
Performance Analysis of Computing Servers —
A Case Study Exploiting a New GSPN

Semantics

Joost-Pieter Katoen1, Thomas Noll1, Thomas Santen2,
Dirk Seifert2, and Hao Wu1,�

1 Software Modeling and Verification Group
RWTH Aachen University, Germany

{katoen,noll,hao.wu}@cs.rwth-aachen.de
2 Advanced Technology Labs (ATL) Europe

Microsoft Research, Aachen, Germany
{thomas.santen,dirk.seifert}@microsoft.com

Abstract. Generalised Stochastic Petri Nets (GSPNs) are a widely used
modeling formalism in the field of performance and dependability anal-
ysis. Their semantics and analysis is restricted to “well-defined”, i.e.,
confusion-free, nets. Recently, a new GSPN semantics has been defined
that covers confused nets and for confusion-free nets is equivalent to the
existing GSPN semantics. The key is the usage of a non-deterministic ex-
tension of CTMCs. A simple GSPN semantics results, but the question
remains what kind of quantitative properties can be obtained from such
expressive models. To that end, this paper studies several performance
aspects of a GSPN that models a server system providing computing ser-
vices so as to host the applications of diverse customers (“infrastructure
as a service”). Employing this model with different parameter settings,
we perform various analyses using the MaMa tool chain that supports
the new GSPN semantics. We analyse the sensitivity of the GSPN model
w.r.t. its major parameters –processing failure and machine suspension
probabilities– by exploiting the native support of non-determinism. The
case study shows that a wide range of performance metrics can still be
obtained using the new semantics, albeit at the price of requiring more
resources (in particular, computation time).

Keywords: Computing Services, Model-Based Analysis, Generalized
Stochastic Petri Nets, Markov Automata.

1 Introduction

Goal of the paper. The goal of this paper is to introduce an industrial case
study that demonstrates the application of a newly developed semantics [1,2] of
Generalised Stochastic Petri Nets (GSPN). This semantics covers basically every
GSPN, in particular those which exhibit non-determinism that, e.g., is due to the
presence of confusion. This paper presents a simple, abstract GSPN model of a

� Supported by ATL, the RWTH Aachen University Seed Fund, and the EU FP7
SENSATION project.

K. Fischbach and U.R. Krieger (Eds.): MMB & DFT 2014, LNCS 8376, pp. 57–72, 2014.
c© Springer International Publishing Switzerland 2014

58 J.-P. Katoen et al.

computing service, and analyses its performance properties from both a customer
and a provider point of view. We do so by exploiting the MaMa tool chain [3]
which supports the new GSPN semantics and relies on various algorithms from
Markov decision theory.

Computing services. The growing cost of installing and managing computer
systems leads to outsourcing of computing services to providers. We use the term
computing services to refer to any kind of server system providing computing
resources such as physical or virtual machines in order to host the applications
of diverse customers. Examples of such systems are hosting centers that provide
out-sourced computing capabilities to customers. If these resources are accessible
via Internet, one speaks about cloud computing. In particular, the most basic
form of cloud service, the so-called infrastructure-as-a-service model, conforms
to this setting, providing physical or virtual machines to the customer. Here, the
cloud OS can support large numbers of machines and has the ability to scale
services up and down according to customers’ varying requirements. Quality of
service and cost efficiency are important factors from both the customer’s and
the provider’s perspective.

Focus of this study. This paper investigates non-functional properties of a simple
computing service. We are in particular interested in the performance under
several users’ requirements. Questions of interest are, e.g., how to scale the server
system, i.e., how many machines are needed to achieve a certain service level?
When can certain bottleneck situations such as long waiting times occur? An
important focus is on the sensitivity of these performance aspects when varying
the two main system parameters – the rate of processing failures and the rate
of putting machines into suspended mode. Apart from these performance issues,
we are also interested in power consumption by computing services.

Approach. The computing server is succinctly modelled as a GSPN [4]. Machines
can be either operational (“ready”) or stand-by (“suspended”), and randomly
switch between these modes. Job loads are generated by a Poisson process, and
job processing may randomly fail. It is a closed model, i.e., jobs that have been
processed return to a pool from which new job requests can be generated. Two
user profiles are considered: scientific computing tasks with high computational
demands and small (or large) client populations, and web service tasks with low
computational demands and large client populations. The GSPN is analysed
using the recently developed MaMa tool chain1. Put in a nutshell, the GSPN
is mapped onto a Markov automaton (MA; [5]), an extension of a continuous-
time Markov chain with non-determinism, and analysed using several new al-
gorithms [3]. The capability to deal with non-determinism allows for analysing
non well-defined GSPNs; in fact, the new GSPN-semantics is (weak) bisimula-
tion equivalent to the classical GSPN semantics [1]. We exploit non-determinism
for analysing the sensitivity of various performance metrics w.r.t. variations of
the main system parameters. The response-time distribution in steady state
is obtained by a combination of the PASTA theorem and the tagged token
technique.
1 Publicly available at: http://wwwhome.cs.utwente.nl/~timmer/mama/.

http://wwwhome.cs.utwente.nl/~timmer/mama/

Performance Analysis of Computing Servers 59

Main results and findings. GSPNs turn out to be a convenient modelling for-
malism in our setting; the resulting model is succinct and easily extendible. Our
analysis gives useful insight into the initial number of ready machines so as to
keep the time until jobs cannot directly be processed below a certain thresh-
old, and to keep the long-run average number of queued jobs at a minimum.
This is valuable information to adequately dimension the computing server. The
response-time distribution shows that being in equilibrium, the system can guar-
antee a reasonably low response time in the majority of cases when job requests
are organised in a FIFO queue. Taking a random service policy however gives
rise to a substantial increase in response time. The sensitivity analyses reveal
that the failure rate has not a significant impact on the expected time until no
ready machine is available but has a large influence on reaching 50% and 90%
job queue capacity.

Main contributions. To summarize, our main scientific contributions are:

1. a simple GSPN model for computing servers in which machines can be op-
erational (“ready”) or stand-by (“suspended”), and job processing may ran-
domly fail;

2. an extensive set of evaluation results focusing on expected durations until
given system occupancies, long-run objectives, response-time distribution
and energy consumption;

3. a sensitivity analysis of the two major model parameters –processing failures
and machine down rates– by exploiting non-determinism;

4. a first industrial case study using the recent GSPN-to-Markov automata
semantics [1] and accompanying analysis algorithms [3].

Organization of this paper. Sect. 2 briefly introduces GSPNs, their mapping
onto MA, and the analysis algorithms. Sect. 3 presents the GSPN model of the
computing server. Sect. 4 is the main section of the paper and presents our
evaluation results. Sect. 5 discusses related work, and Sect. 6 concludes.

2 Modeling Formalism: GSPNs

The scenario. In this paper we analyse an exemplary service offering computing
resources. We explore two scenarios: first, an application that is supposed to
process a number of jobs as they occur, for example, in scientific calculations for
weather forecasts, or biometric and medical simulations. Typically, such jobs are
long running and processing is requested with a proportionally low frequency.
Often they are executed in batches. The second scenario reflects a web service.
Here jobs are running much shorter but they occur at a considerably higher
frequency. In both scenarios we analyse the influence of various parameters on
the overall performance of the service. For example, an insufficient number of
available machines impacts the response time of the service, as jobs have to be
queued until they can be processed. If new instances are requested, the time
to start these instances delays their availability. Furthermore, instances can be
detracted from the user due to application failures or for maintenance reasons.
On the other hand, an over-dimensioned number of available (and mostly idling)
machines unnecessarily increases the costs to run the service as well as the energy
consumption of the data center. In the following we introduce our formal model
that enables such analyses.

60 J.-P. Katoen et al.

GSPNs. Generalised Stochastic Petri Nets (GSPNs) [4] are a modelling formal-
ism for concurrent systems involving randomly timed behaviour. GSPNs inherit
from Petri nets the underlying bipartite graph structure, partitioned into places
and transitions and extend this by distinguishing between timed and immediate
transitions. The latter can fire instantaneously and in zero time upon activa-
tion. The firing time of a timed transition is governed by a rate which uniquely
defines a negative exponential distribution. A special form of timed transitions
is of type n-Server, meaning that the given rate is multiplied by the number
of predecessor tokens to yield the actual transition rate. Timed transitions are
depicted as non-solid bars labelled by “n-Server”, if applicable, while immediate
transitions are depicted as solid bars. An example of a GSPN is shown in Fig. 2.

GSPN semantics. The semantics of a GSPN may conceptually be considered as
consisting of two stages [4]. The first (abstract) stage describes when and which
transitions may fire, and with what likelihood. This basically conforms to playing
the token game of a net. The second stage defines the underlying stochastic
process –typically a continuous-time Markov chain (CTMC)– which represents
the intended stochastic behaviour captured in the first stage. This CTMC is
obtained by amalgamating sequences of immediate firings. Performance analysis
of the GSPN then amounts to analysing the transient or steady-state behaviour
of its underlying CTMC. This trajectory works fine for well-defined GSPNs,
i.e., nets that are confusion-free. Recently, a new GSPN semantics has been
proposed [1] that covers all definable GSPNs, in particular nets that contain
confusion. The semantics is defined in terms of Markov automata (MA), which
are basically transition systems in which transitions are either labelled with the
action τ (representing the firing of an immediate transition), or with the rate
of an exponential distribution. The target of an action transition is a discrete
probability distribution over the states while for a rate-labelled transition it is
simply a state. For confusion-free GSPNs, this semantics is (weakly) bisimilar
to the two-phase GSPN semantics. States in MA correspond to markings of the
net. It falls outside the scope of this paper to give a full-fledged treatment of
this semantics; we rather present a simple example, see Fig. 1. The example
net is confused, as transitions t1 and t2 are not in conflict, but firing transition
t1 leads to a conflict between t2 and t3, which does not occur if t2 fires before
t1. Transitions t2 and t3 are weighted so that in a marking {p2, p3} in which
both transitions are enabled, t2 fires with probability w2

w2+w3
and t3 with its

complement probability. Fig. 1 depicts the MA semantics of this net. Here, states
correspond to sets of net places that contain a token. In the initial state, there
is a non-deterministic choice between the transitions t1 and t2. In this paper, we

Fig. 1. A simple confused GSPN (left) and its MA semantics (right)

Performance Analysis of Computing Servers 61

will exploit non-determinism for analysing the sensitivity of various performance
metrics w.r.t. some rates in the net. The MaMa tool chain [3] realizes the new
semantics via a translation to process algebra. This tool is used in our analysis
of the computing server.

Performance metrics. We consider three basic measures on (possibly confused)
GSPNs. Long-run average measures are the pendant to steady-state probabil-
ities in CTMCs. Given a state m in an MA, i.e., a marking in the net, and
a set T of target states, this measure is the minimal (or maximal) fraction of
time spent in some state in T in the long run, when starting in m. In ab-
sence of non-determinism, the minimal and maximal long-run average coincide.
The computation of long-run averages on MA can be reduced to a combina-
tion of several standard algorithms on Markov decision processes (MDPs); for
details we refer to [3]. The (minimal or maximal) expected time of reaching a
set T of target states from a given state m can be obtained by a reduction to
a stochastic shortest-path problem. Such problems can efficiently be solved by
linear programming. The third measure is determining timed reachability proba-
bilities. They are the pendant to transient probabilities in CTMCs. Given a set
T of target states, a given state m and a deadline d, the central question here is
to determine the minimal (or maximal) probability of reaching some state in T
within time d when starting in m. Such problems are a bit more involved and
can be tackled using discretisation techniques. Further details are outside the
scope of this paper and are provided in [3].

3 A GSPN Model of the Computing Server

Figure 2 shows our GSPN model of a computing server. The places, transitions,
and parameters have the following interpretation:

Ppool Pproc

Psusp Prdy

Pqueue

Tdplλarr

Tarr

λup

Tup

λdown

n-Server

Tdown

λsucc

n-Server

Tsucc

λfail

n-Server
Tfail

Fig. 2. GSPN model of computing server

62 J.-P. Katoen et al.

Ppool represents the pool of job requests. After successful processing, they re-
enter this place.

Pqueue models the waiting queue of the system. Job requests enter this place via
Tarr with rate λarr , and re-enter the queue if their processing fails.

Tdpl immediately deploys a waiting request on a (ready) machine if available.
Pproc represents the actively executing requests. From here, the jobs are either

returned via Tsucc to Ppool (with rate λsucc) after successful completion,
or the machine fails (or is preempted by the provider). In the former case,
1/λsucc gives the expected execution time. In the latter case, 1/λfail is the
mean time between failures, and requests are enqueued again via Tfail .

Prdy/Psusp divide the available machines into two categories. The first (“ready”)
can directly process service requests, while the second (“suspended”) first
need to be set up to become ready. Two associated transitions, Tup and
Tdown with respective rates λup and λdown , represent the corresponding
startup and shutdown operations that are taken when additional machines
are required or when they are idle, respectively. In particular, λup models
the booting time of a machine by an exponential distribution. Initially we
assume that all machines in the server are ready. Note that Tdpl requires
Prdy to be non-empty in order to process requests, and that a machine re-
enters Prdy after successful processing of a request. If processing is aborted
via Tfail , the machine becomes suspended as it has to be restarted (in case
of failure) or reallocated (in case of preemption).

Note that transitions Tsucc , Tfail and Tdown are marked as “n-Server” to reflect
the fact that the respective rates refer to single requests and machines. Since we
assume the failed machines can only be rebooted one by one, Tup is not marked
as “n-Server”. Moreover, the computing server with different types of services
and machines can be easily modeled from the “simple” one by using colored
GSPN or assigning immediate transitions with weights (when the probabilistic
distribution of such types of services (machines) is known), and these extended
semantics can again be translated into MA semantics without extra effort.

This GSPN is specified using the Petri Net Markup Language (PNML), which
is a standardized XML-based interchange format for Petri nets [6]. Many tools
can be used to generate Petri Nets in PNML notation, such as the Platform-
Independent Petri Net Editor (PIPE). Using the MaMa tool chain, the GSPN
is automatically mapped onto a Markov automaton for further analysis.

4 Quantitative Evaluation of the GSPN Model

This section presents the results of evaluating our GSPN model. They are ob-
tained by using the recently developed MaMa tool chain that supports the
mapping of GSPNs onto Markov automata and their quantitative assessment.
We first present some statistics about the underlying state space size, detail-
ing the user profiles –scientific computing tasks and web service tasks– that are
used, and the set of properties considered. Due to space limitations, we focus on
presenting the main outcomes. Sect. 4.2 presents the results for expected-time
and long-run metrics for scientific computing and web-service tasks. These fig-
ures give insight into the quantitative behaviour of the computing system, and

Performance Analysis of Computing Servers 63

provide useful information concerning dimensioning the system in terms of the
(initial) number of ready machines. Sect. 4.3 investigates the sensitivity of our
evaluation results on varying the parameters λfail and λdown . Sect. 4.4 considers
the long-run energy consumption, whereas Sect. 4.5 focuses on the response-time
distribution of user requests. The latter results are of interest to both service
providers and users. All experiments are obtained on a AMD 48-core CPU @
2.2 GHz, 192 GB RAM and Linux kernel 2.6.32.

4.1 Experimental Setup

State space. The state space of the GSPNmodel is determined by two parameters:
the size of the client population and the initial number of ready machines. They
are respectively representedbyI(Ppool) andI(Prdy)whereI(P) denotes the initial
number of tokens in placeP . The state space sizes are summarized in Table 1where
the last column indicates the state space generation time (in seconds).

Table 1. GSPN state space statistics

I(Prdy) I(Ppool) # states # trans. time
100 100 20,201 55,250 23s
100 500 100,601 255,650 79s
100 1000 201,101 506,150 153s
100 2000 402,101 1,007,150 314s
100 2500 502,601 1,257,650 387s
200 1000 401,201 1,021,300 321s
250 1000 501,251 1,282,625 394s

User profiles. We consider two ap-
plication scenarios: scientific comput-
ing and web-services. In the scientific
computing setting, tasks arrive at a
relatively low rate and have a substan-
tial processing time (usually ranging
from minutes to hours). Web-service
tasks such as bing search queries ar-
rive much more frequently and have a
short processing time, typically in the
range of seconds.

Table 2. Parameter settings for the application scenarios

λarr λsucc λfail λup λdown

Scientific computing 1.667 0.1 0.00208 0.05 0.005
Web service 180 20 0.006 0.05 0.005

Our parameters set-
tings are listed in Ta-
ble 2, where the time
unit is one minute. Sci-
entific computing tasks
arrive at a rate of 100 requests per hour (λarr = 1.667), and require a process-
ing time of 10 min (λsucc = 0.1), failures occur once per eight hours, booting
a machine requires 20 min, and a ready machine suspends once every 200 min
(please bear in mind that transition Tdown is of type n-Server). Three web ser-
vice requests are issued per second, and each requires an average execution time
of three seconds. The scientific computing case is considered for a small client
population, i.e., I(Ppool) = 100, and a large one, i.e., I(Ppool) = 500. The web
service setting is of interest only for a large client population.
Properties. For each scenario, we consider the following six properties:

p1. The expected time until Pqueue exceeds 90% of its capacity
p2. The expected time until Pqueue exceeds 50% of its capacity
p3. The expected time2 until no ready machine is available for requests in Pqueue

p4. The average long-run occupancy of Pqueue

p5. The average long-run occupancy of Pproc

2 In some dedicated cases, we also study the probability until this phenomenon hap-
pens within a given deadline. This timed reachability property is however more com-
plex to evaluate.

64 J.-P. Katoen et al.

The verification times are listed in Table 3. It clearly shows that expected-time
properties are simpler to analyse than long-run properties.

Table 3. Property evaluation times per scenario

p1 p2 p3 p4 p5
ssmall 12m2s 5m52s 1m13s 18h44m 6h30m
slarge 6h6m 1h54m 10m13s 495h28m 109h16m
wlarge 5h6m 1h39m 9m52s 402h38m 50h35m

This is due to the fact that
the former involve a single LP
problem to be solved, whereas
the latter require a (non-trivial)
graph decomposition as well as
solving of several LP problems.
Moreover, evaluating p4 requires I(Ppool) · I(Prdy) iterations when using value
iteration, whereas the other long-run properties require I(Prdy) iterations. This
explains the difference in runtimes between the long-run properties. We stress
that these runtimes should not be compared to evaluating similar properties on
CTMCs; as MA include non-determinism, the algorithms are intrinsically more
complex and have a higher time complexity.

4.2 Expected-Time and Long-Run Properties

Expected-time properties. First consider the properties p1 and p2, i.e., the ex-
pected time until Pqueue reaches 90% and 50% of its capacity, respectively. For a
small population, the capacity of Pqueue , denoted Cqueue , equals I(Ppool) = 100.
Analysing these properties boils down to computing the expected time from the
initial marking to the set of markings satisfying M(Pqueue)/Cqueue ≥ p% where
M(P) refers to the current marking of place P . The evaluation results are shown
in Fig. 3 (left) for p = 90% and Fig. 3 (right) for p = 50%, where the number
of initial ready machines (x-axis) is varying. They suggest that about 25 initial
ready machines is a rather good choice.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 5 10 15 20 25 30 35 40 45 50

Ex
pe

ct
ed

 ti
m

e
un

til
 P

qu
eu
e r

ea
ch

es
 it

s
90

%
 c

ap
ac

ity

Initial number of ready machines

E (Occ_Pqueue>=90%)

(p
1) 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Ex
pe

ct
ed

 ti
m

e
un

til
 P

qu
eu
e r

ea
ch

es
 it

s
50

%
 c

ap
ac

ity

Initial number of ready machines

E (Occ_Pqueue >= 50%)

(p
2)

Fig. 3. Expected time until exceeding 90% (left) and 50% (right) of client queue ca-
pacity for scenario ssmall

Property p3 refers to the expected time until there is no more ready machine
available for waiting requests in Pqueue . We check this by determining the ex-
pected time from the initial marking to the set of markings whereM(Pqueue) > 0
and M(Prdy) = 0. The results are plotted in Fig. 4 (left). To get more insight
into the likelihood of encountering this situation, we also evaluate the proba-
bility to reach this state within a given time frame d. As the computation of

Performance Analysis of Computing Servers 65

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340
 360
 380
 400
 420
 440
 460
 480

 5 10 15 20 25 30 35 40 45 50 55 60 65 70

E (M(Pqueue)>0 & M(Prdy)=0)Ex
pe

ct
ed

 ti
m

e
un

til
 n

o
re

ad
y

m
ac

hi
ne

s
fo

r r
eq

ue
st

s

Initial number of ready machines

(p
3) 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

I (Prdy)=20

Ti
m

e-
bo

un
de

d
re

ac
ha

bi
lit

y
of

p3

Time (in min.)

I (Prdy)=10 I (Prdy)=30

I (Prdy)=40

I (Prdy)=50

Fig. 4. Expected-time and timed reachability probabilities until client requests wait

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r o

f r
eq

ue
st

s
in

 P
qu

eu
e

Average # requests in Pqueue

Initial number of ready machines

(p
4)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 n
um

be
r

of
 r

eq
ue

st
s

in
 P

pr
oc

Average # requests in Pproc

Initial number of ready machines

(p
5)

Fig. 5. Long-run average number of tasks in Pqueue (left) and Pproc (right) for ssmall

these probabilities is very time-consuming, we let the initial number of ready
machines vary from 10 to 50. The results for varying d (along the x-axis, in
minutes) and different values of I(Prdy) are plotted in Fig. 4 (right). Clearly,
the timed reachability probabilities rapidly approach one for a relatively small
number of machines (e.g., 10 or 20), but this effect substantially diminishes on
increasing this number. The evaluation times for obtaining the latter results
ranges from around 28 s for 10 machines up to nearly 60 h for 50 machines
where we have set an accuracy of 10−1.

Long-run properties. For a set T of target states, let L(T) denote the long-run
average fraction of time of residing in T . The set of target states where exactly
i ∈ N tokens are in place P is denoted as Ti(P) = {M | M(P) = i}. The long-
run average number of tokens in place P , denoted L(#P), in our GSPN model
is then given by L(#P) =

∑
i∈N

L(Ti(P)) · i. The average number of waiting
(in Pqueue) and processing tasks (in Pproc) are shown in Fig. 5 (left) and Fig. 5
(right), respectively. Our results indicate that an equilibrium is reached for about
25 initial ready machines. To show the impact of the size of the client population,
we check both properties for I(Prdy) = 500, see Fig. 6. The results indicate an
(expected) increase of waiting requests in Pqueue , whereas the average number
of processing requests is only negligibly affected.

66 J.-P. Katoen et al.

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

 375

 400

 425

 450

 475

 500

 5 10 15 20 25 30 35
Initial number of ready machines

A
ve

ra
ge

 n
um

be
r o

f r
eq

ue
st

s
in

 P
qu

eu
e

I (Ppool)=100
I (Ppool)=500

(p
4)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r o

f r
eq

ue
st

s
in

 P
pr

oc

I (Ppool)=100
I (Ppool)=500

Initial number of ready machines

(p
5)

Fig. 6. Long-run average number of tasks in Pqueue (left) and Pproc (right) for slarge

 320

 330

 340

 350

 360

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 470

 480

 490

 500

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r o

f r
eq

ue
st

s
in

 P
qu

eu
e

(p
4)

Initial number of ready machines

Average # requests in Pqueue

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r o

f r
eq

ue
st

s
in

 P
pr
oc

(p
5)

Initial number of ready machines

Average # requests in Pproc

Fig. 7. Long-run average number of tasks in Pqueue (left) and Pproc (right) for wlarge

Web-service tasks. We evaluated all properties also for the web-service setting.
In contrast to the scientific computing case, jobs have a short processing time but
arrive at a substantially higher rate (cf. the parameter settings in Table 2). Due to
space reasons, we only present the results of the long-run propertiesp4 andp5 (see
Fig. 7).Whereas for the scientific computing application scenario, a stable situation
is reached for about 25 ready machines, this is now the case for 15 machines. In
that case, the average number of concurrently processing tasks in the server will be
around 7.5, and there are about 330 tasks on average waiting in the queue.

4.3 Sensitivity Analysis

λlow λhigh

τ τ

λhighλlow

Fig. 8. Non-determinism in GSPN
and MA

In order to a get a better insight into the influ-
ence of two important modelling parameters
–the failure rate λfail of job processing and
the rate λdown of ready machines becoming
suspended– we carry out a sensitivity analy-
sis by exploiting the native support of non-
determinism in our setting. (Note that such
an analysis is not possible using the classical
GSPN semantics for “deterministic” nets.)

Performance Analysis of Computing Servers 67

This is done as follows. We first only vary λfail . In the underlying MA, this is
accomplished by adding two internal (immediate) transitions which are directly
followed by two timed transitions with rates λlow and λhigh , respectively (see
Fig. 8). The benefit of this approach is that when analysing our properties, we
obtain bounds. For instance, for the expected-time properties, we would obtain
minimal and maximal expected-time values. This means in particular, that for
any failure rate between λlow and λhigh , the expected time lies between the
obtained bounds. The analysis algorithms in the MaMa tool chain obtain these
bounds from the adapted GSPN (and thus MA) by running a single algorithm.
We first vary the failure rate λfail from 0.00208 (≈ 480 min) to 0.00312 (≈ 320
min) and 0.00416 (≈ 240 min) respectively, then reduce the failure rate λfail to
0.00156 (≈ 640 min) and 0.00104 (≈ 960 min) respectively. The obtained results
for the expected-time properties are shown in Fig. 9 and 10.

 0

 1500

 3000

 4500

 6000

 7500

 9000

 10500

 12000

 13500

 15000

 16500

 18000

 19500

 21000

 22500

 24000

 25500

 27000

 28500

 30000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

λfail∈ [0.00208, 0.00416]
max

min

λfail∈ [0.00208, 0.00312]
max

min

Initial number of ready machines

(p
1)

 E
xp

ec
te

d
tim

e
un

til
 P

qu
eu

e
re

ac
he

s
its

 9
0%

 c
ap

ac
ity

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

λfail∈ [0.00156, 0.00208]
max
min

λfail [0.00104, 0.00208]
max

min

(p
1)

 E
xp

ec
te

d
tim

e
un

til
 P

qu
eu
e
 re

ac
he

s
its

 9
0%

 c
ap

ac
ity

Initial number of ready machines

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

[0.00208, 0.00416]
max

min

 E
xp

ec
te

d
tim

e
un

til
 P

qu
eu
e
 re

ac
he

s
its

 5
0%

 c
ap

ac
ity

(p
2)

Initial number of ready machines

λ fail∈

[0.00208, 0.00312]
max

min
∈λfail

 0
 2000

 6000

 10000

 14000

 18000

 22000

 26000

 30000

 34000

 38000

 42000

 46000

 50000

 54000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

λfail∈ [0.00104, 0.00208]
max

min

[0.00156, 0.00208] max
minλfail∈

Ex
pe

ct
ed

 ti
m

e
un

til
 P

qu
eu
e
 re

ac
he

s
its

 5
0%

 c
ap

ac
ity

(p
2)

Initial number of ready machines

Fig. 9. Evaluation results for properties p1 and p2 by varying λfail

From these results, we make three observations. First, we consider the number
of clients for which the lower and upper expected times start to become distinct.
On increasing λfail , i.e., with shorter average failure intervals, the minimal and
maximal expected times start to differ for I(Ppool) = 14, 15 and 22 in p1,
p2, and p3, respectively. On decreasing λfail , i.e. with longer average failure
intervals, these points shift to 17, 18, and 24, respectively. Secondly, we observe
(e.g., from both the right curves) a significant impact on the difference between
minimal and maximal expected times when increasing the minimal failure rate.
Reducing λfail = 0.00208 to just one half (0.00104) results in an increase of
about 400 times of the expected time (after reaching an equilibrium), whereas
a reduction to 0.00156 (= three quarters) results in just an increase by a factor

68 J.-P. Katoen et al.

of 11 (cf. Fig. 9 (top right)). This is because transition Tfail (with rate λfail)
has a two-fold effect on the number of tasks in Pqueue in our GSPN model.
First, Tfail has a more direct effect on tasks in Pqueue than Tsucc (λsucc). If a
task is successfully processed, it arrives in Ppool and waits for turning to be a
new request. Here, Tarr is not an n-Server type time transition. However, if the
processing of a task has failed, it will directly arrive in Pqueue (and thus increases
the number of waiting tasks). Second, Tfail also affects the availability of ready
machines in Prdy . If the task is successfully finished, the ready machine goes
back to Prdy and does not need to re-initialize. But if it has failed, the machine
serving the task needs to be restarted. Note that the startup of a suspended
machine (transition Tup) is not a n-Server typed transition. As a result, these
twofold effects will cause a superposed influence on the growth of the number of
tasks in Pqueue and hence have a strong impact on the expected-time property.
The third observation we make is that λfail does not have significant influence
on p3 in comparison with p1 and p2 (cf. Fig. 10 (left)). The results of other
evaluations (cf. Fig. 10 (right)) also confirm that rather than λfail , λdown has a
stronger impact on property p3.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

λfail∈ [0.00208, 0.00312]
max

min

λfail∈ [0.00208, 0.00416]
max

min

 E
xp

ec
te

d
tim

e
un

til
 n

o
re

ad
y

m
ac

hi
ne

s
fo

r r
eq

ue
st

s
(p
3)

Initial number of ready machines

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

 375

 400

 425

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

(p
3)

 E
xp

ec
te

d
tim

e
(in

 m
in

) u
nt

il
no

 re
ad

y
m

ac
hi

ne
s

fo
r r

eq
ue

st
s

Initial number of ready machines

fail

0.00166
0.00208
0.00278

down
0.005
0.01
0.025

λ λ

Fig. 10. Checking p3 by varying λfail

4.4 Long-Run Energy Consumption

In the following section, we are going to answer two questions which service
providers may especially be interested in: what is the operating cost and the
quality of service of their computing server? To answer these questions, we try
to estimate the long-run energy consumption of the server and the response-time
distribution of requests as respective metrics for these two parameters.

We assume that active machines (i.e., those in Pproc) have a power consump-
tion of 40 W [7], ready machines (Prdy) have a power consumption of 20 W
(50% of the active value), and suspended machines (Psusp) have a power con-
sumption of 8 W (20% of active). Furthermore, if we initialize m ready machines
in Prdy , in the long run these will be distributed to three possible places Psusp ,
Prdy and Pproc . In other words, at any moment the overall number of machines
in these three places will be m. Thus we can compute the power consumption
of the server in the long run based on the steady-state probabilities. After we
have determined the average number of machines in these places in the long run,

Performance Analysis of Computing Servers 69

which can be analogously derived as p4, the overall power consumption in the
long run is computed as

P = 40 W · L(#Psusp) + 20 W · L(#Prdy) + 8 W · L(#Pproc).

The results are shown in Fig. 11 (left) for failure rate λfail = 0.00208. We observe
that λdown and I(Prdy) do not significantly influence the average number of
active machines in Pproc in the long run; they are always around 16 (cf. Fig. 5
(right)). Although the more ready machines we initialize in Prdy (i.e. I(Prdy)),
the more redundant machines will be in Prdy and Psusp . Their distribution is
controlled by λdown . If there are few redundant machines, e.g., I(Prdy) = 20 (i.e.,
only about 4 machines left for λdown to distribute these to Prdy and Psusp), then
the energy consumption only varies in a small range. In contrast, if I(Prdy) = 40,
we notice that when λdown is 0.0025, about 23.10 machines are suspended, 0.65
are ready, and 16.25 are active on average, whereas when λdown is 0.001, about
9.61 machines are suspended, 13.73 are idle, and 16.66 are active on average.
This wide range distribution of suspended and ready machines caused by λdown

yields a drastic increase of energy consumption as shown in Fig. 11 when I(Prdy)
is large. On the one hand, keeping a certain number of ready machines in Prdy

guarantees a better response time of requests, on the other hand, too many
redundant ready machines lead to a higher energy consumption.

 680

 700

 720

 740

 760

 780

 800

 820

 840

 860

 880

 900

 920

 940

 960

 980

 1000

 1020

 0.001 0.003 0.005 0.007 0.01 0.015 0.02 0.025

 P
ow

er
 c

on
su

m
pt

io
n

(in
 W

)

I (Prdy) =23
I (Prdy) =25
I (Prdy) =30
I (Prdy) =40

I (Prdy) =20

λdown

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 1

2

1

2

1 : Pqueue as FIFO buffer
2 : tasks in Pqueue prob. choosed

Pr
ob

ab
ili

ty

Time (in min.)

I (Prdy) = 30

I (Prdy) = 23
I (Prdy) = 23

I (Prdy) = 30

Fig. 11. Power consumption and response-time distribution of computing server

4.5 Response-Time Distribution in Steady State

Now we compute the response-time distribution in steady state approximately
3based on a combination of the PASTA theorem [8] and tagged-token tech-
niques [9] for GSPNs. From the former we know that an arrival of a Poisson
process sees the system as if it was arriving at a random instance of time (i.e.
the system in steady state). Since the steady-state probabilities of the comput-
ing server can easily be computed from the resulting MA by using the MaMa
tool, the response-time distribution in steady state can be computed by tagging
a customer’s job and following the tagged request until it has been successfully
processed in the server which is in steady state. The right side of Fig. 12 illus-
trates the tagged task (represented by ∗ at Pqueue) in the computing server (with

3 Since our model is closed.

70 J.-P. Katoen et al.

λfail = 0.00208, λdown = 0.001, I(Prdy) = 30) which is just in a steady state
with probability 0.00192925986. The number attached to each place represents
the current number of tokens in that place. By adding a boolean variable to
each place Pqueue , Pproc and Ppool indicating the position of the tagged request,
the response-time distribution is then obtained via a time-bounded reachability
computation using the MaMa tool. Note that adding a tagged token increases
the state space. The left side of Fig. 12 shows the advantage of using proba-
bilistic transitions in MAs during our computation. They are used for setting
up the initial probabilistic distribution for different steady states of the server.
After these steps, we can again generate the MA and compute the response-time
distribution, all with the MaMa tool. The result is shown in Fig. 11 on the
right.

·
...

...

78

Ppool

21

Pproc

9

Psusp

0

Prdy

1 (∗)
Pqueue

< 0.00192925986 >

Tdplλarr

Tarr

λup

Tup

λdown

n-Server

Tdown

λsucc

n-Server

Tsucc
λfail

n-Server
Tfail

Fig. 12. Computing server in steady state with tagged token (∗) placed in Pqueue

5 Related Work

The closest work on performance evaluation that is similar to our work was
carried out in the field of cloud computing. Appropriate stochastic models have
recently been proposed in [10,11,12,7]. [10] describes a prototype tool for trans-
lating expressions of probabilistic resource usage patterns into Markov deci-
sion processes with rewards. This allows to check costing and usage queries
expressed by reward-augmented probabilistic temporal logic (PCTL). [13] mod-
els cloud computing systems with migration by CTMCs using PRISM, verify-
ing some quantitative properties such as the time-bounded probability of mi-
gration operation in the cloud computing system. [12] introduces a stochastic
reward net model for the IaaS cloud, based on which resiliency metrics are
computed by changing the job arrival rate and the number of available PMs.
[11,7] models a cloud computing server as different kinds of scalable interact-
ing stochastic (sub)models. In [11], interaction happens when results from sub-
models are used as input for other sub-models. In the end, two quality-of-service
metrics, the effective job rejection probability and the effective mean response
delay, are obtained. [7] represents the IaaS cloud with tiered service offerings
by three pools for hot, warm and cold virtual machines, which have different re-
sponse time and power consumption characteristics, respectively. These pools are

Performance Analysis of Computing Servers 71

represented by interacting stochastic sub-models (basically CTMCs), from which
the power consumption and performance metrics are computed.

Another strand of research is based on queueing theory. [14,15,16] analytically
evaluates the performance of cloud computing services. [14] proposes an approx-
imation method to compute the probability and cumulative distribution of the
response time by applying the inverse Laplace-Stieltjes transformation (LTS) on
the LTS of total response time obtained analytically. [15] models the cloud com-
puting server by a M/G/m/m+r queueing system. Here, quantitative properties
such as the distributions of the number of tasks and of waiting and response
times etc., are analytically computed. Besides cloud computing, [9] presents a
general distributed computing technique for response-time analysis with GSPN
models based on Laplace transformation and its inversion [17,18].

6 Concluding Remarks

This paper has presented a simple GSPN for computing servers in which virtual
machines can be stand-by or operational, and the processing of requests may
randomly fail. Our analysis has focused on both long-run and expected-time
properties that give insight into the number of required virtual machines so as
to yield a given service level (i.e., low response time, and low probability of
lack of processing power). A sensitivity analysis by exploiting non-determinism
in the GSPN model shows the influence of the failure probability. Finally, long
run energy consumption was analysed. The exploited analysis algorithms are
based on analysing Markov automata, and are more intricate –hence more time-
consuming– than those for classical (confusion-free) GSPN which are based on
CTMCs. Although our original net does not exhibit confusion, the one used for
the sensitivity analysis does. Future work will focus on improving the perfor-
mance of the analysis algorithms.

References

1. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp.
90–109. Springer, Heidelberg (2013)

2. Katoen, J.P.: GSPNs revisited: Simple semantics and new analysis algorithms. In:
Application of Concurrency to System Design (ACSD), pp. 6–11. IEEE (2012)

3. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, re-
duction and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013)

4. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons (1995)

5. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

6. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
technology, and tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)

72 J.-P. Katoen et al.

7. Ghosh, R., Naik, V.K., Trivedi, K.S.: Power-performance trade-offs in Iaas cloud:
A scalable analytic approach. In: Dependable Systems and Networks Workshops,
pp. 152–157 (2011)

8. Wolff, R.W.: Poisson arrivals see time averages. Operations Research 30, 223–231
(1982)

9. Dingle, N.J., Knottenbelt, W.J.: Automated customer-centric performance analysis
of Generalised Stochastic Petri Nets using tagged tokens. In: PASM 2008. ENTCS,
vol. 232, pp. 75–88 (2009)

10. Johnson, K., Reed, S., Calinescu, R.: Specification and quantitative analysis of
probabilistic cloud deployment patterns. In: Eder, K., Lourenço, J., Shehory, O.
(eds.) HVC 2011. LNCS, vol. 7261, pp. 145–159. Springer, Heidelberg (2012)

11. Ghosh, R., Trivedi, K.S., Naik, V.K., Kim, D.S.: End-to-end performability anal-
ysis for Infrastructure-as-a-Service cloud: An interacting stochastic models ap-
proach. In: IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), pp. 125–132. IEEE CS (2010)

12. Ghosh, R., Longo, F., Naik, V.K., Trivedi, K.S.: Quantifying resiliency of Iaas
cloud. In: IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 343–
347. IEEE (2010)

13. Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration
operations in cloud computing systems using PRISM probabilistic model checker.
In: IEEE Int. Conf. on Cloud Computing (IEEE CLOUD), pp. 49–56. IEEE (2011)

14. Xiong, K., Perros, H.G.: Service performance and analysis in cloud computing. In:
IEEE Congress on Services, Part I (SERVICES I), pp. 693–700. IEEE Computer
Society (2009)

15. Khazaei, H., Misic, J.V., Misic, V.B.: Performance analysis of cloud computing cen-
ters using M/G/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. 23,
936–943 (2012)

16. Yang, B., Tan, F., Dai, Y.S., Guo, S.: Performance evaluation of cloud service con-
sidering fault recovery. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Com-
puting. LNCS, vol. 5931, pp. 571–576. Springer, Heidelberg (2009)

17. Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of prob-
ability distributions. Queueing Syst. 10, 5–87 (1992)

18. Harrison, P.G., Knottenbelt, W.J.: Passage time distributions in large Markov
chains. In: Int. Conf. on Measurements and Modeling of Computer Systems (SIG-
METRICS), pp. 77–85. ACM (2002)

	Performance Analysis of Computing Servers — A Case Study Exploiting a New GSPN Semantics
	1 Introduction
	2 Modeling Formalism: GSPNs
	3 A GSPN Model of the Computing Server
	4 Quantitative Evaluation of the GSPN Model
	4.1 Experimental Setup
	4.2 Expected-Time and Long-Run Properties
	4.3 Sensitivity Analysis
	4.4 Long-Run Energy Consumption
	4.5 Response-Time Distribution in Steady State

	5 Related Work
	6 Concluding Remarks
	References

