
Chapter 10
Mereology in Engineering and Computer
Science

Lech Polkowski

PART I. FOUNDATIONS

10.1 Introduction

This Chapter is intended as a survey of some basic applications of mereological
schemes of reasoning in computer science and engineering. In accordance with the
specificity of surveys, it does collect in one text various topical applications, not
necessarily related by means of a logical order of things and this calls for a unifying
thread stemming from a general discussion of mereological view on things and their
relations. In language of mereology, we can state that one thing is a part of the other,
that a thing is a fusion of some other things, its parts, or, more generally that some
things approximate parts of another thing to a specified degree.

Particular cases are: spatial reasoning where things are figures in space, seman-
tics of spatial locutions addressing spatial relationships of mutual positions like
‘in’, ‘out’, ‘on’, ‘under’, etc., planning and navigation by intelligent agents (e.g.,
mobile autonomous robots) in which environment is presented as a collection
of polygons which should be bypassed in order to reach a goal, granulation of
knowledge represented in data tables along with applications to synthesis of decision
or classification rules, logics for reasoning about knowledge, problems of design and
assembling of artifacts from parts, problems of representation of spatial features of
things like dents, holes, joints. All these problems require adequate notions of parts
and relations induced with their help.
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One can justly say that we aim at knowledge expressed in language of underlying
mereology theory, and, knowledge we understand here in the sense of I. M.
Bocheński (1954), i.e., as a collection of true statements about things, their
collections, i.e., concepts, and about relations among concepts.

A discussion of relations among concepts and things and concepts goes back to
Aristotle (1989) who singled out four basic types of relations among concepts, i.e.,
containment or not, intersection or not, and established twenty four valid figures
of reasoning called syllogisms, see Łukasiewicz (1939, 1957) for a modern logical
rendering of the Aristotle system including an axiomatization and Słupecki (1949–
1950) for a proof of completeness of the system. In Aristotle’s system, knowledge
was rendered as a collection of syllogisms, i.e., relations solely among concepts.

Georg Cantor introduced to this discussion things as elements and sets as
collections of things. Naïve set theory of Cantor (from 1873 on), in which one
assumed that to each property of things there existed the collection (set) of things
which satisfied the property, gave way to antinomies, i.e., statements arising from
valid deduction rules and seemingly valid assumptions, but contradicting some other
assumptions, like the Cantor antinomy (the existence of the set of all sets), the
Burali–Forti antinomy (the existence of the set of all ordinal numbers), and most
notably the Russell antinomy, see Frege (1903); this antinomy, stated in elementary
terms of the theory, defined the set X of things x having the property x … x,
concluding that X 2 X , X … X . In the aftermath of this antinomy, set theory
became an axiomatized system due in particular to Zermelo (the Zermelo–Fraenkel
system) (1908) and Gödel (the Gödel–Bernays system) (1951); the independence
of some statements like continuum hypothesis, Souslin hypothesis, etc., see Balcar
and Štěpánek (1986) caused emergence of many systems of set theory.

Another way of resolving the problem of the Russell antinomy was pointed by
Stanisław Leśniewski (1916), see a translation in Leśniewski (1982), who developed
a theory of Mereology in which the primitive notion was that of a part. This notion
appeared in Aristotle and Leśniewski defined it as a relation between individuals
which, in turn, are defined in His Ontology Leśniewski (1927, 1930), see expositions
in Słupecki (1955), Lejewski (1958), or, Iwanuś (1973). Ontology is founded on the
predicate � to be read “is” (in Greek, ei “you are”, cf., Plutarch 1936) which is
required to satisfy the Ontology Axiom AO, formulated by Leśniewski as early as
1920, see Słupecki (1955)

AO x� y , 9z:.z� x/ ^ 8 z:.z� x ) z� y/ ^ 8 z;w:.z� x ^ w� x ) z� w/:

This axiom determines the meaning of the copula � in the way adopted by
Leśniewski: in spite of the copula occurring on either side of the equivalence, its
meaning can be revealed by requiring the equivalence to be true as adopted by
Leśniewski in His Protothetics, see Słupecki (1955), Miéville (1984). AO means
that the thing x is an individual called by a singular name responding to the singular
or collective (possibly) name of y. In mereology, the predicate part is applied to
individual things.



10 Mereology in Engineering and Computer Science 219

The meaning of AO is that x responds to the name of y if and only if x is non–
void (9z:.z� x/), all x is y, and, x is an individual (8 z;w:.z� x ^ w� x ) z� w/).
In particular, the relation x�x does characterize individuals.

The relation of a part being non–reflexive and transitive, the union of the part
relation and the identity relation, called the ingredient relation ingr does satisfy the
relation ingr.x; x/ for every thing x which implies that each thing is its element
(see (10.3) in Sect. 10.2.1); this fact eliminates the Russell antinomy, cf., a formal
analysis in Sobociński (1950).

Let us call a complex thing a thing which has other things as parts; a question
poses itself, in the Henri Poincare sense, of mutual spatial relations of these parts:
some may be over, some under other parts, some may be in, some out, some before,
some after, some parts may have interiors, some not, etc.

The relation of mereology to spatial analysis was recognized early, e.g., in
Tarski’s axiomatization of geometry of solids (Tarski 1929). Spatial considerations
led Alfred North Whitehead (1916, 1919, 1920, 1929) in His attempt at capturing
some notion of a ‘continuity of events’ to the notion of a relation of being
connected, rendered in full generality in Clarke’s Connection Calculus (Clarke
1981), and explicating the intuitive notion of an ‘external contact’ (see below). By
considering spatial relations among parts, mereology comes in touch with topology,
a mathematical discipline investigating spatial properties of things; hence, attempts
at introducing into mereological universa of mereotopology, i.e., of a topological
structure induced by part structure. Mereotopology in turn may be applied in
semantics of utterances describing spatial relations, see, Aurnague and Vieu (1995).
The reader will find an extensive discussion of spatial aspects of mereology in Casati
and Varzi (1999).

Synthesis of a complex thing from its parts involves two stages, viz., design as
well as assembling; either of these stages requires a specification of the order in
which parts enter the process, their mutual orientation and connections, timing of
particular operations etc. This belongs in the domain of engineering.

Orientation in space and movement planning are one of principal intelligent
behaviors of humans; artificial intelligence and machine learning which are studied
within computer science devote much attention to those problems and one of
principal applications of methods elaborated in those studies is the field of intelligent
(behavioral) robotics. Robots which may move freely in space allotted to them,
endowed with sensors, are examples of intelligent agents, capable of performing
autonomous tasks. This requires planning of paths and subsequent navigation in the
environment. As environment is modeled as a collections of continua (i.e., compact
connected sets) spatial analysis is a principal component in the process of planner
synthesis.

Other intelligent behavior is the ability to solve problems, classify things to
categories. In studies of this problem, a few paradigms were defined like fuzzy set
theory of Zadeh (1965), rough set theory of Pawlak (1991) along with cognitive
paradigms like neural networks. In particular, fuzzy set theory is built on the notion
of a membership to a degree; transferring this idea to mereology brought forth rough
mereology whose primitive notion is a relation of a part to a degree (Polkowski and
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Skowron 1994), also see Polkowski (2011). Rough mereology allows for a more
precise description of spatial relations among parts and its applications in classifier
synthesis and planning for intelligent robots are described in this Chapter.

In the process of synthesis of a classifier/decision algorithm, one is forced to
cope with noise immanent in data; one means of reducing noise is granulation
of data/knowledge consisting of forming granules of knowledge which consist of
things similar one to another to a satisfactory degree; rough mereology delivers
effective tools for granulation of knowledge and permits to obtain effective classi-
fiers at reduced complexity.

In our opinion, the topics outlined above, which belong in the so–called cognitive
technologies and knowledge engineering, are among the most important ones in
computer science and engineering, and, in consequence, we discuss them in more
detail in the following sections.

The unifying thread which can be defined as the existence of part or part to a
degree relations on concepts as the basic starting component in reasoning is strongly
evident in those applications.

Preliminary to applications, we want to acquaint the reader with necessary back-
ground in theoretical foundations of mereology, rough mereology and mereotopol-
ogy as bases for further developments.

10.2 Mereology

In this Chapter, we propose to introduce the reader to the notions and methods of
mereology. We begin with the mereology in the sense of Leśniewski, based on the
notion of a part, and then we present the version of mereology based on the notion
of being connected, Connection Calculus proposed in Clarke (1981) on the lines of
Whitehead (1916, 1919, 1920, 1929), de Laguna (1922), and Leonard and Goodman
(1940). Connection relation captures the notion of being in contact, e.g., having
parts in common, or intersecting, and within Connection Calculus one redefines a
part relation which leads to a richer theory with a topological flavor. Mereotopology
along with necessary background on topology are presented in a further section.

The reader may be aware of the existence of a vast literature on philosophical
and ontological aspects of mereology which cannot be mentioned nor discussed
here, and, we advise them to consult Simons (2003) and Casati and Varzi (1999) for
discussions of those aspects.

10.2.1 Mereology of Leśniewski

Mereology due to Leśniewski arose from attempts at reconciling antinomies of
naïve set theory, see Leśniewski (1916, 1927, 1982), Srzednicki et al. (1992), and
Sobociński (1950, 1954–1955). Leśniewski (1916) was the first presentation of
the foundations of his theory as well as the first formally complete exposition of
mereology.
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10.2.1.1 On the Notion of Part

The primitive notion of mereology in this formalism is the notion of a part. Given
some category of things, a relation of a part is a binary relation � which is required
to be

M1 Irreflexive: For each thing x, it is not true that �.x; x/.
M2 Transitive: For each triple x; y; z of things, if �.x; y/ and �.y; z/, then

�.x; z/.

Remark. In the original scheme of Leśniewski, the relation of parts is applied to
individual things as defined in Ontology of Leśniewski, see Leśniewski (1930),
Iwanuś (1973), Słupecki (1955) (see Introduction for the Ontology Axiom AO).

The relation of part induces the relation of an ingredient (the term is due to T.
Kotarbiński), ingr, defined as

ingr.x; y/, �.x; y/ _ x D y (10.1)

The relation of ingredient is a partial order on things, i.e.,

1. ingr.x; x/:
2. ingr.x; y/ ^ ingr.y; x/) .x D y/:

3. ingr.x; y/ ^ ingr.y; z/) ingr.x; z/.

We formulate the third axiom with a help from the notion of an ingredient.

M3 (Inference) For each pair of things x; y, if the property
I.x; y/: For each t , if ingr.t; x/, then there exist w; z such that ingr.w; t/,
ingr.w; z/; ingr.z; y/ hold,
is satisfied, then ingr.x; y/.

The predicate of overlap, Ov in symbols, is defined by means of

Ov.x; y/, 9z:ingr.z; x/ ^ ingr.z; y/ (10.2)

Using the overlap predicate, one can write I.x; y/ down in the form
IOv.x; y/ W For each t if ingr.t; x/, then there exists z such that ingr.z; y/ and

Ov.t; z/

10.2.1.2 On the Notion of a Class

The notion of a mereological class follows; for a non–vacuous property ˚ of things,
the class of ˚ , denoted Cls˚ is defined by the conditions

C1 If ˚.x/, then ingr.x;Cls˚/:

C2 If ingr.x;Cls˚/, then there exists z such that ˚.z/ and IOv.x; z/:
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In plain language, the class of ˚ collects in an individual thing all things satisfying
the property ˚ . The existence of classes is guaranteed by an axiom.

M4 For each non–vacuous property ˚ there exists a class Cls˚:

The uniqueness of the class follows by M3. M3 implies also that, for the non–
vacuous property ˚ , if for each thing z such that ˚.z/ it holds that ingr.z; x/, then
ingr.Cls˚; x/.

The notion of an overlap allows for a succinct characterization of a class: for each
non–vacuous property˚ and each thing x, it happens that ingr.x;Cls˚/ if and only
if for each ingredient w of x, there exists a thing z such that Ov.w; z/ and ˚.z/.

Remark. Uniqueness of the class along with its existence is an axiom in the
Leśniewski (1916) scheme, from which M3 is derived. Similarly, it is an axiom
in the Tarski (1929, 1935, 1937) scheme.

Please consider two examples.

1. The strict inclusion � on sets is a part relation. The corresponding ingredient
relation is the inclusion �. The overlap relation is the non–empty intersection.
For a non–vacuous family F of sets, the class ClsF is the union

S
F .

2. For reals in the interval Œ0; 1�, the strict order < is a part relation and the
corresponding ingredient relation is the weak order �. Any two reals overlap;
for a set F � Œ0; 1�, the class of F is supF .

10.2.1.3 Notions of Element, Subset

The notion of an element is defined as follows

el.x; y/, 9˚:y D Cls˚ ^ ˚.x/ (10.3)

In plain words, el.x; y/ means that y is a class of some property and x responds
to that property. To establish some properties of the notion of an element, we
begin with the property INGR.x/ D fy W ingr.y; x/g, for which the identity
x D ClsINGR.x/ holds by M3. Hence, el.x; y/ is equivalent to ingr.x; y/. Thus,
each thing x is its own element. This is one of means of expressing the impossibility
of the Russell paradox within the mereology, cf., Leśniewski (1916), Thms. XXVI,
XXVII, see also Sobociński (1950).

We observe the extensionality of overlap: For each pair x; y of things, x D y

if and only if for each thing z, the equivalence Ov.z; x/ , Ov.z; y/ holds. Indeed,
assume the equivalence Ov.z; x/ , Ov.z; y/ to hold for each z. If ingr.t; x/ then
Ov.t; x/ and Ov.t; y/ hence by axiom M3 ingr.t; y/ and with t D x we get
ingr.x; y/. By symmetry, ingr.y; x/, hence x D y.

The notion of a subset follows

sub.x; y/, 8z:Œingr.z; x/) ingr.z; y/� (10.4)
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It is manifest that for each pair x; y of things, sub.x; y/ holds if and only if el.x; y/
holds if and only if ingr.x; y/ holds.

For the property Ind.x/ , ingr.x; x/, one calls the class ClsInd, the universe,
in symbols V .

10.2.1.4 The Universe of Things, Things Exterior, Complementation

It follows that (1) The universe is unique. (2) ingr.x; V / holds for each thing x. (3)
For each non–vacuous property ˚ , it is true that ingr.Cls˚; V /.

The notion of an exterior thing x to a thing y, extr.x; y/, is the following

extr.x; y/, :Ov.x; y/ (10.5)

In plain words, x is exterior to y when no thing is an ingredient both to x and y.
Clearly, the operator of exterior has properties (1) No thing is exterior to itself.

(2) extr.x; y/ implies extr.y; x/. (3) If for a non–vacuous property ˚ , an thing x is
exterior to every thing z such that ˚.z/ holds, then extr.x;Cls˚/.

The notion of a complement to a thing, with respect to another thing, is rendered
as a ternary predicate comp.x; y; z/, cf., Leśniewski (1916), par. 14, Def. IX, to be
read:‘x is the complement to y with respect to z’, and it is defined by means of the
following requirements (1) x D ClsEXTR.y; z/. (2) ingr.y; z/, where EXTR.y; z/ is
the property which holds for an thing t if and only if ingr.t; z/ and extr.t; y/ hold.

This definition implies that the notion of a complement is valid only when
there exists an ingredient of z exterior to y. Following are basic properties of
complement (1) If comp.x; y; z/, then extr.x; y/ and �.x; z/. (2) If comp.x; y; z/,
then comp.y; x; z/.

We let for a thing x, �x D ClsEXTR.x; V /. It follows that (1) �.�x/ D x for
each thing x. (2) �V does not exist.

We conclude this paragraph with two properties of classes useful in the following

If ˚ ) � then ingr.Cls˚;Cls�/ (10.6)

and a corollary

If ˚ , � then Cls˚ D Cls� (10.7)

10.2.2 Mereology Based on Connection

In Whitehead (1916, 1919, 1920), a proposition of the notion of ‘x extends over
y’, appeared, dual to that of a part. Th. de Laguna (1922) published a variant of the
Whitehead scheme, which led Whitehead (1929) to another version of his approach,
based on the notion of ‘x is extensionally connected to y’. Connection Calculus
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based on the notion of a ‘connection’ was proposed in Clarke (1981), which we
outline here.

10.2.2.1 On the Connection Predicate

The predicate of connection C is subject to basic requirements

CN1 C.x; x/ for each thing x.
CN2 If C.x; y/, then C.y; x/ for each pair x; y of things.

It follows that connection is reflexive and symmetric. This theory is sometimes
called Ground Topology T, cf., Casati and Varzi (1999). The additional extensional-
ity requirement

CN3 If 8z:ŒC.z; x/, C.z; y/�, then x D y.

produces the Extensional Ground Topology ET., see, op. cit.
Let us observe that the predicate C can be realized by taking C D Ov; clearly,

CN1–CN3 are all satisfied with Ov. We call this model of connection mereology,
the Overlap model, denoted OVM. Also, letting C.x; y/ if and only if x \ y ¤ ;,
defines a connection relation on non-empty sets.

In the universe endowed with C , satisfying CN1, CN2, one defines the notion of
an ingredient ingrC by letting

IC ingrC .x; y/, 8z:ŒC.z; x/) C.z; y/� (10.8)

Then, the following properties of ingrC hold

1. ingrC .x; x/.
2. ingrC .x; y/ ^ ingrC .y; z/) ingrC .x; z/.
3. In presence of CN3, ingrC .x; y/ ^ ingrC .y; x/) x D y.
4. ingrC .x; y/, 8z:Œingr.z; x/) ingr.z; y/�.
5. ingrC .x; y/ ^ C.z; x/) C.z; y/.
6. ingrC .x; y/) C.x; y/.

10.2.2.2 Introducing Notions of a Part, an Ingredient, Overlapping
Things and Things Exterior

The notion of a C–part �C can be introduced as

PC �C .x; y/, ingrC .x; y/ ^ x ¤ y (10.9)

The predicate of C–overlapping, OvC .x; y/ is defined by means of

OC OvC .x; y/, 9z:ŒingrC .z; x/ ^ ingrC .z; y/� (10.10)
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Basic properties of C–overlapping follow.

1. OvC .x; x/.
2. OvC .x; y/, OvC .y; x/.
3. OvC .x; y/) C.x; y/.
4. ingrC .x; y/ ^ OvC .z; x/) OvC .z; y/.
5. ingrC .x; y/) OvC .x; y/.

The notion of an C–exterior things, extrC is defined by means of

EC extrC .x; y/, :OvC .x; y/ (10.11)

10.2.2.3 Notions Derived from C

A new notion is C–external connectedness, EC, defined as follows

EC EC.x; y/, C.x; y/ ^ extr.x; y/ (10.12)

It is easy to see that in the model OVM, EC is a vacuous notion. Clearly, by
definition (10.12),

1. :EC.x; x/.
2. EC.x; y/, EC.y; x/.
3. C.x; y/, EC.x; y/ _OvC .x; y/.
4. OvC .x; y/, C.x; y/ ^ :EC.x; y/.
5. :EC.x; y/, ŒOvC .x; y/, C.x; y/�: This is a logical rendering of our remark

that in OVM, no pair of things is in EC, hence, :EC.x; y/ D TRUE for each
pair of things.

6. :9z:EC.z; x/) fingrC .x; y/, Œ8w:OvC .w; x/) OvC .w; y/�g.
A comment in the way of proof. The implication

ingrC .x; y/) Œ8w:OvC .w; x/) OvC .w; y/�

is always true. Thus, it remains to assume that (i) :9z:EC.z; x/ and to prove that

.�/ Œ8w:OvC .w; x/) OvC .w; y/�) ingrC .x; y/

(i) can be written down as (ii) 8z::C.z; x/ _ OvC .z; x/. To prove that ingrC .x; y/
it should be verified that (iii) 8z:.C.z; x/) C.z; y//.

Consider an arbitrary thing z0; either :C.z0; x/ in which case implication in (iii)
is satisfied with z0, or, OvC .z0; x/, hence, OvC .z0; y/ by the assumed premise in (*),
which implies that C.z0; y/. The implication (iii) is proved and this concludes the
proof.
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The richer structure of connection based calculus allows for some notions of a
topological nature; the first is the notion of a tangential ingredient, TingrC .x; y/,
defined by means of

TI TingrC .x; y/, ingrC .x; y/ ^ 9z:EC.z; x/ ^ EC.z; y/ (10.13)

Basic properties of tangential parts follow by (10.13)

1. 9z:EC.z; x/) TingrC .x; x/.
2. :9z:EC.z; y/) :existsx:TingrC .x; y/.
3. TingrC .z; x/ ^ ingrC .z; y/ ^ ingrC .y; x/) TingrC .y; x/.

For Property 3, some argument may be in order; consider w such that EC.w; x/,
EC.w; z/ existing by TingrC .z; x/. hence, C.w; y/. As :OvC .w; x/, it follows that
:OvC .w; y/, hence, EC.w; y/, and TingrC .y; x/.

These properties witness the fact that if there is some thing externally connected
to x, then x is its tangential ingredient. This fact shows that the notion of a
tangential ingredient falls short of the idea of a boundary. Dually, in absence of
things externally connected to y, no ingredient of y can be a tangential ingredient.

A thing y is a non–tangential ingredient of a thing x, NTingrC .y; x/, in case it
is an ingredient but not any tangential ingredient of x,

NTI NTingrC .y; x/, :TingrC .y; x/ ^ ingrC .y; x/ (10.14)

Basic properties of the operator NTI are

1. NTingrC .y; x/) 8z::EC.z; y/ _ :EC.z; x/.
2. :9z:EC.z; x/) NTingrC .x; x/.

In absence of externally connected things, each thing is a non–tangential ingre-
dient of itself, hence, in the model OVM each object is its own non–tangential
ingredient and it has no tangential ingredients. To produce models in which EC,
NTingrC ;TingrC will be exhibited, we resort to topology, see Sect. 10.4.3.

Further properties of the predicate NTingrC are

1. NTingrC .y; x/ ^ C.z; y/) C.z; x/.
2. NTingrC .y; x/ ^OvC .z; y/) OvC .z; x/.
3. NTingrC .y; x/ ^ C.z; y/) OvC .z; x/.
4. ingrC .y; x/ ^ NTingrC .x; z/) NTingrC .y; z/.
5. ingrC .y; z/ ^ NTingrC .x; y/) NTingrC .x; z/.
6. NTingrC .y; z/ ^ NTingrC .z; x/) NTingrC .y; x/.

For Property 3, from already known 8z::EC.z; y/ _ :EC.z; x/, it follows

.i/ 8w::C.w; x/ _OvC .w; x/ _ :C.w; y/ _OvC .w; y/

As C.z; y/, one obtains C.z; x/. Thus, by (i), OvC .z; y/_OvC .z; x/ and OvC .z; x/.
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For Property 4, assume ingrC .y; x/; ingrC .x; z/ and hence, ingrC .y; z/
(otherwise there is nothing to prove), consider :NTingrC .y; z/, i.e., for some
w: EC.w; z/;EC.w; y/. Thus, C.w; z/, :OvC .w; z/, C.w; y/, :OvC .w; y/. Then,
C.w; x/ and :OvC .w; x/, hence, EC.w; x/ and :NTingrC .x; z/, a contradiction.
Similarly, one justifies Properties 5 and 6.

10.3 Rough Mereology

A scheme of mereology, introduced into a collection of things, sets an exact
hierarchy of things of which some are (exact) parts of others; to ascertain whether
a thing is an exact part of some other thing is in practical cases often difficult if
possible at all, e.g., a robot sensing the environment by means of a camera or a
laser range sensor, cannot exactly perceive obstacles or navigation beacons. Such
evaluation can be done approximately only and one can discuss such situations up to
a degree of certainty only. Thus, one departs from the exact reasoning scheme given
by decomposition into parts to a scheme which approximates the exact scheme but
does not observe it exactly.

Such a scheme, albeit its conclusions are expressed in an approximate language,
can be more reliable, as its users are aware of uncertainty of its statements and can
take appropriate measures to fend off possible consequences.

Imagine two robots using the language of connection mereology for describing
mutual relations; when endowed with touch sensors, they can ascertain the moment
when they are connected; when a robot has as a goal to enter a certain area, it can
ascertain that it connected to the area or overlapped with it, or it is a part of the area,
and it has no means to describe its position more precisely.

Introducing some measures of overlapping, in other words, the extent to which
one thing is a part to the other, would allow for a more precise description of relative
position, and would add an expressional power to the language of mereology. Rough
mereology answers these demands by introducing the notion of a part to a degree
with the degree expressed as a real number in the interval Œ0; 1�. Any notion of a part
by necessity relates to the general idea of containment, and thus the notion of a part
to a degree is related to the idea of partial containment and it should preserve the
essential intuitive postulates about the latter.

The predicate of a part to a degree stems ideologically from and has as one of
motivations the predicate of an element to a degree introduced by L. A. Zadeh as
a basis for fuzzy set theory (Zadeh 1965); in this sense, rough mereology is to
mereology as the fuzzy set theory is to the naive set theory. To the rough set theory,
owes rough mereology the interest in concepts as things of analysis.

The primitive notion of rough mereology is the notion of a rough inclusion which
is a ternary predicate�.x; y; r/ where x; y are things and r 2 Œ0; 1�, read ‘the thing x
is a part to degree at least of r to the thing y’. Any rough inclusion is associated with
a mereological scheme based on the notion of a part by postulating that �.x; y; 1/
is equivalent to ingr.x; y/, where the ingredient relation is defined by the adopted
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mereological scheme. Other postulates about rough inclusions stem from intuitions
about the nature of partial containment; these intuitions can be manifold, a fortiori,
postulates about rough inclusions may vary. In our scheme for rough mereology, we
begin with some basic postulates which would provide a most general framework.
When needed, other postulates, narrowing the variety of possible models, can be
introduced.

10.3.1 Rough Inclusions

We have already stated that a rough inclusion is a ternary predicate �.x; y; r/. We
assume that a collection of things is given, on which a part relation � is introduced
with the associated ingredient relation ingr. We thus apply inference schemes of
mereology due to Leśniewski, presented above.

Predicates �.x; y; r/ were introduced in Polkowski and Skowron (1994, 1997);
they satisfy the following postulates, relative to a given part relation � and the
induced by � relation ingr of an ingredient, on a set of things

RINC1 �.x; y; 1/, ingr.x; y/:

This postulate asserts that parts to degree of 1 are ingredients.

RINC2 �.x; y; 1/) 8zŒ�.z; x; r/) �.z; y; r/�:

This postulate does express a feature of partial containment that a ‘bigger’ thing
contains a given thing ‘more’ than a ‘smaller’ thing. It can be called a monotonicity
condition for rough inclusions.

RINC3 �.x; y; r/ ^ s < r ) �.x; y; s/.

This postulate specifies the meaning of the phrase ‘a part to a degree at least of
r’. From postulates RINC1–RINC3, and known properties of ingredients some
consequences follow

1. �.x; x; 1/.
2. �.x; y; 1/ ^ �.y; z; 1/) �.x; z; 1/.
3. �.x; y; 1/ ^ �.y; x; 1/, x D y.
4. x ¤ y ) :�.x; y; 1/ _ :�.y; x; 1/.
5. 8z8rŒ�.z; x; r/, �.z; y; r/�) x D y.

Property 5 may be regarded as an extensionality postulate in rough mereology.
By a model for rough mereology, we mean a quadruple

M D .VM ; �M ; ingrM ;�M /

where VM is a set with a part relation �M � VM � VM , the associated ingredient
relation ingrM � VM � VM , and a relation �M � VM � VM � Œ0; 1� which satisfies
RINC1–RINC3.
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We now describe some models for rough mereology which at the same time
give us methods by which we can define rough inclusions, see Polkowski (2002,
2003, 2004a,b, 2005a, 2007, 2008, 2009a), a detailed discussion may be found in
Polkowski (2011).

10.3.1.1 Rough Inclusions from t–norms

We resort to continuous t–norms which are continuous functions T W Œ0; 1�2 !
Œ0; 1� which are (1) symmetric. (2) associative. (3) increasing in each coordinate. (4)
satisfying boundary conditions T .x; 0/ D 0; T .x; 1/ D x, cf., Polkowski (2011),
Chs. 4 and 6, Hájek (1998), Ch. 2. Classical examples of continuous t–norms are

1. L.x; y/ D maxf0; x C y � 1g (the Łukasiewicz’s t–norm).
2. P.x; y/ D x � y (the product t–norm).
3. M.x; y/ D minfx; yg (the minimum t–norm).

The residual implication)T induced by a continuous t–norm T is defined as

x)T y D maxfz W T .x; z/ � yg (10.15)

One proves that �T .x; y; r/ , x )T y 	 r is a rough inclusion; particular
cases are

1. �L.x; y; r/, minf1; 1 � x C y 	 rg (the Łukasiewicz implication).
2. �P .x; y; r/ , y

x
	 r when x > 0, �P .x; y; 1/ when x D 0 (the Goguen

implication).
3. �M.x; y; r/ , y 	 r when x > 0, �M.x; y; 1/ when x D 0 (the Gödel

implication).

A particular case of continuous t–norms are Archimedean t–norms which satisfy the
inequality T .x; x/ < x for each x 2 .0; 1/. It is well–known, see Ling (1965), that
each archimedean t–norm T admits a representation

T .x; y/ D gT .fT .x/C fT .y// (10.16)

where the function fT W Œ0; 1� ! R is continuous decreasing with fT .1/ D 0, and
gT W R! Œ0; 1� is the pseudo–inverse to fT , i.e., g ı f D id.

It is known, cf., e.g., Hájek (1998), that up to an isomorphism there are two
Archimedean t–norms: L and P . Their representations are

fL.x/ D 1 � xI gL.y/ D 1 � y (10.17)

and

fP .x/ D exp.�x/I gP .y/ D �ln y (10.18)
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For an Archimedean t–norm T , we define the rough inclusion �T on the interval
Œ0; 1� by means of

.ari/ �T .x; y; r/, gT .jx � yj/ 	 r (10.19)

equivalently,

�T .x; y; r/, jx � yj � fT .r/ (10.20)

It follows from (10.20), that �T satisfies conditions RINC1–RINC3 with ingr as
identityD.

To give a hint of proof: for RINC1: �T .x; y; 1/ if and only if jx� yj � fT .1/ D
0, hence, if and only if x D y. This implies RINC2. In case s < r , and jx � yj �
fT .r/, one has fT .r/ � fT .s/ and jx � yj � fT .s/.

Specific recipes are

�L.x; y; r/, jx � yj � 1 � r (10.21)

and

�P .x; y; r/, jx � yj � �ln r (10.22)

Both residual and archimedean rough inclusions satisfy the transitivity condition

.Trans/ if�.x; y; r/ and �.y; z; s/; then �.x; z; T .r; s//:

In the way of a proof, assume, e.g., �T .x; y; r/ and �T .y; z; s/, i.e., jx � yj �
fT .r/ and jy � zj � fT .s/. Hence, jx � zj � jx � yj C jy � zj � fT .r/C fT .s/,
hence, gT .jx � zj/ 	 gT .fT .r/ C fT .s// D T .r; s/, i.e., �T .x; z; T .r; s//. Other
cases go on same lines. Let us observe that rough inclusions of the form (ari) are
also symmetric.

10.3.1.2 Rough Inclusions in Information Systems (Data Tables)

An important domain where rough inclusions will play a dominant role in our
analysis of reasoning by means of parts is the realm of information systems of
Pawlak (1991), cf., Polkowski (2011), Ch. 6. We will define information rough
inclusions denoted with a generic symbol �I .

We recall that an information system (a data table) is represented as a pair .U;A/
where U is a finite set of things and A is a finite set of attributes; each attribute
a W U ! V maps the set U into the value set V . For an attribute a and a thing v,
a.v/ is the value of a on v.
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For things u; v the discernibility set DIS.u; v/ is defined as

DIS.u; v/ D fa 2 A W a.u/ ¤ a.v/g (10.23)

For an (ari) �T , we define a rough inclusion �I
T by means of

.airi/ �I
T .u; v; r/, gT .

jDIS.u; v/j
jAj / 	 r (10.24)

Then, �I
T is a rough inclusion with the associated ingredient relation of identity and

the part relation empty.
For the Łukasiewicz t–norm, the airi �I

L is given by means of the formula

�I
L.u; v; r/, 1 � jDIS.u; v/j

jAj 	 r (10.25)

We introduce the set IND.u; v/ D AnDIS.u; v/. With its help, we obtain a new form
of (10.25)

�I
L.u; v; r/, jIND.u; v/j

jAj 	 r (10.26)

The formula (10.26) witnesses that the reasoning based on the rough inclusion �I
L

is the probabilistic one which goes back to Łukasiewicz (1970). Each (airi)–type
rough inclusion �I

T satisfies the transitivity condition (Trans) and is symmetric.

10.3.1.3 Rough Inclusions on Sets and Measurable Sets

Formula (10.26) can be abstracted to set and geometric domains. For finite sets
A;B ,

�S.A;B; r/, jA \ Bj
jAj 	 r (10.27)

where jX j denotes the cardinality of X , defines a rough inclusion �S . For bounded
measurable sets X; Y in an Euclidean space En,

�G.A;B; r/, jjA\ Bjj
jjAjj 	 r (10.28)

where jjAjj denotes the area (the Lebesgue measure) of the regionA, defines a rough
inclusion �G . Both �S;�G are symmetric but not transitive.

Other rough inclusions and their weaker variants will be defined in later chapters.
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10.4 Mereotopology and Mereogeometry

Both mereology and topology address problems of mutual relations among things
like ‘being external’, ‘being inside’ etc., hence, as the language of topology is well
established, it is desirable to trace topological constructs in mereological universa.
First, we would like to introduce the reader to rudiments of topology necessary in
order to follow our exposition.

10.4.1 A Topological Background

We begin with the notion of a topological space which is a pair .X; �/ where X is a
set and � a family of subsets of X ; sets in the family � are called open sets provided
the following are satisfied (1) � is closed on finite intersections. (2) unions of sub–
families of � belong in � . Examples are provided, e.g., by metric spaces; given a
metric � on a set X , open balls are defined as sets of the form B.x; r/ D fy 2 X W
�.x; y/ < rg for x 2 X and r > 0. Open sets are defined in this case as unions of
families of open balls.

Closed sets are complements to open sets; a set C � X is closed if and only if
the set X n C is open. Clearly, intersections of arbitrary families of closed sets are
closed and finite unions of closed sets are closed.

10.4.1.1 Approximations: Interior and Closure of a Set

In a given topological space, .X; �/, open as well as closed sets may be called
definable as the membership problem for them is decidable; other sets can be
approximated only by open, respectively, closed sets. To this end, topology offers
operators of interior, Int, respectively, of closure, Cl. The operator Int provides the
approximation from below, whereas Cl yields the approximation from above.

For a subset A � X , the interior of A is IntA D SfV 2 � W V � Ag; the
dual operator of closure can be defined as ClA D X n Int.X n A/. The well–known
properties of those operators follow (1) Int; D ; (ClX D X ). (2) IntA � A (A �
ClA). (3) IntIntA D A (ClClA D ClA). (4) .A � B/) .IntA � IntB/ (A � B )
ClA � C lB), where formulas in parentheses give properties of the closure operator,
dual to those of the interior operator. Properties 1–4 may be taken as axioms for
interior, respectively, closure, operators. Each set A � X is sandwiched between
IntA and ClA.

10.4.1.2 Boundaries

The difference ClA n IntA, denoted BdA, is the boundary of A. Clearly, BdA D
ClA \ Cl.X nA/. In case BdA D ;, the set A is closed–open (clopen), A is meager
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in case IntBdA D ;, and A is nowhere–dense in case IntBdClA D ;. Let us observe
that the boundary operator requires for its definition either interior and complement
or closure and complement operators, i.e., it is of open–and–closed character.

We close this paragraph with an essential property of Int and Cl operators

V \ ClA � Cl.V \ A/ (10.29)

for each set A and each open set V in a topological space .X; �/. For the proof, it
suffices to observe that given x 2 V \ ClA and an arbitrary open W 3 x, one has
.W \ V /\ A ¤ ;, i.e., W \ .V \ A/ ¤ ;, hence, x 2 Cl.V \ A/.

Topological spaces are classified also with respect to their separation properties;
T0 (or, Kolmogorov) property consists in Clx ¤ Cly when points x ¤ y; T1 means
Clx D x, each x; T2 (Hausdorff) means that each pair of distinct points can be
separated by disjoint open sets; T3 (regularity) means that each pair x; F , F closed
and x … F , can be separated by disjoint open sets(regularity); a topological space
.X; �/ is regular if and only if for each pair x 2 V , where V open, there exists an
open W such that x 2 W � ClW � V .

Of interest to us are particular sub–categories of open or closed sets. We intro-
duce regular closed sets which allow for non–trivial examples of C–mereological
operators of overlap, interior and closure.

10.4.2 Regular Open and Regular Closed Sets

A set A in a topological space .X; �/ is regular open if it is of the form IntClB
for some set B; then, by property (iii) of operators Int;Cl, IntClA D IntClB, i.e.,
A D IntClA. Hence, regular open sets are characterized by the identity A D IntClA.
Dually, a set C is regular closed if it satisfies the identity C D ClIntC. It follows
that A is regular open (resp. regular closed) if and only if the set X n A is regular
closed (resp. regular open). As the set IntBd.ClV n V / with an open V is empty,
each regular open or regular closed set has a nowhere–dense boundary.

Examples of regular closed sets are closed disks in the 2D–space or closed balls
in the 3D–space and the open complements are examples of regular open sets; more
generally, regular closed are compact convex regions in Euclidean spaces and their
interiors are specimens of regular open sets.

A very basic property of regular sets is that they form complete Boolean algebras;
regular open sets form the Boolean algebra, denoted RO.X/. In order to justify this
claim, we let

A? D X n ClA

The set A is regular open if and only if A D A??. Indeed, A?? D X n Cl.X n
ClA/ D IntClA. Properties of the operation A? are (in proofs, one uses (10.29)
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1. If A � B , then B? � A?.
2. If A is an open set, then A � A??.
3. If A is an open set, then A? D A???, hence, A?? D A????.
4. If A;B are open sets, then .A \ B/?? D A?? \ B??.
5. .A [ B/? D A? \ B?.
6. If A is an open set, then .A [A?/?? D X .

Now, we define in the family RO.X/ of regular open sets operations ^;_; 0
1. A _ B D .A[ B/?? D IntCl.A[ B/.
2. A ^ B D A\ B .
3. A0 D A? D X n ClA.

and constants 0 D ;; 1 D X .
All operations listed above give regular open sets by properties of .:/?. It remains

to check that axioms of a Boolean algebra are satisfied. Commutativity laws A_B D
B _A;A^B D B ^A are satisfied evidently. The laws A_ 0 D A;A^ 1 D A are
also manifest. We have A^A0 D A\A? D A nClA D ; D 0 as well as A_A0 D
.A[A??/?? D X D 1. The distributive laws A_ .B ^C/ D .A_B/^ .A_C/

as well as A _ .B ^ C/ D .A _ C/ ^ .A _ C/ hold by Property 5.
A particular sub–algebra of RO.X/ is the algebra CO.X/ of clopen sets in

X . In case of CO.X/ boolean operations _;^; 0 specialize to usual set–theoretic
operations[;\; n i.e. CO.X/ is a field of sets.

The basic distinction between RO.X/ and CO.X/ is the fact that RO.X/ is a
complete Boolean algebra for any X whereas CO.X/ needs not be such.

Let us observe that the boolean ordering relation� is in this case the inclusion�.
Consider A � RO.X/. Let s.A / D .

S
A /??; we check that s.A / is the

supremum of A .
Indeed, for A 2 A , we have A 2 S

A hence A D A?? � .
S

A /?? i.e.
A � s.A /. It follows that s.A / is an upper bound for A .

Now, assume that B 2 RO.X/ is an upper bound for A , i.e., A � B for each
A 2 A . Hence

S
.A / � B and thus .

S
A /?? � B?? D B i.e. s.A / � B

proving that s.A / is the supremum of A . Finally, by duality it follows that i.A / D
.
T

A /?? is the infimum of A .
By duality applied to the family RC.X/ of regular closed sets in X , we obtain

a dual proposal that RC.X/ is a complete boolean algebra under operations ^;_; 0
defined as follows

1. A _ B D A[ B .
2. A ^ B D ClInt.A \ B/.
3. A0 D X n IntA.

and with constants 0 D ;; 1 D X .
It follows that RO.X/;RC.X/ are mereological categories as they are closed

on formation of classes; contrariwise, closed sets do not form any mereological
category; this is in part responsible for difficulties with boundaries in mereology.
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A complete axiomatization of mereotopology interpreted in regular open sets is
given in Asher and Vieu (1995).

10.4.3 An Application: The Model ROM for Connection

We define in the space RO.X/ of regular open sets in a regular space X the
connection C by demanding that

C.A;B/, ClA \ ClB ¤ ;:

For simplicity sake, we assume that the regular space X is connected, so no set in it
is clopen, equivalently, the boundary of each set is non–empty.

10.4.3.1 Ingredient in ROM

First, we investigate what ingrC means in ROM. By definition IC in (10.8), for
A;B 2 RO.X/,

ingrC .A;B/, 8Z 2 RO.X/:ClZ \ ClA ¤ ;) ClZ \ ClB ¤ ;:

This excludes the case when A nClB ¤ ; as then we could find a Z 2 RO.X/ with

Z \A ¤ ; D ClZ \ ClB

(as our space X is regular). It remains that A � ClB, hence, A � IntClB D B. It
follows finally that in model ROM, ingrC .A;B/, A � B .

10.4.3.2 Overlap in ROM

Now, we can interpret overlapping in ROM. For A;B 2 RO.X/, OvC .A;B/ means
that there exists Z 2 RO.X/ such that Z � A and Z � B henceZ � A\B , hence

A \ B ¤ ;:

This condition is also sufficient by regularity of X . We obtain that in ROM,

OvC .A;B/, A\ B ¤ ;:
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10.4.3.3 External Connectedness in ROM

The status of EC in ROM is

EC.A;B/, ClA \ ClB ¤ ; ^A \ B D ;:

This means that closed sets ClA;ClB do intersect only at their boundary points.

10.4.3.4 Tangential Ingredient in ROM

We can address the notion of a tangential ingredient: T ingrC .A;B/ means the
existence of Z 2 RO.X/ such that

ClZ \ ClA ¤ ; ¤ ClZ \ ClB

and

Z \A D ; D Z \ B

along with A � B .
In case

ClA \ .ClB n B/ ¤ ;

letting Z D X n ClB we have

ClZ D Cl.X n ClB/

and

BdZ D ClZ nZ D Cl.X n ClB/ n .X n ClB/

which in turn is equal to

Cl.X n ClB/\ ClB D Cl.X n B/\ ClB D BdB:

Hence, ClBnB � ClZ, and ClZ \ClA ¤ ;; a fortiori, ClB\ClZ ¤ ;. As Z \B D
;, a fortiori Z \A D ; follows.

We know, then, that

ClA \ .ClB n B/ ¤ ;) TingrC .A;B/

Was to the contrary, ClA � B , from Z \ClA ¤ ; it would follow that Z \B ¤ ;,
negating EC.A;B/.
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It follows finally that in ROM, TingrC .A;B/ if and only if A � B and ClA \
.ClB n B/ ¤ ;, i.e.,

TingrC .A;B/, A � B ^ ClA \ BdB ¤ ;:

From this analysis we obtain also that NTingrC .A;B/ if and only if ClA � IntB.

10.4.4 Mereotopology in Part Mereology

We assume now a Leśniewski–style universe with part and ingredient relations and
derived notions. Topological structures which arise in this context can be induced
from overlap relations.

As in topology, interior as well as closure operators act on unions and intersec-
tions of sets, we recall here two fusion operators due to Tarski (1935), cf., Clay
(1974). These operators are the sum xCy and the product x �y defined by means of

ingr.z; x C y/, ingr.z; x/ _ ingr.z; y/; (10.30)

and,

ingr.z; x � y/, ingr.z; x/ ^ ingr.z; y/ (10.31)

10.4.4.1 On Closures

As the first approximation to topology, let us define for each thing x, its closure
c.x/ by means of

c.x/ D ClsOv.x/ (10.32)

where the property Ov.x/ is defined by Ov.x/.y/ , Ov.x; y/, i.e., we build the
closure c.x/ as the class of things which overlap with x.

The closure operator c.:/ has the following properties

Cl1 ingr.x; c.x//.
Cl2 If ingr.x; y/, then ingr.c.x/; c.y//.
Cl3 ingr.c.x � y/; c.x/ � c.y//.
Cl4 c.x C y/ D c.x/C c.y/.

In way of proof, we observe that Cl1 and Cl2 follow from definition of the overlap
relation and the class definition. For Cl3, if ingr.t; c.x �y//, then there is z such that
Ov.t; z/ andOv.z; x�y/ thus for some w one has Ov.z;w/ and ingr.w; x/, ingr.w; y/
which imply that ingr.t; c.x//, ingr.t; c.y// and finally ingr.t; c.x/ � c.y//. By M3,



238 L. Polkowski

ingr.c.x � y/; c.x/ � c.y//. For Cl4, it suffices to observe that Ov.z; x C y/ ,
Ov.z; x/ _Ov.z; y/.

Another possibility for a topology is in iteration of the operator c, viz, we let

OvnC1.x; y/, 9z:Ov.x; z/ ^Ovn.z; y/IOv1.x; y/, Ov.x; y/ (10.33)

and we define

OVLP.x/.y/, 9n:Ovn.x; y/ (10.34)

The closure Cl.x/ is defined as the class of the property OVLP.x/, i.e.,

Cl.x/ D ClsOVLP.x/ (10.35)

The operator Cl.x/ has the following properties

CL1 Cl.Cl.x// D Cl.x/.
CL2 ingr.x;Cl.x//.
CL3 ingr.x; y/ implies ingr.Cl.x/;Cl.y//.
CL4 Cl.x C y/ D Cl.x/C Cl.y/.

Please observe that CL2, CL3 follow straightforwardly from definitions. For CL1,
observe that ingr.t;Cl.x// if and only if OVLP.x/.t/. Thus, ingr.t;Cl.Cl.x/// if
and only if OVLP.Cl.x//.t/ if and only if OVLP.x/.t/ if and only if ingr.t;Cl.x//.

For CL4, assume first that ingr.t;Cl.x C y// hence OVLP.t; x C y/

and thus OVLP.t; x/ _ OVLP.t; y/, i.e., ingr.t;Cl.x// _ ingr.t;Cl.y// and
thus ingr.t;Cl.x/ C Cl.y//. Assume now that ingr.t;Cl.x/ C Cl.y//, i.e.,
OVLP.t; x/ _ OVLP.t; y/, so there exists m such that Ovm.t; x/ _ Ovm.t; y/,
i.e., Ovm.t; x C y/, hence, ingr.t;Cl.x C y//.

It follows that the operator Cl is a genuine closure operator; its properties are
weak, as it in fact delineates components of things with respect to the overlap
property: it is not even a T0–closure operator.

10.4.4.2 On Boundaries

A definition of a boundary can be attempted on the lines of topological boundary
concept. For a thing x, let a property 	 .x/ be defined as follows

	 .x/.t/, ingr.t; x/ ^ 8z:ŒOv.z; x/ ^Ov.z;�x/) Ov.z; t/� (10.36)

We may define the boundary of x, Fr.x/, by letting

Fr.x/ D Cls	 .x/ (10.37)
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Properties of Fr.x/ following directly from definitions above are

1. ingr.Fr.x/; x/.
2. 8z:Ov.z; x/ ^Ov.z;�x/) Ov.z;Fr.x//:

The above notion of a boundary has a topological flavor though by definition the
boundary of the thing must be its ingredient contrary to topological reality; however,
the notion of a boundary has a much wider scope. It can also support the idea of a
separator between two things within a third, which does encompass either, like a
river flowing through a town separates parts on opposite banks. To implement this
idea, for things x; y, such that extr.x; y/, we define the property

˝.x; y/.t/, extr.t; x/ ^ extr.t; y/ (10.38)

and we let

Bd.x; y/ D Cls˝.x; y/ (10.39)

Then the boundary operation Bd has properties

1. Bd.x; y/ D Bd.y; x/.
2. Bd.x C y; z/ D Bd.x; z/ � Bd.y; z/.

Property 1 is obvious. Property 2 follows from the equivalence extr.x C y; z/ ,
extr.x; z/ ^ extr.y; z/. A relative variant can be defined; assuming that ingr.x; z/,
ingr.y; z/ and extr.x; y/, a boundary relative to z between x and y, Bdz.x; y/; is
the class of things t such that ingr.t; z/, extr.t; x/; extr.t; y/ provided this property
is non–vacuous.

10.4.5 Connection Mereotopology

Topological operators are constructed in connection mereology under same caveat
as quasi–Boolean operators: absence of the null thing causes the need for reserva-
tions concerning existence of some things necessary for topological constructions.
We will make this reservations not trying to add new axioms which would guarantee
existence of some auxiliary things. We follow Clarke (1981) in this exposition.

10.4.5.1 On the Notion of C–interior

The C–interior IntC.x/ of a thing x is defined as the class of non–tangential
ingredients of x.

We define the property NTP.x/

NTP.x/.z/, NTP.z; x/ (10.40)
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The interior IntC .x/ is defined by means of

INTC IntC .x/ D ClsNTP.x/ (10.41)

hence, properties follow

1. C.z; IntC .x//, 9w:NTingrC .w; x/ ^ C.z;w/ by the class definition.
2. :9z:EC.z; x/) .IntC .x/ D x/. In particular, in the model OVM, IntC .x/ D x

for each thing x.
3. ingrC .IntC .x/; x/ as C.z; IntC .x//) C.z; x/.
4. C.z; IntC .x//) OvC .z; x/.
5. EC.z; x/) :C.z; IntC .x//.
6. ingrC .z; IntC .x//, NTingrC .z; x/.
7. ingrC .z; x/) ingrC .IntC .z/; IntC .x//.
8. IntC .x/ D x , C.z; x/) OvC .z; x/.
9. IntC .x/ D x , NTingrC .x; x/.

An open thing is x such that IntC .x/ D x.
Under additional axiomatic postulate that the boolean product of any two open

sets is open, see Clarke (1981), A2.1, one can prove that IntC .x � y/ D IntC .x/ �
IntC .y/.

10.4.5.2 On the Notion of C–Closure

The notion of a topological closure ClC .x/ of x, can be introduced by means of the
standard duality

ClC ClC .x/ D �IntC .�x/ (10.42)

By properties of the interior and by duality (10.42), one obtains dual properties of
closure

1. ingrC .x;ClC .x//.
2. ClC .ClC .x// D ClC .x/.
3. ingrC .x; y/) ingrC .ClC .x/;ClC .y//.
4. IntC .x � y/ D IntC .x/ � IntC .y/, ClC .x C y/ D ClC .x/C ClC .y/.
5. C.z;ClC .x//, 9w:NTingrC .w;�x/ ^ C.z;w/.

10.4.5.3 C–Boundaries and a Barry Smith’s Proposal for Mereotopology

The notion of a boundary can be introduced along standard topological lines

BdC BdC .x/ D �.IntC .x/C IntC .�x// (10.43)
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We collect basic properties of the boundary

1. Under Property 4, BdC .x/ D ClC .x/ � �IntC .x/, i.e., it can be expressed as the
difference between the closure and the interior of the thing.

2. BdC .x/ D BdC .�x/.
3. ingrC .BdC .x/;ClC .x//.

An interesting current in mereotopology is that by Smith (1996). It is situated in
a universe endowed with part � and ingredient ingr relations, no matter in what way
introduced. It departs from the above schemes for mereotopology by introducing the
notion of an interior part, 
� , which is supposed to satisfy the requirements

1. 
�.x; y/) �.x; y/.
2. 
�.x; y/ ^ �.y; z/) 
�.x; z/.
3. �.x; y/ ^ 
�.y; z/) 
�.x; z/.
4. 
�.x; y/ ^ 
�.y; z/) 
�.x; y � z/.
5. For a non–void property (collection) F , if F.x/) 
�.x; y/ then 
�.ClsF; y/.
6. There exists y such that 
�.x; y/ for each x.
7. 
�.x; y/) 
�.x;Clsft W 
�.t; y/g/.

The interior of x can be defined as Intx D Clsft W 
�.t; x/g, and, one can declare
the thing x as open when x D Intx.

From these postulates one derives in the standard way the following properties

1. 
�.V; V /.
2. 
�.x; V /.
3. 
�.x; y/, �.x;Clsft W 
�.t; y/g/.
4. 
.Clsft W 
�.t; y/g; y/.

An approach to the notion of a boundary follows in two steps. First, the relation
�.x; y/, ‘x crosses y’ is defined as

�.x; y/, Ov.x; y/ ^Ov.x;�y/ (10.44)

Observe that no x can cross the universe V . The second notion of straddling
involves open sets; one says that Str.x; y/, x straddles y, when


�.x; z/) �.z; y/ (10.45)

for each z.
It follows that

1. �.x; y/) 
�.x; y/ _ Str.x; y/.
2. 
�.x; x/ _ Str.x; x/:

The notion of to be boundary , B.x; y/ is derived by means of

B.x; y/, �.z; x/) Str.z; y/ (10.46)

for each z.
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The boundary Bdx of x is then defined as

Bdx D Clsfy W B.y; x/g (10.47)

Closure of x, cl.x/ is defined as the union xCBdx. It then satisfies the postulates
for topological closure operator,

1. �.x; cl.x//.
2. cl.cl.x// D cl.x/.
3. cl.x C y/ D cl.x/C cl.y/.

10.4.6 Rough Mereotopology

We analyze now topological structures in rough mereological framework. We
consider the case of transitive and symmetric rough inclusions here, for more
general discussion, cf., Polkowski (2011), Ch. 6. Here belong rough inclusions of
types (ari), (airi). We use a generic symbol � to denote either of these forms. � is
transitive with some t–norm T

�.x; y; r/; �.y; z; s/) �.x; z; T .r; s// (10.48)

and symmetric

�.x; y; r/, �.y; x; r/ (10.49)

10.4.6.1 The Notion of an Open Set

For each thing x, we define Or.x/ as the class of property M.x; r/, where

M.r; x/.y/, �.y; x; r/; (10.50)

and we let

Or.x/ D ClsM.x; r/ (10.51)

Hence: ingr.z; Or.x// if and only if �.z; x; r/. Indeed, ingr.z; Or.x// if and only
if there exists t such that Ov.z; t/ and �.t; x; r/, hence, there exists w such that
ingr.w; z/, ingr.w; t/, hence w D z D t , and finally �.z; x; r/.

We regard the thing Or.x/ as an analogue of the notion of the ‘closed ball about
x of the radius r’. To define the analogue of an open ball, we consider the property

MC
r .x/.y/, 9q > r:�s;t .y; x; q/ (10.52)
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The class of the property MC
r .x/ will serve as the open ball analogue

Int.Or.x// D ClsMC
r .x/ (10.53)

Then: ingr.z; Int.Or.x/// if and only if 9q > r:�s;t .z; x; q/. We follow the lines of
the preceding proof. It is true that

ingr.z; Int.Or.x///

if and only if there exists t such that Ov.z; t/ and there exists q > r for which
�T .t; x; q/ holds, hence, there exists w such that ingr.w; z/, ingr.w; t/, which
implies that w D z D t , and finally �T .z; x; q/.

It follows

1. ingr.Int.Or.x//;Or .x//.
2. If s < r , then ingr.Or.x/;Os.x//, ingr.Int.Or.x//; Int.Os.x///.

Consider z with ingr.z; Int.Or.x///. �T .z; x; s/ holds with some s > r . We can
choose ˛ 2 Œ0; 1� with the property that T .˛; s/ > r . For any thing w with
ingr.w; O˛.z//, we can find an thing u such that �T .u; z; ˛/ and Ov.w; u/. For
a thing t such that ingr.t; u/ and ingr.t;w/, we have �T .t;w; 1/, �T .t; u; 1/,
hence, �T .t; x; T .˛; s//, i.e, ingr.t; Int.Or.x///. As t D w, we find that
ingr.w; Int.Or.x///. We have verified that

(P) for each z with ingr.z; Int.Or.x///, there exists ˛ 2 Œ0; 1� such that

ingr.O˛.z/; Int.Or.x///:

For any thing z, when ingr.z; Int.Or.x/// and ingr.z; Os.y//, one finds ˛; ˇ 2
Œ0; 1� such that ingr.O˛.z/; Int.Or.x/// and ingr.Obeta.z/; Int.Os.y///, hence,
ingr.Oq.z/; Int.Or.x///, ingr.Oq.z/; Int.Os.y///, for q D maxf˛; ˇg.

We can sum up the last few facts: the collection fInt.Or.x// W x a thing; r 2
Œ0; 1�g is an open basis for a topology on the collection of things.

A thing x is open, Open.x/ in symbols, in case it is a class of some property of
things of the form Int.Or.x//. Hence,

1. If ˚ is any non–vacuous property of things of the form Open.x/, then
Open.Cls˚/.

2. If Ov.Open.x/;Open.y//, then Open.Open.x/ � Open.y//.

10.4.6.2 On Closures and Interiors

We define closures of things, and to this end, we introduce a property � .x/ for each
thing x

� .x/.y/, 8s < 1:Ov.Os.y/; x/ (10.54)
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Closures of things are defined by means of

Cl.x/ D Cls� .x/ (10.55)

Then one verifies that

1. ingr.z;Cl.x// if and only if Ov.Or.z/; x/ for every r < 1.
2. ingr.z;Cl.Ow.x/// if and only if Ov.Or.z/;Ow.x// for every r < 1.
3. ingr.z;Cl.Ow.x/// if and only if ingr.z; Ow.x//.
4. Cl.Ow.x// D Ow.x/.

We define Int.x/, the interior of x as

ingr.z; Int.x//, 9w:ŒOv.z;w/ ^ 9r < 1:ingr.Or.w/; x/� (10.56)

A standard reasoning shows: ingr.z; Int.x// if and only if there exists r < 1 such
that ingr.Or.z/; x/.

10.4.6.3 On Boundaries

We can now address the problem of a boundary of any thing of the form Or.x/. We
define the boundary Bd.Or.x// as

Bd.Or.x// D Or.x/ � �Int.Or.x// (10.57)

We have a characterization of boundary ingredients: ingr.z;Bd.Or.x/// if and
only if

�.z; x; r/ ^ :9q > r:�s;t .z; x; q/:

Hence,

ingr.Bd.Or.x//;Or.x//:

10.4.7 Mereogeometry

This section introduces mereogeometry modeled on classical axiomatization of
geometry by Tarski (1959). It will serve us in the sequel in building tools for defining
and navigating formations of intelligent agents (robots).

Elementary geometry was defined by Alfred Tarski in His Warsaw University
lectures in the years 1926–1927 as a part of Euclidean geometry which can be
described by means of the 1st order logic.
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There are two main aspects in formalization of geometry: one is metric aspect
dealing with the distance underlying the space of points which carries geometry and
the other is affine aspect taking into account the linear structure.

In Tarski axiomatization, Tarski (1959), the metric aspect is expressed as a
relation of equidistance (congruence) and the affine aspect is expressed by means
of the betweenness relation. The only logical predicate required is the identity D.
Equidistance relation denoted Eq.x; y; u; z/ (or, as a congruence: xy 
 uz) means
that the distance from x to y is equal to the distance from u to z (pairs x; y and u; z
are equidistant).

Betweenness relation is denoted B.x; y; z/, (x is between y and z). Van Benthem
(1983) took up the subject proposing a version of betweenness predicate based on
the nearness predicate and suited, hypothetically, for Euclidean spaces.

We are interested in introducing into the mereological world defined by � of
a geometry in whose terms it will be possible to express spatial relations among
things. We first introduce a notion of a distance 
, induced by a rough inclusion �


.X; Y / D minfmax r;max s W �.X; Y; r/; �.Y;X; s/g (10.58)

Observe that the mereological distance differs essentially from the standard dis-
tance: the closer are things, the greater is the value of 
: 
.X; Y / D 1 means X D Y

whereas 
.X; Y / D 0 means that X; Y are either externally connected or disjoint,
no matter what is the Euclidean distance between them.

10.4.7.1 On the Notion of Betweenness in Tarski and Van Benthem Sense

The notion of betweenness in the Tarski sense B.Z;X; Y / in terms of 
 is

B.Z;X; Y / , for each region W, 
.Z;W / 2 Œ
.X;W /; 
.Y;W /� (10.59)

Here, Œa; b� means the non–oriented interval with endpoints a; b.
We use 
 to define in our context the relation N of nearness proposed in Van

Benthem (1983)

N.X;U; V / , 
.X;U / > 
.V; U / (10.60)

Here, N.X;U; V / means that X is closer to U than V is to U .
Then, N does satisfy all axioms for nearness in Van Benthem (1983)

1. NB1 N.Z;U; V / and N.V;U;W / imply N.Z;U;W / (transitivity).
2. NB2 N.Z;U; V / and N.U; V;Z/ imply N.U;Z; V / (triangle inequality).
3. NB3 N.Z;U;Z/ is false (irreflexivity).
4. NB4 Z D U or N.Z;Z;U / (selfishness).
5. NB5 N.Z;U; V / implies N.Z;U;W / or N.W;U; V / (connectedness).
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We provide a sketch of proof.

For NB1, assumptions are 
.Z;U / > 
.V; U / and 
.V; U / > 
.W;U /; it
follows that 
.Z;U / > 
.W;U / i.e. the conclusion N.Z;U;W / follows.
For NB2, assumptions 
.Z;U / > 
.V; U /, 
.V; U / > 
.Z; V / imply

.Z;U / > 
.Z; V /, i.e., N.U;Z; V /.
For NB3, it cannot be true that 
.Z;U / > 
.Z;U /.
For NB4, Z ¤ U implies in our world that 
.Z;Z/ D 1 > 
.Z;U / ¤ 1.
For NB5, assuming that neither N.Z;U;W / nor N.W;U; V /, we have

.Z;U / � 
.W;U / and 
.W;U / � 
.V; U / hence 
.Z;U / � 
.V; U /,
i.e., N.Z;U; V / does not hold.

We introduce a betweenness relation in the sense of Van Benthem TB modeled
on betweenness proposed in Van Benthem (1983)

TB.Z;U; V / , Œfor each W .Z D W / or N.Z;U;W / or N.Z; V;W /� (10.61)

10.4.7.2 Example: The Case of Betweenness for Robots in 2D Space

The principal example bearing, e.g., on our approach to robot control deals
with rectangles in 2D space regularly positioned, i.e., having edges parallel to
coordinate axes. We model robots (which are represented in the plane as discs of
the same radii in 2D space) by means of their safety regions about robots; those
regions are modeled as squares circumscribed on robots. One of advantages of
this representation is that safety regions can be always implemented as regularly
positioned rectangles.

Given two robots a; b as discs of the same radii, and their safety regions as
circumscribed regularly positioned rectangles A;B , we search for a proper choice
of a region X containing A; and B with the property that a robot C contained in X

can be said to be between A and B . In this search we avail ourselves with the notion
of betweenness relation TB .

Taking the rough inclusion �G defined in (10.28), for two disjoint rectangles
A;B , we define the extent, ext.A;B/ of A andB as the smallest rectangle containing
the union A[B . Then we have the claim, obviously true by definition of TB : given
two disjoint rectangles C , D, the only thing between C and D in the sense of the
predicate TB is the extent ext.C;D/ of C;D.

For a proof, as linear stretching or contracting along an axis does not change the
area relations, it is sufficient to consider two unit squares A;B of which A has (0,0)
as one of vertices whereas B has (a,b) with a; b > 1 as the lower left vertex (both
squares are regularly positioned). Then the distance 
 between the extent ext.A;B/

and either of A;B is 1
.aC/.bC1/

.
For a rectangle R W Œ0; x� � Œ0; y� with x 2 .a; a C 1/; y 2 .b; b C 1/, we have

that


.R;A/ D .x � a/.y � b/

xy
D 
.R;B/ (10.62)
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For �.x; y/ D .x�a/.y�b/

xy
, we find that

@�

@x
D a

x2
� .1 � b

y
/ > 0 (10.63)

and, similarly, @�

@y
> 0, i.e., � is increasing in x; y reaching the maximum when R

becomes the extent of A;B .
An analogous reasoning takes care of the case when R has some (c,d) with c; d >

0 as the lower left vertex.
Further usage of the betweenness predicate is suggested by the Tarski (1959)

axiom of B,Eq–upper dimension, which implies collinearity of x; y; z. Thus, a line
segment may be defined via the auxiliary notion of a pattern; we introduce this
notion as a relation P t.u; v; z/ which is true if and only if TB.z; u; v/ or TB.u; z; v/
or TB.v; u; z/:

We will say that a finite sequence u1; u2; : : : ; un of things belong in a line
segment whenever P t.ui ; uiC1; uiC2/ for i D 1; : : : ; n � 2; formally, we introduce
the functor Line of finite arity defined by means of

Line.u1; u2; : : : ; un/ if and only if Pt.ui; uiC1; uiC2/ for i < n � 1:

For instance, any two disjoint rectangles A;B and their extent ext.A;B/ form a line
segment.

PART II. APPLICATIONS

10.5 Mereology in Engineering: Artifacts, Design and
Assembling

Mereology plays a fundamental role in problems of design and assembling as basic
ingredients in those processes are parts of complex things. The process of synthesis
involves sequencing of operations of fusion of parts into more complex parts until
the final product – artifact. We propose a scheme for assembling and a parallel
scheme for design; the difference is in the fact that design operates on abstracta, i.e.
categories of things whereas assembling deals with concreta, i.e., with real things.
The interplay between abstracta and concreta will be described as a result of our
analysis.

10.5.1 On the Notion of an Artifact

The term artifact means, etymologically, a thing made by art, which covers a wide
specter of things from man–made things of everyday usage to abstract pieces of
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mathematical proofs, software modules or sonnets, or concertos. All those distinct
things are unified in a scheme dependent on some common ingredients in their
making, cf., e.g., a concise discussion in SEP (2012). We cannot include here a
discussion of vast literature on ontological, philosophical and technological aspects
of this notion, see, e.g., Baker (2004), Hilpinen (1995), Margolis and Laurence
(2007), we point only to a thorough analysis of ontological aspects of artifacts in
Borgo and Vieu (2009) in which authors propose also a scheme defining artifacts.
It follows from discussion by many authors that important in analysis of artifacts
are such aspects as: authorship, intended functionality, parthood relations. Analysis
of artifacts is closely tied to design and assembly, cf., Boothroyd (2005) and
Boothroyd et al. (2002) as well as Salustri (2002), Kim et al. (2008) and Seibt
(2009). A discussion of mereology with respect to its role in domain science and
engineering and computer science can be found in Björner and Eir (2010) and in
Chapter by Björner in this Volume.

We attempt at a definition of an artifact as a thing obtained over a collection of
things as a most complex thing in the sense of not being a part of any thing in the
collection; to aspects of authorship (operator) and functionality, we add a temporal
aspect, which allows for well–foundedness of the universe of parts, and seems to be
a natural aspect of the assembling or design process. We regard processes leading
to artifacts as fusion processes in which a by–product is obtained from a finite
number of substrats. Though processes, e.g., of assembling a bike from its parts
or a chemical reaction leading to a product obtained from a mixture of substances
are very distinct to the observer, yet the formal description is identical for the two;
it does require a category of operators P , a category of functionalities F , a linear
time T with the time origin 0. The domain of things is a category Things(P, F,
�) of things endowed with a part relation � . The assignment operator S acts as a
partial mapping on the Cartesian product P � F � Things.P; F; �/ with values in
the category Tree of rooted trees.

The act of assembling is expressed by means of a predicate

Art.p.u/; < v1.u/; � � � ; vk.u/ >; u; f .u/; t.u/; T .u//;

which reads: an operator p.u/ assembles at time t.u/ a thing u with functionality
f .u/ according to the assembling scheme T .u/ organized by p.u/ which is a tree
with the root u, from things v1.u/; � � � ; vk.u/ which are leaves of T .u/. The thing
vi .u/ enters in the position i the assembling process for u.

The predicate ART is subject to the following requirements.

ART1. If Art.p.u/; < v1.u/; � � � ; vk.u/ >; u; f .u/; t.u/; T .u// and for any i in
f1; : : : ; kg, it holds that

Art.p.vi .u//; < vi1.vi .u//; � � � ; vik .vi .u// >; vi .u/; f .vi .u//; t.vi .u//; T .vi .u///;

then t.vi .u// < t.u/, f .u/ � f .vi .u//, p.vi .u// � p.u/, and T .vi .u// attached to
T .u/ at the leaf vi .u/ yields a tree, called an unfolding of T(u) via the assembling
tree for vi .u/.
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The meaning of ART1 is that for each substrate v entering the assembly process
for u, v is assembled at time earlier than time for u, functionality of u is lesser than
that of v, the operator for u has a greater operating scope than that of v, and the
assembly tree for u can be expanded at the leaf v by the assembly tree for v.

ART2. Art.p.u/; < v1.u/; � � � ; vk.u/ >; u; f .u/; t.u/; T .u// ) �.vi .u/; u/ for
each vi .u/.

Meaning that each thing can be assembled only from its parts.
We introduce an auxiliary predicate App.v; i.v/; u; t.u// meaning: v enters in the

position i the design process for u at time t.u/.

ART3. �.v; u/) 9w1.v; u/;

� � � ;wk.v; u/; t.w2.v; u//; � � � ; t.wk.v; u//; i.w1.v; u//; � � � ; i.wk.v;u/�1.v; u//

such that v D w1.v; u/, t.w2.v; u// < � � � < t.wk.v; u/, wk.v; u// D u,

App.wj .v; u//; i.wj .v; u//;wjC1.v; u/; t.wjC1.v; u//

for j D 1; 2; k.v; u/� 1.

This means that each thing which is a part of the other thing will enter the assembly
tree of the thing.

ART4. Each thing used in assembling of some other thing can be used in only one
such thing in only one position at only one time.

This requirement will be referred to as the uniqueness requirement.

ART5. Values t.u/ belong in the set T D f0; 1; 2; � � � g of time moments.

Corollary 1. By ART1, ART2, ART5: The universe of assembly things is well–
founded, i.e., there is no infinite sequence fxi W i D 1; 2; : : :g of things with
�.xiC1; xi / for each i.

From this Corollary, it follows that our notion of identity of artifacts (EA) is
equivalent to extensionality notions (EP), (EC), (UC) discussed in Varzi (2008).

For a tree T .u/, the ART–unfolding of T .u/ is the tree T .u; 1/ in which
leaves v1.u/; v2.u/; � � � ; vk.u/ are expanded by attaching those trees T .v1.u//,
� � � ; T .vk.u// which are distinct from their roots. For a tree T .u/, the maximal ART–
unfolding T .u;max/ is the tree obtained from T .u/ by repeating the operation of
ART–unfolding until no further ART–unfolding is possible.

Corollary 2. Each leaf of the tree T .u;max/ is an atom.

We now define an artifact: an artifact over the category Things(P, F, �) of assembly
things is a thing u such that �.u; v/ holds for no thing v in Things(P, F, �). Thus
artifacts are ‘final things’ in a sense.
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We define the notion of identity for artifacts:
(Extensionality of artifacts EA) artifacts a, b are identical if and only if trees

Tree.a;max/; Tree.b;max/ are isomorphic and have identical things at correspond-
ing under the isomorphism nodes.

10.5.2 Design Artifacts

We regard the process of design as analogous to the assembly process; the only
difference between the two which we introduce is that in design, the designer works
with not the things but with classes of equivalent things. Thus, to begin with, we
introduce an equivalence relation on things. To this end, we let

u � v if and only if Œ�.u; t/ if and only if �.v; t/� for each thing t (10.64)

and

Cat.u/ D Cat.v/ if and only if u � v (10.65)

Things in the same category Cat are ‘universally replaceable’. It is manifest that
the part relation � can be factored through categories, to the relation ˘ of part on
categories,

˘.Cat.u/;Cat.v// if and only if �.u; v/ (10.66)

In our formalism, design will imitate assembling with things replaced with cate-
gories of things and the part relation � replaced with the factorization ˘ . We need
only to repeat the procedure with necessary replacements. We use the designer set
D, the functionality set F , and the time set T as above.

The act of design is expressed by means of a predicate,

Des.d; < Cat1; � � � ;Catk >;Cat; f .Cat/; t.Cat/; T .Cat//

which reads: a designer d designs at time t a category of things Cat with
functionality f .Cat/ according to the design scheme T .Cat/ organized by d which
is a tree with the root Cat, from categories Cat1; � � � ;Catk which are leaves of
T .Cat/. The category Cati enters in the position i the design process for Cat.

The predicate Des is subject to the following requirements.

DES1. If Des.d;< Cat.v1.u//; � � � ;Cat.vk.u// >;Cat.u/; f .u/; t.u/; T .u// and
for any i in f1; � � � ; kg, it holds that

Des.p.Cat.vi .u///; < Cat.vi1.vi .u///; � � � ;Cat.vik .vi .u/// >;

Cat.vi .u//; f .vi .u//; t.vi .u//; T .vi .u///;
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then t.vi .u// < t.u/, f .u/ � f .vi .u//, p.vi .u// � p.u/, and T .vi .u//
attached to T .u/ at the leaf Cat.vi .u// yields a tree, called the unfolding
of T(u) via the design tree for Cat.vi .u//.

DES2.

Des.d;< Cat.v1.u//; � � � ;Cat.vk.u// >;Cat.u/; f .u/; t.u/; T .u//)

˘.Cat.vi .u//;Cat.u//

for each vi .u/.
Meaning that each thing can be designed only from its parts.
We introduce an auxiliary predicate App.v; i.v/; u; t.u// meaning: Cat.v/
enters in the position i the design process for Cat.u/ at time t.u/.

DES3. ˘.Cat.v/;Cat.u//) 9Cat.w1.v; u//; � � � ;Cat.wk.v; u//, and,

t.w2.v; u//; � � � ; t.wk.v; u//; i.w1.v; u//; � � � ; i.wk.v;u/�1.v; u//

such that v D w1.v; u/, t.w2.v; u// < � � � < t.wk.v; u/, wk.v; u// D u,

App.wj .v; u//; i.wj .v; u//;wjC1.v; u/; t.wjC1.v; u//

for j D 1; 2; � � � ; k.v; u/� 1.
This means that for each thing which is a part of the other thing the
category of the former will enter the design tree for the category of the
latter.
For ART4, we may not have the counterpart in terms of DES: clearly,
things of the same category may be used in many positions and at many
design stages of some other category. We may only repeat our assumption
about timing.

DES4. Values t.u/ belong in the set T D f0; 1; 2; � � � g of time moments.

Corollary 1. The universe of categories is well–founded.

We define a design artifact as a category Cat.u/ such that ˘.Cat.u/, Cat.v// is true
for no v.

We are approaching the notion of identity for design artifacts. To begin with, for
a design artifact a, denote by the symbol art.a/ the artifact obtained by filling in
the design tree for a all positions Cat.v/ with things v for some choices of v. We
state the identity condition for design artifacts.

(Extensionality for design artifacts ED) design artifacts a; b are identical if and
only if there exist artifacts art.a/; art.b/ which are identical.

From the principle of identity for artifacts, a corollary follows.

Corollary 2. If design artifacts a; b are identical then a; b have isomorphic design
trees and categories at corresponding nodes are identical.



252 L. Polkowski

Corollary 3. If design artifacts a; b have isomorphic design trees and categories
at corresponding nodes are identical, then a; b are identical.

Indeed, consider two design artifacts a; b which satisfy the condition in the
corollary. There is at least one category Cat.v/ in the same position in design trees
of a and b. Choose a thing x in Cat.v/ and let a.x/; b.x/ be artifacts assembled
according to a; b, respectively. Having a thing in common, a.x/; b.x/ are identical
hence a; b are identical.

10.5.3 Action of Things on Design Abstracta

The interplay between concreta and abstracta in design and assembly can be
exhibited by action of things on design artifacts. We define a partial mapping 
 on
the product Things.P; F; �/ � Design�Artifacts into Artifacts: for a thing v and a
design artifact a, we define the value 
.v; a/ as NIL in case category Cat.v/ is not any
node in the design tree for a, and, the unique artifact a.v/ in the contrary case. The
inverse 
�1.
.v; a// is the set f.u; b/ W b 2 Design�Artifacts;Cat.u/ a node in bg;
thus, abstracta are equivalent in this sense to collections of concreta.

10.6 Mereology in Spatial Reasoning

Spatial orientation of a thing depends on the real world in which things are
immersed, hence, to, e.g., discern among sides of a thing, one needs additional
knowledge and structures. An example of this approach is found, e.g., in Aurnague
et al. (1997), where it is proposed to exploit in determining orientation, e.g., the
direction of gravity (‘haut–grav’, ‘bas–grav’) or peculiar features of things (like
the neck of a bottle) suggesting direction, and usage of geometric predicates like
equidistance in definitions of, e.g., orthogonal directions.

10.6.1 Properties of Artifacts: Mereological Theory of Shape
and Orientation

It is manifest that mereology is amorphous in the sense that decomposition of
a thing into parts does not depend of orientation, isometric transformations etc.
Hence, to exhibit in things additional features like shape, side, one needs augmented
mereology.

Particular features of shape like existence of ‘dents’ or ‘holes’ in a thing resulting
from removal of other things can be accounted for within mereology.
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We define the predicate hole.x; y/ reading a thing x constitutes a hole in a thing
y as follows,

hole.x; y/, 9z:NTP.x; z/ ^ comp.y; x; z/ (10.67)

i.e., x is a non–tangential thing in z and y complements x in z.
The predicate dent.x; y/, reading a thing x constitutes a dent in a thing y is

defined as

dent.x; y/, 9z:TP.x; z/ ^ comp.y; x; z/ (10.68)

i.e., x is a tangential thing in z and y complements x in z. The notion of a dent may
be useful in characterizing things that ‘fit into a thing’: the predicate fits�into.x; y/
may be defined as

fits�into.x; y/, 9z:dent.z; y/ ^ ingr.x; z/ (10.69)

i.e., x is an ingredient of a thing which is a dent in y. A particular case of fitting is
‘filling’ i.e., a complete fitting of a dent. We offer a predicate fills(x, y)

fills.x; y/, 9z:dent.z; y/ ^ z D x � y (10.70)

i.e., dent–making z is the product of x and y. Following this, the notion of a join can
be defined as

joins.x; y; z/, 9w:w D x C y C z ^ fills.x; y/ ^ fills.x; z/ (10.71)

i.e., x joins y and z when there is a thing x C y C z and x fills both y and z.
This predicate can be inductively raised to

join.n/.x1; x2; : : : ; xnIy1; y2; : : : ; yn; ynC1/

via

join.1/.x1Iy1; y2/, join.x1; y1; y2/

and

join.k C 1/.x1; x2; : : : ; xkC1Iy1; y2; : : : ; ykC1; ykC2/,

join.xkC1; join.k/.x1; x2; : : : ; xk Iy1; y2; : : : ; ykC1/; ykC2/

in which we express sequentially a possibly parallel processing.
In case x joins y and z, possibility of assembling arises which may be expressed

by means of modal operator } of ‘possibility’, with an extended operator Asmbl to
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the form Asmbl.x; i; y; j; : : : w; p; f; t/ meaning that w can be assembled from x in
position i , y in position j ,. . . by an operator p with functionality f at time t ,

join.x; y; z/) }9w; p; f; t; i; j; k:Asmbl.x; i; y; j; z; kIw; p; f; t/ (10.72)

Assuming our mereology is augmented with environment endowed with directions
N, S, E, W, we may represent these directions by means of mobile agents endowed
with laser or infrared beams of specified width; at the moment when the beam range
reaches the thing x, it marks on its boundary a region which we denote as top in case
of N, bottom in case of S, left-side in case of W, and right-side in case of E. Thus
we have top.x/; bottom.x/; left � side.x/; right � side.x/ as areas of the boundary
of x; these are not parts of x. To express relations among sides of things we need a
distinct language; for the sake of this example let us adopt the language of set theory
regarding sides as sets.

Then we may say that the thing y

1. Is on the thing x in case bottom(y) is contained in top(x).
2. Is under the thing x when top(y) is contained in bottom(x).
3. Touches x on the left when right-side(y) is contained in left-side(x)
4. Touches x on the right when (left-side(y) is contained in right-side(x)).

This modus of orientation can be merged with mereological shape theory: one
can say that a thing x constitutes a dent on top/under/ on the left/on the right of the
thing y when, respectively,

1. denttop.x; y/, 9z:TP.x; z/ ^ top.x/ � top.z/ ^ comp.y; x; z/.
2. dentbottom.x; y/, 9z:TP.x; z/ ^ bottom.x/ � bottom.z/ ^ comp.y; x; z/.
3. dentleft.x; y/, 9z:TP.x; z/ ^ left � side.x/ � left � side.z/ ^ comp.y; x; z/.
4. dentright.x; y/ , 9z:TP.x; z/ ^ right � side.x/ � right � side.z/ ^

comp.y; x; z/.

These notions in turn allow for more precise definitions of fitting and filling; we
restrict ourselves to filling as fitting is processed along same lines: we say that a
thing x fills a thing y on top/bottom/on the left-side/on the right-side,

fills˛.x; y/, 9z:dent˛.z; y/ ^ z D x � y

where ˛ is, respectively, top, bottom, left, right.
This bears on the notion of a join which can be made more precise: we say that

a thing x .˛; ˇ/–joins things y and z

joins˛;ˇ.x; y; z/, 9w:w D x C y C z ^ fills˛.x; y/ ^ fillsˇ.x; z/

where ˛; ˇ=top, bottom, left, right.
A very extensive discussion of those aspects is given in Casati and Varzi (1999).
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10.6.1.1 Qualitative Spatial Reasoning

With this analysis we enter the realm of Qualitative Spatial Reasoning. Qualitative
spatial reasoning abstracts from qualitative details, cf., Cohn (1996); it is related to
design, cf., Booch (1994) and planning, cf., Glasgow (1995).

Spatial reasoning employing mereology is a basis for analysis of semantics of
orientational lexemes and semantics of motion, cf., Asher et al. (1995). It is basis
for representation, and mapping of environments in behavioral robotics, cf., Kuipers
(1994) and Arkin (1998). It is especially important for Geographic Information
Systems (Egenhofer and Golledge 1997; Frank and Campari 1993; Frank and Kuhn
1995; Hirtle and Frank 1997).

Any formal approach to Spatial Reasoning requires Ontology, cf., Guarino
(1994), Smith (1989), and Casati et al. (1998). In reasoning with spatial things, of
primary importance is to develop an ontology of spatial things, taking into account
complexity of these things.

10.6.1.2 A Case of Spatial Analysis of Limiting Things

We give two examples of spatial reasoning based on merology. In the first, we
attempt, cf. Polkowski and Semeniuk–Polkowska (2010) at giving descriptions of
various notions of boundary, or limiting, things like separator, border, fence, hedge,
confine, involving in this discussion various models of mereology.

We introduce the notion of a separator Sepr.x; z; y/ for a triple x; z; y such that
�.x; y/, �.z; y/, extr.x; z/ as,

Sepr.x; z; y/ D Clsfv W �.v; y/; extr.v; x/; extr.v; z/g (10.73)

Then,

1. extr.Sepr.x; z; y/; x/.
2. extr.Sepr.x; z; y/; z/.
3. �.Sepr.x; z; y/; y/.
4. x D Sepr.Sepr.x; z/; z; y/.
5. z D Sepr.Sepr.x; z; y/; x/.

The notion of a separator comes close to the notion of a border: assume that
Warszawa, the river Vistula, the left–bank part of Warszawa and its right–bank
part are things in a Geographic Information System. Then the river Vistula is the
separator between left– and right–bank parts of Warszawa, and it can justly be called
the border of either, contrary to the topological boundaries of those parts which are
left and right banks of the river.

The notion of connection, in particular the predicate of external connectedness
EC allows for more detailed spatial analysis; in our example of Warszawa and the
river Vistula, where things are Vistula and left and right banks of Warszawa, we
have EC.Vistula; left � bankside/, EC.Vistula; right � bankside/. The connection
relation in this case is defined in the ROM model. External connection leads
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to division of ingredients of any thing into two categories: tangential and non–
tangential. In order to make this distinction, one introduces the complement of an
entity, �x as the class of all entities external to x. The tangential ingredient of x
is z such that it is externally connected to an ingredient of �x. In the example of
Warszawa and Vistula, the connection boundary of either bank of Warszawa is this
bank itself; it is different from the idea of geographic boundary and any reasonable
idea of a boundary. In order to rectify the idea, we can introduce a richer universe
of parts, e.g., by declaring a part any region contained either in a bank of Warszawa
or in the river, but not intersecting any two of these entities. Then the idea of Tarski
(1929) may be applied of defining ideal things (‘points’) as limits of ultrafilters of
regions. Limits of ultrafilters of regions being parts of a bank of Warszawa constitute
the geographic boundary of this bank.

For the notion of confine or extent we can apply rough mereogeometry and the
notion of betweenness. Assume for simplicity, that entities are rectangles with sides
parallel to coordinate axes. Given rectangles R1;R2, as proved above, the extent of
R1;R2 is the smallest rectangle spanned by R1;R2.

10.6.1.3 A Digression on Time in Mereology

To analyze notions of a fence and a hedge, we resort to the property of passability:
by a fence we understand a structure of iron wire made to be impassable, e.g. to
small animals whereas a hedge is a structure usually of plants which we regard as
passable. To express this difference, we introduce a new aspect of mereology, viz.,
timed mereology due to Tarski (1937) and Woodger (1937, 1939).

The time component is introduced into the framework of mereology with a set
of notions and postulates (axioms) concerning aspects of time like momentariness,
coincidence in time, time slices. Things are considered as spatial only and their
relevance to time is expressed as momentary or as spatial and extended in time
and then the predicate of part is understood as a global descriptor covering spatio–
temporal extent of things whereas the temporal extension is described by the
predicate Temp, T with the intended meaning that T .u; v/ means that the thing u
precedes in time the thing v (in terminology of Leśniewski, Tarski and Woodger:
u wholly precedes v) meaning that, e.g., when u and v have some temporal extent,
then u ends before or at the precise moment when v begins.

The property (predicate) Mom meaning momentary being is introduced to denote
things having only spatial aspect. This predicate is introduced by means of the
following postulate,

(MOM) Mom.x/, T .x; x/

Thus, x begins and ends at the same time, so its time aspect is like a spike in
time; it renders the phrase ‘to exist in a moment of time’.

The predicate T is required to satisfy postulates

1. TM1 T .x; y/ ^ T .y; z/) T .x; z/.
2. TM2 Mom.x/ ^Mom.y/) T .x; y/ _ T .y; x/.
3. TM3 T .x; y/, 8u; v:ingr.u; x/ ^ ingr.v; y/) T .u; v/.
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Postulate TM1 states that T is transitive, TM2 does state that of two momentary
things, one precedes the other and TM3 relates T to the class operator, i.e., x
precedes y if and only if each ingredient of x precedes each ingredient of y.
Postulate TM3 provides a link between the part based mereology and the timed
mereology, bonding spatial and temporal properties of things.

The notion of a coincidence in time, CT in symbols, is

CT.x; y/, T .x; y/ ^ T .y; x/ (10.74)

and it implies in turn a notion of a time–slice, Slice.x; y/, as

Slc.x; y/, Mom.x/ ^ ingr.x; y/ ^ 8z:Œingr.z; y/ ^ C.z; x/) ingr.z; x/�
(10.75)

and thus a time–slice of an thing y is an ingredient of y which is spatially so
arranged that any ingredient of y coinciding with it in time is also its ingredi-
ent.Time slices are unique up to coincidence in time: if x; y are time–slices of z,
then x; y coincide in time if and only if x D y.

We use these notions in order to make a distinction between passable and non–
passable boundaries, i.e., between hedges and fences. We say that a time–slice x of
an entity y is a time–front boundary of y if and only if for each entity z it follows
from ingr.z; y/ and T .z; x/ that ingr.z; x/; similarly, a time–slice w of y is a time–
rear boundary of y if and only if for each entity z it follows from ingr.z; y/ and
T .w; z/ that ingr.z;w/. The Boolean sum x C w of x and w, is the time–boundary
of y.

The front time boundaryx of y is passable (is a front time–hedge of y) if and only
if there is an entity z such that T .z; x/ and not ingr.z; x/; otherwise x is the front
time–fence of y. Analogous definitions concern rear time–hedges and rear time–
fences. Smith and Varzi (1997), make a distinction between fiat boundaries and
bona–fide boundaries, the former defined as material boundaries of real entities
whereas the latter understood as mental boundaries; time boundaries may serve as
an example of the latter.

10.6.1.4 RCC: Region Connection Calculus. ROM Revisited

As an important example of mereological spatial reasoning we introduce here the
RCC Calculus (Region Connection Calculus), cf. Randell et al. (1992), Cohn et al.
(1996, 1993), Cohn (1996), Cohn and Gotts (1996) and Cohn and Varzi (1998). It is
a calculus on closed regular sets (regions) in a regular topological space, i.e, in the
frame of ROM. RCC admits Clarke’s connection postulates CN1–CN3 and follows
same lines in defining basic predicates. To preserve the flavor of this theory we give
these predicates in the RCC notation
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Table 10.1 Transition table for RCC8 calculus

– DC EC PO TPP NTPP TPPi NTPPi

DC – DR,PO,PP DR,PO,PP DR,PO,PP DC DC
EC DR,PO,PPi DR,PO,TPP,TPi DR,PO,P EC,PO,PP PO,PP DR DC
PO DR,PO,PPi DR,PO,PPi – PO,PP PO,P DR,PO,PPi DR,PO,PPi
TPP DC DR DR,PO,PP PP NTPP DR,PO,PP –
NTPP DC DC DR,O,PP NTPP NTPP DR,PO,PP –
TPPi DR,PO,PPi EC,PO,PPi PO,PPi PO,TPP,TPi PO,PP PPi NTPPi
NTPPi DR,PO,PPi PO,PPi PO,PPi PO, PPi 0 NTPPi NTPPi

1. DISCONNECTED FROM.x/.y/ DC.x; y/, :C.x; y/.
2. IMPROPER PART OF.x/.y/ W P.x; y/, 8z:ŒC.z; y/! C.z; x/�.
3. PROPER PART OF.x/.y/ W PP.x; y/, P.x; y/ ^ :P.y; x/.
4. EQUAL.x/.y/ W EQ.x; y/, P.x; y/ ^ P.y; x/.
5. OVERLAP.x/.y/ W Ov.x; y/, 9:z:P.x; z/ ^ P.y; z/.
6. DISCRETE FROM.x/.y/ W DR.x; y/, :Ov.x; y/.
7. PARTIAL OVERLAP.x/.y/ W POv.x; y/, Ov.x; y/^:P.x; y/^:P.y; x/.
8. EXTERNAL CONNECTED.x/.y/ W EC.x; y/, C.x; y/ ^ :Ov.x; y/.
9. TANGENTIAL PART OF.x/.y/ W TPP.x; y/ , PP.x; y/ ^ 9z:EC.x; z/ ^

EC.y; z/.
10. NON � TANGENTIAL PART OF.x/.y/ W NTPP.x; y/ , PP.x; y/ ^
:TPP.x; y/.

To each non–symmetric predicate X RCC adds the inverse Xi (e.g., to TPP.x; y/ it
adds TPPi.y; x/). The eight predicates: DC, EC, PO, EQ, TPP, NTPP, TPPi, NTPPi
show the JEPD property (Jointly Exclusive and Pairwise Disjoint) and they form
the fragment of RCC called RCC8.

Due to topological assumptions, RCC has some stronger properties than Clarke’s
calculus of C, where connection is simply the set intersection. Witness, the two
properties, see.

1. If 8z:Ov.x; z/ $ Ov.y; z/, then x D y (extensionality of overlapping). (If x ¤
y, then, e.g., there is z 2 x � y and regularity of the space yields us an open
neighborhood V of z such that ClV \y D ; and Ov.V; x/ negating the premise).

2. If PP.x; y/, then 9z:P.x; z/ ^DR.y; z/.
3. 8x:EC.x;�x/.
RCC8 allows for additional predicates characterizing shape, connectivity, see Gotts
et al. (1996) and regions with vague boundaries (“the egg–yolk” approach), see
Gotts and Cohn (1995).

RCC8 is presented in the form of the transition table: a table in which for
entries R1.x; y/ and R2.y; z/ a result R3.x; z/ is given, see Egenhofer (1991). The
transition table for RCC8 is shown in Table 10.1.



10 Mereology in Engineering and Computer Science 259

10.7 Mereology in Intelligent Planning and Navigation:
The Case of Behavioral Robotics

We have stressed that by its nature, rough mereology does address concepts,
relations among which are expressed by partial containment rendered as the
predicate of a part to a degree. Behavioral robotics falls into this province, as
usually robots as well as obstacles and other environmental things are modeled as
figures or solids. We show applications of mereology to planning and navigation of
autonomous mobile robots and their formations. First, we introduce the subject of
planning in robotics.

10.7.1 Planning with Emphasis on Behavioral Robotics

Planning is concerned with setting a trajectory for a robot endowed with some
sensing devices which allow it to perceive the environment in order to reach by
the robot a goal in the environment at the same time bypassing obstacles.

Planning methods, cf., e.g., Choset et al. (2005), vary depending on the robot
abilities, features of the environment and chosen methodology. Among them are
simple geometric methods designed for a robot endowed with sensors detecting
obstacles, e.g., touch sensors or range sensors and able to detect distance between
any pair of points. These methods are called ‘contour following’, as for such a robot,
the idea can be implemented of moving to goal in a straight line segment and in case
of meeting with an obstacle to bypass it by circumnavigating its boundary until the
straight line to goal is encountered anew. Typically, the robot performs a heuristic
search of A� type, see, e.g., Russell and Norvig (2009) or Choset et al. (2005) with
the heuristic function h.x/ D �.x;O/C �.O; goal/ where x is the current position
of the robot, and the point O is selected as an end–point of the continuity interval
of � – the distance function, whose values are bound by a constant R.When the
distance measured by range sensors exceeds R the value of � is set to infinity.
The graph of � against the position x exhibits then discontinuities and continuity
intervals clearly outline boundaries of obstacles, hence, the idea of selecting O as
a boundary continuity point. Minimization of h leads to optimization of the chosen
safe trajectory.

A method of potential field, see Khatib (1986) consists in constructing a
potential field composed of attractive potentials for goals and repulsive potentials
for obstacles.

An example may be taken as the quadratic potential function

Uattractive.x/ D 1

2
� jjx � xgoaljj2 (10.76)
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which induces the gradient

rUattractive.x/ D x � xgoal (10.77)

which assures that the force (the gradient) exerted on the robot is greater when the
robot is far from the goal and diminishes to zero as the robot is approaching the
goal.

A repulsive potential should have opposite properties: it should exert a force
tending to 1 with the distance to the obstacle reaching 0. Denoting the distance
from a point x to the closest obstacle with s.x/, the repulsive potential can be
defined as in

Urepulsive.x/ D 1

2
� Œ 1

s.x/
� (10.78)

with the gradient

rUrepulsive.x/ D � 1

s.x/2
� rs.x/ (10.79)

The global potential function U is the sum of the attractive and repulsive parts:

U.x/ D Uattractive.x/C Urepulsive.x/

Given U , the robot performs a well–known gradient descent : it does follow the
direction of the gradient in small steps : the (iC1)–th position is given from the i-th
position and the gradient therein as

xiC1 D xi C �i � rU.xi / (10.80)

In Polkowski and Ośmiałowski (2008, 2010) and Ośmiałowski (2009a) a mereolog-
ical potential field planning method was proposed.

10.7.2 Mereological Planning via Potential Fields

Classical methodology of potential fields works with integrable force field given by
formulas of Coulomb or Newton which prescribe force at a given point as inversely
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proportional to the squared distance from the target; in consequence, the potential
is inversely proportional to the distance from the target. The basic property of the
potential is that its density (Dforce) increases in the direction toward the target. We
observe this property in our construction.

We apply the geometric rough inclusion

�G.x; y; r/, jjx \ yjj
jjxjj (10.81)

where jjxjj is the area of the region x. In our construction of the potential field,
region will be squares: robots are represented by squares circumscribed on them
(simulations were performed with disk–shaped Roomba robots, the intellectual
property of iRobot. Inc.).

Geometry induced by means of a rough inclusion can be used to define a
generalized potential field: the force field in this construction can be interpreted as
the density of squares that fill the workspace and the potential is the integral of the
density. We present now the details of this construction. We construct the potential
field by a discrete construction. The idea is to fill the free workspace of a robot with
squares of fixed size in such a way that the density of the square field (measured,
e.g., as the number of squares intersecting the disc of a given radius r centered at
the target) increases toward the target.

To ensure this property, we fix a real number – the field growth step in
the interval .0; square edge length/; in our exemplary case the parameter field
growth step is set to 0.01.

The collection of squares grows recursively with the distance from the target
by adding to a given square in the .k C 1/-th step all squares obtained from it by
translating it by k � field growth step (with respect to Euclidean distance)
in basic eight directions: N, S, W, E, NE, NW, SE, SW (in the implementation
of this idea, the floodfill algorithm with a queue has been used, see Ośmiałowski
(2009a,b)). Once the square field is constructed, the path for a robot from a given
starting point toward the target is searched for.

The idea of this search consists in finding a sequence of way–points which
delineate the path to the target. Way–points are found recursively as centroids
of unions of squares mereologically closest to the square of the recently found
way–point. We recall that the mereological distance between squares x; y is defined
by means of

k.x; y/ D minf max r W �.x; y; r/;max s W �.y; x; s/g (10.82)

We also remind that the mereological distance k.x; y/ takes on the value 1 when
x D y and the minimal value of 0 means that x \ y � Bd.x/ \ Bd.y/. In order
do define a “potential” of the rough mereological field, let us consider how many



262 L. Polkowski

Fig. 10.1 Planned paths of Roomba robots to their targets

generations of squares will be centered within the distance r from the target. Clearly,
we have

d C 2d C : : :C kd � r (10.83)

where d is the field growth step, k is the number of generations. Hence,

k2d � k.k C 1/

2
d � r (10.84)

and thus

k � .
r

d
/
1
2 (10.85)

The potential V.r/ can be taken as�r 1
2 . The force field F.r/ is the negative gradient

of V.r/,

F.r/ D � d

dr
V.r/ � � 1

r
1
2

(10.86)

Hence, the force decreases with the distance r from the target slower than traditional
Coulomb force. It has advantages of slowing the robot down when it is closing on the
target. Parameters of this procedure are: the field growth step set to 0.01,
and the size of squares which in our case is 1.5 times the diameter of the Roomba
robot.

A robot should follow the path proposed by planner shown in Fig. 10.1.
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10.7.3 Planning for Teams of Robots

Problems of planning paths for teams of robots present an intellectual challenge
due to aspects of cooperation, communication, task–sharing and division, and
planning non–collision paths for robots. These problems require studies of cognitive
theories, biology, ethology, organization and management. They can also lead to
new solutions to problems of artificial intelligence. Passing from a single robot to
teams of robots can be motivated also by pragmatic reasons, cf., Cao et al. (1997),
as tasks for robots can be too complex for a single robot, or many robots can do the
task easier at a lesser cost, or many robots can perform the task more reliably.

Practical studies along these lines were concerned with moving large things of
irregular shapes by groups of robots, see Kube and Zhang (1996), search and rescue,
see Jennings et al. (2001), formations of planetary outposts of mobile robots, see
Huntsberger et al. (2007), multi–target inspection Parker (1997). Simulations of
systems a few robots were studied, e.g., in CEBOT, see Fukuda and Nakagawa
(1987), ACTRESS, see Asama et al. (1989), GOFER, see Caloud et al. (1990), cf.,
the ALLIANCE architecture in Parker (1998).

Many authors attacked these problems by extending methods elaborated for a
single robot; helpful in those attempts were studies of behavior of migrating birds
flying in ‘boids’, cf., Reynolds (1987) which brought forth elementary behaviors
like collision–avoidance, velocity adjustment, leader–following, flock–centering,
transferred into robot milieu, e.g., in Matarić (1993, 1994, 1997), Fredslund and
Matarić (2002), Agah (1996), and Agah and Bekey (1997), which provided elemen-
tary robot behaviors like wandering, homing, following, avoidance, aggregation,
dispersion.

In Balch and Arkin (1998) basic principles of behavioral approach, were
formulated: it is vital to keep all robots within a certain distance from one another
(e.g., to ensure mutual visibility), to move away when the distance becomes too
close (to avoid congestion, collision, or resource conflict), to adapt own movement
to movement of neighbors (e.g., by adjusting velocity of motion), to orient oneself
on a leader, or a specific location, e.g., the gravity center of the group. They proposed
that robots in a team obey rigid geometric constraints by means of references to the
center of the group or to the assigned leader, or to the assigned neighbor.

10.7.4 Mereological Approach to Robot Formations

We recall that on the basis of the rough inclusion �, and mereological distance 


geometric predicates of nearness and betweenness, are redefined in mereological
terms.

Given two robots a; b as discs of same radii, and their safety regions as
circumscribed regularly positioned rectangles A;B , we search for a proper choice
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of a region X containing A; and B with the property that a robot C contained in X

can be said to be between A and B .
For two (possibly but not necessarily) disjoint rectangles A;B , we define the

extent, ext.A;B/ of A and B as the smallest rectangle containing the union A [ B .
We know that in this setting, given two disjoint rectangles C , D, the only thing
between C and D in the sense of the predicate TB is the extent ext.C;D/ of C;D„
i.e., the minimal rectangle containing the union C [D.

For details of the exposition which we give now, please consult Ośmiałowski
(2011) and Ośmiałowski and Polkowski (2009).

For robots a; b; c, we say that a robot b is between robots a and c, in symbols

.between b a c/ (10.87)

in case the rectangle ext.b/ is contained in the extent of rectangles ext.a/, ext.c/,
i.e.,

�0.ext.b/; ext.ext.a/; ext.c//; 1/ (10.88)

This can be generalized to the notion of partial betweenness which models in a
more realistic manner spatial relations among a; b; c; we say in this case that robot
b is between robots a and c to a degree of at least r , in symbols,

.between–degr b a c / (10.89)

if and only if

�0.ext.b/; extŒext.a/; ext.c/�; r/; (10.90)

i.e.,

jjext.b/ \ ext.ext.a/; ext.c//jj
jjext.b/jj 	 r

For a team of robots, T .r1; r2; : : : ; rn/ D fr1; r2; : : : ; rng, an ideal forma-
tion IF on T .r1; r2; : : : ; rn/ is a betweenness relation .between. . . / on the set
T .r1; r2; : : : ; rn/.

In implementations, ideal formations are represented as lists of expressions of
the form

.between r0 r1 r2/ (10.91)
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indicating that the thing r0 is between r1; r2, for all such triples, along with a list
of expressions of the form

.not–between r0 r1 r2/ (10.92)

indicating triples which are not in the given betweenness relation.
To account for dynamic nature of the real world, in which due to sensory

perception inadequacies, dynamic nature of the environment etc., we allow for some
deviations from ideal formations by allowing that the robot which is between two
neighbors can be between them to a degree in the sense of (10.89). This leads to the
notion of a real formation.

For a team of robots, T .r1; r2; : : : ; rn/ D fr1; r2; : : : ; rng, a real formation RF

on T .r1; r2; : : : ; rn/ is a betweenness to degree relation .between–deg . . . :/ on the
set T .r1; r2; : : : ; rn/ of robots.

In practice, real formations will be given as a list of expressions of the form,

.between–deg ı r0 r1 r2/; (10.93)

indicating that the thing r0 is to degree of ı in the extent of r1; r2, for all triples in
the relation .between–deg : : : :/, along with a list of expressions of the form,

.not–between r0 r1 r2/; (10.94)

indicating triples which are not in the given betweenness relation.
Description of formations, as proposed above, can be a list of relation instances

of large cardinality, cf., examples below. The problem can be posed of finding a
minimal set of instances sufficient for describing a given formation, i.e., implying
the full list of instances of the relation (between: : :). This problem turns out to be
NP–hard, see Ośmiałowski and Polkowski (2009).

To describe formations we propose a language derived from LISP–like s–
expressions: a formation is a list in LISP meaning with some restrictions that
formulates our language. We will call elements of the list things. Typically, LISP
lists are hierarchical structures that can be traversed using recursive algorithms. We
restrict that top–level list (a root of whole structure) contains only two elements
where the first element is always a formation identifier (a name). For instance

Example 1. (formation1 (some_predicate param1 : : : paramN))

For each thing on a list (and for a formation as a whole) an extent can be derived and
in facts, in most cases only extents of those things are considered. We have defined
two possible types of things

1. Identifier: robot or formation name (where formation name can only occur at
top–level list as the first element);
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2. Predicate: a list in LISP meaning where first element is the name of given
predicate and other elements are parameters; number and types of parameters
depend on given predicate.

Minimal formation should contain at least one robot. For example

Example 2. (formation2 roomba0)

To help understand how predicates are evaluated, we need to explain how extents
are used for computing relations between things. Suppose we have three robots
(roomba0, roomba1, roomba2) with roomba0 between roomba1 and roomba2 (so
the between predicate is fulfilled). We can draw an extent of this situation as the
smallest rectangle containing the union roomba1 [ roomba2 oriented as a regular
rectangle, i.e., with edges parallel to coordinate axes. This extent can be embedded
into bigger structure: it can be treated as an thing that can be given as a parameter
to predicate of higher level in the list hierarchy. For example:

Example 3. (formation3 (between (between roomba0 roomba1 roomba2) roomba3
roomba4))

We can easily find more than one situation of robots that fulfill this example
description. That is one of the features of our approach: one s–expression can
describe many situations. This however makes very hard to find minimal s–
expression that would describe already given arrangement of robots formation (as
stated earlier in this chapter, the problem is NP–hard).

Typical formation description may look like below, see Ośmiałowski (2011)

Example 4. (cross
(set

(max–dist 0.25 roomba0 (between roomba0 roomba1 roomba2))
(max–dist 0.25 roomba0 (between roomba0 roomba3 roomba4))
(not–between roomba1 roomba3 roomba4)
(not–between roomba2 roomba3 roomba4)
(not–between roomba3 roomba1 roomba2)
(not–between roomba4 roomba1 roomba2)

)
)

This is a description of a formation of five Roomba robots arranged in a cross shape.
The max–dist relation is used to bound formation in space by keeping all robots
close one to another.

We show a screen–shot of robots in the initial formation of cross–shape in
a crowded environment, see Figs. 10.2 and 10.3. These behaviors witness the
flexibility of our definition of a robot formation: first, robots can change formation,
next, as the definition of a formation is relational, without metric constraints
on robots,the formation can manage an obstacle without losing the prescribed
formation (though, this feature is not illustrated in figures in this chapter).
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Fig. 10.2 Trails of robots moving in the line formation through the passage (From Polkowski
(2011))

Fig. 10.3 Trails of robots in the restored cross formation in the free workspace after passing
through the passage (From Polkowski (2011))
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10.8 Mereology in Knowledge Granulation and Reasoning
About Knowledge

The topic of knowledge engineering in computer science does encompass problems
of representation, extraction (data mining), reasoning about and application of
knowledge (knowledge engineering). We represent knowledge as annotated data
expressed in symbolic or numeric, or hybrid form which encode information about
a considered case.

10.8.1 Representation of Knowledge: Information/Decision
Systems

We assume that knowledge is represented in the form of information or decision
systems. An information system, cf., e.g., Pawlak (1991) or Polkowski (2002) is a
pair .U;A/ where U is a finite set of things and A is a finite set of attributes; each
attribute a is a mapping a W U ! V from the set U into a set V of attribute values.
For each thing u 2 U , the information vector of u is the set

InfA.u/ D fa.u/ W a 2 Ag:

A decision system adds to the set A a decision attribute d … A. Knowledge can be
extracted from either system in the form of (1) a classification into categories or (2)
a decision algorithm which is a judiciously chosen set of decision rules.

Classification into categories in an information system .U;A/ relies on the
indiscernibility in the sense of Leibniz (1969) and Forrest (2010): for a set B � A

of attributes, one defines the B–indiscernibility relation INDB as

INDB.u; v/, a.u/ D a.v/ for each a 2 B (10.95)

Classes fŒu�B W u 2 U g of the relation INDB form B � categories.
In a decision system .U;A; d/, perceived as a window on a (possibly unknown)

function fA;d from A-categories onto d-categories, an approximation to fA;d can be
searched for in a form of a set of decision rules of the form of an implication

^

a2B
.a;wa/) .d;wd / (10.96)

where the descriptor .a;wa/ is a logical formula interpreted as Œ.a;wa/� D fu 2
U W a.u/ D wag, extended recursively as Œ˛ ^ ˇ� D Œ˛� \ Œˇ�, Œ˛ _ ˇ� D Œ˛� [ Œˇ�,
Œ:˛� D U n Œ˛�. The implication in the formula (10.96) is satisfied to a degree r

with respect to a set rough inclusion �S in case �S.Œ
V

a2B.a;wa/�; Œ.d;wd /�; r/. In
case r D 1 the rule is true.
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10.8.2 Decision Rules

A decision algorithm, classifier is a judiciously chosen set of decision rules,
approximating possibly most closely the real decision function fA;d . This comes
down to a search in the space of possible descriptors in order to find their successful
combinations. In order to judge the quality, or, degree of approximation, decision
rules are learned on a part of the decision system, the training set and then the
decision algorithm is tested on the remaining part of the decision system, called
the test set. Degree of approximation is measured by some coefficients of varied
character. Simple measures of statistical character are found from the contingency
table, see Arkin and Colton (1970). This table is built for each decision rule r and
a decision value v, by counting the number nt of training things, the number nr of
things satisfying the premise of the rule r (caught by the rule), nr .v/ is the number
of things counted in nr and with the decision v, and nr .:v/ is the number of things
counted in nr but with decision value distinct from v. To these factors, we add nv,
the number of training things with decision v and n:v, the number of remaining
things, i.e, n:v D nt � nv.

For these values, accuracy of the rule r relative to v is the quotient

acc.r; v/ D nr.v/

nr
(10.97)

and coverage of the rule r relative to v is

cov.r; v/ D nr .v/

nv
(10.98)

These values are useful as indicators of a rule strength which is taken into account
when classification of a test thing is under way: to assign the value of decision, a rule
pointing to a decision with a maximal value of accuracy, or coverage, or combination
of both can be taken; methods for combining accuracy and coverage into a single
criterion are discussed, e.g., in Michalski (1990). Accuracy and coverage can,
however, be defined in other ways; for a decision algorithm D, trained on a training
set T r , and a test set T st , the accuracy of D is measured by its efficiency on the
test set and it is defined as the quotient

accuracy.D/ D ncorr

ncaught
(10.99)

where ncorr is the number of test things correctly classified by D and ncaught is the
number of test things classified.

Similarly, coverage of D is defined as

coverage.D/ D ncaught

ntest
(10.100)
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where ntest is the number of test things. Thus, the product accuracy.D/ �
coverage.D/ gives the measure of the fraction of test things correctly classified
by D.

We have already mentioned that accuracy and coverage are often advised to be
combined in order to better express the trade–off between the two: one may have
a high accuracy on a relatively small set of caught things, or a lesser accuracy
on a larger set of caught by the classifier things. Michalski (1990) proposes a
combination rule of the form

MI D 1

2
� AC 1

4
� A2 C 1

2
� C � 1

4
� A � C (10.101)

whereA stands for accuracy andC for coverage. With the symbol MI, we denote the
Michalski index as defined in (10.101). Other rule quality measures can be found,
e.g., in Bruning and Kintz (1997), Bazan (1998), and Grzymala–Busse and Hu
(2000).

Whereas indiscernibility classes are computationally feasible, cf., Skowron and
Rauszer (1992), decision rules in optimal form are not, cf., op. cit. Methods
for generation of rules with minimal set of descriptors, optimal rules, true rules,
minimal sets of rules, strong (association) rules, etc., can be found in Pawlak and
Skowron (1993), Skowron (1993), Skowron and Rauszer (1992), Grzymala–Busse
(1992), and Agrawal et al. (1993).

10.8.3 Mereology as Similarity: Granulation of Knowledge

The creator of Fuzzy Set Theory Lotfi A. Zadeh (1979) proposed to compute with
granules of knowledge. It was posed by L. A. Zadeh that the process of extraction
of knowledge can be factored through the stage of granulation in which things
are aggregated into granules of knowledge understood as collections or classes of
things similar with respect to a chosen measure of similarity. Resulting granular
computing, i.e., processing granules of knowledge promises lesser complexity as
well as noise filtering.

In case discussed here, as similarity measure we choose a rough inclusion;
it provides a similarity to a degree relation which is reflexive but not always
symmetric, e.g., a set or geometric rough inclusion is not whereas (ari) or (airi)
type rough inclusion is symmetric therefore inducing a hierarchy of tolerance to a
degree relations; for a theory of tolerance relations, see, e.g., Shreider (1960).

The idea of mereological granulation of knowledge, see Polkowski (2004a,
2005a), cf., surveys Polkowski (2008, 2009a), presented here finds an effective
application in problems of synthesis of classifiers from data tables. This application
consists in granulation of data at preprocessing stage in the process of synthesis:
after granulation, a new data set is constructed, called a granular reflection, to
which various strategies for rule synthesis can be applied. This application can be
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regarded as a process of filtration of data, aimed at reducing noise immanent to data.
Application of rough inclusions leads to a formal theory of granules of various radii
allowing for various choices of coarseness degree in data.

For a given rough inclusion �, the granule g�.u; r/ of the radius r about the
center u is defined as the class of property ˚

�
u;r

g�.u; r/ D Cls˚�
u;r (10.102)

where

˚�
u;r .v/, �.v; u; r/ (10.103)

Properties of granules depend, obviously, on the type of rough inclusion used in
their definitions. In case of a symmetric and transitive rough inclusion �, for each
pair u; v of things, and r 2 Œ0; 1�,

ingr.v; g�.u; r//, �.v; u; r/

holds which follows directly from the inference rule M3.
In effect, the granule g�.u; r/ can be represented as the set fv W �.v; u; r/g. To

justify this claim, assume that ingr.v; g�.u; r// holds. Thus, there exists z such that
Ov.z; v/ and �.z; u; r/. There is x with ingr.x; v/, ingr.x; z/, hence, by transitivity
of �, also �.x; u; r/ holds. By symmetry of �, ingr.v; x/, hence, �.v; x; r/ holds.

A more complicated case of other types of rough inclusions is discussed in
Polkowski (2011).

Our idea of augmenting existing strategies for rule induction consists in using
granules of knowledge. The principal assumption we can make is that the nature
acts in a continuous way: if things are similar with respect to judiciously and
correctly chosen attributes, then decisions on them should also be similar. A granule
collecting similar things should then expose the most typical decision value for
things in it while suppressing outlying values of decision, reducing noise in data,
hence, leading to a better classifier.

In Polkowski and Artiemjew (2007) and in Artiemjew (2007) the theoretical
analysis was confirmed as to its application merits. We proceed with a summary
of methods and results of these verification.

10.8.4 The Idea of Granular Mereological Classifiers

We assume that we are given a decision system .U;A; d/ from which a classifier
is to be constructed; on the universe U , a rough inclusion � is given, and a radius
r 2 Œ0; 1� is chosen, see Polkowski (2004a, 2005a). We can find granules g�.u; r/
for all u 2 U , and make them into the set G.�; r/.
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Table 10.2 Best results for Australian credit by some rough set based algorithms

Source Method Accuracy Coverage MI

Bazan (1998) SNAPM.0:9/ error D 0:130 – –
Nguyen SH (2000) simple:templates 0:929 0:623 0:847

Nguyen SH (2000) general:templates 0:886 0:905 0:891

Nguyen SH (2000) tolerance:gen:templ: 0:875 1:0 0:891

Wróblewski (2004) adaptive:classifier 0:863 – –

From this set, a covering Cov.�; r/ of the universe U can be selected by means
of a chosen strategy G , i.e.,

Cov.�; r/ D G .G.�; r// (10.104)

We intend that Cov.�; r/ becomes a new universe of the decision system whose
name will be the granular reflection of the original decision system. It remains to
define new attributes for this decision system.

Each granule g in Cov.�; r/ is a collection of things; attributes in the set A[fd g
can be factored through the granule g by means of a chosen strategy S , i.e., for
each attribute q 2 A [ fd g, the new factored attribute q is defined by means of the
formula

q.g/ D S .fa.v/ W ingr.v; g�.u; r//g/ (10.105)

In effect, a new decision system .Cov.�; r/; fa W a 2 Ag; d / is defined. The thing v
with

Inf .v/ D f.a D a.g// W a 2 Ag (10.106)

is called the granular reflection of g.
Granular reflections of granules need not be things found in data set; yet, the

results show that they mediate very well between the training and test sets. In order
to demonstrate the merits of this approach, we consider a standard data set the
Australian Credit Data Set from Repository at UC Irvine (2012) and we collect
the best results for this data set by various rough set based methods in Table 10.2.
For a comparison we include in Table 10.3 results obtained by some other methods,
as given in Statlog. In Table 10.4, we give a comparison of performance of rough
set classifiers: exhaustive, covering and LEM (Grzymala–Busse 1992) implemented
in RSES (2012) public domain system. We begin in the next section with granular
classifiers in which granules are induced from the training set.
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Table 10.3 A comparison of
errors in classification by
rough set and other paradigms

Paradigm System/method Austr. credit

Stat:Methods Logdisc 0:141

Stat:Methods SMART 0:158

Neural Nets Backpropagation2 0:154

Neural Networks RBF 0:145

Decision Trees CART 0:145

Decision Trees C4:5 0:155

Decision Trees ITrule 0:137

Decision Rules CN2 0:204

Table 10.4 Train and test
(trn = 345 things, tst = 345
things) ; Australian credit;
comparison of RSES
implemented algorithms
exhaustive, covering and
LEM

Rule
Algorytm Accuracy Coverage number MI

covering.p D 0:1/ 0:670 0:783 589 0:707

covering.p D 0:5/ 0:670 0:783 589 0:707

covering.p D 1:0/ 0:670 0:783 589 0:707

LEM2.p D 0:1/ 0:810 0:061 6 0:587

LEM2.p D 0:5/ 0:906 0:368 39 0:759

LEM2.p D 1:0/ 0:869 0:643 126 0:804

10.8.5 Classification by Granules of Training Things

We begin with a classifier in which granules computed by means of the rough
inclusion �L form a granular reflection of the data set and then to this new data
set the exhaustive classifier, see RSES (2012), is applied.

10.8.5.1 Procedure of the Test

1. The data set .U;A; d/ is input;
2. The training set is chosen at random. On the training set, decision rules are

induced by means of exhaustive, covering and LEM algorithms implemented in
the RSES system;

3. Classification is performed on the test set by means of classifiers of pt. 2;
4. For consecutive granulation radii r , granule sets G.�; r/ are found;
5. Coverings Cov.�; r/ are found by a random irreducible choice;
6. For granules in Cov.�; r/, for each r , we determine the granular reflection

by factoring attributes on granules by means of majority voting with random
resolution of ties;

7. For found granular reflections, classifiers are induced by means of algorithms in
pt. 2;

8. Classifiers found in pt. 7, are applied to the test set;
9. Quality measures: accuracy and coverage for classifiers are applied in order to

compare results obtained, respectively, in pts. 3 and 8.
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Table 10.5 Train–and–test;
Australian Credit;
Granulation for radii r ; RSES
exhaustive classifier;
r = granule radius, tst = test set
size, trn = train set size,
rulex = rule number,
aex = accuracy,
cex = coverage

r tst trn rulex aex cex MI

Nil 345 345 5,597 0:872 0:994 0:907

0:0 345 1 0 0:0 0:0 0:0

0:0714286 345 1 0 0:0 0:0 0:0

0:142857 345 2 0 0:0 0:0 0:0

0:214286 345 3 7 0:641 1:0 0:762

0:285714 345 4 10 0:812 1:0 0:867

0:357143 345 8 23 0:786 1:0 0:849

0:428571 345 20 96 0:791 1:0 0:850

0:5 345 51 293 0:838 1:0 0:915

0:571429 345 105 933 0:855 1:0 0:896

0:642857 345 205 3,157 0:867 1:0 0:904

0:714286 345 309 5,271 0:875 1:0 0:891

0:785714 345 340 5,563 0:870 1:0 0:890

0:857143 345 340 5,574 0:864 1:0 0:902

0:928571 345 342 5,595 0:867 1:0 0:904

Table 10.6 Train–and–test;
Australian
credit;(layered–granulation)

r acc cov

0:500000 0:436 1:000

0:571429 0:783 1:000

0:642857 0:894 1:000

0:714286 0:957 1:000

In Table 10.5, the results are collected of results obtained after the procedure
described above is applied. We can compare results expressed in terms of the
Michalski index MI as a measure of the trade–off between accuracy and coverage;
for template based methods, the best MI is 0.891, for covering or LEM algorithms
the best value of MI is 0.804, for exhaustive classifier (r = nil) MI is equal to
0.907 and for granular reflections, the best MI value is 0.915 with few other values
exceeding 0.900.

What seems worthy of a moment’s reflection is the number of rules in the
classifier. Whereas for the exhaustive classifier (r = nil) in non–granular case, the
number of rules is equal to 5,597, in granular case the number of rules can be
surprisingly small with a good MI value, e.g., at r D 0:5, the number of rules
is 293, i.e., 5 % of the exhaustive classifier size, with the best MI at all of 0.915.
This compression of classifier seems to be the most impressive feature of granular
classifiers.

It is an obvious idea that this procedure can be repeated until a stable system
is obtained to which further granulation causes no change; it is the procedure of
layered granulation, see Artiemjew (2007). Table 10.6 shows some best results
of this procedure for selected granulation radii. As coverage in all reported cases
is equal to 1.0, the Michalski index MI is equal to accuracy. This initial, simple
granulation, suggests further ramifications. For instance, one can consider, for a
chosen value of " 2 Œ0; 1�, granules of the form
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Table 10.7 "opt = optimal
value of ", acc = accuracy,
cov = coverage. Best
rcatch D 0:1428, "opt D 0:35:
accuracy = 0.8681,
coverage = 1.0

r_catch optimal eps acc cov

Nil Nil 0:845 1:0

0 0 0:555073 1:0

0:071428 0 0:83913 1:0

0:142857 0:35 0:868116 1:0

0:214286 0:5 0:863768 1:0

0:285714 0:52 0:831884 1:0

0:357143 0:93 0:801449 1:0

0:428571 1:0 0:514493 1:0

0:500000 1:0 0:465217 1:0

0:571429 1:0 0:115942 1:0

g�.u; r; "/ D fv 2 U W 8a 2 A:ja.u/� a.v/j � "g (10.107)

and repeat with these granules the procedure of creating a granular reflection
and building from it a classifier. Another yet variation consists in mimicking
the performance of the Łukasiewicz based rough inclusion and introducing a
counterpart of the granulation radius in the form of the catch radius, rcatch. The
granule is then dependent on two parameters: " and rcatch, and its form is

g�.u; "; rcatch/ D fv 2 U W jfa 2 A W ja.u/� a.v/j � "

jAj 	 rcatchg (10.108)

Results of classification by granular classifier induced from the granular reflection
obtained by means of granules (10.108) are shown in Table 10.7.

10.8.6 A Treatment of Missing Values

A particular but important problem in data analysis is the treatment of missing
values. In many data, some values of some attributes are not recorded due to many
factors, like omissions, inability to take them, loss due to some events etc.

Analysis of systems with missing values requires a decision on how to treat
missing values; Grzymala–Busse and Hu (2000) analyze nine such methods, among
them, (1) most common attribute value, (2) concept restricted most common
attribute value, (3) assigning all possible values to the missing location, (4) treating
the unknown value as a new valid value, etc. Their results indicate that methods (3),
(4) perform very well and in a sense stand out among all nine methods.

We adopt and consider two methods, i.e., (3), (4) from the above mentioned.
As usual, the question on how to use granular structures in analysis of incomplete
systems, should be answered first.
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The idea is to embed the missing value into a granule: by averaging the attribute
value over the granule in the way already explained, it is hoped the average value
would fit in a satisfactory way into the position of the missing value.

We will use the symbol �, commonly used for denoting the missing value; we
will use two methods (3), (4) for treating �, i.e, either � is a don’t care symbol
meaning that any value of the respective attribute can be substituted for �, hence,
� D v for each value v of the attribute, or � is a new value on its own, i.e., if � D v
then v can only be �.

Our procedure for treating missing values is based on the granular structure
.G.�; r/;G ;S ; fa� W a 2 Ag/; the strategy S is the majority voting, i.e., for
each attribute a, the value a�.g/ is the most frequent of values in fa.u/ W u 2 gg.
The strategy G consists in random selection of granules for a covering.

For a thing u with the value of � at an attribute a„ and a granule g D g.v; r/ 2
G.�; r/, the question whether u is included in g is resolved according to the
adopted strategy of treating �: in case � D don’t care, the value of � is regarded
as identical with any value of a hence jIND.u; v/j is automatically increased by 1,
which increases the granule; in case � D �, the granule size is decreased. Assuming
that � is sparse in data, majority voting on g would produce values of a� distinct
from � in most cases; nevertheless the value of � may appear in new things g�, and
then in the process of classification, such value is repaired by means of the granule
closest to g� with respect to the rough inclusion �L, in accordance with the chosen
method for treating �.

In plain words, things with missing values are in a sense absorbed by close to
them granules and missing values are replaced with most frequent values in things
collected in the granule; in this way the method (3) or (4) in Grzymala–Busse and
Hu (2000) is combined with the idea of a frequent value, in a novel way.

We have thus four possible strategies:

1. Strategy A: in building granules � = don’t care, in repairing values of �,
� = don’t care;

2. Strategy B: in building granules �= don’t care, in repairing values of �, � D �;
3. Strategy C: in building granules � D �, in repairing values of �, �= don’t care;
4. Strategy D: in building granules � D �, in repairing values of �, � D �.

We show how effective are these strategies, see Polkowski and Artiemjew (2007) by
perturbing the data set Pima Indians Diabetes, from UC Irvine Repository (2012).
First, in Table 10.8 we show results of granular classifier on the non–perturbed (i.e.,
without missing values) Pima Indians Diabetes data set. We now perturb this data
set by randomly replacing 10 % of attribute values in the data set with missing �
values. Results of granular treatment in case of Strategies A, B, C, D in terms of
accuracy are reported in Table 10.9. As algorithm for rule induction, the exhaustive
algorithm of the RSES system has been selected. 10-fold cross validation (CV–10)
has been applied.

Strategy A reaches the accuracy value for data with missing values within 94 %
of the value of accuracy without missing values (0:9407–1:0) at the radius of 0:875.
With Strategy B, accuracy is within 94 % from the radius of 0:875 on. Strategy C is
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Table 10.8 10-fold CV;
Pima; exhaustive algorithm,
r = radius, macc = mean
accuracy, mcov = mean
coverage

r macc mcov

0:0 0:0 0:0

0:125 0:0 0:0

0:250 0:6835 0:9956

0:375 0:7953 0:9997

0:500 0:9265 1:0

0:625 0:9940 1:0

0:750 1:0 1:0

0:875 1:0 1:0

Table 10.9 Accuracies of
strategies A, B, C, D. 10-fold
CV; Pima Indians; exhaustive
algorithm; r = radius,
maccA = mean accuracy of A,
maccB = mean accuracy of B,
maccC = mean accuracy of C,
maccD = mean accuracy of D

r maccA maccB maccC maccD

0:250 0:0 0:0 0:0 0:645

0:375 0:0 0:0 0:0 0:7779

0:500 0:0 0:0 0:0 0:9215

0:625 0:5211 0:5831 0:5211 0:9444

0:750 0:7705 0:7769 0:7705 0:9994

0:875 0:9407 0:9407 0:9407 0:9987

much better: accuracy with missing values reaches 99 % of accuracy in no missing
values case from the radius of 0:625 on. Strategy D gives results slightly better than
C with the same radii.

We conclude that the essential for results of classification is the strategy of
treating the missing value of � as � D � in both strategies C and D; the repairing
strategy has almost no effect: C and D differ very slightly with respect to this
strategy.

10.8.7 Granular Rough Mereological Classifiers Using
Residuals

Rough inclusions used in Sects. 10.8.4–10.8.6 in order to build classifiers do take, to
a certain degree, into account the distribution of values of attributes among things,
by means of the parameters " and the catch radius rcatch. The idea that metrics used
in classifier construction should depend locally on the training set is, e.g., present in
classifiers based on the idea of nearest neighbor, see, e.g., a survey in Polkowski
(2009b). In order to construct a measure of similarity based on distribution of
attribute values among things, we resort to residual implications–induced rough
inclusions. This rough inclusion can be transferred to the universe U of a decision
system; to this end, first, for given things u; v, and " 2 Œ0; 1�, factors

dis".u; v/ D jfa 2 A W ja.u/� a.v/j 	 "gj
jAj (10.109)
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and

ind".u; v/ D jfa 2 A W ja.u/� a.v/j < "gj
jAj (10.110)

are introduced. The weak variant of rough inclusion �!T is defined, see Polkowski
(2007), as

��
T .u; v; r/ if and only if dis".u; v/!T ind".u; v/ 	 r (10.111)

These similarity measures will be applied in building granules and then in data
classification.

Tests are done with the Australian credit data set; the results are validated by
means of the 5–fold cross validation (CV–5). For each of t–norms: M , P , L, three
cases of granulation are considered

1. Granules of training things (GT);
2. Granules of rules induced from the training set (GRT);
3. Granules of granular things induced from the training set (GGT).

In this approach, training things are made into granules for a given ". Things in
each granule g about a test thing u, vote for decision value at u as follows: for each
decision class c, the value

p.c/ D
P

training thing v in g falling in c w.u; v/

size of c in training set
(10.112)

is computed where the weight w.u; v/ is computed for a given t–norm T as

w.u; v/ D dis".u; v/!T ind".u; v/ (10.113)

The class c* assigned to u is the one with the largest value of p.
Weighted voting of rules in a given granule g for decision at test thing u goes

according to the formula d.u/ D argmaxp.c/, where

p.c/ D
P

rule in g pointing to c w.u; r/ � support.r/

size of c in training set
(10.114)

where weight w.u; r/ is computed as

dis".u; r/!T ind".u; r/ (10.115)

The optimal (best) results in terms of accuracy of classification are collected in
Table 10.10.
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Table 10.10 5-fold CV;
Australian; residual metrics.
met = method of granulation,
T = t–norm, "opt = optimal ",
macc = mean accuracy,
mcov = mean coverage

met T "opt macc mcov

GT M 0:04 0:848 1:0

GT P 0:06 0:848 1:0

GT L 0:05 0:846 1:0

GRT M 0:02 0:861 1:0

GRT P 0:01 0:851 1:0

GGT M 0:05 0:855 1:0

GRT P 0:01 0:852 1:0

These results show that rough mereological granulation provides better or at least
on par with best results by other methods accuracy of classification at the radically
smaller classifier size measured as the number of decision rules in it.

10.9 Mereology in Artificial Intelligence

Though the topics relegated to this section may be as well assigned to Knowledge
Engineering, yet we relate them to Artificial Intelligence as tools which may be
helpful in reasoning about complex systems and hard decision problems.

10.9.1 Cognitive Reasoning

We focus here on cognitive methods known also as network related methods. Of
those, neural networks are well–known as a tool useful in pattern recognition,
classification and machine learning. Based on the structure of the physiological
neuron, discovered by Ramón y Cajal (1889), artificial neuron was defined in
McCulloch and Pitts (1943) as the structure composed of a finite set of inputs
labeled x1; x2; : : : ; xn, a body with a threshold � and the output, y; according to
the physiological archetype, this neuron computes by the rule

y D 1,
X

i

xi 	 � else y D 0 (10.116)

Later developments include a perceptron defined in Rosenblatt (1958). A simplified
perceptron adds to McCulloch–Pitts neuron weights on inputs, and an additional
input with constant value of 1 and a weight b, called bias. Thus, the computation
rule has the form

y D 1,
X

i

wi � xi C b 	 � else y D 0 (10.117)
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which allows for a greater flexibility. Either type of neuron is able to classify binary
concepts by means of the separating hyperplane, H , which separates the space En

of possible input vectors into two semi–planes, and it is defined, e.g., in case of
perceptrons, as

X

i

wi � xi C b D � (10.118)

The idea of networks of neurons was advocated by Alan Turing (1948) who
proposed a learning scheme for networks of neurons connected through modifiers,
and it was revived in Grossberg (1973) with networks of perceptrons. Such
networks of connected perceptrons produce the intersection of respective semi–
planes which cuts the space of input vectors into convex closed regions in ideal case
assigning input vectors representing distinct categories of things to distinct regions.
Finally, the back–propagation learning, see Werbos (1994), added in place of �’s
differentiable sigmoid transfer functions.

Our model of perceptron, see Polkowski (2005b), differs from the standard
model, as its neurons are perceived as intelligent agents working with knowledge
represented in information systems. An essential feature of network perceptrons
from the point of view of learning is differentiability of transfer functions; hence, we
introduced a special type of rough inclusions, called gaussian in Polkowski (2005b)
because of their form, by letting

�G.x; y; r/ iff e�jPa2DIS.x;y/ wa j2 	 r (10.119)

where wa 2 .0;C1/ is a weight associated with the attribute a for each attribute
a 2 A; cf. (10.23) for DIS. Computation by this perceptron is directed by the
gradient of the function

f .x; y/ D e�jPa2DIS.x;y/ waj2 (10.120)

whose wa component is

@f

@wa

D f � .�2 �
X

wa/ (10.121)

It follows from the last equation that gradient search would go in direction of
minimizing the value of

P
a wa.

We denote the perceptron by the agent symbol ag; it is endowed with an
information system Iag D .Uag; Aag/. The input to ag is in the form of a thing x.

The rough mereological perceptron is endowed with a set of target concepts t D
g�G .T 2 Uag=IND.Aag/; rt /. The result of computation with a dedicated target t for
a training thing x is a granule g D g�G .x; r.res// such that ingr.g; t/.

During computation, weights are incremented by the learning rule
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wa  wa C� � @E
@wa

(10.122)

where � is the learning rate.
At a stage current of computing, where � D jrcurrent � r j, for a natural number

k, the value of �current which should be taken at the step current in order to achieve
the target in at most k steps should be taken as, see Polkowski (2005b)

�current ' �

2 � k � f 2 � .Pa wa/2
(10.123)

10.9.2 MAS Reasoning: Many–Agent Systems

Reasoning in artificial intelligence is often concerned with ‘complex cases’ like,
e.g., robotic soccer, in which performing successfully tasks requires participation
of a number of ‘agents’ bound to cooperate, and in which a task is performed
with a number of steps, see, e.g., Stone (2000); other areas where such approach
seems necessary concern assembling and design, see Amarel (1991), fusion of
knowledge, e.g., in robotics, fusion of information from sensors, see, e.g., Canny
(1988), Choset et al. (2005), or, Stone (2000), as well as in machine learning and
fusion of classifiers, see, e.g., Dietterich (2000).

Rough mereological approach to these problems was initiated with Polkowski
and Skowron (1998, 1999a,b, 2001); here, we propose a logically oriented formula-
tion.

Rough inclusions and granular intensional logics based on them can be applied
in describing workings of a collection of intelligent agents which are called here
granular agents.

A granular agent a will be represented as a tuple

.Ua; �a; La; propa; synta; aggra/

where

1. Ua is a collection of objects available to the agent a.
2. �a is a rough inclusion on objects in Ua.
3. La is a set of unary predicates in first–order open calculus, interpretable in Ua.
4. propa is the propagation function that describes how uncertainty expressed by

rough inclusions at agents connected to a propagates to a.
5. synta is the logic propagation functor which expresses how formulas of logics at

agents connected to the agent a are made into a formula at a.
6. aggra is the synthesis function which describes how objects at agents connected

to a are made into an object at a.
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We assume for simplicity that agents are arranged into a rooted tree; for each agent
a distinct from any leaf agent, we denote by Ba the children of a, understood as
agents connected to a and directly sending to a objects, logical formulas describing
them, and uncertainty coefficients like values of rough inclusions.

For b 2 Ba, the symbol xb will denote an object in Ub; similarly, �b will denote
a formula of Lb , and �b will be a rough inclusion at b with values rb . The same
convention will be obeyed by objects at a.

Postulates governing the working of the scheme are

MA1 If ingrb.x
0
b; xb/ for each b 2 Ba, then ingra.aggr.fx0

bg/; aggr.fxbg//.
This postulate does assure that ingredient relations are in agreement with
aggregate operator of forming complex objects: ingredients of composed
objects form an ingredient of a complex object. We can say that aggr ı
ingr D ingr ı aggr, i.e, the resulting diagram commutes.

MA2 If xb ˆ �b , then aggr.fxbg/ ˆ synt.f�bg/.
This postulate is about agreement between aggregation of objects and
their logical descriptions: descriptions of composed objects merge into a
description of the resulting complex object.

MA3 If �b.xb; yb; rb/ for b 2 Ba, then �a.aggr.fxbg/; aggr.fybg/; propfrbg/.
This postulate introduces the propagation function, which does express how
uncertainty at connected agents is propagated to the agent a. One may
observe the uniformity of prop, which in the setting of MA3 depends only
on values of rb’s; this is undoubtedly a simplifying assumption, but we want
to avoid unnecessary and obscuring the general view complications, which
of course can be multiplied at will.

MA4 For b 2 Ba, ingrb.xb; gmur .ub; rb// implies

ingra.aggr.fxbg/; g�a .aggr.fubg/; prop.frbg///:

Admitting MA4, we may also postulate that in case agents have at
their disposal variants of rough mereological granular logics, intensions
propagate according to the prop functor

MA5 If I_
�b
.gb/.�b/ 	 rb for each b 2 Ba, then

I_
�a
.aggr.fgbg//.synt.f�bg// 	 prop.frbg/:

A simple exemplary case of knowledge fusion was examined in Polkowski
(2008). We consider an agent a 2 Ag with two incoming connections from
agents b; c, i.e., Ba D fb; cg. Each agent is applying the rough inclusion
� D �I

L, see (10.26), to an information system .Ua; Aa/, .Ub; Ab/,
.Uc; Ac/. Each agent is also applying the rough inclusion on sets of the
form (10.27) in evaluations related to extensions of formulae intensions.

We consider a simple fusion scheme in which information systems at b; c are
combined thing–wise to make the information system at a; thus, aggra.x; y/ D
.x; y/. Such case may happen, e.g., when an object is described with help of a
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camera image by some features and at the same time it is perceived and recognized
with range sensors like infrared or laser sensors and some localization means like
GPS.

Then: uncertainty propagation and granule propagation are described by the
Łukasiewicz t–norm L and extensions of logical intensions propagate according to
the product t–norm P .

10.9.3 Granular Logics: Reasoning in Information Systems

The idea of a granular rough mereological logic, see Polkowski (2004b) and
Polkowski and Semeniuk–Polkowska (2005), consists in measuring the meaning of
a unary predicate in the model which is a universe of an information system against
a granule defined by means of a rough inclusion. The result can be regarded as the
degree of truth (the logical value) of the predicate with respect to the given granule.
The obtained logics are intensional as they can be regarded as mappings from the
set of granules (possible worlds) to the set of logical values in the interval Œ0; 1�, the
value at a given granule regarded as the extension at that granule of the intension. A
discussion of intensional logics can be found, e.g., in Gallin (1975), Van Benthem
(1988), Hughes and Creswell (1996) and Fitting (2004).

For an information/decision system .U;A; d/, with a rough inclusion �,
e.g., (10.27), on subsets ofU and for a collection of unary predicatesP r , interpreted
in the universe U (meaning that for each predicate � 2 P r the meaning ŒŒ��� is a
subset of U ), we define the intensional logic GRM� by assigning to each predicate
� in P r its intension I�.�/ defined by its extension I_

� .g/ at each particular granule
g, as

I_
� .g/.�/ 	 r , �.g; ŒŒ���; r/ (10.124)

With respect to the rough inclusion (10.27) the formula (10.124) becomes

I_
�L
.g/.�/ 	 r , jg \ ŒŒ���j

jgj 	 r (10.125)

A formula � interpreted in the universe U of a system .U;A; d/ is true at a granule
g with respect to a rough inclusion � if and only if I_

� .g/.�/ D 1 and � is true if and
only if it is true at each granule g. A rough inclusion � is regular when �.X; Y; 1/

holds if and only if X � Y . Hence, for a regular �, a formula � is true if and only if
for g � ŒŒ��� for each granule g.

A particularly important case of a formula is that of decision rules; clearly, for a
decision rule r W p) q in the descriptor logic, the rule r is true at a granule g with
respect to a regular rough inclusion � if and only if g \ ŒŒp�� � ŒŒq��.

Analysis of decision rules in the system .U;A; d/ can be given in a more general
setting of dependencies. For two sets C;D � A [ fd g of attributes, one says that
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D depends functionally on C when IND.C / � IND.D/, symbolically denoted
C 7! D. Functional dependence can be represented locally by means of functional
dependency rules of the form

�C .fva W a 2 C g/) �D.fwa W a 2 Dg/ (10.126)

where �C .fva W a 2 C g/ is the formula
V

a2C .a D va/, and ŒŒ�C �� � ŒŒ�D��.
We introduce a regular rough inclusion on sets �3 defined as

�3.X; Y; 1/, X � Y else �3.X; Y;
1

2
/, X \ Y ¤ ; else �3.X; Y; 0/ (10.127)

Then one proves that ˛ W �C ) �D is a functional dependency rule if and only
if ˛ is true in the logic induced by �3. A specialization of this statement holds
for decision rules. Further applications to modalities in decision systems and the
Perception Calculus in the sense of Zadeh (2004) can be found in Polkowski (2011).
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Leśniewski, S. (1927). O podstawach matematyki (On foundations of mathematics, in Polish).
Przegla̧d Filozoficzny, XXX, 164–206; Przegla̧d Filozoficzny, XXXI, 261–291 (1928); Przegla̧d
Filozoficzny, XXXII, 60–101 (1929); Przegla̧d Filozoficzny, XXXIII, 77–105 (1930); Przegla̧d
Filozoficzny, XXXIV, 142–170 (1931).
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Stanisław Leśniewski. Dordrecht: Kluwer.
Stone, P. (2000). Layered learning in multiagent systems: A winning approach to robotic soccer.

Cambridge: MIT.
Tarski, A. (1929). Les fondements de la géométrie des corps. Supplement to Annales de la Société

Polonaise de Mathématique, 7, 29–33.
Tarski, A. (1935). Zur Grundlegung der Booleschen Algebra. I. Fundamenta Mathematicae, 24,

177–198.
Tarski, A. (1937). Appendix E. In J. H. Woodger (Ed.), The axiomatic method in biology (p. 160).

Cambridge: Cambridge University Press.
Tarski, A. (1959). What is elementary geometry? In L. Henkin, P. Suppes, & A. Tarski (Eds.),

The axiomatic method with special reference to geometry and physics (pp. 16–29). Amsterdam:
North-Holland.

Turing, A. M. (1948). Intelligent machinery. A report. National Physical Laboratory, Mathematical
Division.

UC Irvine Repository. (2012). Available at http://archive.uci.edu/ml/datasets; last entered 25. 03.
2014.

Uny, C. Y., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: Antecedents
and directions. Autonomous Robots, 4, 7–27.

Van Benthem, J. (1983). The logic of time. Dordrecht: Reidel.
Van Benthem, J. (1988). A manual of intensional logic. Stanford: CSLI Stanford University.
Varzi, A. C. (2008). The extensionality of parthood and composition. The Philosophical Quarterly,

58, 108–133.
Werbos, P. J. (1994). The Roots of backpropagation: From ordered derivatives to neural networks

and political forecasting. New York: Wiley.
Whitehead, A. N. (1916). La théorie relationniste de l’espace. Revue de Métaphysique et de

Morale, 23, 423–454.
Whitehead, A. N. (1919). An enquiry concerning the principles of human knowledge. Cambridge:

Cambridge University Press.
Whitehead, A. N. (1920). The concept of nature. Cambridge: Cambridge University Press.
Whitehead, A. N. (1929). Process and reality: An essay in cosmology. New York: Macmillan.
Woodger, J. H. (1937). The axiomatic method in biology. Cambridge: Cambridge University Press.
Woodger, J. H. (1939). The technique of theory construction. In R. Carnap et al. (Eds.),

International encyclopedia of unified science, II (Vol. 5, pp. 1–81). Chicago: Chicago University
Press.

Wróblewski, J. (2004). Adaptive aspects of combining approximation spaces. In: S. K. Pal, L.
Polkowski, & A. Skowron (Eds.), Rough neural computing: Techniques for computing with
words (pp. 139–156). Berlin: Springer

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

http://archive.uci.edu/ml/datasets


10 Mereology in Engineering and Computer Science 291

Zadeh, L. A. (1979). Fuzzy sets and information granularity. In M. Gupta, R. Ragade, & R. R.
Yager (Eds.), Advances in fuzzy set theory and applications, (pp. 3–18). Amsterdam: North–
Holland.

Zadeh, L. A. (2004). Toward a unified theory of uncertainty. In Proceedings of IPMU 2004, Perugia
(Vol. 1, pp. 3–4).

Zermelo, E. (1908). Untersuchungen über die Grundlgen der Mengenlehre I. Mathematische
Annalen, 65, 261–281.


	Chapter 10: Mereology in Engineering and Computer Science
	10.1 Introduction
	10.2 Mereology
	10.2.1 Mereology of Leśniewski
	10.2.1.1 On the Notion of Part
	10.2.1.2 On the Notion of a Class
	10.2.1.3 Notions of Element, Subset
	10.2.1.4 The Universe of Things, Things Exterior, Complementation

	10.2.2 Mereology Based on Connection
	10.2.2.1 On the Connection Predicate
	10.2.2.2 Introducing Notions of a Part, an Ingredient, Overlapping Things and Things Exterior
	10.2.2.3 Notions Derived from C


	10.3 Rough Mereology
	10.3.1 Rough Inclusions
	10.3.1.1 Rough Inclusions from t–norms
	10.3.1.2 Rough Inclusions in Information Systems (Data Tables)
	10.3.1.3 Rough Inclusions on Sets and Measurable Sets


	10.4 Mereotopology and Mereogeometry
	10.4.1 A Topological Background
	10.4.1.1 Approximations: Interior and Closure of a Set
	10.4.1.2 Boundaries

	10.4.2 Regular Open and Regular Closed Sets
	10.4.3 An Application: The Model ROM for Connection
	10.4.3.1 Ingredient in ROM
	10.4.3.2 Overlap in ROM
	10.4.3.3 External Connectedness in ROM
	10.4.3.4 Tangential Ingredient in ROM

	10.4.4 Mereotopology in Part Mereology
	10.4.4.1 On Closures
	10.4.4.2 On Boundaries

	10.4.5 Connection Mereotopology
	10.4.5.1 On the Notion of C–interior
	10.4.5.2 On the Notion of C–Closure
	10.4.5.3 C–Boundaries and a Barry Smith's Proposal for Mereotopology

	10.4.6 Rough Mereotopology
	10.4.6.1 The Notion of an Open Set
	10.4.6.2 On Closures and Interiors
	10.4.6.3 On Boundaries

	10.4.7 Mereogeometry
	10.4.7.1 On the Notion of Betweenness in Tarski and Van Benthem Sense
	10.4.7.2 Example: The Case of Betweenness for Robots in 2D Space


	10.5 Mereology in Engineering: Artifacts, Design and Assembling
	10.5.1 On the Notion of an Artifact
	10.5.2 Design Artifacts
	10.5.3 Action of Things on Design Abstracta

	10.6 Mereology in Spatial Reasoning
	10.6.1 Properties of Artifacts: Mereological Theory of Shape and Orientation
	10.6.1.1 Qualitative Spatial Reasoning
	10.6.1.2 A Case of Spatial Analysis of Limiting Things
	10.6.1.3 A Digression on Time in Mereology
	10.6.1.4 RCC: Region Connection Calculus. ROM Revisited


	10.7 Mereology in Intelligent Planning and Navigation: The Case of Behavioral Robotics
	10.7.1 Planning with Emphasis on Behavioral Robotics
	10.7.2 Mereological Planning via Potential Fields
	10.7.3 Planning for Teams of Robots
	10.7.4 Mereological Approach to Robot Formations

	10.8 Mereology in Knowledge Granulation and Reasoning About Knowledge
	10.8.1 Representation of Knowledge: Information/Decision Systems
	10.8.2 Decision Rules
	10.8.3 Mereology as Similarity: Granulation of Knowledge
	10.8.4 The Idea of Granular Mereological Classifiers
	10.8.5 Classification by Granules of Training Things
	10.8.5.1 Procedure of the Test

	10.8.6 A Treatment of Missing Values
	10.8.7 Granular Rough Mereological Classifiers Using Residuals

	10.9 Mereology in Artificial Intelligence
	10.9.1 Cognitive Reasoning
	10.9.2 MAS Reasoning: Many–Agent Systems
	10.9.3 Granular Logics: Reasoning in Information Systems

	References


