
Chapter 5
Multi-valued Logic for a Point-Free Foundation
of Geometry

Cristina Coppola and Giangiacomo Gerla

5.1 Introduction

Łukasiewicz’s many-valued logic (see Hájek 1998), Chang and Keisler’s continuous
logic (1966) and Pavelka’s fuzzy logic (1979) define very interesting chapters of
formal logic. Recently, under the name ‘continuous logic’, these researches were
reconsidered to extend the powerful tools of model theory to classes of structures
which are not definable in classical first order logic. This since these structures
assume as primitive a real-valued function. Examples are the metric spaces, the
normed spaces, the probabilities (see for example Yaacov and Usvyatsov 2010).

The basic ideas of point-free geometry were firstly formulated by A. N. White-
head in An Inquiry Concerning the Principles of Natural Knowledge (Whitehead
1919) and in The concept of Nature (Whitehead 1920), where he proposed as
primitive notions events and extension relation between events (in geometrical
terms, regions and inclusion relation). Later, in Process and Reality (Whitehead
1929), Whitehead proposed a different treatment, inspired by De Laguna (1922), in
which the topological notion of ‘connection’ between two regions was assumed
as primitive and the inclusion was defined (see Gerla 1994). Successively, in a
series of papers, metric-based approaches to point-free geometry were proposed in
which, apart the inclusion relation, distances and diameters are also considered (see
Di Concilio and Gerla 2006; Gerla 1990; Gerla and Miranda 2004). The resulting
notion of point-free pseudo-metric space is a promising base for a metric foundation
of geometry in accordance with the ideas of L.M. Blumenthal (1970). Indeed, it is
possible to associate every point-free pseudo-metric space with a metric space via a
natural definition of point and distance.
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In this exploratory paper we suggest the possibility of applying the ideas of
continuous logic to point-free geometry. This is done by assuming as primitives
predicates, geometrical in nature, as ‘to be included’, ‘to be small’, ‘to be close’.
Indeed, since these predicates apply at different grades, we have to interpret them
as fuzzy relations and therefore we have to refer to a first order multi-valued logic.
Perhaps we can look the resulting formalisms as a way to modelize the passage from
the original, naive, predicate based description of the geometrical space, qualitative
in nature, to the modern real-number based approach to geometry, quantitative in
nature.

More precisely, in Sect. 5.2 we propose the notion of inclusion space correspond-
ing to some of the geometrical properties of the inclusion analyzed in Whitehead
(1919, 1920). In Sect. 5.3 we give the notion of connection space corresponding to
the analysis given in Whitehead (1929). Taking in account of the difficulties of the
inclusion-based proposal in defining the notion of point, in Sects. 5.4 and 5.5 we
reformulate it in the framework of multi-valued logic. This means that the inclusion
is intended as a graded notion. We show that this enables us to overcome the
observed difficulties. Finally, in Sect. 5.6 we reformulate the metric-based theory
of point-free geometry into a theory in a multi-valued logic involving the graded
predicates ‘to be close’ and ‘to be small’.

5.2 Inclusion Spaces

We isolate the main properties considered by Whitehead (1919) and we transform
them into a system of axioms. Indeed, we consider the following first order theory
in a language L� containing only the binary predicate �. As usual, we write x < y

to denote the formula .x � y/ ^ .:.x D y//.

Definition 1. An inclusion space is a structure satisfying the following axioms:

I1 8x .x � x/ (reflexivity)
I2 8x8y8z ..x � z ^ z � y/ ) x � y/ (transitivity)
I3 8x8y .x � y ^ y � x ) x D y/ (anti-symmetry)
I4 8z9x .x < z/ (there is no minimal region)
I5 8x8y .x < y ) 9z .x < z < y// (density)
I6 8x8y .8x0.x0 < x ) x0 < y/ ) x � y/ (below approximation)
I7 8x8y 9z.x � z ^ y � z/ (upward-directed).

We call regions the elements of an inclusion space and inclusion relation the relation
�. Then an inclusion space is an ordered set .S;�/ such that � has not a minimum,
it is dense and upward-directed. Moreover, in this set it is possible to approximate
every region from below. To find a model for this theory, we refer to the notion of
bounded closed regular subset of the Euclidean space Rn. This is a natural candidate
to represent the idea of region which is usually accepted in literature.
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Definition 2. Given a topological space we call closed regular a subset which is a
fixed point of the operator creg defined by setting

creg.X/ D cl.int.X//

where we denote by cl and int the closure and the interior operators, respectively.

We denote by RC.Rn/ the class of all the closed regular subsets of Rn. RC.Rn/

is a very interesting example of complete atomic-free Boolean algebra. We are
interested to the class R of the nonempty bounded elements of RC.Rn/. It is easy
to prove the following theorem.

Theorem 1. The structure .R;�/ is an inclusion space.

We call canonical inclusion space the structure .R;�/. Whitehead (1919)
defines the points by the following basic notion.

Definition 3. Given an inclusion space .S;�/, we call abstractive sequence any
sequence .rn/n2N of regions such that

(i) .rn/n2N is order-reversing with respect to the inclusion
(ii) There is no region which is contained in all the regions in .rn/n2N.

We denote by AS the class of abstractive sequences.

Whitehead’s idea is that an abstractive sequence .rn/n2N represents an ‘abstract
object’ which is obtained as a ‘limit’ of .rn/n2N. On the other hand, it is possible
that two different abstractive sequences define the same abstract object. Then, we
introduce the following equivalence relation.

Definition 4. The covering relation �c is the relation in AS defined by setting, for
every .rn/n2N and .sn/n2N,

.rn/n2N �c .sn/n2N , 8n9m rn � sn:

The relation � is defined by setting

.rn/n2N � .sn/n2N , .rn/n2N �c .sn/n2N and .sn/n2N �c .rn/n2N:

It is possible to prove that�c is a pre-order and therefore that� is an equivalence.
Then we can consider the quotientAS= � and an order relation in AS= � by setting

Œ.rn/n2N� �c Œ.sn/n2N� , .rn/n2N �c .sn/n2N:

The following definition remembers Euclid’s definition of point.

Definition 5. We call geometrical element any element of the quotient AS= �, i.e.
any class of equivalence Œ.rn/n2N� modulo �. A point is a geometrical element
which has no part, i.e. which is minimal in .AS= �;�c/.
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Fig. 5.1 Three different
“points” in the origin

Unfortunately, in spite of the evident elegance of this definition of point, it is
possible to prove the following theorem (see Gerla and Miranda 2004, 2008).

Theorem 2. In a canonical inclusion space the definition of point is empty, i.e.
there is no minimal element in .AS= �;�c/.

Instead of an precise exposition of the proof of this theorem, we prefer to illustrate
the idea which is on its basis by the following example. Consider in the Euclidean
plane the abstractive sequence G defined by the sequence .Bn/ of closed balls with
center in the origin (0,0) and radius rn D 1=n. From an intuitive point of view
such an abstractive sequence represents a point. Unfortunately, we can consider
the sequences G1 and G2 defined by the closed balls with radius rn and centre in
.�1=n; 0/ and .1=n; 0/, respectively (see Fig. 5.1). It is immediate that ŒG� > G1,
ŒG� > G2 and that ŒG�, ŒG1� and ŒG2� are three different geometrical elements. This
means that ŒG� is not minimal and therefore that ŒG� is not a point. Such an argument
holds true if we start from any abstractive sequence. Perhaps Whitehead’s passage
from the inclusion-based approach to the connection-based approach was done to
avoid such a counterintuitive behaviour. This theorem shows that the proposal of
Whitehead of assuming as a primitive only the mereological notion of inclusion is
unsatisfactory.

5.3 Connection Structures

Some years later the publication of Whitehead (1919, 1920), Whitehead (1929),
proposed a different idea based on the primitive notion of connection relation. By
isolating the main properties of the connection relation considered by Whitehead,
we obtain the following theory. The considered language LC has only a binary
relation symbol C .
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Definition 6. Denote by x � y the formula 8z.zCx ) zCy/. Then we call
connection space theory the following list of axioms.

C1 8x8y .xCy ) yCx/ (symmetry)
C2 8z9x9y ..x � z/ ^ .y � z/ ^ .:xCy//
C3 8x8y9z .zCx ^ zCy/
C4 8x.xCx/
C5 8x8y ..x � y ^ y � x/ ) x D y/:

The intended interpretation is that the connection is either a surface contact or an
overlap. It is easy to prove that in any connection space the relation � is an order
relation. We denote by xOy the formula9z.z � x ^ z � y/ and we call overlapping
relation the corresponding relation. Again we use the class R to find a model of this
theory. We denote again by C the interpretation of the relation symbol C in R.

Theorem 3. Define in R � RC.Rn/ the relation C by setting

XCY , X \ Y ¤ ;:

Then .R; C / is a connection space in R
n, whose associated order coincides with

the set-theoretical inclusion.

We call canonical connection space a connection space defined in such a way.
The observation of a canonical connection space makes evident way the connection
relation is different from the overlapping relation. Indeed, while XCY means that
there is a point belonging in both the regions, XOY means that there is a region
contained in both the regions. To obtain an adequate definition of point, we need the
notion of nontangential inclusion.

Definition 7. Given a connection space .S; C /, we say that two regions have a
tangential connection when

(i) They are connected,
(ii) They do not overlap.

We say that x is non-tangentially included in y and we write x � y provided that

(j) x is included in y,
(jj) There is no region having a tangential connection with both x and y.

The following is a simple characterization of the non-tangential inclusion.

Proposition 1. The non-tangential inclusion is the relation defined by the formula

8z.zCx ) zOy/: (5.1)

It is possible to prove that in a canonical connection space

X � Y , X � int.Y /:
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Definition 8. An abstractive sequence in a connection space is a sequence .rn/n2N
of regions such that

(j) .rn/n2N is order-reversing with respect to the non-tangential inclusion,
(jj) There is no region which is contained in all the regions of .rn/n2N.

The notions of covering, equivalence, geometrical element, point are defined
as in Sect. 5.2. Differently from the case of the inclusion spaces, in the canonical
connection space .R; C / Whitehead’s definition of point works well. Indeed the
following theorem holds (see Coppola et al. 2010).

Theorem 4. Consider the canonical space .R; C / and denote by Bn.p/ the closed
ball centered in p and with radius 1=n. Then the map associating every point p in
R

n with the geometrical element Œ.Bn.p//n2N� is a one-to-one map from R
n to the

set of points in .R; C /.

This theorem shows that connection space theory gives to point-free geometry a
more suitable framework than the one of inclusion space theory. A further reason in
furnished by the following theorem.

Theorem 5. While in a canonical connection space .R; C / we can define the
inclusion relation, in a canonical inclusion space .R;�/ it is not possible to define
the connection relation.

The proof of this theorem is based on the fact that if a relation is definable in a
structure, then it is invariant with respect to all the automorphisms of this structure.
So, it is sufficient to exhibit an one-to-one map preserving the inclusion and not
preserving the connection (for a complete proof see Gerla and Miranda 2004).

5.4 Multi-valued Logic for an Inclusion-Based Point-Free
Geometry

As we have seen, there are some troubles in the inclusion-based point-free geometry.
Indeed in rather natural models Whitehead’s definition of point is empty, moreover
the topological notion of connection cannot be defined. In spite of that, we claim that
an inclusion-based approach it is possible provided that we consider the inclusion
as a graded notion and therefore provided that we shift from classical logic to
multi-valued logic. Namely, we refer to the first order logic associated with a
continuous triangular norm ˝ W Œ0; 1� � Œ0; 1� ! Œ0; 1� (see for example Hájek
1998) and therefore to a first order language with:

• Two logical connectives ^ and ), interpreted by ˝ and the related residuum !,
• Two logical constant 0 and 1 to denote 0 and 1

• The quantifiers 8 and 9 interpreted by the operators inf and sup.
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In addition, we consider a connective C t we interpret by the function ct W
Œ0; 1� ! Œ0; 1� such that ct.x/ D 1 if x D 1 and ct.x/ D 0 otherwise. This means
that the intended meaning of a formula as C t.˛/ is ‘˛ is completely true’. To fix the
ideas, we assume that ˝ is the usual product and therefore that the implication is
interpreted by the operation ! such that x ! y D 1 if x � y and x ! y D y=x

otherwise. Given a set D, an n-ary fuzzy relation in D is a map r W Dn ! Œ0; 1�.
We call crisp a fuzzy relation assuming only the values 0 and 1 and we identify
a classical relation R � Dn with the crisp relation cR W Dn ! Œ0; 1� defined by
setting cR.d1; : : : ; dn/ D 1 if .d1; : : : ; dn/ 2 R and cR.d1; : : : ; dn/ D 0 otherwise.
In other words, we identify R with its characteristic function cR.

A multi-valued interpretation .D; I / is defined by a nonempty domain D and by
a function I associating every constant c with an element I.c/ 2 D, every n-ary
operation symbol with an n-ary operation in D and every n-ary relation symbol r
with an n-ary fuzzy relation r D I.r/, i.e. a map r W Dn ! Œ0; 1�. Given a multi-
valued interpretation .D; I /, the interpretation I.t/ W Dn ! D of a term t is defined
as in classical logic. The valuation of the sentences is defined in a truth-functional
way as follows.

Definition 9. Given a multi-valued interpretation .D; I /, a formula ˛ whose
variables are among x1; : : : ; xn and d1; : : : ; dn in D, we define the value
Val.˛; d1; : : : ; dn/ by recursion on the complexity of ˛, by the equations:

(i) Val.r.t1; : : : ; tp/; d1; : : : ; dn/ D I.r/.I.t1/.d1; : : : ; dn/; : : : ; I.tp/.d1; : : : ;

dn//

(ii) Val.˛1˘˛2; d1; : : : ; dn/ D Val.˛1; d1; : : : ; dn/ ˘ Val.˛q; d1; : : : ; dn/

(iii) Val.�˛; d1; : : : ; dn/ D �.Val.˛; d1; : : : ; dn//
(iv) Val.8xhˇ; d1; : : : ; dn/ D inf.fVal.ˇ; d1; : : : ; dh�1; d; dhC1; : : : ; dn/ W d 2

Dg/
(v) Val.9xhˇ; d1; : : : ; dn/ D sup.fVal.ˇ; d1; : : : ; dh�1; d; dhC1; : : : ; dn/ W d 2

Dg/
where we denote by ˘ (by �) a binary (an unary) connective and by ˘ (by �) the
corresponding interpretation.

We say that d1; : : : ; dn satisfy ˛ if Val.˛; d1; : : : ; dn/ D 1. If ˛ is a closed
formula, then the value Val.˛; d1; : : : ; dn/ does not depend on the elements d1; ::; dn
and we write Val.˛/ instead of Val.˛; d1; : : : ; dn/. In the case there are free variables
in ˛, we write Val.˛/ to denote Val.8x1 : : :8xn.˛// where 8x1 : : :8xn.˛/ is the
universal closure of ˛.

Definition 10. Given a theory T , we say that .D; I / is a multi-valued model of T
if Val.˛/ D 1 for every ˛ 2 T .

The so defined multi-valued logic is rather expressive. For example, if r is an
n-ary relation symbol then the formula

8x1 : : :8xn.Ct.r.x1; : : : ; xn// $ r.x1; : : : ; xn//
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is satisfied if and only if r is interpreted by a crisp relation. Indeed it is sufficient
to observe that this formula is satisfied if and only if ct.r.d1; : : : ; dn// D
r.d1; : : : ; dn/ for every d1; : : : ; dn in D. In other words, ‘to be crisp’ is a first order
property. This entails that all the classical notions which are definable in classical
first order logic are definable in our multi-valued logic, too. In particular, the notion
of order relation is definable.

Definition 11. Let .D; I / be a multi-valued interpretation and ˛ be a formula
whose free variables are among x1; : : : ; xn. Then the extension of ˛ in .D; I /

is the fuzzy relation r˛ W Dn ! Œ0; 1� defined by setting r˛.d1; : : : ; dn/ D
Val.˛; d1; : : : ; dn/ for every d1; : : : ; dn in D. In such a case we say that r˛ is defined
by ˛. We call crisp extension of ˛ the extension rC t.˛/ of C t.˛/. In such a case we
say that rC t.˛/ is the crisp relation defined by ˛.

Then the crisp relation defined by ˛ is the (characteristic function of the) relation

f.d1; : : : ; dn/ 2 Dn W ˛ is satisfied by d1; : : : ; dng:

Coming back to point-free geometry, we consider the first order language
with a binary relation symbol Incl and we write x � y to denote the formula
Ct.Incl.x; y//. An interpretation of such a language is defined by a pair .S; incl/
where S is a nonempty set and incl W S � S ! Œ0; 1� a fuzzy binary relation. The
interpretation of � is the (characteristic function of the) relation� defined by setting

x � y , incl.x; y/ D 1: (5.2)

We call the crisp inclusion associated with incl this relation.
If Sim.x; y/ denotes the formula Incl.x; y/ ^ Incl.y; x/, then the interpretation

of Sim.x; y/ is the fuzzy relation sim W S � S ! Œ0; 1� defined by setting

sim.x; y/ D incl.x; y/˝ incl.y; x/: (5.3)

We call the graded identity associated with incl this fuzzy relation.

Definition 12. A graded preorder structure, in brief graded preorder, is a multi-
valued model .S; incl/ of the following theory:

A1 8x.Incl.x; x//
A2 8x8y8z..Incl.x; z/ ^ Incl.z; y// ! Incl.x; y//:

Then a fuzzy relation incl is a graded preorder if and only if, for every x; y; z 2 S ,

a1 incl.x; x/ D 1 (reflexivity)
a2 incl.x; y/˝ incl.y; z/ � incl.x; z/ (transitivity).

If the symmetry axiom is also satisfied then the fuzzy relation is called fuzzy
equivalence or similarity. Then a similarity is a fuzzy relation sim W S � S ! Œ0; 1�

such that



5 Multi-valued Logic for a Point-Free Foundation of Geometry 113

b1 sim.x; x/ D 1 (reflexivity)
b2 sim.x; y/˝ sim.y; z/ � sim.x; z/ (transitivity)
b3 sim.x; y/ D sim.x; y/ (symmetry).

This notion is a graded extension of the one of equivalence. It is easy to prove
that the fuzzy relation sim defined by (5.3) is a similarity. A fuzzy equality is a
similarity satisfying the following ‘separation axiom’

b4 sim.x; y/ D 1 , x D y:

To simulate Whitehead’s definition of point, we define a notion of ‘point-
likeness’ suggested by Euclid’s definition of point as minimal element, i.e. an
element x such that x0 � x entails x0 D x.

Definition 13. We call point-likeness property the property expressed by the
formula,

P l.x/ � 8x0.x0 � x ! Sim.x; x0//:

The extension of P l is the fuzzy subset of regions pl defined by

pl.x/ D inffincl.x; x0/ W x0 � xg:

This means that all the regions are points at a suitable degree. The formula Pl.x/
enables us to express the next two axioms. The first axiom claims that if we apply the
graded inclusion to regions which are (approximately) points, then such a relation
is (approximately) symmetric .

A3 Pl.x/ ^ Pl.y/ ! .Incl.x; y/ ! Incl.y; x//.

This axiom is satisfied if and only if, for every x and y,

a3 pl.x/˝ pl.y/ � .incl.x; y/ ! incl.y; x//:

The further axiom claims that every region x contains a point:

A4 8x9x0..x0 � x/ ^ Pl.x0//.

Such an axiom is satisfied if and only if for every x,

a4 supx0�x pl.x
0/ D 1

i.e. if and only if for every x

9� > 0 there is x0 � x such that pl.x0/ 	 1 � �:

Definition 14. We call graded inclusion space every model of A1–A4.

The following notion enables us to emphasize the metrical nature of the graded
inclusion spaces.



114 C. Coppola and G. Gerla

Definition 15. A hemimetric space is a structure .S; d/ such that S is a nonempty
set and d W S � S ! Œ0;1� is a mapping such that, for all x, y, z 2 S ,

d1 d.x; x/ D 0

d2 d.x; y/ � d.x; z/C d.z; y/.

Then, a metric space is a hemimetric space which is symmetric, i.e. such that
d.x; y/ D d.y; x/ for every x, y 2 S , and such that d.x; y/ D 0 only if x D y.
Every hemimetric space is associated with a pre-order in the following way.

Proposition 2. Let .S; d/ be a hemimetric space, then the relation � defined by
setting:

x � y , d.x; y/ D 0

is a pre-order such that d is order-preserving with respect to the first variable and
order-reversing with respect to the second variable.

In the case d is a metric, � coincides with the identity relation. Given x 2 S , we
call diameter of x the number

ı.x/ D supfd.x1; x2/ W x1 � x; x2 � xg:

Observe that this definition entails that

ı.x/ 	 d.y; x/ for every y � x: (5.4)

In the case d is a metric, all the diameters are equal to 0.
The following proposition shows that the notion of hemimetric distance is ‘dual’

of the one of graded preorder. As usual, we put 10�1 D 0 and Log.0/ D �1.

Proposition 3. Given a hemimetric space .S; d/, the fuzzy relation incl defined by
setting

incl.x; y/ D 10�d.x;y/

is a graded preorder such that pl.x/ D 10�ı.x/. Conversely, let incl W S�S ! Œ0; 1�

be a graded preorder and let d be defined by setting

d.x; y/ D �Log.incl.x; y//:

Then d is a hemimetric such that ı.x/ D �Log.pl.x//.
In the case d is a pseudo-metric the associated fuzzy relation incl is a similarity,
obviously. We consider the following class of hemimetrics.
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Definition 16. A hemimetric space of regions is a hemimetric space .S; d/ such
that for every x and y,

d3 jd.x; y/� d.y; x/j � ı.x/C ı.y/

d4 8� > 09x0 � x; ı.x0/ � �.

The following theorem shows a duality between the class of hemimetric spaces
of regions and the one of the graded inclusion spaces (see also Di Concilio and Gerla
2006).

Theorem 6. For every hemimetric space of regions .S; d/, the fuzzy relation incl
defined by setting

incl.x; y/ D 10�d.x;y/

defines a graded inclusion space of regions. Conversely, let .S; incl/ be a graded
inclusion space of regions and let d W S � S ! Œ0;C1� be defined by setting

d.x; y/ D �Log.incl.x; y//:

Then .S; d/ is a hemimetric space of regions.

5.5 Canonical Graded Inclusion Spaces, Connection and
Points

The most famous hemimetric is the excess measure used to define the Hausdorff
distance.

Definition 17. Given a metric space .M; d/ the excess measure is the map e W
P.M/ � P.M/ ! Œ0;1� defined, for every pair X and Y of subsets of M , by
setting

e.X; Y / D sup
p2X

inf
q2Y d.p; q/:

The following proposition is proved in Di Concilio and Gerla (2006).

Proposition 4. Let R be the class nonempty, bounded, closed regular subsets of
.M; d/. Then the excess measure defines in R a hemimetric space of regions.
Consequently, by setting

incl.X; Y / D 10�e.X;Y / D inf p2X supq2Y 10�d.p;q/
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we obtain a graded inclusion space. The induced order is the usual set theoretical
inclusion and the point-likeness property is defined by

pl.X/ D 10�jX j;

where jxj is the usual diameter in a metric space.

We call canonical graded inclusion space the inclusion space obtained by such a
proposition. Observe that if we consider a fuzzy equality eq W M � M ! Œ0; 1�,
then by setting d.x; y/ D �Log.eq.x; y// we obtain a metric. Indeed, it is evident
that d.x; y/ D 0 if and only if eq.x; y/ D 1 if and only if x D y. By applying
Proposition 4, we obtain that

incl.X; Y / D inf p2X supq2Y eq.p; q/:

Assume that in the language there is a name Eq to denote eq. Then, in accordance
with the usual interpretation of the quantifiers in multi-valued logic, we can interpret
the value incl.X; Y / as the interpretation of the formula 8p 2 X9q 2 Y.Eq.p; q//,
i.e. of the claim ‘every point in X is (approximately) equal with a point in Y ’.

We will show that, differently from Whitehead’s inclusion spaces, in a graded
inclusion space we can define the connection relation as the crisp extension of the
formula expressing the overlapping relation in an inclusion space.

Theorem 7. Consider in a canonical graded inclusion space .R; incl/ the formula
O.x; y/ � 9z.Incl.z; x/ ^ Incl.z; y//. Then the connection relation C in the
canonical connection space .R; C / is defined by the formula C t.O.x; y//.

In other words, we can define the connection between two regions by saying that
the two regions completely overlaps (at degree 1).

The second question is to show that in a graded inclusion space it is possible to
give a nonempty notion of point.

Definition 18. Given a graded inclusion space, we call abstraction process any
sequence < pn >n2N of regions which are order-reversing with respect to the order
associated with the graded inclusion. We extend the point-likeness property to the
abstraction processes by setting

pl.< pn >n2N/ D limn!1pl.pn/ D supnpl.pn/:

We say that < pn >n2N represents a point if pl.< pn >n2N/ D 1 and we denote by
P r the class of abstraction processes representing a point.

Observe that A4 enables us to prove that every region of a graded inclusion space
‘contains’ an abstraction process representing a point and therefore that P r ¤ ;.
Indeed, in accordance with a4, for every region x there is x0 � x such that pl.x0/ 	
1� 1=n. Then we can consider the sequence < pn >n2N defined by setting p1 D x



5 Multi-valued Logic for a Point-Free Foundation of Geometry 117

and pn equal to a region such that pn � pn�1 and pl.pn/ 	 1 � 1=n. Obviously,
pl.< pn >n2N/ D 1.

The following theorem shows that in the class of abstraction processes represent-
ing points it is possible to define a pseudo-metric d . We give the proof in order to
emphasize the role of A3 and therefore of d3 in proving the symmetry of d .

Theorem 8. Let .S; incl/ be a graded inclusion space and d 0 be the associated
hemimetric. Then the map d W P r � P r ! Œ0;1� obtained by setting

d.< pn >n2N; < qn >n2N/ D limn!1d 0.pn; qn/;

defines a pseudo-metric space .P r; d/.

Proof. To prove the convergence of the sequence < d 0.pn; qn/ >n2N, let n and k be
natural numbers and assume that n 	 k. Then, since d 0.pn; pk/ D 0 and, by (5.4),
d 0.qk; qn/ � ı.qk/ we have that,

d 0.pn; qn/ � d 0.pn; pk/C d 0.pk; qk/C d 0.qk; qn/ � d 0.pk; qk/C ı.qk/

and therefore,

d 0.pn; qn/� d 0.pk; qk/ � ı.qk/:

Likewise, since d 0.qn; qk/ D 0 and d 0.pk; pn/ � ı.pk/,

d 0.pk; qk/ � d 0.pk; pn/C d 0.pn; qn/C d 0.qn; qk/ � d 0.pn; qn/C ı.pk/

and therefore

d 0.pk; qk/ � d 0.pn; qn/ � ı.pk/:

This entails

jd 0.pn; qn/� d 0.pk; qk/j � maxfı.qk/; ı.pk/g:

Obviously, in the case n � k

jd 0.pn; qn/� d 0.pk; qk/j � maxfı.qn/; ı.pn/g:

Thus

jd 0.pn; qn/� d 0.pk; qk/j � maxfı.qn/; ı.pn/; ı.qk/; ı.pk/g:

The convergence of the diameters entails that < d 0.pn; qn/ >n2N is a Cauchy
sequence.
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It is evident that d.< pn >n2N; < pn >n2N/ D 0 and that d satisfies the
triangular inequality.

To prove the symmetry, observe that, by d3, jd 0.pn; qn/�d 0.qn; pn/j � ı.pn/C
ı.qn/ and therefore, since limn!1ı.pn/ C ı.qn/ D 0, limn!1jd 0.pn; qn/ �
d 0.qn; pn/j D 0. Since the sequences < d 0.pn; qn/ >n2N and < d 0.qn; pn/ >n2N
are both convergent, limn!1d 0.pn; qn/ D limn!1d 0.qn; pn/. Thus

d.< pn > n 2 N; < qn > n 2 N/ D limn!1d 0.pn; qn/ D limn!1d 0.qn; pn/

D d.< qn >n2N; < pn >n2N/:ut

Such a proposition enables us to associate any graded inclusion space with a metric
space. Indeed, recall that the quotient of a pseudo-metric space .X; d/ is the metric
space .X; d/ defined by assuming that

• X is the quotient of X modulo the relation � defined by setting x � x0 if and
only if d.x; x0/ D 0,

• d.Œx�; Œy�/ D d.x; y/ for every Œx�; Œy� 2 X 0.

Definition 19. We call metric space associated with a graded inclusion space
.S; incl/ the quotient .Pr; d / of the pseudo-metric space .Pr; d /. We call point any
element in Pr.

Then, the metric space .Pr; d / associated with a graded inclusion space .S; incl/ is
obtained

• By starting from the class P r of abstraction processes,
• By setting Pr equal to the quotient of Pr modulo the equivalence relation �

defined by

< pn >n2N�< qn >n2N, limn!1incl.pn; qn/ D 1;

• By defining d W Pr � Pr ! Œ0;1� by the equation

d.P;Q/ D limn!1 � Log.incl.pn; qn//

where P D Œ< pn >n2N� and Q D Œ< qn >n2N� are elements in Pr.

5.6 To Be Closed and To Be Small

In a series of papers a metric approach to point-free geometry is proposed in which,
in addition to the inclusion relation, the notions of diameter of a region and distance
between two regions are assumed as primitives (see Gerla 1990).



5 Multi-valued Logic for a Point-Free Foundation of Geometry 119

Definition 20. A point-free pseudo-metric space, in short a ppm-space, is a struc-
ture .S;�; �; ı/, where .S;�/ is an ordered set, � W S � S ! Œ0;1/ is
order-reversing, ı W S ! Œ0;1� is order-preserving and, for every x, y, z 2 S :

D1 �.x; x/ D 0

D2 �.x; y/ D �.y; x/

D3 �.x; y/ � �.x; z/C�.z; y/C ı.z/.

The elements in S are called regions, the order � inclusion relation, �.x; y/

distance between x and y, ı.x/ the diameter of x. Inequality D3 is a weak form of
the triangular inequality taking in account the diameters of the regions. The notion of
ppm-space extends the one of pseudo-metric space (and therefore of metric space).
Indeed, if all the diameters are equal to zero, then D3 coincides with the triangular
inequality and the ppm-space is a pseudo-metric space. More precisely, we can
identify the pseudo-metric spaces with the ppm-spaces in which � is the identity
and all the diameters are equal to zero. We identify the metric spaces with the ppm-
spaces satisfying these conditions and such that � is finite and �.x; y/ D 0 entails
x D y.

Notice that we can also assume as primitive a function � satisfying D1 and D2

and define a diameter by setting ı.z/ D supf�.x; y/ � �.x; z/ � �.z; y/ W x; y 2
Sg. Indeed, to prove that the resulting structure .S;�; �; ı/ is a pmm-space, we
observe that by setting x D y D z we obtain that ı.z/ is greater or equal to 0. It
is evident that ı is order-preserving and that D3 holds true by definition. It is also
possible to assume as primitive only the diameter function (see Gerla and Paolillo
2010; Pultr 1988).

The following proposition gives prototypic examples of ppm-space (see Gerla
1990).

Proposition 5. Let .M; d/ be a pseudo-metric space and let C be a nonempty class
of bounded and nonempty subsets of M . Define � and ı by setting

�.X; Y / D inffd.x; y/ W x 2 X; y 2 Y g
ı.X/ D supfd.x; y/ W x; y 2 Xg;

respectively. Then .C;�; �; ı/ is a ppm-space.

In particular, we call canonical ppm-space the space .R;�; �; ı/. By referring to
the just defined class of ppm-spaces, the meaning of the proposed axioms becomes
evident. For example, the meaning of D3 is given by Fig. 5.2: Indeed, it is evident
that in this case �.X; Y / > �.X;Z/ C �.Z; Y / and therefore that the usual
triangular inequality cannot be assumed. Instead, it is matter of routine to prove
that �.X; Y / � �.X;Z/C�.Z; Y /C ı.Z/.

The notion of point is defined as in Sect. 5.5. Indeed, we call abstraction process
any sequence < pn >n2N of regions which are order-reversing and we call distance
between two abstraction processes < pn >n2N and < qn >n2N the number:

d.< pn >n2N; < qn >n2N/ D limn!1�.pn; qn/
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Fig. 5.2 Approximate
triangular inequality

and diameter of an abstraction process < pn >n2N the number

ı.< pn >n2N/ D limn!1ı.pn/:

Definition 21. We say that < pn >n2N represents a point if its diameter is zero and
we denote by Pr the class of abstraction processes representing a point.

It is matter of routine to prove that .Pr; d / is a pseudo-metric space.

Definition 22. A point is an element of the metric space .Pr; d / associated with
.Pr; d /.

The logical counterpart of the ppm-space is defined as follows. We refer to a first
order languageLCS with the predicate symbols �, Cl and Sm. The intended meaning
of Cl.x; y/ is ‘x and y are close’, the intended meaning of Sm.x/ is ‘x is small’.
We denote by .S;�; cl; sm/ an interpretation of LCS.

Definition 23. A CS -space is an interpretation .S;�; cl; sm/ of LCS such that �
is a crisp order relation and such that the following axioms are satisfied:

CS1 8x Cl.x; x/
CS2 8x8y .Cl.x; y/ ) Cl.y; x//
CS3 8x8y8z .Cl.x; z/ ^ Cl.y; z/ ^ Sm.z/ ) Cl.x; y//
CS4 8y8x8x0 .x � x0 ) .Cl.x; y/ ) Cl.x0; y///
CS5 8x8x0 .x � x0 ) .Sm.x0/ ) Sm.x///:

Observe that, as observed in Sect. 5.4, the logical connective Ct enables us to
express the condition ‘� is a crisp relation’ by a first order formula in the multi-
valued logic. Notice also that in Gerla (2008) the structures satisfying CS1, CS2,
CS3 are called approximate similarity structures and that they are proposed for a
solution of Poincaré paradox.

The proof of the following proposition is obvious.

Proposition 6. An interpretation .S;�; cl; sm/ of LCS is a CS-space if and only if
� is an order relation, cl is order-preserving, sm is order-reversing and

(i) cl.x; x/ D 1,
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(ii) cl.x; y/ D cl.y; x/,
(iii) cl.x; z/˝ .y; z/˝ .z/ � cl.x; y/.

The following theorem shows that there is a duality between the notions of ppm-
space and the one of CS-space.

Theorem 9. Let .S;�; �; ı/ be a ppm-space and define cl and sm by setting

cl.x; y/ D 10��.x;y/ I sm.x/ D 10�ı.x/:

Then .S;�; cl; sm/ is a CS-space. Conversely, let .S;�; cl; sm/ be an approximate
CS-space and set

�.x; y/ D �Log.cl.x; y// I ı.x/ D �Log.sm.x//:

Then .S;�; �; ı/ is a ppm-space.

In particular, by starting from the canonical ppm-space .R;�; �; ı/, we define the
canonical CS -space .R;�; cl; sm/ by setting cl.X; Y / D 10��.X;Y / and sm.X/ D
10�ı.X/.

Theorem 10. In the canonical CS space we can define the connection relation by
the formula Ct.Cl.x; y//.

Proof. It is sufficient to observe that cl.X; Y / D 1 if and only if �.X; Y / D 0 if
and only if X \ Y ¤ ;.
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