
Chapter 6
The Relations of Supremum and Mereological
Sum in Partially Ordered Sets

Rafał Gruszczyński and Andrzej Pietruszczak

6.1 Basic Axioms and Definitions

Let M be an arbitrary non-empty set and let � � M �M . We call � the relation
of being part of and in case x � y we say that x is part of y, ‘x � y’ is to mean
: x � y. Part of is the only primitive concept of the theory we are going to present.

In the sequel we use standard logical constants: quantifiers 9 and 8, sentential
operators :, ^, _, ) and ,. For any set S , P.S/ is its power set, while PC.S/ WD
P.S/ n f¿g. Moreover, let jS j be the cardinal number of S and idS be the identity
relation on S , i.e. idS WD fhx; xi W x 2 Sg.

A pair hM;�i is a degenerate structure iff it consists of exactly one element, i.e.
jM j D 1. We say that hM;�i is a partially ordered set (poset for short) iff it satisfies
the following three axioms of reflexivity, transitivity and antisymmetry:

8x2M x � x ; (r�)

8x;y;z2M.x � y ^ y � z H) x � y/; (t�)

8x;y2M .x � y ^ y � x H) x D y/: (antis�)

hM;�i is a quasi-partially ordered set (quasi-poset for short) iff satisfies (r�) and
(t�). Let POS and QPOS be respectively the class of all posets and the class all
quasi-poset.

We introduce some standard relations definable by means of the only primitive
relation and the identity relation:

x @ y W” x � y ^ x ¤ y ; (df @)
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x � y W” 9z.z � x ^ z � y/ ; (df�)

x � y W” :9z.z � x ^ z � y/ : (df �)

In case x @ y (resp. x � y, x � y) we say that x is proper part of y (resp. x overlaps
y, x is exterior to y1). Only by definitions the relation @ is irreflexive, the relations
� and � are symmetric, and � is the (set theoretical) complement of �, i.e.:

8x2M x � x ; (irr@)

8x;y2M .x � y ” y � x/ ; (s�)

8x;y2M.x � y ” y � x/ ; (s�)

8x;y2M .x � y ” : x � y/: (6.1)

If � satisfies (r�), then the relation � is reflexive and � is irreflexive, i.e.:

8x2M x � x ; (r�)

8x2M :x � x ; (irr�)

If � satisfies (t�) and (antis�), then @ is transitive, i.e.:

8x;y;z2M.x @ y ^ y @ z H) x @ z/: (t@)

If � satisfies (antis�) then @ is asymmetrical, i.e.:

8x;y2M .x @ y H) y � x/: (as@)

Notice that from (df @), (r�) and (antis�) we have that:

8x;y2M .x @ y ” x � y ^ y � x/; (6.2)

and from (df @) and (r�) we get that:

8x;y2M .x � y ” x @ y _ x D y/: (6.3)

To facilitate considerations in the sequel, we introduce three operations P, PP,
O whose domain is M and co-domain P.M/:

P.x/ WD fy 2 M j y � xg ; (dfP)

PP.x/ WD fy 2 M j y @ xg ; (dfPP)

1Sometimes terms ‘incompatible’ or ‘disjoint from’ are used instead of the one used by us.
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O.x/ WD fy 2 M j y � xg : (dfO)

Thus P.x/ is the set of all parts of x, PP.x/ the set of all its proper parts and O.x/

the set of all these objects each of which has a common lower bound with x. Of
course, the conjunction of (r�) and (t�) is equivalent to the following condition:

8x;y2M
�
x � y ” P.x/ � P.y/

�
: (rt�)

Moreover, by (r�) we obtain:

8x2M P.x/ � O.x/ (6.4)

and by (t�) we obtain:

8x;y2M
�
x � y H) O.x/ � O.y/

�
; (6.5)

8x;y2M
�
P.x/ � O.y/ H) O.x/ � O.y/

�
: (6.6)

If C is a class of structures then any given sentence is said to be true in this
class iff it is true in (satisfied by) every structure from this class. If ' is a formula
expressing some property of the elements of C, then CC' is the class of all these
structures from C that satisfy '.2

The symbol ‘�’ is interpreted as the standard description operator, which we use
to build the expression ‘.� x/ '.x/’ being the individual constant ‘the only object x
such that '.x/’. To use it, first we have to know that there exists exactly one object
x such that '.x/, i.e., the formula '.x/ must fulfill the following two conditions:

9x '.x/ ;
8x;y

�
'.x/ ^ '.y/ ) x D y

�
:

In such case we also write: 91x '.x/.

2All the notions such as formula, sentence, satisfy, true are imprecise here, since we do not present
any formal theory – we have no alphabet, nor language specified. However this imprecision is
intended here, since we do not want to get bogged down in formal details but rather would like to
focus on semantical or model theoretical aspect of the problem. Yet it should be noticed, that with
some effort the notions addressed in this footnote could be precised and formal theory could be
built, similarly as it was for example done in Part B of Pietruszczak (2000). Then we would have
some elementary language with suitable definitions of formulas and sentences for which the usual
notion of model and satisfaction could be given. Then by a class of structures we would mean the
class of all models of a given set of axioms. We use the notion of class, since the collections of
structures considered are too big to be just sets.
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6.2 The Supremum Relation for Posets

Let hM;�i be a poset, S � M and x 2 M . Let us recall a couple of basic
definitions.

We say that x is an upper bound (resp. a lower bound) of S iff 8y2S y � x (resp.
8y2S x � y). We say that x is a supremum of the set S (with respect to �) iff x is
the least upper bound of S ; formally:

x sup S W” 8z2S z � x ^ 8y2M .8z2S z � y H) x � y/ : (df sup)

Using the operation P we can give an alternative version of the definition:

x sup S ” S � P.x/ ^ 8y2M .S � P.y/ H) x � y/ : (df0 sup)

The immediate consequences of (df sup) are stated in the following lemma.

Lemma 1. (i) Only by its definition the relation sup is monotonic, i.e.:

8S1;S22P.M/8x;y2M .S1 � S2 ^ x sup S1 ^ y sup S2 H) x � y/: (Msup)

(ii) From (r�) it follows that:

8x2M x sup fxg ; (6.7)

8x2M x sup P.x/ : (6.8)

(iii) From (antis�) it follows that if a set has a supremum, then it is unique, i.e.:

8S2P.M/8x;y2M .x sup S ^ y sup S H) x D y/: (Usup)

(iv) From (r�) and (antis�) it follows that:

8x;y2M .y sup fxg H) x D y/: (Ssup)

6.3 Definition and Basic Properties of Mereological Sum

Let hM;�i be a poset, S � M and x 2 M .
We say that x is a mereological sum of all elements of S iff x is an upper bound

of S and every part of x overlaps some element of S ; formally:

x sum S W” 8z2S z � x ^ 8y2M .y � x H) 9z2S z � y/: (df sum)



6 The Relations of Supremum and Mereological Sum in Partially Ordered Sets 127

Using the operations P and O we can give an alternative version of the definition:

x sum S ” S � P.x/ � S
OŒS� ; (df0 sum)

where OŒS� is the image of the set X under the operation O, i.e.:

OŒS� WD fO.z/ j z 2 Sg and
S

OŒS� D fy 2 M j 9z2S z � yg :

By the definition we obtain that:

8x2M.x sum ¿ ” P.x/ D ¿/: (6.9)

Moreover, by (r�), for any x 2 M we obtain that ¿ ¤ fxg � P.x/ � O.x/ DS
OŒfxg� � S

OŒP.x/� and if PP.x/ ¤ ¿, then P.x/ � S
OŒPP.x/�. Hence:

Lemma 2. The following conditions are consequences of (r�):

:9x2M x sum ¿ ; (6.10)

8x2M x sum fxg ; (6.11)

8x2M x sum P.x/ ; (6.12)

8x2M
�
PP.x/ ¤ ¿ H) x sum PP.x/

�
: (6.13)

Now notice that:

Lemma 3 (Pietruszczak 2000). The following condition is true in QPOS:

8x;y2M .P.x/ � O.y/ H) x sum P.x/ \ P.y//:

Proof. Suppose that P.x/ � O.y/. Since P.x/ \ P.y/ � P.x/, we only need to
prove that P.x/ � S

OŒP.x/ \ P.y/�. To see this, notice that from the assumption
it follows that if z � x, then z � y. So, by (df�), for some z0 we have that z0 � z
and z0 � y. By (t�), z0 � x, so z0 2 P.x/ \ P.y/ \ P.z/. The more so z0 � z, by
(r�), as required.

Since we are interested in mutual dependencies between sum and supremum,
let, for brevity and reference reasons, (�) denote the condition that every sum is a
supremum:

sum � sup ; (�)

and (�) the reversed condition:

sup � sum : (�)
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0

1Fig. 6.1 A poset in which
supremum counterparts of
(6.10), (6.13), (Ssum), (Usum)
and (Msum) are not true

We will be interested as well in, weaker from (�), the following sentence:

8x2M8S2PC.M/.x sup S H) x sum S/ (�C)

6.4 Basic Differences Between the Relations sup and sum

Firstly, notice that the supremum counterparts of (6.10) and (6.13), i.e.
:9x2M x sup ¿ and 8x2M.PP.x/ ¤ ¿ H) x sup PP.x//, are not true in POS.
Indeed, let us consider a two-element poset with M D f0; 1g and � D idM[fh0; 1ig
(see Fig. 6.1). We have that 0 sup ¿ and PP.1/ D f0g, but : 1 sup f0g, since
0 sup f0g.

Secondly, notice that the mereological sum counterparts of (Ssup), (Usup) and
(Msup), i.e.:

8x;y2M .y sum fxg H) x D y/; (Ssum)

8S2P.M/8x;y2M .x sum S ^ y sum S H) x D y/; (Usum)

8S1;S22P.M/8x;y2M .S1 � S2 ^ x sum S1 ^ y sum S2 H) x � y/ (Msum)

are not true in POS. Indeed, in the poset from Fig. 6.1, respectively by (6.11) and
(6.13), we have that 0 sum f0g and 1 sum f0g, but 1 � 0.

6.5 Basic Properties of (Ssum), (Usum) and (Msum)

The lemma below is obvious.

Lemma 4. (i) From (r�) and (Usum) we obtain (Ssum). Consequently QPOSC
(Usum) � QPOSC(Ssum).

(ii) From (antis�) and (Msum) we obtain (Usum). Consequently POSC(Msum) �
POSC(Usum) � POSC(Ssum).

Notice that enriching the axioms for posets with (Ssum) (resp. (Usum)) does not
entail uniqueness (resp. monotonicity) of sum. Indeed, we have:

Fact 1. (i) (Usum) is not true in POSC(Ssum). Hence POSC(Usum) ¨ POSC
(Ssum).
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1 2

12 21Fig. 6.2 A poset which
satisfies (Ssum), but not
(Usum)

1 2 3

123 23Fig. 6.3 A poset which
satisfies (Usum), but not
(Msum)

(ii) (Msum) is not true in POSC(Usum). Consequently POSC(Msum) ¨ POSC
(Usum) ¨ POSC(Ssum).

Proof. Ad (i): The poset from Fig. 6.2 with M D f1; 2; 12; 21g and � D idM [
fh1; 12i; h1; 21i; h2; 12i; h2; 21ig belongs to POSC(Ssum) and it shows that a set
can have more than one mereological sum. Indeed, (Ssum) is satisfied in this poset,
but 12 sum f1; 2g and 21 sum f1; 2g.

Ad (ii): This time we consider the poset with M D f1; 2; 3; 12; 123g and � D
idM [fh1; 123i; h2; 123i; h3; 123i; h2; 23i; h3; 23ig (see Fig. 6.3). It satisfies (Usum).
On the other hand, we have that 23 sum f2; 3g and 123 sum f1; 2; 3g, but 23 � 123.

Notice that:

Lemma 5. (Msum) entails (r�).

Proof. By (Msum) we have (a): 8x2M.x � x H) :9S2P.M/ x sum S/. By (a) we
have (b): 8x2M.x � x H) 9y2PP.x/ y � y/. Indeed, if for any y 2 PP.x/ we have
that y � y, then x sum PP.x/. So x � x by (a).

By (b) we obtain (c): 8x2M.x � x H) x sum PP.x//. Indeed, let x � x and
y � x. Then y 2 PP.x/. Moreover, if y � y, then y � y. If y � y, then by (b)
there is u 2 PP.y/; so also y � y. Hence in both cases there is z 2 PP.x/ such that
z � y.

By (a) and (c) we have that (r�) holds.

We now point to some relationship between (Ssum) and the so-called Weak
Supplementation Principle, used by Simons (1987):

8x;y2M
�
x @ y H) 9z2M.z @ y ^ z � x/

�
; (WSP)

which will let us obtain a connection between the relations sup and sum (see
Theorem 2).

Theorem 1. (i) From (WSP) we obtain (Ssum).
(ii) From (r�) and (Ssum) we obtain (WSP).

(iii) From (r�) and (Usum) we obtain (WSP).
In consequence, QPOSC(WSP) D QPOSC(Ssum).
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Proof. Ad (i): Suppose that y sum fxg and x ¤ y. Then x @ y. So, by (WSP), for
some z we have: z @ y and z � x. So we have a contradiction, since from z @ y and
y sum fxg follows that z � x.

Ad (ii): Suppose that x @ y and PP.y/ � O.x/. Since by (r�) we have that
y � x, then y sum fxg. Thus y D x by (Ssum), which is a contradiction.

(Hence y sum fxg and, by (r�), also y � x. So, by (Ssum), we obtain a
contradiction: x D y.)

Ad (iii): We use (1) and Lemma 4(i).

Corollary 1. The sentence (WSP) is true in the class POSC(Msum).

Proof. By Lemma 4(ii), from (antis�) and (Msum) follows (Usum). Moreover, by
Theorem 1(iii), (r�) and (Usum) entail (WSP).

Now we prove that in every structure from QPOSC(Ssum), if both sum and
supremum exists, then they are equal.

Theorem 2 (Pietruszczak 2000). (t�) and (WSP) entail the following sentence:

8S2P.M/8x;y2M .x sup S ^ y sum S H) x D y/: (6.14)

Proof. Let x sup S and y sum S . Then S � P.y/, so x � y. Suppose that x ¤ y.
Then x @ y. Hence, by (WSP), for some z 2 M we have that z @ y and z � x.
Hence, by (df sum), there are u 2 S and v 2 M such that v � u and v � z. By the
assumption, u � x. Hence, by (t�), also v � x. So we have a contradiction: z � x.

Now we will prove an important lemma which will be useful a little bit further.
Let us start with the following definition.

An object x is called the zero element of a poset hM;�i iff every object from
M is part of x, i.e. 8y2M x � y. The uniqueness of the zero element follows from
antisymmetry of �. Moreover, we immediately have that for any poset, if it has zero,
then all objects overlap with each other:

8x;y2M.x is a zero ^ y is a zero H) x D y/; (6.15)

9x2M x is a zero H) 8x;y2M x � y : (6.16)

Lemma 6 (Pietruszczak 2000).

(i) From (WSP) we obtain the following implication:

jM j > 1 H) 9x;y2M x � y :

(ii) From (r�) we obtain the following implication:

9x;y2M x � y H) jM j > 1 :
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(iii) From (WSP) and (r�) we obtain the following equivalence:

9x2M8y2M x � y ” jM j D 1 :

Proof. Ad (i): Let x1; x2 2 M be different: x1 ¤ x2. Suppose that 8x;y2M x � y.
So there is u 2 M such that u � x1 and u � x2. Moreover, either u @ x1 or u @ x2.
In both cases, by (WSP) we obtain a contradiction: there is z 2 M such that z � u.

Ad (ii): By (r�) we have (irr�); so if x � y, then x ¤ y.
Ad (iii): “)” If 9x2M8y2M x � y then 8x;y2M x � y, so we use (i). “(”

Immediate, from (r�).

By Corollary 1 we obtain:

Corollary 2. The sentences from Lemma 6 are all true in the class POSC(Msum).

6.6 The Inclusions (�) and (�) in the Class POSC(Usum)

We show that neither (�) nor (�) follows from the axioms for POS plus (Usum).
In consequence none of them follows from the axioms for POS plus (Ssum); see
Lemma 4.

Fact 2. None of the sentences (�) and (�C) is true in POSC(Usum).

Proof. In the poset from Fig. 6.3 we have: 23 sum f2; 3g, but : 23 sup f2; 3g. So
sum ª sup. In the same poset we have: 123 sup f1; 2g, but : 123 sum f1; 2g.
Thus sup ª sum as well.

6.7 The Inclusions (�) and (�) in the Class POSC(Msum)

Firstly, we show that (�) does not follow from the axioms for POS plus (Msum).3

Fact 3. The sentence (�C) is not true in POSC(Msum).

Proof. We take the poset with M D f1; 2; 3; 123g and � D idM [ fh1; 123i;
h2; 123i; h3; 123ig (see Fig. 6.4). Obviously, this poset satisfies (Msum) but not (�C),
since e.g. 123 sup f1; 2g while : 123 sum f1; 2g.

Secondly, we can show that (�) is true in the class POSC(Msum). Moreover we
will demonstrate that for quasi-partially ordered sets the inclusion (�) is equivalent
to the sentence (Msum). But earlier we need to prove some interesting facts.

3This, by Lemma 4, entails the case for (�) in Fact 2.
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1 2 3

123Fig. 6.4 A poset which
satisfies (Msum), but not (�)

Firstly, notice that to examine properties of the relation sum we will make use
of the following condition which is related to (df0 sum) and (Msum):

8S2P.M/8x;y2M
�
P.x/ � S

OŒS� ^ S � P.y/ H) x � y
�
: (M0

sum)

Lemma 7 (Pietruszczak 2000). (M0
sum) entails (Msum).

Proof. If S1 � S2, x sum S1 and y sum S2, then P.x/ � S
OŒS1� � S

OŒS2�

and S2 � P.y/. So x � y, by (M0
sum).

Lemma 8. From (Msum) and (t�) we obtain (M0
sum).

Proof. By Lemma 5 we have (r�). If P.x/ � S
OŒS� and S � P.y/, then P.x/ �S

z2P.y/O.z/. Notice that by (t�) we have (6.5), so we obtain that
S

z2P.y/O.z/ �
O.y/. Thus, P.x/ � O.y/. Hence, by Lemma 3, x sum P.x/ \ P.y/. Moreover,
y sum P.y/, by (r�). Thus x � y, by (Msum).

From Lemmas 7 and 8 we obtain:

Theorem 3 (Pietruszczak 2000). The following sentence is true in QPOS:

(Msum) ” (M0
sum) :

Thus, QPOSC(Msum) D QPOSC(M0
sum).

Now we prove that:

Theorem 4. The following sentence is true in QPOS:

(Msum) ” (�):

Thus, QPOSC(Msum) D QPOSC(�).

Proof. “)” Assume that x sum S , i.e., S � P.x/ � S
OŒS�. This gives us

immediately the first conjunct of (df0 sup). For the second one assume that y 2 M

is such that S � P.y/. Then x � y, by (M0
sum) and Theorem 3. So x sup S .

“(” If S1 � S2, x sum S1 and y sum S2, then by (�) it is the case that x sup S1

and y sum S2; so x � y, by (Msup).

Remark 1. For structures from POSC(Msum) (D POSC(�), by Theorem 4) we have
a simple proof of the sentence (6.14), i.e., if for a set has both sum and supremum,
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then they are equal. Indeed, if x sup S and y sum S , then also y sup S . Thus,
since we can use (antis�), we obtain x D y, by (Usup).

6.8 Separative Partially Order Sets

Any quasi-poset which satisfies the following sentence:

8x;y2M
�
x � y H) 9z2M.z � x ^ z � y/

�
; (SSP)

will be called separative. Let SPOS be the class of all separative posets.
In Simons (1987) the sentence (SSP) is called Strong Supplementation Principle.

According to (SSP) if one object is not a part of another, than they can be
distinguished by some object from the domain, but not only in the sense that this
object is part of one but not the other element of the domain – it is exterior to the
latter.

The sentence (SSP) can as well be expressed in the following, definitionally
equivalent, way:

8x;y2M
�
P.x/ � O.y/ H) x � y

�
: (SSPı)

Hence, by (6.4)–(6.6), we also obtain:

Fact 4. The following sentence is true in all separative quasi-posets:

8x;y2M
�
x � y ” O.x/ � O.y/

�
:

Now we will show that QPOSC(Msum) D QPOSC(SSP). In the proof of the
equality in question we will use the equality QPOSC(Msum) D QPOSC(M0

sum)
from Theorem 3 together with the facts below.

Lemma 9 (Pietruszczak 2000, 2005). From (SSP) and (t�) we obtain (M0
sum) and

(Msum).4

Proof. For (M0
sum): If P.x/ � S

OŒS� and S � P.y/, then P.x/ � S
z2P.y/O.z/.

By (6.5) we obtain that
S

z2P.y/ O.z/ � O.y/. Therefore P.x/ � O.y/. So x � y,
by (SSPı). For (Msum): Use Lemma 7.

Lemma 10. (i) (M0
sum) entails (SSP).

(ii) (Msum) and (t�) entails (SSP).

4Hence, by Lemma 5, we obtain that (SSP) and (t�) entail (r�). This fact was proven in
Pietruszczak (2000, 2005). So separative posets can be defined by means of these three conditions:
(t�), (antis�) and (SSP).
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Proof. (i) Notice that, by Lemmas 5 and 7, we have (r�). If P.x/ � O.y/, then
P.x/ � S

OŒfyg� and fyg � P.y/ by (r�). So x � y, by (M0
sum).

(ii) By (i) and Lemma 8.

Thus, from the above lemmas and Theorem 4 we have:

Theorem 5. The following sentence is true in QPOS:

(SSP) ” (Msum):

Thus, QPOSC(SSP) D QPOSC(M0
sum) D QPOSC(Msum) D QPOSC(�).

Finally, we obtain:

Fact 5. (i) The sentences (r�) and (antis�) entail the implication (SSP) )
(WSP). Consequently, SPOS � POSC(WSP).

(ii) SPOS ¨ POSC(WSP).

Proof. (i): Let x @ y, i.e., x � y and x ¤ y. Then y � x, by (antis�). Hence,
by (SSP), there is z such that z � y and z � x. We have that z ¤ y, since y � x,
by (r�). So z @ y.

(ii): The poset from Fig. 6.2 satisfies (WSP). It is the case that 12 � 21, but there
is no z such that z � 12 and z � 21. So (SSP) is not true in the structure
considered.

6.9 Mereological Structures

We now take into account the following axiom of existence of mereological sum:

8S2PC.M/9x2M x sum S : (9sum)

Any separative poset which satisfies (9sum) is called a (classical) mereological
structure.5 Let MS and MSC be respectively the class of all mereological structures
and the class all non-degenerate mereological structures. Of course, MSC ¨ MS.

By Lemma 4 the formula (Usum) is true in MS. So the following sentence is also
true in MS:

8S2PC.M/91x2M x sum S : (91sum)

5In Tarski (1956) we find an equivalent axiomatization of mereological structures consisted of
the following sentences: (t�) and given below (91sum) (which is equivalent to: (t�), (Usum)
and (9sum)). Various equivalent axiomatizations of mereological structures are presented e.g. in
Pietruszczak (2000, 2005).
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Hence in any mereological structure hM;�i there is exactly one object x such that
x sum M . By (df sum), x is the unity in the sense that: 8y2M y � x. So in any
mereological structure we put:

1 WD .�x/ x sum M ; (df 1)

and by (antis�) we have:

1 D .�x/ 8y2M y � x : (6.17)

Theorem 6 (Pietruszczak 2000, 2005). The following sentences are true in MS6:

8x2M8S2P.M/.x sum S ” S ¤ ¿ ^ x sup S/; (sum-sup)

jM j > 1 ” sup � sum : (?)

Proof. Ad (sum-sup): By Theorems 4 and 5 we have (�). So if x sum S , then
x sup S and S ¤ ¿, by (r�). Let now S ¤ ¿ and x sup S . Then, by (9sum),
there is y such that y sum S . So x D y, by (6.14); see Remark 1. Therefore
x sum S .

Ad (?): Firstly, let jM j > 1 and x sup S . Then S ¤ ¿, since by Corollary 2,
in M there is no zero element. Hence, x sum S , by (sum-sup). Secondly, assume
that M has only one element x. Then x sup ¿. But :x sum ¿, by (r�). So
sup ª sum.

By the above theorem we get:

Corollary 3. The equality sum D sup holds in MSC.

6.10 Weakening and Replacing the Sum Existence Axiom

Consider the following weakened versions of (9sum):

8S2PC.M/.9u2M S � P.u/ H) 9x2M x sum S/; (W19sum)

8S2PC.M/

�8y;z2S9u2M fy; zg � P.u/ H) 9x2M x sum S
�
: (W29sum)

The first one says that every non-empty set which is bounded from above has its
mereological sum. The second (stronger than the first one) says that if every subset
fy; zg of S is bounded in M , then S has its sum.7

6The first one to prove (sum-sup), in original language of Leśniewski’s mereology, was A. Tarski
(see Leśniewski (1930), p. 87).
7This not exactly upward directedness of S . A subset S in a poset hM;�i is upward directed iff
8y;z2S9u2S .y � u ^ z � u/, while we require the existence of upper bound in M . Consequently,
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We have the following fact.

Fact 6. The sentence (sum-sup) is true in both QPOSC(SSP)C(W19sum) and in
QPOSC(SSP)C(W29sum).

Proof. By Theorem 4 we have (�); so if x sum S , then x sup S and S ¤ ¿, by
(r�). Moreover, let S ¤ ¿ and x sup S . Then S � P.x/. Hence, there is y such
that y sum S , by (W19sum) or (W29sum). So x D y, by (6.14); see Remark 1.
Therefore x sum S .

The above fact shows that we can weaken the sum existence axiom to the forms
presented yet keep the equality between sum and supremum. Of course, this does not
solve the problem of characterization of structures from classes SPOSC(W19sum)
and SPOSC(W29sum). In our opinion further study concerning their properties
seems to be interesting from the following, a bit philosophical, point of view. The
unrestricted sum axiom (9sum) is often objected as counterintuitive in case of some
so called ontological interpretations of mereology.8 It is argued for example, that
the Moon and a cup of coffee standing in front of you are parts of the world, yet it
is hard to find anything that could be their sum. Axioms (W19sum) and (W29sum)
could be interpreted (at least in a way) as saying that only these objects which have
something in common (in the sense that they are both parts of something bigger)
have their mereological sums.

No we consider the following principle, intimately connected with those ana-
lyzed by us in previous sections:

8x;y2M
�
x � y H) 9z

�
z � x ^ z � y ^ 8u.u � x ^ u � y H) u � z/

��
(SSP+)

which we will call the super strong supplementation principle or “SSP plus”. What
it intuitively says is that if x is not part of y, then we can not only find some z being
part of x which is external to y, but we can also find an element of the structure in
question satisfying the aforementioned property and being the largest such object in
the structure. The sentence (SSP+) is assumed as an axiom in Grzegorczyk’s system
of mereology from Grzegorczyk (1955).

Theorem 7. The sentence (SSP+) is true in the class QPOSC(SSP)C(W19sum).9

both axioms are equivalent in posets with the unity, since antecedents of (W19sum) and (W29sum)
are both true in the presence of one.
8In our opinion these objections are not properly addressed and they result from a twisted
perspective, as we can see it. Nothing is wrong with (9sum) and no one should demand the
world to behave according to it in all its aspects. Yet there are such applications of mereology in
which it is very useful, as in building point-free systems of geometry for example, where elements
of the domain are treated as regions of space. For details see Tarski (1956), Gruszczyński and
Pietruszczak (2008, 2009, 2010), and Grzegorczyk (1960).
9Of course by this theorem (SSP+) is true in the class MS as well.
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Proof. If x � y, then by (SSP) the set S0 WD fz 2 M j z � x ^ z � yg is not empty
and S0 � P.x/. Hence, by (W19sum), for some z0 we have that z0 sum S0.

Firstly, notice that z0 � x. Indeed, suppose towards contradiction that z0 � x.
Then, by (SSP), there is u such that u � z0 and u � x. Hence, by (df sum), there
are v 2 S0 and w 2 M such that w � v � x and w � u. So u � x, by (t�); a
contradiction.

Secondly, notice that z0 � y. Indeed, suppose towards contradiction that z0 � y.
Then there is u such that u � z0 and u � y. Hence, by (df sum), there are v 2 S0

and w 2 M such that w � v � y and w � u � y. So w � y and w � y, by (t�).
Moreover, w � y, by (r�); a contradiction again.

Thirdly, if u � x and u � y, then u 2 S0. So u � z0, by (df sum).

There is one more issue that can be addressed with respect to axioms and mutual
relationship between sum and supremum – in what effect results replacing (9sum)
with the following version of completeness:

8S2PC.M/9x2M x sup S : (9sup)

Algebraically speaking we consider the class SPOSC(9sup) elements of which are
separative posets being complete join-semilattices. The following fact answers the
question.

Fact 7 (Pietruszczak 2005). The sentence (�C) is not true in SPOSC(9sup).
Therefore the counterpart of Theorem 6 does not hold for SPOSC(9sup).

Proof. The structure from Fig. 6.4 belongs to SPOSC(9sup) and does not satisfy
the sentence in question, since e.g. 123 sup f1; 2g, but : 123 sum f1; 2g.

6.11 Mereological Posets

Any structure from the class SPOSC(�C) will be called a mereological poset
(mereoposet for short). Let MPOS be the class of all mereoposets. By Fact 3 and
Theorem 5 we have that MPOS ¨ SPOS. By Theorem 5, the sentences (Msum),
(M0

sum) and (�) are true in MPOS. Moreover, by Fact 5 (or Corollary 1) the sentence
(WSP) is true in MPOS as well.

We will also be interested in the class MPOSC WD SPOSC(�). By the definition,
MPOSC � MPOS. Below we show that MPOSC is the class of all non-degenerate
mereoposets. So MPOSC ¨ MPOS, which is a result of the following lemma.

Lemma 11. No poset from POSC(�) has a zero element. Consequently, it is a non-
degenerate structure.

Proof. If a poset hM;�i has the zero element 0, then 0 sup ¿. But :9x2M x sum
¿, by (r�). So sup ª sum.
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1 2

12

3

Fig. 6.5 The non-degenerate
mereoposet without unity

From the above lemma, Corollary 2 and Theorem 5 we obtain:

Corollary 4. No poset from MPOSC has a zero element. Consequently, every
structure from MPOSC is non-degenerate and has at least two elements which are
external two each other.

Remark 2. Non-existence of zero element in the class MPOSC and both supple-
mentation principles are considered to be distinctive and fundamental features of
structures that are examined within the field known as mereology.

Let hM;�i be a mereoposet. We say that x is isolated in this structure iff x is a
proper part of no element of M and no element of M is proper part of x. Let is be
the set of all isolated elements, i.e.:

is WD fx 2 M j : 9y2M .y @ x _ x @ yg : (df is)

The simplest example of non-degenerate mereoposet is a pair hM;�i with M WD
f1; 2g and � WD idM . So this is a structure that consists of two isolated objects.
Less trivial example is a four element structure hf1; 2; 12; 3g;�i, where � WD id [
fh1; 12i; h2; 12ig and 3 is isolated (see Fig. 6.5).

The above model shows that the existence of unity is not a consequence of the
axioms for mereological posets. However, neither is its non-existence, since every
non-degenerate mereological structure is a mereoposet. So we have the following
corollary.

Corollary 5. Existence of unity is independent from axioms for mereoposets.

Since the equality sum D sup is true in MSC (see Corollary 3) and by the
structure from Fig. 6.5, we obtain:

Corollary 6. Every non-degeneratemereological structure is a mereoposet, but not
every mereposet is a mereological structure. So MSC ¨ MPOSC.

On the other hand we have the following interesting result about mereoposets.

Fact 8. The sentence (SSP+) is not true in the class MPOSC.

Proof. We consider the following non-degenerate mereoposet hM;�i with M WD
f�1; 1; 2; 3;�11;�12; 13; 23;�112; 123g and for x; y 2 M : x � y iff #x is part of
#y, where #x is the numeral of x (see Fig 6.6).

We have that 123 � 3, but only 1 and 2 are such that 1 � 123 and 1 � 3,
2 � 123 and 2 � 3. Notice that the set f1; 2g does not have supremum, since f1; 2g �
P.�112/ and f1; 2g � P.123/.
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32−1 1

−11 −12 13 23

−112 123Fig. 6.6 The non-degenerate
mereoposet without (SSP+)

Finally, we prove that:

Theorem 8 (Pietruszczak 2000).

(i) The sentences (sum-sup) and (?) are true in the class POSC(SSP+). So
POSC(SSP+) ¨ MPOS.

(ii) The equality sum D sup is true in all non-degenerate posets which satisfy
(SSP+).

Proof. Ad the part “)” of (sum-sup): By Lemma 2 we have (6.10). By Theorem 5
we have (�).

For (�C): Suppose towards contradiction that (a) x sup S , S ¤ ¿ and (b)
: x sum S . Hence there is u0 such that (c) u0 � x and (d) 8z2S z � u0.

We notice that u0 ¤ x. Indeed, if u0 D x then, by (a), (d) and (r�), for some
z0 2 S we have a contradiction: z0 � x and z0 � x,

Thus x � u0, by (c) and (antis�). Hence, by (SSP+), there is y0 such that (e)
y0 � x, (f) y0 � u0 and (g) for any v 2 M : if v � x and v � u0, then v � y0.
From (a) and (d) we obtain that 8z2S.z � x ^ z � u0/. Hence, by (g), we have that
8z2S z � y0. So x � y0, by (a). Hence x D y0, by (e) and (antis�). Thus, by (c),
(f) and (r�), we obtain a contradiction: u0 � y0 and y0 � u0.

Since (�C) is true in POSC(SSP+), then by Fact 8 we have: POSC(SSP+) ¨
MPOS.

Ad (?): Firstly, let jM j > 1 and x sup S . Then S ¤ ¿, since by Theorem 5
and Corollary 2, in M there is no zero element. Hence, x sum S by (sum-sup).
Secondly, assume that M has only one element x. Then x sup ¿. But : x sum ¿,
by (r�). So sup ª sum.

Ad (ii): By (i).
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