements, a curve specifying the position (center-line) and an
orthonormal director triad characterizing the orientation of the cross-sections, for
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Fig. 1 Rotational 3d
spinning process and
simplified 2d set-up for
gravity g D 0

details see [18]. Formulated in the rotating framework (Fig. 1) the corresponding 2d
rod equations in Eulerian description are given by [14],

R.˛/ � @t r D v � ue2 (1)

@t˛ D ! � u	

@s.ue2/ D @sv C 	v? C !e1

@t	 C @s.u	/ D @s!

@tAC @s.uA/ D 0


@t .Av/C 
@s.uAv/ D @sn C 	n? � 
A!v? C k


@t .I!/C 
@s.uI!/ D @sm � n1 C l

with

R.˛/ D
�

sin˛ � cos˛
cos˛ sin˛

�

k D �2
A˝v? C 
A˝2R.˛/ � r; l D 
I˝ @su

and material laws

n2 D 3�A@su; m D 3�I@s!; I D A2

4�
:

Here ei , i D 1; 2 denote the canonical basis vectors in R
2, moreover x? D

.x1; x2/
? D .�x2; x1/ for all x 2 R

2. The four kinematic and three dynamic
(balance) equations describe the variables of jet’s center-line r D .r1; r2/, angle
˛ determining the tangent (i.e. director triad in 2d), curvature 	, cross-section A,
velocity v D .v1; v2/, angular speed !, convective speed u and inner shear force n1.
The inner traction n2 and couple m are specified by the material laws. Further,
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k present the centrifugal and Coriolis forces and l the corresponding outer couples.
The closed system contains seven physical parameters: jet density 
, viscosity �,
jet length L, diameter D and velocity U at the nozzle as well as drum radius R and
drum angular speed ˝. These induce four dimensionless numbers characterizing
the spinning: Reynolds Re D 
UR=� and Rossby numbers Rb D U=.˝R/ as well
as ` D L=R and � D D=R as length ratios between jet length, nozzle diameter
respectively and drum radius. For the subsequent numerical treatment, we make (1)
dimensionless by scaling the quantities with the following reference values:

s0 D r0 D R; t0 D v0=r0; 	0 D 1=r0;

v0 D u0 D U; !0 D r0=v0; A0 D �D2=4;

n0 D �A0v0=r0 D �
v20r
2
0 �
2=.4Re/;

m0 D �A20v0=.�r
2
0 / D �
v20r

3
0 �
4=.16Re/

The dimensionless rod model reads

R.˛/ � @t r D v � ue2 (2)

@t˛ D ! � u	

@s.ue2/ D @sv C 	v? C !e1

@t	 C @s.u	/ D @s!

@tAC @s.uA/ D 0

@t .Av/C @s.uAv/ D 1

Re
.@sn C 	n?/ � A!v? C k

@t .A
2!/C @s.uA2!/ D 4

Re
@sm � 16

�2Re
n1 C l

with outer forces, couples and material laws

k D � 2

Rb
Av? C 1

Rb2
AR.˛/ � r; l D 1

Rb
A2@su;

n2 D 3A@su; m D 3

4
A2@s!:

Boundary conditions for rotational spinning are

r.0; t/ D e1; ˛.0; t/ D 0; 	.0; t/ D 0;
A.0; t/ D 1; v.0; t/ D e2; !.0; t/ D 0;
u.0; t/ D 1; n.`; t/ D 0; m.`; t/ D 0:

Appropriate initial conditions are presented later on.
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3 Numerical Treatment

Finite volume schemes are well-established for the numerical solution of
time-dependent partial differential equations for various applications [19]. To set up
the concept for our problem we rewrite (2) in a more convenient formulation,
whereby we define 0k as the zero vector in R

k . We introduce the vector of
unknowns �. To take account of the differential-algebraic structure of the model,
we additionally consider the mapping

� D .n1; u; r; ˛; 	; Av; A2!/; z.�/ D .02; r; ˛; 	; Av; A2!/

that consists of the variables having an evolution equation in (2). Finite volume
schemes are based on the integral form of the governing equations that are
expressed in terms of flux functions and source terms. Therefore, we summarize
the constituents with respect to their physical meaning and later used numerical
approximation (the upper index u; d; c indicates thereby the respective fluxes
considered for up-, downwinded and central differences)

fu.�/ D .Av1=A;Av2=A � u;03; A2!=A2 � u	;�uA;�uAv1;

�uAv2;�uA2!/

fd .�/ D .07;
1

Re
n1;02/

fc.�; @sh.�// D .09;
3

Re
.A2@s.A

2!=A2///

q.�; @s�/ D .07;� 3

Re
A	@su; 0;

1

Rb
A2@su/

with h.�/ D .09; A2!=A2/. The remaining source terms are collected in g.�/.
Due to this dispartment where the closure relations are incorporated, the system (2)
becomes

@tz.�/ D @sfc.�; @sh.�//C @sfu.�/C @sfd .�/C q.�; @s�/C g.�/ : (3)

Concerning the fixed jet length `we introduce an equidistant space discretization
of the interval Œ0; `� in the form

4s D `

N
; s.jC1/=2 D j

`

2N
; j D 0; : : : ; 2N:

The idea is now to integrate (3) over the control volumes Œsi�1=2; siC1=2�, i D
1; : : : ; N and to set up a differential algebraic system (DAE) in time for the cell
averages �i of the unknown quantities,
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�i .t/ WD 1

4s
Z siC1=2

si�1=2

�.s; t/ ds; i D 1; : : : ; N: (4)

For this procedure we have to approximate all constituents in terms of �i .t/, in
particular the fluxes fu, fd , fc at the points .siC1=2; t/, using the respective boundary
conditions. We obtain

fu.�.siC1=2; t// 	 fu.�i .t/; t/; i D 1; : : : ; N;

fd .�.siC1=2; t// 	 fd .�iC1.t/; t/; i D 0; : : : ; N � 1;

fc.�.siC1=2; t/; @sh.�.siC1=2; t// 	 fc
�
�i .t/C �iC1.t/

2
;

h.�iC1.t// � h.�i .t//
4s

�

;

i D 0; : : : ; N:

The volume integrals for q.�; @s�/ are discretized by means of

1

4s
Z siC1=2

si�1=2

q.�; @s�/ ds 	 q
�

�i .t/;
�i .t/ � �i�1.t/

4s
�

for i D 2; : : : ; N . For z.�.s; t// and g.�.s; t// we use the cell average approxima-
tion (4). Considering the boundaries at the nozzle (s D 0) and at the jet end (s D `),
the proposed discretizations make use of the respective boundary conditions (2) in a
natural way. At the nozzle, for which we abbreviate the posed conditions by �.0; t/,
we approximate

fc.�.s1=2; t/; @sh.�.s1=2; t/// 	 fc
�

�.0; t/;
h.�1.t// � h.�.0; t//

4s=2
�

;

and at the stress (friction) free jet end we take fc.�.sNC1=2; t/; @sh.�.sNC1=2; t///
	 0. Moreover we set fu.�.s1=2; t// 	 fu.�.0; t// as well as fd .�.sNC1=2; t// 	 0.
Finally, we determine the approximation of the source term q according to the first
control volume. In accordance to the general procedure we have

1

4s
Z s3=2

s1=2

q.�.s; t// ds 	 q
�

�1.t/;
�1.t/ � �.0; t/

4s
�

:

The time integration of the DAE of index 2 for the �i is performed with a standard
Runge-Kutta method for stiff problems (Radau II) [20], and the resulting nonlinear
system of equations is solved with a Newton method.
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Fig. 2 Jet dynamics over time for Re D 1, � D 0:1, ` D 1 and varying Rb. (a) Rb D 1.
(b) Rb D 0:1

4 Simulation Results

In this section we present instationary rod simulations for the rotational 2d spinning
set-up (Fig. 1) and compare their longtime behavior with the well-established
stationary results of [10, 14]. Thereby, the length ratios are exemplary chosen as
l D 1 and � D 0:1. For the non-stationary case we use the following initialization
(straight jet):

r1.s; 0/ D s C 1; r2.s; 0/ D 0; ˛.s; 0/ D 0;

	.s; 0/ D 0; u.s; 0/ D 1; n1.s; 0/ D 0;

A.s; 0/ D 1; Av.s; 0/ D .0; 1/; A2!.s; 0/ D 0:

Figure 2a, b show the evolution of the jet’s centerline over time for different
parameters; in particular three time points are depicted. We observe a clear
convergence of the instationary solutions to the stationary ones as time increases
(t ! 1). The case Re D Rb D 1 of Fig. 2a lies in the parameter regime where also
the string model [8] is applicable yielding similar results as � ! 0 in consistency to
the theoretical studies. New and very promising for the future investigations is the
case Re D 1, Rb D 0:1 of Fig. 2b. So far, no instationary simulations exist for this
regime which is very interesting for practical applications. Industrial processes run
with very fast rotations (Rb � 1) causing strong bending and distinct non-steady
effects.



106 W. Arne et al.

5 Conclusion and Outlook

For the first time non-stationary simulations of the viscous Cosserat rod model
are shown. They open the parameter range of industrial relevance—where the
simpler string models fail—to systematic numerical investigations. The proposed
numerical scheme allows the straightforward extension to free 3d spinning, i.e.
inflow set-up with enlarging domain [17]. For future work we plan to incorporate
aerodynamic forces and temperature effects. This is essential for the study and
design/optimization of industrial processes.

Acknowledgements This work has been supported by the German Bundesministerium für
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Asymptotic Modeling Framework
for Fiber-Flow Interactions
in a Two-Way Coupling

Thomas Martin Cibis, Nicole Marheineke, and Raimund Wegener

Abstract In this work we describe fiber-flow interactions by help of a two-way
coupling approach that is based on slender-body theory and the modeling of
exchange functions in terms of drag forces and heat sources. The exchange functions
are incorporated in the conservation equations for linear momentum and energy with
respect to flow and fibers and satisfy a generalized action-reaction principle.

1 Introduction

In the production of nonwoven fabrics thousands of long slender fibers are spun and
entangled by turbulent air flows before they lay down onto a conveyor belt. There
they form a nonwoven material. The quality of the fabric in key parameters such
as homogeneity and thickness is largely determined by the fiber-flow interactions
[1]. Therefore, the understanding of the behavior of the fibers in the flow is
of great importance. Our goal is the fast computation of thousands of fibers
with high stretching in air flows. The monolithic direct numerical simulation and
approximations such as the immersed boundary method [2], are not applicable,
since the required fine resolution is computationally too complex and expensive
(too memory-demanding and time-consuming). Recently developed asymptotic
modeling approaches [3–5], in contrast, provide promising results. They are based
on slender-body theory and describe the interactions by external source terms
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Fig. 1 Simulation of a rotational spinning process with about 30,000 fibers [5, 11]

(drag and heat source) in the conservation equations for linear momentum and
energy. Observations in experiments show that the effect of the flow on a single
fiber can be enormous. The “reaction” of a single thin fiber, however, is hardly per-
ceptible. Therefore, earlier publications postulated, that its influence can (generally)
be neglected, e.g. [3,4]. This leads to the concept of one-way coupling, which takes
into account the effect of the flow on the fibers and neglects the effect of the fibers
on the flow. In fiber bundles or curtains, however, a “reaction” of the fibers on the
flow and thus on other fibers is clearly observable. Here, it is not appropriate to
neglect the “reaction” any more. But shall effect and its “reaction” be gathered, it is
desirable to fulfill the action-reaction principle.

In this paper we present an asymptotic modeling framework and discuss on top
of the already established one-way coupling the extension to the two-way coupling
focusing on the drag force. The approach is applied to the simulation of a rotational
spinning process (Fig. 1).

2 Modeling of Fibers and Air Flow

In the following we introduce the underlying models for the fibers and the
flow. Thereby we choose the most general form of presentation focusing on the
interaction. Specific boundary conditions, outer forces and material laws, which
are required to close the system, depend on the considered application and can be
straightforward included, so we neglect them here and refer for instance for elastic
fibers to [1] and for viscous jets to [6].
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We describe the fibers in the sense of the special Cosserat rod theory as one-
dimensional objects, i.e. as curves, in the Euclidean space E

3 [7]. In particular,
a single long thin fiber is represented by a curve rWIT ! ˝ 
 E

3, along
which the orthonormal triad .d1;d2;d3/ with di WIT ! E

3 for i 2 f1; 2; 3g
characterizes the orientation of the cross sections. The domain of definition is
IT D f.s; t/ 2 R

2 W s 2 Œ0; l.t/�; t > 0g with the curve-parameterization s
and the time t . With the function l , it is possible to vary the length of the fiber
as a function of time. For further description of the fiber the tangent �, the linear
velocity v, the convection speed along the fiber u, the generalized curvature � and
the angular velocity!, the line density .
A/, the inner tension forces n, the external
non-aerodynamic forces f (such as the gravitational force), the aerodynamic forces
fair, the angular momentum line density h, the inner torque m, the external torque
l , the specific heat capacity cp , the temperature T , the external non-aerodynamic
heat sources q and the aerodynamic heat sources qair are used. These satisfy the
kinematic equations

@tr D v � u�; @td˛ D .! � u�/ � d˛;˛ 2 f1; 2g;
@sr D �; @sd˛ D � � d˛;˛ 2 f1; 2g

and the dynamic equations, namely the conservation equations for mass, linear
momentum, angular momentum and energy,

@t .
A/C @s.u.
A// D 0;

@t ..
A/v/C @s.u.
A/v/ D @snC f C f air;

@thC @s.uh/ D @smC � � nC l ;
cp.@t ..
A/T /C @s.u.
A/T // D q C qair:

In general, air flows are described on the space-time domain ˝ � T 
 E
3 �

R by the mass density 
?, the velocity v?, the temperature T?, the internal stress
tensor S?, the external non-fiber-dynamic forces f? (e.g. the gravitational force),
the fiber-dynamic forces f jets, the internal energy e?, the thermal conductivity q?,
the external non-fiber-dynamic heat sources q? and the fiber-dynamic heat sources
qjets, that satisfy the conservation equations for mass, linear momentum and energy:

@t
? Cr � .
?v?/ D 0;

@t .
?v?/Cr � .v? ˝ 
?v?/ D r �S?> C f? C f jets;

@t .
?e?/Cr � .
?e?v?/ D S? W rv? � r � q? C q? C qjets:

To map the interactions between flow and fibers, the above equations have to be
combined into a coupled system in a suitable manner.
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Fig. 2 Flow around a
cylinder with tangent � and
far-field (inflow) velocity vin

?

In the research of fiber-flow interactions the general action-reaction principle
plays, of course, a central role, which states that every force causes an equal “counter
force” that acts on the cause of the drag. This means in our case, the effect of the flow
on the fibers causes an opposite reaction of the fibers on the flow, and vice versa.
Thereby we must move to a “generalized” action-reaction principle in terms of the
flow influence and the fiber influence as external factors: In a weak formulation, the
two equations

Z

IV .t/

fair.s; t/ds D �
Z

V

fjet.x; t /dx;

Z

IV .t/

qair.s; t/ds D �
Z

V

qjet.x; t /dx

hold for all volumes V 
 ˝ and IV .t/ D fs 2 Œ0; l.t/� I r.s; t/ 2 V g.

3 One-Way Coupling

In a one-way coupling the effect of the fibers on the flow with respect to the acting
forces and the thermal influence is neglected: fjets D 0 and qjets D 0. For the air
drag and the air heat flow, the existing approaches [3], use an air drag model FOW

and a heat model QOW that rely on fiber data and flow data, which we express
symbolically by � for the fibers and �? for the flow. The common features of
these models are asymptotical and experimental air drag and heat exchange studies
considering far-field information of a flow around an object, see e.g. the air drag
model for a curved fiber by Marheineke and Wegener [3] or the fundamental studies
for a flow passing an infinitely long cylinder by Oseen, Lamb [8] and Tomotika et
al. [9, 10] (see Fig. 2). However, these models are practically evaluated with local
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information of the flow at the fibers. Specifically, the air drag and the thermal
influence are defined as follows: fair.s; t/ D FOW.�.s; t/; �?.r.s; t/; t// and
qair.s; t/ D QOW.�.s; t/; �?.r.s; t/; t//.

Using the concept of one-way coupling many industrial problems can be
satisfactorily resolved. But neglecting the “reaction” of the fibers on the flow is
not adequate in cases with thousands of fibers in bundles or curtains, such as
in rotational spinning (Fig. 1) where the fibers have a clear pulling effect on the
flow [5, 11].

4 Two-Way Coupling

We want to remedy the deficiencies of the one-way coupling by the concept of
two-way coupling, which is based on the action-reaction principle and measures the
“reaction” of the fibers on the flow, too.

Under the assumption that there exist an air drag model fair D F TW. � ; � ; �; �?/
and an air heat model qair D QTW. � ; � ; �; �?/ for the description of the acting
forces and the thermal influence of the flow on the fibers in a two-way coupling, we
can calculate the “counter force” fjets and the “counter heat source” qjets of the fibers
on the flow, so that the generalized action-reaction principle is satisfied, where ı is
the Dirac delta distribution:

fjets.x; t / WD �
Z

IV .t/

F TW.s; t; �; �?/ı.x � r.s; t//ds;

qjets.x; t / WD �
Z

IV .t/

QTW.s; t; �; �?/ı.x � r.s; t//ds:

A naive approach would like to combine the existing models for one-way
coupling with the presented generalized action-reaction principle. Due to the Dirac
delta shaped source terms, we obtain singularities on flow side at the fiber points.
This is shown in Fig. 3 using the example of an infinitely long cylinder (cf. Fig. 2).
The models, which are applied to the local flow information at the fibers cannot deal
with these singularities and produce on both sides (fiber and flow) serious problems.
Moreover, the used near-field information differ from the theoretically required far-
field information. Therefore, this approach fails.

An approach with averaging strategies solves the problems. Thereby the naive
approach is extended to the point that averaged flow data is used, concretely: The
flow data h�?iR is averaged in an appropriate domain with typical length L relative
to the fiber diameter d , so R WD L=d . The averaged local velocity as near-field
information is then mapped to the correct inflow velocity as far-field information
by a function C (see Fig. 3). By such a modification of the air force model for the
one-way coupling, we obtain an adequate air force model for the two-way coupling:
F TW.s; t; �; �?/ WD FOW.�.s; t/;C .h�?iR.r.s; t/; t/IR//.
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Fig. 3 Two-way coupling: arising singularities in the naive approach (left) and appropriate
approach with averaging strategies (right)

Obviously wanted is this function C .
We determine the function C for the case of an infinitely long cylinder and circular
averaging areas. An analytical study provides at least information about the inverse
function of C with respect to the orthonormal basis .n;b;�/ of normal, binormal
and tangent, which results from the fiber’s orientation � and the inflow velocity
vin
? : If the velocity is divided in the normal, binormal and tangential components,

it can be shown that the normal average velocity depends only on the normal
inflow velocity. For symmetry reasons, the binormal component vanishes. The
tangential average velocity depends on the normal inflow velocity and linearly on
the tangential inflow velocity. That is, there exist functions Qf and Qg such that

hv?niR D C�1
n .v

in
? IR/ D Qf .vin

?nIR/;
hv?biR D C�1

b .v
in
? IR/ D 0;

hv?� iR D C�1
� .v

in
? IR/ D Qg.vin

?nIR/vin
?� :

This is exploited to determine the function C , where only f D Qf �1 and h WD
Qg ı Qf �1 have to be found as functions of the normal inflow velocity:

vin
?n D C n.hv?iRIR/ D f .hv?niRIR/
vin
?b D C b.hv?iRIR/ D 0

vin
?� D C � .hv?iRIR/ D hv?� iR=h.hv?niRIR/

Considering simulation results, function classes are determined for the unknown
quantities:
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Fig. 4 Relative deviation of the approximated functions f (left) and h (right) to simulation results

f .hv?niRIR/ D hv?niR
�

˛1R
˛2

˛3hv?ni˛4R C 1
C 1

�

;

h.hv?niRIR/ D 1 � ˇ1 C ˇ2 log.R/

ˇ3Rˇ4hv?niˇ5R C 1
:

The required parameters are determined via parameter identification by minimizing
an relative `2 error:

˛ D .9:7785;�0:6130; 7:1976; 0:4977/;
ˇ D .0:9585;�0:0942; 0:4230; 0:7778; 0:5705/:

The deviation of the approximated functions f and h to the simulation results is
at most about 10% as it is shown in Fig. 4 for different radii. This is remarkably
good because, for example, the range of function f extends over several orders of
magnitude. Also, the limit behavior to 0 and 1 is mapped correctly by the functions.

The modeled function C is generally applied to the air drag F TW . Particularly
for small averaging areas and low relative fiber-flow velocities, C clearly differs
from the identity map I . For large averaging areas or high velocities, however,
the difference is not significant such that we can simplify C D I . This is also
shown in our studies on the approach with averaging strategies in the rotational
spinning process of [5, 11] (Fig. 1). There, the flow equations are solved by a finite
volume method. Investigating whether the grid cells are appropriate as averaging
areas, Fig. 5 visualizes the results. Critically small averaging areas are directly at the
spinning nozzles. However, because of the fortunate fact that there the velocities are
high, the deviation of function C to the identity map I is acceptable in magnitude.
The L 2.˝/ error is only about 5:4%. This justifies the simplification C D I that
has been applied in [5, 11].

Ongoing work deals with a transfer of the strategy to the heat exchange.



116 T.M. Cibis et al.

Fig. 5 From left to right: R, hvn � v?niR, kC � Ik2 in process of Fig. 1 (2d cut due to rotational
symmetry)
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Efficient Simulation of Random Fields
for Fiber-Fluid Interactions in Isotropic
Turbulence

Florian Hübsch, Nicole Marheineke, and Raimund Wegener

Abstract In some processes for spinning synthetic fibers the filaments are exposed
to highly turbulent flows to achieve a high degree of stretching. The quality
of the resulting fabric is thus determined essentially by the turbulent fiber-fluid
interactions. Due to the required fine resolution, direct numerical simulations fail.
Therefore we model the flow fluctuations as random field in R

4 on top of a k-�
turbulence description and describe the interactions in the context of slender-body
theory as one-way-coupling with a corresponding stochastic aerodynamic drag force
on the fibers. Hereby we exploit the special covariance structure of the random field,
namely isotropy, homogeneity and decoupling of space and time. In this work we
will focus on the construction and efficient simulation of the turbulent fluctuations
assuming constant flow parameters and give an outlook on applications.

1 Introduction

A modeling framework for the dynamics of slender fibers in turbulent flows was
developed in [6] and further extended in [7]. It is based on a k-� description of the
turbulent flow, considering the actual velocity as sum of a mean and a fluctuating
part u D u C u0. Whereas u is computed explicitly, the fluctuations u0 are only
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characterized by the kinetic turbulent energy k D 1
2
E.hu0;u0i/ and the dissipation

� D �E.kru0k2F / with flow viscosity �, expectation E and Frobenius norm k � kF .
The fluctuations are modeled as centered homogeneous Gaussian random fields
whose covariance structure obeys Kolmogorov’s isotropy assumptions and the
requirements of the k-� model and can be expressed by two scalar-valued functions,
i.e. energy spectrum and temporal correlation, see [7] for details. In this work
we deal with the efficient sampling of the fluctuations, assuming constant flow
parameters u; k; �; � for simplicity.

Throughout this paper we use bold-faced letters for vector- and matrix-valued
quantities. By h:; :i and k � k we denote the Euclidean inner product and norm,
respectively. Moreover we distinguish between dimensional and dimensionless
quantities, writing the last in a kursiv style. We make the fluctuations u0 dimen-
sionless using the typical turbulent length k3=2=� and time k=�

u0.x; t/ D k1=2u0
� �

k3=2
x;
�

k
tI �

k2
�
�

with

x D k3=2

�
x t D k

�
t; � D k2

�
�:

The dimensionless viscosity � enters the model via the consistency with the
k-�-description, see [6, 7].

2 Construction of Velocity Fluctuation Field

There are some possibilities for the simulation of homogeneous and isotropic
Gaussian vector random fields with given covariance function or given spectral
function, respectively, see, e.g., [4]. We construct the random fields so that they
can be simulated efficiently and evaluated at a given point on demand. Our starting
point is the centered, R3-valued Gaussian random field u0 D .u0.x; t //.x;t/2R4 with
covariance function

E
�
u0.x1; t1/˝ u0.x2; t2/

� D �.x1 � x2 � u.t1 � t2// exp

�

� .t1 � t2/
2

2�2l

�

with �l D 0:212 and dimensionless mean velocity u D u=k1=2. Here � W R3 ! R
3�3

is implicitly given by its Fourier transform

s�.�/ D 1

8�3

Z

R3

exp.�ih�;xi/�.x/ dx D 1

4�

E.k�k/
k�k2

�

I � 1

k�k2�˝ �
�

(1)
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with identity I and energy spectrum E W RC
0 ! R

C
0 . An appropriate choice of E

ensures the almost sure differentiability of the realizations of u0. In the following
we use the model of [7] depending on the dimensionless viscosity � D ��

k2 . In order
to split up the covariance function into spatial and time parameter, we define a new
random field 	 D .	.x; t //.x;t/2R4 by

	.x; t / D u0.x C ut; t /:

Then, the so defined field has the covariance function

K	.x1; t1;x2; t2/ D E.	.x1; t1/˝ 	.x2; t2// D �.x1 � x2/ exp

�

� .t1 � t2/
2

2�2l

�

:

As we can regain u0 easily from 	 via

u0.x; t / D 	.x � ut; t /

we focus on the construction of 	.

2.1 Construction of 	

In the following we assume the existence of all occurring stochastic processes and
random fields as we construct them later on. Let  D . .t//t2R be a centered
stochastic process with covariance function

E. .t1/ .t2// D exp

�

� .t1 � t2/
2

2�2l

�

and 
 D .
.x//x2R3 a centered, R3-valued random field with covariance function

E .
.x1/˝ 
.x2// D �.x1 � x2/:

Let us further assume that  and 
 are stochastically independent. If we define a
random field Q	 by

Q	.x; t / D 
.x/ .t/

then Q	 has the desired covariance function K	. As we are interested in a Gaussian
field, we consider for M 2 N random fields Q	M D . Q	M.x; t //.x;t /2R4 of the form

Q	M.x; t / D
1p
M

MX

lD1
Q	.l/.x; t /
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in which Q	.1/; : : : ; Q	.M/ are independent copies of Q	. The central limit theorem
ensures the convergence in distribution

Q	M.x; t /
d! N

�
0;K	.x; t;x; t /

� D N

�

0;
2

3
I

�

for every .x; t / 2 R
4 as M tends to infinity. So in order to construct Q	 respectively

Q	M we focus on the construction of 
 and  .

2.2 Spatial Field 


In this subsection we exploit the special structure of the spectral function s�
(1) of the spatial field 
. Let w D .w.t//t2R be a centered, homogeneous and
R
3-valued stochastic process with spectral function sw.	/ D E.j	j/=2 � I , i.e. its

components wi , i 2 f1; 2; 3g, are uncorrelated processes with the same spectral
function swi .	/ D E.j	j/=2. Moreover, let z be a uniformly distributed random
vector on the unit sphere S2 D fx 2 R

3 W kxk D 1g. Then, under the assumption
that w and z are independent, the random field 
 that is defined by


.x/ D .I � z ˝ z/w.hx; zi/

has the spectral function s� given by (1) and hence the desired covariance function
� , [2, 5]. As the components wi are uncorrelated it is sufficient to focus on the
construction of one component wi . This can be done in the following manner [4]:
As E.	/ � 0 for all 	 � 0 and

R
R
swi .	/ d	 D R1

0
E.	/ d	 D 1, the function swi

is a continuous probability density on R. Choosing a random variable R with this
probability density and two standard normally distributed random variables X and
Y such that X; Y;R are stochastically independent, the C-valued process . Qw.t//t2R
defined by

Qw.t/ D Z exp.iRt/; Z D X C iY;

has the covariance function

E

�
Qw.t1/ Qw.t2/

�
D E .exp.iR.t1 � t2/// E.ZZ/ D 2

Z

R

exp.i	.t1 � t2// swi .	/ d	

and hence the spectral function 2swi . By taking its real or imaginary part we obtain
a R-valued process with the desired spectral function swi . The so defined process
wi D Re. Qw/ respectively wi D Im. Qw/ has almost surely differentiable realizations
and hence the same holds for 
.
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2.3 Time Process  

The time process  can be constructed with the same methods as for wi . We define
a new process Q by Q .t/ D  .�l t/ having the covariance function

E
� Q .t1/ Q .t2/

� D exp

�

� .t1 � t2/
2

2

�

and hence the spectral function

s Q .!/ D
1p
2�

exp

�

�!
2

2

�

:

As s Q is the probability density of the standard normal distribution, we take
three independent, standard normally distributed random variables R;X; Y and set
Q .t/ D Z exp.iRt/ with Z D X C iY . Then, the process  . � / D Re. Q . � =�l //

or  . � / D Im. Q . � =�l // has the desired covariance function and almost surely
differentiable realizations.

3 ODE Model for Fiber Spinning Due to Turbulence

In [7] the dynamics of a slender fiber in a turbulent flow is modeled by help
of a stochastic drag force in an one-way coupling. The dimensionless force f
depends on the relative velocity between flow and fiber and on the fiber tangent.
Instead of the complex PDE fiber model that contains inner stresses we use here a
system of first order ODEs in time for fiber position r, velocity v and elongation e.
In f we approximate the tangent (space derivative) by the direction of the fiber
velocity v=kvk. Moreover, we propose an evolution equation for the elongation that
is motivated from the stationary situation where e D kvk=v0 with initial velocity v0
(e.g. at the spinning nozzle). The resulting model (2) describes the path and behavior
of a single fiber point whose motion is exclusively driven by a turbulent flow.

d

dt
r D v (2)

d

dt
v D e3=2 af

�
v
kvk ;

1p
e

u.r; t/ � v
b

�

d

dt
e D 1

v0
e3=2 a

�
�
�
�f

�
v
kvk ;

1p
e

u.r; t/ � v
b

���
�
�

r.0/ D r0; v.0/ D v0�0; e.0/ D 1;
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with

a D 4

�


�2


Fd30
; b D �

d0
;

containing fiber and flow informations (fiber density 
F , initial diameter d0, flow
density 
 and viscosity �).

4 Simulation Results

The ODE model (2) for the fiber dynamics allows for space- and time-dependent
flows. But so far the construction of our random field u0 expects constant flow
parameters, a generalization is in work. For the forthcoming simulations we use
typical values of a spinning process. We consider a flow field that is directed
vertically downwards with

u D �102e1
hm

s

i
; k D 103

�
m2

s2



; � D 5 � 106
�
m2

s3



;

� D 1:5 � 10�5
�
m2

s



; 
 D 1

�
kg

m3



; M D 50;

with e1 D Œ1; 0; 0�T . The fiber is initialized with

r0 D 0 Œm�; �0 D �e1; v0 D 10�2
hm

s

i
;

d0 D 4 � 10�4 Œm�; 
F D 7:33 � 102
�

kg

m3



;

and simulated for the time interval Œ0;T� with T D 2 � 10�3 Œs�. Figure 1 shows the
trajectory of the fiber point. To get an impression of the impact of the turbulent drag
force we study the elongations. Figure 2 shows the estimated probability density
of e.T/ for a Monte-Carlo simulation with 1,000 replications. We get a mean of
2:4 � 105, in comparison the result without turbulence is approximately 104. The
simulation result raises hope that the proposed strategy is capable of predicting the
large elongations that are observed in turbulent spinning processes (like melt-blown)
in experiments. So far, numerical simulations fail but they neglect the fluctuations.

Further work [3] deals with the extension of the random field sampling to realistic
settings with space- and time-dependent flow parameters. Moreover, we plan to
introduce an appropriate PDE-Cosserat model for the spinning of a viscous jet with
inner strains, e.g. [1].
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On Stability of a Concentrated Fiber
Suspension Flow

Uldis Strautins

Abstract Linear stability analysis of a fiber suspension flow in a channel domain
is performed using a modified Folgar-Tucker equation. Two kinds of potential
instability are identified: one is associated with overcritical Reynolds number and
another is associated with certain perturbations in fiber orientation field and is
present for any Reynolds numbers. The second type of instability leads to initially
growing transient perturbations in the microstructure. It is shown that both types
of instability lead to instability of the bulk velocity field. As for the perturbed Orr-
Sommerfeld eigenvalues, the presence of fibers increases the stability region; the
stability region increases with growing Ci and decreases with growing S0 in the
modified Folgar-Tucker model.

1 Fiber Suspension Flows

Injection molding and compression molding are efficient manufacturing techniques
for processing short fiber reinforced thermosoftening plastics. The material is
heated and mixed in a barrel and injected into a mold as a fiber suspension. Upon
solidification of the matrix a part is obtained with anisotropic material properties,
which depend strongly on the microstructure characterized by fiber orientation and
concentration. The microstructure is coupled to the bulk flow of the suspension and
can vary considerably in a typical sample. In order to obtain a part with prescribed
properties, the mold has to be designed appropriately. Simulations play a major role
in the design process [8].

Stability of the flow can considerably influence the outcome, e.g., the surface
roughness of the part. Most often one studies the hydrodynamical instability, which

U. Strautins (�)
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depends on the Reynolds number and can lead to turbulence. The transition from
laminar to turbulent regime can be conveniently studied by examining stability
of simple flows wrt. small perturbations such that the governing equations can be
linearized around the base flow. Most theoretical studies show that the presence of
fibers stabilizes the flow, delaying the onset of turbulence. Dean’s flow has been
considered in [5] assuming that all fibers orient tangentially to the streamlines.
More recent publications use the Folgar-Tucker equation for evolution of the
microstructure. Stability analysis of Taylor-Couette flow has been reported in [3].
Pressure driven channel flow using the natural closure approximation has been
considered in [10]. The implications of non-linear effects due to perturbations of
finite magnitude was the object of study in [9].

Another, less studied type of instability is independent on the Reynolds number;
it is associated with certain perturbations of the fiber orientation field leading to
prominent transient behavior characterized by an initial growth of the perturbations
in both the microstructure and bulk velocity, see e.g. [4]. The main goal of this study
is to explain this behaviour using a linear stability analysis and to better understand
the stability results demonstrated in the works cited above. We have chosen a
modified Folgar-Tucker equation derived for concentrated suspension flows [4]; the
classical Folgar-Tucker model is a special case thereof. Our results suggest that for
highly concentrated suspensions (high Np) the two types of instability cannot be
clearly separated, so both should be considered in the design process.

We illustrate this phenomenon for the planar Poiseulle flow, i.e., pressure gradient
driven flow through a domain between two stationary walls. Linear stability analysis
showing the relation between the wave number of a perturbation to its growth rate
leads to a generalized eigenvalue problem (GEP) for a differential algebraic system
to be solved numerically for a range of parameter values—Reynolds number, wave
number of the perturbation and the model parameters CI and U0.

2 Models

In hydrodynamic limit fiber suspensions are modeled as non-Newtonian fluids. The
conservation of mass and momentum equations are

r � u D 0;

@u

@t
C u � ru D �
�1rp C Re�14u Cr � �;

where u is bulk velocity, p is pressure, 
 is density, Re is the Reynolds number
(based on the viscosity of the matrix), and � is the extra stress associated with the
presence of fibers. According to the Dinh-Armstrong model, it is given by

� D Npru W a.4/;
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perturbation of the off-diagonal component (solid line) initially grows

where Np is the dimensionless particle number (depends on concentration) and a.4/

is the fourth-order orientation tensor.
A fiber suspension is called concentrated if nf l2f df > 1, where nf denotes fiber

number density, lf and df is the length and diameter of a fiber, see [1, 6]. The
tensor a.4/ is approximated in terms of the second order orientation tensor a.2/ D�
a1 a2
a2 1 � a1

�

by means of a closure approximation. The following model has been

introduced in [4] for evolution of a.2/:

D

Dt
a.2/ D a.2/ �M CM> � a.2/ � .M CM>/ W a.4/

CP� ˚Ci.I � 3a.2//C S0.a
.2/ � a.2/ � a.2/ W a.4//	 :

(1)

Here M D �C1
2
ru C ��1

2
r>u is effective velocity gradient, � D r2a�1

r2aC1 ; aspect ratio

ra D lf =df , P� is the scalar shear rate, Ci is orientational diffusivity constant and
S0 is a constant quantifying the excluded volume effect in the suspension.

The present work was carried out using the simple quadratic closure approxima-
tion a.4/quad D a.2/ ˝ a.2/. We note that this approach can be carried out for arbitrary
closure approximations with similar results.

We close this section by demonstrating that for a shear flow, small perturbations
around the stationary point of (1) can grow, see Fig. 1. The off-diagonal component
a2 is the most unstable, and exactly this component contributes to the extra stress �
for a shear flow: � D Npa2

@u1
@y
a.2/.



130 U. Strautins

3 Linear Stability Analysis

In this work we consider the 2D case in which a stream-function can be used. This
approach is justified for Newtonian fluids by the Squire theorem, however, most
non-Newtonian fluids do require treatment of the full 3D stability problem. The
extension to 3D is straight forward, see e.g. [3] for the pipe flow.

Let us consider a channel domain. Let the x axis point in the direction of the flow,
y axis in the normal direction of the walls, so that the walls are defined by y D �1
and y D 1. The base flow is a pressure-driven Poiseuille flow with parabolic profile

u0 D ŒU0I 0�> D Œ1 � y2I 0�>:

The corresponding field of orientation tensors can readily be computed from (1).
We look for quasi-stationary solutions of the form

Qu D U0.y/C u01.y/ei˛.x�ct/;

Qv D u02.y/ei˛.x�ct/;

Qa.2/ D a.y/C b.y/ei˛.x�ct/;

Q D  .y/C �.y/ei˛.x�ct/;

Q� D �.y/C � 0.y/ei˛.x�ct/;

where  0 is the base stream function, � is the perturbation of the base stream
function, ˛ 2 R is the wavenumber and c is a generalized complex eigenvalue,
so that ˛Im.c/ determines the rate of growth of the perturbation.

Linearizing and rewriting the momentum equation in terms of � and eliminating
the pressure leads to

i˛Œ.U0 � c/.@2y � ˛2/ � @2yU0�� � Re�1.@2y � ˛2/2�
D .@2y C ˛2/� 012 C i˛@y.�

0
11 � � 022/;

(2)

where @ky is the k-th order derivative operator wrt y, with the boundary conditions

�.�1/ D @y�.�1/ D �.1/ D @y�.1/ D 0: (3)

The components of the extra stress �f are computed in a similar way by plugging
the perturbations in (1) and ignoring terms of higher order:

� 0 D Np
�
.ru0 W a/aC .ru W b/aC .ru W a/b� (4)
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We also get a linear algebraic system for the perturbation of orientation field.

Denoting the components a D
�
a1 a2
a2 1 � a1

�

, b D
�
b1 b2
b2 �b1

�

, � D �i˛c, it reads:

.A � �I/ � b D r (5)

where the coefficients are

A11 D �i˛U0 � 2a2m � 2 P�Ci C P�S0
�
6a1.1 � a1/ � 1 � 2a32

�
;

A12 D 2 Œm.a1 � 1/C P�S0a1.2a2 � 1/� ;
A21 D P�S0.4a1 � 2/a2 �m;
A22 D �i˛U0 C 4a2mC 2 P�Ci C P�S0

�
a21 C .1 � a1/2 C 6a22 � 1

�
;

r1 D Œ2a1n11 C 2.1 � a1/n22 C 2.n21 C n22/a2� a1;

r2 D .1 � a1/n21 � Œ2a1n11 C 2.1 � a1/n22 C 2.n21 C n12/a2� a2 C a1n12:

Here we have denoted the gradient of the perturbation of velocity ru0 by n, i.e.,
n11 D i˛�0, n12 D ˛2�, n21 D �00; n22 D �i˛�0, and m DM21.

Equations (2)–(5) form a GEP for a differential-algebraic system: find complex
� D �i˛c such that the system (2)–(5) admits nontrivial solutions. By solving (5)
for b and plugging the result into (4), it can be reduced to a nonlinear GEP for a
fourth order equation.

4 Numerics

The method of choice for discretizing Orr-Sommerfeld type equations is using a
pseudospectral method on a Chebyshev grid, e.g., a Chebyshev-tau method [2, 7].

By discretizing the full system (2)–(5), we obtain a linear GEP for a differential-
algebraic system of equations:

0

@
C11 C12 C13
C21 D22 D23

C31 D32 D33

1

A �
0

@
�

b1
b2

1

A D �

0

@
B 0 0

0 I 0

0 0 I

1

A �
0

@
�

b1
b2

1

A (6)

where the blocks denoted by D are diagonal. This fact allows to easily eliminate b1
and b2 obtaining a non-linear GEP for � alone:

"

C11 � �B C �
C12 C13

� �
�
D22 � �I D23

D32 D33 � �I
��1

�
�
C21
C31

�#

� D 0: (7)

The inverse matrix is block diagonal and elements are rational functions of �.
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The nonlinear GEP (7) has been solved in [10], and the results suggest that
the computed eigenvalues are perturbations of the eigenvalues for Np D 0 with
eigenvectors that have vanishing fiber orientation components b1 D b2 D 0, which
we call the Orr-Sommerfeld eigenvalues. Since (7) is equivalent to (6), it has the
same number of generalized eigenvalues, namely, three times more than the size
of vector �. Therefore, (7) for Np > 0 has generalized eigenvalues which are
not perturbations of the Orr-Sommerfeld eigenvalues. These extra eigenvalues have
eigenvectors with � D 0 for Np D 0, however, when Np > 0, the eigenvectors
also have a nonzero � component and thus are not spurious but are relevant to the
stability of the flow itself.

We prefer to solve the full system (2)–(5) because of the linearity—this allows
employing the QZ decomposition to compute all the eigenvalues of the discretized
problem at once.

5 Results and Conclusions

Left panel of Fig. 2 shows that there are two families of eigenvalues for Np D 0:
pure Orr-Sommerfeld ones (circles) and pure fiber orientation ones (dots without
circles); the latter ones populate two parabolae. The right panel shows a slight
perturbation Np D 10�4; note that both populations of eigenvalues mix together
and cannot be separated in ones associated with perturbation of velocity field and
perturbation of fiber orientation.

There are two types of instability of fiber suspension flow. The one is associated
with sufficiently high Reynolds numbers. As a rule, the perturbed Orr-Sommerfeld
eigenvalues move to the left in the complex plane as the particle number Np
increases, thus the stability region increases. This can be explained by the associated
increase in effective viscosity of the suspension. In the case of a shear flow, the
increase in effective viscosity is proportional to the off-diagonal component of a.2/

which increases with growing Ci and decreases with growing S0. The off-diagonal
component a2 effectively controls the critical Reynolds number.

The other kind of instability is associated with perturbations of a.2/. If the
equilibrium orientation state is perturbed to decrease the component a1, some fibers
have to make a rotation by almost full 180ı according to Jeffery’s model to return to
the equilibrium state; this increases the off-diagonal component of a.2/ and strongly
influences the stress distribution over the suspension. This instability is independent
on Reynolds number and present even for creeping flows. More involved nonlinear
stability analysis in the spirit of [9] is required to demonstrate the transient nature
of this second kind of instability. It should also be kept in mind when implementing
Folgar-Tucker like models fully coupled to the flow.
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Microstructure Simulation of Paper Forming

Erik Svenning, Andreas Mark, Lars Martinsson, Ron Lai, Mats Fredlund,
Ulf Nyman, and Fredrik Edelvik

Abstract This work presents a numerical framework designed to simulate the early
paper forming process. This process is complex and includes strong fluid-structure
interaction and complex geometries. The fluid flow solver IBOFlow, employs
immersed boundary methods to simulate the flow around the fibers without the
necessity of a boundary conforming grid. The fibers are approximated as slender
beams with an elliptic cross section and modeled with the Euler-Bernoulli beam
equation. A penalty based contact model is implemented. Finally, the potential of
the framework is illustrated with an example.
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1 Introduction

Paper forming is the process where a fiber suspension flows through a forming
fabric, resulting in gradual build up of a fiber web. The motion of the fibers during
this process step has a large influence on the final paper quality. Understanding
this process is therefore valuable for the development of improved paper products.
Simulation of paper forming is, however, challenging due to the complex fluid
flow, the large structural displacements of the fibers and the strong fluid-structure
coupling. To gain a deeper understanding of the paper forming process, the flow
through the forming fabric and the gradually evolving fiber web needs to be
resolved.

2 Numerical Method

In the present work, the finite volume based, incompressible Navier-Stokes software
IBOFlow (Immersed Boundary Octree Flow Solver) is used to simulate the fluid
flow. The immersed boundary methods developed by Mark et al. [1, 2] are used
to model the flow through the fiber web and the forming fabric. A finite element
discretization of the Euler-Bernoulli beam equation is used to describe the fiber
motion and geometric nonlinearities are accounted for with the co-rotational
formulation described by Crisfield et al. [3] and Nour-Omid and Rankin [4, 5]. The
contacts are modeled with a penalty method. Elastic/inelastic contacts are taken
into account as suggested by Harmon [6] and friction is treated with a regularization
described by Wriggers [7]. A description of the simulation framework as well as a
validation of the fluid structure coupling can be found in [8, 9].

The forming fabrics are described by triangulations generated from SEM images
provided by Albany International. The fibers are modeled as slender beams with
hollow elliptical cross section, allowing for different lengths, widths and shapes of
the fibers.

3 Results

Microstructure simulations of paper forming are performed on a representative
volume element containing a piece of the forming fabric. A pressure drop is applied
over the domain and fibers are continuously injected at the inlet. As a result of the
pressure drop, the fluid starts to flow through the forming fabric, so that the fibers
are transported towards the fabric, where they start to form a fiber web as shown
in Fig. 1. Initially the whole pressure drop takes place over the forming fabric.
However, as the fiber web forms, the pressure drop over the fiber web gradually
increases as shown in Fig. 2.
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Fig. 1 Forming fabric and
fiber web. Forming fabric
geometry courtesy of Albany
International

Fig. 2 Pressure drop over the
forming fabric and the fiber
web. Forming fabric
geometry courtesy of Albany
International

4 Conclusions

Microstructure simulations of paper forming allow relevant output data such as the
orientation and distribution of fibers to be studied. The influence of different forming
fabric geometries as well as different pulp properties can be investigated. The
simulations can therefore provide a deeper understanding of the process conditions
affecting the final paper quality.
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Three-Dimensional Fiber Lay-Down
in an Industrial Application

Johannes Maringer, Axel Klar, and Raimund Wegener

Abstract In this work we present fiber lay-down models that enable an efficient
simulation of nonwoven structures. The models describe the form of deposited fibers
with help of stochastic differential equations. The model parameters have to be
estimated from more complex models in combination with measurements of the
resulting nonwoven. We discuss the adaptation of a three-dimensional model on the
basis of a typical industrial problem.

1 Introduction

In the manufacturing of technical textiles, thousands of individual slender fibers
are overlapped to form random fiber webs yielding nonwoven materials. A typical
method of production is the melt-spinning process, where the fibers are generated by
extrusion of melted polymer through narrow nozzles. Then the fibers are stretched
and spun until they solidify due to cooling air streams. These highly turbulent air
flows account for swirling of the fibers before they lay-down on a moving conveyor
belt. The resulting fiber web eventually passes through several process steps of
reworking and reinforcing. The quality of the final nonwoven can be measured
in terms of homogeneity, basis weight and permeability. An objective in industry
is the simulation of the deposited fiber web and its optimization with respect to
the desired characteristics. A mathematical model describing the fiber dynamics
in turbulent air flows has been derived in [1, 2] and provides the basis for the
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software tool FIDYST,1 that enables among others the simulation of the lay-down
process. Since this approach is computationally expensive, surrogate models have
been developed in [3–7] as supportive methods. Combined with the computation of
a few representative fibers with FIDYST, these surrogate models help after their
calibration to simulate a whole virtual fiber web. In this work we consider the
application of our models to a real industry problem from Oelikon Neumag. Besides
FIDYST computations, wherein information about machine geometry and problem
setting are included, we use image processing data from CT-scans of the resulting
nonwoven to make up the adaptation of the three dimensional surrogate model.

2 The Models

We give a brief overview of the surrogate fiber lay-down models. The common
approach is to model directly the fiber web on the transport belt instead of its
complex antecedents.

2.1 The 2D Model

The original version has been introduced in [3]

d
t D �.˛t / dt

d˛t D �rV.
t / � �?.˛t / dt C A dW t :
(1)

Here, the arc-length parametrized curve 
 W RC
0 ! R2 represents one deposited

fiber. The tangent is normalized by �.˛/ D Œcos˛; sin˛�T . The drift term in the
second equation models the coiling behavior of the fiber, where �?.˛/ D d�.˛/

d˛
and

V is a suitable potential. The one-dimensional Wiener process with constant noise
A 2 RC

0 expresses the stochastic force, i.e. the effect of the turbulent air flows. The
moving conveyor belt can be easily included in (1) as an additional reference curve,

d
t D �.˛t / dt C ve1 dt ;

where v D vbelt=vin defines the ratio between belt speed and spinning speed of the
fiber, compare [5]. The image of the fiber on the belt, denoted by .	t /t�0, is then
obtained by 	t D 
t � vte1. To obtain more realistic and smoother fiber paths we
can further replace the Wiener process by an Ornstein-Uhlenbeck process, see [4]
for a similar model,

1FIDYST: Fiber Dynamics Simulation Tool developed at Fraunhofer ITWM, Kaiserslautern.
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d
t D �.˛t / dt

d˛t D �rV.
 t / � �?.˛t / dt C 	t dt

d	t D ��	t dt C � dW t ;

(2)

where � > 0 is inversely related to the stiffness of the fiber and � 2 RC
0 is another

noise parameter.

2.2 The 3D Model

As established in [6, 7], the 2D models (1) and (2) can be extended to three
dimensions. The natural arisen isotropic 3D formulations have been modified to
take account for physical constraints like the impenetrably conveyor belt leading to
anisotropic fiber orientations. The basic 3D model is given by

d
t D �.˛t ; �t / dt

d˛t D �pt dt C A

sin �t
dW t

d�t D �qt dt C 1

2
A2 cot �t dt C A

p
B d QWt :

(3)

while the smooth 3D model reads

d
t D �.˛t ; �t / dt

d˛t D �pt dt C 	t
sin �t

dt

d�t D �qt dt C B�t dt

d	t D Œpt�t cos �t � 	t�t cot �t � �	t � dt C � dW t

d�t D Œ�pt	t cos �t C	2t cot �t �B��t �dt Cp
B�d QWt

(4)

with abbreviations

pt WD p.
t ; ˛t ; �t / WD 1
BC1

1
sin �t

rV.
t / �n1.˛t /
qt WD q.
t ; ˛t ; �t / WD B

BC1rV.
t / �n2.˛t ; �t / :

Here, .Wt /t�0 and . QWt/t�0 denote independent one-dimensional Wiener processes.
Furthermore, the tangent and the orthonormal vectors are expressed by �.˛; �/ D
Œcos˛ sin �; sin˛ sin �; cos ��T , n1.˛/ D 1

sin � @˛�.˛; �/ and n2.˛; �/ D @��.˛; �/.
The anisotropy of the fiber is represented by the weighting parameter B 2 Œ0; 1�. We
note, that by the caseB D 0 the respective 2D models (1), (2) are included. For more
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information and motivations we refer to the stated sources. Eventually, the moving
conveyor belt can be analogously incorporated via d
t D �.˛t ; �t / dt C ve1 dt.

3 Application

In the following we want to adapt our models in combination with FIDYST
simulations to real nonwoven production processes. The process data stem from
a pilot plant by the company Oerlikon Neumag. These are used to set up a FIDYST
computation. Besides, pieces of the resulting nonwoven, corresponding to the
process configuration, have been cut out and analyzed in CT-scans. The image
processing data give indication of the fiber orientation in the nonwoven and should
complement the FIDYST information with regard to the third dimension.

3.1 Parameter Estimation

Our aim is the calibration of the smooth 3D model (4) with moving conveyor belt.
Therefore, we need estimations of �, � and B as well as the shape of the potential
V , which should be of the form

V.
/ D QV .�1; �2/C ˚.�3/; QV .�1; �2/ D �21
221

C �22
222

;

where 1; 2 represent the deposition ranges of the fiber on the belt, and ˚ is a
confining potential taking account of the resistant belt, such that �3 2 .0; df /. The
nonwoven thickness df is an uncertain magnitude, that is hardly determinable. Thus
we consider a range of potential thicknesses as multiples of the fiber diameter, that
constitutes obviously a lower bound for df .

Basically, we follow the proposed strategy from [7], i.e. the 2D influenced
parameters .1; 2; �; �/ can be estimated from FIDYST, whereas the remaining
B is meant to be obtained from CT-scans. We make use of the equilibrium state to
the situation of a non-moving transport belt, that is the solution of the stationary
Fokker-Planck equation associated to (4) and is explicitly given by

p.
; �; 	; �/ D C Qp.�1; �2; 	/e�˚.�3/.sin �/
1
B e

� �2

�2=� ;

compare [7], with respective 2D solution

Qp.�1; �2; 	/ D QCe� QV .�1;�2/e�
	2

�2=� ;

where C; QC are normalization constants.
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Estimating the mentioned 2D parameters, we resort to the heuristic approach
from [5]. Therefore let D D .D1; : : : ;DN /;Di D .	ti ; ˛ti ; 	ti /; i 2 f1; : : : ; N g be
equidistantly discrete process points with 4t D tiC1 � ti and consider a slightly
different functional of characteristic properties than stated in [5],

F .D/ D �
S .�t;1/;S .�t;2/;S .	t /;K .	t /

�
;

where we define for an accordingly discretized stochastic process .Xt /t2ft1;:::;tN g,

S .Xt / WD
vu
u
t 1

N

NX

iD1

�
Xti �

1

N

NX

jD1
Xtj

�2

K .Xt / WD max
k2f1;:::; Nkg

sPN�k
iD1 .XtiCk

�Xti /2
k.N � k/4t ; Nk � N:

The respective angles ˛ti and curvatures 	ti can be reconstructed from the fiber
points 	ti by finite differences. We recall that 
ti D 	ti C vtie1 holds. Then we
search for the optimal calibration P D .1; 2;

�p
2�
; �/ of the surrogate model (2)

with moving belt and potential QV , denoted by D sur .P/, more precisely, we have to
solve the minimization problem

P� D argminPkF .D sur.P// �F .Dfid/k2 ;

where Df id indicates the data sample received from a FIDYST simulation. This can
be solved by a relaxated quasi Newton method, compare [5]. We note that F is an
almost perfect estimator for P , if the fiber process is close to equilibrium Qp, i.e. for
adequately large data sample and small speed ratio v.

Next, we consider the image processing data of the CT-scans. These contain
information about the orientations of the fibers in space, i.e. the density distribution
B.˛; �/ of the spherical polar angles, that determine the tangents at the fibers.
However, this density has to be distinguished from the one obtained from our model
(4), in the following denoted by M.˛; �/, since the CT-scan does not allow to
differentiate the pathway of a single fiber. It holds B.˛; �/ D 1

2

�
M.˛; �/CM.˛C

�; � � �/�, where ˛ 2 R=2�Z and � 2 .0; �
2
�. Here we take the accurate alignment

of the nonwoven, in particular the direction e3, for granted. Then under reasonable
symmetry and periodicity assumptions on the angle distribution of our model, in
detail, M.� C ˛; �/ D M.� � ˛; �/ and M.˛; � � �/ D M.˛; �/, we deduce that
B˛.˛; �/ is �-periodic and has extrema in �

2
and � . Here the subscripted ˛ denotes

the respective marginal density distribution. Moreover, we expect that the reworking
steps, in particular the stretching of the fibers during the bonding process, might
largely influence B˛.˛; �/ in terms of the amplitude of the extrema. Nevertheless,
we presume that these impacts are less affecting B�.˛; �/.
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Based on this consideration, the parameter B should be adjusted demanding
the equality of the variances V.� IM�.˛; �// D V.� IB�.˛; �//. Again, under the
assumption that the fiber process is close to its stationary state, we avail ourselves
of the density function .sin �/1=B corresponding toM�.˛; �/ yielding the desired B .

In principle, we are now able to simulate a virtual fiber web by simultaneous
usage of the surrogate model to a large number of fibers, where we neglect influence
of fiber-fiber-contact. The respective reference points determined by the positions of
the nozzles have to be added as constants to the �t;1-process and �t;2-process.

3.2 Example from Industrial Problem

In the following we want to apply our theoretical considerations to the industrial test
case from Oerlikon Neumag. On the basis of parameters specifying the process con-
figuration, i.e. machine geometry and prevailing air flows, a corresponding FIDYST
simulation has been realized. The FIDYST computation comprises positions of
13 filaments on the belt, each with around 19;350 data points. The belt speed is
vbelt D 0:633m/s and the spinning velocity vin D 79:4m/s, consequently we
are situated close to the non-moving case. The space discretization is given by
4t D 0:001m. Our algorithm produces as the optimal choice of 2D parameter

P� D .0:0050; 0:0049; 1077; 49096/

where for checking purposes the associated functional values read

F .Df id / D .0:0075; 0:0072; 1183; 53376/

F .D sur .P// D .0:0072; 0:0070; 1188; 53504/ :

In Fig. 1 we illustrate a comparison of fibers gained from FIDYST and the calibrated
surrogate model (2). In fact, they show qualitatively similar lay-down structures
which confirm our approach. Furthermore, the measured distributions of the angles
B.˛; �/ from the CT-scan comply well with our theoretical considerations above.
We observe the nearly symmetric profile of B˛.˛; �/ with a large amplitude,
compare Fig. 2. On the contrary, both FIDYST and the surrogate models show
an almost uniform distribution, which is due to the small speed ratio v and the
description of the fibers without the involvement of reworking steps. The variance
of the analyzed � -distribution can be determined as V.� IB�.˛; �// D 0:32 that
corresponds to parameter B D 0:398, see Fig. 2. We are now in the position to
simulate a fiber web with help of (4), if the fleece thickness df is suitable chosen.
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Fig. 1 Simulated fibers (red) with one emphasized filament (blue). Left: FIDYST, right: surrogate

Fig. 2 Angular distribution, left: ˛, right: � . Comparison of CT-scan and calibrated surrogate
models and FIDYST

4 Conclusion and Outlook

We presented the application of a 3D surrogate fiber lay-down model to an industrial
problem. The parameters are identified on the basis of experimental data. The
calibrated model enables the efficient simulation of a whole virtual fiber web.
Their usage for evidence of the quality of the corresponding real nonwoven,
however, require further modifications of the model, particularly with regard to the
impenetrability of the fibers. This is examined in further studies.
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3d Modeling of Dense Packings of Bended Fibers

Hellen Altendorf and Dominique Jeulin

Abstract For the simulation of fiber systems, there exist several stochastic models:
systems of straight non overlapping fibers, systems of overlapping bending fibers,
or fiber systems created by sedimentation. However, there is a lack of models
providing dense, non overlapping fiber systems with a given random orientation
distribution and a controllable level of bending. We present in this paper the recently
developed stochastic model that generalizes the force-biased packing approach to
fibers represented as chains of balls. The starting configuration is a boolean system
of fibers modeled by random walks, where two parameters in the multivariate von
Mises-Fisher orientation distribution control the bending. The points of the random
walk are associated with a radius and the current orientation. The resulting chains
of balls are interpreted as fibers. The final fiber configuration is obtained as an
equilibrium between repulsion forces avoiding crossing fibers and recover forces
ensuring the fiber structure. This approach can provide high volume fractions up to
72%. Furthermore, we study the efficiency of replacing the boolean system by a
more intelligent placing strategy, before starting the packing process. Experiments
show that a placing strategy is highly efficient for intermediate volume fraction.

1 Introduction

The increasing interest in fibrous materials (as glass or carbon fiber reinforced
composites) necessitates the development of quantitative methods of characteri-
zation [1, 2]. The macroscopic properties of these materials are highly influenced
by the geometry of the fiber component, in particular by the direction distribution.
With virtual material design material properties can be optimized by adapting the
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direction distribution respectively. To this end we need a parametric stochastic
model for the fiber structure. Most of the existing approaches model fibers as
cylinders (dilated Poisson line process [3], random sequential absorption [4, 5] for
cylinders or deposition of cylinder [6, 7]), which limits the material to straight fiber
segments as e.g. glass fibers. However, carbon fiber reinforced polymers or non-
woven with high fiber volume fraction and non-overlapping, bending fibers request
more complex stochastic models.

We present in this paper the recently developed hardcore fiber model [8] with a
controllable level of bending and high volume fractions realizing given orientation
distributions. For this purpose, random walks are used to create realistic bending
fibers, represented as chains of balls. The created fibers are placed randomly in a
softcore system as a boolean model. With force-biased fiber packing, we achieve a
non-overlapping configuration of the fiber system. Two kinds of forces are applied
on the ball centers: repulsion and recover forces. The repulsion force arises in case
of a fiber overlap and displaces the balls to an independent position. The recover
force maintains the fiber structure and orientation. Volume fraction around 50%
could be achieved for several input parameters. In our experiments, the maximal
volume fraction was 72% for z preferred orientation distribution and an aspect ratio
of 9.

In this paper, we replace the boolean model by a placing strategy similar to the
idea of the random sequential adsorption (RSA). Optimally, this addition decreases
the overlap, and therefore also the amount of iterations necessary in the packing
process, which leads to lower computation times. Experiments show that a placing
strategy is highly efficient for intermediate volume fraction, whereas for very low
or high volume fractions it is not necessary.

2 Fiber Model

The stochastic model considered in this paper is based on ball chains, initi-
ated from a random walk and packed to a hardcore system with a force-biased
approach. A fiber in the stochastic model is presented as a sequence of balls
P D fp1; : : : ; plg with pi D .xi ; �i ; ri / 2 R

3 � S2 � R
C, consisting of the

coordinate of the ball center xi 2 R
3, an orientation �i 2 S2 and a radius ri 2 R

C.
The orientation describes the local fiber orientation and the radius describes the
local fiber radius. The main fiber orientation is chosen from a global orientation
distribution defined for the system. We propose the ˇ-distribution (see [9] or [10])
with a global parameter ˇ 2 R

Cnf0g.
A ball chain is created by a random walk starting from a random point in a

cubic window with periodic boundary conditions. The orientation assigned to the
first ball �1 is initiated with the main fiber orientation, chosen from the global
orientation distribution. The orientation assigned to the i -th ball is distributed with
the multivariate von Mises-Fisher distribution (see [11–13]). The parameters of
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this distribution are two preferred directions and their reliability parameters 	1
and 	2. In our case, the preferred directions are the main fiber orientation �1 and
the last chosen orientation �i�1. The level of bending is defined by the reliability
parameters.

The radius ri could be chosen from any distribution. In this paper, we have chosen
a fix radius for the system. The coordinates of the i -th ball are then defined by
xi D xi�1 C ri

2
�i . This approach defines a overlapping system of bended fibers.

In a second step, we apply a force-biased approach, to achieve a hardcore
configuration of the fiber system. Force-biased algorithms on spheres were intro-
duced in [14] and statistically analyzed in [15]. The forces in our approach were
inspired by the energy reducing models known from molecular dynamics [14] and
describe the necessary displacement of the balls to relax the system. They do not
act like mechanical forces. The algorithm works stepwise: In every step, forces are
calculated according to the recent configuration and the balls are displaced with
respect to their forces.

Two kinds of forces are applied to the ball centers: repulsion and recover forces.
The repulsion force arises in case of a fiber overlap and displaces the balls to
an independent position. The recover force maintains the fiber structure. It keeps
the distance and the angles between a ball and its neighbors, allowing only small
deviation. The force conserving distances simulates springs between neighbor ball
centers. The angle force simulates open springs between neighbor connections,
which allows straightening of the fiber, but preserves fibers to bend in a clew. Both
recover forces are provided with an initiating friction, which assures the stabilization
of the packing process. The new configuration at the end of one step is defined by
the displaced ball centers according to the sum of all forces.

Figure 1 shows realizations of the presented model with varying input parameters
for the fiber aspect ratio �, the number of objects n and the main orientation
distribution. The parameters and the achieved volume fraction VV are given below
each realization. For more details on the stochastic model see [8]. Parameters for the
stochastic model can be estimated from a separated fiber system as shown in [16].

In the following, we describe a configuration of the fiber system by a list of sphere
chains P D fp1;1; p1;2; : : : ; p1;l1 ; p2;1; : : : ; pn;lng with pj;i D .xj;i ; �j;i ; rj;i / 2
R
3 � S2 � R

C. The fiber index is indicated with j and the balls in one fiber are
ordered by the index i .

3 Joining with RSA Approach

In the above described stochastic model, there is no strategy in placing the fibers
in the initial configuration. Still, the initial placement influences highly the time
of stabilization in the packing process. We make use of the idea in the random
sequential adsorption algorithm (RSA, see [5]) to create the initial configuration.
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Fig. 1 Realizations for packed fiber systems. Common parameters are as follows: window side
length s D 100 and bending parameters 	1 D 10 and 	2 D 100. (a) � D 1, n D 1;146, VV D
57:27%, (b) � D 33, n D 90, VV D 50:35%, isotropic orientation (ˇ D 1), (c) � D 17:67,
n D 170, VV D 49:60%, orientation in z-direction (ˇ D 0:1), (d) � D 17:67, n D 170,
VV D 49:95%, orientation in xy-plane (ˇ D 10)

The RSA algorithm was originally invented for sphere packing, but can be
generalized to any kind of objects. In a first step, a finite set of objects is created
in a stochastic process. In the second step, the objects are iteratively inserted in the
scene of interest with well defined boundary conditions. For every object, which
should be inserted in the scene, we randomly choose new placements and place the
object as soon as a placement is found without any collision with the already inserted
objects. To assure chosen characteristic distributions of the object (as for example
size or orientation distribution) it is important that the object is not recreated, but
only displaced. Otherwise, the last object inserted would surely have smaller size
and would align to the existing structure (in the case of elongated objects).

In the case of fiber systems, the RSA algorithm combined with cylindrical objects
has the disadvantage, that only low volume fractions can be achieved. However, it
may serve to create a more intelligent and less overlapping initial configuration
for our stochastic model. The criterion to evaluate a placement for a sphere chain
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pm D fpm;1; : : : ; pm;lmg in a scene with m � 1 already inserted fibers p1; : : : ; pm�1
is either the maximal overlap or the sum of overlaps of the spheres of the fiber pm
with the already inserted fibers. We define these two criteria as following:

Cmax.pm j p1; : : : ; pm�1/ D max
i;j;k

f#.pm;i ; pk;j /g (1)

Csum.pm j p1; : : : ; pm�1/ D
X

i;j;k

#.pm;i ; pk;j / (2)

with 1 � i � lm, 1 � k � m � 1, 1 � j � lk , and #.p; q/ describing the overlap
of two spheres with centers xp , xq and radii rp , rq :

#.p; q/ D maxfrp C rq � jxq � xpj; 0g: (3)

We displace the objects as long as the criterion is higher than the global limit #0,
which serves also as stop criterion for the packing process. After a certain volume
fraction the probability to exceed this limit is quite low (if not the packing process
would not be necessary). Therefore, we fix a certain number of placements (in the
experiments prepared for this paper we tested 10 and 100). We insert the object at
those placement, having the lowest value of the evaluation criterion.

We tested the computation time for the fiber packing with 10 and 100 steps
for the initial configuration versus the standard boolean configuration. The model
is realized in a unit cube with periodic boundary conditions. The fibers are
isotropically oriented and have an aspect ratio of 9 and a volume of 1% of the cube
volume. This implies that the volume fraction of the fiber system in percent equals
the amount of fibers. The curvature parameters are chosen as 	1 D 10 and 	2 D 100.

Figure 2 shows the computation times for the different approaches and Fig. 3 the
ratio of the placing and packing time versus the packing time without strategy for
the initial configuration. The experiment runs the realization of the stochastic model
100 times and averages the extracted characteristics. We observe that the strategy is
not very efficient for low volume fractions, as in this case the probability of overlap
is very low, thus already the first random placing has low overlap and even in the
case of overlap, there is enough free space to displace the fiber in only few steps.
The influence of the placing strategy rises with the volume fraction until about 50%,
where the strategy of placing results in a more evenly placed systems and decreases
local overcrowded areas. When the volume fraction rises over 50%, the influence
of the placing strategy decreases again and may even vanish for very dense systems.
This effect has two reasons. First, the process stops without success after a certain
amount of iterations, which represents a fix time. That means, for all unsuccessfully
finished jobs, that occur often for the packing with placing strategy, we assume a
too low computation time, thus the ratio of computation times is not appropriate.
This theory is supported by Fig. 4, which shows that the placing strategy increases
the probability to successfully finish the packing process for high volume fractions.
Secondly, for a higher volume fraction, we have also a higher amount of fibers,
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which may be naturally placed more evenly over the image (according to the law of
large numbers). Additionally, the placing strategy gets ineffective as with the high
density, as for the last fibers, there exits no “good” placement any more. Thus the
last fibers are placed randomly and the configurations with or without strategy are
equally distributed in space.
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4 Conclusion

We have presented an algorithm generating bending hardcore fibers, with given
orientation, radius, and length distributions. We evaluated an intelligent placing
strategy based on overlap criteria, and conclude that the strategy is most efficient for
mean volume fractions around 50%. In the future, we will include further recover
forces to be able to realize more restricted orientation distributions.
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Part IV
Flow

Overview

At the ECMI Conference 2012 several advances in the large field of fluid dynamics
were presented, focusing for example on fluid-structure interactions, two-phase
flows, thin films, boundary layer flows and turbulence. They spanned the whole
range from modeling, analysis to simulation and optimization. The nine contribu-
tions in this section Flow provide a detailed description and envisage solution of
dedicated applications.

Fluid-structure interactions is the core issue of the first two papers. The coupling
of fluid and structure as well as time-dependent (moving) domains make the
simulation challenging. In Simulation of a Rubber Beam Interacting with a Two-
Phase Flow in a Rolling Tank Erik Svenning et al. demonstrate the applicability of
an immersed boundary method to couple a finite volume based Navier-Stokes solver
with a finite element based structural mechanics solver for large deformations. They
use the approach for the benchmark simulation of an elastic rubber beam in a
rolling tank partially filled with oil, yielding good agreements with experiments.
For a simplified formulation of fluid-structure interactions Julia Niemeyer and
Bernd Simeon analyze the coupling condition and the effect of a moving fluid
on the numerical solution in Modelling of a Simplified Fluid-Structure Interaction
Formulation. They apply a semidiscretization with finite elements in time. The time
integration is performed implicitly, whereas the coupling conditions are enforced
explicitly by means of corresponding constraint equations in a differential-algebraic
system.

Why do Guinness bubbles sink? This question is answered by Cathal P. Cummins
et al. in Sinking Bubbles in Stout Beers. They show that the circulation in a container
with a bubbly liquid (e.g. a glass of stout beer) is determined by the container’s
shape. Another kind of two-phase flow is topic in Andrew Gordon and Michael
Vynnycky’s work Analysis of Two-Phase Flow in the Gas Diffusion Layer of a
Polymer Electrolyte Fuel Cell. Considering a two-phase (gas/liquid) flow in the
porous gas diffusion layer on the cathode and a water transport in the fuel cell,
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they investigate asymptotically the dependency of the degree of water saturation on
the liquid phase relative permeability and the behavior when the gas diffusion layer
is hydrophilic.

The formation of an air gap at the mould-metal interface in continuous casting
has a detrimental effect on the efficiency of the process. Due to the complexity
of three-dimensional numerical simulations, a quasi-analytical model is derived by
Michael Vynnycky using asymptotic methods. The model captures the essential
characteristics and allows for a full coupling between the thermal and mechanical
features. The influence of the process parameters on the onset of air gap formation
is studied in A Criterion for Air-Gap Formation in Vertical Continuous Casting: The
Effect of Superheat.

In Moulding Contact Lenses Ellen Murphy and William T. Lee model the
moulding process of a monomer-based fabric by help of a thin film approximation
and investigate the role of curvature, surface tension and motion in the formation of
defects.

In Enhanced Water Flow in Carbon Nanotubes and the Navier Slip Condition
Tim G. Myers sets up a model for the water flow in carbon nanotubes which contains
a depletion layer with reduced viscosity near the wall. Whereas in the limit of large
tubes it shows no enhancement, for smaller tubes the model predicts enhancement
that increases as the tube radius decreases. Moreover, the model provides a physical
interpretation of the classical Navier slip condition and explains why slip-lengths
may be greater than the tube radius.

The last two contributions are concerned with numerical simulations and tur-
bulence models. The paper Flow Field Numerical Research in a Low-Pressure
Centrifugal Compressor with Vaneless Diffuser is focused on the capabilities and
constraints of the steady-state numerical simulations for an accurate prediction of
the flow through a compressor stage, therefore Alexey Frolov discusses different
discretization schemes and turbulence models. In region of high flow rates the steady
results turn out to be in good agreement with experiments, whereas for low flow
rates the unsteady effects dominate the flow behavior. In Large Eddy Simulation
of Boundary-Layer Flows over Two-Dimensional Hills Ashvinkumar Chaudhari
et al. perform Large Eddy Simulations for turbulent boundary layer flows over
two-dimensional hills or ridges of different slopes and compare the results (mean
velocity, flow separation, turbulence quantities) with wind tunnel experiments.

Nicole Marheineke



Simulation of a Rubber Beam Interacting
with a Two-Phase Flow in a Rolling Tank

Erik Svenning, Andreas Mark, and Fredrik Edelvik

Abstract The aim of this paper is to present and validate a modeling framework
that can be used for simulation of industrial applications involving fluid structure
interaction with large deformations. Fluid structure interaction phenomena involv-
ing elastic structures frequently occur in industrial applications such as rubber
bushings filled with oil, the filling of liquid in a paperboard package or a fiber
suspension flowing through a paper machine. Simulations of such phenomena are
challenging due to the strong coupling between the fluid and the elastic structure.
In the literature, this coupling is often achieved with an Arbitrary Lagrangian
Eulerian framework or with smooth particle hydrodynamics methods. In the present
work, an immersed boundary method is used to couple a finite volume based
Navier-Stokes solver with a finite element based structural mechanics solver for
large deformations. The benchmark of an elastic rubber beam in a rolling tank
partially filled with oil is simulated. The simulations are compared to experimental
data as well as numerical simulations published in the literature. 2D simulations
performed in the present work agree well with previously published data. Our 3D
simulations capture effects neglected in the 2D case, showing excellent agreement
with previously published experiments. The good agreement with experimental
data shows that the developed framework is suitable for simulation of industrial
applications involving fluid structure interaction. If the structure is made of a highly
elastic material, e.g. rubber, the simulation framework must be able to handle the
large deformations that may occur. Immersed boundary methods are well suited for
such applications, since they can efficiently handle moving objects without the need
of a body-fitted mesh. Combining them with a structural mechanics solver for large
deformations allows complex fluid structure interaction problems to be studied.
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1 Introduction

Numerical simulations of highly elastic structures deforming in a free surface
flow are challenging since the fluid-structure coupling is strong. The geometrically
nonlinear response of the structure and the need to accurately resolve the free
surface further increases the complexity of the simulations. The coupling between
the fluid and the structure can be handled in different ways. A popular approach
is the Arbitrary Lagrangian Eulerian (ALE) method [1], where the grid is deformed
when the structure moves. Simulations with Smooth Particle Hydrodynamics (SPH)
[2, 3] and Particle Finite Element Methods (PFEM) [4] are also reported in the
literature. Immersed Boundary Methods (IBM) allow the flow around deforming
objects in the flow to be resolved without the need of a body-fitted mesh. IBMs are
therefore well suited for Fluid Structure Interaction (FSI) applications with large
structural displacements. The original IBM developed by Peskin [5] was explicitly
formulated and only first-order accurate in space. Majumdar et al. [6] developed
a more stable method, which is implicitly formulated and second-order accurate
in space. However, this method suffers from problems with mass conservation and
pressure oscillations. To resolve these issues, Mark et al. [7, 8] developed a second-
order accurate hybrid IBM. The IBM developed by Mark et al. has been used in
several applications. It has been validated for simulation of fiber suspension flows
with elastic fibers in [9], it was used to study Jeffery orbits in [10] and it was applied
to FSI with heat transfer in [11].

FSI simulations can be performed in a monolithic or a partitioned way. Using
a monolithic approach implies that all equations are solved simultaneously in
the same matrix. In the partitioned approach, the different equations are solved
separately and coupling algorithms are employed. Using the partitioned approach
without coupling iterations between the fluid and the structure solutions is attractive
in terms of computational efficiency. However, this approach often results in
instabilities due to the added mass effect if the simulation time is long enough [12].
Gauss-Seidel iterations as well as quasi-Newton [13] techniques have been proposed
to deal with these problems.

The aim of this paper is to present and validate a modeling framework that
can be used for simulation of FSI in industrial applications. To achieve this,
the partitioned approach with Gauss-Seidel iterations is used. The fluid-structure
coupling is handled with the IBM developed by Mark et al. [8] and the structure
is modeled as a St. Venant-Kirchhoff material, thus taking large deformations into
account.

2 Theory

In the present work, a finite volume discretization on a Cartesian octree grid is
used to solve the Navier-Stokes equations. A finite element discretization in total
Lagrangian formulation is used to predict the motion of the structure. The fluid and
structure models together with the FSI coupling are described in the following.
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2.1 Fluid Model

The motion of an incompressible fluid is modeled by the Navier-Stokes equations:

r � !
u D 0 ; (1)


f
@

!
u

@t
C 
f

!
u � r !

u D �rp C �r2 !
u ; (2)

where
!
u is the fluid velocity, 
f is the fluid density, p is the pressure and � is

the dynamic viscosity. The finite volume method is used to solve the Navier-Stokes
equations. The equations are solved in a segregated way and the SIMPLEC method
derived in [14] is used to couple the pressure and the velocity fields. All variables
are stored in a co-located arrangement and the pressure weighted flux interpolation
proposed in [15] is used to suppress pressure oscillations. Two-phase flows are
handles with the Volume Of Fluid (VOF) method, where an additional transport
equation for the volume fraction is solved. A Cartesian octree grid is used for the
spatial discretization of the fluid domain, that allows dynamic refinements around
moving objects in the flow. The Backward Euler scheme is used for the temporal
discretization.

2.2 Structure Model

The strong form of the equations of motion for an elastic solid is given by

r �  C 

!
b �
 !

aD!
0 ; (3)

where  is the Cauchy stress,
!
b is the volume force and

!
a is the acceleration, 


denotes density and r � is the divergence operator. Equation (3) can be expressed in
terms of the Second Piola-Kirchhoff stress S by exploiting the relation between the
Cauchy stress and the Second Piola-Kirchhoff stress

 D J�1 F � S � F T ; (4)

where F is the deformation gradient and J D det F .
In the present work, large deformations are taken into account and St. Venant-

Kirchhoff elasticity is assumed, with a strain energy potential given by [16]

� D 1

2
� .t r E/2 C �E W E; (5)

where E is the Green strain tensor and � and � are material parameters.
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The Finite Element Method (FEM) is used to discretize Eq. (3). A total
Lagrangian formulation is used and the nonlinear system of equations is solved
with Newton’s method. Newmark’s time stepping scheme is used for the temporal
discretization. Twenty-node hexahedral elements are used in the simulations
presented in this paper.

2.3 Fluid-Structure Coupling

FSI simulations can be performed in a monolithic or a partitioned way. Using
a monolithic approach implies that all equations are solved simultaneously in
the same matrix. In the partitioned approach, the different equations are solved
separately and coupling algorithms are employed. In the present work, the parti-
tioned approach is employed and the simulations are performed without coupling
iterations when possible. Gauss-Seidel iterations are used when necessary for
stability reasons.

The mirroring IBM [8] is used to model the presence of solid objects in the flow
by imposing the velocity of the solid as a Dirichlet boundary condition on the fluid.
The boundary conditions are imposed in mirroring points defined on the interface
between the fluid and the structure. The method is implicity formulated and second
order accurate in space [8]. The force exerted on the solid by the fluid is computed
by numerically integrating the traction vector over the fluid-solid interface.

3 Results and Discussion

In this section, numerical results for a benchmark case are presented and compared
to previously published data from experiments [17, 18] and simulations [19]. The
case considered is a rolling tank partially filled with oil. In the version considered
in the present work, a flexible beam is clamped at the bottom of the tank. The tank
is forced to rotate around the y-axis in point A as shown in Fig. 1, causing the oil
inside the tank to move and interact with the beam. The tank is 0.609 m wide and
0.3445 m high. The length of the beam, which is equal to the oil depth, is 0.1148 m.
The thickness of the beam in the x-direction is 4 mm. In the experiments reported
in [17, 18], the tank thickness in the y-direction is 39 mm and the beam thickness
in the y-direction is 33.2 mm, thus leaving a gap of 2.9 mm between the beam and
the walls with normal in the y-direction. The oil is a sunflower oil with a density of
900 kg/m3 and a viscosity of 45 mPa s. The second fluid in the tank is air at ambient
conditions. The beam is made of a rubber material with a density of 1,100 kg/m3,
Young’s modulus E D 6MPa and Poisson’s ratio � D 0:49.

The tank has two holes in the upper wall, so that zero pressure can be prescribed
there. When 2D simulations are performed, symmetry boundary conditions are used
on the faces with normal in the y-direction and no slip conditions are enforced on
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Fig. 1 Domain of the rolling tank case: the part of the domain marked with dashed red lines is
filled with oil, the rest is filled with air. The beam is clamped to the tank in point A and an electric
motor forces the tank to rotate around the y-axis in this point
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the remaining walls. When 3D simulations are performed, no slip is enforced on all
walls. The beam is clamped at the point A. When 2D simulations are performed,
all nodes of the solid mesh are locked in the y-direction, leading to a plane strain
assumption.

The baseline 2D grid, denoted grid 1, is shown in Fig. 2a. The grid is refined
by halving the cell size and one refinement is added around the beam and the oil-air
surface. The baseline grid consists of approximately 12;400 fluid cells and 100 solid
elements. The number of solid elements remains constant during a simulation, but
the number of fluid cells changes slightly due to the adaptive grid refinements. The
fluid is discretized on an octree grid with cubic cells and the structure is meshed with
20-node hexahedral elements. The tank rotates around the point A and the temporal
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a b

c d

Fig. 3 Volume fraction: Blue corresponds to ˛ D 0 (air) and red corresponds to ˛ D 1 (oil). (a)
t D 0 s. (b) t D 1:25 s. (c) t D 1:85 s. (d) t D 2:5 s

history of the rotation angle is shown in Fig. 2b. Numerical data for the history of
the angle is available in [18]. Note that the tank motion is harmonic with period
T D 1:21 s except at the first few tenths of a second, where a transient behavior can
be seen.

In the simulations, the gravitation vector was rotated instead of rotating the whole
domain. The centrifugal forces, arising from the fact that the simulation is performed
in an accelerating coordinate system, have been neglected. This is justified because
the angular velocity of the motion is small. As will be seen, good results are obtained
with this approximation.

Four seconds of physical time are simulated, covering three full periods of the
beam motion. Figure 3 shows snapshots from a 2D simulation at different time steps.
The angular frequency of the forced rotation is close to the eigenfrequency of the
system and therefore the waves grow larger with time. The beam undergoes large
deformation due to the interaction with the fluid.

The displacement of the beam tip, measured in a coordinate system moving with
the tank, is shown in Fig. 4. The agreement with the experimental data presented in
[18] and the simulations in [19] is very good. The differences between the results
obtained with grid 1 (12,400 fluid cells and 100 solid elements), grid 2 (53,200
fluid cells and 784 solid elements) and grid 3 (157,000 fluid cells and 3,136 solid
elements) are small, indicating that grid convergence has been obtained. Figure 5
shows the displacement predicted with grid 2 for three different time steps. The
differences are small, indicating that the time step is sufficiently short.

To investigate whether the differences between the 2D simulation and the experi-
mental data originate from neglected 3D effects, 3D simulations were performed.
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This is indeed the case as shown in Fig. 6, where the 2D simulation and the
experiments are compared to a 3D simulation with a cell size roughly corresponding
to grid 2. The agreement between the 3D simulation and the experiment is excellent.
It can be noted that the 2D simulation slightly overpredicts the amplitude, while the
3D simulation captures the amplitude very well. This is probably an effect of the
walls with normal in the y-direction. The friction between the fluid and these walls
will dissipate kinetic energy from the fluid, thus decreasing the amplitude of the
motion. This effect is not captured in a 2D simulation, where symmetry (free slip)
boundary conditions are applied to the walls with normal in the y-direction. The 3D
effects are clearly visible in Fig. 7, that shows the beam and the oil-air interface.

The 2D simulations presented in Fig. 5 were performed without coupling iter-
ations. However, Gauss-Seidel iterations were used in the 3D simulation to get a
stable solution.
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beam in a rolling tank:
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Fig. 7 Snapshot from the 3D
simulation. The interface and
the grid are colored by the
fluid velocity and 3D effects
are clearly visible on the
oil-air interface

4 Conclusions

A framework for simulation of FSI has been developed and validated. Combining
the IBM with the VOF method allows adaptive grid refinements around the structure
and the oil-air surface without deterioration of the mesh quality. Using this method
to couple the Navier-Stokes solver with a structural dynamics solver for large
deformations results in a robust framework that allows complex three-dimensional
FSI applications to be studied. The good agreement with previously published data
demonstrates the accuracy of the method.
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Modelling of a Simplified Fluid-Structure
Interaction Formulation

Julia Niemeyer and Bernd Simeon

Abstract A simplified formulation of the fluid-structure interaction problem is
presented in order to analyze the coupling conditions and the effect of a moving fluid
domain on the numerical solution. The resulting one-dimensional model equations
are discretized by the finite element method in space and then solved by implicit
timestepping schemes, with the coupling conditions explicitly enforced by means
of corresponding constraint equations in a differential-algebraic formulation. First
numerical results indicate an influence of the moving fluid mesh on the stability
properties of commonly used time integrators.

1 Fluid-Structure Interaction in a Nutshell

Fluid-Structure Interaction problems arise in nearly all engineering fields where the
motion of an elastic structure and the flow of a circulating fluid affect each other.
The mathematical problem is described by Cauchy’s equations in the solid part and
by the Navier–Stokes equations in the fluid part.

Let ˝t � Rn; n D 2; 3 be a bounded domain with ˝t D ˝t
f [ ˝t

s , t � t0,
and Œt0; T � the considered time interval. Here, ˝t

f , ˝t
s denote the fluid and solid

subdomains, respectively. The interface boundary � t
I is then given by � t

I WD ˝t
f \

˝t
s .
Assuming an elastic and nearly incompressible body, the deformation of the

solid part is described by the displacement field d and the pressure ps . The balance
equations in the reference configuration ˝0

s read
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s Rd � div P.d; ps/ D fs in ˝0
s (1a)

g.d; ps/ D 0 in ˝0
s (1b)

with the second Piola-Kirchhoff stress tensor

P.d; ps/ D @W

@rd (2)

and a strain energy function W that defines the material behaviour. This model of a
solid allows for large deformation and hyperelastic material laws.

The flow of an incompressible Newtonian fluid is described by the velocity field
u and the pressure pf , and the corresponding equations are in general formulated
in the Eulerian framework. To couple the fluid equations with the equations of
motion (1) we introduce the Arbitrary Lagrangian Eulerian (ALE) formulation of
the Navier–Stokes equations [9, 10].

Let ˝0
f denote the reference configuration, then the ALE map is defined by

At W ˝0
f � Œt0; T �! ˝t

f ; .�; t/ 7! At .�/ DW x.�; t/; (3)

and the domain velocity w at a reference point � 2 ˝0
f is given by

w.x; t/ WD @At

@t
j� : (4)

A more detailed description can be found in [4]. The Navier–Stokes equations on a
moving domain read


f Pu C 
f .u � w/ � ru � div  D 
f ff in ˝t
f (5a)

div u D 0 in ˝t
f (5b)

with stress tensor

 D �pf I C 
f �
�ru CruT

�
: (6)

To close the coupled system, we need to solve an additional partial differential
equation for the domain velocity that describes the domain movement. This could
be done by considering the domain as an elastic solid and solving the equations
of elastodynamics [5]. Another approach is to use the harmonic extension or the
biharmonic extension [11]. However, since we are interested in the effect of the
moving grid on the stability properties of the time integration schemes, we will
assume a known ALE map in the rest of this paper.

Of particular interest are the coupling conditions between the solid and the fluid
part. These interface equations on � t

I are given as

 �nf D P �ns; u D Pd; d D At (7)
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and stand for the equality of the stresses in normal direction and for the equality of
the displacement and velocity fields at the interface.

2 Simplified Fluid-Structure Interaction Formulation

We are interested in studying the effects of the ALE formulation on the properties
of the usual time integration schemes, inspired by the work of [1,6] in an advection-
diffusion framework without the interaction with a solid. To simplify the equations,
we will consider linear models in both subdomains and restrict ourselves to the one-
dimensional case. The extension to higher dimensional models with n D 2; 3 is
straightforward.

In our simplified formulation, a wave equation models the deformation in the
solid part, and the fluid motion is replaced by a linear advection-diffusion equation
where we also introduce the ALE formulation as in [6]. Let ˝t � R with
˝t D ˝t

s [ ˝t
f and consider the time interval Œt0; T �. The coupled system can

be formulated as

Rd � 	s�d D 0 in ˝t
s (8a)

Pu � 	f �u C �ru � wru D 0 in ˝t
f (8b)

ru �nf D rd �ns on � t
I (8c)

u D Pd on � t
I (8d)

d D At on � t
I (8e)

with a given ALE map At and the domain velocity w as in (4).
In the next step, we apply a linear finite element method to discretize the

simplified FSI problem (8) in space. Let ˝t
h D ˝t

h;s [ ˝t
h;f be the space-

discrete domain. The space-discrete solution variables are given by dh.x; t/ WD
PNs

iD1 di .t/'is .x/ and uh.x; t/ WD PNf

iD1 ui .t /'if .x/ where 'ji ; j 2 fs; f g; denotes
the i -th finite element basis function and Nj ; j 2 fs; f g; the number of knots in
the subspaces, respectively.

When setting up the finite-dimensional discretized analogue of (8), the interface
conditions require particular attention. While the Neumann condition (8c) is directly
included in the weak problem formulation, the Dirichlet conditions can be either
treated as explicit constraints or implicitly enforced by means of eliminating the
corresponding degrees of freedom. We choose here a differential-algebraic approach
and employ Lagrange multipliers to enforce the constraints [2]. Introducing the
discrete Lagrange multiplier � for the coupling conditions (8d) and (8e) [3], we
end up with a differential-algebraic system

M.t/Pzh.t/CK.t;wh/zh.t/C BT�.t/ D 0 in ˝t
h (9a)

Bzh.t/ � b.t/ D 0 in ˝t
h (9b)
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Fig. 1 Solution at time t D 1 with �t D 0:1. (a) DAE solution. (b) ODE solution

with unknowns zh D .dh; uh/T and �. The coupling conditions are formulated by
means of a linear constraint with matrix B and inhomongeneity b.t/. Moreover, the
discrete domain velocity wh WD @Ah;t

@t
shows up in the discretized advection term,

with Ah;t describing the space-discrete ALE map.
Due to the full rank of B , the index of the DAE (8) is two. Integrating differential

algebraic systems with an index greater than one like (9a) may lead to numerical
difficulties. As a remedy, it is possible to reduce the index by differentiating the
algebraic constraints and solving for the Lagrange multiplier as �.zh.t/; t/. Upon
inserting this expression into the semi-discrete system, one obtains an ordinary
differential equation

M.t/Pzh.t/CK.t;wh/zh.t/C BT�.zh.t/; t/ D 0: (10)

Because of the linearity of the constraints, no drift off from the original constraints
shows up as long as the initial values are consistent and b.t/ is a linear function.

3 Numerical Results

Let ˝0 D Œ0; 2� be the considered bounded domain with subdomains ˝0
s D Œ0; 1�

and ˝0
f D Œ1; 2�. The time interval is Œ0; ��. As mentioned above Eq. (8) are

discretized in space using the linear finite element method. We choose the implicit
Euler scheme and the midpoint rule to integrate the semi-discrete system. The tested
ALE maps are

A 1
t .�/ D � C t; A 2

t .�/ D � C 10t; A 3
t .�/ D � C sin.t/ (11)

and the resulting solution is displayed in Fig. 1. A time integration scheme is said to
be stable if the eigenvalues of the increment function lie in the stability region of the
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Fig. 2 Eigenvalues at time t D 1 with different �t . (a) Implicit Euler, A 1
t . (b) Midpoint rule,

A 1
t . (c) Implicit Euler, A 2

t . (d) Midpoint rule, A 2
t . (e) Implicit Euler, A 3

t . (f) Midpoint rule, A 3
t

integrator [8]. Therefore we plotted the eigenvalues in the complex plane according
to different used time steps �t . As one can see in Fig. 2b, d, f using the midpoint
rule as a time integrator the eigenvalues are bounded for every used time step and
every choice of the ALE map (11). While integrating the ODE using the implicit
Euler scheme the eigenvalues are only bounded for every time step using the ALE
map A 1

t and A 3
t which lead to a small domain velocity w compared to the time

step �t , Fig. 2a, e. In contrast the disposal of A 2
t cause a growth of the real part of

the eigenvalues.
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4 Conclusion

We have formulated a simplified linear fluid-structure interaction problem where
the coupling is expressed using the Lagrange multiplier technique. This results in
an index-two differential-algebraic system. To derive the corresponding ordinary
differential system, the algebraic constraints are differentiated and written as a
function of the solution variable.
In the solution plots Fig. 1 we see no drift in the original constraints as stated in
Sect. 2. The look at the eigenvalues give us some hints of stability problems in
commonly known unconditionally stable time integration schemes as the implicit
Euler scheme as stated in [1, 6, 7] in the context of the geometric conservation law.
Therefore a more detailed analysis of the influence of the coupling conditions on
the stability properties of the time integrators seems to be worthwhile.
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tion, nichtlineare Modellreduktion und proaktive Regelung in der Fahrzeugdynamik.
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Sinking Bubbles in Stout Beers

Cathal P. Cummins, Eugene S. Benilov, and William T. Lee

Abstract Anyone who has ever tried Guinness or another stout beer knows that the
bubbles in the glass appear to sink. This suggests that they are driven by a downward
flow, the velocity of which exceeds the upward velocity of the bubble due to the
Archimedean force. The existence of such a flow near the wall of the glass implies
that there must be an upward flow somewhere in the interior. The mechanism of such
a circulation is, however, unclear. In this work, we demonstrate that the circulation in
a glass of stout—or any other container with a bubbly liquid—is determined by the
container’s shape. If it narrows downwards (as the stout glass does), the circulation
is directed downwards near the wall and upwards in the interior. If the container
widens downwards, the circulation is opposite to that described above.

1 Introduction

Bubbles in liquids normally float up due to the Archimedean force—yet those in so-
called stout beers appear to go down. Such counter-intuitive phenomena rarely occur
in our everyday life, challenging the curiosity of both scientists and lay people.

Interestingly, even though the effect of bubbles sinking in Guinness is widely
known and that the bubbles/liquid interaction in stouts has been examined
before [1], no explanation of this puzzling phenomenon has been put forward
so far. In this work, we shall first describe the properties of Guinness as a two-
phase medium and explain the basic mechanism that drives bubbles in Guinness
downwards.
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2 Properties of Stout Beers

We shall model Guinness by a liquid of density 
l and viscosity �l , with randomly
distributed bubbles of gas of density 
g and viscosity �g. For a temperature of 6 ıC
(recommended for consumption of Guinness by its producer Diageo) and normal
atmospheric pressure, we have


l D 1;007 kg m�3 �l D 2:06 � 10�3 Pa s

g D 1:223 kg m�3 �l D 0:017 � 10�3 Pa s

where the former values have been measured by ourselves and verified against
the extrapolation formula of [3]. To check whether the bubble shapes differ from
spheres, we introduce the Bond number

Bo D 
lgd
2
b



where db is the bubbles’ characteristic diameter,  is the surface tension of the
liquid/gas interface, and g is the acceleration due to gravity. Assuming db D
122�m (as reported in [1]) and  D 0:745N m�1 (which corresponds to water/air
interface), we obtain Bo 	 0:002 which is sufficiently small to assume that bubbles
in Guinness are spherical.

Note also that Guinness (as well as the vast majority of “real” liquids) contains a
lot of surfactants, which make the bubbles behave as rigid spheres. This allows one
to estimate the characteristic bubble velocity ub using the Stokes formula for a rigid
sphere,

ub D 
l � 
bgd2b
18�l

	 3:96mm s�1:

Estimating the corresponding Reynolds number

Re D 
lubdb
�l

	 0:24;

confirms that the Stokes formula yields a qualitatively correct value for ub .
Furthermore, given that ub is much smaller than the speed of sound, the gas can be
treated as incompressible.

Finally, we introduce the void fraction, f , i.e. the gas’s share of the volume of the
liquid/gas mixture. For canned Guinness, f 	 0:05 (see [1]), whereas for draught
Guinness served in pubs, f 	 0:1 (according to our own measurements). Note,
however, that, traditionally, bartenders first fill, say, 80% of the glass and wait until
it has fully settled (i.e. all the bubbles have gone out of the liquid into the foamy
head), after which they would fill the glass full. Thus, when Guinness is served to
the customer, the void fraction can be estimated as f 	 0:02, which is the value
used in this work.
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Fig. 1 Numerical simulations of bubbly flows for the pint, a cylinder, and an anti-pint. The curves
show the streamlines for the bubbles, the color shows the void fraction f . The snapshots displayed
correspond to t D 4 s. Observe the region of reduced f near the wall of the pint (the near-wall
region of increased f in the anti-pint is not visible in this figure, but can be observed in Fig. 2)

3 Mathematical Modelling

Since we attempt to explain the downflow of bubbles in Guinness by the geometry
of the container and not by a physical effect, we shall use the standard model for
bubbly flows included in the COMSOL Multiphysics package, based on the finite
element method. We shall not discuss this model’s physical foundations, as they are
described in detail in [2], but mention only that it assumes that the bubbles are all of
the same size. In view of the problem’s axial symmetry, the axi-symmetric version
of the model is used.

Two geometries were examined (see Fig. 1): a pint and an “anti-pint”, i.e. the pint
turned upside-down. In both cases the initial distribution of bubbles was uniform.
The results of typical simulations are shown in Fig. 1. One can see that an elongated
vortex arises near the sloping part of the pint container, resulting in a downflow of
bubbles along the wall. A similar vortex also exists in the anti-pint, but it rotates in
the opposite direction and, thus, causes an upward flow.
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Fig. 2 The half-height cross-sections of the vertical velocity u and the void fraction f for the
pint and anti-pint geometries (these graphs correspond to the .r; z/ diagrams shown in Fig. 1). The
dotted lines in the upper panels separate the regions of upward/downward flow

The latter results can be explained using the same kinematic argument as those
for the pint geometry: if the container widens downwards, bubbles travel towards the
wall (as illustrated in Fig. 1 (right)). This increases the near-wall density of bubbles
and, thus, the upward drag applied to the liquid, resulting in an upward flow.The
above argument, for both pint and anti-pint, is corroborated by the cross-sections of
the bubble density and velocity shown in Fig. 2.
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Analysis of Two-Phase Flow in the Gas Diffusion
Layer of a Polymer Electrolyte Fuel Cell

Andrew Gordon and Michael Vynnycky

Abstract The last decade has seen a proliferation of modelling activity on the
polymer electrolyte fuel cell (PEFC); an important subset of this activity is the
modelling of the two-phase (gas/liquid) flow that occurs in the porous gas diffusion
layer (GDL) on the cathode (Djilali, Energy 32:269–280, 2007; Gurau and Mann,
SIAM J. Appl. Maths 70:410–454, 2009). The prevailing approach employs a
generalized form of Darcy’s law, which has been widely used over the last several
decades to analyze the movement of oil and water in soils and porous rock (Bear,
Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972). Applied
to water transport in fuel cells, the Darcy model characterizes the response of
the porous material by the capillary pressure, the gas and liquid phase relative
permeabilities, and the effective gas diffusion coefficient, all of which depend on
the fraction of the local pore volume occupied by liquid water; an additional feature
is that the porous medium can be either hydrophobic or hydrophilic. The majority
of approaches have, however, been primarily numerical, which has obscured some
of the properties of the model. Here, using asymptotic methods, we extend earlier
work (Vynnycky, Appl. Math. Comp. 189:1560–1575, 2007) to demonstrate how
the degree of water saturation depends on the liquid phase relative permeability, as
well as how the model behaves when the GDL is only just hydrophilic.

1 Introduction

The last decade has seen a proliferation of modelling activity on the polymer
electrolyte fuel cell (PEFC); an important subset of this activity is the modelling of
the two-phase flow that occurs in the gas diffusion layer (GDL) on the cathode [3,4].

A. Gordon (�) • M. Vynnycky
MACSI, University of Limerick, Limerick, Ireland
e-mail: andrew.gordon@ul.ie; michael.vynnycky@ul.ie

M. Fontes et al. (eds.), Progress in Industrial Mathematics at ECMI 2012,
Mathematics in Industry 19, DOI 10.1007/978-3-319-05365-3__24,
© Springer International Publishing Switzerland 2014

177

mailto:andrew.gordon@ul.ie
mailto:michael.vynnycky@ul.ie


178 A. Gordon and M. Vynnycky

The prevailing approach employs a generalized form of Darcy’s law, which has been
widely used over the last several decades to analyze the movement of oil and water
in soils and porous rock [1]. Applied to water transport in fuel cells, the Darcy model
characterizes the response of the porous material by the capillary pressure, the gas
and liquid phase relative permeabilities, and the effective gas diffusion coefficient,
all of which depend on the fraction of the local pore volume occupied by liquid
water. Although there are by now numerous other models for two-phase flow in the
gas diffusion layer (GDL), this one is still frequently used [9] and therefore merits
closer scrutiny.

In this paper, we provide asymptotic analysis and a numerical solution for
the simplest possible model for this situation, by considering a 1D steady state
isothermal model for the GDL.

2 Model Equations

We employ the version of multi-fluid model formulation given in [11]. There is
essentially no difference between this version and that used by other authors, as
was shown numerically in [11]; it does, however, remove the more ad hoc nature
of the way that the inter-phase transfer is treated, thereby making the analysis
mathematically more transparent. We consider an isothermal GDL of thickness H
in which there is two-phase flow. As in all earlier papers on two-phase flow in the
GDL of a PEFC, we assume negligible quantities of oxygen and nitrogen in the
liquid phase.

Starting with steady state conservation equations for both gas and liquid phases,
we have

dn
.g/
O2

dy
D 0;

dn
.g/
N2

dy
D 0;

dn
.g/
H2O

dy
D � PmH2O;

d

dy

�

.l/v.l/

�
D PmH2O; (1)

where n.g/i denotes the mass flux for species i; 
.l/ denotes the liquid density, v.l/

denotes the liquid velocity and PmH2O is the interface mass transfer of water between
the gas and liquid phase. Adding the equations in (1) together gives

d

dy

�

.g/v.g/ C 
.l/v.l/

�
D 0; (2)

where 
.g/ is the gas mixture density and v.g/ is the mass-averaged velocity of the
gas phase; this eliminates PmH2O; so that only the first two equations in (1) and Eq. (2)
need be considered, although PmH2O can be computed a posteriori if necessary [11].
In turn, we have



Two-Phase Flow in the Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell 179

v.g/ D �		
.g/
rel .s/

�.g/
dp.g/

dy
; v.l/ D �		

.l/
rel .s/

�.l/
dp.l/

dy
;

ni
.g/ D 
.g/!

.g/
i v

.g/ C j
.g/
i ; i D H2O;O2;N2I

(3)

in (3), 	.g/rel .s/ is the gas relative permeability, 	.l/rel .s/ is the liquid relative perme-
ability, �.g/ and �.l/ are, respectively, the gas and liquid phase dynamic viscosities,
!
.g/
i is the mass fraction and j .g/i describes the diffusion-driven transport. For the

latter, we use

j
.g/
i D �
.g/!.g/i �3=2 .1 � s/

X

jDH2O;N2;O2

QDij

 
dx

.g/
j

dy
C x

.g/
j � !.g/j
p.g/

dp.g/

dy

!

;

where QDij is the (i; j )-component of the multicomponent Fick diffusivity matrix—
which is modified by .1 � s/ to take account of the liquid phase and the porosity of
the GDL, � - and x.g/j ; denoting the mole fraction of species j; is related to !.g/i by

x
.g/
i DM.g/!

.g/
i =Mi ; i D H2O;N2;O2; in turn, this introduces the relative molec-

ular weights of nitrogen, oxygen and water (MN2 ;MO2 andMH2O, respectively) and
the mixture molecular weight, M.g/; given by M.g/ D MH2Ox

.g/
H2O C MN2x

.g/
N2

C
MO2x

.g/
O2

. For a ternary system, these are related to the multicomponent Maxwell-
Stefan diffusivities (Dij ) through, for i; j; k D H2O;N2;O2;

QDii D
.!jC!k/2
xiDjk

C !2j
xjDik

C !2k
xkDij

xi
Dij Dik

C xj
Dij Djk

C xk
DikDjk

; QDij D �

0

B
@

!i .!jC!k/
xiDjk

C !j .!jC!k/
xjDik

� !2k
xkDij

xi
Dij Dik

C xj
Dij Djk

C xk
DikDjk

1

C
A ;

i ¤ j ¤ k. Thence, for gases at low density, the multicomponent Maxwell-Stefan
diffusivities, Dij , can be replaced with the binary diffusivities, ODij , for all pairs of
species in the mixture; explicit expressions for these, based on the Chapman-Enskog
theory, can be found in [2]. In addition to the above, we must have

x
.g/
O2

C x
.g/
N2

C x
.g/
H2O D 1I

there is no differential equation for x.g/H2O, since it takes the saturation value, i.e.

x
.g/
H2O D psatH2O.T /=p

.g/;

where psatH2O.T / D 10.2:8206C0:02953t�9:1837�10�5t2C1:4454�10�7t3/;

with T as the temperature and t D T � 273:15.
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Constitutive relations are required for 
.g/, 	.g/rel and 	.l/rel . For 
.g/, we use the ideal
gas law,


.g/ D p.g/M .g/=RT;

where R is the universal gas constant. We do not yet take any particular forms for
	
.g/
rel .s/ and 	.l/rel .s/, other than to require that 	.g/rel .0/ D 1, 	.g/rel .1/ D 0, 	

.l/
rel .0/ D

0, 	.l/rel .1/ D 1. A further relation is required to relate p.g/ and p.l/; this is done via
the capillary pressure, pc; which is itself a function of the saturation. By definition,
pc D pnw � pw, where pnw and pw denote the pressures of the non-wetting and
wetting phases, respectively [1, 5]; so,

pc D


p.g/ � p.l/ if �c < 90

o

p.l/ � p.g/ if �c > 90
o ;

where �c is the contact angle for water in the GDL.
The boundary conditions are: at y D 0,


.g/v.g/ C 
.l/v.l/ D ic

4F
f2.1C 2˛/MH2O �MO2g ; n

.g/
O2

D �MO2 ic

4F
; n

.g/
N2

D 0;

(4)
where ˛ is the number of water molecules dragged through the membrane by each
proton, ic is the current density and F is Faraday’s constant (96,487 C mol�1); at
y D H ,

x
.g/
O2

D xinO2 ; s D 0; p.g/ D pout : (5)

In particular, ic is normally chosen to be of the form

ic D .1 � s/ i�c ; with i�c D i0p
.g/x

.g/
O2

p
.g/
ref

�
2.T�273/=10

�
exp

�
F�c

2RT

�

;

where i�c is current density that one would expect in the absence of liquid water
[6,7], i0 is the exchange current density, �c is the cathodic overpotential and pref is
a reference pressure, which we set to be pout .

3 Nondimensionalization and Analysis

We write

YDy=H; V .g/D v.g/

Œv.g/�
; V .l/D v.l/

Œv.l/�
; P .g/ D p.g/ � pout

�P
; P .l/ D p.l/ � pout

�P
;
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Pc D pc

Œpc�
; %.g/ D 
.g/

�

.g/

� ; M .g/ D M.g/

�
M.g/

� ; J
.g/
i D j

.g/
i�


.g/
�
Œv.g/�

;

ODij D
ODij

ŒD�
; QDij D

QDij

ŒD�
; Ic D ic

Œi �
; Q�c D �c

Œ�c�
;

where �P D Œpc� D =	1=2; Œv.g/� D D=H , and

Œv.l/� D
�

.g/

�
Œv.g/�

�

.l/
� ; Œi � D i0

�
2.T�273/=10

�
exp

�
F Œ�c�

2RT

�

I

note that Œ�c� varies between 0 and around 0.6 V. The governing equations are now,
for 0 � Y � 1,

d

dY

�
%.g/!

.g/
i V

.g/ C J
.g/
i

�
D 0; for i D O2;N2;

d

dY

�
%.g/V .g/ C V .l/

� D 0;

(6)
where %.g/ D ŒM � pout

�
1C˘P .g/

�
M .g/=

�

.g/

�
RT , with ˘ D �P=pout , and

J
.g/
i D �%.g/!.g/i �3=2 .1 � s/

X

jDH2O;N2;O2

QDij

0

@
dx

.g/
j

dY
C
˘
�
x
.g/
j � !.g/j

�

1C˘P .g/

dP .g/

dY

1

A :

Also,

fCaV .g/ D �	.g/rel .s/
dP .g/

dY
; fCaV .l/ D ��	.l/rel .s/

dP .l/

dY
; Pc.s/ D ˙ �

P .g/�P .l/
�
;

(7)
where � D 
.l/

�
�.g/

�
=
�

.g/

�
�.l/ as well as fCa D Ca

�
H=	1=2

�
hold, with Ca.D�

�.g/
�
Œv.g/�=/. Combining the second equation in (6) and the three equations in (7)

eliminates V .l/ and P .l/ to give

d

dY

 

fCa

(

%.g/ C �
	
.l/
rel .s/

	
.g/
rel .s/

)

V .g/ ˙ �	
.l/
rel .s/P

0
c .s/

ds

dY

!

D 0I (8)

in (8), 0 denotes differentiation with respect to s; whereas the ˙ sign refers to the
case �c 7 90o; respectively.

As for the boundary conditions, Eqs. (4) and (5) give, at Y D 0 and 1,
respectively,

V .l/ C %.g/V .g/ D ˝

4
f2.1C 2˛/MH2O �MO2g Ic;

%.g/!
.g/
O2
V .g/ C J

.g/
O2

D �MO2˝Ic

4
; %.g/!

.g/
N2
V .g/ D �J .g/N2

;
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Fig. 1 s vs. Y for different values of �.�c/

x
.g/
O2

D xinO2 ; s D 0; P .g/ D 0;

where Ic D .1 � s/.1C˘P .g//x
.g/
O2

and ˝ D Œi �
�
M.g/

�
=F

�

.g/

� �
v.g/

�
.

With H � 3 � 10�4 m , ŒD� � 10�5 m2 s�1, 	 � 10�12 m2,
�

.g/

� � 1 kg m�3,�

.l/
� � 103 kg m�3,

�
�.g/

� � 10�5 kg m�1 s�1,
�

.l/
� � 103 kg m�3, pout D 105 Pa,

 D 0:07N m�2, T D 333K, we find that Œv.g/� � 3�10�2 m s�1,�P � 7�104 Pa,
leading to fCa � 10�3; ˘ � 0:7; � � 1:25; with 0 . Œ�c� . 0:6V, we have, in
addition, that 10�3 . ˝ . 102. Furthermore, with

Pc.s/ D �1=2 cos �c



1:417.1 � s/ � 2:120.1 � s/2 C 1:263.1 � s/3 if �c < 90o;

1:417s � 2:120s2 C 1:263s3 if �c > 90o;

as in [8, 10], and since, typically, 	.l/rel D sn (n > 0), Eq. (8) indicates that s �
fCa1=.nC1/ if � WD cos �c=fCa � 1; hence, the size of s is related to the power in the
expression for 	.l/rel . However, if � � 1, an entirely different structure emerges, as is
demonstrated in Fig. 1 via numerical solutions to the governing equations for � D
0:3, n D 3, �c < 90o, �c D 0:6V, T D 333K and with 	.g/rel D .1�s/3. In particular,
we see that as �c approaches 90ı, s � O.1/; consequently, it appears that, for
decreasing hydrophilicity, not only is oxygen transport to the catalyst increasingly
hindered, but water blockage, rather than oxygen depletion, may even be the leading
reason for limiting current.
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A Criterion for Air-Gap Formation in Vertical
Continuous Casting: The Effect of Superheat

Michael Vynnycky

Abstract The formation of an air gap at the mould-metal interface in continuous
casting has long been known to have a detrimental effect on the efficiency of
the process, and has therefore attracted many attempts at mathematical modelling.
While many efforts consist of complex three-dimensional numerical simulations
of the phenomenon, a sequence of recent papers by the present author has used
asymptotic techniques to derive a quasi-analytical model that captures the essential
characteristics. The model allows for full two-way coupling between the thermal and
mechanical problems: the formation of the air gap affects the heat transfer, whilst
the heat transfer affects the stresses that lead to the formation and evolution of the
air gap. In this contribution, earlier numerical results for the case of superheat—
when the molten metal temperature is greater than the melting temperature—are
complemented by an analysis of the criterion that predicts how the onset of air-gap
formation depends on process parameters: the mould temperature, the casting speed
and the superheat itself.

1 Introduction

Air-gap formation in the industrial continuous casting of metals and metal alloys
has long been recognized as having an adverse effect on process efficiency. A
schematic of the situation is given in Fig. 1, which shows molten metal, typically
copper, aluminium or steel alloys, passing vertically downwards through a cooled
mould, solidifying and being withdrawn at casting speed, Vcast. In descending from
the meniscus, there is typically first a region where liquid metal is in contact with the
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Fig. 1 2D schematic of air
gap formation

mould wall, followed by a region where the solidified shell is in contact; after this,
at z D zgap; an air gap begins to form between the solidified shell and the mould
wall. Eventually, at some location z D zmid, complete solidification occurs at the
centreline. In particular, the formation of the air gap prohibits effective heat transfer
between the mould and shell, leading to longer solidification lengths and requiring
supplementary process design considerations, such as mould tapering.

In view of the detrimental effect that the air gap has on process efficiency,
mathematical models of varying degrees of complexity have been derived to
describe the phenomenon. Early models for predicting the onset of air-gap formation
were analytical [1–4]; most subsequent models [5–11] have been solely numerical.
However, whilst able to capture the thermomechanical interaction of gap formation
and evolution, such models are computationally expensive, unwieldy and do not
give a qualitative understanding of the air-gap’s dependence on different operating
parameters, or indeed whether it is possible to avoid air-gap formation completely.
An exception to all of the above are recent models [12–15] that use asymptotic
methods; however, the majority of these assumed that the incoming metal was at
melting temperature, Tmelt. In [13], which was for the case of non-zero superheat, i.e.
the incoming molten metal temperature, Tcast, was greater than Tmelt, the resulting
equations were integrated numerically, but no details were given as regards the
initial stages of solidification and air-gap formation; these details were, however,
given in [12, 14] for the case of zero superheat, and the purpose of this paper is to
complement the numerical results in [13]. Interestingly, the fact that Tcast > Tmelt

not only leads to completely different results, but also to results are not foreseeable
from the analysis for Tcast D Tmelt.
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2 Model Equations

Due to space constraints, we omit the dimensional form of the model equations,
which can be found in [13], but move directly to the dimensionless form. Setting
y D WY and z D LZ, we have

fPel
@�l

@Z
D @2�l

@Y 2
; fPes

@�s

@Z
D @2�s

@Y 2
; (1)

where ePel and ePes are reduced Péclet numbers, given by ePel D 
clVcastW
2=klL,

ePes D 
csVcastW
2=ksL, where 
 is solid and liquid metal density and .kj /jDl;s and

.cj /jDl;s are thermal conductivity and specific heat capacity, respectively. �l and �s
are, respectively, the dimensionless liquid and solid temperatures and are related to
the actual temperatures, Tl and Ts , by �j D .Tmelt � Tj /=�T for j D l; s, where
�T is a temperature scale that will be specified shortly. The boundary conditions
for �l and �s are then

�s D �l D 0;
@�s

@Y
�
�
	s

	l

�
@�l

@Y
D �

ePes
St

dYm
dZ

at Y D Ym.Z/; (2)

@�l

@Y
D 	l .�l � �o.Z// at Y D 0; for 0 � Z < Zmelt; (3)

@�s

@Y
D 	s .�s � �o.Z// at Y D 0; for Zmelt � Z < Zgap; (4)

@�s

@Y
D 	s

.1C Ya.Z//
.�s � �o.Z// at Y D ıYa.Z/; for Z > Zgap; (5)

@�l

@Y
D 0 at Y D 1 for 0 � Z � Zmid; (6)

@�s

@Y
D 0 at Y D 1 for Zmid � Z � 1; (7)

where Zmelt D zmelt =L; Zgap D zgap=L; Zmid D zmid=L and St.D cs�T=�Hf /

is the Stefan number, with 	l D kMW=klHM , 	s D kMW=ksHM , ı D
kairHM=kMW . In Eq. (2), Ym is the dimensionless location of the solid-liquid
interface, whilst Ya in Eq. (5) is the scaled dimensionless air-gap thickness. In
Eqs. (3)–(5), �0 is the dimensionless temperature at the outer surface of the mould,
and is related to the experimentally measurable temperature, To.z/, by �o D
.Tmelt � To/=�T . Typically, To decreases with Z, and it is convenient to use
it in defining an appropriate temperature scale: we take �T D Tmelt � T min

o ;

where T min
o D min .To.z/jz � 0/. With Z acting as a time-like variable, the initial

conditions are

�l D �cast at Z D 0; �s D 0 at Z D Zmelt; Ym.Zmelt/ D 0; (8)

where �cast D .Tmelt � Tcast/ =�T:
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Although most of the dimensionless model parameters are of O.1/, further
simplification is possible because typically ı � 1; thus boundary condition (5)
can be taken at Y D 0.

3 Analysis

In this paper, we are primarily concerned with determining for which combinations
of process variables the air gap is more likely to form; for the corresponding problem
in [12] with �cast D 0, it was found that an air gap was more likely to form if
fPes P�o.0/ > 	2s St�

2
o .0/, where the dot denotes differentiation with respect to Z.

Thus, from now on, we focus on 0 � Z � Zgap; the solution for Z > Zgap was
obtained numerically in [13], but no study was ever carried as regards whether there
is a criterion that corresponds to the one given above when �cast ¤ 0. In particular,
Zgap is given by the solution to

� P0 � P1Zmelt C
Z Zgap

Zmelt

Ṗ �0;Z0� dZ0 D 0; (9)

where

Ṗ .Y;Z/ D
�

1

1 � �
� 

P�s � 1

Ym.Z/

Z Ym.Z/

0

P�sdY0
!

;

with � as the Poisson ratio, P0 D p0=E˛�T .> 0/ and P1 D 
gL=E˛�T .> 0/;
here, p0 is the pressure at the meniscus, E is the Young’s modulus, ˛ is the thermal
expansion coefficient and g is the gravitational acceleration. An indicator of whether
an air gap forms is the sign of Ṗ .0;Z/ for Z > Zmelt: if it is positive, it is evident
that Eq. (9) will have a solution for Zgap. Since the air gap often forms just a short
distance after solidification first occurs, it is therefore instructive to consider the
analysis for � WD Z �Zmelt � 1; where series expansions for � and Ym in terms of
� ought still to be valid. On setting �s D Ym.�/F .�; �/, � D Y=Ym .�/, the second
equation in (1) becomes

fPesYm
� PYmF C YmF� � � PYmF�

� D F��; (10)

with the boundary conditions becoming

F� D 	s .YmF � �o.Z// at � D 0; (11)

F D 0;
�
F�
�
�D1�

�
	s

	l

��
@�l

@Y

�

YDYm.Z/
D �ePesSt

�1 PYm at � D 1: (12)
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Now, in the transformed coordinates, Ṗ is given by

Ṗ .�; �/ D 1

1 � �
�
P�s �

Z 1

0

P�sd�0
�

; where P�s D PYmFCYmF��� PYmF�: (13)

As � ! 0, a self-consistent boundary-value problem is obtained if Ym.�/ � �3=2;
note that this result, for which �cast ¤ 0 andZmelt > 0, has only been found recently
[16, 17], whereas the result for the case when �cast D 0, which leads to Zmelt D 0

and Ym.�/ D �� C o.�/, has been known since much earlier [18]. To proceed, we
write

F D F0 .�/C �F1 .�/C o .�/C : : : ; Ym.�/ D �1�
3=2 C o

�
�3=2

�C : : : ; (14)

which suggests, at first sight, that Ṗ .0; �/ � �1=2 in Eq. (9); note also that, as
demonstrated in [16, 17], �1 is a strictly positive constant whose value is given by
�1 D 4St@2�l=@Y

2 .0;Zmelt / =3�
1=2, with Zmelt such that �l .0;Zmelt/ D 0, i.e. the

distance from the inlet at which solidification first starts. Now, at �0 and �1, we have

F0�� D 0; subject to F0�.0/ D �	s�o.Zmelt/; F0.1/ D 0; (15)

F1�� D 0; subject to F1�.0/ D �	s P�o.Zmelt/; F1.1/ D 0; (16)

respectively; thus,

F0.�/ D 	s�o.Zmelt/ .1 � �/ ; F1 D 	s P�o.Zmelt/ .1 � �/ : (17)

The forms of F0 and F1 mean that the first contribution to Ṗ .0; �/ is at O
�
�3=2

�
;

more exactly,

Ṗ .0; �/ � 1

2.1 � �/�1
�

5F1 .0/ �
Z 1

0

�
5F1 � 3�F1�

�
d�0
�

�3=2; (18)

which can be simplified to give

Ṗ .0; �/ � 1

2.1 � �/�1	s
P�o.Zmelt/�

3=2: (19)

So, an air gap is more likely to form if P�o .Zmelt/ > 0, indicating that an air gap will
always form; interestingly, this is considerably different to the result in [12] for the
case when �cast D 0.
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Moulding Contact Lenses

Ellen Murphy and William T. Lee

Abstract The moulding process in the manufacture of a certain monomer-based
product, is modelled using the thin film approximation with the aim of reducing
defects in which the mould is partially filled. A simple model neglecting curvature
of the moulds is considered first. This assumption is verified by a polar coordinate
model that investigates the effects of curvature of the dynamics of the fluid. We
investigate the role of surface tension and horizontal motion of the lower mould in
the formation of defects.

1 Introduction

A stage of the manufacture of a certain product consists of filling a mould with a
viscous fluid and pushing a second mould down on top of the first [1]. This action
squeezes the fluid out between the two moulds, with the desired effect being the
complete filling of the space between the moulds with fluid. However, this does not
always occur. In some cases, the fluid flows asymmetrically out of the gap, resulting
in partially filled moulds. This is highly undesirable and results in the rejection of
these specimens. The aim of this study is to determine the factors contributing to
asymmetrical flow and to develop recommendations for its avoidance.

E. Murphy • W.T. Lee (�)
MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
e-mail: ellen.murphy@ul.ie; william.lee@ul.ie

M. Fontes et al. (eds.), Progress in Industrial Mathematics at ECMI 2012,
Mathematics in Industry 19, DOI 10.1007/978-3-319-05365-3__26,
© Springer International Publishing Switzerland 2014

191

mailto:ellen.murphy@ul.ie
mailto:william.lee@ul.ie


192 E. Murphy and W.T. Lee

Fig. 1 Dimensional geometry of the moulds and positions of the fluid boundaries (not to scale)

2 Mathematical Model

The height between the two moulds is much less than the length of the moulds.
The fluid in question is highly viscous and is assumed to be Newtonian. Analysis
shows that the modified Reynolds number for this problem is small and so the thin
film approximation is appropriate. The system is axisymmetric and, for simplicity,
is modelled in two dimensions.

The setup consists of a lower mould, C1, and an upper mould, C2, as shown in
Fig. 1 (not to scale). Both moulds have the form of truncated hemispheres joined
to flat, horizontal sides. Fluid is placed in the lower mould and the upper mould is
then pushed vertically down on to the lower mould at a constant speed. The circular
part of the lower mould has a greater radius of curvature than the upper mould.
Assuming the system to be axially symmetric, the problem is modelled in 2-d. The
height of the fluid between moulds, h, is small relative to b, that is h � b and so
the dynamics of the fluid are modelled with the thin film equations. Assuming no
surface tension effects and knowing the height of the fluid between the moulds, the
system reduces to two ODEs which determine the evolution of the fluid boundaries.
Of particular interest was whether or not the curvature of the moulds influenced the
dynamics of the monomer. To check this, the system was first modelled in cartesian
coordinates, where the curvature of the moulds was neglected. This was compared
to a polar model, which included curvature effects.

2.1 Numerical Results and Conclusions

Figure 2 displays the numerical solutions for the two systems of ODEs. Results from
both the simple cartesian model and the polar model are shown. As can be seen in
the figures, there is no qualitative difference between the two sets of results. This
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Fig. 2 Evolution of the fluid boundaries for the polar model, overlaid with the simple case.
(a) xcom.t0/ D 0. (b) xcom.t0/ D 0:5

validates the use of the “flat” model and also helps to explain why the monomer
remains off-centred once it begins like so. From the perspective of the fluid, the
moulds appear flat, therefore when the upper mould is pushed down on the fluid it
is squeezed out in both directions from its initial position. There is no mechanism
available for it to overcome its off-centredness.
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Enhanced Water Flow in Carbon Nanotubes
and the Navier Slip Condition

Tim G. Myers

Abstract A possible explanation for the enhanced flow in carbon nanotubes is
given using a mathematical model that includes a depletion layer with reduced
viscosity near the wall. In the limit of large tubes the model predicts no noticeable
enhancement. For smaller tubes the model predicts enhancement that increases as
the radius decreases. An analogy between the reduced viscosity and slip-length
models shows that the term slip-length is misleading and that on surfaces which
are smooth at the nanoscale it may be thought of as a length-scale associated with
the size of the depletion region and viscosity ratio. The model therefore provides
a physical interpretation of the classical Navier slip condition and explains why
“slip-lengths” may be greater than the tube radius.

1 Introduction

The classical model for flow in a circular cylindrical pipe is described by the Hagen-
Poiseuille equation

uHP D �pzR
2

4�

�

1 � r2

R2

�

(1)

where uHP.r/ is the velocity in the z direction, pz is the pressure gradient along the
pipe, R is the radius and � the fluid viscosity. The corresponding flux is given by
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QHP D 2�

Z R

0

ruHP dr D ��R
4pz

8�
: (2)

In carbon nano-tubes (CNT) it is well documented that the flow is enhanced and the
true value of the flux is significantly higher than this classical value.

A popular approach to explain this enhancement is to introduce a slip-length
into the mathematical model, that is, the no-slip boundary condition u.R/ D 0 is
replaced by

u.R/ D �Ls @u

@r

ˇ
ˇ
ˇ
ˇ
rDR

(3)

where Ls is the slip-length. This leads to modified velocity and flux expressions

uslip D �R
2pz

4�

�

1 � r2

R2
C 2Ls

R



Qslip D QHP

�

1C 4Ls

R

�

; (4)

hence any magnitude of enhancement can be accounted for by using an appropriate
value for Ls .

Assuming fluid slip at the wall the value of the velocity at the channel wall
is positive: the slip length is defined as the distance the velocity profile must
be extrapolated beyond the wall to reach zero [1]. In general the slip length is
significantly smaller than the thickness of the bulk flow [2]. For example, Tretheway
and Meinhart [3] carry out experiments on water flow in a coated microchannel of
width 30�m and find a slip length of 1�m. In 1–2�m channels Choi et al. [4]
determine values of the order 30 nm. However, in CNTs Whitby et al. [5] quote
lengths of 30–40 nm for experiments in pipes of 20 nm radius. Holt et al. [6] and
Majumder et al. [7] quote slip lengths on the order of microns for their experiments
with nanometer size pores.

The high values of slip-length in CNT studies have led some authors to question
the validity of the slip modified Hagen-Poiseuille model [8, 9]. An alternative
explanation to the slip-length is based on the fact that CNTs are hydrophobic [10–
12]. The strength of attraction between the water molecules is greater than the
attraction between the hydrophobic solid and the water [13,14]. Indeed it was mainly
experiments performed with hydrophobic surfaces that supported early arguments
for a slip boundary condition [2]. It has been postulated that hydrophobicity may
result in gas gaps, depletion layers or the formation of vapour: experimentally this
may be interpreted as “apparent” slippage, see [15].

Obviously any depletion layer must be small. Experiments and simulations have
shown that the fluid viscosity is in close agreement with its bulk value down to sepa-
rations of about ten molecular diameters [2]. For CNTs the fluid properties typically
vary within an annular region approximately 0.7 nm from the wall [8, 16, 17].

Consequently, in the following work we will investigate a mathematical model
for flow including a region of low viscosity near the tube wall. In light of the results
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quoted in [14, 18] we will assume the theory is not valid for films below ten
molecular diameters thickness. This limit is also imposed through the validity of
the continuum assumption, for example the MD simulations of [19] shows results
that coincide with a continuum model for a pipe radius of ten molecular diameters.

2 Mathematical Model

Consider a pipe of cross-section R, occupied by two fluids. In the bulk flow region,
defined by 0 � r � ˛, we impose a viscosity �1. In the annular region near the
wall, defined by ˛ � r � R, we impose a viscosity �2 < �1. The assumption
of two regions with different viscosities leads to what is commonly termed a bi-
viscosity model in the non-Newtonian flow literature. In the following analysis there
is uncertainty about the values to choose for viscosity and the distance ˛. If we
define the position of the transition ˛ D R � ı then, based on previous studies of
water in CNTs we will choose ı D 0:7 nm. However, experiments show that the
slip length is a measure of hydrophobicity [4, 20–22] and so for other liquid–solid
systems the value of ı may differ.

For unidirectional pressure driven flow through a circular pipe the appropriate
mathematical model is

�1

r

@

@r

�

r
@u1
@r

�

D @p

@z
0 � r � ˛ ;

�2

r

@

@r

�

r
@u2
@r

�

D @p

@z
˛ � r � R :

(5)

Appropriate boundary conditions are

@u1
@r

ˇ
ˇ
ˇ
ˇ
rD0

D 0 u2.R; z/ D 0 ; (6)

which represent symmetry at the centreline and no-slip at the solid boundary. At the
interface between the fluids, r D ˛, there is continuity of velocity and shear stress

u1 D u2 �1
@u1
@r

D �2
@u2
@r

: (7)

The velocity expressions are then

u1 D pz

4�1
.r2 � ˛2/ � pz

4�2
.R2 � ˛2/ u2 D pz

4�2
.r2 �R2/ : (8)

The flux Q� is defined as the sum of fluxes in the two regions
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Q� D ��˛
4pz

8�1

�

1 � 2�1

�2

�

1 � R2

˛2

�

� �˛4pz

8�2

�

1 � R2

˛2

�2
(9)

D QHP
˛4

R4

�

1C �1

�2

�
R4

˛4
� 1

�

: (10)

The flow rate enhancement is defined as

�� D Q�

QHP
D ˛4

R4
C �1

�2

�

1 � ˛4

R4

�

: (11)

For the slip model the corresponding enhancement is

�slip D 1C 4Ls

R
: (12)

3 Model Validation

To verify whether this model gives reasonable results we consider the experiments
of Whitby et al. [5]. Their flow enhancement indicates a slip length of 30–40 nm
for pipes of radius 20 nm. Setting Ls D 35 nm, R D 20 nm determines their
enhancement factor as �slip D 8. Rearranging the expression for �� gives

�2 D �1

�
R4 � ˛4
��R4 � ˛4



: (13)

To obtain the same enhancement we set �� D 8 and also take ˛ D R� ı D 19:3 nm
to find�2 D 0:018�1. So, the current model will provide an enhancement factor of 8
with an average viscosity in the depletion layer approximately 0.02 times that of the
bulk flow. It is interesting to note that the viscosity of oxygen is also approximately
0.02 that of water, so this value supports the depletion layer theory. Thomas et al.
[23] find �slip 	 32 nm when R D 3:5 nm, taking �2 D 0:018�1 Eq. (11) indicates
�� 	 33:2 nm.

To clarify the behaviour of the current model we set ˛ D R � ı. Since �� is
simply a quartic in ˛ we may expand and rearrange the expression to find

�� D 1C 4ı

R

�
�1

�2
� 1

�"

1 � 3

2

ı

R
C
�
ı

R

�2
� 1

4

�
ı

R

�3#

; (14)

which is a monotonically decreasing function of R. This is in accordance with the
findings of Thomas and McGaughey [8] that the enhancement factor decreases with
increasing tube radius. Noting that the reduced viscosity model requires two distinct
regions, hence R � ı, the limit to the enhancement predicted by the current theory
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is determined by setting R D ı, �2=�1 D 0:018 and ı D 0:7 nm to give �� 	 50:
Whitby et al. [5] predict an enhancement of up to 45 times theoretical predictions.

Equation (15) also allows us to make further inference about the model behaviour
and its relation to the slip model. If we compare the above expression with that for
�slip we may define the slip length in terms of the thickness of the depletion layer
and the viscosity ratio

Ls D ı

�
�1

�2
� 1

�"

1 � 3

2

ı

R
C
�
ı

R

�2
� 1

4

�
ı

R

�3#

: (15)

Further, noting that �1=�2  1, we can identify three distinct regimes:

1. For sufficiently wide tubes, .ı=R/.�1=�2/� 1, then by Eq. (14) �� 	 1. There
is no noticeable flow enhancement and the no-slip boundary condition will be
sufficient.

2. For moderate tubes, .ı=R/.�1=�2/ is order 1 but ı=R� 1 then

�� 	 1C 4ı

R

�1

�2
: (16)

3. For very small tubes, ı=R is order 1, then the full expression for �� is required.

Note, numerous papers report constant slip-lengths between 20 and 40 nm when
R 2 “some nanometers up to several hundred nanometers”, see [20] for example.
Thomas et al. [23] suggest Ls varies with R for R 2 Œ1:6; 5� nm.

4 Discussion

The motivation behind this paper was to explain the unrealistically large slip-
lengths reported in nanotubes. The mathematical model developed shows that the
flow enhancement can be plausibly related to a reduced viscosity model, where the
viscosity in the depletion region is always much lower than in the bulk. In pipes
with a radius greater than the depletion layer thickness the model indicates that
the flow can only be enhanced by an order of magnitude (around 50), not orders as
reported in some papers. The term slip-length may be considered misleading, in fact
it appears to be a length-scale proportional to the product of the viscosity ratio and
the width of the depletion region. This length-scale is a property of the fluid–solid
system and remains approximately constant, down to very small radius tubes.

In a wider context the reduced viscosity model provides one possible explanation
for the Navier slip boundary condition on a hydrophobic solid surface that is smooth
down to the nanoscale (and hence an explanation for flow enhancement). In other
systems there may well be different mechanisms to explain the slip boundary
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condition, for example on rough surfaces one would expect the slip length to be
determined by the roughness height-scale.
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Flow Field Numerical Research
in a Low-Pressure Centrifugal Compressor
with Vaneless Diffuser

Alexey Frolov, Rudolf Izmaylov, and Denis Voroshnin

Abstract This work demonstrates the results of the first phase of the problem that
is aimed at the numerical investigation of such unsteady effects as the precursor stall
and the rotating stall in the stage with a vaneless diffuser of a centrifugal compressor.
This paper is focused on the capabilities and constraints of the steady-state
numerical simulations for an accurate prediction of the flow through the compressor
stage. Numerical simulations were carried out in NUMECA FINE/TURBO 8.9.1
for a single blade passage. The results were validated through a comparison with
the experimental data at the diffuser inlet and outlet. The results of numerical
simulations using different discretization schemes and turbulence models predicted
different flow structure. The results obtained with the second order discretization
agree with the experiments for the steady-state case in the region of high flows
rates. In the area of low flow rates the unsteady effects significantly influence the
flow leading to poor predictions. An analysis of an influence of the geometry model
and the grid resolution on the convergence is required to predict the satisfactory
agreement with experiment.

1 Introduction

State-of-the-art gas compressors often have to run far away from their design point
maintaining safe and reliable operation. At off-design conditions instabilities like
stall and surge can lead to the significant decrease of reliability or even to the
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destruction of the whole rig. The reason for this behavior is the internal structure
of the flow field, namely, vortices formation and development with a decrease of
the flow rate. The development and behavior of such unsteady effects as precursor
stall and rotating stall have been experimentally investigated in sufficient detail [1].
However, high cost and lack of completeness of the experimental study prevents the
identification of the internal nature of these phenomena. Therefore there is a need
for a detailed numerical investigation of the flow field structure with a comparison to
the experimental data to be carried out to clarify the reasons for the stall and surge.

The flow in a stage of the centrifugal compressor is highly three-dimensional,
spatially non-uniform and intrinsically unsteady. To provide the inside look at the
unsteady effects by the numerical simulation, a full annulus should be considered
under the study for both impeller and diffuser in the transient mode. However,
this technique is high-cost in computer resources and time. Thus this paper is
dedicated to the analysis of capabilities and constraints of the steady-state numerical
simulations of the stalling regimes in the centrifugal compressor. The main objective
is to analyze averaged characteristics of the stage.

2 Main Section: Numerical Research

2.1 Problem Description

A geometry model of the single-stage centrifugal compressor with the vaneless
diffuser was created at the Compressor Department of the Saint-Petersburg State
Polytechnical University (LPI) [2]. The intermediate stage under the investigation
consists of the impeller (frequency of rotation: n D 6;944 rpm; diameter: D2 D
275mm) with Z D 16 blades (inlet angle: ˇin D 34:4ı; outlet angle: ˇout D 48:9ı)
and vaneless diffuser (inlet diameter: D3 D 1:047D2; outlet diameter: D4 D
1:44D2). The compressor is designed to operate at flow coefficient �2 D 0:275 (flow
rate G D 0:425 kg/s). The maximum flow rate in the experiment is at �2 D 0:4

(G D 0:65 kg/s) and the strong unsteady stalling effects appear at �2 D 0:2

(G D 0:325 kg/s).
Both instant and averaged experimental data is available [2]. Averaged data was

obtained with traditional measurements on slow varying parameters. The unsteady
experimental data was obtained with high frequency pressure pick-ups and hot-wire
techniques. The averaged data is available for the different flow rates at the different
cross sections of the stage namely the diffuser inlet and outlet (Fig. 1).

2.2 Modeling Details

The simulation was carried out using the NUMECA FINE/Turbo software with
the EURANUS block-structures solver. The solver applies a CFD code based on a
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Fig. 1 Meridional view
of the compressor stage
(3-3—diffuser inlet,
4-4—diffuser outlet)

3D steady compressible, finite volume scheme to solve Reynolds-Averaged Navier-
Stokes (RANS) equations, namely continuity (1), momentum conservation (2), and
energy conservation (3) equations, in a conservative formulation [3]:

@
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C @
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uj

�

@xj
D 0; (1)
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where 
 is the fluid density, uj are the velocity components, E D e C 1
2
uiui is the

total energy, p is the static pressure, �ij are the stress tensor components, Fi are the
external forces components, Wf D 
F �u is the work performed by external forces,
qj D k @T

@xj
are the heat flux components, k is the laminar thermal conductivity.

These equations are solved in a rotational reference frame, which leads to
the presence of additional terms (i.e. Coriolis force) in these equations. Spalart-
Allmaras (SA), standard k-" (KE) and shear-stress transport (SST) turbulence
models were used for turbulence closure.

Different spatial discretization techniques were under the investigation, namely
second order cell-centered and first and second order upwind discretization
schemes. An explicit four-stage Runge-Kutta scheme and local time-stepping
technique were used for fictitious time iteration. The convergence of the solver was
accelerated by the enlarged Courant number and the application of a multi-grid
acceleration procedure with an increased number of smoothing steps on the coarse
grid levels. The convergence criterion is that a global residual is less than 10�6.
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Fig. 2 3D view of the
compressor stage

The steady-state simulations were carried out to verify the turbulence models and
to make some tuning for the unsteady simulations. Hub and shroud leakage flows
between impeller and casing are neglected. Cover disk friction is neglected as well.

2.3 Numerical Details

The intermediate compressor stage is modeled as a set of four components: an
inlet pipe, an impeller, a vaneless diffuser and a vaneless return channel (Fig. 2).
The model of the stage was built in CAD software and transferred into the
NUMECA/AUTOGRID specialized block-structured mesh generator. The mesh
generated for a computational domain of the single blade passage of the stage is
depicted in Fig. 3 (the number of cells is about 900;000). The wall cell width was
chosen to be 10�6 m so that values of dimensionless wall distance were kept below
yC � 0:5 on all the solid boundaries.

The boundary conditions were set in accordance with the 1D characteristic the-
ory. Total pressure, temperature, and velocity components were imposed at the inlet.
At the outlet an averaged static pressure was imposed at high flow rates and self-
adaptive mass flow rate at other operating conditions. Non-slip boundary conditions
were applied on solid boundaries. Matching periodicity boundary conditions were
applied on peripheral periodic boundaries. To create an initial solution for the simu-
lation on the finest grid level, the simulations were successively carried out on other
grid levels starting from the coarsest one. The calculated solution of each operating
point was used as the initial solution for the next higher pressure operating point.

All steady-state calculations were carried out on a single workstation with
following characteristics: Intel Core i7-950 processor (3.06 GHz), 8 Gb RAM,
Linux x64 operating system. Calculation time was about 18 h to converge on the
specified mesh, and 1 week to obtain all the characteristic points.
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Fig. 3 Mesh generated
for a single blade passage

2.4 Results and Discussion

The steady-state simulations were performed using different turbulence models and
discretization schemes. The comparison of the calculated pressure characteristic
(a dependence of the pressure coefficient from the flow coefficient) with the first
order upwind discretization schemes for the different turbulence models to the
experimental values is depicted in Fig. 4. All the turbulence models predicted similar
pressure characteristic shapes which are plain even in the area of the strong unsteady
effects �2 < 0:2 (G < 0:325 kg/s). Moreover, the obtained total pressure coefficient
values are underpredicted in the region of the high flow rates. This is likely to mean
high losses due to the dissipation effect of the first order schemes. It should be
noted that the overall prediction of the characteristic curve shape in comparison
to the shape of experimental curve is unsatisfactory. Thus, the first-order accuracy
is not sufficient to reproduce the stationary characteristic of the compressor stage
regardless of the turbulence model.

The comparison of the pressure characteristic obtained by the second order
central and upwind discretization schemes for the Spalart-Allmaras (SA) and k-"
(KE) turbulence models to experimental values is depicted in Fig. 5. It should be
noted that there were strong convergence issues for the low flow rates (�2 < 0:2),
which could be the result of strong instabilities in the flow reproduced by the second-
order discretization. The second-order discretization schemes predicted the pressure
characteristic curve shape much better than the first-order schemes. Due to neglect
of the hub and shroud leakages overprediction of the pressure coefficient in the area
of the high flows rates is quite expectable.
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Fig. 4 Pressure characteristic for the first-order schemes (left—diffuser inlet, right—diffuser
outlet)

Fig. 5 Pressure characteristic for the second-order schemes (left—diffuser inlet, right—diffuser
outlet)

Formation of a large vortex structure on the shroud with the decrease of the flow
rate from �2 D 0:275 to �2 D 0:1 (from G D 0:425 to G D 0:175 kg/s) is depicted
in Fig. 6. A severe difference between the flow fields predicted by the first and the
second order discretization techniques is noticeable. The predicted vortex starts to
form when the flow rate falls below �2 D 0:4 (G D 0:65 kg/s) only with the second-
order discretization, and subsequently, this vortex occupies a significant area of the
channel.

A detailed analysis of the convergence issues occurring at low flow rates
with second-order discretization was performed. Different outlet locations were
investigated first (return channel inlet and outlet, full U-bend and L-turn), but
the nature of convergence retained. Then return channel vanes were added to the
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Fig. 6 Flow paths colored by velocity magnitude for different flow rates (left—first order upwind,
center—second order central, right—second order upwind). (a) Flow rate: '2 D 0:275. (b) Flow
rate: '2 D 0:2. (c) Flow rate: '2 D 0:175. (d) Flow rate: '2 D 0:1

geometry model to significantly diminish the circumferential velocity component
at the outlet. However, the nature of convergence retained. Only the decrease of
the number of meridional flow paths and cells around the blade profile provided
desirable convergence. Thus, the lack of convergence is due to the strong vortices
near blade profile at low flow rates. Therefore unsteady simulations should be
performed for the accurate resolution of these vortices.

3 Conclusions

The results of performed simulations are highly dependent on the order of dis-
cretization. The first order accuracy is unacceptable due to the numerical dissipation
effects. The second order accuracy performs good agreement with the experimental
data and is capable of reproducing vortices development. In the area of the low
flow rates the large vortices formed in the interblade passage lead to the lack of
convergence. Additional steady-state simulations should be carried out on different
grids to determine convergence parameters. Unsteady simulations of the flow field
for full annulus geometry of the compressor should be carried out then.

Acknowledgements The authors thank Numeca Russia Company for funding the work and for
valuable technical support.



210 A. Frolov et al.

References

1. Izmaylov, R.: Numerical modeling of unsteady flow phenomena in a centrifugal compressor
stage. Compressor Pneumatics 5, 10–16 (2011)

2. Kononov, S.: Investigation of unsteady processes in centrifugal compressor for developing
diagnostics of unstable regimes. Ph.D. thesis, Leningrad, LPI (1985)

3. Numeca International: Numeca Fine/Turbo User Manual 8.9. Numeca International, Belgium
(2011). http://www.numeca.com

http://www.numeca.com


Large Eddy Simulation of Boundary-Layer
Flows over Two-Dimensional Hills

Ashvinkumar Chaudhari, Antti Hellsten, Oxana Agafonova, and Jari
Hämäläinen

Abstract Large Eddy Simulations (LES) are performed for turbulent boundary-
layer flows over two-dimensional (2D) hills or ridges of two different slopes at
Reynolds number equal to 3,120 based on the hill height and the free stream
velocity. The surface of the hill is assumed to be aerodynamically smooth. The hill
height is considerably smaller than the boundary-layer depth. The hill models used
in this study are the same as those used in the RUSHIL wind tunnel experiment
carried out by Khurshudyan et al. (United States Environmental Protection Agency
Report, EPA-600/4-81-067, 1981) and LES results are compared with the wind
tunnel measurements. This study focuses on the overall flow behaviour changes as a
function of the hill slope. The results of the mean velocity, the flow separation, and
the turbulence quantities are discussed in the paper. It is shown that LES produces
overall satisfactory results on the turbulent flow over the 2D hills. Especially for less
steep hill, the flow behaviour is well predicted by LES.
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1 Introduction

The modelling of a wind flow over complex terrains containing, e.g. hills, ridges,
forests, and lakes is of great interest in wind energy applications, as it can help in
locating and optimizing the wind farms. Computational Fluid Dynamics (CFD) has
become a popular technique during the last few decades. Due to inherent unsteady
phenomena of wind flow over complex terrain, it can be difficult to model by the
Reynolds-Averaged Navier-Stokes (RANS) approach. Thus, unsteady simulation
approaches, most importantly Large Eddy Simulation (LES), are often more suitable
for this kind of flows. This research is oriented towards LES for the atmospheric
flows over complex terrains. However, a systematic study of the boundary layer
flow over an idealized hilly terrains is a necessary step towards better understanding
of the flow over realistic complex terrains. It is therefore desirable to first validate
LES results against the wind tunnel measurements to get confidence on our LES
approach, and that is the subject of this paper. In this paper, LES are carried out for
the turbulent boundary layer flows over aerodynamically smooth two-dimensional
(2D) hills with two different slopes. So far, several studies have been reported
on the flow over hills as well as series of hills using RANS and LES approaches
[1,4,5,7,8]. Turbulent flow over a steep hill contains relatively complex mean-flow
characteristics such as separation and reattachment. As the flow passes over the hill,
a recirculation region can be formed behind the hill and the turbulence is enhanced
in the wake region. Thus, it is important to detect the influence of different hill
shapes on overall flow behaviour over hilly terrains. The focus of this paper is on
the changes in the mean velocity field and in the turbulence intensity as a function
of the hill slope. It is shown that the present LES produces reasonably realistic
results on the turbulent flow over the 2D hills. Moreover, the prediction of the flow
separation and reattachment-length for the steeper hill is closer to the measurements
than the other numerical studies reported in the past for the same hill geometry.

2 Numerical Model and Computational Details

The generic hill geometries used here are the same as those used in the RUSHIL
wind tunnel experiment carried out by Khurshudyan et al. [6]. In this study, two 2D
hills with different width to height ratios are studied. The hill height H is fixed to
0.117 m in both cases but the hill half length a is varied from 3H to 5H as shown in
Fig. 1. The shapes of the hills are defined by the parametric formulae given in [1,4].
These two hills are named here as Hill3 and Hill5 according to their a=H ratios and
their corresponding maximum hill slopes are 26ı and 16ı, respectively. The depth
of the boundary layer ı is assumed to be 1 m, i.e. ı D 8:55H . The total wind-wise
(horizontal) length of the computational domain Lx is set to 5.34 m and the width
of domain in the cross-wind direction (z) is set to one boundary layer depth, i.e.
Lz D ı D 1m. In the present flows, the frictional Reynolds number Re� based on
the friction velocity u� and ı is equal to 1;187, which is by far high enough to sustain
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Fig. 1 (a) Side-view of the computational domains, (b) closer look on the hill shapes (Hill3 and
Hill5)

fully turbulent flow. The grid resolution in the vertical direction �y is varied from
0.0004 to 0.0379 m, corresponding to yC

1 	 0:5. The wind-wise grid resolutions
�x is non-uniform with relatively finer grid on the hill surface corresponding to the
average value �xavg D 0:01948m. The cross-wind grid resolution �z is fixed to
0.01587 m. The whole computational grid consists of 275 � 121 � 64 hexahedron
cells for both Hill3 and Hill5.

LES directly resolves the large turbulent eddies by the computational grid
whereas the eddies smaller than the grid size need to be modelled using sub-
grid-scale (SGS) model. The filtered continuity and momentum equations for
incompressible flow as given by [2] are time-integrated numerically using the
second order implicit method and discretized in space using the bounded central dif-
ference scheme. The commercial finite-volume-based software ANSYS Fluent 13.0
is employed with the Smagorinsky-Lilly SGS-model [2].

Two different simulations for two hills are run for t D 40 s with all quantities
are time averaged over the last 30 s. It was checked in the Hill3 case that the flow
statistics were almost converged after 30 s of time averaging. In addition to the time
averaging, the results are also averaged over the homogeneous cross-wind direction.

2.1 Boundary Conditions

The logarithmic mean-velocity profile

u D u�
	

ln

�
y

y0

�

(1)
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Fig. 2 Instantaneous wind-wise velocity contours. (a) Hill3. (b) Hill5
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Fig. 3 Mean wind-wise velocity contours together with mean streamlines. (a) Hill3. (b) Hill5

is used at the inlet boundary. Here u� is the friction velocity, 	 D 0:41 is the
Von Karman constant, and y0 D 0:000157m is the ground roughness length. The
outflow boundary condition [2] is used at the outlet boundary. Periodic boundary
conditions are set in the cross-wind direction and the symmetry condition is used on
the top boundary. No-slip condition is set on the lower boundary, i.e. the ground
surface. On the inflow boundary, artificial perturbations are generated using so
called random 2D vortex method [2] leading to constant turbulence intensity of
12%. The perturbation field is superimposed to the mean velocity profile via a
vorticity field. The Reynolds number ReH based on H and the free stream velocity
U1 is equal to 3;120.

3 Results and Discussions

The LES results are compared with the hot-wire measurements of the RUSHIL
wind-tunnel experiment [6]. Figure 2 shows the instantaneous wind-wise velocity
distributions on xy planes of Hill3 and Hill5. Figure 3 shows the mean wind-wise
velocity distributions together with mean streamlines at the lower part of xy planes
of Hill3 and Hill5. The upstream flow is found almost fully developed shortly
after it enters the domain at x D �23:5H mostly owing to the artificial inflow
turbulence. In the closer proximity of the hill it gets influenced by the presence
of hill downstream. A very small volume of reversed flow is found at the upwind
base of both hills x D �a. The streamlines in Fig. 3 shows the major recirculation,
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Fig. 4 Vertical profiles of mean wind-wise velocity U=U1 and turbulence intensity u0=U1

compared with measurements for Hill3, a D 3H . (a) Mean velocity U=U1. (b) Turbulence
intensity u0=U1

and the flow separation and reattachment locations. After the reattachment the flow
gradually redevelops toward downstream.

Figure 4a, b show the mean wind-wise velocity U=U1 and the turbulence
intensity u0=U1 profiles compared with the measurements of Hill3, respectively.
According to Fig. 4a, the LES mean-flow profiles agree reasonably well with the
measurements in case of Hill3. However, the reattachment point is predicted at
x D 5:75H which is somewhat more upstream than the measurement reattachment
location x D 6:5H . Castro and Apsley [4] performed RANS simulation for flow
over the same hill (Hill3) using a modified k�� turbulence model and predicted the
reattachment point between x D 4:1H � 5H [4]. Allen and Brown [1] performed
LES for Hill3 and reported the reattachment point at x D 3:6H [1]. Thus, our
reattachment-length prediction for Hill3 is closer to the measurement than the other
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Fig. 5 Vertical profiles of mean wind-wise velocity U=U1 and turbulence intensity u0=U1

compared with measurements for Hill5, a D 5H . (a) Mean velocity U=U1. (b) Turbulence
intensity u0=U1

numerical studies reported in the past. The turbulence intensity is found slightly
higher than the measured values in the separated region (see Fig. 4b). On the other
hand, the Reynolds number ReH of the present flow is much smaller than the
wind-tunnel value. Tamura et al. [8] carried out LES for a slightly different 2D hill
(a D 2:5H ) withReH D 4;550, and the present results also have qualitatively good
agreement with their LES results as well as the wind tunnel measurements by [3].

Figure 5a, b show the mean wind-wise velocity U=U1 and turbulence intensity
u0=U1 profiles compared with the measurements of Hill5, respectively. LES results
for Hill5 have better agreement with the measured profiles than those of Hill3. From
Fig. 5a, it seems that there is no mean flow separation according to the measurements
but during the wind tunnel experiment, the instantaneous flow reversals were
frequently observed through smoke visualization at the downwind base of Hill5.
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However, in the average sense the flow remained attached [6], but present LES
predicts a small flow separation on the lee side of the hill and flow reattaches quickly
after the downwind base, i.e. at x 	 5:5H . Tamura et al. [8] reported instantaneous
flow separation after the hill summit even for more shallowed hill a D 7:5H

compared to Hill5 but also in that case the average flow remained attached [8]. In
general, Hill5 case is more sensitive than Hill3 because of the lower slope and hence
the flow being on the verge of separation. This means that the small changes in the
upstream boundary layer may trigger separation and lead to a completely different
flow over the lee side of the hill and downstream of it.

4 Conclusions

In this paper, we have carried out LES to investigate the turbulent boundary layer
flows over two 2D hills with different width to height ratios and the results are
compared with the RUSHIL wind tunnel measurements [6]. We have discussed
the mean flow development, flow separation and reattachment due to change in a
hill length. By comparing our results with [1, 4, 6, 8], it seems that LES produces
reasonably realistic results for flow over the Hill3. To our knowledge, the present
LES predicted the reattachment length more accurately than the previous studies
for this particular hill geometry (Hill3). In the case of Hill5, LES results have even
better agreement with measured profiles compared to Hill3. Actually most of the
observed discrepancies between LES and the measured flow are likely owing to the
uncertainties related to the artificially generated turbulence at the inflow boundary.
Also, the lower Reynolds number of LES may be responsible for some differences.
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Part V
Medicine

Overview

This section contains four contributions dealing with industrial mathematics for
medical applications. In a first contribution on A Visual Representation of the
Drug Input and Disposition Based on a Bayesian Approach, Olivier Barrière et al.
apply advanced mathematical tools to a practical problem: how to model the
relation between the compliance to a drug prescription, i.e., the degree to which
a patient correctly follows medical advice, and the drug disposition, i.e., the patient
pharmacokinetics characteristics. Based on Bayesian theory, the authors develop a
compliance spectrum to describe this relationship in a both intuitive and interactive
way.

Magda Rebelo et al. develop in a second contribution on Modelling a Competitive
Antibody/Antigen Chemical Reaction that Occurs in the Fluorenscence Capillary-
Fill Device a mathematical model for a competitive chemical reaction between
an antigen and a labelled antigen for antibody sites on a cell wall. This model
consists of two coupled diffusion equations, equivalent to a pair of coupled singular
integro-differential equations, which becomes both nonlinear and nonlocal via the
boundary conditions. Numerical simulation results based on real data are obtained
by a product integration method.

The third paper written by Thomas Martin Cibis and Nicole Marheineke on
Model-Based Medical Decision Support for Glucose Balance in ICU Patients:
Optimization and Analysis deals with the control of the glucose balance in intensive
care unit (ICU) patients using an insulin therapy. More precisely, the authors
both analyze and solve numerically the optimal control problem that arises if the
simulation model GlucoSafe by Pielmeier et al. is used in this context. This model
describes the temporal evolution of the blood glucose and insulin concentrations
in the human body by help of a nonlinear dynamic system of first-order ordinary
differential equations.
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The last contribution on Epileptic Seizures Diagnose using Kunchenko’s
Polynomials Template Matching written by Oleg Chertov and Taras Slipets uses
a template matching method based on Kunchenko’s polynomials, a redundant
dictionaries method, for electroencephalogram (EEG) signal processing.

Michael Günther



A Visual Representation of the Drug Input
and Disposition Based on a Bayesian Approach

Olivier Barrière, Jun Li, and Fahima Nekka

Abstract Compliance to a drug prescription describes the degree to which a patient
correctly follows medical advice. Poor compliance significantly impacts on the
efficacy and safety of a planned therapy, which can be summed up by the dictum:
“a drug only works if it’s taken”. However, the relationship between drug intake
and pharmacokinetics (PK) is only partially known, especially the so-called inverse
problem, concerned with the issue of retracing the patient compliance scenario
using limited clinical knowledge. Based on the Bayesian theory, we develop a
decision rule to solve this problem. Given an observed concentration, we determine,
among all possible compliance scenarios, which is the most probable one. Using
a simulation approach, we are able to judge the quality of this retracing process
by measuring its global performance. Since the sampling concentration is the
result of both patient compliance (drug input) and patient PK characteristics (drug
disposition), two natural questions arise here: first, given two different sampling
concentration values, can we expect the same performance of the retracing process?
Second, how is this performance affected by the PK variability between individuals?
For this, we here design an heatmap-style image, called Compliance Spectrum, that
provides an intuitive and interactive way to evaluate the relationship between drug
input and drug disposition along with their consequences on PK profile. The current
work provides a solution to this inverse problem of compliance determination from
a probability viewpoint and uses it as a base to build a visual representation of drug
input and disposition.
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Fig. 1 Two different compliance scenarios over the last three doses are represented in the upper
and lower panels, following a pre-historic period of perfect compliance

1 Bayesian Decision Approach for the Inverse Problem

Noncompliance to drugs generally involves errors in drug execution, such as missing
or doubling prescribed doses, as well as deviations from nominal times. These
errors in drug intake are complex and random in nature reflecting the involved
psychological and societal factors. Linking compliance to drug exposure, usually
recognized as the direct problem, has been so far the central topic. This stimulated
many modeling and simulation efforts, with the purpose to establish a quantitative
link between compliance and some drug related outcomes. This forward direction of
the problem naturally raises the inverse version of reconstructing drug intake from
limited clinical information. Compared to pharmacokinetics where deterministic
compartmental approach are predominant, compliance has to be formulated using a
probabilistic language [1, 2].

1.1 Compliance Scenarios

Motivated by the information loss along the drug intake, we decomposed its time
period into two parts, Fig. 1:

• The pre-historic period refers to drug events that happened long time ago as drug
intake memory has been lost and are unlikely to be retraced. We thus assume the
steady-state has been reached.

• This is followed by the historic period that precedes the patient’s visit to the
clinic, which we aim to retrace since the information from its dose events is still
detectable.

As missing doses are the most frequent and influential on the issue of therapy, we
only consider here scenarios where doses are either taken or missed on nominal
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Fig. 2 Five hundred concentration tine courses are generated for the same combination of dosing
events 110. The histogram on the right represents the probability density function of the final
concentration

times. To represent these dose combinations, we adopt a binary system for their
notation. For a historic period of length N , that is a total number of 2N possible
compliance scenarios, each compliance scenario !j is represented by a binary
sequence of N digits, where 0 and 1 refer to missing and taken dose events,
respectively. For instance, the combination .1; 1; 0/ (shortened to 110) has to be
read from left to right: 1 dose taken yesterday, 1 dose taken the day before yesterday
and one dose missed (0) 3 days ago. We treat the prior probabilities of combinations
of dosing events as equiprobable. This choice is for sake of simplicity: any other
probability distribution can be assumed, such as Binomial distribution or Markov
chains.

1.2 Retracing Process Based on Bayesian Decision

Based on the Bayesian theory, we developed a decision rule to solve the inverse
problem of compliance [3]. Given a Pop-PK model and an observed concentration
C , we are able to determine, among all possible compliance scenarios !j , j D
0; � � � ; 2N � 1, which is the most probable one c!j .

• First, using an approved Pop-PK model for a specific drug, we use Monte-Carlo
simulations to get a whole range of concentration values for a population of
virtual patients taking into account the distribution of the PK parameters and
repeat this for all possible drug compliance scenarios, Fig. 2. We then estimate
the different likelihoods of concentration at a specific sampling time given each
compliance scenario: p.C j!j /;8j D 0; � � � ; 2N � 1, Fig. 3.

• Next, based on the observed sampling concentration, we compute the
posterior probabilities of each scenario using the Bayes rule: P.!j jC/ D
P.!j /p.C j!j /

p.C /
;8j D 0; � � � ; 2N � 1, Fig. 4.
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• Finally, the most probable scenario is identified as the one with the largest
posterior probability among all possible combinations given an observed drug
concentration C at the sampling time, i.e. Oj D arg max

j

�
P.!j jC/

�
.

1.3 Performance of the Retracing Process

To judge the quality of the retracing process, we evaluate its success rate by
comparing the estimated dosing events of a large number of virtual patients c!ji
with the actual ones !ji , based on the simulation of their sampling concentrations at
a specific time. In the current study, the average number of the last scheduled doses
correctly retraced during the historic period is used as a performance indicator. This
indicator gives the average number of consecutive doses prior to the last sampling
time that can be correctly retraced without interruption.

2 Compliance Spectrum

2.1 Challenges

The average number of the last scheduled doses correctly retraced is a reliable
indicator to asses the performance of the decision rule. Nevertheless, this global
value is based on the implicit assumption that the performance is the same for every
patient: only one scalar value to asses the performance of the retracing process. Does
every concentration has the same odds of being correctly retraced?

When there is no variability and no errors (deterministic case), every scenario
leads to a different final concentration value. Thus, given the last sampling infor-
mation as an input, there is one and only one possible scenario. On the other hand,
when including the variability from the Pop-PK model (stochastic case) the problem
becomes no more invertible since the same concentration value can come from
multiple scenarios for different patients. How is the transition from the deterministic
case to the stochastic case?

2.2 Performance Evaluation Broken Down by Concentration

To represent performance indicators for the different sampling concentrations
values, we first split the range of possible concentrations into intervals, called
bins. Patients’ sampling concentrations will fall within one of these intervals. The
average number of the last scheduled doses correctly retraced for patients whose
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sampling concentration falls within a specific interval is calculated and represents
the performance for this interval.

2.3 Global Variability Coefficient: ˛

In the deterministic case, things happen exactly the way they would if we had only
one typical patient with no observational error nor uncertainty. In the stochastic case,
every patient has his own individual PK parameters which are often following log-
normal distributions. The residual error can be modeled in different ways but also
follows some probability distribution. The variance of these distributions (or their
coefficient of variation) regulates their width: the larger the variability, the wider
the distribution. We multiply this variability coefficient of all the distribution by a
coefficient ˛. Therefore, if ˛ D 0%, all the parameters are fixed to their typical
value, there is no variability and we find the deterministic case again. If ˛ D 100%
we get the actual variability of the published model and if ˛ D 200% we get twice
the variability of the published model.

2.4 Construction of the Compliance Spectrum

The performance evaluation depends on two factors: the concentration (split into
intervals) and the variability (handled by ˛). To obtain the Compliance Spectrum,
the performance of the retracing process is reported in a 2D image with a heat-map
format, where the horizontal axis represents the sampling concentration, the vertical
axis is for the multiplicative factor ˛ and the color expresses the performance.

2.5 Results

Taking various drug models, Fig. 5, we aim to retrace the last 2 days before
sampling, which gives rise to 4 compliance scenarios. The Compliance Spectrum
indicates that there are exactly four sampling concentrations, each being caused by
a unique scenario as no variability is present. This corresponds to a unique solution
of the inverse problem in the traditional meaning. These particular sampling values
will be referred to as characteristic concentrations of the Compliance Spectrum.
When variability is involved, we can notice that the traditional uniqueness of the
solution is no more valid and in fact, one sampling value may originate from
different scenarios. For small variability, we clearly see that the possible sampling
concentrations are separated into four zones, each emerging from one characteristic
concentration. The number of concentration zones corresponds to the number of
scenarios being considered. In this situation, the concentrations observed in one
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Fig. 5 Compliance spectra for three Pop-PK models: (a) and (b) one compartment models with
different typical values, (c) two compartment model

zone can all be attributed to a single scenario. Outside of these zones, a sampling
concentration is unlikely to be observed. Moreover, the size of these zones increases
with variability, indicating that a larger range of sampling concentrations can be
observed. Until a threshold variability, two adjacent zones will meet, making it
difficult to attribute the sampling concentrations to a single scenario. From this
merging point, the uniqueness of the solution has no meaning. As the variability
increases, an increasing number of observed concentrations can be attributed to
more than one scenario.

3 Conclusion and Perspective

To get a whole vision of the journey of a drug, when prescribed to the patient,
the drug input should be given the same importance as drug disposition [4].
The Compliance Spectrum exhibits the interaction between drug input and drug
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disposition. These two processes, one being behavior related, thus active in nature
and the other, physiology related and passive in nature, are put on the same
level in order to help clarifying drug properties through extraction and exploita-
tion of the hidden information. We provide here a direct picture of this drug
intake-pharmacokinetics link. The rich information carried out by the Compliance
Spectrum deserves to be thoroughly exploited. We have already identified the
characteristic concentrations as the most readily exploitable feature. A deeper
investigation of other properties of the compliance spectrum, either through shape
or color, needs to be performed.
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Modelling a Competitive Antibody/Antigen
Chemical Reaction that Occurs
in the Fluorescence Capillary-Fill Device

Magda Rebelo, Teresa Diogo, and Sean McKee

Abstract A mathematical model in the form of two coupled diffusion equations is
provided for a competitive chemical reaction between an antigen and a labelled
antigen for antibody sites on a cell wall; boundary conditions are such that the
problem is both nonlinear and nonlocal. This is then re-characterized as a pair
of coupled singular integro-differential equations which is solved by a product
integration method. Some numerical results based on real data are presented.

1 Introduction

This work is concerned with the development and analysis of a mathematical model
to describe antibody/antigen chemical reactions occurring in the Fluorescence
Capillary-Fill Device (FCFD). The FCFD is capable of detecting a particular disease
provided the specific antibody produced by the human body is known. It consists of
two plates of glass, separated by a narrow gap. A dissoluble reagent layer of antigen
(or hapten) labelled with a fluorescent dye is affixed to the upper plate of the device
while a specific antibody is immobilized on the lower plate. The cell is then filled,
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through capillary action, with a fluid which may or may not contain the (unlabelled)
antigen. The objective is to determine whether this antigen is present and, if so, in
what quantity. For instance, if a patient had a particular disease then (unlabelled)
antigen would be present; otherwise, it would not be. The glass plates then act as a
wave guide and a fluorescent beam is used to detect whether there is any (unlabelled)
antigen (see Badley et al. [1]).

In this paper we focus on the competitive reaction between the antigen and the
fluorescent antigen for the affixed antibodies. A mathematical model consisting of
two coupled diffusion equations with nonlinear and nonlocal boundary conditions
is obtained which can be re-characterized as a pair of coupled singular integro-
differential equations. Another reformulation, as a system of four Volterra integral
equations, is also considered in [3]. This work is a (considerable) extension of an
earlier study of the non-competitive [2].

2 The Mathematical Model

Initially, the labelled antigen is wall-bound and it will be denoted by X.b/
F . Upon

dissolving, it shall be denoted by XF . Furthermore, let X denote the unlabelled
antigen and Y the specific antibody. Both XF and X are free to diffuse in the
solution, whereas the antibody Y is insoluble and remains on the lower plate where
the antibody and the antigens react in the following way:

X C Y
k1•
k2

XYI XF C Y
k3•
k4
XF Y:

Thus on the lower plate labelled (XFY ) and unlabelled (XY) antigen-antibody
molecules are created. On the other hand, the wall-bound antigen X.b/

F is treated
as an independent species and we consider its dissolution as a further reaction

k5

X
.b/
F ! XF . Note that the concentration of the labelled antigen on the side wall

(i.e. ŒX.b/
F �) is dissolved upon entry of the fluid possibly containing the unlabelled

antigen; there is no recombination, so it is reasonable to consider the reaction as
one way only. The parameters k1, k2 are the forward and backward reaction rates
associated with the unlabelled antigen X ; k3, k4 are the forward and backward
reaction rates associated with the labelled antigen XF and k5 is the forward
“reaction” rate associated with the wall-bound antigen X.b/

F (i.e. the rate at which

X
.b/
F dissolves). Let d denote the plate separation distance which is small compared

with the size of the cell. Define the origin to be at some point on the upper plate and
denote x D d to be the corresponding point on the lower plate (see Fig. 1).
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Fig. 1 Schematic diagram
of a small cell

We denote by ŒX�, ŒXF �, the concentrations (in moles/m3) of X and XF ,
respectively; ŒXY�, ŒXF Y �, the concentrations (in moles/m2) of the complexes
XY and XFY , respectively, at x D d ; ŒX.b/

F � denotes the concentrations (in

moles/m2) of X.b/
F at x D 0 and ŒY � denotes the concentrations (in moles/m2)

of the antibody Y at x D d . The variables ŒX� and ŒXF � will now depend on
x and t whereas ŒXY�; ŒXF Y �; ŒY � and ŒX.b/

F � only depend on t . Furthermore
the initial concentrations of the antigens and antibody are given by ŒX�.x; 0/ D
a; ŒXF �.x; 0/ D 0; x 2 .0; d/, ŒX.b/

F �.0/ D aF ; ŒY �.0/ D c: The parametersD and
DF denote the diffusion coefficients associated with X and XF (m2/s), respectively.

The one non-dimensional model which describes the competitive chemical
reaction between an antigen (X ) and a labelled antigen (XF ) for antibody (Y ) sites
on a cell wall is given by the following reaction-diffusion system with nonlinear
boundary conditions:

@u

@t
.x; t/ D ı

@2u

@x2
.x; t/;

@v

@t
.x; t/ D @2v

@x2
.x; t/; x 2 .0; 1/; t > 0; (1)

subject to

u.x; 0/ D �; x 2 .0; 1/; (2)

v.x; 0/ D 0; x 2 .0; 1/; (3)

@u

@x
.0; t/ D 0; t > 0; (4)

@v

@x
.0; t/ D �� exp.�� t/; t > 0; (5)
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@u

@x
.1; t/ D �1 m .L1w1.t/ � .1 � w1.t/ � w2.t// u.1; t// ; t > 0; (6)

@v

@x
.1; t/ D �2 m .L2w2.t/ � .1 � w1.t/ � w2.t// v.1; t// ; t > 0; (7)

together with the constraints

mw1.t/C
Z 1

0

u.x; t/dx D �; t > 0; (8)

mw2.t/C
Z 1

0

v.x; t/dx D 1 � exp.�� t/; t > 0; (9)

where the dependent variables have been scaled as follows:

u.x0; t 0/ D d ŒX�.x; t/

aF
; v.x0; t 0/ D d ŒXF �.x; t/

aF
;

w1.t
0/ D ŒXY�.t/

c
; w2.t

0/ D ŒXF Y �.t/

c
:

The other non-dimensional constants are given by (note time-scale ratios are
abbreviated by (t-s r))

m D c

aF
; .molar ratio/; � D k5

d2

DF

; .dissolution/diffusion t-s r/;

L1 D dk2
aF k1

; L2 D dk4
aF k3

; .reaction t-s r/;

E1 D d2

D

�aF
d
k1 C k2

�
; E2 D d2

DF

�aF
d
k3 C k4

�
; .diffusion/reaction t-s r/;

ı D D

DF

; � D a d

aF
; �i D Ei

1C Li
; i D 1; 2:

3 An Integro-Differential Equation Formulation

Taking Laplace transforms with respect to time of equations (1) and after some
calculations we obtain that the solution .u.x; t/; v.x; t// at x D 1 satisfies

u.1; t/ D � �m
Z t

0

dw1
d�

.�/K.ı.t � �//d�; t > 0; (10)

v.1; t/ D g.t/ �m
Z t

0

dw2
d�

.�/K.t � �/d�; t > 0; (11)
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where .w1.t/;w2.t// is the solution of the two coupled integro-differential equa-
tions:

dw1.t/

dt
D �1ı

�

.1 � w1.t/ � w2.t//

�

� �m
Z t

0

dw1
d�

.�/K.ı.t � �//d�
�

� L1w1.t/


(12)

dw2.t/

dt
D �2

�

.1 � w1.t/ � w2.t//

�

g.t/ �m
Z t

0

dw2
d�

.�/K.t � �/d�
�

� L2w2.t/


(13)

subject to the initial conditions w1.0/ D w2.0/ D 0, with

g.t/ D 2�

Z t

0

�.1; t � s/ exp.��s/ds; (14)

K.t/ D 1p
�t

 

1C 2

1X

nD1
exp

�

�n
2

t

�!

; (15)

where � is the theta function:

�.x; t/ D 1p
4�t

1X

nD�1
exp

�

� .x C 2n/2

4t

�

; �1 < x < C1; t > 0:

Using this formulation of the problem it is possible derive small time asymptotic
solutions (see [3]):

w1.t/ D �1ı�t � 4��21mı
3=2

3
p
�

t3=2 C O.t2/; (16)

w2.t/ D 2

3
b1�2 t

3=2 �
p
�

4
b1 m�2t

2 C O.t5=2/; (17)

u.1; t/ D � � 2m�1�
p
ıp

�
t1=2 C �21m

2ı� t C O.t3=2/; (18)

v.1; t/ D b1t
1=2 �

p
�

2
b1 m�2 t C

�

b2 C 2

3
b1 m

2�2

�

t 3=2 C O.t2/: (19)

where bi � bi .�/ and are such that g.t/ D b1t
1=2C b2t3=2CO.t5=2/; 0 < t � 1

(for more details see [3]).
From (16) to (19), we observe that w1.t/, w2.t/, u.1; t/ and v.1; t/ have a singularity
at t D 0.
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4 A Numerical Method

We consider the product Euler method for the solution of the system (12)–(13).
Define the uniform grid Ih D fti D ih; 0 � i � N g, with stepsize h D T=N ,
on the interval Œ0; T �. On each subinterval Œtj ; tjC1�; j D 0; 1; : : : ; N � 1, we
approximate w1.t/ and w2.t/ by their respective linear Lagrange polynomials and
we obtain the scheme in the unknowns .wi1;w

i
2/; i D 1; 2; : : : ; N ,

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

w01 D 0; w02 D 0;

wi1 � wi�11

h
D �1 ı

0

@�L1wi1 C .1� wi1 � wi2/

0

@��m

i�1X

jD0

Wi�j .ı/
wjC1
1 � wj1
h

1

A

1

A;

wi2 � wi�12

h
D �2

0

@�L2wi2 C .1� wi1 � wi2/

0

@Qg.ti /�m

i�1X

jD0

Wi�j .1/
wjC1
2 � wj2
h

1

A

1

A;

(20)

where wik 	 wk.ti /; k D 1; 2; i D 0; 1; : : : ; N; with the quadrature weights given
by

Wi�j .ı/ D
 

1C 2

lX

nD1
exp

�

� n2

ı.ti � tj /
�!Z tjC1

tj

1
p
ı�.ti � s/

ds; (21)

and Qg.ti / is an approximation of g.t/ at t D ti , obtained by the product Euler
method applied to (14) and given by

Qg.0/ D g.0/ D 0

Qg.ti / D �p
�

i�1X

jD0
exp.��tj /

lX

nD�l
exp

�

� .2nC 1/2

4.ti � tj /
�Z tjC1

tj

1p
ti � s ds;

i D 1; 2; : : : ; N:

Once we have computed the values wi1;w
i
2, the approximations ui ; vi to

u.1; ti /; v.1; ti /, respectively, are given by the corresponding discretization of
Eqs. (10) and (11), namely

ui D � � m

h

i�1X

jD0
Wi�j .ı/.wjC11 � wj1 /;

vi D Qg.ti / � m

h

i�1X

jD0
Wi�j .1/.wjC12 � wj2 /; i D 1; 2; : : : ; N;

(22)

with u0 D u.1; 0/ D �; v0 D v.1; 0/ D 0 and ui 	 u.1; ti /; vi 	 v.1; ti /; i D
0; 1; : : : ; N:
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Table 1 Data related with
the Proteins (molecular
weight ' 105) and used in
numerical approximations

Dimensional parameters Non-dimensional parameters

D 10�11 m2 s�1

k1 105 (moles)�1 s�1 m 19;760:5

k2 10�4 s�1 � 0:001

a 1:67� 10�6 moles m�3 L1 5:988� 10�7
DF 10�11 m2 s�12 L2 5:988� 10�7
k3 105 (moles)�1 s�1 E1 1;670

k4 10�4 s�1 E2 1;670

aF 1:67� 10�8 moles m�2 ı 1

c 33� 10�5 moles m�2 � 105

k5 104 s�1

0 10 20 30 40 50
0

5. 10 12

1. 10 11

1.5 10 11

t seconds

X
Y

t

0 10 20 30 40 50
0

5. 10 9

1. 10 8

1.5 10 8

t seconds

X
F
Y

t

ba

Fig. 2 Numerical approximation of the concentration of the two complexes. (a) Complex XY ,
.XY/.t/. (b) Complex XF Y , .XF Y /.t/

5 Numerical Results

In this section we present some numerical results for the initial-boundary value
problem (1)–(9) with the data listed in Table 1.

In order to compute numerical approximations of w1 and w2 we consider
algorithm (20) with stepsize h D 1=1000. The variables are then dimensionalized
and numerical approximations of the concentrations of the complexes, ŒXY�.t/ and
ŒXF Y �.t/, and the concentrations of the labelled and unlabelled antigens at x D d ,
ŒX�.d; t/ and ŒXF �.d; t/, are then determined. These are displayed in Figs. 2a, b, and
3a, b. In each figure, t denotes the time in seconds. From Fig. 2a, b we see that both
ŒXY� and ŒXF Y � grow monotonically at roughly the same speed to their respective
(and rather different) asymptotic values, which they attain in approximately 30 s.
The two orders of magnitude difference between ŒXY� and ŒXF Y � would appear to
be reflected in the two orders of magnitude difference between a and aF . Figure 3a,
b displays the antigen and the labelled antigen at the wall (i.e. x D d ). One observes
that ŒX�.d; t/ drops initially as a result of the reaction and then grows to a peak
due to diffusion (more rapidly than ŒXF �.d; t/) before reducing monotonically. The
concentration ŒXF �.d; t/ is dissolved initially from the bound X.b/

F . From Fig. 3b
we see that ŒXF �.d; t/ grows to a peak (considerably smaller than ŒX�.d; t/) before
decreasing monotonically to zero in about 30 s. Thus, there is a small time delay
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Fig. 3 Numerical approximation of the concentration of the labelled antigen at the wall side where
the reaction takes place. (a) x D d , .X/.d; t/. (b) x D d , .XF /.d; t/

while diffusion migrates theXF molecules to x D d whereupon there is an increase
in ŒXF �.d; t/ before the reaction sets in.
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Model-Based Medical Decision Support for
Glucose Balance in ICU Patients: Optimization
and Analysis

Thomas Martin Cibis and Nicole Marheineke

Abstract Model-based medical decision support in terms of computer simulations
and predictions gains increasing importance in health care systems worldwide.
This work deals with the control of the glucose balance in ICU patients using an
insulin therapy. The basis of our investigations is the simulation model GlucoSafe
by Pielmeier et al. that describes the temporal evolution of the blood glucose and
insulin concentrations in the human body by help of a nonlinear dynamic system
of first-order ordinary differential equations. We aim at the theoretical analysis and
numerical treatment of the arising optimal control problem.

1 Introduction

Glucose is a vitally important source of energy for the human body. The skeletal
musculature, brain, central nervous system, etc. must always be adequately supplied
with glucose. Too high or too low blood sugar levels are harmful and can even
cause death. A healthy body regulates the blood sugar levels by itself, thereby the
peptide hormone insulin plays a crucial role. It becomes problematic (dangerous
for life) when the body has a resistance to insulin or an insulin deficiency, as it
is for example the case in diabetic patients. ICU patients suffering from severe,
sometimes life-threatening illnesses or injuries often show an impaired insulin
sensitivity. Since (strongly) fluctuating blood sugar levels additionally hamper the
healing process, these patients need to be strictly observed. Their metabolism of
glucose is controlled from outside via the intake/medication of food and insulin
yielding an increase or decrease, respectively. To guarantee an adequate control,
many frequent blood glucose measurements and tests are manually performed in
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hospitals, which is obviously associated with large caring effort and hence high
costs in terms of time and money. The number of people suffering from diseases of
sugar increases steadily worldwide, and health care systems are already overloaded.
Therefore, model-based medical decision support using computer simulations for
(long-time) predictions and optimizations gains importance.

This work deals with the optimal control of the glucose balance. The basis is
the bio-medical model GlucoSafe developed by Pielmeier et al. [1] in 2010. We
perform a theoretical (mathematical) analysis of the model and propose an adequate
and efficient numerical treatment.

2 Optimal Control Problem

The temporal evolutions of the glucose and insulin concentrations in the body
of a patient are determined by a complex interaction where apart from the
intake/medication of food and insulin also the activities of liver, kidneys, gut,
muscles, central nervous system, brain, etc. play a role. From the bio-medical point
of view there are several dependencies and effects that are not fully understood so
far, e.g. the impact of the insulin saturation. Moreover, measurements are restricted.
However, under simplifying assumptions and closure relations, Pielmeier et al.
[1] developed a “grey” model (1) in form of a deterministic nonlinear dynamic
system of first-order ordinary differential equations that contains patient-dependent
as well as fixed parameters and functions, for details on the bio-medical background
see [1–3] and on the mathematical formulation, exact definitions [4]. A graphical
illustration of the underlying biological processes that are taken into account is given
in Fig. 1.

dG

dt
D w

vG
ŒE..P;G/; i� /C d.D/C �.t/�

dD

dt
D �d.D/C ".t/

dI

dt
D c

vI
.P � I / � .rL C rK/ I C nC �.t/

vI

dP

dt
D c

vP
.I � P / � rEP

(1)

with t 2 T compact time period and

E..P;G/; i� / D h..P;G/; i� / � aR.G/ � aM ..P;G/; i� / � aN .G/:

The state variables are the glucose concentrations in the blood plasma G (to
be controlled) and in the gut content D as well as the insulin concentrations in
the blood plasma I and around the cells (the so-called peripheral compartment)
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Fig. 1 Illustration of the bio-medical model, in the style of Pielmeier et al.

P . Between the last two a difference-based diffusion process takes place. The
controls are the intakes/medication of parenteral � and enteral nutrition " as well
as of exogenous insulin � , which we summarize as u D .�; "; �/>. The glucose
balance of the liver h as well as the glucose absorption from the gut content d ,
of the skeletal musculature aM , brain and central nervous system aN are modeled
as patient-independent functions, in contrast to the renal glucose excretion aR that
depend on the patient data (body weight w, size, age, gender and diabetic status).
Further patient-dependent, but temporal constant parameters are the endogenous
(post-hepatic) supply of insulin n, the rate of the insulin reduction in liver rL,
kidneys rK and in the process of endocytosis rE , the insulin diffusion constant c
as well as the volumes of glucose blood plasma vG , insulin blood plasma vI and
peripheral compartment vP . The impact of the insulin enters (1) by the quantity i� .
Since the understanding of this biological process—involving impact sensitivity and
saturation effect—is still rather limited, i� is expressed in terms of a non-negative
parameter tuple � 2 R

2. This tuple is frequently adapted for each patient using
a least-square parameter fit where the deviation of simulation results (1) to earlier
measurements is minimized. Note that only the blood sugar G can be measured, but
not D, I and P . This makes the initialization of (1) at a certain time t0 inexact:
in combination to a blood sugar measurement G.t0/ D Gmeas , reference values for
D; I; P at t0 are taken from literature. The initial perturbation decreases over time



240 T.M. Cibis and N. Marheineke

due to the asymptotic stability of the model (see below). Thus, during the course of
a treatment previous simulation results can be used as better initial guesses.

Considering the optimal control of G we solve the following constrained
minimization problem,

min
.G;u/2Z�S J.G;u/ (2)

subject to

• G and u satisfy the dynamical system (1) with given initial values (not closer
specified here)

• u 2 U 
 S, the set of admissible controls

As cost function we choose thereby

J.G;u/ D 1

2
kG �G�k2 C 1

2
kdiag.�/.u � u�/k2;

where G� is the target blood sugar level and u� is the desired control based on
bio-medical and economic reasons with weights � 2 .RC

0 /
3.

3 Analysis and Numerical Treatment

In this section we present a theoretical analysis of the model and propose an
adequate numerical treatment.

The initial value problem (1) for the glucose balance is well-posed. For con-
tinuous controls it is resolvable in the classical sense. Existence and uniqueness
holds according to the Picard-Lindelöf theorem for the sufficiently smooth model
functions on the right-hand side of (1). However, bio-medical reasons require also
non-continuous controls. Considering u 2 L1.T ;R3/ with u � 0, the system (1)
has got a unique non-negative solution in the sense of Carathéodory for every choice
of non-negative initial values. This stands in accordance with biological demands. In
the following, we consider the space of piecewise constant non-negative bounded by
a certain upper bound functions as set of admissible controls U . This is reasonable
and sufficient for the application. The structure of the dynamical system allows the
decoupling into a linear system for I and P , a Riccati equation for D and a non-
linear equation for G. The differential equations for I , P and D can be solved
explicitly for the chosen U , for closed solution formulas see [4]. Moreover, for
each steady state G > 0 there exist a constant control u � 0 and steady states
I ; P ;D � 0, so that all together satisfy (1). In addition, it can be shown that
this solution is asymptotically stable in all medically relevant cases for all possible
patient data. So, the controllability of arbitrary stationary states is possible with S.
The existence of optimal controls in the space L2.T ; .RC

0 /
3/ can be proven straight
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forward for (2), following the ideas and procedure prescribed in [5]. Uniqueness is
lacked due to the non-linearity of (1); however, this is not necessary from a user
point of view.

The ordinary differential system is not stiff such that the numerical computation
of solutions can be performed by standard explicit Runge-Kutta methods with
adaptive step size control. In particular, we use the method by Dormand/Prince
[6]. The computational effort can be thereby reduced by a factor of two when
the explicit solution formulas for D, I , P are used for the calculation for G. The
optimal control problem (2) can be approached by direct and indirect methods, [5].
Thereby, it is advantageous to consider the associated equivalent reduced problem
minu QJ .u/, QJ .u/ D J.G.u/;u/. We have compared various direct and indirect
methods. For the direct methods, a finite-dimensional optimization problem must
be ultimately solved. The SQP method with numerically calculated gradients [7]
turned out to be the best one with respect to the run time. As indirect methods, we
tested conditional gradient method, gradient projection method and Newton-type
methods. Regarding accuracy and computational efficiency, these methods cannot
compete with the direct ones for this special problem (2); they are slower by a factor
of about 50. The following simulation results are computed by MATLAB, version
7.7. Therefore the SQP method is implemented by MATLAB function fmincon
with termination criteria: 10;000 function evaluations, 500 iterations, tolerance for
variable/cost function of 10�12.

4 Results and Discussion

The simulation results show that the model GlucoSafe leads to meaningful and
interpretable results as long as we treat patients with a stabilized (non-fluctuating)
blood sugar level. Figure 2 illustrates exemplarily the numerical results for G (red
curve) in comparison to measured values (black crosses) for an arbitrary patient.
From the bio-medical point of view the agreement is very satisfying since the
measured values lie much closer than the acceptable area of 20 % deviation (green
zone) would demand. In particular, the results for shorter time periods (�3.0 h)
are much better than for long time periods. The reason for the worsening lies in
the insulin effect i� which is actually a time- and patient-dependent function but
modeled here by a simple parameter fit via � . Crucial for a reliable prediction
of the long-time behavior is here a frequent adjustment of the parameter tuple �
to measurements. Figure 3 shows the temporal development of G for a forecast
period of 3 h. Thereby, the desired blood sugar level is taken to be constant
G� D 6:0 mmol=l, [8], and the desired control u� D 0 with weighting factors
� D .

p
10;

p
10; 10�3/> in the cost functional J . As admissible controls, we

have selected the set of non-negative functions u that are piecewise constant on
the equidistant time grid with step size �� D 1:0 h and bounded from above
by .0:041 mmol=kg; 0:026 mmol=kg; 0:334 U/>=min. A statistical validation of
our predictions is not possible so far due to our relatively small sample size of
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Fig. 2 Comparison of simulated blood glucose G with measured values for 12 h

Fig. 3 Predication of the state G for a computed optimal control; desired state G� D 6:0 mmol=l

data/measurements at hand. For a large clinical study the described methods have
been implemented in a software tool by Ulrike Pielmeier and the glucose research
group at the Center of Model-based Medical Decision Support, University Aalborg.
This is recently applied and tested in hospitals.

5 Conclusion and Outlook

This work presented a theoretical analysis and numerical investigation of the bio-
medical model GlucoSafe used for the optimal control of the blood glucose via
intake/medication of food and insulin. The simulation results are promising for ICU
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patients with non-fluctuating glucose levels. Improvements of the model lie surely
in the concrete definition of the insulin function i� . But also the liver balance h and
the endogenous insulin intake n that is assumed to be constant so far pose open
research questions to bio-medical experts. A glucose-dependent n would imply a
fully coupled dynamical system for all state variables. A interesting challenge from
the mathematical point of view is the incorporation of uncertainties coming from
the patient data and the measurements. This results in a stochastic control problem
for which sensitivity/robustness and controllability have to be investigated.
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Epileptic Seizures Diagnose Using Kunchenko’s
Polynomials Template Matching

Oleg Chertov and Taras Slipets

Abstract The paper related to epilepsy’s diagnosis as EEG analysis problem. Tem-
plate matching method based on a Kunchenko’s polynomials for EEG processing
introduced. To demonstrate efficiency of method numeric experiment is given.

1 Theoretic Background

Epilepsy ranks the third place on the prevalence of neurological disease and
occurs with a frequency of 0.5–1.5 %. It is a chronic neurological disorder that
affects people of all ages, with 2–4 % lifetime illness risk. As the main method
of epilepsy, diagnostics in clinical practice electroencephalography is used. In
recent time its role in the epilepsy’s diagnosis is becoming more important because
diagnosis involves usage of a fairly long time electroencephalograms (EEG), in
which patient’s brain activity signs are fixed. There are several EEG phenomena
types that suggest the epileptic activity, but most important is a complex type “sharp
wave–slow wave”.

With introduction of computer electroencephalography in clinical practice, new
problems whose solution requires new methods of EEG investigation and analysis
have appeared. Manual data analysis requires from doctor very durable, careful and
painstaking work, which involves routine operations performing. Thus, epileptic
activity search automation task as finding the “sharp wave–slow wave” complexes
is very important.

Input data recognition and verification in medical diagnostics are one of the most
actual engineering concepts in our days. One of such technique is template matching
approach. The key idea is filtering special information (features) from input data set.
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There are several different approaches in template matching technique which can
be divided into following groups: SIFT-methods, Oblique projection, SAD, Cross-
correlation, and Approximation over Redundant Dictionaries (AORD).

Method based on Kunchenko’s polynomials (KP) approximation in a space with
generative function [2] can be classified as AORD method. The cornerstone stage for
AORD methods is functions’ dictionary f�n < : >g constructing. KP approach uses
so-called generative transforms which are nonlinear one-dimensional functions. For
instance, natural power transforms:

�n < : >
n; n 2 N0 (1)

can be considered as generative transforms system. Applying (1) to some function
called cardinal function or generative element we build generated functions system
f�ng. After that approximation polynomial for input signal is constructed. KP
application for template matching to one-dimensional digital signal includes two
basic steps [1]:

1. Approximation of input signal with modified Kunchenko’s polynomials based on
a template to be found;

2. Approximation efficiency estimation for different parts of input signal.

Modified KP (MKP) P r
mod is used to approximate input signal. This approach

differs from classic approximation via KP [2] in including generative element (in
our case, a complex type “sharp wave–slow wave” as template is used) to generated
functions (elements) system f��g. This inclusion gives possibility to deal with linear
dependency between current part of input signal and template to be found [1]:

P r
mod < e >D

rX

�D0
˛��v < e > (2)

where r—polynomial’s degree.
Coefficients ˛v; v ¤ 0 can be found as solution of following linear equations

system:

rX

kD0
˛kFv;k D Fv;b; v D 1; r; (3)

where Fv;k—so-called centered correlants:

Fv;k � �v;k � �v;0 ��k;0
k'0 Œf .x/�k2

(4)
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�v;k are called simple correlants:

�v;k �
Z a

d

'v Œf .x/� �'k Œf .x/� dx (5)

f .x/—generative function, �v—generative transforms system [2].
Coefficient must be equal to next expression:

˛0 D �b;0 �
rX

vD1
˛v�v;0: (6)

Next cornerstone goal is efficiency coefficients calculation for different parts of
input. For that purpose well-known “window-signal” technique using—the subset
of points is selected from signal on each method’s iteration. The support of
selected signal’s subset is equal to support of template’s set of points. After that,
modified KP (2) is constructed for selected part of input signal and polynomial’s
approximation to given template efficiency coefficient is calculated:

er D ˙
Pr

vD1 ˛0Fv;b�
�'cb < e >

�
�2
; (7)

where 'cb < e >—centered main element (function). In case of all elements of
free terms vector Fb from (3) are negative, we assume that considered signal’s part
contains inverted or distorted template and efficiency coefficient has minus sign.

2 Numeric Experiment

To demonstrate efficiency of introduced method real-data experiment was per-
formed. Input data: patient’s EEG with symptomatic epilepsy’s focus in the anterior
temporal lobe. Signal duration—630 s, resolution—256 Hz. Template used for
matching complex “sharp wave–slow wave” is depicted on Fig. 1. It consist of
82 knots. For the Kunchenko’s approximation polynomials effectogram’s analysis,
as measure of approximation estimation a threshold equal to 0.9 is taken. This value
has been estimated experimentally according to the best correct-wrong detections
ratio. Seizures search results are presented in Table 1.

Doctor identified 245 complexes in given signal. Using MKP approach 207
complexes was found, 28 wrong detections and 38 complexes were missed. Consid-
ered experiment illustrates that template matching algorithm based on Kunchenko’s
polynomials allows to diagnose (with several con-strains) epileptic seizures.
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Fig. 1 Template for complex “sharp wave–slow wave”

Table 1 Experimental
diagnosis results

Complex’s type Found Doctor’s diagnosis

Non-distorted 81 (93.1 %) 87
Distorted 107 (86.3 %) 124
Low-amplitude 10 (76.9 %) 13
Distorted low-amplitude 9 (42.8 %) 21
Total complex score 207 (84.4 %) 245
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Part VI
Robotics and Automotive Industry

Overview

This section on Robotics and Automotive Industry contains six contributions
addressing motion planning for robots, durability and sensitivity studies for auto-
motive devices, systems and traffic.

The first two papers deal with motion planning of mechanical systems as they
arise in robotics and other application areas, e.g. automotive systems, space mission
design. In Collision-Free Path Planning of Welding Robots Chantal Landry et al.
focus on collision-free path planning. Describing the robot dynamics by a system of
ordinary differential equation and the objective function as the time to reach the final
position, they set up an optimal control problem. Thereby, the collision avoidance
criterion being a consequence of Farkas’s lemma is incorporated as state constraint.
The resulting model is solved by a sequential quadratic programming method where
an active set strategy based on backface culling is added. Control problems for
hybrid (i.e. mixed discrete and continuous) dynamical models are the topic of the
paper Motion Planning for Mechanical Systems with Hybrid Dynamics by Kathrin
Flaßkamp and Sina Ober-Blöbaum. Here, the motion planning is performed with
respect to motion primitives that are collected in a library. A solution to a specific
optimal control problem is then obtained by searching for the optimal sequence
of concatenated primitives. The framework is extended to motions along invariant
manifolds of the uncontrolled dynamics, e.g. trajectories on (un)stable manifolds of
equilibria, and applied to an open-chain jointed robot.

Durability, reliability and sensitivity play an important role in the manufacturing
of automotive devices and systems. In Performance of Sensitivity Based NMPC
Updates in Automotive Applications Jürgen Pannek and Matthias Gerdts deal
with the control of a half-car model under disturbances. They impose model
predictive control without stabilizing terminal constraints or cost to generate a
nominal solution and sensitivity updates to handle the disturbances. Stability of
the resulting closed loop is guaranteed by a relaxed Lyapunov argument on the
nominal system and Lipschitz conditions on the open loop change of the optimal
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value function and the stage costs. The proposed approach is real-time applicable
and yields promising results. To optimize the chassis dynamics Johannes Michael
and Matthias Gerdts take a closer look on modeling contact conditions as the contact
force is directly related to handling characteristics of the automobile. In Optimal
Control in Proactive Chassis Dynamics: A Fixed Step Size Time-Stepping Scheme
for Complementarity Problems they propose a numerical scheme and compare the
calculation of a quarter-car with a spring-damper road to wheel interaction to those
resulting from the complementarity problem. The durability analysis and optimal
design of tires and various mounts requires the efficient simulation of such contact
problems. Since the complexity of high dimensional finite element models exceeds
the applicability, Joachim Krencisznek and René Pinnau investigate model order
reduction techniques in Model Reduction of Contact Problems in Elasticity: Proper
Orthogonal Decomposition for Variational Inequalities. Considering a Signorini
contact problem in variational inequality formulation they apply Proper Orthogonal
Decomposition to compute an optimal projection subspace and discuss the reduced
model’s quality and efficiency an Encastre beam with contact.

The topic of the last paper is Novel Updating Mechanisms for Stochastic Lattice-
Free Traffic Dynamics. Proposing a lattice-free model, Alexandros Sopasakis
describes vehicle traffic on multi-lanes based on stochastic spin-flip and spin-
exchange Arrhenius dynamic potentials. The solution is computed in real-time (even
for large traffic streams) by a kinetic Monte-Carlo algorithm and compared with the
ones of lattice-based (cellular automata) approaches.

Nicole Marheineke



Collision-Free Path Planning of Welding Robots

Chantal Landry, Matthias Gerdts, René Henrion, Dietmar Hömberg,
and Wolfgang Welz

Abstract In a competitive industry, production lines must be efficient. In practice,
this means an optimal task assignment between the robots and an optimal motion of
the robots between their tasks. To be optimal, this motion must be collision-free and
as fast as possible. It is obtained by solving an optimal control problem where the
objective function is the time to reach the final position and the ordinary differential
equations are the dynamics of the robot. The collision avoidance criterion is a
consequence of Farkas’s lemma. The criterion is included in the optimal control
problem as state constraints and allows us to initialize most of the control variables
efficiently. The resulting model is solved by a sequential quadratic programming
method where an active set strategy based on backface culling is added.

1 Background

To be competitive, a car manufacturing must have efficient production lines. These
lines are composed of robots and other machines grouped together in work cells.
In each work cell a certain number of robots perform tasks on the same workpiece.
An efficient production line is obtained when the total time taken by the robots
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to complete all the tasks is as small as possible. This time is minimal when the
following three points are optimized: (1) task assignment between the robots of the
same work cell, (2) sequencing of the tasks of each robot, (3) path-planning of each
robot avoiding collisions with obstacles. If we want to optimize the production,
we cannot treat these three problems separately. The task assignment and the
sequencing depend on the computation of the fastest collision-free trajectory of the
robots between two tasks. However, because the computation of these trajectories
between all pairs of task spots is expensive, estimated distances are used at first. The
optimal path-planning of the robot is computed only when needed. Our algorithm
to optimize production line is sketched as follows

Algorithm 1. 1. Find promising estimated tours for all robots
2. Calculate exact distance for these tours
3. Identify collisions for exact trajectories
4. Reoptimize: if collisions occur, find new tours and go to 2

Algorithm 1 is fully detailed in [8]. This paper is dedicated to the computation
of the second step of Algorithm 1, whereas the first step is presented in [10] and the
third step in [8].

2 Model

Let us consider a robot composed of p links which are connected by revolute joints.
Let q D .q1; : : : ; qp/ denote the vector of joint angles at the joints of the robot.
Moreover, let the vector v D .v1; : : : ; vm/ contain the joint angle velocities and
u D .u1; : : : ; um/ describe the torques applied at the center of gravity of each link.
The robot is asked to move as fast as possible from a given position to a desire
location. Its motion is given in the Lagrangian form as follows

q0.t/ D v.t/ and M.q.t// v0.t/ D G.q.t/; v.t//C F.q.t/; u.t//; (1)

where M.q/ is the symmetric and positive definite mass matrix, G.q; v/ contains
the generalized Coriolis forces and F.q; u/ is the vector of applied joint torques and
gravity forces [1]. The function F is linear in u.

The motion of the robot must follow (1), but also be collision-free with the
obstacles present in the workspace. For simplicity, let us assume that only one
obstacle is present. To establish the collision avoidance condition, the robot and
the obstacle are approximated by a union of convex polyhedra, see [4–6]. The
approximation is denoted by P for the robot, byQ for the obstacle and are given by

P D [piD1 Pi ; with Pi D fx 2 R
3 jA.i/x � b.i/g;

Q D [qjD1Qj ; with Qj D fx 2 R
3 jC .j /x � d.j /g;
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where A.i/ 2 R
pi�3, b.i/ 2 R

pi , C .j / 2 R
qj�3, d.j / 2 R

qj , and pi and qj are the
number of faces in Pi and Qj , respectively.

The robot P and the obstacle Q do not collide if and only if for each pair of
polyhedra .Pi ;Qj /, i D 1; : : : ; p, j D 1; : : : ; q, there exists a vector w.i;j / 2
R
piCqj such that:

w.i;j / � 0;

�
A.i/

C .j /

�T
w.i;j / D 0 and

�
b.i/

d .j /

�T
w.i;j / < 0: (2)

This is a direct consequence of Farkas’s lemma. See [4] for more details.
The fastest trajectory of a robot is the solution of an optimal control problem,

where the system of ordinary differential equations (ODE) are given by (1), see [1].
If an obstacle is present in the workspace, the collision avoidance is assured as soon
as the vector w.i;j / of (2) is found at each time t and for all pairs of polyhedra.
However, to be written as state constraints, the strict inequality in (2) has to be
relaxed. Furthermore, since the robot moves, the matrices A.i/ and the vectors b.i/

evolve in time. Their evolution depends explicitly on q.t/. A complete formulation
of A.i/.q.t// and b.i/.q.t// is given in [4]. Finally, the optimal control problem to
find the fastest collision-free trajectory is given by:

Model 1. Find the final time tf , the state variables q; v W Œ0; tf � ! R
p , and the

controls u W Œ0; tf �! R
p and w.i;j / W Œ0; tf �! R

piCqj , i D 1; : : : ; p, j D 1; : : : ; q

such that tf is minimized subject to

1. the ordinary differential equations

q0.t/ D v.t/ and v0.t/ DM.q.t//�1 .G.q.t/; v.t//C F.q.t/; u.t/// I

2. the state constraints

�
A.i/.q.t//

C .j /

�T
w.i;j /.t/ D 0; i D 1; : : : ; p; j D 1; : : : ; qI (3)

�
b.i/.q.t//

d .j /

�T
w.i;j /.t/ � �"; i D 1; : : : ; p; j D 1; : : : ; qI (4)

3. the boundary conditions

R.q.0// �R0 D 0; v.0/ D 0; R.q.tf // �Rf D 0 and v.tf / D 0I

4. the box constraints umin � u � umax and 0 � w.i;j /; i D 1; : : : ; p; j D
1; : : : ; q,

where R.q/ denotes the position of the barycenter of the last link of the robot and
R0;Rf 2 R

m are given by the first step of Algorithm 1. The vectors umin and umax
are also given and the relaxation parameter " is positive and small.
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Model 1 can be easily applied with several obstacles. It suffices to define control
variables and to write (3)–(4) for each obstacle. Depending on the number of
state constraints (3)–(4), the problem is inherently sparse since the artificial control
variables w.i;j / do not enter the dynamics, the boundary conditions and the objective
function of the problem, but only appear linearly in (3)–(4).

3 Numerical Method and Examples

The optimal control problem described in Model 1 is solved by using the software
OC-ODE [3]. The method involves first discretizing the control problem and
transforming it into a finite-dimensional nonlinear optimization problem. The
control variables are approximated by B-splines of order 2 and the ordinary
differential equations are integrated with the classical Runge-Kutta method of order
4. The resulting nonlinear optimization problem is then solved by a sequential
quadratic programming method [2, 7]. As in [9] we use an Armijo type line-search
procedure for the augmented Lagrangian function in our implementation. However,
the resulting optimization problem contains a lot of constraints: at each time step of
the control grid and for every pair of polyhedra .P .i/;Q.j //, four state constraints
are defined [compare (3)–(4)]. To overcome this difficulty, we add an active set
strategy based on the following observation: the state constraints are superfluous
when the robot is far from the obstacle or moves in the opposite direction. The
establishment of the active set strategy is fully detailed in [4].

A good initialization of the control variables u and w.i;j /, i D 1; : : : ; p,
j D 1; : : : ; q can highly improve the convergence of the sequential quadratic
programming method. In the first step of Algorithm 1, an estimated tour is
computed. This tour is found by considering a grid on the workspace and applying a
Dijkstra-like algorithm to find the shortest path which connects the starting position
of the robot, R0, to the final location, Rf . The shortest path is chosen such that
the angles between two successive edges are minimized. If the shortest path is
close to the straight line connecting R0 to Rf , then u is initialized by solving the
above optimal control problem without considering the obstacles, this new problem
being far smaller and easier to solve than Model 1. If not, then the path ŒR0; Rf � is
split into subpaths of the form ŒR0; RI �; ŒRI ; RJ �; ŒRJ ;Rf � where RI and RJ are
vertices on the grid where the change in the angle of the shortest path is high. The
initial guess of u is then given by solving the optimal control problem without the
state constraints on every subpath.

Once the initial guess of u is established at every time step tk of the control grid
ft1; : : : ; tN g, an estimate of q.tk/, k D 1; : : : ; N can be computed by solving the
ordinary differential equations (1). This estimate allows us to initialize the remaining
control variables w.i;j /,i D 1; : : : ; p, j D 1; : : : ; q by exploiting the collision
avoidance condition (2). Indeed, the initial guess of w.i;j / at tk is chosen as the
solution of the following minimization problem:
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a b c d

Fig. 1 Snapshots of the motion of the robot P moving to Rf and avoiding four obstacles. The
visible obstacles are in white. (a) At t1. (b) At t14. (c) At t33. (d) At t39

at t1 at t4 at t9 at t14 at t17

a b c d e

Fig. 2 Snapshots of the motion of the robot avoiding an obstacle. (a) At t1. (b) At t4. (c) At t9. (d)
At t14. (e) At t17

min
w

�
b.i/.qk/

d .j /

�T
w such that

�
A.i/.qk/

C .j /

�T
w D 0 and w � 0;

where qk is the approximation q at time tk .
First, a two-dimensional numerical result is presented in Fig. 1. The robot is a

square and four obstacles are present in the workspace. For the initialization of u,
the middle point RI was used. In Fig. 2 a robot composed by three links is moving
around an obstacle without collision.
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Motion Planning for Mechanical Systems with
Hybrid Dynamics

Kathrin Flaßkamp and Sina Ober-Blöbaum

Abstract Planning and optimal control of mechanical systems are challenging
tasks in robotics as well as in many other application areas, e.g. in automotive
systems or in space mission design. This holds in particular for hybrid, i.e. mixed
discrete and continuous dynamical models. In this contribution, we present an
approach to solve control problems for hybrid dynamical systems by motion plan-
ning with motion primitives. These canonical motions either origin from inherent
symmetry properties of the systems or they are controlled maneuvers that allow
sequencing of several primitives. The motion primitives are collected in a motion
planning library. A solution to a specific optimal control problem can then be found
by searching for the optimal sequence of concatenated primitives. Energy efficiency
often forms an important objective in control applications. We therefore extend the
motion planning framework by primitives that are motions along invariant manifolds
of the uncontrolled dynamics, e.g. trajectories on (un)stable manifolds of equilibria.
The approach is illustrated by an academic example motivated by an operating
scenario of an open-chain jointed robot.

1 Introduction

Planning problems arise in many technical applications and typically one is
interested in an optimal solution of the problem. Taking into account the dynamics
of the technical system, e.g. an industrial robot, there has to be found a solution
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trajectory to the dynamic optimal control problem fulfilling in addition required
start and final configurations (cf. e.g. [1]). Furthermore, the dynamics of a complex
technical system has to be modeled by an interaction of continuous time and discrete
event dynamics, thus by a hybrid system.

Optimal Control. An optimal control problem for a mechanical system with
configuration manifold Q and states x.t/ D .q.t/; Pq.t// 2 TQ is defined by a cost
functional J.x; u/ D R T

0
C.x.t/; u.t// dt , that has to be minimized. Constraints are

given by the system’s dynamics, e.g. the Euler-Lagrange equations

@L

@q
.q; Pq/ � d

dt

@L

@ Pq .q; Pq/C f .q; Pq; u/ D 0

with Lagrangian L and forces f depending on continuous time control inputs u.t/
and on .q; Pq/, by boundary conditions and typically further constraints on the states
and controls. There exists a number of approaches for numerically solving optimal
control problems (cf. e.g. [2] for an overview). For our computational example,
we use DMOC (Discrete Mechanics and Optimal Control, [3]), a method that
directly discretizes the problem such that a high dimensional constrained nonlinear
optimization problem is obtained which can be solved e.g. by sequential quadratic
programming (SQP, cf. e.g. [4]). Since these methods compute local optima only,
it is necessary to provide good initial guesses for the optimal control method and it
is beneficial to combine the method with global, e.g. planning techniques [5–7]. In
[5], Frazzoli et al. present the approach for motion planning with motion primitives
(cf. Sect. 2).

Hybrid Dynamics. The dynamic behavior of technical systems is typically mod-
eled by systems of continuous time differential equations. However, for an appro-
priate description of complex behavior and interactions, discrete effects have to be
additionally accounted for, leading to the general framework of hybrid systems.
Considering mechanical systems, there is a number of origins for hybrid effects:
a changing environment as well as varying internal parameters change the system’s
dynamics, obstacles lead to impacts or (de)coupling processes cause changes of
the system’s topology. Formally, a hybrid system can be defined by a finite family
of continuous subsystems Px D fi .x; u/; i D 1; : : : ; N (the vector fields origin
from different Lagrangian Li ) defined on subsets Xi (domains) of a common state
space and with the same control inputs. Switching between the subsystems is usually
restricted by guards and reset maps (cf. e.g. [8]). Then, a hybrid trajectory consists of
the continuous variables plus a discrete mode d.t/ 2 f1; : : : ; N g that defines which
subsystem is active. The optimal control of hybrid systems is of great interest, since
it includes an optimization of discrete and continuous variables leading to mixed-
integer programming problems (cf. e.g. [9]).

The remainder of this paper is structured as follows: in Sect. 2, we introduce
the different kinds of motion primitives and sketch the idea of motion planning with
primitives. Extensions for an application to hybrid mechanical systems are presented
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in Sect. 3. Finally, in Sect. 4, the method is illustrated by an academic model of an
open-chain jointed robot.

2 Motion Planning with Motion Primitives

The basic idea of motion planning with primitives (introduced in [5]) lies in
exploiting the inherent symmetries of a system. Mechanical systems often inhabit
symmetries, for example if they are invariant with respect to translations or
rotations. Formally, this means that there exists a Lie group G with a left-action
˚
TQ
g W TQ! TQ; g 2 G on the state space which leaves the Lagrangian invariant,

L ı ˚TQ
g D L for all g 2 G. Then, we call two trajectories equivalent, if they

are equal except for a symmetry transformation and a time shift. Symmetry helps to
reduce the complexity of the motion planning library since it is sufficient to store one
representative, a motion primitive, for all equivalent trajectories. Solving a motion
planning problem corresponds to a search for the optimal sequence in this library
represented by a maneuver automaton (cf. [5, 6]).

Trim Primitives. A special kind of primitives is given by trim primitives, which
are motions along the group orbits of G with a constant control value. Thus, the
trajectories can be simply described by .q; Pq/.t/ D ˚TQ.exp.�t/; x0/, u.t/ � u0
with � being an element of the Lie algebra corresponding toG, with the exponential
map exp. � / and some initial value x0 (cf. [5, 7] for details). In mechanical systems,
trims are also known as relative equilibria and they are closely related to the
conservation of momentum maps, the Noether theorem, and to symmetry reduction
procedures (see [7]). For a spherical pendulum (Fig. 1), trims are horizontal rotations
with constant velocity. In the lower half sphere, uncontrolled trims exist. A constant
additive control can be chosen to create trims with arbitrary rotational velocities at
any height.

Trajectories on (Un)stable Manifolds. The natural, i.e. uncontrolled dynamics
of a mechanical system provide motions that can be of great interest when
searching for energy efficient control maneuvers. In particular, trajectories on stable
manifolds of hyperbolic unstable fixed points are promising candidates since a stable
manifold contains all motions which tend to the corresponding equilibrium point (cf.
e.g. [10]). The unstable manifold, in contrast, shows the direction of expansion from
the equilibrium and is attractive. Formally, assuming Nx D . Nq; 0/ is an equilibrium
of the system and FL.x; t/ denotes the flow of the autonomous system defined by
the Lagrangian L, the local stable manifold is given by

W s
loc. Nx/ D fx 2 U jFL.x; t/! Nx for t ! 1 and FL.x; t/ 2 U 8t � 0g:

The global stable manifold W s can be governed by the preimages of the flow on
W s

loc. Nx/. (For the unstable manifold W u, the same holds in backward time (t � 0).)
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Fig. 1 For a simple spherical
pendulum, trim primitives are
horizontal rotations, but
(un)stable manifolds belongs
to purely vertical motions.
Thus, connecting maneuvers
as motion primitives are
required such that sequences
of primitives can be found

Fig. 2 Unstable manifold of
the up-up equilibrium of a
double pendulum (restricted
to vertical motions). Motion
primitives are generated by
choosing trajectories with
different time durations on
the manifold

To compute such manifolds numerically, we use the method GAIO (Global Analysis
of Invariant Objects, [11]), see Figs. 2 and 3 for single pendulum (cf. Fig. 1) and
double pendulum (cf. Fig. 4) manifold examples. In [7], it is explained in detail how
trajectories on manifolds can be chosen.

Connecting Maneuvers and Sequencing. Motion primitives of a third kind have
to be computed to build up the motion planning library, namely short controlled
maneuvers that connect trims with each other and trims to manifolds. This can be
done for example by the optimal control method DMOC (see [3]). In Fig. 1, all three
types of primitives for a simple spherical pendulum are sketched (we refer to [7] for
a detailed description).
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Fig. 3 The locked double pendulum (restricted to vertical motions) is a one degree of freedom
system with a one-dimensional unstable manifold. For the numerical computations, the locking
angle is set to 0:25�

Fig. 4 Model of a double spherical pendulum with four degrees of freedom and chosen coordi-
nates .�1; �2; �1; �2/. Actuation in both joints is assumed
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Fig. 5 Illustration and simulation of a hybrid trim for the pick and place scenario. The rotational
velocity P� is kept constant by the discontinuous, but piecewise constant control u

3 Motion Planning for Hybrid Mechanical Systems

In the motion planning framework, the hybrid properties of the system have to be
accounted for: in the first time, when computing the primitives (restricted domains,
limited time between switches), but also when searching for the optimal sequence
in the library. In general, there is a need for hybrid control maneuvers, which
connect primitives of the different continuous subsystems. For their computation
additional constraints on the state space due to the guards have to be considered
and an optimization of switching time has to be included (cf. Sect. 4 for illustrating
examples).

Symmetries also occur in hybrid systems (cf. e.g. [12]). In the following, we
restrict to a very specific case and assume that for two continuous subsystems,
switching back and forth is allowed and the subsystems inhabit the same symmetry
group G. We call a tuple of two pairs .�1; u1/ and .�2; u2/ a hybrid trim, if both
are trims in their state spaces and if it holds that x.t�/ D x.tC/, i.e. the state, in
particular the velocity before and after switching is the same. In Fig. 5, an example
is shown of a hybrid trim for a spherical pendulum which switches at the “pick”
and “place” locations between two different modes (cf. Sect. 4 for a more detailed
discussion.) By a hybrid control with switched constant control values, it is possible
to generate a hybrid trim trajectory with constant horizontal velocity P� , i.e. in this
example, we have �1 D �2 but u1 ¤ u2.
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Fig. 6 Example solution sequence for the industrial robot scenario consisting of motion primi-
tives. The scenario starts at the up-up position (subsystem f1 active), is pushed to the unstable
manifold (maneuver for f1), than switches to a locked mode (f2) and uses the corresponding
unstable manifold to go downwards; after a short maneuver leaving the safety region (f1), it rests at
the down-down position to change the tool and finally steers (maneuver for f1) to the rotational pick
and place motion, which is a hybrid trim (switching between f3 and f4). The solution sequence is
given in cartesian coordinates (cf. Fig. 4), red dots mark the switching between primitives

4 Example: An Academic Motion Planning Problem for an
Industrial Robot

An open chain jointed robot as used e.g. in production facilities can be modeled—
in an academic fashion allowing high simplifications on technical details—as a
spherical pendulum. Thus, to illustrate the presented motion planning approach,
we consider a double spherical pendulum with two-dimensional controls in both
joints (cf. Fig. 4, m1 D 20 kg, m2 D 8 kg, l1 D 1m, l2 D 0:5m, g D 9:81m=s2).
The Lagrangian and the equations of motion can be found e.g. in [7]; as the cost
functional we chose the control effort modeled as J.u/ D R T

0
u2.t/dt . The starting

point for the scenario is the up-up position. The final condition is a periodic motion
of the outstretched locked double pendulum, which is motivated by a pick and place
scenario (a hybrid trim) assuming that m2 is changed to 12 kg while the picked
object is moved (cf. Fig. 5). Before heading to the final condition, the robot has
to change the tool in the down-down equilibrium. Another kind of hybrid effect
is brought into the problem by defining a safety region for �1 2 Œ˙�=4;˙�=2�,
where the second link has to be locked (cf. Fig. 3). To compute energy efficient
control sequences, uncontrolled trajectories on the unstable manifolds (cf. Figs. 2
and 3) are used together with connecting control maneuvers. Thus, there are four
different subsystems (labeled by their different vector fields for shortness): a double
spherical pendulum (f1), a locked double pendulum (f2), and an outstretched locked
pendulum with m2 D 8 kg (f3) or m2 D 12 kg (f4). Figure 6 shows an example
solution sequence for the motion planning problem.

In conclusion, this example shows that the motion planning with motion primi-
tives method is particularly suited for an extension to hybrid systems: the flexibility
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of the method allows for incorporating motion primitives from each continuous
subsystem, the computational effort of deriving an optimal hybrid solution is
reduced by the motion planning library to finding a hybrid optimal sequence, and
the method exploits dynamical properties which are present in hybrid as well as
in ordinary mechanical systems. In future work, the approach has to be evaluated
further by larger examples with more or different kinds of hybrid effects. Then,
searching in the motion planning library will have to be performed by appropriate
methods, e.g. sampling based road map algorithms (cf. e.g. [6]).
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Performance of Sensitivity Based NMPC
Updates in Automotive Applications

Jürgen Pannek and Matthias Gerdts

Abstract In this work we consider a half car model which is subject to unknown
but measurable disturbances. To control this system, we impose a combination of
model predictive control without stabilizing terminal constraints or cost to generate
a nominal solution and sensitivity updates to handle the disturbances. For this
approach, stability of the resulting closed loop can be guaranteed using a relaxed
Lyapunov argument on the nominal system and Lipschitz conditions on the open
loop change of the optimal value function and the stage costs. For the considered
example, the proposed approach is realtime applicable and corresponding results
show significant performance improvements of the updated solution with respect to
comfort and handling properties.

1 Introduction

Within the last decades, model predictive control (MPC) has grown mature for both
linear and nonlinear systems, see, e.g., [1–3]. Although analytically and numerically
challenging, the method itself is attractive due to its simplicity and approximates an
infinite horizon optimal control as follows: In a first step, a measurement of the
current system state is obtained which in the second step is used to compute an
optimal control over a finite optimization horizon. In the third and last step, a portion
of this control is applied to the process and the entire problem is shifted forward in
time rendering the scheme to be iteratively applicable.

Unfortunately, stability and optimality of the closed loop may be lost due to
considering finite horizons only. To ensure stability of the resulting closed loop,
one may impose terminal point constraints as shown in [4, 5] or Lyapunov type
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terminal costs and terminal regions, see [6, 7]. A third approach uses a relaxed
Lyapunov condition presented in [8] which can be shown to hold if the system is
controllable in terms of the stage costs [9, 10]. Additionally, this method allows for
computing an estimate on the degree of suboptimality with respect to the infinite
horizon controller, see also [11, 12] for earlier works on this topic.

Here, we use an extension of the third approach to the case of parametric control
systems and subsequent disturbance rejection updates. In particular, we focus on
updating the MPC law via sensitivities introduced in [13]. Such updates have been
analysed extensively for the case of open loop optimal controls, see, e.g, [14], but
were also applied in the MPC closed loop context in [15, 16]. In order to avoid the
usage of stabilizing Lyapunov type terminal costs and terminal regions and obtain
performance results with respect to the infinite horizon controller, we utilize results
from [16] in an advanced step setting, see, e.g., [17].

In the following, we present the considered half car model from [18, 19] and
the imposed MPC setup. The obtained numerical results show that this approach
is both realtime applicable and provides a cheap and yet significant performance
improvement with respect to the comfort and handling objectives requested by our
industrial partners.

2 Problem Setting

Throughout this work we consider the control systems dynamics of a half car which
originate from [18, 19] and are slightly modified to incorporate active dampers, see
Fig. 1 for a schematical sketch. The resulting second order dynamics read

m1 Rx1 D m1g C f3 � f1 m3 Rx3 D m3g � f3 � f4
m2 Rx2 D m2g C f4 � f2 I Rx4 D cos.x4/.bf3 � af4/ (1)

where the control enters the forces

f1 D k1.x1 � w1/C d1. Px1 � Pw1/
f2 D k2.x2 � w2/C d2. Px2 � Pw2/
f3 D k3.x3 � x1 � b sin.x4//C u1. Px3 � Px1 � b Px4 cos.x4//

f4 D k4.x3 � x2 C a sin.x4//C u2. Px3 � Px2 C a Px4 cos.x4//

Here, x1 and x2 denote the centers of gravity of the wheels, x3 the respective
center of the chassis and x4 the pitch angle of the car. The disturbances w1, w2
are connected via w1.t/ D w.t/, w2.t/ D w.t � �/ and the control constraints
U D Œ0:2 kN s/m, 5 kN s/m]2 limit the range of the active dampers. The remaining
constants of the halfcar are displayed in Table 1.
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Fig. 1 Schematical sketch of a halfcar subject to road excitation w

Table 1 Parameters for the
halfcar example

Name Symbol Quantity Unit

Distance to joint a; b 1 m
Mass wheel m1;m2 15 kg
Mass chassis m3 750 kg
Inertia I 500 kg m2

Spring constant wheels k1; k2 2 � 105 kN/m
Damper constant wheels d1; d2 2 � 102 kN s/m
Spring constant chassis k3; k4 1 � 105 kN/m
Gravitational constant g 9:81 m/s2

3 MPC Algorithm

In order to design a feedback for the half car problem (1), we impose the cost
functional

JN .x; u;w/ WD
N�1X

kD0
�RFR.k/C �AFA.k/ (2)

following ISO 2631 with horizon length N D 5. The handling objective is
implemented via

FR.k/ WD
2X

iD1

.kC1/TZ

kT

�
Œki .xi .t/ � wi .t //C di . Pxi .t/ � Pwi .t //� � Fi

Fi

�2
dt
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with nominal forces

F1 D .a �g � .m1 Cm2 Cm3//=.aC b/

F2 D .b �g � .m1 Cm2 Cm3//=.aC b/

whereas minimizing the chassis jerk

FA.k/ WD
.kC1/TZ

kT

.m3«x3.t//2 dt

is used to treat the comfort objective. Both integrals are equally weighted via �R D
�A D 1 and are evaluated using a constant sampling rate of T D 0:1 s during
which the control are held constant, i.e. the control is implemented in a zero-order
hold manner. The nominal disturbance w. � / and the corresponding derivates are
computed from road profile measurements taken at a sampling rate of 0:002 s via a
fast Fourier transformation (FFT).

For the resulting finite time optimal control problem, we denote a minimizer
of (2) satisfying all constraints by u?. � ; x;w/. Since the control must be readily
computed at the time instant it is supposed to be applied, u?. � ; x;w/ is computed
in an advanced step setting, cf. [17]. To this end, the initial state x of the
optimal control problem is predicted for a future time instant using the last known
measurement and the intermediate control which is readily available from previous
MPC iteration steps.

Since we want to apply sensitivity updates in case of measurement/prediction
deviations and disturbances, we additionally precompute sensitivity information
along the optimal open loop solution with respect to the predicted state
@u?=@x. � ; x;w/ and the nominal disturbances @u?=@w. � ; x;w/. Then, once the
nominal control u?. � ; x;w/ is to be applied, we use newly obtained state and
disturbance information x, w to update the control via

u. � ; x;w/ WD u?. � ; x;w/C
�
@u?

@x
. � ; x;w/

@u?

@w . � ; x;w/
�> �

x. � / � x. � /
w. � / � w. � /

�

; (3)

see also [13, 14] for details on the computation and limitations of sensitivities.
For simplicity of exposition, we predict the initial state x using two sampling

intervals T of the closed loop control. Note that although larger predictions are
possible, robustness problems are more likely to occur since predicted and real
solutions usually diverge, see, e.g., [20, 21].
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Fig. 2 Comparison plot for the chassis jerk using MPC with (cross) and without sensitivity update
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4 Numerical Results

During our simulations, we modified both the states of the system and the
road profile measurements using a disturbance which is uniformly distributed in
the interval Œ�0:025m; 0:025m�. For this setting, precomputation of u?. � ; x;w/,
@u?=@x. � ; x;w/ and @u?=@w. � ; x;w/ required at maximum 0:168 s < 2T D 0:2 s
which renders the scheme realtime applicable. As expected, the updated control
law shows a better performance than the nominal control. The improvement cannot
only be observed from Fig. 2, but also in terms of the closed loop costs: For
the considered race track road data we obtain an improvement of approximately
8:2% using the sensitivity update (3). Although this seems to be a fairly small
improvement, the best possible result obtained by a full reoptimization reveals a
reduction of approximately 10:5% of the closed loop costs.

Note that due to the presence of constraints it is a priori unknown whether the
conditions of the Sensitivity Theorem of [13] hold at each visited point along the
closed loop. Such an occurrence can be detected online by checking for violations
of constraints or changes in the control structure. Yet, due to the structure of the
MPC algorithm, such an event has to be treated if one of the constraints is violated
at open loop time instant k D 1 only which was not the case for our example.
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12. Nevistić, V., Primbs, J.A.: Receding horizon quadratic optimal control: Performance bounds
for a finite horizon strategy. In: Proceedings of the European Control Conference (1997)

13. Fiacco, A.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming.
Academic, New York (1983)

14. Grötschel, M., Krumke, S., Rambau, J.: Online Optimization of Large Scale Systems. Springer,
Heidelberg (2001)

15. Zavala, V.M., Biegler, L.T.: The advanced-step NMPC controller: optimality, stability and
robustness. Automatica 45(1), 86–93 (2009)

16. Pannek, J., Gerdts, M.: Robust stability and performance bounds for nmpc with abstract
updates. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference,
pp. 311–316 (2012)

17. Findeisen, R., Allgöwer, F.: Computational delay in nonlinear model predictive control. In:
Proceedings of the International Symposium on Advanced Control of Chemical Processes
(2004)

18. Speckert, M., Dreßler, K., Ruf, N.: Undesired drift of multibody models excited by measured
accelerations or forces. Tech. rep., ITWM Kaiserslautern (2009)

19. Popp, K., Schiehlen, W.: Ground Vehicle Dynamics. Springer, Heidelberg (2010)
20. Limon, D., Alamo, T., Raimondo, D.L., Bravo, J.M., Munoy de la Pena, D., Ferramosca, A.,

Camacho, E.F.: Input-to-state stability: an unifying framework for robust model predictive
control, nonlinear model predictive control. In: Magni, L., Raimondo, D., Allgöwer, F. (eds.)
Nonlinear Model Predictive Control: Towards New Challenging Applications. Lecture Notes
in Control and Information Sciences, vol. 384, pp. 1–26. Springer, Heidelberg (2009)

21. Findeisen, R., Grüne, L., Pannek, J., Varutti, P.: Robustness of prediction based delay
compensation for nonlinear systems. In: Proceedings of the 18th IFAC World Congress, Milan,
pp. 203–208 (2011)



Optimal Control in Proactive Chassis Dynamics:
A Fixed Step Size Time-Stepping Scheme
for Complementarity Problems

Johannes Michael and Matthias Gerdts

Abstract This paper is about a fixed step size time-stepping scheme for the
computation of solutions of complementarity problems. As we want to optimise
chassis dynamics by solving optimal control problems, we took a closer look at
modeling contact conditions. The latter are important, as the contact force is directly
related to handling caracteristics of the automobile. This plays an important role
particularly in certain driving situations, e.g. driving over a pothole. Hereafter the
motivation for the development is carried out and the components of the scheme are
explained. At the end we compare the calculation of a quartercar with a spring-
damper road to wheel interaction to those resulting from the complementarity
problem.

1 Aims and Setting

Our research addresses the development of real-time optimal control strategies to
improve comfort and handling characteristics in automotives. The desired control
is supposed to be proactive, i.e. it is calculated for an upcoming road segment and
not by measuring wheel accelerations or other data via sensors. For this purpose we
suppose to know the future road profile in a preview area, for example measured by
laser sensors. To calculate the control we use a sensitivity approach by comparing
the next road segment with parametrized comparandums. For these, the controls
and sensitivities with respect to nominal road parameters are known and the applied
control can be calculated by a sensitivity update from the nominal solution. In our
case we use electro-rheological dampers as control devices, for whom the damper
constants can be adjusted rapidly by a control current.
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2 Modelling of a Quartercar

We consider the setting of a quatercar, see e.g. [3], consisting of two masses, one
for the chassis and one for the wheel. For simplicity only movements in vertical
direction are considered. The vector of the generalized coordinates consists of the
two positions q.t/ D Œq1.t/ q2.t/�

>, where q1 represents the wheel and q2 the
chassis position. The two masses are interconnected by a parallel spring-damper
element, and the wheel is also connected to the road w.t/ by the same mechanical
element.

3 Contact Dynamics as Complementarity Problem

As the control algorithm is supposed to act in crucial events, like a ride over edges,
we investigate problems arising from contact mechanics in the case of loss of contact
between wheel and road surface. To this end we replaced in the quartercar model
the ground interaction by a masspoint without a fixed connection to the ground and
a non penetration condition. In generalized coordinates these conditions lead to the
following complementarity problem:

g.q.t// � 0; �.t/ � 0; g.q.t// ? �.t/:

Here g.q.t// represents the gap function between the wheel and the surface, �.t/
is the amount of the contact force and the third condition ensures that there can
only be a contact force, when the gap between wheel and surface is closed. More
information about complementarity problems can be found in [1]. The dynamics
of the contact condition can be written as first order differential equation in the
following way.

Pq.t/ D v.t/;

M.q/ Pv.t/ D F.q.t/; v.t//C g0.q.t//>�.t/:

All internal forces are summarized in F.q.t/; Pq.t//. The last term is the force vector
of the contact force. To ensure a realistic behaviour we added another condition such
that the elasticity of the tyre can be expressed. When an impact occurs there will be
a rebound, that can be modeled via Newtons impact law, see e.g. [4].

g0.q.t//.vC C "v�/ D 0

Here v� and vC are defined for every contact time ts as

v� D lim
t%ts

v.t/; v� D lim
t&ts

v.t/
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thus representing the left- and right-sided limit of the velocity at an impact. With
this condition the amount of the force acting at an impact is defined by relating the
velocity before and after contact by the elasticity coefficient " 2 Œ0 I 1�.

3.1 Problems with Fixed Step-Size Time-Stepping Schemes

To integrate the dynamics of the system with respect to time we need a suitable
time-stepping scheme. Therefore we tried to use fixed step size schemes like the
semi-implicit Euler scheme presented in [6]. This scheme is event driven, i.e. in
every step one has to check if the complementarity condition is violated or not. But
as we like to use the scheme in an optimization algorithm in future, we want to
formulate the problem only by equality and inequality constraints. Especially if we
want to use a fixed step size it is not possible to guarantee the desired behaviour at
impact points if the impact time does not coincide with a discretization point.

3.2 A Fixed Step Size Time-Stepping Scheme
for the Complementarity Problem

To overcome the problem above we reformulated the problem, such that the
constraints consist only of equalities and inequalities. The presented scheme has
a fixed step size h and the discretization points are written as ql D q.l �h/ and the
other variables respectively. To determine if a contact occurs in the next time step
we redefined the right side of the dynamics with the additional variable �.t/ for the
contact force as

QF .q.t/; v.t/; �.t// D F.q.t/; v.t//C g0.q.t//>�.t/:

The actual time-stepping method stays the same as in [6]. It can be written as

qlC1 � ql D hvlC1;

M.vlC1 � vl / D h QF .ql ; vl ; �l /:

For simplification the mass matrix is supposed to be constant, what is true for
the problem under consideration. The developed scheme consists of a preview
step to calculate if there are violations of the state constraints at the next time
step. Therefore we predict the state at the next discretization point QqlC1 using
QF .ql ; vl ; 0/, i.e. without any contact force:

QqlC1 � ql D h QvlC1;
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M. QvlC1 � vl / D h QF .ql ; vl ; 0/:

The following equalities and inequalities guarantee that the non-penetration and
rebound condition are fulfilled:

�l � 0 (1)

g.ql / � 0 (2)

g. QqlC1/>�l � 0 (3)

g0.ql />�l.vlC1 C "vl / D 0 (4)

With the definition of (1) and (3) we obtain that if the predicted state is greater
than zero the contact force has to be zero. But if g. QqlC1/ is less than zero and the
contact force is chosen to be zero, (2) would be violated in the next step, because
then QqlC1 D qlC1 holds. Due to this, �l has to be chosen positive to guarantee
feasibility. Considering (4) one obtains the amount of the contact force to ensure
Newtons impact law. This time-stepping method will simulate the dynamics in a
correct way if the step size is chosen small enough.

3.3 Numerical Results

In this section we present some simulation results concerning the comparison
between the quartercar model with and without contact formulation. We simulated
a ride over a step of height 10 cm with the constants taken from [5]. In Fig. 1
simulation results are depicted for both methods with the associated contact forces.
The upper two plots depict the simulation when the wheel is modelled with a
spring-damper element between its mass and the road. The lower depictions are
the numerical results using the contact formulation with the preview step calculation
and the conditions (1)–(4). In the left plots the solid line represents the wheel and the
dashed one the chassis trajectory. One can see that in the first simulation the wheel
does not behave as one would expect. It performs a rapid acceleration towards the
road after the edge, due to the suddenly acting stressed spring in the model. At that
instant of time the acting contact force, depicted in the right plot respectively, is
negative, what cannot be true due to the assumption that the wheel does not glue to
the road. In the second simulation using the contact formulation, the wheel behaves
similar to a free falling ball, except disturbances due to the spring and damper forces
by the connection to the chassis. The contact force is discontinuous, because the
contact is lost at the edge and at every impact time impulsive forces occur to ensure
the conditions above. After some jumps the wheel stays in contact with the road and
also the contact force normalizes again to a continuous function.
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Fig. 1 Comparison between the spring-damper arrangement and the contact formulation

4 Outlook

The next step is to optimise the motion in the presence of contacts. First test
examples done with the SQP algorithm snopt [2] regarding a bouncing ball work for
one impact in the regarded time interval. We assume to figure out arising numerical
difficulties and solve the optimal control problem to calculate control strategies and
the corresponding sensitivities for crucial road situations. With this, the control can
be calculated for upcoming disturbances with a sensitivity update in real-time.
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Model Reduction of Contact Problems
in Elasticity: Proper Orthogonal Decomposition
for Variational Inequalities

Joachim Krenciszek and René Pinnau

Abstract In this contribution a model order reduction method is applied to a
Signorini contact problem. Due to the contact constraints classical linear reduction
methods such as Craig–Bampton are not applicable. The Signorini contact problem
is formulated as a variational inequality and Proper Orthogonal Decomposition
(POD) is used to calculate an optimal projection subspace. Numerical results of
the reduced model’s quality and efficiency for an Encastre beam with contact are
presented.

1 Content

In a lot of industrial processes e.g. in vehicle manufacturing the simulation of
components that come in contact with each other or with the environment play
a crucial role. For durability analysis and optimal design of tires and various
mounts the numerical performance is an important issue. Hence the complexity of
high dimensional finite element models exceeds the applicability of these uses and
therefore model reduction has to be applied.

Classical model reduction techniques such as the Craig–Bampton method are
used to reduce linear systems, but even with linear elasticity the contact inherits
nonlinearity to the problem. The following paper presents a method to apply the
nonlinear model reduction technique proper orthogonal decomposition to a problem
in elasticity involving contact constraints.
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2 Signorini Contact Problem

We will focus on the time-dependent Signorini contact problem. Consider an elastic
solid body with constant density 
 that initially occupies the domain ˝. The
boundary is partitioned into three parts: on �D we have Dirichlet boundary condition
with no displacement, �N is subject to boundary forces fN and �C is subject to the
Signori contact condition, that implies the possibility of contact. Volume forces fV
act on the whole solid.

Problem formulation: Find .u; / satisfying


 Ru � div  D fV in ˝ � .0; T /
n � .n/ D fN on �N � .0; T /

u D 0 on �D � .0; T /
n � u � g � 0 on �C � .0; T /

.n � u � g/.n � .n// D 0 on �C � .0; T /
t � .n/ D 0 on �C � .0; T /

u.x; 0/ D u0I Pu.x; 0/ D u1 in ˝

To derive a variational formulation we define

V D fv 2 ŒH1.˝/�n j v D 0 on �Dg
VC D fv 2 V j n � v � g � 0 on �C g

Then the weak formulation reads: Find u W Œ0; T �! VC satisfying

Z

˝


 Ru � .v � u/dx C
Z

˝

.u/ W �.v � u/dx � F.v � u/

for all v 2 VC , where �.u/ is the strain tensor and .u/ is the stress tensor given by
.u/ D C�.u/. The force term is obtained by:

F.v � u/ D
Z

˝

fV � .v � u/dx C
Z

�N

fN � .v � u/d�

A detailed explanation can be found in [1]. Applying a discretization with the
finite element space VN we obtain a finite dimensional variational inequality. The
constraints will be replaced by constraints on the grid points:
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Find x� such that

.M Rx CKx � b/T .x� � x/ � 0 (1)

s.t. Bx � c

where K is the stiffness matrix, M is the mass matrix

.K/ij D
Z

˝

C�.�j / W �.�i /dx; .M/ij D
Z

˝


�j �idx

and

bi D
Z

˝

FV ��ids C
Z

�N

FN ��ids

.B/ij D n ��j .xi /; ci D g.xi / with xi 2 �N
Applying a discretization in time:

Rxk D xk � 2xk�1 C xk�2
.�tk/2

Using this in (1) we obtain:

� NAkxk � Nbk
�T
.x� � xk/ � 0 (2)

s.t. Bx � c

with

NAk D 1

.�tk/2
M CK and Nbk D b CM

2xk�1 � xk�2
.�tk/2

This linear variational inequality (2) is equivalent to the quadratic program:

min
1

2
xTk

NAxk � NbT xk (3)

s.t. Bxk � c

3 Proper Orthogonal Decomposition

Proper orthogonal decomposition is a method to determine an optimal subspace
basis, similar to the concepts of Karhunen-Loève expansion and principal
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component analysis. Applied as a method of model reduction, the data that is
approximated in an optimal least square sense is given in the form of solutions of
the full systems or can even be obtained from experimental measurements. Since the
solution of the full system usually is given as a result of a numerical approximation,
it is only given at certain time instances ti . These samples are called Snapshots and
are stored in the snapshot matrix

Y D Œy1 : : : ym� D Œy.t1/ : : : y.tm/� 2 R
n�m (4)

Then an optimal basis with basis vectors 'i has to be determined that minimizes the
projection error:

min
'j

mX

iD1
kyi �

dX

jD1
hyi ; 'j i'j k2

The solution to this minimization problem can be obtained by means of singular
value decomposition (SVD) of the snapshot matrix Y :

Y D U˙V �

where U is a unitary n � n matrix, V is a unitary m � m matrix and ˙ is a n � m
diagonal matrix containing the singular values:

U D Œ'1 : : : 'n� ˙ D

0

B
B
B
B
B
B
B
B
B
@

1
: : :

r
0
: : :

0

1

C
C
C
C
C
C
C
C
C
A

The minimal projection error can then be expressed in terms of the singular values
corresponding to the omitted singular vectors:

min
'j

nX

iD1
kyi �

dX

jD1
hyi ; 'j i'j k2 D

nX

iDdC1
2i (5)

A derivation can be found in [8].
To apply a projection to the POD subspace defined by � 2 R

n�d we substitute x
with the reduced approach x D � Qx. This leads to a reduced quadratic program resp.
linear variational inequality of the same form as (2) and (3) with

QAk D �T NAk�
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Nbk D �T b C �TM�
2xk�1 � xk�2
.�tk/2

QB D B�

Note that the POD modes in general do not satisfy the constraints while their
linear combination in the solution of the reduced system does. It has to be ensured
that the initial value satisfies the constraints in the reduced space as well, hence
orthogonal projection might not be applicable or has to be corrected to match the
constraints.

If we combine local finite elements on the nc grid points subject to the contact
condition the reduced matrix QB for our toy problem is in f0;�1; 1gnc�d . This
reduces the cost of incorporating the inequality constraint.

The quadratic program can be solved e.g. using an active set algorithm. It is
beneficial to the performance to use the solution of the previous time step as a
starting solution for the quadratic program of the next time step.

4 Numerical Results

As a toy problem we consider a two-dimensional beam occupying the initial domain
˝ D Œ0; 10� � Œ0; 1�m2, that is fixed on the left, has scope on the right and a force
fN is applied at the middle of the beam (see Fig. 1).

The used material properties are:

• Shear modulus G D 5;000N=m2

• Mass density 
 D 500 kg=m3

• Poisson’s ratio � D 0:3

The force fN is applied in the middle of the beam, acts in normal direction with an
absolute value of 400N and the sign is changed with a period of 3 s.

For the spatial discretization we use linear finite elements on a triangular grid.
In this test case 1788 degrees of freedom and 1,000 time steps to discretize the
time interval Œ0; 40� s. The computation time of the full model was 1;028 s on our
test machine. From (5) we can deduce that the exponentially decreasing singular
values of the snapshot matrix (Fig. 2) promise applicability of model reduction. The
calculation of the POD modes from the snapshot matrix, that is the principle part
of the offline phase, took 2 s. In Fig. 3 we can observe a likewise exponentially
decreasing relative error and a drastic reduction of computation time as can be seen
in Fig. 4.

In the case of nonlinear material laws a nonlinear variational inequality has
to be solved. This can be done using the Josephy-Newton-Method or sequential
quadratic programming (SQP), which involves a large number of linear variational
inequalities that have to be solved. Here the dimension reduction using POD can
give significant improvements in performance.
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Fig. 1 Encastre beam (fixed on the left) with scope on the right, periodic force applied in normal
direction at the middle of the beam (deformation scaled for visualization)
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Fig. 2 Decay of singular values of snapshot matrix
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Fig. 3 Maximum relative error of deformation of POD reduced system
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Fig. 4 Computation time of POD reduced system (compared to 1;028 s with full system)

5 Conclusion

Contact problems are inherently nonlinear, therefore model reduction is a challeng-
ing task. We demonstrated the application of proper orthogonal decomposition to a
Signorini contact problem formulated as a variational inequality. The reduced model
with a dimension reduction of more than 90 % (�120 modes), yielding a relative
approximation error of less than 10�12, takes less than 1 % of the computation time
of the full model including time used in the offline phase. We intend to investigate
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the model reduction of contact problems with nonlinear material laws and the
trajectory piecewise linear (TPWL) approach in combination with POD under the
presence of contact constraints.
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Novel Updating Mechanisms for Stochastic
Lattice-Free Traffic Dynamics

Alexandros Sopasakis

Abstract We present a novel lattice-free microscopic stochastic process in order to
model vehicular traffic. Vehicles advance freely in a multi-lane environment without
lattice cells limitations. As a result vehicles perform their moves based on a modified
stochastic spin-flip and spin-exchange Arrhenius dynamic potential. Furthermore
we put forward a modified kinetic Monte Carlo algorithm which produces the
solution for these dynamics in real-time even for the case of a large traffic streams.
An up to now unknown discrepancy is revealed between models using classical
lattice-based methods versus those implementing this new lattice-free approach. The
solution proposed by Renyi as well as the Palasti conjecture help in clarifying this
discrepancy by showing that indeed the new proposed lattice-free process is correct
in predicting traffic densities while avoiding the overestimates produced by classic
Cellular Automata type, lattice-based, approaches.

1 Introduction

We begin by presenting the mechanism behind the lattice-free stochastic process.
We refer to [5] for statistical mechanics related details.

We define a two dimensional domain D representing the roadway. The set
D consists of the set O comprised of the disjoint union of all space occupied
by vehicles and the set E which is the disjoint union of all empty space. Thus
D D O[E D V1[V2[� � �[Vk[EkC1[� � �[EkCl : assuming k vehicles and l empty
sets on the roadway. Figure 1 illustrates such a set topology as it would be applied in
a single lane vehicular roadway. We now define the microscopic stochastic process
ftgt�0 on each of the subsets of the set D representing the roadway. Clearly, based
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V V

E

V1 2 k

E Ek+2 k+3 k+l−1D
Ek+1 Ek+l−1

Fig. 1 Schematic of roadway subdivided into respective occupied sets Vi , and empty sets Ei

on our definition of sets Ei and Vi above, there will always be a finite number
of occupied and empty sets in D. We can therefore define a spin-like variable
t .i/ � .i/ on each of those sets as follows

.i/ D


1 if at Vi , i.e. vehicle exist at i 2 f1; : : : ; kg,
0 if at Ei , i.e. there is no particle at i 2 fk C 1; : : : ; k C lg.

where 1 � i � k C l < M assuming k vehicles and l empty sets. Note that for
any given number of vehicles the upper bound M will always exists. The stochastic
process ftgt�0 will change values in time, signifying vehicle motion, according to
specific interaction rules which we provide below.

We follow ideas from classical [1, 4, 5] lattice-based stochastic processes in
defining a new lattice-free interaction potential J describing how vehicles interact
locally with each other. Using our lattice-free set infrastructure, interactions between
vehicles at and are described from,

J.i � j / D 1

L
W

�
i � j
L

�

; if i; j 2 Io and W.r/ D


J� for 0 � r � 1

0 otherwise
(1)

where Io is the index set for set O and J� is a free parameter to be calibrated from
actual data as shown in [4, 5].

2 Lattice-Free Stochastic Interactions and Arrhenius
Dynamics

Following ideas from [4, 5] we choose to implement Arrhenius rates in order to
model how vehicles physically interact. For the reasons behind choosing Arrhenius
instead of perhaps Metropolis dynamics we refer to [4, 5]. As a result to model
vehicles entering the roadway we define the spin-flip mechanism using the following
lattice-free Arrhenius type rate

c.i; / D


co exp.�ˇU.i; // if .i/ D 1

cow.i/ if .i/ D 0.
with w.i/ D


 jEi j � jV j if jEi j > jV j
0 otherwise

(2)
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where jV j denotes the area occupied by a vehicle. Thus the condition jEi j > jV j
for w.i/ in (2) simply denotes the fact that for a vehicle, which occupies space
jV j, the empty space jEi j at that location of the roadway must be sufficiently large.
Similarly, using the same definition for w.j / as in (2), we define the corresponding
lattice-free Arrhenius-type spin-exchange rate as

c.i; j; / D


dow.j / exp.�ˇU.i; // if .i/ D 1 and .j / D 0

0 otherwise.
(3)

As previously explained, this rule describes how a vehicle moves from location i to
location j on the roadway. The parameter do in (2) and (3) is a constant representing
the characteristic time of the stochastic process. This constant represents driver
reaction times and therefore the values chosen for this parameter affect vehicle
velocities. Such constants are calibrated directly from actual data as shown in [4]
and once calibrated do not need to be changed throughout the simulation of the
roadway. The potential function U appearing in (2) and (3) above is defined to be

U.i; / D
kClX

jD1
J.i � j /.j / (4)

with the local interaction potential J as defined previously in (1). Further details
about the rates (2) and (3) as well as numerical implementation issues are also
treated in [5].

3 Lattice-Free Versus Lattice-Based Dynamics

In this section we present results of traditional LB simulations such as Cellular
Automaton versus the new lattice-free stochastic process solutions under the
influence of spin-flip dynamics in order to reveal an interesting difference between
the two. We compare three cases of vehicle densities (light, medium and heavy)
versus time in Fig. 2a.

The results in Fig. 2a above show complete path-wise and long-range agreement
between Cellular Automaton and the new lattice-free dynamics only for very light
vehicle densities. Even at such light densities however the Cellular Automaton
simulations seem to, on the average, always produce solutions which are slightly
greater than the lattice-free solutions. Clear differences in solutions start to appear
for medium vehicle densities. In fact the larger the vehicle densities the worst
the discrepancies are as can be seen in the case of heavy vehicle densities in
Fig. 2a. We found that all cases tested (not shown here) with increasingly higher
vehicle densities, also produced increasingly higher discrepancies between Cellular
Automaton and lattice-free dynamics. The natural question therefore is which is
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Fig. 2 (a) Comparisons of vehicle densities for lattice-free (red) versus lattice-based (black)
cellular Automaton type simulations. Three different (light, medium, heavy) vehicle densities are
shown. Clear differences in solutions appear as vehicle densities become larger. (b) The heavy
density example revisited and analyzed. We present the equilibrated solution versus domain size
for classical lattice-based (blue) and lattice-free (red) dynamics. Dynamics are clearly different.
However only the lattice-free solution approaches the correct [2, 3] asymptotic limit 0:7476

correct the classic lattice-based, Cellular Automaton type, solution or the proposed
here lattice-free solution?

However the Palasti conjecture [2] (and well-known solutions, e.g. [3]) can
resolve this question. The assumption behind the conjecture is that you monitor
a process randomly placing objects of the same size in a given region. The Palasti
conjecture and subsequent Renye result [3] provide an estimate for the maximum
resulting coverage for that region. The Palasti conjecture states that the maximum
density of such a process in a given region will be 0:7476 on the average. This
further validates the solutions produced by the proposed LF stochastic process when
compared to the lattice-based, classical, Cellular Automaton solutions (Fig. 2b). As
pointed out in that figure such discrepancies are not a numerical artifact of finite
vehicle sizes or domain size (e.g. the findings do not change as D ! 1). Those
differences are a direct result of whether lattice-based or lattice-free dynamics were
used.

Furthermore the discrepancy in solutions does not only occur at equilibration but
almost from the onset (see Fig. 2a). In other words in and around locally dense
vehicle accumulations lattice-based solutions already start to display deviations
when compared with lattice-free solutions under similar conditions. In general this
shows that serious numerical overestimates can occur for Cellular Automaton type
solutions especially for cases where higher vehicle densities come into play. In such
cases the relative error is higher than 20% (compared to the equivalent lattice-free
solution). It is important to note that this is a local result. In other words the error
in LB dynamics will occur as soon as the local density increases (even if the overall
traffic stream density is low). As a result discrepancies in solutions can occur even
for light traffic streams as soon as vehicles start to come close to each other during
their travel.
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Part VII
Further Applications

Overview

This section on mathematics for Further Applications contains nine contributions
that range from recrystallization kinetics, molecular dynamics over eye protective
welding devices and haptic touchscreens to satellite-to-satellite laser tracking.

In Modelling Some Recrystallization Processes with Random Growth Velocity
of the Grains Elena Villa and Paulo R. Rios consider birth-and-growth processes
and study the effect of a random grain’s growth velocity on recrystallization kinetics.
The modeling framework can also be applied to nucleation and growth reactions.

In A Mathematical Model for the Melting of Spherical Nanoparticles Francesc
Font et al. deal with the melting process of gold nanoparticles and present
asymptotic and numerical results for the melting front of spherical particles. Based
on a scale analysis they show that previously neglected terms in the Gibbs–Thomson
equation describing the melt temperature as a function of particle size can have a
significant effect.

In Local Quantum-Like Updates in Classical Molecular Simulation Realized
within an Uncoupling-Coupling Approach Konstantin Fackeldey and Alexander
Bujotzek present a novel technique to improve the precision of the classical
molecular dynamics force field by solving an approximation problem with scattered
quantum mechanical data. The performance of the method is studied for the alanine
tripeptide.

In Design of Automatic Eye Protective Welding Devices Matej Bazec et al.
investigate the optimal configuration of LCD light shutters by help of two different
numerical approaches. The first approach aims a very accurate, but computationally
expensive result by minimizing the Frank elastic energy of a particular liquid crystal
layer and solving the Maxwell equations for the complete stack of optical elements.
The second approach is dedicated to a better understanding (analysis) of the light
polarization and propagation and uses a simplified model.

The occurrence of Color-over-Angle (CoA) variations in the light output
of white phosphor-converted LEDs is an undesired effect. In A Three-Segment
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Inverse Method for the Design of CoA Correcting TIR Collimators Corien Prins
et al. propose an inverse method to reduce these CoA variations using a special
collimator.

In Mathematical Modelling of Haptic Touchscreens William T. Lee et al.
report on a feasibility study for implementing haptic keyboards for touchscreen
mobile devices. They consider driving transverse waves of the touchscreen using
piezoelectric transducers mounted at the edges.

Transformation acoustics focuses on the design of advanced acoustic devices by
employing sophisticated mathematical transformation techniques for engineering
acoustic meta-materials. These are materials that are artificially fabricated with
extraordinary acoustic properties beyond those encountered in nature. In A Covari-
ant Spacetime Approach to Transformation Acoustics Michael M. Tung and Jesús
Peinado present differential-geometric methods in combination with a variational
principle that form the basis for a framework to control acoustic waves in industrial
applications.

In Location and Management of a New Industrial Plant Miguel E. Vázquez-
Méndez et al. discuss the optimal location problem of a new industrial plant taking
into account economic and ecological aspects. Embedded in the framework of multi-
objective optimization and control they analyze the problem, state Pareto-optimal
solutions and use the Pareto-frontier as tool in the decision-making process.

In A Satellite-to-Satellite Laser Tracking Solution within the Post-Newtonian
Model of the Earth Outer Space Jose M. Gambi and Maria Luisa Garcia del Pino
derive two second order post-Newtonian formulae for the two-way frequency shift
and the two-way laser ranging by means of Synge’s world-function. The formulae
can be used to increase the accuracy in tracking passive targets by APT systems on
board of Earth satellites.

Nicole Marheineke



Modelling Some Recrystallization Processes
with Random Growth Velocity of the Grains

Elena Villa and Paulo R. Rios

Abstract Heterogeneous transformations (or reactions) may be defined as those
transformations in which there is a sharp moving boundary between the transformed
and untransformed region. Such transformations may be modelled by the so-called
birth-and-growth processes. We focus here on the effect that a random velocity of
the moving boundaries of the grains has in the overall kinetics. One example of a
practical situation in which such a model may be useful is that of recrystallization;
a recent review of 3-D experimental results on recrystallization kinetics concluded
that there is compelling evidence that every grain has its own distinct growth rate.
Motivated by this practical application we present general kinetics expressions for
various situations of practical interest, in which a random distribution of growth
velocities is assumed. Previously known results follow here as particular cases.
Although the motivation was recrystallization, the expressions presented here may
be applied to nucleation and growth reactions in general.

1 Basics and Notations

Heterogeneous transformations (or reactions) may be defined as those transfor-
mations in which there is a sharp moving boundary between the transformed
and untransformed region. This definition aims at chemical reactions in general;
specifically it is applied to nucleation and growth transformations in Materials
Science, but the geometrical idea pertaining to the definition finds a wide range

E. Villa (�)
Department of Mathematics, University of Milan, Via Saldini 50, 20133 Milano, Italy
e-mail: elena.villa@unimi.it

P.R. Rios
Universidade Federal Fluminense, Escola de Engenharia Industrial Metalúrgica de Volta
Redonda, Av. dos Trabalhadores 420, 27255-125 Volta Redonda, RJ, Brazil
e-mail: prrios@id.uff.br

M. Fontes et al. (eds.), Progress in Industrial Mathematics at ECMI 2012,
Mathematics in Industry 19, DOI 10.1007/978-3-319-05365-3__40,
© Springer International Publishing Switzerland 2014

293

mailto:elena.villa@unimi.it
mailto:prrios@id.uff.br


294 E. Villa and P.R. Rios

of application in diverse fields of knowledge [16], such as, the phase separations in
multicomponent alloys [14], the film growth on solid substrates [6], the kinetics of
Ising lattice-gas model [12], and the DNA replication [10]. To these we may add a
recent extensive work by Aquilano et al. [1] on crystallization processes.
These transformations, or more in general any practical situation in which nuclei
(germs) are born in time and are located in space randomly, and each nucleus
generates a grain evolving in time according with a given growth law, may be
mathematically modelled by dynamic germ-grain models [15] by means of the so
called birth-and-growth (stochastic) processes. Specifically, by denoting �t

Tj
.Xj /

the grain obtained as the evolution up to time t � Tj of the nucleus born at time Tj
in Xj , then the transformed region �t at time t > 0 is given by

�t D
[

Tj�t
�t
Tj
.Xj /:

Of course a site saturated process (i.e., all possible nucleation sites are exhausted
at the very beginning of the reaction) may be seen as a particular case of the
time-dependent one by assuming Tj � 0 for any j . Time-dependent nucleation
processes and site-saturated processes may be modelled by marked point processes
and by point processes, respectively. In order to define a birth-and-growth process
we need to introduce also a growth model. Models of volume growth have been
studied extensively, since the pioneering work by Kolmogorov [11]. We consider
here a simple case of the so-called normal growth model (see also, e.g., [5, 18] and
reference therein); namely, we shall consider the case in which all the grains develop
with random velocityG constant in time or time dependent, so that for any time t all
the grains have spherical shape (this is due to the fact thatG is not space-dependent).
The family of random sets f�tgt is called birth-and-growth process.
Since �t is a random set, it gives rise to a random measure �d .�t \ � / in R

d for
all t > 0, having denoted by �d the d -dimensional Lebesgue measure in R

d . In
particular, it is of interest to consider the expected volume measure EŒ�d .�t \ � /�
and its density (i.e., its Radon–Nikodym derivative), called mean volume density of
�t and denoted by VV , provided it exists:

EŒ�d .�t \ A/� D
Z

A

VV .t; x/dx 8A 2 BRd :

Whenever VV is independent of x (e.g., under assumptions of homogeneous
nucleation and growth), it is also called volume fraction. We mention that other
quantities of interest in real applications are the so-called mean extended volume
density at time t , denoted by VE.t; � /, defined as the density of the mean extended
volume measure at time t , EŒ�ex

�t
�. � / WD EŒ

P
j WTj�t �

d .�t
Tj
.Xj / \ � /� on R

d ,
that is

EŒ�ex
�t �.A/ D

Z

A

VE.t; x/dx; 8A 2 BRd ;
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and the mean surface density SV .t; � / and the mean extended surface density
SE.t; � / at time t , defined as the density of the mean surface measure at time t ,
EŒ�@�t �. � / WD EŒH d�1.@� \ � /�, and the density of the mean extended surface
measure at time t , EŒ�ex

@�t
�. � / WD EŒ

P
j WTj�t H

d�1.@�t
Tj
.Xj /\ � /�, respectively,

where H d�1 is the .d � 1/-dimensional Hausdorff measure. It is clear that to find
out formulas for the mean volume density VV (and so for the other quantities we
mentioned above, as a consequence) is of particular interest in real applications.

Birth-and-growth processes constitute the basis of a methodology to analyze
transformation kinetics, which is often called “formal kinetic”. Formal kinetics
had its inception in the early work by [11], [9] and [2–4]. These papers were
originally motivated by phase transformations, and considered that nucleation sites
were located in space according to a homogeneous Poisson point process. They also
considered that the velocity of the moving boundaries was constant in time and was
the same at every point of the moving boundaries. Namely, in the site-saturated
case, if the number of nuclei per unit of volume is NV , then the volume fraction
transformed, VV , is given by

VV .t/ D 1 � e� 4�
3 NV G

3t3

whereas in the case of constant nucleation rate per unit of volume, IV ,

VV .t/ D 1 � e� �
3 IV G

3t4 :

Subsequent works generalized both the distribution of the nuclei in space and the
time-dependence of the growth velocity; more general growth models admitting
different velocities for different boundary points have been obtained by assuming
space-and-time dependent velocity. In particular, by denoting � the intensity
measure of the nucleation process, and by C .t; x/ the causal cone of a point x
at time t (i.e., the subset in which at least one nucleation event has to take place in
order to cover the point x at time t [11]), we recall that (e.g., see [17]),

VE.t; x/ D �.C .t; x//; (1)

and that

G.t/ D 1

SV .t; x/

@VV .t; x/

@t
D 1

SE.t; x/

@VE.t; x/

@t
I (2)

finally, under Poissonian assumption on the nucleation process, it holds

VV .t; x/ D 1 � e�VE.t;x/ (3)

and

SV .t; x/ D .1 � VV .t; x//SE.t; x/: (4)
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2 Random Growth Velocity of the Grains

In all the mentioned models the growth velocity field is assumed to be deterministic;
such an assumption is possibly a good approximation for certain practical cases,
whereas for others the boundary velocity may not reasonably be thought to be
neither deterministic nor to be the same for each grain. We focus here on the effect
that a random velocity of the moving boundaries of the grains has in the overall
kinetics. One example of a practical situation in which such a model may be useful is
that of recrystallization (e.g, a concrete case would be the nucleation and growth of
ferrite from austenite in an iron-carbon alloy). A recent review of 3-D experimental
results on recrystallization kinetics concluded that there is compelling evidence
that “every single grain has its own kinetics different from the other grains”[8].
Nonetheless, in spite of this experimental evidence very few papers deal with this
problem theoretically.

Motivated by this practical application we present here general expressions
for the mean volume and surface densities of birth-and-growth models where a
probability distribution of growth velocities of the grains is assumed, both in the
case of site-saturation and in the case of time dependent nucleation [13,19]. Namely,
we consider three different cases of interest:

1. the velocity Gi associated to the grain with nucleus located in Xi is constant
during the reaction, but random;

2. the velocity Gi associated to the grain with nucleus located in Xi is random and
time dependent, of the type

G.t/ D G0g.t; ˛/; (5)

where G0 is a non-negative random variable and g is a non-negative function
depending on time and on a random vector parameter ˛ in R

n;
3. the velocity Gi associated to the grain with nucleus located in Xi is constant

during the reaction, but random with probability distribution dependent on the
specific location of the associated nucleus.

Note that the case 1 can be seen as a particular case of 3.
In all of the above mentioned cases, we assume that the nucleation process is an

inhomogeneous Poisson point process. General results for the mean densities of the
transformed region�t are provided in [19], reobtaining the known above mentioned
results (1)–(4) when the velocity is not random, as particular case.

2.1 Case G Random and Constant During the Reaction

The basic idea is to consider Gi , the velocity associated to the i -th nucleus
with random location Xi 2 R

d , as a further mark associated to such a nucleus.
With reference to the cases 1 and 3 above, let Gi a random variable with
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probability distribution Q, and with position-dependent probability distribution
Q.x; � /, respectively. Then:

• in the site-saturated case, the nucleation process N D fXi ;Gig has intensity
measure � on R

d � RC of the type

�.d.y; �// D
(
�.y/dyQ.d�/ in case 1

�.y/dyQ.y; d�/ in case 3
;

and so

�.C .t; x// D

8
ˆ̂
<̂

ˆ̂
:̂

Z

RC

Z

B�t .x/

�.y/dyQ.d�/ in case 1

Z

Rd

� Z 1

dist.y;x/=t
Q.y; d�/

�
�.y/dy in case 3

:

Note that �.C .t; x// D �bd t
d
EŒGd � in the case 1, whenever the nucleation

process of the locations fXigi is stationary.
• In the time-dependent nucleation case, the nucleation process N D

fTi ; .Xi ; Gi /g (where Ti is the birth-time of the nucleus located in Xi ) has
intensity measure � on RC � R

d � RC of the type

�.ds; d.y; �// D
(
�.s/dsQX.dy/Q.d�/ in case 1

�.s/dsQ.dy; d�/ in case 3
;

where QX is the probability distribution of the random location X of the nuclei.
It follows

�.C .t; x// D
Z t

0

�.s/
� Z

RC

Z

B�.t�s/.x/

Q.d.y; �//
�

ds:

Note that explicit expressions in particular cases of interests are easy to handle.
In particular, we mention that in some applications it is of interest to evaluate
the mean volume density in the centre of the specimen; in the particular case
in which the nucleation is homogenous in time (i.e. �.s/ � � > 0), the nuclei
are uniformly located in a compact window Œ�M;M�d and G is bounded, say
G � K 2 RC, then

�.C .t; 0// D �bd t
dC1

2dMd.d C 1/
EŒGd � 8t 2 Œ0;M=K�:

For a discussion of further examples, see [19].
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2.2 Case G Random and Time-Dependent

We assume that each grain develops with random time-dependent velocity during
the reaction, of the type given in (5). We further assume that G0 and ˛ are
independent on the spatial location of the nucleus of the associated grain, with joint
probability distribution Q.d.�; a// on RC � R

n.
Even in this case, different grains may have different velocity, and we may model
such a birth-and-growth process by a suitable marked Poisson point process N .

• in the site-saturated case, N D fXi ; .Gi ; ˛i /gi is a marked point process in
R
d with independent marking in RC � R

n, with mark distribution Q. Then, its
intensity measure � is of the type

�.d.y; �; a// D �.y/dyQ.d.�; a// (6)

while the transformed region �t at time t is given by

�t D
[

.Xi ;.Gi ;˛i //2N
BRi .t/.Xi /;

with Ri.t/ WD Gi

Z t

0

g.�; ˛i /d� .

It follows then

�.C .t; x// D
Z

RC�Rn

Z

BR.t/.x/

�.y/dyQ.d.�; a//;

Note that if � is a non-negative harmonic function in the spatial region where
the nucleation takes place, and if G0 and ˛ are independent with probability
distribution Q1 and Q2, respectively, then the above equation simplifies as
follows:

�.C .t; x// D �.x/bdEŒG
d
0 �E

h� Z t

0

g.�; ˛/d�
�di

:

For further examples and particular cases see [19].
• In the time-dependent nucleation case, N D f.Ti ; .Xi ; Gi ; ˛i //g is a marked

point process in RC with marks in R
d � RC � R

n, with intensity measure

�.d.s; y; �; a// D �.s; y/dsdyQ.d.�; a/;

while the transformed region �t at time t is given by

�t D
[

.Ti ;.Xi ;Gi ;˛i //2N WTi�t
BR.Ti ;t/.Xi /;

with Ri.s; Ti / WD Gi
R t
Ti
g.�; ˛i /d� .
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It follows then

�.C .t; x// D
Z t

0

� Z

BR.s;t/.x/�RC�Rn
�.s; y/Q.d.y; �; a//

�
ds:

If moreover �.s; � / is harmonic for any s 2 RC, then,

�.C .t; x// D
Z t

0

�.s; x/bd

� Z

RC�Rn
.R.s; t//dQ.d.�; a//

�
ds:

We refer to [19] for further examples and particular cases (for instance, with
g.t; ˛/ D .1� ˛/t�˛ and ˛ having a Beta distribution as studied by Godiksen et
al. in [7]).

2.3 Generalization of Eqs. (1)–(4)

In all the three mentioned cases 1–3, we can prove (see [19]) that:

• Equation (1) still holds, by a simple application of Campbell’s formula in the
definition of VE .

• Equation (3) still holds under the assumption that the nucleation process is
Poissonian.

• Equation (4) still holds under the assumption that the nucleation process is
Poissonian, with intensity � bounded and continuous.

• Equation (2) has to be regarded now in terms of an overall velocity G .t/
defined as

G .t/ WD 1

SV .t; x/

@VV .t; x/

@t
:

In particular, in the above mentioned case 1, with EŒGd � < 1, if the process
is site-saturated such that the intensity � of the Poisson nucleation process
is a harmonic function in the spatial region where the nucleation takes place
(i.e., twice continuously differentiable and it satisfies the Laplace’s equationPd

iD1 @2�.x/=@x2i D 0), then

EŒGd �

EŒGd�1�
D 1

SV .t; x/

@VV .t; x/

@t
D 1

SE.t; x/

@VE.t; x/

@t
;

which generalizes Eq. (2).
(Explicit expressions for G .t/ in particular cases of interest in applications are

discussed in [13, 19].)
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A Mathematical Model for the Melting
of Spherical Nanoparticles

Francesc Font, Tim G. Myers, and Michelle MacDevette

Abstract This paper will specifically deal with the melting process of gold
nanoparticles. Based on scale analysis we first show that retaining previously
neglected terms in the Gibbs–Thomson equation (describing the melt temperature as
a function of size) can have a significant effect on results. Asymptotic and numerical
results for the position of the melting front are presented for spherical nanoparticles.
They appear to match well down to the final stages of melting.

1 Introduction

The classical one-phase Stefan problem involves solving a single heat equation
subject to constant temperature boundary conditions over a time-dependent domain
whose extent is unknown “a priori”. At the phase change boundary, x D s.t/, the
temperature is fixed at the constant bulk phase change temperature T .s.t/; t/ D T �

m .
However, there are situations where the phase change temperature is also a variable.
This is the case with the melting of nanoparticles. Nanoparticles are made up of
bulk and surface atoms: the surface atoms are more weakly bound to the cluster
than the bulk atoms and melting proceeds by the surface atoms separating from
the bulk. Obviously this separation is paid for with energy (the latent heat). With a
sufficiently large cluster the energy required is relatively constant since each surface
molecule is affected by the same quantity of bulk molecules. However, as the cluster
decreases in size the surface molecules feel less attraction to the bulk, consequently
less energy is required for separation. This energy drop translates in a depression of
the melting temperature that depends on the particle radius [2].
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Fig. 1 Melting temperature
as a function of particle size

Assuming that the density and specific heat remain constant in each phase the
melt temperature, Tm, may be estimated from the following generalized Gibbs–
Thomson relation
�
1


l
� 1


s

�

.pl � pa/ D Lm

�
Tm

T �
m

� 1
�

C�c
�

Tm ln

�
Tm

T �
m

�

C T �
m � Tm



C 2sl	


s
(1)

where T �
m is the bulk phase change temperature, �c D cl � cs the difference

between specific heats, p the pressure (and pa the ambient pressure),  the surface
tension and 	 the mean curvature and s and l indicate solid and liquid components.
A complete derivation of this equation from thermodynamical principles can be
found in [1]. For a gold nanoparticle with radius 6 nm it has been found that
Tm 	 T �

m � 100K. Taking pl � pa D 105 the term in the LHS of (1) is O.0:6/
while the rest of the terms are O.102/. Hence, we assume that the pressure term
is negligible. In Fig. 1 we show experimental results for the melting temperature
of gold nanoparticles. For this situation the term on the LHS of (1) is small. The
solid line in Fig. 1 is the solution of (1) with the LHS set to zero, the dashed line
represents the same but setting �c D 0 and the dashed-dotted line represents the
Pawlow model [1, 3].

2 Two-Phase Mathematical Model

The practical situation motivating the present study is the melting of gold nanoparti-
cles, consequently the mathematical model is formulated as spherically symmetric.
A typical configuration for the appropriate Stefan problem is shown in Fig. 2. This
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Fig. 2 Picture of the model

depicts an initially solid, spherical nanoparticle which is heated at the boundary to
a temperature TH > T �

m . The governing equations for the two-phase problem may
be written as

cl
l
@T

@t
D kl

1

r2
@

@r

�

r2
@T

@r

�

; R < r < R0 (2)

cs
s
@�

@t
D ks

1

r2
@

@r

�

r2
@�

@r

�

; 0 < r < R (3)

where T represents the temperature in the liquid, � the temperature in the solid,R D
R.t/ the moving boundary, R0 the initial radius of the particle and k the thermal
conductivity. These equations are subject to the following boundary conditions

T .R0; t/ D TH T .R; t/ D �.R; t/ D Tm �r.0; t/ D 0 (4)

and the Stefan condition


l
�
Lm C�c.Tm � T �

m/
� dR

dt
D ks

@�

@r
� kl @T

@r

ˇ
ˇ
ˇ
ˇ
rDR

(5)

where Tm is solution of (1).
Introducing the dimensionless variables

OT D T � T �
m

TH � T �
m

O� D � � T �
m

TH � T �
m

Or D r

R0
OR D R

R0
Ot D ˛l

R20
t

(6)

in (2)–(5) and dropping the hats the following nondimensional formulation is
obtained
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@T

@t
D 1

r2
@

@r

�

r2
@T

@r

�
@�

@t
D k

c

1

r2
@

@r

�

r2
@�

@r

�

(7)

with boundary conditions T .R0; t/ D 1 , T .R; t/ D �.R; t/ D Tm, �r .0; t/ D 0

and the Stefan condition

Œˇ C .1 � c/Tm�Rt D k
@�

@r
� @T

@r
; r D R: (8)

The nondimensional melting temperature Tm is determined from

0 D ˇ

�

Tm C �

R

�

C .1 � c/
ıT

��

Tm C 1

ıT

�

ln .Tm ıT C 1/ � Tm


: (9)

The dimensionless parameters above are defined by ˛l D kl=
lcl , c D cs=cl , k D
ks=kl , ˇ D Lm=cl�T , ıT D �T=T �

m and � D 2slT
�
m=R0
L�T .

2.1 One-Phase Reduction

In order to reduce the complexity of (7)–(9) we reduce the problem to a one-phase
system. To do so, we assume the solid to be initially at the melting temperature
Tm D Tm.0/ given by the Gibbs–Thomson equation (9). If we assume k=c  1 in
(7b) at leading order we simply find � D Tm.t/. This permits us to eliminate the
term k�r from (8) and the problem (7)–(8) reduces to

@T

@t
D 1

r2
@

@r

�

r2
@T

@r

�

; T .1; t/ D 1; T .R; t/ D Tm (10)

with

Œˇ C .1 � c/T �Rt D �@T
@r
; r D R: (11)

So as to apply asymptotic techniques to the system (10)–(11) two further trans-
formations are needed. First, by introducing a new function T .r; t/ D u.r; t/=r we
transform (10) into a planar heat equation. Second, a boundary fixing transformation
is employed

� D r �R
1 �R � D 1 �R (12)
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where � represents the new space variable and � the new time variable, so u D
u.�; �/. In this new framework the variable region occupied by the liquid is fixed at
the unit domain 0 < � < 1. Therefore, the one-phase Stefan problem that we shall
be concerned with is stated as follows,

u�� D ��t �
�
.� � 1/u� � �u�

�
; 0 < � < 1 (13)

u.1; �/ D 1 (14)

���t D 1

ˇ

�
�u

.1 � �/ � u�

 �

.1 � �/C .1 � c/u
ˇ

�1
; � D 0 (15)

and

ˇ .u C � /C .1 � c/
ıT

��

u C 1 � �
ıT

�

ln
� u

1 � � ıT C 1
�
� u



D 0; � D 0:

(16)

2.2 Asymptotic Analysis for Large Stefan Number

In this section we will seek series solutions for large Stefan number of the form
u 	 u0 C �u1 : : :, where � D 1=ˇ � 1. Then, the leading order problem is

u0�� D 0 u0.1; �/ D 1 u0.0; �/ D 1 � A (17)

with solution

u0 D 1C A.� � 1/ (18)

where A D A.�/ is the solution of

ˇ .1 � AC � /C .1 � c/
ıT

��

1 � AC 1 � �
ıT

�

ln

�
1 � A
1 � � ıT C 1

�

� 1C A



D 0:

(19)

Substituting (18) and (15) into (13) we obtain the O.�/ problem

u1�� D f .A; �/.� � 1/ u1.0; �/ D u1.1; �/ D 0 (20)

with
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f D ˇ.� � A/.A � �A�/
.1 � �/ Œˇ.1 � �/C .1 � c/.1 � A/� ; (21)

A� D
.1 � c/ �ıT .1 � A/ � .1 � �/ ln

�
1�A
1�� ıT C 1

��

ıT .1 � �/ �ıTˇ C .1 � c/ ln
�
1�A
1�� ıT C 1

�� (22)

where A� has been found by taking the � derivative of (19). So, the solution of (20)
is

u1 D f .A; �/

�
�3

6
� �2

2
C �

3

�

(23)

and finally

u D 1C A.� � 1/C �f .A; �/

�
�3

6
� �2

2
C �

3

�

C O.�2/: (24)

Then, replacing u 	 u0 C �u1 in (15) leads to the following system of ODEs

�t D �
�3.� � A/C �.1 � �/f

3�.1 � �/ Œ.1 � �/C �.1 � c/.1 � A/� (25)

At D A��t (26)

that can be solved by means of the Matlab routine ode15s.

3 Discussion

The plots in Fig. 3a, b show the evolution of the melting front R.t/ (R D 1 � � )
for two different values of the Stefan number ˇ D 147 and ˇ D 12. Curve (i)
corresponds to the solution of Eqs. (13)–(16), curve (ii) corresponds to the result
of the system if we assume cl D cs (hence c D 1) and curve (iii) is the result of
considering c D 1 and neglecting the surface effects on (16) by setting � D 0

(hence T �
m D Tm is constant). The solid lines represent the asymptotic solutions and

the dashed lines the numerical results by finite differences.
For large Stefan number it is clear that the asymptotics and numerics agree well.

However, in Fig. 3 we see that as ˇ decreases the asymptotics lose accuracy as R!
0. The solution with the full expression (1) to determine Tm shows that as R ! 0,
Rt ! 1. This abrupt melting has been observed experimentally [4]. Neglecting
the variation in specific heat leads to slightly slower melting whereas the standard
Stefan formulation is clearly inappropriate for melting at the nanoscale.
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Local Quantum-Like Updates in Classical
Molecular Simulation Realized Within
an Uncoupling-Coupling Approach

Konstantin Fackeldey and Alexander Bujotzek

Abstract In this article a method to improve the precision of the classical molecular
dynamics force field by solving an approximation problem with scattered quantum
mechanical data is presented. This novel technique is based on two steps. In the
first step a partition of unity scheme is used for partitioning the state space by
meshfree basis functions. As a consequence the potential can be localized for each
basis function. In a second step, for one state in each meshfree basis function, the
precise QM-based charges are computed. These local QM-based charges are then
used, to optimize the local potential function. The performance of this method is
shown for the alanine tripeptide.

1 Introduction

When simulating molecular systems, we are interested in statistical ensembles of
conformational states. In order to obtain observables from molecular simulation
one has to compute high-dimensional integrals, i.e., expectation values over these
ensembles. Closely related to the complexity of the computation of these expecta-
tion values is the choice of the molecular model, which represents the interactions
between the atoms.

In quantum mechanics the dynamics of the particles is described by the Schrö-
dinger equation, which provides probabilistic information about the position and
impulses of the particles. Unfortunately, the Schrödinger equation is very complex,
which permits long simulations of a large number of particles. Thus the Schrödinger
equation is simplified by exploiting that the mass of an electron is much smaller
than the mass of a nucleus. This allows to consider two coupled equations—one
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for the electron and one for the nuclei, instead of the original Schrödinger equation,
which describes both states (electrons and nuclei). However, the resulting energy
landscapes are far beyond the capabilities of quantum mechanical calculations.

Classical molecular simulations, in turn, are more tractable by computationally
methods since there, the potential energy, which results from the position of
configuration of the molecule, is averaged. In particular, the charge interactions are
averaged over the whole conformation space, i.e. one average charge distribution
for all possible conformations of the protein instead of computing them for each
nucleus. As an example we consider ethane (C2H6) which has N D 2 C 8 D 10

nuclei and K D 2 � 6 C 1 � 6 D 18. Of course the smaller dimension of the
configuration space has to be paid with less accuracy.

More precisely, force fields are in general empirical and thus one obtains different
results when using different force fields for even the same molecule in the same
setting [7].

Summing up, in the modeling of molecular systems we have a hierarchy, which
leads to a trade off between computational complexity and precision.

2 Quantum-Like Charge Refinement

We now proceed a further step towards coupling quantum mechanical precision with
more efficient classical simulations by using a local, “quantum-like” refinement of
the partial charges in a classical molecular simulation. Typically, when initiating
a classical molecular simulation, a partial charge is assigned to every particle in
the system under observation. Partial charges per se are a rough approximation of
quantum-mechanical electron density distributions. Due to the fact that the initial
assignment of partial charges is assumed to remain invariant during the course of the
simulation, the results are bound to become increasingly inaccurate: The more the
molecular system departs from the initial configuration for which the charges have
been calculated (typically a local energy minimum), the more inaccurate the results
will become. As a consequence, now that modern parallel computing facilities
enable us to calculate classical trajectories of unprecedented length (a fact that in
parts lessens the sampling problem associated with molecular simulation), we are
running the risk of producing dubious results due to an increasing error in the force
field. The magnitude of this charge-induced error is depending on the (chemical)
nature of the system under observation, and will affect some systems more than
others. In order to address this problem, we determine accurate partial charges (i.e.
partial charges calculated from QM-based methods such as AM1-BCC [4, 5]) for
multiple configurations of the molecule, and, accordingly, perform a local update of
the classical force field prior to simulation. The actual simulation remains a purely
classical one, i.e. it is not a true hybrid simulation scheme such as QMMD (see
[6] for well written overview). In order to ensure the validity of the “locally refined”
charge, the simulation has to be restrained within the region of conformational space
for which the charge has been calculated. This notion is best realized within in
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uncoupling-coupling sampling scheme such as ZIBgridfree [2] (https://github.com/
CMD-at-ZIB/ZIBMolPy). The uncoupling-coupling sampling approach has been
developed in order to address the trapping problem inherent to molecular systems:
A conventional (single) simulation trajectory is prone to become “trapped” in a
single energy minimum for a long time, a phenomenon that is likely to render
the sampling process inefficient. In ZIBgridfree, the conformational space ˝ is
partitioned into fuzzy sets by using a meshless approach based on basis functions
defined according to Shepard’s method [8]. The partitioning of ˝ is also denoted
as “decoupling” step. The decoupled partial densities are sampled separately. Due
to the fact that in each separate partition of ˝ the sampling is confined to a
comparatively small region, convergence according to a given criterion (e.g. the
Gelman-Rubin convergence criterion [3]) can be achieved within a maintainable
time. The converged partial densities obtained from the decoupled samplings are
weighted and rejoined in order to yield the overall Boltzmann distribution. This
(final) step is denoted as “coupling”. The ZIBgridfree algorithm is outlined in the
following: The final step identifies the metastable states of the system, which is
important for interpreting its chemical properties, e.g. calculating the transition
rates between different molecular conformations, or determining binding paths in
a ligand-receptor complex [1]. In the context of local charge refinement, we now
have the following advantage of a modified potential. Let us denote the nodes of the
i th basis function by ki , then, associated with each basis function 'i .q/, q 2 ˝, i.e.

'i .q/ D exp.�˛kq � kik/Pn
jD1 exp.�˛kq � kj k/ ;

where ˛ is a parameter used to adjust the softness of the partitioning, comes a
modified potential function Ui :

Ui.q/ D U.q/
„ƒ‚…

global potential

�ˇ�1 ln .'i .q//„ ƒ‚ …
local restraint

: (1)

In practice, the modified potential Ui is used to sample the partial density 
i
associated with each 'i . The potential modification �ˇ�1 ln .'i .q// (softly) restricts
the sampling to the region of˝ that is encompassed by basis function 'i . The more
the sampling departs from its node ki , the more the restraining potential will “push”
it back to its original support. This not only assures thorough sampling of the partial
density 
i , but also opens up the possibility for local optimization of the force field:
For each node ki , one can now calculate precise QM-based charges that enter into
an optimized local potential function U opt

i . In summary, the optimized potential QUi
used to sample each basis function ' is the following:

QUi.q/ D U
opt
i .q/ � ˇ�1 ln .'i .q//: (2)

https://github.com/CMD-at-ZIB/ZIBMolPy
https://github.com/CMD-at-ZIB/ZIBMolPy
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Fig. 1 Histogram of alanine tripeptide in vacuum. Left: Applying classical charges, by using
the same charge for each basis function. Right: Charges were computed for each basis function
individually by the local quantum update method

This notable increase in precision comes at the relatively low computational
cost of one QM-based charge calculation per discretization node. The number of
discretization nodes, in turn, is dependent on the size of ˝.

3 Illustrative Example

As an example we simulated alanine tripeptide in vacuum and used the Amber99sb
force field. For the presampling, we calculated a trajectory for 100 ns at 300 K. The
conformation space was partitioned into 12 nodes, where to each node a meshfree
basis functions is attached. Within each basis function, we started a local trajectory
(300 K) for 100 ps. In Fig. 1, the histogram is given by counting the absolute number
of the dihedral angles in a certain range. One can clearly see, that the two histograms
differ. On the left hand side, the classical scheme, by using one charge calculation
for all basis functions, whereas on the left hand side the locally updated charges
have been used. The local update of the charges leads to a stronger separation of
the clusters. A comparison with quantum mechanical methods will be undertaken in
future.
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Design of Automatic Eye Protective Welding
Devices

Matej Bazec, Bernarda Urankar, and Janez Pirs

Abstract LCD light shutters used as eye protective devices in welding environ-
ments have different requirements from LCD display devices typically used in
consumer electronics. Their contrast must be many scales greater, while in the open
state the shutter should be brighter. The light scattering should almost vanish and the
switching time should be much shorter. This implies a different approach as typical
solutions used in LCD displays don’t meet the required criteria. Although there are
many solutions and concepts that are shared between both types of devices, the
light shutters have a much different design. In order to find an optimal configuration
many cells should be built and tested. However, this is a very time consuming task as
there are many parameters that should be taken in consideration and each cell may
take few days to build and test. This is where the computer simulation steps into.
It takes only a few minutes to build an appropriate setup for a particular cell and to
simulate it, leaving to the experimental tests only some fine tuning. Furthermore,
the simulations give a deeper insight in what is really happening with the light
polarization within the cell. Such a way a better understanding can be achieved. The
simulator works with two different approaches. In the first approach it tries to give
the best possible and exact numerical solution. It does so by minimizing the Frank
elastic energy of a particular LC layer and by solving the Maxwell equations for
the complete stack of optical elements. For the latter the Berreman method is used
reducing a system of partial differential equations to 4 � 4 matrices manipulation
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(multiplication, inversion and eigenvalue problem). Although such an approach is
very accurate and mimics the reality quite well it doesn’t give a deeper insight in
the cell functionality. In such cases it is better to reduce the LC layer to a few
simple uniaxial layers and follow the light polarization change by means of the
transformations on the Poincar sphere. This makes it a very efficient tool in shutter
design.

1 Background

LCD light shutters used as an eye protection device (welding shield) or in a
stereovision application should have much different properties from typical LC
display devices due to different technical requirements [1] in their field of use.
As such they need to have:

• many scales larger and angularly independent light attenuations,
• higher switching speeds,
• low light distortion,
• low scattering and
• bright open state.

Such requirements lead solutions with much simpler configuration (TN an LTN
LCD light shutters [2], Pi-cell [3], STN [4], etc.) in comparison with those popular
used for the display devices [5–7].

This inevitably imposes the production of many new cells in the process of
development of better shutters in order to test new configurations. However such an
experimental approach is very time consuming. A rule of thumb is that a production
of a single cell takes a day to produce and test. As such the development of new light
shutter concepts would be practical impossible without the aid of computational
tools.

It should be stressed out that despite the simplicity of the cell configuration both
the liquid crystal director and the light propagation are complex enough they cannot
be evaluated analytically. This implies two different but complementary approaches.

The first approach aims at finding a mathematical model that would reproduce
the results of an equivalent experimental test as close as possible. In order to solve
such a model various numerical tools are used as the equations involved are typically
nonlinear.

On the other hand sometimes a better understanding of the ongoing process is
wanted. In this case we don’t care about the precision of the result. This means
some simplifications can be introduced as long as the result is qualitatively similar.
In such a way we can eliminate the unnecessary effects and focus our attention on
the relevant ones.
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2 Model Description

2.1 Light Shutter Simulation

The simulation of the light shutter can be roughly divided in two separate steps:
nematic director and light propagation calculation. Sometimes the second step can
be omitted (e.g. when only switching times are important).

2.1.1 Director Calculation

The liquid crystals used in light shutters are typically in the nematic phase put
between two alignment layers that are displaced few �m apart and mixed with
low concentrations of some chiral dopant. As low scattering is required the liquid
crystal is defectless. This is usually not difficult to achieve as the LC layer is very
thin and the alignment layers are uniform. In these circumstances the liquid crystal
configuration can be described only with the nematic director n that is a unitary
vector instead of the second order tensor order parameter.

The free energy of the nematic can be described in terms of the Frank-Oseen
energy [8]:

f D 1

2
K11.r �n/2 C 1

2
K22..r � n/ n C q/2 C 1

2
K33..r � n/ � n/2 � 1

2
�0��

�k

�?
.nE/2;

(1)

where K are the nematic elastic constants for splay, twist and bend, q is the pitch
of the chirality, �k and �? are the eigenvalues of the dielectric tensor of the liquid
crystal and E is the applied electrical field. It should be stressed out that such a
free energy is used when the constant voltage is applied. In other circumstances a
different thermodynamic potential may be needed.

The director will always choose such a configuration that will minimize the free
energy. In some cases (e.g. when optimal angular compensation is needed) knowing
the minimum suffices. On the other hand, in some cases the time evolution from one
state to some another is needed. In some way the time should be introduced. This
can be done with the equation of nematodynamics [8]:

�
d

dz

@f

@n0 �
@f

@n

�

?
D �� @n

@t
; (2)

where � is the nematic viscosity.
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This equation seems numerically unstable if used with an explicit (forward in
time) integration scheme. Indeed if used directly is quite unstable. However if each
integration discretization step is followed by the normalization of the director, which
should stay normalized anyway due to the time derivative being perpendicular to
the director, the procedure surprisingly gets very stable. This both simplifies the
algorithm structure and decreases computation time in comparison with implicit
schemes.

2.1.2 Light Propagation Calculation

The director configuration by itself is useful to optimize for the fast switching time
and similar things. However for most problems also the underlying optics should be
calculated. For this task a procedure first used by Berreman [9] is used.

It takes the advantage of the planar geometry of the cell. The normal of the cell
is put on the z axis so that the material parameters depend on z only. Further we can
get rid of the dependency on the variable y if the x axis is defined such as the light
comes in the x � z plane. Such a way the Maxwell’s equations could be simplified
by the following ansatz:

E.x; y; z; t / D E.z/ei.�x�!t/: (3)

The vector E could be replaced with D, B and H.
This reduces the Maxwell’s equations to a system of four ordinary differential

equations of four independent quantities, the other eight being related with the
former four only through the linear algebraic equations. A wise choice would
be to choose Hx , Hy , Ex and Ey as independent quantities as their values do
not change at the boundaries of the two layers in contact (in the absence of
the superficial charges and currents). Those quantities define the vector  D
.Ex; �0c0Hy;Ey;��0c0Hx/ (in SI units). In this compact form the four equations
can be written as

d 

dz
D i

!

c0
� ; (4)

where
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5

(5)

and S is the Snell’s coefficient (the sine of the incident angle in vacuum).
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If the layer is homogeneous, then � is constant and can be diagonalized. Then
the vector at the incoming side  I and on the outgoing side  F are related through
a simple linear transformation

 F D P I ; (6)

where P is the transition matrix and can be calculated from � and the layer
thickness.

If the layer is not homogeneous then it can be cut in thin slices each of them
being so thin that can be considered homogeneous. As  does not change on the
boundaries of the neighbor layers, the total transition matrix P can be calculated as
a product of transition matrices of all the thin slices.

Finally, such a  I should be found, that  F does not have any component that
represents the two polarization coming in the cell from the out coming side. This
could be done by few simple steps involving only basic linear algebra manipulation.
Such a way both the transmitted and reflected light can be calculated.

Although the procedure is very simple it can be numerical unstable when
high attenuations are involved. This introduces some extra tricks that reduces the
numerical error to a useful level. This is mostly done by filtering out the noise either
by the closest angles or by the closest frequencies.

2.2 Light Propagation Analysis

Although the simulations yield results that are very close to the experimental mea-
surements, they do not provide a deeper insight in the mechanism of compensation
itself. This is where analytical approximation step in. A very useful tool is the
representation of the light polarization with the four Stokes parameters. Further it
can be assumed that:

• The light is fully polarized once passed the incoming polarizer.
• The reflected light is low compared to the transmitted.
• The direction of the light propagation does not depend on the polarization of the

light.
• Between the polarizers the light is not absorbed (the intensity) (ne 	 no).

In such a case the Stokes parameter representing intensity is constant and the
other three lay on a sphere also called Poincar sphere. The linear polarizations lay
on the equator while the circular polarizations lay on the poles. The propagation
of the light through a homogeneous layer produces the rotation of the polarization
point on the sphere where the angle depends linearly on the layer thickness and the
axis lays on the equator.
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Fig. 1 Compensation layer
improving the angular
dependence. P is the
polarization of the polarize
and is the initial polarization.
A is the polarization of the
analyzer and E is the
vanishing point laying at the
opposite side. F is the final
polarization

Although the transformations involved in a single step can be simple it can get
complicated when many layers are involved. This is why the liquid crystal layer
should be simplified with a consistent model.

Since the voltages involved are typically far above the Fredericks transition,
the director is mainly homeotropically aligned. Only a small fraction close to the
alignment layers can be considered nonhomeotropic. This leads us to introduce the
three layer model, where the central part is replaced by a thick homogeneous and
homeotropic layer and two thin homogeneous and planarly oriented layers [10].
More sophisticated models include five instead of three layers.

A very useful application of this method was used to describe the optimal
position of the negative retardation layer in 180ı twisted cell [10]. When put on
the incoming polarize side it moves the polarization far from the vanishing point,
while on the outgoing side it moves close to it improving the angular dependence
(see Fig. 1).

3 Results

As mentioned in the previous section using Poincar sphere analysis for the cell
design and numerical simulations for the parameters definition were used to achieve
a very uniform light shutter using only a single 180ı twisted cell with a negative
retardation layer [4,10]. Unfortunately the parameters could only be optimized for a
single light attenuation and the cell should be driven at slightly higher voltages than
those typically used in such devices.

Recently an improved variable element was developed using only a stack of
two STN cells with an additional negative compensation layer [11]. It significantly
improves the optical properties of the similar cells (e.g. [2]). It has an almost linear
dependence of the shade on the applied voltage and meets the requirements imposed
by the standard [1]. As can be seen from Fig. 2 the shade variation is far less than
1 in each direction at the incident angle 15ı in a very broad range of shades (from
shade 9 to shade 13).
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Fig. 2 Azimuthal angular
dependence at polar angle
15ı and two different driving
voltages. At the lower voltage
the light attenuation
corresponds to shade 9 and at
the higher voltage to 13. The
variation is less than 1 in each
direction
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A Three-Segment Inverse Method for the Design
of CoA Correcting TIR Collimators

Corien Prins, Jan ten Thije Boonkkamp, Teus Tukker, and Wilbert IJzerman

Abstract Color-over-Angle (CoA) variation in the light output of white phosphor-
converted LEDs is a common and unsolved problem. Recently, the same authors
introduced a new inverse method to reduce CoA variation using a special collimator.
This short paper introduces a variant of the method with two important advantages
compared to the original method.

1 Introduction

White LED technology becomes increasingly important in lighting. White LEDs are
starting to replace traditional light sources such as compact fluorescent lamps and
halogen spots. LED-based spotlights are already widely available in retailer shops.
These spotlights usually contain a highly efficient TIR collimator to direct the light
into a compact beam.

Unfortunately, it is difficult to create an LED that emits light with a uniform
white color. The color of the emitted light varies with the angle between the light ray
and surface normal of the LED. This phenomenon is called Color-over-Angle (CoA)
variation. When the light of an LED with a large CoA variation is collimated using a
TIR collimator, this color variation appears in the beam. Various methods have been
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applied to reduce this CoA variation with different advantages and disadvantages.
A commonly applied technique is the introduction of bubbles in the phosphor layer
of the LED [6]. Another technique is applying a dichroic coating [1]. Both methods
reduce the efficiency and increase the production costs of the LED. If the LED is
used in combination with a collimating optic, CoA variation can be reduced by
using microstructures on top of the collimator. However, microstructures introduce
extra costs in the production process of the collimator and make the collimator look
unattractive and broaden the light beam. Wang et al. [3] study the reduction of CoA
variation using domes which mix light from two different angles. They note that
it is theoretically possible to completely remove the CoA variation, but they do
not show a proof. In [2] we showed it is indeed possible to completely remove
the CoA variation by mixing light from only two different angles. The current
paper introduces a variant of the method introduced in [2]. It has two advantages
compared to the original method. First, it can be used to design standard type TIR
collimators with three transfer functions. Second, it gives the optical designer more
design freedom, as the angular width of the refractive part can be chosen freely.

2 A Color Weighted TIR Collimator

A TIR (Total Internal Reflection) collimator is a rotationally symmetric lens, that
is used to collimate the light of an LED into a compact beam. TIR collimators
are usually made of a transparent plastic like polycarbonate (PC) or polymethyl
methacrylate (PMMA). A profile of a TIR collimator can be seen in Fig. 1. A
TIR collimator for a point light source can be designed using inverse methods.
The design procedure consists of two steps: first we find the relation between the
angles t and � , where t is the angle between the z-axis and a ray leaving the light
source and � is the angle between the z-axis and a ray leaving the collimator. This
relation is described by the so-called transfer functions. Subsequently we use these
transfer functions to calculate the free surfaces of the collimator. The second step
is described extensively in [2] and will not be covered in this article. This article is
concerned with the first step of the design process.

A transfer function � W � ! T is a monotone function that describes the relation
between the angle t 2 T � Œ0; �=2� of the light emitted from the light source and
the angle � 2 � � Œ0; �max� of the light emitted from the TIR collimator. Here �max

is the maximum angle of emission. It can be seen that there are three different rays
width different angles t for every angle � 2 Œ0; �max�: one ray is refracted at surface
A, one is reflected at surface B and crosses the z-axis, and one is refracted at surface
C and does not cross the z-axis. This implies that three different transfer functions
are needed to design this type of collimator.

In [2] a system of ordinary differential equations for the transfer functions was
derived. Given an effective intensity I .t/ [lm/rad] of the LED, the y-chromaticity
of the LED y.t/, a required effective target distribution G .�/ [lm/rad], and the
requirement that the chromaticity of the emitted light is constant, we have the
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Fig. 1 Profile of a TIR collimator. A full TIR collimator can be obtained by rotating the profile
around the z-axis. The free surfaces A, B and C are denoted by dotted lines, the solid lines show
the fixed surfaces. The LED is located at the origin with the surface normal parallel to the z-axis,
the thin lines are light rays traced from the LED through the collimator

following equations:

NX

iD1
i �

0
i .�/Ii .�/ D G .�/;

NX

iD1
i �

0
i .�/Ii .�/=yi .�/ D G .�/=yT: (1)

Here �i .�/ are the transfer functions, N is the number of segments or transfer
functions, i D �1 for monotonically decreasing transfer functions and i D 1

for monotonically increasing transfer functions, and yT is the weighted average
y-chromaticity coordinate of the LED. The x-chromaticity coordinate does not
appear in these equations because x.t/ it is linearly dependent on y.t/. We use the
following convention: Ii .�/ D I .�i .�// is the intensity of the light at the source
(in segment i ) that is directed to the angle � . Similarly we write yi .�/ D y.�i .�//

for i D 1; 2; : : : ; N . In [2] we chose N D 2 so that the system would not be
underdetermined. In this article we construct a solution with N D 3, so that the
solution is better suited to the design of a TIR collimator.

Now we have the transfer functions �1 W Œ0; �max� ! Œ0; �1�, �2 W Œ0; �max� !
Œ�1; �2� and �3 W Œ0; �max�! Œ�2; �=2�. The angle �1 is the angle of the ray that leaves
the collimator at angle �max and is refracted at the edge of surface A. The angle �2 is
the angle of the ray that leaves the collimator at angle � D 0, this ray marks the sep-
aration between surface B and C. To construct a TIR collimator as shown in Fig. 1,
we must have �1 and �3 monotonically increasing and �2 monotonically decreasing.
Thus, as initial values for the ODE we have �1.0/ D 0 and �2.0/ D �3.0/ D �2.

The system (1) is underdetermined, we solve this by adding an extra equation.
A possible extra equation can be obtained if we require that the intensity resulting
from one of the transfer functions contributes a fraction q 2 .0; 1/ to the total target
intensity:

iIi .�/�
0
i .�/ D q G .�/: (2)
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Choosing the extra restriction on the first or third transfer function gives a singular
matrix at � D 0 or � D �max, therefore we apply the extra restriction to the second
transfer function. Choosing the angles �1 and �2, we find by integration of (2) that
q D R �2

�1
I .t/ dt

ı R �max
0

G .�/ d� . We can write the system of ODEs resulting from
(1) and (2) as follows:

�01.�/ D
G .�/

I1.�/

y1.�/

y1.�/ � y3.�/
�

1 � q � y3.�/

yT
C q

y3.�/

y2.�/

�

; (3a)

�02.�/ D �q G .�/

I2.�/
; (3b)

�03.�/ D
G .�/

I3.�/

y3.�/

y3.�/ � y1.�/
�

1 � q � y1.�/

yT
C q

y1.�/

y2.�/

�

: (3c)

Equation (3a) has a removable singularity at � D 0, because we have G .0/ D 0

and the initial conditions imply that �1.0/ D 0 and thus I1.0/ D 0 because I .0/ D
0 by assumption. Therefore we calculate �01.0/ using l’Hôpital’s rule:

�01.0/ D
s

G 0C.0/
I 0C.0/

y1.0/

y1.0/ � y3.0/
�

1 � q � y3.0/

yT
C q

y3.0/

y2.0/

�

: (4)

Here G 0C.0/ and I 0C.0/ are the right derivatives of G .�/ at � D 0 and of I .t/ at
t D 0 respectively.

3 Numerical Results

The ODE system (3) is solved using the ODE-solver ode45 in matlab, substituting
(4) for small values of � . The functions I .t/ and y.t/ are least squares fits to the
measured data of an LED with a high CoA variation. The target intensity was chosen
to be a Gaussian profile [5] with Full Width at Half Maximum (FWHM) [4] at �=9.
This yields an effective target intensity

G .�/ D C sin.�/ exp

 

�4 ln.2/

�
�

�H

�2!

; (5)

with 0 � � � 5=4 �H D �max, �H D �=9 and C chosen such that

Z 5=4 �H

0

G .�/ d� D
Z �=2

0

I .t/ dt: (6)

The chosen angles are �1 D 0:16 � and �2 D 0:3 � . The calculated transfer
functions can be seen in Fig. 2. Subsequently a TIR-collimator was designed, and
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Fig. 2 Transfer functions

Fig. 3 Intensity and chromaticity of the Monte-Carlo simulations of the LED with the collimator

evaluated using the raytracing software LightTools. Results of the simulation can be
seen in Fig. 3. The effective intensity shows the expected profile of a sine times a
Gaussian, and the chromaticity is constant over the beam. An irregularity in the
chromaticity is visible around � D 25�=180, because there is no light at this
angle to properly determine the chromaticity. The collimator achieved the goal of
eliminating the CoA variation.

4 Conclusions

A variant of the method in [2] has been introduced for reducing CoA variation
in LED lighting systems. The improvement allows the design of regular TIR
collimators using inverse methods with a given rotationally symmetric intensity
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pattern and a uniform color. Additionally, the method provides the optical designer
with extra design freedom to choose the angular width of the refractive part of the
TIR collimator.
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Mathematical Modelling of Haptic Touchscreens

William T. Lee, Eoin English, and Mark Murphy

Abstract Haptic keyboards for touchscreen mobile devices would increase the
accuracy of users typing, allow touchtyping and increase the satisfaction of users
interacting with the devices. We report the results of a feasibility study of one
method of implementing such haptic keyboards: driving transverse waves of the
touchscreen using piezoelectric transducers mounted at the edges. Our results, while
very preliminary, do suggest that this approach is feasible, and that a more detailed
investigation is worthwhile.

1 Introduction

Touchscreens are a very popular form of interface to mobile phone and tablet
devices. Their advantages are that nearly the whole surface area of the phone can
be used as a screen and that differently configured, context sensitive, keyboards
can be displayed as needed. The disadvantage of touchscreen keyboards is that
the keys have no tactile characteristics. This makes it impossible to touchtype on
a touchscreen keyboard, and even while watching the keyboard typists make more
mistakes on a touchscreen keyboard than with a physical keyboard.

The disadvantages of touchscreen keyboards could be overcome using haptics.
Localised vibrations of the surface could be used to create the tactile sensation
of a key, enabling all the benefits of a physical keyboard to be realised. Haptic
keyboards would enable touchtyping and reduce the rate of typing errors [2]. As
well as practical benefits, adding a tactile dimension to phones would increase users
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feeling of attachment to their phones. The key barrier to implementation is that the
waveforms needed to drive the transducers are not known.

There are physiological and technical constraints on the types of waves that
can be generated and used for this application [1]. In order to be detectable
displacements must be approximately u0 D 30�m in amplitude. The lowest
frequency component of the vibration at the fingertip must be in the range 20–
500 Hz. The delay between the action (key press) and the response (vibration) must
be less than T D 100ms. Transducers are opaque and can only be placed at the
edge of the touchscreen. The maximum voltage that can be applied to a transducer
is V0 D 5V.

2 Model

There are two simplifications we can make to the problem, both of which do require
the assumption that the touchscreen is linear. Firstly if the material is linear then if
we know a voltage signal V0.t I x0; y0; t0/ that results in a spatially and temporally
localised response on the touch screen, in the ideal case composed of Dirac delta
functions,

u.x; y; t/ D ı.x � x0/ ı.y � y0/ ı.t � t0/ ; (1)

then we can construct a waveform with any desired spatial and temporal structure
from this localised solution. This follows immediately from the definition of the
Dirac delta function. For instance to generate the profile f .x; y; t/ the required
voltage signal is

V .t/ D
Z
f .x0; y0; t0/ V .t; x0; y0; t0/ dx dy dt (2)

In practice, of course, it would be impossible to generate a Dirac delta function
and instead some localised function w.x � x0; y � y0; t � t0/ would be produced.
In that case the resulting waveforms resulting from the above construction would
be the convolution of f and w. The second simplification is illustrated in Fig. 1.
If we can produce a localised solution in one dimension, then this can be used to
construct localised solutions in two dimensions. Therefore we focus on producing
spatially and temporally localised solutions in one dimension.

We model the touchscreen in one dimension using the Euler beam equation [3]
as illustrated in Fig. 2



@2u

@t2
C Eh2

3 .1 � �2/
@4u

@x4
D ppiezo

2h
; (3)
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a b

Weak vibration
Piezoelectric transducer
Strong vibration

Fig. 1 If localised solutions can be constructed in one dimension, these can be used to construct
localised solutions in two dimensions [1]

touchscreen

ppiezo
H

2h

V

L

x1 x2

Fig. 2 Schematic of the thin plate model used. The touchscreen is modelled in one dimension as a
thin plate, clamped at each end, in contact with a piezoelectric transducer to which a voltage signal
is applied

where 
 D 2;500 kg m�3 is the (volume) density of the material making up the plate,
E D 70GPa is the Young’s modulus, � D 0:25 is the Poisson’s ratio, h D 0:5mm is
the half thickness of the plate, and ppiezo is the pressure exerted by the piezoelectric
transducer. As shown in Fig. 2 the edges of the touchscreen are clamped so the
boundary conditions of this equation are u D @u

@x
D 0. The model of the transducer

we use is

ppiezo D Y

H
.u � nd33V / x1 < x < x2 (4)

where Y D 50GPa is the elastic constant of the transducer, d33 D �150 pm V is the
piezoelectric coefficient, H D 1mm is the height of transducer, n D 4 the number
of layers, the transducer is placed between x1 and x2.

To scale the equations we scale x withL, and use this scale and Eq. (3) to define a
timescale. We scale displacements with u0, and voltages with V0. The dimensionless
equations are

@2u

@t2
C @4u

@x4
D ppiezo; (5)
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Fig. 3 Simulation results. Left: Displacement, u, as a function of x at times t D 2, t D 6 and
t D 10 D T . The location of the transducers is shown in gray. Right: Displacement, u, at point
x D 0:25 D X as a function of time

ppiezo D ˛V C ˇu; x1 < x < x2 (6)

where ˛ D 8 � 104, ˇ D 8 � 108, x1 D �0:45 and x2 D �0:40. In these
dimensionless units T D 15.

3 Results and Discussion

A numerical simulation was carried out using the method of lines: 200 gridpoints
were used with a 5 point stencil to represent spatial derivatives. The resulting
system of ordinary differential equations was integrated with an explicit fourth order
Runge-Kutta integrator and a timestep of ıt D 10�5. In order to find the input V .t/
needed to generate a localised pulse at a specific point X D 0:25 and time T D 10

we used the following procedure:

• Input a short (11ıt) voltage pulse and read off the resulting displacement u.X; t/,
0 < t < T at the designated point.

• Extract the sign of u: f .t/ D 1 if u.X; t/ > 0, f .t/ D �1 if u.X; t/ < 0
• Construct the voltage waveform by running time backwards V .t/ D f .T � t / :
In other words set up the input so that the contribution it makes to the displacement
at u.X; T / is always positive. The results from this simulation are shown in Fig. 3.
As can be seen the height of the resulting pulse is above the detection threshold.

The results suggests that this approach to generating Haptic keyboards could
succeed, and that investigating this approach more carefully would be worthwhile.
The three key improvements needed to make the model more realistic are to include:
(1) damping, within the transducer and the screen and from the air the screen is in
contact with; (2) two dimensions, the effect of the clamping of the screen at the side
needs to be included; (3) robustness, the procedure used to construct the localised
pulse must be robust to small changes in the properties of the system.
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A Covariant Spacetime Approach
to Transformation Acoustics

Michael M. Tung and Jesús Peinado

Abstract Transformation acoustics focuses on the design of advanced acoustic
devices by employing sophisticated mathematical transformation techniques
for engineering acoustic metamaterials—materials artificially fabricated with
extraordinary acoustic properties beyond those encountered in nature. We present
differential-geometric methods together with a variational principle and show how
they form the basis for a powerful framework to control acoustic waves in industrial
applications. We conclude with a practical example and implement the acoustic
wave equation within a uniform accelerating rigid frame (UAF). As expected, an
acoustic event horizon emerges, i.e., a boundary in spacetime beyond which events
cannot acoustically affect any outside observer.

1 Background

The theoretical design and subsequent industrial engineering of artificial materials
with formidable properties, which may go beyond what is found in Nature, is one
of the ongoing tasks to improve the standard of living. Acoustic metamaterials [8]
may contribute in this endeavour.

By making use of the mathematics similar to the differential-geometric frame-
work of general relativity, transformation acoustics centres on the design of
advanced acoustic devices by employing sophisticated coordinate transformation
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techniques for the conception of acoustic metamaterials. Industrial applications in
this field have wide repercussions and range from acoustically improving concert
halls to constructing ships and submarines invisible to sonar detection. Recent
applications to acoustic cloaking can be found in [3, 4, 10].

Previously, we have elaborated a Lagrangian framework to describe macroscopic
electrodynamics for optical metamaterials [7] and diffusion on curved manifolds
[9, 11, 12]. Here, we use a similar approach to derive the equations of motion for
non-dissipative acoustic phenomena from a fundamental Lagrangian density [10].
In electrodynamics Maxwell’s equations are already inherently covariant, acoustics
however does not possess this advantage. Nevertheless, we succeed in reformulating
Hamilton’s principle for acoustics in a fully covariant fashion for spacetime.

In the following discussion, we will first introduce a fully spacetime covariant
formalism most suitable to tackle the coordinate transformations of transforma-
tion acoustics. Hamilton’s principle for acoustics in spacetime will provide the
fundamental starting point and permit to derive the general relations between the
constitutive parameters of the virtual and physical acoustic metafluid, 	 (bulk
modulus) and 
ij (mass-density tensor), and their spacetime metrics.

Finally, we conclude with a practical example and show how the design of
an acoustic devices depends on the tuning of these material parameters of the
physical and virtual spaces. For an example spacetime geometry we have chosen
to implement the acoustic wave equation within a uniform accelerating rigid frame
(UAF), a metric framework introduced by Desloge [1, 5, 6]. We will illustrate how
in this example an acoustic event horizon emerges, i.e., a boundary in spacetime
beyond which events cannot acoustically affect any outside observer.

2 Results and Discussion

2.1 Hamilton’s Principle for Spacetime Acoustics

Hamilton’s principle states that the behaviour of a deterministic physical system
is completely described by a variational principle. Its solutions are the equations
of motion governing the dynamics of the system and are found as the extremal
solution of the corresponding action functional. In the case of first-order classical
field theories, partial derivatives of configuration space with respect to all spacetime
coordinates are required, and the Lagrangian density function will therefore be a
mapping

L W J 1N ! R; (1)

where J 1N DM � TP is the jet bundle of the associated configuration space N D
M � P , and P is the ambient space defined by the acoustic potential � W M ! R.
Here, as usual, M denotes a smooth four-dimensional manifold endowed with a
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Lorentzian metric g having a mixed signature .�;C;C;C/. The acoustic potential
is the scalar velocity potential of the acoustic metafluid such that

v� D ��;� D
 
�p=c
0

v

!

; (2)

where p are the acoustic pressure and density, v is the local fluid velocity, and c the
acoustic wave speed (which is assumed to be time-independent, i.e. @c=@t D 0).

For transformation acoustics the variation of the following action integral must
then vanish

ıA D ı

Z

˝

d4x L .�;�/ D 0; (3)

where the invariant volume element is d4x
p�g D dx0dx1dx2dx3

p�g with
g D det g, and integration occurs over a bounded, closed set of spacetime ˝ � M

(see [2] and references therein). Notice that Greek indices will be used for the
full spacetime values of four-tensors, whereas Latin indices run over the spatial
values only. We also use the standard comma and semicolon notation for partial and
covariant derivatives.

The simplest possible choice for the acoustic Lagrangian density consists of only
a covariant kinetic term:

L .�;�/ D 1
2

p�g g���;��;�: (4)

A straightforward calculations then yields for the action (3) in combination with (4)
the corresponding Euler-Lagrange equations

�M� D g���I�� D 1p�g
�p�g g���;�

�
;�
D 0; (5)

where �M is the Laplace-Beltrami operator on the Riemannian manifold .M; g/.
To arrive at the fundamental relations of the constitutive parameters in trans-

formation acoustics, we require the description of the same acoustic phenomena
in either anisotropic physical space or flat virtual space, both represented by their
Lagrangian densities, Lphys and Lvirt, respectively. The constitutive relations, which
establish the correspondence of the curvilinear coordinate transformations between
physical and virtual acoustic space and their material properties, are then given
by [10]:

	 D
p�gp�Ng N	; 
0


ij D
p� Ngp�g Ngij; (6)
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where 
ij are the contravariant components of the mass density expressed as a
.0; 2/-tensor field � W TpM � TpM ! R, defined at any point p on the smooth
manifold M within the metafluid region.

2.2 Acoustic Waves in a Uniformly Accelerating Reference
Frame

In order to investigate the gravitational redshift in a uniform field, Desloge [5]
proposed the following line element

ds2 D �
�
1C g0

c2
y
�2
c2dt 2 C dr2; (7)

where g0 > 0 is the proper acceleration in y-direction for an observer located at
the origin, and dr represents the infinitesimal spatial displacement. Suppressing the
third space component, the corresponding metric for this uniformly accelerating
rigid frame (UAF) in field-free space is

g�� D

0

B
@
� �1C g0y=c

2
�2
0 0

0 1 0

0 0 1

1

C
A : (8)

It is not difficult to show that the underlying physical spacetime of the UAF metric
is flat.

In the next step, we associate with virtual space the flat Minkowski metric with
two spatial components

Ng�� D
0

@
�1 0 0
0 1 0

0 0 1

1

A : (9)

Substituting the metrics (8) and (9) into (6) readily yields the constitutive relations

	 D 1C g0

c2
y; 
0


ij D
�
1C g0

c2
y
��1 �1 0

0 1

�

; (10)

which exactly describes how the parameters of the acoustic metamaterial have to
be fine-tuned to implement an acoustic media within a rigid, uniformly accelerating
reference frame.

This fully establishes the design of the desired acoustic device. Furthermore,
a detailed analysis of the corresponding solutions of the Euler-Lagrange equa-
tions, (5), shows that the y-dependence of the acoustic potential �.t; x; y/ D
�0.t/�1.x/�2.y/ for is dictated by the differential equation
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�00
2 C

g0

c2 C g0y
�0
2 C

"
!2

.c2 C g0y/
2
� k2x

#

�2 D 0; (11)

where ! and kx are the angular frequency and wavenumber of the plane-wave
solution for a wave travelling in x-direction, respectively.

It is easy to see that in the asymptotic limits y ! ˙1, Eq. (11) gives for the
y-amplitude the dependence �2 � e˙kxy , where the physically relevant solution is
chosen. On the other hand, a coordinate singularity occurs at y0 D �c2=g0 where
the metric tensor (8) has a vanishing determinant, and thus corresponds to a Rindler
event horizon.

Since the functions �0.t/ and �1.x/ describe an oscillatory harmonic motion
which is bounded, the full acoustic potential �.t; x; y/ will display the same
asymptotic behavior for sufficiently large y as �2.y/ and also possess an event
horizon at y0. This means that any acoustic wave will be trapped either within region
y < y0 or region y > y0, and no communication to the outside of each domain will
be possible. In practice, g0 can be fine-tuned such that this effect may be detected
for desirable values of y0, The boundary y D y0 demarcates the region at which
the accelerational pull becomes so great as to make the escape of an acoustic signal
impossible, that is, it constitutes an acoustic event horizon. For a full numerical
discussion of this effect consult [13], which also compares the UAF model with
systems containing a uniform gravitational field (UGF).

3 Conclusions

We have outlined a novel differential-geometric approach to transformation acous-
tics based on Hamilton’s principle for the acoustic potential in a fully covariant
spacetime setting [10]. This enabled us to immediately establish the general
relations between the constitutive parameters 	 (bulk modulus) and 
ij (mass-
density tensor) linking the physical and virtual spaces of the acoustic metafluid and
their respective spacetime metrics.

We hope that the proposed approach to transformation acoustics will aid in
the efficient design and analysis of acoustic metamaterials and open up hitherto
unknown possibilities in this area of research.

Apart from allowing for a thorough examination of new acoustic devices with
much more complicated spacetime geometries, it may also serve to implement
and investigate many intriguing features of general relativity in a laboratory
environment, especially by constructing analogue horizons [13, 14].

Acknowledgements The authors wish to thank for financial support by the Universidad Politéc-
nica de Valencia under grant PAID-06-11-2020.
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Location and Management of a New Industrial
Plant

Miguel E. Vázquez-Méndez, Lino J. Alvarez-Vázquez, Néstor García-Chan,
and Aurea Martínez

Abstract Within the framework of numerical simulation and multi-objective con-
trol of partial differential equations (PDE), in this work we deal with the problem of
determining the optimal location of a new industrial plant. We begin presenting
a mathematical model (a system of nonlinear parabolic PDE) for the numerical
simulation of air pollution. Based on this model, and taking into account economic
and ecological objectives, we formulate the problem in the field of multi-objective
optimal control. We analyze the problem from a cooperative viewpoint, recalling the
standard concept of Pareto-optimal solution, and pointing out the Pareto-frontier as
a very useful tool in the decision-making process. Finally, some preliminary results
for a hypothetical situation in the region of Galicia (NW Spain) are also presented.

1 Mathematical Modeling

Let ˝ � R
2 be a bounded domain where several already existing industrial plants,

located at points pi 2 ˝; i D 0; : : : ; N , discharge pollutants into the atmosphere.
We suppose that these pollutants are transported through the atmosphere by air
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masses and turbulent diffusion, and that the kinetics of all reactions taking place
in the process can be expressed quantitatively by a rate law (the reaction rate is
proportional to the concentration of reactants). So, we consider NS substances
(pollutants) to control and, for j D 1; : : : ; NS , we denote by �j .x; t/ the
concentration of j -th pollutant in point x 2 ˝ and at time t � 0. Under previous
hypotheses, functions �j .x; t/ should satisfy for a given time interval .0; T / the
following coupled system of partial differential equations, for j D 1; : : : ; NS :

@�j
@t

C u � r�j � r � .�jr�j /C fj .�1; : : : ; �NS / D
NX

iD0
Q
j
i .t/ı.x � pi / in ˝ � .0; T /; (1)

where u.x; t/ is the wind velocity (which we assume experimentally known, and
verifying the continuity equation r:u D 0), �j .x; t/ is the horizontal turbulent
diffusion coefficient, Qj

i .t/ is the mass flow rate of j -th pollutant discharged at
point pi 2 ˝, ı.x � pi / represents the Dirac delta function at pi , and, finally,

fj .�1; : : : ; �NS / D 	j �1
˛1j : : : �NS

˛
NS
j

denotes the reaction term for j -th pollutant, where 	j is a temperature-dependent
rate and powers ˛ij are the reaction orders (see, for instance, [1]).

We suppose that initial pollutant concentrations are given by known functions
�01.x/; : : : ; �

0
NS
.x/ in such a way that, for j D 1; : : : ; NS :

�j .x; 0/ D �0j .x/ in ˝: (2)

Finally, for each x 2 @˝, we denote by n.x/ the unit outward normal vector
to the boundary @˝; and we write @˝ � .0; T / D S� [ SC, where S� D
f.x; t/ 2 @˝ � .0; T / such that u:n < 0g represents the inflow boundary, and
SC D f.x; t/ 2 @˝ � .0; T / such that u:n.x/ � 0g the outflow boundary.
No pollution sources outside ˝ are considered and, consequently, the combined
(diffusive plus advective) pollution flow is assumed to be zero on S�. On the
other hand, on SC we assume that the diffusive pollution flow can be negligible
as compared to the advective pollution outflow from ˝. Thus, for j D 1; : : : ; NS ,
we consider the following boundary conditions (see [4]):

�j
@�j

@n
� �j u:n D 0 on S�; �j

@�j

@n
D 0 on SC: (3)
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2 Multi-objective Optimal Control Problem

Our main objective consists of determining the optimal location and management
of a new industrial plant. We suppose that at the present moment there exist N
plants working in the domain ˝ (i.e., points p1; : : : ; pN 2 ˝ and functions
Q
j
1 .t/; : : : ;Q

j
N .t/, for j D 1; : : : ; NS , are known), and that a new industrial plant

is to be built in a point p0 2 ˝, which has to be determined. This new plant will be
working for a time .0; T /, and during this period of time its emission flow rates will
be given by a vector function Q0.t/ D .Q1

0.t/; : : : ;Q
NS
0 .t//, which has to be also

determined. The new plant should be as cost-effective as possible, but also as green
(harmless from an ecological perspective) as possible.

From an economic viewpoint, the cost-effectiveness of the plant depends on
two aspects. First, more emission rates correspond with a higher production and,
consequently, with a higher cost-effectiveness. Therefore, we suppose that there
exists a known function F giving the cost-effectiveness of the plant in terms of
the emission flow rates, in such a way that the gross profit (to be maximized) for the
time interval .0; T / is given by

R T
0
F.Q0.t// dt: On the other hand, the building and

managing costs depend on the plant location p0 2 ˝. For building costs we assume
that they are given by a known functionG.p0/. For managing costs, we can suppose
that there exist an ideal point pI0 2 ˝ (representing, for instance, the source of raw
material) and a known function (estimated, for example, from fuel costs) in such a
way that managing costs (to be minimized) for the time interval .0; T / are given byR T
0
s.t/ jjp0�pI0 jj2 dt: Thus, from an economic point of view, the objective consists

of minimizing the economic cost function:

JE.p0;Q0/ D �
Z T

0

F .Q0.t// dt C
Z T

0

s.t/ jjp0 � pI0 jj2 dt CG.p0/: (4)

From an ecological viewpoint, NZ sensitive environmental areas Ak � ˝,
for k D 1; : : : ; NZ , are considered, and the environmental impact of the plant
is measured in terms of the mean pollutant concentrations in each of these areas.
Thus, the ecological objectives consist of minimizing the following functions, for
k D 1; : : : ; NZ; and for j D 1; : : : ; NS :

J
j

k .p0;Q0/ D 1

jAkjT
Z T

0

Z

Ak

�j .x; t/ dx dt; (5)

where jAkj denotes the area of Ak , and functions �1.x; t/; : : : ; �NS .x; t/ are the
solutions of the state system (1)–(3).

Finally, we have to take into account some technological constraints limiting
both plant location and emission rates. If Xad � ˝ denotes the admissible plant
locations, and Qad � .L1.0; T //NS is the set of admissible emission flow rates,
then the problem of finding the optimal location and management of the new
industrial plant can be formulated as the following Multi-objective Optimal Control
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problem (MOC): For k D 1; : : : ; NZ; and for j D 1; : : : ; NS , find the point p0 2
Xad and the function vector Q0 2 Qad minimizing the economic cost JE , given
by (4), and the ecological costs J jk , given by (5), in the admissible set Xad �Qad .

3 Pareto-Optimal Solutions

Obviously, economic and ecological objectives are contradictory and, consequently,
it is not possible to find an element .p0;Q0/ 2 Xad�Qad minimizing JE and J jk , for
k D 1; : : : ; NZ , j D 1; : : : ; NS , simultaneously. In this sense, the problem (MOC)
(as it usual in many multi-objective optimization problems) are ill-defined. Anyway,
some elements of the admissible set can be extracted for examination. Such vectors
are those where none of the components can be improved without a deterioration
of, at least, one of the other components. These vectors are usually called Pareto-
optimal solutions. A more formal definition is the following (see, for instance, [5]):

Definition 1. .p�
0 ;Q

�
0 / 2 Xad � Qad is a Pareto-optimal solution of problem

(MOC) if there does not exist any .p0;Q0/ 2 Xad �Qad satisfying the following
conditions:

1. JE.p0;Q0/ � JE.p
�
0 ;Q

�
0 / and J

j

k .p0;Q0/ � J
j

k .p
�
0 ;Q

�
0 / for all k D

1; : : : ; NZ , j D 1; : : : ; NS .
2. JE.p0;Q0/ < JE.p

�
0 ;Q

�
0 / or J jk .p0;Q0/ < J

j

k .p
�
0 ;Q

�
0 / for at least one k D

1; : : : ; NZ; or j D 1; : : : ; NS .

If .p�
0 ;Q

�
0 / 2 Xad �Qad is a Pareto-optimal solution, the corresponding objective

vector .JE.p
�
0 ;Q

�
0 /; J

1
1 .p

�
0 ;Q

�
0 /; : : : ; J

NS
1 .p�

0 ;Q
�
0 /; : : : ; J

1
NZ
.p�

0 ;Q
�
0 /; : : : ; J

NS
NZ

.p�
0 ;Q

�
0 // is also known as Pareto-optimal. The set of Pareto-optimal solutions is

called Pareto-optimal set, and the set of Pareto-optimal objective vectors is known
as the Pareto-optimal frontier.

Figure 1 shows the geometrical interpretation for two objectives, JE and J 11 .
Bearing in mind that the Pareto-optimal frontier is very important (crucial) for
decision makers, several techniques of multi-objective optimization have been
developed during last decades in order to be applied in the computation of the
Pareto-optimal frontier (see, for example, a brief historical review in [5] or [2]).
To apply any of these techniques, an alternative formulation of problem (MOC), in
terms of adjoint state [3], can be very useful.

4 Numerical Results

In this section, we present some preliminary results for a hypothetical situation
in the region of Galicia (northwest of Spain). The domain ˝ is a rectangular
area of 57,600 km2, covering the surface of Galicia, where we have considered
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Fig. 1 Geometrical interpretation of Pareto-optimal frontier for two objectives JE and J 11

a b c

Fig. 2 Numerical results: (a) domain ˝ for numerical simulation. (b) Pareto-optimal frontier. (c)
Pollutant concentration at final time �1.x; T /

NZ D 1 sensible area, andN D 3 industrial plants located at points p1 D .62;165/,
p2 D .161;203/ and p3 D .11;145/ (see Fig. 2a). Only one pollutant is controlled
(NS D 1) with unitary reaction order (˛11 D 1). The time period for controlling
is 1 year (T D 8;760 h), and we assume that, for this period of time, the emission
rates of the three plants are constant: Q1 D 1;000 kg/h, Q2 D 2;000 kg/h and
Q3 D 4;000 kg/h. For the new plant, we take pI0 D .100; 110/ as the ideal point,
and we assume that its emission flow rate Q0.t/, that can be no constant, has to be
greater than Qmin

0 D 100 kg/h and lower than Qmax
0 D 4;000 kg/h for all time t .

For these first numerical experiences we take a constant wind velocity u.x; t/ D
.4; 9/ km/h, a constant diffusion coefficient �.x; t/ D 100 km2/h and a reaction rate
	1 D 10�5 h�1. Finally, null pollutant initial concentration is considered (�01.x/ D
0 kg/m2), building costs are neglected (G.x/ D 0) and, for cost-effectiveness and
managing costs, functions F.Q/ D 10�15Q2 and s.t/ D 10�8 are defined.

In this situation, we obtain the Pareto-optimal frontier which is shown in Fig. 2b.
For the Pareto-optimal solution pointed out with a circle in Fig. 2b, the pollutant
concentration at the final time of simulation (�1.x; T /) is shown in Fig. 2c.
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A Satellite-to-Satellite Laser Tracking Solution
Within the Post-Newtonian Model of the Earth
Outer Space

Jose M. Gambi and Maria Luisa Garcia del Pino

Abstract Two second order post-Newtonian formulae, one for the two-way
frequency shift and the other for the two-way Laser ranging, are derived by means
of Synge’s world-function. The formulae can be used to increase the Classical
accuracy in tracking passive targets by means of APT systems on board Earth
satellites.

1 Introduction

The emerging importance of space-based systems for communications and surveil-
lance is making the implementation of accurate space-based acquisition, pointing,
and tracking (APT) systems a relevant issue. In particular, the Satellite-to-Satellite
(SST) Laser tracking problem is attracting more and more attention due to the fact
that Laser technology has matured substantially in the recent years (see e.g. [1, 2]).

The two-way frequency shift and Laser ranging formulae introduced below
correspond to the post-Newtonian model of the exterior of an spherical earth.
Therefore, they can also be used to derive TDOA and FDOA equations for them
to meet the present needs in locating passive radio transmitters placed on the Earth
surface or in space [3–5]. In fact, the formulae can be used for a great variety of
tracker-target configurations, since the target need not be active and the tracker may
be given a discrete number of orbital impulses. In addition, the tool used, Synge’s
world-function [6], allows us to follow a procedure with which the Classical and
post-Newtonian approaches can be compared at each step.
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2 The World-Function for the Earth Surrounding Space

Synge’s world function is an efficient tool so plenty of physical content that many
practical results have been obtained with it (see e.g. [7–10]).

As was mentioned above, to derive the two-way frequency shift and Laser
ranging formulae we consider an spherical earth. Therefore, we adopt as model
of space-time about the Earth the post-Newtonian approximation of the exterior
Schwarzschild field. The metric form that characterizes this field written in terms of
ECI coordinates, xi � .x˛; t/, is [6, 11] (c D G D 1)

ds2 D �gijdxidxj D �Œ.ı˛ˇ C �˛ˇ/dx˛dxˇ C .�1C �44/dt
2�C O."3/; (1)

where �˛ˇ D 2mx˛xˇ=r3, �44 D 2m=r , r2 D x˛x˛ , m is the mass of the earth,
and � D f�1; 0; 1g for timelike, null and spacelike vectors, dxi , respectively. �ij D
diag.1; 1; 1;�1/ and " is a small dimensionless parameter such that "2 is of the order
ofm=r and v2, where v is the characteristic Classical 3-speed of the objects in orbit
about the Earth with respect to the Earth. (Latin indices range from 1 to 4, and Greek
from 1 to 3.)

For any space-time characterized by the pseudo-Riemann metric tensor gij.x
k/

(signature C;C;C;�) and for any two events, P1.xk1/, P2.xk2/, for which there
is a unique geodesic, �P1P2 , joining them, Synge’s world-function, ˝.P1; P2/, is
defined by the line integral

˝.P1; P2/ D 1

2

Z 1

0

gijU
iU j d! (2)

taken along �P1P2 , where �P1P2 is given by xi D xi .!/, ! being an affine parameter
satisfying 0 � ! � 1, so that P1 � xi .0/, P2 � xi .1/ and U i D dxi =d!.

There are two expressions for ˝ for the space-time in (1), one for events
P1.x

˛1 ; t1/,P2.x˛2 ; t2/whose spots x˛1 , x˛2 , at t1 and t2 respectively, are not aligned
with the ECI center, and the other for events whose spots at those instants are aligned
with the ECI center. In fact, from (1) and (2) we have [7]

˝.P1; P2/ D 1

2

h
�xı�xı � .�t/2

i

Cmj�xıj
h

log
r2 C d2

r1 C d1
C d1

r1
� d2

r2

i
C m.�t/2

j�xıj log
r2 C d2

r1 C d1
C O."3/; (3)

˝.P1; P2/ D 1

2

h
�xı�xı � .�t/2

i
Cm

h
j�xıj C .�t/2

j�xıj
i

log
r2

r1
C O."3/; (4)

for the first and second case respectively. In (3) and (4) r21 D jxı1 j2 D xı1xı1 ,
r22 D jxı2 j2 D xı2xı2 , �xı D xı2 � xı1 , j�xıj2 D �xı�xı , �t D t2 � t1,



Post-Newtonian Laser SST Solution 349

.d1/
2 D r21 � d2 and .d2/2 D r22 � d2, where d is the Euclidean distance from the

ECI center to the straight line joining xı1 and xı2 .

3 Covariant Derivatives of˝ and Inertial Local Reference
Frames

The first covariant derivatives of ˝ with respect to P1 and P2, ˝i1 , ˝i2 , are needed
to derive the frequency shift formula. There are eight derivatives for each case. Thus,
for (3) we have at P1, up to O."3/,

˝˛1 D �4x˛ �m 4x˛
j4x˛j

h
log

r2 C d2

r1 C d1
C d1

r1
� d2

r2

i

�mj4x˛j d1
r31
x˛1 Cm.4t /2 4x˛

j4x˛j3 log
r2 C d2

r1 C d1
� m.4t /2

j4x˛j
x˛1

r1d1
;

˝41 D 4t � 2m 4t
j4x˛j log

r2 C d2

r1 C d1
(5)

and similar expressions for their relatives at P2. For (4) we have at P2, again up to
O."3/,

˝˛2 D 4x˛ Cm
h 4x˛
j4x˛j �

4x˛
j4x˛j3 .4t /

2
i

log
r2

r1
Cm

h
j4x˛j C .4t /2

j4x˛j
ix˛2

r22
;

˝42 D �4t C 2m
4t

j4x˛j log
r2

r1
(6)

and similar expressions for their relatives at P1. (Note that these derivatives are
indicated with simple subscripts, that is to say, without the usual stroke.)

Let us now assume that the world line of the tracking satellite, S , is L1 �
.x˛1.s1/; t.s1// where s1 is the proper time of S . Let us also assume that P1 2 L1.
Then, according to (1), the unit tangent vector to L1 at P1, Ai1 , is given by

A˛1 D v˛1 C O."3/; A41 D
�ds1

dt

��1 D 1C m

r1
C 1

2
.v1/

2 C O."3/; (7)

where v˛1 is the velocity of S at t1 and .v1/2 D v˛1v˛1 . The importance ofAi1 is that
it characterizes the reference frames, �i1.˛/, co-moving with S at P1 (˛ D 1; 2; 3). In

particular, for �i1.˛/ to be inertial the following must be satisfied [12]

�
41
.˛/ D v˛1 C O."3/; �

ˇ1
.˛/ D ıˇ˛ �mx

˛1xˇ1

r31
C 1

2
v˛1vˇ1 C O."3/: (8)
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4 The Two-Way Frequency Shift and Ranging Formulae

Let us assume that P1 is the emission event of a Laser beam that reaches P2 2 L2,
where L2 is the world line of the target, T . Since the geodesic joining P1 and P2 is
null, we have ˝..x˛1 ; t1/; .x˛2 ; t2// D 0. Then, from (3) it can be deduced that the
time taken by the beam to travel from P1 to P2 when S (at t1) and T (at t2) are not
aligned with the ECI center is

�t D j�xıj
n
1C m

j�xıj
h
2 log

r2 C d2

r1 C d1
C d1

r1
� d2

r2

io
C O."3/; (9)

and from (4) we have that the time is

4t D j4xıj
n
1C 2m

j4xıj log
r2

r1

o
C O."3/ (10)

when S and T are aligned at those instants with the ECI center.
Hence, substitutions of �t from (9) into (5) and from (10) into (6) give

˝˛1 D �4x˛ �m 4x˛
j4x˛j

h
log

r2 C d2

r1 C d1
C d1

r1
� d2

r2

i

�m j4x˛j
r21

d1

r1
x˛1 Cm

4x˛
j4x˛j log

r2 C d2

r1 C d1
�mj�x˛j x

˛1

r1d1
C O."3/; (11)

˝˛2 D 4x˛ C 2mj�x˛jx
˛2

r22
C O."3/; (12)

respectively, and similar expressions for their relatives.
Now, from (7) and (11) and their relatives we have

˝i1A
i1 C˝i2A

i2 D �x˛.v˛2 �v˛1/Cj�x˛j
hm

r1
� m
r2

C 1

2

�
.v1/

2� .v2/2
�iCO."3/;

˝j1A
j1 D j�x˛j

n
1 � �x˛v˛1

j�x˛j
o
C O."2/; (13)

and from (7) and (12) and their relatives we have the same expressions.
Therefore, there is one single one-way formula for the frequency shift. In fact,

taking into account (13) we have according to Synge [6] that the formula is

f2 D f1

n
1 � �x˛

j�x˛j .v
˛2 � v˛1/C m

r2
� m

r1
C 1

2

�
.v2/

2 � .v1/2
�

� �x˛

j�x˛j .v
˛2 � v˛1/ �x

ˇ

j�xˇjv
ˇ1
o
C O."3/; (14)
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where f1 is the emission frequency of the beam at P1 and f2 the reception frequency
at P2.

Now, if we assume that the beam is reflected by T at P2, and if we also assume
that the reflected beam reaches S at NP1. Nx˛1 ; Nt1/, then it is straightforward to deduce
from (14), and from the behavior of �i1.˛/ detailed in (8), that the two-way frequency
shift formula is

Nf1 D f1

n
1 � � Nx˛

j� Nx˛j . Nv
˛1 � v˛1/C m

Nr1 �
m

r1
C 1

2

�
. Nv1/2 � .v1/2

�

� � Nx˛
j� Nx˛j . Nv

˛1 � v˛1/ � Nxˇ
j� Nxˇjv

ˇ1
o
C O."3/; (15)

where Nf1 is the frequency of reception at NP1; . Nr1/2 D Nx˛1 Nx˛1 , Nv˛1 is the velocity of
S at Nt1, and� Nxˇ D Nx˛1�x˛2 , so that� Nx˛=j� Nx˛j is the direction of the line of sight
(LOS) of T from S at NP1.

So far we have not assumed that L1 is a geodesic in space-time. Let us now
assume that S is in free motion, i.e. orbiting the Earth, between two consecutive
impulses. In that case L1 is a geodesic between the events corresponding to those
impulses. Let us also assume that OP1. Ox˛1 ; Ot1/ is the foot at L1 of the geodesic, � OP1P2
drawn from P2 to cut orthogonally L1. Then OP1 is an event with unknown location
along L1, which occurs between P1 and NP1, so that P2 is in the instantaneous local
space of S at Ot1.

In terms of the world function the post-Newtonian relative position of T with
respect to S at Ot1, . Or12/ˇ , is given by . Or12/ˇ D �˝i1�

i1
.ˇ/CO."3/, with ˝i1 as in (5)

or (6), and �i1.ˇ/ as in (8), evaluated at OP1 [9].

Since the orthogonality condition between � OP1P2 and L1 at OP1 is given by
˝i1A

i1 D O."3/, then solving this condition we have �Ot D � Ox˛ Ov˛1 C O."3/,
where �Ot D t2 � Ot1, � Ox˛ D x˛2 � Ox˛1 , and Ov˛1 is the velocity of S at Ot1. On the
other hand, it is clear from (2) that the length of . Or12/ˇ , Or12, is Œ2˝. OP1; P2/�1=2.

Therefore, for the expressions of the world function in (3) and (4) we have

Or12 D j� Oxıj�1
2

.� Oxı Ovı1/2
j� Oxıj Cm

h
1C .� Oxı Ovı1/2

j� Oxıj2
i

log
r2 C d2

Or1 C Od1
Cm

h Od1
Or1 �

d2

r2

i
CO."3/;

(16)

Or12 D j� Oxıj � 1

2

.� Oxı Ovı1/2
j� Oxıj Cm

h
1C .� Oxı Ovı1/2

j� Oxıj2
i

log
r2

Or1 C O."3/; (17)

respectively, and for both cases we have that the two-way ranging for S is

Or12 D Ns1 � s1
2

h
1C m

6

�ı˛ˇ
Or31

� 3 Ox
˛1 Oxˇ1
Or51

�
� Ox˛� Oxˇ

i
C O."3/; (18)
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where s1 is the proper time of S at P1, i.e. the emission time of the laser as measured
by S , and Ns1 is the proper time of S at NP1, i.e. the reception time as measured by S .

5 Conclusions

Once more the world-function has revealed an efficient tool, on this occasion to
derive two-way frequency shift and Laser ranging post-Newtonian formulae for
SST. These formulae are suitable to increase the accuracy not only in tracking object
in space, but also in the location of passive radio transmitters placed on the Earth
surface or in the vicinity of the Earth by using the respective TDOA and FDOA
equations.
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Part VIII
Methods

Overview

This section contains an interesting collection of ten papers with method
development and modeling presented at the ECMI Conference 2012. Let me
comment on two important fields with contributions in this chapter:

(a) Statistical methods for simulation. Uncertainty quantification receives a still
growing interest. It is of major importance to industry, since uncertainty
enters the design and production of products at many levels. In the numerical
simulation, random processes have to be considered.

(b) Modeling, coupling, adaptivity. Also due to the complexity of problems,
adaptivity and coupling are indispensable, nowadays. A current trend goes
towards isogeometric finite elements.

The contribution by Roland Pulch (on Polynomial-Chaos Based Methods for
Differential Algebraic Equations with Random Parameters) illustrates uncertainty
quantification using an example from electric circuit simulation. The Schmitt
trigger circuit is considered, where two resistances in the DAE-model are treated
stochastically and may vary by 20 % (from the respective mean value). The results
and statistics from stochastic collocation are discussed.

Additionally, the efficiency of determination of uncertainty is of high interest.
ter Maten et al. (in Efficient Calculation of Uncertainty Quantification) consider the
stochastic Galerkin approach with a large sequence of deterministic simulations.
They use a kind of binning technique also coupled with a parameterized model
reduction to enable the use of cheap approximate models. Strategies for the subspace
extensions are discussed.

The authors Giacomo Aletti et al. propose and investigate a geometrical approach
to represent a birth-and-growth process (A Stochastic Geometric Framework for
Dynamical Birth-and-Growth Processes. Related Statistical Analysis). This is
important for technological applications such as semiconductor crystal growth or
DNA replication. Using suitable combinations of set-valued processes, they are able
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to avoid model problems. Furthermore, the authors are enabled to do a statistical
investigation and derive related estimators.

Maria A. Churilova and Maxim E. Frolov consider a stationary reaction-diffusion
equation with discontinuous coefficients. In their work (MATLAB Implementation
of Functional Type a Posteriori Error Estimates with Raviart-Thomas Approxima-
tion), they compare adaptive algorithms for different error indicators, also with
respect to efficiency.

Anh-Vu Vuong considers isogeometric finite elements with local refinement
(in Finite Element Concepts and Bezier Extraction in Hierarchical Isogeometric
Analysis). The local refinement is addressed by a hierarchical approach and a finite
element concept is derived. Using Bezier extraction the relation to standard finite
elements is discussed.

A steady state elasticity problem can be used to model volcano activities. This is
numerically investigated by Armando Coco et al. (A Second Order Finite-Difference
Ghost-Cell Method for the Steady-State Solution of Elasticity Problems). In their
work, they derive an elasticity model and apply a Cartesian grid with a level set
method to take care of the complex geometry. They present numerical results on an
Etna profile using a second order stencil with a special ghost-cell treatment.

Mike A. Botchev proposes a two stage Krylov method to solve large systems
of inhomogeneous ODEs (Time-Exact Solution of Large Linear ODE Systems by
Block Krylov Subspace Projections). In the first step, a truncated SVD is used to
approximate the source term (by a piecewise polynomial function). It is followed
by a residual-based block Krylov method. Numerical experiments are given, which
demonstrate the efficiency of the derived method.

In microwave heating processes and optics, hyperbolic matrix functions [e.g.
cosh.A/] are needed. The work (Computing Hyperbolic Matrix Functions Using
Orthogonal Matrix Polynomials) by Emilio Defez et al. discusses and illustrates the
approximate calculation of this matrices by the means of truncated Hermite matrix
series.

The paper by Jesús Angulo considers morphology as application. This image
processing technique is based on computation of the supremum and infimum
operator of positive definite matrices. In his work (Counter-Harmonic Mean of Sym-
metric Positive Denite Matrices: Application to Filtering Tensor-Valued Images), he
approximates the operators by a nonlinear averaging technique. Properties of this
method are discussed and an example is given.

Modeling and simulation for intensive steel quenching is the topic of Sanda
Blomkalna and Andris Buikis’ paper (Heat Conduction Problem for Double-
Layered Ball). For their setting, they derive a heat conduction model based on
parabolic and hyperbolic PDEs. To reduces numerical difficulties, they apply a
conservative averaging technique and present corresponding numerical results.

Andreas Bartel



Polynomial-Chaos Based Methods
for Differential Algebraic Equations
with Random Parameters

Roland Pulch

Abstract Mathematical modelling of technical applications often yields systems of
differential algebraic equations (DAEs), for example, in the simulation of electric
circuits or mechanical multibody problems. Imperfections of a manufacturing
procedure cause undesired variations in the produced devices. These variations can
be taken as uncertainties of physical parameters in a DAE model. We replace the
varying parameters by random variables to achieve an uncertainty quantification.
The time-dependent solution of the DAEs becomes a random process, which is
expanded into a series of the polynomial chaos. We can use either a stochastic
Galerkin method or a stochastic collocation technique to determine the unknown
coefficient functions. The Galerkin method yields a larger coupled system to be
solved once, whereas the collocation approach requires to solve the original systems
many times. We present numerical simulations of an illustrative example from
electrical engineering.

1 Introduction

The design and production of electronic circuits is based on numerical simulation
of mathematical models. Network approaches typically yield systems of differential
algebraic equations (DAEs), see [3]. Miniaturisation causes significant imperfec-
tions in the industrial production. Thus numerical simulations have to quantify
these uncertainties. A common approach consists in the substitution of uncertain
parameters by random variables. The solution of the DAEs becomes a random
process, which can be expanded in a series of the so-called polynomial chaos.
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Now numerical methods for the stochastic model are based on the polynomial chaos.
This strategy has been applied successfully to elliptic partial differential equations
in [2], where stochastic finite element methods are introduced. Ordinary differential
equations as well as partial differential equations are considered in [1], for example.

2 DAE Models with Random Parameters

We focus on initial value problems of systems of DAEs

A.p/
d

dt
x.t;p/ D f.t; x.t;p/;p/; x.t0/ D x0.p/: (1)

The right-hand side f as well as the mass matrix A include physical parameters p D
.p1; : : : ; pQ/

> 2 ˘ 
 Q. Thus the solution depends on time and the parameters,
i.e., x W Œt0; t1� �˘ ! N . We assume that A is singular for all p 2 ˘ .

The properties of a system of DAEs (1) are characterised by its index, where
different concepts for the definition of the index exist, see [4]. We consider the
differential index. The index is often determined by the topology and not by the
values of physical parameters for models of electric circuits. However, the index
can become parameter-dependent in some special cases, cf. [3].

Now let the chosen parameters exhibit uncertainties. For an uncertainty quan-
tification, we replace the parameters by random variables p W ˝ ! ˘ on
some probability space. We apply independent random variables with traditional
distributions like Gaussian, uniform, beta, etc. For a function u W ˘ ! depending
on the random parameters, the expected value is denoted as hu.p/i if it exists.
The expected value implies an inner product hu.p/v.p/i for two functions u; v 2
L2.˝/. We apply this notation also to vector-valued and matrix-valued functions by
components. Now we are interested in key data of the stochastic process solving (1)
like the expected value, the variance or more sophisticated quantities. In industrial
problems, often failure probabilities have to be determined approximately, see [6]
for an example.

3 Methods Based on Polynomial Chaos

Assuming that xj .t; � / 2 L2.˝/ for each t 2 Œt0; t1� and each component
j D 1; : : : ; N , the solution of the dynamical system (1) can be expanded into the
polynomial chaos, i.e.,
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x.t;p/ D
1X

iD0
vi .t /˚i .p/: (2)

Therein, the basis functions .˚i /i2 are orthogonal polynomials with respect to the
inner product of L2.˝/. The polynomials are known from the selected probability
distributions. The time-dependent coefficient functions satisfy

vi .t / D hx.t;p/˚i .p/i for each i (3)

and thus they are unknown a priori. The two main classes of numerical methods
to determine the coefficient functions are: stochastic collocation techniques and
stochastic Galerkin methods. A general overview can be found in [10, 11], for
example.

On the one hand, the strategy of stochastic collocation applies Eq. (3), where
a coefficient function is given by an expected value, i.e., a probabilistic integral.
A quadrature scheme yields an approximation of the integrals. It follows that a
system of DAEs (1) has to be solved for each node of the quadrature. The choice
of numerical methods for initial value problems may be critical if the index of the
systems depends on the parameters p 2 ˘ . A special case of collocation methods
represent (quasi) Monte-Carlo simulations.

On the other hand, the stochastic Galerkin method is based on a truncation
of the series (2). Inserting a truncated series in the system (1) yields a residual.
The Galerkin approach determines the coefficient functions by assuming the
orthogonality of the residual to the space of involved basis polynomials. It follows
the larger coupled system

MX

iD0

�

A.p/˚i .p/˚l .p/
�

d

dt
Qvi .t / D

*

f

 

t;

MX

iD0
Qvi .t /˚i .p/;p

!

˚l.p/

+

(4)

for l D 0; 1; : : : ;M including approximations Qv0; Qv1; : : : ; QvM of the exact coef-
ficient functions in (2). The required initial values are identified at t0 via (3). The
coupled system (4) has to be solved just once to obtain the numerical approximation.

The coupled system (4) typically represents a system of DAEs again. In some
rare cases, an implicit system of ordinary differential equations appears. If the index
of the coupled system coincides with the index of the original systems (1), then
often the same numerical methods can be reused. However, the index of the coupled
system (4) can increase or decrease in comparison to the original systems (1).
An increase of the index makes the problem more complicated. Sufficient conditions
for an identical index are proven for certain types of DAEs in [7, 8]. Results on the
spectrum and the numerical range of involved matrices given in [9] are useful in this
analysis.
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Fig. 1 Electric circuit of a
Schmitt trigger with two
random resistances (shown as
shaded boxes)

4 Illustrative Example

The electric circuit of a Schmitt trigger, see Fig. 1, transforms a sinusoidal input
voltage into a digital output voltage. We apply a model of this circuit given in [5],
where a nonlinear system of five DAEs appears with differential index 1. This
example was simulated with a random capacitance in [6]. Now we choose two
resistances as random parameters with independent uniform distributions, which
vary 20 % around the respective mean value.

The polynomial chaos expansion (2) of the solution involves the Legendre
polynomials. We include all polynomials up to degree 3, i.e., 10 basis functions
are considered. The coefficient functions are determined by a stochastic collocation
using Gauss-Legendre quadrature on a grid of size 4 � 4 in the domain of the
random parameters. The backward differentiation formula of second order resolves
the initial value problems of the DAEs (1) in time.

Figure 2 shows the expected value and the standard deviation of the output
voltage, which are reconstructed from the computed coefficient functions. We
recognise that the uncertainties of the resistances influence only the lower value
of the digital output signal.

Furthermore, Fig. 3 depicts the coefficient functions of the different polynomial
degrees. Note that the expected value corresponds to the constant polynomial
of degree zero. Although the relative amount of variation coincides in the two
random resistances (20 %), we observe that the impact on the output voltage is
much smaller for the second resistance. The magnitude of the coefficient functions
decreases significantly for degree two and three, which reflects the convergence of
the polynomial chaos expansion. The coefficient functions of these higher degrees
exhibit an overshooting behaviour at the transitions from lower to upper values and
vice versa. However, zooming indicates that the computed solutions are smooth and
thus resolved correctly.
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Fig. 2 Expected value (left) and standard deviation (right) of output voltage
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Fig. 3 Coefficient functions of output voltage. (a) Degree 1 for first resistance. (b) Degree 1 for
second resistance. (c) Degree 2 (all functions). (d) Degree 3 (all functions)
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Efficient Calculation of Uncertainty
Quantification

E. Jan W. ter Maten, Roland Pulch, Wil H.A. Schilders, and H.H.J.M. Janssen

Abstract We consider Uncertainty Quantification (UQ) by expanding the solution
in so-called generalized Polynomial Chaos expansions. In these expansions the
solution is decomposed into a series with orthogonal polynomials in which the
parameter dependency becomes an argument of the orthogonal polynomial basis
functions. The time and space dependency remains in the coefficients. In UQ two
main approaches are in use: Stochastic Collocation (SC) and Stochastic Galerkin
(SG). Practice shows that in many cases SC is more efficient for similar accuracy
as obtained by SG. In SC the coefficients in the expansion are approximated
by quadrature and thus lead to a large series of deterministic simulations for
several parameters. We consider strategies to efficiently perform this sequence of
deterministic simulations within SC.
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1 Polynomial Chaos for Dynamical Systems with Random
Parameters

We will denote parameters by p D .p1; : : : ; pq/
T and assume a probability space

.˝;A ;P/ given where A represents a  -algebra, P W A ! R is a measure and
p D p.!/ W ˝ ! Q 
 R

q . Here we will assume that the pi are independent.
For a function f W Q ! R, the mean or expected value is defined by

EpŒf .p/� D< f >D
Z

˝

f .p.!//dP.!/ D
Z

Q

f .p/ 
.p/dp: (1)

The specific probability distribution density is given by the function 
.p/. Because
P.˝/ D 1, we have < 1 >D 1. A bilinear form (with associated norm L2
) is
defined by

< f; g >D
Z

Q

f .p/ g.p/ 
.p/dp D< f g > : (2)

The last form is convenient when products of more functions are involved. Similar
definitions hold for vector- or matrix-valued functions f W Q ! R

m�n.
We assume a complete orthonormal basis of polynomials .�i /i2N, �i W Rq ! R,

given with < �i ; �j >D ıij (i; j;� 0). When q D 1, �i has degree i . To treat a
uniform distribution (i.e., for studying effects caused by robust variations) Legendre
polynomials are optimal in some sense; for a Gaussian distribution one can use
Hermite polynomials [17, 28]. A polynomial �i on R

q can be defined from one-
dimensional polynomials: �i .p/ D Qq

dD1 �id .pd /. Actually i orders a vector i D
.i1; : : : ; iq/

T .
We will denote a dynamical system by

F.x.t;p/; t;p/ D 0; for t 2 Œt0; t1�: (3)

Here F may contain differential operators. The solution x 2 R
n depends on t and

on p. In addition initial and boundary values are assumed. In general these may
depend on p as well.

A solution x.t;p/ D .x1.t;p/; : : : ; xn.t;p//T of the dynamical system becomes
a random process. We assume that second moments are finite: < x2j .t;p/ > < 1,
for all t 2 Œt0; t1� and j D 1; : : : ; n: We express x.t;p/ in a Polynomial Chaos
expansion

x.t;p/ D
1X

iD0
vi .t / �i .p/; (4)
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where the coefficient functions vi .t / are defined by

vi .t / D< x.t;p/; �i .p/ > : (5)

A finite approximation xm.t;p/ to x.t;p/ is defined by

xm.t;p/ D
mX

iD0
vi .t / �i .p/: (6)

For traditional random distributions 
.:/ convergence rates for jjx.t; :/ � xm.t; :/jj
for functions x.t;p/, that depend smoothly on p, are known (see [2] and [28]
for an expansion in Hermite or in Legendre polynomials, respectively). For more
general distributions 
.:/ convergence may not be true. For instance, polynomials
in a lognormal variable are not dense in L2
. For convergence one requires that the
probability measure is uniquely determined by its moments [8]. One at least needs
that the expected value of each polynomial has to exist.

The integrals (5) can be computed by (quasi) Monte Carlo, or by multi-
dimensional quadrature. We assume quadrature grid points pk and quadrature
weights wk , with 0 � k � K, such that

vi .t / D< x.t;p/; �i .p/ >	
KX

kD0
wk x.t;pk/ �i .pk/: (7)

Typically, Gaussian quadrature is used with corresponding weights. We solve (3)
for x.t;pk/, k D 0; : : : ; K (K C 1 deterministic simulations). Here any suitable
numerical solver for (3) can be used. By post-processing we determine the vi .t /
in (7).

As alternative approach, Stochastic Galerkin can be used. Then the sum (6) is put
into Eq. (3) and the residues are made orthogonal to the basis functions. This results
into one big system for the coefficient functions vi .t / [17,22,28]. Due to averaging,
this system does not depend on particular parameter values anymore.

2 Statistical Information and Sensitivity

We note that the expansion xm.t;p/, see (6), gives full detailed information when
varying p; it serves as a response surface model. From this the actual (and probably
biased) range of solutions can be determined. These can be different from envelope
approximations based on mean and variances.

Let �0 be the polynomial that is constant c; orthonormality implies that c D 1.
By further use of the orthogonality, the mean of x.t;p/ is given by
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EpŒx.t;p/� 	
Z

Q

xm.t;p/
.p/ dp D< xm.t;p/ 1 >D< xm.t;p/ �0 >D v0.t/

(8)

(for the finite expansion with exact coefficients the equality sign holds).
This involves all pk together. One may want to consider effects of pi and pj
separately. This restricts the parameter space Q 
 R

q to a one-dimensional subset
with individual distribution densities 
i .p/ and 
j .p/. A covariance function of
x.t;p/ can also be easily expressed

EpŒ.x.t1;p/ � EpŒx.t1;p/�/T .x.t2;p/ � EpŒx.t2;p/�/� 	
mX

iD1
vTi .t1/vi .t2/: (9)

Having a gPC expansion also the sensitivity (matrix) w.r.t. p is easily obtained

Sp.t;p/ D
�
@x.t;p/
@p



	
mX

iD0
vi .t /

@�i .p/
@p

: (10)

From this a relative sensitivity can be defined by

Srp.t;p/ D
"�

@xi .t;p/
@pj

� pj

xi .t;p/

�

ij

#

D Sp.t;p/ ı
"�

pj

xi .t;p/

�

ij

#

: (11)

It describes the amplification of a relative error in pj to the relative error in xi .t;p/
(here ı denotes the Hadamard product of two matrices).

The sensitivity matrix also is subject to stochastic variations. With a gPC
expansion it is possible to determine a mean global sensitivity matrix by

Sp.t/ D Ep

�
@x.t;p/
@p



	
mX

iD0
vi .t /

Z

Q

@�i .p/
@p


.p/ dp: (12)

Note that the integrals at the right-hand side can be determined in advance and stored
in tables.

3 Failure and Tolerance Analysis

Failure may be defined after introducing a criterion function g.t; x.t;p//, e.g.,
g.t; x.t;p// � x.t;p/ � � , with a threshold � . Then failure is measured by a
function �

�.g.t; x.t;p/// D


0 for g > 0
1 for g � 0

: (13)
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The Failure Probability is then

PF.t/ D
Z
�.g.t; x.t;p/// 
.p/ dp 	

Z
�.g.t; xm.t;p/// 
.p/ dp: (14)

In (14) the expression at the left of the approximation symbol may be obtained
using Monte Carlo methods for the original problems, probably speeded up by
methods like Importance Sampling [7,26]. In [26], after applying results from Large
Deviations Theory, also realistic, but sharp, upper bounds were derived involving the
number of samples that have to be drawn.

Alternatively, after having spent the effort in determining xm.t;p/ in (6) the
evaluation for different p is surprisingly cheap. Monte Carlo, Quasi Monte Carlo,
Importance Sampling can be used again for statistics, but at a much lower price
[21]. Determination of Failure Probability, however, deserves additional attention,
because the expansion xm.t;p/ in (6) may be less accurate in areas of interest for
this kind of statistics. The software tool RODEO of Siemens AG seems to be the
only industrial implementation of failure probability calculation that fits within the
polynomial chaos framework [20].

A hybrid method to compute small failure probabilities that exploits surrogate
models has been introduced by [18]. Their method can be slightly generalized
as follows. By this we can determine the effect of approximation on the Failure
Probability. To each sample zi we assume a numerically obtained approximation Qzi .
In addition g is approximated by Qg. The probabilities one checks are

QP".t/ D
Z
�
� Qg.t; Qz.t;p//C "

�

.p/dp;

QQ".t/ D
Z
�
� � Qg.t; Qz.t;p// � "��� Qg.t; Qz.t;p// � "� ��g.t; z.t;p//� 
.p/dp:

Note that in QP".t/ one deals with Qg.t; Qz.t;p// � �". In QQ" the first two factors
involve j Qg.t; Qz.t;p//j � ". The two quantities result in a Failure Probability
QPF .t/ D QP".t/C QQ".t/. The impact of the last factor in QQ" is that one additionally

evaluates the exact g.t; z.t;p// (or one approximates it more accurately) when its
approximation Qg.t; Qz.t;p// is small.

Now let

QD".t/ D
Z

j Qg.Qz.t;p//�g.z.t;p//j>"

.p/dp

be the combined quality of both approximations. One should be able to make
this small. Note that j Qg.Qz.t;p// � g.z.t;p//j < j Qg.Qz.t;p// � Qg.z.t;p//j C
j Qg.z.t;p// � g.z.t;p//j. The first term needs Lipschitz continuity for Qg to deal
with Qz.t;p/ � z.t;p/, the second one deals with j Qg � gj. By this and exploiting the
finite probability measure one may assume, f.i., that QD".t/ < ıPF .t/, for 0 < ı < 1.
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One can proof (similar to [18], Theorem 4.1)

j QPF .t/ � PF .t/j < QD".t/ < ıPF .t/: (15)

One may order the (remaining) approximative samples Qg.i/.t/ D Qg.t; Qz.t;pi //
according to j Qg.i/.t/j and replace the smallest ones by g.i/.t/ D g.t; Qz.t;pi // and
reduce the set of (remaining) approximative samples accordingly. One can stop if
the Failure Probability does not change that much anymore [18]. This procedure
resembles algorithmic steps in [20].

4 Strategies for Efficient Stochastic Collocation

Stochastic Collocation implies that the problem has to be solved for a sequence (or
sweep) of parameter settings p0; : : : ;pK . One can obtain some benefit by exploiting
knowledge derived before.

In [16], the parameters pk are grouped in blocks and in each block one simulation
is made, say for pk0 . At the subset of the pk0 the solution x.t;pk0/ is calculated
at some higher accuracy (f.i., with a smaller stepsize h0). The solution is used to
estimate the truncation error of the time integration for x.t;pk/. One determines the
residue r.t; x.t;pk0// for x.t;pk0/ using the same integration method as intended
to be used for x.t;pk/, with stepsize h, but using pk0 in all expressions. By this
the discretization error for x.t;pk/ is estimated automatically when pk0 is close to
pk . By subtracting r.t; x.t;pk0// from the equations for x.t;pk/, one may expect a
larger stepsize h to be used then without this modification. Note that

r
�
t; x.t;pk/

� � r
�
t; x.t;pk0/

�

D @r
@x

�
t; x.t;pk/

� � �x.t;pk/ � x.t;pk0/
�C O.jjpk � pk0 jj2/

D @r
@x

�
t; x.t;pk/

� � @x
@p

� .pk � pk0/C O.jjpk � pk0 jj2/: (16)

Here the first factor equals the last Jacobian. The second factor is the sensitivity
matrix of the solution with respect to the parameter variation [13, 14]; it can be
estimated from its value at pk0 . When the usual error control is too pessimistic, this
approach may be an alternative.

In [25] also first the solution for pk0 is calculated for the next time discretization
point and used as predictor for the time step integration of the problems for other
pk . Here as well the prediction can be improved by additional sensitivity estimates.
If parameters are values for capacitors, inductors or resistors they are model bound.
Then hierarchy techniques [11] can be exploited to by-pass certain parts of the
circuit during the Newton iteration. Of course, the time step integration for the other
pk can be solved in parallel.
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In [2, 20] one builds an estimator by a moderately-sized gPC approximation

Qxm0 D
m0

X

iD0
Qvi .t /�i .p/: (17)

As before the best Qvi .t / has Qvi .t / D
R

x.t;p/
.p/dp. We can approximate them by
a Least Squares procedure at each time t

min
Qvi .t/

R
.x.t;p/ � Qxm0

/2
.p/dp 	 min
Qvi .t/

KX

kD0
wk

�

x.t;pk/ �
m0

X

iD0
Qvi .t /�i .pk/

�2

D min
y

jjMy � bjj22; where (18)

M D

0

B
@

0

B
@

p
w0

: : : p
wK

1

C
A

0

B
@

�0.p0/ : : : �m0.p0/
:::

:::

�0.pK/ : : : �m0.pK/

1

C
A

1

C
A˝ In;

b D .
p

w0xT .t;p0/; : : : ;
p

wKxT .t;pK//T ;

y D .QvT0 .t/; : : : ; QvTm0.t//
T :

In [2,20] one applies a Least Squares procedure (18) not for the final solution values
x.t;p0/, . . . , x.t;pK/, but after splitting the sequence in already determined values
x.t;p0/, . . . , x.t;p QK/, and approximated values Qx.t;p QKC1/, . . . , Qx.t;pK/. Clearly the
error�y is determined by�y D MC�b, where the�b comes from the errors in the
zk � p

wk Qx.t;pk/, k D QK C 1; : : : ; K. One can sort the zk and update the Qx.t;pk/
to final solution values x.t;pk/ for the � QK largest zk . This allows to update Qxm0

iteratively and the approximation values Qx.t;p QKC1/, . . . , Qx.t;pK/ may come from
the previous Qxm0

. Interpreting the values x.t;p0/, . . . , x.t;p QK/, Qx.t;p QKC1/, . . . ,
Qx.t;pK/ as coming from a function Ox.t;p/. Then for Ox.t;p/ the mean, variance and
sensitivity simply follow from the gPC expansion. The mean and variance can be
used to check their change after an update. Note that here one can exploit the average
sensitivity as well, which also simply follows from the gPC expansion. In this way
one can assure that one includes dominant parameters first. We finally note that the
approximations may come from (parameterized) Model Order Reduction.

5 Parameterized Model Order Reduction

Model Order Reduction (MOR) techniques can be applied to reduce the size of
the deterministic problems that have to be simulated using SC. For good general
introductions we refer to [1,5,23]. For parameterized MOR we refer to [3,9,10,24].
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We consider a linear system for circuit equations with capacitance matrix C D
C.p/, conductance matrix G D G.p/ and source u.t/ D u.t;p/ that involve
parameters p,

C.p/
dx
dt

C G.p/x.t;p/ D Bu.t;p/; (19)

y.t;p/ D BT x.t;p/:

Here y.t;p/ is some output result. This separation of p and x in the expressions in
each equation of (19) is quite common in circuit simulation (capacitors, inductors
and resistors depend on p), but for more general expressions (like when using
controlled sources) this may require some organization in the evaluation tree of
the expression handler. In [10] a parameterized system in the frequency domain
is considered in which the coefficient matrices have been expanded. We consider,
however, the nonexpanded form. Let s be the (angular) frequency. It is assumed that
a set p1;p2; : : : ;pK is given in advance, together with frequencies s1; s2; : : : ; sK .
In our case the p1;p2; : : : ;pK can come from quadrature points in SC. Let �k D
.sk;pk/. Furthermore, let A D sC.p/C G.p/ and AX D B, where X is the Laplace
Transform of x. Similarly, let Ak D A.�k/ D skC.pk/C G.pk/ and AkXk D B.

A projection matrix V (with orthonormal columns vi ) is searched for such that
X.s;p/ 	 NX.s;p/ � V OX.s;p/ �PK0

iD1 ˛i .s;p/vi .
We assume that we have already found some part of the (orthonormal) basis,

V D .v1; : : : ; vk/. Then for any �j that was not selected before to extend the basis
the actual error is formally given by Ej D X.�j / �Pk

iD1 ˛i .�j /vi and thus for
the residue we have Rj D AjEj D B �Pk

iD1 ˛i .�j /Aj vi . Note that the residues
deal with B and with x and not with the effect in y. For UQ one may consider a two-
sided projection here, which will bring in the effect due to the quadrature weights.
The method of [10] was used in [6] (using expansions of the matrices in moments of
p). In [6] the parameter variation in C and G did come from parameterized layout
extraction of RC circuits. In the extraction it was assumed that B, as well as the
fill-in patterns of C.p/ and of G.p/, did not depend on p. When B also becomes
dependent on p one should determine a basis for the range of B.p/. In fact one
needs MOR for multi-input, multi-output [4, 15, 27].

The selection of the next parameter introduces a notion of “dominancy” from an
algorithmic point of view: this parameter most significantly needs extension of the
Krylov subspace. To invest for this parameter will automatically reduce work for
other parameters (several may even drop out of the list because of zero residues).

We finally describe two ideas to include sensitivity in parameterized MOR. One
can calculate the sensitivities of the solution of the reduced system by adjoint
techniques as described by [13, 14]. Alternatively one can exploit the sensitivity
indication based on the gPC expansion of the combined list of exact evaluations and
outcomes of approximations as mentioned in Sect. 4.

If first order sensitivity matrices are available for C.p/ D C0.p0/ C C0.p0/p
and for G.p/ D G0.p0/ C G0.p0/p one can apply a Generalized Singular Value
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Decomposition [12] to both pairs .CT
0 .p0/; ŒC

0�T .p0// and .GT
0 .p0/; ŒG

0�T .p0//.
In [19] this was applied in MOR for linear coupled systems. The low-rank
approximations for C0.p0/ and G0.p0/ give way to increase the basis for the columns
of B of the source function. Note that by this one automatically will need MOR
methods that can deal with many terminals [4, 15, 27].

6 Conclusion

We have derived strategies to efficiently determine the coefficients in generalized
polynomial chaos expansions. When determined by Stochastic Collocation and
numerical quadrature this leads to a large number of deterministic simulations.
Parameterized Model Order Reduction is a natural choice to reduce sizes. In
selecting a next parameter for the subspace extension different options have
been described: residue size and options for sensitivity. For UQ however, one
should involve the influence of the quadrature weights and one may check the
contribution to global statistical quantities. A related algorithm can be used for
Failure Probabilities.
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A Stochastic Geometric Framework
for Dynamical Birth-and-Growth Processes:
Related Statistical Analysis

Giacomo Aletti, Enea G. Bongiorno, and Vincenzo Capasso

Abstract A birth-and-growth model is rigorously defined as a suitable combi-
nation, involving the Minkowski sum and the Aumann integral, of two very
general set-valued processes representing nucleation and growth respectively. The
simplicity of the proposed geometrical approach let us avoid problems arising from
an analytical definition of the front growth such as boundary regularities. In this
framework, growth is generally anisotropic and, according to a mesoscale point of
view, is not local, i.e. for a fixed time instant, growth is the same at each point space.
The proposed setting allows us to investigate nucleation and growth processes also
from a statistical point of view. Different consistent set-valued estimators for growth
processes and for the nucleation hitting function are derived.

1 Introduction

The importance of nucleation and growth processes is well known. They arise in
several natural and technological applications (e.g. [7, 8]) such as, for example,
solidification and phase-transition of materials, semiconductor crystal growth,
biomineralization, and DNA replication, e.g. [14]. During the years, several authors
studied stochastic spatial processes (e.g. [12, 16, 21]), nevertheless they essentially
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consider static approaches modeling real phenomena. For what concerns the
dynamical point of view, a parametric birth-and-growth process was studied in
[17,18]. A birth-and-growth process is a family of random closed sets (RaCS) given
by �t D S

nWTn�t �
t
Tn
.Xn/, for t � 0, where �t

Tn
.Xn/ is the RaCS obtained as

the evolution up to time t > Tn of the germ born at (random) time Tn in (random)
location Xn, according to some growth model. An analytical approach is often used
to model birth-and-growth process, in particular it is assumed that the growth of a
spherical nucleus of infinitesimal radius is driven according to a non negative normal
velocity, i.e. for every instant t , a border point of the crystal x 2 @�t “grows”
along the outwards normal unit, e.g. [4–6,10,13]. In view of the chosen framework,
different parametric and non parametric estimations have been proposed over the
years, e.g. [1, 7, 9, 11, 19]. Note that the existence of an outwards normal vector
imposes a regularity condition on @�t (and also on the nucleation process; it cannot
be a point process of Hausdorff dimension zero).

In this paper, we offer an outline of recent results obtained by the authors [2, 3].
In order to avoid regularity assumptions describing birth-and-growth processes, the
authors have offered an original approach based on a purely stochastic geometric
point of view that leads to novel and significant statistical results. In [3], they derive
a computationally tractable mathematical model (based on Minkowski sum and
Aumann integral) rigorously defined as a suitable combination of two very general
set-valued processes representing nucleation fBtgt2Œt0;T � and growth fGtgt2Œt0;T �
respectively. In [2], different set-valued parametric estimators of the rate of growth
of the process are introduced. These are consistent as the observation window
expands to the whole space. Moreover, keeping in mind that distributions of random
closed sets are determined by their hitting functions and that the nucleation process
cannot be observed directly, an estimation procedure of the hitting function of the
nucleation process is provided.

2 Preliminary Results

Let F be the family of all closed subsets of Rd and F
0 D Fnf;g. The subscripts b, k

and c denote boundedness, compactness and convexity properties respectively (e.g.
Fkc denotes the family of all compact convex subsets of Rd ). For all A;B 
 R

d

and ˛ � 0, let us consider

ACB D faC b W a 2 A; b 2 Bg ; A�B D �
AC C B

�C
; LA D f�a W a 2 Ag ;

where AC D R
d n A. In what follows, we shall use: if A 2 F and B 2 Fk

then A C B 2 F [20]. Let .˝;F; �/ be a finite measure space, X W ˝ ! F

is a measurable map if f! 2 ˝ W X.!/ \K ¤ ;g 2 F is measurable for each
compact set K in R

d . If � is a probability measure, then X is a random closed
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set (RaCS). Let X be a RaCS, then fTX.K/ D P.X \ K ¤ ;/;K 2 Fkg, is
its hitting function. The Matheron theorem states that, the probability law PX of
any RaCS X is uniquely determined by its hitting function [15] and hence by
QX.K/ D 1�TX.K/. Let .˝;F; �/ be a finite measure space. The Aumann integral
of a non empty measurable closed set-valued map X is defined by

R
˝
Xd� D˚R

˝
xd� W x 2 L1Œ˝IRd � and x 2 X �–a.e.

	
; where

R
˝
xd� is the usual Bochner

integral in L1Œ˝IRd �.

3 Geometric Random Process

Here, we refer to [3]. Let Œt0; T � � R be the time interval, and .˝;F; fFtgt2Œt0;T � ;P/
be a filtered probability space, where the filtration fFtgt2Œt0;T � is assumed to have the
usual properties. Let B and G be two processes, Nucleation and Growth processes
respectively, defined on ˝ � Œt0; T � with non empty closed set values, for which the
following assumptions hold.

(A-1) For every t; s 2 Œt0; T � with s < t , Bt D B. � ; t / is an Ft -measurable
RaCS and Bs 
 Bt .

(A-2) For every ! 2 ˝ and t 2 Œt0; T �, G.!; t/ is convex and, there exists
K 2 F

0
b such that 0 2 G.!; t/ 
 K.

Let P denote the previsible (or predictable)  -algebra on ˝ � Œt0; T � gener-
ated by the processes fXtgt2Œt0;T � adapted, w.r.t. fFtgt2Œt0;T �, with left Hausdorff-
continuous trajectories on Œt0; T �. Thus, let us assume the following fact,

(A-3) G is P-measurable.
It can be proven that, for any a; b 2 Œt0; T �, Ga;b D R b

a
G.!; �/d� is a non

empty bounded (compact) convex RaCS. For every t 2 Œt0; T � � R, n 2 N, and
˘ D .ti /

n
iD0 partition of Œt0; t �, let us define

s˘ D s˘.t/D
�
Bt0C

Z t

t0

G.�/d�
�[

n[

iD1

�
�BtiC

Z t

ti

G.�/d�
�

(1)

S˘ D S˘.t/D
�
Bt0C

Z t

t0

G.�/d�
�[

n[

iD1

�
�BtiC

Z t

ti�1

G.�/d�
�

(2)

where �Bti D Bti n Bo
ti�1

(Bo
ti�1

denotes the interior set of Bti�1 ) and where the
integral is in the Aumann sense w.r.t. the Lebesgue measure d� D d��.

Clearly, both s˘ and S˘ are well defined RaCS, with s˘ 
 S˘ (as a consequence
of different time intervals integration). Moreover, it can be proven that fs˘ g (fS˘ g)
does not decrease (does not increase) whenever a refinement of˘ is considered and,
s˘ and S˘ are closer to each other (in the Hausdorff distance sense) as the partition
˘ is finer. Finally, their “limit” is independent of the choice of the refinement. In
other words, s˘j and S˘j play the same role as lower sums and upper sums play in
classical analysis when we define the Riemann integral. In fact, if �t denotes their
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limit value (cf. Definition 1), s˘j and S˘j are a lower and an upper approximation
of �t respectively. This argument prevents problems that may arise considering
uncountable unions in (1), (2) instead of countable unions and, allows the definition
of a set-valued, continuous time, stochastic process.

Definition 1. For every t 2 Œt0; T �, let
˚
˘j

	
j2N be a refinement sequence of the

time interval Œt0; t � and let �t be the RaCS defined by

[

j2N
s˘j .t/D. lim

j!1 s˘j .t//D�tD lim
j!1S˘j .t/D

\

j2N
S˘j .t/;

then,� D f�t W t 2 Œt0; T �g is called geometric random process G-RaP (on Œt0; T �).

As a consequence, � is an a.s. non decreasing process, i.e.

P .�s 
 �t ; 8t0 � s < t � T / D 1:

Further, � is adapted w.r.t. fFtgt2Œt0;T �. Thus, we justify the following integral and
differential formulations. Let t 2 Œt0; T �,

�t D
�
Bt0 C

R t
t0
G.�/d�

� [St
sDt0

�
dBs C

R t
s
G.�/d�

�
;

�tCdtD.�t CGtdt/ [ dBt :

Roughly speaking, the increment of the set �t , during an infinitesimal time interval
dt , is an enlargement due to an infinitesimal addend Gtdt followed by the union
with the infinitesimal nucleation dBt . Note that, as a consequence of the definition
of C, at any instant t , each point x 2 �t grows up by Gtdt and no regularity
assumptions on the boundaries are required. In particular it is sufficient to consider
points x 2 @�t to describe the set evolution. Then we deal with non local growth;
i.e. growth is the same addend for every x 2 �t . Nevertheless, under mesoscale
hypotheses we may only consider constant growth region as described, for example,
in [5]. On the other hand, growth is anisotropic whenever Gt is not a ball.

4 Statistical Aspects

Clearly, one may derive the following discrete time formulation of above model

�n D


.�n�1 CGn/ [ Bn; n � 1;

B0; n D 0:

In view of applications, note that a sample of a birth-and-growth process is usually
a time sequence of pictures that represent process � at different temporal step;
namely �n�1, �n that, for the sake of simplicity, we shall also denote by X and Y
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Fig. 1 Two different time instants (X and Y ) pictures of a simulated birth-and-growth process.
The magnified pictures of the true growth used for the simulation, the computed OG2

W , OG1
W and

OG1

W� LK

respectively. In [2], the rate growth of� and the hitting function ofBn are estimated.
In fact, Gn is not identified univocally, while the RaCS Y � LX (denoted, from now
on, by G) is unique, since it is the greatest RaCS, w.r.t. set inclusion, for which
.X CG/ 
 Y . Let us assume the following facts.

(A-4) There exists K 2 F
0
b such that G 
 K.

(A-5) For every n � 1,
�
Bn � L�n�1

�
D ; a.s.

Roughly speaking, Assumption (A-4) means that process � does not grow too
“fast”, whilst Assumption (A-5) means that it cannot be born something that, up
to a translation, is larger than (or equal to) what there already exists.

In practical cases, data are bounded by some observation window and edge
effects may cause problems in estimating G. As the standard statistical scheme for
spatial processes suggests [16], we wonder if there exists a consistent estimator of
G as Wi " R

d . Thus, let W 2 fWig and let us set YW D Y \W . Edge effects are
reduced by considering the following estimators of G

OG1
W D

�
YW � LXW	 LK

�
\K; OG2

W D
��
YW [ �@CKW XW

��� LXW
�
\KI

where K is given in Assumption (A-4) and where
�
@CKW XW

� D .XW CK/ nW .
The following results hold (Fig. 1 shows how Proposition 1 works).

Proposition 1. Let Y , X be RaCS, let 0 2 G D Y � LX 
 K. Thus, for any W2 �
W1, G 
 OG1

W2

 OG1

W1
. In particular,

T
i2N OG1

Wi
D G and limi!1 ıH . OG1

Wi
; G/ D 0.
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Moreover, for every W 2 F
0, G 
 OG2

W 
 OG1
W . Thus, OG2

W is consistent too (i.e. if
W " R

d OG2
W # G).

It is also interesting to test whenever the nucleation process B D fBngn2N is
a specific RaCS (e.g. Boolean model vs. point process). Although, we cannot
directly observe the n-th nucleation Bn (it can be overlapped by other nuclei
or by their evolutions), we shall infer on the hitting function associated to the
nucleation process TBn. � /. In particular, for any K 2 Fk , let QQB;W .K/ D
OQY;W .K/= OQXC OGW ;W .K/; where OQ. � / D 1 � OT. � / is defined in [16] and OGW is

one between OG2
W and OG1

W .

Theorem 1. LetX; Y be a.s. regular closed (i.e.G D IntG). LetG;B be two RaCS
such that Y D .X C G/ [ B , with B a stationary ergodic RaCS independent on
G and X , and with G a.s. regular closed. Then, for any K 2 Fk , j QQB;W .K/ �
QB.K/j ! 0 as W " R

d almost surely.
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MATLAB Implementation of Functional Type
A Posteriori Error Estimates
with Raviart-Thomas Approximation

Maria A. Churilova and Maxim E. Frolov

Abstract Work is devoted to comparison of adaptive algorithms based on the
functional approach to a posteriori error estimation. Classical elliptic boundary
value problems with discontinuities of the first kind in coefficients are considered.
Adaptive algorithms are implemented in MATLAB. Both, a standard finite element
with continuous piecewise linear approximations and the simplest Raviart-Thomas
finite element are used. For mesh adaptations different error indicators are applied.
Sequences of finite-element meshes, effectivity indexes for estimates, relative errors
of approximate solutions are compared for different error indicators. The results
demonstrate that the usage of the Raviart-Thomas approximation considerably
improves the efficiency of the corresponding adaptive algorithm.

1 Introduction

The problem of error control arises in the numerical analysis of various types
of boundary value problems due to the necessity to guarantee the reliability of
computed results. Various techniques for error estimation were developed for this
purpose. There are hundreds of publications concerning approaches to the con-
struction of a posteriori error estimates in the finite element method. An overview
of them can be found, for example, in [3, 4] and many publications referenced
therein. Here we examine the so called “functional approach” that is based purely on
variational and functional methods. The approach is general and reliable, the results
are directly applicable to any approximate solution from the corresponding energy
space for a problem under consideration. It means that the error estimate remains
valid regardless of the approach used to compute an approximation.
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2 Stationary Reaction-Diffusion Problem

2.1 Functional A Posteriori Error Estimate

As the model problem we consider the stationary reaction-diffusion equation with
Dirichlet type boundary conditions, which is as follows:

( �div.Aru/C 
2u D f in ˝

u D 0 on @˝
(1)

where ˝ is a bounded connected domain in R
2 with a Lipschitz continuous

boundary @˝, f 2 L2.˝/, 
2 is the reaction coefficient and A is a symmetric,
positive definite matrix, which possess the property

˛1j�j2 6 A� � � 6 ˛2j�j2 8� 2 R
2;

where ˛1 and ˛2 are some positive constants. It is well known that the problem has
the following weak formulation: find u 2 V0 satisfying the integral identity

Z

˝

�
Aru � rw C 
2uw

�
dx D

Z

˝

fw dx 8w 2 V0 D H1
0.˝/:

The norm of the deviation of any approximation uh from the exact solution u is
defined as

jŒu � uh�j D
0

@
Z

˝

Ar.u � uh/ � r.u � uh/ dx C
Z

˝


2.u � uh/
2 dx

1

A

1=2

:

For problem (1), a reliable upper estimate of this norm can be obtained in several
ways (see [4]), dependent on the value of the coefficient 
2. We use the following
majorant, which is known from the theory as suitable to wide range of 
2:

jŒu � uh�j2 6M2 D .1C ˇ/

Z

˝

.Aruh � y�/ � .ruh � A�1y�/ dx

C C
2.1C ˇ/

ˇ˛21 C 
2C2.1C ˇ/

Z

˝

.divy� C f � 
2uh/2 dx;

(2)

with arbitrary element y� 2 H.˝; div/,

H.˝; div/ D
n
q 2 L2.˝;R2/ ˇˇ divq 2 L2.˝/

o
;
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arbitrary positive number ˇ and the constant C, which comes from the Friedrichs
inequality.

2.2 Approximations of Free Variable

For the construction of y� two approaches are used: the classical piecewise linear
continuous approximation for both components and zero order Raviart-Thomas
approximation. In both cases, for given ˇ it is necessary to solve the minimization
problem

min
y�

M2.uh; ˇ; y
�/:

Necessary condition of minimum yields a system of linear algebraic equations with
a positive definite, symmetric and sparse matrix. For the stationary diffusion prob-
lem numerical examples and a detailed description for the continuous approximation
can be found in [2]. Results obtained in present research agree with ones from [2]
and [1].

For mesh adaptations the following error indicators are used:

�T D
0

@
Z

T

.Aruh � y�/ � .ruh � A�1y�/ dx

1

A

1=2

denoted as �con in the case of the continuous approximation or �RT in the case of the
Raviart-Thomas approximation. Also an indicator based on the reference solution
was used for verification, namely

�ref D
0

@
Z

T

Ar Qe � r Qe dx

1

A

1=2

;

where Qe D uref � uh and the reference solution uref is obtained on a refined mesh
(here uref D uh=4). The reference solution is also used to calculate the relative error
e% D jŒuh � uref �j=jŒuref �j � 100% and the effectivity index Ieff DM=jŒuh � uref �j.

2.3 Numerical Example

Let consider one example of mesh adaptations. Domain geometry and the initial

mesh are depicted in Fig. 1. Matrix A D
�
1 0

0 1

�

in the subdomains I and IV, and
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Fig. 1 Numerical example: domain geometry and the initial mesh

Table 1 Mesh adaptation steps

�ref �con �RT

Nodes e% Nodes e% Ieff Nodes e% Ieff

289 13.97 289 13.97 1.64 289 13.97 1.28
380 10.32 382 10.79 1.91 377 10.70 1.36
928 6.25 1,032 6.84 1.94 1,014 6.38 1.32

2,209 3.95 3,970 3.85 1.87 2,576 3.92 1.33
4,006 2.94 7,910 2.86 1.81 4,661 2.94 1.31

Fig. 2 Numerical example: final meshes for indicators �ref , �con and �RT

A D
�
10 0

0 10

�

in the subdomains II and III. Right hand side f and the reaction

coefficient 
2 are equal to 1 in the whole domain. In Table 1 several adaptation steps
are presented. First two columns refer to the reference error indicator—we compare
these results with ones obtained for �con and �RT . From the results one can conclude
that meshes obtained with the indicator based on the Raviart-Thomas approximation
are closer to the reference ones. It can also be seen from Fig. 2 where final meshes
are depicted from left to right: for �ref , �con, �RT , respectively. The corresponding
number of nodes, relative errors and effectivity indexes are collected in the last row
of Table 1.
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Finally, we note that close results are obtained for other stationary reaction-
diffusion problems. Also for some stationary diffusion problems with mixed
boundary conditions a similar behavior is observed.

3 Conclusion

For vector fields from H.˝; div/ the tangential component can be discontinuous.
Such a discontinuity can not be well represented by any continuous approximation.
For functional approach, this drawback has a large influence on the quality of local
error indication near the discontinuity zone. Raviart-Thomas approximation helps
to overcome difficulties arising in the case of discontinuity in coefficients of the
reaction-diffusion equation.

Acknowledgements The reported study was partially supported by RFBR, research project No.
11-01-00531-a.
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Finite Element Concepts and Bezier Extraction
in Hierarchical Isogeometric Analysis

Anh-Vu Vuong

Abstract Isogeometric analysis is an emerging approach combining computer
aided geometric design and numerical analysis. Still local refinement techniques
for isogeometric analysis are a major issue. One solution is proposed in Vuong
et al. (Comput. Methods Appl. Mech. Eng. 200:3554–3567, 2011) and employs
a hierarchical concept. This paper is an extension of this work and will discuss
the corresponding element concept and apply the Bézier extraction to illustrate the
connection to standard finite elements.

1 Introduction

In the classical FEM the finite dimensional subspace Vh � V for the Galerkin
projection typically consists of piecewise polynomials defined over a subdivision
with global C0 continuity. Isogeometric analysis [5], in contrast, makes use of the
spline space that allows higher continuity and the initial geometric description from
a CAGD program is already formulated with respect to this function space.

Therefore, our point of departure is a spline parameterization G W ˝0 ! ˝,
G .u/ D P

i Ni .u/P i with control points P i and with respect to a basis of
B-Splines or NURBS Ni , which maps from the parametric space ˝0 onto the
computational domain ˝. The basic idea is to formulate the finite dimensional
variational formulation

a.'h;  / D .l;  / 8 2 Vh (1)
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with respect to basis functions defined on the parameter domain ˝0 and to use the
geometry mapping G as a global push-forward operator to map these functions
to the physical domain ˝. Therefore we get the ansatz space Vh D spanfNi ı
G�1g: The fact that we employ the same basis functions that describe the geometry
and are used for the Galerkin projection is the reason why this method was named
“iso-geometric”.

2 Isogeometric Element Concept

Starting from the basics of isogeometric analysis it is straightforward to set up an
element structure given by the knots of the definition of splines. We call OTi;j WD
Œui ; uiC1� � Œvi ; viC1� a knot domain and the set of all knot domains isogeometric
mesh

OT WD



OTi;j
�

iD0:::nCp;jD0:::mCq
: (2)

Lemma 1. Let T be the set of non-empty knot domains, an isogeometric subdivi-
sion. There are exactly .pu C1/.pvC1/ nonzero basis function within each element
T 2 T with pu and pv the degrees of the spline space in first and second parameter
direction, respectively.

An example is shown for two dimensions in Fig. 1 for pu D pv D 2. The
support spreads over nine knot domains as visualized in Fig. 1a, b shows the
support extension of the element in the middle. The reference element for the two-
dimensional case with pu D pv D 2 is shown in Fig. 1c where we have a ordered
grid of 3 � 3 degrees of freedom. We can conclude that not only the number of
nonzero basis function over an element is constant as shown in Lemma 1, but also
how these function are placed related to the element.

Corollary 1. Let T be an isogeometric subdivision and OT the isogeometric mesh.
For any element T the nonzero basis functions over T areBij with i D k�pu; : : : ; k,
j D ` � pv; : : : ; `, whereas k and ` are chosen so that T D OTk;`.
Note that this is valid for any element independent of its exact shape or position. We
want to stress here that this also shows the usefulness of the isogeometric elements
and the knot domains. On elements we can make use of the information about the
basis functions that are non-zero but the support of these basis functions spreads
over knot domains.

This is for example used in a FEM framework by using “general elements” in the
commercial software LS-DYNA (see [1, 4]).
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a b c

Fig. 1 Bivariate B-splines over knot domains. (a) Support of a function of degree two. (b) Influ-
ences on an element for degree two. (c) Reference element

Fig. 2 Sequence of h-refined parameter spaces with the hierarchical subdivision marked in grey

2.1 Hierarchical Mesh Structure and Refinement

Before extending these concept to the hierarchical refinement approach, we will
shortly revisit its basics. All details and numerical examples can be found in [7].
Point of departure is a hierarchy of subdivisions T `, which are created by uniform
h-refinement and define a hierarchy of bases B`. The corresponding spline spaces
S ` therefore form a chain of inclusion

S 1 � � � � � S ` � S `C1 � � � � � S L: (3)

Definition 1. We call a selection M � SL
`D1T ` a hierarchical subdivision if the

following conditions hold

intTi \ intTj D ; 8Ti ; Tj 2 M ; Ti ¤ Tj : (4)
[

T2M
T D ˝0: (5)

An element T 2 M is called an active element. The set of active elements with
level ` is denoted by M` WD M \T `.

An example for a hierarchical subdivision is shown in Fig. 2 where eight elements
are selected to be active out of three levels.
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In order to establish the relation to the support of the basis functions we have to
study the region filled out by particular elements in a set. For ease of notation we
define the domain UX 
 ˝0 to be

UX WD
[

C2X
C (6)

for a subset X of the power set P.˝0/.

Definition 2. The set of active basis functions A is defined as follows: a function
' 2 Bk of level k is an element of A if

supp' 

L[

`Dk
UM` and supp' ª

L[

`DkC1
UM`: (7)

We now want to investigate how these active basis function distribute over an
element.

2.2 Hierarchical Element

In order to cope with the complexity added by hierarchical local refined meshes
we have to extend the isogeometric reference element that only holds information
about one level. Following observation can be made: in a hierarchically refined grid
and a given element of level k, we can find an element of level r that contains
the given element for each lower level r . Based on this, we define the hierarchical
isogeometric reference element of level k as a sequence of reference elements from
level ` D 1; : : : ; k, where the active basis functions from level ` D 1; : : : ; k can be
positioned.

It should be remarked that in the hierarchical subdivision these elements have
different size, but this has no influence on the hierarchical reference element. It only
indicates for all level, which basis functions are non-zero on this element, just like
for the non-hierarchical case.

We illustrate the active basis functions over the reference element by an example.
For the sake of simplicity we look at a hierarchical basis of degree one. In Fig. 3a
the same the hierarchical subdivision like in Fig. 2 is shown. We want to describe
the configuration of the element marked in grey. The six active basis function
are symbolized by dots, whereas those that are nonzero on the grey element are
highlighted with their level number. Finally, the corresponding reference elements
and the position of the active functions are shown in Fig. 3b.
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1

1

1

2

2 2

1

3 2

2 2

3

a b

Fig. 3 Active basis functions on hierarchical reference element. (a) Hierarchical subdivision with
active basis functions. (b) Configuration of the element

2.3 Bézier Extraction

Bézier extraction introduced in [2] is a point of view that is mainly used to illustrate
and use the connection between the isogeometric approach and existing FEM codes.
The main idea is to choose a representation of the basis functions that is more local
than B-splines or NURBS and enforces less continuity. The well-known Bernstein
polynomials bi;p are a suitable choice for this. For all B-splines over an element the
representation in Bernstein polynomials is computed by knot insertion and we get
the representation

Bi;p D
X

�j bj;p: (8)

As these polynomials can now be defined element-wise we have returned to the
classical finite element setting. Bézier extraction was for example used to transfer
refined T-spline meshes [6] to a FEM framework. As we have seen in the previous
section the active functions of a hierarchical refined basis on one element can
be expressed in a hierarchy of reference elements. The basis change to Bernstein
polynomials is applicable on one level, but also from all previous basis level to
the level of the element, because of the chain of inclusion of the hierarchy in
Eq. (3). Therefore it is in the same manner possible to apply these techniques to
hierarchically refined meshes.

3 Conclusions

We have discussed several finite elements point of views to isogeometric analysis
and its hierarchical refinement. The usage of an element concept allows to employ
generalized finite elements like for example in the commercial FEM software
LS DYNA to implement isogeometric analysis. Furthermore, we discussed that
Bézier extraction, which created the connection to finite elements also on the
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implementation level, is also extendable for the hierarchical refinement approach.
Future work includes the investigation of element concepts for more advanced
techniques like truncated hierarchical spline spaces [3].

Acknowledgements Financial supported within the 7th Framework Programme of the European
Union by the project TERRIFIC is greatly acknowledged.
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A Second Order Finite-Difference Ghost-Cell
Method for the Steady-State Solution
of Elasticity Problems

Armando Coco, Gilda Currenti, and Giovanni Russo

Abstract This work presents a second order finite-difference ghost cell method for
the steady-state solution of elasticity problems. Numerical results are shown for the
application of underground volcano activities.

1 Introduction

Underground volcano activity has several observable effects besides earthquakes
and seismic activity. For example, a sudden increase in pressure in a magmatic
chamber produces deformations in the surrounding, which can be observed and are
indeed accurately monitored by satellite observations; front sliding in a fault causes
horizontal and vertical displacements on the earth surface, with a configuration
which depends on the geometry and strength of the slide. One of the objective of
the present research is to infer the underground activity from the measured ground
displacement. This inverse problem requires the solution of several direct problems:
given an underground source of stress/strain, compute the displacement field (in
particular on the surface). The starting point to model the physical system is based
on static linear elastic problem.

Accurate solution of the static problem in complex geometry can be computed
with several commercial packages, such as, for example, COMSOL multiphysics.
Such software uses Finite Element discretization with tetrahedral elements, which
can be adapted to the geometry. Such methods, however, are not straightforward to
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implement and difficult to use especially in the case of moving domain, because of
the computationally expensive meshing procedures needed for each domain.

Here we adopt a different strategy. We solve the equation on a regular Cartesian
grid, and use level set to define the geometry. This approach presents several
advantages over the use of tetrahedral grids. For example it is automatically second
order accurate with a very compact stencil, it requires a simpler data structure and
it allows the construction of a geometric multigrid solver.

2 Model

We start with two space dimensions, so that we can perform a more careful
comparison with some analytical solution and with other solvers. The problem is
described by the linearized steady-state equations of elasticity:

r �  D 0 H) G �u C .�CG/ r � .ru/ D 0 (1)

where  W D .u/ is the stress tensor, determined by the Hooke’s law:

ij D � ekk ıij C 2 G eij;

eij is the linearized Almansi strain tensor:

eij D 1

2

�ru CruT
�

ij

u D .u; v;w/ is the displacement, � is Lamé’s first parameter, G is the rigidity
(see [2]). To obtain the two dimensional problem, we consider the plane strain
model, that is we suppose that the z-component of displacement w vanishes
everywhere, and the displacements u, v are functions of x, y only, and not of z.
The basic equation (1) becomes in two dimensions:

G �u C 1

1 � 2� G r � .ru/ D 0 (2)

where u D .u; v/.
The geometry of the problem is represented in Fig. 1, where ˝p is the source in

pressurization, �s is the free surface, while �l;r;b are boundaries taken far enough
from˝p in such a way they do not influence the results. Let˝ be the domain below
the surface �s . The domains ˝ and ˝p are implicitly described by two level-set
functions, i.e. [4]:

˝ D f�.x; y/ < 0g ; ˝p D ˚
�p.x; y/ < 0

	
:
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Fig. 1 Geometry of the
model

We suppose that we know the signed distance function [3], which is a special case
of a level-set function:

�.x; y/ D

 �d ..x; y/; �s/ if .x; y/ 2 ˝

d ..x; y/; �s/ if .x; y/ … ˝ ;

�p.x; y/ D

 �d �.x; y/; �p

�
if .x; y/ 2 ˝p

d
�
.x; y/; �p

�
if .x; y/ … ˝p

:

We solve Eq. (2) in ˝\˝p , with a free-stressed boundary condition  � n D 0 on
�s , where n D r� is the normal to �s , while on @˝p we impose  �n D �p n,
where n D r�p is the normal to @˝p and p is the pressure. On �l;r;b we impose
homogeneous Dirichlet or Neumann boundary conditions, i.e. u D 0 or ru � n D 0,
where n is the normal to �l;r;b .

3 Numerical Scheme

Let us discretize the domain by a regular Cartesian grid with spatial step �x D
�y D h and let us callDh the set of grid points. The linear system coming from the
discretization of the problem is composed as following. For each grid point of˝\˝p

we discretize Eq. (2) separately for u and w by central differences. For instance, the
discretization of the derivatives of u reads:

@2u

@x2
	 1

h2

2

4
0 0 0

1 �2 1
0 0 0

3

5 ui;j D ui�1;j � 2ui;j C uiC1;j
h2

:

@2u

@y2
	 1

h2

2

4
0 1 0

0 �2 0
0 1 0

3

5 ui;j D ui;j�1 � 2ui;j C ui;jC1
h2

:

@2u

@x@y
	 1

4 h2

2

4
�1 0 1

0 0 0

1 0 �1

3

5 ui;j D uiC1;jC1 C ui�1;j�1 � uiC1;j�1 � ui�1;jC1
4 h2

:
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a b

Fig. 2 Stencils for the ghost pointG. (a) Nine-point stencil. (b) Reduction of the nine-point stencil
to a three-point stencil

The whole stencil results in a nine-point stencil. For grid points of ˝\˝p which
are close to the boundary, some of the points of the stencil may lie outside ˝\˝p

(i.e. outside˝ or inside˝p). Such grid points are called ghost points and a suitable
value should be defined for them to close the linear system.

To this aim, we write an equation for each ghost point. Let G be a ghost point
outside ˝ (if G is inside ˝p the discretization is analogous). We compute the
outward unit normal in G, that is nG D �

nxG; n
y
G

� D r�, using a second-order
accurate discretization for r�, such as central difference inG. Now we can compute
the closest boundary point to G, that we call B , by the signed distance function:

B D G � �.G/nG: (3)

Therefore, the equation of the linear system for the ghost point G is:

.Qu/ � Qn.B/ D 0 H) .Qu/ � .r Q�/.B/ D 0 (4)

where Qu and Q� are the biquadratic interpolants of u and � respectively on a
suitable upwind nine-point stencil [1]. We choose the upwind nine-point stencil
in the following manner (see Fig. 2a for the case nx; ny > 0, the other cases are
analogous). If jxB � xG j < jyB � yG j (as in Fig. 2a, b), the nine-point stencil will
be composed by three points of the column i , three points of the column i �1, three
points of the column i � 2; while if jxB � xG j � jyB � yG j it will be composed
by three points of the row j , three points of the row j � 1, three points of the row
j �2. When possible we prefer the 3�3 squared stencil. If it is not possible to build
the nine-point stencil, we revert to a more robust (less accurate) three-point stencil
(Fig. 2b).
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Fig. 3 Numerical results. (a) Comparison between the method proposed in this work, the FEM,
and the analytic solution. (b) Displacement u with the real Etna profile

4 Results and Outlook

Some preliminary tests are the following. In Fig. 3a we compare the method with
FEM and an analytic solution. We plot the displacement u along �s . In Fig. 3b we
performed a test using the real Etna profile, plotting the displacement u on all the
domain.

Some works in progress concern the extension of the method to the case of
variable coefficients � and G (heterogeneous medium), multigrid technique (using
a recent approach adopted in elliptic problems), grid adaptation (since only small
portions of the computational domain require fine resolution) and three dimensional
extension.
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Time-Exact Solution of Large Linear ODE
Systems by Block Krylov Subspace Projections

Mike A. Botchev

Abstract We propose a time-exact Krylov-subspace-based method for solving
large linear inhomogeneous systems of ODE (ordinary differential equations). The
method consists of two stages. The first stage is an accurate piecewise polynomial
approximation of the inhomogeneous source term, constructed with the help of
the truncated SVD (singular value decomposition). The second stage is a special
residual-based block Krylov subspace method for the matrix exponential. The accu-
racy of the method is only restricted by the accuracy of the piecewise polynomial
approximation and by the error of the block Krylov process. Since both errors can, in
principle, be made arbitrarily small, this yields, at some costs, a time-exact method.
Numerical experiments are presented to demonstrate efficiency of the new method,
as compared to an exponential time integrator with Krylov subspace matrix function
evaluations. This conference paper is based on the preprint (Botchev, A block
Krylov subspace time-exact solution method for linear ODE systems, Memorandum
1973, Department of Applied Mathematics, University of Twente, Enschede, 2012,
http://eprints.eemcs.utwente.nl/21277/).

1 Introduction and Problem Formulation

Consider initial-value problem (IVP)

y0 D �Ay C g.t/; y.0/ D v D 0; t 2 Œ0; T �; (1)
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where y.t/ is the unknown vector function, y W R ! R
n, and the matrix A 2 R

n�n,
vector function g W R ! R

n, and vector v 2 R
n are given. We assume, without

loss of generality, that v D 0 (otherwise a change of variables Qy.t/ � y.t/ � v

transforms (1) to an equivalent IVP with homogeneous initial value). Problems of
type (1) appear in numerous applications, in particular, in the context of numerical
solution of partial differential equations (PDEs) by the method of lines. This means
that a discretization of a PDE in space is followed by a time integration of the
resulting ODE system (1). We are thus interested in problems (1) where A is a
large, typically sparse matrix.

The time step size in explicit time integration methods can often be unacceptably
small, for instance, due to the stiffness of the ODE system or due to a locally refined
spatial mesh. In this case implicit time integration is of interest. Since recently, a
lot of research has been carried out on the so-called exponential time integration
schemes, see a recent comprehensive survey [10]. These are time integration
schemes involving the matrix exponential and related matrix functions. The interest
in exponential time integration is due to the new, challenging applications [11,12] as
well as to the recent progress in techniques to compute actions of matrix functions
for large matrices (see e.g. [3–6, 8, 9, 15–18]).

The first stage of our method is a truncated SVD approximation of the source
term g.t/ 	 Up.t/, with U 2 R

n�m and p W R ! R
m. It is described in [1] and

leads to initial-value problem

y0 D �Ay C Up.t/; y.0/ D 0; t 2 Œ0; T �: (2)

1.1 EBK: Exponential Block Krylov Method

Define residual rk.t/ of an approximate solution yk.t/ of (2) as

rk.t/ � �Ayk.t/ � y0
k.t/C Up.t/:

This residual concept (well known in the ODE literature [7, 12, 14]) can be used
as a stopping criterion and for restarting in Krylov subspace methods for matrix
exponential [2]. The methods presented here are based on this residual-based
restarting approach.

Choosing the initial guess y0.t/ to be a zero vector function, we see that the
corresponding initial residual is

r0.t/ D Up.t/: (3)

The approximate solution yk.t/ at Krylov iteration k is then obtained as yk.t/ D
y0.t/ C �k.t/. Here the vector function �k.t/ is the Krylov subspace approximate
solution of the correction problem
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� 0 D �A� C r0.t/; �.0/ D 0; t 2 Œ0; T �; (4)

Note that if �k.t/ solves (4) exactly then yk.t/ is the sought-after exact solution
of (2). It is natural to solve (4) by projecting it onto a block Krylov subspace
defined as Kk.A; U / � span

˚
U;AU; A2U; : : : ; Ak�1U

	
, with dimension at most

k �m. An orthonormal basis for this subspace can be generated by the block Arnoldi
or Lanczos process (see e.g. [13, 19]). The process produces, after k block steps,
matrices VŒkC1� D

�
V1 V2 : : : VkC1

� 2 R
n�.kC1/m, HŒkC1;k� 2 R

.kC1/m�km. Here
Vi 2 R

n�m, V1 is the matrix U from g.t/ 	 Up.t/ and VŒkC1� has orthonormal
columns spanning the Krylov subspace, namely, colspan.VŒk�/ D Kk.A; U /. The
matrixHŒkC1;k� is block upper Hessenberg, withm�m blocksHij , i D 1; : : : ; kC1,
j D 1; : : : ; k. The matrices VŒkC1� and HŒkC1;k� satisfy the block Arnoldi (Lanczos)
decomposition [13, 19],

AVŒk� D VŒkC1�HŒkC1;k� D VŒk�HŒk;k� C VkC1HkC1;kET
k ; (5)

where HkC1;k is the only nonzero block in the last k C 1 block row of HŒkC1;k� and
Ek 2 R

n�k is formed by the last m columns of the km � km identity matrix.
Once the Krylov basis matrix VŒk� is built, the Krylov subspace solution �k.t/

of (4) can be computed as �k.t/ D VŒk�u.t/, where u.t/ solves the projected IVP

u0.t/ D �HŒk;k�u.t/CE1p.t/; u.0/ D 0; t 2 Œ0; T �; (6)

where E1 2 R
km�m is formed by the firstm columns of the km� km identity matrix.

Note that E1p.t/ D V T
Œk�r0.t/ D V T

Œk�V1p.t/. Using (3), (5) and (6), we can show [1]
that for the exponential residual rk.t/ holds

rk.t/ D �Ayk � y0
k C Up.t/ D �VkC1HkC1;kET

k u.t/: (7)

There are two important messages relation (7) provides. First, the residual can be
computed efficiently during the iteration process because the matrices VkC1 and
HkC1;k are readily available in the Arnoldi or Lanczos process. Second, the residual
after k block steps has the same form as the initial residual (3), namely it is a matrix
of m orthonormal columns times a time dependent vector function. This allows for
a restart in the block Krylov method: set y0.t/ WD yk.t/, then relation (3) holds
with U WD VkC1 and p.t/ WD �HkC1;kET

k u.t/. The just described correction with
k block Krylov iterations can then be repeated, which results in a restarted block
Krylov subspace method for solving (2).

We will refer to the just described scheme as EBK, exponential block Krylov
method.
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2 Implementation of the EBK Methods

We now sketch an algorithm for the EBK method.

1. Approximate g.t/ 	 Up.t/.
2. Set y0.t/ WD 0 and r0.t/ WD Up.t/. Stop if kr0.t/k is small enough.

Otherwise set V1 WD U .
3. main Krylov subspace loop:

for k D 1; : : : ;restart

a. Perform step k of the block Arnoldi/Lanczos process (5):
compute VkC1 and the block column k of HŒkC1;k�,
AVŒk� D VŒkC1�HŒkC1;k� D VŒk�HŒk;k� C VkC1HkC1;kET

k .
b. Find solution u.t/ of the projected IVP (6) approximately,

compute residual with (7): rk.t/ WD �VkC1HkC1;kET
k u.t/.

c. if k D restart or krk.t/k is small enough
solve the projected IVP (6) accurately,
update solution yk.t/ WD y0.t/C VŒk�u.t/
if krk.t/k is small enough

stop
endif
if k D restart

y0.t/ WD yk.t/, U WD VkC1, p.t/ WD �HkC1;kET
k u.t/

return to step 2.
endif

endfor

It is important to stop only if krk.t/k is small enough for several values t 2 Œ0; T �,
checking only krk.T /k is not enough. Ideally, one should check theL2Œ0; T � integral
norm of krk.t/k. Furthermore, note that the projected problem is not solved to a full
accuracy most of the time. This is only necessary when the solution is updated due
to a restart or satisfied stopping criterion. In EBK the projected IVP is solved with
the ode15s MATLAB ODE solver. For numerical experiments with EBK see [1].
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Computing Hyperbolic Matrix Functions Using
Orthogonal Matrix Polynomials

Emilio Defez, Jorge Sastre, Javier Ibáñez, and Pedro A. Ruiz

Abstract Hyperbolic matrix functions play a fundamental role in the exact solution
of coupled partial differential systems of hyperbolic type. For the numerical
solution of these problems, analytic-numerical approximations are most suitable
obtained by using the hyperbolic matrix functions sinh.A/ and cosh.A/. It is
well known that the computation of both functions can be reduced to the cosine
of a matrix cos.A/, which can be effectively calculated, with the disadvantage,
however, to require complex arithmetic even though the matrix A is real. In this
work we focus on approximate calculation of the hyperbolic matrix cosine cosh.A/
using the truncation of a Hermite matrix polynomials series for cosh.A/. The
proposed approximation allows the efficient computation of this matrix function.
An illustrative example is given.
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1 Introduction

Coupled partial differential systems are frequent in many different situations [1–5]
and many other fields. Coupled hyperbolic systems appear in microwave heating
processes [6] and optics [7] for instance. The exact solution of a class of this
problems, see [8], is given in terms of matrix functions, in particular, of hyperbolic
sine and cosine of a matrix, sinh.A/; cosh.A/, defined respectively by

cosh .Ay/ D eAy C e�Ay

2
; sinh .Ay/ D eAy � e�Ay

2
: (1)

For the numerical solution of these problems, analytic-numerical approximations
are most suitable obtained by using the hyperbolic matrix functions sinh.A/ and
cosh.A/, see [8]. It is well known that the computation of both functions can
be reduced to the cosine of a matrix, because sinh.A/ D i cos.A � i�

2
I / and

cosh.A/ D cos.iA/. Thus, the matrix cosine can be effectively calculated, [9, 10],
with the disadvantage, however, to require complex arithmetic even though the
matrix A is real, which contributes substantially to the computational overhead.
Direct calculation through exponential matrix using (1) is costly. In this paper, we
apply Hermite matrix polynomials to approximate sinh.A/ and cosh.A/, providing
sharper bounds for Hermite matrix polynomials and the approximation error.
Throughout this paper, Œx� and Re.z/ denote the integer part of the real number
x and the real part of a complex number z. For a matrix A 2 C r�r , kA k2 and .A/
denote the two-norm and the spectrum (the set of all the eigenvalues) of the matrix
A, respectively, and Ir denotes the identity matrix of order r .

2 Hermite Matrix Polynomial Series Expansions of Matrix
Hyperbolic Cosine

For the sake of clarity in the presentation of the following results we recall some
properties of Hermite matrix polynomials which have been established in [9, 11,
12]. From (3.4) of [11], for an arbitrary matrix A in C r�r , the nth Hermite matrix
polynomial satisfies

Hn

�

x;
1

2
A2
�

D nŠ

Œ n2 �X

kD0

.�1/k .xA/n�2k
kŠ.n � 2k/Š ; (2)

and from its generating function in (3.1) and (3.2) [11] one gets

e tx A�t2I D
X

n�0
Hn

�

x;
1

2
A2
�

tn=nŠ; x; t 2 C; jt j <1; (3)
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Taking y D tx and � D 1=t in (3) it follows that

eAy D e
1

�2

X

n�0

1

�nnŠ
Hn

�

�y;
1

2
A2
�

; .�; y/ 2 C2; A 2 C r�r : (4)

It is important to pay attention to the fact that the matrixAwhich defines the Hermite
matrix polynomial sequence must be positive definite, see [12], i.e. Re.z/ > 0 for all
z 2 .A/. This positive stable condition was imposed on the matrix A to guarantee
the existence of

p
A and some integral properties of Hermite polynomials, see

[11], but it is not necessary to guarantee the expansion (4). Now, we will look for
the Hermite matrix polynomials series expansion of the matrix hyperbolic cosine
cos .Ax/. To obtain it, given an arbitrary matrix A 2 C r�r , by (1) using (4) and
taking into account that, from [11], it follows that

Hn .�x;A/ D .�1/nHn .x;A/ ;

one gets the locking for expression:

cosh .Ay/ D e
� 1

�2

X

n�0

1

�2n.2n/Š
H2n

�

y�;
1

2
A2
�

: (5)

Denoting by CHN .�;A
2/ the N th partial sum of series (5) for y D 1, one gets the

approximation

CHN .�;A
2/ D e

� 1

�2

NX

nD0

1

�2n.2n/Š
H2n

�

�;
1

2
A2
�

	 cosh .A/; � 2 C: (6)

From [10] we have the following bound
�
�H2n

�
x; 1

2
A2
��� for Hermite matrix

polynomials based on jjA2jj:
�
�
�
�H2n

�

x;
1

2
A2
���
�
� � .2n/Š e cosh

�

x
�
�A2

�
�
1
2

�

; 8x 2 R; n � 0; 8A 2 C r�r :

(7)

Taking into account approximation (6) and bound (7), it follows that

�
�cosh .A/ � CHN .�;A

2/
�
� �

e
1� 1

�2 cosh
�
�
�
�A2

�
�
1
2

�

.�2 � 1/�2N : (8)

A similar approximate expression (6) and error bound (8) can be found for sinh .A/.
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3 Example

Let A be the non-diagonalizable matrix defined by

A D
0

@
3 �1 1
2 0 1

1 �1 2

1

A :

Using the minimal theorem the exact value of cosh .A/ is

cosh .A/ D
0

@
7:389056098931 �3:62686040784702 3:62686040784702
5:8459754641154 �2:0837797730318 3:62686040784702

2:21911505626839 �2:21911505626839 3:76219569108363

1

A :

Using (8), if � > 1, for an admissible error " > 0, we need choose a positive integer
N so that the next inequality holds:

N �
log

0

B
@
e

�
1� 1

�2

�

cosh
�
�
�
�A2

�
�
1
2

�

.�2 � 1/ �

1

C
A

2 log�
(9)

For example, if � D 1:8 and " D 10�5 we need N D 15 to provide the required
accuracy:

CH15.1:8; A
2/ D

0

@
7:3890560989307 �3:62686040784702 3:62686040784702
5:8459754641154 �2:08377977303177 3:62686040784702
2:21911505626839 �2:21911505626839 3:76219569108363

1

A ;

and

�
�cosh .A/ � CH15.1:8; A

2/
�
�
2
D 1:85095 � 10�15 :

In practice, the number of terms required to obtain a prefixed accuracy uses to be
smaller than the one provided by (9). So for instance, taking the same � D 1:8 and
N D 6 one gets:

CH6.1:8; A
2/D

0

@
7:3890548171477 �3:6268592817884 3:6268592817884

5:84597418233707 �2:08377864697777 3:6268592817884

2:21911490054867 �2:21911490054867 3:76219553535930

1

A ;



Computing Hyperbolic Matrix Functions Using Orthogonal Matrix Polynomials 407

and

�
�cosh .A/ � CH6.1:8; A

2/
�
�
2
D 2:90352 � 10�6 :

The choice of parameter � can still be refined. For example, taking � D 5 and
N D 9 one gets

�
�cosh .A/ � CH9.5; A

2/
�
�
2
D 3:07199 � 10�14 :

Similar results are being obtained for sinh .A/.
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Counter-Harmonic Mean of Symmetric Positive
Definite Matrices: Application to Filtering
Tensor-Valued Images

Jesús Angulo

Abstract Mathematical morphology is a nonlinear image processing methodology
based on the computation of supremum (dilation operator) and infimum (erosion
operator) in local neighborhoods called structuring elements. This paper deals with
computation of supremum and infimum operators for symmetric positive definite
(SPD) matrices, which are the basic ingredients for the extension mathematical
morphology to SPD matrices-valued images. Approximation to the supremum and
infimum associated to the Löwner ellipsoids are computed as the asymptotic cases
of nonlinear averaging using the original notion of counter-harmonic mean for SPD
matrices. Properties of this approach are explored, including also image examples.

1 Context, Aim and State-of-the-Art

Mathematical morphology is a nonlinear image processing methodology originally
developed for binary and greyscale images [13]. It is based on the computation
of maximum

V
(dilation operator) and minimum

W
(erosion operator) in local

neighborhoods called structuring elements [14]. That means that the definition
of morphological operators needs a partial ordering relationship � between the
points to be processed. More precisely, for a real valued image f W E ! R,
the flat dilation and erosion of image f by structuring element B are defined
respectively by ıB.f /.x/ D ˚

f .y/ W f .y/ DV
zŒf .z/�; z 2 Bx

	
and "B.f /.x/ Dn

f .y/ W f .y/ DW
zŒf .z/�; z 2 LBx

o
, where Bx � E is the structuring element

centered at point x 2 E, and LB is the reflection of structuring element with respect
to the origin.
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Theory of morphological operators has been formulated in the general framework
of complete lattices [11]: a complete lattice .L ;�/ is a partially ordered set L
with order relation �, a supremum written

W
, and an infimum written

V
, such that

every subset of L has a supremum (smallest upper bound) and an infimum (greatest
lower bound). Let L be a complete lattice. A dilation ı W L ! L is a mapping
commuting with suprema, i.e., ı

�W
i Xi

� D W
i ı .Xi /. An erosion " W L ! L

commutes with infima, i.e., ı
�V

i Xi
� DV

i ı .Xi /. Then the pair ."; ı/ is called an
adjunction on L if for very X; Y 2 L , it holds: ı.X/ � Y , X � ".Y /.

Matrix and tensor valued images appear nowadays in various image processing
fields and applications [15]: structure tensor images representing the local orien-
tation and edge information [10]; diffusion tensor magnetic resonance imaging
(DT-MRI) [5]; covariance matrices in different modalities of radar imaging [4];
etc. In this paper we are interested in matrix-valued images considered as a spatial
structured matrix field f .x/ such that f W E � Z

2; Z3 �! SPD.n/, where E is
the support space of pixels and, in particular, we focuss on (real) symmetric positive
definite n � n matrices SPD.n/. The reader interested in positive definite matrices
is referred to the excellent monograph [6]. More precisely, let A D fAigNiD1 be
a finite set of N matrices, where Ai 2 SPD.n/, we are aiming at computing the
supremum sup .A/ D A_ and the infimum inf .A/ D A^ matrices, such that A_,
A^ 2 SPD.n/. As mentioned above, if the operators sup .A/ and inf .A/ are defined,
dilation and erosion operators are stated for any image f 2 F .E;SPD.n// and any
structuring element.

Extension of mathematical morphology to matrix-valued images has been previ-
ously addressed according to two different approaches. The first one [9] is based on
the Löwner partial ordering �L: 8A;B 2 SPD.n/, A �L B , B � A 2 SPD.n/,
and where the supremum and infimum of a set of matrices are computed using
convex matrix analysis tools (penumbral cones of each matrix, minimal enclosing
circle of basis, computation of vertex of associated penumbra matrix). There is a
geometrical interpretation viewing the tensors SPD.n/ as ellipsoids: the supremum
of a set of tensors is the smallest ellipsoid enclosing the ellipsoids associated
to all the tensors; the infimum is the largest ellipsoid which is contained in all
the ellipsoids. The second approach [8] corresponds to the generalization of a
morphological PDE to matrix data. Finding the unique smallest enclosing ball of
a set of points in a particular space (also known as the minimum enclosing ball or
the one-center problem) is related to the Löwner ordering in the case of SPD.n/
matrices [1, 3].

We have recently shown in [2] how the counter-harmonic mean [7] can be used
to introduce nonlinear operators which asymptotically mimic dilation and erosion.
In particular, we have proved in [2] the advantages of the counter-harmonic mean
against the classical P -mean to approximate supremum and infimum. The extension
of P -mean to SPD.n/matrices was considered in [12] for diffusion tensor imaging.
We introduce in this paper how the extension of counter-harmonic mean to SPD.n/
matrices is very natural and leads to an efficient operator to robustly approximate
the supremum/infimum of a set of matrices.
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2 Counter-Harmonic Mean for SPD Matrices

The counter-harmonic mean (CHM) belongs to the family of the power means [7].
We propose a straightforward generalization of CHM for SPD.n/ matrices.

Definition 1. Given A D fAigNiD1, a finite set of N matrices, where Ai 2 SPD.n/,
the symmetrized counter-harmonic matrix mean (CHMM) of order P , P 2 R, is
defined by

	P .A/ D
 

NX

iD1
APi

!�1=2  NX

iD1
APC1
i

! 
NX

iD1
APi

!�1=2
(1)

The asymptotic values of the CHMM with P ! C1 and P ! �1 can be
used to define approximations to the supremum and infimum of a set of matrices.

Definition 2. The supremum and the infimum of a set A D fAigNiD1 of SPD.n/
matrices are defined respectively as

A_ D sup .A/ D lim
P!C1 	

P .A/ ; (2)

and

A^ D inf .A/ D lim
P!�1 	

P .A/ ; (3)

Proposition 1. Given a set A of SPD.n/matrices, the following properties hold.

(i) CHMM of A is a rotationally invariant operation for any value of P (including
P ! ˙1).

(ii) CHMM of A is for any value of P (including P ! ˙1) invariant to scaling
transformations, i.e., multiplication by a real constant ˛ 2 R.

(iii) CHMM of A produces a symmetric positive definite matrix for any value of P
(including P ! ˙1).

(iv) Due to the fact that the CHMM is not associative, sup.A/ and inf.A/ do not
yield dilation and erosion operators over SPD.n/ (they do not commute with
the “union” and the “intersection”).

Proof. (i) Let us consider that the rotation is given by the matrix O 2 SO.n/. We
know from linear algebra that the P -th power AP of a diagonalized matrix is
achieved by taking the P -th power of the eigenvalues:

AP D V diag
�
.�1.Ai //

P ; � � � ; .�n.Ai //P
�
V T:

On the other hand, since
PN

iD1 APi is positive definite, there exists an orthog-
onal matrix VP and a diagonal matrix �P such that

PN
iD1 APi D VP�PV

T
P .

Hence, if we apply the rotation, we have
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NX

iD1
.OAiO

T/P

!�1=2  NX

iD1
.OAiO

T/PC1
! 

NX

iD1
.OAiO

T/P

!�1=2

D
 

NX

iD1
OAPi O

T

!�1=2  NX

iD1
OAPC1

i OT

! 
NX

iD1
OAPi O

T

!�1=2

D
 

O

 
NX

iD1
APi

!

OT

!�1=2  
O

 
NX

iD1
APC1
i

!

OT

! 

O

 
NX

iD1

!

APi O
T

!�1=2

D �
OVP�PV

T
P O

T
��1=2 �

OVPC1�PC1V T
PC1OT

� �
OVP�PV

T
P O

T
��1=2

Considering the fact that OOT D I and that OVP 2 SO.3/, we can write

O

 
NX

iD1
APi

!�1=2  NX

iD1
APC1
i

! 
NX

iD1
APi

!�1=2
OT

and consequently

	P
�
fOAiO

TgNiD1

�
D O	P

�fAigNiD1
�
OT

(ii) By considering scaling by parameter ˛ 2 R, ˛ ¤ 0, we have

	P
�
f˛Ai gNiD1

�
D
 
NX

iD1
.˛Ai /

P

!�1=2  NX

iD1
.˛Ai /

PC1
! 

NX

iD1
.˛Ai /

P

!�1=2

D ˛�P=2
 
NX

iD1
APi

!�1=2
˛PC1

 
NX

iD1
APC1
i

!

˛�P=2
 
NX

iD1
APi

!�1=2

D ˛�P=2˛PC1˛�P=2
 
NX

iD1
APi

!�1=2  NX

iD1
APC1
i

! 
NX

iD1
APi

!�1=2

D ˛	P
�
fAi gNiD1

�

(iii) By construction, the P -th power AP and the inverse square root A�1=2 have
positive eigenvalues whenever A has. Similarly, the sum and the product of
positive definite matrices preserves also the positiveness.

(iv) Let consider two sets of SPD.n/matrices A D fAigNiD1 and A0 D fAj gMjDNC1.
Due to the fact that the counter-harmonic matrix mean is not associative, it
cannot be ensured that there exist always a value of P such that

lim
P!C1 	

P
�fAkgMkD1

�
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is equal to

lim
P!C1 	

P

�

lim
P!C1 	

P
�fAigNiD1

�
; lim
P!C1 	

P
�
fAj gMjDNC1

��

and consequently the operators sup.A/ do not commute with “supremum”.
A similar result is observed for the erosion.

The following result gives a spectral interpretation of asymptotic cases in
SPD.2/.

Proposition 2. Given A D fAigNiD1, a finite set ofN matrices, whereAi 2 SPD.2/.
Let�.Ai/ and �.Ai / (with�.Ai/ � �.Ai / � 0) be the two eigenvalues of Ai . Then

A_ D sup .A/ D lim
P!C1 	

P .A/ ;

is a SPD.2/ matrix with eigenvalues �.A_/ and �.A_/, where �.A_/ D
max .�.A1/;�.A2/ � � ��.AN //, and its corresponding eigenvector is the
eigenvector of A_, and the remaining eigenvalue �.A_/ is the second largest
eigenvalue from f�.Ai/; �.Ai /g; the corresponding eigenvector is the orthogonal
to the major one.

A spectral characterization of A^ is obtained by replacing largest by smallest
eigenvalues. We conjecture that this result may be extended to SPD.n/, n > 2,
but the proof is not straightforward.

Proof. Let us write each SPD.2/ matrix in the form A D Vi diag .�i�i / V
T
i such

that �i � �i > 0 and where the rotation matrix is parameterized by the angle �i :

Vi D
�

cos �i � sin �i
� sin �i cos �i

�

:

Hence we have

NX

iD1
APC1
i D

 PN
iD1 �PC1

i cos2 �i C�PC1
i sin2 �i

PN
iD1.�PC1

i ��PC1
i / cos �i sin �iPN

iD1.�PC1
i ��PC1

i / cos �i sin �i
PN
iD1 �PC1

i cos2 �iC�PC1
i sin2 �i

!

:

The eigenvalues of
PN

iD1 A
PC1
i are given by

.�.P C 1/;�.P C 1//

D1
2

"
NX

iD1
�PC1
i cos2 �i C �PC1

i sin2 �i C
NX

iD1
�PC1
i cos2 �i C�PC1

i sin2 �i
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˙
n
 
NX

iD1
�PC1
i cos2 �i C �PC1

i sin2 �i �
NX

iD1
�PC1
i cos2 �i C�PC1

i sin2 �i

!2

C 4

 
NX

iD1
.�PC1
i ��PC1

i / cos �i sin �i

!2 o1=2
3

5 ;

which can be simplified to

.2N /�1PN
iD1

�
�PC1
i C �PC1

i

�

˙.2N /�1
r�PN

iD1
�
�PC1
i � �PC1

i

�
cos.2�i /

�2 C
�PN

iD1
�
�PC1
i � �PC1

i

�
sin.2�i /

�2
:

We are interested in the limit case:

�.A_/D lim
P!C1�.P /

�1=2�.PC1/�.P /�1=2D lim
P!C1

�.P C 1/

�.P /
D max f�ig :

For the second eigenvalue, we first consider the product

�.P C 1/�.P C 1/ D .4N 2/�1
 

NX

iD1

�
�PC1
i C �PC1

i

�
!2

� .4N 2/�1
 

NX

iD1

�
�PC1
i � �PC1

i

�
cos.2�i /

!2

� .4N 2/�1
 

NX

iD1

�
�PC1
i � �PC1

i

�
sin.2�i /

!2

:

By the invariance under scaling, we can consider without loss of generality that
�1 D �2 D � � ��n D 1 and �i � 1. We also assume �1 D �2 D � � � ; �n D 0

and �j ¤ 0, j D n C 1; n C 2; � � � ; N . As ˛.P C 1/ D Pn
iD1 �

PC1
i , with 1 �

˛.P C 1/ � N , is the dominant term, and considering defining the element

M D max .�nC1;�nC2; � � � ; �N ; �1; � � � ; �N / ;
then we can approximate

�.P C 1/�.P C 1/ D Cte �˛.P C 1/MPC1 CMPC1 O.1/

Finally, we have

�.A_/ D lim
P!C1

˛.P C 1/MPC1 CMPC1 O.1/

˛.P /MP CMP O.1/
DM:
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Original Image

(a) u ∈ F (E R) (b) f ∈ F (E SPD(2)) (c) P = 0

(d1) P = 2 (d2) P = 10

(e1) P = −2 (e2) P = −10

Fig. 1 Counter-harmonic matrix mean based processing of SPD.2/ matrix-valued image:
(a) initial gray-level image from retina vessels, (b) corresponding structure tensor image, (c–e)
tensor filtered image by CHMM 	P .A/, for different values of order P . The local neighborhood
(structuring element B) is a square of 3� 3 pixels

Figure 1b depicts an example of SPD.n/ matrix-valued image. This image
corresponds to the structure tensors obtained from the gray-level image Fig. 1a,
representing the local orientation and edge information, which is computed by
Gaussian smoothing of the dyadic product ruruT of an image u.x; y/ [10]. Using
the symmetrized counter-harmonic matrix mean operator 	P .A/ computed in local
neighborhoods, various values of P are compared. In particular, P D 0 in Fig. 1c
which corresponds to the arithmetic mean filtered image, P D 2 and P D 10

in Fig. 1d1, d2 are pseudo-dilations, P D �2 and P D �10 in Fig. 1e1, e2 can
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be considered as pseudo-erosions. It is natural to consider that the matrices A_
and A^, associated respectively to the limit cases P D 10 and P D �10, can
be interpreted geometrically similarly to the supremum/infimum associated to the
Löwner ordering: A_ “tends to be” the smallest ellipsoid enclosing the ellipsoids of
A and A^ “tends to be” the largest ellipsoid which is contained in all the ellipsoids.
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Heat Conduction Problem for Double-Layered
Ball

Sanda Blomkalna and Andris Buikis

Abstract Heat conduction models for double layered spherical sample are devel-
oped. Parabolic (classic, based on Fourier’s Law) and hyperbolic (based on Modified
Fourier’s Law) heat conduction equations are used to describe processes in the
sample during Intensive Quenching. Solution and numerical results are obtained
for 1D model using Conservative Averaging method and transforming the original
problem for a sphere to a new problem for a slab, with non classic boundary
condition. Models include boundary conditions of third kind and non-linear BC
case. Numerical results are presented for several relaxation time and initial heat
flux values.

1 Introduction

Classical heat conduction equation, based on Fourier’s Law

q.x; t/ D �krT .x; t/; (1)

where q.x; t/—heat flux vector, rT .x; t/—temperature gradient, k—thermal con-
ductivity, usually is suitable for describing heat conduction processes. However, for
some specific modern problems, modified Fourier’s Law is more appropriate [10]:

q.x; t C �/ D �krT .x; t/: (2)
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where � denotes relaxation time, � > 0. It is material dependent and represents time
lag needed to establish heat flux when temperature gradient is suddenly imposed.

Hyperbolic heat conduction equation allows finite thermal signal speed, wave-
like behaviour of heat and is better suited for describing fast transient effects or
processes that happen for very short time intervals, have extreme cooling or heating
rates, processes with relaxation time, laser heating, processing biological materials,
etc. In our case we are interested in the Intensive Steel Quenching [5]—steel
parts are rapidly and uniformly cooled in water-polymer solutions. This method
is environmentally friendly and cheaper than quenching using oil.

We model quenching process for a layered spherical sample, taking into account
some practical limitations and conditions. Our main goal is to model industrial
process and obtain approximate solutions for otherwise difficult problems.

This paper is organized as follows. In Sect. 2 we develop models for quenching
process. In Sect. 3 we transform original models and use Conservative Averaging
method (CAM) to reduce complexity of problems. Results are presented in Sect. 4
for multiple values of parameters.

2 Mathematical Formulation of Models

Our models are formulated for a ball consisting of two spherical layers made
of materials with possibly different properties (Fig. 1). The inner layer is much
smaller compared to the outer layer (corresponding to the experimental sample and
thermocouple nozzle at the very centre of it) [7, 8]. When examining experimental
results (Fig. 2) [4], hyperbolic heat conduction equation was proposed as a better
mathematical description of processes in the sample.

We develop two 1D models—parabolic heat conduction equation corresponds
to the inner part (function U0.x; t/ and matching parameters). For the outer layer
(function U1.x; t/ and matching parameters) we use parabolic equation for the first
model and hyperbolic for the second one so we can consider parabolic-parabolic
problem and parabolic-hyperbolic problem. We also include hyperbolic-hyperbolic
model for theoretical point of view, however we note that relaxation time corre-
sponding to the inner part would be significantly smaller compared to the outer
steel layer, so parabolic equation generally is sufficient for describing inner layer. It
should be noted that we use relatively large relaxation time values. Physically it is
connected with martensite forming.

Let r D 0 be the symmetry centre of the sample. On the outer surface there is heat
exchange with environment (third type boundary condition or non-linear boundary
condition

@T

@x
jxDRD � 1

k1
�ˇmŒT � TB.t/�m (3)
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Fig. 1 Geometry
of the sample

Fig. 2 Experimental
results—temperature function
of cylinder-shaped sample.
1—centre, 2—surface

that describes water boiling, m 2 Œ3; 3 1
3
�, TB.t/—saturation temperature (boiling

point of quenchant), ˇ > 0—a constant.) The nonlinear condition was proposed
in [6] as mathematical description of situation. Here the third kind BC is used in
models, but numerical results also cover case (3).

Parabolic-parabolic problem (4):

@T0
@t

D a20
1
r2

@
@r
.r2 @T0

@r
/C F 0

0.r; t/;
@T1
@t

D a21
1
r2

@
@r
.r2 @T1

@r
/C F 0

1.r; t/;

r 2 .0; r0/ r 2 .r0; R/
r2 @T0

@r
jrD0D 0; .k1r

2 @T1
@r

C h01T1/ jrDRD '0
1.t/;

T0 jtD0D N0I T1 jtD0D N0:

(4)

Parabolic-hyperbolic problem (5):



420 S. Blomkalna and A. Buikis

@T0
@t

D a20
1
r2

@
@r
.r2 @T0

@r
/C F 0

0.r; t/; �r
@2T1
@t2

C @T1
@t

D a21
1
r2

@
@r
.r2 @T1

@r
/C F 0

1.r; t/;

r 2 .0; r0/ r 2 .r0; R/
r2 @T0

@r
jrD0D 0; .k1r

2 @T1
@r

C h01T1/ jrDRD '0
1.t/;

T0 jtD0D N0I T1 jtD0D N0;
@T1
@t

jtD0DM1;
(5)

Hyperbolic-hyperbolic problem (6):

�0
@2T0
@t2

C @T0
@t

D a20
1
r2

@
@r
.r2 @T0

@r
/C F 0

0 .r; t/; �r
@2T1
@t2

C @T1
@t

D a21
1
r2

@
@r
.r2 @T1

@r
/C F 0

1 .r; t/;

r 2 .0; r0/ r 2 .r0; R/
r2 @T0

@r
jrD0D 0; .k1r

2 @T1
@r

C h01T1/ jrDRD '0

1.t/;

T0 jtD0D N0; T1 jtD0D N0;
@T0
@t

jtD0DM1;
@T1
@t

jtD0DM1;

(6)

where for i D 0; 1: a2i D ki
ci � 
i , ki—heat conduction coefficient, ci—specific

heat capacity, 
i—density, h0i—heat exchange coefficient, '0
1.t/—temperature of

environment, F 0
i —inner heat generation function.

Conjunction conditions on the surface between both layers:

T0 jrDr0�0D T1 jrDr0C0; (7)

r2 � k0 @T0
@r

j rDr0�0 D r2 � k1 @T1
@r

jrDr0C0 : (8)

3 Transformation of the Original Problem

The process for parabolic-hyperbolic model is described (procedure is similar for
the parabolic-parabolic and hyperbolic-hyperbolic models).

We want to simplify the problem, so we use CAM [1–3]. Conservative Averaging
method is an approximate analytical and numerical method for solving partial
differential equations. It reduces the complexity of problem by decreasing the
domain where we look for the solution. According to the method we introduce
integral average values:

u0.t/ D 1

H

Z r0

0

r2T0.r; t/dr; f0.t/ D 1

H

Z r0

0

r2F0.r; t/dr; (9)

H D
Z r0

0

r2dr; (10)

multiply main Eq. (5) by r2 and integrate main equation over Œ0; r0�
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r0Z

0

r2
@T0

@t
dr D

r0Z

0

a20r
2 1

r2
.
@

@r
.r2
@T0

@r
/dr C

r0Z

0

r2F0dr: (11)

@u0
@t

D a20.r
2 @T0

@r
jr00 /C f0: (12)

The second conjunction condition can be expressed in form

r2
@T0

@r
j rDr0�0 D r2

k1

k0

@T1

@r
jrDr0C0

k1

k0
¤ 1: (13)

Using conjunction condition and boundary condition, we get fundamental relation:

@u0
@t

D a20.r
2 k1

k0

@T1

@r
/ jrDr0C0

Cf0: (14)

The original problem for two-layered ball can now be transformed into a new
one, in a smaller region r 2 .r0; R/. Since r0 is physically small value we can use
approximation with a constant in r direction. We assume that function T0 is constant
over .0; r0/ and using first conjunction condition and fundamental relation we get
boundary condition on r D r0.

T0.r; t/ 	 u0.t/ 	 T1.r0; t/: (15)

Approximation with higher order polynomials or exponential approximation can
also be used to describe unknown function T0.

To emphasize the difference between original and transformed problem, we
denote the function we are looking for as W.r; t/ instead of T1.r; t/. The funda-
mental relation is in form

@W

@t
D a20.r

2 k1

k0

@W

@r
/ jrDr0C0

Cf0: (16)

From the fundamental relation we derive a non classic boundary condition for the
new problem:

@W

@r
jrDr0C0

D k0

a20 � r20 � k1
.
@W

@t
� f0/: (17)

Transformed parabolic-hyperbolic problem:

�r
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C @W
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D a21
1
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.r2 @W
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/C F 0
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a20 � r20 � k1 .
@W
@t

� f0/;
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2 @W
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C h01W / jrDRD '0
1.t/:

(18)
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We notice that

a21
1

r2
@

@r
.r2
@W

@r
/ D a21

1

r

@2.r �W /
@r2

(19)

and, using standard transformation

U.r; t/ D r �W.r; t/; (20)

for governing equations, boundary and initial conditions and conjugation conditions,
we can put our 1D problem for a ball to a problem for a slab [9], so we indicate
x D r and introduce

h1 D h01
R2

� k1

R
; '1.t/ D '0

1.t/

R
; F D x �F 0

1; K D k0

a20 � k1 � r20
:

Parabolic-hyperbolic transformed problem for slab:

�r
@2U
@t2

C @U
@t

D a21
@2U
@x2

C F; x 2 .r0; R/
@U
@x

jxDr0D K.@U
@t

� f0 � r0/C 1
r0
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.k1
@U
@x

C h1U / jxDRD '1.t/;

U jtD0D x �N1:
@U
@t

jtD0D x �M1:

(21)

Likewise we obtain parabolic-parabolic transformed problem for slab:

@U
@t

D a21
@2U
@x2

C F; x 2 .r0; R/
@U
@x

jxDr0D K.@U
@t

� f0 � r0/C 1
r0
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.k1
@U
@x

C h1U / jxDRD '1.t/;

U jtD0D x �N1;

(22)

and hyperbolic-hyperbolic transformed problem for slab:

�r
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C @U
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D a21
@2U
@x2

C F; x 2 .r0; R/
@U
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jxDr0D K.�0
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.k1
@U
@x

C h1U / jxDRD '1.t/;

U jtD0D x �N1;
@U
@t

jtD0D x �M1:

(23)

Initial condition—temperature at the beginning is known, but it is experimentally
impossible to determine the initial heat flux. As an additional condition we can use
temperature distribution at the end of process (t D T )
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T1 jtDTD NT ; (24)

to determine the heat flux theoretically—we have to solve inverse problem.

4 Solution and Numerical Results

We use CAM to obtain approximate solutions for our transformed models. It leads
to ordinary differential equation problems which are relatively easier to solve. We
denote R0 D R � r0: New integral average values:

u.t/ D 1
R0

RR

r0

U.x; t/dx; f1.t/ D 1
R0

RR

r0

F1.x; t/dx: (25)

ODE for parabolic-parabolic problem:
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.1CK � a21

R0
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1
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R0r0
/ D f1 C a21
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2
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(26)

ODE for parabolic-hyperbolic problem:

� @
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C @u
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2
1
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2
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@t
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2
.RC r0/:

(27)

As mentioned before, it is possible to use exponential or higher order polynomial
approximations, but calculations show that differences in outcomes are almost
negligible.

Parabolic-hyperbolic and hyperbolic-hyperbolic models are split in two sub-
problems. For the inverse problem we use (24). ODE for inverse parabolic-
hyperbolic problem is in form

� @
2u
@t2

C @u
@t
.1CK � a21

R0
/C u. h1a

2
1

k1R0
C a21

R0r0
/ D f1 C a21

R0

'1
k1

C a21
R0
r0f0K;

u.0/ D N1
2
.RC r0/;

u.T / D NT
2
.RC r0/:

(28)

Sub-problem with non-homogeneous conditions has initial heat flux as one condi-
tion, so after we derive solution for ODE, we express it with respect to @w

@t
jtD0

and compute its value at according time t D T . Solution is sensitive to changes in
initial heat flux, so more research is needed to obtain precise results. We assume that
temperature at the beginning of the process is 800 ıC.
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Modelling for parabolic-parabolic includes BC of third kind and nonlinear BC
case m D 3 (Fig. 3). Parabolic-hyperbolic model is the one we are interested in, so
results for third kind BC model also show solution’s dependence on initial heat flux
value (accordingly Figs. 4 and 5). It is clear that hyperbolic part is important at the
very beginning of quenching process. When we compare parabolic and hyperbolic
models for realistic description of physical process, one can easily see that
hyperbolic model corresponds with experimental evidence better and without using
nonlinear BC. Since nonlinear BC case was proposed by developers of Intensive
Quenching method, modelling was done, however more detailed investigation on
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Fig. 5 Parabolic-hyperbolic problem. Approximate solutions with Conservative Averaging
method. Solutions’ dependence on relaxation time � . (a) t=10. (b) t=100

this case is expected. Results of parabolic-hyperbolic model can better describe
temperature values on different places (chosen radius) in the sample. These results
are in accordance with previously done simulations.

5 Conclusion

We have developed heat conduction models for double layered spherical sample.
Conservative Averaging method can be successfully used for reducing problems
difficulty and obtaining approximate solutions. Results are in accordance to experi-
mental outcomes. We propose Parabolic-hyperbolic model with BC of third kind as
the most realistic one. Numerical experiments show that there are little differences
in parabolic/hyperbolic models solutions if we look at longer period of process, but
differences at the beginning of process are important because for industrial purposes
critical heat fluxes and temperature drops determine quality of parts.

It is extremely important to determine relaxation time and initial heat flux values
accurately since solutions are sensitive to small changes in these values.
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Part IX
Education

Overview

Since its early years, the educational programme, started in 1987, was one of the
backbones of ECMI’s activities. This section covers four contributions regarding
ECMI’s educational profile.

In a first paper, Matti Heiliö and Allesandra Micheletti, former and current
chair of ECMI’s educational committee, look back on 25 years of education within
ECMI. Their contribution The ECMI Educational Programme in Mathematics for
Industry: A Long Term Success Story does not only give a brief overview on history
and motivation behind ECMI’s educational programme, but explains structure and
time schedule of its two branches: “technomathematics and economathematics”—
information, helpful not only for the readers interested in joining the programme.

The following three papers discuss developments inspired by ECMI’s educa-
tional programme in France, Spain and Bulgaria. Edwige Godlewski discusses
Recent Evolution Enhancing the Interface between Mathematics and Industry in
French Higher Education, initiated by the creation of AMIES, the Agency for the
interaction of Mathematics with the Industry and the Society. Francisco Pena’s
contribution Two Examples of Collaboration between Industry and University in
Spain shows that industry and university can cooperate successfully in the field of
mathematics in industry, if based on strong educational structures in mathemati-
cal engineering. The last contribution ECMI Master Programmes at the Faculty
of Mathematics and Informatics, Sofia University by Stefka Dimova demonstrates
the impact of ECMI’s educational programme on Eastern Europe: guided by
ECMI’s educational programme, both technomathematics and economathematics
have been successfully implemented in Sofia.

Michael Günther



The ECMI Educational Programme
in Mathematics for Industry: A Long Term
Success Story

Matti Heilio and Alessandra Micheletti

Abstract Here a description of the history and the main characteristics of the ECMI
Educational Programme in Mathematics for Industry is provided. The Programme
started in 1987 and evolved in time, according to the increasing new requirments
coming both from the industrial and academic world. It is now running since 25
years and the success and brilliant career, both in Industry and Academy, of many
students who followed the Programme in these years are the best recognition of the
long term success of this educational activity.

1 History

During the academic year 1986–1987, representatives of universities belonging to
the European Consortium for Mathematics in Industry (ECMI) (see Fig. 1) designed
a 2 year postgraduate programme and reported the results in accounts dated 20-
2-1987 and 20-3-1987. As intended, an educational programme which included
exchange of students, exchange of teachers, central international courses and coop-
eration with industry became operational. This original ECMI Educational program
was planned at the time when the Bologna model was not yet established. This
was almost like a “pathfinder project” in the line of the emerging Bologna Model.
The program was initially called ECMI postgraduate programme in Math for
Industry. In many countries this was initially understood as a 2 year extension after
the first degree—which often was a Master’s degree, Engineer with diploma, etc.
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Fig. 1 The established and provisional ECMI Educational Centers in 2014

This variability of study structures in European universities was also in many
cases a hindrance to its implementation. The initial structure of ECMI postgraduate
program was defined in a rather detailed rigorous manner. A list of recommended
textbooks and model syllabi were published to emphasize the spirit and to set a
standard of ECMI education. A thorough description of the Introductory Phase
(required prerequisites for admittance) was published, to harmonize the entrance
qualifications.

Such quality management was part of the initial idealism and determination of
the founders. The vision of the time was to provide a standardized European brand.
The real scale of variation in European academic life turned out to be a challenge.
These matters were primary reasons why the adoption of ECMI model was slow
and many member universities were not able to fit into the given frame. That was
the reason for the need of various revisions, that we describe in the following.

After the first few years of implementation of the ECMI-educational system
the single experiences were discussed in detail by its partners and they led to
an agreement for small changes in the philosophy and execution of the original
Programme. The resulting description, dated 17-8-1990, has been the guideline for
the Programme for a period of about 5 years in which the educational system of
ECMI was consolidated and gradually extended.

The programme Mathematics for Industry initially placed emphasis on ODE’s,
PDE’s and numerics and consequently on industrial problems that can be attacked
by these mathematical techniques. When it became apparent that staff and students
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from the fields of Operation Research, Statistics and related areas would like to join
the Programme (with an emphasis on these parts of mathematics, and consequently
on other types of industrial problems) the Programme was again re-considered. The
decision was taken, to reconstruct the programme so as to consist of two branches,
closely linked together, of which the existing one was called “Technomathematics”
and the new one “Economathematics”. Contents of and interaction between the two
branches as well as the way to arrange the execution of the international aspects
have been discussed in several meetings of the Educational Committee; the final
result has been approved in the meeting of the Council of ECMI on July 8, 1995.

The Programme with the two branches was then running for about 10 years,
during which the number of ECMI Educational Centers increased, and the pro-
gramme was also exported in other countries in Europe, also outside the EU, for
example to Serbia, University of Novi Sad,via an EU funded Tempus Project,
or, more recently, to Bulgaria (Sofia University) and Russia (St. Petersburg State
Polytechnical University).

Starting from 2005, with the gradual revision of the educational programmes
of European universities, according to the 3 C 2 Bologna Scheme, a need for a
deeper revision of the ECMI Educational Programme emerged, giving rise to new
projects, funded by the EU (in particular the Erasmus Mundus ESIM, and the
Erasmus Curriculum Development ECMIMIM) to modify the programme in order
also to facilitate the establishment of double or joint degree master programmes
between the ECMI educational centers. The established Bologna Scheme, providing
a standardization of the structure of European graduate programmes, gave a more
natural frame to the ECMI Educational Programme as an ECMI Master Program.

2 Motivation

Let us describe the main motivations which led and still push the ECMI Centers to
establish, maintain, and update the Educational Programme in Math for Industry.

In modern industry, mathematical methods play an increasingly important role
in research and development, production, distribution and management. These
methods come not only from classical applied mathematics (mathematical physics,
numerical mathematics, probability theory and statistics), but also involve e.g.
operations research, control theory, signal processing and cryptography. Further-
more, mathematicians are more and more involved in the formulation, analysis and
evaluation of mathematical models. For this development at least three reasons can
be given:

1. Industry in Europe is increasingly engaged in knowledge-intensive activities.
Research and development are important and a certain sophistication in pro-
duction is needed to survive (flexible automation, optimization of products and
production processes, quality control). Notice, that the word “industry” here and
elsewhere in this description has to be interpreted in a broad sense, covering also
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e.g. transport, finance, medical science, data-communication and any activity
with an economical, technological or societal impact.

2. The possibilities for the use of mathematical models are now superior to and
more extensive than those of some years ago. This is due to the rapid development
of mathematical methods and to the increased capability of computers and their
programming facilities.

3. Mathematics in industry has traditionally been exploited by engineers, chemists
and physicists, with occasional support from a mathematician. Nowadays the
need for more advanced mathematical methods, not familiar to those scientists,
introduces an increased demand for industrial mathematicians.

It should be remarked, however, that it is rare for Mathematics to be used as
an independent science for the benefit of an industrial company. The common
situation is, that Mathematics is called in to assist with the solution of problems
that arise from other fields. For this reason, a mathematician often has to be
member of an interdisciplinary team. A consequence is that the training of an
industrial mathematician should contain communication techniques, knowledge of
other disciplines and experience in teamwork.

3 Structure of the Programme

Here we present the structure of the Educational Programme which was running up
to the recent revision in the 3C 2 scheme. The main ingredients of the Programme
are still contained in the new versions which have been developed after the ESIM
and ECMIMIM projects.

Originally the programme was studied to fit a 5 years cycle of graduate studies,
being concentrated on the last 2 years of the cycle.

Each student had and still has to complete the following components:

• A mandatory common core of course work, designed to give the student a com-
mand of basic mathematical tools emphasizing constructive aspects, and with
problem solving and modelling as the primary goals. The sections that constitute
the common core must be regularly offered at all participating institutions.

• An individual selection of special topics which may vary from center to center,
according to the different local expertise.

• Practical training in mathematical modelling, organized in a regular modelling
seminar. In addition, ECMI organizes yearly a Modelling Week where students
from the participating institutions meet and work in international teams on
industrial problems in a simulated “Study Group with Industry” environment.

• A project thesis of at least half a year’s work involving a real industrial problem,
preferably carried out in an interdisciplinary environment, involving participants
from Industry. Ideally, the thesis should demonstrate the candidate’s ability to
model the problem, to treat it with mathematical tools and to present the results in
a way understandable and useful to the client. To be acceptable, the project thesis
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must meet the standards of the profession with regard to each of these aspects.
The thesis must be written in English and is reviewed by an expert appointed by
the ECMI Educational Committee.

• A student exchange programme requiring each ECMI student to spend a period
at another participating university or develop the final project abroad.

Students successfully completing the previous requests are awarded of a Certificate
by the ECMI Board.

4 The Two Branches

Since “Technomathematics” and “Economathematics” are artificial names, there
is some need to describe in more detail what is meant by them. This description
will focus on the relation between the two branches and provide some examples of
subjects in industrial practice. It is in no way meant to draw a line, distinguishing
types of mathematics or even of mathematicians. The description is, on purpose, not
a sharp one, since in the Programme it is an advantage rather than a problem that
certain subjects can be reached from either branch.

“Technomathematics” has to be considered as the part of the programme “Math-
ematics for Industry” in which real world physical, technological or biomedical
problems are treated, in areas like e.g. heat exchange, fluid dynamics, electro-
magnetic fields, polymer science, population dynamics. “Economathematics” on the
other hand deals with problems like e.g. planning and scheduling, quality control,
distribution management, financial decision processes, data communication and
data mining.

The general policy is that the two branches have to be closely linked together.
In any case, students from the different branches in the Programme must be able
to “talk to each other”. In order to reach this, the conditions for admission to the
Programme have been made nearly the same for the two branches. The International
Modelling Week is organized for both branches together.

5 Time Schedule of the Programme

Since the very beginning, each branch of the Programme consisted of courses and
problem-solving activities from its Common Core, courses of a specialist nature,
and a project, and was planned to extend over a 2 year period. The Preparatory
Phase was the range of knowledge which a student entering the Programme should
have. However, it was recognized that the backgrounds of different students may
be very varied and that most students would not have covered all the Preparatory
Phase topics before commencing the Programme. Thus in each individual case it
was expected that some topics in the Preparatory Phase would be studied during the
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Programme, and conversely that exemption of some courses of the Programme can
be given when they are proved to be known from the preparatory university study.
Further, there was no need for a strict order in time between the core courses and
the specialist courses. This induced a time profile as given in Fig. 2.

For further and more updated information on the ECMI Educational Programme
please visit the web site of ECMI http://www.ecmi-indmath.org/

http://www.ecmi-indmath.org/


Recent Evolution Enhancing the Interface
Between Mathematics and Industry in French
Higher Education

Edwige Godlewski

Abstract The paper focuses on some recent initiatives in the French higher
education system, in particular the creation of an Agency for the interactions of
Mathematics with the Industry and the Society, AMIES, and its possible impact
on already existing MSc programmes in industrial mathematics in the French
university.

1 Recent Initiatives

In the last few years, several initiatives have been carried out in France with the
aim of enforcing collaborations between mathematics and industry. The important
actors are the French Ministry of Higher Education and Research which launched in
2011 a specific project entitled “Laboratory of Excellence” and INSMI, the National
Institute for Mathematical Sciences in CNRS (the National Centre for Scientific
Research). Some projects were initiated by SMAI, the French Society of Applied
and Industrial Mathematics.
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1.1 AMIES

AMIES, an acronym for Agency for the interactions of Mathematics with the
Industry and the Society, is a French national distributed Laboratory of Excellence.
An international panel of judges appointed by the National Research Agency (ANR)
has awarded the proposal AMIES in spring 2011 and consequently the project has
been provided with significant funding. It is sponsored by the CNRS in partnership
with the University of Grenoble and INRIA (the National Institute for Research in
computer science and automatics).

AMIES is based on a network of regional correspondents who have two roles:
they promote links between the companies, laboratories and universities of their
respective regions; and they monitor technological progress in their respective
technical areas and help AMIES stakeholders to understand and benefit from it.

AMIES targets three main areas: Education, Research, and Interaction between
mathematics and industry. The agency will chart industry-relevant research activ-
ities and training opportunities in universities and laboratories nationwide, high-
lighting successful industrial collaborations. It will also act as a contact point to the
mathematical community and to research funding agencies and coordinate activities
with similar programs abroad, particularly in Europe (for instance AMIES is already
an ECMI member1).

Concerning more specially Education, AMIES aims at raising the awareness of
students and instructors to opportunities in industry, notably via joint study weeks
on modelling industrial problems. It has already organized study weeks (see the
SEME section below); it intends to organize internships in industry and will try to
coordinate the activities already taking place in some master programmes in French
universities.

The agency also aids the integration of students in industry by supporting
exploratory projects between academics and industry (see also Cemracs below).
These projects may involve internships and lead to some industrial PhD grant. Note
that industrial PhD contracts in France have been existing for 30 years through the
CIFRE process, a national research funding agency (ANRT) providing part of the
salary while expenses remaining at the charge of the company are eligible for a
Research Tax Credit.

1.2 Some Realizations

SEME The creation of AMIES was preceded by that of a CNRS Research Group
Mathématiques & Entreprises, which was inaugurated in 2010. The M&E group
organized the first SEME (acronym for Study week for Mathematics with the

1More details in ECMI Newsletter 51, http://www.mafy.lut.fi/EcmiNL/issues.php?issueNumber=
51.

http://www.mafy.lut.fi/EcmiNL/issues.php?issueNumber=51
http://www.mafy.lut.fi/EcmiNL/issues.php?issueNumber=51
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Industry, following the idea of European Study Group in Industry ESGI) in April
2011 in Paris. Both structures now work hand in hand and a second SEME took
place in Lyon in December 2011 and the third one is to be held in Toulouse in June
2012 (then Paris again, followed by Nancy, Grenoble, Limoges, Orléans). If they
are inspired by ESGI, these weeks are dedicated to students undergoing a PhD; they
work in teams on selected problems presented by representatives from industry.
They may get some help from some academic instructors and be guided by the
industrial representative but mostly they work by themselves, trying to innovate and
bring new ideas. They report on the problem at the end of the meeting.

Job Forum for Mathematics. Following an idea of some SMAI members, the
first French Job Forum for Mathematics (the French acronym is FEM) was held
on January 26, 2012 in Paris. The aim was to present job opportunities both in
Academia and in companies and services to master students, engineering students,
graduate students and young doctors in mathematics. Nearly a thousand people
participated, among which students and faculty from the whole country and
industrial partners and it was a great success. A second FEM is to be held in January
2013 (and a third one in December 2013).

Cemracs. AMIES can help project with industrial partner at Cemracs (Summer
mathematic center for advanced research in scientific computing). The Cemracs is
a scientific event of the SMAI, the concept was initiated in 1996 by two French
applied mathematicians, Y. Maday and F. Coquel. It consists in two types of events:
a 1 week summer school mid July and a 5 week research session (end July–
August), the research project and the organizing team change every year. During
the first week, a classical summer school is proposed. The remaining 5 weeks are
dedicated to working on the research projects, after a daily morning seminar. The
Cemracs ’12 will be devoted this year to Numerical Methods and Algorithms for
High Performance Computing, it is organized by the French Research Group on
scientific computing. The goal of this event is to bring together scientists from both
the academic and industrial communities and discuss these topics. Each participant
will work in a team on a project proposed by an industrial or an academic partner.
Each team will be composed of young researchers assisted by one or more senior
researchers.

1.3 Other Initiatives

There are other recent local initiatives, most of them linked to the above mentioned
French Investments for the Future funding program; to cite a few of them: the
Gaspard Monge Program for Optimization and operation research launched by EDF
(French Energy Company) and the Jacques Hadamard Mathematical Foundation in
Paris South; it aims at organizing the master curricula of this scientific field in the
region Île de France; IRMIA, a Laboratory of Excellence funded in University of
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Strasbourg, aiming at developing high performance computing and creating a local
relay for AMIES, it has also some Education projects, a School of statistics and
Master classes in Mathematics with nearby German Universities; MaiMoSiNE in
Grenoble University (already an ECMI partner), involving in particular a scientific
computing and modelling network; ICS at UPMC-Paris 6 University: this institute
for Computation and Simulation will organize in July and August 2 2-week summer
schools which in 2012 concerned biology and mathematics or computer science.

2 Evolution of Masters Programmes

2.1 Education Context: Universities and Grandes Écoles
d’ingénieurs

The situation in France is specific because of the coexistence of two separate
tracks for the training of students: Universities and Schools of Engineering (Écoles
d’ingénieurs). While in Schools of Engineering, less and less mathematics are being
taught (outside Mathematical Finance) since more time is given to management
and economy, in French Universities the traditional high level of training in
mathematics has been more or less preserved and is appreciated in industry, so that
French students following this path still find good job opportunities thanks to their
specific skills. Moreover, students from Grandes Écoles d’ingénieurs interested in
mathematics often get a joint M-level diploma in mathematics in University.

Then many “Schools of Engineering” have been created and are growing inside
Universities, thus, the training of engineers may be provided as part of a component
of a University such as EPU belonging to the Polytech’ network. These schools
often share with University curricula part of the faculty teams so that both tracks
get more and more interwoven. Even when the schools and university faculty do
not mix for teaching, they are often linked in research teams, in particular because
research is in general more active in the university laboratories than elsewhere.

Though Universities have been greatly supported in the last few years, the trend
consists more in encouraging “excellence” than a clear choice between the two
different tracks. In order to favor the creation of “poles of excellence” that are
aimed at improving the ranking of French universities, the LRU reform encourages
competition between public institutions of education and research. The French
mathematical community tries to promote excellence while maintaining contact and
some coordination.

2.2 Programmes in Industrial Mathematics

Some History. The first diploma DESS (Diplôme d’Etudes Supérieures Spécial-
isées) in applied mathematics were launched in French Universities in the late
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1970s [2]: they correspond to the fifth year of higher education, the graduate
program is chosen only in the fifth year, but coherent with the four previous years.
The first diploma DESS in applied mathematics was created in Université Paris
6-UPMC. It appears that the second one was created in 1979 in Université de
Pau[5], now Université de Pau et des Pays de l’Adour (UPPA), a smaller multi-
disciplinary University in the southwest of France, this University benefiting from
a favourable industrial environment thanks to the presence of important industries.
This is illustrative of the fact that mathematical sciences were present all over the
country, and CNRS has encouraged this situation and INSMI continue to support
high level teams in most regions.

The French organization of higher education, following the Bologna declaration
on the European space for higher education in 1998 has undergone a change and
passed to the so-called LMD frame (for Licence—Master—Doctorat). All courses
are organized in compliance with the European Credit Transfer System (ECTS) of
credits accumulation. Some French specificity is that the diploma has now a more
complex structure than the previous DESS, involving several levels with domaine,
mention, specialité, parcours, filière which does not help the foreign student in
finding its way through the different programmes. However, a national directory
tool has been developed aiming at collecting the information in order to promote
the mathematics graduate programmes [1].

An Example: The UPMC Programme. The above mentioned Dess de mathé-
matiques appliquées in UPMC has become in 2004 a Master programme Ingénierie
mathématique, Mathématiques Pour l’Entreprise which exactly means Mathematics
for Industry in the broad sense given to the word after the OECD report on
Mathematics in Industry (2008).

This change of name reflects a greater awareness in the teaching team of the
importance of identifying a core curriculum of mathematics for industry or, at
least, the teams wanted to make the program more appealing and exciting to
students and the professionals in industry [4]. If the requirement of spending one
semester in another university is not fulfilled, the programme does fulfill all the
other requirements listed in the Forward look model[3], including internships.

Other Programmes. One can find similar Master programmes in industrial math-
ematics in France: Grenoble, Pau, Orléans, Rennes, Toulouse, etc. besides some
particular programmes in Schools of engineering: Insa in Rouen, Matmeca in
Bordeaux, Ensimag in Grenoble, etc. and also an Erasmus Mundus MSc Course
in MathMods—Mathematical Modelling in Engineering, whose French participant
is UNSA (University of Nice-Sophia Antipolis).

2.3 Future Prospects

However, not all universities offer coherent courses with modelling activities,
industrial projects and internship in a company, and there is some need to broaden
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and harmonize such programmes. A possible project is that AMIES could work
at defining and delivering a label “Master in industrial mathematics” to French
programmes fulfilling a list of requirements similar to those of the Forward look
model. In a first time, so as to include the existing successful programmes,
international might be encouraged but not yet compulsory. AMIES might also help
in defining some industrial projects in the common interest, and organize internships
in industry as already mentioned. We hope the numerous initiatives to promote
applied mathematics at all levels and in industry will converge in particular to an
increasing number of students enrolling.

Appendix

ANR Agence Nationale pour la Recherche
ANRT Association Nationale pour la Recherche et la Technologie
AMIES Agence pour les Mathématiques en Interaction avec les Entreprises

et la Société
CEMRACS Centre d’Eté Mathématique de Recherche Avancée en Calcul Scien-

tifique
CIFRE Conventions Industrielles de Formation par la REcherche
CNRS Centre National de la Recherche Scientifique
DESS Diplôme d’Etudes Supérieures Spécialisées
EPU Écoles Polytechniques Universitaires
FEM Forum Emploi maths
GDR Groupement de Recherche
ICS Institut du calcul et de la simulation
IDEFI Initiatives d’excellence en formations innovantes
INRIA Institut National de Recherche en Informatique et Automatique
INSMI Institut National des Sciences Mathématiques et de leurs interac-

tions
IRMIA Institut de Recherche en Mathématiques, ses Interactions et Appli-

cations
LMD Licence - Master - Doctorat
LRU loi relative aux Libertés et Responsabilités des Universités
MaiMoSiNE Maison de la Modélisation et de la Simulation, Nanosciences et

Environnement
SEME Semaine d’Etude Mathématiques et Entreprises
SMAI Société de Mathématiques Appliquées et Industrielles
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Two Examples of Collaboration Between
Industry and University in Spain

Francisco Pena

Abstract Modelling of industrial processes is one of the ground lines of the
research group Ingeniería Matemática (matCi), from the University of Santiago de
Compostela. Different activities have been developed in order to be in contact with
the industry needs. Two examples of this close collaboration are presented here:
the first one was proposed by the company FerroAtlántica to simulate the magnetic
field and the temperature evolution of an electrode for electric-arc furnaces. The
second one was proposed by company Gamelsa to simulate the energy efficiency of
a newly designed solar collector. The difficulties arisen in the numerical simulation
are summarized, as well as the benefits for both, the industry and the academic
community.

1 Background

Collaboration between the research group matCi and industry has been intense
along time. Since the first contact in the 1980s with the energy company Endesa,
there have been dozens of projects with companies and public administrations, in
a wide range of fields: solid and fluid mechanics, heat transfer, electromagnetism,
environmental modelling, finances, etc. Some of them are showed in [1]. We have
exploited this experience on shared projects with industry to develop stable part-
nership formulas, together with two other research groups from universities of A
Coruña and Vigo, and the CESGA node of the i-Math project:

• Forums for Mathematics-Industry Interaction: Last year the eighth edition of
this forum was held in A Coruña. These 1-day meetings serve to present several
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industrial problems where their solution involves some numerical simulation
techniques.

• Master in Mathematical Engineering: Its first edition was in 2006 and the
subject Industrial problems workshop has been implemented since then. Every
course about one dozen companies propose problems related to their industrial
needs. Students must attend most presentations and choose one problem to
develop its solution. This work will be their Master dissertation.

• Mathematical Consultation Sessions: These 3-day meetings have been
financed by the i-Math project throughout Spain in the last years; four of them
were held in Santiago de Compostela and 13 more in the rest of Spain. A reduced
number of open problems are proposed by companies related to numerical
modelling, statistics and operational research. Participants are organized in
groups and they try to find a feasible solution for the problem, led by an invited
expert.

These activities have been funded in recent years thanks to several projects, the
most important of them being the aforementioned i-Math project, ended this year.
The research groups involved in the previous enterprises have joined forces with
other groups and entities to promote two new initiatives:

• Technological Institute for Industrial Mathematics (ITMATI): This institute,
supported by the Galician autonomous government and the Galician universities,
will try to continue with the i-Math objectives [2].

• The Spanish Network for Mathematics and Industry (math-in.net): It is
a private association composed by more than 30 research groups in applied
mathematics and statistics to improve collaboration between university and
industry [3].

2 Results and Discussion

We present here two examples of collaboration between the research group matCi
and the industry.

2.1 Numerical Simulation of Metallurgical Processes
in Silicon Production

The collaboration started in 1996, when company FerroAtlántica was interested
in modelling a new compound electrode, named ELSA, patented in those years
by them.

The research activity was financed under annual contracts. The company invested
more than EUR 100,000 to simulate the behaviour of the electrode. The study was
carried out in several phases: (a) the thermo-electric and thermo-mechanical study
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of a single electrode using axisymmetric models; (b) the thermo-electric study of a
horizontal cut of the pot using bi-dimensional models and (c) the electromagnetic
study of the whole pot, using tri-dimensional models.

For the thermo-electric study of the electrode, a harmonic eddy-currents model
for the electric and magnetic fields was considered. This model is obtained from
Maxwell equations by assuming alternate low frequency current. The resulting set
of equations for the complex electric and magnetic fields, E and H, is:

curl H D J; curl E D �i!B; div B D 0;

B D �H; J D E:

For the thermal model, an enthalpy formulation was considered:

@e

@t
C v � grad e � div .kgradT / D jcurlHj2

2
;

where enthalpy e is expressed through a multivalued operator depending of
temperature T , due to the phase change (see [4]).

For the tri-dimensional case of the eddy-currents model, there are a wide
variety of formulations depending on the chosen unknowns (see [5]). The approach
considered in [6] tries to use the most usual boundary conditions in the industrial
applications; besides, it permits to consider general geometries without complicat-
ing the mesh.

The project provided a way to understood how the density current distributes
throughout the electrode to produce the electric arc, an aspect that was not
completely clear when the electrode was planned. It also served to test the
performance of the electrode under different operational conditions, allowing to
make recommendations about how to operate it. Besides, the numerical results eased
to explain the benefits of the new electrodes to possible clients. To our surprise,
mathematical modelling was useful, not only to interpret the physical phenomena
and to improve its operational performance, but also to sell the electrode to other
companies.

2.2 Numerical Simulation of a Solar Collector

The second work was proposed by company Gamelsa for the Master subject
Industrial problems workshop. They wanted to model a novel design for a collector
with high surface contact to the absorbent surfaces. This problem was chosen by
the student Ana Álvarez, under the supervision of M.C. Muñiz. Part of the work
described here was completed in her Ph.D. Thesis, presented in 2011.

The work consisted in the numerical calculation of the thermal parameters
of a low-temperature solar collector, in order to estimate its energy efficiency.
To get a solution with reduced computational cost, the idea was to couple the
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two-dimensional heat equation at the cross section of the collector with the
one-dimensional convective heat equation modelling the behaviour of the fluid
temperature.

For the boundary conditions, some additional terms must be added to consider
the wind exposition, the glazing and the associated greenhouse effect. In the steady-
state, non-local boundary conditions were obtained on the tube-to-fluid boundary,
written in terms of the tube-to-fluid boundary temperature and the inlet fluid
temperature (see [7]).

Since the tube inside the collector is a serpentine, the previous approximation
must be checked prior. The solution of the bi-dimensional problem for a tube
of circular section was compared with some well-established analytical solutions,
obtaining a relative error smaller than 0.2 %.

The corrugated topology introduced another complexity in the model. A cross
sectional model with a single tube and a single valley in the corrugated surface was
compared with a tri-dimensional thermo-hydrodynamical model for the first three
sections of the collector, presenting a good agreement. A solar collector equipped
with measuring devices was constructed. The results obtained for temperature
and energy efficiency were compared with the model, obtaining a discrepancy
below 7 %.

3 Conclusions

Collaboration between the research group mat+i and industry has been constant over
time. These contacts have been developed through different formulas, from direct
collaborations to periodic forums and the participation in Master activities.

Two examples were presented here. The first was a long-term project to
model a metallurgical electrode. Numerical simulation was able to improve the
understanding of the electrode’s behaviour and helped to better operate it. The
second one was the modelling of a prototype of a new design of solar collector.
The adjustment of the simplified model was the main part of the work. At the same
time, its simplicity of use allowed it to be included in the designing process.

Acknowledgements The author would like to thank Ana Álvarez, Alfredo Bermúdez, M. Carmen
Muñiz, Peregrina Quintela and Pilar Salgado for allowing him to present their work in this
presentation and for their help in the preparation of the talk.
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ECMI Master Programmes at the Faculty
of Mathematics and Informatics, Sofia
University

Stefka Dimova

Abstract The Faculty of Mathematics and Informatics, Sofia University, has been
an ECMI member since 2011. The ECMI Educational Committee approved Sofia
University as a provisional ECMI Teaching Centre at a meeting held on July 29th,
2011 in Milan, Italy. Here we present two of the Master programmes of the Faculty
of Mathematics and Informatics, which correspond to the two branches—Techno-
Mathematics and Econo-Mathematics—of the ECMI Model Master in Industrial
Mathematics (ECMIMIM). These two programmes are “Computational Mathemat-
ics and Mathematical Modelling” and “Mathematical Modelling in Economics”.
We show that they satisfy all the requirements of the ECMI Model Master in
Industrial Mathematics.

1 Introduction

The ECMI Educational Committee (EC) approved Sofia University (SU) as a
provisional ECMI Teaching Centre at a meeting held on July 29th, 2011 in
Milan, Italy. Two Master programmes (MPs) at the Faculty of Mathematics and
Informatics (FMI) are in a process of evaluation for relevance with respect to the
ECMI Model Master in Industrial Mathematics (ECMIMIM). The MP “Compu-
tational Mathematics and Mathematical Modelling” (CMMM) is evaluated in the
Techno-Mathematics branch, and the MP “Mathematical Modelling in Economics”
(MME) is evaluated in the Econo-Mathematics branch. An inspection visit is
expected to be the final step towards a definitive status of FMI, SU as an ECMI
Teaching Centre.
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The first specialization on Computational mathematics at FMI was created back
in the 1959/1960 academic year, inside the Department of Higher Analysis. It
comprised Numerical methods, Linear programming, Computers and programming,
Theory of information as compulsory disciplines. Among the diploma works, given
to the first students, graduating from this specialization, were “Modelling the
harmonization of 8-bar melodies” and “Modelling of the belote game”. So from
its very beginning the computational mathematics was closely connected with
the mathematical modelling, what is more, it has been considered as a tool for
mathematical modelling. A three-stage profiled education—Block A (3.5–4 years,
Bachelor), Block B (1.5–2 years, Master), Block C (3 years, PhD)—was established
at FMI in the 1970/1971 academic year (let us note, 29 years before the Bologna
process!!). Three of the branches of Block B were Computational mathematics,
Mathematical modelling and Operations research. During the years the names have
been changed slightly, but the “mathematical modelling” has remained in the heart
of all of the applied branches of education. This tradition has been kept till now and
has determined the names of our Master programmes.

2 The Bachelor Programme in Applied Mathematics at FMI

The duration of the Bachelor programme (BP) in Applied mathematics at FMI
(and in other Bulgarian universities) is 4 years, with 240 ECTS credits (for
information see http://www.fmi.uni-sofia.bg/). The requirements for admission to
the ECMIMIM are “180 ECTS of undergraduate study at university level (Bachelor
degree)”. So the students, graduating with a Bachelor degree from Bulgarian
universities, have additional 60 ECTS credits. The compulsory courses alone in the
Bachelor programme give all the prerequisites from Block A of the ECMIMIM,
all courses in Block B for Techno-Mathematics and almost all courses in Block
B for Econo-Mathematics. The elective courses for 67.5 ECTS credits enable the
students to choose subjects in the field of the desired Master programme. The
students coming from other Universities for the CMMM are required to get up to 38
additional ECTS credits in order to reach the minimal basic level.

All stated above supports the opinion (accepted by the Review subcommittee of
the ECMI Educational Committee) that regardless the obligatory state regulation for
only 90 ECTS credits and 3-semester education, the FMI Master programmes fulfill
the requirements of ECMIMIM. The 15 ECTS credits for a Master thesis, given in
accordance with the Bulgarian state regulations, were the main difference between
our Master programmes and ECMIMIM. Currently, additional 15 ECTS are being
given for a Diploma project (the preparatory part of the Master thesis), thus the total
number of ECTS credits for the Master thesis is 30.

Numerical analysis, Equations of mathematical physics, Numerical methods for
differential equations, Mechanics of continua, Probability theory and mathematical

http://www.fmi.uni-sofia.bg/


ECMI Master Programmes at FMI, Sofia University 451

statistics, Applied statistics are among the compulsory courses in our BP providing
the required basis for further education at the MPs. In addition, there are three more
specific courses, which help the students to make their further choice of MP.

The aim of the course Mathematical modelling is not only to present the general
ideas and schemes of mathematical modelling but also to illustrate them with various
examples by the Classical mechanics, Biology and Medicine, Physics, Chemistry,
etc., and thus—to demonstrate how some phenomena and processes apparently
different by nature turn out to be similar from the point of view of the mathematical
model.

The course Mathematical introduction to economics gives first knowledge on
the theory of the firms, profit maximization, cost minimization, consumer theory,
Paretto optimality, competitive behavior and monopoles.

Macroeconomics 1 is an introduction to fundamental concepts and models in
macroeconomics. The course aims to introduce the basic concepts and methods of
analysis in macroeconomics. IS-LM analysis constitutes an important part of the
course, dynamic models are also studied. A diverse set of mathematical techniques
is employed to study economic phenomena.

3 ECMI Master Programmes at FMI

3.1 MP Computational Mathematics and Mathematical
Modelling

The educational goal of this MP is to provide the students with solid theoretical
knowledge and practical skills in one of the following areas:

• development and analysis of mathematical models of processes in Physics,
Chemistry, Biology, Ecology and Engineering;

• development and studying of effective numerical methods and algorithms for
solving the mathematical problems, obtained through the modelling;

• identifying and using the most relevant of the available software for scientific
computations.

The professional goal of CMMM Master programme is to prepare the students
to work in interdisciplinary research teams, to create mathematical models of real
processes in at least one domain of science and engineering and to solve them by
using contemporary numerical methods and high-performance computing.

Four groups of courses make these goals achievable:

• Mathematical Modelling: Mathematical models and computational experiment,
Mathematical modelling in Physics, Mathematical modelling in Biology, Hydro-
dynamics, Mechanics of continua, Non-linear mathematical models;
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• Contemporary Numerical Methods: Numerical methods for differential equa-
tions, Finite elements method—algorithmic foundations, Numerical methods for
system with sparse matrices, Parallel algorithms, Numerical integration;

• Theory and Analysis of the Numerical Methods and the Continuous Models:
Theory of the finite difference schemes, Theory of the finite element methods,
Applied functional analysis, Sobolev spaces and applications in PDE, Chaotic
dynamical systems;

• Other Tools: Spline-functions and applications, Wavelets and applications,
Fractals, Fourier transform, Wavelets and signal processing, Computer graphics,
Software for scientific computations.

The appropriate choice of courses from each group makes the CMMM master
students capable to implement the full cycle of the Computational Experiment
as a tool for investigating a real-life problem: physical model, mathematical
model, analytical investigation (as far as possible), discrete model, algorithm,
computer programme, numerical experiments, parametric investigation.

3.2 MP Mathematical Modelling in Economics, with Two
Specializations: Economics; Mathematical Finance
and Actuarial Science

The aim of the MME MP is to develop the student’s mathematical and computa-
tional skills to handle problems in business and finance providing them with:

• theoretical and practical knowledge applicable in Economics, Finance, Insur-
ance, Company Management;

• ability to handle large amounts of data by numerical and statistical methods;
• skills in identifying and using the most relevant of the available software.

The MME MP goal is to stimulate the students to model, study and optimize
particular events and processes in Economics. Profound knowledge in micro-
and macroeconomics, financial tools and markets, risk evaluation, insurance, data
processing, combined with computer skills, are acquired by the students within a
number of courses, e.g. Numerical methods and their applications in economics,
Variational calculus with application to economics, Microeconomics, Macroeco-
nomics 2, Open economy macroeconomics, Econometrics, Financial mathematics,
Time series, Probability models, Mathematical risk theory, Stochastic analysis
and applications, Multicriteria optimization, Optimal control, Nonlinear control
systems, Credit risk, Life insurance, European practices in insurance. Cooperation
with insurance companies provides additional opportunities to analyze real models
and data.
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3.3 Something More for the Two Master Programmes

The CMMM and MME MPs are well provided with computer laboratories, libraries
and software products. Some of the courses are taught in English, if there are foreign
students following the programmes.

Mathematical modelling seminar, common for the two MPs and compulsory for
the students, is going on for 3 years now. Several Bulgarian firms and institutions
have been involved: R and D Bulgaria, ProSystLabs, SAP, Rila Solutions, Sirma
Group, Institute of Information and Communication Technologies, Institute of
Metal Science, BAS. Some of the Master students, working in firms, have presented
the current problems they were dealing with.

Three students at CMMM programme and four students at MME made their
theses in English. The topics were on Techno- and Econo-Mathematics, e.g. “Math-
ematical modelling of electrochemical processes in Li-ion batteries”, “Adaptive
algebraic multigrid for finite element elliptic equations with random coefficients”,
“SPEA 2 for Mean-VaR portfolio selection under real constraints”, “Long horizon
risk estimation using ARMA-GARCH processes”. Three former CMMM Master
students, graduated 2010/2011 and 2011/2012, are now PhD students at the
Fraunhofer ITWM, Kaiserslautern.

Two students, following the MPs CMMM and MME, took part at ESSIM’2011
in Milan. It was with great satisfaction that we learned about their excellent research
performance. We are sending now four Master students to ESSIM’2012 in Dresden.

Bilateral Erasmus agreements between FMI, SU and two ECMI universities—
Kaiserslautern University of Technology, Germany and Johannes Kepler University
of Linz, Austria—are signed for the academic years 2012/2014 (they are among
the 33 Erasmus agreements between FMI, SU and European universities). Two
CMMM Master students will study at Kaiserslautern during 2012/2013 academic
year, a student from Linz is coming to FMI. We hope our connections with the
ECMI Universities will grow.

In conclusion, the adheration of FMI to ECMI has to be considered as a
promising attempt for development, encouragement and promotion of mathematical
research in Bulgarian and European industry and economy.
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