
Chapter 7
Natural Mereology and Classical Mereology

Paul Hovda

The main goal of this paper is to sharpen our understanding of what is at stake
between two opposing philosophical views, or orientations, on certain issues within
and related to mereology. On the one hand, there is a view that reality includes
a great deal of natural mereological structure, which must be discovered (at least
partly) by empirical means, and for which there is no a priori reason to think that it
will fit any neat formal pattern. Crudely, we may take this first view to be the view
that x is part of y if and only if y is an organic or natural union which x partakes
in. Perhaps the parthood relation has some neat formal properties like transitivity
and anti-symmetry, perhaps not; investigation is required. Moreover, it is far from
evident than every arbitrary collection of objects constitutes a natural unity, so there
probably are many collections for which there is nothing that deserves to be called
the “mereological sum” of this collection of objects. Broadly, we should leave it
to empirical (natural) science to settle which natural units there are, and what the
overall structure of the parthood relation “looks like.”

On the other hand, there is a view that there is an a priori1 science of mereology
whose truths reveal a great deal about the overall pattern of part-whole connections
in the universe. Crudely, we may take this view to be that Classical Mereology (or
some similar formal theory) gives the one true theory of the part-whole relation.
Very broadly, while the first view might be associated with Aristotle, the second
might be associated with more modern figures like Quine and Lewis (though
anticipations of it can be found in Descartes and Hume, and elsewhere in the
early modern period). As Lewis writes: “I myself take [Classical Mereology] to

1If we reject a sharp distinction between a priori and not, in favor a graduated distinction, then we
may substitute “very close to as a priori as it gets” for “a priori” here.
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be perfectly understood, unproblematic, and certain.”2 Let us call this second type
of view “formalistic.”

Modern proponents of the first type of view—let us call it “naturalistic”—include
van Inwagen (according to Van Inwagen (1990), there are partless simples and
mereological fusions of partless simples that are jointly caught up in a life; there
is nothing else) and Koslicki (according to Koslicki (2008), whether some material
things have a fusion turns on whether they realize a structure); Kit Fine might also
be suggested, but is harder to place (see Fine (1999, 2010), and elsewhere).

Imagine now a third party to a dispute between a proponent of a naturalistic
view and a proponent of a formalistic view, who wishes to make a kind of peace
between them by arguing that their differences are not ultimately as great as might
at first appear. The general strategy the third party employs is to try to show that for
each of the two disputants, the third party can find, within the things and structure
the disputant believes in, a kind of “image” of the things and structure the other
disputant believes in. It may be that, after “looking at the world from each other’s
point of view” the disputants find that the differences between them are negligible;
or, perhaps more likely, that the exact nature of the disagreement between them is
made sharper by getting clearer on why the differences, despite the existence of the
“images,” are not negligible.

7.1 Informal Presentation

7.1.1 A Simplification: Sets as Natural Kinds

A comparison to a somewhat simpler dispute will help make clear what I have
in mind. Consider a dispute between two philosophers, the first of whom, in
“naturalistic” fashion, holds that some but not all classes of material objects
correspond to natural kinds (e.g., the class of all dogs corresponds to a natural
kind, but the class of all dogs that are in a country whose name begins with “E”
does not). The naturalistic philosopher believes in arbitrary classes of things, and in
addition, a few kinds of things. The second, “formalistic,” philosopher is skeptical
of the existence of kinds above and beyond the classes themselves. Now imagine
a third party who gets both philosophers to agree that every class (of material
objects) corresponds to one and only one set of objects (perhaps they take a class
to itself be a set, or perhaps they take a class to be a mere plurality and a set to
be a single thing). The third party then proposes that the naturalistic philosopher
might see the formalistic one as simply concerned to deny that there are any further
entities that “collect” material objects, above and beyond the sets, so that if there
are natural kinds, they are just sets. Meanwhile, the formalistic philosopher might

2Lewis (1991, p. 75).
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see the naturalistic one as holding that among all the many sets of material objects,
some are special, and deserve to be singled out as “natural.”

If the formalistic philosopher agrees that some sets are especially natural, and
the naturalistic one does not think that an ontology of kinds is necessary, in addition
to the distinction between natural and unnatural sets, then it is unclear that the
two really disagree on anything that matters. The situation can be compared to the
dispute about universals, between David Armstrong and David Lewis, as portrayed
by Lewis in (1983). Lewis (in the role corresponding to our formalistic philosopher)
at first wants to deny that there are universals, in addition to arbitrary collections
of possibility. But he then comes to recognize that the whole system, advocated
by Armstrong, of a sparse ontology of universals,3 together with certain features
of them (their direct relations to laws of nature, to objective similarity, etc.) has
great theoretical utility. But instead of adding a superstratum of universals to his
arbitrary collections, Lewis proposes that all of the theoretical work that universals
need to do can be done by the collections together with a crucial distinction between
perfectly natural collections and other collections. One might say that his ontology
is formalistic, but his ideology is naturalistic.

The disagreement between our two philosophers thus might be merely super-
ficial: they might ultimately agree in ontology (sets alone, no other ontological
type required) and theoretical ideology (there is an extremely important natural/non-
natural distinction among sets). The disagreement might instead be deep, perhaps
because the naturalistic philosopher takes himself to have good reasons to believe
that kinds are not certain special sets, or perhaps because the formalistic philosopher
takes the distinction between natural and unnatural to be unacceptable, either in
general, or in its application to sets. Or again, perhaps both philosophers agree
that sets do not change their members, and the first philosopher holds that natural
kinds do change their members: e.g., the kind dog loses a member each time a dog
dies. Then there appears to be a good reason to think that the set is intrinsically,
hopelessly, unsuited to play the theoretical role required of the kind.

For our purposes, it is worth dwelling on this story just a little longer. While it
is not implausible that sets do not change their members, while kinds do, it is also
not implausible to think that this is a mere appearance of difference, resulting from
typical ways of talking, rather than the natures of the things themselves. For it may
be agreeable to both philosophers that a set has its members “eternally,” so that the
set of all dogs that ever exist currently has members that do not presently exist.
Set membership, on this view, doesn’t occur, or relate a member to a set, at one time
rather than another; instead, it happens timelessly. Yet if this is the case there is still a
reasonable notion of a set s losing a member x at a time t : x might be a member of s
such that [x exists over a long span of time up to t , and x does not exist after t]. Once
it is recognized that both (1) set membership is an eternal affair (so that x 2 s either
once-and-for-all or never); and (2) nonetheless, there is a reasonable derivative
notion of membership-at-a-time (x 2t s iff [x 2 s and x exists at t]) it is less clear

3“Sparse,” because not every arbitrary collection corresponds to a universal.
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that the fact that we tend to think of the natural kind dog as subject to membership-
change while we tend to think of sets as membership-stable is a good reason to think
that sets and natural kinds are different types of things. For it may be that when we
think of the changeable membership relation on natural kinds we are really just
thinking of the derivative changeable membership relation on (natural) sets.

The philosophers debating on natural kinds might continue to disagree. The
naturalistic one might say that sets are ineligible to be kinds for another reason:
they have the wrong spatial properties. The natural kind dog might be something
that exists on earth, while the set of dogs exists nowhere or everywhere. But again,
there is reason to wonder if this is a genuine difference rather than an appearance.
For we may certainly define a notion of location for a set at a time that will behave,
one might think, much like the notion of location for a kind does: the set will be
located, at a time, wherever its members that exist at that time are. More precisely,
we will need to say something like: the location of s at t is the union of the regions
occupied at t by the members of s that exist at t . It is worth noting that part of
what makes this particular definition work is that it is relatively uncontroversial that
regions amalgamate in a natural way: for any collection of regions, there is the union
of those regions, basically a region that you partly occupy if and only if you partly
occupy any of the regions in the collection.

Now, it is possible to insist that such a notion of the “location” of a set is somehow
second-rate (“unnatural” or “fake” or “merely derivative,” etc.), while the notion of
the “location” of a kind is first-rate, not second-rate. But it is unclear how such an
asymmetric ranking of the two notions of location can be justified.

Similarly, if the naturalistic philosopher protests that kinds are made of matter,
while sets are not, we might wonder why a well-defined notion of the material
content of a set (if we can find one) is second-rate. Say that a set is “perfectly
materialistic” if it is non-empty and every one of its members is made of matter. If
we may suppose that for any bits of matter, there is some matter that functions as
the “union” of those bits, in much the way that for any collection of regions of space
there is a union of the regions, then we may say that a perfectly materialistic set is
“made of” exactly the union of the bits of matter that make up its members.

It is not obvious how far such strategies can actually work to remove apparent
differences between the set of dogs and the natural kind dog. But the basic point
should now be clear enough: that the dispute between the two philosophers who
seem to disagree about natural kinds might well turn out to be a shallow or merely
verbal dispute, since it may turn out that each philosopher believes in a system of
items and features of those items, a system that plays the theoretical role that the
whole system of natural kinds is supposed to play.

7.1.2 Sets as Things

Now to return to the main theme: the suggestion of this paper is that the dis-
pute between the “natural unities” mereologist and the “mathematical pattern”
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mereologist may turn out to be similarly largely shallow or verbal. In particular,
the suggestion will be that if the naturalistic mereologist agrees to the existence
of arbitrary sets of the material objects he or she already embraces, while the for-
malistic mereologist agrees to a crucial distinction between natural and non-natural
objects and sets of objects, the two may equally regard the whole of reality to consist
of a formally well-behaved pattern of objects and sets of objects (a pattern whose
global properties are what the formalistic mereologist was always emphasizing),
together with an important, formally unpredictable, natural/non-natural distinction
among the nodes in this pattern (which the naturalistic mereologist was always
emphasizing).

To illustrate a little: where the formalistic mereologist takes there to be a fusion
of all objects which are either cats or dogs, the naturalistic one takes there to be the
set of all things that are either cats or dogs. Now, both agree that the set exists, and
we take it that it is negotiable that the set might inherit a location, and other minimal
physical properties, from its members. But then how different is the set, as seen from
the point of view of the naturalist, from the fusion, as seen from the point of view
of the formalist? By downplaying the differences, we hope to make good on our
suggestion that the mutually acceptable set can play the role of the fusion. Assuming
that this works for this particular object (the fusion), our main task is to show how
to coordinate things so as to make an entire formalistic network of objects, and part-
whole relations among them, mutually agreeable. The mutually accepted network
will have exactly the formal character that the formalistic mereologist emphasized;
yet the naturalistic philosopher will still maintain that there is a special natural sub-
network of the larger, formally well-behaved one, with natural objects as nodes,
linked by a natural sub-relation of the larger part-whole relation.

The rest of this paper is concerned with some technical details involved with
fleshing out this suggestion, particularly from the point of view of the naturalistic
mereology. The main project at hand is of this form: assuming nothing formally
about the most basic, given system of objectsD and primitive “natural” part-whole
relation N0 on them, what needs to be done, using nothing more than set theory
together with the given objects and relation, to construct on and around it a formally
“well-behaved” system of objects H and defined part-whole relation � on them?
We wish to “preserve” as much structure as possible, with D a subset ofH and N0

a sub-relation of �, and such that the relation �, when restricted to its sub-domain
D, should be identical with, or at least very closely related to, N0. To make this
project more exact, we will take the notion of being “well-behaved” to be the notion
of “obeying the laws of Classical Mereology,” so that what we are up to is finding
a transformation � , that could in principle be applied to any relational structure
hX;Ri, so that

�.hX;Ri/ D hX 0;R0i
has exactly the formal structure that Classical Mereology requires; that is, hX 0;R0i
is guaranteed to be a model of Classical Mereology, no matter what X and R are.

What makes the project formally non-trivial is that there are basically two sorts
of formal task here, that tend to work against one another, but must be executed
simultaneously. The first task is this: given a “natural” part-whole relation N0 and
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its “natural” domain D, extend the relation—that is, add relational “links” to N0,
among things already present in D—in such a way that the resulting relation is
formally well-behaved in the sense of possessing such features as reflexivity, transi-
tivity, and obeying the strong supplementation4 constraint of Classical Mereology.
The second task is to add objects to the “natural” domainD (together with relational
links) so as to provide mereological fusions for arbitrary non-empty subsets of this
domain.

We would be on our way to executing the second task, if we were to imitate in
a straightforward way what we considered saying about natural kinds above: “let
us add to D every non-empty subset of D, and count members as parts.” Thus we
would get a candidate for the mereological fusion of all dogs: the set of all dogs
would now be counted as a material object, alongside the dogs, and each dog would
count as a part of it. Many objections to so counting the set can be met with, as
discussed above. But this way of executing the second task has made it harder to
execute the first task. For example, our new relation will not be transitive on its
domain, since a given dog’s foot will not be counted as a part of the fusion of all
dogs. Moreover, we may have “too many things” in some cases, playing the same
formal role: for example, if p is the set of parts (in the original, given sense of
part) of a dog d , then both d and p are suited to play the formal role of being the
mereological fusion of the members of p.

Thus the non-trivial formal difficulty is in executing both tasks simultaneously.
But it can be done, in a fairly natural way. While the formal device explored here is,
it is hoped, sufficient to give a “proof of concept” for the more general philosophical
idea, it is really only a first step, as there are a number of questions one might raise
about it that we will not have the space to discuss. A couple will be touched on
briefly at the end of the paper, once the device is in view.

7.1.3 Overview of the Formal Device

Here is a brief informal sketch of the technique. We begin with some natural
objects (to be thought of as concrete natural units on the model of the naturalistic
mereology) and a given part-whole relation on them; call the set of these objects
the natural domain and the relation the natural part-whole relation. Then we take
the reflexive and transitive closure of the natural part-whole relation; next we extend
the domain by adding non-empty, non-singleton sets of the members of the natural
domain. We then extend the relation further, reaching a relation on the extended
domain that is logically guaranteed to almost satisfy CM. Almost, because, in a very
clear sense, the only possible failing is that the resulting relation might not be anti-
symmetric. In the final stage, we restrict the domain and relation that resulted from
the composite of our previous transformations, basically choosing (in a principled

4See below for a formally exact statement of this constraint.
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way) one “representative” from each cluster of items that contravene anti-symmetry,
thus guaranteeing that we move from almost satisfying CM to actually satisfying it.

An interesting feature of the general transformation is this: if we start with a
domain and relation that satisfies CM, the construction winds up exactly where it
started: the combined effect of our sequence of transformations will be nothing at
all. CM is, structurally, a “fixed-point” of the construction.

7.2 Formalization

We turn to the technical details of the transformation; the discussion assumes only
an elementary acquaintance with logic and set theory, and should be accessible to
anyone interested in the formal details of Classical (and other) mereologies.

We will be discussing various transformations on relational structures, that is,
ordered pairs hX;Ri, where X is a set and R is a relation on that set (the carrier
set). Relations are simply sets of ordered pairs, and what it means thatR is a relation
on X is just that for every ordered pair hx; yi in the relation, x 2 X and y 2 X , or,
to put it another way, R � X � X . We will often write ‘x R y’ for ‘hx; yi 2 R’;
we will also say ‘x bears R to y’ for this. Another notion we will want is the notion
of the restriction of a relation to a given set: if R is a relation and Y is a set, then
R � Y is the relation fhx; yi W x R y and x; y 2 Y g.

We will focus on “part-like” relations and structures, and a particular sequence
of transformations on them. But the transformations we consider can be defined in
a general way, independent of their application here; we will consider the general
definitions as well as the application.

The first transformation, ˚r , is simply to take the reflexive closure of a relation
(on the carrier set):

˚r.hX;Ri/ D hX;R[ fhx; xi W x 2 Xgi.
Clearly, if R is itself reflexive, then ˚r.hX;Ri/ D hX;Ri. So ˚r is self-fixing: for
any relational structureB, ˚r.˚r.B// D ˚r.B/.

The next transformation, ˚t , takes the transitive closure of the given relation.
Given hX;Ri, say that S transitively extends R within X if S � X �X , R � S, and
S is transitive. Rt is then

TfS W S transitively extends R within Xg, and we define
˚t so that

˚t.hX;Ri/ D hX;Rti.
The transitive closure of a relation is itself transitive, since the intersection of a set
of transitive relations is itself transitive. If R is itself transitive, then ˚t.hX;Ri/ D
hX;Ri. So ˚t is also self-fixing. Further, ˚t.˚r.B// D ˚r.˚t .B//.5

5One can get an especially clear view of the effect of ˚t by considering how it can be built up from
iterated application of a simpler transformation. Define ˚t0 so that

˚t0 .hX;Ri/ D hX;R[ fhx; zi.2 X �X/ W 9y .x R y ^ y R z/gi.



148 P. Hovda

To begin our discussion of the application, letD be the set of natural objects. (We
assume that they form a set.) We may allow that there are many specific part-whole
relations onD; let us define

x N0 y

so that for x; y 2 D, x N0 y just in case x bears one of these relations to y. N0 is
the resulting generalized natural part-whole relation.

Formally, we make no assumptions whatever about N0: hD;N0i is an arbitrary
non-empty relational structure (a non-empty set with a relation on it). Informally,
we will use natural examples like John’s foot being part of John.

Now let hD;Ni be ˚r.˚t .hD;N0i//, so that N is the relation that arises from
taking the transitive closure of N0 and adding reflexivity.

Our next general transformation ˚1 is somewhat complicated. Say that a set is
suitable if it has two or more members. Given hX;Ri, let A be the set of all suitable
subsets of X , and let B D X [A . Let S be the relation on B that holds of x and y
just in case

xRy, or x 2 y, or x � y.
Then let ˚1.hX;Ri/ D hB;Si. Clearly ˚1 is not self-fixing; in fact, almost the
opposite: provided the carrier set X itself is suitable, ˚1.hX;Ri/ ¤ hX;Ri.

Let hE;P0i be ˚1.hD;Ni/, i.e., ˚1.˚r.˚t .hD;N0i///. Then we can show that
x P0 y if and only if one of the following holds:

x N y, or x 2 y, or x � y.
Each of the three disjuncts excludes the other two.

LetEı be the set of suitable subsets ofD, so thatE D D[Eı andD\Eı D ;.
Let hE;Pi be ˚t.hE;Po/i. Then one can confirm that x P y just in case either:

x P0 y or
x 2 D and y 2 Eı, and there is some b 2 y such that x P b.

To show this, consider what was added when we applied ˚t to hE;P0i (show the
easy Lemmas 1 and 2 below first). This shows that to define P, we could have used
these clauses instead of ˚t , in our particular application. Also, instead of applying
˚r and ˚t to get N from N0 first, we could have applied ˚1 directly to hD;N0i and
then applied ˚r and ˚t (or the above clauses); the result would be the same.

Let us observe some more features of P. First, some informal examples: let foot
be John’s foot and hand be John’s hand. Then

foot P John
John P f John, the Eiffel Tower g
(and hence) foot P f John, the Eiffel Tower g.

But
it is not the case that f hand, foot g P John.

˚t0 .B/ is a first approximation of ˚t .B/; a second approximation is ˚t0 .˚t0 .B//. One can show
that ˚t.B/ is the “limit” of the approximations. More precisely: let B0 be B D hX;Ri and let
BiC1 be ˚t0 .B

i /. Let Ri be the relation in Bi . Then Rt , the relation of ˚t .B/, is the relation
fhx; yi.2 X � X/ W 9i 2 N hx; yi 2 Rig.
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Second, some structural features. P has a “top” element, namely D: every
member of E bears P to D. So everything in the wider domain is “part of” the
set of all objects (the narrow domain). Clearly, P is reflexive and transitive (on E).
A very important feature we will use later is this: if some b 2 D bears P to some
i 2 Eı, then b bears P to some c 2 i (in fact, b N c). That is,

Lemma 1. .b 2 D ^ i 2 Eı/ ! .b P i ! 9c 2 D.c 2 i ^ b P c//.

Also note

Lemma 2. .i 2 Eı ^ j 2 Eı/ ! .i P j $ i � j / and .i 2 Eı ^ b 2 D/ !
: i P b.

P is in the direction of the Classical Mereologist’s part-whole relation: the set of
some objects from D is playing something like the role of the mereological fusion
of its members, since every part (in the sense of N0) of every member bears P to the
set. But this approximation, to the “fusion” of a set of things that happen to be parts
of something x, may not bear P to x, so we are not there yet. For example, if x is
the set of John’s parts, x 2 Eı (assuming John has more than one part) and it is not
the case that x P John.

7.2.1 Minimal Upper Bounds and Complements

The next transformation takes us much closer. Given any structure hX;Ri, define
the relation ıR (R-overlap) on X as:

.8 x; y 2 X/ .x ıR y $ 9z.z R x ^ z R y//.
Then define S as: x S y iff 8z .z ıR x ! z ıR y/. Finally, define ˚o so that

˚o.hX;Ri/ D hX;Si.
Let hE;vi be ˚o.hE;Pi/ i.e., ˚o.˚t .˚1.˚r.˚t .hD;N0i/////. Let us notate the

relation of P-overlap asO. Consider again f hand, foot g; temporarily call it i . Given
x 2 E , if x O i , then there is a w 2 E that bears P to x and to i . We argue now that
there is a b 2 D such that b bears P to w and either to hand or to foot. If w 2 D

then let b D w (see Lemma 1). If w 2 Eı, w � i , so w D i (since i is a doubleton),
and let b= hand. But b then bears P to John; and b bears P to x (since b P w and
w P x); thus, x P-overlaps John. This all shows that

f hand, foot g v John.
Let us now consider the structural features of v. It is easy to see from its

definition (without even knowing what O means) that v is reflexive and transitive.
We also have

Lemma 3. If ˚o.hX;Ri/ D hX;Si, then, provided that R is transitive, .8x; y 2
X/ .x R y ! x S y/.

In particular, .8x; y 2 E/ .x P y ! x v y/.
We now are much closer to the behavior of fusions, since we have
f x W x P John g v John.



150 P. Hovda

To show how close we are will require some work. First, we will define a sum-like
notion. Given a non-emptyX � E , let

� 0.X/ D fb 2 D W .9y 2 X/ b P yg.
� 0.X/ is obviously non-empty. It is a singleton if and only if X is a singleton of a
P-atom (a member of D that nothing else bears P to); and then � 0.X/ D X . In this
case, � 0.X/ 62 E; otherwise � 0.X/ 2 E . Accordingly, let

�.X/ D � 0.X/ if � 0.X/ 2 E; otherwise, let �.X/ be the one member of
� 0.X/.

We will prove that �.X/ is a minimal upper bound on X : every member of X
bears v to it, and it bears v to any such thing.

Lemma 4. .8x; y 2 E/ .x O y ! .9b 2 D/ .b P x ^ b P y//

Lemma 5. .8b 2 D/.8i 2 Eı/ .b O i ! .9c 2 i/ b O c/

Both of these Lemmas are easy to confirm from Lemmas 1 and 2.

Lemma 6. .8X � E/ W X ¤ ; ! .8x 2 X/ x v �.X/

Proof. Let x 2 X . Then, if y O x, by Lemma 4, we have a b 2 D with b P x and
b P y. By the definition of �.X/, b 2 �.X/ (i.e., either b D �.X/ or b 2 �.X/);
so b P �.X/. So y O �.X/.

Lemma 7. .8y 2 E/. ..8x 2 X/ x v y/ ! �.X/ v y/

Proof. Suppose .8x 2 X/ x v y. Suppose w O �.X/. Then, by Lemma 4, we
have a b 2 D such that b P w and b P �.X/. By Lemma 1, there must be a c 2 D

with c 2 �.X/ such that b P c. Since c 2 �.X/, for some x0 2 X c P x0; by
Lemma 3 and our original supposition, c v y. w O c, hence w O y, and we are
done.

Lemmas 6 and 7 together say that �.X/ is a minimal upper bound for X , with
respect to the v relation. Formally, define: y is a v-minimal upper bound on X if
and only if

.8x 2 X/ x v y ^ 8z. ..8x 2 X/ x v z/ ! y v z/.
We have now shown

Theorem 1. For every non-emptyX � E , X has a v-minimal upper bound.

�.X/ plays this role, so �.X/ is an approximation of the fusion of X .

7.2.2 Complements

The v relation on E has even more in common with the classical mereologist’s
part-whole relation, since it includes what we may call complements. Roughly, for
almost any object in E , there is a another object that represents “everything else” in
E: the complement is “disjoint” from the original, but everything “overlaps” one or
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the other. The only objects without complements are objects of which everything is
already a “part.”

Define the v-overlap relation (symbolized with�) as
x � y $ 9z .z v x ^ z v y/

Lemma 8. .8x; y 2 E/ .x � y $ x O y/

Proof. The right-to-left direction is straightforward from Lemma 3. For the left-
to-right direction, we give a visual proof. Straight lines represent holdings of the P
relation from lower to higher, and squiggly lines represent holdings of thev relation
from lower to higher.

• •

•

y x

•

z

a

•

a has to exist, since z O z and z v y; but then a O x as well.

In view of Lemma 8, we can interchange� and O as we please.

Lemma 9. .8x; y 2 E/. .8z 2 E/.z v x ! z � y/ ! x v y/

Proof. Suppose the antecedent and that w O x, and let z P w and z P x. By
Lemma 3 and the antecedent, z � y. By Lemma 8, z O y, so w O y.

We will also want the notions of P-disjointness andv-disjointness, where each is
non-overlap of the relevant sort. Given Lemma 8 these relations are interchangeable.
For notation, set

x o y $ : x O y (or equivalently)
x o y $ : x � y

Now we find, for almost any member ofE , an object that will play the role of its
complement. Given x 2 E , if there is a y 2 E with y 6v x, then define

x? D �fy 2 E W y o xg
We can use Lemma 9 to show that fy 2 E W y o xg is non-empty: so x? exists.

Lemma 10. x o x?

Proof. Suppose for reductio x O x?. Then either x? 2 D (in which case fy 2 E W
y o xg was fx?g and it is clear from the definition that x? o x) or get a b 2 D with
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b P x and b P x?; since b P x?, get (by Lemma 1) a c 2 x? with b P c. Using the
def. of x?, confirm that c o x. But b P c and b P x, so c O x; contradiction.

Lemma 11. y o x ! y v x?

Proof. Suppose y o x and w O y. Get (by Lemma 4) b 2 D with b P w and b P y

. Now if b O x then y O x; we supposed not, so b o x. So b 2 x?. So b P x?, so
w O x?.

Lemma 12. y o x? ! y v x

Proof. Suppose y ox? and w O y. Get b 2 D with b P w and b P y. Get that b ox?,
so b 62 x?, so it is not the case that b o x, so b O x, and hence w O x.

Putting the last three lemmas together, we have that everything that is not all-
inclusive has a “v-complement” where we define: y is a v-complement of x if and
only if

y o x and
8z. .z o x ! z v y/ and .z o y ! z v x/ /

Theorem 2. For all x 2 E , if 9y.y 6v x/ then x has a v-complement.

For all, except the all-inclusive x 2 E , x has at least one complement, and x? is
one.

7.2.3 Anti-symmetry

The relation v on E is formally very much like the Classical Mereologist’s part-
whole relation. For we have shown that v and E are a relation R on a set X such
that

(2) R is transitive.
(3) All non-empty subsets of X have an R-minimal upper bound.
(4) For any member of X , if not everything bears R to it, then it has a
complement.

If a relation R on a domain X satisfies (2)–(4), then the structure hX;Ri satisfies
the axioms of Classical Mereology, provided it has two further features: (1) R is
anti-symmetric; and (5) either there is only one member ofX or there is no member
of X that bears R to every member of X .6

The members ofE fall into “clusters” of things that bearv to one another. These
are like the equivalence classes of an equivalence relation, except that members of
different clusters may (anti-symmetrically) bear v to one another. If a member of a
cluster k bearsv to a member of some other cluster l , then every member of k bears

6See Sect. 4 of Hovda (2009); the five conditions here correspond to the five axioms in the last of
the five axiom-sets given there.
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v to every member of l , and no member of l bearsv to any member of k. There is a
simple way to transform the structure hE;vi into a Classical Mereology.We simply
treat each “cluster” of things that bearv to each other as a single element, and let the
clusters inherit the other aspects of thev relation. Formally, for each x 2 E , define

Œx� D fy 2 E W x v y ^ y v xg
Let F be fy W 9x 2 E y D Œx�g. For Œx�; Œy� 2 F , with x; y 2 E , define

Œx� �F Œy� if and only if 9z 2 Œx� 9w 2 Œy� z v w.
We can think of this as an instance of a general transformation ˚a taking us from
hE;vi to hF;�F i; the definition is confined to a footnote.7
Lemma 13. �F on F is reflexive, anti-symmetric, and transitive.

Suppose X � F is non-empty. Let z be fc 2 E W Œc� 2 Xg. Theorem 1 tells us that
z has at least one v-minimal upper bound d . Let

W
X be Œd �.

Lemma 14.
W

X is a least upper bound for X (in F ).

That is, for every x 2 X , x �F
W

X , and, for any y 2 F , if every x 2 X �F y,
then

W
X �F y. This is straightforward to show. (We call this a “least” upper bound

since, because of anti-symmetry, it is unique.)

Lemma 15. If F has more than one element, then there is no x 2 F such that
8y 2 F , x �F y.

Proof. It is clear that 8x 2 E , x � �.E/, and so Œx� �F Œ�.E/�. Now consider any
Œx� 2 F such that Œ�.E/� 6�F Œx�. Apply Theorem 2 and get x? with x? o x; hence
x 6v x?. Thus Œx� 6�F Œx?�.

Finally, suppose that for a given x 2 F , there is a y 2 F with y 6�F x. Then there
is a �F -complement for x (uniquely so, because of transitivity). Define x; y 2 F

are �F -disjoint (symbolized oF ) as
x oF y if and only if :9z 2 F.z �F x ^ z �F y/

For x; y 2 F , define x is a complement of y as
x oF y and
8z 2 F. .z oF x ! z �F y/ and .z oF y ! z �F x/ /

Lemma 16. For every x 2 F , if 9y.y 6�F x/, then x has a �F -complement.

Proof. Suppose we have an x as in the antecedent. Then pick some a 2 x and
consider Œa?�.

By the last four Lemmas, we have

7Given any structure hX;Ri, let A D P.X/. Given any x 2 X , let Œx� D fy 2 X W x R y ^
y R xg. Let B be fe 2 A W 9x 2 X ^ e D Œx�g. Let S be the relation on B defined as follows: for
any e and f in B ,

e S f if and only if .9z 2 e/.9w 2 f / z R w.
Then define ˚a.hX;Ri/ D hB; Si. In general, this transformation is much more natural when
combined with prior application of ˚r and ˚t ; the composite ˚aı˚r ı˚t transforms any relational
structure into a partial ordering.
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Theorem 3. hF;�F i is a Classical Mereology.

Now, we can “project” the structure of �F into E by mapping each f 2 F to
some representative member of it. The set of representatives would be a subset of
E , and the restriction of v to this subset would be isomorphic to �F .

There are at least two fairly natural ways to choose representatives. The first is
this: for each Œx� 2 F , we pick �.Œx�/. To see that this works, we need to show

Lemma 17. .8x 2 E/ �.Œx�/ 2 Œx�

Proof. Suppose y 2 Œx�. Then, by Lemma 6, y v �.Œx�/. And for all z 2 Œx�, z v y.
Hence, by Lemma 7, �.Œx�/ v y.

So now let G be fx W x D �.f / for some f 2 F g. Then G � E , and we let �G

bev� G. Then hG;�Gi is isomorphic to hF;�F i: � is a one-one map from F onto
G, and f �F g iff �.f / �G �.g/.

The second, preferred, way to choose representatives that we will consider is to
choose the “smallest” representative, if there is one; otherwise choose the “largest,”
namely �.Œx�/. For each x 2 E: if x \ D D fbg for some b, then let �.Œx�/ D b;
otherwise, let �.Œx�/ D �.Œx�/. Let H be fx W x D �.f / for some f 2 F g. Then
H � E , and we let � be v� H . Clearly, hH;�i is also isomorphic to hF;�F i. So
we have:

Theorem 4. hG;�Gi and hH;�i are Classical Mereologies, and each is isomor-
phic to hF;�F i.

We may think of the composite of the operations of going “up” from hE;vi
to hF;�F i and “down” to hH;�i as a single operation that is applied to hE;vi to
yield hH;�i; this is more natural for our application, but harder to define in general.
It can be done, however, yielding the generally defined transformation ˚�.8

7.2.4 Overview of the Construction

The construction of hH;�i from hD;N0i proceeded by five steps.
Given

hD;N0i

8For a fully general definition, we need some way to tell apart the members of a cluster that are
of lower rank from the others; in our application, these were members of D rather than of Eı.
Assuming that our set theory provides a natural way to rank everything in the universe (as does
Zermelo-Fraenkel set theory with ur-elements, choice, and foundation) a general transformation
˚� on arbitrary hX;Ri may be defined by first applying ˚t , then, taking a cluster to be a maximal
set of members of X that bear Rt to one another, for each cluster, choosing its single lowest ranked
member, if there is one, and the union of all its lowest-ranked sets, otherwise. ˚� is then defined
by taking the “chosen” items as carrier set and taking the “inherited” relation.
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take a reflexive and transitive closure:

˚r.˚t .hD;N0i// D hD;Ni

add suitable sets of given objects, along with part-like relations (2,�) between them
and the given objects and on them:

˚1.hD;Ni/ D hE;P0i

take a transitive closure:

˚t.hE;P0i/ D hE;Pi

take the overlap-implication:

˚o.hE;Pi/ D hE;vi

and then choose “leasts or sums” as representatives:

˚�.hE;vi/ D hH;�i:

Each of these steps preserves important aspects of the structures involved, and
there are a couple of senses in which the structure of Classical Mereology is a natural
“fixed-point” for this sequence of transformations.

7.2.5 From Classical Mereology to Itself

Suppose that hD;N0i is itself a Complete Classical Mereology (CCM).9 Then F is
related back to hD;N0i as follows. For any Œx�; Œy� 2 F , with x; y 2 E , if x; y 2 D,
then Œx� �F Œy� iff x N0 y; if x; y 2 Eı, then there is a unique b 2 D with b 2 x,
and a unique c 2 D with c 2 y, and (Œx� �F Œy� iff b N0 c)—in fact, for each other
z 2 Œx�, b is the N0-fusion of the members of z, and similarly for c. The map that
takes us from Œx� to its representative in D (x or b) as in the last sentence is our �.
In fact, we have

Theorem 5. (Variation 1) If hD;N0i is a CCM, then hF;�F i is isomorphic to it.
More precisely: let the transformation �1 be

˚a ı ˚o ı ˚t ı ˚1 ı˚t ı ˚r .

9A structure is a Complete Classical Mereology if it satisfies any standard set of axioms for
Classical Mereology with the fusion axiom given set-theoretically. That is, the fusion axiom is
a single axiom given with the use of set-theory, rather than an axiom scheme; see Sect. 1.2 of
Hovda (2009).
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Then if B is a CCM, �1.B/ is isomorphic with B.
(Variation 2): If hD;N0i is a CCM, then hH;�i is identical with it. More

precisely: let �2 be
˚� ı ˚o ı ˚t ı ˚1 ı ˚t ı ˚r .

Then if B is a CCM, �2.B/ D B.

To prove this, the main key is Lemma 20 below. Before turning to the proof, observe
that, given the above analysis, for each b 2 D: if b is a Mereological atom in
hD;N0i (i.e., there is no c 2 D with c ¤ b and c N0 b) then Œb� D fbg and
�.Œb�/ D �.Œb�/ D b. Otherwise, �.Œb�/ D b and �.Œb�/ is the set of b’s N0 parts.

Now, of the transformations that we used along the way, three of them involve
changing the relation only, and do not alter the carrying set: taking the reflexive
or transitive closure (˚t and ˚r ), and taking the “overlap inclusion” (˚o). These
transformations do not alter any structure that is a CCM. This is obvious for ˚r

and ˚t , since a CCM is already reflexive and transitive. For ˚o we may use the
following Lemma. (The object-language version of this Lemma is called the “strong
supplementation” theorem (or, as it may be, axiom) in Classical Mereology).

Lemma 18. If hX;Ri is a CCM, then .8x; y 2 X/, if .8z 2 X/.z R x ! z ıR y/

then x R y.

We now prove Theorem 5. Let hD;N0i be a CCM, and let hE;vi arise from it
as described above, by applying ˚o ı ˚t ı ˚1 ı ˚t ı ˚r .

Lemma 19. .8 b; c 2 D/ .b v c $ b P c $ b N0 c/.

Proof. Clearly, P � D is just N0, so we need only show that the step from P to v
does not add anything:v � D is the same relation. We get this from Lemma 18.

Last, we need a lemma telling us that for each i 2 Eı, that there is a unique
“small representative” b 2 D; b is the N0-fusion of i . It is a theorem of CCM that
if for each non-empty subset i of the domain, there is a unique fusion of it in this
sense: a thing f .i/ such that for all y, y overlaps f .i/ if and only if it overlaps a
member of i . Given i in Eı, let f .i/ 2 D be its hD;N0i-fusion.
Lemma 20. .8i 2 Eı/ .8b 2 D/ . .b v i ^ i v b/ $ b D f .i/ /

Proof. That f .i/ v i is clear from the fusion properties of f .i/; that i v f .i/ is
clear from those properties and Lemmas 1 and 4. Uniqueness follows basically from
those properties with Lemmas 5, 18, and 19, and the anti-symmetry of N0.

This suffices to show Theorem 5.

7.2.6 Final Reflections

We also note a couple results that help to show under what conditions our con-
structions “leave intact” the structure ofN0. Consider the “Strong Supplementation”
axiom of Classical Mereology as applied to N:
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.8x; y 2 D/..8b 2 D/.b N x ! b ıN y/ ! x N y/

One result is that this holds if and only if NDv� D. A further easy result is that
N is anti-symmetric iff P is. Moreover, N is anti-symmetric iff there are no “proper
cycles” (in D) under N0, where a proper cycle is a finite sequence a1; : : : ; an with
n > 2, with a1 D an, and for each i � n, ai ¤ aiC1 and ai N0 aiC1.

Further, if hD;N0i is structurally “well-behaved” in that it features no proper
cycles and the resulting hD;Ni obeys Strong Supplementation, then ND�� D,
since for no x 2 D will there be a y 2 D such that Œx� D Œy�. Thus, if the
naturalistic philosopher’s original part-whole structure is “well-behaved” in this
sense, our composite transformation �2 does fairly little, if any, “damage” to the
relation N0 over its original domain: the restriction of � to that domain is just the
transitive and reflexive closure of N0.

So if the original part-whole structure is so “well-behaved” that its relation N0

is also already reflexive and transitive (hence identical to N), then the restriction
of � to the original domain D is identical with the original relation N0: �2 has
then done nothing but “filled in the gaps,” with objects and relational links, so as to
provide mereological fusions for arbitrary subsets of the domain, without adding to,
or subtracting from, the original links, on the original objects.

Even if the original N0 is not already reflexive and transitive, it may be that N0

can be recovered from N in an interesting way. For example, if N0 is irreflexive, but
transitive, then N0 is just N but with all self-links removed. And even if N0 is not
transitive, it might still be formally “well-behaved” in this sense: for all x; y 2 D,
x N0 y iff (x N y and there is no z 2 D such that x N z and z N y); i.e., a part
in the most basic sense is an immediate part in the transitive closure of the most
basic sense. It is natural to think that this condition might hold in the non-classical
mereological systems considered by Koslicki in (2008) and in Fine (1999). The
system(s) considered in Fine (2010), or some important sub-class of them, might
also satisfy this condition; the notion of component in Fine (2010) might be taken
as a candidate for our N0.

These remarks should give a taste for the sort of refinements of the results we
might reach by further exploration of the kind of technique explored in this paper. A
broad statement of the general idea is that if the naturalistic mereologist’s part-whole
relation on its given domain obeys some apparently very weak formal constraints, it
will be possible to define out of it, assuming constructions with set theory, a closely
related structure which obeys much more stringent formal constraints that might be
favored by the formalistic philosopher, such as those of Classical Mereology, in such
a way that the original structure can be recovered as a sub-structure. In this way, the
naturalistic mereologist might make peace with the formalistic one, provided the
formalistic one is prepared to grant a special status (e.g., being natural, or carving
at the joints, to use a metaphor favored by Sider in 2011) belonging uniquely to that
particular sub-structure—to its objects and part-whole relation. Or, put another way,
their original dispute might turn out to be merely verbal, the two simply using the
words “part” and “object” in different, but ultimately mutually recognizable, ways.
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7.2.7 Coda: Quick Response to Some Concerns About Sets

As we discussed briefly above, the project will only succeed if sets, or some
replacement for sets, are granted the sorts of properties the formalistic philosopher
ascribes to typical objects, e.g., being located. There are three points about this
feature of our project that we may briefly address in closing.

First, it might be thought that if we grant sets location, then we will have a great
many co-located sets, e.g., the set d whose members are all the dogs (and nothing
else), the set fd g, the set fd; fd gg, and so forth. If d inherits location from its
members, why shouldn’t these other sets? Call two sets “materially equivalent” if the
transitive closure of the one’s membership is identical with the transitive closure of
the other’s. The reply to this concern would begin by suggesting that if two distinct
sets are materially equivalent, then they are qualitatively indiscernible: they have the
same basic physical properties. The next step would be to argue that it is acceptable
for many purposes to pretend that qualitatively indiscernible sets are identical. The
expectation would then be that the output of our �2 transformation captures exactly
the right level of distinction among sets: two sets that are materially equivalent with
the same element of the output of�2 are not, for many purposes, different; and every
set is materially equivalent with a unique set-or-object in the output of �2.

Second, as an alternative to arguing for treating materially equivalent sets as
the same (in some contexts), we could find a replacement for sets throughout the
entire construction of �2. Interestingly, we could use plural quantification over
the originally given domain, so that, for example, the role played by a doubleton
fx; yg 2 Eı (with x; y 2 D and x ¤ y) would now be played by those things such
that: x is one of them, y is one of them, and nothing else is one of them. Arguably,
there should be even less resistance to treating pluralities as having properties like
location, and there is no problem about there being “toomany of them” constructible
out of the basic, given, objects.

Third, there is a concern that, given that sets do not change their members over
time, they remain unsuited to play the roles of objects. There is much to say about
this concern, and here we can only note that it seems worth exploring the possibility
that considerations about time will only complicate the story, but not fundamentally
change it. For example, if it can be agreed by both the naturalistic and formalistic
philosopher that parthood may adequately be treated as a three-placed relation, so
that we say “x is part of y at time t” instead of the bare “x is part of y,” then
we should consider how all of our formalization might be re-cast accordingly. Or
perhaps we may take objects to have temporal parts, or, more non-traditionally, take
(some) sets to change their members.10

10See Hovda (2013) for a discussion of the interaction of formalistic mereology with time and
tense. The main idea pursued in Hovda (2013) is to re-conceive formalistic mereology while taking
tense (or metaphysical modality) seriously, and allowing objects (including fusions) to change their
parts. To wed, in a natural way, the approach in Hovda (2013) with the idea in this paper would
seem to require a set theory in which sets can change their members. Such a set theory should
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be buildable by modifying untensed set theory in something like the manner that Hovda (2013)
modifies untensed Classical Mereology to yield a tensed mereology.

Here is the barest sketch of how this would go. Naïve Set Theory consists of the axiom of
Extensionality (sets x and y are the same iff x and y have the same members) together with the
Naïve Comprehension scheme for set existence. The scheme is this (for any predicate �.x/ in
which x occurs free and y does not, an instance of the scheme is): there exists at least one set y
such that: for all x, x 2 y iff �.x/. Let Tensed Naïve Set Theory be Tensed Extensionality (sets
x and y are the same iff it is always the case that x and y have the same members) together with
a tensed correlate of Comprehension: there exists at least one set y such that it is always the case
that for all x (x 2 y iff �.x/). An instance of this scheme thus implies that there is a set y such that
at every time, for every x, x 2 y at that time iff x is (at that time) a dog. This set would have no
members when there are no dogs, and its membership would wax and wane with the existence of
dogs. Of course the tensed scheme inherits the inconsistency of the Naïve Comprehension scheme;
to find a reasonable, consistent tensed set theory, one would modify ZFC with ur-elements, or the
like.
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