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Rafał Gruszczyński is an Assistant Professor at the Department of Logic, Nico-
laus Copernicus University in Poland. His scientific work focuses on mereology
and point-free geometry. He published in Bulletin of Symbolic Logic, Fundamenta
Informaticae and Bulletin of the Section of Logic. He is an assistant editor of a
quarterly Logic and Logical Philosophy (ERIH list) and a supervisor of Logical
Society, an organization at Nicolaus Copernicus University whose mission is to
deepen students’ knowledge of advanced topics in logic.

Rom Harré studied chemical engineering but went on to teach mathematics for
several years until turning to logic and philosophy of science. He was University
Lecturer in Philosophy Science at Oxford until joining Georgetown University in the
psychology department where he has been involved in the development of discursive
psychology. His most recent books include Pavlov’s Dogs and Schrödinger’s Cat
and Psychology for the Third Millennium.

Paul Hovda is an Associate Professor of Philosophy and Humanities at Reed
College. He specializes in Logic and Metaphysics and has published several papers
in distinguished journals including Journal of Philosophical Logic and Philosophy
and Phenomenological Research.

Ludger Jansen is a Lecturer at the Department of Philosophy of the University of
Münster, Germany. His research focuses on the metaphysics of science, including
biomedical and social ontology. Together with Barry Smith he edited the first intro-
duction to applied ontology in the German language (Biomedizinische Ontologie,
Zürich 2008).



Notes on Contributors xi

Jean-Pierre Llored was first trained as a chemist (chemical engineer and then
Professor agrégé of Chemistry). He resumed his studies in history and philosophy
of science (Master Degree) and obtained two Ph.D.s in epistemology, history of
science and technology (Ecole Polytechnique, France) and in philosophy (ULB,
Belgium). His research fields are mereology, quantum chemistry, nanotechnologies,
and the concept of emergence. Deputy Editor of the journal Foundations of
Chemistry, he also edited the volume The Philosophy of Chemistry: Practices,
Methodologies, and Concepts (Cambridge Scholars Publishing, 2013) and is editing
the forthcoming volume La chimie, cette inconnue? (Hermann, France, 2014).

Andrzej Pietruszczack is a Professor of Logic at the Department of Logic,
Nicolaus Copernicus University in Poland. He is an author of two books on
mereology: Metamereology and Foundations of Theory of Parthood (both in Polish)
and over 50 papers devoted to mereology, classical and non-classical logic and
set theory published, among others, in Bulletin of Symbolic Logic, Studia Logica,
Fundamenta Informaticae and Notre Dame Journal of Formal Logic. He is a co-
founder and an editor-in-chief of a quarterly Logic and Logical Philosophy (ERIH
list).

Lech Polkowski studied mathematics at University of Warsaw with a particular
emphasis on topology. His results are quoted in monographs on set-theoretic topol-
ogy and topological dimension theory. He received his habilitation in Mathematical
Foundations of Computer Science at Warsaw University of Technology in 1994.
Since 2000 he has been a Full Professor there, in Polish-Japanese Institute of IT, and
in the University of Warmia and Mazury in Olsztyn, Poland. He has given essential
contributions in topology, robotics, and computer science. He is the creator of the
so-called rough mereology, a fuzzified variant of standard mereology. On this very
topic he has authored in 2011 the monograph Approximate Reasoning by Parts. An
Introduction to Rough Mereology.

Stefan Schulz is a Professor of Medical Informatics at the Institute of Medical
Informatics, Statistics and Documentation of the Medical University of Graz,
Austria. His research encompasses electronic health records, medical language
processing, biomedical terminologies, and the application of formal ontologies for
biomedical knowledge representation.

Gino Tarozzi has studied physics and philosophy at University of Bologna. He is
currently Full Professor of Logic and Philosophy of Science at University of Urbino.
His main research interest is the foundations of quantum mechanics, a topic in which
he has given highly significant contributions.

Achille C. Varzi is a Professor of Philosophy at Columbia University. He works
mainly in Logic and Metaphysics. He has written extensively in areas as diverse as
formal semantics, spatial logic, formal ontology and analytic metaphysics including
mereology and mereotopology. He is an editor of the Journal of Philosophy and the
author (together with Roberto Casati) of Holes and other Superficialities and Parts
and Places.





Parts, Wholes and Contemporary Sciences

Claudio Calosi and Pierluigi Graziani

Talk about parts, wholes and parthood relations is pervasive. Consider these
examples, taken from Winston et al. (1987)1:

(1 a) A handle is part of a cup
(2 a) Phonology is part of linguistics
(3 b) A tree is part of a forest
(4 b) This ship is part of a fleet
(5 c) This slice is part of a pie
(6 c) This hunk is part of my clay
(7 d ) A martini is partly alcohol
(8 d ) Water is partly hydrogen
(9 e) Bidding is part of playing bridge
(10 e) Ovulation is part of the menstrual cycle
(11 f ) The Everglades are part of Florida
(12 f ) An oasis is part of a desert

Where (a–f ) exemplify six different types of mereological relations, namely .a/
component-integral object, .b/ member-collection, .c/ portion-mass, .d/ stuff-
object, .e/ feature-activity and .f / place-area. It is maybe possible to resist the
claim that all of them exemplify truly mereological relations. Yet they provide
substantive evidence that we seem to employ parts and wholes in a wide ranging
number of contexts and circumstances.

It is not surprising then that reflections about parts and wholes were somehow
part (pun intended) of philosophy since its very early days, back to the Pre-Socratics.

1Winston et al. (1987). See also Varzi (2014).
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Parmenides and Zeno argued there exists only one object, the Universe. This claim
can be understood to mean that the Universe is a mereological atom, i.e. an entity
that does not have any parts (or better proper parts). Democritus, possibly to answer
some of the Eleatic arguments, maintained that everything was composed of atoms.
This translates easily into the claim that every composite object has some atomic
parts.2

Already in Plato’s Thaetetus, Parmenides and Timaeus we find sophisticated
analysis of parts and wholes. Aristotle tackles these questions in his De Partibus
Animalium, De Generatione et Corruptione and Metereology. Furthermore Physics
(I.2, 185b11-14) and Metaphysics (Z.17 1041b11-33) contain arguably two of
the most influential passages about parts and wholes in the entire philosophical
literature. Hellenistic philosophy saw Epicurus embracing a form of Democritean
atomism and Chrysippus discussing some variant of the mereological paradox
which became known as the Growing Paradox,3 the puzzle of how a thing can retain
its identity in face of drastic mereological variations.

Boethius De Divisione was one of the cornerstone of philosophical reflection
about parts and wholes and its legacy was widespread and influential throughout
the middle ages.4 It can be seen in thinkers as different as Peter Abelard (1079–
1142), Albertus Magnus (1206–1280), Bonaventure (1221–1274), Thomas Aquinas
(1225–1274), and Duns Scotus (1256–1308). To give just two examples of the depth
of the mereological insights that can be found in medieval writings we could point
at Ockham’s Questiones Variae (q. vi art. ii) and Buridan’s unedited Questions on
the Physics of Aristotle (Book 1. Q.10).

Modern philosophy was no ignorant of mereology as witnessed in the works of
Gottfried Leibniz (in particular Monadology) and Immanuel Kant, especially in his
early writings. It is however only with Franz Brentano and his pupils, most notably
Edmund Husserl, that a fully fledged theory about parthood relations was developed.
In fact many consider his third Logical Investigation (1901) as the birthmark of
modern mereology.

The first complete formal theory of parthood is however credited to the Polish
mathematician Stanislaw Leśniewski in his (1916) Foundations of General Theory
of Sets. His work was originally published in polish, which significantly restricted
the number of people in the philosophical and mathematical community that had
access to it. It was Leonard and Goodman’s (1941) The Calculus of Individuals and
its Uses that made the formal theory of parthood available for a wider audience.
These two works can be considered the foundations for what is now known as
classical mereology.

2Note that we are not claiming that these philosophers were engaged in thinking about mereology
per se, but rather that their main metaphysical tenets have an implicit mereological import.
3That is closely related to what Unger calls the Problem of the Many. For the Growing Paradox see
Sedley (1982). Unger’s problem of the many can be found in his Unger (1980). We firstly found
discussions of these issues in Normore (2006).
4The interested reader can start from Arlig (2011).
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These works actually shared another feature. They were originally intended
to be a nominalistic alternative to standard set theory. Already in 1935 Alfred
Tarski5 had proved that the parthood relation axiomatized by classical mereology
forms a complete boolean algebra with no zero element. However this alternative
foundational project turned out to be not viable.6

Another strand in thinking about parthood relations, that was independent of
nominalistic commitments, was developed by Bertrand Russell, especially in his
Our Knowledge of the External World, and Alfred Whitehead in numerous of his
writings. In particular Whitehead’s analysis, building also on the work of Theodore
de Laguna, offered important insights on the relation between the mereological
notion of parthood and the topological notion of connection. This approach did not
receive a systematic development before Grzegorczyk’s works in the 1960s.

After a somehow silent period, mereology became around 1980 a substantive
part (again, pun intended) of another broad philosophical enterprise, namely formal
ontology.7 Formal ontology attempts at laying down the bare formal structure of all
there is, whatever there is. On this account, regardless of what entities should be
admitted in our domains of quantification, all there is must exhibit some general
structure and obey some general laws, and the task of ontology would be to
describe such structures and laws. It can be probably traced back to Aristotle’s
theory of being qua being, through Husserl theory of objects as such, to recent
developments in analytic metaphysics. More often than not candidates for formal
ontological relations include identity, parthood and dependence. Usually this way
of understanding the aim and the scope of ontology is contrasted with what is called
material ontology. On this account, made popular by Willard Quine, the task of
ontology is instead that of providing a structured inventory of the world. Thus it is
concerned with the nature of what there is, in sharp contrast with a formal approach
that is allegedly domain independent.

This turn of events has made mereology a somewhat familiar formal tool in the
hands of ontologists and metaphysicians but has distanced it from the contemporary
scientific context. This is because scientific theories, at least when interpreted with
even a mild realistic attitude, are closer to a material approach. However talk of part
and wholes is no less pervasive in that very context and seems deeply entrenched in
our scientific endeavor. Just consider for example the following questions:

(13g) Is a quantum system in an entangled state a composite system at all?
(14g) Are quarks constituents of baryons?
(15g) Is spacetime discrete?
(16h) Are singletons atoms and subsets parts of sets?
(17h) Does an affine space contain the same parts of a metric space defined over

it?

5See Tarski (1935).
6For an analysis of various limits of mereology see Libardi (1994), Tsai (2009, 2011, 2013), and
references therein.
7Our understanding is in line with Varzi (2010).
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(18h) Are boundaries the mereological remainders distinguishing closed and
open regions?

(19i ) In what sense the same nucleotides can form different DNA molecules?
(20i ) Do 1,2 dichloroethene (1,2 DCE) have the same mereological structure

represented by the chemical formula C2H2C l2?
(21l) Is missing information a part of a database?
(22l) Is there a preferred mereological analysis that maximize robot efficiency

when moving in a particularly structured environment?

Questions (13)–(22) refer either directly or indirectly to mereological issues.
Also, they are typical examples of questions that are addressed by our best
scientific theories broadly constructed. We have in fact taken the .g/-questions
from physics, the .h/-questions from mathematics, the .i/-questions from natural
sciences, biology and chemistry in particular, and finally the .l/-questions from
computer science and engineering. It is not by chance that the application of
mereology to these scientific theories is exactly what is explored in this volume.

This is because, for some of the reasons (and undoubtedly many others) we
have outlined in this introduction, a thorough study of parts and wholes within
the contemporary scientific context is missing. The aim of the present volume is
to fill this gap. It gathers contributions from well renown scholars that are widely
recognized as leading contributors to the field and young researchers alike.

Let us then spend a few words about its structure and contents, so as to show
clearly how it does indeed fill the gap.

The book is divided in four main parts: (I) Physics, (II) Mathematics, (III) Natural
Sciences, (IV) Computer Science and Engineering, exactly those disciplines from
which we took questions (13g)–(22l).

Even if some of the papers contain introductory sections, it was simply not
possible to provide an even incomplete overview of the scientific theories and
practices that the papers deal with. We have then added a brief introduction to each
part that attempts to single out the most relevant philosophical results of each paper.
This way the reader could read the most technical materials through a privileged
lens and perspective, so to say. Or so we hope. Also, we have suggested background
readings that would greatly help the reader that is interested yet unfamiliar with
most of the details of the scientific theories that are addressed within each part.
These readings include works at different levels of technical sophistication and
different levels of philosophical analysis. We are confident that each reader can find
the materials that are best suited for both her interests and her knowledge.

Let us just briefly mention here that the series of Handbook for the Philosophy
of Science published by North Holland contains several volumes that cover the
scientific disciplines addressed in the present book. They include Philosophy of
Physics, Philosophy of Mathematics, Philosophy of Logic, Philosophy of Chem-
istry, Philosophy of Biology, Philosophy of Medicine and Philosophy of Technology
and Engineering Science.Within each handbook there are scholarly articles, histor-
ical surveys and recent developments in the respective fields. Naturally there are
many other Handbooks, for example the ones published by Oxford University Press
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or Cambridge University Press. We just mentioned the series published by North
Holland for it is the most complete when it comes to disciplines that are covered in
this book.

It should be clear that the present volume fills indeed the gap between philo-
sophical reflections on parts and wholes and the contemporary scientific context.
Or better, it begins to fill this gap. We do not pretend this volume to be exhaustive.
Rather we would like it to be a first step, a first brick in a much larger bridge (we do
mean that the brick is part of the bridge: fourth pun!).

The volume also shows how fruitful an interaction between philosophical
considerations and scientific applications can be. On the one hand our understanding
of parts and wholes cannot but be significantly improved by a careful study of how
such notions work within our best scientific theories. On the other hand, scientific
theories usually do not wear their own interpretations and ontological commitments
on their sleeves. A difficult, interpretative, philosophical work is required. And
rigorous tools such as different formal theories of parthood can play a significant
role in elucidating, widening, revealing and clarifying some of the issues that such
an interpretative work touches upon. The present volume intends to cover different
application of mereological frameworks to different scientific theories. Given the
richness and the variety of these scientific domains, differences in methodology,
addressed topics, languages, and also in writing styles should be expected. For
these (and other) reasons this book is addressed to a wide range of scholars
coming from different disciplines and backgrounds and should be important for
different communities such as scientists (chemists, physicists, computer scientists),
engineers, and philosophers (philosophers of sciences, analytic metaphysicians,
ontologists). We believe that, despite an initial difficulty, all these different readers
will be rewarded for the effort that is put in reading the entire volume. It encourages
an interdisciplinary dialogue that we think is a crucial ingredient in any true
and fruitful advancement of knowledge. Our world is varied and complex. We
cannot hope for a deep understanding of its complexity if we simply stick to the
investigations and results of various disciplines without any attempt to integrate
them. Philosophy began with dialogue between different forms of knowledge and
descriptions of the world, given by natural sciences, mathematics, physics, even
poetry. It is to this kind of dialogue that we should turn back to. And this volume
can be read as a part (pun intended) of this dialogue.

We have made sure that the volume covers different approaches to mereological
thinking. We have hinted at some of them in this introduction. Some contributions
follow the path of what might be called a whiteheadian conception (Graziani and
Fano, Coppola and Gerla), whereas some other contributions can be considered
the heirs of the Leśniewski-Tarski approach (Gruszczyński and Pietruszczack,
Polkowski). Some of them are more reminiscent of the Leonard and Goodman’s
work (Calosi and Tarozzi, Gilmore), and others even advocate a different mereolog-
ical perspective (Llored and Harrè).
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The volume ends with a brief appendix on different formal theories of parthood
that can be found in the literature.8 It is a significant addition to the volume that
it was written by Achille Varzi, one of the leading figures in the field. Also we
have included (i) a table that sums up the different symbols used throughout the
contributions to help the reader orient herself within different formal notations, and
(ii) a selected general bibliography on formal mereology.

As we have already pointed out, we do not consider this volume to offer an
exhaustive treatment of parts and wholes within the contemporary scientific context.
Rather our hope is that it can lay down the foundations for an excitingly new and
not so well trodden territory of interdisciplinary work. And maybe also suggests
new possibilities for future researches and researchers.
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List of Symbols

Unfortunately there is no standard notation for different mereological notions. Thus
the following provides the reader with a minimal list of different mereological
symbols found throughout the literature on parts and wholes.1

Parthood: x is part of y
x < y, x � y, x v y, P.x; y/

Proper Parthood: x is a proper part of y
x << y, x �� y, x @ y, PP.x; y/

Proper Extension: x is a proper extension of y
x >> y, x �� y

Overlap: x overlaps y
x ı y, O.x; y/

Disjointness: x is disjoint from y

x o y, D.x; y/

Underlap: x underlaps y
U.x; y/

Equality: x equals y
x � y, EQ.x; y/

1An interesting evaluation of different symbolic notations for classical mereology and a proposal
for a new one can be found in Graziani (2014).
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xx List of Symbols

Binary Sum: mereological sum 2 of x and y
Sum.x; y/, x C y

Binary Product: mereological product of x and y
P rod.x; y/, x � y

Infinitary Sum: mereological sum of the '.x/
Sum.'.x//, S.'.x//

2The second notation is often used in the context of an extensional mereology, when the sum in
question is unique. The same goes for the second notation for the mereological product below.



Part I
Physics

Introduction to Part I: Mereology and Physics

Physics has stumbled across mereological notions since its early days. Democritean
physics is probably the first known explicit example of atomism. On the other
hand Aristotelian physics only features gunky objects, i.e. objects that decompose
infinitely into proper parts. This debate is far from being settled. Dirac and Feynman,
two of the founding fathers of modern quantum physics, both argued that quantum
mechanics vindicated atomism, whereas recent works in philosophy of physics, such
as Arntzenius (2003),3 present serious challenges to this view. Furthermore almost
every physical theory seem to quantify over composite objects. As such all these
theories engage in mereological thinking.

Not only physical theories employ mereological notions. Metaphysical inti-
mations coming from physics seem to suggest or even call for a revision of
some of those notions and their behavior. The papers in this section are perfect
examples of the fruitful interaction between philosophical reflection on mereology
and foundational issues in physics.

Relativity theory, with its replacement of three-dimensional space and one-
dimensional time with a more fundamental four-dimensional entity known as
spacetime, seems at first sight to be an inhospitable setting for a metaphysics
of material objects that maintain that they persist through time by being wholly
present at each time of their existence, thus being multilocated in spacetime.
This metaphysics is known as Three-dimensionalism. Rather, the argument goes,
Relativity favors the rival conception, according to which material objects persist
through time by having a temporal part at each time of their existence, thus being
singly located in spacetime. This rival conception is called Four-dimensionalism.
It is immediately clear the mereological import of such debate, for the alternative

3Arntzenius (2003).
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metaphysics of persistence ascribe different mereological structures to persisting
objects. The first two papers deal with these issues.

In the first one (Building Enduring Objects Out of Spacetime) Gilmore explores
different strategies to build three-dimensional objects out of spacetime regions that
are untouched by the relativistic threats. He actually starts off from arguments drawn
from General Relativity and Quantum Field Theory and he argues that coinciden-
talism, the view that material objects are constituted by, yet not identical with,
spacetime regions, could do the trick. This entails the rejection of two principles
of classical mereology, namely extensionality and unrestricted composition.

In the second one (Relativistic Parts and Places) Balashov gives us rea-
sons to abandon a crucial premise of the relativistic argument against Three-
dimensionalism, namely that three-dimensional objects are multilocated at each
and every slice of their spatiotemporal career. He claims that before even asking
at which slices of that career relativistic three-dimensional objects are located at
we should ask which of those slices are eligible to be their locations and that
Relativity does not sanction the claim that all of them are indeed eligible. Once
again mereological consequences are noteworthy for this entails the rejection of the
unrestricted composition principle.

The third paper (Parthood and Composition in Quantum Mechanics) by Calosi
and Tarozzi switches the focus to quantum mechanics. That theory has been credited
to have shown that the reductive claim according to which a composite object is
nothing over and above its parts is false. The paper can be seen as a thorough
investigation of whether that claim is warranted and in what sense it is. It is
argued that whereas there could be a sense in which this is true, namely in that
composite systems have properties that are not immediately reducible to properties
of the component parts, in a stricter mereological sense, namely the failure of
extensionality of composition, this is not true. It is actually shown that quantum
systems are a model of extensional mereology.

Finally the paper by Fano and Graziani (Continuity of Motion in Whitehead’s
Geometrical Space) explores a neglected conception in the foundations of spacetime
theories, namely the conception of gunk, point-free spaces inaugurated by De
Laguna and Whitehead, thus taking us back to some of the issues we opened this
brief overview with. Despite the epistemological merits of the proposal they argue
that this would have rather unwelcome consequences for the description of motion
that is provided by most of our physical theories, even simple ones such as classical
mechanics. The tension, they claim, is generated by the following facts: (i) classical
mechanics crucially adopts the notion of a point-particle in its description of motion;
(ii) sets of (constructed) points in these Whiteheadian spaces turn out to be non-
connected; (iii) connectedness is a necessary condition for continuity.

Needless to say there are several good introductions to the physical theories
explored in the papers. We limit ourselves to just a few which we believe are both
simple (yet rigorous) enough for non-physicists and are not dismissive of more
foundational and philosophical issues. Extensive bibliographies are contained in
each volume. A classic in Special Relativity is Rindler (1991). A good introduction
to the mathematically more demanding General Relativity is Schutz (1985). Two
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very accessible, yet profound and rigorous introductions to Quantum Mechanics
that are particularly suited for philosophers are Albert (1992) and Hughes (1992).
A classic, yet more sophisticated textbook is Beltrametti and Cassinelli (1981).
Since Gilmore’s contribution also mentions Quantum Field Theory we recommend
the philosophically inclined Kuhlmann et al. (2002). An advanced must-read in
classical mechanics is Goldstein et al. (2001).
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Chapter 1
Building Enduring Objects Out of Spacetime

Cody Gilmore

Endurantism, the view that material objects are wholly present at each moment
of their careers, is under threat from supersubstantivalism, the view that material
objects are identical to spacetime regions. I discuss three compromise positions.
They are alike in that they all take material objects to be composed of spacetime
points or regions without being identical to any such point or region. They
differ in whether they permit multilocation and in whether they generate cases of
mereologically coincident entities.

1.1 Introduction

Let me start with a rough characterization of two main views about persistence:

Endurantism. At least some material objects persist through time; and every
material object is temporally unextended and wholly present at each instant at which
it exists at all. Moreover, it is not the case that every material object has a different
instantaneous temporal part1 at each different instant at which it exists.

1The standard definition of ‘instantaneous temporal part’ runs as follows: ‘x is an instantaneous
temporal part of y at t’ means ‘(i) t is an instant, (ii) x is a part of y at t, (iii) x overlaps-at-t every
part-at-t of y, (iii) x is present at t, and (iv) x is not present at any other instant’. (This is based
on Sider 2001, 59.) For other definitions, see Gibson and Pooley (2006, 163), Parsons (2007), and
Balashov (2010, 73). The key point is that, in order for a thing y to count as a temporal part of a
thing x, y must be a part of x and y must be spatially co-located with x at any moment at which y
is present.
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Perdurantism. At least some material objects persist through time; every material
object has a different instantaneous temporal part at each different instant at which
it exists. Material objects that do persist are temporally extended and are at most
partially present (not wholly present) at any one instant.

I will introduce more carefully formulated views later on (from Gilmore 2006),
but these are adequate for present purposes. Endurantism fits comfortably with
presentism and certain other A-theories of time.2 It also fits together fairly well
with a certain brand of B-theoretic eternalism. What I have in mind here is a view
like Newton’s, according to which substantival space and substantival time are two
separate and fundamental entities, and spacetime, if there is such a thing at all,
is merely a construct of some sort. (Perhaps spacetime points are identified with
ordered<point of space, instant of time> pairs.) Call this view about space and time
‘separatist substantivalism’; it should be understood as incorporating eternalism and
the B-theory.

But eternalist, B-theoretic endurantism begins to run into trouble as soon as
we shift to (i) relationism about time or to (ii) a spacetime framework, be it
substantivalist or relationist. Start with (i). Given eternalism and the B-theory,
endurantists face pressure to invoke times or spacetime regions to handle the
problem of change.

Suppose that Bob changes from being bent (an hour ago) to being straight (now).
If perdurantism is true and Bob has temporal parts, then we can say that it was one
temporal part of Bob that was bent and it is a different temporal part of Bob that is
straight. If the A-theory is true and there is a metaphysically privileged time, then
we can say that Bob himself is straight, not bent (though he was bent). Without
temporal parts or a privileged present, however, the most natural account of change
is to ‘relativize to times’: say that Bob is bent at one time (or spacetime region)
and straight at another.3 The idea is that Bob’s shapes are really relations: he bears
the bent-at relation to one time (or region) and the straight-at relation to another.
If, as the relationist claims, there are no such things as times or regions, then this
account fails, and it is unclear what else endurantist can put in its place.4 I will
assume, then, that if endurantism is going to find a home in an eternalist, B-theoretic
world, such a world will need to include substantival times or spacetime regions.
Now consider (ii). Is eternalistic, B-theoretic endurantism tenable in the spacetime
framework? By ‘the spacetime framework’, I mean, roughly, the view that the
spatiotemporal is more fundamental than the purely spatial or the purely temporal.
Given the spacetime framework, we have a choice between spacetime relationism

2A-theories of time all say that there is a time that is present in some absolute, not-merely-indexical
sense. That is, they say that there is a ‘metaphysically privileged’ present time. The B-theory of
time denies this. Presentism is an A-theory of time according to which there are no non-present
entities (such as, presumably, pre-Socratic philosophers and Martian outposts). Eternalism is the
view that the past, present, and future all exist equally. See Sider (2001) and Markosian (2010) for
more on these views.
3See Haslanger (2003) for an overview of these issues.
4See Hawthorne and Sider (2006) for a sophisticated discussion of this issue.
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and spacetime substantivalism. Spacetime relationism, according to which there are
objects and/or events standing in spatiotemporal relations but there are no spacetime
points or regions, is inhospitable to endurantism for reasons that I have just sketched.
So we can focus on the substantivalist version of the spacetime framework, which I
state as follows:

Spacetime Substantivalism. Spacetime is more fundamental than space or time.
There are such things as concrete, substantival spacetime points and/or regions.
If there are such things as points or regions of space, these are merely spacetime
regions of certain sorts (‘columns’). Likewise, if there are such things as instants or
intervals of time, these are merely spacetime regions of certain other sorts (‘rows’).

The view is neutral as to whether spacetime is relativistic. The question we
now face is this: how is endurantism affected by the transition from separatist
substantivalism to spacetime substantivalism, be it pre-relativistic or relativistic?
(As with separatist substantivalism, I will understand spacetime substantivalism as
incorporating eternalism and the B-theory.) Sider (2001) and Schaffer (2009) both
argue that endurantism is harmed by this transition. Their argument runs through
two claims:

(1) If spacetime substantivalism is true, then so is supersubstantivalism, the view
that each material object just is a spacetime region. (They appeal to consider-
ations of parsimony and, in Schaffer’s case, fit with physics; more on this in
Sect. 1.2.)

(2) If supersubstantivalism is true then perdurantism, not endurantism, is true.
(Persisting spacetime regions perdure; they don’t endure.)

No analogous argument is available given separatist substantivalism. In partic-
ular, separatists have no analogue of premise (1). For they have no locations with
which material objects can be plausibly identified.5 However, as soon as one makes
the shift from separatist substantivalism to spacetime substantivalism, one gains the
option of identifying material objects with locations (spacetime regions), and with
that option available, parsimony (among other things) counts heavily in favor of
taking it.

The argument carries real weight. In light of it, there’s no denying that the tran-
sition from separatist substantivalism to spacetime substantivalism does some harm
to endurantism. Still, it’s worth asking: if one insists on combining spacetime

5They can’t identify an object with its location in space, since objects often occupy different regions
of space at different times, but no region of space occupies different regions at different times. And
of course they can’t identify an object with its location in time – say, the interval that is the object’s
total timespan. There are many reasons for this, but one of them is that, again, an object typically
occupies different regions of space at different times, but no interval of time does this. Finally, they
can’t identify a material object with a spacetime region, since they either reject spacetime regions
altogether or treat them as set-theoretic constructs; and presumably material objects are not set-
theoretic constructs. The shift from space and time to spacetime solves these problems. No region
of space is in different places at different times, but there are regions of spacetime that are. And
spacetime substantivalists are free to deny that spacetime regions are set-theoretic constructs.
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Fig. 1.1 Time and persistence

substantivalism with endurantism, how should one do it? Let me be more specific.
Suppose that, on the basis of considerations given in support of (1), one rejects dual-
istic substantivalism, the view that material objects occupy spacetime regions but are
never identical with any region and indeed never even share any parts or constituents
with any region. In that case, how should one combine spacetime substantivalism
and endurantism?

In this chapter I explore several such combinations, some of them new, and I chart
pros and cons of each. Though I take no stance on which, if any, of these packages is
true, I suggest that some are promising and worthy of further attention. (See Fig. 1.1
for a map of the terrain covered so far. A ‘close up’ on spacetime substantivalism –
and its species – appears toward the end of the chapter.)

1.2 From Substantivalism to Supersubstantivalism
to Perdurantism

In this section I give a quick sketch of the considerations in support of (1) and (2).
(1) Given spacetime substantivalism, there seem to be two main options con-

cerning the status of material objects. First, one can be a dualist substantival-
ist, in the sense described above. This has been the standard default position
for virtually all spacetime-friendly endurantists and even for some perdurantists
(Hudson 2001, 2005). Second, one can say that each material object is identical
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to some spacetime region – specifically, the object’s path, the region that exactly
contains the object’s complete career or life-history. This is supersubstantivalism.6

(As I noted above, supersubtantivalism becomes a tenable option only given
substantivalism about spacetime. Substantivalists who take space and time to be
separate and fundamental entities have no locations with which material objects
can be plausibly identified.) Of these two views – dualist substantivalism and
supersubstantivalism – considerations of parsimony favor the latter. Dualist sub-
stantivalism is unparsimonious with respect to ontology, since it embraces (i) sui
generis, substantival spacetime points and/or regions and (ii) sui generis material
objects that occupy spacetime but that are not in any way constructed from the
same basic ingredients as spacetime. And dualist substantivalism is unparsimonious
with respect to ideology, since its proponents will presumably need some primitive,
fundamental occupation predicate to state the facts about how material objects
relate to spacetime regions. Supersubstantivalism economizes on ontology, since
it avoids sui generis material objects, and it economizes on ideology, since it
has no need for a primitive, fundamental occupation predicate. According to the
supersubstantivalist, for a material object to occupy a region is just for the material
object to be that region.

Jonathan Schaffer offers a number of further considerations that he takes to favor
supersubstantivalism over dualist substantivalism. Two of his arguments are worth
quoting at length:

The argument from General Relativity: General Relativistic models are Triples <M; g; T>
where M is a four-dimensional continuously differentiable point manifold, g is a metric-
field tensor, and T is a stress-energy tensor (with both g and T defined at every point of M,
and with g and T coupled by Einstein’s field equations). There are no material occupants in
<M; g; T> triples. That is, the distribution of matter in General Relativity is not given via
a list of material objects in occupation relations to regions. Rather the distribution is given
by the stress-energy tensor, which is a field, and thus naturally interpreted as a property of
the spacetime : : : Thus Earman suggests identifying M with the spacetime manifold, and
treating g and T as properties of M: ‘Indeed, modern field theory is not implausibly read as
saying the physical world is fully described by giving the values of various fields, whether
scalar, vector, or tensor, which fields are attributes of the space-time manifold M’ (Earman
1989, p. 115; Schaffer 2009, 142, italics original).

The argument from Quantum Field Theory: Quantum Field Theory, like General Relativity,
is a theory of fields (which again are naturally interpreted as states of the spacetime)
rather than material occupants. : : : Thus in quantum field theory, ‘particles’ turn out to
be excitation properties of spacetime itself, as d’Espagnat explains: ‘Within [quantum
field theory] particles are admittedly given the status of mere properties, . . . but they are
properties of something. This something is nothing other than space or space-time, which,
being locally structured (variable curvature), have indeed enough ‘flexibility’ to possess

6As I will understand it, supersubstantivalism is neutral as to which regions count as material
objects. (Every region? Every ‘matter-filled’ region? Every maximal continuous matter-filled
region?) And then there is the further question of what counts as being ‘matter-filled’. Presumably
this will need to be spelled out in field-theoretic terms, but even so the answer is hardly
straightforward. Again, supersubstantivalists are free to disagree amongst themselves on these
questions. They are united only in claiming that all material objects are regions.
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infinitely many ‘properties’ or particular local configurations’ (Schaffer 2009, 142–3, italics
original).

At the very least, Schaffer makes a convincing case to the effect that many
leading authorities in physics and the philosophy of physics believe that sui generis
material objects play no role in General Relativity or Quantum Field Theory and,
further, that the existence of such material objects may be positively in tension with
these theories. (See Schaffer’s paper for many further quotations and references.) On
the assumption that substantivalists must choose between dualistic substantivalism
and supersubstantivalism, then, the case for (1) is strong.

(2) Why think that supersubstantivalists ought to be perdurantists, not enduran-
tists? The answer, roughly, is that spacetime perdures. More carefully: if spacetime
region r is the path of persisting object, then – barring some highly exotic view about
spacetime7 – r perdures; in particular, r is temporally extended and has (proper)
temporal parts. So, if o is identical to r, then o perdures too. All persisting material
objects perdure, according to supersubstantivalism.

In sum: for those metaphysicians who are seeking to develop a viable form of
endurantism that harmonizes with physics, there is reason to hope that endurantism
can be freed from a commitment to dualistic substantivalism. Not only does dualistic

7Here are four such views. (i) Extended Simple Regions. Spacetime might be composed of
spatially and temporally extended but mereologically simple ‘grains’. (See Braddon-Mitchell and
Miller (2006) and Dainton (2010) for discussion of related views.) Such a grain might count as
persisting (since it’s temporally extended), but it wouldn’t have any proper temporal parts, and
so might not count as perduring. (ii) Spatially Gunky Spacetime. Spacetime might be ‘spatially
gunky’ and altogether lacking in proper temporal parts: suppose that every spacetime region is
complex, spatially extended, and of infinite temporal extent in both temporal directions, so that
each region is eternal and composed of spatially smaller regions. These regions would count as
persisting but not as perduring (and even opponents of extended simples can believe in them). (iii)
Restricted Composition on Spacetime Points. Suppose that all spacetime regions are composed
of spatially-and-temporally-unextended, mereologically simple spacetime points, and that some
spacetime points compose something iff they are arranged ‘complete path of a living organism’-
wise. Then, since no living organism has a spacetime point or another living organism as a
proper temporal part (let’s assume), it’s plausible that no temporally extended region has any
proper temporal parts. (The pluralities of simples that would compose the temporal parts of such
regions, if they composed anything, do not in fact compose anything.) In that case there could be
regions that persist but do not perdure. (iv) Mereologically Coinciding Regions Without Strong
Supplementation. Suppose that all spacetime regions are composed of spatially-and-temporally-
unextended simple spacetime points and that every plurality of points composes a region. But
suppose further that there is at least one plurality of points, the ps, that compose two different
regions, r1 and r2, such that: (a) r1 and r2 are both spatially and temporally extended, (b) r1 has
a full distribution of proper temporal parts, and (c) r2 does not have any proper temporal parts.
Thus the relationship between r1 and r2 is like the relationship between a statue and a lump that
are composed of the same simples but that differ in that the head of the statue is a part of the statue
but not of the lump. (Strong Supplementation – the principle that if x is not a part of y, then x has
some part that fails to overlap y – is violated in such cases.) In such a case r2 would persist but not
perdure. (Eagle (2010) floats a view that sanctions mereologically coincident spacetime regions
but does not suggest that they might different with respect to having temporal parts.)



1 Building Enduring Objects Out of Spacetime 11

substantivalism fail the parsimony test, but experts tell us that it’s in tension with our
best physical theories.

1.3 First Compromise: The Path Constitution View

Fortunately, there is room to maneuver here. For even if we accept spacetime
substantivalism and reject full-blown dualism about regions and their material
occupants, we need not embrace supersubstantivalism.

1.3.1 Outlining the View

Instead of taking material objects to be identical with the regions that are their paths,
one might take them merely to coincide mereologically with those regions. The
idea would be that the relationship between a material object and its spacetime path
is the same as the relationship often taken to hold between a statue and the lump
of clay that constitutes it: mereological coincidence without identity. (Say that x
mereologically coincides with y if and only if x and y overlap – share parts with
– exactly the same things.) As far as I am aware, this view was first entertained in
print by John Hawthorne:

One might take the further step of not treating occupation as fundamental. The statue and
lump are mereologically coincident. Perhaps they are also mereologically coincident with a
spatiotemporal region. Occupation can then be defined in terms of mereological relations to
regions. And just as we typically picture the statue as inheriting certain properties – weight
and so on – from the lump by mereological coincidence, we can here think of various
objects as inheriting various magnitudes associated with fields by mereological coincidence
with spacetime regions which in turn are the fundamental bearers of field values (Hawthorne
2006, 118, n. 18).

Following Schaffer, let’s use the term ‘monistic substantivalism’ for the view that
each material object is either identical to or mereologically coincident with some
spacetime region. Monistic substantivalism comes in two main versions: the identity
version, a.k.a. supersubstantivalism, which holds that each material object just is a
region, and the constitution version, which holds that at least some material objects
are not identical to any region, but that each of them coincides mereologically with
a region.

The constitution view achieves some measure of ontological parsimony, since it
treats material objects not as sui generis entities but as things that, informally speak-
ing, are composed of the same basic ingredients as spacetime regions themselves,
and it is parsimonious with respect to ideology, since it allows us to define ‘occupies’
as ‘coincides with’, rather than treating it as a fundamental primitive. Further, as
Schaffer notes, it harmonizes with General Relativity and Quantum Field Theory:
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The constitution . . . [version] of monism can claim parsimony, and can claim fit with
General Relativity and Quantum Field Theory, insofar as these issues only concern the
fundamental ontology. The constitution views preserve the fundamental ontology of a
spacetime bearing fields (Schaffer 2009, 143–144).

Suppose, then, that we opt for the constitution view.
How would this help endurantism?8 It’s not at all clear that it would, since it’s

tempting to think that if x mereologically coincides with y, and y perdures, then
x perdures too. But one possibility is this. In opting for the constitution view, we
open up logical space for the doctrine that a given plurality of spacetime points, the
ps, compose (at least) two things: (i) a region, r, which is temporally extended and
has a full distribution of instantaneous and non-instantaneous temporal parts, the ts,
and (ii) a material object, o, which is temporally extended and co-located with r,
but which does not have any of the ts as parts and indeed does not have any proper
temporal parts at all. (Presumably o and r differ with regard to their de re modal
profile as well, so that o but not r could have had, say, a shorter temporal duration.)
The core idea here is that the relationship between o and r is like the relationship
between a statue and a lump of clay that are both composed of the same simples but
that do not have exactly the same parts: e.g., the statue, but not the lump, has the
head of the statue as a part (Lowe 2003). (As pointed out in note 7, this requires
rejecting Strong Supplementation, the principle that says that if x is not a part of y,
then x has a part that fails to overlap y.) At this point it will be convenient to fill in
some details that have so far been implicit:

The Path Constitution View

Absolutism: There is only one fundamental parthood relation, it is a two-place
relation (expressed by ‘x is a part of y’), and it does not hold relative to times,
locations, sortals, or anything else.

Plenitude for Regions: Each set of spacetime (points and/or9 ) regions has at least
one spacetime region as a fusion.10

Path Coincidentalism: Each material object coincides with a spacetime region (its
path), but no material object is identical to any spacetime region.

No Fundamental Occupation: The predicate ‘x occupies y’ is not fundamental;
it is defined in mereological terms, as ‘x coincides with y’, or perhaps ‘y is a
region, and x coincides with y’.

8Hawthorne (2006) and Schaffer both seem to think that the constitution version is friendlier
to certain forms of endurantism than is the identity version, although neither goes into much
detail on this point. Hawthorne focuses mostly on forms of endurantism (framed in terms of
grounding or metaphysical dependence) that will not concern us here. Schaffer’s reason for taking
the constitution-version to be endurance-friendly is not clear to me. He writes that ‘the constitution
view . . . does not entail four-dimensionalism . . . . Presumably the constituted object could have
different persistence conditions than its constituting matter [a spacetime region]’ (Schaffer 2009,
137).
9Henceforth points (if there are any) count as regions.
10This view would fail if (i) some sets of regions had no fusion at all, in which case a form of
restricted composition would be true or (ii) some set of regions had more than one spacetime
region as a fusion, as discussed in note 7.
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Regions Have Temporal Parts: Each persisting spacetime region has proper tem-
poral parts.

Objects Lack Temporal Parts: There are material objects, but none of them has
proper temporal parts.

Parts of Objects: A material object x is a part of a material object y only if some
region that x occupies is a part of some region that y occupies.

The Path Constitution View (PCV) takes no stand on which spacetime regions
constitute material objects. (Every region? Every region at which certain fields have
an everywhere positive value?) Nor does it take a stand on how many material
objects are constituted by a given region that constitutes at least one material object.
(One? Two? Continuum-many?)

We’ve already mentioned the main virtues of the PCV: parsimony, fit with GTR
and QFT, and – for those with endurantist sympathies – avoidance of temporal parts
of material objects.

One potential drawback of PCV – for those who are attracted to a certain brand of
endurantism – is that it treats persisting material objects as temporally extended and
singly located in spacetime. Second, and relatedly, PCV denies that any fundamental
parthood relation ever holds between, say, an oxygen atom with a one billion year-
long career and a human being with a 90-year-long career. For it often happens that
the path of such an atom overlaps the path of a human being, but it never happens
that the path of such an atom is a part of the path of a human being. I elaborate
on these issues below. Toward the end of the paper I will mention a pair of problems
that afflict all three of the compromise positions to be discussed in this paper.

1.3.2 Problems for the Path Constitution View

In stating these problems it will be convenient to work with precise definitions
of three notions: the notion of being weakly located at a region, the notion of an
object’s path, and the notion of persisting. Our definitions will invoke (i) a primitive
predicate for parthood (which we take to be reflexive and transitive) and (ii) a
predicate for occupation. Informally, to say that x occupies r is to say that x has
(or has-at-r) exactly the same shape and size as r and stands (or stands-at-r) in all
the same spatiotemporal relations to things as does r. But of course the friend of PCV
does not take ‘occupies’ as primitive; rather she defines it in terms of mereological
coincidence as specified earlier.

Now for the definition of ‘is weakly located at’. Intuitively, to say that x is weakly
located at r is to say that r is ‘not completely free of’ x (Parsons 2007); thus Russia
is weakly located in Europe, in Asia, in Siberia, and in the Milky Way, but not in
the Andromeda Galaxy. (Pretend that Russia is a material object and the rest are
all spacetime regions). Our official definition will be this: ‘x is weakly located at r’
means ‘9r�[x occupies r�& r� overlaps r]’. In words: ‘x occupies something that
overlaps r’, where ‘overlaps’ means ‘shares a part with’.
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As for the notion of an object’s path: intuitively, my path is the spacetime region
that I exactly sweep out over the course of my career. Although it is natural to speak
as though each object has at most one path, we will not build this into our definition.
We will say: ‘r is a path of x’ means ‘8r� [r overlaps r� $ x is weakly located at
r�]’, that is, ‘r overlaps all and only those entities at which x is weakly located’. It
follows from this definition (together with the reflexivity of parthood) that if both r
and r* are paths of x, then r and r* coincide. So, although we won’t assume that no
object has more than one path, we are committed to the view that no object has two
paths that fail to coincide with each other.

Finally, we can say that ‘x persists’ means ‘9r9r19r2 [r is a path of x & r1 is a
part of r& r2 is a part of r& r1 absolutely earlier than r2]’. In other words, to persist
is to have a path some parts of which are absolutely earlier than others. So much for
definitions.

Now, just as a matter of usage, when one says that a thing ‘endures’, one can
mean at least two things. First, one can mean that the thing persists but does not
have temporal parts. Call this mereological endurance. Second, one can mean that
the thing persists and occupies many different spacetime regions, each of them
instantaneous or spacelike. Call this locational endurance. There is a corresponding
ambiguity in the term ‘perdure’. When one says that a thing perdures, one can mean
that it persists and has (a sufficiently full distribution of) temporal parts, or that it
persists and occupies only its path (or paths, if it has more than one). Call the former
mereological perdurance and the latter locational perdurance. (See Gilmore 2006
for more on this.)

Some philosophers seem to think that material objects endure both mereo-
logically and locationally, while others seem to think that they perdure both
mereologically and locationally. But there is logical space for mixed views. One
might take material objects to mereologically endure but locationally perdure, or to
mereologically perdure but locationally endure. See Fig. 1.2 (from Gilmore 2008,
1230) for an illustration of these options.

As we have seen, PCV accommodates mereological endurance. Since there is
logical space to say that two entities coincide with having exactly the same parts,
there is logical space to say that Obama lacks temporal parts but coincides with a
spacetime region that has temporal parts.

Problem 1: PCV rules out locational endurantism. However, PCV does not
accommodate locational endurance. Given the definition of ‘occupies’ in No
Fundamental Occupation, we get the result that any two regions occupied by Obama
coincide with each other. But, together with our other definitions, this entails that
Obama occupies only his path(s), that is, that he locationally perdures.

Loosely stated, the problem is this. The locational endurantist wants to say that
(i) although Obama’s path is temporally extended, each of the regions that Obama
occupies (each of his ‘locations’) is temporally unextended, and that (ii) there are
a great many pairs of these locations that do not even overlap, much less coincide.
But given the definition of ‘occupies’ built into PCV, we cannot say that. Instead, we
have to say that Obama occupies only those regions with which he coincides. And he
can coincide with two different regions only if they coincide with each other. So he
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Fig. 1.2 Four forms of persistence

can occupy two different regions only if they coincide with each other. He cannot
occupy two non-coinciding regions, not to mention two non-overlapping regions.
So, for what it’s worth, locational endurantists will need to reject PCV. This is the
first potential drawback mentioned above.
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Problem 2: Gain and loss of parts (in a fundamental sense of ‘part’). Now let
me turn to the second potential drawback for PCV. Consider some material object m
that satisfies the following conditions: (i) we would ordinarily describe m as being
a part of Obama at some time, (ii) m’s path overlaps Obama’s path, and (iii) m’s
path is not part of Obama’s path, perhaps because m pre-dates or post-dates Obama,
or perhaps because m is for some period of time spatially outside of Obama. In
particular, (iv) some parts of m’s path fail to overlap Obama’s path, and some parts
of Obama’s path fail to overlap m’s path. The object m might be an electron, an
oxygen atom, or a tooth that was pulled when Obama was a boy. For concreteness,
let’s supposes it’s a DNA molecule. Given these assumptions, PCV tells us that
no fundamental parthood relation holds between m and Obama. Granted, if m had
temporal parts, then some temporal part of m might be a part, in the fundamental
sense, of Obama; and m itself might be a part of Obama in some non-fundamental
sense; but m itself is not in any fundamental sense a part of Obama.11

Intuitively, however, m itself is a part of Obama, in some fundamental sense
of ‘part’. Put more carefully: there is some fundamental parthood relation R such
that, if R is two-place, then R is instantiated by m and Obama in that order (or
by the ordered pair <m, Obama>), and if R is a three-or-more-place relation, then
it’s instantiated by m, Obama, and some further relata (or by some ordered -tuple
containing m and Obama).

In short, people have DNA molecules as parts, in some fundamental sense of
‘part’. We should accommodate this point if we can do so without paying too high
a price. PCV doesn’t accommodate it. So we should look elsewhere.

1.4 Second Compromise: The Many-Slice Constitution View

Why does PCV rule out locational endurantism? In nutshell, it’s because PCV says
that (i) occupying a region requires coinciding with that region and that (ii) a thing
can’t coincide with each of many non-overlapping regions. The commitment to
(ii) arises from the fact that PCV assumes that parthood is reflexive and transitive
and that ‘x coincides with y’ is defined as ‘8z [z overlaps x iff z overlaps y]’.
These are highly plausible assumptions in the context of the claim, made explicit
in Absolutism, that the relevant fundamental parthood relation is two-place.

But Absolutism is negotiable. Indeed, almost everyone who accepts both
endurantism and B-theoretic eternalism already rejects Absolutism for independent

11To see this, note first that, given PCV together with our set-up, no region occupied by m is a
part of any region occupied by Obama. But then, by Parts of Objects, we get the result that m
is not a part of Obama. So the fundamental parthood relation expressed by ‘is a part of’ doesn’t
hold between m and Obama. And according to Absolutism, this is the only fundamental parthood
relation.
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reasons.12 The idea goes roughly as follows. Objects gain and lose parts over
time. A certain DNA molecule, m, is a part of Obama at one time but not
at another. If the present were metaphysically privileged, we might be able to
capture this fact in terms of tense operators and a two-place parthood predicate:
:Part.m; obama/&WASŒPart.m; obama/]. If things had temporal parts, we could
try to capture the fact in terms of a non-fundamental, time-relative parthood
predicate, defined in terms of the notion of a temporal part and ultimately in
terms of a fundamental two-place parthood predicate (Sider 2001). But without
temporal parts or a privileged present, the most natural option is to say that the
fundamental parthood relation holding between material objects is a more-than-
two-place relation.

It bears repeating that this is an independent motivation for dropping Absolutism.
Making room for monistic substantivalism has typically been the farthest thing from
endurantists’ minds. And yet they – or at least the B-theoretic eternalists among
them – have already rejected Absolutism almost universally.

But it turns out that once we drop Absolutism, we can articulate a natural notion
of coincidence (or ‘coincidence-at’) in terms of which we can say that a given object
coincides (at different times or locations) with different regions that do not overlap
(at any time or location) each other. This lets us say that Obama occupies – and
coincides with – each in a series of temporally unextended spacetime regions, just
as a wave coincides (at different times) with each in a series of wave-shaped portions
of water. Thus by dropping Absolutism, we open up a way to combine locational
endurantism with monistic substantivalism.

As before, we will need to reject (the appropriately restated version of) Strong
Supplementation if we are to avoid the result that persisting material objects
have temporal parts. For we will assume that each material object mereologically
coincides with each in a series of instantaneous slices of the object’s path. If it
turned out that the material object had these slices as parts, they would count as
temporal parts of the object. So we will need to say that, in some cases, an object x
mereologically coincides with an object y but does not have y as a part. This conflicts
with Strong Supplementation.

1.4.1 Outlining the View

I suspect that this basic strategy can be implemented in a variety of ways, depending
upon what Absolutism is replaced with. One tempting suggestion is to replace it with

12Many have argued that the fundamental parthood relation for material objects is a three-place
relation expressed by ‘x is a part of y at z’, with two slots for material objects and one slot for a
time (Thomson 1983; Van Inwagen 1990; Koslicki 2008) or a region of space or spacetime (Rea
1998; Hudson 2001; McDaniel 2004; Donnelly 2010). As far as I am aware, the only self-described
B-theoretic endurantist who accepts Absolutism is Parsons (2000, 2007).
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(3P) The fundamental parthood relation for material objects is a three-place
relation expressed by ‘x is a part of y at z’, with one slot for the part, one slot for
the whole, and a third slot for a time, region of space, or region of spacetime.

On the basis of considerations that do not concern monistic substantivalism, I have
argued (Gilmore 2009) that 3P is inferior to

(4P) The fundamental parthood relation for material objects is a four-place
relation expressed by ‘x at y is a part of z at w’, with one slot for the part, one
slot for a location of the part (e.g., a spacetime region), one slot for the whole,
and one slot for a location of the whole (e.g., a spacetime region).13

So I will make use of 4P in what follows. For all I know, 3P and 4P would both
serve equally well for task at hand in this chapter. I am opting for 4P only because I
take it to be preferable on grounds that will not concern us here.

Now, to help firm up the reader’s grasp of my proposed four-place parthood
relation, let me set out some principles that plausibly govern it. I’ll get all these
principles (and some associated definitions) out on the table quickly, then I’ll supply
some examples, in diagram form, that should help to clarify the principles. So please
bear with me. First, the Location Location Principle:

(LLP) 8x8y8z8wŒP.x; y; z;w/ ! ŒL.x; y/&L.z;w/��
If x at y is a part of z at w, then x occupies y and z occupies w.

This just makes explicit the assumption that the second and fourth slots are reserved
for locations of the part and whole, respectively. Second, an analogue of the
reflexivity of parthood:

(R4P ) 8x8yŒL.x; y/ ! P.x; y; x; y/�

If x occupies y, then x at y is a part of x at y.

We can’t say ‘for all x and all y, x at y is a part of x at y’ since, together with LLP,
this would entail that everything occupies everything, which is obviously false. R4P
is the most natural alternative. Third, an analogue of the transitivity of parthood:

(T4P ) 8x18y18x28y28x38y3 ŒŒP.x1; y1; x2; y2/&P.x2; y2; x3; y3/�
! P.x1; y1; x3; y3/�

It will also be useful to define predicates for overlapping and coincidence:

(DO ) O.x1; y1; x2; y2/ D df 9x39y3 ŒP.x3; y3; x1; y1/&P.x3; y3; x2; y2/�
‘x1 at y1 overlaps x2 at y2’ means ‘some x3 at some y3, is a part both of x1 at y1
and of x2 at y2’

(DC ) CO.x1; y1; x2; y2/ D df ŒL.x1; y1/ _ L.x2; y2/�&8x38y3
ŒO.x3; y3; x1; y1/$ O.x3; y3; x2; y2/�

13Kleinschmidt (2011) independently proposes 4P and some of the same 4P-appropriate mereo-
logical principles to be given here. But she eventually rejects 4P.
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‘x1 at y1 coincides with x2 at y2’ means ‘either x1 occupies y1 or x2 occupies y2,
and for any x3 and y3, x3 at y3 overlaps x1 at y1 if and only if x3 at y3 overlaps
x2 at y2’

The first clause in DC is needed to avoid the result that Obama, at a region r1
on the moon, coincides with Putin, at a region r2 on Jupiter. (Since Obama does not
occupy r1, nothing (at any location) is a part of him there, and so nothing (at any
location) overlaps him there. Similarly for Putin and r2. It follows that exactly the
same things, at exactly the same locations, overlap Obama at r1 as overlap Putin at
r2.) With the first clause in place, however, we can show (given R4P , T4P , andDO )
that if o1 at r1 coincides with o2 at r2, then o1 occupies r1 and o2 occupies r2. In
slogan form: you can’t coincide with things at regions at which you don’t occupy.
We will also want to define a predicate for fusion. To do this, we can think of fusion
as a three-place relation that holds between a thing, a set, and a location of the thing,
where the set in question is a set of ordered<thing, location of that thing> pairs:

(DF ) F.y; s; y�/ Ddf 9z.z 2 s/&8z Œz 2 s ! 9w9w�
Œz D <w;w�>&P.w;w�; y; y�/�� &8z8z� ŒP.z; z�; y; y�/
! 9u9w9w� Œu 2 s&u D <w;w�>&O.w;w�; z; z�/��

In words, y fuses s at y* just in case: (i) s is a non-empty set, (ii) each member of
s is an ordered pair whose first member at its second member is a part of y at y*, and
(iii) for any z and any z*, if z at z* is a part of y at y*, then there is some ordered
pair in s whose first member at its second member overlaps z at z*. DF does not
have the result that material objects have sets or ordered pairs as parts. When a thing
fuses a set of ordered pairs, it has the first members of those ordered pairs as parts,
not the pairs themselves, and not the set of them.

Now for a pair of diagrams to illustrate these concepts. Figure 1.3 depicts a case
in which two different composite objects (f and g) fuse the same simples (a, b, and
c) and hence count as coinciding. These composite objects also occupy the same
region. Figure 1.3 may also be useful in that it illustrates cases of overlapping and
cases in which our reflexivity and transitivity principles (R4P and T4P ) apply. The
raison d’ étre of three-place or four-place parthood is the need to accommodate
cases in which an object is multilocated (occupies two or more non-coinciding
spacetime regions) and exhibits mereological variation from one location to another
(has parts at one of its locations that it does not have at another). Multilocation is
missing from Fig. 1.3. So it will be useful to consider another case.

In the case depicted by Fig. 1.4, m is a composite object that occupies two
different regions: rm1 and rm2. Further, m has different parts at different locations:
at rm1, m has d but not a as a part, and at rm2, m has a but not d as a part.

We can think of m as being analogous to an enduring human being who is
composed of different parts at different times at which it exists or at different
spacetime regions that it occupies. At the earlier region rm1, m is composed of
a, b, and c (at certain locations of these objects) and at the later region rm2, m is
composed of d , b, and c (at certain later locations of these objects).
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Fig. 1.3 Four-place parthood

Fig. 1.4 Four-place parthood and multilocation

So far I have been suppressing a pair of important questions. First, is ‘occupies’
(‘L’) defined, and if so how? Second, how does the sub-region relation that holds
between regions relate to the parthood relation that holds between material objects?
I answer the first question affirmatively and give the following definition:
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(DL) L.x; y/ Ddf 9z9w ŒP.x; y; z;w/ _ P.z;w; x; y/�
‘x occupies y’ means ‘either x at y is part of some z at some w, or some z at some
w has x at y as a part’

As a slogan: to occupy a location is to be a part of something there or to have,
there, something as a part. As for the second question, since we are emphasizing
ideological parsimony in this chapter, we will operate under the assumption that
there is just one fundamental parthood relation, and that it holds both between
material objects and between regions (among other things, perhaps). Thus, if region
r1 is, intuitively, a subregion or part-simpliciter of r2, then we should say that r1 at
r1 is a part of r2 at r2. If we like, we can go further and define a two-place predicate
for parthood simpliciter (which then comes out as a non-fundamental relation):

(DPS) P2.x1; x2/ Ddf 9y19y2 ŒP.x1; y1; x2; y2/&8y38y4
ŒŒL.x1; y3/&L.x2; y4/�! P.x1; y3; x2; y4/��

In words, ‘x1 is a part-simpliciter of x2’ means ‘x1, somewhere, is a part of x2,
somewhere, and for any locations y3 and y4 of x1 and x2, respectively, x1 at y3 is
a part of x2 at y4’. Presumably regions are singly located (occupying themselves
only); at the very least it seems certain that no region occupies two non-coinciding
regions. This makes it plausible that if region r1 is, at r1, a part of region r2 at r2,
then r1 is a part-simpliciter of r2.

With the understanding that regions, no less than material objects, can fill the
‘part’ slot and ‘whole’ slot in our four-place parthood relation, we are now in a
position to set out a principle that links (i) facts about the mereological relationship
between a pair of objects with (ii) facts about the mereological relationship between
the locations of those objects. I will call it Withinness:

(W4P ) 8x18y18x28y2 Œ.x1; y1; x2; y2/! P.y1; y1; y2; y2/�

If x1 at y1 is a part of x2 at y2, then y1 at y1 is a part of y2 at y2.

Intuitively, this says that if Obama’s right arm, at region rra, is a part of Obama,
at region ro, then the ‘arm-region’ is a part of the ‘Obamba-region’ – in four-place
terms, rra at rra is a part of ro at ro. There are a number of further principles that we
could set out that plausibly link ‘mereological’ facts to ‘locational’ facts, but W4P

is enough for now. (Strictly speaking, these facts are all mereological, since we’re
working with just one non-logical primitive: our four-place parthood predicate.)

So far, everything that I have said concerning our four-place parthood relation
should seem at least as plausible to the dualist substantivalist as to the monist
substantivalist. Indeed, most of what I have said about that relation here just
summarizes what I have said elsewhere (Gilmore 2009; forthcoming a), working
under dualist presuppositions.

But now that we have this framework in place, we can simply drop the tacit
dualism, and everything else should remain intact. In particular, we can say that
each material object mereologically coincides with each spacetime region that it
occupies:

(Monism4P ) For any material object o and spacetime region r, if o occupies r,
then: o at r coincides with r at r.
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Fig. 1.5 Monism4P and Locational Endurantism

According to this view, if Obama occupies the three-dimensional, instantaneous
spacetime region r1, then he, at r1, mereologically coincides with r1, at r1; and
in that case the relationship between him and r1 is like the relationship between
the material objects f and g in Fig. 1.1: coincidence without identity. Moreover, he
can bear this relation of coincidence to many different regions that do not bear it to
each other. Perhaps he also occupies the distinct region r2. Then, given Monism4P , it
follows that Obama, at r2, coincides with r2, at r2. But it does not follow that r1 and
r2 even overlap, much less that they coincide: we remain free to say that :9r9r�
(r1 at r overlaps r2 at r� ) and hence that :9r9r� (r1 at r coincides with r2 at r�).
If we define a two-place coincidence predicate as follows,

(DC2) CO2.x1; x2/ Ddf 9y19y2CO.x1; y1; x2; y2/
‘x2 coincides2 with x2’ means ‘x1, at some y1, coincides with x2, at some y2’

then we can say, speaking quite strictly, that Obama coincides2 with regions that do
not coincide2 with each other (since the two-place relation so defined is symmetric
but not transitive). And of course, what goes for Obama also goes for any material
objects that he ever has as parts, such as arms, legs, cells, or DNA molecules.

The analogy with waves is worth repeating. Just as a wave mereologically
coincides, at different times, with different portions of water (where many pairs
of these portions do not even overlap with each other), an enduring material object
coincides2 with many different instantaneous regions (many pairs of which do not
overlap each other).

It may help to consider Fig. 1.5, which illustrates this combination of Monism4P

and locational endurantism.
We should think of this as a simplified, highly unrealistic situation in which an

object, o, has a complete spacetime path that is composed of just two instantaneous
regions, the earlier region r1 and the later region r2.

The most important thing to note about the case is that it satisfies, in a precise
way, both locational endurantism and monist substantivalism. The one material
object in the case, o, occupies just the instantaneous, non-overlapping regions r1 and
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r2; o does not occupy its temporally extended path, which, for simplicity, we have
left out of the diagram altogether. Hence o locationally endures. Further, monist
substantivalism is respected since, informally put, everything in the diagram is
ultimately composed of spacetime regions. The regions themselves are of course
composed of regions. But so is the one material object in the situation, o. It is
composed of different spacetime points at different locations. At its location r1,
it is composed of the points p1 and p2. At its later location r2, it is composed of p3
and p4.

Here is a general statement of the Many-Slice Constitution View (MSCV) that
makes explicit some further details.

The Many-Slice Constitution View

One Parthood: There is only one fundamental parthood relation, and it holds both
among material objects and among spacetime regions.

4P: The fundamental parthood relation for material objects is a four-place relation
expressed by ‘x at y is a part of z at w’.

Plenitude for Regions4P : Each set of spacetime (points and/or) regions has at
least one spacetime region as a fusion. In 4P-appropriate terms: for any non-
empty set s, if each member of s is a spacetime (point or) region, then
9r ŒF.r; fx W 9y Œy 2 s & x D <y; y>�g ; r/ & r is a spacetime region.

Locational Endurantism: Some material objects persist (have temporally
extended paths), but no material object occupies any non-instantaneous (or
non-spacelike) region.

Constitution+Monism4P : For any material object o and spacetime region r: (i)
o ¤ r and (ii) if o occupies r, then: o at r coincides with r at r.

No Fundamental Occupation4P : There is no fundamental occupation relation; the
predicate ‘occupies’ is defined in terms of a four-place parthood predicate, as
specified in DL.

Regions Have Temporal Parts: Each persisting spacetime region has proper tem-
poral parts.

Objects Lack Temporal Parts: There are material objects, but none of them has
proper temporal parts.

W4P : If x at y is a part of z at w, then y at y is a part of w at w

Like PCV, MSCV leaves a number of questions open. It leaves open the question of
which spacetime regions are ‘material-object-paths’, and which instantaneous slices
of those paths are occupied by material objects. Further, it leaves open the question
of whether a given instantaneous slice ever coincides with more than one material
object.

1.4.2 How MSCV Avoids the Problems Facing PCV

How does the Many-Slice Constitution View help with the two problems that we
raised for the Path Constitution View?
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Problem 1: Ruling out locational endurantism. The first problem (from an
endurantist vantage point) was that PCV was committed to locational perdurantism
and ruled out locational endurantism. Obviously MSCV solves that problem. It says
that material objects occupy only instantaneous (or spacelike) regions.

Problem 2: Gain and loss of parts. The second problem was that PCV led to the
result that a certain DNA molecule, m, is not a part of Obama, in any fundamental
sense of ‘part’. The underlying reason for this was that, in the case we considered,
m’s path extended outside of Obama’s path, and according to PCV, the only regions
that m and Obama occupy are their paths. Given the ‘Withinness’ principle, this
forces us to say that m is not a part of Obama, in any fundamental sense of ‘part’.

MSCV avoids this problem by maintaining that m has many locations, each of
them an instantaneous slice of its path. Similarly for Obama. Given this, it will be
natural for the friend of MSCV to say that many of m’s locations are parts of some
location or other of Obama, and that m is a part of Obama, in some fundamental
sense of ‘part’. To be more precise, the friend of MSCV will find it natural to say
that there are spacetime region rm and ro such that: (i) m occupies rm, (ii) Obama
occupies ro, (iii) rm at rm is a part of ro at ro (presumably rm is a part-simpliciter of
ro, in the sense defined earlier), and (iv) m at rm is a part of Obama at ro.

Given 4P , clause (iv) amounts to the claim that there is a fundamental parthood
relation that holds between m and Obama (and two regions). Crucially, all this is
perfectly consistent with the fact that m’s path extends outside of Obama’s path.

1.4.3 A Problem for the Many-Slice Constitution View
and the Path Constitution View

There is one core feature of both PCV and MSCV that many endurantists will see
as a drawback14: the commitment to mereological-coincidence-without-identity.

Some philosophers apparently reject coinciding entities on something like
‘purely mereological’ grounds. They see the ban on these entities as (a) intuitively
compelling on its own, or as (b) being justified by an analogy between composition
and identity, or as (c) following from intuitively compelling principles concerning
the behavior of parthood (reflexivity, strong supplementation, and anti-symmetry).

Others reject coinciding entities on the basis of the grounding problem (Bennett
2004). If coinciding objects x and y are not identical, presumably they differ with
respect to certain properties – modal or historical ones, for example. But what could
ground these differences, given that x and y coincide and hence are so similar
physically? As applied to the thesis of object-region coincidence, the grounding

14B-theoretic endurantists who are on record in opposition to mereological coincidence without
identity include Van Inwagen (1990), Burke (1994), Olson (1997), Rea (1998, 2000), Hershenov
(2005), McGrath (2007), and Koslicki (2008). The argument for locational endurantism given in
Gilmore (2007) depends upon the impossibility of mereological coincidence without identity.
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problem runs as follows. If region r and object o mereologically coincide (at region
r), then they will, presumably, be quite similar (at that region). They will be alike
with respect to size and shape. As Hawthorne and Schaffer note, it’s plausible
that they will be alike with respect to the values of the various fields associated
with r. Given these similarities, it may seem o and r should not differ in any way
whatsoever.

Some philosophers will be moved by none of these considerations. But those
who are moved will want to find an alternative to PCV and MSCV. (I have a
special interest in finding such an alternative. For I have given an argument in favor
of locational endurantism that relies on the principle that it is impossible for two
different objects to mereologically coincide (in Gilmore 2007)).

1.5 Third Compromise: Regions-as-Pluralities
Multilocationism

Faced with a threat of mereological coincidence between two entities, a natural
response is to keep one and eliminate the other. Our third compromise keeps the
material objects and eliminates the regions with which they were said to coincide.

Informally, the idea is as follows. There are spatially and temporally unextended,
mereologically simple spacetime points, and there are sets of these points, but
there are no mereological sums/fusions of these points: there are no mereologically
complex spacetime regions. When we would ordinarily speak of a certain complex
region r as being composed of some simple points, the ps, we should instead just
speak of the ps plurally (Hudson 2005, 17). Thus, when we would ordinarily say,
concerning some material object o, that o occupies r, we should instead say that o
occupies the ps, where ‘occupies’ is treated as a predicate that is non-distributive
with respect to its second argument place. And when the 4Per would ordinarily say
that o at r is a part of some other material object, o�, at some other complex region,
r� (composed of the p�s), we should instead say that o, at the ps, is a part of o�,
at the p�s, where ‘: : : at : : : is a part of : : : at : : : ’ is treated as a predicate that is
non-distributive with respect to its second and fourth argument places (at least).

The monist substantivalist component of the new view is that a material object o
occupies some points, the ps, only if o is (in a sense to be specified) composed of the
ps. The locational endurantist component of the view is that a persisting material
object occupies many different pluralities of points, each of them temporally
unextended. Putting these pieces together, we can say that there are many different
non-overlapping, temporally unextended pluralities of points, the p1s, the p2s, and so
on, such that: Obama occupies p1s and is ‘temporarily’ composed of them, Obama
occupies the p2s and is ‘temporarily’ composed of them, and so on. Thus we retain
locational endurantism and monist substantivalism but, having eschewed talk of
complex regions, we avoid the commitment to mereologically coinciding entities.

To state this view more precisely, we will need to introduce a new set of
definitions, properly restated in plural terms. First, a pair of principles governing
the four-place parthood relation that we are taking to be fundamental:
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(R4Pplural) 8x18yy1
�9x29yy2

�
P pl.x1; yy1; x2; yy2/ _ P pl.x2; yy2; x1; yy1/

�

! P pl.x1; yy1; x1; yy1/
�

If x1 at yy1 is part of some x2 at some yy2 or has some x2 at some yy2 as a part, then
x1 at yy1 is a part of x1 at yy1.

(T4Pplural) 8x18yy18x28yy28x38yy3
��
P pl.x1; yy1; x2; yy2/

&P pl.x2; yy2; x3; yy3/
�! P pl.x1; yy1; x3; yy3/

�

If x1 at yy1 is a part of x2 at yy2 and x2 at yy2 is part of x3 at yy3, then x1 at yy1 is a
part of x3 at yy3.

These are just plural analogues of R4P and T4P . I take them to be self-
explanatory. Now for the definitions. I use the symbol ‘�’ for the predicate ‘is one
of’.15.

(PD1) Lpl.x1; yy1/ Ddf 9x29yy2
�
P pl.x1; yy1; x2; yy2/

_P pl.x2; yy2; x1; yy1/
�

‘x1 occupies yy1’ means ‘for some x2 and some yy2, either x1 at yy1 is a part of x2
at yy2 or x2 at yy2 is a part of x1 at yy1.

(PD2) PATHpl.x; zz/ Ddf 8z
�
z � zz$ 9yy

�
Lpl.x; yy/&z � yy

��

‘x has zz as a path’ means ‘for any z: z is one of zz if and only if there are yy such
that: (i) x occupies yy and (ii) z is one of yy’.

(PD3) ACHR.zz/ Ddf 8x8y ŒŒx � zz&y � zz&x ¤ y�! SPCLK.x; y/�

‘zz are achronal’ means ‘for any x and any y, if x is one of zz and y is one of zz and
x ¤ y, then x is spacelike separated from y’.

(PD4) PERS.x/ Ddf 9yy
�
PATHpl.x; yy/&:ACHR.yy/

�

‘x persists’ means ‘there are some yy such that: (i) x has yy as a path and (ii) yy are
not achronal’

(PD5) L-ENDpl.x/ Ddf PERS.x/&8yy
�
Lpl.x; yy/! ACHR.yy/

�

‘x locationally endures’ means ‘(i) x persists and (ii) for any yy, if x occupies yy,
then yy are achronal’.

Locational endurantism can then be stated as the view that at least one material
object persists and all persisting material objects locationally endure. To state the
remaining components of Regions-as-Pluralities Multilocationism, it will help to
have definitions of plural versions of ‘overlaps’ and ‘fuses’.

(PD6) Opl.x1; yy1; x2; yy2/ Ddf 9x39yy3
�
P pl.x3; yy3; x1; yy1/

&P pl.x3; yy3; x2; yy2/
�

15See Linnebo (2012) on ‘is one of’ and plural quantification. My notation follows his.
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(PD7) F pl.x; s; zz/ Ddf 9y.y 2 s/&8y1 Œy1 2 s ! 9u19ww1�
Œy1 D <u1; fw W w � ww1g>�&Ppl .u1;ww1; x; zz/

��
&8u18ww1�

P pl.u1;ww1; x; zz/! 9y29u29ww2 Œy2 2 s&y2 D <u2; fw W w�ww2g>
&Opl.u2;ww2; u1;ww1/

��

The last definition requires some unpacking. As before, we are taking fusion to be a
three-place relation, but now we take it to hold between a thing, a non-empty set of
ordered<thing, set of things> pairs, and a plurality (of points). We say that a thing
x fuses set s at plurality zz if and only if: (i) s is a non-empty set of ordered pairs,
(ii) each of these pairs is such that its first member, at the members of its second
member, is a part of x, at zz, and (iii) for any object u1 and plurality ww1, if u1 at
ww1 is a part of x at zz, then some member<u2, fw W w � ww2g> of s is such that
u1 at ww1 overlaps u2 at ww2.

With all these terms in hand, we can give an official statement of our new view
as follows.

Regions-as-Pluralities Multilocationism (RPM)

One Parthood: There is only one fundamental parthood relation, and it holds both
among material objects and among spacetime regions.

4Pplural: The fundamental parthood relation for material objects is a four-place
relation expressed by ‘x at yy is a part of z at ww’, with one slot for the part, one
slot for some things (e.g., spacetime points) that are collectively occupied by the
part, one slot for the whole, and one slot for some things (e.g., spacetime points)
that are collectively occupied by the whole.

Compositional Nihilism about Regions: There are no mereologically complex
spacetime regions: if r is a spacetime region and x at yy is a part of r at zz, then
x D r and, for any w, if w is one of yy or w is one of zz, then w D r . In other
words, the only cases of parthood holding among spacetime regions are cases in
which a region r, at itself, is a part of r, at itself.

Locational Endurantismplural: Some material objects persist, and all persisting
material objects locationally endure, in the sense defined by PD5.

Objects Fuse Spacetime Points: For any material object o and spacetime points,
zz, if o occupies zz, then o fuses fx W 9y Œy � zz&x D <y; fyg>g� at zz.

Unique Fusion4Pplural: For any x, y, s, and zz: if x fuses s at zz and y fuses s at zz,
then x D y.

No Fundamental Occupation4P : There is no fundamental occupation relation; the
predicate ‘occupies’ is defined in terms of ‘x at yy is a part of z at ww’, as
specified in PD1.

Objects Lack Temporal Parts: There are material objects, but none of them has
proper temporal parts.

Withinness4Pplural: If x at yy is a part of z at ww, then yy are among ww, i.e.,
8u Œu � yy! u � ww�

Figure 1.6 depicts a simplified situation in which both RPM and monistic
substantivalism are satisfied.

We can think of RPM as a theory of restricted composition, á la Van Inwa-
gen (1990), but applied to spacetime points rather than to ‘simple, enduring,
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Fig. 1.6 Regions-as-pluralities Multilocationism

fundamental particles’ such as electrons and quarks. Simplified somewhat, the
theory makes the following claims:

(i) for any spacetime points, pp, if there are more than one of pp, then pp compose
something if and only if:

(a) they are achronal, and
(b) they are arranged R-wise [where R is unspecified so far],

and
(ii) if there are more than one of pp and they do compose some entity o, then:

(a) o is a material object, not a spacetime region,
(b) o occupies pp,
(c) o is the only entity that pp compose,

and
(iii) there are some persisting material objects, each such object occupies more

than one plurality of spacetime points, and each such object is composed
(‘temporarily’) of each of the pluralities of spacetime points that it occupies.

The analogy with van Inwagen’s position is more than incidental. In (i) above,
one could replace ‘R’ with ‘living organism’ and the result would be a version of
van Inwagen’s position that is consistent with monistic substantivalism. (Of course,
RPM is flexible enough to accommodate other views about composition as well.)
According to the ‘van Inwagen-ized’ version of RPM, there are mereologically
simple spacetime points, living organisms (which are composed of certain pluralities
of these points and which are multilocated in spacetime), and no other concrete
entities.16

16Similarly, the dominant-kinds view developed in a dualist-substantivalist context by Burke
(1994) and Rea (2000) can be developed in monist-substantivalist context with an appropriate
replacement for ‘R’ in (i). Likewise for virtually any uniqueness-friendly endurantist theory of
persistence-and-composition. See Markosian (2008) for more on restricted composition.
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Fig. 1.7 Spacetime Substantivalism and Endurantism

Admittedly, the van Inwagen-ized version of RPM faces worries about arbi-
trariness and anthropocentrism. Why privilege living organisms over artifacts or
non-living natural formations such as molecules or planets? And it depends upon an
assumption which some will doubt: viz., that spacetime ultimately bottoms out in
simple spacetime points, rather than being gunky. But these criticisms apply equally
to van Inwagen’s actual view, a form of dualist substantivalism. (van Inwagen
assumes that matter bottoms out in simple particles rather than being gunky.)

Similarly, any version of RPM will need to make some maneuver that guarantees
that no two material objects ever coincide even temporarily, and any such maneuver
will have drawbacks. When I start with a lump-shaped piece of clay and mold it into
a statue, it seems that I end up the following thing(s) in my hands: a piece of clay
that has existed for several hours at least, and a statue that has existed only for a few
minutes. This generates a Leibniz-law argument for the conclusion that the statue
and the piece of clay are not identical, despite coinciding mereologically. One might
deny the existence of statues and/or lumps (Van Inwagen 1990; Merricks 2001), one
might say that a lump ceases to exist when molded into a statue (Burke 1994; Rea
2000), or might find something else to say. Presumably these moves all have their
costs. But the crucial point is that RPM is not to blame. Coincidence-deniers already
had to make these moves in the context of dualist substantivalism, before RPM came
on the scene. (Figure 1.7 summarizes the terrain covered in Sects. 1.2–1.5.)
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1.6 Two Problems for All Three Compromises

So far I have suppressed a pair of problems that afflict all three compromise
positions. To these I now turn.

1.6.1 New Chalk

Judith Jarvis Thomson has offered the following argument against perdurantism:

[If perdurantism is true, then] as I hold the bit of chalk in my hand, new stuff, new
chalk keeps constantly coming into existence ex nihilo. That strikes me as obviously false.
Thomson (1983, 213).

This argument is often dismissed as question-begging or otherwise not worth
taking seriously. Whether or not such a dismissive attitude is justified, one thing
does seem clear: of those philosophers who take perdurantism to be a ‘live option’
prior to encountering Thomson’s argument, few will be convinced by that argument
when they are exposed to it. Still, I suspect that, for better or for worse, Thomson’s
central premise,

(T) it is not the case that, as I hold a bit of chalk in my hand, new stuff, new chalk
keeps constantly popping into existence,

is a deeply held (perhaps basic) commitment for a significant number of enduran-
tists. And if (T) is incompatible with perdurantism, it is also in tension with PCV,
MSCV, and RPM. Let me take these in turn.

PCV and new chalk. There is logical space to say that this bit of chalk mereo-
logically coincides with its spacetime path, that its path has temporal parts, but that
the bit of chalk itself does not. Still, on this view, there are entities (instantaneous
temporal parts of the path) that are very much like temporal parts of the bit of chalk.
Each of them is composed entirely of simples (spacetime points) none of which were
present at previous moments. Presumably each of these temporal parts of the bit of
chalk have many or all of the same intrinsic physical properties as the bit of chalk
(at the relevant times) – so much so that it would be accurate to say that they are
‘chalky’. And they keep constantly popping into existence as I hold the bit of chalk
in my hand. This conflicts with (T) if perdurantism does. (Strictly speaking, it is not
obvious that if perdurantism is true, then new stuff or new chalk keeps popping into
existence. This depends on subtle questions about the semantics of mass expressions
like ‘stuff’ and ‘chalk’. We cannot address these questions here.)

MSCV and the new chalk. The only major difference between MSCV and
PCV is that MSCV takes the fundamental parthood relation, and the mereological
coincidence relation defined in terms of it, to be relativized to regions. MSCV agrees
with PCV that the bit of chalk has a spacetime path, that this path has instantaneous
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temporal parts, that these parts are ‘chalky’, and that they keep constantly popping
into existence as I hold the bit of chalk in my hand.

RPM and the new chalk. RPM denies the existence of mereologically complex
spacetime regions. So it denies that the bit of chalk has a spacetime path that has
instantaneous temporal parts. But it still conflicts with the spirit of (T). Roughly
put, RPM tells us that as I hold the bit of chalk in my hand at time t1, the bit of
chalk is composed of some simple spacetime points, the p1s, and a few seconds
later, at t2, the bit of chalk is composed of some other simple spacetime points, the
p2s, where none of the p1s is identical to any of the p2s. Indeed, according to RPM
(and PCV and MSCV too), there is a clear sense in which, between any two instants
(in the same frame of reference), the bit of chalk undergoes complete mereological
turnover at the fundamental level, the level of simples. There may not be any new
complex entities popping into existence, but at each moment, there is an entirely
new plurality of simples that pop into existence (and that compose the bit of chalk).
Does this force us to say that new stuff or new chalk pops into existence? Again, this
depends on questions about the semantics of mass expressions that I cannot address
here. But either way, RPM surely conflicts with the spirit of (T), if perdurantism
does.

Of course, the endurantist who embraces dualist substantivalism does not face
the problem about new chalk. Since he denies that material objects share any parts
or constituents with spacetime, he is free to say that the bit of chalk undergoes no
mereological variation at all. For example, he is free to say that it is composed of
some simple, fundamental particles, the ps, at t1, and that it is composed of these
very same simple particles at t2.

1.6.2 Spatially Point-Like Enduring Objects

Interestingly, the existence of spatially point-like material objects would wreak
havoc on all three compromise positions.17 We can take them in turn once again.

PCV and spatially point-like material objects. Let e be a spatially point-like
persisting material object, with a (one-dimensional) timelike curve as a spacetime
path. Since’s e’s path is a timelike curve, the instantaneous temporal parts of that
path are simple spacetime points. So, since e mereologically coincides with this
path, these points are parts of e too. (Mereologically coincident objects may be able
to differ with respect to their complex parts, but, given that parthood is reflexive, they

17And if spacetime is composed of spatially extended simple ‘grains’, the existence of ‘spatially-
grain-like’ material objects would be equally problematic for all three compromise positions, for
parallel reasons.
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cannot differ with respect to their simple parts.18) But if the given points are parts of
e, they are instantaneous temporal parts of e. So e has instantaneous temporal parts:
it mereologically perdures. Thus PCV loses its appeal for the endurantist.

MSCV and spatially point-like material objects. The Many-Slice Constitution
View does not say that e mereologically coincides with its path. Rather, it says that
e mereologically coincides, in the ‘4P-appropriate way’, with each instantaneous
slice of that path. As I noted above, each of those slices is just a simple spacetime
point. So, according to MSCV, e mereologically coincides with each in a series of
simple points, without being identical to any of those points. But this is problematic.
As I have noted elsewhere (forthcoming), the claim that

(3) e mereologically coincides with a simple to which it is not identical

is inconsistent with the reflexivity of parthood together with a plausible supplemen-
tation principle, ‘quasi-supplementation’:

(QS) if x is a part of y and x is not identical to y, then y has parts z and z* that do
not overlap each other.

(Similarly, the ‘4P-appropriate’ version of (3) is inconsistent with the 4P-appropriate
versions of reflexivity and QS, taken together.) The bottom line is that if QS and the
reflexivity of parthood are both necessary truths, then, while it may be possible for
two different complex objects to coincide with one another, it is not possible for a
simple object to coincide with any other object. This gives the friend of MSCV a
reason to hope that there are no spatially point-like material objects.

RPM and spatially point-like material objects. The problem is essentially the
same for RPM. Roughly put, RPM says that e is composed, at each moment of its
career, of a different achronal plurality of simple spacetime points. In the case of a
spatially extended material object, each of the given pluralities would include more
than one point. But in the case of a spatially point-like object such as e, each of the
given ‘pluralities’ includes just one thing, a simple point. So, at each moment of its
career, e is composed of some simple (non-persisting) spacetime point – with which
e is not identical. This is inconsistent with the conjunction of the relevant versions
of the reflexivity of parthood and QS.

18We will assume that (i) x and y mereologically coincide, (ii) z is simple, and (iii) z is a part of
x; we will show that z is a part of y, too. By (i) and the definition of ‘mereologically coincide’, it
follows that (v) x and y overlap exactly the same things. By the reflexivity of parthood, (vi) z is a
part of itself. Together with (iii) and the definition of ‘overlaps’, this entails that (vii) x overlaps z.
Together with (v), this entails that y overlaps z. So, by the definition of ‘overlap’, (viii) there is a
thing, call it w, that is a part of z and a part of y. But by the definition of ‘simple’, the only part of
z is z itself. So w=z, and hence z is a part of y.
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1.7 Conclusion

Of those who work on the metaphysics of persistence, most seem to assume that
only perdurantists can build material objects out of spacetime. But the situation is
not so straightforward.

If one is willing to embrace coinciding entities and reject Strong Supplemen-
tation, one can say that material objects lack temporal parts even though they
coincide with temporally extended regions that have temporal parts. (This is the
Path Constitution View, PCV.) Indeed, one can get this far while confining oneself
to the perdurantist’s attractively simple fundamental ideology – a primitive two-
place predicate for parthood simpliciter.

If one is willing to go a bit farther and help oneself to a slightly more exotic piece
of fundamental ideology (a primitive, more-than-two-place predicate for a ‘location-
relative’ parthood relation), and if one is still willing to embrace coinciding objects
and reject Strong Supplementation, then one can say that material objects both
(i) lack temporal parts, in the manner of ‘mereological endurantism’, and (ii) are
multilocated in spacetime, in the manner of ‘locational endurantism’. (This is the
Many-Slice Constitution View, MSCV.) It is worth repeating, however, that virtually
all eternalistic, B-theoretic endurantists already help themselves to a fundamental
relativized parthood predicate, even in the context of dualist substantivalism.

Finally, if one is willing to eliminate complex spacetime regions (in favor of
sets or pluralities of points) and treat the fundamental parthood predicate as being
not merely ‘location-relative’ but also non-distributive, one can (i) reject temporal
parts, (ii) retain locational endurantism, and (iii) avoid coinciding entities. (This is
Regions-as-Pluralities Multilocationism, RPM.)

However, all three views come with further costs. They are all subject to
Thomson-esque worries about ‘new chalk’ constantly popping into existence. And
none of them fits well with the view that there are spatially point-like material
objects. But for the would-be endurantist who is impressed by the case against
dualist substantivalism, all this may be a price worth paying.

References

Balashov, Y. (2010). Persistence and spacetime. Oxford: Oxford University Press.
Bennett, K. (2004). Spatiotemporal coincidence and the grounding problem. Philosophical Studies,

118(3), 339–371.
Braddon-Mitchell, D., & Miller, K. (2006). The physics of extended simples. Analysis, 66, 222–

226.
Burke, M. (1994). Preserving the principle of one object to a place: a novel account of the relations

among objects, sorts, sortals and persistence conditions. Philosophy and Phenomenological
Research, 54, 591–624.

Dainton, B. (2010) Time and space (2nd ed.). Montreal: McGill-Queen’s.
Donnelly, M. (2010). Parthood and multi-location. In D. Zimmerman (Ed.), Oxford studies in

metaphysics (Vol. 5, pp. 203–243).



34 C. Gilmore

Eagle, A. (2010). Perdurance and location. In D. Zimmerman (Ed.), Oxford studies in metaphysics
(Vol. 5, pp. 53–94). Oxford: Oxford University Press.

Earman, J. (1989). World enough and spacetime. Cambridge: MIT.
Gibson, I. & Pooley, O. (2006). Relativistic persistence. In J. Hawthorne (Ed.), Philosophical

Perspectives, 20, 157–198.
Gilmore, C. (forthcoming). Quasi-supplementation, plenitudinous coincidentalism, and gunk. In

R. Garcia (Ed.), Substance: New essays. Philosophia Verlag.
Gilmore, C. (2006). Where in the relativistic world are we? In J. Hawthorne (Ed.), Philosophical

perspectives: metaphysics (Vol. 20, pp. 199–236). Oxford: Blackwell.
Gilmore, C. (2007). Time travel, coinciding objects, and persistence. In D. Zimmerman (Ed.),

Oxford studies in metaphysics (Vol. 3, pp. 177–198). Oxford: Oxford University Press.
Gilmore, C. (2008). Persistence and location in relativistic spacetime. Philosophy Compass, 3/6,

1224–1254.
Gilmore, C. (2009). Why parthood might be a four place relation, and how it behaves if it is. In

L. Honnefelder, E. Runggaldier, & B. Schick (Eds.), Unity and time in metaphysics (pp. 83–
133). Berlin: de Gruyter.

Haslanger, S. (2003). Persistence through time. In M. J. Loux & D. W. Zimmerman (Eds.), The
Oxford handbook of metaphysics, (pp. 315–354). Oxford: Oxford University Press.

Hawthorne, J. (2006). Metaphysical essays. Oxford: Oxford University Press.
Hawthorne, J., & Sider, T. (2006). Locations. In J. Hawthorne (Ed.), Metaphysical essays, (pp. 85–

109). Ithaca: Oxford University Press.
Hershenov, D. (2005). Do dead bodies pose a problem for biological approaches to personal

identity? Mind, 114, 31–59.
Hudson, H. (2001). A materialist metaphysics of the human person. Ithaca: Cornell University

Press.
Hudson, H. (2005) The metaphysics of hyperspace. Oxford: Oxford Univerty Press.
Kleinschmidt, S. (2011). Multilocation and mereology. Philosophical Perspectives, 25(1), 253–

276. J. Hawthorne (Ed.).
Koslicki, K. (2008). The structure of objects. Oxford: Oxford University Press.
Linnebo, Ø. (2012). Plural quantification. In E. N. Zalta (Ed.), The Stanford encyclopedia of

philosophy (Spring 2013 ed.). http://plato.stanford.edu/archives/spr2013/entries/plural-quant/
Lowe, E. J. (2003). Substantial change and spatiotemporal coincidence. Ratio, 16, 140–160.
Markosian, N. (2008). Restricted composition. In T. Sider, J. Hawthorne, & D. W. Zimmerman

(Eds.), Contemporary debates in metaphysics, (pp. 341–363). London: Blackwell.
Markosian, N. (2010). Time. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring

2014 ed.). http://pluto.stanford.edu/archives/spr2014/entries/time/
McDaniel, K. (2004). Modal realism with overlap. Australasian Journal of Philosophy, 82, 137–

152.
McGrath, M. (2007). Four-dimensionalism and the puzzles of coincidence. In D. Zimmerman

(Ed.), Oxford studies in metaphysics (Vol. 3, pp. 143–176). Oxford: Oxford University Press.
Merricks, T. (2001). Objects and persons. Oxford: Oxford University Press.
Olson, E. (1997). The human animal: Personal identity without psychology. Oxford: Oxford

University Press.
Parsons, J. (2000). Must a four-dimensionalist believe in temporal parts? The Monist, 83, 399–418.
Parsons, J. (2007). Theories of location. In D. W. Zimmerman (Ed.), Oxford studies in metaphysics,

(Vol. 3, pp. 201–232). Oxford: Oxford University Press.
Rea, M. (1998). In defense of mereological universalism. Philosophy and Phenomenological

Research, 58(2), 347–360.
Rea, M. (2000). Constitution and kind membership. Philosophical Studies, 97, 169–193.
Schaffer, J. (2009). Spacetime the one substance. Philosophical Studies, 145, 131–148.
Sider, T. (2001). Four-dimensionalism: An ontology of persistence and time. Oxford: Clarendon.
Thomson, J. J. (1983). Parthood and identity over time. Journal of Philosophy, 80, 201–220.
Van Inwagen, P. (1990). Material beings. Ithaca: Cornell University Press.

http://plato.stanford.edu/archives/spr2013/entries/plural-quant/
http://pluto.stanford.edu/archives/spr2014/entries/time/


Chapter 2
Relativistic Parts and Places: A Note on Corner
Slices and Shrinking Chairs

Yuri Balashov

2.1 Introduction

Worries about parthood and location continue to stimulate the debate about per-
sistence over time. It is now widely recognized that physical considerations are
highly relevant to this debate. Recent work investigating the impact of relativity
theory on the ontology of persistence has revealed, not surprisingly, many unex-
pected dimensions and subtle nuances of this impact. There now appears to be a
broad consensus that no interesting metaphysical view of persistence (endurance,
perdurance, or exdurance) is decisively refuted by relativistic considerations. There
is little consensus as to how and to what extent various such views are supported by
them. One should proceed on a case by case basis.

In this paper I review some recent developments focused on an especially
intriguing aspect of relativistic persistence. My goal is not so much to adjudicate
a mini-dispute in this area as to use it as a case study to draw some lessons about
the broader metaphysical implications of the transition from the classical to the
relativistic worldview. Some relativistic phenomena (e.g., relativity of simultaneity
and time dilation) have no classical analogs and force us to revise the very
fundamentals of common-sense ontology (e.g., reject presentism). Others – those
that do most of the work in the arguments discussed below – have more familiar
classical limits and, as a result, less dramatic metaphysical consequences.
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2.2 Enduring and Perduring Objetcs in Classical Spacetime

We need to start by situating the major views of persistence in relativistic spacetime.
This, by itself, requires taking a stance on a number of controversial issues. The
approach sketched below is therefore rather opinionated. Fortunately, except for
one aspect of it,1 this will not bias my discussion of the arguments of interest
to me and, at the same time, will allow to avoid orthogonal engagements. Since
the arguments in question focus on two rival modes of persistence, endurance and
perdurance, and abstract from exdurance (also known as stage theory) I will set the
latter aside in my discussion too. Finally, I will restrict the discussion to special
relativity. To smoothen the transition to it, let us begin with the familiar context of
classical spacetime.

Classically, a material object o endures iff it persists by being multilocated, in its
entirety, at many instantaneous ‘time-slices’ of its path in spacetime. ‘Multilocated’
here means multiple exact location2; ‘in its entirety’ means wholly but not solely3;
and ‘path’ is a 4D (four-dimensional) region of spacetime ‘swept’ by o during its life
career.4 Enduring objects are 3D (three-dimensional) entities (i) extended in space
but not in time, (ii) having spatial but not temporal parts (on which more below),
and (iii) persisting by being wholly present at all moments of time at which they
exist (Fig. 2.1).

Classical perdurance can, for our purposes, be taken as involving the denial of all
the above. A material object o perdures iff it persists by being singly located only
at its path. Perduring objects are 4D entities (i) extended in time as well as space,
(ii) having temporal as well as spatial parts, and (iii) exactly located only at their 4D
paths (Fig. 2.2).

A bit more precisely, one could start with a three-place relation of parthood ‘p is
a part of o at a region R?’ relativized to a temporally unextended region of spacetime
R?. The regions of interest are, of course, instantaneous ‘time-slices’ (‘t-slices’) of
objects’ paths, which can be indexed by moments of time (in the classical context) or
by moments of time in frames (in the relativistic context), allowing one to simplify
the notation and speak of ‘parts at times’ (or ‘parts at frame-relative times’) and
thus anchor the technical language of persistence in familiar notions of common

1Noted in Sect. 2.4, note 22.
2Intuitively, a material object o can be said to be exactly located at a spacetime region R iff o and R
have exactly the same shape, size, and position. Exact location can be taken as an unanalyzed and
intuitively clear primitive (as is done, e.g., in Hudson (2001), Bittner and Donnelly (2004), Gilmore
(2006), and Balashov (2008, 2010)) or as a defined notion (see, e.g., Parsons 2007 and Gilmore
2008). The choice affects other commitments. Below we abstract from this issue and adopt the first
approach.
3Roughly, o is wholly located at R iff no part of o is missing from R; while o is solely located at R
iff no region disjoint from R contains any part of o. An enduring object is (typically) wholly and
exactly located at multiple regions of spacetime without being solely located at any of them.
4For now; we will need to make the notion of path more precise later.



2 Relativistic Parts and Places: A Note on Corner Slices and Shrinking Chairs 37

Fig. 2.1 Endurance in
classical spacetime

Fig. 2.2 Perdurance in
classical spacetime

language. Where p, o and a t-slice of o’s path, o?t , stand in such a relativized
parthood relation we shall say that p is a spatial part (s-part) of o at t :

Definition 1. p? is a spatial part (s-part) of o at t Ddf p? is a part of o at o?t .

Temporal parthood can then be defined as follows (Sider 2001, 59):

Definition 2. pk is a temporal part (t-part) of o at t Ddf (i) pk is located at o?t but
only at o?t , (ii) pk is a part of o at o?t , and (iii) pk overlaps at o?t everything that
is a part of o at o?t .

The subscripts ‘?’ and ‘k’ indicate that the relevant dimensions are, respectively,
‘orthogonal’ or ‘parallel’ to the direction of time.
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Given this background, classical endurance and perdurance amount to the
following:

Definition 3. o endures in classical spacetime Ddf (i) o’s path is temporally
extended, (ii) o is located at every t-slice of its path, (iii) o is located only at t-
slices of its path.

(i) ensures that o persists; (ii) says that an enduring object is ‘wholly present’ at all
moments of classical time at which it exists; (iii) precludes o from being extended
in time.

Definition 4. o perdures in classical spacetime Ddf (i) o’s path is temporally
extended, (ii) o is located only at its path, (iii) the object located at any t-slice of o’s
path is a proper t-part of o at that slice.

(ii) indicates that o is temporally extended and is as long as its path, while (iii)
guarantees that o has a distinct proper temporal part at each moment of its career.5

To say what properties a persisting object has at a classical moment of time both
endurantism and perdurantism must relativize possession of properties to times. The
endurantist can do it in a number of ways that bring with them somewhat distinct
metaphysics of temporal modification, each coupled with a corresponding semantic
of temporal predication.6 We can abstract from these details and put the guiding idea
as follows:

Definition 5. Enduring object o hasˆ at t (i.e., at o?t ) in classical spacetimeDdf o
bears ˆ-at to t .

The perdurantist, in her turn, must endorse the following analysis, or some
analog:

Definition 6. Perduring object o has ˆ at t (i.e., at o?t ) in classical spacetimeDdf
o’s t-part has ˆ.

To illustrate, consider Pif, a dog that, as we normally say, is angry at noon and
calm at midnight. The endurantist underwrites this talk by making Pif bear two
tenseless relations angry-at and calm-at to, respectively, noon and midnight. For
the perdurantist, Pif is a 4D entity extended both in space and time. It persists by

5 As noted above, these formulations are opinionated and gloss over some controversial issues.
First, there are exotic counterexamples, e.g., objects enduring according to (3), but having temporal
parts according to (4). Similarly, an object might be a temporally extended simple that has no
temporal parts. Some authors take exotica of this sort seriously enough to motivate a more fine-
grained classification of different ontologies of persistence distinguishing locational endurance
and perdurance (where the disagreement boils down to the issue of whether or not objects are
temporally extended) from their mereological counterparts (where the disagreement is about
possession of temporal parts). See, in particular, Gilmore (2006, 2008), where these distinctions
are developed in detail and amply illustrated. We will abstract from the exotic cases below and
focus on natural combinations of locational and mereological views.
6For details, see Lewis (1988), Haslanger (2003), and Balashov (2010, 18–22, 74–77).
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having distinct temporal parts at every moment of its existence. When we say that
Pif is angry at noon and calm at midnight what we really mean is that Pif’s noon
part is simply angry and his midnight part simply calm (see Fig. 2.2).

Obviously, endurance and perdurance represent two very different metaphysical
and semantic views. The question of whether ordinary material objects endure or
perdure continues to dominate the debate about persistence. Special relativity adds
new features to it.

2.3 Enduring and Perduring Objects in Special Relativistic
(Minkowski) Spacetime

The spacetime of special relativity (Minkowski spacetime) does not support the
notion of absolute simultaneity and the associated partition of spacetime events into
equivalence simultaneity classes. Instead it embodies an absolute metrical relation
between events known as the Interval,7 which imposes partial order on them.8

Global chronological precedence thus gives way to local relations of timelike and
lightlike separation. Simultaneity becomes a frame-relative notion, and moments of
time (i.e. hyperplanes of simultaneity) in different reference frames crisscross (see
Fig. 2.3 below).9

As we have seen, in classical spacetime, locations of persisting objects, their
parts, and temporary properties were indexed to moments of absolute time (more
precisely, to t-slices of the objects’ paths). A natural adaptation of this strategy
to Minkowski spacetime suggests further relativization to inertial frames of ref-
erence10 resulting in the replacement of the classical ‘t’ with a two-parameter
index ‘tF’ referring to moments of time in a given inertial reference frame F.
As before, one could begin with a three-place relation ‘p is a part of o at a tem-
porally unextended region R?.’ Temporally unextended regions of interest are now
‘tF-slices’ – spacelike intersections of time hyperplanes with the objects’ paths in
Minkowski spacetime. Where p, o and a tF-slice o?tF of o’s path o stand in such a
relation, we shall say that p is a spatial part (sF-part) of o at o?tF :

Definition 7. p? is a spatial part (sF-part) of o at tF Ddf p? is a part of o at o?tF .

7Expressed in a given inertial reference frame as I D c2�t2 ��r2

8The sense in which Minkowski spacetime is partially ordered is the sense in which its points can
be ordered by the relation RC.q; p/ � c2Œt .q/� t .p/�2 � Œr.q/� r.p/�2 � 0^ t .q/� t .p/ � 0,
which is reflexive, antisymmetric and transitive.
9For useful non-technical introductions to the geometrical structure of Minkowski spacetime see
Geroch (1978) and Balashov (2010, ch. 3).
10A move made by Sider (2001, 59, 84–86); Rea (1998); Sattig (2006, §§ 1.6 and 5.4); and
defended by Balashov (2010, §5.2,) but strongly resisted by Gibson and Pooley (2006, 160–165)
and, to some extent, by Gilmore (2008).
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Fig. 2.3 A persisting
spherical object in
Minkowski spacetime

And we explicate the notion of temporal parthood as follows:

Definition 8. pk is a temporal part (tF-part) of o at tF Ddf (i) pk is located at o?tF
but only at o?tF , (ii) pk is a part of o at o?tF , and (iii) pk overlaps at o?tF everything
that is a part of o at o?tF .

These notions can then be employed to give a tentative analysis11 of relativistic
endurance and perdurance:

Definition 9. o endures in Minkowski spacetime Ddf (i) o’s path is temporally
extended,12 (ii) o is located at every tF-slice of its path, (iii) o is located only at
tF-slices of its path.

Definition 10. o perdures in Minkowski spacetime Ddf (i) o’s path is temporally
extended, (ii) o is located only at its path, (iii) the object located at any tF-slice of
o’s path is a proper tF-part of o at that slice.

As before, these definitions must be supplemented with an account of the
relativization of temporary properties of persisting objects to their locations (in the
case of endurance), or the locations of their tF-parts (in the case of perdurance).
Such locations are, of course, tF-slices of the objects’ paths, which can be usefully
labeled with the same two-parameter index that figures in the above definitions:

11Important refinements will be made in Sect. 2.4.
12That is, includes at least two timelike separated points.
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Definition 11. Enduring object o hasˆ at tF (i.e., at o?tF) in Minkowski spacetime
Ddf o bears ˆ-at to tF.

Definition 12. Perduring object o hasˆ at tF (i.e., at o?tF) in Minkowski spacetime
Ddf o’s tF-part has ˆ.

Thus, while in the classical framework objects have properties at absolute
moments of time (more precisely, at absolute time slices of the objects’ paths),
in the Minkowskian framework possession of temporary properties is relativized,
in effect, to times-in-frames (more precisely, to frame-relative time slices of the
objects’ paths). This brings new features. Consider, for example, an object whose
path is a ‘cylindrical’ region in Fig. 2.3 (with one dimension of space suppressed).
Even if the object does not change its proper shape (i.e. the shape it has in its rest
frame), it exemplifies different shapes at time slices of its path drawn in different
reference frames, such as .x; y; t/ and .x0; y0; t 0/. The endurantist will say that the
object is located at both slices and bears the spherical-at relation to t�, a moment of
time (i.e. a time plane) in the frame .x; y; t/ hosting one of the slices and the oblong-
at relation to t 0�, in the frame .x0; y0; t 0/, hosting the other slice. The perdurantist will
say that the object is located at its path and has two distinct t-parts, the t�-part and
the t 0�-part, with different corresponding shapes. This is, of course, none other than
the familiar relativistic effect of Lorentz contraction dressed in modern metaphysical
clothes. Geometrically speaking, the effect is grounded in different (non-parallel)
orientations of time hyperplanes, containing time-slices of the object’s paths, in
different reference frames – a distinctly relativistic phenomenon absent from the
geometry of classical spacetime.

The implications of this phenomenon are more dramatic than it may appear.
Lewis (1988) has famously said that nothing can be bent and straight in the same
respect. This seems to imply, a fortiori, that nothing can be both bending and keeping
straight. But there is a sense in which this is not true in relativistic spacetime.
Consider a granite block moving with velocity v (which is a considerable fraction
of the speed of light) and suspended from vertical threads moving along with it
(Fig. 2.4).13 At a certain moment all threads are cut and the block starts to fall,
continuing at the same time its inertial horizontal motion. Figure 2.5 represents a
series of snapshots showing the block at some stages in this process.14 Figure 2.6
represents a similar series of snapshots taken in the original rest frame of the
block.

The block remains straight in the first series but becomes progressively bent in
the second. How could it be? There may, initially, be two worries about it. First,

13The essential details of the scenario come from Sartori (1996, 185–190), where it is used to
illustrate one of the lesser-known ‘paradoxes’ of special relativity, first introduced by Rindler
in (1961). My exposition of the case comes from Balashov (2010, 198–200). Thanks to Oxford
University Press for permission to use this material.
14Figures 2.4–2.6 are not spacetime diagrams but series of merely spatial ‘snapshots’ taken at
different moments of time in two reference frames.
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Fig. 2.4 Granite block in
horizontal motion

Fig. 2.5 Granite block in
free fall, continuing to move
horizontally

the block is made of granite and thus simply cannot bend. (If you think granite
is insufficiently rigid, pretend that the block is made of supergranite.) Second, the
block cannot both remain straight and undergo bending (here is where we may come
up against Lewis’s dictum).

These worries are, of course, misplaced. The block does both things, i.e., is both
bending and keeping straight over the same stretch of its career (loosely speaking).
And it bends no matter how rigid its material is. Moreover, it always bends in
the same way. How so? The key lies in the relativity of simultaneity. The threads
suspending the block are cut simultaneously in the ‘laboratory frame’ resulting in
free fall of all segments of the block (Fig. 2.5). In the original rest frame of the
block, however, the cutting events occur successively (Fig. 2.6). When the rightmost
thread is cut the part of the block previously held by it begins to fall immediately.
But the rest of the block remains horizontal. By the time the next thread is cut the
segment of the block just underneath it still ‘does not know’ that the rightmost part
is already in free fall and, hence, does not have a chance to exert a sheer force that
could stop the bending of the right end of the block. Why? Because the cutting
events are simultaneous in the laboratory frame, hence, spacelike separated from
each other. Therefore, no physical influence can propagate from one such event to
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Fig. 2.6 Granite block in
‘free fall’ with snapshots
taken in its rest frame

the next. Nothing can stop a given segment of the block from free fall, once the
thread holding it is cut. Accordingly, nothing can stop the block from bending. The
strength of the material is beside the point.

Along with some other ‘paradoxes,’ this scenario is sometimes taken to show
that there are no rigid bodies in special relativity, that is to say, no bodies that can
keep their shape invariant, even in the idealized limit.15 (Thus supergranite is of
no help.) Shape and other arrangements in 3D space are, in this theory, merely
perspectival phenomena. But there must be something permanent standing behind
all the different perspectives, such as those shown in Figs. 2.5 and 2.6. What stands
behind them is, of course, a 4D invariant shape of the path of the persisting object.16

If this object perdures then it is temporally as long as its path and fits exactly in
it. This fact could then be used to explain the unity behind many perspectivally
restricted shapes of the object’s temporal parts (see Balashov 2010, ch. 8). If the
object endures such an explanation is unavailable (or so I argue in ibid.), but one
can still derive comfort from the notion that a single enduring 3D object can fill
its 4D path by exhibiting different 3D shapes – as drastically different as bent and
straight – at its rampantly crisscrossing locations slicing its path at various angles in
spacetime. Indeed, according to our understanding of relativistic endurance so far,
the object is located at every tF-slice of its path.

But it has been argued that this leads to problems, just around the corner. I discuss
these arguments in the next section, where I also draw some morals for the broader
understanding of relativistic persistence.

15See, e.g., Sartori (1996, 184–185).
16I make no attempt to depict it.
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2.4 Corner Slices and Shrinking Chairs

As they now stand, our accounts of relativistic endurance and perdurance (see
Definitions 9 and 10) embrace a very liberal view of location allowing each enduring
object to be located at every tF-slice of its path and each perduring object to have a
tF-part at every tF-slice of its path, as per clauses (ii) and (iii) of the corresponding
definitions. In classical spacetime, liberalism of this sort appears unproblematic,
especially when combined with a very natural understanding of the notion of path of
a persisting object as a union17 of regions at which the object is located (see Gilmore
2006). Suppose objects endure. If we start by saying that an enduring object o is
wholly present at all absolute moments of time from a certain range �t and arrive
at the notion of its path by taking the union of the instantaneous spacetime regions
at which o is thus multilocated then it is anything but surprising that o is located
at every (absolute) time-slice of its path. This is reassuring, even if not particularly
enlightening.

Things are importantly different in relativistic spacetime. Suppose o endures and
is located at each of a continuous family of instantaneous regions forming its path,
but at no other region (Fig. 2.7). Then each member of this family supplies, quite
trivially, a legitimate location of o. But this is not true of any ‘slanted’ instantaneous
slice of o’s path, such as o?*. The same holds, mutatis mutandis, of perdurance.
Suppose o perdures, and each of the continuous family of instantaneous slices of its
path hosts o’s temporal part. This does not automatically grant the same privilege
to the ‘slanted’ slice o?*. For all we know, o?* may fail to contain a temporal part
of o. Imagine Unicolor, a persisting object one of whose essential properties is to be
uniformly colored (cf. Smart 1987, 63–64). Suppose further that Unicolor uniformly
changes its color with time in a certain inertial reference frame F. Consider a
tF�-slice of Unicolor’s path that is at an angle to hyperplanes of simultaneity in
F. Whatever (if anything) is located at such a slice is not uniformly colored and,
hence, must be distinct from Unicolor, even though it is filled with the (differently
colored) material components of Unicolor.18

Admittedly, cases such as the Unicolor are metaphysically recherché (what in
reality grounds Unicolor’s mysterious essential property being uniformly colored?)
and could probably be set aside. However, according to Gilmore (2006, 212–213)
and Sattig (2012, forthcoming), the feature of Minkowski spacetime that underlies
such cases leads to a more tangible problem. Gilmore argues that this problem
eventually undermines the viability of relativistic endurance. Sattig argues that the
problem affects relativistic perdurance as well as endurance, albeit for different
reasons, and gives additional support to his double-layered ontology of ordinary
objects. The common set-up of both arguments is as follows (see Gilmore 2006,

17Or perhaps a sum. This depends on whether regions are taken to be set-theoretical or mereological
notions. We adopt the first strategy, primarily for convenience, not as a matter of principle.
18For another illustration of the same point, see Gilmore (2006, 210–211)
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Fig. 2.7 Crisscrossing
locations of persisting
objects, or their tF-parts, in
Minkowski spacetime

Fig. 2.8 ‘Corner slice’ (see
Gilmore 2006, 212–213)

212–213). A persisting object o composed of many particles pops into existence
at time t1 and pops out of existence at t2, in a frame .x; t/. Its path o is a shaded
region in Fig. 2.8.19 Both t1- and t2-slices of o are good candidates for hosting o (if
o endures) or o’s temporal parts (if o perdures), and so are all the t-slices between
t1 and t2 in the frame .x; t/. But consider a ‘corner slice’ o?t 0

†
drawn through a

corner of o at the time t 0† in the frame .x0; t 0/. Being a temporally unextended slice
of o it must be a location of o, or its temporal part, according to clauses (ii) and

19Strictly speaking, o’s path is not a continuous hyper-rectangle but a densely packed ‘multifila-
ment region’. We ignore this complication here.
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(iii) of our accounts (9) and (10) of relativistic endurance and perdurance so far.
But this is problematic. The t 0†-slice of o is a single point20 hosting, at most, a
single particle of o, so can hardly qualify as a suitable location of o, or its temporal
part. To use Sattig’s example, suppose o is a chair. According to our ordinary
conception of material objects, a chair, in particular, cannot shrink to a point without
going out of existence. Ordinary objects cannot undergo radical variation in shape
without ceasing to be the kind of objects they are. According to a very intuitive
geometrical interpretation of special relativity,21 however, they do undergo such
radical variation, as demonstrated by the corner-slice scenario.

Both Gilmore and Sattig agree that scenarios of this sort create a tension between
our ordinary conception of persistence and relativity. But they derive different
lessons from this. Gilmore argues that corner-slice scenarios cast doubt on the
very tenability of the above statement of endurance in Minkowski spacetime, while
not negatively affecting perdurance.22 Sattig, on the other hand, uses the ‘point-
shaped chair’ problem to reinforce his case for a ‘double-layered’ ontology of
ordinary material objects, with a view of resolving the tension described above.23

Their disagreement about the proper lessons of the scenarios, however, interests
me less than their common attitude toward such scenarios. I believe, they both
overreact to them. I will show it by looking more critically at the details of two
somewhat different versions of the corner slice/shrinking chair case: ‘abrupt’ and
‘gradual.’ I will argue below that abrupt scenarios involve violation of conservation
laws of physics, whereas the relativistic considerations underlying the arguments
in question presuppose their validity. This undermines the consistency of abrupt

20Or so we assume; alternatively, it could be a one-dimensional line or a two-dimensional surface,
with the same effect.
21Amply illustrated in Fig. 2.8 and other figures in this paper.
22See Gilmore (2006). Gilmore himself takes the case to demonstrate, first and foremost, the
need to allow enduring objects to be located, not just at flat time-slices, but at arbitrary maximal
spacelike slices of their paths in relativistic spacetime, including curved such slices, a move raising
further objections developed by Gibson and Pooley; see Gibson and Pooley (2006, 186). I argue
against admitting curved slices as legitimate locations of persisting objects in Minkowski spacetime
on independent grounds in Balashov (2008, Section 5; 2010, Section 5.2.).
23Sattig’s neo-Aristotelian ontology, systematically developed in (forthcoming) and a number of
earlier papers, regards ordinary objects as ‘double-layered compounds of matter and form.’ The
centerpiece of his theory is the thesis that the material and the formal ‘layers’ of ordinary objects
ground two different perspectives on them, which generate divergent truth conditions of various
claims about objects. Both perspectives – the material (or sortal-abstract) and the formal (or sortal-
sensitive) – are equally important, and both are found in ordinary discourse. Some of our thinking
about ordinary objects tracks their underlying matter (e.g., when we reflect that two distinct objects
cannot occupy the same region of space, or spacetime), while other intuitions track sortal-sensitive
‘careers’ of objects, whose various stages may include materially distinct subjects (e.g., when we
re-identify a certain cat composed of a particular mass of matter today with a certain cat composed
of a numerically different mass of matter tomorrow). Sattig argues – systematically, rigorously,
and persuasively – that the availability of these two perspectives holds key to resolving various
problems, including the problem of corner slices/point-shaped chairs (if the latter is a problem).
For details, see Sattig (2012; forthcoming, Chapter 8).
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Fig. 2.9 Gradual
‘corner-slice’ scenario

scenarios. Gradual scenarios are more complicated. They conform with the physical
laws but crucially involve vagueness of material composition. I believe that a
proper account of the vagueness factor takes the sting from the problem of corner
slices/shrinking chairs.

The ‘abrupt’ version is essentially as above. One can resist the arguments based
on it by simply denying the possibility of abrupt corner slices/shrinking chairs
scenarios. More carefully, the careers of the objects represented in them violate
the conservation laws of physics (because the careers represent objects as popping
into and out of existence), while the whole line of reasoning based thereon and
motivating pessimism about the viability of relativistic endurance (in Gilmore’s
case) or about the prospects of familiar single-layered ontologies (in Sattig’s case),
assumes the physics of relativity which requires strict validity of conservation laws.
The incoherence of this sort makes physically impossible states of affairs, such as
that depicted in Fig. 2.8, irrelevant to the discussion in hand, even if they are not
impossible tout court.

This motivates a transition24 from the abrupt to a gradual version of the scenario.
Suppose that, instead of popping in and out of existence, initially scattered particles
come to compose object o at t1 and stop doing so at t2, when they ‘break up’ and
begin to separate (Fig. 2.9). What do we now say of the t 0†-slice of o’s path? It still

24Suggested by Gilmore in personal correspondence and developed in some detail in Sattig (2012;
forthcoming, Chapter 8).
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appears to contain a single point, so the problem recurs, but conservation laws are
now respected.

Let us consider the situation more carefully. The ‘break up’ of o’s particles end-
ing its career cannot be instantaneous. It must grounded, perhaps in a complicated
way, in the rapidly changing pattern of their causal interaction. In all likelihood,
the grounding conditions will be vague, resulting in an extended interval of ‘fading
away,’ with no sharp temporal boundaries, such as t2. Hence it is not so clear, after
all, that the t 0†-slice of o is ineligible to be one of o’s locations (or a location of
its temporal part). Any verdict to this effect will depend on the fine details of the
relevant theory of spatial composition, the nature of the object in question, and the
exact trajectories of its particles. And even when all that is taken into account, the
answer will perhaps remain vague. Thus drawing the path of o in the form of a clear
cut rectangle (as in Figs. 2.8 and 2.9) is misleading. But it is precisely such clear cut
drawing that generates the problem of corner slices/point-shaped chairs in the first
place.

What is the real upshot of these considerations? One should recognize that on
any view of vagueness, some tF-slice of o or other will not be eligible (perhaps,
on some precisification) to serve as o’s location (or a location of its temporal
part), or at least not determinately so eligible. The notion of eligibility must thus
be written into an official account of relativistic persistence. But considerations
of eligibility, stemming from widespread worries about the vagueness of material
composition, cannot be neglected even in the classical setting. They arise, for
example, whenever we ask whether a progressively scattering composite object still
exists at a certain moment of absolute time. If we think that this question does
not have a determinate answer then considerations of vagueness must be taken
into account in the explication of the notion of the object’s path even in classical
spacetime. Relativity does not add anything new to this step. What appears to be new
emerges at the next step: after the path of a persisting object in relativistic spacetime
has been assembled from its eligible momentary locations indexed to a particular
reference frame (which already presumes coming to terms with vagueness), one
apparently gains unrestricted freedom to slice the path thus produced at various
angles, including those generating ‘corner slices.’ The freedom comes from rampant
crisscrossing of time hyperplanes in Minkowski spacetime. The question is whether
one can exploit it at will, in the way suggested.

I submit that one cannot. ‘Unbridled crisscrossing’ must be rejected in favor of
‘disciplined crisscrossing,’ and considerations ruling over the process at this stage
are essentially the same as those at play at its first step, that of assembling the path
of a persisting object from its eligible momentary locations in a particular reference
frame. The same sort of vagueness may inflict both of them, but if so, it must be dealt
with in the same way. And the need to deal with it is as urgent in classical spacetime
as it is in Minkowski spacetime. To see this, return to Fig. 2.9 and consider the
evolution of o in .x0; t 0/. From the physical point of view, .x0; t 0/ is a legitimate
frame of reference, which represents o as moving as a whole while progressively
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Fig. 2.10 Progressive
shedding of particles by a
moving object

shedding particles until the process reaches the corner slice o?t 0
†

(Fig. 2.10).25 How
many particles could o shed without ceasing to exist? Maybe just a few, or maybe
the majority of them. Exactly at what point in .x0; t 0/ did o go out of existence?
More likely than not, before t 0†; but there is hardly more to be said. Perhaps there
is no general answer to such questions, and the answer depends, in each case,
on the nature of the object under consideration. But when the evolution of o is
viewed from this perspective it becomes clear that (i) questions of this sort must be
settled before one attempts to draw the boundaries of o’s path, and (ii) exactly the
same questions would arise if spacetime were classical and time planes in .x0; t 0/
represented absolute time planes.

The real lesson of the corner-slice/shrinking chair scenarios is, therefore, that
questions of locational eligibility are metaphysically prior to questions about the
exact boundaries of o’s path in relativistic spacetime.26 This motivates the following
modifications to our earlier accounts of relativistic endurance and perdurance:

Definition 90. o endures in Minkowski spacetime Ddf (i) o’s path is temporally
extended, (ii) o is located at every o-eligible tF-slice of its path, (iii) o is located
only at tF-slices of its path.

Definition 100. o perdures in Minkowski spacetime =df (i) o’s path is temporally
extended, (ii) o is located only at its path, (iii) the object located at any o-eligible
tF-slice of o’s path is a proper tF-part of o at that slice.

25For simplicity, Fig. 2.10 does not represent the first episode of the original scenario, when the
initially scattered particles come to compose o in the first place. But similar considerations apply,
mutatis mutandis, to such ‘coming into existence’ episodes as well.
26Cf. Gibson and Pooley (2006, 186–187), who develop a very similar suggestion.
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An intuitive picture underlying these accounts is as follows:
Certain particles come together to compose an object o at time t1 in a particular

reference frame .x; t/ and stop composing it at t2. By anyone’s lights, a com-
plete description of the process requires a well-developed theory of composition
addressing, among other things, the issue of vagueness. The very same resources
are needed to give an account of a similar process in the classical framework.

All the momentary locations of o (or the locations of its temporal parts) in frame
.x; t/ comprise o’s partial path o.x; t/. The very same particles that compose o (or
the t-parts of o) at all moments t 2 Œt1; t2� in .x; t/ may or may not also compose o
(or o’s t 0-part) at a particular ‘slanted’ slice of o.x; t/ corresponding to a moment of
time t 0 in another frame. Whether or not they do is a question whose answer requires
the very same metaphysical resources as the answer to the first question.

Finally, in the spirit of relativity, there is nothing special about the initial choice
of the frame .x; t/. One could start with assembling a partial path of o in .x0; t 0/,
o.x0; t 0/, and then raise a question about whether any particular t-slice of o.x0; t 0/ is
eligible to host o as well.

The full path of o is then simply the union of all its partial paths in all inertial
frames of reference. In some idealized cases it will be clear-cut. In more realistic
cases it will have a well-delineated core along with a possibly ragged ‘penumbra’.
How the core is stitched together with the penumbra is a question that cannot be
addressed here. But in light of the above considerations it should be clear that this
question too has nothing distinctly relativistic about it.

Acknowledgements I am very grateful to Cody Gilmore and Thomas Sattig for their comments
on the draft of this paper.
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Chapter 3
Parthood and Composition in Quantum
Mechanics

Claudio Calosi and Gino Tarozzi

3.1 Introduction

The present paper is an attempt to explore the notions of parthood and composition,
that play a crucial role in both physics and metaphysics, within the context of non
relativistic quantum mechanics. The question of what mereological theory quantum
systems are models of is virtually unexplored in literature.1 We will argue that
they are a model of the so called closed extensional mereology (CEM) and we
will consider whether they could be models of some stronger closure mereological
theory. Let us immediately spell out the importance of dealing with such a topic.
First of all there is a growing interest in the philosophy of physics for questions
about part, wholes, boundaries and so on, especially when it comes to quantum
mechanics. This interest is witnessed for example in Healey (2013) and Field
(2014). Also Morganti (2013) dedicates an entire chapter on parts and wholes.
Second, we have reason to believe that some quantum features will be retained
in our next fundamental physical theory. If so, the analysis put forward in the
paper shows how parthood and composition behave (or are likely to behave) at
(some) fundamental level. This is something that should not be overlooked by
metaphysicians. Finally, as it will be clear in due course, some of the arguments
presented have consequences for hotly debated metaphysical issues such as the
fate of the Unrestricted Composition principle or questions about metaphysical
fundamentality. The plan of the paper is as follows. In Sect. 3.2 we review some

1But see Calosi et al. (2011) and (Healey 1991, 2013) for some important insights.
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basic facts about quantum composite systems and some mereological principles, and
then in Sect. 3.3 we give a detailed account of the mereology of quantum systems.
We will offer a brief conclusion in Sect. 3.4.

3.2 Primers in Quantum Mechanics and Formal Theories of
Parthood

In this section we review some important facts about quantum composite systems
(Sect. 3.2.1) and about some mereological principles (Sect. 3.2.2). This review is
not intended to be complete,2 but rather to introduce some notions that we will use
extensively throughout the paper.

3.2.1 Quantum Mechanics of (Composite) Systems

Our purpose here is to collect some important facts about quantum composite
systems that some reader may not be familiar with. Firstly we briefly review
some technical material. To every quantum system S is associated a separable (not
necessarily finite dimensional)3 Hilbert space H over the complex field. Different
linear operators can be defined over H . We are interested in three particular
operators, i.e. Hermitian operators, projective (or projection) and density operators.
Their importance will be clear later on. Let us start from the first.4

Definition 1. An operator A is Hermitian if for every vector jvi, hujAvi D hAujvi
Recall that a function (vector) jui is called an eigenfunction (eigenvector) of an
operator A corresponding to eigenvalue a if jui ¤ j0i and Ajui D ajui. Three
important facts can be proven: (i) eigenvalues of Hermitian operators are real;
(ii) representing any hermitian operator as a square matrix, it turns out that the sum
of the diagonal elements of such matrix is the sum of the operator’s eigenvalues;
(iii) eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.

Definition 2. An operator A is idempotent if A D AA D A2
With this in hand it is possible to give a simple definition of projective operators.

2We refer to Beltrametti and Cassinelli (1981, pp. 61–77) and Jauch (1968, pp. 175–182) for
quantum composite systems and to Casati and Varzi (1999, pp. 29–49) and Varzi for mereological
principles. See also Simons (1987) and the Appendix of this volume.
3We will always deal with finite dimensional cases. We will omit the reference thereon.
4We will use the so called Bra-ket notation for the inner product.
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Definition 3. A projective operator, which we shall denote by Pi , is a linear
operator that is both Hermitian and idempotent.

Projective operators are operators that project vectors into subspaces of H that are
spanned by the operators eigenvectors, so that the set of projective operators is in
one to one correspondence to subspaces of the Hilbert space. Then we just need to
define density operators. To do that we introduce the notions of a trace class and
trace of an operator first.

Proposition 1. An operator A belongs to the trace class if (i) for every jui,
hujAui � 0, and (ii)

P
i hui jAuii is finite

The trace of an operator A, denoted by Tr.A/ is the number defined via:

T r.A/ D
X

i

hui jAui i (3.1)

Now the last piece:

Definition 4. A density operator,5 which we shall denote by Di , is a trace class
operator of trace 1.

There are various relations that hold between the different operators we have
defined. Some of them are of crucial importance.

Proposition 2. For any projection Pi that projects onto a n-dimensional subspace
Tr.Pi / D n
From Definition 4 and Proposition 2 it follows that:

Proposition 3. Every projection operators that projects onto a 1-dimensional
subspace is a density operator.

The other crucial relation, this time between Hermitian and projection operators, is
ensured by the so called Spectral Theorem (Jauch 1968, pp. 53–54; Beltrametti and
Cassinelli 1981, pp. 293–296).6 Informally it says that any Hermitian operator can
be decomposed into a weighted sum of projective operators:

Theorem 1. Let A be an Herminitan operator defined over a finite dimensional
Hilbert space. Then there are real numbers a1; : : : ; an and projective operators
P1; : : :; Pn such that A D Pn

iD1 aiPi , where numbers a1; : : :; an are eigenvalues
of A.

Why have we spent so much time and effort to provide these definitions? Simply
because these operators play a crucial role in the quantum mechanical description
of physical systems. Let us see how.

5It is sometimes also called statistical operator or density matrix.
6See also Hughes (1992, p. 50).



56 C. Calosi and G. Tarozzi

In general, given a quantum system S , with associated Hilbert space H , every
state of the system S is represented by a density operator defined over H , and
every observable O of S is represented by a Hermitian operator. In the absence of
superselection rules the converses also hold. Given Proposition 3 and the Spectral
Theorem it also follows that projection operators Pi such that Tr.Pi / D 1, i.e.
projection operators that project onto 1-dimensional subspaces, represent states and
that every observable is associated with a weighted sum of projection operators.

Quantum mechanics provides an algorithm to establish the probability that an
observable represented by the Hermitian operator A lies in a particular subset E of
the real line7 when the state of S isD. What is this algorithm? Recall that, according
to the Spectral Theorem every operatorA determines for every subsetE a projection
operator that we will write as PA.E/. The aforementioned probability is then the
number Tr.DPA.E// We have said that states of quantum systems are represented
by density operators. They form a convex set. Let us be clearer. Let D1; : : :;Dn be
density operators and w1; : : :;wn real positive numbers. Then:

Definition 5. D is the convex sum of D1; : : :;Dn if (i) D D Pn
1 wiDi with i D

1; : : :; n and (ii)
Pn

1 wi D 1
In such cases D is still a density operator and thus represent a possible state of the
system. In general we have then that:

Tr.DPA.E// D
X

i

wiTr.DiPA.E// (3.2)

Equation (3.2) is the general quantum mechanical algorithm we were looking for.
It gives the probability of observable represented by A having a value that lies in E
given the general convex sum stateD. We will see that this take a more perspicuous
form in particular cases. To see this we need an important distinction, namely that
of pure and mixed states. Go back to Definition 5.

Proposition 4. A state D that cannot be written as a convex sum of other states is
called a pure state. A general convex sum is instead a nonpure or mixed state.

We have already seen that projectors onto one dimensional subspaces are states.
Furthermore the following important consequence can be proven:

Proposition 5. A state D is a pure state iff it is a projection operator that projects
onto a 1-dimensional subspace.

It follows that the set of projective operators that projects onto 1-dimensional
subspaces is in a one-to-one correspondence with the possible pure states of the
system. Now, 1-dimensional subspaces are spanned by a single vector. Hence pure
states can be represented by vectors. Suppose D D P jui where the right hand
side should be read as the projective operator that projects onto the 1-dimensional

7Technically a Borel subset of R. We will omit this specification.
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subspace spanned by the vector jui. Then every vector that is a scalar multiple of
jui represents the same pure state.8

Suppose now that jui, jvi represent two distinct pure states. The linearity of
the Hilbert space allows us to generate another pure state that is called the linear
superposition of states jui, jvi, namely c1juiC c2jvi provided that jc1j2Cjc2j2 D 1.
In general we have the following.

Proposition 6. Let fju1i; : : :; junig represents a set of pure states. Then the linear
superposition of such state defined as

Pn
1 ci juii, where

Pn
1 jci j2 D 1 is again a

pure state of the system.

Needless to say this should not be confused with the convex sum in Definition 5.
So far we have talked about pure states. What is the relation between pure and

mixed states? It turns out that every state D can be written as a weighted (not
necessarily finite) sum of pure states, that is:

D D
X

i

wiPi (3.3)

wherePi are projectors onto 1-dimensional subspaces, that we know represents pure
states,9 and

P
i wi D 1

There is an important fact about Eq. (3.3) that will play a critical role in some
of our arguments. This equation ensures a decomposition of mixed states into pure
ones. However this decomposition is not unique. This entails that “an ignorance
interpretation” of mixed states cannot be consistently maintained. Here is a brief
argument.

Consider a system S in a mixed state D D c1P1 C c2P2. According to the
ignorance interpretation S is really in one of the pure states P1; P2, we just do
not know which one. However, given the non uniqueness of decomposability we
can write D D c3P3 C c4P4 where the four pure states that appears in the two
decompositions are distinct. Then, repeating the previous argument it follows that
according to the ignorance interpretation S is really in one of the pure states P3; P4
which contradicts the conclusion that it was either in P1 or P2. Thus an ignorance
interpretation of mixed states is untenable.

We have pointed out that in particular cases Eq. (3.2) takes a more perspicuous
form. Suppose a system S is in a pure state. Then, by Proposition 5 it is represented
by a projection operator that projects onto a 1-dimensional subspace. Let j i be a
vector belonging to that subspace. It is possible to choose a basis for the Hilbert

8Sometimes pure states are said to be represented by normalized vectors. This is indeed that vector
jvi D ajui such that hvjvi D 1. This choice of representing states has some conventional latitude.
9This justifies the claim that the set of states of a system forms a convex set of which the extremal
points are the pure states Hughes (1992, p. 143).
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space that contains j i. Then, the probability that the value of an observable A lies
in E whenD D P j i is given by:

h jPA.E/ i (3.4)

This is probably what could be found in every (introductory) text in quantum
mechanics. But what if we want to compute the probability that observable A has
a definite value �i rather than lying in an arbitrary Borel set E? We will answer
this question in the simple case in which the observable in question has a discrete
point spectrum, i.e. the support of the probability measure defined by PA is simply
�1; : : :; �n. These are the eigenvalues of the observable A. We will furthermore
make the simplifying assumption that there is no degeneracy, i.e. all eigenvalues are
distinct. Then to every eigenvalue �i corresponds an eigenvector10 j'ii. Substituting
in Eq. (3.4) we get:

h jPA.�i / i D
D
 jP j'i i 

E
(3.5)

Now,
ˇ
ˇP j'i i 

˛ D h'i j i j'i i. Substitute it in Eq. (3.5) to get:

h j h'i j i j'i i D h'i j i h j'i i D j h'i j i j2 (3.6)

By linearity and symmetry of the inner product. Equation (3.6) gives us a
very simple expression for the probability of finding value �i corresponding to
eigenvector j'i i when the state of the system is j i. Actually we can come up with
even a simpler expression. This is because we can write j i as j i D P

i ci j'ii
where ci D h'i j i so that the probability in question is simply given by jci j2 as can
be seen from direct substitution in the right hand-side of Eq. (3.6). Let us stop and
consider a simple example.

Suppose a system S is in pure state j i D c1 j'1i C c2 j'2i where j'1i ; j'2i
are the two eigenvectors of an operator A belonging to the eigenvalues �1 and
�2 respectively.11 Then the probability of finding value �1 when measuring the
observable represented by A is simply jc1j2. The same goes for �2. This leads
us to a point that will be crucial in some of the arguments we will present in the
next section. Suppose the state S is in an eigenfunction of a particular observable
O represented by operator A, i.e. j i D c j'i where j'i is the eigenfunction of
O belonging to eigenvalue �. Then the probability of S having value � for the
observableO is, according to the previous argument:

jcj2 D 1 (3.7)

10This is ensured by our simplifying assumption.
11Note that since j i is a pure state by assumption, it follows that jc1j2 C jc2j2 D 1.
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since j i is by assumption a pure state. Hence it will be certain that S has the
property O D �. This is sometimes referred to as the Eigenfunction-Eigenvalue
link in literature, namely

Proposition 7. A system S has the property of having O D � iff S is in an
eigenfunction of the observableO belonging to the eigenvalue �

So far we have talked about simple systems. Let us then move to composite ones.
Suppose systems S1 and S2 form a composite system S . We have seen that to

every quantum system corresponds an Hilbert space. What is the Hilbert space
corresponding to S , or better, how can we construct the Hilbert space H of S out
the Hilbert spaces H1 and H2 of S1, S2? The Hilbert space in question is called
the tensor product of the Hilbert spaces of the component systems and is indicated
with H D H1 ˝H2. More precisely consider the Cartesian or topological product
H1�H2, i.e. the set of ordered pairs .j'i ; j i/; j'i 2 H1; j i 2 H2. Then we have
that:

Definition 6. H is the tensor product space of H1;H2 iff there exists a map ˝ W
H1 �H2 ! H that satisfies:

(i) j'i ˝ j i; j'i 2 H1, j i 2 H2 spans H ,12 and
(ii) h'1 ˝  1j'2 ˝  2i D h'1j'2ih 1j 2i for all vectors in H1;H2

Clause (ii) simply says that the inner product on the tensor product space is defined
in terms of the inner products of the Hilbert spaces of the component systems, since
h'1j'2i is defined overH1, whereas h 1j 2i is defined overH2. Since by clause (i)
the set j'i ˝ j i spans H , the inner product defined in clause (ii) can be extended
by linearity to the whole ofH . This construction can be generalized to n subsystems
(Jauch 1968, p. 186). In this case we have:

Definition 7. H is the tensor product space ofH1;H2; : : :;Hn iff there exists a map
˝ W H1 �H2 � : : : �Hn ! H that satisfies:

(i) j'i ˝ j i ˝ : : :˝ j#i, with j'i 2 H1; j i 2 H2; : : :; j#i 2 Hn, spansH
(ii) h'1 ˝  1 ˝ : : :˝ #1j'2 ˝  2 ˝ : : :˝ #2i D h'1j'2ih 1j 2i: : :h#1j#2i
Clauses (i) of Definitions 6 and 7 tell us that the relevant sets span the Hilbert space.
This means, restricting our attention to the first case, that every vector j�i 2 H can
be written as a linear combination of vectors in the relevant sets, i.e.:

Theorem 2. j�i DPdimH1
1

PdimH2
1 cijj'i i ˝ j j i

This is a version of the so called Schmidt Decomposition theorem.
The important thing about this theorem is that it entails that not all the vectors,

though they can be written as a linear combination of vectors of the form j'i˝j i,
can be written simply as j'i ˝ j i directly. We will see that vectors that cannot
be written this way represent entangled states, and we will see particular examples

12Note that all the following notations are equivalent: ' ˝  , j'i ˝ j i, j'ij i, j' i.
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of them. Here is another, very brief, equivalent way to put the same point. The
topological product is a proper subset of the tensor product.

We have constructed the Hilbert space for the composite system. How can we
construct the operators? Given the linearity of Hilbert space we can define linear
operators by the way they transform the vectors in the basis (i) of Definition 613 and
then extend it to the whole Hilbert space. Let then A1;A2 be two linear operators
defined on H1;H2 respectively. Then we define a new linear operator overH via:

.A1 ˝ A2/.'i ˝  j / D A1j'ii ˝ A2j j i (3.8)

Among all possible operators defined via Eq. (3.8) we are interested in particular
ones, namely A1 ˝ I2; I1 ˝ A2 where I1; I2 are the identity operators in H1;H2.
OperatorA1˝I2 defined overH represents the same physical quantity ofA1 defined
over H1. In the first case we are simply considering the subsystem as a part of the
composite one.

This leads us to the last topic of the section, namely that of relating the states of
the composite and the component systems. First we impose some sort of consistency
requirement, that is we require that if we perform a measurement of any observable
on the subsystem S1.S2/, whether we measure it as an individual system, or as a
part of the composite system S the result turns out to be the same. Recall that (i)
Eq. (3.2) gives us the probability of finding a value for an observable as Tr.DPi /
for every projection operator that the spectral theorem determines for an observable
Ai and that (ii) for every operator, A1 ˝ I2 represents the same observable as A1.14

Then we can simply write the consistency requirement as:

Tr.D1P1/ D Tr.D.P1 ˝ I2//
Tr.D2P2/ D Tr.D.I1 ˝ P2//

(3.9)

Possible solution(s) to Eqs. (3.9) tell us important facts about composite systems.
The first important thing that can be proven is the following:

Proposition 8. The state of the total system D uniquely determines the states
D1;D2 of the component systems. This is true regardless of D being a pure or a
mixed state.

The converse however does not hold. The states D1;D2 can determine D only if
they are pure states. In particular we have:

Proposition 9. Let D1;D2 be two pure states. Then D is uniquely determined by
D1;D2 and it is in the pure state given by D D D1 ˝D2, i.e. D1 ˝D2 is the only
solution to Eq. (3.9).

13The same goes for the most general cases in Eq. (3.7).
14The same goes for I1 ˝ A2.
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Let us see what happens when D is a pure state. Then we have two different cases.
The first one is the simplest:

Proposition 10. Let D be in the pure state D D j'i ˝ j i, where j'i 2 H1 and
j i 2 H2. Then D1 D j'i;D2 D j i.
Note that this, together with Proposition 9 entails that the component states are in
pure states iff the state of the composite system can be written as j'i ˝ j i. But
we have already pointed out discussing the Schmidt Decomposition theorem that not
every vector inH can be written in that form. Then we have the following important
result:

Proposition 11. Let D be a pure state of the general form D D P
i;j cij'i ˝  i

that cannot be written as j'i ˝ j i. Then D1;D2 are still uniquely determined by
D but are mixed states.

We call the states in Proposition 11 entangled states for their component systems do
not behave independently but rather exhibit important correlations.15 It is also said
that the total state is not factorizable.

Let us conclude this section by giving an example of such entangled states. Let
S1; S2 be two identical spin subsystems, where spin eigenstates are given by the up
and down states j "i; j #i. Then, in general we will have that

D1 D j'i D .c1j "i C c2j #i/
D2 D j i D .c3j "i C c4j #i/

(3.10)

Whence

D1 ˝D2 D j'i ˝ j i D
c1c3j "ij "i C c1c4j "ij #i C c2c3j #ij "i C c2c4j #ij #i

(3.11)

Now, suppose that the system is in the pure state

D D 1p
2
.j "ij " i C j #ij #i/ (3.12)

Now, the question is. Can the state represented by Eq. (3.12) be written in the
form of Eq. (3.11)? The answer is clearly no. To see this note that this would entail

15It is possible to define a correlation coefficient �.A1; A2;D/ between any two observables A1,
A2 given state D. Then it is possible to define entangled systems those systems for which � ¤ 0.
On the other hand if the composite system is in the state of (3.28) � D 0, there are no correlations
and the components systems behave independently.
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c1c3 D 1p
2
D c2c4

c1c4 D 0 D c2c3
(3.13)

That cannot be both satisfied (Calosi et al. 2011, p. 1746). Equation (3.11) does
indeed represent a classic example of an entangled state. With this we conclude our
crash course in the quantum mechanics of composite systems. We now move to the
next topic.

3.2.2 Mereologies

Mereology is the formal theory of parthood and of parthood relations. Different
mereological theories of different strength can be obtained by regimenting the
primitive notion of parthood16 with different axioms. We are interested here in only
a few of them. Let us write

.Parthood/x � y (3.14)

For x is part of y. Then using first order logic with identity we can define the
important mereological notions of Proper Parthood, Overlap and Underlap via:

Definition 8. (Proper Parthood) x �� y Ddf x � y ^ x ¤ y
Definition 9. (Overlap)O.x; y/ Ddf .9z/.z � x ^ z � y/
Definition 10. (Underlap) U.x; y/ Ddf .9z/.x � z ^ y � z/

Informally a proper part of something is a part of that something that is distinct
from the whole it is part of, two things overlap if they share a part and underlap if
there is something of which they are both parts.

In what follows we briefly develop different formal mereological theories of
different strengths that we will discuss throughout the paper. Formulas are intended
to be universally closed unless otherwise specified. Sometimes the different axioms
regimenting mereological notions are divided in lexical axioms, those axioms that
allegedly capture the meaning itself of the notion of part, decomposition principles,
that take from the whole to the parts that make up the whole, and composition
principles, that take from the parts to the whole they are part of.17 Among the lexical
axioms it is customary to include Reflexivity, Anti-symmetry and Transitivity:

16We follow Casati and Varzi (1999) and Varzi (2014) in such a choice. For a more comprehensive
account of theories of parthood see the Appendix to this volume.
17It is a matter of dispute where the lines should be drawn. See Varzi (2014).
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Axiom 1. (Reflexivity R) x � x
Axiom 2. (Anti-Symmetry AS) x � y ^ y � x ! x D y
Axiom 3. (Transitivity T) x � y ^ y � z! x � z

These axioms are familiar enough not to deserve an informal rendering. They
make parthood a partial order. Let us call M, for Ground Mereology the mereological
theory comprising only Axioms 1–3.18

We are interested in two decomposition principles in particular, namely the so
called Weak and Strong Supplementation Principle(s). Here is a formal rendering of
the former:

Axiom 4. (Weak Supplementation Principle WSP)
x �� y ! .9z/.z � y^ 	 O.z; x//

Informally WSP19 says that if something has a proper part then it has a part that is
discrete from it. Call this latter part the mereological remainder. WSP, together with
R and T , entails AS . We call a mereological theory that comprises R, T and WSP
Minimal Mereology, or MM for short. We can strengthen WSP simply by changing
the antecedent. This is what’s done in the Strong Supplementation Principle:

Axiom 5. (Strong Supplementation Principle SSP)
	 y � x ! .9z/.z � y^ 	 O.z; x//

Informally it says that if something fails to include something else among its parts
than there is a mereological remainder between the two. It is called Strong for it can
be proven that SSP entails WSP, whereas the converse does not hold (Simons 1987,
p. 29). We call the theory that comprisesR, T and SSP Extensional20 Mereology or
EM.

Finally we have the composition principles. Consider x and y. Then, we might
want to require that if they do underlap they have a minimal underlapper. This
minimal underlapper is called the mereological sum of x and y and is defined as that
thing that overlaps exactly those things that overlap either x or y. It corresponds to
the following Binary Sum Principle:

Axiom 6. (BinarySum Principle BSP)
U.x; y/! .9z/.8w/.O.z;w/$ O.z; x/ _O.z; y//

We call z the mereological sum of x and y and we write z D Sum.x; y/, or
Sum.'.x// for the mereological sum of all those entities that satisfy the open
formula '. In the presence of SSP the entity whose existence is asserted in the
consequent of Axiom 6 is unique. If you add BSP to MM you obtain the so called

18We are following, and will continue to follow, the terminology employed in Varzi (2009a).
19This ensures that nothing has a unique proper part, or, in other words, that every composite object
has at least two proper parts.
20The reason of this very name will be clear later on.
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Closure Minimal Mereology, or CMM. If you add it to EM you obtain Closure
Extensional Mereology CEM instead.

One of the most interesting composition principles is the infinitary extension of
BSP. Informally it says that any two non empty sets of objects whatsoever have
a mereological sum. It is called Unrestricted Composition Principle and can be
rendered as follows:

Axiom 7. (Unrestricted Composition UC)
.9w/.'.w//! ..9z/.8w/.O.z;w/$ .9v/.'.v/ ^O.w; v////

Informally for every non empty set of '-ers there exists a mereological sum
of those '-ers, defined as that entity z that overlaps all and only those things that
overlap some '-er.21 Important insights on the relations between UC and SSP are
given in Varzi (2008). It is uncontroversial that UC entails BSP. The mereological
theory obtained by adding UC to EM is called General Extensional Mereology,
GEM, and is sometimes referred to as Standard Mereology, or even Classical
Mereology. It is a powerful theory, almost as powerful as standard set theory, a
result proven in Tarski (1956).

So we have developed different mereological theories. The logical relations
holding among some of them can be easily summed up22:

M 
 MM 
 EM 
 CEM 
 GEM (3.15)

Although it is a matter of philosophical dispute, we believe that it is possible,
and indeed rather probable, that different ontological domains may be models
of different mereological theories.23 Thus a natural question arises. Of what
mereological theory are quantum systems a model of? It is to this question and
its important consequences that we now turn on.

3.3 The Mereology of Quantum Systems

We now explore the neglected question of what mereological theory quantum
systems are a model of. As we already pointed out in the introduction this is the
first systematic attempt to deal with such an important question. We provide new
arguments in favor of the claim that they are a model of Extensional Mereology
EM and (possibly) even stronger closure mereologies, i.e. mereological theories

21Hovda (2009) and Varzi (2009) argue that Unrestricted Composition and Weak Supplementation
together entail Strong Supplementation, insofar as the notion of parthood is not radically distorted.
Rea (2010) replies to such arguments.
22For a more detailed diagram see Casati and Varzi (1999, p. 48), though, as Varzi (2014) points
out, that work contains a mistake, for the result of adding UC to MM is not equivalent to GEM.
23See Sider (2007) for an argument to the contrary.



3 Parthood and Composition in Quantum Mechanics 65

with some composition principles (Sect. 3.3.1). We then go on to discuss possible
objections to such arguments (Sect. 3.3.2). The discussion of some objections in
later sections will bring to the foreground consequences of the arguments presented
that are central both to issues in philosophy of physics and hotly debated topics in
analytic metaphysics.

3.3.1 Quantum Models of Mereological Theories

We want to suggest new arguments for the following claim: quantum systems
are models of an extensional mereology. Whether they are models of closure
mereologies too is more controversial. We want to tackle this question rather
systematically so we will proceed step by step.

Let us start from Reflexivity. Are quantum systems part of themselves? We do not
have really an argument in favor of a particular answer. We just don’t see why they
cannot be taken to be as part of themselves, that is, we believe that there is some
conventional latitude in answering such a question. Famously Rescher (1955) points
out that there are non reflexive uses of the notion of parthood in biology. It could
be the case that the uses Rescher has in mind carry over into the quantum domain.
According to such uses an electron, (or a proton, or a pion) would not count as part
of itself. We believe this can hardly be considered an argument. It seems to us to
rest on some sort of linguistic intuition. Apart from these considerations of ours,
this is hardly a problem. The following is in fact a straightforward consequence of
R, AS, T :

x � y $ x �� y _ x D y (3.16)

This shows that we could have taken Proper Parthood as primitive. Then we
could have defined Parthood in its terms.24 This is actually what’s done in Simons
(1987). But Proper Parthood is not reflexive. Then we could simply argue that
when we utter sentences like “an electron is not part of an electron” we are simply
speaking loosely and we should properly say that an electron is not a proper part
of an electron. Thus the whole issue seems to boil down to a choice of a preferred
primitive (Varzi 2009a).25 We conclude that Reflexivity is safe.

Transitivity is next. Suppose we have a quantum system S1 that is part of a
quantum system S3 D Sum.S1; S2/. This is in turn part of the quantum system
S D Sum.S3; S4/. Now, the question is: is S1 part of S? To see this note that it
follows from Sect. 3.2.1 that the Hilbert space associated with S is:

H D H3 ˝H4 D H1 ˝H2 ˝H4 (3.17)

24Via: x � x Ddf x �� y ^ x ¤ y
25We will address a more specific objection about Reflexivity in the following section.
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Where Hn is the Hilbert space associated with the nth system. Even the simple
Eq. (3.17) shows that the Hilbert space for S is constructed via the Hilbert space
of S1. This should be evidence enough for the latter to be a part of the former. But
there’s more. Given the Schmidt Decomposition theorem it follows that every state
D in H can be written as:

D D
dimH3X

1

dimH4X

1

cijj�i i ˝ j#j i (3.18)

Where fj�i ig ;
˚j#j i

�
are basis forH3;H4 respectively. The same holds for every

j�i i 2 H3, i.e. we can write:

j�i i D
dimH1X

1

dimH2X

1

ghkj'hi ˝ j ki (3.19)

We can then substitute this expression into Eq. (3.18). This shows that every state
of the composite system S has some “contribution”, so to speak, from the state of S1.
Since probabilities for observable values of S depend on the state of the system via
Eq. (3.2) it follows that the system S1 somehow contributes to values of observables
of S . And this, we contend, does show that it can be considered part of S . This
argument is very general, and works for both entangled and non entangled states.
Let us give a simpler version of the argument. Assume that all the states in question
are factorizable. Hence:

D D j�i ˝ j#i D .j'i ˝ j i/˝ j#i (3.20)

The vector j'i 2 H1 represents the state of S1, so that we can safely conclude
that it is part of S . That is all for Transitivity. Transitivity has been traditionally
regarded as the most controversial lexical, partial ordering axiom.26 This argument
shows that, as long as the entities in question are regarded as quantum mechanical
systems, transitivity holds. And it holds in virtue of the way composite systems
are described within quantum mechanics. Since, arguably at the fundamental level,
everything can be considered a quantum system, the argument shows that, at the
fundamental level, parthood is transitive.

What about the Strong Supplementation Principle? It is better to spend a few
words on the Weak Supplementation Principle WSP first. According to WSP there
are no composite entities with a single proper part. Do quantum systems constitute
a counterexample to such principle? Suppose they do. Then there will be a quantum
system S with a single proper part S1. Now, S and S1 are different so that their
physical description should be given in terms of density operators in different
Hilbert spaces. Let H1 be the Hilbert space associated with S1. What is the Hilbert

26See Rescher (1955).
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space H associated with S? It could not be H1 for the reasons we just pointed out.
It should actually be a tensor product space. But since there is no other proper part
that makes up for the difference between S and S1 there is no other Hilbert space
Hn such that H D H1 ˝ Hn. This simply means that we cannot give a quantum
mechanical description of S . It is indeed a general assumption of this work that it
is always possible to give a quantum mechanical description of quantum systems.
Hence we conclude that quantum systems do not constitute a counterexample to
WSP.

From this analysis and the results in Sect. 3.2 it follows that quantum systems are
a model of both M and MM. Are they a model of EM too? To answer this question
we should turn to the Strong Supplementation Principle SSP. We believe this is a
crucial point.27 It shows, once again, that at the fundamental level parthood obeys an
extensionality principle, contrary to widespread agreement. We will discuss some of
the implications later on in the paper.

Recall that informally the principle states that if something fails to include
something else among its parts then there is a mereological remainder, i.e. a part
that does not overlap the former. Suppose now systems S1; S2 compose system S .
Then S1 fails to include S among its parts. The same goes for S2. According to SSP
it must be the case that there is a proper or improper part that is disjoint from S1.S2/.
There is indeed a natural candidate, namely S2.S1/. But are S1 and S2 disjoint? The
following argument tries to establish that they are. Suppose S is in a general state:

D D
X

i;j

�ij'i ˝  j ; 'i 2 H1; j 2 H2 (3.21)

Which is an equivalent way to write Theorem 2. We know from Proposition 8
that D determines uniquely the states D1 and D2 of S1; S2 respectively. The state
of S1 is given28 by:

D1j'i D
X

i;j

cijh'i j'i'j ; cij D
X

k

� �ij �jk; ' 2 H1 (3.22)

Equation (3.22) does not give the state of S1 as a convex combination but this
could be achieved by the Spectral Theorem (Beltrametti and Cassinelli 1981, p. 67).
The state D1j'i in Eq. (3.22) is sometimes called the reduced state and D1 the
reduced density matrix. The important thing to note is that in the expression of the
reduced state there do not appear terms that belong to H2. This is indication that S1
and S2 are indeed disjoint. For if they were to share a part we would expect some
“contributions” from Hilbert space H2, or from a subset of the Hilbert space H2 to
such reduced state. This argument is very general and it is valid for both factorizable

27Note that Healey (2013) arrives at this very same conclusion. However he provides an entirely
different argument.
28We denote with * the complex conjugate of a complex number.
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and non factorizable states if valid at all. In the simplest case, where all states are
factorizable, the argument takes an even simpler form. Suppose D D j'i ˝ j i.
Then the reduced state is simply D1 D j'i 2 H1. The argument does generalize
to cases with more than two subsystems but, as it stands, it could be charged of
begging the question. This is because the argument seems to implicitly presuppose
that the Hilbert spaces H1;H2 are such that H1 \ H2 D ;. But isn’t this the case
in virtue of the fact that S1 and S2 do not overlap, which is what we are trying to
prove?

Suppose then explicitly that they do share a part. Call that part S3. Since we are
working under the hypothesis that S1.S2/ fails to include S2.S1/ among its parts
it follows that S3 is a proper part of S1. Then we can take S1 to be composed by
S3 and S4. We now know by Weak Supplementation that S3 and S4 are disjoint so
that H2 \H4 D ;. Then we could calculate the reduced state of S4 via Eq. (3.22)
again and be sure that there are no “contributions” from H2, so that we can safely
conclude that S4 and S2 are disjoint and SSP is therefore safe.

So we have just argued that quantum systems are a model of EM. It is now
time to address some the most delicate mereological principles, namely the two
composition principles. Let us start from the former, that is way less controversial.
The Binary Sum Principle BSP states that if there exists a sum of two entities there
is a minimal sum.

Recall that the minimal, or mereological sum of two entities x, y is defined, via
Axiom 6, as that thing that overlaps all and only those things that overlap either x
or y. Let S1; S2 be two quantum systems, to which the two Hilbert spaces H1;H2

are associated and suppose that they underlap, i.e. there is something of which they
are both parts. Is there a minimal sum? Recall how we “built” composite systems in
Sect. 3.2.1. It was a system S such that each state of S could be written as:

D D
X

i;j

�ij'i ˝  j ; 'i 2 H1; j 2 H2 (3.23)

According to Eq. (3.23) every state of S , and thus every probability of every
observable having some values, is “built” up from all the resources of H1;H2 and
nothing else, that is to say by all and only the states of S1 and S2. Thus S should
count as a minimal underlapper. It seems that quantum systems are models of CEM
too. BSP is however a conditional principle, that is, it is assumed in the antecedent
that the two systems in question have a sum. But, it seems natural to ask, are there
any necessary and sufficient conditions for a set of entities to have a mereological
sum? And if so, what are they?

These last questions are rough variants of the infamous Special Composition
Question raised in Inwagen (1990).29 The principle of Unrestricted Composition
can be seen as a radical response to that question. There are no such conditions,
every set of entities whatsoever has a mereological sum. There is another rather

29See Markosian (2008) for a good introduction.
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radical answer, that is sometimes called Mereological Nihilism.30 It is something
like the following. There are no such conditions, no set of entities whatsoever ever
has a mereological sum. It corresponds to adding a mereological axiom to the point
that there are only mereological atoms, i.e. entities with no proper parts:

Axiom 8. (Mereological Nihilism MN) 	 .9y/.y �� x/
Between these two extremes there are the so called moderate answers.31 They

maintain in general that there ia a set of necessary and sufficient conditions �
that has to be met in order for a set of entities to have a sum. Needless to say,
there are many different candidates for � . These moderate answers have been
discussed mostly within analytic metaphysics. No serious candidate from physics
have been advanced to fill in the role of � . Here we will discuss whether such a
physical candidate is worth considering. The moderate answers can be thought of as
admitting the following among the mereological axioms:

Axiom 9. (Restricted Composition RC)
..9w/.'.w// ^ .8w/.'.w/!  .w///
! ..9z/.8w/.O.z;w/$ .9v/.'.v/ ^O.v;w///

Apart from its difficult formal rendition, Axiom 9 just says that there exists a
mereological sum of some '-ers iff some conditions � are met. What is the answer
to the Special Composition Question in the quantum domain? From what we have
seen it seems possible to rule out MN. But what about UC and RC?

Probably the most influential32 arguments in favor of UC are the ones in
Lewis (1986, pp. 211–213) and in (Sider 2001, pp. 134–139). They both crucially
depend on the semantic theory of vagueness, i.e. roughly the thesis that there is no
ontological vagueness and vagueness is simply semantic indecision, to borrow the
terminology from Lewis (1986). This very point has been criticized as begging the
question in Koslicki (2003), Simons (2006), and Elder (2008). Moreover, arguments
using the semantic theory of vagueness are particularly slippery in the quantum
domain, for it has been defended that quantum objects are indeed vague objects,
for example in French and Krause (1996). Though vagueness of identity is not by
itself an obvious explanation of vagueness of composition Simons (2006) notes that
this would weaken the aforementioned arguments for we couldn’t require the non
vagueness of composition without begging the question, once the non vagueness
of identity is given up.33 We don’t want to enter this discussion here. Rather we
want to tackle the question differently. We want to investigate whether physics has
something to tell about this question, that is we want to address whether quantum

30For a discussion and a defense see Rosen and Dorr (2002).
31Markosian (2008) advances the Brutal Composition thesis. It is roughly the thesis that composi-
tion is a brute fact, i.e. there is no simple and general answer to the Special Composition Question
32But see also Rea (1998) for a different argument.
33The argument is however controversial. For a critique of the argument see Darby (2010).
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mechanics tells us about composition without invoking vagueness.34 We are afraid
that, despite the fact that quantum mechanics offers us important and deep insights
that have been too often overlooked by analytic metaphysicians, we haven’t been
able to locate a strong quantum mechanical argument that could favor one answer
over the other as far as composition goes.35

Consider the following promising argument. It can be proven that:

Proposition 12. Every pure state j'i is an eigenvector of some operator A
representing an observableO , i.e. for every j'i there is anA such thatAj'i D aj'i

As we have pointed out in Sect. 3.2.1 the Eigenfunction-Eigenvalue link states
that if a particular system is in an eigenfunction of some observable O belonging
to a specific eigenvalue a then such system has the property of having O D a. It
follows that for any pure state we have a system S that has the property O D a for
some O and some a.

Now, we bring into play a fairly non radical metaphysical principle that we label
Instantiation Principle36 (IP):

Proposition 13. (Instantiation Principle IP) For every existing property P there is
something that instantiates P

Let us then propose a tentative classification of properties, into Mereologically
Reducible Non Relational Properties, Mereologically Reducible Relational Prop-
erties and Mereologically Irreducible Inherent37 Properties. This classification is
loosely inspired by Teller (1989, pp. 214–215), and in particular by Morganti
(2009a, p. 227, 2009b, pp. 1029–1031).

Proposition 14. (Mereologically Reducible Non Relational Property MRNR):
A property P of a composite object x is a Mereologically Reducible Non Relational
Property, or a MRNR-Property for short, iff there are properties P1; : : : ; Pn of the
component parts such that P is (somehow) reducible to P1; : : : ; Pn.

34Consider another suggestion. Composition occurs in all of those cases in which QM dictated the
use of a tensor product space. This seems at first sight question begging. Doesn’t QM dictate the
use of such space when dealing with composite systems? This could be however one of this cases
in which there is some sort of circularity, but it is virtuous rather than vicious. For it could be
the case that we can come up with results about the relations between tensor product spaces and
“simple” spaces that do have profound consequences. We cannot pursue this approach here. But
we think it is something worth exploring. This suggestion was offered us by Matteo Morganti.
35See Healey (2013) for a pragmatic take on how physics treats composition. This is, in our opinion,
one of the most insightful papers dealing with composition in physics. Needles to say the fact that
we have not been able to locate a quantum mechanical argument in favor of either UC o RC (or
neither) does not mean that there isn’t one.
36In Calosi et al. (2011, p. 1753) it is called the Aristotele-Armstrong Principle
37We follow Morganti (2009a) in using such terminology. He envisages it as an extension of the
proposal found in Teller (1986).
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The classic example of a MRNR-Property would be a classical additive property
such as having a particular mass. The property of x having a massD m is reducible
to the fact that the component parts of x have masses whose values add up to m.

Then we have:

Proposition 15. (Mereologically Reducible Relational Property MRR) A property
P of a composite object x is a Mereologically Reducibile Relational Property, or a
MRR-property for short, if there are relations R1; : : : ; Rm holding between some of
the component parts of x such that P is (somehow) reducible to R1; : : : ; Rm.

An example of a MRR-property could be that of a “shape of a composite object”. It
could be argued that this property could be somehow reduced to the spatial relations
(and shape properties) holding between the component parts of the object.

Proposition 16. (A Mereologically Irreducible Inherent Property MII) A Property
P of a composite object x is a Mereologically Irreducible Inherent property, or
a MII-Property for short, if there are no properties P1; : : : ; Pn, of the component
parts nor relations R1; : : : ; Rm holding among those component parts such that P
is (somehow) reducible to P1; : : : ; Pn or R1; : : : ; Rm.

This classification helps us in establishing necessary ontological commitments
required by the Instantiation Principle IP. The crucial thing to note is that in the case
of both MRNR and MRR-properties the ontological commitment to the composite
objects can be paraphrased away, so to speak, once we have a prior commitment to
the component parts. This is not the case with the MII-properties. In this last case
the commitment to the composite object cannot be paraphrased away.

Now, prepare a system in such a way that the quantum pure state D D j'i
assigned to the composite system S is an entangled state. It follows from Propo-
sition 12 that this state is an eignefunction of some observable O belonging to
eigenvalue a. By IP the property O D a has to be instantiated by something.
Suppose moreover that D is a non factorizable state. The question is: is O D a

a MRNR, a MRR or a MII-property?
It is fairly easy to argue that it isn’t a MRNR-property. This is because by

Proposition 11 the states of the component systems are mixed states, since the
system is, by assumption, in an entangled state. So, by the Eigenfunction-Eigenvalue
link they simply do not have any determinate state dependent properties. They could
if they were “really” in pure states. But this is essentially to maintain what we called
an ignorance interpretation of quantum mixed states. And we have already argued
that this is untenable. What aboutO D a being a MRR-Property? Maybe an example
will be of some help. Consider two particles in the singlet state:

D D j'i D 1p
2
.j "i1j #i2 � j #i1j "i2/ (3.24)

This state exemplifies the property “having total spin = 0”. We have just argued
that it is not a MRNR-property. The reduced states for particles 1, 2 can be in fact
calculated via Eq. (3.22) and they are mixed states. Hence particles 1, 2 do not have
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any definite spin properties. The question is whether “having total spin = 0” is a
MRR-property. In the particular example at hand this very question can be phrased
more perspicuously along the following lines: can the property “having total spinD
0” be reduced to the relation holding between particles 1, 2 of “having opposite
spin”?

There are at least two arguments suggesting it cannot. Schaffer (2010, p. 54),
building on Healey (1991, p. 420), argues that reducing such properties to relations
between component parts would amount to a loss of the unity of properties. This is
because “having total spin = 0” is a property that could be instantiated by a various
number of systems with many different component parts. If this property is instead
reduced to relations among those parts then it is really not the same property when
attributed to systems with different parts.38 In Morganti (2009a) Morganti proposes
a different and very interesting argument. He claims that the non reducible character
of such properties explains the peculiarity of quantum statistics.39 If any of these
arguments is on the right track there is some ground to maintain that O D a is a
Mereologically Irreducible Inherent Property. But we have seen that in such a case
the ontological commitment to the composite system dictated by the Instantiation
Principle cannot be paraphrased away. The upshot of the argument seems then to be
the following: it is a sufficient condition for quantum systems S1; : : :; Sn to have a
mereological sum S to be in an entangled non factorizable state.

We believe this is an important insight that quantum mechanics offers into
the question of composition. Does it favor UC, RC or neither? A discussion of
the argument is in order. It should be clear that, in its present form, it favors
neither. Whether it could be extended is a substantive question that deserves a
careful, independent investigation that goes beyond the scope of this paper. We want
however to point out some important facts.

It seems to us that the argument could not be reformulated as to lend support to
RC. It could seem at first sight, that “being in an entangled, non factorizable state”
is the relevant condition � appearing in the Axiom 9 that should be met in order
to ensure the existence of a mereological sum. But the argument, if valid, is only
able to show that such a condition is sufficient for the existence of a mereological
sum, and not also necessary. And clearly it would seem radical to maintain that
entities have a sum iff they happen to be in an entangled state. As we have seen,
composite systems in factorizable states are possible. This does not mean that the
quantum domain is not a model of a mereological theory containing Axiom 9,
but only the weaker conclusion that entanglement is not the relevant condition � .
However that fact that “being in an entangled, non factorizable state” is sufficient for
composition has important and profound metaphysical consequences. For example
it rules out some moderate answers, such as Organicism, to the Special Composition
Question. Organicism, a view most notably held by metaphysicians like Merricks

38For a critique of this argument see Morganti (2009c, p. 277).
39In a word the fact that the number of possible distributionsW ofN particles to whichM possible
states are available isW D .N CM �1/ŠN Š.M �1/Š < NM where NM is the classical statistic.
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and Van Inwagen, roughly maintains that the x-s compose a y iff (i) either there is
only one x or (ii) the x-s constitute a life. But surely there are quantum systems that
happen to be in an entangled state, yet do not constitute any life. So, Organicism is
untenable.

As far as UC goes, there could be more room for arguing. Go back to our
classification of properties. We have claimed that in the cases of MRNR and MRR-
properties the ontological commitment to the composite object can be paraphrased
away. We did not employ modal notions accidentally. This is because, even if the
ontological commitment to the composite object can be paraphrased away it does
not mean that it should. It could even actually be argued that quantum properties
are best understood in terms of inherent properties even in those cases in which
the system is not in an entangled state. This is the position defended in Morganti
(2009a). This could then in turn be used to build an argument similar40 to the one
we proposed in favor of UC. If such an argument could be developed it would be, not
just different from the ones usually found in literature, but probably even stronger,
for it will have its roots in one of our best scientific theories. We will return to this
issue later on.

Another way to build an argument in favor of UC could be via a restriction of
the notion of parthood. We could define a notion of '-parthood where the adverbial
modifier is to be intended as “being parts of a system in an entangled state”, that
is we could define a notion of“entangled part” and then ask what mereological
axioms this new notion of '-parthood obeys. Healey (forthcoming) calls this notion
Thread. A substantive problem seems to lurk. Suppose the quantum system S is
composed by subsystems S1 and S2, and suppose furthermore that S is in an
entangled state. Then we say that S1.S2/ are entangled parts of S . An interesting
feature of entanglement is that it is monogamous, that is to say that if two quantum
systems are entangled then neither of them can be entangled with any other system.
Then, it could be argued that '-parthood violates Unrestricted Composition UC, for
given any other system S4, it could never be entangled with S1.S2/, thus composing
with it some other system, as UC requires. This argument is however flawed. The
monogamous character of the entanglement guarantees that S1; S2 are the only
entangled '-parts of S . And they do have a sum. These considerations do not add
up to an argument, but they do gesture towards some. We are afraid fully developed
arguments will have to wait for another time.

So, let us briefly sum up what we have argued for. We have argued that (i) quan-
tum systems are a model of an extensional mereology, (ii) in particular quantum
systems are a model of Closure Extensional Mereology CEM, (iii) entanglement is
a sufficient condition for the existence of a mereological sum and (iv) there could be

40This claim is maybe too bold. Morganti (2009a) addresses explicitly only the statistics of those
systems that are assumed to have a sum. Moreover his proposal does away with the Eigenfunction-
Eigenvalue link. Thus, a possible argument in favor of UC, that builds on those premises would
probably look different from the one we just sketched.
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grounds to develop the arguments from entanglement to unrestricted composition.
In the next section we deal with possible objections to the arguments we put forward.

3.3.2 Objections

In this section we discuss some possible objections to our arguments. We start from
very general objections and then move on to some more specific ones. We are sure
there will be many others. These are the ones that we felt pressing. We should
add that our formulation of the objections is not intended to be either complete
or exhaustive.

3.3.2.1 No Individuals Objection

The arguments rest upon the assumptions that quantum systems are individuals.
Mereology was indeed called in the seminal work Leonard and Goodman (1940),
a calculus of individuals. The existence of individuals is quite controversial in the
quantum domain. It could be argued that Quantum Mechanics supports the view
that there are no individuals at all. Ladyman (2007) flirts with such an approach, if
it does not endorse it explicitly. If so the application of a mereological framework is
simply wrongheaded.

Individuality, identity, discernibility and so on are among the hottest topics
in the debate in the foundations of quantum mechanics. It is impossible to give
even a little flavor of the discussion here.41 The individuality objection however
misses the point. It is true that, historically, formal mereology was developed
with a specific nominalistic flavor whose ontological underpinning were somewhat
classical individuals. However all that the arguments require is that there are
composite objects with (proper) parts. If these parts and composite objects are
individuals, in what sense they are individuals and what the criteria of such
individuality are, are different questions entirely. This is not something that could
be settled by any mereological theory. Rather it is an empirical question for natural
science to decide. This answer to the No Individuals Objection prepares the way, so
to speak, for another general objection.

3.3.2.2 Entangled Systems Are Not Composite Systems

In our answers to the previous objection we have admitted that the arguments
depend crucially upon the assumptions that there are quantum composite systems,

41See French and Krause (2006), Saunders (2006), Ladyman (2007), Muller and Saunders (2008),
and Hawley (2009) among the others. An interesting proposal is the one put forward in Morganti
(2009a) that we already mentioned.
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i.e. systems that have parts. In the end, even if mereology can be disentangled
from a theory of individuality and of individuals, it still remains a theory of the
parthood relations. But, the objection goes on, it is rather contentious that quantum
systems are composite systems after all. In particular consider a quantum system in
an entangled state, such as the state described by Eq. (3.24). Since it is impossible
to attribute any state dependent property to the quantum systems S1; S2 we should
actually refrain from admitting S1 and S2 in our ontology. But if this is the case the
quantum system S is not a composite system after all. And it is well known that if
there are no proper parts mereology just boils down to a theory of identity, and loses
much of its specific interest.

There are several things to say in reply. The first one is that the objection, as it
stands, simply consider entangled systems. Of all our arguments only the last one
about composition crucially rests on an interpretation of entanglement. So all the
other arguments are safe. But we believe that the objection is not only limited in
scope, but also unsound. Let us see why. It is true that systems in entangled states
are such that state dependent properties cannot be attributed to component systems
independently. But state dependent properties are only some of the properties that
we can attribute to quantum systems. Among the others we can attribute, there are
properties which are state independent, such as mass or charge (Albert 1992, p. 49).
And we can attribute them to S1 and S2 separately. This should be good enough a
reason to admit them in our ontology, or so we contend. Moreover, and with this we
conclude, the objection entails a rather radical consequence. Consider again system
S in state D of Eq. (3.24), and grant for the sake of argument that the objection we
are considering is on the right track and so S should not be considered a composite
system. Suppose then that a measurement of the observable associated with the

operator Sx1 ˝ I2, where Sx D 1
2

�
0 1

1 0

�
is the Pauli matrix for the x-component

of spin, is made. Such a measurement makes the state of S collapse, let us say onto
the state:

D D j " i1j # i2 (3.25)

But the state represented in Eq. (3.25) is separable. Thus we can attribute
individual spin properties to S1 andS2. In this case we could then admit S1 and S2 in
our ontology. It follows that the so called measurement problem is even worse than
originally thought. A measurement does not only change the properties of systems
rather than simply revealing them, it also brings into existence new entities.42 If we
had component systems in our ontology right from the start we did not have to
face such a radical consequence instead. As in the previous case our answer to the

42This is rather strong. It could be argued that this is not an example of “creation” of new entities,
rather some process of “localization” of a quantum field in two particles. It is impossible to render
justice to such a claim here. It is however a significant claim. It was suggested to us again by
Matteo Morganti.
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Entangled Systems are not Composite Systems objection made use of an implicit
assumption that can be questioned. Let us turn to this last general objection.

3.3.2.3 Quantum States Do Not Represent Properties

The arguments we have proposed do have some bite, if any at all, only under the
assumption that quantum states represent properties of quantum systems. This is
not however the only possible interpretation. It is also possible to maintain that
they do not describe properties of quantum systems at all, but rather encode our
knowledge of these properties. This is sometimes called the statistical view of
quantum states. It has been recently beautifully discussed and defended in Harrigan
and Spekkens (2010). The statistical view would undermine most of the arguments
we have presented simply because it would not be possible to infer anything about
the nature of quantum systems via their quantum states. It would also easily deal
with the measurement problem.

Let us first note that some realistic interpretation of quantum states seems
indispensable for asking the kinds of question we are asking in the present work.
That said, our reply to such an objection is twofold. The statistical interpretation
is not at all common in the foundations of quantum theory. To endorse it just
to respond to the arguments above seems too high a price to pay. Naturally,
those who are inclined to endorse such a view on independent grounds would
not be moved by such a remark. But there is a stronger one to make. Recently,
Pusey et al. (2012) have argued that the statistical view is not able to reproduce
quantum mechanical measurement outcomes for particular measurements. Thus,
they conclude, quantum states represent properties of quantum systems. This result
takes care of the objection.

We now turn to more specific objections concerning Strong Supplementation and
Composition respectively.

3.3.2.4 Against Strong Supplementation

Suppose x1; x2 compose y1; y2 such that y1 ¤ y2. This mereological model violates
the Strong Supplementation Principle SSP. This is because y1.y2/ fails to include
y2.y1/ among its parts and yet there is no mereological remainder between the
two. SSP entails the uniqueness of composition.43 It can in fact be proven that the
following is a theorem:

Theorem 3. .9z/.z �� x _ z �� y/! .x D y $ .8z/.z �� x $ z �� y//
Disregard the antecedent. Then Theorem 3 says that sameness of composition is

both a necessary and sufficient condition for identity. This is why it is known as the
Extensionality theorem. This is one of the most crucial issues, together with issues

43This is the reason why a mereological theory comprising SSP is called an Extensional Mereology.
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about composition. Let us see then how a possible objection might go. Consider
two quantum systems S1 and S2 with associated Hilbert spaces H1 D H2, where
fj'1i; j'2ig ; fj 1i; j 2ig are basis for H1;H2 respectively. Let the states of S1 and
S2 be the following ones:

D1 D 1

2
.P j'1i C P j'2i/

D2 D 1

2
.P j 1i C P j 2i/

(3.26)

And let us write:

j#1i D j'1i ˝ j 2i
j#2i D j'2i ˝ j 1i

j#3i D 1p
2
.j'1i ˝ j 2i C j'2i ˝ j'1i/

j#4i D 1p
2
.j'1i ˝ j 2i � j'1i ˝ j 2i/

(3.27)

Then the state of the composite system S could be:

D D 1

2
.P j#1i C P j#2i/

D� D P j#3i

D � � D P j#4i

(3.28)

But, the objection goes on, D;D� and D � � represent states with different
properties.44 So quantum systems in D;D�, and D � � are different, by Leibniz’s
law, and hence composition is not unique against SSP. It is surely true that states
(3.26) fail to determine the state of the composite system uniquely. This is because
they are mixed states. And it could be checked that D, D� and D � � are indeed
solutions to Eq. (3.9). That said, what the objection overlooks is that the fact
that the composite system could be in those states, does not entail that there are
different composite systems in different states. The modal component of the claim
cannot be downplayed. It is well known that in such cases appeal to Leibniz’s
law is problematic at best. If there were different co-located composite systems
in different states in spite of being constituted by exactly the same parts, two
different measurements of the same observable carried out, to use a terminology
that is somehow question begging, on the same content of the same spatio(temporal)
region could give two different results. These two measurements could in fact record

44Recall our discussion of the Quantum States Do Not Represent Properties objection.
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different categorical properties of numerically distinct physical systems constituted
by exactly the same parts. It is difficult to see how to do physics in such context. It
is probably in this spirit that in Beltrametti and Cassinelli (1981, p. 259) is written
that from the physical point of view the nature of the physical subsystems should
determine the nature of the compound system they form.

We believe furthermore that the quantum domain is not particularly friendly to
some other classic anti-extensionalist arguments. The locus classicus is the literature
on the so called problem of material constitution.45 Let St be a statue composed by
a quantity Cl of clay. Then St and Cl have the same parts but are not the same
thing since they have different modal properties such as “could possibly survive the
loss of a single small part”. Note that these are not categorical properties so that
our previous response does not apply. Actually it is usually granted that, as far as
categorical properties go, there is none which St has and Cl hasn’t. These arguments,
that seem to have some sort of intuitive force when applied to commonsense
ontology, lose much of their force once removed from the framework they have
been formulated within. Consider a hydrogen atom and suppose for the sake of
the argument that the electron and the proton compose the atom.46 How could
we even reformulate the anti-extensionalist argument in such case? It seems that
hydrogen atom functions here as the St-“counterpart”, and the proton and electron
as the Cl-“counterpart”.47 Can the hydrogen atom survive the loss48 of one of its
proper parts? It doesn’t seem the case. The Strong Supplementation Principle is not
so easily violated.

Before passing to the last objection let us address some of the wide reaching
consequences of both the extensionality argument and the replies to its possible
objections. First of all, as we already pointed out various times, they show (if
valid) that at the fundamental level parthood is extensional. Foes of extensionalism
(and there are many) should be worried. This result has its roots in the description

45We refer to Rea (1997) for classic papers and detailed references.
46Healey (2013) contends such a claim. Moreover he takes this to support the fact that quantum
systems violate unrestricted composition. His argument is roughly the following. The solution
of the Schrödinger equation for the hydrogen atom depends on a decomposition of the system
into subsystems corresponding to relative and center of mass subsystems of the electron and
proton. Yet the subsystems taken together do not have a mereological sum. It is hard to evaluate
briefly this argument. As far as we can see it depends crucially on admitting that the center of
mass is a somewhat mereological part simpliciter of the hydrogen atom. But this assumption is
questionable. It could be regarded as an example of a '-part instead where the relevant adverbial
modifier ' should be cashed out along the following lines: “decomposed subsystem necessary for
the solution to the dynamical equation representing the evolution of the system”. But we should
not expect that the axioms regimenting the notion of mereological parthood simpliciter regiment
that of '-parthood too.
47It should be clear that we are not employing the technical notion of counterpart used in quantified
modal logic and metaphysics of modality here.
48It would be a substantive and fascinating question whether this could be taken as an argument in
favor of mereological essentialism, roughly the view that parts are essential to their wholes. For a
defense of mereological essentialism see Chisholm (1973).



3 Parthood and Composition in Quantum Mechanics 79

of composite systems offered by one of our best confirmed physical theory. This
is not something that can be discard so easily. There are furthermore two other
important consequences. Quantum mechanics is often credited to have refuted the
following metaphysical reductionist claim about parts and wholes: the whole is
nothing more than the sum of its parts. When phrased this way this claim is so
vague that is difficult to see how and whether it could be either supported or refuted.
The argument from extensionality shows that if by that claim we mean that it is
not possible to give an identity criterion for wholes in terms of their component
parts, then quantum mechanics has not refuted the reductionist stance. There is
however another way the reductive claim could be intended. It could be taken to
mean that the properties of composite systems supervene on the properties of the
component parts taken separately. In this case, as we argued in Sect. 3.3.1, when
a quantum composite system is in an entangled state there is at least a property,
namely that represented by the density operator of the whole system, that does
not supervene on those of its component parts taken separately. But this is not a
threat to mereological extensionalism. Or so we contend. The mereological sum of
some '-ers is that entity that overlap all and only those things that overlap a '-er
(as the second consequent of axiom 3.7 states), and nothing else. The notion of
mereological sum is silent about whether the sum of the '-ers is itself a '-er. It is
actually silent about all the properties of the alleged sum. Hence, surely, it does not
say that they all have to supervene on the properties of the component parts. This
failure of supervenience has been recently used, most notably by Schaffer (2010), in
favor of yet another metaphysical claim, namely that the whole is more fundamental
than its parts. This issues deserves an independent and careful analysis. However
we want to suggest that the extensionality argument could have something to say
about this other metaphysical problem too. Schaffer argues roughly that the whole is
more fundamental because, as we showed, the state of the component system always
determines that of its parts whereas the converse does not hold. The extensionality
argument on the other hand shows that it is possible to give an identity criterion
for wholes in terms of the parts. This could be taken to be evidence enough for
the existence of some sort of dependence of composite systems on their component
ones. If both Schaffer’s argument and the argument from extensionality have some
bite, we would have found grounds to argue that, contrary to much of the current
literature, the relation of metaphysical dependence, is not anti-symmetric after all.
We do not intend this to be a fully-fledged argument. As we said already this is a
very interesting topic that needs further and careful investigation. We simply wanted
to point out that the arguments we put forward could have far reaching consequences
for hotly debated questions in analytic metaphysics.

We have arrived with this at the last objections, the ones about composition.

3.3.2.5 Against Composition

The argument about composition we have proposed is vulnerable to at least two
serious objections as far as we can see. Let us start from the first. The argument
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moves from the recognition that every pure state is an eigenfunction of some
operator. This, via the Eigenfunction-Eigenvalue link, ensures that every system
that we can prepare in a pure state has a certain property with probabilityD 1.
The problem is that not every Hermitian operator represents a physically relevant
property. So the system in question could be in an eigenfunction of some property
that has physically no explanatory power. This is a serious objection. We offer some
considerations to counter it and leave it to the reader to weigh them. It is true that
not all the operators represent physically interesting properties but some of them
do. This is the case of a system in state described by Eq. (3.24), i.e. the property
of “having total spin D 0” is physically relevant. Some other examples include
the total momentum operator or the relative position operator. Also, anyone who
subscribe to the so called abundant theory of properties49 (see Lewis 1986, pp. 59–
69) should not be moved by the objection. Probably, however, the best answer would
be to develop the argument we have proposed in order to generalize them also to
factorizable states. If such an extended argument could be given it would undermine
the objection for every state will then fall under its scope.

Another serious objection can be put forward along the following lines. The
argument has hidden the complications that arise when passing from a bipartite
case of entanglement, i.e. when the compound systems is composed of two
subsystems only, to cases of multi-partite entanglement. In these cases a notion of
full separability can be spelled out simply by generalizing the notion of bipartite
separability, i.e.:

Definition 11. Let subsystems S1; : : :; Sn compose system S . The state j 1;:::;ni of
S is fully separable iff j 1;:::;ni D j 1i ˝ : : :˝ j ni
However a violation of this condition does not, by itself, guarantee cases of “true
n-partite entanglement” (Horodecki et al. 2007: 31). We could define this last notion
via:

Definition 12. A state j 1;:::;ni is an example of a true n-partite entanglement iff all
bipartite partitions produce mixed reduced density matrices

This would entail that there are no bipartite cuts such that the resulting state is a
product, i.e. factorizable, state. But this falls short of guaranteeing that in all the
cases of non full separability we could not trace out a subsystem and leave the rest
in a product state. For example we could have, for a non fully separable state j 123i:

j 123i D j!i ˝ j	2i; j!i D 1p
2
.j'1ij#1i C j'2ij#2i/ (3.29)

where f'1; '2g ; f#1; #2g ; f	1; 	2g are basis for the Hilbert spaces of S1; S2 and S3
respectively, with j!i 2 H12, and where Hnm:::z is the Hilbert space associated with

49We are afraid this is not the most comfortable position for a naturalistically inclined metaphysi-
cian.
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the quantum system composed by Sn, Sm, . . . , Sz. Then, it could be noted that our
argument, if valid, would not guarantee that there is a mereological sum of systems
S12 and S3 since we could trace out S3 in such a way as to result in S12 and S3 being
in a product state. We cannot enter the details of full and partial separability here.
We can however offer some remarks to weaken the objection. The first one amounts
to simply pointing out that there are no conclusive criteria nor experimental tests
for partial separability yet, and thus it would be hasty to draw any conclusion. The
second remark is that our argument, if valid, guarantees that there is a mereological
sum of S1; S2 and S3 on the one hand, namely S123 for the state represented in
Eq. (3.29) is not fully separable by assumption, and a mereological sum of S1 and
S2 on the other, namely S12. But isn’t S123the sum of S12 and S3?

Finally, we have envisaged the possibility to develop the composition argument
in such a way as to cover also factorizable states. If this could be done both the
objections will be undermined. Then we would have an argument for Unrestricted
Composition that comes from fundamental physics. Some would probably argue
that this by itself, ensures that it would be stronger than the ones found in the
metaphysical literature. We really cannot make justice to such claims here. We want
to say at least one further thing though. This argument would undermine a recent
objection in Elder (2008). There it is argued that arbitrary sums would not count as
“Aristotelian objects” for they would not have any property. If we are correct this
objection will miss the point, at least in the quantum mechanical case. Since every
pure state is an eigenfunction of some observable the sum would have at least the
property that is represented by that very eigenfunction. We grant however that the
composition argument is among the more controversial ones we proposed.

3.4 Conclusion

This paper is an exploration of how parthood and composition behave in non
relativistic quantum mechanics. This is already an explicit acknowledgments of its
limitations. For if we were to consider relativistic and quantum field theories we
would probably find that these notions behave differently. It is a hot debated topic in
philosophical literature whether mereology is part of the so call formal ontology.
If this were the case parthood would be regimented by the same mereological
theory independently of any ontological domain. We cannot even begin to argue
against such a view here. We simply find plausible, and indeed we find it probable,
that different ontological domains are models of different mereological theories.
In this paper we have argued that the quantum domain is a model of an extensional
mereology, namely Closure Extensional Mereology CEM. Whether it can be also
a model of the General Extensional Mereology GEM is more controversial and an
thorough investigation of such an issue would have to wait for another occasion.
There is another metaphysical issue that deserves careful, independent scrutiny that
is intimately related to some of the issues we have touched upon here.
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Recently it has been authoritatively argued, especially in Schaffer (2010), that
quantum mechanics favors a particular metaphysical thesis known as Priority
Monism. Roughly speaking Priority Monism is the claim that the universe is more
fundamental than any of its parts. Actually it is the only fundamental object,
the only object that is truly metaphysically independent. Leaving questions about
the consistency of the notion itself of metaphysical dependence,50 the argument
crucially depends on the ubiquity of entangled states and on the claim that when a
composite system is in an entangled state it is more fundamental than its component
parts. We believe that questions about composition and the extensionality of
composition we put forward could have a direct and important bearing on these
issues. This is because the extensionality of parthood and composition seems to
suggest there is some sort of dependence of any quantum composite system on
its component parts. Moreover the arguments in favor of Monism, as they stand,
seem to us not to consider carefully the complications that arise when passing
from a fairly uncomplicated case of bipartite entanglement to the complicated n-
multipartite entanglement cases.51 Naturally these considerations do not add up to
an argument, they do not even gesture towards an argument. They simply advance
some reservations and doubts. But we are afraid that, in this case too, careful
analysis and detailed arguments will have to wait for another occasion.

Acknowledgements We are very grateful to Matteo Morganti, Jonathan Schaffer and Vincenzo
Fano for careful readings and criticisms of various drafts of the paper. Without their help this work
would have been substantially worse.
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Chapter 4
Continuity of Motion in Whitehead’s
Geometrical Space

Vincenzo Fano and Pierluigi Graziani

4.1 Introduction

In his book on the continuum White (1992, 185) notes that, in contrast with the
Aristotelian tradition, according to which it is not possible for parts of the continuum
to be non continuous, the modern topological approach considers the continuum as
a supervenient property of non continuous entities. Even if the modern approach
is perfectly coherent (Grünbaum 1952) its lack of intuitiveness justifies, at least
partially, the ongoing attempts to reconsider the continuum in different terms (see
for example Roeper 2006). In the first half of the twentieth century the hope of
constructing scientific concepts out of an application of mathematical logic to
sense data (Russell 1914) was still alive. This construction would have preserved
epistemological order in the logical order. The basic idea was to start from actual
experiences and then go on to build scientific abstract notions via exact definitions
(Carnap 1928). The prospected fourth volume of Principia Mathematica on the
foundations of geometry by Russell and Whitehead should have adopted this general
framework. The book was never actually written but part of its contents are known
through chapters 2 and 3 of the IV part of Whitehead’s Process and Reality (1929).

In those chapters, in line with the aforementioned principle according to which
the logical order should respect the epistemological one, there is an attempt to
construct the notion of point as an abstraction from the notion of continuum, rather
than defining the latter as an aggregate of points. These pages are Whitehead’s
second attempt, after those made in the third part of An Enquiry Concerning the
Principles of Human Knowledge (1919) and in chapter IV of The Concept of Nature
(1920). While Whitehead’s approach was greeted with interest by scholars such as
Miller (1946), Ushenko (1949), Lawrence (1950) and Mays (1951), it was criticized
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by philosophers such as Grünbaum (1953). According to the latter, a positivistic
point of view that attempts to reduce scientific concepts to an experiential basis
would be simply untenable.1 It is indeed difficult to provide an accurate evaluation
of a method that has not been clearly formulated and developed. It is for this reason
that the formal renditions of Whitehead’s ideas given by Clarke (1981) and Gerla
(1995) are of crucial importance. It is however noteworthy that, independently
of Whitehead and following Leśniewski, the positivistic attitude was developed
by Tarski (1929) and Grzegorczyk (1960), although these approaches are far less
intuitive than those of Whitehead and Gerla.2 Another independent approach is the
one developed in Sambin (2003), which does not however take into account the
alignment between the order of concept construction and their epistemic access.

There have been several other attempts to reformulate the concept of continuum
in more intuitive terms, such as the intuitionistic one in Brouwer (1930) and
Troelstra (1983), and the one in Roeper (2006). The first is somewhat imprecise.
The second, though precise, lacks much of its alleged intuitiveness. Finally the
third, even if it does not assume the notion of point, presupposes that of intervals
with exact abutments. This, as Arsenijević and Kapetanović (2008) have shown,
renders Roeper’s attempt substantially isomorphic to the standard approach. In this
paper we will take up Grünbaum’s challenge. We will address the question whether
Whitehead’s approach, as formulated by Gerla, could be a viable alternative for
contemporary science, in particular mathematical physics. We are not interested in
the foundations of mathematics in itself, but rather in its role in the foundations of
physics.

Since the Copernican revolution modern science has taught us not to take our
perceptual evidence for granted. This has led many philosophers and scientists to
endorse either an instrumentalist or a Platonist attitude towards the counter-intuitive
notions used in mathematical physics. Both attitudes, if blindly endorsed, are
dangerous for a correct collocation of natural science within the broader framework
of contemporary culture. The instrumentalist attitude tends to belittle the epistemo-
logical value of natural science thus opening the way to irrationalism. The Platonist
standpoint, besides having been refuted many times in history (since most of the
theoretical entities that have been introduced have been shown to be either non
existent or different from what expected) runs the risk to encourage a conservative
attitude towards scientific research thereby placing scientific knowledge in an
uncontrollable hyperuranic world. For these reasons, the possibility of providing
a logical formulation of the notions used by mathematical physics which respects

1See however the responses to Grünbaum given by Shamsi (1989) and Ringel (2001). Grünbaum
(1953, 220) himself acknowledges that in Process and Reality Whitehead does not require all the
regions used in the extensive abstraction method to be perceivable. Grünbaum does not seems
to fully understand this new approach, which has become clear in the formulation of Gerla and
Tortora (1992, 1996). This new rendition is thus immune from Grünbaum’s criticism.
2Biacino and Gerla (1996) claim that the two approaches are substantially equivalent. Their
arguments do not strike us as conclusive. For a clear analysis of the contributions by Leśniewski,
Tarski and Grzegorczyk see Gruszczyński and Pietruszczak (2009).
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the order of epistemic access to them, thus rendering them more intuitive, should be
considered a step forward in the attempt at reaching a critical attitude towards the
theoretical entities of science.

Building on the above assumptions we will consider in the following section to
consider some cases in which the standard Cantor-Grünbaum’s approach reveals its
strength. In Sect. 4.3 we will examine the formal notion of connection3 as proposed
by Whitehead-Gerla, and finally in Sect. 4.4 we will argue that this concept, though
more intuitive, fails in some of the cases we have envisaged in Sect. 4.2.

4.2 Motion as a Supertask

In Phys 223a21-30, 239b 11-14 and 263a4-b9 Aristotle formulates and discusses
Zeno’s Dichotomy Paradox. This paradox can be cached in modern terms along the
following lines:

1. Suppose an object O moves from a to b, two distinct spatial regions, with
constant velocity. Suppose further, for the sake of simplicity, that the distance
between a and b is 1 m and that it takes O 1 s to go from a to b. Then O’s
velocityD 1 m/s. In general standard kinematics tells us that O will take 1/M of
a second to cover a spatial distance in ab of 1/M meters.

2. Suppose that the space between a and b is composed of an uncountable set of
points.

3. Then it follows thatO , to get from a to b, has to pass an infinite series of adjacent
spatial intervals. The first interval will have length D 1=2m, the second D 1=4,
the third 1=8 and so on. We can indicate such a series as (4.1):

1

2
;
1

4
;
1

8
; : : : ;

1

2n
(4.1)

4. Since O moves with finite velocity it will take it a finite amount of time to cover
each and every spatial interval of the series (4.1).

5. An infinite sum of finite entities cannot but be infinite. Thus it will take O an
infinite amount of time to get from a to b. O will never get to its destination.

To a mathematically sophisticated mind the fallacy in Zeno’s argument is pretty
obvious. It is the point 5 above. Nowadays we have the mathematical resources to
establish that the infinite sum of the members of series (4.1)D 1 rather than infinite.

3It should be noted that Gerla and Miranda (2008) provide a formal rendition also of the notion
of extensive abstraction, one based upon the notion of inclusion. They further address the formal
rendering of the relation of connection that Whitehead takes from De Laguna (1922). We will focus
only on the latter, which is both more intuitive and effective.
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However in Phys 263a4-b9, Aristotle notes another aspect of Zeno’s argument
that is quite independent from the fact that it would take an infinite time to cover
an infinite sum of spatial intervals. He observes that in general it is not possible to
carry out an infinite set of acts for the simple reason that infinity does not have any
final term. In other words, it is not possible forO to go from a to b because it would
have to perform an infinite series of acts, and infinity does not have a final term,
so O could never get to any destination. This holds independently of the length of
spatial intervals.

Aristotle is probably addressing here the problem that modern philosophers of
supertasks raise against the standard solution of Zeno’s Dichotomy, i.e. the one
that is centered around the fact that Sn D 1 � 1=2n for n that goes to infinity
approaches 1.4

In modern terms the physical supertask problem5 is twofold: On the one hand it
is hard to understand how an infinite number of movements can be made in a finite
amount of time, independently of whether their sum has a finite length. On the other
hand, the fact that Sn tends to 1 when n tends to infinity is a fact that concerns the
members of the series and not its final term; 1 does not belong to the series.

Thus, proving that Sn tends to 1 does not amount to proving that O gets to its
destination. Aristotle tries to solve this problem with the following argument. The
interval ab that O has to cover can be understood in two different ways: Either as a
continuum according to the definition given in Phys 227a 10ff, that is as something
which lacks internal limits, or as divided into infinite intervals.

In the first case the infinite intervals are only potential, whereas in the second
case they are actual. There are no problems in passing infinite intervals potentially,
whereas it is obvious that this cannot be done if the intervals are actual. If the
intervals are potential,O passes them only accidentally.

One of the major features of modern science is that it has dropped the distinction
between potentiality and actuality. This is not because we cannot make room in
our ontology for possible entities, as many philosophers do, but rather because
a possible entity is always only vaguely individuated. Consider for example the
difference between these two simple definitions:

(i) The set of clothes that is in my closet.
(ii) The set of clothes that could be in my closet.

The first set is perfectly determined whereas the second is not defined exactly.
Thus, even if the Aristotelian response is reasonable, it is not adequate when
compared to more rigorous standards. It is true that many philosophers of physics

4In order to appreciate the importance of the succession Sn for Zeno’s Dichotomy consider
again series (4.1): 1=2; 1=4; 1=8; : : :. Its generic term is 1=2n . As n approaches infinity the series
measures how much time is left for O to get to b. We know that ab D 1m, so Sn D 1 � 1=2n

represents the space covered by O . It is easy to prove that, if n goes to infinity, Sn approaches 1
since 1=2n tends to 0. Thus an infinite sum of intervals is not necessarily infinite and O can get to
its final destination.
5We do not address the logical problem of supertask.
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maintain that scientific theories do not avoid modal notions altogether. Just to give
an example think of the possibility, if not the existence, of dispositional properties.
Contemporary physics seems however to provide, at least at first sight, a rigorous
way to handle such properties, for example the use of differential equations, whereas
it is rather unclear how to handle the Aristotelian concept of potentiality in a
rigorous manner.6

The distinction between actual and potential infinite division has been precisely
rendered in a certain sense by Grünbaum via the distinction between staccato-run
and legato-run.

To understand the first notion, let us go back to our object O going from a to
b, which are 1 m apart, in 1 s. Suppose we describe O’s motion as follows: in the
first quarter of a second O covers half a meter, then it stops for 1=4 of a second; in
the subsequent 1=8 of a second it covers a distance of 1=4 of a meter, then it stops
for 1=8 of a second, and so on. It is clear that O would cover an infinite amount of
intervals detached from one another, i.e. actually, as Aristotle would say.

The legato-run on the other hand is the uninterrupted movement. In this case the
problem of accomplishing an infinite number of tasks does not arise because strictly
speaking it is a unique motion. This statement needs a more detailed justification.
The notion of task can be understood in two different ways. A more general and
a more specific one. The former refers to any change in the world (Laraudogoitia
2009); the latter to the fact that a physical variable has extremal values in different
times. The latter is due to Black (1951, 1954), and, since we are here concerned
with the physical problem of supertask only it seems the more suitable one. So we
will endorse it.

Black defines act (the task) as something that is separate from its environment
because it (act) has a defined beginning and an end. In his 1954 response to the
debate that followed his 1951 paper, Black polishes this definition observing that,
if an object O is characterized by a variablem, we say that O has accomplished an
act (task) during the interval t1 � t2, iff the variablem has extreme values at t1; t2.

It follows from this definition that a ball that is bouncing between two parallel
walls accomplishes a task every time it travels from one wall to the other. It also
follows that O accomplishes a unique task and not an infinite series of tasks, since
none of the variables that characterize it behave in such a discontinuous way.

This is exactly Grünbaum’s distinction between legato and staccato-run. The
supertask problem arises only for the latter and O’s motion is not a staccato-run.
Therefore a legato-run is not at all a supertask. One could nonetheless ask: is a
staccato-run physically possible? To this question the answer couldn’t be definitive.
Nonetheless, if motion is not continuous, it is not clear how the body could arrive at
its final destination.

6It may be possible to characterize rigorously the Aristotelian notion of “infinite divisibility”,
where the modality involved in the second word is crucial, in mereological terms, through a
statement of atomlessness.
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We could still raise the objection that we do not actually divide the interval
ab, and that all statements about the series Sn do not necessarily hold for b, that
is not in that series. As Laraudogoitia (2009, sec. 3) rightly points out, to solve
this problem in a conclusive way it would be necessary to resort to some sort of
continuity principle: if space is continuous there is nothing in between the infinite
series of intervals in ab and the final point b.

Let us discuss this idea more carefully. In topology7 we say that:

Definition 1. A sequence of points x1, x2, x3 in the topological space X converges
to x in X iff, for every neighborhood U of x there exists a positive natural number
N such that xn belongs to U for every n > N .

As it is clear from this definition, even if we have proven that the series of points
converge to O’s final destination, it still does not follow that O gets there because
the convergence point might not belong to the sequence. Now, let us define:

Definition 2. A separation of a topological spaceX is a couple of open and disjoint
subsets A, B of X , such that A;B ¤ ˛ and A[ B D X .

Definition 3. X is connected if and only if it does not admit any separations.

With these definitions in hand we can argue that if the interval covered by O is
not connected, O would have to accomplish more than one task. We know that the
representation of space as an interval of real numbers renders the interval connected,
so that the problem of ‘jumping’ to the final destination does not arise.

We should note however that we had to use the assumption that space is somehow
composed of an uncountable set of points, an assumption that we mentioned
explicitly in our formulation of Zeno’s Dichotomy.

If we maintained, on the other hand, that space is an infinite and dense set of
points, it would not follow that it is also a connected set. Actually it can be proven
that rational numbers, an infinite and dense set, are totally disconnected, i.e. the only
connected subsets of Q are just its singletons (Munkres 2000, 149).

This means that there could be an infinite number of separations in O’s way,
and its movement would thus turn out to be a supertask, i.e. a staccato-run.
The hypothesis underpinning mathematical physics is however that space is not
adequately represented by a set of points that is solely dense, but rather by an
effectively connected set, such as that of real numbers. If so we could say that O
neither makes any jumps nor is its arrival separated from its course.8

7See for example Munkres (2000, 98).
8As far as continuity of space is concerned, it should be taken into account that recent attempts to
unify gravity and Quantum Theories have yielded to the hypothesis that space, at the Planck scale,
is not continuous after all, but rather discrete. These hypotheses are still under scrutiny. If they
turned out to be correct, the problem of motion as a supertask would vanish.
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Fig. 4.1 Regions that are connected in the plane

Fig. 4.2 Regions that are not connected in the plane

4.3 Whitehead-Gerla’s Perspective

Let us now add9 a predicate C to First Order Logic with identity, which can be
informally understood as being connected (see Fig. 4.1 and Fig. 4.2). Let us refer to
this predicate as connection. It is a relational predicate holding between entities that
we can label regions. We define C on a set R of regions.

We require that C obeys the following axioms10:

Axiom 1. (C1, Symmetry) C.x; y/! C.y; x/

Axiom 2. (C2, Locality) 9y:C.x; y/
Axiom 3. (C3, Mediate Connection) 9z.C.x; z/ ^ C.y; z//
Axiom 4. (C4, Reflexivity) C.x; x/

C1 informally says that C is symmetric, C4 that it is reflexive. C2 informally
states that there isn’t a region that is connected with all other regions. From a
general point of view this amounts to saying that C applies to a domain of entities
that is not immersed in a geometrical space, contrary to what typically happens in
mathematical physics.

9We follow the clear exposition given in Pecoraro (2006). We refer to this for many details about
the formal rendition of the numerous assumptions proposed by Whitehead.
10All the formulas are intended to be universally closed for any free variable unless otherwise
specified.
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Fig. 4.3 Regular open set (a) and non-regular open set (b)

C3 states that all regions, even those that are not connected, are mediately
connected, i.e. for any two regions, even disconnected regions, there is a region
that is connected to both.

Note moreover that C is not transitive, for, if it were, it would follow from C3
that two regions whatsoever are always connected, which contradicts C2. We do
not introduce an axiom stating that all regions are self-connected so as to keep
our approach as general as possible. However, we will only refer to self-connected
regions when dealing with possible models. The models of such theory are not
necessarily topological spaces since neither infinite union nor infinite intersection
are guaranteed. We can however understand regions as open regions, rather than
closed ones, i.e. regions without boundaries. For the sake of clarity let us introduce
the following definition:

Definition 4. In.x; y/ Ddf C.z; x/! C.z; y/:

Relation In is intuitively the inclusion relation among regions, that is, writing C.x/
for the set of all regions connected to x In.x; y/ Ddf C.x/ � C.y/. Let us now add
two more axioms:

Axiom 5. (C5, Antisymmetry) .In.x; y/ ^ In.y; x//! x D y
Axiom 6. (C6, Infinite Divisibility) 9x9y.In.x; z/ ^ In.y; z/ ^ :C.x; y//
C5 states that if two regions are mutually included, so to speak, they are one and
the same region. C6 affirms that every region includes two regions that are not
connected. Since In is clearly reflexive and transitive, it is a partial order for regions.
Let us then define:

Definition 5. Pin.x; y/ Ddf In.x; y/ ^ :.x D y/,
which we call proper inclusion.

It follows from C4 and C6 that every region properly includes another. Thus there
does not exist a minimal region, i.e. a region such that no other region is properly
included in it. It is worth noting that a maximal region does not exist either: it is in
fact easy to prove that a region includes all other regions only if it is connected to
all of them, contra C2.

It can be observed that the set of regular open connected non empty intervals
of a Euclidean space in which we interpret C.x; y/ as “the intersection of the
complement of x with the complement of y is not the empty set” is a model for
axioms C1–C6. Thus they are coherent. Let us recall that regular (Fig. 4.3a above)
here means that such regions do not contain pieces of different dimensionality
(Fig. 4.3b above).
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Fig. 4.4 Tangential inclusion
and not tangential inclusion

Let us introduce a further definition:

Definition 6. S.x; y/ Ddf 9z.In.z; x/ ^ In.z; y//,
which defines the notion of overlap.11

We can now proceed to the definition of point by introducing the notion of not
tangential inclusion:

Definition 7. NTIn.x; y/ Ddf C.z; x/! S.z; y/.

Practically, to connect to x you need to overlap y (Fig. 4.4).
Let us introduce the notion of Abstractive Set:

Definition 8. A set of regionsX is an abstractive set AG.X/ iffX is totally ordered
by the relation of not tangential inclusion and a minimal element does not exist with
respect to that order.

This means not only that does .X;AG.X// has no minimal element, but also that
no region exists, including those that do not belong to X , that is included in all
the regions of X . We could say that this set of nested regions already defines an
abstractive element. If we started up with three-dimensional regions, that element
could be a point, a line or a surface. It is however possible to prove that there exists
an infinite number of different abstractive sets that single out the same abstractive
element.

A further definition is therefore needed:

Definition 9. An abstractive set X covers an abstractive set Y iff for every x 2 X
there exists an element y 2 Y such that Pin.x; y/.

X covers Y then if, in the nestification of the latter there exists a region such that
every region of Y that is included in it is also included in a region ofX . Let us write
Cov.X; Y / for X covers Y . Such a relation is reflexive and transitive, and through
it we can define the relation of equivalence between abstractive sets:

Definition 10. X � Y Ddf Cov.X; Y / ^ Cov.Y;X/.

11Here we do not enter into the question of dissections. For this we defer to Gerla and Tortora
(1996) and Pecoraro (2006, 40ff). We also defer the reader to Pecoraro (2006) for many other
details about the formal renditions of Whitehead’s assumptions that are not relevant for the present
work.
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We have therefore eliminated the problem of different abstractive sets by singling
out the same geometrical place. A geometrical element is defined via an equivalence
class of the relation Cov between abstractive sets of regions. We will refer to it
as ŒX�.

As we were saying, the geometrical loci of a structure of three-dimensional
regions could be surfaces, lines and points. To define the latter notion we need to
introduce the incidence relation between geometrical elements:

Definition 11. Inc.ŒX� ; ŒY �/ Ddf Cov.Y;X/

ŒX� is incident in ŒY � iff Y covers X. The relation Inc is anti-symmetric and thus it
is an order for geometrical loci. We can finally give the following definition:

Definition 12. A point is the minimal element of the set of geometrical loci ordered
by the incidence relation. We will write ŒP � for point P , ŒQ� for pointQ and so on.

We now need to establish what it means for a point to be situated in a region. In
order to do that we may say that:

Definition 13. An abstractive set X is a member of a geometrical place ŒX�, which
we will write as X 2 ŒX�, iff X belongs to the equivalence class of ŒX�.

A member of a geometrical element is a way of defining such an element. We now
have:

Definition 14. A point ŒP � is situated in a region x, and we will write Sit.ŒP � ; x/,
iff there exists an abstractive set X 2 ŒP � such that x 2 X .

In practice in order for a point to be situated in a region there has to be a way
of defining that point that refers to the region. Our axiomatic system guaranteed
that its models, let us call them WG-spaces, contain infinite regions. It is however
indeterminate how many points there are in one region. To ensure that they are
infinite we add the following axiom:

Axiom 7. (C7) x ¤ y ! 9 ŒP � 9 ŒQ� .ŒP � ¤ ŒQ� ^ Sit.ŒP � ; x/ ^ Sit.ŒQ� ; y//

Informally C7 says that for every two distinct regions x and y there have to be two
distinct points situated in x and y respectively. C7 ensures that in every region an
infinite number of points is situated.

It is now possible to consider an interesting theorem proven by Gerla and
Miranda.12 Let us refer to the open, regular, non empty, connected set of a Euclidean
three-dimensional space as R. Interpret C.x; y/ as “the intersection between the
complement of x and the complement of y is distinct from the empty set”. Then:

Theorem 1 (Gerla and Miranda Theorem). The set of points defined via the
Whitehead-Gerla procedure coincides with the points of R3.

12For details see Gerla and Miranda (2008) and (Pecoraro 2006, 47).



4 Continuity of Motion in Whitehead’s Geometrical Space 95

This theorem seems to suggest that the relation between regions and points defined
via the Whitehead-Gerla method is a good inversion of the standard procedure that
defines regions from points. Hence it could make us think that it is an adequate
instrument for modern science. If this were indeed the case, then we should be able
to solve the supertask problem in such a space when dealing with motion. Let us
therefore examine WG-spaces from this perspective.

4.4 Whitehead-Gerla Approach and the Supertask Problem

As we have pointed out, in the standard approach, that we might label the
Cantor-Grünbaum’s approach, an object O that moves from a to b passes through
an uncountable set of points. Nonetheless, its motion is not a composition of an
uncountable set of actions, a performance which would probably be physically
impossible to carry out in a finite amount of time. Given the connection relations
of the intervals of real numbers that describe ab, this motion is rather a single
task, namely a legato-run, to use Grünbaum’s terminology. It follows that Zeno’s
Dichotomy argument, which we find in Aristotle (Phys 263a4-b9), does not
constitute a threat for O’s motion, provided that this notion is represented as
suggested by Cantor-Grünbaum’s approach.

That said, we realize that this approach is far from being intuitive. Indeed,
the logical order in which concepts are constructed does not follow the order of
the epistemological access to those concepts. Moreover in the Cantor-Grünbaum’s
approach continuity is a property emerging in a somewhat mysterious way from
entities which are not continuous. For this reason, many scholars attempted to invert
the order, and to assume continuous entities as primitives. The main purpose of
developing a geometry which built upon the notion of an open, connected region,
along the lines of Whiteheads’s foundational attempt, was that of restoring the
above mentioned epistemological order. Let us try to consider matters from the
Whitehead-Gerla perspective and see what happens to motion. We will consider
the standard description (Cantor-Grünbaum’s approach) of motion and see how it
behaves within the WG-space. We will try to show how the connection of these two
ideas creates tensions. All this will lead us to reflect on the idea of movement as a
central concept for the construction of the above epistemological order.

In general the structure of regions endowed with the relation of connection does
not produce a topological space. This means that the standard topological concept
of connectedness plays no role in this context; hence we must look for continuity
somewhere else. Moreover, recall that points are not regions; it is easy to define the
notion of self-connectedness for regions by appealing from the primitive already
introduced. We could say that a finite set of regions x1 : : : xn is a path iff for every
xi ; xiC1 S.xi ; xiC1/ holds. We say that a region is self-connected iff for every two
regions that are included in it there is a path through them (Gerla 1995, 1023–1024).
But these definition does not hold for points, since they are not regions.
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In order to see whether the Whitehead-Gerla approach is an adequate instrument
for mathematical physics, let us introduce the usual notion of material point, that is
a body whose dimensions are negligible.13 The notion of material point is essential
for the physico-mathematical representation of the world, insofar as it plays an
important role not only in mechanics. However, we will examine only the case of
the motion of a material point in classical mechanics.14

It must be pointed out that, given the WG-definition of point in (Definition 14),
points are not regions. So they cannot be the locations of objects. Moreover, the
notion of self-connection just defined is not applicable to them. Let us furthermore
note that the relation of being situated in a region is not the set-theoretic relation
of membership. Now, in mathematical physics we cannot help resorting to material
points, that is objects that are located at a point. This does not mean that there are
material points in the world, but simply that using those points to describe material
objects we capture important features of those objects. Now, since WG-points are
not regions we have to construct some sort of injective function L.Mi ; ŒPi �/ that
locates material points at WG points.

We consider the set of points P , i.e. the loci that identify the equivalence classes
of abstractive sets which are lower bounds of a chain of nested regions. We know
that the regions are infinite (C6), and so the points are infinite (C7). We take the
set of all subsets of P including the empty set ˛ and call it PP. It is a topological
space, in that the union, which is also infinite, and the intersection are closed. PP, is
a totally disconnected set, because only its singletons are both closed and open. We
may also provide PP with additional structures in order to avoid this conclusion, but
the way forward is not obvious.

Following Whitehead-Gerla’s approach, we say that a geometric element [Y ]
is infimum with regard to a set of points X , if and only if there is a geometric
element ŒZ� in which all the points belonging to X are located and for which
Inc.ŒZ�; ŒY �/. An infimum geometric element concerning a set that contain two
points X D .ŒP �; ŒQ�/ is, by definition, a segment. By considering C7 we know
that in a segment are located infinite points.

By considering these ideas, it seems reasonable to assume, following the standard
Cantor-Grünbaum’s approach and contemporary physical-mathematical point of
view, that, in the system WG, the motion of a material point from ŒP � to ŒQ� passes
through the geometric element that we have called “segment”. Recall that we are
speaking about the motion of a material point. We can then reasonably assume that
the point will occupy all points situated in the segment during his motion. We know
that the set of these points is totally disconnected. It follows that we can not appeal
to any Continuity Principle in order to claim that the motion of a material point
from ŒP � to ŒQ� is not a staccato-run. So this motion becomes a physical supertask.
We can see that every point belonging to the segment is defined by an independent

13See, for example, Landau and Lifshitz (1976, V.I,1).
14On the contemporary debate in philosophy of science concerning this topic see: Arntzenius
(2004, 2011) and Field (2014).
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abstractive set, so it is easy to find a variable that characterizes it and that in turn
takes an extreme value. For example, each point has at least one region different
from all those that define the other points of the segment.

From a kinematic point of view the physical supertasks are not impossible
(Laraudogoitia 2009). However, it remains very whether that they are possible from
a dynamic point of view. The motion from ŒP � to ŒQ� seems to be a infinite series of
departures and arrivals from one point to another. Even if it were possible to achieve
it in a finite time, it would require an infinite force.

If this were indeed the case, motion would become an infinite set of jumps, that
is a supertask. Now, supertasks are not impossible, but they are surely controversial
processes. This means that if we try to preserve some standard (Cantor-Grünbaum’s
approach) mathematical physics notions in WG-space and to use the notion of
WG-point to do standard mathematical physics, we find ourselves in a great
conceptual tension. All this leads us to believe that we need a new and different
characterization of movement in WG-space.

From a physical point of view it is surely possible to accomplish an infinite
number of acts, if and only if some sort of continuity holds between them. But this
does not hold, as far as we know, for WG-points. For this reason the embedding of
the classical standard representation of motion between points in a WG-space runs
the risks of rendering this representation impossible.

It could be objected that the object countenanced by the Whitehead-Gerla
approach are located just at regions, and that their motions have to follow paths,
in the technical sense of the word. If this were the case then the problem we have
outlined would vanish. But mathematical physics uses the notion of material points
systematically. So it remains to be assessed whether and how it is possible to do
physics with this different way of thinking about objects and motion. And the burden
of the proof is on Whitehead-Gerla.

We could also say that when we resort to the notion of material point in
mathematical physics, we are not speaking strictly, that is, the material point can
be located in an extended region, but this fact is physically irrelevant. Thus, strictly
speaking, there would exist no material points, and again our problem would vanish.
It should be noted however that in the mathematical representation of the physical
world, the material points are necessary. And if the points of this representation are
taken to be WG-points, motion turns out to be a hypertask. For the above reasons,
and without entering the ontological domain, we consider the WG approach as
unfit to our standard and contemporary physical-mathematical representation of the
world.

We therefore conclude that, despite of its being more intuitive than the standard
Cantor-Grünbaum’s approach, WG does not seem an adequate instrument for
contemporary mathematical physics.

Acknowledgements We are very grateful to Adriano Angelucci, Caludio Calosi, Massimo Sangoi
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Arsenijević, M., & Kapetanović, M. (2008). The great struggle between Cantorians and Neo-
Aristotelians: Much ado about nothing. Grazer Philosophische Studien, 76, 79–90.

Biacino, L., & Gerla, G. (1996). Connection structures: Grzegorczyc’s and Whitehead’s definition
of point. Notre Dame Journal of Formal Logic, 37, 431–439.

Black, M. (1951). Achilles and the tortoise. Analysis, 11, 91–101.
Black, M. (1954). Is Achilles still running? In M. Black (Ed.), Problems of Analysis: Philosophical

Essays. Ithaca: Cornell University Press.
Brouwer, L. E. J. (1930). Die Struktur des Kontinuums. Komitee zur Veranstaltung von Gastvortr-

gen auslndischer Gelehrter der exakten Wissenschaften, Wien
Carnap, R. (1928). Der logische aufbau der welt. Leipzig: Felix Meiner Verlag.
Clarke, B. L. (1981). A calculus of individuals based on connection. Notre Dame Journal of Formal

Logic, 22, 204–218.
De Laguna, T. (1922). Point, line, and surface as sets of solids. The Journal of Philosophy, 19,

449–461.
Field, C. (2014). Consistent quantum mechanics admits no mereotopology. Axiomathes 24, 9–18.
Gerla, G. (1995). Pointless geometries. In F. Buekenhout (Ed.), Handbook of incidence geometry

(pp. 1017–1031). Amsterdam: Elsevier.
Gerla, G., & Miranda, A. (2008). Mathematical features of Whitehead’s point-free geometry. In

M. Weber, & W. Desmond (Eds.), Handbook of Whiteheadian process thought (Vol. II, pp. 119–
130). Frankfurt: Ontos Verlag.

Gerla, G., & Tortora, R. (1992). La relazione di connessione in A. N. Whitehead. Aspetti
matematici. Epistemologia, 15, 351–364.

Gerla, G., & Tortora, R. (1996). Dissezioni, intersezioni di regioni in A.N. Whitehead. Epistemolo-
gia, 19, 289–308.

Grünbaum, A. (1952). A consistent conception of the extended linear continuum as an aggregate
of unextended elements. Philosophy of Science, 19, 280–306.

Grünbaum, A. (1953). Whiteheads method of extensive abstraction. British Journal for Philosophy
of Science, 4, 215–226.
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Part II
Mathematics

Introduction to Part II: Mereology and Mathematics

Mathematics is arguably the discipline that, at least historically, bears the closest
relationship to mereology. Lesniewski’s original formulation was supposed to con-
stitute a nominalistic alternative to set-theory. The same spirit is found in Leonard
and Goodman’s seminal paper on the calculus of individuals. In 1935 Tarski was
already able to prove that classical mereology was a complete Boolean algebra
modulo the zero element. It follows that the relation of parthood axiomatized by
classical mereology has the same properties of set-theoretic inclusion (modulo the
existence of the null-set). Lewis (1991) is a thorough exploration of the possibility
of reconstructing the entire set-theoretic universe in mereological terms. Even from
these cursory remarks it is possible to see that the relation between mereology and
set-theory has always occupied a somewhat privileged status.

Another example of a privileged relation between mereology and foundational
mathematical theories is the relation with topology. Since the works of De Laguna
(1922) and Whitehead (1929) there have been attempts to either define the topo-
logical relation of connection in terms of parthood, as in Whitehead (1929), or to
define the parthood relation in terms of connection, as in Clarke (1981). It is still an
open question whether and at what price these attempts are satisfactory (though the
consensus, we might add, seems to point to the contrary). It is not by chance that
the papers in this section continue this long and distinguished tradition.

In the first one (Multi-Valued Logic for a Point-Free Foundation of Geometry)
Coppola and Gerla investigate new prospects for foundational approaches to
Whiteadean point-free spaces that were also the focus of the last work of the
previous section. They consider, following Whitehead’s own lead, inclusion spaces
and connection spaces. It turns out that (i) there is no minimal element in inclusion
spaces, i.e. the definition of point is (elegant but) empty, and (ii) whereas in
connection spaces it is possible to define the relation of inclusion, the converse does
not hold, for the relation of connection is not invariant under the automorphisms of
inclusion structures. Despite these difficulties for the inclusion based approach they
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are able to show in the rest of the paper that both desiderata, i.e. non-emptiness of
definition of point, (ii) definability of topological connection in terms of inclusion,
are met if only the inclusion relation is taken to be a graded notion. Thus, they
claim, shifting to a multi-valued logic provides an adequate foundation for point-
free geometry.

The second work (The Relation of Supremum and Merelogical Sum in Par-
tially Ordered Sets) by Gruszczyński and Pietruszczak focuses on the problem
of establishing under which conditions the mereological notion of sum and the
set-theoretic notion of supremum coincide. They show that (i) for every quasi-
partially ordered set, i.e. a set that satisfies reflexivity and transitivity but not
anti-symmetry, that also satisfies weak supplementation supremum and sum do
coincide, (ii) that coincidence does not obtain without further assumptions for
partially ordered sets, which also obey anti-symmetry. Coincidence can be restored
by adding different axioms governing the supremum or the mereological sum. In
particular they show that some axioms concerning the existence of the mereological
sum are sufficient to ensure such a coincidence. These existence axioms could
have profound philosophical consequences in that they are (both) weaker than the
classical principle of unrestricted composition, and thus could be used to ground
moderate, restricted answer to the infamous Special Composition Question, i.e.
under which condition a non-empty set of entities has a mereological sum.

Finally the paper by Hovda (Natural Mereology and Classical Mereology) is an
investigation of the (alleged) disagreement between two philosophical orientations
regarding mereological issues. On the one hand naturalism holds that something is
part of another iff the composite object is an organic, natural union to which the
part in question partakes. On the other hand formalism maintains that it exists a
single parthood relation that is formally and mathematically well-behaved in that
it obeys the axioms of classical mereology. There is at first sight tension between
the two because those axioms include the unrestricted composition principle which
sanctions all kinds of mereological sums, not just natural organic ones. Hovda’s
insightful suggestion is that if naturalists admit the existence of sets of objects they
are already committed to, and if formalists agree to a distinction between natural
and non-natural objects and sets of objects, then the ontological disagreement
between the two philosophical orientations vanishes. The development of the formal
apparatus that is able to flesh out this suggestion is not a trivial task for there seem
to be two different requirements pulling in opposite directions: whereas on the one
hand one has to extend the relation of natural parthood defined over a set of natural
objects in such a way that this relation obeys the laws of classical mereology, on
the other hand the domain of such objects need to be extended too in order to admit
arbitrary sums. The bulk of the paper is the development of such an apparatus.

There are countless introductions to the mathematics used in this section. A
first, must-read introduction to set-theory is Halmos (1974). A more detailed and
extensive survey is Enderton (1977). A more recent treatment can be found in Devlin
(1993). For a good philosophical take see Potter (2004). As a first introduction to
fuzzy logic (see Nguyen and Walker (2000)). For both fuzzy logic and fuzzy set
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theory there is Klir and Yuan (1995). As far as topology goes it is difficult not to
mention the classic (Munkres (1975)).
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Chapter 5
Multi-valued Logic for a Point-Free Foundation
of Geometry

Cristina Coppola and Giangiacomo Gerla

5.1 Introduction

Łukasiewicz’s many-valued logic (see Hájek 1998), Chang and Keisler’s continuous
logic (1966) and Pavelka’s fuzzy logic (1979) define very interesting chapters of
formal logic. Recently, under the name ‘continuous logic’, these researches were
reconsidered to extend the powerful tools of model theory to classes of structures
which are not definable in classical first order logic. This since these structures
assume as primitive a real-valued function. Examples are the metric spaces, the
normed spaces, the probabilities (see for example Yaacov and Usvyatsov 2010).

The basic ideas of point-free geometry were firstly formulated by A. N. White-
head in An Inquiry Concerning the Principles of Natural Knowledge (Whitehead
1919) and in The concept of Nature (Whitehead 1920), where he proposed as
primitive notions events and extension relation between events (in geometrical
terms, regions and inclusion relation). Later, in Process and Reality (Whitehead
1929), Whitehead proposed a different treatment, inspired by De Laguna (1922), in
which the topological notion of ‘connection’ between two regions was assumed
as primitive and the inclusion was defined (see Gerla 1994). Successively, in a
series of papers, metric-based approaches to point-free geometry were proposed in
which, apart the inclusion relation, distances and diameters are also considered (see
Di Concilio and Gerla 2006; Gerla 1990; Gerla and Miranda 2004). The resulting
notion of point-free pseudo-metric space is a promising base for a metric foundation
of geometry in accordance with the ideas of L.M. Blumenthal (1970). Indeed, it is
possible to associate every point-free pseudo-metric space with a metric space via a
natural definition of point and distance.
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In this exploratory paper we suggest the possibility of applying the ideas of
continuous logic to point-free geometry. This is done by assuming as primitives
predicates, geometrical in nature, as ‘to be included’, ‘to be small’, ‘to be close’.
Indeed, since these predicates apply at different grades, we have to interpret them
as fuzzy relations and therefore we have to refer to a first order multi-valued logic.
Perhaps we can look the resulting formalisms as a way to modelize the passage from
the original, naive, predicate based description of the geometrical space, qualitative
in nature, to the modern real-number based approach to geometry, quantitative in
nature.

More precisely, in Sect. 5.2 we propose the notion of inclusion space correspond-
ing to some of the geometrical properties of the inclusion analyzed in Whitehead
(1919, 1920). In Sect. 5.3 we give the notion of connection space corresponding to
the analysis given in Whitehead (1929). Taking in account of the difficulties of the
inclusion-based proposal in defining the notion of point, in Sects. 5.4 and 5.5 we
reformulate it in the framework of multi-valued logic. This means that the inclusion
is intended as a graded notion. We show that this enables us to overcome the
observed difficulties. Finally, in Sect. 5.6 we reformulate the metric-based theory
of point-free geometry into a theory in a multi-valued logic involving the graded
predicates ‘to be close’ and ‘to be small’.

5.2 Inclusion Spaces

We isolate the main properties considered by Whitehead (1919) and we transform
them into a system of axioms. Indeed, we consider the following first order theory
in a language L	 containing only the binary predicate 
. As usual, we write x < y
to denote the formula .x 
 y/ ^ .:.x D y//.
Definition 1. An inclusion space is a structure satisfying the following axioms:

I1 8x .x 
 x/ (reflexivity)
I2 8x8y8z ..x 
 z ^ z 
 y/) x 
 y/ (transitivity)
I3 8x8y .x 
 y ^ y 
 x ) x D y/ (anti-symmetry)
I4 8z9x .x < z/ (there is no minimal region)
I5 8x8y .x < y ) 9z .x < z < y// (density)
I6 8x8y .8x0.x0 < x ) x0 < y/) x 
 y/ (below approximation)
I7 8x8y 9z.x 
 z ^ y 
 z/ (upward-directed).

We call regions the elements of an inclusion space and inclusion relation the relation

. Then an inclusion space is an ordered set .S;
/ such that 
 has not a minimum,
it is dense and upward-directed. Moreover, in this set it is possible to approximate
every region from below. To find a model for this theory, we refer to the notion of
bounded closed regular subset of the Euclidean space Rn. This is a natural candidate
to represent the idea of region which is usually accepted in literature.
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Definition 2. Given a topological space we call closed regular a subset which is a
fixed point of the operator creg defined by setting

creg.X/ D cl.int.X//

where we denote by cl and int the closure and the interior operators, respectively.

We denote by RC.Rn/ the class of all the closed regular subsets of Rn. RC.Rn/
is a very interesting example of complete atomic-free Boolean algebra. We are
interested to the class R of the nonempty bounded elements of RC.Rn/. It is easy
to prove the following theorem.

Theorem 1. The structure .R;�/ is an inclusion space.

We call canonical inclusion space the structure .R;�/. Whitehead (1919)
defines the points by the following basic notion.

Definition 3. Given an inclusion space .S;
/, we call abstractive sequence any
sequence .rn/n2N of regions such that

(i) .rn/n2N is order-reversing with respect to the inclusion
(ii) There is no region which is contained in all the regions in .rn/n2N.

We denote by AS the class of abstractive sequences.

Whitehead’s idea is that an abstractive sequence .rn/n2N represents an ‘abstract
object’ which is obtained as a ‘limit’ of .rn/n2N. On the other hand, it is possible
that two different abstractive sequences define the same abstract object. Then, we
introduce the following equivalence relation.

Definition 4. The covering relation 
c is the relation in AS defined by setting, for
every .rn/n2N and .sn/n2N,

.rn/n2N 
c .sn/n2N, 8n9m rn 
 sn:

The relation� is defined by setting

.rn/n2N � .sn/n2N, .rn/n2N 
c .sn/n2N and .sn/n2N 
c .rn/n2N:

It is possible to prove that
c is a pre-order and therefore that� is an equivalence.
Then we can consider the quotientAS= � and an order relation inAS= � by setting

Œ.rn/n2N� 
c Œ.sn/n2N�, .rn/n2N 
c .sn/n2N:

The following definition remembers Euclid’s definition of point.

Definition 5. We call geometrical element any element of the quotient AS= �, i.e.
any class of equivalence Œ.rn/n2N� modulo �. A point is a geometrical element
which has no part, i.e. which is minimal in .AS= �;
c/.
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Fig. 5.1 Three different
“points” in the origin

Unfortunately, in spite of the evident elegance of this definition of point, it is
possible to prove the following theorem (see Gerla and Miranda 2004, 2008).

Theorem 2. In a canonical inclusion space the definition of point is empty, i.e.
there is no minimal element in .AS= �;
c/.
Instead of an precise exposition of the proof of this theorem, we prefer to illustrate
the idea which is on its basis by the following example. Consider in the Euclidean
plane the abstractive sequence G defined by the sequence .Bn/ of closed balls with
center in the origin (0,0) and radius rn D 1=n. From an intuitive point of view
such an abstractive sequence represents a point. Unfortunately, we can consider
the sequences G1 and G2 defined by the closed balls with radius rn and centre in
.�1=n; 0/ and .1=n; 0/, respectively (see Fig. 5.1). It is immediate that ŒG� > G1,
ŒG� > G2 and that ŒG�, ŒG1� and ŒG2� are three different geometrical elements. This
means that ŒG� is not minimal and therefore that ŒG� is not a point. Such an argument
holds true if we start from any abstractive sequence. Perhaps Whitehead’s passage
from the inclusion-based approach to the connection-based approach was done to
avoid such a counterintuitive behaviour. This theorem shows that the proposal of
Whitehead of assuming as a primitive only the mereological notion of inclusion is
unsatisfactory.

5.3 Connection Structures

Some years later the publication of Whitehead (1919, 1920), Whitehead (1929),
proposed a different idea based on the primitive notion of connection relation. By
isolating the main properties of the connection relation considered by Whitehead,
we obtain the following theory. The considered language LC has only a binary
relation symbol C .
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Definition 6. Denote by x 
 y the formula 8z.zCx ) zCy/. Then we call
connection space theory the following list of axioms.

C1 8x8y .xCy) yCx/ (symmetry)
C2 8z9x9y ..x 
 z/ ^ .y 
 z/ ^ .:xCy//
C3 8x8y9z .zCx ^ zCy/
C4 8x.xCx/
C5 8x8y ..x 
 y ^ y 
 x/) x D y/:

The intended interpretation is that the connection is either a surface contact or an
overlap. It is easy to prove that in any connection space the relation 
 is an order
relation. We denote by xOy the formula9z.z 
 x ^ z 
 y/ and we call overlapping
relation the corresponding relation. Again we use the class R to find a model of this
theory. We denote again by C the interpretation of the relation symbol C in R.

Theorem 3. Define in R � RC.Rn/ the relation C by setting

XCY , X \ Y ¤ ;:

Then .R; C / is a connection space in R
n, whose associated order coincides with

the set-theoretical inclusion.

We call canonical connection space a connection space defined in such a way.
The observation of a canonical connection space makes evident way the connection
relation is different from the overlapping relation. Indeed, while XCY means that
there is a point belonging in both the regions, XOY means that there is a region
contained in both the regions. To obtain an adequate definition of point, we need the
notion of nontangential inclusion.

Definition 7. Given a connection space .S; C /, we say that two regions have a
tangential connection when

(i) They are connected,
(ii) They do not overlap.

We say that x is non-tangentially included in y and we write x � y provided that

(j) x is included in y,
(jj) There is no region having a tangential connection with both x and y.

The following is a simple characterization of the non-tangential inclusion.

Proposition 1. The non-tangential inclusion is the relation defined by the formula

8z.zCx) zOy/: (5.1)

It is possible to prove that in a canonical connection space

X � Y , X � int.Y /:
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Definition 8. An abstractive sequence in a connection space is a sequence .rn/n2N
of regions such that

(j) .rn/n2N is order-reversing with respect to the non-tangential inclusion,
(jj) There is no region which is contained in all the regions of .rn/n2N.

The notions of covering, equivalence, geometrical element, point are defined
as in Sect. 5.2. Differently from the case of the inclusion spaces, in the canonical
connection space .R; C / Whitehead’s definition of point works well. Indeed the
following theorem holds (see Coppola et al. 2010).

Theorem 4. Consider the canonical space .R; C / and denote by Bn.p/ the closed
ball centered in p and with radius 1=n. Then the map associating every point p in
R
n with the geometrical element Œ.Bn.p//n2N� is a one-to-one map from R

n to the
set of points in .R; C /.

This theorem shows that connection space theory gives to point-free geometry a
more suitable framework than the one of inclusion space theory. A further reason in
furnished by the following theorem.

Theorem 5. While in a canonical connection space .R; C / we can define the
inclusion relation, in a canonical inclusion space .R;�/ it is not possible to define
the connection relation.

The proof of this theorem is based on the fact that if a relation is definable in a
structure, then it is invariant with respect to all the automorphisms of this structure.
So, it is sufficient to exhibit an one-to-one map preserving the inclusion and not
preserving the connection (for a complete proof see Gerla and Miranda 2004).

5.4 Multi-valued Logic for an Inclusion-Based Point-Free
Geometry

As we have seen, there are some troubles in the inclusion-based point-free geometry.
Indeed in rather natural models Whitehead’s definition of point is empty, moreover
the topological notion of connection cannot be defined. In spite of that, we claim that
an inclusion-based approach it is possible provided that we consider the inclusion
as a graded notion and therefore provided that we shift from classical logic to
multi-valued logic. Namely, we refer to the first order logic associated with a
continuous triangular norm ˝ W Œ0; 1� � Œ0; 1� ! Œ0; 1� (see for example Hájek
1998) and therefore to a first order language with:

• Two logical connectives^ and), interpreted by˝ and the related residuum!,
• Two logical constant 0 and 1 to denote 0 and 1
• The quantifiers 8 and 9 interpreted by the operators inf and sup.
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In addition, we consider a connective C t we interpret by the function ct W
Œ0; 1�! Œ0; 1� such that ct.x/ D 1 if x D 1 and ct.x/ D 0 otherwise. This means
that the intended meaning of a formula as C t.˛/ is ‘˛ is completely true’. To fix the
ideas, we assume that ˝ is the usual product and therefore that the implication is
interpreted by the operation! such that x ! y D 1 if x 
 y and x ! y D y=x

otherwise. Given a set D, an n-ary fuzzy relation in D is a map r W Dn ! Œ0; 1�.
We call crisp a fuzzy relation assuming only the values 0 and 1 and we identify
a classical relation R � Dn with the crisp relation cR W Dn ! Œ0; 1� defined by
setting cR.d1; : : : ; dn/ D 1 if .d1; : : : ; dn/ 2 R and cR.d1; : : : ; dn/ D 0 otherwise.
In other words, we identify R with its characteristic function cR.

A multi-valued interpretation .D; I / is defined by a nonempty domainD and by
a function I associating every constant c with an element I.c/ 2 D, every n-ary
operation symbol with an n-ary operation in D and every n-ary relation symbol r
with an n-ary fuzzy relation r D I.r/, i.e. a map r W Dn ! Œ0; 1�. Given a multi-
valued interpretation .D; I /, the interpretation I.t/ W Dn ! D of a term t is defined
as in classical logic. The valuation of the sentences is defined in a truth-functional
way as follows.

Definition 9. Given a multi-valued interpretation .D; I /, a formula ˛ whose
variables are among x1; : : : ; xn and d1; : : : ; dn in D, we define the value
Val.˛; d1; : : : ; dn/ by recursion on the complexity of ˛, by the equations:

(i) Val.r.t1; : : : ; tp/; d1; : : : ; dn/ D I.r/.I.t1/.d1; : : : ; dn/; : : : ; I.tp/.d1; : : : ;

dn//

(ii) Val.˛1˘˛2; d1; : : : ; dn/ D Val.˛1; d1; : : : ; dn/ ˘ Val.˛q; d1; : : : ; dn/
(iii) Val.�˛; d1; : : : ; dn/ D �.Val.˛; d1; : : : ; dn//
(iv) Val.8xhˇ; d1; : : : ; dn/ D inf.fVal.ˇ; d1; : : : ; dh�1; d; dhC1; : : : ; dn/ W d 2

Dg/
(v) Val.9xhˇ; d1; : : : ; dn/ D sup.fVal.ˇ; d1; : : : ; dh�1; d; dhC1; : : : ; dn/ W d 2

Dg/
where we denote by ˘ (by �) a binary (an unary) connective and by ˘ (by �) the
corresponding interpretation.

We say that d1; : : : ; dn satisfy ˛ if Val.˛; d1; : : : ; dn/ D 1. If ˛ is a closed
formula, then the value Val.˛; d1; : : : ; dn/ does not depend on the elements d1; ::; dn
and we write Val.˛/ instead of Val.˛; d1; : : : ; dn/. In the case there are free variables
in ˛, we write Val.˛/ to denote Val.8x1 : : :8xn.˛// where 8x1 : : :8xn.˛/ is the
universal closure of ˛.

Definition 10. Given a theory T , we say that .D; I / is a multi-valued model of T
if Val.˛/ D 1 for every ˛ 2 T .

The so defined multi-valued logic is rather expressive. For example, if r is an
n-ary relation symbol then the formula

8x1 : : :8xn.Ct.r.x1; : : : ; xn//$ r.x1; : : : ; xn//
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is satisfied if and only if r is interpreted by a crisp relation. Indeed it is sufficient
to observe that this formula is satisfied if and only if ct.r.d1; : : : ; dn// D
r.d1; : : : ; dn/ for every d1; : : : ; dn in D. In other words, ‘to be crisp’ is a first order
property. This entails that all the classical notions which are definable in classical
first order logic are definable in our multi-valued logic, too. In particular, the notion
of order relation is definable.

Definition 11. Let .D; I / be a multi-valued interpretation and ˛ be a formula
whose free variables are among x1; : : : ; xn. Then the extension of ˛ in .D; I /

is the fuzzy relation r˛ W Dn ! Œ0; 1� defined by setting r˛.d1; : : : ; dn/ D
Val.˛; d1; : : : ; dn/ for every d1; : : : ; dn inD. In such a case we say that r˛ is defined
by ˛. We call crisp extension of ˛ the extension rC t.˛/ of C t.˛/. In such a case we
say that rC t.˛/ is the crisp relation defined by ˛.

Then the crisp relation defined by ˛ is the (characteristic function of the) relation

f.d1; : : : ; dn/ 2 Dn W ˛ is satisfied by d1; : : : ; dng:

Coming back to point-free geometry, we consider the first order language
with a binary relation symbol Incl and we write x 
 y to denote the formula
Ct.Incl.x; y//. An interpretation of such a language is defined by a pair .S; incl/
where S is a nonempty set and incl W S � S ! Œ0; 1� a fuzzy binary relation. The
interpretation of
 is the (characteristic function of the) relation
 defined by setting

x 
 y , incl.x; y/ D 1: (5.2)

We call the crisp inclusion associated with incl this relation.
If Sim.x; y/ denotes the formula Incl.x; y/ ^ Incl.y; x/, then the interpretation

of Sim.x; y/ is the fuzzy relation sim W S � S ! Œ0; 1� defined by setting

sim.x; y/ D incl.x; y/˝ incl.y; x/: (5.3)

We call the graded identity associated with incl this fuzzy relation.

Definition 12. A graded preorder structure, in brief graded preorder, is a multi-
valued model .S; incl/ of the following theory:

A1 8x.Incl.x; x//
A2 8x8y8z..Incl.x; z/ ^ Incl.z; y//! Incl.x; y//:

Then a fuzzy relation incl is a graded preorder if and only if, for every x; y; z 2 S ,

a1 incl.x; x/ D 1 (reflexivity)
a2 incl.x; y/˝ incl.y; z/ 
 incl.x; z/ (transitivity).

If the symmetry axiom is also satisfied then the fuzzy relation is called fuzzy
equivalence or similarity. Then a similarity is a fuzzy relation sim W S � S ! Œ0; 1�

such that
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b1 sim.x; x/ D 1 (reflexivity)
b2 sim.x; y/˝ sim.y; z/ 
 sim.x; z/ (transitivity)
b3 sim.x; y/ D sim.x; y/ (symmetry).

This notion is a graded extension of the one of equivalence. It is easy to prove
that the fuzzy relation sim defined by (5.3) is a similarity. A fuzzy equality is a
similarity satisfying the following ‘separation axiom’

b4 sim.x; y/ D 1, x D y:
To simulate Whitehead’s definition of point, we define a notion of ‘point-

likeness’ suggested by Euclid’s definition of point as minimal element, i.e. an
element x such that x0 
 x entails x0 D x.

Definition 13. We call point-likeness property the property expressed by the
formula,

P l.x/ � 8x0.x0 
 x ! Sim.x; x0//:

The extension of P l is the fuzzy subset of regions pl defined by

pl.x/ D inffincl.x; x0/ W x0 
 xg:

This means that all the regions are points at a suitable degree. The formula Pl.x/
enables us to express the next two axioms. The first axiom claims that if we apply the
graded inclusion to regions which are (approximately) points, then such a relation
is (approximately) symmetric .

A3 Pl.x/ ^ Pl.y/! .Incl.x; y/! Incl.y; x//.

This axiom is satisfied if and only if, for every x and y,

a3 pl.x/˝ pl.y/ 
 .incl.x; y/! incl.y; x//:

The further axiom claims that every region x contains a point:

A4 8x9x0..x0 
 x/ ^ Pl.x0//.

Such an axiom is satisfied if and only if for every x,

a4 supx0	x pl.x0/ D 1
i.e. if and only if for every x

9
 > 0 there is x0 
 x such that pl.x0/ � 1 � 
:

Definition 14. We call graded inclusion space every model of A1–A4.

The following notion enables us to emphasize the metrical nature of the graded
inclusion spaces.



114 C. Coppola and G. Gerla

Definition 15. A hemimetric space is a structure .S; d/ such that S is a nonempty
set and d W S � S ! Œ0;1� is a mapping such that, for all x, y, z 2 S ,

d1 d.x; x/ D 0
d2 d.x; y/ 
 d.x; z/C d.z; y/.
Then, a metric space is a hemimetric space which is symmetric, i.e. such that
d.x; y/ D d.y; x/ for every x, y 2 S , and such that d.x; y/ D 0 only if x D y.
Every hemimetric space is associated with a pre-order in the following way.

Proposition 2. Let .S; d/ be a hemimetric space, then the relation 
 defined by
setting:

x 
 y , d.x; y/ D 0

is a pre-order such that d is order-preserving with respect to the first variable and
order-reversing with respect to the second variable.

In the case d is a metric, 
 coincides with the identity relation. Given x 2 S , we
call diameter of x the number

ı.x/ D supfd.x1; x2/ W x1 
 x; x2 
 xg:

Observe that this definition entails that

ı.x/ � d.y; x/ for every y 
 x: (5.4)

In the case d is a metric, all the diameters are equal to 0.
The following proposition shows that the notion of hemimetric distance is ‘dual’

of the one of graded preorder. As usual, we put 10�1 D 0 and Log.0/ D �1.

Proposition 3. Given a hemimetric space .S; d/, the fuzzy relation incl defined by
setting

incl.x; y/ D 10�d.x;y/

is a graded preorder such that pl.x/ D 10�ı.x/. Conversely, let incl W S�S ! Œ0; 1�

be a graded preorder and let d be defined by setting

d.x; y/ D �Log.incl.x; y//:

Then d is a hemimetric such that ı.x/ D �Log.pl.x//.

In the case d is a pseudo-metric the associated fuzzy relation incl is a similarity,
obviously. We consider the following class of hemimetrics.
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Definition 16. A hemimetric space of regions is a hemimetric space .S; d/ such
that for every x and y,

d3 jd.x; y/� d.y; x/j 
 ı.x/C ı.y/
d4 8
 > 09x0 
 x; ı.x0/ 
 
.

The following theorem shows a duality between the class of hemimetric spaces
of regions and the one of the graded inclusion spaces (see also Di Concilio and Gerla
2006).

Theorem 6. For every hemimetric space of regions .S; d/, the fuzzy relation incl
defined by setting

incl.x; y/ D 10�d.x;y/

defines a graded inclusion space of regions. Conversely, let .S; incl/ be a graded
inclusion space of regions and let d W S � S ! Œ0;C1� be defined by setting

d.x; y/ D �Log.incl.x; y//:

Then .S; d/ is a hemimetric space of regions.

5.5 Canonical Graded Inclusion Spaces, Connection and
Points

The most famous hemimetric is the excess measure used to define the Hausdorff
distance.

Definition 17. Given a metric space .M; d/ the excess measure is the map e W
P.M/ �P.M/ ! Œ0;1� defined, for every pair X and Y of subsets of M , by
setting

e.X; Y / D sup
p2X

inf
q2Y d.p; q/:

The following proposition is proved in Di Concilio and Gerla (2006).

Proposition 4. Let R be the class nonempty, bounded, closed regular subsets of
.M; d/. Then the excess measure defines in R a hemimetric space of regions.
Consequently, by setting

incl.X; Y / D 10�e.X;Y / D inf p2X supq2Y 10�d.p;q/
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we obtain a graded inclusion space. The induced order is the usual set theoretical
inclusion and the point-likeness property is defined by

pl.X/ D 10�jX j;

where jxj is the usual diameter in a metric space.

We call canonical graded inclusion space the inclusion space obtained by such a
proposition. Observe that if we consider a fuzzy equality eq W M �M ! Œ0; 1�,
then by setting d.x; y/ D �Log.eq.x; y// we obtain a metric. Indeed, it is evident
that d.x; y/ D 0 if and only if eq.x; y/ D 1 if and only if x D y. By applying
Proposition 4, we obtain that

incl.X; Y / D inf p2X supq2Y eq.p; q/:

Assume that in the language there is a name Eq to denote eq. Then, in accordance
with the usual interpretation of the quantifiers in multi-valued logic, we can interpret
the value incl.X; Y / as the interpretation of the formula8p 2 X9q 2 Y.Eq.p; q//,
i.e. of the claim ‘every point in X is (approximately) equal with a point in Y ’.

We will show that, differently from Whitehead’s inclusion spaces, in a graded
inclusion space we can define the connection relation as the crisp extension of the
formula expressing the overlapping relation in an inclusion space.

Theorem 7. Consider in a canonical graded inclusion space .R; incl/ the formula
O.x; y/ � 9z.Incl.z; x/ ^ Incl.z; y//. Then the connection relation C in the
canonical connection space .R; C / is defined by the formula C t.O.x; y//.

In other words, we can define the connection between two regions by saying that
the two regions completely overlaps (at degree 1).

The second question is to show that in a graded inclusion space it is possible to
give a nonempty notion of point.

Definition 18. Given a graded inclusion space, we call abstraction process any
sequence < pn >n2N of regions which are order-reversing with respect to the order
associated with the graded inclusion. We extend the point-likeness property to the
abstraction processes by setting

pl.< pn >n2N/ D limn!1pl.pn/ D supnpl.pn/:

We say that < pn >n2N represents a point if pl.< pn >n2N/ D 1 and we denote by
P r the class of abstraction processes representing a point.

Observe that A4 enables us to prove that every region of a graded inclusion space
‘contains’ an abstraction process representing a point and therefore that P r ¤ ;.
Indeed, in accordance with a4, for every region x there is x0 
 x such that pl.x0/ �
1� 1=n. Then we can consider the sequence < pn >n2N defined by setting p1 D x
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and pn equal to a region such that pn 
 pn�1 and pl.pn/ � 1 � 1=n. Obviously,
pl.< pn >n2N/ D 1.

The following theorem shows that in the class of abstraction processes represent-
ing points it is possible to define a pseudo-metric d . We give the proof in order to
emphasize the role of A3 and therefore of d3 in proving the symmetry of d .

Theorem 8. Let .S; incl/ be a graded inclusion space and d 0 be the associated
hemimetric. Then the map d W P r � P r ! Œ0;1� obtained by setting

d.< pn >n2N; < qn >n2N/ D limn!1d 0.pn; qn/;

defines a pseudo-metric space .P r; d/.

Proof. To prove the convergence of the sequence< d 0.pn; qn/ >n2N, let n and k be
natural numbers and assume that n � k. Then, since d 0.pn; pk/ D 0 and, by (5.4),
d 0.qk; qn/ 
 ı.qk/ we have that,

d 0.pn; qn/ 
 d 0.pn; pk/C d 0.pk; qk/C d 0.qk; qn/ 
 d 0.pk; qk/C ı.qk/

and therefore,

d 0.pn; qn/� d 0.pk; qk/ 
 ı.qk/:

Likewise, since d 0.qn; qk/ D 0 and d 0.pk; pn/ 
 ı.pk/,

d 0.pk; qk/ 
 d 0.pk; pn/C d 0.pn; qn/C d 0.qn; qk/ 
 d 0.pn; qn/C ı.pk/

and therefore

d 0.pk; qk/ � d 0.pn; qn/ 
 ı.pk/:

This entails

jd 0.pn; qn/� d 0.pk; qk/j 
 maxfı.qk/; ı.pk/g:

Obviously, in the case n 
 k

jd 0.pn; qn/� d 0.pk; qk/j 
 maxfı.qn/; ı.pn/g:

Thus

jd 0.pn; qn/� d 0.pk; qk/j 
 maxfı.qn/; ı.pn/; ı.qk/; ı.pk/g:

The convergence of the diameters entails that < d 0.pn; qn/ >n2N is a Cauchy
sequence.
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It is evident that d.< pn >n2N; < pn >n2N/ D 0 and that d satisfies the
triangular inequality.

To prove the symmetry, observe that, by d3, jd 0.pn; qn/�d 0.qn; pn/j 
 ı.pn/C
ı.qn/ and therefore, since limn!1ı.pn/ C ı.qn/ D 0, limn!1jd 0.pn; qn/ �
d 0.qn; pn/j D 0. Since the sequences < d 0.pn; qn/ >n2N and < d 0.qn; pn/ >n2N
are both convergent, limn!1d 0.pn; qn/ D limn!1d 0.qn; pn/. Thus

d.< pn > n 2 N; < qn > n 2 N/ D limn!1d 0.pn; qn/ D limn!1d 0.qn; pn/

D d.< qn >n2N; < pn >n2N/:ut

Such a proposition enables us to associate any graded inclusion space with a metric
space. Indeed, recall that the quotient of a pseudo-metric space .X; d/ is the metric
space .X; d/ defined by assuming that

• X is the quotient of X modulo the relation � defined by setting x � x0 if and
only if d.x; x0/ D 0,

• d.Œx�; Œy�/ D d.x; y/ for every Œx�; Œy� 2 X 0.

Definition 19. We call metric space associated with a graded inclusion space
.S; incl/ the quotient .Pr; d / of the pseudo-metric space .Pr; d /. We call point any
element in Pr.

Then, the metric space .Pr; d / associated with a graded inclusion space .S; incl/ is
obtained

• By starting from the class P r of abstraction processes,
• By setting Pr equal to the quotient of Pr modulo the equivalence relation �

defined by

< pn >n2N�< qn >n2N, limn!1incl.pn; qn/ D 1;

• By defining d W Pr � Pr! Œ0;1� by the equation

d.P;Q/ D limn!1 � Log.incl.pn; qn//

where P D Œ< pn >n2N� and Q D Œ< qn >n2N� are elements in Pr.

5.6 To Be Closed and To Be Small

In a series of papers a metric approach to point-free geometry is proposed in which,
in addition to the inclusion relation, the notions of diameter of a region and distance
between two regions are assumed as primitives (see Gerla 1990).
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Definition 20. A point-free pseudo-metric space, in short a ppm-space, is a struc-
ture .S;
; �; ı/, where .S;
/ is an ordered set, � W S � S ! Œ0;1/ is
order-reversing, ı W S ! Œ0;1� is order-preserving and, for every x, y, z 2 S :

D1 �.x; x/ D 0
D2 �.x; y/ D �.y; x/
D3 �.x; y/ 
 �.x; z/C�.z; y/C ı.z/.
The elements in S are called regions, the order 
 inclusion relation, �.x; y/
distance between x and y, ı.x/ the diameter of x. InequalityD3 is a weak form of
the triangular inequality taking in account the diameters of the regions. The notion of
ppm-space extends the one of pseudo-metric space (and therefore of metric space).
Indeed, if all the diameters are equal to zero, then D3 coincides with the triangular
inequality and the ppm-space is a pseudo-metric space. More precisely, we can
identify the pseudo-metric spaces with the ppm-spaces in which 
 is the identity
and all the diameters are equal to zero. We identify the metric spaces with the ppm-
spaces satisfying these conditions and such that � is finite and �.x; y/ D 0 entails
x D y.

Notice that we can also assume as primitive a function � satisfying D1 and D2
and define a diameter by setting ı.z/ D supf�.x; y/ � �.x; z/ � �.z; y/ W x; y 2
Sg. Indeed, to prove that the resulting structure .S;
; �; ı/ is a pmm-space, we
observe that by setting x D y D z we obtain that ı.z/ is greater or equal to 0. It
is evident that ı is order-preserving and that D3 holds true by definition. It is also
possible to assume as primitive only the diameter function (see Gerla and Paolillo
2010; Pultr 1988).

The following proposition gives prototypic examples of ppm-space (see Gerla
1990).

Proposition 5. Let .M; d/ be a pseudo-metric space and let C be a nonempty class
of bounded and nonempty subsets of M . Define � and ı by setting

�.X; Y / D inffd.x; y/ W x 2 X; y 2 Y g
ı.X/ D supfd.x; y/ W x; y 2 Xg;

respectively. Then .C;�; �; ı/ is a ppm-space.

In particular, we call canonical ppm-space the space .R;�; �; ı/. By referring to
the just defined class of ppm-spaces, the meaning of the proposed axioms becomes
evident. For example, the meaning of D3 is given by Fig. 5.2: Indeed, it is evident
that in this case �.X; Y / > �.X;Z/ C �.Z; Y / and therefore that the usual
triangular inequality cannot be assumed. Instead, it is matter of routine to prove
that �.X; Y / 
 �.X;Z/C�.Z; Y /C ı.Z/.

The notion of point is defined as in Sect. 5.5. Indeed, we call abstraction process
any sequence < pn >n2N of regions which are order-reversing and we call distance
between two abstraction processes < pn >n2N and < qn >n2N the number:

d.< pn >n2N; < qn >n2N/ D limn!1�.pn; qn/



120 C. Coppola and G. Gerla

Fig. 5.2 Approximate
triangular inequality

and diameter of an abstraction process < pn >n2N the number

ı.< pn >n2N/ D limn!1ı.pn/:

Definition 21. We say that< pn >n2N represents a point if its diameter is zero and
we denote by Pr the class of abstraction processes representing a point.

It is matter of routine to prove that .Pr; d / is a pseudo-metric space.

Definition 22. A point is an element of the metric space .Pr; d / associated with
.Pr; d /.

The logical counterpart of the ppm-space is defined as follows. We refer to a first
order languageLCS with the predicate symbols
, Cl and Sm. The intended meaning
of Cl.x; y/ is ‘x and y are close’, the intended meaning of Sm.x/ is ‘x is small’.
We denote by .S;
; cl; sm/ an interpretation of LCS.

Definition 23. A CS -space is an interpretation .S;
; cl; sm/ of LCS such that 

is a crisp order relation and such that the following axioms are satisfied:

CS1 8x Cl.x; x/
CS2 8x8y .Cl.x; y/) Cl.y; x//
CS3 8x8y8z .Cl.x; z/ ^ Cl.y; z/ ^ Sm.z/) Cl.x; y//
CS4 8y8x8x0 .x 
 x0 ) .Cl.x; y/) Cl.x0; y///
CS5 8x8x0 .x 
 x0 ) .Sm.x0/) Sm.x///:

Observe that, as observed in Sect. 5.4, the logical connective Ct enables us to
express the condition ‘
 is a crisp relation’ by a first order formula in the multi-
valued logic. Notice also that in Gerla (2008) the structures satisfying CS1, CS2,
CS3 are called approximate similarity structures and that they are proposed for a
solution of Poincaré paradox.

The proof of the following proposition is obvious.

Proposition 6. An interpretation .S;
; cl; sm/ of LCS is a CS-space if and only if

 is an order relation, cl is order-preserving, sm is order-reversing and

(i) cl.x; x/ D 1,
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(ii) cl.x; y/ D cl.y; x/,
(iii) cl.x; z/˝ .y; z/˝ .z/ 
 cl.x; y/.

The following theorem shows that there is a duality between the notions of ppm-
space and the one of CS-space.

Theorem 9. Let .S;
; �; ı/ be a ppm-space and define cl and sm by setting

cl.x; y/ D 10��.x;y/ I sm.x/ D 10�ı.x/:

Then .S;
; cl; sm/ is a CS-space. Conversely, let .S;
; cl; sm/ be an approximate
CS-space and set

�.x; y/ D �Log.cl.x; y// I ı.x/ D �Log.sm.x//:

Then .S;
; �; ı/ is a ppm-space.

In particular, by starting from the canonical ppm-space .R;�; �; ı/, we define the
canonical CS -space .R;�; cl; sm/ by setting cl.X; Y / D 10��.X;Y / and sm.X/ D
10�ı.X/.

Theorem 10. In the canonical CS space we can define the connection relation by
the formula Ct.Cl.x; y//.

Proof. It is sufficient to observe that cl.X; Y / D 1 if and only if �.X; Y / D 0 if
and only if X \ Y ¤ ;.
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Chapter 6
The Relations of Supremum and Mereological
Sum in Partially Ordered Sets

Rafał Gruszczyński and Andrzej Pietruszczak

6.1 Basic Axioms and Definitions

Let M be an arbitrary non-empty set and let � � M �M . We call � the relation
of being part of and in case x � y we say that x is part of y, ‘x � y’ is to mean
: x � y. Part of is the only primitive concept of the theory we are going to present.

In the sequel we use standard logical constants: quantifiers 9 and 8, sentential
operators:, ^, _,) and,. For any set S , P.S/ is its power set, while PC.S/ WD
P.S/ n f¿g. Moreover, let jS j be the cardinal number of S and idS be the identity
relation on S , i.e. idS WD fhx; xi W x 2 Sg.

A pair hM;�i is a degenerate structure iff it consists of exactly one element, i.e.
jM j D 1. We say that hM;�i is a partially ordered set (poset for short) iff it satisfies
the following three axioms of reflexivity, transitivity and antisymmetry:

8x2M x � x ; (r�)

8x;y;z2M.x � y ^ y � z H) x � y/; (t�)

8x;y2M .x � y ^ y � x H) x D y/: (antis�)

hM;�i is a quasi-partially ordered set (quasi-poset for short) iff satisfies (r�) and
(t�). Let POS and QPOS be respectively the class of all posets and the class all
quasi-poset.

We introduce some standard relations definable by means of the only primitive
relation and the identity relation:

x @ y W” x � y ^ x ¤ y ; (df @)
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x � y W” 9z.z � x ^ z � y/ ; (df�)

x � y W” :9z.z � x ^ z � y/ : (df �)

In case x @ y (resp. x � y, x � y) we say that x is proper part of y (resp. x overlaps
y, x is exterior to y1). Only by definitions the relation @ is irreflexive, the relations
� and � are symmetric, and � is the (set theoretical) complement of �, i.e.:

8x2M x � x ; (irr@)

8x;y2M .x � y ” y � x/ ; (s�)

8x;y2M.x � y ” y � x/ ; (s�)

8x;y2M .x � y ” : x � y/: (6.1)

If � satisfies (r�), then the relation � is reflexive and � is irreflexive, i.e.:

8x2M x � x ; (r�)

8x2M :x � x ; (irr�)

If � satisfies (t�) and (antis�), then @ is transitive, i.e.:

8x;y;z2M.x @ y ^ y @ z H) x @ z/: (t@)

If � satisfies (antis�) then @ is asymmetrical, i.e.:

8x;y2M .x @ y H) y � x/: (as@)

Notice that from (df @), (r�) and (antis�) we have that:

8x;y2M .x @ y ” x � y ^ y � x/; (6.2)

and from (df @) and (r�) we get that:

8x;y2M .x � y ” x @ y _ x D y/: (6.3)

To facilitate considerations in the sequel, we introduce three operations P, PP,
O whose domain is M and co-domain P.M/:

P.x/ WD fy 2M j y � xg ; (dfP)

PP.x/ WD fy 2M j y @ xg ; (dfPP)

1Sometimes terms ‘incompatible’ or ‘disjoint from’ are used instead of the one used by us.
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O.x/ WD fy 2M j y � xg : (dfO)

Thus P.x/ is the set of all parts of x, PP.x/ the set of all its proper parts and O.x/
the set of all these objects each of which has a common lower bound with x. Of
course, the conjunction of (r�) and (t�) is equivalent to the following condition:

8x;y2M
�
x � y ” P.x/ � P.y/

�
: (rt�)

Moreover, by (r�) we obtain:

8x2M P.x/ � O.x/ (6.4)

and by (t�) we obtain:

8x;y2M
�
x � y H) O.x/ � O.y/

�
; (6.5)

8x;y2M
�
P.x/ � O.y/ H) O.x/ � O.y/

�
: (6.6)

If C is a class of structures then any given sentence is said to be true in this
class iff it is true in (satisfied by) every structure from this class. If ' is a formula
expressing some property of the elements of C, then CC' is the class of all these
structures from C that satisfy '.2

The symbol ‘�’ is interpreted as the standard description operator, which we use
to build the expression ‘.� x/ '.x/’ being the individual constant ‘the only object x
such that '.x/’. To use it, first we have to know that there exists exactly one object
x such that '.x/, i.e., the formula '.x/ must fulfill the following two conditions:

9x '.x/ ;
8x;y

�
'.x/ ^ '.y/) x D y�

:

In such case we also write: 91x '.x/.

2All the notions such as formula, sentence, satisfy, true are imprecise here, since we do not present
any formal theory – we have no alphabet, nor language specified. However this imprecision is
intended here, since we do not want to get bogged down in formal details but rather would like to
focus on semantical or model theoretical aspect of the problem. Yet it should be noticed, that with
some effort the notions addressed in this footnote could be precised and formal theory could be
built, similarly as it was for example done in Part B of Pietruszczak (2000). Then we would have
some elementary language with suitable definitions of formulas and sentences for which the usual
notion of model and satisfaction could be given. Then by a class of structures we would mean the
class of all models of a given set of axioms. We use the notion of class, since the collections of
structures considered are too big to be just sets.
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6.2 The Supremum Relation for Posets

Let hM;�i be a poset, S � M and x 2 M . Let us recall a couple of basic
definitions.

We say that x is an upper bound (resp. a lower bound) of S iff 8y2S y � x (resp.
8y2S x � y). We say that x is a supremum of the set S (with respect to �) iff x is
the least upper bound of S ; formally:

x sup S W” 8z2S z � x ^ 8y2M .8z2S z � y H) x � y/ : (df sup)

Using the operation P we can give an alternative version of the definition:

x sup S ” S � P.x/ ^ 8y2M .S � P.y/ H) x � y/ : (df0 sup)

The immediate consequences of (df sup) are stated in the following lemma.

Lemma 1. (i) Only by its definition the relation sup is monotonic, i.e.:

8S1;S22P.M/8x;y2M .S1 � S2 ^ x sup S1 ^ y sup S2 H) x � y/: (Msup)

(ii) From (r�) it follows that:

8x2M x sup fxg ; (6.7)

8x2M x sup P.x/ : (6.8)

(iii) From (antis�) it follows that if a set has a supremum, then it is unique, i.e.:

8S2P.M/8x;y2M .x sup S ^ y sup S H) x D y/: (Usup)

(iv) From (r�) and (antis�) it follows that:

8x;y2M .y sup fxg H) x D y/: (Ssup)

6.3 Definition and Basic Properties of Mereological Sum

Let hM;�i be a poset, S �M and x 2 M .
We say that x is a mereological sum of all elements of S iff x is an upper bound

of S and every part of x overlaps some element of S ; formally:

x sum S W” 8z2S z � x ^ 8y2M .y � x H) 9z2S z � y/: (df sum)
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Using the operations P and O we can give an alternative version of the definition:

x sum S ” S � P.x/ �S
OŒS� ; (df0 sum)

where OŒS� is the image of the set X under the operation O, i.e.:

OŒS� WD fO.z/ j z 2 Sg and
S

OŒS� D fy 2 M j 9z2S z � yg :

By the definition we obtain that:

8x2M.x sum ¿ ” P.x/ D ¿/: (6.9)

Moreover, by (r�), for any x 2 M we obtain that ¿ ¤ fxg � P.x/ � O.x/ DS
OŒfxg� �S

OŒP.x/� and if PP.x/ ¤ ¿, then P.x/ �S
OŒPP.x/�. Hence:

Lemma 2. The following conditions are consequences of (r�):

:9x2M x sum ¿ ; (6.10)

8x2M x sum fxg ; (6.11)

8x2M x sum P.x/ ; (6.12)

8x2M
�
PP.x/ ¤ ¿ H) x sum PP.x/

�
: (6.13)

Now notice that:

Lemma 3 (Pietruszczak 2000). The following condition is true in QPOS:

8x;y2M .P.x/ � O.y/ H) x sum P.x/ \ P.y//:

Proof. Suppose that P.x/ � O.y/. Since P.x/ \ P.y/ � P.x/, we only need to
prove that P.x/ � S

OŒP.x/ \ P.y/�. To see this, notice that from the assumption
it follows that if z � x, then z � y. So, by (df�), for some z0 we have that z0 � z
and z0 � y. By (t�), z0 � x, so z0 2 P.x/ \ P.y/ \ P.z/. The more so z0 � z, by
(r�), as required.

Since we are interested in mutual dependencies between sum and supremum,
let, for brevity and reference reasons, (�) denote the condition that every sum is a
supremum:

sum � sup ; (�)

and (
) the reversed condition:

sup � sum : (
)
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0

1Fig. 6.1 A poset in which
supremum counterparts of
(6.10), (6.13), (Ssum), (Usum)
and (Msum) are not true

We will be interested as well in, weaker from (
), the following sentence:

8x2M8S2PC.M/.x sup S H) x sum S/ (
C)

6.4 Basic Differences Between the Relations sup and sum

Firstly, notice that the supremum counterparts of (6.10) and (6.13), i.e.
:9x2M x sup ¿ and 8x2M.PP.x/ ¤ ¿ H) x sup PP.x//, are not true in POS.
Indeed, let us consider a two-element poset withM D f0; 1g and � D idM[fh0; 1ig
(see Fig. 6.1). We have that 0 sup ¿ and PP.1/ D f0g, but : 1 sup f0g, since
0 sup f0g.

Secondly, notice that the mereological sum counterparts of (Ssup), (Usup) and
(Msup), i.e.:

8x;y2M .y sum fxg H) x D y/; (Ssum)

8S2P.M/8x;y2M .x sum S ^ y sum S H) x D y/; (Usum)

8S1;S22P.M/8x;y2M .S1 � S2 ^ x sum S1 ^ y sum S2 H) x � y/ (Msum)

are not true in POS. Indeed, in the poset from Fig. 6.1, respectively by (6.11) and
(6.13), we have that 0 sum f0g and 1 sum f0g, but 1 � 0.

6.5 Basic Properties of (Ssum), (Usum) and (Msum)

The lemma below is obvious.

Lemma 4. (i) From (r�) and (Usum) we obtain (Ssum). Consequently QPOSC
(Usum) � QPOSC(Ssum).

(ii) From (antis�) and (Msum) we obtain (Usum). Consequently POSC(Msum) �
POSC(Usum) � POSC(Ssum).

Notice that enriching the axioms for posets with (Ssum) (resp. (Usum)) does not
entail uniqueness (resp. monotonicity) of sum. Indeed, we have:

Fact 1. (i) (Usum) is not true in POSC(Ssum). Hence POSC(Usum) ¨ POSC
(Ssum).
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1 2

12 21Fig. 6.2 A poset which
satisfies (Ssum), but not
(Usum)

1 2 3

123 23Fig. 6.3 A poset which
satisfies (Usum), but not
(Msum)

(ii) (Msum) is not true in POSC(Usum). Consequently POSC(Msum) ¨ POSC
(Usum) ¨ POSC(Ssum).

Proof. Ad (i): The poset from Fig. 6.2 with M D f1; 2; 12; 21g and � D idM [
fh1; 12i; h1; 21i; h2; 12i; h2; 21ig belongs to POSC(Ssum) and it shows that a set
can have more than one mereological sum. Indeed, (Ssum) is satisfied in this poset,
but 12 sum f1; 2g and 21 sum f1; 2g.

Ad (ii): This time we consider the poset with M D f1; 2; 3; 12; 123g and � D
idM [fh1; 123i; h2; 123i; h3; 123i; h2; 23i; h3; 23ig (see Fig. 6.3). It satisfies (Usum).
On the other hand, we have that 23 sum f2; 3g and 123 sum f1; 2; 3g, but 23 � 123.

Notice that:

Lemma 5. (Msum) entails (r�).

Proof. By (Msum) we have (a): 8x2M.x � x H) :9S2P.M/ x sum S/. By (a) we
have (b): 8x2M.x � x H) 9y2PP.x/ y � y/. Indeed, if for any y 2 PP.x/ we have
that y � y, then x sum PP.x/. So x � x by (a).

By (b) we obtain (c): 8x2M.x � x H) x sum PP.x//. Indeed, let x � x and
y � x. Then y 2 PP.x/. Moreover, if y � y, then y � y. If y � y, then by (b)
there is u 2 PP.y/; so also y � y. Hence in both cases there is z 2 PP.x/ such that
z � y.

By (a) and (c) we have that (r�) holds.

We now point to some relationship between (Ssum) and the so-called Weak
Supplementation Principle, used by Simons (1987):

8x;y2M
�
x @ y H) 9z2M.z @ y ^ z � x/

�
; (WSP)

which will let us obtain a connection between the relations sup and sum (see
Theorem 2).

Theorem 1. (i) From (WSP) we obtain (Ssum).
(ii) From (r�) and (Ssum) we obtain (WSP).

(iii) From (r�) and (Usum) we obtain (WSP).
In consequence, QPOSC(WSP) D QPOSC(Ssum).
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Proof. Ad (i): Suppose that y sum fxg and x ¤ y. Then x @ y. So, by (WSP), for
some z we have: z @ y and z � x. So we have a contradiction, since from z @ y and
y sum fxg follows that z � x.

Ad (ii): Suppose that x @ y and PP.y/ � O.x/. Since by (r�) we have that
y � x, then y sum fxg. Thus y D x by (Ssum), which is a contradiction.

(Hence y sum fxg and, by (r�), also y � x. So, by (Ssum), we obtain a
contradiction: x D y.)

Ad (iii): We use (1) and Lemma 4(i).

Corollary 1. The sentence (WSP) is true in the class POSC(Msum).

Proof. By Lemma 4(ii), from (antis�) and (Msum) follows (Usum). Moreover, by
Theorem 1(iii), (r�) and (Usum) entail (WSP).

Now we prove that in every structure from QPOSC(Ssum), if both sum and
supremum exists, then they are equal.

Theorem 2 (Pietruszczak 2000). (t�) and (WSP) entail the following sentence:

8S2P.M/8x;y2M .x sup S ^ y sum S H) x D y/: (6.14)

Proof. Let x sup S and y sum S . Then S � P.y/, so x � y. Suppose that x ¤ y.
Then x @ y. Hence, by (WSP), for some z 2 M we have that z @ y and z � x.
Hence, by (df sum), there are u 2 S and v 2 M such that v � u and v � z. By the
assumption, u � x. Hence, by (t�), also v � x. So we have a contradiction: z � x.

Now we will prove an important lemma which will be useful a little bit further.
Let us start with the following definition.

An object x is called the zero element of a poset hM;�i iff every object from
M is part of x, i.e. 8y2M x � y. The uniqueness of the zero element follows from
antisymmetry of �. Moreover, we immediately have that for any poset, if it has zero,
then all objects overlap with each other:

8x;y2M.x is a zero ^ y is a zero H) x D y/; (6.15)

9x2M x is a zero H) 8x;y2M x � y : (6.16)

Lemma 6 (Pietruszczak 2000).

(i) From (WSP) we obtain the following implication:

jM j > 1 H) 9x;y2M x � y :

(ii) From (r�) we obtain the following implication:

9x;y2M x � y H) jM j > 1 :
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(iii) From (WSP) and (r�) we obtain the following equivalence:

9x2M8y2M x � y ” jM j D 1 :

Proof. Ad (i): Let x1; x2 2 M be different: x1 ¤ x2. Suppose that 8x;y2M x � y.
So there is u 2 M such that u � x1 and u � x2. Moreover, either u @ x1 or u @ x2.
In both cases, by (WSP) we obtain a contradiction: there is z 2M such that z � u.

Ad (ii): By (r�) we have (irr�); so if x � y, then x ¤ y.
Ad (iii): “)” If 9x2M8y2M x � y then 8x;y2M x � y, so we use (i). “(”

Immediate, from (r�).

By Corollary 1 we obtain:

Corollary 2. The sentences from Lemma 6 are all true in the class POSC(Msum).

6.6 The Inclusions (�) and (
) in the Class POSC(Usum)

We show that neither (�) nor (
) follows from the axioms for POS plus (Usum).
In consequence none of them follows from the axioms for POS plus (Ssum); see
Lemma 4.

Fact 2. None of the sentences (�) and (
C) is true in POSC(Usum).

Proof. In the poset from Fig. 6.3 we have: 23 sum f2; 3g, but : 23 sup f2; 3g. So
sum ª sup. In the same poset we have: 123 sup f1; 2g, but : 123 sum f1; 2g.
Thus sup ª sum as well.

6.7 The Inclusions (�) and (�) in the Class POSC(Msum)

Firstly, we show that (
) does not follow from the axioms for POS plus (Msum).3

Fact 3. The sentence (
C) is not true in POSC(Msum).

Proof. We take the poset with M D f1; 2; 3; 123g and � D idM [ fh1; 123i;
h2; 123i; h3; 123ig (see Fig. 6.4). Obviously, this poset satisfies (Msum) but not (
C),
since e.g. 123 sup f1; 2g while : 123 sum f1; 2g.

Secondly, we can show that (�) is true in the class POSC(Msum). Moreover we
will demonstrate that for quasi-partially ordered sets the inclusion (�) is equivalent
to the sentence (Msum). But earlier we need to prove some interesting facts.

3This, by Lemma 4, entails the case for (
) in Fact 2.
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1 2 3

123Fig. 6.4 A poset which
satisfies (Msum), but not (
)

Firstly, notice that to examine properties of the relation sum we will make use
of the following condition which is related to (df0 sum) and (Msum):

8S2P.M/8x;y2M
�
P.x/ �S

OŒS� ^ S � P.y/ H) x � y�
: (M0

sum)

Lemma 7 (Pietruszczak 2000). (M0
sum) entails (Msum).

Proof. If S1 � S2, x sum S1 and y sum S2, then P.x/ � S
OŒS1� � S

OŒS2�
and S2 � P.y/. So x � y, by (M0

sum).

Lemma 8. From (Msum) and (t�) we obtain (M0
sum).

Proof. By Lemma 5 we have (r�). If P.x/ �S
OŒS� and S � P.y/, then P.x/ �S

z2P.y/ O.z/. Notice that by (t�) we have (6.5), so we obtain that
S

z2P.y/ O.z/ �
O.y/. Thus, P.x/ � O.y/. Hence, by Lemma 3, x sum P.x/ \ P.y/. Moreover,
y sum P.y/, by (r�). Thus x � y, by (Msum).

From Lemmas 7 and 8 we obtain:

Theorem 3 (Pietruszczak 2000). The following sentence is true in QPOS:

(Msum) ” (M0
sum) :

Thus, QPOSC(Msum) D QPOSC(M0
sum).

Now we prove that:

Theorem 4. The following sentence is true in QPOS:

(Msum) ” (�):

Thus, QPOSC(Msum) D QPOSC(�).

Proof. “)” Assume that x sum S , i.e., S � P.x/ � S
OŒS�. This gives us

immediately the first conjunct of (df0 sup). For the second one assume that y 2M
is such that S � P.y/. Then x � y, by (M0

sum) and Theorem 3. So x sup S .
“(” If S1 � S2, x sum S1 and y sum S2, then by (�) it is the case that x sup S1

and y sum S2; so x � y, by (Msup).

Remark 1. For structures from POSC(Msum) (D POSC(�), by Theorem 4) we have
a simple proof of the sentence (6.14), i.e., if for a set has both sum and supremum,
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then they are equal. Indeed, if x sup S and y sum S , then also y sup S . Thus,
since we can use (antis�), we obtain x D y, by (Usup).

6.8 Separative Partially Order Sets

Any quasi-poset which satisfies the following sentence:

8x;y2M
�
x � y H) 9z2M.z � x ^ z � y/

�
; (SSP)

will be called separative. Let SPOS be the class of all separative posets.
In Simons (1987) the sentence (SSP) is called Strong Supplementation Principle.

According to (SSP) if one object is not a part of another, than they can be
distinguished by some object from the domain, but not only in the sense that this
object is part of one but not the other element of the domain – it is exterior to the
latter.

The sentence (SSP) can as well be expressed in the following, definitionally
equivalent, way:

8x;y2M
�
P.x/ � O.y/ H) x � y�

: (SSPı)

Hence, by (6.4)–(6.6), we also obtain:

Fact 4. The following sentence is true in all separative quasi-posets:

8x;y2M
�
x � y ” O.x/ � O.y/

�
:

Now we will show that QPOSC(Msum) D QPOSC(SSP). In the proof of the
equality in question we will use the equality QPOSC(Msum) D QPOSC(M0

sum)
from Theorem 3 together with the facts below.

Lemma 9 (Pietruszczak 2000, 2005). From (SSP) and (t�) we obtain (M0
sum) and

(Msum).4

Proof. For (M0
sum): If P.x/ � S

OŒS� and S � P.y/, then P.x/ � S
z2P.y/ O.z/.

By (6.5) we obtain that
S

z2P.y/ O.z/ � O.y/. Therefore P.x/ � O.y/. So x � y,
by (SSPı). For (Msum): Use Lemma 7.

Lemma 10. (i) (M0
sum) entails (SSP).

(ii) (Msum) and (t�) entails (SSP).

4Hence, by Lemma 5, we obtain that (SSP) and (t�) entail (r�). This fact was proven in
Pietruszczak (2000, 2005). So separative posets can be defined by means of these three conditions:
(t�), (antis�) and (SSP).
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Proof. (i) Notice that, by Lemmas 5 and 7, we have (r�). If P.x/ � O.y/, then
P.x/ �S

OŒfyg� and fyg � P.y/ by (r�). So x � y, by (M0
sum).

(ii) By (i) and Lemma 8.

Thus, from the above lemmas and Theorem 4 we have:

Theorem 5. The following sentence is true in QPOS:

(SSP) ” (Msum):

Thus, QPOSC(SSP) D QPOSC(M0
sum) D QPOSC(Msum) D QPOSC(�).

Finally, we obtain:

Fact 5. (i) The sentences (r�) and (antis�) entail the implication (SSP) )
(WSP). Consequently, SPOS � POSC(WSP).

(ii) SPOS ¨ POSC(WSP).

Proof. (i): Let x @ y, i.e., x � y and x ¤ y. Then y � x, by (antis�). Hence,
by (SSP), there is z such that z � y and z � x. We have that z ¤ y, since y � x,
by (r�). So z @ y.

(ii): The poset from Fig. 6.2 satisfies (WSP). It is the case that 12 � 21, but there
is no z such that z � 12 and z � 21. So (SSP) is not true in the structure
considered.

6.9 Mereological Structures

We now take into account the following axiom of existence of mereological sum:

8S2PC.M/9x2M x sum S : (9sum)

Any separative poset which satisfies (9sum) is called a (classical) mereological
structure.5 Let MS and MSC be respectively the class of all mereological structures
and the class all non-degenerate mereological structures. Of course, MSC ¨ MS.

By Lemma 4 the formula (Usum) is true in MS. So the following sentence is also
true in MS:

8S2PC.M/91x2M x sum S : (91sum)

5In Tarski (1956) we find an equivalent axiomatization of mereological structures consisted of
the following sentences: (t�) and given below (91sum) (which is equivalent to: (t�), (Usum)
and (9sum)). Various equivalent axiomatizations of mereological structures are presented e.g. in
Pietruszczak (2000, 2005).
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Hence in any mereological structure hM;�i there is exactly one object x such that
x sum M . By (df sum), x is the unity in the sense that: 8y2M y � x. So in any
mereological structure we put:

1 WD .�x/ x sum M ; (df 1)

and by (antis�) we have:

1 D .�x/ 8y2M y � x : (6.17)

Theorem 6 (Pietruszczak 2000, 2005). The following sentences are true in MS6:

8x2M8S2P.M/.x sum S ” S ¤ ¿ ^ x sup S/; (sum-sup)

jM j > 1 ” sup � sum : (?)

Proof. Ad (sum-sup): By Theorems 4 and 5 we have (�). So if x sum S , then
x sup S and S ¤ ¿, by (r�). Let now S ¤ ¿ and x sup S . Then, by (9sum),
there is y such that y sum S . So x D y, by (6.14); see Remark 1. Therefore
x sum S .

Ad (?): Firstly, let jM j > 1 and x sup S . Then S ¤ ¿, since by Corollary 2,
in M there is no zero element. Hence, x sum S , by (sum-sup). Secondly, assume
that M has only one element x. Then x sup ¿. But :x sum ¿, by (r�). So
sup ª sum.

By the above theorem we get:

Corollary 3. The equality sum D sup holds in MSC.

6.10 Weakening and Replacing the Sum Existence Axiom

Consider the following weakened versions of (9sum):

8S2PC.M/.9u2M S � P.u/ H) 9x2M x sum S/; (W19sum)

8S2PC.M/

�8y;z2S9u2M fy; zg � P.u/ H) 9x2M x sum S
�
: (W29sum)

The first one says that every non-empty set which is bounded from above has its
mereological sum. The second (stronger than the first one) says that if every subset
fy; zg of S is bounded in M , then S has its sum.7

6The first one to prove (sum-sup), in original language of Leśniewski’s mereology, was A. Tarski
(see Leśniewski (1930), p. 87).
7This not exactly upward directedness of S . A subset S in a poset hM;�i is upward directed iff
8y;z2S9u2S .y � u ^ z � u/, while we require the existence of upper bound in M . Consequently,
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We have the following fact.

Fact 6. The sentence (sum-sup) is true in both QPOSC(SSP)C(W19sum) and in
QPOSC(SSP)C(W29sum).

Proof. By Theorem 4 we have (�); so if x sum S , then x sup S and S ¤ ¿, by
(r�). Moreover, let S ¤ ¿ and x sup S . Then S � P.x/. Hence, there is y such
that y sum S , by (W19sum) or (W29sum). So x D y, by (6.14); see Remark 1.
Therefore x sum S .

The above fact shows that we can weaken the sum existence axiom to the forms
presented yet keep the equality between sum and supremum. Of course, this does not
solve the problem of characterization of structures from classes SPOSC(W19sum)
and SPOSC(W29sum). In our opinion further study concerning their properties
seems to be interesting from the following, a bit philosophical, point of view. The
unrestricted sum axiom (9sum) is often objected as counterintuitive in case of some
so called ontological interpretations of mereology.8 It is argued for example, that
the Moon and a cup of coffee standing in front of you are parts of the world, yet it
is hard to find anything that could be their sum. Axioms (W19sum) and (W29sum)
could be interpreted (at least in a way) as saying that only these objects which have
something in common (in the sense that they are both parts of something bigger)
have their mereological sums.

No we consider the following principle, intimately connected with those ana-
lyzed by us in previous sections:

8x;y2M
�
x � y H) 9z

�
z � x ^ z � y ^ 8u.u � x ^ u � y H) u � z/

��
(SSP+)

which we will call the super strong supplementation principle or “SSP plus”. What
it intuitively says is that if x is not part of y, then we can not only find some z being
part of x which is external to y, but we can also find an element of the structure in
question satisfying the aforementioned property and being the largest such object in
the structure. The sentence (SSP+) is assumed as an axiom in Grzegorczyk’s system
of mereology from Grzegorczyk (1955).

Theorem 7. The sentence (SSP+) is true in the class QPOSC(SSP)C(W19sum).9

both axioms are equivalent in posets with the unity, since antecedents of (W19sum) and (W29sum)
are both true in the presence of one.
8In our opinion these objections are not properly addressed and they result from a twisted
perspective, as we can see it. Nothing is wrong with (9sum) and no one should demand the
world to behave according to it in all its aspects. Yet there are such applications of mereology in
which it is very useful, as in building point-free systems of geometry for example, where elements
of the domain are treated as regions of space. For details see Tarski (1956), Gruszczyński and
Pietruszczak (2008, 2009, 2010), and Grzegorczyk (1960).
9Of course by this theorem (SSP+) is true in the class MS as well.
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Proof. If x � y, then by (SSP) the set S0 WD fz 2 M j z � x ^ z � yg is not empty
and S0 � P.x/. Hence, by (W19sum), for some z0 we have that z0 sum S0.

Firstly, notice that z0 � x. Indeed, suppose towards contradiction that z0 � x.
Then, by (SSP), there is u such that u � z0 and u � x. Hence, by (df sum), there
are v 2 S0 and w 2 M such that w � v � x and w � u. So u � x, by (t�); a
contradiction.

Secondly, notice that z0 � y. Indeed, suppose towards contradiction that z0 � y.
Then there is u such that u � z0 and u � y. Hence, by (df sum), there are v 2 S0
and w 2 M such that w � v � y and w � u � y. So w � y and w � y, by (t�).
Moreover, w � y, by (r�); a contradiction again.

Thirdly, if u � x and u � y, then u 2 S0. So u � z0, by (df sum).

There is one more issue that can be addressed with respect to axioms and mutual
relationship between sum and supremum – in what effect results replacing (9sum)
with the following version of completeness:

8S2PC.M/9x2M x sup S : (9sup)

Algebraically speaking we consider the class SPOSC(9sup) elements of which are
separative posets being complete join-semilattices. The following fact answers the
question.

Fact 7 (Pietruszczak 2005). The sentence (
C) is not true in SPOSC(9sup).
Therefore the counterpart of Theorem 6 does not hold for SPOSC(9sup).

Proof. The structure from Fig. 6.4 belongs to SPOSC(9sup) and does not satisfy
the sentence in question, since e.g. 123 sup f1; 2g, but : 123 sum f1; 2g.

6.11 Mereological Posets

Any structure from the class SPOSC(
C) will be called a mereological poset
(mereoposet for short). Let MPOS be the class of all mereoposets. By Fact 3 and
Theorem 5 we have that MPOS ¨ SPOS. By Theorem 5, the sentences (Msum),
(M0

sum) and (�) are true in MPOS. Moreover, by Fact 5 (or Corollary 1) the sentence
(WSP) is true in MPOS as well.

We will also be interested in the class MPOSC WD SPOSC(
). By the definition,
MPOSC �MPOS. Below we show that MPOSC is the class of all non-degenerate
mereoposets. So MPOSC ¨ MPOS, which is a result of the following lemma.

Lemma 11. No poset from POSC(
) has a zero element. Consequently, it is a non-
degenerate structure.

Proof. If a poset hM;�i has the zero element 0, then 0 sup ¿. But :9x2M x sum
¿, by (r�). So sup ª sum.
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1 2

12

3

Fig. 6.5 The non-degenerate
mereoposet without unity

From the above lemma, Corollary 2 and Theorem 5 we obtain:

Corollary 4. No poset from MPOSC has a zero element. Consequently, every
structure from MPOSC is non-degenerate and has at least two elements which are
external two each other.

Remark 2. Non-existence of zero element in the class MPOSC and both supple-
mentation principles are considered to be distinctive and fundamental features of
structures that are examined within the field known as mereology.

Let hM;�i be a mereoposet. We say that x is isolated in this structure iff x is a
proper part of no element of M and no element of M is proper part of x. Let is be
the set of all isolated elements, i.e.:

is WD fx 2M j : 9y2M .y @ x _ x @ yg : (df is)

The simplest example of non-degenerate mereoposet is a pair hM;�i with M WD
f1; 2g and � WD idM . So this is a structure that consists of two isolated objects.
Less trivial example is a four element structure hf1; 2; 12; 3g;�i, where � WD id [
fh1; 12i; h2; 12ig and 3 is isolated (see Fig. 6.5).

The above model shows that the existence of unity is not a consequence of the
axioms for mereological posets. However, neither is its non-existence, since every
non-degenerate mereological structure is a mereoposet. So we have the following
corollary.

Corollary 5. Existence of unity is independent from axioms for mereoposets.

Since the equality sum D sup is true in MSC (see Corollary 3) and by the
structure from Fig. 6.5, we obtain:

Corollary 6. Every non-degenerate mereological structure is a mereoposet, but not
every mereposet is a mereological structure. So MSC ¨ MPOSC.

On the other hand we have the following interesting result about mereoposets.

Fact 8. The sentence (SSP+) is not true in the class MPOSC.

Proof. We consider the following non-degenerate mereoposet hM;�i with M WD
f�1; 1; 2; 3;�11;�12; 13; 23;�112; 123g and for x; y 2 M : x � y iff #x is part of
#y, where #x is the numeral of x (see Fig 6.6).

We have that 123 � 3, but only 1 and 2 are such that 1 � 123 and 1 � 3,
2 � 123 and 2 � 3. Notice that the set f1; 2g does not have supremum, since f1; 2g �
P.�112/ and f1; 2g � P.123/.
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32−1 1

−11 −12 13 23

−112 123Fig. 6.6 The non-degenerate
mereoposet without (SSP+)

Finally, we prove that:

Theorem 8 (Pietruszczak 2000).

(i) The sentences (sum-sup) and (?) are true in the class POSC(SSP+). So
POSC(SSP+) ¨ MPOS.

(ii) The equality sum D sup is true in all non-degenerate posets which satisfy
(SSP+).

Proof. Ad the part “)” of (sum-sup): By Lemma 2 we have (6.10). By Theorem 5
we have (�).

For (
C): Suppose towards contradiction that (a) x sup S , S ¤ ¿ and (b)
: x sum S . Hence there is u0 such that (c) u0 � x and (d) 8z2S z � u0.

We notice that u0 ¤ x. Indeed, if u0 D x then, by (a), (d) and (r�), for some
z0 2 S we have a contradiction: z0 � x and z0 � x,

Thus x � u0, by (c) and (antis�). Hence, by (SSP+), there is y0 such that (e)
y0 � x, (f) y0 � u0 and (g) for any v 2 M : if v � x and v � u0, then v � y0.
From (a) and (d) we obtain that 8z2S.z � x ^ z � u0/. Hence, by (g), we have that
8z2S z � y0. So x � y0, by (a). Hence x D y0, by (e) and (antis�). Thus, by (c),
(f) and (r�), we obtain a contradiction: u0 � y0 and y0 � u0.

Since (
C) is true in POSC(SSP+), then by Fact 8 we have: POSC(SSP+) ¨
MPOS.

Ad (?): Firstly, let jM j > 1 and x sup S . Then S ¤ ¿, since by Theorem 5
and Corollary 2, in M there is no zero element. Hence, x sum S by (sum-sup).
Secondly, assume that M has only one element x. Then x sup ¿. But : x sum ¿,
by (r�). So sup ª sum.

Ad (ii): By (i).
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Chapter 7
Natural Mereology and Classical Mereology

Paul Hovda

The main goal of this paper is to sharpen our understanding of what is at stake
between two opposing philosophical views, or orientations, on certain issues within
and related to mereology. On the one hand, there is a view that reality includes
a great deal of natural mereological structure, which must be discovered (at least
partly) by empirical means, and for which there is no a priori reason to think that it
will fit any neat formal pattern. Crudely, we may take this first view to be the view
that x is part of y if and only if y is an organic or natural union which x partakes
in. Perhaps the parthood relation has some neat formal properties like transitivity
and anti-symmetry, perhaps not; investigation is required. Moreover, it is far from
evident than every arbitrary collection of objects constitutes a natural unity, so there
probably are many collections for which there is nothing that deserves to be called
the “mereological sum” of this collection of objects. Broadly, we should leave it
to empirical (natural) science to settle which natural units there are, and what the
overall structure of the parthood relation “looks like.”

On the other hand, there is a view that there is an a priori1 science of mereology
whose truths reveal a great deal about the overall pattern of part-whole connections
in the universe. Crudely, we may take this view to be that Classical Mereology (or
some similar formal theory) gives the one true theory of the part-whole relation.
Very broadly, while the first view might be associated with Aristotle, the second
might be associated with more modern figures like Quine and Lewis (though
anticipations of it can be found in Descartes and Hume, and elsewhere in the
early modern period). As Lewis writes: “I myself take [Classical Mereology] to

1If we reject a sharp distinction between a priori and not, in favor a graduated distinction, then we
may substitute “very close to as a priori as it gets” for “a priori” here.
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be perfectly understood, unproblematic, and certain.”2 Let us call this second type
of view “formalistic.”

Modern proponents of the first type of view—let us call it “naturalistic”—include
van Inwagen (according to Van Inwagen (1990), there are partless simples and
mereological fusions of partless simples that are jointly caught up in a life; there
is nothing else) and Koslicki (according to Koslicki (2008), whether some material
things have a fusion turns on whether they realize a structure); Kit Fine might also
be suggested, but is harder to place (see Fine (1999, 2010), and elsewhere).

Imagine now a third party to a dispute between a proponent of a naturalistic
view and a proponent of a formalistic view, who wishes to make a kind of peace
between them by arguing that their differences are not ultimately as great as might
at first appear. The general strategy the third party employs is to try to show that for
each of the two disputants, the third party can find, within the things and structure
the disputant believes in, a kind of “image” of the things and structure the other
disputant believes in. It may be that, after “looking at the world from each other’s
point of view” the disputants find that the differences between them are negligible;
or, perhaps more likely, that the exact nature of the disagreement between them is
made sharper by getting clearer on why the differences, despite the existence of the
“images,” are not negligible.

7.1 Informal Presentation

7.1.1 A Simplification: Sets as Natural Kinds

A comparison to a somewhat simpler dispute will help make clear what I have
in mind. Consider a dispute between two philosophers, the first of whom, in
“naturalistic” fashion, holds that some but not all classes of material objects
correspond to natural kinds (e.g., the class of all dogs corresponds to a natural
kind, but the class of all dogs that are in a country whose name begins with “E”
does not). The naturalistic philosopher believes in arbitrary classes of things, and in
addition, a few kinds of things. The second, “formalistic,” philosopher is skeptical
of the existence of kinds above and beyond the classes themselves. Now imagine
a third party who gets both philosophers to agree that every class (of material
objects) corresponds to one and only one set of objects (perhaps they take a class
to itself be a set, or perhaps they take a class to be a mere plurality and a set to
be a single thing). The third party then proposes that the naturalistic philosopher
might see the formalistic one as simply concerned to deny that there are any further
entities that “collect” material objects, above and beyond the sets, so that if there
are natural kinds, they are just sets. Meanwhile, the formalistic philosopher might

2Lewis (1991, p. 75).
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see the naturalistic one as holding that among all the many sets of material objects,
some are special, and deserve to be singled out as “natural.”

If the formalistic philosopher agrees that some sets are especially natural, and
the naturalistic one does not think that an ontology of kinds is necessary, in addition
to the distinction between natural and unnatural sets, then it is unclear that the
two really disagree on anything that matters. The situation can be compared to the
dispute about universals, between David Armstrong and David Lewis, as portrayed
by Lewis in (1983). Lewis (in the role corresponding to our formalistic philosopher)
at first wants to deny that there are universals, in addition to arbitrary collections
of possibility. But he then comes to recognize that the whole system, advocated
by Armstrong, of a sparse ontology of universals,3 together with certain features
of them (their direct relations to laws of nature, to objective similarity, etc.) has
great theoretical utility. But instead of adding a superstratum of universals to his
arbitrary collections, Lewis proposes that all of the theoretical work that universals
need to do can be done by the collections together with a crucial distinction between
perfectly natural collections and other collections. One might say that his ontology
is formalistic, but his ideology is naturalistic.

The disagreement between our two philosophers thus might be merely super-
ficial: they might ultimately agree in ontology (sets alone, no other ontological
type required) and theoretical ideology (there is an extremely important natural/non-
natural distinction among sets). The disagreement might instead be deep, perhaps
because the naturalistic philosopher takes himself to have good reasons to believe
that kinds are not certain special sets, or perhaps because the formalistic philosopher
takes the distinction between natural and unnatural to be unacceptable, either in
general, or in its application to sets. Or again, perhaps both philosophers agree
that sets do not change their members, and the first philosopher holds that natural
kinds do change their members: e.g., the kind dog loses a member each time a dog
dies. Then there appears to be a good reason to think that the set is intrinsically,
hopelessly, unsuited to play the theoretical role required of the kind.

For our purposes, it is worth dwelling on this story just a little longer. While it
is not implausible that sets do not change their members, while kinds do, it is also
not implausible to think that this is a mere appearance of difference, resulting from
typical ways of talking, rather than the natures of the things themselves. For it may
be agreeable to both philosophers that a set has its members “eternally,” so that the
set of all dogs that ever exist currently has members that do not presently exist.
Set membership, on this view, doesn’t occur, or relate a member to a set, at one time
rather than another; instead, it happens timelessly. Yet if this is the case there is still a
reasonable notion of a set s losing a member x at a time t : x might be a member of s
such that [x exists over a long span of time up to t , and x does not exist after t]. Once
it is recognized that both (1) set membership is an eternal affair (so that x 2 s either
once-and-for-all or never); and (2) nonetheless, there is a reasonable derivative
notion of membership-at-a-time (x 2t s iff [x 2 s and x exists at t]) it is less clear

3“Sparse,” because not every arbitrary collection corresponds to a universal.
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that the fact that we tend to think of the natural kind dog as subject to membership-
change while we tend to think of sets as membership-stable is a good reason to think
that sets and natural kinds are different types of things. For it may be that when we
think of the changeable membership relation on natural kinds we are really just
thinking of the derivative changeable membership relation on (natural) sets.

The philosophers debating on natural kinds might continue to disagree. The
naturalistic one might say that sets are ineligible to be kinds for another reason:
they have the wrong spatial properties. The natural kind dog might be something
that exists on earth, while the set of dogs exists nowhere or everywhere. But again,
there is reason to wonder if this is a genuine difference rather than an appearance.
For we may certainly define a notion of location for a set at a time that will behave,
one might think, much like the notion of location for a kind does: the set will be
located, at a time, wherever its members that exist at that time are. More precisely,
we will need to say something like: the location of s at t is the union of the regions
occupied at t by the members of s that exist at t . It is worth noting that part of
what makes this particular definition work is that it is relatively uncontroversial that
regions amalgamate in a natural way: for any collection of regions, there is the union
of those regions, basically a region that you partly occupy if and only if you partly
occupy any of the regions in the collection.

Now, it is possible to insist that such a notion of the “location” of a set is somehow
second-rate (“unnatural” or “fake” or “merely derivative,” etc.), while the notion of
the “location” of a kind is first-rate, not second-rate. But it is unclear how such an
asymmetric ranking of the two notions of location can be justified.

Similarly, if the naturalistic philosopher protests that kinds are made of matter,
while sets are not, we might wonder why a well-defined notion of the material
content of a set (if we can find one) is second-rate. Say that a set is “perfectly
materialistic” if it is non-empty and every one of its members is made of matter. If
we may suppose that for any bits of matter, there is some matter that functions as
the “union” of those bits, in much the way that for any collection of regions of space
there is a union of the regions, then we may say that a perfectly materialistic set is
“made of” exactly the union of the bits of matter that make up its members.

It is not obvious how far such strategies can actually work to remove apparent
differences between the set of dogs and the natural kind dog. But the basic point
should now be clear enough: that the dispute between the two philosophers who
seem to disagree about natural kinds might well turn out to be a shallow or merely
verbal dispute, since it may turn out that each philosopher believes in a system of
items and features of those items, a system that plays the theoretical role that the
whole system of natural kinds is supposed to play.

7.1.2 Sets as Things

Now to return to the main theme: the suggestion of this paper is that the dis-
pute between the “natural unities” mereologist and the “mathematical pattern”
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mereologist may turn out to be similarly largely shallow or verbal. In particular,
the suggestion will be that if the naturalistic mereologist agrees to the existence
of arbitrary sets of the material objects he or she already embraces, while the for-
malistic mereologist agrees to a crucial distinction between natural and non-natural
objects and sets of objects, the two may equally regard the whole of reality to consist
of a formally well-behaved pattern of objects and sets of objects (a pattern whose
global properties are what the formalistic mereologist was always emphasizing),
together with an important, formally unpredictable, natural/non-natural distinction
among the nodes in this pattern (which the naturalistic mereologist was always
emphasizing).

To illustrate a little: where the formalistic mereologist takes there to be a fusion
of all objects which are either cats or dogs, the naturalistic one takes there to be the
set of all things that are either cats or dogs. Now, both agree that the set exists, and
we take it that it is negotiable that the set might inherit a location, and other minimal
physical properties, from its members. But then how different is the set, as seen from
the point of view of the naturalist, from the fusion, as seen from the point of view
of the formalist? By downplaying the differences, we hope to make good on our
suggestion that the mutually acceptable set can play the role of the fusion. Assuming
that this works for this particular object (the fusion), our main task is to show how
to coordinate things so as to make an entire formalistic network of objects, and part-
whole relations among them, mutually agreeable. The mutually accepted network
will have exactly the formal character that the formalistic mereologist emphasized;
yet the naturalistic philosopher will still maintain that there is a special natural sub-
network of the larger, formally well-behaved one, with natural objects as nodes,
linked by a natural sub-relation of the larger part-whole relation.

The rest of this paper is concerned with some technical details involved with
fleshing out this suggestion, particularly from the point of view of the naturalistic
mereology. The main project at hand is of this form: assuming nothing formally
about the most basic, given system of objectsD and primitive “natural” part-whole
relation N0 on them, what needs to be done, using nothing more than set theory
together with the given objects and relation, to construct on and around it a formally
“well-behaved” system of objects H and defined part-whole relation 
 on them?
We wish to “preserve” as much structure as possible, with D a subset of H and N0

a sub-relation of 
, and such that the relation 
, when restricted to its sub-domain
D, should be identical with, or at least very closely related to, N0. To make this
project more exact, we will take the notion of being “well-behaved” to be the notion
of “obeying the laws of Classical Mereology,” so that what we are up to is finding
a transformation � , that could in principle be applied to any relational structure
hX;Ri, so that

�.hX;Ri/ D hX 0;R0i
has exactly the formal structure that Classical Mereology requires; that is, hX 0;R0i
is guaranteed to be a model of Classical Mereology, no matter what X and R are.

What makes the project formally non-trivial is that there are basically two sorts
of formal task here, that tend to work against one another, but must be executed
simultaneously. The first task is this: given a “natural” part-whole relation N0 and
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its “natural” domain D, extend the relation—that is, add relational “links” to N0,
among things already present in D—in such a way that the resulting relation is
formally well-behaved in the sense of possessing such features as reflexivity, transi-
tivity, and obeying the strong supplementation4 constraint of Classical Mereology.
The second task is to add objects to the “natural” domainD (together with relational
links) so as to provide mereological fusions for arbitrary non-empty subsets of this
domain.

We would be on our way to executing the second task, if we were to imitate in
a straightforward way what we considered saying about natural kinds above: “let
us add to D every non-empty subset of D, and count members as parts.” Thus we
would get a candidate for the mereological fusion of all dogs: the set of all dogs
would now be counted as a material object, alongside the dogs, and each dog would
count as a part of it. Many objections to so counting the set can be met with, as
discussed above. But this way of executing the second task has made it harder to
execute the first task. For example, our new relation will not be transitive on its
domain, since a given dog’s foot will not be counted as a part of the fusion of all
dogs. Moreover, we may have “too many things” in some cases, playing the same
formal role: for example, if p is the set of parts (in the original, given sense of
part) of a dog d , then both d and p are suited to play the formal role of being the
mereological fusion of the members of p.

Thus the non-trivial formal difficulty is in executing both tasks simultaneously.
But it can be done, in a fairly natural way. While the formal device explored here is,
it is hoped, sufficient to give a “proof of concept” for the more general philosophical
idea, it is really only a first step, as there are a number of questions one might raise
about it that we will not have the space to discuss. A couple will be touched on
briefly at the end of the paper, once the device is in view.

7.1.3 Overview of the Formal Device

Here is a brief informal sketch of the technique. We begin with some natural
objects (to be thought of as concrete natural units on the model of the naturalistic
mereology) and a given part-whole relation on them; call the set of these objects
the natural domain and the relation the natural part-whole relation. Then we take
the reflexive and transitive closure of the natural part-whole relation; next we extend
the domain by adding non-empty, non-singleton sets of the members of the natural
domain. We then extend the relation further, reaching a relation on the extended
domain that is logically guaranteed to almost satisfy CM. Almost, because, in a very
clear sense, the only possible failing is that the resulting relation might not be anti-
symmetric. In the final stage, we restrict the domain and relation that resulted from
the composite of our previous transformations, basically choosing (in a principled

4See below for a formally exact statement of this constraint.
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way) one “representative” from each cluster of items that contravene anti-symmetry,
thus guaranteeing that we move from almost satisfying CM to actually satisfying it.

An interesting feature of the general transformation is this: if we start with a
domain and relation that satisfies CM, the construction winds up exactly where it
started: the combined effect of our sequence of transformations will be nothing at
all. CM is, structurally, a “fixed-point” of the construction.

7.2 Formalization

We turn to the technical details of the transformation; the discussion assumes only
an elementary acquaintance with logic and set theory, and should be accessible to
anyone interested in the formal details of Classical (and other) mereologies.

We will be discussing various transformations on relational structures, that is,
ordered pairs hX;Ri, where X is a set and R is a relation on that set (the carrier
set). Relations are simply sets of ordered pairs, and what it means that R is a relation
on X is just that for every ordered pair hx; yi in the relation, x 2 X and y 2 X , or,
to put it another way, R � X � X . We will often write ‘x R y’ for ‘hx; yi 2 R’;
we will also say ‘x bears R to y’ for this. Another notion we will want is the notion
of the restriction of a relation to a given set: if R is a relation and Y is a set, then
R � Y is the relation fhx; yi W x R y and x; y 2 Y g.

We will focus on “part-like” relations and structures, and a particular sequence
of transformations on them. But the transformations we consider can be defined in
a general way, independent of their application here; we will consider the general
definitions as well as the application.

The first transformation, ˚r , is simply to take the reflexive closure of a relation
(on the carrier set):

˚r.hX;Ri/ D hX;R[ fhx; xi W x 2 Xgi.
Clearly, if R is itself reflexive, then ˚r.hX;Ri/ D hX;Ri. So ˚r is self-fixing: for
any relational structure B, ˚r.˚r.B// D ˚r.B/.

The next transformation, ˚t , takes the transitive closure of the given relation.
Given hX;Ri, say that S transitively extends R within X if S � X �X , R � S, and
S is transitive. Rt is then

TfS W S transitively extends R within Xg, and we define
˚t so that

˚t.hX;Ri/ D hX;Rti.
The transitive closure of a relation is itself transitive, since the intersection of a set
of transitive relations is itself transitive. If R is itself transitive, then ˚t.hX;Ri/ D
hX;Ri. So ˚t is also self-fixing. Further, ˚t.˚r.B// D ˚r.˚t .B//.5

5One can get an especially clear view of the effect of ˚t by considering how it can be built up from
iterated application of a simpler transformation. Define ˚t0 so that

˚t0 .hX;Ri/ D hX;R [ fhx; zi.2 X 
X/ W 9y .x R y ^ y R z/gi.
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To begin our discussion of the application, letD be the set of natural objects. (We
assume that they form a set.) We may allow that there are many specific part-whole
relations onD; let us define

x N0 y

so that for x; y 2 D, x N0 y just in case x bears one of these relations to y. N0 is
the resulting generalized natural part-whole relation.

Formally, we make no assumptions whatever about N0: hD;N0i is an arbitrary
non-empty relational structure (a non-empty set with a relation on it). Informally,
we will use natural examples like John’s foot being part of John.

Now let hD;Ni be ˚r.˚t .hD;N0i//, so that N is the relation that arises from
taking the transitive closure of N0 and adding reflexivity.

Our next general transformation ˚1 is somewhat complicated. Say that a set is
suitable if it has two or more members. Given hX;Ri, let A be the set of all suitable
subsets of X , and let B D X [A . Let S be the relation on B that holds of x and y
just in case

xRy, or x 2 y, or x � y.
Then let ˚1.hX;Ri/ D hB;Si. Clearly ˚1 is not self-fixing; in fact, almost the
opposite: provided the carrier set X itself is suitable, ˚1.hX;Ri/ ¤ hX;Ri.

Let hE;P0i be ˚1.hD;Ni/, i.e., ˚1.˚r.˚t .hD;N0i///. Then we can show that
x P0 y if and only if one of the following holds:

x N y, or x 2 y, or x � y.
Each of the three disjuncts excludes the other two.

LetEı be the set of suitable subsets ofD, so thatE D D[Eı andD\Eı D ;.
Let hE;Pi be ˚t.hE;Po/i. Then one can confirm that x P y just in case either:

x P0 y or
x 2 D and y 2 Eı, and there is some b 2 y such that x P b.

To show this, consider what was added when we applied ˚t to hE;P0i (show the
easy Lemmas 1 and 2 below first). This shows that to define P, we could have used
these clauses instead of ˚t , in our particular application. Also, instead of applying
˚r and ˚t to get N from N0 first, we could have applied ˚1 directly to hD;N0i and
then applied ˚r and ˚t (or the above clauses); the result would be the same.

Let us observe some more features of P. First, some informal examples: let foot
be John’s foot and hand be John’s hand. Then

foot P John
John P f John, the Eiffel Tower g
(and hence) foot P f John, the Eiffel Tower g.

But
it is not the case that f hand, foot g P John.

˚t0 .B/ is a first approximation of ˚t .B/; a second approximation is ˚t0 .˚t0 .B//. One can show
that ˚t.B/ is the “limit” of the approximations. More precisely: let B0 be B D hX;Ri and let
BiC1 be ˚t0 .B

i /. Let Ri be the relation in Bi . Then Rt , the relation of ˚t .B/, is the relation
fhx; yi.2 X 
 X/ W 9i 2 N hx; yi 2 Rig.
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Second, some structural features. P has a “top” element, namely D: every
member of E bears P to D. So everything in the wider domain is “part of” the
set of all objects (the narrow domain). Clearly, P is reflexive and transitive (on E).
A very important feature we will use later is this: if some b 2 D bears P to some
i 2 Eı, then b bears P to some c 2 i (in fact, b N c). That is,

Lemma 1. .b 2 D ^ i 2 Eı/! .b P i ! 9c 2 D.c 2 i ^ b P c//.

Also note

Lemma 2. .i 2 Eı ^ j 2 Eı/ ! .i P j $ i � j / and .i 2 Eı ^ b 2 D/ !
: i P b.

P is in the direction of the Classical Mereologist’s part-whole relation: the set of
some objects from D is playing something like the role of the mereological fusion
of its members, since every part (in the sense of N0) of every member bears P to the
set. But this approximation, to the “fusion” of a set of things that happen to be parts
of something x, may not bear P to x, so we are not there yet. For example, if x is
the set of John’s parts, x 2 Eı (assuming John has more than one part) and it is not
the case that x P John.

7.2.1 Minimal Upper Bounds and Complements

The next transformation takes us much closer. Given any structure hX;Ri, define
the relation ıR (R-overlap) on X as:

.8 x; y 2 X/ .x ıR y $ 9z.z R x ^ z R y//.
Then define S as: x S y iff 8z .z ıR x ! z ıR y/. Finally, define ˚o so that

˚o.hX;Ri/ D hX;Si.
Let hE;vi be ˚o.hE;Pi/ i.e., ˚o.˚t .˚1.˚r.˚t .hD;N0i/////. Let us notate the

relation of P-overlap as O. Consider again f hand, foot g; temporarily call it i . Given
x 2 E , if x O i , then there is a w 2 E that bears P to x and to i . We argue now that
there is a b 2 D such that b bears P to w and either to hand or to foot. If w 2 D
then let b D w (see Lemma 1). If w 2 Eı, w � i , so w D i (since i is a doubleton),
and let b= hand. But b then bears P to John; and b bears P to x (since b P w and
w P x); thus, x P-overlaps John. This all shows that
f hand, foot g v John.

Let us now consider the structural features of v. It is easy to see from its
definition (without even knowing what O means) that v is reflexive and transitive.
We also have

Lemma 3. If ˚o.hX;Ri/ D hX;Si, then, provided that R is transitive, .8x; y 2
X/ .x R y ! x S y/.

In particular, .8x; y 2 E/ .x P y ! x v y/.
We now are much closer to the behavior of fusions, since we have
f x W x P John g v John.
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To show how close we are will require some work. First, we will define a sum-like
notion. Given a non-emptyX � E , let

� 0.X/ D fb 2 D W .9y 2 X/ b P yg.
� 0.X/ is obviously non-empty. It is a singleton if and only if X is a singleton of a
P-atom (a member of D that nothing else bears P to); and then � 0.X/ D X . In this
case, � 0.X/ 62 E; otherwise � 0.X/ 2 E . Accordingly, let

�.X/ D � 0.X/ if � 0.X/ 2 E; otherwise, let �.X/ be the one member of
� 0.X/.

We will prove that �.X/ is a minimal upper bound on X : every member of X
bears v to it, and it bears v to any such thing.

Lemma 4. .8x; y 2 E/ .x O y ! .9b 2 D/ .b P x ^ b P y//

Lemma 5. .8b 2 D/.8i 2 Eı/ .b O i ! .9c 2 i/ b O c/

Both of these Lemmas are easy to confirm from Lemmas 1 and 2.

Lemma 6. .8X � E/ W X ¤ ; ! .8x 2 X/ x v �.X/
Proof. Let x 2 X . Then, if y O x, by Lemma 4, we have a b 2 D with b P x and
b P y. By the definition of �.X/, b 2 �.X/ (i.e., either b D �.X/ or b 2 �.X/);
so b P �.X/. So y O �.X/.

Lemma 7. .8y 2 E/. ..8x 2 X/ x v y/ ! �.X/ v y/
Proof. Suppose .8x 2 X/ x v y. Suppose w O �.X/. Then, by Lemma 4, we
have a b 2 D such that b P w and b P �.X/. By Lemma 1, there must be a c 2 D
with c 2 �.X/ such that b P c. Since c 2 �.X/, for some x0 2 X c P x0; by
Lemma 3 and our original supposition, c v y. w O c, hence w O y, and we are
done.

Lemmas 6 and 7 together say that �.X/ is a minimal upper bound for X , with
respect to the v relation. Formally, define: y is a v-minimal upper bound on X if
and only if

.8x 2 X/ x v y ^ 8z. ..8x 2 X/ x v z/ ! y v z/.
We have now shown

Theorem 1. For every non-emptyX � E , X has a v-minimal upper bound.

�.X/ plays this role, so �.X/ is an approximation of the fusion of X .

7.2.2 Complements

The v relation on E has even more in common with the classical mereologist’s
part-whole relation, since it includes what we may call complements. Roughly, for
almost any object in E , there is a another object that represents “everything else” in
E: the complement is “disjoint” from the original, but everything “overlaps” one or
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the other. The only objects without complements are objects of which everything is
already a “part.”

Define the v-overlap relation (symbolized with �) as
x � y $ 9z .z v x ^ z v y/

Lemma 8. .8x; y 2 E/ .x � y $ x O y/

Proof. The right-to-left direction is straightforward from Lemma 3. For the left-
to-right direction, we give a visual proof. Straight lines represent holdings of the P
relation from lower to higher, and squiggly lines represent holdings of thev relation
from lower to higher.

• •

•

y x

•

z

a

•

a has to exist, since z O z and z v y; but then a O x as well.

In view of Lemma 8, we can interchange � and O as we please.

Lemma 9. .8x; y 2 E/. .8z 2 E/.z v x ! z � y/! x v y/
Proof. Suppose the antecedent and that w O x, and let z P w and z P x. By
Lemma 3 and the antecedent, z � y. By Lemma 8, z O y, so w O y.

We will also want the notions of P-disjointness andv-disjointness, where each is
non-overlap of the relevant sort. Given Lemma 8 these relations are interchangeable.
For notation, set

x o y $ : x O y (or equivalently)
x o y $ : x � y

Now we find, for almost any member ofE , an object that will play the role of its
complement. Given x 2 E , if there is a y 2 E with y 6v x, then define

x? D �fy 2 E W y o xg
We can use Lemma 9 to show that fy 2 E W y o xg is non-empty: so x? exists.

Lemma 10. x o x?
Proof. Suppose for reductio x O x?. Then either x? 2 D (in which case fy 2 E W
y o xg was fx?g and it is clear from the definition that x? o x) or get a b 2 D with
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b P x and b P x?; since b P x?, get (by Lemma 1) a c 2 x? with b P c. Using the
def. of x?, confirm that c o x. But b P c and b P x, so c O x; contradiction.

Lemma 11. y o x ! y v x?
Proof. Suppose y o x and w O y. Get (by Lemma 4) b 2 D with b P w and b P y
. Now if b O x then y O x; we supposed not, so b o x. So b 2 x?. So b P x?, so
w O x?.

Lemma 12. y o x? ! y v x
Proof. Suppose y ox? and w O y. Get b 2 D with b P w and b P y. Get that b ox?,
so b 62 x?, so it is not the case that b o x, so b O x, and hence w O x.

Putting the last three lemmas together, we have that everything that is not all-
inclusive has a “v-complement” where we define: y is a v-complement of x if and
only if

y o x and
8z. .z o x ! z v y/ and .z o y ! z v x/ /

Theorem 2. For all x 2 E , if 9y.y 6v x/ then x has a v-complement.

For all, except the all-inclusive x 2 E , x has at least one complement, and x? is
one.

7.2.3 Anti-symmetry

The relation v on E is formally very much like the Classical Mereologist’s part-
whole relation. For we have shown that v and E are a relation R on a set X such
that

(2) R is transitive.
(3) All non-empty subsets of X have an R-minimal upper bound.
(4) For any member of X , if not everything bears R to it, then it has a
complement.

If a relation R on a domain X satisfies (2)–(4), then the structure hX;Ri satisfies
the axioms of Classical Mereology, provided it has two further features: (1) R is
anti-symmetric; and (5) either there is only one member ofX or there is no member
of X that bears R to every member of X .6

The members ofE fall into “clusters” of things that bearv to one another. These
are like the equivalence classes of an equivalence relation, except that members of
different clusters may (anti-symmetrically) bear v to one another. If a member of a
cluster k bearsv to a member of some other cluster l , then every member of k bears

6See Sect. 4 of Hovda (2009); the five conditions here correspond to the five axioms in the last of
the five axiom-sets given there.
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v to every member of l , and no member of l bearsv to any member of k. There is a
simple way to transform the structure hE;vi into a Classical Mereology. We simply
treat each “cluster” of things that bearv to each other as a single element, and let the
clusters inherit the other aspects of thev relation. Formally, for each x 2 E , define

Œx� D fy 2 E W x v y ^ y v xg
Let F be fy W 9x 2 E y D Œx�g. For Œx�; Œy� 2 F , with x; y 2 E , define

Œx� 
F Œy� if and only if 9z 2 Œx� 9w 2 Œy� z v w.
We can think of this as an instance of a general transformation ˚a taking us from
hE;vi to hF;
F i; the definition is confined to a footnote.7

Lemma 13. 
F on F is reflexive, anti-symmetric, and transitive.

Suppose X � F is non-empty. Let z be fc 2 E W Œc� 2 Xg. Theorem 1 tells us that
z has at least one v-minimal upper bound d . Let

W
X be Œd �.

Lemma 14.
W
X is a least upper bound for X (in F ).

That is, for every x 2 X , x 
F W
X , and, for any y 2 F , if every x 2 X 
F y,

then
W
X 
F y. This is straightforward to show. (We call this a “least” upper bound

since, because of anti-symmetry, it is unique.)

Lemma 15. If F has more than one element, then there is no x 2 F such that
8y 2 F , x 
F y.

Proof. It is clear that 8x 2 E , x 
 �.E/, and so Œx� 
F Œ�.E/�. Now consider any
Œx� 2 F such that Œ�.E/� 6
F Œx�. Apply Theorem 2 and get x? with x? o x; hence
x 6v x?. Thus Œx� 6
F Œx?�.

Finally, suppose that for a given x 2 F , there is a y 2 F with y 6
F x. Then there
is a 
F -complement for x (uniquely so, because of transitivity). Define x; y 2 F
are 
F -disjoint (symbolized oF ) as

x oF y if and only if :9z 2 F.z 
F x ^ z 
F y/
For x; y 2 F , define x is a complement of y as

x oF y and
8z 2 F. .z oF x ! z 
F y/ and .z oF y ! z 
F x/ /

Lemma 16. For every x 2 F , if 9y.y 6
F x/, then x has a 
F -complement.

Proof. Suppose we have an x as in the antecedent. Then pick some a 2 x and
consider Œa?�.

By the last four Lemmas, we have

7Given any structure hX;Ri, let A D P.X/. Given any x 2 X , let Œx� D fy 2 X W x R y ^
y R xg. Let B be fe 2 A W 9x 2 X ^ e D Œx�g. Let S be the relation on B defined as follows: for
any e and f in B ,

e S f if and only if .9z 2 e/.9w 2 f / z R w.
Then define ˚a.hX;Ri/ D hB; Si. In general, this transformation is much more natural when
combined with prior application of ˚r and ˚t ; the composite ˚aı˚r ı˚t transforms any relational
structure into a partial ordering.
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Theorem 3. hF;
F i is a Classical Mereology.

Now, we can “project” the structure of 
F into E by mapping each f 2 F to
some representative member of it. The set of representatives would be a subset of
E , and the restriction of v to this subset would be isomorphic to 
F .

There are at least two fairly natural ways to choose representatives. The first is
this: for each Œx� 2 F , we pick �.Œx�/. To see that this works, we need to show

Lemma 17. .8x 2 E/ �.Œx�/ 2 Œx�
Proof. Suppose y 2 Œx�. Then, by Lemma 6, y v �.Œx�/. And for all z 2 Œx�, z v y.
Hence, by Lemma 7, �.Œx�/ v y.

So now let G be fx W x D �.f / for some f 2 F g. Then G � E , and we let 
G
bev� G. Then hG;
Gi is isomorphic to hF;
F i: � is a one-one map from F onto
G, and f 
F g iff �.f / 
G �.g/.

The second, preferred, way to choose representatives that we will consider is to
choose the “smallest” representative, if there is one; otherwise choose the “largest,”
namely �.Œx�/. For each x 2 E: if x \D D fbg for some b, then let �.Œx�/ D b;
otherwise, let �.Œx�/ D �.Œx�/. Let H be fx W x D �.f / for some f 2 F g. Then
H � E , and we let 
 be v� H . Clearly, hH;
i is also isomorphic to hF;
F i. So
we have:

Theorem 4. hG;
Gi and hH;
i are Classical Mereologies, and each is isomor-
phic to hF;
F i.

We may think of the composite of the operations of going “up” from hE;vi
to hF;
F i and “down” to hH;
i as a single operation that is applied to hE;vi to
yield hH;
i; this is more natural for our application, but harder to define in general.
It can be done, however, yielding the generally defined transformation ˚�.8

7.2.4 Overview of the Construction

The construction of hH;
i from hD;N0i proceeded by five steps.
Given

hD;N0i

8For a fully general definition, we need some way to tell apart the members of a cluster that are
of lower rank from the others; in our application, these were members of D rather than of Eı.
Assuming that our set theory provides a natural way to rank everything in the universe (as does
Zermelo-Fraenkel set theory with ur-elements, choice, and foundation) a general transformation
˚� on arbitrary hX;Ri may be defined by first applying ˚t , then, taking a cluster to be a maximal
set of members of X that bear Rt to one another, for each cluster, choosing its single lowest ranked
member, if there is one, and the union of all its lowest-ranked sets, otherwise. ˚� is then defined
by taking the “chosen” items as carrier set and taking the “inherited” relation.
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take a reflexive and transitive closure:

˚r.˚t .hD;N0i// D hD;Ni

add suitable sets of given objects, along with part-like relations (2,�) between them
and the given objects and on them:

˚1.hD;Ni/ D hE;P0i

take a transitive closure:

˚t.hE;P0i/ D hE;Pi

take the overlap-implication:

˚o.hE;Pi/ D hE;vi

and then choose “leasts or sums” as representatives:

˚�.hE;vi/ D hH;
i:

Each of these steps preserves important aspects of the structures involved, and
there are a couple of senses in which the structure of Classical Mereology is a natural
“fixed-point” for this sequence of transformations.

7.2.5 From Classical Mereology to Itself

Suppose that hD;N0i is itself a Complete Classical Mereology (CCM).9 Then F is
related back to hD;N0i as follows. For any Œx�; Œy� 2 F , with x; y 2 E , if x; y 2 D,
then Œx� 
F Œy� iff x N0 y; if x; y 2 Eı, then there is a unique b 2 D with b 2 x,
and a unique c 2 D with c 2 y, and (Œx� 
F Œy� iff b N0 c)—in fact, for each other
z 2 Œx�, b is the N0-fusion of the members of z, and similarly for c. The map that
takes us from Œx� to its representative in D (x or b) as in the last sentence is our �.
In fact, we have

Theorem 5. (Variation 1) If hD;N0i is a CCM, then hF;
F i is isomorphic to it.
More precisely: let the transformation �1 be

˚a ı ˚o ı ˚t ı ˚1 ı˚t ı ˚r .

9A structure is a Complete Classical Mereology if it satisfies any standard set of axioms for
Classical Mereology with the fusion axiom given set-theoretically. That is, the fusion axiom is
a single axiom given with the use of set-theory, rather than an axiom scheme; see Sect. 1.2 of
Hovda (2009).
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Then if B is a CCM, �1.B/ is isomorphic with B.
(Variation 2): If hD;N0i is a CCM, then hH;
i is identical with it. More

precisely: let �2 be
˚� ı ˚o ı ˚t ı ˚1 ı ˚t ı ˚r .

Then if B is a CCM, �2.B/ D B.

To prove this, the main key is Lemma 20 below. Before turning to the proof, observe
that, given the above analysis, for each b 2 D: if b is a Mereological atom in
hD;N0i (i.e., there is no c 2 D with c ¤ b and c N0 b) then Œb� D fbg and
�.Œb�/ D �.Œb�/ D b. Otherwise, �.Œb�/ D b and �.Œb�/ is the set of b’s N0 parts.

Now, of the transformations that we used along the way, three of them involve
changing the relation only, and do not alter the carrying set: taking the reflexive
or transitive closure (˚t and ˚r ), and taking the “overlap inclusion” (˚o). These
transformations do not alter any structure that is a CCM. This is obvious for ˚r
and ˚t , since a CCM is already reflexive and transitive. For ˚o we may use the
following Lemma. (The object-language version of this Lemma is called the “strong
supplementation” theorem (or, as it may be, axiom) in Classical Mereology).

Lemma 18. If hX;Ri is a CCM, then .8x; y 2 X/, if .8z 2 X/.z R x ! z ıR y/

then x R y.

We now prove Theorem 5. Let hD;N0i be a CCM, and let hE;vi arise from it
as described above, by applying ˚o ı ˚t ı ˚1 ı ˚t ı ˚r .

Lemma 19. .8 b; c 2 D/ .b v c $ b P c $ b N0 c/.

Proof. Clearly, P � D is just N0, so we need only show that the step from P to v
does not add anything:v � D is the same relation. We get this from Lemma 18.

Last, we need a lemma telling us that for each i 2 Eı, that there is a unique
“small representative” b 2 D; b is the N0-fusion of i . It is a theorem of CCM that
if for each non-empty subset i of the domain, there is a unique fusion of it in this
sense: a thing f .i/ such that for all y, y overlaps f .i/ if and only if it overlaps a
member of i . Given i in Eı, let f .i/ 2 D be its hD;N0i-fusion.

Lemma 20. .8i 2 Eı/ .8b 2 D/ . .b v i ^ i v b/$ b D f .i/ /
Proof. That f .i/ v i is clear from the fusion properties of f .i/; that i v f .i/ is
clear from those properties and Lemmas 1 and 4. Uniqueness follows basically from
those properties with Lemmas 5, 18, and 19, and the anti-symmetry of N0.

This suffices to show Theorem 5.

7.2.6 Final Reflections

We also note a couple results that help to show under what conditions our con-
structions “leave intact” the structure of N0. Consider the “Strong Supplementation”
axiom of Classical Mereology as applied to N:



7 Natural Mereology and Classical Mereology 157

.8x; y 2 D/..8b 2 D/.b N x ! b ıN y/! x N y/

One result is that this holds if and only if NDv� D. A further easy result is that
N is anti-symmetric iff P is. Moreover, N is anti-symmetric iff there are no “proper
cycles” (in D) under N0, where a proper cycle is a finite sequence a1; : : : ; an with
n > 2, with a1 D an, and for each i 
 n, ai ¤ aiC1 and ai N0 aiC1.

Further, if hD;N0i is structurally “well-behaved” in that it features no proper
cycles and the resulting hD;Ni obeys Strong Supplementation, then ND
� D,
since for no x 2 D will there be a y 2 D such that Œx� D Œy�. Thus, if the
naturalistic philosopher’s original part-whole structure is “well-behaved” in this
sense, our composite transformation �2 does fairly little, if any, “damage” to the
relation N0 over its original domain: the restriction of 
 to that domain is just the
transitive and reflexive closure of N0.

So if the original part-whole structure is so “well-behaved” that its relation N0

is also already reflexive and transitive (hence identical to N), then the restriction
of 
 to the original domain D is identical with the original relation N0: �2 has
then done nothing but “filled in the gaps,” with objects and relational links, so as to
provide mereological fusions for arbitrary subsets of the domain, without adding to,
or subtracting from, the original links, on the original objects.

Even if the original N0 is not already reflexive and transitive, it may be that N0

can be recovered from N in an interesting way. For example, if N0 is irreflexive, but
transitive, then N0 is just N but with all self-links removed. And even if N0 is not
transitive, it might still be formally “well-behaved” in this sense: for all x; y 2 D,
x N0 y iff (x N y and there is no z 2 D such that x N z and z N y); i.e., a part
in the most basic sense is an immediate part in the transitive closure of the most
basic sense. It is natural to think that this condition might hold in the non-classical
mereological systems considered by Koslicki in (2008) and in Fine (1999). The
system(s) considered in Fine (2010), or some important sub-class of them, might
also satisfy this condition; the notion of component in Fine (2010) might be taken
as a candidate for our N0.

These remarks should give a taste for the sort of refinements of the results we
might reach by further exploration of the kind of technique explored in this paper. A
broad statement of the general idea is that if the naturalistic mereologist’s part-whole
relation on its given domain obeys some apparently very weak formal constraints, it
will be possible to define out of it, assuming constructions with set theory, a closely
related structure which obeys much more stringent formal constraints that might be
favored by the formalistic philosopher, such as those of Classical Mereology, in such
a way that the original structure can be recovered as a sub-structure. In this way, the
naturalistic mereologist might make peace with the formalistic one, provided the
formalistic one is prepared to grant a special status (e.g., being natural, or carving
at the joints, to use a metaphor favored by Sider in 2011) belonging uniquely to that
particular sub-structure—to its objects and part-whole relation. Or, put another way,
their original dispute might turn out to be merely verbal, the two simply using the
words “part” and “object” in different, but ultimately mutually recognizable, ways.
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7.2.7 Coda: Quick Response to Some Concerns About Sets

As we discussed briefly above, the project will only succeed if sets, or some
replacement for sets, are granted the sorts of properties the formalistic philosopher
ascribes to typical objects, e.g., being located. There are three points about this
feature of our project that we may briefly address in closing.

First, it might be thought that if we grant sets location, then we will have a great
many co-located sets, e.g., the set d whose members are all the dogs (and nothing
else), the set fd g, the set fd; fd gg, and so forth. If d inherits location from its
members, why shouldn’t these other sets? Call two sets “materially equivalent” if the
transitive closure of the one’s membership is identical with the transitive closure of
the other’s. The reply to this concern would begin by suggesting that if two distinct
sets are materially equivalent, then they are qualitatively indiscernible: they have the
same basic physical properties. The next step would be to argue that it is acceptable
for many purposes to pretend that qualitatively indiscernible sets are identical. The
expectation would then be that the output of our �2 transformation captures exactly
the right level of distinction among sets: two sets that are materially equivalent with
the same element of the output of�2 are not, for many purposes, different; and every
set is materially equivalent with a unique set-or-object in the output of �2.

Second, as an alternative to arguing for treating materially equivalent sets as
the same (in some contexts), we could find a replacement for sets throughout the
entire construction of �2. Interestingly, we could use plural quantification over
the originally given domain, so that, for example, the role played by a doubleton
fx; yg 2 Eı (with x; y 2 D and x ¤ y) would now be played by those things such
that: x is one of them, y is one of them, and nothing else is one of them. Arguably,
there should be even less resistance to treating pluralities as having properties like
location, and there is no problem about there being “too many of them” constructible
out of the basic, given, objects.

Third, there is a concern that, given that sets do not change their members over
time, they remain unsuited to play the roles of objects. There is much to say about
this concern, and here we can only note that it seems worth exploring the possibility
that considerations about time will only complicate the story, but not fundamentally
change it. For example, if it can be agreed by both the naturalistic and formalistic
philosopher that parthood may adequately be treated as a three-placed relation, so
that we say “x is part of y at time t” instead of the bare “x is part of y,” then
we should consider how all of our formalization might be re-cast accordingly. Or
perhaps we may take objects to have temporal parts, or, more non-traditionally, take
(some) sets to change their members.10

10See Hovda (2013) for a discussion of the interaction of formalistic mereology with time and
tense. The main idea pursued in Hovda (2013) is to re-conceive formalistic mereology while taking
tense (or metaphysical modality) seriously, and allowing objects (including fusions) to change their
parts. To wed, in a natural way, the approach in Hovda (2013) with the idea in this paper would
seem to require a set theory in which sets can change their members. Such a set theory should
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Part III
Natural Sciences

Introduction to Part III: Mereology and Natural Sciences

It is difficult to imagine a contemporary scientific practice that trade more in mere-
ological notions than the so called natural sciences, such as chemistry or biology.
Their objects of study are in fact crucially composite objects such as atoms (which,
despite the name are not mereological atoms), molecules, cells, living organisms
and so on. The chemical and biological hierarchies, from atoms to molecules, from
basic units of biological organization such as genes to more complex formations
such as cells, tissues and living organisms are structured according to parthood
relations on the one hand and probably several other relations such as functional
relations, causal relations, dependence relations on the other. It is a substantive
question how these relations interact, both from an empirical and a metaphysical
perspective. Chemical, biological, even medical practices and theorizing may even
call into question some common-sense intuitions about parthood. For example, in
what sense are the reagents parts of the product of a particular chemical reaction?
Are they really mereological parts of it? Note that arguably this question traces back
to the early days of Greek philosophy. Mereological considerations, in particular the
endorsement of gunk mereologies, were pivotal in the stoic solution of the problem
of mixture, as argued in Nolan (2006). And this is just an example of what Lewis
(2010) calls folk chemistry which involves crucially mereological reflection. Sharvy
(1983) contains other examples. Consider then biological cases of parthood. We
seem to have a solid intuition that my heart is a mereological part of me. But what
about the human flora living in my body? And what if bacteria were found in my
bloodstream? Would they count as a mereological part of me?

The papers in this section deal with similar questions, with a particular focus on
chemistry, biology and medicine.

In the first one (Developing the Mereology of Chemistry) Llored and Harré
contend that different mereological theories that are present in the literature are
overly simplistic to fit chemical practices in that they do not consider different ways
in which chemical substances are parts of other substances. This inadequacy of
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current mereological theories to give a satisfactory account of chemical phenomena
leads them to a rather pragmatic development of new a mereological approach where
on the one hand temporal and modal parameters such as affordance and dependence
become crucial, and on the other hand traditional mereological principles such as
transitivity loses their relevance.

In the second paper of this part (Crisp Island in Vague Sea) Jansen and Schulz
address the crucial question we were asking in this brief introduction, i.e. the
possibility of identifying precise conditions to ascribe parthood between pairs of
biological entities. They make a convincing case drawing from a variety of different
concrete biological examples that is extremely difficult to draw the inference from
inclusion to parthood. Then they put forward different axioms specifying conditions
that allow us to distinguish three crucial cases, namely (i) the case in which an
inclusion statement is refined into a parthood statement, (ii) the case in which an
inclusion statement is refined into a containment statement and (iii) the case in
which an inclusion statement cannot be refined further. These axioms, together
with some other criteria, in particular a functional criterion, help us deciding
pragmatically whether a biological organism is part of another given that the latter
spatially includes the former.

This part contains examples and discussions taken from entire scientific disci-
plines such as chemistry or biology, rather than particular theories. We therefore
recommend general introductions to the philosophical aspects of those disciplines,
referring the reader to the extensive bibliographies therein. Baird et al. (2007) is
a good example of an introduction to the philosophy of chemistry. A recent one
is Llored (2013). Among the many introductions to the philosophy of biology we
point out the following recent ones: Hull and Ruse (2007); Rosenberg and McShea
(2008). Finally, when it comes to philosophy of medicine, let us mention Sadegh-
Zadeh (2012).
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Chapter 8
Crisp Islands in Vague Seas:
Cases of Determinate Parthood Relations
in Biological Objects

Ludger Jansen and Stefan Schulz

8.1 Introduction

Parts are important for describing (types of) biological organisms: Mammals have
lungs, fishes do not. Most cells have nuclei, red blood cells do not. Parthood is
generally considered a fundamental relation both in formal ontology and in knowl-
edge representation. As a complement to a taxonomic view on organizing things
by categories, an (orthogonal) mereological view often constitutes an additional
organizational principle for the representation of biological entities. Comprehensive
representations of mereological hierarchies can be found in many biomedical
terminology systems. Parthood relations are represented, e.g., in the anatomy
branch of the MeSH thesaurus (Medical Subject Headings National Library of
Medicine 2013), but there they are not formally distinguished from taxonomical
relations. They are represented formally in the Foundational Model of Anatomy
(Rosse and Mejino 2008), the Gene Ontology (Ashburner et al. 2000), ChEBI
(Chemical Entities of Biological Interests; Hastings et al. 2013) and other OBO
Foundry (Smith et al. 2007) ontologies that describe biological structures. In the
huge clinical ontology SNOMED CT (International Health Terminology Standards
Development Organisation (IHTSDO) 2013), an extensive mereological hierarchy
describing anatomy classes is represented as a taxonomy of reified parthood
relations, according to the structure-entity-part (SEP) triple architecture proposed
by Schulz and Hahn (2005), where auxiliary classes like, e.g., Heart structure are
introduced to model a partonomic statement like “The myocardium is part of the
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heart” as a subclass relation between the class Myocardium and the class Heart
structure.

Philosophical accounts of parthood (Simons 1987; Varzi 2014) have attracted
much attention in the analysis of ontological problems in biology and medicine;
and numerous use cases have driven the development of domain ontologies that
depend on formal descriptions of biological structures. Controversial issues include
the transitivity of part-of and the so-called propagation of attributes via partonomic
hierarchies (Horrocks et al. 1996; Schulz and Hahn 2005; Schulz et al. 2006).
These issues are crucial wherever mereology hierarchies are expected to support
generalisable inference mechanisms. For example, a disease or injury being part of
an anatomical entity could imply a disease or injury of the whole: A disorder of
the retina is a disorder of the eye and a fracture of an elbow is a fracture of an
upper extremity. On the other hand, if a part is lacking, this does not imply that the
whole is lacking. Such patterns could be used in medical decision support systems
or in other intelligent applications in life sciences and health care where we have to
account for the broad range between normal and abnormal constitution, shape and
function, as well as for the developmental stages that characterize the life cycle of
organisms (Schulz and Hahn 2007; Schulz and Johansson 2007). They could also
be used to test whether we deal with parthood or not. In both cases, of course, the
inference patterns in question need to be valid ones. In this paper, we will discuss a
number of candidates for such patterns and assess their scope.

When it comes to its application to biomedical domains, mereology opens
up a multifaceted problem space, which has been repeatedly addressed both in
philosophy and biomedical informatics. In order to prepare the ground for our
discussion in this paper, we will discuss some of these dimensions in the remainder
of this introduction.

Domain thesauri, as well as ontology-like artefacts derived from them, often
represent taxonomies together with parthood statements on class level as opposed
to particular things. These statements on class level are expressed in seemingly
straightforward formulations like:

part-of .Finger;Hand/ (8.1)

Although this statement closely resembles natural language sentences like “A
finger is part of a hand”, its precise semantic is a matter of debate. Several
competing interpretations for such statements have been suggested. Some read
them as universal statements (Smith et al. 2005), others read them as set-theoretical
statements (Schulz and Hahn 2002) and yet others – less explicitly – as prototypical
statements (Rosse and Mejino 2008). Out of these different possibilities, the first
one has been integrated into the Relation Ontology (RO) as a suggested standard for
biomedical ontologies (Smith et al. 2005). It takes the time-indexed instance-level
relation part-of (a, b, t) as a primitive and defines class-level parthood as follows:

part-of .A;B/ Ddef 8a; t.instance-of.a; A; t/!
9b.instance-of.b; B; t/ ^ part-of.a; b; t///

(8.2)
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Of course, this leaves open the interpretation of instance-level parthood relations. It
has, indeed, been debated whether standard mereology is appropriate for modelling
this relation within the biomedical domain. To start with, the standard mereological
part-of relation is the reflexive, antisymmetric and transitive proper-or-improper
parthood relation (Simons 1987), whereas in biomedicine there is an implicit
restriction to proper parthood, which is irreflexive and asymmetric. Biological
and medical terms containing “partial” are, indeed, generally opposed to terms
containing “total”. E.g., SNOMED CT contains 804 preferred terms with the
modifier “partial” in their name, like “partial larynx” or “partial agenesis of
pericardium”. In all of these cases, “partial” is opposed to and explicitly excludes
“total” or “complete”. For instance, “total mastectomy” is never seen as a special
case of “partial mastectomy”. To generalise, there is no use of the word “part” in
biological or medical discourse that would contradict irreflexivity (Schulz et al.
2006). However, this is only a terminological issue: It is an empirical linguistic fact
that the scientific language of biomedicine uses “part of” to denote an irreflexive
relation, whereas from an logical point of view it is a mere matter of convention
whether to use the reflexive “(proper or improper) part” or the irreflexive “proper
part” as a primitive.

More substantial is an attack on the transitivity of the standard mereological
proper-or-improper parthood: Some authors have argued for the non-transitivity of
parthood in biology (Johansson 2004; Varzi 2006). E.g., the sheep is part of the
flock, the sheep’s stomach is part of the sheep, but the sheep’s stomach is not part
of the flock. However, if we leave aside the use of “part” in ordinary discourse,
which must not be considered to be an exact fit to the formal-mereological parthood
relation, there are no convincing arguments against the transitivity of the most
general parthood relation, for the alleged counterexample can be dissolved if we
analyse “part of” in the first premise as a linguistic substitute for “member of”,
which is a more specialised mereological relation that is not transitive. Below,
we will discuss in more detail intransitive subrelations of has-part, such as has-
granular-part or has-component (Beisswanger et al. 2008).

More of a problem is the domain-specific application of the parthood predicate.
Anatomy, for example, needs to talk about immaterial parts of material objects, like
cavities and one- or two-dimensional boundaries (Schulz et al. 2006). Biology also
talks about disconnected parts of non-connected wholes, such as the molecules in
a volume of gas, the sheep in a herd or a component of an organ system such as
the thyroid gland as part of the endocrine system. Though not physically connected,
these entities are considered parts of their wholes as long as they fulfil certain other
criteria. We will analyse this later in more detail. General discourse about parts also
includes removed or lost parts, e.g. a lost hair, a blood sample taken from the body,
or a fallen apple, as well as future parts, such as car parts. In cases of self-connected
wholes, the loss of connection is a clear criterion for the loss of parthood, whereas
this is less clear with regard to, e.g. a sheep that has moved away from its herd or a
gas molecule that dissipates from the remainder of a volume of gas.

There are a number of phenomena that make the decision about biological
parthood a non-trivial problem. The first of these is the continuous mereological
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change of biological objects over time, without which life would not even be
possible. My body remains numerically the same even after my hairs have been cut
and probably all of a body’s molecules are being replaced during life. Mereological
essentialism (Simons 1987) postulates that if an object loses a part, it is no longer
the same entity. This may hold, e.g., for information entities; a word from which you
remove a letter is, indeed, no longer the same word. But mereological essentialism is
counterintuitive when it comes to living entities: The loss of a hair does not make me
a different individual and metabolic processes in organisms are not feasible without
the exchange of matter. Such questions of identity and mereological change lead
up to well-known paradoxes, like the infamous Ship of Theseus or the Paradox of
Tibbles and Tib (Rea 1995); however, these do not surface in current endeavours to
develop biomedical ontologies.

Another issue is the indeterminacy in the spatial demarcation of biological
objects, with their surfaces exhibiting the most diverse shapes of cavities, tunnels
etc. An object located, e.g., in a microscopic cavity of a biological surface structure
like the intestinal mucosa, is therefore located within this surface structure. If
the cavity were not part of the wall, then the object would be outside the wall
and, as a consequence, outside the object that “hosts” it. Especially the condition
of some object being “in” a biological object often reflects a situation of being
located in some not fully enclosed immaterial part (Schulz and Johansson 2007).
Moreover, biomedicine combines the analysis of different granular partitions where
parthood across different such partitions is often difficult to determine, as in
parthood predications with regard to countable objects vs. homogeneous collections
of particles of heterogeneous “chunks of stuff” (Jansen and Schulz 2011; Schulz
et al. 2006).

All this raises the hypothesis that parthood statements are complicated both
by ontological vagueness and by epistemic indeterminacy. In Table 8.1, we list
a number of examples of objects that are spatially included within other objects
and for which common sense arguments in favour and against the assertion of
parthood are collected. For spatial inclusion without parthood we will introduce
a new relation, containment, which will be formally described below. This allows
us to harvest intuitions that we will analyse with more scrutiny in the following
sections. However, it also shows that our intuitions are not unambiguous.

8.1.1 Vagueness and Indeterminacy of Biological Parthood

Important inference patterns are sensitive to the interpretation of the parthood
predicate. Therefore, the question whether something is part of, e.g., a cell or an
organism, or merely contained by it, has noteworthy implications: Radiologists
identify a certain structure in a medical image and ask themselves whether this
depicts a modified structure of the body or rather something contained in it as a
foreign body. Also, the distinction between “own” and “alien” is fundamental to the
functioning of an organism’s immune system. It can even be of legal and ethical
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Table 8.1 Biological problem cases, with arguments in favour and against parthood, given a
spatial inclusion relation between objects

Case Arguments in favour of parthood Arguments against parthood

(A) My body presently (i) The portion of urine is the (iv) The urine does not contribute
includes a certain result of a biological process to the functioning of the body,
portion of urine. Is that occurred in my body, (v) Its presence in the body is
this portion of urine (ii) It contains organic material short-lived,
a part of my body? with my body’s genetic identity, (vi) Most of the urine volume is

(iii) It is completely surrounded of an inorganic nature (H2O),
by body parts. (vii) A longer presence in the

body will negatively affect
the functioning of the body.

(B) A cell contains a (i) The cell would not be functional (ii) The water volume is
certain volume of if this water volume were removed. inorganic.
water. Is this water Furthermore, it would probably be
part of the cell? completely destroyed.

(C) This H2O molecule (i) The molecule contributes (ii) H2O is inorganic and does not
is now included in (together with many others) to the require a biological process
one of my cells. Is it functioning of the cell. to be synthesised,
part of this cell? (iii) It does not necessarily come

into being in the cell,
(iv) Its presence therein may be

very short.

(D) A brain now A metastasis derives from (iv) It did not originate there,
includes this brain malignant tissue that originates (v) It is a non-canonical structure,
metastasis. Is this elsewhere. body part,
(ill-formed; (i) It shares the genetic identity (vi) it negatively affects the
Schulz and Hahn 2007) with the brain, function of the brain.
object a part of this (ii) It is tightly connected
brain? with the brain,

(iii) It exchanges matter with it.

(E) My body now (i) Intestinal bacteria (iii) The bacteria are genetically
includes this E. coli contribute to canonical different,
population. Is it a body functions, (iv) They are not attached to
body part? (ii) Every organism hosts the organism.

a bacteria population.

(F) This single (i) The bacterium is part of a (ii) The bacterium may not have
bacterium is included larger bacterial population started its life within my body
in my body. Is it a bearing important body functions. and may cease to exist outside
part of my body? (cf. (E).(i)).

relevance whether something is part of a human organism or merely located within
it. If we subscribe to the principle that a defect of a part is also a defect of the whole,
we will have to accept that a defect of an artificial heart valve implies a defective
heart if this artificial valve is considered to be a part of the heart. On the other hand,
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Fig. 8.1 A virus is ingested by a cell. When do virus components become part of the cell? (Schulz
and Johansson 2007)

it would be counterintuitive to interpret a structure abnormality of an embryo as an
abnormality of the maternal organism.

As opposed to parthood, containment is a matter of mere spatial location, like
cookies are contained in a box without being a part of it. Later in this section, we
will introduce a formal definition of containment. To be sure, containment is itself a
matter of vagueness and it is not at all clear where parthood starts and containment
ends (Schulz and Johansson 2007).

One example from biology is phagocytosis, i.e. the gradual incorporation and re-
use of foreign material by a cell, such as depicted in Fig. 8.1. Similar problems arise
with ingestion and digestion processes in general: We could trace the fate of a single
carbon atom which is taken in into the body as part of some piece of food and later
becomes part of an animal’s tissue (Donnelly 2009). At which time does it become
part of the animal’s body?

In the following, our discussion of such phenomena will be based on a number
of assumptions. Of some of these assumptions we are convinced that they are true,
although we will not argue for them in this paper. Foremost, we subscribe to a notion
of biological objects, according to which they are independent continuants (Grenon
and Smith 2004) that either are living three-dimensional material beings or material
parts thereof (Schark 2005). In addition, we will make some methodological
restrictions for the sake of simplicity. E.g., this paper will only consider objects
at the times they are included in or constituting some living organism. That is, we
will not discuss, e.g., dead bodies, fossils, tissue samples and processed biological
material like food items, leather, cotton, timber etc., as long as they are not included
in living biological systems. Moreover, we will assume that every biological object
occupies at any time an exactly one spatial region. That is, we will not consider
vague boundaries here, although they are typical for many biological surfaces as
mentioned above.

We take into consideration, however, the possibility that biological objects
may have “fiat boundaries”, i.e. that they may be arbitrarily delineated by human
fiat (Smith and Varzi 2000; Vogt et al. 2012). Material objects may also have
immaterial objects as parts, especially cavities, in line with the current specification
of BFO version 2 (Smith et al. 2013). We will, however, not consider zero to
two-dimensional boundaries (i.e. points, lines and planes), which could also be
considered to be parts of their hosts (Donnelly 2011).
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We also assume that when asserting parthood between two objects, this assertion
refers to the current state of affairs, despite the common extension of the word “part”
to denote past and future parthood, such as in calling something a car part because
it is being produced with the intention to become part of a car (intended part), or
calling something a body part because it has been severed from the body (past part).
Our fundamental assumption in this paper is that, in accordance with (Bittner 2004),
spatial inclusion is a necessary condition for material parthood. Standard material
parthood, that is, implies spatial inclusion:

has-part.I; i; t/! includes.I; i; t/ (8.3)

with “I ” (“includer”) and “i” (“includee”) denoting individuals.
We need to say more about spatial inclusion, however. Any three-dimensional

entity can be included in any other three-dimensional entity, be they material
objects, immaterial spatial objects or spatial regions. We use the term “inclusion”
instead of the more common term “location” because the latter is normally used
for the relation of an object to a spatial region only and not, as we need, to another
material object. The conception of inclusion is thus broader than the standard notion
of spatial location (Casati and Varzi 1999) where the range is restricted to spatial
regions. This extension of the concept of location is in line with the ongoing BFO 2
specification (Smith et al. 2013), as well as with the BioTop upper domain ontology
(Beisswanger et al. 2008).

The inclusion predicate can formally be defined in terms of overlapping regions,
where the region of a thing is, in turn, the set of points in space occupied by this
thing. If we follow this strategy, talk about an object I including another object i
is a simplified way of stating that, at a given time, all of i ’s parts are located in I ’s
region or, even more simple, i is located within I ’s region.

We can give a formal semantics for the inclusion relation using notions from
mathematical topology. On this account, each physical object c occupies exactly one
spatial region at a time t, namely region(c, t). This spatial region is, by definition,
exactly occupied by c at time t. Using has-part as a primitive, we can then define
the relation of material inclusion and containment as follows:

includes.I; i; t/ Ddef point-subset-of.region.i; t/; region.I; t// (8.4)

contains.I; i; t/ Ddef includes.I; i; t/ ^ :has-part.I; i; t/ (8.5)

part-of.i; I; t/ Ddef has-part.I; i; t/ (8.6)

The relation includes is defined in terms of topologic (point-set) inclusion, whereas
containment is defined as spatial inclusion without parthood. As has-part has been
introduced as a primitive term, we cannot expect any sufficient criteria for parthood
with general applicability. The question, however, is, whether we can state necessary
conditions or conditions that are sufficient for certain subdomains. All of these
three relations (i.e. has-part, includes and contains) are considered to be transitive
(Bittner 2004), but we will later discuss intransitive sub-relations of has-part.
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On this basis, the main question of the deliberations in the remainder of this
paper can be phrased as follows: What distinguishes full-blown parthood from
mere containment? Are there criteria that can be added to inclusion in order to get
parthood? And are there criteria that can be added to inclusion to get containment?

8.2 Soft Criteria: Function, Origin and Genetic Identity

In this section, we discuss an extended list of criteria and explore whether they
support either parthood or containment. The assessment is, above all, guided by
cognitive adequacy. In Sect. 8.3, we strive for clearly delineated, ontological criteria,
aware, however, that we can, at most, identify “islands” of ontological certainty
within an ocean of vagueness. These criteria will be mostly categorial criteria, i.e.
criteria that refer to the kind of beings includer and includee belong to. In this
section, however, we will explore a number of prima facie criteria referring to origin,
function and genetic identity.

We will now start our quest for such criteria by revisiting a decision algorithm
that has been suggested by Schulz et al. (2005). This algorithm makes use of a
set of simple decision rules (see Table 8.2): (i) Is the includee an artefact? (ii)
Is the function of the includee relevant for the integrity of the includer? (iii) Do
includee and includer have the same genetic origin? (iv) Has the includer hitherto
been located in the includer or in a part of the includer?

Of these, the first criterion appears to be a monadic criterion, asking for a
property of the includee alone. It is based, however, on the assumptions that the
includer is a biological entity and that no artefact can be part of a biological entity.
However, the distinction between biological and artificial entities is not as clear-
cut as would be necessary for successfully applying this criterion (Jansen 2013).
Engineered cells and genetically modified mice are both artefacts and biological
entities. Moreover, the question whether something of artificial origin can be part
of a biological entity will be answered differently with respect to different levels
of granularity. Were there artificially produced lipid molecules, we see no reason
why these should not become part of, say, a membrane that is part of a living cell.
We will now look at the remaining criteria, discussing in turn (i) genetic identity,
(ii) functionality and (iii) spatiotemporal origin. First, we can check whether
includer and includee have the same genetic identity. For criminalistic purposes, the
‘genetic fingerprint’ is normally a reliable guide to decide whether detached organic
materials derive from a certain individual organism. This criterion can, however, not
be generalised: On the one hand, the cells of monozygotic twins have exactly the
same genetic identity. On the other hand, mosaic organisms occur where different
organs can have cells of different genetic identity. Further problem cases for genetic
criteria are colonial organisms (e.g. microorganisms in a biofilm or the zooids
constituting the jellyfish-like Portuguese man o’ war), composed of a multitude
of single organisms which cannot survive when separated. The boundary between
a colony and a single organism is vague. Slime moulds normally live as colonies
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Table 8.2 Decision algorithm proposed in Schulz et al. (2005)

If located-in (c, d , t ) then
If Artifact (c) then

contained-in (c, d , t )
Else

If function-integrity-relevant (c, d , t ) then
part-of (c, d , t )

Else
If (not same-genetic-origin (c, d , t )) or

(instance-of (c, MaterialObject) and instance-of (d , ImmaterialObject)) then
contained-in (c, d , t )

Else
If hitherto-located-in (c, d , t ) or (hitherto-located-in (c, m, t ) and part-of (m, d , t )) then

part-of (c, d , t )
Else

contained-in (c, d , t )
End If

End If
End If

End If
End if

of single cells, but can aggregate to form a single body-like whole. Composite
organisms like lichens aggregate fungal and prokaryotic cells. Talking about genetic
identity or similarity is, therefore, not trivial. These problem cases notwithstanding,
the following cases are typically distinguished:

• Two entities are autogenic if and only if they share the genetic identity of the
same individual. Example: a saphenous vein autograft used in coronary artery
bypass surgery.

• Two entities are allogenic if and only if they share the genetic identity of the
same species, but not of the same individual. Example: typical organ transplants
(kidney, liver, heart) from one human to another.

• Two entities are xenogenic if and only if they do not share the genetic identity of
the same species. Example: a baboon heart transplanted to a human baby.

All three predicates can only be applied in a meaningful way if both includer (I )
and includee (i ) carry genetic information, and they are difficult to apply in the case
of chimeras that contain body parts of different genetic identity. On first sight, we
have reason to assert parthood for autogenic includees and to assert containment for
allogenic and xenogenic includees. But it is difficult to derive clear-cut criteria for
parthood or containment from this. If, for example, xenogenic entities play a vital
role in the organism, it could be justified to consider them as parts of the organism.

This points us to the next feature that could be used in parthood criteria, i.e. the
functionality of the includee for the includer:
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• We have reason to assume that the includee i is part of the includer I if i is
part-for a certain type ITYPE, of which I is an instance. The relation part-for
holds between an individual includee i and a type, if and only if i has a (token)
function f, which can only be realized in case i is included in some instance
of ITYPE. A typical example is an ion channel protein which is synthesised in a
ribosome, but becomes functional only once it is included in a cell membrane.
Similarly, despite having its own independent genome, a mitochondrion can be
considered to be part of some eukaryotic cell because mitochondria completely
depend upon their host cell for survival and functioning, viz. ATP supply. This
contrasts with an intestinal E. coli bacterium (or any other cell from a human
organism’s microbiome), which is able to live and function outside its host.

• In contradistinction, we have reason to assume that the includee i is only
contained in the includer I if i has a function that cannot be realised while it
is included in some instance of I . Examples: the ion channel as long as it is still
within the cytoplasm; a surgically removed heart valve in a cooling container.
The heart valve is only functional when included in some biological heart, i.e. it
is a part-for the type heart. It cannot be functional when isolated from a heart in
the cooling container.

Conversely, the function of the includer depends on an includee. In this case, we can
say that the includer is a “whole for” the includee, i.e. the part is necessary for the
functioning of the whole. This allows us to formulate two additional criteria:

• We have reason to assume that the includee i is part of the includer I if I has
a function that can only be realised if some instance of a certain type iTYPE is
included in it. Examples: My digestive tract requires a stomach for its complete
functioning, or a cell cannot live without mitochondria.

• We have reason to assume that the includee i is contained in the includer I if
the latter has a function that cannot be realised if some instance of a certain type
iTYPE is included. An example is the complex of a receptor and an antagonist
molecule. In such a complex, a small molecule a of a certain type is bound to a
receptor and blocks its function. In this situation, we have reason to deny that a
is a part of the receptor.

Functional criteria can, however, be in conflict with criteria referring to the
spatiotemporal origin of the includee in the includer and the physical connection
(Schulz and Johansson 2007) of includer and includee.

• We have reason to assume that the includee is part of the includer if the includee
originated within the includer. Example: The heart and the brain of a human
originate within that human.

• We have reason to assume that the includee is contained in the includer if the
includee originated outside the includer. Example: A brain metastasis of a breast
cancer is included within the brain, but it originated in the breast tissue.

• We have reason to assume that the includee is part of the includer if the
includee is physically connected to the includer (it cannot be severed from the
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includer without physical damage). This criterion would allow the rejection of
the parthood hypotheses for containees like urine or faeces, which are not tightly
connected to the surrounding body structures. In contrast, a metastasis is tightly
connected to the surrounding tissue (blood supply), whereas a sequestrum (piece
of dead bone) is much less connected.

These criteria can be combined with additional conditions, such as:

• We have reason to assume that the includee is part of the includer if the includee
originated together with the includer. Example: The endothelium of my aorta
originated together with my aorta.

• We have reason to assume that the includee is part of the includer if the spa-
tiotemporal inclusion is permanent. Examples: all the organs in the development
of an embryo, a primary tumour of the brain.

Criteria that draw on the origin of the includee could be disputed because they
draw on (causally irrelevant) historical properties of the includee. This problem
is especially pressing because within one and the same includer, instances of the
same type may fulfil different spatiotemporal criteria. Consider, for example, a cell
in a thyroid gland containing several molecules of the hormone L-thyroxin. Some
of these molecules may have been synthesised within this cell and never left it,
others were synthesised within the cell, left it and returned, others were synthesised
in a neighbour cell, whereas still others could have been synthesised in a lab and
entered the body as a drug. The problem is here, that within a snapshot view of
the cell, there is no difference between these molecules. If the fact that a certain
molecule never left the cell were a sufficient criterion to consider it a part of it,
why should we withhold this status to the other L-thyroxin molecules just because
of their deviant history? The criterion of connection (for the discussion of several
strengths of connection, see Schulz and Johansson 2007), however, would make a
difference also in a snapshot view. If i originated within I and is tightly connected
to it (and cannot just go in and out like many molecules in cells), then this seems to
be a good criterion for granting parthood.

These criteria capture some of the intuitions underlying our judgements about
biological parthood (cf. Table 8.1). At times, however, their results are unsatisfac-
tory and can also contradict each other. Artificial heart valves are, by all means,
necessary for the functioning of the including organism, but they do not originate
from this body, nor do they have a genetic identity. Similarly, medically indicated
allografts and xenografts are normally necessary for the functioning of the receiving
organism, but they do not originate in these organisms, nor do they share the same
genetic identity. The bacteria on the mucous membranes of a human body are
canonical contributors to its proper functioning, they may have originated within
this body, but they do not share its genetic identity. As they allow for exceptions,
these criteria can only be considered ‘soft criteria’; they are more or less reliable
rules of thumb.
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8.3 Hard Criteria: Containers, Grains and Components

8.3.1 Topological Descriptions of Material and Immaterial
Objects

Our question was: how and when can we infer parthood from spatial inclusion? This
question is only meaningful if we can characterise spatial inclusion in a non-circular
way, i.e. if we can describe the makeup of physical objects in terms of their spatial
arrangement without any reference to parthood. The following example illustrates
the challenges of such an approach.

Imagine a simple toy object o, consisting of a wooden box b and a dice d
(Fig. 8.2 i, ii), which is located inside b, i.e. it fills the hollow space h (Fig. 8.2 iii)
enclosed by b. A standard mereological approach would describe o as a mereologi-
cal sum of its two component parts b and d , like in Fig. 8.2 iv. Note that b contains
d , which is, therefore, not a part of b, but both would then form the sum o.

How can we describe this scenario without any reference to parthood and
mereological sums? Let us assume that we can find out for each point in space
whether it is occupied by some material entity. This allows us to define the toy
object o as all physical matter that exactly coincides with the points that make up
the regions of the box and the dice. We can generalise on this by defining what we
may call a “topological sum”, or “t-sum” for short, which is solely based on point-
set theoretical considerations. By this, we avoid the use of the mereological part-of
relation.

Definition 1. Let s1; : : : ; sn be material or immaterial objects. S is the t-sum of the
summands s1; : : : ; sn if and only if S is the (self-connected or scattered) object that
comprises any spatial region occupied by some summand and the totality of matter
that is located at any point in space occupied by some of its summands.

According to this definition, the complete toy object o would then be constituted
by the totality of material entities in the joint region occupied by b and d

(Fig. 8.2 iv). Objects like b in our example may act as a container, i.e. as material
entities that host a hollow space like h (Fig. 8.2 iii) which, in turn, can be filled
by another object which is not itself part of the host. Hollow spaces exist, whether
they are empty or not, i.e. whether they contain material objects such as d , a marble
or a bug. Using Definition 1 we could try to define the container c as everything
that is within the regions occupied by the material object b and the hollow space
h (Fig. 8.2 vi). But then we have the problem of how to distinguish between c in
case it is filled by d on the one hand and the whole object o on the other hand,
for the dice d included in h is located within the region of c and, according to
our definition, it will inevitably be included in the t-sum, as it lies inside its spatial
region. A filled container would, therefore, always be a different kind of thing than
an empty container. Moreover, we were not able to distinguish between the container
and the container plus its content. That is, according to our example (as d is inside
h) the following holds:
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Fig. 8.2 The figure shows different (partly overlapping) objects that can be composed out of a
box b (i) and a dice d (ii). The immaterial hollow h (iii) is the space enclosed in b. These three
elements can be combined in different ways: (iv) shows the t-sum of the material parts b and d ; (v)
shows the t-sum of the material parts b and d and the immaterial h; (vi) shows the container c as
the ti-sum of b and h that excludes d even if it is included in b. The grey mark signifies that both
the spatial region and the matter situated in it belong to the object in question, while the chequered
area signifies that only the spatial region belongs to the object, but not the matter contained in this
region

t-sum.b; h/ D t-sum.b; h; d/ (8.7)

This shows that the t-sum does not satisfy our purpose because it always adds the
included entity to the container. We can avoid this by defining a sum that excludes
the material includees of immaterial includers (ti-sum):

Definition 2. Let s1; : : : ; sn be material or immaterial objects. S is the ti-sum of the
summands s1; : : : ; sn if and only if S comprises any space occupied by some of the
summands and the totality of matter that is located at this space except the matter
located inside of immaterial summands.

In contrast to proposition 8.7 above that holds for the t-sum, the following hold for
the ti-sum:

ti-sum.b; h/ ¤ ti-sum.b; h; d/ (8.8)

c D ti-sum.b; h/ (8.9)
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This means that the ti-sum allows to adequately describe containers. We are
now able to distinguish between aggregations of material objects, containers as
aggregations of material objects with spaces, regardless of whether the spaces are
occupied, and aggregations between material objects, their spaces and the fillers of
the spaces.

These distinctions are hugely important for describing material biological entities
from cell components to organisms. What, for example, is a skull? Just as the box
b encloses h (Fig. 8.2), the cranial bones and tissues enclose the cranial cavity.
And just as the container c, cranial bones and cranial cavity (together with other
immaterial parts) make up the skull. Like c as a container for d , the skull is, thus, a
container for the brain, and just c and d constitute o, the skull and the brain (together
with other material and immaterial entities) constitute the head.

As mentioned before, it is typical for biological objects that they contain hollow
spaces. In fact, the invention of a membrane that encloses a hollow, thus allowing
the distinction between an inside and an outside, seems to be one of the crucial
innovations in the evolution of life. Every cell has a cell lumen, and there are plenty
of vescicles with an inside in the cell. In multicellular organisms, hollows are part
and parcel of the anatomy, like the inside of the bladder, the lumen of the aorta,
the heart chambers and so on. These spaces are inside containers, and most of these
spaces are in fact filled with material entities. These material entities are, however,
not part of the container in question: what is inside the skull is not part the skull,
the content of the bladder is not part of the bladder, and the content of the aorta is
not part of the aorta. To generalise, things included in a container are not part of the
container but contained in it.

There are many more examples that suggest themselves as clear cases of mere
containment as opposed to parthood:

• If Mary swallows a glass marble, this marble does not become a part of her
stomach, but is only contained in it because the marble existed before swallowed,
it is expected to be expelled, it is not a biological object, it is not physically
connected to her stomach and it does not have any function in her stomach. Even
if it remains jammed in some body structure, it is not part of it. Also, if a milk
tooth were swallowed instead of the marble, it would not be considered to be a
part of the stomach either, although the tooth would be an object of biological
origin, originating even in the same body.

• Similarly, a cotton wool pad in my mouth during a dental treatment is contained
in my head, but not part of it because the pad existed before, the pad remains
only for a short time in the head, it is not physically connected to my head and
although it has a specific function while located in my oral cavity during the
treatment, this is not a physiological function.

• My oral cavity does now contain a certain amount of saliva, which is not a part
of it. This is because a cavity is an immaterial object, whereas saliva is a material
object and an immaterial object cannot possibly have a material part.

We have thus identified inclusion in the immaterial hollow of a container as a
sufficient condition for containment. To be sure, this is a very local criterion. But as a
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Table 8.3 Types of complex entities

mono-sortal multi-sortal

flexible re. number “flexible collectives” “flexible compounds”
(e.g., a portion of water) (e.g., a hand)

strict re. number “strict collectives” “strict compounds”
(e.g., a pair of kidneys) (e.g., a water molecule)

sufficient condition for containment it is also a sufficient condition against parthood.
It should, however, be noted that we can only somewhat tautologically infer non-
parthood with respect to the container itself. It is possible that the container is both
a body part and containing other body parts. It is only excluded that the container
contains container parts, i.e. parts of itself. The blood included in the aorta, for
example, is not part of the aorta. It is, however, part of the body of which the aorta
is also a part.

8.3.2 Collections and Compounds

More parthood relations can be drawn from subrelations of part-of. In Jansen and
Schulz (2011), we distinguished different kinds of complex entities based on the
parthood relation (Table 8.3). A collective is the sum of one or more grains that
are all instances of the same type, while a compound is the sum of one or more
components that may be of different types. A portion of water can be regarded
as a collection of grains of the same type, namely H2O molecules, while a H2O
molecule is a compound of two hydrogen atoms and one oxygen atom. A complex
is strict if numbers of parts matter; it is flexible if they do not. E.g., adding an
oxygen atom to a water molecule would turn it into a hydrogen peroxide molecule;
the molecule would cease to be a water molecule. On the other hand, a portion
of water would remain a portion of water if more H2O molecules were added,
and a flock of sheep would remain a flock of sheep if more sheeps joined. Both
collectives and compounds are given by the summation of non-overlapping material
components. We introduce the relation has-grain for relating collectives with their
elements and has-component to connect compounds with their components. As
exemplified in the toy example, the region covered by a component may include
immaterial entities, but whether what is contained by this space is ignored or not
will depend on our definition, just as we can decide whether the dice d or only the
space h belongs to the box in Fig. 8.2. As pointed out in Jansen and Schulz (2011),
the classification depends on the specificity of the sortal distinctions: If the right and
the left kidney are considered as two different sorts, then a pair of kidneys would be
a strict compound instead of a strict collective. The cardinality criterion (i.e. strict
vs. flexible in number) allows the inference that, if we take away one component of
a numerically strictly defined entity, it becomes an entity of a slightly different sort,
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often a defective entity. For instance, if a pawn has been taken away from a complete
set of chess pieces, the remainder will no longer be of the type “complete chess set”.
Similar examples would be the extraction of a tooth, a fingernail, the tonsils or an
eye lens.

There are also compounds of collectives, such as mixtures or solutions. A mixture
of water and ethanol is a compound of exactly two components, i.e. the water
fraction and the ethanol fraction. Either fraction is a collection of H2O or C2H5OH
molecules, respectively. In biology, more complex compounds of collectives are
tissues and body substances. Now compounds are generally expected to have their
components clearly delimited from each other, whereas in biological systems,
especially in larger anatomical structures, the exact boundaries of an object have to
be drawn by fiat. The kidneys, for example, are connected to other body structures
by tubular structures (vein, artery, ureter) which do not display any discontinuity
that would demarcate the boundary of the kidney. In principle, it would be possible
to extend the application of the term “compound” to objects that are structured by
fiat divisions, such as the brain that is anatomically divided into the right and the left
hemisphere. However, as this is in tension with the intuitive idea of composition, we
prefer to introduce the relation has-fiat-division for these cases.

All of the three newly introduced relations are specialisations of inclusion,
therefore:

has-grain.I; i; t/! includes.I; i; t/ (8.10)

has-component.I; i; t; p/! includes.I; i; t/ (8.11)

has-fiat-division.I; i; t; p/! includes.I; i; t/ (8.12)

As there are many possible fiat divisions and often several ways to decompose a
compound, we add the partition scheme p as a fourth argument of the relations
has-component and has-fiat-division. For instance, we can consider all atoms of a
small organic molecule as its components, but also its carbon chain and its functional
groups. In any of these two partitions, the typical characteristics of a compound are
preserved: the components do not overlap and the whole is of a different type if one
of its components is missing. The relation has-grain is, by definition, intransitive,
as are has-component and has-fiat-division, once the partition scheme p is hold
fixed. With the help of these three subrelations of has-part, we can expose some
non-contentious parthood and containment cases:

• First, if a certain H2O molecule is a grain of a certain amount of H2O, it
is obviously one of its parts. This is an instance of the general has-grain
relationship between a collection and its grains, as introduced above. The
argument that all grains are parts of the collection derives from the fact that
a collection is grounded in its elements, i.e. it ontologically depends on them.
Although the removal of just one grain generally does not affect the identity and
sortality of the collection (mind the looming Sorites paradox!), there is nothing
on which the collection depends and which constitutes the collection apart from
its grains.
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• The relation between my right femur and my skeleton is an example for the
relation between a component and a compound. The sortality of the compound
depends on the completeness of its components. This would support the claim
to axiomatically state that all component-compound relations are parthood
relations.

• The relation between the lower third of my oesophagus and the oesophagus is
an example for the relation between a fiat part and its whole. By definition, fiat
divisions are parts of their wholes. With fiat parts, the whole is, in a way, prior to
the parts.

• The relation between my brain and my body is another case of the relation
between an anatomic component and the human body as a compound. Here, an
even stronger case can be made for parthood: My brain is now part of my body
because (i) both are physically connected, (ii) my body does not function without
my brain, (iii) my brain does not function without my body, and (iv) my brain’s
function cannot be substituted by any other object. (It can, however, be spatially
separated from my body and it could also outlive my body, but given the present
state of art in medicine, it will no longer be functional in this case.) Another
argument would be that a brainless body would be an entity of a different sort.
Whether the brain is a component of the body in the above sense depends on how
it is divided into different, non-overlapping components.

8.4 Some Possible Axioms

In effect, the hard criteria we found are either categorial criteria or derive from
the logical properties of specific subrelations of has-part. Such criteria refer,
among other things, to the ontological categories of includer and includee. We
will now formulate some axioms for biological parthood based on such categorial
distinctions. In these axioms, we refer to the following categories as top-level types
of entities using the three-letter type names given here:

• MAT: material object, e.g. a cell, a molecule, an organ, the intestinal mucosa.
• CPD: compound, i.e. it implies a well-defined number, type, and arrangement of

elements. If one part is missing, the compound is incomplete. For instance: my
lens is a component of my eye.

• CON: container. A container has a 3-D immaterial part, the possible contents of
which are not part of the container. An example is the cranium, which has the
cranial cavity as an immaterial part.

• COL: collection of grains of the same type, the exact number of which is
irrelevant, e.g. the cells in an early embryo before differentiation, or the water
molecules in a litre of water. Collections are typically homomereous, i.e. they
have proper parts of the same type.

• MFI: material fiat object, i.e. an object that is divided by a fiat (arbitrary)
boundary from a larger includer. An example is the lower third of the oesophagus.
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• ART: non-biological artefact. It means that it is the output of a manufacturing
process and does not engage in metabolic exchange with biological objects.

• SEL: self-connected object. I.e. an uninterrupted line can be drawn between any
two points within the region of the object. Abutting of subunits of the object is
sufficient; there is no requirement for strong chemical bonds.

• IMT: immaterial object. Example: three-dimensional hollow space. As illustrated
in Fig. 8.2, hollow spaces necessarily have a “host”. Holes are part of their hosts
(Smith et al. 2013, 2005). Immaterial objects can also have fiat boundaries.
Example: the lumen of the lower third of the oesophagus.

• SPR: spatial region, i.e. a three-dimensional portion of space.

We will now formulate some axioms for biological parthood based on such
categorial distinctions.

For a start, immaterial (IMT) includers do not have material (MAT) parts. Hence,
if an instance of MAT is included in an instance of IMT, it must be contained
therein. If, e.g., the cavity of my stomach includes a portion of food, it contains
that food. The lumen of my aorta includes a portion of blood; therefore it contains
it. In general:

.includes.I; i; t/ ^ instance-of.I; IMT; t/ ^ instance-of.i;MAT; t//

! contains.I; i; t/
(8.13)

has-part.I; i; t/ ^ instance-of.i;MAT; t/! instance-of.I;MAT; t/ (8.14)

Following these patterns, we can formalize the following restrictions:

• A material object can only be part of material objects; it cannot be part of an
immaterial object or a spatial region.

• An immaterial object can be part of a material or an immaterial object, but it
cannot be part of a spatial region.

• A spatial region can only be part of spatial regions; it cannot be part of a material
or immaterial object.

Containers are material entities and have at least one immaterial part. An aorta, for
example, is such a container; it has an immaterial part, i.e. its lumen. Hence, the
existence of a container implies the existence of an immaterial part:

instance-of.I;CON; t/! 9i.has-part.I; i; t/ ^ instance-of.i; IMT; t// (8.15)

Conversely, not every material entity that has immaterial parts is a container and
not every includer of a container contains what is in the container. For instance, my
aorta is a body part that is a container for some portion of blood. This portion of
blood is, therefore, not part of my aorta. However, the blood is part of my body, as
well as the aorta and its lumen.
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Further restrictions follow from the properties of the relations has-grain, has-
component and has-fiat-division, which are specific subrelations of has-part.
Because of this subrelation property we can state:

has-grain.I; i; t/! has-part.I; i; t/ (8.16)

has-component.I; i; t; p/! has-part.I; i; t/ (8.17)

has-fiat-division.I; i; t; p/! has-part.I; i; t/ (8.18)

Of these, has-grain holds between a collective and its grains, has-component
between a compound and its components and has-fiat-division holds between a
thing and its fiat parts (i.e. parts existing due to human fiat). In contrast to has-part,
each of these relations is asymmetric and none of them is reflexive or transitive.

As a consequence of formulae (8.16), (8.17) and the transitivity of has-part, a
grain of a component of a compound is also a part of this compound. For instance,
a water molecule of a water/ethanol mixture is a part of this mixture. Also, if we
regard the totality of water molecules as a component of the cytoplasm of a cell,
then each individual water molecule is also part of it (and of the cell if we regard
the cytoplasm as a component of the cell).

Collections and compounds may comprise sub-collections and sub-compounds.
Although these are not grains or components of their includer, they can be
considered parts of it. For this it is, however, necessary that all grains of the sub-
collection or all components of the sub-compound are also grains or components of
the original includer. For example, the collection of all mitochondria in my liver is
a part of the collection of mitochondria in my body.

.instance-of.I;COL; t/ ^ instance-of.i;COL; t/

^8x.has-grain.i; x; t/! has-grain.I; x; t///

! has-part.I; i; t/

(8.19)

.instance-of.I;CPD; t/ ^ instance-of.i;CPD; t/

^:9p.has-component.i; x; t; p/! has-component.I; x; t; p///

! has-part.I; i; t/

(8.20)

We can also try to formalise the functional intuitions connected with the part-for
relation: If an entity i only realises its function when included in an instance of
ITYPE and if it is presently included in I , which is actually an instance of ITYPE,
then i is a part of I . As we said, an ion channel protein is a part-for a cell
membrane and if such a protein is actually included in a certain cell membrane,
it is a part of it. However, a cardiac pace maker is also a part-for a human body and
similar arguments could be brought forward for xenografts (e.g. a baboon heart to
be transplanted to a human child). As these cases are more contentious, we exclude
from this criterion all artefacts and xenogeneic material, i.e. material from different
species:
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.part-for.i; ITYPE/ ^ instance-of.I; ITYPE; t/ ^ includes.I; i; t/

^:instance-of.i;ART; t/ ^ :xenogeneic.I; i; t//! has-part.I; i; t/
(8.21)

In a similar way we can now formalise the intuitions connected with the whole-for
relation. According to this intuition, i is part of I if i is included in I and if i is
an instance of iTYPE and if I needs some instance of type iTYPE in order to realise
its function. For instance, the cell membrane needs ion channel proteins in order to
realise its function. Hence, this intuition says, the ion channel proteins are part of the
membrane. We need, however, to be careful to not overgeneralise this criterion, for
a car does not only rely on its motor and wheels (which are all among its parts), but
also on petrol (which is not one of its parts). Similarly, the stomach cannot realise
its function without food and the lungs not without air to breathe. Petrol, food and
breathing air are all taken into their includer by way of containers: The petrol tank
is a container for petrol as the stomach is a container for food. Hence, we should
not extend the criterion to things that are included in a container that is part of the
includer. However, we must not exclude all such things, for the aorta is a container
for blood, but the blood contained in the aorta is, nevertheless, a part of the body.

Again, we exclude artefacts from the criterion. Otherwise, we would be forced
to admit that a drug that keeps alives a biological entity is also part of that entity:

.whole-for.I; iTYPE/ ^ instance-of.i; iTYPE; t/ ^ includes.I; i; t/

^:9c.instance-of.c;CON; t/ ^ part-of.c; I; t/ ^ includes.c; i; t//

^:instance-of.i;ART; t//! has-part.I; i; t/

(8.22)

8.5 Discussion

8.5.1 Relevant Inferences

It is mostly the combination of compounds and collections which helps to clarify
important issues: For instance, a single calcium channel is part of a cell membrane
because the whole collection of calcium channels of which it is a grain is necessary
for the functioning of the membrane (cf. (8.16)), and is, therefore, part of the
membrane. The parthood condition of the single molecule then derives from the
transitivity of the part-of relation. We do not assert that the portion of urine that
is included in the bladder is a part of the body because neither the urine has any
function in the bladder nor does the body’s functioning depend on the urine. To the
contrary: The urine has to be discarded regularly. This is different for the portion
of blood in the body because it has clearly described functions in the body and the
body could not function without it. Even a small amount of blood would be part of
the body because it constitutes a fiat division of the entire blood and is therefore part
of the latter.
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Our axioms also solve the puzzle of the virus that is gradually digested by a cell as
depicted in Fig. 8.1. As long as the virus is dismantled to viral protein molecules or
fragments, these are contained but not parts. However, if these macromolecules are
split into small molecules such as amino acids or nucleic acid monomers, these are
no longer distinguishable from, e.g., the collection of alanine or cytosine molecules
that were already included in the cell before. The collections of these molecules are
functionally relevant for the cell’s functioning; therefore, a given monomer becomes
part of the cell as soon as it is no longer part of any of the viral molecules.

With regard to drugs, it is, therefore, also decisive for parthood whether a
single drug molecule is identical to any member of any molecule collection that
forms a component of a biological entity such as a cell, an organ or an organism.
For example, the collection of all insulin molecules in an organism constitutes a
functionally important component of the organism. In the case where a diabetic
receives injections of biosynthetic human insulin, these molecules – as they are
indistinguishable from the organism’s own insulin molecules – become parts
of the body. In contradistinction, porcine insulin molecules in a human’s body
would be merely located in it. A clear fiat division was introduced regarding
xenogeneic material, whereas allogeneic and autogeneic materials are allowed to
be parts. Examples are venous autografts, such as coronary bypasses, which fulfil
an important function for the heart and are, therefore, parts of it, as well as blood
transfusions.

8.5.2 Trade Offs and Boundary Issues

For those cases not resolved by the above criteria, several trade-offs and boundary
issues can be identified. For example, the function of a tooth is restored by an inlay
artefact. According to formula (8.21), it would not be part of the tooth. This is
quite intuitive for clearly identifiable materials which do not naturally occur in
biological systems, like gold or amalgam. However, it would be less clear for certain
composites that do not just fill a hole, but result in an aesthetically nearly complete
restoration; such a material could be composed, in large part, of mineral components
very similar to those contained in dentin and enamel. Another case is given with
allogeneic and xenogeneic material included within a biological entity. The more
this material contributes to the overall function the more it should be accepted as a
part. Note that we stay content here to present this situation as a graduality of reasons
for parthood. Some authors, like Buddensiek (2006) and van Inwagen (1990), infer
that the parthood relation itself is a gradual affair.

A “soft” criterion is physical connection, which is not used in any of the above
rules. The more an object is connected to its surrounding structure, the more it
would be considered a part, even if other criteria could be used to argue against
it. The encapsulated bone splinter in a muscle would be less a part of the muscle
than the invasive brain metastasis, which is tightly connected by blood vessels and
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tissue fibres to the surrounding brain tissue. The function criterion could also be re-
formulated in the following way: If the malfunction of an includee does not impact
the function of the includer, this would be suggestive of containment. However, this
criterion will not hold if levels of granularity are crossed: Even in a healthy organism
there are always dysfunctional cells and molecules.

8.5.3 The Importance of the Components of a Compound

Many entailments change if the whole, e.g. a complete organism, is defined in
a different way. For instance, if we look at the human body as a ‘holobiont’,
i.e. as the sum of all genetically human parts plus the microbiome, i.e. the
genetically alien intestinal bacteria, then the latter would be part of the body, even
independently of their function, just by virtue of our definition. Whereas the foetus
requires the mother’s organism to function, this not true the other way round;
therefore, formula (8.22) applies and parthood is not asserted because the foetus
is allogeneic. Examples include molecules, which are compounds of atoms with a
certain structure. These atoms and nothing else belongs to the molecule. Similarly,
a cell might be seen as a compound of their organelles and a body consists of a
given set of parts. Considering the depiction of a canonical organism, these parts,
and nothing else, are the anatomic entities of a canonical body.

8.5.4 Is the Inclusion Condition Empty?

In this paper, our fundamental assumption was that parthood implies inclusion. All
parts, that is, are of necessity located within the whole. Then we asked how we could
possibly distinguish between includees that are parts and those that are not, i.e. mere
containees. Our result was that this is a very difficult endeavour. Hence it could be
asked whether it might have been a cul-de-sac from the beginning. Here is a reason
that could be given for that kind of skepticism: A standard assumption of standard
mereology is universalism, according to which for any two arbitrary entities that
co-exist at a certain time there exists an entity, their so-called mereological sum,
which contains both of them as its parts (Rea 2008). Hence, for any water molecule
and any cell, say, there is a mereological sum cell + molecule and, trivially, that
water molecule is part of this sum. Such a sum exists for any arbitrary molecule;
any such molecule can be regarded to be part of such a sum that is roughly the
same as the cell in question. But this does not answer the question whether a certain
molecule is part of a certain cell. Somewhat trivially, according to universalism
there is always an entity that comprises the cell and the molecule such that the
molecule is part of this whole, namely the mereological sum of the cell and this
molecule. In contrast, van Inwagen (1990) posits that there are only material simples
and organisms; nothing else really exists. Hence neither molecules nor organs are
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part of the body, as neither molecules nor organs really exist. This position is far too
radical to capture adequately the biomedical domain, as most commonly purported
biological parts seem to vanish into ontological irrelevance.

Even if we reject van Inwagen’s position and embrace mereological universalism,
the basic assumption of this paper could, nevertheless, seem to be wanting. It might
be true, or so it could be objected, that parthood implies spatial inclusion, but this
does not rule out the parthood of anything.

If, say, the island Helgoland is a part of Germany, then Germany simply extends
as far as Helgoland. If it were not, Germany would simply not extend thus far.
The implication of spatial inclusion might be valid, that is, but uninformative.
Nevertheless, this is only part of the story, for in many cases we have independent
evidence of the spatial borders of certain biological entities: Atoms and molecules
are bounded by electron shells, cells and organelles are bounded by membranes
and organisms are bounded by their epidermis (their skin). However, these (three
dimensionally extended) borders are not without difficulties:

• Not everything within these borders is necessarily a part of the includer in
question: If we shoot alpha particles through a cluster of atoms, this particle does
not become part of any of these atoms. If a child swallows a marble, the marble
does not become part of the child.

• There might even be cases where different entities co-exist within the same
border. Atoms in a crystal structure, for example, share their electron shell at
least partially. Siamese twins live within the same epidermis.

• The borders are fuzzy. To start with, electrons do not have a crisp location. While
the skin is a clear border on the macro-level, it becomes an unequal surface with
many holes when seen at the cellular or sub-cellular level.

However, if borders are set this way, another question arises: Is the basic assumption
of this paper really true? That is, is the inclusion criterion necessary for biological
parthood? If we take the location criterion in a strict sense, it implies that anything
ceases to be part of a body once it leaves the boundary of the epidermis. E.g., a
portion of blood flowing through a dialysis machine would cease to be part of the
body while flowing through the pipes and tubes of the machine and, eventually,
upon re-entering the body, become part of it again. This might be counterintuitive.
Whoever wants to discard the necessity of inclusion for parthood may nevertheless
benefit from the results of this paper, for it still answers the question: In which cases,
if any, can we ascertain biological parthood given that something is included in a
biological entity?

8.6 Conclusions

In this paper, we have studied parthood and containment in biology. The objective
was to find criteria for inferring from a given spatial inclusion relation that holds
between two biological objects i and I , whether i is part of I or whether i is merely
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contained in I . Our approach is built on a precursor study (Schulz et al. 2005),
which, however, has not proved practicable, as it is based on difficult primitives
like function, integrity and genetic sameness, and on criteria that have not been
sufficiently introduced so as to constitute a solid basis for empirical investigations
as the authors suggest. In our paper, we have attempted to work out more refined
criteria and submit them to a more rigorous scrutiny. The most notable difference
is that (Schulz et al. 2005) regards continuous historic inclusion as a criterion
for parthood of genetically identical material, even in case it is functionally not
relevant. According to that proposal, urine and other body substances would be
part of the body wherever they are located within the body, as well as misplaced
pieces of body matter in uncommon body locations, e.g. as a result of traumatic
changes of structure. On the other hand, only artefacts are a priori rejected as parts,
whereas xenogeneic entities are allowed as long as they are functionally relevant. In
contrast, we propose that there is an, admittedly, arbitrary line between allogeneic
and xenogeneic materials. There is also a fuzzy distinction regarding the criterion of
“entities of the same sort”, which is crucial for regarding something as a collection:
If “collection of insulin molecules” is regarded as a component of a body, then
a non-human insulin molecule is a body part, in contrast to a refined “collection of
human insulin molecules”. We also admit that the functionality criterion may exhibit
borderline cases.

There are unexplored waters between the islands of parthood and containment.
They will remain even if we artificially enlarge the islands. There are soft criteria
that may conduce that a certain scenario tends to parthood or to containment. Any
delimitation that improves ontological purity may seem problematic if we want to
align ontology with human language and cognition. One could argue, of course,
that ontology has nothing to do with human language or cognition. However, if
ontological divisions appear cognitively plausible, this will improve the usability
and acceptance of ontologies and will probably also reduce the errors that may be
committed. It would therefore be useful to submit the axioms proposed in this paper
as a plausibility check, i.e. a user rating based on real-world examples.

Acknowledgements We very much thank Maureen Donnelly and Marie Kaiser for detailed
comments on previous versions of this paper.

References

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P.,
Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A.,
Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000).
Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature
Genetics, 25(1), 25–29.

Beisswanger, E., Schulz, S., Stenzhorn, H., & Hahn, U. (2008). BioTop: An upper domain ontology
for the life sciences. A description of its current structure, contents and interfaces to OBO
ontologies. Applied Ontology, 3(4), 205–212.



8 Crisp Islands in Vague Seas: Parthood Relations in Biology 187

Bittner, T. (2004). Axioms for parthood and containment relations in bio-ontologies. In U. Hahn
(Ed.), Proceedings of the KR 2004 workshop on formal biomedical knowledge representation,
Whistler (Volume 102 of CEUR workshop proceedings).

Buddensiek, F. (2006). Die Einheit des Individuums. Eine Studie zur Ontologie der Einzeldinge.
Berlin: Walter de Gruyter.

Casati, R., & Varzi, A. (1999). Parts and places. The structure of spatial representation.
Cambridge: MIT.

Donnelly, M. (2009). Mereological vagueness and existential vagueness. Synthese, 168(1), 53–79.
Donnelly, M. (2011). Mereological mereological principles to support metaphysics. The Philo-

sophical Quarterly, 243(61), 225–246.
Grenon, P., & Smith, B. (2004). Snap and span: Towards dynamic spatial ontology. Spatial

Cognition and Computation, 4(1), 60–103.
Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V.,

Owen, G., Turner, S., Williams, M., & Steinbeck, C. (2013). The ChEBI reference database and
ontology for biologically relevant chemistry: Enhancements for 2013. Nucleic Acids Research,
41(Database issue), D456–D463.

Horrocks, I., Rector, A., & Goble, C. (1996). A description logic based schema for the classification
of medical data. In Baader, F., Buchheit, M., Jeusfeld, M. A., & Nutt, W. (Eds.). (1996)
Proceedings of the 3rd workshop on knowledge representation meets databases (KRDB’96),
Budapest, August 13, 1996. CEUR-WS.org 1996 CEUR Workshop Proceedings. http://ceur-
ws.org/Vol-4/.

International Health Terminology Standards Development Organisation (IHTSDO). (2013).
SNOMED CT. http://www.ihtsdo.org/snomed-ct.

Jansen, L. (2013). Artefact kinds need not be kinds of artefacts. In C. Svennerlind, et al. (Eds.),
Johanssonian investigations. Essays in honour of Ingvar Johansson on his seventieth birthday
(pp. 317–337). Frankfurt: Ontos.

Jansen, L., & Schulz, S. (2011). Grains, components and mixtures in biomedical ontologies.
Journal of Biomedical Semantics, 2(Suppl. 4), S2.

Johansson, I. (2004). On the transitivity of the parthood relations. In H. Hochberg & K. Mulligan
(Eds.), Relations and predicates (pp. 161–181). Frankfurt: Ontos.

National Library of Medicine. (2013). Medical Subject Headings (MeSH). http://www.nlm.nih.
gov/mesh/. Last visited 2013-10-26.

Rea, M. C. (1995). The problem of material constitution. The Philosophical Review, 104(4),
525–552.

Rea, M. C. (2008). In defense of mereological universalism. Philosophy and Phenomenological
Research, 58(2), 347–360.

Rosse, C., & Mejino, J. L. (2008). The foundational model of anatomy ontology. Anatomy
ontologies for bioinformatics. Computational Biology, 6, 59–117.

Schark, M. (2005). Lebewesen versus Dinge. Berlin: Walter de Gruyter.
Schulz, S., Daumke, P., Smith, B., & Hahn, U. (2005). How to distinguish parthood from location

in bio-ontologies. In P. C. Friedman (Ed.), AMIA 2005 – Proceedings of the annual symposium
of the American Medical Informatics Association. Biomedical informatics: From foundations to
applications to policy, Washington, DC (pp. 669–673).

Schulz, S., & Hahn, U. (2002). A knowledge representation view on biomedical structure
and function. In I. S. Kohane (Ed.), AMIA 2002 – Proceedings of the annual symposium
of the American Medical Informatics Association. Biomedical informatics: One discipline,
San Antonio, 9–13 Nov 2002 (pp. 687–691). Philadelphia: Hanley & Belfus.

Schulz, S., & Hahn, U. (2005). Part-whole representation and reasoning in formal biomedical
ontologies. Artificial Intelligence Medicine, 34 (3), 179–200.

Schulz, S., & Hahn, U. (2007). Towards the ontological foundations of symbolic biological
theories. Artificial Intelligence in Medicine, 39(3), 237–250.

Schulz, S., & Johansson, I. (2007). Continua in biological systems. The Monist, 90(4), 499–522.
Schulz, S., Kumar, A., & Bittner, T. (2006). Biomedical ontologies: What part-of is and isn’t.

Journal of Biomedical Informatics, 39(3), 350–361.

http://ceur-ws.org/Vol-4/
http://ceur-ws.org/Vol-4/
http://www.ihtsdo.org/snomed-ct
http://www.nlm.nih.gov/mesh/
http://www.nlm.nih.gov/mesh/


188 L. Jansen and S. Schulz

Simons, P. (1987). Parts. Oxford: Clarendon.
Smith, B., Almeida, M., Bona, J., Brochhausen, M., Ceusters, W., Courtot, M., Dipert, R.,

Goldfain, A., Grenon, P., Hastings, J., Hogan, W., Jacuzzo, L., Johansson, I., Mungall, C.,
Natale, D., Neuhaus, F., Petosa, A., Rovetto, R., Ruttenberg, A., Ressler, M., & Schulz, S.
(2013). Basic formal ontology 2.0. Draft specification and user’s guide. http://purl.obolibrary.
org/obo/bfo/2012-07-20/Reference. Last visited 2013-10-26.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L. J., Eilbeck, K.,
Ireland, A., Mungall, C. J., OBI Consortium, Leontis, N., Rocca-Serra, P., Ruttenberg, A.,
Sansone, S. A., Scheuermann, R. H., Shah, N., Whetzel, P. L., & Lewis, S. (2007). The OBO
foundry: Coordinated evolution of ontologies to support biomedical data integration. Nature
Biotechnology, 11, 1251–1255.

Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall, C., Neuhaus, F.,
Rector, A., & Rosse, C. (2005). Relations in biomedical ontologies. Genome Biology, 6(5),
R46.

Smith, B., & Varzi, A. C. (2000). Fiat and bona fide boundaries. Philosophy and Phenomenological
Research, 60(2), 401–420.

van Inwagen, P. (1990). Material beings. Ithaca: Cornell University Press.
Varzi, A. C. (2006). A note on the transitivity of parthood. Applied Ontology, 1, 141–146.
Varzi, A. C. (2014). Mereology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy

(Spring 2014 ed.). http://plato.stanford.edu/archives/spr2014/entries/mereology.
Vogt, L., Grobe, P., Quast, B., & Bartolomaeus, T. (2012). Fiat or bona fide boundary – A matter

of granular perspective. PLoS ONE, 7(12), e48603.

http://purl.obolibrary.org/obo/bfo/2012-07-20/Reference
http://purl.obolibrary.org/obo/bfo/2012-07-20/Reference
http://plato.stanford.edu/archives/spr2014/entries/mereology


Chapter 9
Developing the Mereology of Chemistry

Jean-Pierre Llored and Rom Harré

9.1 Introduction

The mereology set out by Paul Needham in Needham (2005) deals only with
principles of reasoning about mass substances. A bucket of brine is part of the
sea, a gold ring is part of the extended substance ‘gold’. While these mereologies
are interesting for the most part, chemistry has drawn on a mereology of parts and
wholes where the parts are capable of independent existence when abstracted from
the whole in which they have been resident, and preserve their identity when related
with other such parts in constituting the whole. Along with this part-whole layout
has been a simple explanatory theory-style – the behavior of chemical wholes is
explained by reference to constituents and the relations between them that create
wholes. Some of these relations must be invariant if the whole is to count as a
chemical entity, say a molecule. There is a further aspect of this Boylean mereology
– the results of certain analytical manipulations conducted on samples of the
substance in question are not only products of the manipulation but also constituents
of the wholes from which they have been derived. The physics of chemical states,
entities and processes suggests that this mereology is overly simplistic. Electrons
are not parts of atoms in the way that legs are part of horses though saddles are
not; or bucket of brine parts of the sea while water spouts are not. No doubt
atoms afford electron phenomena but it is a more hazardous step to infer that
they are constituents of atoms in the form that they are manifested in the complex
complementarity phenomena characteristic of analyses that are sufficiently refined
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to reveal them. We have argued that it is more in keeping with the metaphysics
implicit in the development of the idea of molecular orbitals to introduce the
concept of ‘affordance’ to describe this level of analysis. Atoms afford electrons
but this does not entail that electrons are constituents of atoms, rather the contrary
(Harré and Llored 2013). In this paper we propose to take these insights further in
investigations of the ontologies implicit in more physically sophisticated ways of
presenting chemical phenomena.

9.2 From Chemical Practices to Mereology:
A Methodological Choice

We want to track the developments in chemistry in relation to the presumptions of a
variety of mereologies. In doing so, we will first scrutinize what chemists currently
do when they synthesize, purify, and analyse a molecule or a material. We will thus
point out that chemists develop different whole/parts discourses to explain and to
predict the reactivity of a novel chemical body. In line with Denis Diderot (1754)
and the later Wittgenstein, we agree that a careful study of what people actually
do within the terrain of their activities is of importance and should be addressed
by considering their specific sites and goals. In this respect, we will highlight
some chemical practices – quantum chemistry, organic and materials synthesis,
and chemical analysis � and the parts/whole strategies related to them in order to
query how to connect a form of mereology with those practices. We will focus our
attention on:

1. Chemical theories and representations
2. Laboratory operations, and
3. Apparatus and instruments.

We aim at moving the instruments and experiments into the foreground of our work.
Our approach is not to apply a kind of mereology developed within another area
of human thought – physics, philosophy, logic, and biology – to chemistry, but
to identify the requisite contents that such a mereology must display in order to
fit chemical practices. We will then confront those requirements with the different
forms of mereologies available – Lewis, Simon, Lesniewski, Earley and Needham
– in order to draw some conclusions and to propose new refinements.

9.2.1 Quantum Chemists at Work: Parts, Wholes,
and the Environment

We propose a case study that we led in the laboratory DCMR at the French Ecole
Polytechnique in 2010 (Llored 2012). This laboratory aims at determining mech-
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anisms which account for molecular reactivity by means of quantum calculations
and instruments such as mass spectrometers or fluorometers. We discussed with
researchers and attended quantum calculations in order to understand better some
steps which are not really present within scientific papers. We wanted to meet
quantum chemists at work in order to talk with them about how they use wholes
and parts relations in order to carry out their calculations.

Kohn–Sham density functional theory – DFT – has become one of the most
popular tools in electronic-structure theory due to its excellent performance-cost
ratio as compared with correlated wave function theory, WFT. Within this theory,
the molecular space is divided into grids of cubes; researchers define an electronic
density for each point of this space. It is a holistic approach that enables quantum
chemists to calculate molecular geometry or total energy exhaustively thanks to
its electronic density – ‘�(r)’ under certain conditions. The total energy is in
consequence a functional of the electronic density, that is to say a function the basic
variable which is the electronic density function (Kohn et al. 1996). Approximations
are required because the exact electronic density cannot be reached.

This field of research aims at creating new density functionals with broader
applicability to chemistry by including, for instance, non-covalent interactions. The
crucial step is the calibration of new functionals against benchmark databases
or best theoretical estimates (Goerigk and Grimme 2010). The researchers of
the laboratory DCMR explain to us that a best estimate is the best theoretical
calculations available at the time of the calculation. This best estimate may be,
directly or not, connected to an empirical value. The whole system consists of data
bases and best estimates which are stabilized at a particular time. The whole network
is coherent; the results are highly interconnected and interdependent and depend on
what chemists previously learn from their experiments and their chemical reactions.

Let us just take an example to figure out what is at stake in the device of basic
functionals which are tools that enable chemists to carry out their calculations. The
most popular density functional, ‘B3LYP’, has some serious shortcomings among
which are its underestimation of barrier heights by an average of 4.4 kcal/mol.
This underestimation is usually ascribed to the self-interaction error – unphysical
interaction of an electron with itself – in local DFT (Zhao and Truhlar 2008).
Moreover, B3LYP does not allow us to model transition metals satisfyingly and
is totally inaccurate for interactions dominated by medium range correlation
energy, such as Van der Waals attraction, aromatic-aromatic stacking, and alkane
isomerization energies.

So what do they do to improve a functional and thus to solve this problem?
Truhlar and Zhao change parameters and include new ones while shaping a new

mathematical functional form that takes physical phenomena and chemical results
into account. In so doing, they design a new functional by trial and error. They
then use databases to appraise the reliability of a new functional within a defined
purpose. The whole work is pragmatic. As a matter of fact, two databases gather all
the thermodynamic quantities: (1) the data base ‘TC177’ is a composite database
consisting of 177 data for main-group thermochemistry including atomization
energies, ionization potentials, electron affinities, proton affinities of conjugated
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polyenes, and hydrocarbon thermochemistry, among others data; (2) ‘DBH76’
is database of 76 diverse barrier heights concerning for instance nucleophilic
substitution and hydrogen transfer. Truhlar and Zhao then discuss the performance
of new functionals for these databases, they conclude that functionals labeled ‘MO6-
2X’ and ‘MO5-2X’ are the ‘best performers’ for the main-group thermochemistry
and barrier heights. They propose cases study to exemplify their statement. The
isomerization energy of octane involves stereoelectronic effects; none of the
previous functionals gives the right sign for the isomerization energy from 2,2,3,3-
tetramethylbutane to n-octane. The functional ‘B3LYP’ gives an error of 10 kcal/mol
while ‘M05-2X’ predicts the right sign because this later allows a better description
of medium-range XC energies, which are manifested here as attractive components
of the non-covalent interaction of geminal methyl and methylene groups (Zhao
and Truhlar 2008). On the basis of 496 data in 32 databases, they recommend
different ‘best functionals’ designed for transition metal thermochemistry, main-
group thermochemistry, kinetics, and non-covalent interactions.

To sum-up, they change parameters before comparing their results to experiments
or with best theoretical estimates. They compare the performance of a functional
against previous ones and they then modify it again until a satisfying stabilization
is reached. The three main words to describe this activity are: (1) pragmatism, (2)
context-dependence, and (3) performativity.

How do quantum chemists then choose one functional from another to carry out
calculations?

The researchers from DCMR carried out a calculation in our presence. Choosing
a functional of electron density depends upon: (1) the necessary accuracy, (2) the
chemical system, and (3) the time of calculation. It also requires choosing a set of
functions called a basis to achieve calculations for each atom. The basis changes
according to the type of atoms, three main types are available depending on the
situation to describe. They can also pragmatically use those three types within a
linear combination according to the case. The basis also changes with other effects
such as diffusion, polarization, pseudo potentials for chore electrons, and the size of
functions – double, triple zeta. All depends on circumstances. There is no generality
within this work.

The functional and its relative basis set define a ‘level of calculation’. The
calculation process requires choosing a computer program such as Gaussian type or
Turbomole. An auto-coherent calculation can then start. Loops of calculations are
carried out until the whole values reach a convergent minimum value. If calculations
are not convergent, researchers can change the functional, the size of the grids,
and convergence thresholds in order to optimize geometry or to calculate molecular
energy. Each step reveals know-how, chemical culture, and pragmatic compromises.

Whatever the nature of the tools – molecular orbital, functional, and so on
– may be, the calculation always uses both the Variation Principle to minimize
the energy and the molecular structure which must have been determined by
means of experiments. The variation principle is a technical device which allows
researchers to calculate the lowest average energy. Beyond its technical aspect, the
very justification of this principle requires one to envisage the relation of the whole
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Fig. 9.1 Thiophenolate zinc complexes studied by Picot (2008, 164)

molecule with its environments – molecules, photons – in order to rationalize the
whole process. This interaction with the environment may be explicit or implicit
within the formalisms according to the case being studied. It depends on the
situation. The interaction with the solvent may thus also modeled and sometimes
taken into account. The very process of calculation thus holds together information
about: (1) the whole system – geometry that chemists first define from the outset
of the calculation, (2) the parts – a functional for each atom or groups of nuclei,
a molecular orbital, and so on, (3) and the solvent – that is to say what is outside
the whole. The calculation uses the three levels – the molecular whole, its parts,
and the environment called the solvent – at the same time in order to: (1) minimize
energy, (2) calculate an energy barriers, (3) determining a transition state, and (4)
for postulating a geometry by means of different levels of calculation, respectively.
One should bear this constitutive entanglement in mind before further discussion
about mereology.

The model of solvent is related to the salvation free energy of each compound.
This quantity is always defined as the required amount of energy necessary to
transfer a molecule of gaseous solute into the solvent. The crucial step is to appraise
how the solvent gets involved in a chemical reaction. Its action can be direct if some
molecules of solvent take part in the chemical process or indirect if the solvent –
then labeled the ‘bulk medium’ – only modifies reactants reactivity compared with
that of the same molecules in the gas phase.

A particular level of calculation – functional and its basis – is only designed to
reach a particular aim – final energy, geometry optimization, barrier height, and so
on – and excludes the others. One cannot study all the molecular characteristics
by means of a single level of calculation. When quantum chemists study the
energy barrier of a chemical reaction, they have to choose a functional, its basis,
and best estimates for each level – atoms, molecule, and the solvent. They thus
tailor a useful tool to understand and predict a defined characteristic and not the
other. ‘Complementary’ levels of calculation are thus necessary to achieve a global
molecular description. Let us just quote a typical part of quantum paper to grasp the
situation related to the following Figs. 9.1–9.3:

Calculations were performed with Gaussian 03. Geometry optimizations were conducted
using the B3LYP method at the 6-31 G(d,p) level for the B, N, C, O, S, H atoms. The
CRENBL relativistic effective core potential and the associated valence basis set were
employed to model the iodine atom. This basis set is referred to as BS1. Each stationary
point has been characterized with frequency analysis and shows the correct number of
negative eigenvalues (o for local minimum and one for a transition state). Energies were
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Fig. 9.2 Chemical transformation studied by Picot. The iodine replaces the substituent which
contains the sulfur (Picot 2008, 166)

Fig. 9.3 Optimized structure of the previous complex nı13 at the B3LYP/BS1 level. Bonds are
expressed in Angstrom. (Picot 2008, 166)

calculated for the stationary points at the B3LYP level using an extended basis labeled
BS2. It consists in the 6-311+G(2d, 2p) for B, N, C, O, S, H, the extended Wachters basis
[15s11p6d2f/10s7p4d2f] for Zn and the Aug-cc-pVTZ-PP basis set and pseudo-potential for
I. We have demonstrated previously that this level of calculation gives reliable geometries
and relative energies on zinc complexes (Picot 2008, ch. 5).

This typical calculation clearly illustrates what explaining a structure or a
mechanism, and what predicting a transformation amount to. Quantum chemists
use a lot of interrelated tools within a large and sophisticated network which
holds together mathematical functions and devices, empirical outcomes, computer
engineering, quantum and classical physics, and chemical knowledge and know-
how. They tailor highly specific methods to account for chemical transformation.
To do so, they use analogy between families of similar compounds. This work is
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utterly relational. Not only does it assemble multifarious tools within a coherent
and performative practice of articulation but it also entangles the molecule, its parts,
and its environment within the minimization of the total energy. Their method is
relative to a family of chemical compounds and depends on the entanglement of
inter-calibrated tools. Their method is a way and not the way to account for a
characteristic of the whole from its parts and its environment. In this respect, a
quantum method is a practice of articulation which negotiates an explanation of the
whole/parts relation (Stengers 2003). Isabelle Stengers asserts:

As soon as the question of emergence is at stake, the whole and its parts must thus co-define
themselves, and mutually negotiate what an explanation of the one from the others means1

(Stengers 2003, 207).

In quantum chemistry, the mereology used by chemists entangles the whole, its
parts, and, sometimes, its environment. It is not a classical transitive mereology in so
far as the whole interacts with its environments. It is not merely a holistic description
within which the whole is necessary to define the parts or the kinds of parts involved.
It is not merely a classical mereology that only needs the parts to define a whole
univocally. Quantum chemical practices need the whole, the parts, and the other
entities at the same time, that is to say, a molecular structure, atoms or nuclei and
electrons, and the solvent, respectively. Quantum methods are neither purely holistic
nor purely reductionist. They always negotiate the articulation of different levels of
description within a network which assembles chemistry, physics, computers, and
mathematics. Chemists have contrived specific methods within which the whole and
its parts are constitutively codefined.

Quantum chemists then classify compounds by means of chemical reactions,
say, by means of relations. This work fits what chemists have continued to do in
other areas of chemistry since the very beginning of this science. Relations remain
the cornerstone of chemical operations. The principles of alchemists, the table de
rapports of Etienne-François Geoffroy’s during the eighteenth century, the elements
of Mendeleev, the nanomachines of our present days, are as many examples of the
networks of interdependencies produced by chemists in order to act upon and to
explain matter. The whole needs other wholes to be defined, not just intrinsic parts.
In this respect, philosophers need a relational mereology not a classic one which
cuts off the whole from its environments.

Parts may differ. They can be atoms, electrons, nuclei, groups of atoms according
to the group theory approach, and so on. Methods of calculation can differ as well.
They can be based on molecular orbital, functional, or even consist of a hybrid of
the two. The whole can differ depending on the project involved. It can be either
a protein or an active site within it. It can also be a local complex with includes
some molecules of solvent or a metal ion into the structure. It is also possible
to model different parts with classical models while using quantum methods to

1Our translation of the French sentence: Dès qu’il est question d’émergence, le tout et les parties
doivent donc s’entre-définir, négocier entre eux ce que signifie une explication de l’un par les
autres.
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study others depending on the goal they wish to reach. The synchronic use of
incompatible models or methods depends on the scale of description involved. Is
there any ‘ground’ or ‘foundational level’ in this mereological scheme? Pragmatism
prevents quantum chemists from attributing a unique basic ground from which the
higher level chemical bodies derive or emerge. The pragmatic notion of levels of
calculation replaces that of levels of reality and of description.

In short, quantum chemists entangle the whole, its parts, and sometimes,
explicitly or not, its environment within the calculations. Quantum calculations
deal with types of patterns as possible values of contextual observables and not of
monadic properties. Electrons, nuclei, atoms, groups of equivalent nuclei according
to the NMR scale – an instrumental technique – or according to the group theory – a
cognitive tool, basins or attractors from the theory of electronic density standpoint,
are not intrinsic but are constituted by the modes of access involved. In this respect,
they are relational and not monadic.

Let us just develop further how quantum chemists can study a molecule-whole
using another quantum method, say, the molecular orbital approach. Mulliken
proposed an approach based on molecular spectroscopy. For example, rejecting
the interpretation of the concept of valence as an intrinsic property of the atom,
Mulliken opposed the use of ‘energy state’ deduced from molecular spectra on
the basis of an electronic configuration, i.e., of a distribution of the molecular
electrons in different orbits. According to Mulliken, each orbit is delocalized over
all the nuclei and can contribute, depending on each specific case, a stabilizing or
destabilizing energy contribution to the total energy of the molecule (Llored 2010).
For Mulliken, the atom did not exist in a molecule. There ensued the key semantic
shift from the concept of molecular orbit to that of molecular orbital. Mulliken
wrote: ‘By an atomic orbital is meant an orbital corresponding to the motion of
an electron in the field of a single nucleus plus other electrons, while a molecular
orbital corresponds to the motion of an electron in the field of two or more nuclei
plus other electrons’ (Mulliken 1932). This notion has been further refined to the
textbook definition of ‘orbital’ as ‘the region in which an electron is likely to be
found’ – whatever that is supposed to mean. The notion of probability for an electron
to belong to a particular volume replaces the notion of atoms as intrinsic parts. If
the criterion of identity for an atom or the ionic residue of such an atom is the
composition of the electron shells then these criteria could not be satisfied by the
components of a complex molecule. The relevant nuclei form a doublet which,
speaking in the accent of Mulliken, are a unit without parts, using the molecular
orbital theory of electrons as the criterion for an individual part (Harré and Llored
2011). A molecule does not have atoms or ions or even the nuclei of ions as its
parts. It does have nuclei duplets however, identified as molecular parts with respect
to molecular orbitals. Furthermore, new energy levels emerge within the molecular
whole that didn’t exist in the previous atoms. Mulliken proposes the concept of
electronic promotion to construe molecular electronic configurations fitting with
empirical data. A molecular electronic configuration is all but a ‘molecular part’
within this heuristic and holistic approach but a tool for prediction (Llored 2010).
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But we can go further and deeper if we consider the use of group theory based on
the logic of sets and subsets in such a molecular approach. Mulliken develops the
fragment method in 1933, two fragments can interact provided they have the same
kind of symmetry and that their energy gap, measured by spectroscopy, is not too
high. For the ethylene molecule ‘C2H4’ Mulliken considers two ‘fragments CH2’
and determines suitable molecular orbital by using the irreducible representations
of ethylene. He can thus propose a representation of molecular orbital of ethylene
by increasing order of energy as well as its correlation diagram thanks to those
of the two ‘fragments’. In so doing, he grasps all the characteristics of molecular
orbital diagram of the ethylene molecule (Mulliken 1932). The possibility of an
experimental support was all the more important as the nature of the initial frag-
ments can change depending on each specific case. To model the molecule ‘C2H2’,
Mulliken could just as easily have considered a fragment ‘C2’ and another ‘H4’ of
adapted symmetries. The relation between the whole ‘C2H2’ and its ‘fragments’ is
of secondary interest provided that the energy diagram of the ‘molecular whole’ is
in agreement with the experiment.

This molecule can also be described using the different atoms taken separately
(Pauling 1928, 1931). The two descriptions are tantamount to the same thing
as van Vleck and Coulson have demonstrated it. It can also be described in
terms of electron density around nuclei (method DFT). In this respect, the whole
underdetermines the parts to use Quine’s terminology.

Depending on the approach, a molecule can be described as a whole (Mulliken
1932), or as an aggregate of atoms (Pauling), or by means of electronic density
within a space divided into grids of a particular type and size (Kohn et al. 1996).
In brief, the catalogue of parts involved may change while the concept of the whole
remains the same. Moreover, the process of calculation is based on the Variation
Principle which is a device for minimizing energy. This calculation entangles
the parts, the whole, and the environment at the same time. As ever in quantum
chemistry, we need a piece of information about the whole to define the parts. Here
the information is provided by a mathematical tool which is the mode of access.
Mereology is thus reversed within this context. Parts and wholes enter into a new
kind of relation, that is to say that they are constitutively co-dependent vis-à-vis a
particular mode of access. We should nevertheless bear in mind that the apparent
asymmetry from parts to whole is broken in so far as the environment plays also a
key role in the chemists’ calculation at stake.

Parts are not intrinsic components of the whole from which they are derived in
the sense that they depend on the mode of access - cognitive and instrumental. Parts
are not monadic, pre-existing, once and for all, inside a chemical ‘geometral’. They
are embedded into an engaged chemical practice of investigation which explores
the world. Mereology needs to include modes of access dependence to envisage
how a whole/parts relation is used. In doing so, mereologists should not leave
chemists’ pragmatism aside. In this respect, mereology seems relational, perhaps
dispositional, but surely not ontological in the strong sense of this word, that is
to say the shaping principle of all that is. A pragmatic account of the parts/whole
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dependence on the modes of access seems to be of primary importance to investigate
chemical processes of transformation.

Analytic and synthetic reasonings are intertwined. It is interesting to notice
that chemistry and the kind of mereology related to it may help philosophers to
redefine the frontier they drawn between analytic discourse strategy and that of
synthetic discourse and reasoning in so far as chemists are neither purely holistic
nor purely analytic. In this respect, ‘chemistry is very much a mixed science’ to
use Frederic L. Holmes and Trevor H. Levere’s turn of phrase (Holmes and Levere
2000, introduction, XV). Theoretical chemical approaches are neither ontic nor
purely epistemic. They do not express exclusively the structure of reality out there,
or the form of our own knowledge, but their active interface. We have previously
illustrated this point when focusing on the pragmatism of chemists and the role
of trial and error within the open-ended device of new functionals of density.
Chemical mereology deals with this interaction between a whole, its parts, and
the environment within chemists’ work. Moreover, the whole is known relative to
its relation to other wholes within families of chemical compounds. Its acidity for
instance is defined in comparison with other compounds. Its structure is relative
to the ‘solvent’ can be studied by means of analytic methods such as NMR or
radiocristallography of X-ray. Let us see how wholes and parts are studied thanks to
chemical instruments.

9.2.2 Chemists at Work: Process, Instruments, and Time

Let us first point out both the role of the proportions of the chemical reagents
involved and that of the experimental device. When chemists want to synthesize
a solid sample of CaCO3 they need to saturate a solution. They can achieve
this precipitation by various means. The most common are solvent evaporation,
or chemical reactions which produce insoluble species. Starting from a different
number of nuclei, particles will grow to attain different final sizes and morphologies;
thus by adding a reactive chemical at once or in a continuous way, the final materials
may appear completely different. By adding a small amount of fine material to be
precipitated – seeds, the apparently chaotic nucleation step can be better controlled.
For example, adding calcite seeds allows the precipitation of pure calcite, whereas
a mixture of calcite and vaterite with a larger particle size distribution and various
morphologies are obtained without seeds. The whole CaCO3 depends on the process
and on the time factor. It can be a mixture of calcite and vaterite obtained by
precipitation – case a below, or a pure obtained by precipitation using a seed source
– case b below. The structure and the size of the final whole are different (Llored
et al. 2013).

We know the initial ‘parts’ of the mixture, say, the reagents, and depending on
the process, the new whole may be different. Chemists also know how to separate
initial parts from the new whole by means of operations. The structure of the
new whole CaCO3 is totally different. The environment, the device, and the time
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factor have shaped it differently. Those two compounds share the same formula
CaCO3 but are different wholes. The composition is the same but the relatedness
has been influenced by the environment. Once again, the whole, its parts, and
the environment are intertwined within a process. The mode operation cannot be
eliminated. It determines the whole and its correlative parts. We could give other
examples extracted from other chemical areas – in particular in chemical kinetics
or chemical engineering – to illustrate the role of devices and time factor. We have
even given an example regarding dissipative structure elsewhere (Harré and Llored
2011). This example is sufficient to call for a mereology which includes the process
and the operative framework of chemistry into the investigation of chemical bodies
in terms of wholes and parts.

This is not how the story ends because the instrumentation used by chemists
has thoroughly evolved. New microscopes and kinds of spectroscopy, Auger for
instance, allow chemists to identify heterogeneity where they formally consider
matter to be homogeneous. For example, the study of the surface of an alloy
of aluminium by electron microscopy enables chemists to identify heterogeneity
located at an intergranular joint. The correlations between different instruments
– optical microscopy and scanning probe microscopy to quote but a few – and
the sample figure out that ‘parts’ can diffuse from one place to another and from
one into another. Some ‘zones’ are impoverished in precipitate. Instrumentation
interacts with matter at smaller and smaller scales and affords new parts among
seemingly homogeneous parts. Instruments afford parts from parts inside a whole.
Parts evolve, move, and transform themselves. The whole/parts relation is dynamic
and non-transitive. In this respect, a transitive and aggregative mereology based on
mass is of no avail because the same parts, the same ingredients with additive mass,
may compose different precipitates, that is to say generate different kinds of parts
depending on the experimental devices. In brief, they depend on the mode of access
which does not simply revealing the parts but which, on the contrary, constitutes
them, in Kant’s sense. Different modes of access afford complementary information
about parts.

A chemical ‘segregation’ is about the difference of local composition, and
the migrations related to it. An interface – a free surface, an internal surface,
an intergranular joint, or interphase joints – can display differences in chemical
composition vis-à-vis the massive phases they delineate. These differences result
from transformations called interfacial ‘segregation’. Parts are multifarious and
act upon others within interfaces. The study of a surface by means of Auger
Spectrometry allows one to ‘contextualize’ parts by their extraction energy which
is relative to the nature and the topology of the particular site in which a particular
part is located. It thus depends on the mode of access and the local environment.
A chemical whole, its parts, and the environment are afforded by finer grained
instruments which act upon them within new scales – within space and time.
Microconstituents of a chemical body are explanatory, but not intrinsic. They result
from the interaction with the instruments which affords them.

Chemists need complementary affordances to describe the whole/parts relation
better: parts are relative to modes of access, but matter is inexhaustible. Should we
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write ‘matters’ instead of ‘matter’? The same chemical body can act differently
depending on the context. The same composition does not even lead to the
same whole/parts analysis. The mass-aggregative mereology does not meet the
practices of chemistry and materials science. Parts entangle the mode of access,
the individual, and its environment. Parts are local affordances constituted by the
instrument. Parts are afforded by the world/apparatus complex (Harré 2013) and
we should avoid mereology fallacies that arise if these basic features of science are
overlooked (Harré and Llored 2013).

We need to contrast the concept of ‘affordance’ with that of ‘product’ and both
with that of ‘constituent’. Affordances are certainly products of the interaction
of equipment and the world, but in many cases they are not constituents of that
which affords them, neither as properties such as ‘colour’ nor as entities such
as ‘parts’, nor as processes such as ‘walking’ (Harré and Llored 2013). We have
warmed philosophers against two kinds of mereological fallacies as soon as the
wholes/parts dichotomy depends on the operative framework. In doing so, we point
out that applying to a part of an entity or chunk or mass a predicate that gets
its meaning from its use for ascribing an attribute to the whole from which the
part comes is a the first mereological fallacy to avoid. A holistic predicate is not
necessarily a part predicate, the Wittgensteinian notion of ‘use’ is crucial because
all those predications are context-sensitive. When we discover that sodium vapour –
or sodium salts in a flame – affords two adjacent yellow spectrum lines with the
help of a spectrometer how do we justify the conclusion that this phenomenon
reveals a feature of the electron components of sodium atoms? Our response is
that electrons are products only of the indissoluble unit – world-apparatus. Neither
can be detached from the electron affording complex (Harré and Llored 2013).
We also point out a second mereological fallacy which consists in inferring that
substantive products of an analytical procedure are parts of the substance on which
the procedure was performed. They are affordances!

9.2.3 Chemical Analysis and the Relativity of Afforded Parts

Let us envisage just the examples of NMR and column chromatography regarding
the following chemical transformation (Fig. 9.4):

The first step after a chemical synthesis remains the purification of the compound
that is its separation from initial reagents, the solvents, and secondary products.
Chemists use two different phases. A solid phase called the stationary phase, here
silica in the column, and a mobile phase, here a liquid that is cooled and then
percolated through the solid. The mobile phase is often a mixture of solvents with a
global particular polarity. This mobile phase dissolves our initial mixture and allows
it to go through the silica column by means of gravity. The different chemical bodies
can interact with the silica differently depending on their own polarity. They are thus
separated in so far as they don’t have the same velocity. The column and the mobile
phase thus afford the different parts of the whole mixture (Fig. 9.5).
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Fig. 9.4 Chemical reaction under study in our example

Fig. 9.5 Chromatographic separation carried out by our student Benoît Marcillaud at the Ecole
Normale Supérieure de Cachan (France). Reproduction authorized by the professor Pierre Aude-
bert who supervised this work within the PPSM laboratory

Some parts/wholes analyses are sometimes destructive, others not. This example
fits the classical mereology better because chemists separate additive parts. There
is a crucial difference with Needham’s perspective nevertheless, that is to say the
role of affordance. The separation is not that of a mere aggregate which results
from an addition of its parts. It is the result of an interaction with a column, a
liquid, and depends on chemical polarities. When chemists perform purification by
means of chromatography, they develop a parts/wholes discourse that is to say a
contextualized mereology which takes the constitutive relation with the instrument
into account. It is not a resultant parts/whole dependence from nowhere, but the
result of a chemical operation. Parts/wholes relations are defined through chemical
operations and not intrinsically.

Once the purification occurred, chemists can analyze their product by means
of NMR – nuclear magnetic resonance. The ‘spectrum’ that results from this
technology displays the radio frequency response of the different atoms 1H inside
the molecule (Harré and Llored 2013). Different parts emerge from the spectrum.
Each signal represents a set of atoms 1H which are chemically equivalent according
the 1H NMR magnetic scale. This method affords different sets of atoms of
hydrogen. Every signal depends on the locality, the environment of each particular
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Fig. 9.6 1H NMR analysis carried out by our student Benoît Marcillaud at the Ecole Normale
Supérieure de Cachan. Reproduction authorized by the professor Pierre Audebert who supervised
this work within the PPSM laboratory

nucleus of proton. The set of different signals enables chemist to identify a chemical
body and thus to assess its degree of purity (Fig. 9.6).

But chemists can also afford a complementary description of equivalent parts that
is to say of equivalent sets of nuclei of carbon using NMR 13C . The sets of different
atoms of carbon absorb a precise radio frequency depending on their locality in the
whole. Whole/parts structure can thus be afforded by the conjoint use of a magnetic
field and a wave. The chemical shift on the axis of abscises provides information
about the local environment relative to a reference, the tetramethylsilane (TMS).
The parts of a structure can be afforded relative to a mode of access, an environment,
and a chemical standard. Parts are constituted by the interaction between the world
and our apparatus, they are not intrinsic. We can only know interactions, and not the
reality isolated from us. It is an old philosophical debate.

Chemists are also able to combine different NMR (1H , 13C , 19F , 31P , etc.)
in order to correlate the different parts between them. In brief, they associate
each kind of carbon with hydrogen nuclei to identify the global structure and the
connectivity inside the whole. They then compare their structure with that derived
from other methods and previous data bases. They can use what we call two or
three dimensional NMR. This is really the current style of investigation chemists
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Fig. 9.7 Different molecules used as sensors (Yong-Hua et al. 2009)

use in order to relate parts and wholes! They always connect affordances in order to
determine relations between parts and wholes. They are always trying to determine
the structure with precision. In doing so, they articulate heterogeneous information
constituted by different modes of access. Let us envisage a last example before
entering into philosophical developments.

9.2.4 The Structure/Reactivity Discourse Within a Typical
Chemical Investigation

The following family of compound derives from the s-tetrazine. They are used as
sensors in biochemistry (Yong-Hua et al. 2009) (Fig. 9.7).

Most of those molecules display fluorescence. Acting globally (or coarsely, at
a large scale) yields consequences that can be detected by experiments bearing
on local levels. A substituent is changed by means of a chemical transformation
– please see below, and new chemical fluorescence is measured by means of
fluorometer. Two modalities of action exerted on a process make possible the study
of correlation between properties – chemists compare the fluorescence of different
compounds with the standard molecule in order to analyze the effect of a substituent-
change on the global fluorescence of the whole. If one intervenes in the structure of
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Fig. 9.8 Effects on parts-substituents on molecular absorbance or fluorescence

the whole, some effects of this action can then be detected by a mode of access
specifically aimed at the fluorescence study. When chemists act upon the molecule
by means of UV-VIS radiation using a wavelength �1, the whole replies by emitting
a radiation of fluorescence the wavelength of which is �2 (superior to �1) (Yong-Hua
et al. 2009, 6125) (Fig. 9.8).

Depending on parts –X and Y, wholes display global behaviors which are
classified into a correlation web of relations vis-à-vis a standard molecule. Chemists
thus propose the following parts/wholes/reactivity correlation (Fig. 9.9 below)

Chemists at work use modalities of action to correlate whole structure, parts, and
chemical reactivity. To do so, they investigate relational webs of interdependencies
and classify compound by reference to a molecular standard. Mereology is relative
to modalities of action, that is to say, to affordances. That is not how the story
ends. Those whole can trap ions specifically, it thus displays a novel causal power
(Fig. 9.10).

The fluorescence of the new whole is different from the previous structures
without the ion. The quantification of this difference allows quantifying a pollutant,
the ion Pb2C for example in a liquid sample. A new part generates a new whole with
different causal powers and different behaviors depending on the instrumentation.
Therefore, saying that some intervention at a higher level downwardly causes
alterations detected at a lower level (or, conversely that some intervention at a lower
level upwardly causes alterations detected at a higher level) is an accurate expression
of a dual mode of operational definition of the levels. This analysis of the modalities
of action calls for an interventionist notion of causation that widens the space of
reflection proposed by Harré and Madden while paving the way for both a relational
form of emergence, and a non-transitive form of mereology that fits chemists’ work.

Let us now query current mereologies by using our chemical investigation.
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Fig. 9.9 The energy difference of the highest unoccupied molecular orbital is correlated to the dif-
ference of electrochemical standard potential. The reference (number 1) is the s-dichlorotetrazine
(X=Y= Cl= Chloride). The determination of LUMO used the Variation Principle which entangles
the whole, its parts and its environment in a calculation. (Yong-Hua et al. 2009, 2019) (Reproduc-
tion authorized by professor Pierre Audebert)
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Fig. 9.10 Ion trapped within the molecule

9.3 Connecting Mereological Work with Chemical Practices:
A Discussion

9.3.1 The S-Mereology and the C-Mereology

Let us briefly recall what a classical mereology demands regarding wholes, parts,
and their relations. We have asserted elsewhere that classical mereology – the C-
mereology according to our own taxonomy – rests on two basic principles (Harré
and Llored 2011). First, the Principle of Unique Composition according to which
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there is a unique being, the sum or ‘fusion’ of a certain collection of beings, of
which every such being is a part and which has no parts other than such a part. As
a matter of fact, some chemists such as Linus Pauling consider molecule to be a
unique collection of just these chemical atoms, and only these chemical atoms. We
note that the composition of such a collection does not serve to uniquely identify a
molecule as a being of certain kind – the properties of molecules include structures
as well as components. In practice sums can be uniform or disparate if parts belong
to the same type or not. Axiom MA3 in Simons (1987). Second, the Principle of
Mereological Transitivity which states that if B is a part of A and C is a part of B,
then C is a part of A. Simons (1987), Axiom MA2. If we include function among
the attributes that define how a being is a constituent of another being, that is how it
is a part, then clearly a tooth is a part of a gear wheel in a different way from the way
a gear wheel is part of a gear box, and transitivity of that part-whole relation fails.
Some philosophers (for example Oppenheim and Rescher (1995)) face this problem
by proposing functional mereological principles.

Even though constituents lose their actualised functional attributes when
removed from the whole of which they have been parts, they do not cease to
exist. Nor do they lose the core attributes that enabled them to count as parts of
the relevant whole. In the light of our knowledge of how a component fits into a
whole, we may want to hold that potential functionality survives some ways of
decomposing the original whole. Chemists can decompose HCl into Cl2 and H2

by means of a specific reaction even if Cl2 and H2 cease to exit as such when
assembling under the whole! Mulliken shows, for instance, how the atom of helium
He disappears during the synthesis of the molecule HeH. He also explains how HeH
can afford He in certain conditions, just as well as an electrolysis of molten NaCl
affords sodium atoms in plenty because NaCl affords the sodium nuclei that are
essential to the formation of sodium, atom by atom. There is no sodium in salt. But
salt affords sodium.

Oppenheim and Rescher suggest three conditions on wholes: (1) a whole must
possess an attribute that is peculiar to it as a whole, (2) the parts of a whole must
stand in some special relationship to one another, and (3) a whole must have a
structure. Electrons are part of chloride which is part of HCl. But the gas Cl2 has
relational properties that a plasma of electrons does not display ceteris paribus. HCl
reacts differently – for instance owing to its acidity – than Cl2 whenever in contact
with other chemical reagents ceteris paribus. Transitivity faces hardships as soon as
emergent relational properties are at stake.

Lewis proposes to develop a mereology about sets, subsets, and supersets. The
fusion of all cats is composed of all the cats there are, and nothing else (Lewis 1991,
1). According to him: (1) one set is a part of another if and only if the first is a subset
of the second, (2) no set has any part that is not a set, (3) reality divides exhaustively
into individuals and sets, (4) no sets is part of an individual, and (5) any fusion
of individuals is an individual (Lewis 1991, 7). Since the member of a member of
a set is not in general a member of that set, membership is not the same relation
as part to whole. We referred this system as the S-Mereology (Harré and Llored
2011). It follows from Principles 1 and 2 that fusions of individuals are not sets the
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membership of which is extensionally equivalent to the individuals that constitute
the fusion. Using the concept of a fusion, Lewis refines the simple Lesniewskian
scheme with alternative axioms for a mereology of sets and subsets (Lewis 1991,
74). The reasoning is based on three foundations: (1) transitivity – if x is a part of
some part of y, then x is a part of y, (2) unrestricted composition – whenever there
are some things, then there exists a fusion of those things, and (3) the uniqueness of
composition – it never happens that the same things have two different fusions.

Lewis introduces an ontologically and mereologically significant concept of the
‘singleton’, the single membered set. Here we have a genuine alternative ontology –
are the atomic constituents of molecules and polyatomic ions single member subsets
that are subsets of molecular sets?

Which version of mereology should we use to express the structures of molecules
and molecular ions – is a molecule a thing of which its parts are also things,
a structured collective – or is a molecule a set of which its constituents are
subsets? The former would require the classical mereology of Lesniewski, the C-
mereology in its functional form. The latter would require one to make sense of
the mereologised set theory of Lewis, the S-mereology, in chemical contexts. In
that mereology there no provision for distinguishing parts functionally with respect
to their roles in the wholes of which they are parts. Is the grammar of chemistry
classical mereology or mereologised set theory? (Harré and Llored 2011).

9.3.2 The Case for S-Mereology

The case for adopting set theory as the Mereology for chemistry begins with
the predictions by Odling and Mendeleev of the properties of elements yet to be
discovered. At the time of their proposals only the intensions of the set of atoms
of eka-iodine was available in chemical discourse. The set had a null extension for
the users of the grammar appropriate to the situation as it then stood, since the set
had no members, and conceivably might never had any. Obviously there cannot be
a fusion or a sum of which there are no parts. To talk of eka-iodine in the grammar
of classical Mereology made no sense. It does seem to make sense in a discourse in
which the parts of sets are subsets. Are hydrogen and oxygen atoms (ions) subsets
of the water molecule set? Each water molecule would be a subset of the superset,
the stuff water. However, what is the intension of the set of which two sets, pair
of hydrogen atoms and a singleton oxygen atom are the subsets? Well, it is the
properties of whatever it takes to be a subset of the set of water molecules that is
the water stuff. The hydrogen atoms (ions) are members of the set of all hydrogen
atoms, while the oxygen atom (ion) is a member of the set of all oxygen atoms.
Does this have any advantage over the classical mereological grammar? (Harré and
Llored 2011).

Maybe it can be useful to use a mereology of set when group symmetry
and chemical analysis are at stake. We point out that sets of different equivalent
fragments with appropriate symmetry and energy can be used to obtain molecular
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orbitals. Those sets of fragments provide the description of the whole molecule
without being material parts as such. We also notice that the NMR affords sets of
nuclei which are equivalent or similar as regards this technique – 1H , 13C , 19F ,
31P , and so on. Subsets also appeared from spectra depending on the wavelength of
the spectrometer. A finer structure then arises which enables chemists to scrutinize
the coupling between different kinds of nuclei-sets. This work is relative to the
spectrometer resolution and is of importance to find out the relatedness within the
whole from spectra. The major difference from Lewis’s point of view is that sets
are afforded and are not identified solely by useful abstraction from description. As
we also see, chemists always classify compounds by means of chemical operation
and reactions. Their systems are webs of interrelations. Chemists thus define sets
of chemicals the characterization of which depends on similar relations. Lewis’s
mereology should be thus adapted to fit those sets of similar compounds co-defined
by means of relations. This mereology could thus fit the requirement to call for the
environment when defining a whole and its sets. It could finally allow philosophers
to connect chemical whole/parts discourses with the practices from which they
originate. As a matter of fact, chemists use sets of operations which allow us to
synthesise, to purify, and to characterize a set of comparable wholes by means
of chemical reactions or similarity in correlations. It is also the case when they
formulate new polymers by means of sets of available similar molecules. The
repetition of a member of a set, say a monomer, allows defining new compounds
formally depending on the number of monomers included into a particular polymer.
They can also use different sets of polymers to describe copolymers and so on. The
set mereology could be interesting as regards chemical discourse within which the
repetition of a basic molecule enables chemists to develop analogies. The chemical
notation – .M/a�.N /b – where M and N are monomers and a and b entire numbers
fits a logic of sets where M and N can be replaced by similar monomers which are
at hand and which enables chemists to achieve their goal. The chemical notation
-HXCH2O ! H3O

C CX� – follows a strategy of sets where X can be replaced
by Cl or F for example. Lewis’s mereology is interesting to write transformation by
means of alternative and economic formula.

9.3.3 The Case for the C-Mereology

The first argument for the C-mereology depends on the possibility of a whole having
emergent properties as a result of some structural invariants. A set only accidentally
has structural properties because as a conceptual object, membership is fixed by an
entity satisfying the intension of the set. A whole has structural properties because
is a material entity, with real relations between its parts. Sets are held together
by similarity relations,2 not by real relations between the parts of wholes such as

2A mere collection is of no interest to the philosophy of chemistry.
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material connectivity (the parts of a chair) or causality, the parts of a molecule. A
set can have only similar members, while a whole can have dissimilar parts. A set is
a logical object while a whole is a material object.

The second argument for C-mereology depends on the criteria for set member-
ship that is the intensionality component of the set concept. If HC and O2� are
subsets of the water molecule set what is their common property that makes them
members of this set? It can only be that they are constituents of a water molecule.
Hence the S-mereology treatment of chemical unity in multiplicity depends on a C-
mereological understanding of the relation between atoms (ions) and the molecules
of which they are parts. The S-mereology also depends on what van Brakel calls the
manifest image of what water is according our current experience of it (Van Brakel
2000). In this respect, both mereologies are complementary. In the grammar of
classical Mereology, the three atoms are the parts of a water molecule which is
their (disparate) fusion or sum. The water in the sea is the mereological fusion of
certain varieties of hydrogen-oxygen conglomerates as parts. But it is not the sum
of these conglomerates, which is a being of much greater dimensions being all the
water there is. A bucket of brine as a part of the sea is a fusion of the ‘water’ ionic
conglomerates which are its parts. As Earley has argued the same does not apply
to the NaC and Cl� ions in the sea (Earley 2005). Here we need to supplement
C-mereology with dispositional concepts as illustrated in the simple case of the
parts of the chair. The concept of the whole, the chair, cannot be eliminated from
the criteria for ascribing dispositional properties to the chair parts. This is indeed a
reflection of a general condition for practically oriented cognition. We also need to
replace dispositions by affordances according to our previous work from chemical
practices.

In classical mereology the Principle of Unique Composition runs up against
the conclusion that the parts of chemical wholes like molecules and atoms are
affordances not themselves concrete entities. However, those same atoms which
Mulliken’s approach transforms into affordances are the parts of elements modelled
as fusions, that is obey the Unique Composition Principle. It seems to us that
Transitivity of the Part-Whole Relation as defined in C-mereology does hold
because electron affordances are used to construct heuristic models by means of
imagined parts of atoms, while so long as we confine ourselves to such models and
refrain from drawing metaphysical conclusions, we find it useful to say that atom
affordances are parts of molecules, electron affordances are parts of atoms and so
of molecules. That is the conclusion to be drawn from Mulliken’s demonstration of
the power of the molecular orbital set (Harré and Llored 2011).

As we argued above classical mereology can be extended to include rules for the
use of a whole – part relation for contexts in which the parts are functionally distinct
relative to the whole of which they form parts. In the absence of the concept of the
whole, the shapes of the parts, for example, are mereologically irrelevant to their
mereological status. They have no role as parts. We are forced to conclude therefore
that a new set of mereological rules is required for the logic of chemical discourses.
It is neither wholly a C- nor wholly an S-mereology. The new mereology requires a
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revision of the basic principles that are definitive of each of the mereologies set out
above.

Chemistry also makes use of ‘ephemeral individuals’ as parts of wholes. For
instance, the swiftly composing and decomposing hydrogen-oxygen structures of
which real water is really composed are ephemeral individuals. Water is made
up of these beings. As such they are constituents of a certain whole. Here is a
mereological set-up for which neither C-mereology nor S-mereology seems well
adapted as discourse grammars because they do not integrate the conceptual time-
dependence between process of transformation and dissipative structure. As we have
noticed it, the chemical device is also at stake. Parts and sets are relational. They are
entangled with the whole and its environments and depend on the mode of access –
cognitive or instrumental.

And that is why again, the topological chemical quantum turn is of the utmost
importance for philosophical enquiries such as this. That is why, too, philosophers
need to go back to laboratories of research to grasp what scientists are really doing
with their new models and apparatus.

9.4 Concluding Remarks

We have argued and illustrated with important examples of contemporary chemistry
that to take electrons to be constituents of atoms is to commit the product-process
fallacy, or, in contemporary terminology, a mereological fallacy, that of presuming
that products of an analytical procedure exercised on matter at the level of atoms
are constituents of those atoms. Electrons are not entities in the mereological sense
– they yield incompatible phenomena – tracks and interference patterns, though
the ontological relation between these phenomena is complex. The knowledge
engendering relation is the two way comparison between analogues (Harré 2004).
Probes are directed to natural objects, substances, and processes. The results of
probing can be either constituents of that which is probed (presumed to exist
independently of the probe) or affordances that is states, processes and so on the
character of which is not independent of the nature of the probe. To presume that
all affordances are constituents is the source of a metaphysical fallacy. However,
pseudo-constituents play an indispensable role in chemical thinking as the content
of powerful and heuristic working models.

The standard mereology for chemical compounds involves the presumption that
just as molecules are ultimate constituents or parts of material things, so atom-
cores are parts or constituents of molecules. However, we have argued elsewhere
that atoms do not have entity-like constituents – it is a mistake to treat electrons as
constituents of anything (Harré and Llored 2013). Nevertheless, entity-like beings
form the basis for the standard model that continues to reappear in textbooks
– nucleus and planetary electrons (Sukumar 2013). Drawing on Wittgenstein’s
terminology (Wittgenstein 1979), we could say that such representations are local
hinges without which chemists’ knowledge vanishes. Chemists work with matter,
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matter stands fast for them, it is not the result of an inference but a basic belief
that belongs to the bedrock of the chemical world before any chemical knowledge
comes up to the fore. We have developed the way chemists establish correlations
between wholes, sets or parts, and environments. We hope the future mereology will
include those perspectives into the philosophical debate by starting from chemical
practices. More than ever, different ways of doing philosophy, analytical or not,
should be articulated in order to grasp what chemist really do. To do so, mereology
should integrate time and modality to deal with chemical transformation and the
role of chemical devices. Chemical relations are not merely formal; sums and
incomplete fragments lack chemical work. The thesis that objects with the same
parts are identical, say, mereological extensionality, cannot work within this context.
Chemical mereology should include contingency which enters into functional
wholes by means of the device-dependence and the relation with other chemical
bodies. We call for a relational and dynamic form of mereology.
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Part IV
Computer Sciences and Engineering

Introduction to Part IV: Mereology, Computer Science
and Engineering

It has been one of the greatest philosophical problems since the very birth of
philosophy that of organizing vast and diverse collections of data into systematic,
comprehensive and rigorous frameworks. One of the main results of this organiza-
tional attempt has been the development of several regional ontologies on the one
hand and the search for a formal ontological core on the other. Whereas in the past
these areas of research have been mostly confined within the philosophical sphere,
the recent advancement of computer science has inherited most of the classical
problems and has produced new ones. Examples of the significant role played by
ontological considerations within computer sciences are knowledge engineering,
database design, information modeling, knowledge management and organization,
spatial qualitative reasoning, biological information system. And the list could
go on, as Guarino (2010) points out. These research areas come with their own
problems, methods and structures. It is an important and rather general problem
(i) provide a rigorous vocabulary to investigate those problems and methods, and
(ii) develop regional ontologies to account and systematize those architectural
structures. It is clear that mereology could be a valuable instrument to accomplish
both tasks. The papers in this section implement exactly such strategy.

In the first one (Mereology in Engineering and Computer Science) Polkowski
provides a very comprehensive account of the potential applications of mereology
to computer science. They include areas as diverse as Spatial Reasoning, Behavioral
Robotics, Knowledge Engineering and many others. One of the greatest challenge
of these applications is the difficulty of finding when and whether something is
part of something else. This calls for a profound innovation both from the technical
and the philosophical point of view, i.e. the introduction of some measure of
overlapping in our mereological theory. This is accomplished via the introduction
of the new primitive notion of parthood to a degree that is essential in developing
a new mereological theory called rough mereology. This can be seen as an example
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of a very general and deep philosophical problem, that of indeterminacy and
vagueness which was somehow already present in the last work of the previous
section.

The second paper (Discrete Mereotopology) by Galton provides an overview
and a development of atomistic mereotopology. Mereotopology has been studied
particularly within the Qualitative Spatial Reasoning community. It has been main-
tained however within that community that entities are infinitely divisible. Galton
shows that interpreting mereotopological predicates over discrete domains renders
impossible to define the mereological notion of parthood in terms of the topological
relation of connection. He thus develops discrete meretopology taking both of them
as primitives. He is able to show that familiar definitions and axioms take a much
simpler form within this framework and also establishes important theorems such as
the extensionality principle for discrete mereotopology, i.e. having the same atomic
parts is both sufficient and necessary for identity. After considering a particular
model of the theory, namely that of adjacent spaces, and introducing notions of
distance and size for such spaces, he is able to show important applications of
discrete mereotopology in mathematical morphology and digital imaging.

In the final paper (A Role for Mereology in Domain Science and Engineering)
Bjørner explores the relation between mereology and the relatively new domain
science. A domain can be roughly understood as a universe of discourse, or an area
of activities for which some form of computing and communication is desirable.
The very general idea behind the work is that before developing the software that
does the computing one has to understand the structure of the domain in question,
and most of the relevant structure is simply mereological structure. He focuses on
concrete examples of specific domains such as financial service industry, health
care and security IT systems to mention a few. He provides a model-oriented
specification of the different mereological structures of those domains and he is able
to show that to each mereology it corresponds a program of cooperating sequential
process. Finally, he conjectures that the converse holds as well.

To get a detailed perspective on rough mereology, its applications and its relation
to fuzzy-set-theory there is probably nothing better than Polkowski (2011). An
excellent survey of many topics included in this section is contained in Aiello et al.
(2007). For computer science and software engineering we refer to the monumental
Bjørner (2006). To get a more philosophical perspective on many of these issues the
reader can start from Floridi (2003).
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Chapter 10
Mereology in Engineering and Computer
Science

Lech Polkowski

PART I. FOUNDATIONS

10.1 Introduction

This Chapter is intended as a survey of some basic applications of mereological
schemes of reasoning in computer science and engineering. In accordance with the
specificity of surveys, it does collect in one text various topical applications, not
necessarily related by means of a logical order of things and this calls for a unifying
thread stemming from a general discussion of mereological view on things and their
relations. In language of mereology, we can state that one thing is a part of the other,
that a thing is a fusion of some other things, its parts, or, more generally that some
things approximate parts of another thing to a specified degree.

Particular cases are: spatial reasoning where things are figures in space, seman-
tics of spatial locutions addressing spatial relationships of mutual positions like
‘in’, ‘out’, ‘on’, ‘under’, etc., planning and navigation by intelligent agents (e.g.,
mobile autonomous robots) in which environment is presented as a collection
of polygons which should be bypassed in order to reach a goal, granulation of
knowledge represented in data tables along with applications to synthesis of decision
or classification rules, logics for reasoning about knowledge, problems of design and
assembling of artifacts from parts, problems of representation of spatial features of
things like dents, holes, joints. All these problems require adequate notions of parts
and relations induced with their help.
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One can justly say that we aim at knowledge expressed in language of underlying
mereology theory, and, knowledge we understand here in the sense of I. M.
Bocheński (1954), i.e., as a collection of true statements about things, their
collections, i.e., concepts, and about relations among concepts.

A discussion of relations among concepts and things and concepts goes back to
Aristotle (1989) who singled out four basic types of relations among concepts, i.e.,
containment or not, intersection or not, and established twenty four valid figures
of reasoning called syllogisms, see Łukasiewicz (1939, 1957) for a modern logical
rendering of the Aristotle system including an axiomatization and Słupecki (1949–
1950) for a proof of completeness of the system. In Aristotle’s system, knowledge
was rendered as a collection of syllogisms, i.e., relations solely among concepts.

Georg Cantor introduced to this discussion things as elements and sets as
collections of things. Naïve set theory of Cantor (from 1873 on), in which one
assumed that to each property of things there existed the collection (set) of things
which satisfied the property, gave way to antinomies, i.e., statements arising from
valid deduction rules and seemingly valid assumptions, but contradicting some other
assumptions, like the Cantor antinomy (the existence of the set of all sets), the
Burali–Forti antinomy (the existence of the set of all ordinal numbers), and most
notably the Russell antinomy, see Frege (1903); this antinomy, stated in elementary
terms of the theory, defined the set X of things x having the property x … x,
concluding that X 2 X , X … X . In the aftermath of this antinomy, set theory
became an axiomatized system due in particular to Zermelo (the Zermelo–Fraenkel
system) (1908) and Gödel (the Gödel–Bernays system) (1951); the independence
of some statements like continuum hypothesis, Souslin hypothesis, etc., see Balcar
and Štěpánek (1986) caused emergence of many systems of set theory.

Another way of resolving the problem of the Russell antinomy was pointed by
Stanisław Leśniewski (1916), see a translation in Leśniewski (1982), who developed
a theory of Mereology in which the primitive notion was that of a part. This notion
appeared in Aristotle and Leśniewski defined it as a relation between individuals
which, in turn, are defined in His Ontology Leśniewski (1927, 1930), see expositions
in Słupecki (1955), Lejewski (1958), or, Iwanuś (1973). Ontology is founded on the
predicate 
 to be read “is” (in Greek, ei “you are”, cf., Plutarch 1936) which is
required to satisfy the Ontology Axiom AO, formulated by Leśniewski as early as
1920, see Słupecki (1955)

AO x
 y , 9z:.z
 x/ ^ 8 z:.z
 x ) z
 y/ ^ 8 z;w:.z
 x ^ w
 x ) z
 w/:

This axiom determines the meaning of the copula 
 in the way adopted by
Leśniewski: in spite of the copula occurring on either side of the equivalence, its
meaning can be revealed by requiring the equivalence to be true as adopted by
Leśniewski in His Protothetics, see Słupecki (1955), Miéville (1984). AO means
that the thing x is an individual called by a singular name responding to the singular
or collective (possibly) name of y. In mereology, the predicate part is applied to
individual things.
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The meaning of AO is that x responds to the name of y if and only if x is non–
void (9z:.z
 x/), all x is y, and, x is an individual (8 z;w:.z
 x ^ w
 x ) z
 w/).
In particular, the relation x
x does characterize individuals.

The relation of a part being non–reflexive and transitive, the union of the part
relation and the identity relation, called the ingredient relation ingr does satisfy the
relation ingr.x; x/ for every thing x which implies that each thing is its element
(see (10.3) in Sect. 10.2.1); this fact eliminates the Russell antinomy, cf., a formal
analysis in Sobociński (1950).

Let us call a complex thing a thing which has other things as parts; a question
poses itself, in the Henri Poincare sense, of mutual spatial relations of these parts:
some may be over, some under other parts, some may be in, some out, some before,
some after, some parts may have interiors, some not, etc.

The relation of mereology to spatial analysis was recognized early, e.g., in
Tarski’s axiomatization of geometry of solids (Tarski 1929). Spatial considerations
led Alfred North Whitehead (1916, 1919, 1920, 1929) in His attempt at capturing
some notion of a ‘continuity of events’ to the notion of a relation of being
connected, rendered in full generality in Clarke’s Connection Calculus (Clarke
1981), and explicating the intuitive notion of an ‘external contact’ (see below). By
considering spatial relations among parts, mereology comes in touch with topology,
a mathematical discipline investigating spatial properties of things; hence, attempts
at introducing into mereological universa of mereotopology, i.e., of a topological
structure induced by part structure. Mereotopology in turn may be applied in
semantics of utterances describing spatial relations, see, Aurnague and Vieu (1995).
The reader will find an extensive discussion of spatial aspects of mereology in Casati
and Varzi (1999).

Synthesis of a complex thing from its parts involves two stages, viz., design as
well as assembling; either of these stages requires a specification of the order in
which parts enter the process, their mutual orientation and connections, timing of
particular operations etc. This belongs in the domain of engineering.

Orientation in space and movement planning are one of principal intelligent
behaviors of humans; artificial intelligence and machine learning which are studied
within computer science devote much attention to those problems and one of
principal applications of methods elaborated in those studies is the field of intelligent
(behavioral) robotics. Robots which may move freely in space allotted to them,
endowed with sensors, are examples of intelligent agents, capable of performing
autonomous tasks. This requires planning of paths and subsequent navigation in the
environment. As environment is modeled as a collections of continua (i.e., compact
connected sets) spatial analysis is a principal component in the process of planner
synthesis.

Other intelligent behavior is the ability to solve problems, classify things to
categories. In studies of this problem, a few paradigms were defined like fuzzy set
theory of Zadeh (1965), rough set theory of Pawlak (1991) along with cognitive
paradigms like neural networks. In particular, fuzzy set theory is built on the notion
of a membership to a degree; transferring this idea to mereology brought forth rough
mereology whose primitive notion is a relation of a part to a degree (Polkowski and
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Skowron 1994), also see Polkowski (2011). Rough mereology allows for a more
precise description of spatial relations among parts and its applications in classifier
synthesis and planning for intelligent robots are described in this Chapter.

In the process of synthesis of a classifier/decision algorithm, one is forced to
cope with noise immanent in data; one means of reducing noise is granulation
of data/knowledge consisting of forming granules of knowledge which consist of
things similar one to another to a satisfactory degree; rough mereology delivers
effective tools for granulation of knowledge and permits to obtain effective classi-
fiers at reduced complexity.

In our opinion, the topics outlined above, which belong in the so–called cognitive
technologies and knowledge engineering, are among the most important ones in
computer science and engineering, and, in consequence, we discuss them in more
detail in the following sections.

The unifying thread which can be defined as the existence of part or part to a
degree relations on concepts as the basic starting component in reasoning is strongly
evident in those applications.

Preliminary to applications, we want to acquaint the reader with necessary back-
ground in theoretical foundations of mereology, rough mereology and mereotopol-
ogy as bases for further developments.

10.2 Mereology

In this Chapter, we propose to introduce the reader to the notions and methods of
mereology. We begin with the mereology in the sense of Leśniewski, based on the
notion of a part, and then we present the version of mereology based on the notion
of being connected, Connection Calculus proposed in Clarke (1981) on the lines of
Whitehead (1916, 1919, 1920, 1929), de Laguna (1922), and Leonard and Goodman
(1940). Connection relation captures the notion of being in contact, e.g., having
parts in common, or intersecting, and within Connection Calculus one redefines a
part relation which leads to a richer theory with a topological flavor. Mereotopology
along with necessary background on topology are presented in a further section.

The reader may be aware of the existence of a vast literature on philosophical
and ontological aspects of mereology which cannot be mentioned nor discussed
here, and, we advise them to consult Simons (2003) and Casati and Varzi (1999) for
discussions of those aspects.

10.2.1 Mereology of Leśniewski

Mereology due to Leśniewski arose from attempts at reconciling antinomies of
naïve set theory, see Leśniewski (1916, 1927, 1982), Srzednicki et al. (1992), and
Sobociński (1950, 1954–1955). Leśniewski (1916) was the first presentation of
the foundations of his theory as well as the first formally complete exposition of
mereology.
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10.2.1.1 On the Notion of Part

The primitive notion of mereology in this formalism is the notion of a part. Given
some category of things, a relation of a part is a binary relation � which is required
to be

M1 Irreflexive: For each thing x, it is not true that �.x; x/.
M2 Transitive: For each triple x; y; z of things, if �.x; y/ and �.y; z/, then

�.x; z/.

Remark. In the original scheme of Leśniewski, the relation of parts is applied to
individual things as defined in Ontology of Leśniewski, see Leśniewski (1930),
Iwanuś (1973), Słupecki (1955) (see Introduction for the Ontology Axiom AO).

The relation of part induces the relation of an ingredient (the term is due to T.
Kotarbiński), ingr, defined as

ingr.x; y/, �.x; y/ _ x D y (10.1)

The relation of ingredient is a partial order on things, i.e.,

1. ingr.x; x/:
2. ingr.x; y/ ^ ingr.y; x/) .x D y/:
3. ingr.x; y/ ^ ingr.y; z/) ingr.x; z/.

We formulate the third axiom with a help from the notion of an ingredient.

M3 (Inference) For each pair of things x; y, if the property
I.x; y/: For each t , if ingr.t; x/, then there exist w; z such that ingr.w; t/,
ingr.w; z/; ingr.z; y/ hold,
is satisfied, then ingr.x; y/.

The predicate of overlap, Ov in symbols, is defined by means of

Ov.x; y/, 9z:ingr.z; x/ ^ ingr.z; y/ (10.2)

Using the overlap predicate, one can write I.x; y/ down in the form
IOv.x; y/ W For each t if ingr.t; x/, then there exists z such that ingr.z; y/ and

Ov.t; z/

10.2.1.2 On the Notion of a Class

The notion of a mereological class follows; for a non–vacuous property˚ of things,
the class of ˚ , denoted Cls˚ is defined by the conditions

C1 If ˚.x/, then ingr.x;Cls˚/:
C2 If ingr.x;Cls˚/, then there exists z such that ˚.z/ and IOv.x; z/:
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In plain language, the class of ˚ collects in an individual thing all things satisfying
the property ˚ . The existence of classes is guaranteed by an axiom.

M4 For each non–vacuous property ˚ there exists a class Cls˚:

The uniqueness of the class follows by M3. M3 implies also that, for the non–
vacuous property ˚ , if for each thing z such that ˚.z/ it holds that ingr.z; x/, then
ingr.Cls˚; x/.

The notion of an overlap allows for a succinct characterization of a class: for each
non–vacuous property˚ and each thing x, it happens that ingr.x;Cls˚/ if and only
if for each ingredient w of x, there exists a thing z such that Ov.w; z/ and ˚.z/.

Remark. Uniqueness of the class along with its existence is an axiom in the
Leśniewski (1916) scheme, from which M3 is derived. Similarly, it is an axiom
in the Tarski (1929, 1935, 1937) scheme.

Please consider two examples.

1. The strict inclusion 
 on sets is a part relation. The corresponding ingredient
relation is the inclusion �. The overlap relation is the non–empty intersection.
For a non–vacuous family F of sets, the class ClsF is the union

S
F .

2. For reals in the interval Œ0; 1�, the strict order < is a part relation and the
corresponding ingredient relation is the weak order 
. Any two reals overlap;
for a set F � Œ0; 1�, the class of F is supF .

10.2.1.3 Notions of Element, Subset

The notion of an element is defined as follows

el.x; y/, 9˚:y D Cls˚ ^ ˚.x/ (10.3)

In plain words, el.x; y/ means that y is a class of some property and x responds
to that property. To establish some properties of the notion of an element, we
begin with the property INGR.x/ D fy W ingr.y; x/g, for which the identity
x D ClsINGR.x/ holds by M3. Hence, el.x; y/ is equivalent to ingr.x; y/. Thus,
each thing x is its own element. This is one of means of expressing the impossibility
of the Russell paradox within the mereology, cf., Leśniewski (1916), Thms. XXVI,
XXVII, see also Sobociński (1950).

We observe the extensionality of overlap: For each pair x; y of things, x D y

if and only if for each thing z, the equivalence Ov.z; x/ , Ov.z; y/ holds. Indeed,
assume the equivalence Ov.z; x/ , Ov.z; y/ to hold for each z. If ingr.t; x/ then
Ov.t; x/ and Ov.t; y/ hence by axiom M3 ingr.t; y/ and with t D x we get
ingr.x; y/. By symmetry, ingr.y; x/, hence x D y.

The notion of a subset follows

sub.x; y/, 8z:Œingr.z; x/) ingr.z; y/� (10.4)
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It is manifest that for each pair x; y of things, sub.x; y/ holds if and only if el.x; y/
holds if and only if ingr.x; y/ holds.

For the property Ind.x/ , ingr.x; x/, one calls the class ClsInd, the universe,
in symbols V .

10.2.1.4 The Universe of Things, Things Exterior, Complementation

It follows that (1) The universe is unique. (2) ingr.x; V / holds for each thing x. (3)
For each non–vacuous property ˚ , it is true that ingr.Cls˚; V /.

The notion of an exterior thing x to a thing y, extr.x; y/, is the following

extr.x; y/, :Ov.x; y/ (10.5)

In plain words, x is exterior to y when no thing is an ingredient both to x and y.
Clearly, the operator of exterior has properties (1) No thing is exterior to itself.

(2) extr.x; y/ implies extr.y; x/. (3) If for a non–vacuous property ˚ , an thing x is
exterior to every thing z such that ˚.z/ holds, then extr.x;Cls˚/.

The notion of a complement to a thing, with respect to another thing, is rendered
as a ternary predicate comp.x; y; z/, cf., Leśniewski (1916), par. 14, Def. IX, to be
read:‘x is the complement to y with respect to z’, and it is defined by means of the
following requirements (1) x D ClsEXTR.y; z/. (2) ingr.y; z/, where EXTR.y; z/ is
the property which holds for an thing t if and only if ingr.t; z/ and extr.t; y/ hold.

This definition implies that the notion of a complement is valid only when
there exists an ingredient of z exterior to y. Following are basic properties of
complement (1) If comp.x; y; z/, then extr.x; y/ and �.x; z/. (2) If comp.x; y; z/,
then comp.y; x; z/.

We let for a thing x, �x D ClsEXTR.x; V /. It follows that (1) �.�x/ D x for
each thing x. (2) �V does not exist.

We conclude this paragraph with two properties of classes useful in the following

If ˚ ) � then ingr.Cls˚;Cls�/ (10.6)

and a corollary

If ˚ , � then Cls˚ D Cls� (10.7)

10.2.2 Mereology Based on Connection

In Whitehead (1916, 1919, 1920), a proposition of the notion of ‘x extends over
y’, appeared, dual to that of a part. Th. de Laguna (1922) published a variant of the
Whitehead scheme, which led Whitehead (1929) to another version of his approach,
based on the notion of ‘x is extensionally connected to y’. Connection Calculus
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based on the notion of a ‘connection’ was proposed in Clarke (1981), which we
outline here.

10.2.2.1 On the Connection Predicate

The predicate of connection C is subject to basic requirements

CN1 C.x; x/ for each thing x.
CN2 If C.x; y/, then C.y; x/ for each pair x; y of things.

It follows that connection is reflexive and symmetric. This theory is sometimes
called Ground Topology T, cf., Casati and Varzi (1999). The additional extensional-
ity requirement

CN3 If 8z:ŒC.z; x/, C.z; y/�, then x D y.

produces the Extensional Ground Topology ET., see, op. cit.
Let us observe that the predicate C can be realized by taking C D Ov; clearly,

CN1–CN3 are all satisfied with Ov. We call this model of connection mereology,
the Overlap model, denoted OVM. Also, letting C.x; y/ if and only if x \ y ¤ ;,
defines a connection relation on non-empty sets.

In the universe endowed with C , satisfying CN1, CN2, one defines the notion of
an ingredient ingrC by letting

IC ingrC .x; y/, 8z:ŒC.z; x/) C.z; y/� (10.8)

Then, the following properties of ingrC hold

1. ingrC .x; x/.
2. ingrC .x; y/ ^ ingrC .y; z/) ingrC .x; z/.
3. In presence of CN3, ingrC .x; y/ ^ ingrC .y; x/) x D y.
4. ingrC .x; y/, 8z:Œingr.z; x/) ingr.z; y/�.
5. ingrC .x; y/ ^ C.z; x/) C.z; y/.
6. ingrC .x; y/) C.x; y/.

10.2.2.2 Introducing Notions of a Part, an Ingredient, Overlapping
Things and Things Exterior

The notion of a C–part �C can be introduced as

PC �C .x; y/, ingrC .x; y/ ^ x ¤ y (10.9)

The predicate of C–overlapping, OvC .x; y/ is defined by means of

OC OvC .x; y/, 9z:ŒingrC .z; x/ ^ ingrC .z; y/� (10.10)
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Basic properties of C–overlapping follow.

1. OvC .x; x/.
2. OvC .x; y/, OvC .y; x/.
3. OvC .x; y/) C.x; y/.
4. ingrC .x; y/ ^ OvC .z; x/) OvC .z; y/.
5. ingrC .x; y/) OvC .x; y/.

The notion of an C–exterior things, extrC is defined by means of

EC extrC .x; y/, :OvC .x; y/ (10.11)

10.2.2.3 Notions Derived from C

A new notion is C–external connectedness, EC, defined as follows

EC EC.x; y/, C.x; y/ ^ extr.x; y/ (10.12)

It is easy to see that in the model OVM, EC is a vacuous notion. Clearly, by
definition (10.12),

1. :EC.x; x/.
2. EC.x; y/, EC.y; x/.
3. C.x; y/, EC.x; y/ _OvC .x; y/.
4. OvC .x; y/, C.x; y/ ^ :EC.x; y/.
5. :EC.x; y/, ŒOvC .x; y/, C.x; y/�: This is a logical rendering of our remark

that in OVM, no pair of things is in EC, hence, :EC.x; y/ D TRUE for each
pair of things.

6. :9z:EC.z; x/) fingrC .x; y/, Œ8w:OvC .w; x/) OvC .w; y/�g.
A comment in the way of proof. The implication

ingrC .x; y/) Œ8w:OvC .w; x/) OvC .w; y/�

is always true. Thus, it remains to assume that (i) :9z:EC.z; x/ and to prove that

.�/ Œ8w:OvC .w; x/) OvC .w; y/�) ingrC .x; y/

(i) can be written down as (ii) 8z::C.z; x/ _ OvC .z; x/. To prove that ingrC .x; y/
it should be verified that (iii) 8z:.C.z; x/) C.z; y//.

Consider an arbitrary thing z0; either :C.z0; x/ in which case implication in (iii)
is satisfied with z0, or,OvC .z0; x/, hence,OvC .z0; y/ by the assumed premise in (*),
which implies that C.z0; y/. The implication (iii) is proved and this concludes the
proof.
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The richer structure of connection based calculus allows for some notions of a
topological nature; the first is the notion of a tangential ingredient, TingrC .x; y/,
defined by means of

TI TingrC .x; y/, ingrC .x; y/ ^ 9z:EC.z; x/ ^ EC.z; y/ (10.13)

Basic properties of tangential parts follow by (10.13)

1. 9z:EC.z; x/) TingrC .x; x/.
2. :9z:EC.z; y/) :existsx:TingrC .x; y/.
3. TingrC .z; x/ ^ ingrC .z; y/ ^ ingrC .y; x/) TingrC .y; x/.

For Property 3, some argument may be in order; consider w such that EC.w; x/,
EC.w; z/ existing by TingrC .z; x/. hence, C.w; y/. As :OvC .w; x/, it follows that
:OvC .w; y/, hence, EC.w; y/, and TingrC .y; x/.

These properties witness the fact that if there is some thing externally connected
to x, then x is its tangential ingredient. This fact shows that the notion of a
tangential ingredient falls short of the idea of a boundary. Dually, in absence of
things externally connected to y, no ingredient of y can be a tangential ingredient.

A thing y is a non–tangential ingredient of a thing x, NTingrC .y; x/, in case it
is an ingredient but not any tangential ingredient of x,

NTI NTingrC .y; x/, :TingrC .y; x/ ^ ingrC .y; x/ (10.14)

Basic properties of the operator NTI are

1. NTingrC .y; x/) 8z::EC.z; y/ _ :EC.z; x/.
2. :9z:EC.z; x/) NTingrC .x; x/.

In absence of externally connected things, each thing is a non–tangential ingre-
dient of itself, hence, in the model OVM each object is its own non–tangential
ingredient and it has no tangential ingredients. To produce models in which EC,
NTingrC ;TingrC will be exhibited, we resort to topology, see Sect. 10.4.3.

Further properties of the predicate NTingrC are

1. NTingrC .y; x/ ^ C.z; y/) C.z; x/.
2. NTingrC .y; x/ ^OvC .z; y/) OvC .z; x/.
3. NTingrC .y; x/ ^ C.z; y/) OvC .z; x/.
4. ingrC .y; x/ ^ NTingrC .x; z/) NTingrC .y; z/.
5. ingrC .y; z/ ^ NTingrC .x; y/) NTingrC .x; z/.
6. NTingrC .y; z/ ^ NTingrC .z; x/) NTingrC .y; x/.

For Property 3, from already known 8z::EC.z; y/ _ :EC.z; x/, it follows

.i/ 8w::C.w; x/ _OvC .w; x/ _ :C.w; y/ _OvC .w; y/

As C.z; y/, one obtains C.z; x/. Thus, by (i), OvC .z; y/_OvC .z; x/ and OvC .z; x/.
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For Property 4, assume ingrC .y; x/; ingrC .x; z/ and hence, ingrC .y; z/
(otherwise there is nothing to prove), consider :NTingrC .y; z/, i.e., for some
w: EC.w; z/;EC.w; y/. Thus, C.w; z/, :OvC .w; z/, C.w; y/, :OvC .w; y/. Then,
C.w; x/ and :OvC .w; x/, hence, EC.w; x/ and :NTingrC .x; z/, a contradiction.
Similarly, one justifies Properties 5 and 6.

10.3 Rough Mereology

A scheme of mereology, introduced into a collection of things, sets an exact
hierarchy of things of which some are (exact) parts of others; to ascertain whether
a thing is an exact part of some other thing is in practical cases often difficult if
possible at all, e.g., a robot sensing the environment by means of a camera or a
laser range sensor, cannot exactly perceive obstacles or navigation beacons. Such
evaluation can be done approximately only and one can discuss such situations up to
a degree of certainty only. Thus, one departs from the exact reasoning scheme given
by decomposition into parts to a scheme which approximates the exact scheme but
does not observe it exactly.

Such a scheme, albeit its conclusions are expressed in an approximate language,
can be more reliable, as its users are aware of uncertainty of its statements and can
take appropriate measures to fend off possible consequences.

Imagine two robots using the language of connection mereology for describing
mutual relations; when endowed with touch sensors, they can ascertain the moment
when they are connected; when a robot has as a goal to enter a certain area, it can
ascertain that it connected to the area or overlapped with it, or it is a part of the area,
and it has no means to describe its position more precisely.

Introducing some measures of overlapping, in other words, the extent to which
one thing is a part to the other, would allow for a more precise description of relative
position, and would add an expressional power to the language of mereology. Rough
mereology answers these demands by introducing the notion of a part to a degree
with the degree expressed as a real number in the interval Œ0; 1�. Any notion of a part
by necessity relates to the general idea of containment, and thus the notion of a part
to a degree is related to the idea of partial containment and it should preserve the
essential intuitive postulates about the latter.

The predicate of a part to a degree stems ideologically from and has as one of
motivations the predicate of an element to a degree introduced by L. A. Zadeh as
a basis for fuzzy set theory (Zadeh 1965); in this sense, rough mereology is to
mereology as the fuzzy set theory is to the naive set theory. To the rough set theory,
owes rough mereology the interest in concepts as things of analysis.

The primitive notion of rough mereology is the notion of a rough inclusion which
is a ternary predicate�.x; y; r/where x; y are things and r 2 Œ0; 1�, read ‘the thing x
is a part to degree at least of r to the thing y’. Any rough inclusion is associated with
a mereological scheme based on the notion of a part by postulating that �.x; y; 1/
is equivalent to ingr.x; y/, where the ingredient relation is defined by the adopted
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mereological scheme. Other postulates about rough inclusions stem from intuitions
about the nature of partial containment; these intuitions can be manifold, a fortiori,
postulates about rough inclusions may vary. In our scheme for rough mereology, we
begin with some basic postulates which would provide a most general framework.
When needed, other postulates, narrowing the variety of possible models, can be
introduced.

10.3.1 Rough Inclusions

We have already stated that a rough inclusion is a ternary predicate �.x; y; r/. We
assume that a collection of things is given, on which a part relation � is introduced
with the associated ingredient relation ingr. We thus apply inference schemes of
mereology due to Leśniewski, presented above.

Predicates �.x; y; r/ were introduced in Polkowski and Skowron (1994, 1997);
they satisfy the following postulates, relative to a given part relation � and the
induced by � relation ingr of an ingredient, on a set of things

RINC1 �.x; y; 1/, ingr.x; y/:

This postulate asserts that parts to degree of 1 are ingredients.

RINC2 �.x; y; 1/) 8zŒ�.z; x; r/) �.z; y; r/�:

This postulate does express a feature of partial containment that a ‘bigger’ thing
contains a given thing ‘more’ than a ‘smaller’ thing. It can be called a monotonicity
condition for rough inclusions.

RINC3 �.x; y; r/ ^ s < r ) �.x; y; s/.

This postulate specifies the meaning of the phrase ‘a part to a degree at least of
r’. From postulates RINC1–RINC3, and known properties of ingredients some
consequences follow

1. �.x; x; 1/.
2. �.x; y; 1/ ^ �.y; z; 1/) �.x; z; 1/.
3. �.x; y; 1/ ^ �.y; x; 1/, x D y.
4. x ¤ y ) :�.x; y; 1/ _ :�.y; x; 1/.
5. 8z8rŒ�.z; x; r/, �.z; y; r/�) x D y.

Property 5 may be regarded as an extensionality postulate in rough mereology.
By a model for rough mereology, we mean a quadruple

M D .VM ; �M ; ingrM ;�M /

where VM is a set with a part relation �M � VM � VM , the associated ingredient
relation ingrM � VM � VM , and a relation �M � VM � VM � Œ0; 1� which satisfies
RINC1–RINC3.
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We now describe some models for rough mereology which at the same time
give us methods by which we can define rough inclusions, see Polkowski (2002,
2003, 2004a,b, 2005a, 2007, 2008, 2009a), a detailed discussion may be found in
Polkowski (2011).

10.3.1.1 Rough Inclusions from t–norms

We resort to continuous t–norms which are continuous functions T W Œ0; 1�2 !
Œ0; 1� which are (1) symmetric. (2) associative. (3) increasing in each coordinate. (4)
satisfying boundary conditions T .x; 0/ D 0; T .x; 1/ D x, cf., Polkowski (2011),
Chs. 4 and 6, Hájek (1998), Ch. 2. Classical examples of continuous t–norms are

1. L.x; y/ D maxf0; x C y � 1g (the Łukasiewicz’s t–norm).
2. P.x; y/ D x � y (the product t–norm).
3. M.x; y/ D minfx; yg (the minimum t–norm).

The residual implication)T induced by a continuous t–norm T is defined as

x)T y D maxfz W T .x; z/ 
 yg (10.15)

One proves that �T .x; y; r/ , x )T y � r is a rough inclusion; particular
cases are

1. �L.x; y; r/, minf1; 1 � x C y � rg (the Łukasiewicz implication).
2. �P .x; y; r/ , y

x
� r when x > 0, �P .x; y; 1/ when x D 0 (the Goguen

implication).
3. �M.x; y; r/ , y � r when x > 0, �M.x; y; 1/ when x D 0 (the Gödel

implication).

A particular case of continuous t–norms are Archimedean t–norms which satisfy the
inequality T .x; x/ < x for each x 2 .0; 1/. It is well–known, see Ling (1965), that
each archimedean t–norm T admits a representation

T .x; y/ D gT .fT .x/C fT .y// (10.16)

where the function fT W Œ0; 1� ! R is continuous decreasing with fT .1/ D 0, and
gT W R! Œ0; 1� is the pseudo–inverse to fT , i.e., g ı f D id.

It is known, cf., e.g., Hájek (1998), that up to an isomorphism there are two
Archimedean t–norms: L and P . Their representations are

fL.x/ D 1 � xI gL.y/ D 1 � y (10.17)

and

fP .x/ D exp.�x/I gP .y/ D �ln y (10.18)
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For an Archimedean t–norm T , we define the rough inclusion �T on the interval
Œ0; 1� by means of

.ari/ �T .x; y; r/, gT .jx � yj/ � r (10.19)

equivalently,

�T .x; y; r/, jx � yj 
 fT .r/ (10.20)

It follows from (10.20), that �T satisfies conditions RINC1–RINC3 with ingr as
identityD.

To give a hint of proof: for RINC1: �T .x; y; 1/ if and only if jx� yj 
 fT .1/ D
0, hence, if and only if x D y. This implies RINC2. In case s < r , and jx � yj 

fT .r/, one has fT .r/ 
 fT .s/ and jx � yj 
 fT .s/.

Specific recipes are

�L.x; y; r/, jx � yj 
 1 � r (10.21)

and

�P .x; y; r/, jx � yj 
 �ln r (10.22)

Both residual and archimedean rough inclusions satisfy the transitivity condition

.Trans/ if�.x; y; r/ and �.y; z; s/; then �.x; z; T .r; s//:

In the way of a proof, assume, e.g., �T .x; y; r/ and �T .y; z; s/, i.e., jx � yj 

fT .r/ and jy � zj 
 fT .s/. Hence, jx � zj 
 jx � yj C jy � zj 
 fT .r/C fT .s/,
hence, gT .jx � zj/ � gT .fT .r/ C fT .s// D T .r; s/, i.e., �T .x; z; T .r; s//. Other
cases go on same lines. Let us observe that rough inclusions of the form (ari) are
also symmetric.

10.3.1.2 Rough Inclusions in Information Systems (Data Tables)

An important domain where rough inclusions will play a dominant role in our
analysis of reasoning by means of parts is the realm of information systems of
Pawlak (1991), cf., Polkowski (2011), Ch. 6. We will define information rough
inclusions denoted with a generic symbol �I .

We recall that an information system (a data table) is represented as a pair .U;A/
where U is a finite set of things and A is a finite set of attributes; each attribute
a W U ! V maps the set U into the value set V . For an attribute a and a thing v,
a.v/ is the value of a on v.
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For things u; v the discernibility set DIS.u; v/ is defined as

DIS.u; v/ D fa 2 A W a.u/ ¤ a.v/g (10.23)

For an (ari) �T , we define a rough inclusion �IT by means of

.airi/ �IT .u; v; r/, gT .
jDIS.u; v/j
jAj / � r (10.24)

Then, �IT is a rough inclusion with the associated ingredient relation of identity and
the part relation empty.

For the Łukasiewicz t–norm, the airi �IL is given by means of the formula

�IL.u; v; r/, 1 � jDIS.u; v/j
jAj � r (10.25)

We introduce the set IND.u; v/ D AnDIS.u; v/. With its help, we obtain a new form
of (10.25)

�IL.u; v; r/,
jIND.u; v/j
jAj � r (10.26)

The formula (10.26) witnesses that the reasoning based on the rough inclusion �IL
is the probabilistic one which goes back to Łukasiewicz (1970). Each (airi)–type
rough inclusion �IT satisfies the transitivity condition (Trans) and is symmetric.

10.3.1.3 Rough Inclusions on Sets and Measurable Sets

Formula (10.26) can be abstracted to set and geometric domains. For finite sets
A;B ,

�S.A;B; r/, jA \ BjjAj � r (10.27)

where jX j denotes the cardinality of X , defines a rough inclusion �S . For bounded
measurable sets X; Y in an Euclidean space En,

�G.A;B; r/, jjA\ BjjjjAjj � r (10.28)

where jjAjj denotes the area (the Lebesgue measure) of the regionA, defines a rough
inclusion �G . Both �S;�G are symmetric but not transitive.

Other rough inclusions and their weaker variants will be defined in later chapters.
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10.4 Mereotopology and Mereogeometry

Both mereology and topology address problems of mutual relations among things
like ‘being external’, ‘being inside’ etc., hence, as the language of topology is well
established, it is desirable to trace topological constructs in mereological universa.
First, we would like to introduce the reader to rudiments of topology necessary in
order to follow our exposition.

10.4.1 A Topological Background

We begin with the notion of a topological space which is a pair .X; �/ whereX is a
set and � a family of subsets of X ; sets in the family � are called open sets provided
the following are satisfied (1) � is closed on finite intersections. (2) unions of sub–
families of � belong in � . Examples are provided, e.g., by metric spaces; given a
metric � on a set X , open balls are defined as sets of the form B.x; r/ D fy 2 X W
�.x; y/ < rg for x 2 X and r > 0. Open sets are defined in this case as unions of
families of open balls.

Closed sets are complements to open sets; a set C � X is closed if and only if
the set X n C is open. Clearly, intersections of arbitrary families of closed sets are
closed and finite unions of closed sets are closed.

10.4.1.1 Approximations: Interior and Closure of a Set

In a given topological space, .X; �/, open as well as closed sets may be called
definable as the membership problem for them is decidable; other sets can be
approximated only by open, respectively, closed sets. To this end, topology offers
operators of interior, Int, respectively, of closure, Cl. The operator Int provides the
approximation from below, whereas Cl yields the approximation from above.

For a subset A � X , the interior of A is IntA D SfV 2 � W V � Ag; the
dual operator of closure can be defined as ClA D X n Int.X n A/. The well–known
properties of those operators follow (1) Int; D ; (ClX D X ). (2) IntA � A (A �
ClA). (3) IntIntA D A (ClClA D ClA). (4) .A � B/) .IntA � IntB/ (A � B )
ClA � C lB), where formulas in parentheses give properties of the closure operator,
dual to those of the interior operator. Properties 1–4 may be taken as axioms for
interior, respectively, closure, operators. Each set A � X is sandwiched between
IntA and ClA.

10.4.1.2 Boundaries

The difference ClA n IntA, denoted BdA, is the boundary of A. Clearly, BdA D
ClA \ Cl.X nA/. In case BdA D ;, the set A is closed–open (clopen), A is meager
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in case IntBdA D ;, and A is nowhere–dense in case IntBdClA D ;. Let us observe
that the boundary operator requires for its definition either interior and complement
or closure and complement operators, i.e., it is of open–and–closed character.

We close this paragraph with an essential property of Int and Cl operators

V \ ClA � Cl.V \ A/ (10.29)

for each set A and each open set V in a topological space .X; �/. For the proof, it
suffices to observe that given x 2 V \ ClA and an arbitrary open W 3 x, one has
.W \ V /\ A ¤ ;, i.e., W \ .V \ A/ ¤ ;, hence, x 2 Cl.V \ A/.

Topological spaces are classified also with respect to their separation properties;
T0 (or, Kolmogorov) property consists in Clx ¤ Cly when points x ¤ y; T1 means
Clx D x, each x; T2 (Hausdorff) means that each pair of distinct points can be
separated by disjoint open sets; T3 (regularity) means that each pair x; F , F closed
and x … F , can be separated by disjoint open sets(regularity); a topological space
.X; �/ is regular if and only if for each pair x 2 V , where V open, there exists an
openW such that x 2 W � ClW � V .

Of interest to us are particular sub–categories of open or closed sets. We intro-
duce regular closed sets which allow for non–trivial examples of C–mereological
operators of overlap, interior and closure.

10.4.2 Regular Open and Regular Closed Sets

A set A in a topological space .X; �/ is regular open if it is of the form IntClB
for some set B; then, by property (iii) of operators Int;Cl, IntClA D IntClB, i.e.,
A D IntClA. Hence, regular open sets are characterized by the identity A D IntClA.
Dually, a set C is regular closed if it satisfies the identity C D ClIntC. It follows
that A is regular open (resp. regular closed) if and only if the set X n A is regular
closed (resp. regular open). As the set IntBd.ClV n V / with an open V is empty,
each regular open or regular closed set has a nowhere–dense boundary.

Examples of regular closed sets are closed disks in the 2D–space or closed balls
in the 3D–space and the open complements are examples of regular open sets; more
generally, regular closed are compact convex regions in Euclidean spaces and their
interiors are specimens of regular open sets.

A very basic property of regular sets is that they form complete Boolean algebras;
regular open sets form the Boolean algebra, denoted RO.X/. In order to justify this
claim, we let

A? D X n ClA

The set A is regular open if and only if A D A??. Indeed, A?? D X n Cl.X n
ClA/ D IntClA. Properties of the operation A? are (in proofs, one uses (10.29)
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1. If A � B , then B? � A?.
2. If A is an open set, then A � A??.
3. If A is an open set, then A? D A???, hence, A?? D A????.
4. If A;B are open sets, then .A \ B/?? D A?? \ B??.
5. .A [ B/? D A? \ B?.
6. If A is an open set, then .A [A?/?? D X .

Now, we define in the family RO.X/ of regular open sets operations ^;_; 0
1. A _ B D .A[ B/?? D IntCl.A[ B/.
2. A ^ B D A\ B .
3. A0 D A? D X n ClA.

and constants 0 D ;; 1 D X .
All operations listed above give regular open sets by properties of .:/?. It remains

to check that axioms of a Boolean algebra are satisfied. Commutativity lawsA_B D
B _A;A^B D B ^A are satisfied evidently. The laws A_ 0 D A;A^ 1 D A are
also manifest. We have A^A0 D A\A? D A nClA D ; D 0 as well as A_A0 D
.A[A??/?? D X D 1. The distributive laws A_ .B ^C/ D .A_B/^ .A_C/
as well as A _ .B ^ C/ D .A _ C/ ^ .A _ C/ hold by Property 5.

A particular sub–algebra of RO.X/ is the algebra CO.X/ of clopen sets in
X . In case of CO.X/ boolean operations _;^; 0 specialize to usual set–theoretic
operations[;\; n i.e. CO.X/ is a field of sets.

The basic distinction between RO.X/ and CO.X/ is the fact that RO.X/ is a
complete Boolean algebra for any X whereas CO.X/ needs not be such.

Let us observe that the boolean ordering relation
 is in this case the inclusion�.
Consider A � RO.X/. Let s.A / D .

S
A /??; we check that s.A / is the

supremum of A .
Indeed, for A 2 A , we have A 2 S

A hence A D A?? � .
S

A /?? i.e.
A 
 s.A /. It follows that s.A / is an upper bound for A .

Now, assume that B 2 RO.X/ is an upper bound for A , i.e., A � B for each
A 2 A . Hence

S
.A / � B and thus .

S
A /?? � B?? D B i.e. s.A / 
 B

proving that s.A / is the supremum of A . Finally, by duality it follows that i.A / D
.
T

A /?? is the infimum of A .
By duality applied to the family RC.X/ of regular closed sets in X , we obtain

a dual proposal that RC.X/ is a complete boolean algebra under operations ^;_; 0
defined as follows

1. A _ B D A[ B .
2. A ^ B D ClInt.A \ B/.
3. A0 D X n IntA.

and with constants 0 D ;; 1 D X .
It follows that RO.X/;RC.X/ are mereological categories as they are closed

on formation of classes; contrariwise, closed sets do not form any mereological
category; this is in part responsible for difficulties with boundaries in mereology.
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A complete axiomatization of mereotopology interpreted in regular open sets is
given in Asher and Vieu (1995).

10.4.3 An Application: The Model ROM for Connection

We define in the space RO.X/ of regular open sets in a regular space X the
connection C by demanding that

C.A;B/, ClA \ ClB ¤ ;:

For simplicity sake, we assume that the regular space X is connected, so no set in it
is clopen, equivalently, the boundary of each set is non–empty.

10.4.3.1 Ingredient in ROM

First, we investigate what ingrC means in ROM. By definition IC in (10.8), for
A;B 2 RO.X/,

ingrC .A;B/, 8Z 2 RO.X/:ClZ \ ClA ¤ ;) ClZ \ ClB ¤ ;:

This excludes the case when A nClB ¤ ; as then we could find a Z 2 RO.X/ with

Z \A ¤ ; D ClZ \ ClB

(as our space X is regular). It remains that A � ClB, hence, A � IntClB D B. It
follows finally that in model ROM, ingrC .A;B/, A � B .

10.4.3.2 Overlap in ROM

Now, we can interpret overlapping in ROM. For A;B 2 RO.X/, OvC .A;B/ means
that there existsZ 2 RO.X/ such thatZ � A and Z � B henceZ � A\B , hence

A \ B ¤ ;:

This condition is also sufficient by regularity of X . We obtain that in ROM,

OvC .A;B/, A\ B ¤ ;:
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10.4.3.3 External Connectedness in ROM

The status of EC in ROM is

EC.A;B/, ClA \ ClB ¤ ; ^A \ B D ;:

This means that closed sets ClA;ClB do intersect only at their boundary points.

10.4.3.4 Tangential Ingredient in ROM

We can address the notion of a tangential ingredient: T ingrC .A;B/ means the
existence of Z 2 RO.X/ such that

ClZ \ ClA ¤ ; ¤ ClZ \ ClB

and

Z \A D ; D Z \ B

along with A � B .
In case

ClA \ .ClB n B/ ¤ ;

letting Z D X n ClB we have

ClZ D Cl.X n ClB/

and

BdZ D ClZ nZ D Cl.X n ClB/ n .X n ClB/

which in turn is equal to

Cl.X n ClB/\ ClB D Cl.X n B/\ ClB D BdB:

Hence, ClBnB � ClZ, and ClZ \ClA ¤ ;; a fortiori, ClB\ClZ ¤ ;. AsZ \B D
;, a fortioriZ \A D ; follows.

We know, then, that

ClA \ .ClB n B/ ¤ ;) TingrC .A;B/

Was to the contrary, ClA � B , from Z \ClA ¤ ; it would follow thatZ \B ¤ ;,
negating EC.A;B/.
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It follows finally that in ROM, TingrC .A;B/ if and only if A � B and ClA \
.ClB n B/ ¤ ;, i.e.,

TingrC .A;B/, A � B ^ ClA \ BdB ¤ ;:

From this analysis we obtain also that NTingrC .A;B/ if and only if ClA � IntB.

10.4.4 Mereotopology in Part Mereology

We assume now a Leśniewski–style universe with part and ingredient relations and
derived notions. Topological structures which arise in this context can be induced
from overlap relations.

As in topology, interior as well as closure operators act on unions and intersec-
tions of sets, we recall here two fusion operators due to Tarski (1935), cf., Clay
(1974). These operators are the sum xCy and the product x �y defined by means of

ingr.z; x C y/, ingr.z; x/ _ ingr.z; y/; (10.30)

and,

ingr.z; x � y/, ingr.z; x/ ^ ingr.z; y/ (10.31)

10.4.4.1 On Closures

As the first approximation to topology, let us define for each thing x, its closure
c.x/ by means of

c.x/ D ClsOv.x/ (10.32)

where the property Ov.x/ is defined by Ov.x/.y/ , Ov.x; y/, i.e., we build the
closure c.x/ as the class of things which overlap with x.

The closure operator c.:/ has the following properties

Cl1 ingr.x; c.x//.
Cl2 If ingr.x; y/, then ingr.c.x/; c.y//.
Cl3 ingr.c.x � y/; c.x/ � c.y//.
Cl4 c.x C y/ D c.x/C c.y/.

In way of proof, we observe that Cl1 and Cl2 follow from definition of the overlap
relation and the class definition. For Cl3, if ingr.t; c.x �y//, then there is z such that
Ov.t; z/ andOv.z; x�y/ thus for some w one hasOv.z;w/ and ingr.w; x/, ingr.w; y/
which imply that ingr.t; c.x//, ingr.t; c.y// and finally ingr.t; c.x/ � c.y//. By M3,
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ingr.c.x � y/; c.x/ � c.y//. For Cl4, it suffices to observe that Ov.z; x C y/ ,
Ov.z; x/ _Ov.z; y/.

Another possibility for a topology is in iteration of the operator c, viz, we let

OvnC1.x; y/, 9z:Ov.x; z/ ^Ovn.z; y/IOv1.x; y/, Ov.x; y/ (10.33)

and we define

OVLP.x/.y/, 9n:Ovn.x; y/ (10.34)

The closure Cl.x/ is defined as the class of the property OVLP.x/, i.e.,

Cl.x/ D ClsOVLP.x/ (10.35)

The operator Cl.x/ has the following properties

CL1 Cl.Cl.x// D Cl.x/.
CL2 ingr.x;Cl.x//.
CL3 ingr.x; y/ implies ingr.Cl.x/;Cl.y//.
CL4 Cl.x C y/ D Cl.x/C Cl.y/.

Please observe that CL2, CL3 follow straightforwardly from definitions. For CL1,
observe that ingr.t;Cl.x// if and only if OVLP.x/.t/. Thus, ingr.t;Cl.Cl.x/// if
and only if OVLP.Cl.x//.t/ if and only if OVLP.x/.t/ if and only if ingr.t;Cl.x//.

For CL4, assume first that ingr.t;Cl.x C y// hence OVLP.t; x C y/

and thus OVLP.t; x/ _ OVLP.t; y/, i.e., ingr.t;Cl.x// _ ingr.t;Cl.y// and
thus ingr.t;Cl.x/ C Cl.y//. Assume now that ingr.t;Cl.x/ C Cl.y//, i.e.,
OVLP.t; x/ _ OVLP.t; y/, so there exists m such that Ovm.t; x/ _ Ovm.t; y/,
i.e., Ovm.t; x C y/, hence, ingr.t;Cl.x C y//.

It follows that the operator Cl is a genuine closure operator; its properties are
weak, as it in fact delineates components of things with respect to the overlap
property: it is not even a T0–closure operator.

10.4.4.2 On Boundaries

A definition of a boundary can be attempted on the lines of topological boundary
concept. For a thing x, let a property � .x/ be defined as follows

� .x/.t/, ingr.t; x/ ^ 8z:ŒOv.z; x/ ^Ov.z;�x/) Ov.z; t/� (10.36)

We may define the boundary of x, Fr.x/, by letting

Fr.x/ D Cls� .x/ (10.37)
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Properties of Fr.x/ following directly from definitions above are

1. ingr.Fr.x/; x/.
2. 8z:Ov.z; x/ ^Ov.z;�x/) Ov.z;Fr.x//:

The above notion of a boundary has a topological flavor though by definition the
boundary of the thing must be its ingredient contrary to topological reality; however,
the notion of a boundary has a much wider scope. It can also support the idea of a
separator between two things within a third, which does encompass either, like a
river flowing through a town separates parts on opposite banks. To implement this
idea, for things x; y, such that extr.x; y/, we define the property

˝.x; y/.t/, extr.t; x/ ^ extr.t; y/ (10.38)

and we let

Bd.x; y/ D Cls˝.x; y/ (10.39)

Then the boundary operation Bd has properties

1. Bd.x; y/ D Bd.y; x/.
2. Bd.x C y; z/ D Bd.x; z/ � Bd.y; z/.

Property 1 is obvious. Property 2 follows from the equivalence extr.x C y; z/ ,
extr.x; z/ ^ extr.y; z/. A relative variant can be defined; assuming that ingr.x; z/,
ingr.y; z/ and extr.x; y/, a boundary relative to z between x and y, Bdz.x; y/; is
the class of things t such that ingr.t; z/, extr.t; x/; extr.t; y/ provided this property
is non–vacuous.

10.4.5 Connection Mereotopology

Topological operators are constructed in connection mereology under same caveat
as quasi–Boolean operators: absence of the null thing causes the need for reserva-
tions concerning existence of some things necessary for topological constructions.
We will make this reservations not trying to add new axioms which would guarantee
existence of some auxiliary things. We follow Clarke (1981) in this exposition.

10.4.5.1 On the Notion of C–interior

The C–interior IntC.x/ of a thing x is defined as the class of non–tangential
ingredients of x.

We define the property NTP.x/

NTP.x/.z/, NTP.z; x/ (10.40)
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The interior IntC .x/ is defined by means of

INTC IntC .x/ D ClsNTP.x/ (10.41)

hence, properties follow

1. C.z; IntC .x//, 9w:NTingrC .w; x/ ^ C.z;w/ by the class definition.
2. :9z:EC.z; x/) .IntC .x/ D x/. In particular, in the model OVM, IntC .x/ D x

for each thing x.
3. ingrC .IntC .x/; x/ as C.z; IntC .x//) C.z; x/.
4. C.z; IntC .x//) OvC .z; x/.
5. EC.z; x/) :C.z; IntC .x//.
6. ingrC .z; IntC .x//, NTingrC .z; x/.
7. ingrC .z; x/) ingrC .IntC .z/; IntC .x//.
8. IntC .x/ D x , C.z; x/) OvC .z; x/.
9. IntC .x/ D x , NTingrC .x; x/.

An open thing is x such that IntC .x/ D x.
Under additional axiomatic postulate that the boolean product of any two open

sets is open, see Clarke (1981), A2.1, one can prove that IntC .x � y/ D IntC .x/ �
IntC .y/.

10.4.5.2 On the Notion of C–Closure

The notion of a topological closure ClC .x/ of x, can be introduced by means of the
standard duality

ClC ClC .x/ D �IntC .�x/ (10.42)

By properties of the interior and by duality (10.42), one obtains dual properties of
closure

1. ingrC .x;ClC .x//.
2. ClC .ClC .x// D ClC .x/.
3. ingrC .x; y/) ingrC .ClC .x/;ClC .y//.
4. IntC .x � y/ D IntC .x/ � IntC .y/, ClC .x C y/ D ClC .x/C ClC .y/.
5. C.z;ClC .x//, 9w:NTingrC .w;�x/ ^ C.z;w/.

10.4.5.3 C–Boundaries and a Barry Smith’s Proposal for Mereotopology

The notion of a boundary can be introduced along standard topological lines

BdC BdC .x/ D �.IntC .x/C IntC .�x// (10.43)
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We collect basic properties of the boundary

1. Under Property 4, BdC .x/ D ClC .x/ � �IntC .x/, i.e., it can be expressed as the
difference between the closure and the interior of the thing.

2. BdC .x/ D BdC .�x/.
3. ingrC .BdC .x/;ClC .x//.

An interesting current in mereotopology is that by Smith (1996). It is situated in
a universe endowed with part � and ingredient ingr relations, no matter in what way
introduced. It departs from the above schemes for mereotopology by introducing the
notion of an interior part, �� , which is supposed to satisfy the requirements

1. ��.x; y/) �.x; y/.
2. ��.x; y/ ^ �.y; z/) ��.x; z/.
3. �.x; y/ ^ ��.y; z/) ��.x; z/.
4. ��.x; y/ ^ ��.y; z/) ��.x; y � z/.
5. For a non–void property (collection) F , if F.x/) ��.x; y/ then ��.ClsF; y/.
6. There exists y such that ��.x; y/ for each x.
7. ��.x; y/) ��.x;Clsft W ��.t; y/g/.

The interior of x can be defined as Intx D Clsft W ��.t; x/g, and, one can declare
the thing x as open when x D Intx.

From these postulates one derives in the standard way the following properties

1. ��.V; V /.
2. ��.x; V /.
3. ��.x; y/, �.x;Clsft W ��.t; y/g/.
4. �.Clsft W ��.t; y/g; y/.

An approach to the notion of a boundary follows in two steps. First, the relation
�.x; y/, ‘x crosses y’ is defined as

�.x; y/, Ov.x; y/ ^Ov.x;�y/ (10.44)

Observe that no x can cross the universe V . The second notion of straddling
involves open sets; one says that Str.x; y/, x straddles y, when

��.x; z/) �.z; y/ (10.45)

for each z.
It follows that

1. �.x; y/) ��.x; y/ _ Str.x; y/.
2. ��.x; x/ _ Str.x; x/:

The notion of to be boundary , B.x; y/ is derived by means of

B.x; y/, �.z; x/) Str.z; y/ (10.46)

for each z.
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The boundary Bdx of x is then defined as

Bdx D Clsfy W B.y; x/g (10.47)

Closure of x, cl.x/ is defined as the union xCBdx. It then satisfies the postulates
for topological closure operator,

1. �.x; cl.x//.
2. cl.cl.x// D cl.x/.
3. cl.x C y/ D cl.x/C cl.y/.

10.4.6 Rough Mereotopology

We analyze now topological structures in rough mereological framework. We
consider the case of transitive and symmetric rough inclusions here, for more
general discussion, cf., Polkowski (2011), Ch. 6. Here belong rough inclusions of
types (ari), (airi). We use a generic symbol � to denote either of these forms. � is
transitive with some t–norm T

�.x; y; r/; �.y; z; s/) �.x; z; T .r; s// (10.48)

and symmetric

�.x; y; r/, �.y; x; r/ (10.49)

10.4.6.1 The Notion of an Open Set

For each thing x, we defineOr.x/ as the class of propertyM.x; r/, where

M.r; x/.y/, �.y; x; r/; (10.50)

and we let

Or.x/ D ClsM.x; r/ (10.51)

Hence: ingr.z; Or.x// if and only if �.z; x; r/. Indeed, ingr.z; Or.x// if and only
if there exists t such that Ov.z; t/ and �.t; x; r/, hence, there exists w such that
ingr.w; z/, ingr.w; t/, hence w D z D t , and finally �.z; x; r/.

We regard the thingOr.x/ as an analogue of the notion of the ‘closed ball about
x of the radius r’. To define the analogue of an open ball, we consider the property

MC
r .x/.y/, 9q > r:�s;t .y; x; q/ (10.52)
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The class of the propertyMC
r .x/ will serve as the open ball analogue

Int.Or.x// D ClsMC
r .x/ (10.53)

Then: ingr.z; Int.Or.x/// if and only if 9q > r:�s;t .z; x; q/. We follow the lines of
the preceding proof. It is true that

ingr.z; Int.Or.x///

if and only if there exists t such that Ov.z; t/ and there exists q > r for which
�T .t; x; q/ holds, hence, there exists w such that ingr.w; z/, ingr.w; t/, which
implies that w D z D t , and finally �T .z; x; q/.

It follows

1. ingr.Int.Or.x//;Or .x//.
2. If s < r , then ingr.Or.x/;Os.x//, ingr.Int.Or.x//; Int.Os.x///.

Consider z with ingr.z; Int.Or.x///. �T .z; x; s/ holds with some s > r . We can
choose ˛ 2 Œ0; 1� with the property that T .˛; s/ > r . For any thing w with
ingr.w; O˛.z//, we can find an thing u such that �T .u; z; ˛/ and Ov.w; u/. For
a thing t such that ingr.t; u/ and ingr.t;w/, we have �T .t;w; 1/, �T .t; u; 1/,
hence, �T .t; x; T .˛; s//, i.e, ingr.t; Int.Or.x///. As t D w, we find that
ingr.w; Int.Or.x///. We have verified that

(P) for each z with ingr.z; Int.Or.x///, there exists ˛ 2 Œ0; 1� such that

ingr.O˛.z/; Int.Or.x///:

For any thing z, when ingr.z; Int.Or.x/// and ingr.z; Os.y//, one finds ˛; ˇ 2
Œ0; 1� such that ingr.O˛.z/; Int.Or.x/// and ingr.Obeta.z/; Int.Os.y///, hence,
ingr.Oq.z/; Int.Or.x///, ingr.Oq.z/; Int.Os.y///, for q D maxf˛; ˇg.

We can sum up the last few facts: the collection fInt.Or.x// W x a thing; r 2
Œ0; 1�g is an open basis for a topology on the collection of things.

A thing x is open, Open.x/ in symbols, in case it is a class of some property of
things of the form Int.Or.x//. Hence,

1. If ˚ is any non–vacuous property of things of the form Open.x/, then
Open.Cls˚/.

2. If Ov.Open.x/;Open.y//, then Open.Open.x/ � Open.y//.

10.4.6.2 On Closures and Interiors

We define closures of things, and to this end, we introduce a property � .x/ for each
thing x

� .x/.y/, 8s < 1:Ov.Os.y/; x/ (10.54)
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Closures of things are defined by means of

Cl.x/ D Cls� .x/ (10.55)

Then one verifies that

1. ingr.z;Cl.x// if and only if Ov.Or.z/; x/ for every r < 1.
2. ingr.z;Cl.Ow.x/// if and only if Ov.Or.z/;Ow.x// for every r < 1.
3. ingr.z;Cl.Ow.x/// if and only if ingr.z; Ow.x//.
4. Cl.Ow.x// D Ow.x/.

We define Int.x/, the interior of x as

ingr.z; Int.x//, 9w:ŒOv.z;w/ ^ 9r < 1:ingr.Or.w/; x/� (10.56)

A standard reasoning shows: ingr.z; Int.x// if and only if there exists r < 1 such
that ingr.Or.z/; x/.

10.4.6.3 On Boundaries

We can now address the problem of a boundary of any thing of the formOr.x/. We
define the boundary Bd.Or.x// as

Bd.Or.x// D Or.x/ � �Int.Or.x// (10.57)

We have a characterization of boundary ingredients: ingr.z;Bd.Or.x/// if and
only if

�.z; x; r/ ^ :9q > r:�s;t .z; x; q/:

Hence,

ingr.Bd.Or.x//;Or.x//:

10.4.7 Mereogeometry

This section introduces mereogeometry modeled on classical axiomatization of
geometry by Tarski (1959). It will serve us in the sequel in building tools for defining
and navigating formations of intelligent agents (robots).

Elementary geometry was defined by Alfred Tarski in His Warsaw University
lectures in the years 1926–1927 as a part of Euclidean geometry which can be
described by means of the 1st order logic.



10 Mereology in Engineering and Computer Science 245

There are two main aspects in formalization of geometry: one is metric aspect
dealing with the distance underlying the space of points which carries geometry and
the other is affine aspect taking into account the linear structure.

In Tarski axiomatization, Tarski (1959), the metric aspect is expressed as a
relation of equidistance (congruence) and the affine aspect is expressed by means
of the betweenness relation. The only logical predicate required is the identity D.
Equidistance relation denoted Eq.x; y; u; z/ (or, as a congruence: xy � uz) means
that the distance from x to y is equal to the distance from u to z (pairs x; y and u; z
are equidistant).

Betweenness relation is denotedB.x; y; z/, (x is between y and z). Van Benthem
(1983) took up the subject proposing a version of betweenness predicate based on
the nearness predicate and suited, hypothetically, for Euclidean spaces.

We are interested in introducing into the mereological world defined by � of
a geometry in whose terms it will be possible to express spatial relations among
things. We first introduce a notion of a distance �, induced by a rough inclusion �

�.X; Y / D minfmax r;max s W �.X; Y; r/; �.Y;X; s/g (10.58)

Observe that the mereological distance differs essentially from the standard dis-
tance: the closer are things, the greater is the value of �: �.X; Y / D 1meansX D Y
whereas �.X; Y / D 0 means that X; Y are either externally connected or disjoint,
no matter what is the Euclidean distance between them.

10.4.7.1 On the Notion of Betweenness in Tarski and Van Benthem Sense

The notion of betweenness in the Tarski sense B.Z;X; Y / in terms of � is

B.Z;X; Y / , for each region W, �.Z;W / 2 Œ�.X;W /; �.Y;W /� (10.59)

Here, Œa; b� means the non–oriented interval with endpoints a; b.
We use � to define in our context the relation N of nearness proposed in Van

Benthem (1983)

N.X;U; V / , �.X;U / > �.V; U / (10.60)

Here, N.X;U; V / means that X is closer to U than V is to U .
Then, N does satisfy all axioms for nearness in Van Benthem (1983)

1. NB1 N.Z;U; V / and N.V;U;W / imply N.Z;U;W / (transitivity).
2. NB2 N.Z;U; V / and N.U; V;Z/ imply N.U;Z; V / (triangle inequality).
3. NB3 N.Z;U;Z/ is false (irreflexivity).
4. NB4 Z D U or N.Z;Z;U / (selfishness).
5. NB5 N.Z;U; V / implies N.Z;U;W / or N.W;U; V / (connectedness).
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We provide a sketch of proof.

For NB1, assumptions are �.Z;U / > �.V; U / and �.V; U / > �.W;U /; it
follows that �.Z;U / > �.W;U / i.e. the conclusionN.Z;U;W / follows.
For NB2, assumptions �.Z;U / > �.V; U /, �.V; U / > �.Z; V / imply
�.Z;U / > �.Z; V /, i.e., N.U;Z; V /.
For NB3, it cannot be true that �.Z;U / > �.Z;U /.
For NB4, Z ¤ U implies in our world that �.Z;Z/ D 1 > �.Z;U / ¤ 1.
For NB5, assuming that neither N.Z;U;W / nor N.W;U; V /, we have
�.Z;U / 
 �.W;U / and �.W;U / 
 �.V; U / hence �.Z;U / 
 �.V; U /,
i.e., N.Z;U; V / does not hold.

We introduce a betweenness relation in the sense of Van Benthem TB modeled
on betweenness proposed in Van Benthem (1983)

TB.Z;U; V / , Œfor each W .Z D W / or N.Z;U;W / or N.Z; V;W /� (10.61)

10.4.7.2 Example: The Case of Betweenness for Robots in 2D Space

The principal example bearing, e.g., on our approach to robot control deals
with rectangles in 2D space regularly positioned, i.e., having edges parallel to
coordinate axes. We model robots (which are represented in the plane as discs of
the same radii in 2D space) by means of their safety regions about robots; those
regions are modeled as squares circumscribed on robots. One of advantages of
this representation is that safety regions can be always implemented as regularly
positioned rectangles.

Given two robots a; b as discs of the same radii, and their safety regions as
circumscribed regularly positioned rectangles A;B , we search for a proper choice
of a region X containing A; and B with the property that a robot C contained in X
can be said to be betweenA and B . In this search we avail ourselves with the notion
of betweenness relation TB .

Taking the rough inclusion �G defined in (10.28), for two disjoint rectangles
A;B , we define the extent, ext.A;B/ ofA andB as the smallest rectangle containing
the union A[B . Then we have the claim, obviously true by definition of TB : given
two disjoint rectangles C , D, the only thing between C and D in the sense of the
predicate TB is the extent ext.C;D/ of C;D.

For a proof, as linear stretching or contracting along an axis does not change the
area relations, it is sufficient to consider two unit squaresA;B of which A has (0,0)
as one of vertices whereas B has (a,b) with a; b > 1 as the lower left vertex (both
squares are regularly positioned). Then the distance � between the extent ext.A;B/
and either of A;B is 1

.aC/.bC1/ .
For a rectangle R W Œ0; x� � Œ0; y� with x 2 .a; a C 1/; y 2 .b; b C 1/, we have

that

�.R;A/ D .x � a/.y � b/
xy

D �.R;B/ (10.62)
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For �.x; y/ D .x�a/.y�b/
xy

, we find that

@�

@x
D a

x2
� .1 � b

y
/ > 0 (10.63)

and, similarly, @�
@y
> 0, i.e., � is increasing in x; y reaching the maximum when R

becomes the extent of A;B .
An analogous reasoning takes care of the case whenR has some (c,d) with c; d >

0 as the lower left vertex.
Further usage of the betweenness predicate is suggested by the Tarski (1959)

axiom of B,Eq–upper dimension, which implies collinearity of x; y; z. Thus, a line
segment may be defined via the auxiliary notion of a pattern; we introduce this
notion as a relation P t.u; v; z/ which is true if and only if TB.z; u; v/ or TB.u; z; v/
or TB.v; u; z/:

We will say that a finite sequence u1; u2; : : : ; un of things belong in a line
segment whenever P t.ui ; uiC1; uiC2/ for i D 1; : : : ; n � 2; formally, we introduce
the functor Line of finite arity defined by means of

Line.u1; u2; : : : ; un/ if and only if Pt.ui; uiC1; uiC2/ for i < n � 1:

For instance, any two disjoint rectanglesA;B and their extent ext.A;B/ form a line
segment.

PART II. APPLICATIONS

10.5 Mereology in Engineering: Artifacts, Design and
Assembling

Mereology plays a fundamental role in problems of design and assembling as basic
ingredients in those processes are parts of complex things. The process of synthesis
involves sequencing of operations of fusion of parts into more complex parts until
the final product – artifact. We propose a scheme for assembling and a parallel
scheme for design; the difference is in the fact that design operates on abstracta, i.e.
categories of things whereas assembling deals with concreta, i.e., with real things.
The interplay between abstracta and concreta will be described as a result of our
analysis.

10.5.1 On the Notion of an Artifact

The term artifact means, etymologically, a thing made by art, which covers a wide
specter of things from man–made things of everyday usage to abstract pieces of
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mathematical proofs, software modules or sonnets, or concertos. All those distinct
things are unified in a scheme dependent on some common ingredients in their
making, cf., e.g., a concise discussion in SEP (2012). We cannot include here a
discussion of vast literature on ontological, philosophical and technological aspects
of this notion, see, e.g., Baker (2004), Hilpinen (1995), Margolis and Laurence
(2007), we point only to a thorough analysis of ontological aspects of artifacts in
Borgo and Vieu (2009) in which authors propose also a scheme defining artifacts.
It follows from discussion by many authors that important in analysis of artifacts
are such aspects as: authorship, intended functionality, parthood relations. Analysis
of artifacts is closely tied to design and assembly, cf., Boothroyd (2005) and
Boothroyd et al. (2002) as well as Salustri (2002), Kim et al. (2008) and Seibt
(2009). A discussion of mereology with respect to its role in domain science and
engineering and computer science can be found in Björner and Eir (2010) and in
Chapter by Björner in this Volume.

We attempt at a definition of an artifact as a thing obtained over a collection of
things as a most complex thing in the sense of not being a part of any thing in the
collection; to aspects of authorship (operator) and functionality, we add a temporal
aspect, which allows for well–foundedness of the universe of parts, and seems to be
a natural aspect of the assembling or design process. We regard processes leading
to artifacts as fusion processes in which a by–product is obtained from a finite
number of substrats. Though processes, e.g., of assembling a bike from its parts
or a chemical reaction leading to a product obtained from a mixture of substances
are very distinct to the observer, yet the formal description is identical for the two;
it does require a category of operators P , a category of functionalities F , a linear
time T with the time origin 0. The domain of things is a category Things(P, F,
�) of things endowed with a part relation � . The assignment operator S acts as a
partial mapping on the Cartesian product P � F � Things.P; F; �/ with values in
the category Tree of rooted trees.

The act of assembling is expressed by means of a predicate

Art.p.u/; < v1.u/; � � � ; vk.u/ >; u; f .u/; t.u/; T .u//;
which reads: an operator p.u/ assembles at time t.u/ a thing u with functionality
f .u/ according to the assembling scheme T .u/ organized by p.u/ which is a tree
with the root u, from things v1.u/; � � � ; vk.u/ which are leaves of T .u/. The thing
vi .u/ enters in the position i the assembling process for u.

The predicate ART is subject to the following requirements.

ART1. If Art.p.u/; < v1.u/; � � � ; vk.u/ >; u; f .u/; t.u/; T .u// and for any i in
f1; : : : ; kg, it holds that

Art.p.vi .u//; < vi1.vi .u//; � � � ; vik .vi .u// >; vi .u/; f .vi .u//; t.vi .u//; T .vi .u///;
then t.vi .u// < t.u/, f .u/ � f .vi .u//, p.vi .u// � p.u/, and T .vi .u// attached to
T .u/ at the leaf vi .u/ yields a tree, called an unfolding of T(u) via the assembling
tree for vi .u/.
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The meaning of ART1 is that for each substrate v entering the assembly process
for u, v is assembled at time earlier than time for u, functionality of u is lesser than
that of v, the operator for u has a greater operating scope than that of v, and the
assembly tree for u can be expanded at the leaf v by the assembly tree for v.

ART2. Art.p.u/; < v1.u/; � � � ; vk.u/ >; u; f .u/; t.u/; T .u// ) �.vi .u/; u/ for
each vi .u/.

Meaning that each thing can be assembled only from its parts.
We introduce an auxiliary predicate App.v; i.v/; u; t.u//meaning: v enters in the

position i the design process for u at time t.u/.

ART3. �.v; u/) 9w1.v; u/;

� � � ;wk.v; u/; t.w2.v; u//; � � � ; t.wk.v; u//; i.w1.v; u//; � � � ; i.wk.v;u/�1.v; u//

such that v D w1.v; u/, t.w2.v; u// < � � � < t.wk.v; u/, wk.v; u// D u,

App.wj .v; u//; i.wj .v; u//;wjC1.v; u/; t.wjC1.v; u//

for j D 1; 2; k.v; u/� 1.

This means that each thing which is a part of the other thing will enter the assembly
tree of the thing.

ART4. Each thing used in assembling of some other thing can be used in only one
such thing in only one position at only one time.

This requirement will be referred to as the uniqueness requirement.

ART5. Values t.u/ belong in the set T D f0; 1; 2; � � � g of time moments.

Corollary 1. By ART1, ART2, ART5: The universe of assembly things is well–
founded, i.e., there is no infinite sequence fxi W i D 1; 2; : : :g of things with
�.xiC1; xi / for each i.

From this Corollary, it follows that our notion of identity of artifacts (EA) is
equivalent to extensionality notions (EP), (EC), (UC) discussed in Varzi (2008).

For a tree T .u/, the ART–unfolding of T .u/ is the tree T .u; 1/ in which
leaves v1.u/; v2.u/; � � � ; vk.u/ are expanded by attaching those trees T .v1.u//,
� � � ; T .vk.u//which are distinct from their roots. For a tree T .u/, the maximal ART–
unfolding T .u;max/ is the tree obtained from T .u/ by repeating the operation of
ART–unfolding until no further ART–unfolding is possible.

Corollary 2. Each leaf of the tree T .u;max/ is an atom.

We now define an artifact: an artifact over the category Things(P, F, �) of assembly
things is a thing u such that �.u; v/ holds for no thing v in Things(P, F, �). Thus
artifacts are ‘final things’ in a sense.
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We define the notion of identity for artifacts:
(Extensionality of artifacts EA) artifacts a, b are identical if and only if trees

Tree.a;max/; Tree.b;max/ are isomorphic and have identical things at correspond-
ing under the isomorphism nodes.

10.5.2 Design Artifacts

We regard the process of design as analogous to the assembly process; the only
difference between the two which we introduce is that in design, the designer works
with not the things but with classes of equivalent things. Thus, to begin with, we
introduce an equivalence relation on things. To this end, we let

u 	 v if and only if Œ�.u; t/ if and only if �.v; t/� for each thing t (10.64)

and

Cat.u/ D Cat.v/ if and only if u 	 v (10.65)

Things in the same category Cat are ‘universally replaceable’. It is manifest that
the part relation � can be factored through categories, to the relation ˘ of part on
categories,

˘.Cat.u/;Cat.v// if and only if �.u; v/ (10.66)

In our formalism, design will imitate assembling with things replaced with cate-
gories of things and the part relation � replaced with the factorization ˘ . We need
only to repeat the procedure with necessary replacements. We use the designer set
D, the functionality set F , and the time set T as above.

The act of design is expressed by means of a predicate,

Des.d; < Cat1; � � � ;Catk >;Cat; f .Cat/; t.Cat/; T .Cat//

which reads: a designer d designs at time t a category of things Cat with
functionality f .Cat/ according to the design scheme T .Cat/ organized by d which
is a tree with the root Cat, from categories Cat1; � � � ;Catk which are leaves of
T .Cat/. The category Cati enters in the position i the design process for Cat.

The predicate Des is subject to the following requirements.

DES1. If Des.d;< Cat.v1.u//; � � � ;Cat.vk.u// >;Cat.u/; f .u/; t.u/; T .u// and
for any i in f1; � � � ; kg, it holds that

Des.p.Cat.vi .u///; < Cat.vi1.vi .u///; � � � ;Cat.vik .vi .u/// >;

Cat.vi .u//; f .vi .u//; t.vi .u//; T .vi .u///;
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then t.vi .u// < t.u/, f .u/ � f .vi .u//, p.vi .u// � p.u/, and T .vi .u//
attached to T .u/ at the leaf Cat.vi .u// yields a tree, called the unfolding
of T(u) via the design tree for Cat.vi .u//.

DES2.

Des.d;< Cat.v1.u//; � � � ;Cat.vk.u// >;Cat.u/; f .u/; t.u/; T .u//)

˘.Cat.vi .u//;Cat.u//

for each vi .u/.
Meaning that each thing can be designed only from its parts.
We introduce an auxiliary predicate App.v; i.v/; u; t.u// meaning: Cat.v/
enters in the position i the design process for Cat.u/ at time t.u/.

DES3. ˘.Cat.v/;Cat.u//) 9Cat.w1.v; u//; � � � ;Cat.wk.v; u//, and,

t.w2.v; u//; � � � ; t.wk.v; u//; i.w1.v; u//; � � � ; i.wk.v;u/�1.v; u//

such that v D w1.v; u/, t.w2.v; u// < � � � < t.wk.v; u/, wk.v; u// D u,

App.wj .v; u//; i.wj .v; u//;wjC1.v; u/; t.wjC1.v; u//

for j D 1; 2; � � � ; k.v; u/� 1.
This means that for each thing which is a part of the other thing the
category of the former will enter the design tree for the category of the
latter.
For ART4, we may not have the counterpart in terms of DES: clearly,
things of the same category may be used in many positions and at many
design stages of some other category. We may only repeat our assumption
about timing.

DES4. Values t.u/ belong in the set T D f0; 1; 2; � � � g of time moments.

Corollary 1. The universe of categories is well–founded.

We define a design artifact as a category Cat.u/ such that˘.Cat.u/, Cat.v// is true
for no v.

We are approaching the notion of identity for design artifacts. To begin with, for
a design artifact a, denote by the symbol art.a/ the artifact obtained by filling in
the design tree for a all positions Cat.v/ with things v for some choices of v. We
state the identity condition for design artifacts.

(Extensionality for design artifacts ED) design artifacts a; b are identical if and
only if there exist artifacts art.a/; art.b/ which are identical.

From the principle of identity for artifacts, a corollary follows.

Corollary 2. If design artifacts a; b are identical then a; b have isomorphic design
trees and categories at corresponding nodes are identical.
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Corollary 3. If design artifacts a; b have isomorphic design trees and categories
at corresponding nodes are identical, then a; b are identical.

Indeed, consider two design artifacts a; b which satisfy the condition in the
corollary. There is at least one category Cat.v/ in the same position in design trees
of a and b. Choose a thing x in Cat.v/ and let a.x/; b.x/ be artifacts assembled
according to a; b, respectively. Having a thing in common, a.x/; b.x/ are identical
hence a; b are identical.

10.5.3 Action of Things on Design Abstracta

The interplay between concreta and abstracta in design and assembly can be
exhibited by action of things on design artifacts. We define a partial mapping � on
the product Things.P; F; �/ � Design�Artifacts into Artifacts: for a thing v and a
design artifact a, we define the value �.v; a/ as NIL in case category Cat.v/ is not any
node in the design tree for a, and, the unique artifact a.v/ in the contrary case. The
inverse ��1.�.v; a// is the set f.u; b/ W b 2 Design�Artifacts;Cat.u/ a node in bg;
thus, abstracta are equivalent in this sense to collections of concreta.

10.6 Mereology in Spatial Reasoning

Spatial orientation of a thing depends on the real world in which things are
immersed, hence, to, e.g., discern among sides of a thing, one needs additional
knowledge and structures. An example of this approach is found, e.g., in Aurnague
et al. (1997), where it is proposed to exploit in determining orientation, e.g., the
direction of gravity (‘haut–grav’, ‘bas–grav’) or peculiar features of things (like
the neck of a bottle) suggesting direction, and usage of geometric predicates like
equidistance in definitions of, e.g., orthogonal directions.

10.6.1 Properties of Artifacts: Mereological Theory of Shape
and Orientation

It is manifest that mereology is amorphous in the sense that decomposition of
a thing into parts does not depend of orientation, isometric transformations etc.
Hence, to exhibit in things additional features like shape, side, one needs augmented
mereology.

Particular features of shape like existence of ‘dents’ or ‘holes’ in a thing resulting
from removal of other things can be accounted for within mereology.
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We define the predicate hole.x; y/ reading a thing x constitutes a hole in a thing
y as follows,

hole.x; y/, 9z:NTP.x; z/ ^ comp.y; x; z/ (10.67)

i.e., x is a non–tangential thing in z and y complements x in z.
The predicate dent.x; y/, reading a thing x constitutes a dent in a thing y is

defined as

dent.x; y/, 9z:TP.x; z/ ^ comp.y; x; z/ (10.68)

i.e., x is a tangential thing in z and y complements x in z. The notion of a dent may
be useful in characterizing things that ‘fit into a thing’: the predicate fits�into.x; y/
may be defined as

fits�into.x; y/, 9z:dent.z; y/ ^ ingr.x; z/ (10.69)

i.e., x is an ingredient of a thing which is a dent in y. A particular case of fitting is
‘filling’ i.e., a complete fitting of a dent. We offer a predicate fills(x, y)

fills.x; y/, 9z:dent.z; y/ ^ z D x � y (10.70)

i.e., dent–making z is the product of x and y. Following this, the notion of a join can
be defined as

joins.x; y; z/, 9w:w D x C y C z ^ fills.x; y/ ^ fills.x; z/ (10.71)

i.e., x joins y and z when there is a thing x C y C z and x fills both y and z.
This predicate can be inductively raised to

join.n/.x1; x2; : : : ; xnIy1; y2; : : : ; yn; ynC1/

via

join.1/.x1Iy1; y2/, join.x1; y1; y2/

and

join.k C 1/.x1; x2; : : : ; xkC1Iy1; y2; : : : ; ykC1; ykC2/,

join.xkC1; join.k/.x1; x2; : : : ; xk Iy1; y2; : : : ; ykC1/; ykC2/

in which we express sequentially a possibly parallel processing.
In case x joins y and z, possibility of assembling arises which may be expressed

by means of modal operator } of ‘possibility’, with an extended operator Asmbl to
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the form Asmbl.x; i; y; j; : : :w; p; f; t/ meaning that w can be assembled from x in
position i , y in position j ,. . . by an operator p with functionality f at time t ,

join.x; y; z/) }9w; p; f; t; i; j; k:Asmbl.x; i; y; j; z; kIw; p; f; t/ (10.72)

Assuming our mereology is augmented with environment endowed with directions
N, S, E, W, we may represent these directions by means of mobile agents endowed
with laser or infrared beams of specified width; at the moment when the beam range
reaches the thing x, it marks on its boundary a region which we denote as top in case
of N, bottom in case of S, left-side in case of W, and right-side in case of E. Thus
we have top.x/; bottom.x/; left � side.x/; right � side.x/ as areas of the boundary
of x; these are not parts of x. To express relations among sides of things we need a
distinct language; for the sake of this example let us adopt the language of set theory
regarding sides as sets.

Then we may say that the thing y

1. Is on the thing x in case bottom(y) is contained in top(x).
2. Is under the thing x when top(y) is contained in bottom(x).
3. Touches x on the left when right-side(y) is contained in left-side(x)
4. Touches x on the right when (left-side(y) is contained in right-side(x)).

This modus of orientation can be merged with mereological shape theory: one
can say that a thing x constitutes a dent on top/under/ on the left/on the right of the
thing y when, respectively,

1. denttop.x; y/, 9z:TP.x; z/ ^ top.x/ � top.z/ ^ comp.y; x; z/.
2. dentbottom.x; y/, 9z:TP.x; z/ ^ bottom.x/ � bottom.z/ ^ comp.y; x; z/.
3. dentleft.x; y/, 9z:TP.x; z/ ^ left � side.x/ � left � side.z/ ^ comp.y; x; z/.
4. dentright.x; y/ , 9z:TP.x; z/ ^ right � side.x/ � right � side.z/ ^

comp.y; x; z/.

These notions in turn allow for more precise definitions of fitting and filling; we
restrict ourselves to filling as fitting is processed along same lines: we say that a
thing x fills a thing y on top/bottom/on the left-side/on the right-side,

fills˛.x; y/, 9z:dent˛.z; y/ ^ z D x � y

where ˛ is, respectively, top, bottom, left, right.
This bears on the notion of a join which can be made more precise: we say that

a thing x .˛; ˇ/–joins things y and z

joins˛;ˇ.x; y; z/, 9w:w D x C y C z ^ fills˛.x; y/ ^ fillsˇ.x; z/

where ˛; ˇ=top, bottom, left, right.
A very extensive discussion of those aspects is given in Casati and Varzi (1999).
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10.6.1.1 Qualitative Spatial Reasoning

With this analysis we enter the realm of Qualitative Spatial Reasoning. Qualitative
spatial reasoning abstracts from qualitative details, cf., Cohn (1996); it is related to
design, cf., Booch (1994) and planning, cf., Glasgow (1995).

Spatial reasoning employing mereology is a basis for analysis of semantics of
orientational lexemes and semantics of motion, cf., Asher et al. (1995). It is basis
for representation, and mapping of environments in behavioral robotics, cf., Kuipers
(1994) and Arkin (1998). It is especially important for Geographic Information
Systems (Frank and Campari 1993; Frank and Kuhn 1995; Hirtle and Frank 1997;
Egenhofer and Golledge 1997).

Any formal approach to Spatial Reasoning requires Ontology, cf., Guarino
(1994), Smith (1989), and Casati et al. (1998). In reasoning with spatial things, of
primary importance is to develop an ontology of spatial things, taking into account
complexity of these things.

10.6.1.2 A Case of Spatial Analysis of Limiting Things

We give two examples of spatial reasoning based on merology. In the first, we
attempt, cf. Polkowski and Semeniuk–Polkowska (2010) at giving descriptions of
various notions of boundary, or limiting, things like separator, border, fence, hedge,
confine, involving in this discussion various models of mereology.

We introduce the notion of a separator Sepr.x; z; y/ for a triple x; z; y such that
�.x; y/, �.z; y/, extr.x; z/ as,

Sepr.x; z; y/ D Clsfv W �.v; y/; extr.v; x/; extr.v; z/g (10.73)

Then,

1. extr.Sepr.x; z; y/; x/.
2. extr.Sepr.x; z; y/; z/.
3. �.Sepr.x; z; y/; y/.
4. x D Sepr.Sepr.x; z/; z; y/.
5. z D Sepr.Sepr.x; z; y/; x/.

The notion of a separator comes close to the notion of a border: assume that
Warszawa, the river Vistula, the left–bank part of Warszawa and its right–bank
part are things in a Geographic Information System. Then the river Vistula is the
separator between left– and right–bank parts of Warszawa, and it can justly be called
the border of either, contrary to the topological boundaries of those parts which are
left and right banks of the river.

The notion of connection, in particular the predicate of external connectedness
EC allows for more detailed spatial analysis; in our example of Warszawa and the
river Vistula, where things are Vistula and left and right banks of Warszawa, we
have EC.Vistula; left � bankside/, EC.Vistula; right � bankside/. The connection
relation in this case is defined in the ROM model. External connection leads
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to division of ingredients of any thing into two categories: tangential and non–
tangential. In order to make this distinction, one introduces the complement of an
entity, �x as the class of all entities external to x. The tangential ingredient of x
is z such that it is externally connected to an ingredient of �x. In the example of
Warszawa and Vistula, the connection boundary of either bank of Warszawa is this
bank itself; it is different from the idea of geographic boundary and any reasonable
idea of a boundary. In order to rectify the idea, we can introduce a richer universe
of parts, e.g., by declaring a part any region contained either in a bank of Warszawa
or in the river, but not intersecting any two of these entities. Then the idea of Tarski
(1929) may be applied of defining ideal things (‘points’) as limits of ultrafilters of
regions. Limits of ultrafilters of regions being parts of a bank of Warszawa constitute
the geographic boundary of this bank.

For the notion of confine or extent we can apply rough mereogeometry and the
notion of betweenness. Assume for simplicity, that entities are rectangles with sides
parallel to coordinate axes. Given rectangles R1;R2, as proved above, the extent of
R1;R2 is the smallest rectangle spanned by R1;R2.

10.6.1.3 A Digression on Time in Mereology

To analyze notions of a fence and a hedge, we resort to the property of passability:
by a fence we understand a structure of iron wire made to be impassable, e.g. to
small animals whereas a hedge is a structure usually of plants which we regard as
passable. To express this difference, we introduce a new aspect of mereology, viz.,
timed mereology due to Tarski (1937) and Woodger (1937, 1939).

The time component is introduced into the framework of mereology with a set
of notions and postulates (axioms) concerning aspects of time like momentariness,
coincidence in time, time slices. Things are considered as spatial only and their
relevance to time is expressed as momentary or as spatial and extended in time
and then the predicate of part is understood as a global descriptor covering spatio–
temporal extent of things whereas the temporal extension is described by the
predicate Temp, T with the intended meaning that T .u; v/ means that the thing u
precedes in time the thing v (in terminology of Leśniewski, Tarski and Woodger:
u wholly precedes v) meaning that, e.g., when u and v have some temporal extent,
then u ends before or at the precise moment when v begins.

The property (predicate) Mom meaning momentary being is introduced to denote
things having only spatial aspect. This predicate is introduced by means of the
following postulate,

(MOM) Mom.x/, T .x; x/

Thus, x begins and ends at the same time, so its time aspect is like a spike in
time; it renders the phrase ‘to exist in a moment of time’.

The predicate T is required to satisfy postulates

1. TM1 T .x; y/ ^ T .y; z/) T .x; z/.
2. TM2 Mom.x/ ^Mom.y/) T .x; y/ _ T .y; x/.
3. TM3 T .x; y/, 8u; v:ingr.u; x/ ^ ingr.v; y/) T .u; v/.
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Postulate TM1 states that T is transitive, TM2 does state that of two momentary
things, one precedes the other and TM3 relates T to the class operator, i.e., x
precedes y if and only if each ingredient of x precedes each ingredient of y.
Postulate TM3 provides a link between the part based mereology and the timed
mereology, bonding spatial and temporal properties of things.

The notion of a coincidence in time, CT in symbols, is

CT.x; y/, T .x; y/ ^ T .y; x/ (10.74)

and it implies in turn a notion of a time–slice, Slice.x; y/, as

Slc.x; y/, Mom.x/ ^ ingr.x; y/ ^ 8z:Œingr.z; y/ ^ C.z; x/) ingr.z; x/�
(10.75)

and thus a time–slice of an thing y is an ingredient of y which is spatially so
arranged that any ingredient of y coinciding with it in time is also its ingredi-
ent.Time slices are unique up to coincidence in time: if x; y are time–slices of z,
then x; y coincide in time if and only if x D y.

We use these notions in order to make a distinction between passable and non–
passable boundaries, i.e., between hedges and fences. We say that a time–slice x of
an entity y is a time–front boundary of y if and only if for each entity z it follows
from ingr.z; y/ and T .z; x/ that ingr.z; x/; similarly, a time–slice w of y is a time–
rear boundary of y if and only if for each entity z it follows from ingr.z; y/ and
T .w; z/ that ingr.z;w/. The Boolean sum x C w of x and w, is the time–boundary
of y.

The front time boundaryx of y is passable (is a front time–hedge of y) if and only
if there is an entity z such that T .z; x/ and not ingr.z; x/; otherwise x is the front
time–fence of y. Analogous definitions concern rear time–hedges and rear time–
fences. Smith and Varzi (1997), make a distinction between fiat boundaries and
bona–fide boundaries, the former defined as material boundaries of real entities
whereas the latter understood as mental boundaries; time boundaries may serve as
an example of the latter.

10.6.1.4 RCC: Region Connection Calculus. ROM Revisited

As an important example of mereological spatial reasoning we introduce here the
RCC Calculus (Region Connection Calculus), cf. Randell et al. (1992), Cohn et al.
(1993, 1996), Cohn (1996), Cohn and Gotts (1996) and Cohn and Varzi (1998). It is
a calculus on closed regular sets (regions) in a regular topological space, i.e, in the
frame of ROM. RCC admits Clarke’s connection postulates CN1–CN3 and follows
same lines in defining basic predicates. To preserve the flavor of this theory we give
these predicates in the RCC notation
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Table 10.1 Transition table for RCC8 calculus

– DC EC PO TPP NTPP TPPi NTPPi

DC – DR,PO,PP DR,PO,PP DR,PO,PP DC DC
EC DR,PO,PPi DR,PO,TPP,TPi DR,PO,P EC,PO,PP PO,PP DR DC
PO DR,PO,PPi DR,PO,PPi – PO,PP PO,P DR,PO,PPi DR,PO,PPi
TPP DC DR DR,PO,PP PP NTPP DR,PO,PP –
NTPP DC DC DR,O,PP NTPP NTPP DR,PO,PP –
TPPi DR,PO,PPi EC,PO,PPi PO,PPi PO,TPP,TPi PO,PP PPi NTPPi
NTPPi DR,PO,PPi PO,PPi PO,PPi PO, PPi 0 NTPPi NTPPi

1. DISCONNECTED FROM.x/.y/ DC.x; y/, :C.x; y/.
2. IMPROPER PART OF.x/.y/ W P.x; y/, 8z:ŒC.z; y/! C.z; x/�.
3. PROPER PART OF.x/.y/ W PP.x; y/, P.x; y/ ^ :P.y; x/.
4. EQUAL.x/.y/ W EQ.x; y/, P.x; y/ ^ P.y; x/.
5. OVERLAP.x/.y/ W Ov.x; y/, 9:z:P.x; z/ ^ P.y; z/.
6. DISCRETE FROM.x/.y/ W DR.x; y/, :Ov.x; y/.
7. PARTIAL OVERLAP.x/.y/ W POv.x; y/, Ov.x; y/^:P.x; y/^:P.y; x/.
8. EXTERNAL CONNECTED.x/.y/ W EC.x; y/, C.x; y/ ^ :Ov.x; y/.
9. TANGENTIAL PART OF.x/.y/ W TPP.x; y/ , PP.x; y/ ^ 9z:EC.x; z/ ^

EC.y; z/.
10. NON � TANGENTIAL PART OF.x/.y/ W NTPP.x; y/ , PP.x; y/ ^
:TPP.x; y/.

To each non–symmetric predicateX RCC adds the inverseXi (e.g., to TPP.x; y/ it
adds TPPi.y; x/). The eight predicates: DC, EC, PO, EQ, TPP, NTPP, TPPi, NTPPi
show the JEPD property (Jointly Exclusive and Pairwise Disjoint) and they form
the fragment of RCC called RCC8.

Due to topological assumptions, RCC has some stronger properties than Clarke’s
calculus of C, where connection is simply the set intersection. Witness, the two
properties, see.

1. If 8z:Ov.x; z/ $ Ov.y; z/, then x D y (extensionality of overlapping). (If x ¤
y, then, e.g., there is z 2 x � y and regularity of the space yields us an open
neighborhood V of z such that ClV \y D ; and Ov.V; x/ negating the premise).

2. If PP.x; y/, then 9z:P.x; z/ ^DR.y; z/.
3. 8x:EC.x;�x/.
RCC8 allows for additional predicates characterizing shape, connectivity, see Gotts
et al. (1996) and regions with vague boundaries (“the egg–yolk” approach), see
Gotts and Cohn (1995).

RCC8 is presented in the form of the transition table: a table in which for
entries R1.x; y/ and R2.y; z/ a result R3.x; z/ is given, see Egenhofer (1991). The
transition table for RCC8 is shown in Table 10.1.
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10.7 Mereology in Intelligent Planning and Navigation:
The Case of Behavioral Robotics

We have stressed that by its nature, rough mereology does address concepts,
relations among which are expressed by partial containment rendered as the
predicate of a part to a degree. Behavioral robotics falls into this province, as
usually robots as well as obstacles and other environmental things are modeled as
figures or solids. We show applications of mereology to planning and navigation of
autonomous mobile robots and their formations. First, we introduce the subject of
planning in robotics.

10.7.1 Planning with Emphasis on Behavioral Robotics

Planning is concerned with setting a trajectory for a robot endowed with some
sensing devices which allow it to perceive the environment in order to reach by
the robot a goal in the environment at the same time bypassing obstacles.

Planning methods, cf., e.g., Choset et al. (2005), vary depending on the robot
abilities, features of the environment and chosen methodology. Among them are
simple geometric methods designed for a robot endowed with sensors detecting
obstacles, e.g., touch sensors or range sensors and able to detect distance between
any pair of points. These methods are called ‘contour following’, as for such a robot,
the idea can be implemented of moving to goal in a straight line segment and in case
of meeting with an obstacle to bypass it by circumnavigating its boundary until the
straight line to goal is encountered anew. Typically, the robot performs a heuristic
search of A� type, see, e.g., Russell and Norvig (2009) or Choset et al. (2005) with
the heuristic function h.x/ D �.x;O/C �.O; goal/ where x is the current position
of the robot, and the point O is selected as an end–point of the continuity interval
of � – the distance function, whose values are bound by a constant R.When the
distance measured by range sensors exceeds R the value of � is set to infinity.
The graph of � against the position x exhibits then discontinuities and continuity
intervals clearly outline boundaries of obstacles, hence, the idea of selecting O as
a boundary continuity point. Minimization of h leads to optimization of the chosen
safe trajectory.

A method of potential field, see Khatib (1986) consists in constructing a
potential field composed of attractive potentials for goals and repulsive potentials
for obstacles.

An example may be taken as the quadratic potential function

Uattractive.x/ D 1

2
� jjx � xgoaljj2 (10.76)
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which induces the gradient

rUattractive.x/ D x � xgoal (10.77)

which assures that the force (the gradient) exerted on the robot is greater when the
robot is far from the goal and diminishes to zero as the robot is approaching the
goal.

A repulsive potential should have opposite properties: it should exert a force
tending to 1 with the distance to the obstacle reaching 0. Denoting the distance
from a point x to the closest obstacle with s.x/, the repulsive potential can be
defined as in

Urepulsive.x/ D 1

2
� Œ 1
s.x/

� (10.78)

with the gradient

rUrepulsive.x/ D � 1

s.x/2
� rs.x/ (10.79)

The global potential function U is the sum of the attractive and repulsive parts:

U.x/ D Uattractive.x/C Urepulsive.x/

Given U , the robot performs a well–known gradient descent : it does follow the
direction of the gradient in small steps : the (iC1)–th position is given from the i-th
position and the gradient therein as

xiC1 D xi C �i � rU.xi / (10.80)

In Polkowski and Ośmiałowski (2008, 2010) and Ośmiałowski (2009a) a mereolog-
ical potential field planning method was proposed.

10.7.2 Mereological Planning via Potential Fields

Classical methodology of potential fields works with integrable force field given by
formulas of Coulomb or Newton which prescribe force at a given point as inversely
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proportional to the squared distance from the target; in consequence, the potential
is inversely proportional to the distance from the target. The basic property of the
potential is that its density (Dforce) increases in the direction toward the target. We
observe this property in our construction.

We apply the geometric rough inclusion

�G.x; y; r/, jjx \ yjjjjxjj (10.81)

where jjxjj is the area of the region x. In our construction of the potential field,
region will be squares: robots are represented by squares circumscribed on them
(simulations were performed with disk–shaped Roomba robots, the intellectual
property of iRobot. Inc.).

Geometry induced by means of a rough inclusion can be used to define a
generalized potential field: the force field in this construction can be interpreted as
the density of squares that fill the workspace and the potential is the integral of the
density. We present now the details of this construction. We construct the potential
field by a discrete construction. The idea is to fill the free workspace of a robot with
squares of fixed size in such a way that the density of the square field (measured,
e.g., as the number of squares intersecting the disc of a given radius r centered at
the target) increases toward the target.

To ensure this property, we fix a real number – the field growth step in
the interval .0; square edge length/; in our exemplary case the parameter field
growth step is set to 0.01.

The collection of squares grows recursively with the distance from the target
by adding to a given square in the .k C 1/-th step all squares obtained from it by
translating it by k � field growth step (with respect to Euclidean distance)
in basic eight directions: N, S, W, E, NE, NW, SE, SW (in the implementation
of this idea, the floodfill algorithm with a queue has been used, see Ośmiałowski
(2009a,b)). Once the square field is constructed, the path for a robot from a given
starting point toward the target is searched for.

The idea of this search consists in finding a sequence of way–points which
delineate the path to the target. Way–points are found recursively as centroids
of unions of squares mereologically closest to the square of the recently found
way–point. We recall that the mereological distance between squares x; y is defined
by means of

k.x; y/ D minf max r W �.x; y; r/;max s W �.y; x; s/g (10.82)

We also remind that the mereological distance k.x; y/ takes on the value 1 when
x D y and the minimal value of 0 means that x \ y � Bd.x/ \ Bd.y/. In order
do define a “potential” of the rough mereological field, let us consider how many
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Fig. 10.1 Planned paths of Roomba robots to their targets

generations of squares will be centered within the distance r from the target. Clearly,
we have

d C 2d C : : :C kd 
 r (10.83)

where d is the field growth step, k is the number of generations. Hence,

k2d 
 k.k C 1/
2

d 
 r (10.84)

and thus

k 
 . r
d
/
1
2 (10.85)

The potential V.r/ can be taken as	r 12 . The force field F.r/ is the negative gradient
of V.r/,

F.r/ D � d
dr
V.r/ 	 � 1

r
1
2

(10.86)

Hence, the force decreases with the distance r from the target slower than traditional
Coulomb force. It has advantages of slowing the robot down when it is closing on the
target. Parameters of this procedure are: the field growth step set to 0.01,
and the size of squares which in our case is 1.5 times the diameter of the Roomba
robot.

A robot should follow the path proposed by planner shown in Fig. 10.1.
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10.7.3 Planning for Teams of Robots

Problems of planning paths for teams of robots present an intellectual challenge
due to aspects of cooperation, communication, task–sharing and division, and
planning non–collision paths for robots. These problems require studies of cognitive
theories, biology, ethology, organization and management. They can also lead to
new solutions to problems of artificial intelligence. Passing from a single robot to
teams of robots can be motivated also by pragmatic reasons, cf., Cao et al. (1997),
as tasks for robots can be too complex for a single robot, or many robots can do the
task easier at a lesser cost, or many robots can perform the task more reliably.

Practical studies along these lines were concerned with moving large things of
irregular shapes by groups of robots, see Kube and Zhang (1996), search and rescue,
see Jennings et al. (2001), formations of planetary outposts of mobile robots, see
Huntsberger et al. (2007), multi–target inspection Parker (1997). Simulations of
systems a few robots were studied, e.g., in CEBOT, see Fukuda and Nakagawa
(1987), ACTRESS, see Asama et al. (1989), GOFER, see Caloud et al. (1990), cf.,
the ALLIANCE architecture in Parker (1998).

Many authors attacked these problems by extending methods elaborated for a
single robot; helpful in those attempts were studies of behavior of migrating birds
flying in ‘boids’, cf., Reynolds (1987) which brought forth elementary behaviors
like collision–avoidance, velocity adjustment, leader–following, flock–centering,
transferred into robot milieu, e.g., in Matarić (1993, 1994, 1997), Fredslund and
Matarić (2002), Agah (1996), and Agah and Bekey (1997), which provided elemen-
tary robot behaviors like wandering, homing, following, avoidance, aggregation,
dispersion.

In Balch and Arkin (1998) basic principles of behavioral approach, were
formulated: it is vital to keep all robots within a certain distance from one another
(e.g., to ensure mutual visibility), to move away when the distance becomes too
close (to avoid congestion, collision, or resource conflict), to adapt own movement
to movement of neighbors (e.g., by adjusting velocity of motion), to orient oneself
on a leader, or a specific location, e.g., the gravity center of the group. They proposed
that robots in a team obey rigid geometric constraints by means of references to the
center of the group or to the assigned leader, or to the assigned neighbor.

10.7.4 Mereological Approach to Robot Formations

We recall that on the basis of the rough inclusion �, and mereological distance �
geometric predicates of nearness and betweenness, are redefined in mereological
terms.

Given two robots a; b as discs of same radii, and their safety regions as
circumscribed regularly positioned rectangles A;B , we search for a proper choice
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of a region X containing A; and B with the property that a robot C contained in X
can be said to be between A and B .

For two (possibly but not necessarily) disjoint rectangles A;B , we define the
extent, ext.A;B/ of A and B as the smallest rectangle containing the union A [ B .
We know that in this setting, given two disjoint rectangles C , D, the only thing
between C and D in the sense of the predicate TB is the extent ext.C;D/ of C;D„
i.e., the minimal rectangle containing the union C [D.

For details of the exposition which we give now, please consult Ośmiałowski
(2011) and Ośmiałowski and Polkowski (2009).

For robots a; b; c, we say that a robot b is between robots a and c, in symbols

.between b a c/ (10.87)

in case the rectangle ext.b/ is contained in the extent of rectangles ext.a/, ext.c/,
i.e.,

�0.ext.b/; ext.ext.a/; ext.c//; 1/ (10.88)

This can be generalized to the notion of partial betweenness which models in a
more realistic manner spatial relations among a; b; c; we say in this case that robot
b is between robots a and c to a degree of at least r , in symbols,

.between–degr b a c / (10.89)

if and only if

�0.ext.b/; extŒext.a/; ext.c/�; r/; (10.90)

i.e.,

jjext.b/ \ ext.ext.a/; ext.c//jj
jjext.b/jj � r

For a team of robots, T .r1; r2; : : : ; rn/ D fr1; r2; : : : ; rng, an ideal forma-
tion IF on T .r1; r2; : : : ; rn/ is a betweenness relation .between. . . / on the set
T .r1; r2; : : : ; rn/.

In implementations, ideal formations are represented as lists of expressions of
the form

.between r0 r1 r2/ (10.91)
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indicating that the thing r0 is between r1; r2, for all such triples, along with a list
of expressions of the form

.not–between r0 r1 r2/ (10.92)

indicating triples which are not in the given betweenness relation.
To account for dynamic nature of the real world, in which due to sensory

perception inadequacies, dynamic nature of the environment etc., we allow for some
deviations from ideal formations by allowing that the robot which is between two
neighbors can be between them to a degree in the sense of (10.89). This leads to the
notion of a real formation.

For a team of robots, T .r1; r2; : : : ; rn/ D fr1; r2; : : : ; rng, a real formation RF
on T .r1; r2; : : : ; rn/ is a betweenness to degree relation .between–deg . . . :/ on the
set T .r1; r2; : : : ; rn/ of robots.

In practice, real formations will be given as a list of expressions of the form,

.between–deg ı r0 r1 r2/; (10.93)

indicating that the thing r0 is to degree of ı in the extent of r1; r2, for all triples in
the relation .between–deg : : : :/, along with a list of expressions of the form,

.not–between r0 r1 r2/; (10.94)

indicating triples which are not in the given betweenness relation.
Description of formations, as proposed above, can be a list of relation instances

of large cardinality, cf., examples below. The problem can be posed of finding a
minimal set of instances sufficient for describing a given formation, i.e., implying
the full list of instances of the relation (between: : :). This problem turns out to be
NP–hard, see Ośmiałowski and Polkowski (2009).

To describe formations we propose a language derived from LISP–like s–
expressions: a formation is a list in LISP meaning with some restrictions that
formulates our language. We will call elements of the list things. Typically, LISP
lists are hierarchical structures that can be traversed using recursive algorithms. We
restrict that top–level list (a root of whole structure) contains only two elements
where the first element is always a formation identifier (a name). For instance

Example 1. (formation1 (some_predicate param1 : : : paramN))

For each thing on a list (and for a formation as a whole) an extent can be derived and
in facts, in most cases only extents of those things are considered. We have defined
two possible types of things

1. Identifier: robot or formation name (where formation name can only occur at
top–level list as the first element);
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2. Predicate: a list in LISP meaning where first element is the name of given
predicate and other elements are parameters; number and types of parameters
depend on given predicate.

Minimal formation should contain at least one robot. For example

Example 2. (formation2 roomba0)

To help understand how predicates are evaluated, we need to explain how extents
are used for computing relations between things. Suppose we have three robots
(roomba0, roomba1, roomba2) with roomba0 between roomba1 and roomba2 (so
the between predicate is fulfilled). We can draw an extent of this situation as the
smallest rectangle containing the union roomba1 [ roomba2 oriented as a regular
rectangle, i.e., with edges parallel to coordinate axes. This extent can be embedded
into bigger structure: it can be treated as an thing that can be given as a parameter
to predicate of higher level in the list hierarchy. For example:

Example 3. (formation3 (between (between roomba0 roomba1 roomba2) roomba3
roomba4))

We can easily find more than one situation of robots that fulfill this example
description. That is one of the features of our approach: one s–expression can
describe many situations. This however makes very hard to find minimal s–
expression that would describe already given arrangement of robots formation (as
stated earlier in this chapter, the problem is NP–hard).

Typical formation description may look like below, see Ośmiałowski (2011)

Example 4. (cross
(set

(max–dist 0.25 roomba0 (between roomba0 roomba1 roomba2))
(max–dist 0.25 roomba0 (between roomba0 roomba3 roomba4))
(not–between roomba1 roomba3 roomba4)
(not–between roomba2 roomba3 roomba4)
(not–between roomba3 roomba1 roomba2)
(not–between roomba4 roomba1 roomba2)

)
)

This is a description of a formation of five Roomba robots arranged in a cross shape.
The max–dist relation is used to bound formation in space by keeping all robots
close one to another.

We show a screen–shot of robots in the initial formation of cross–shape in
a crowded environment, see Figs. 10.2 and 10.3. These behaviors witness the
flexibility of our definition of a robot formation: first, robots can change formation,
next, as the definition of a formation is relational, without metric constraints
on robots,the formation can manage an obstacle without losing the prescribed
formation (though, this feature is not illustrated in figures in this chapter).
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Fig. 10.2 Trails of robots moving in the line formation through the passage (From Polkowski
(2011))

Fig. 10.3 Trails of robots in the restored cross formation in the free workspace after passing
through the passage (From Polkowski (2011))
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10.8 Mereology in Knowledge Granulation and Reasoning
About Knowledge

The topic of knowledge engineering in computer science does encompass problems
of representation, extraction (data mining), reasoning about and application of
knowledge (knowledge engineering). We represent knowledge as annotated data
expressed in symbolic or numeric, or hybrid form which encode information about
a considered case.

10.8.1 Representation of Knowledge: Information/Decision
Systems

We assume that knowledge is represented in the form of information or decision
systems. An information system, cf., e.g., Pawlak (1991) or Polkowski (2002) is a
pair .U;A/ where U is a finite set of things and A is a finite set of attributes; each
attribute a is a mapping a W U ! V from the set U into a set V of attribute values.
For each thing u 2 U , the information vector of u is the set

InfA.u/ D fa.u/ W a 2 Ag:

A decision system adds to the set A a decision attribute d … A. Knowledge can be
extracted from either system in the form of (1) a classification into categories or (2)
a decision algorithm which is a judiciously chosen set of decision rules.

Classification into categories in an information system .U;A/ relies on the
indiscernibility in the sense of Leibniz (1969) and Forrest (2010): for a set B � A
of attributes, one defines the B–indiscernibility relation INDB as

INDB.u; v/, a.u/ D a.v/ for each a 2 B (10.95)

Classes fŒu�B W u 2 U g of the relation INDB form B � categories.
In a decision system .U;A; d/, perceived as a window on a (possibly unknown)

function fA;d from A-categories onto d-categories, an approximation to fA;d can be
searched for in a form of a set of decision rules of the form of an implication

^

a2B
.a;wa/) .d;wd / (10.96)

where the descriptor .a;wa/ is a logical formula interpreted as Œ.a;wa/� D fu 2
U W a.u/ D wag, extended recursively as Œ˛ ^ ˇ� D Œ˛� \ Œˇ�, Œ˛ _ ˇ� D Œ˛� [ Œˇ�,
Œ:˛� D U n Œ˛�. The implication in the formula (10.96) is satisfied to a degree r
with respect to a set rough inclusion �S in case �S.Œ

V
a2B.a;wa/�; Œ.d;wd /�; r/. In

case r D 1 the rule is true.
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10.8.2 Decision Rules

A decision algorithm, classifier is a judiciously chosen set of decision rules,
approximating possibly most closely the real decision function fA;d . This comes
down to a search in the space of possible descriptors in order to find their successful
combinations. In order to judge the quality, or, degree of approximation, decision
rules are learned on a part of the decision system, the training set and then the
decision algorithm is tested on the remaining part of the decision system, called
the test set. Degree of approximation is measured by some coefficients of varied
character. Simple measures of statistical character are found from the contingency
table, see Arkin and Colton (1970). This table is built for each decision rule r and
a decision value v, by counting the number nt of training things, the number nr of
things satisfying the premise of the rule r (caught by the rule), nr .v/ is the number
of things counted in nr and with the decision v, and nr .:v/ is the number of things
counted in nr but with decision value distinct from v. To these factors, we add nv,
the number of training things with decision v and n:v, the number of remaining
things, i.e, n:v D nt � nv.

For these values, accuracy of the rule r relative to v is the quotient

acc.r; v/ D nr.v/

nr
(10.97)

and coverage of the rule r relative to v is

cov.r; v/ D nr .v/

nv
(10.98)

These values are useful as indicators of a rule strength which is taken into account
when classification of a test thing is under way: to assign the value of decision, a rule
pointing to a decision with a maximal value of accuracy, or coverage, or combination
of both can be taken; methods for combining accuracy and coverage into a single
criterion are discussed, e.g., in Michalski (1990). Accuracy and coverage can,
however, be defined in other ways; for a decision algorithmD, trained on a training
set T r , and a test set T st , the accuracy of D is measured by its efficiency on the
test set and it is defined as the quotient

accuracy.D/ D ncorr

ncaught
(10.99)

where ncorr is the number of test things correctly classified by D and ncaught is the
number of test things classified.

Similarly, coverage of D is defined as

coverage.D/ D ncaught

ntest
(10.100)
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where ntest is the number of test things. Thus, the product accuracy.D/ �
coverage.D/ gives the measure of the fraction of test things correctly classified
by D.

We have already mentioned that accuracy and coverage are often advised to be
combined in order to better express the trade–off between the two: one may have
a high accuracy on a relatively small set of caught things, or a lesser accuracy
on a larger set of caught by the classifier things. Michalski (1990) proposes a
combination rule of the form

MI D 1

2
� AC 1

4
� A2 C 1

2
� C � 1

4
� A � C (10.101)

whereA stands for accuracy andC for coverage. With the symbol MI, we denote the
Michalski index as defined in (10.101). Other rule quality measures can be found,
e.g., in Bruning and Kintz (1997), Bazan (1998), and Grzymala–Busse and Hu
(2000).

Whereas indiscernibility classes are computationally feasible, cf., Skowron and
Rauszer (1992), decision rules in optimal form are not, cf., op. cit. Methods
for generation of rules with minimal set of descriptors, optimal rules, true rules,
minimal sets of rules, strong (association) rules, etc., can be found in Pawlak and
Skowron (1993), Skowron (1993), Skowron and Rauszer (1992), Grzymala–Busse
(1992), and Agrawal et al. (1993).

10.8.3 Mereology as Similarity: Granulation of Knowledge

The creator of Fuzzy Set Theory Lotfi A. Zadeh (1979) proposed to compute with
granules of knowledge. It was posed by L. A. Zadeh that the process of extraction
of knowledge can be factored through the stage of granulation in which things
are aggregated into granules of knowledge understood as collections or classes of
things similar with respect to a chosen measure of similarity. Resulting granular
computing, i.e., processing granules of knowledge promises lesser complexity as
well as noise filtering.

In case discussed here, as similarity measure we choose a rough inclusion;
it provides a similarity to a degree relation which is reflexive but not always
symmetric, e.g., a set or geometric rough inclusion is not whereas (ari) or (airi)
type rough inclusion is symmetric therefore inducing a hierarchy of tolerance to a
degree relations; for a theory of tolerance relations, see, e.g., Shreider (1960).

The idea of mereological granulation of knowledge, see Polkowski (2004a,
2005a), cf., surveys Polkowski (2008, 2009a), presented here finds an effective
application in problems of synthesis of classifiers from data tables. This application
consists in granulation of data at preprocessing stage in the process of synthesis:
after granulation, a new data set is constructed, called a granular reflection, to
which various strategies for rule synthesis can be applied. This application can be
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regarded as a process of filtration of data, aimed at reducing noise immanent to data.
Application of rough inclusions leads to a formal theory of granules of various radii
allowing for various choices of coarseness degree in data.

For a given rough inclusion �, the granule g�.u; r/ of the radius r about the
center u is defined as the class of property ˚�

u;r

g�.u; r/ D Cls˚�
u;r (10.102)

where

˚�
u;r .v/, �.v; u; r/ (10.103)

Properties of granules depend, obviously, on the type of rough inclusion used in
their definitions. In case of a symmetric and transitive rough inclusion �, for each
pair u; v of things, and r 2 Œ0; 1�,

ingr.v; g�.u; r//, �.v; u; r/

holds which follows directly from the inference rule M3.
In effect, the granule g�.u; r/ can be represented as the set fv W �.v; u; r/g. To

justify this claim, assume that ingr.v; g�.u; r// holds. Thus, there exists z such that
Ov.z; v/ and �.z; u; r/. There is x with ingr.x; v/, ingr.x; z/, hence, by transitivity
of �, also �.x; u; r/ holds. By symmetry of �, ingr.v; x/, hence, �.v; x; r/ holds.

A more complicated case of other types of rough inclusions is discussed in
Polkowski (2011).

Our idea of augmenting existing strategies for rule induction consists in using
granules of knowledge. The principal assumption we can make is that the nature
acts in a continuous way: if things are similar with respect to judiciously and
correctly chosen attributes, then decisions on them should also be similar. A granule
collecting similar things should then expose the most typical decision value for
things in it while suppressing outlying values of decision, reducing noise in data,
hence, leading to a better classifier.

In Polkowski and Artiemjew (2007) and in Artiemjew (2007) the theoretical
analysis was confirmed as to its application merits. We proceed with a summary
of methods and results of these verification.

10.8.4 The Idea of Granular Mereological Classifiers

We assume that we are given a decision system .U;A; d/ from which a classifier
is to be constructed; on the universe U , a rough inclusion � is given, and a radius
r 2 Œ0; 1� is chosen, see Polkowski (2004a, 2005a). We can find granules g�.u; r/
for all u 2 U , and make them into the set G.�; r/.
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Table 10.2 Best results for Australian credit by some rough set based algorithms

Source Method Accuracy Coverage MI

Bazan (1998) SNAPM.0:9/ error D 0:130 – –
Nguyen SH (2000) simple:templates 0:929 0:623 0:847

Nguyen SH (2000) general:templates 0:886 0:905 0:891

Nguyen SH (2000) tolerance:gen:templ: 0:875 1:0 0:891

Wróblewski (2004) adaptive:classifier 0:863 – –

From this set, a covering Cov.�; r/ of the universe U can be selected by means
of a chosen strategy G , i.e.,

Cov.�; r/ D G .G.�; r// (10.104)

We intend that Cov.�; r/ becomes a new universe of the decision system whose
name will be the granular reflection of the original decision system. It remains to
define new attributes for this decision system.

Each granule g in Cov.�; r/ is a collection of things; attributes in the set A[fd g
can be factored through the granule g by means of a chosen strategy S , i.e., for
each attribute q 2 A [ fd g, the new factored attribute q is defined by means of the
formula

q.g/ D S .fa.v/ W ingr.v; g�.u; r//g/ (10.105)

In effect, a new decision system .Cov.�; r/; fa W a 2 Ag; d / is defined. The thing v
with

Inf .v/ D f.a D a.g// W a 2 Ag (10.106)

is called the granular reflection of g.
Granular reflections of granules need not be things found in data set; yet, the

results show that they mediate very well between the training and test sets. In order
to demonstrate the merits of this approach, we consider a standard data set the
Australian Credit Data Set from Repository at UC Irvine (2012) and we collect
the best results for this data set by various rough set based methods in Table 10.2.
For a comparison we include in Table 10.3 results obtained by some other methods,
as given in Statlog. In Table 10.4, we give a comparison of performance of rough
set classifiers: exhaustive, covering and LEM (Grzymala–Busse 1992) implemented
in RSES (2012) public domain system. We begin in the next section with granular
classifiers in which granules are induced from the training set.
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Table 10.3 A comparison of
errors in classification by
rough set and other paradigms

Paradigm System/method Austr. credit

Stat:Methods Logdisc 0:141

Stat:Methods SMART 0:158

Neural Nets Backpropagation2 0:154

Neural Networks RBF 0:145

Decision Trees CART 0:145

Decision Trees C4:5 0:155

Decision Trees ITrule 0:137

Decision Rules CN2 0:204

Table 10.4 Train and test
(trn = 345 things, tst = 345
things) ; Australian credit;
comparison of RSES
implemented algorithms
exhaustive, covering and
LEM

Rule
Algorytm Accuracy Coverage number MI

covering.p D 0:1/ 0:670 0:783 589 0:707

covering.p D 0:5/ 0:670 0:783 589 0:707

covering.p D 1:0/ 0:670 0:783 589 0:707

LEM2.p D 0:1/ 0:810 0:061 6 0:587

LEM2.p D 0:5/ 0:906 0:368 39 0:759

LEM2.p D 1:0/ 0:869 0:643 126 0:804

10.8.5 Classification by Granules of Training Things

We begin with a classifier in which granules computed by means of the rough
inclusion �L form a granular reflection of the data set and then to this new data
set the exhaustive classifier, see RSES (2012), is applied.

10.8.5.1 Procedure of the Test

1. The data set .U;A; d/ is input;
2. The training set is chosen at random. On the training set, decision rules are

induced by means of exhaustive, covering and LEM algorithms implemented in
the RSES system;

3. Classification is performed on the test set by means of classifiers of pt. 2;
4. For consecutive granulation radii r , granule sets G.�; r/ are found;
5. Coverings Cov.�; r/ are found by a random irreducible choice;
6. For granules in Cov.�; r/, for each r , we determine the granular reflection

by factoring attributes on granules by means of majority voting with random
resolution of ties;

7. For found granular reflections, classifiers are induced by means of algorithms in
pt. 2;

8. Classifiers found in pt. 7, are applied to the test set;
9. Quality measures: accuracy and coverage for classifiers are applied in order to

compare results obtained, respectively, in pts. 3 and 8.
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Table 10.5 Train–and–test;
Australian Credit;
Granulation for radii r ; RSES
exhaustive classifier;
r = granule radius, tst = test set
size, trn = train set size,
rulex = rule number,
aex = accuracy,
cex = coverage

r tst trn rulex aex cex MI

Nil 345 345 5,597 0:872 0:994 0:907

0:0 345 1 0 0:0 0:0 0:0

0:0714286 345 1 0 0:0 0:0 0:0

0:142857 345 2 0 0:0 0:0 0:0

0:214286 345 3 7 0:641 1:0 0:762

0:285714 345 4 10 0:812 1:0 0:867

0:357143 345 8 23 0:786 1:0 0:849

0:428571 345 20 96 0:791 1:0 0:850

0:5 345 51 293 0:838 1:0 0:915

0:571429 345 105 933 0:855 1:0 0:896

0:642857 345 205 3,157 0:867 1:0 0:904

0:714286 345 309 5,271 0:875 1:0 0:891

0:785714 345 340 5,563 0:870 1:0 0:890

0:857143 345 340 5,574 0:864 1:0 0:902

0:928571 345 342 5,595 0:867 1:0 0:904

Table 10.6 Train–and–test;
Australian
credit;(layered–granulation)

r acc cov

0:500000 0:436 1:000

0:571429 0:783 1:000

0:642857 0:894 1:000

0:714286 0:957 1:000

In Table 10.5, the results are collected of results obtained after the procedure
described above is applied. We can compare results expressed in terms of the
Michalski index MI as a measure of the trade–off between accuracy and coverage;
for template based methods, the best MI is 0.891, for covering or LEM algorithms
the best value of MI is 0.804, for exhaustive classifier (r = nil) MI is equal to
0.907 and for granular reflections, the best MI value is 0.915 with few other values
exceeding 0.900.

What seems worthy of a moment’s reflection is the number of rules in the
classifier. Whereas for the exhaustive classifier (r = nil) in non–granular case, the
number of rules is equal to 5,597, in granular case the number of rules can be
surprisingly small with a good MI value, e.g., at r D 0:5, the number of rules
is 293, i.e., 5 % of the exhaustive classifier size, with the best MI at all of 0.915.
This compression of classifier seems to be the most impressive feature of granular
classifiers.

It is an obvious idea that this procedure can be repeated until a stable system
is obtained to which further granulation causes no change; it is the procedure of
layered granulation, see Artiemjew (2007). Table 10.6 shows some best results
of this procedure for selected granulation radii. As coverage in all reported cases
is equal to 1.0, the Michalski index MI is equal to accuracy. This initial, simple
granulation, suggests further ramifications. For instance, one can consider, for a
chosen value of " 2 Œ0; 1�, granules of the form
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Table 10.7 "opt = optimal
value of ", acc = accuracy,
cov = coverage. Best
rcatch D 0:1428, "opt D 0:35:
accuracy = 0.8681,
coverage = 1.0

r_catch optimal eps acc cov

Nil Nil 0:845 1:0

0 0 0:555073 1:0

0:071428 0 0:83913 1:0

0:142857 0:35 0:868116 1:0

0:214286 0:5 0:863768 1:0

0:285714 0:52 0:831884 1:0

0:357143 0:93 0:801449 1:0

0:428571 1:0 0:514493 1:0

0:500000 1:0 0:465217 1:0

0:571429 1:0 0:115942 1:0

g�.u; r; "/ D fv 2 U W 8a 2 A:ja.u/� a.v/j 
 "g (10.107)

and repeat with these granules the procedure of creating a granular reflection
and building from it a classifier. Another yet variation consists in mimicking
the performance of the Łukasiewicz based rough inclusion and introducing a
counterpart of the granulation radius in the form of the catch radius, rcatch. The
granule is then dependent on two parameters: " and rcatch, and its form is

g�.u; "; rcatch/ D fv 2 U W jfa 2 A W ja.u/� a.v/j 
 "jAj � rcatchg (10.108)

Results of classification by granular classifier induced from the granular reflection
obtained by means of granules (10.108) are shown in Table 10.7.

10.8.6 A Treatment of Missing Values

A particular but important problem in data analysis is the treatment of missing
values. In many data, some values of some attributes are not recorded due to many
factors, like omissions, inability to take them, loss due to some events etc.

Analysis of systems with missing values requires a decision on how to treat
missing values; Grzymala–Busse and Hu (2000) analyze nine such methods, among
them, (1) most common attribute value, (2) concept restricted most common
attribute value, (3) assigning all possible values to the missing location, (4) treating
the unknown value as a new valid value, etc. Their results indicate that methods (3),
(4) perform very well and in a sense stand out among all nine methods.

We adopt and consider two methods, i.e., (3), (4) from the above mentioned.
As usual, the question on how to use granular structures in analysis of incomplete
systems, should be answered first.
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The idea is to embed the missing value into a granule: by averaging the attribute
value over the granule in the way already explained, it is hoped the average value
would fit in a satisfactory way into the position of the missing value.

We will use the symbol �, commonly used for denoting the missing value; we
will use two methods (3), (4) for treating �, i.e, either � is a don’t care symbol
meaning that any value of the respective attribute can be substituted for �, hence,
� D v for each value v of the attribute, or � is a new value on its own, i.e., if � D v
then v can only be �.

Our procedure for treating missing values is based on the granular structure
.G.�; r/;G ;S ; fa� W a 2 Ag/; the strategy S is the majority voting, i.e., for
each attribute a, the value a�.g/ is the most frequent of values in fa.u/ W u 2 gg.
The strategy G consists in random selection of granules for a covering.

For a thing u with the value of � at an attribute a„ and a granule g D g.v; r/ 2
G.�; r/, the question whether u is included in g is resolved according to the
adopted strategy of treating �: in case � D don’t care, the value of � is regarded
as identical with any value of a hence jIND.u; v/j is automatically increased by 1,
which increases the granule; in case � D �, the granule size is decreased. Assuming
that � is sparse in data, majority voting on g would produce values of a� distinct
from � in most cases; nevertheless the value of � may appear in new things g�, and
then in the process of classification, such value is repaired by means of the granule
closest to g� with respect to the rough inclusion �L, in accordance with the chosen
method for treating �.

In plain words, things with missing values are in a sense absorbed by close to
them granules and missing values are replaced with most frequent values in things
collected in the granule; in this way the method (3) or (4) in Grzymala–Busse and
Hu (2000) is combined with the idea of a frequent value, in a novel way.

We have thus four possible strategies:

1. Strategy A: in building granules � = don’t care, in repairing values of �,
� = don’t care;

2. Strategy B: in building granules �= don’t care, in repairing values of �, � D �;
3. Strategy C: in building granules � D �, in repairing values of �, �= don’t care;
4. Strategy D: in building granules � D �, in repairing values of �, � D �.

We show how effective are these strategies, see Polkowski and Artiemjew (2007) by
perturbing the data set Pima Indians Diabetes, from UC Irvine Repository (2012).
First, in Table 10.8 we show results of granular classifier on the non–perturbed (i.e.,
without missing values) Pima Indians Diabetes data set. We now perturb this data
set by randomly replacing 10 % of attribute values in the data set with missing �
values. Results of granular treatment in case of Strategies A, B, C, D in terms of
accuracy are reported in Table 10.9. As algorithm for rule induction, the exhaustive
algorithm of the RSES system has been selected. 10-fold cross validation (CV–10)
has been applied.

Strategy A reaches the accuracy value for data with missing values within 94 %
of the value of accuracy without missing values (0:9407–1:0) at the radius of 0:875.
With Strategy B, accuracy is within 94 % from the radius of 0:875 on. Strategy C is
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Table 10.8 10-fold CV;
Pima; exhaustive algorithm,
r = radius, macc = mean
accuracy, mcov = mean
coverage

r macc mcov

0:0 0:0 0:0

0:125 0:0 0:0

0:250 0:6835 0:9956

0:375 0:7953 0:9997

0:500 0:9265 1:0

0:625 0:9940 1:0

0:750 1:0 1:0

0:875 1:0 1:0

Table 10.9 Accuracies of
strategies A, B, C, D. 10-fold
CV; Pima Indians; exhaustive
algorithm; r = radius,
maccA = mean accuracy of A,
maccB = mean accuracy of B,
maccC = mean accuracy of C,
maccD = mean accuracy of D

r maccA maccB maccC maccD

0:250 0:0 0:0 0:0 0:645

0:375 0:0 0:0 0:0 0:7779

0:500 0:0 0:0 0:0 0:9215

0:625 0:5211 0:5831 0:5211 0:9444

0:750 0:7705 0:7769 0:7705 0:9994

0:875 0:9407 0:9407 0:9407 0:9987

much better: accuracy with missing values reaches 99 % of accuracy in no missing
values case from the radius of 0:625 on. Strategy D gives results slightly better than
C with the same radii.

We conclude that the essential for results of classification is the strategy of
treating the missing value of � as � D � in both strategies C and D; the repairing
strategy has almost no effect: C and D differ very slightly with respect to this
strategy.

10.8.7 Granular Rough Mereological Classifiers Using
Residuals

Rough inclusions used in Sects. 10.8.4–10.8.6 in order to build classifiers do take, to
a certain degree, into account the distribution of values of attributes among things,
by means of the parameters " and the catch radius rcatch. The idea that metrics used
in classifier construction should depend locally on the training set is, e.g., present in
classifiers based on the idea of nearest neighbor, see, e.g., a survey in Polkowski
(2009b). In order to construct a measure of similarity based on distribution of
attribute values among things, we resort to residual implications–induced rough
inclusions. This rough inclusion can be transferred to the universe U of a decision
system; to this end, first, for given things u; v, and " 2 Œ0; 1�, factors

dis".u; v/ D jfa 2 A W ja.u/� a.v/j � "gjjAj (10.109)
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and

ind".u; v/ D jfa 2 A W ja.u/� a.v/j < "gjjAj (10.110)

are introduced. The weak variant of rough inclusion �!T is defined, see Polkowski
(2007), as

��
T .u; v; r/ if and only if dis".u; v/!T ind".u; v/ � r (10.111)

These similarity measures will be applied in building granules and then in data
classification.

Tests are done with the Australian credit data set; the results are validated by
means of the 5–fold cross validation (CV–5). For each of t–norms: M , P , L, three
cases of granulation are considered

1. Granules of training things (GT);
2. Granules of rules induced from the training set (GRT);
3. Granules of granular things induced from the training set (GGT).

In this approach, training things are made into granules for a given ". Things in
each granule g about a test thing u, vote for decision value at u as follows: for each
decision class c, the value

p.c/ D
P

training thing v in g falling in c w.u; v/

size of c in training set
(10.112)

is computed where the weight w.u; v/ is computed for a given t–norm T as

w.u; v/ D dis".u; v/!T ind".u; v/ (10.113)

The class c* assigned to u is the one with the largest value of p.
Weighted voting of rules in a given granule g for decision at test thing u goes

according to the formula d.u/ D argmaxp.c/, where

p.c/ D
P

rule in g pointing to c w.u; r/ � support.r/
size of c in training set

(10.114)

where weight w.u; r/ is computed as

dis".u; r/!T ind".u; r/ (10.115)

The optimal (best) results in terms of accuracy of classification are collected in
Table 10.10.
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Table 10.10 5-fold CV;
Australian; residual metrics.
met = method of granulation,
T = t–norm, "opt = optimal ",
macc = mean accuracy,
mcov = mean coverage

met T "opt macc mcov

GT M 0:04 0:848 1:0

GT P 0:06 0:848 1:0

GT L 0:05 0:846 1:0

GRT M 0:02 0:861 1:0

GRT P 0:01 0:851 1:0

GGT M 0:05 0:855 1:0

GRT P 0:01 0:852 1:0

These results show that rough mereological granulation provides better or at least
on par with best results by other methods accuracy of classification at the radically
smaller classifier size measured as the number of decision rules in it.

10.9 Mereology in Artificial Intelligence

Though the topics relegated to this section may be as well assigned to Knowledge
Engineering, yet we relate them to Artificial Intelligence as tools which may be
helpful in reasoning about complex systems and hard decision problems.

10.9.1 Cognitive Reasoning

We focus here on cognitive methods known also as network related methods. Of
those, neural networks are well–known as a tool useful in pattern recognition,
classification and machine learning. Based on the structure of the physiological
neuron, discovered by Ramón y Cajal (1889), artificial neuron was defined in
McCulloch and Pitts (1943) as the structure composed of a finite set of inputs
labeled x1; x2; : : : ; xn, a body with a threshold � and the output, y; according to
the physiological archetype, this neuron computes by the rule

y D 1,
X

i

xi � � else y D 0 (10.116)

Later developments include a perceptron defined in Rosenblatt (1958). A simplified
perceptron adds to McCulloch–Pitts neuron weights on inputs, and an additional
input with constant value of 1 and a weight b, called bias. Thus, the computation
rule has the form

y D 1,
X

i

wi � xi C b � � else y D 0 (10.117)
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which allows for a greater flexibility. Either type of neuron is able to classify binary
concepts by means of the separating hyperplane,H , which separates the space En

of possible input vectors into two semi–planes, and it is defined, e.g., in case of
perceptrons, as

X

i

wi � xi C b D � (10.118)

The idea of networks of neurons was advocated by Alan Turing (1948) who
proposed a learning scheme for networks of neurons connected through modifiers,
and it was revived in Grossberg (1973) with networks of perceptrons. Such
networks of connected perceptrons produce the intersection of respective semi–
planes which cuts the space of input vectors into convex closed regions in ideal case
assigning input vectors representing distinct categories of things to distinct regions.
Finally, the back–propagation learning, see Werbos (1994), added in place of �’s
differentiable sigmoid transfer functions.

Our model of perceptron, see Polkowski (2005b), differs from the standard
model, as its neurons are perceived as intelligent agents working with knowledge
represented in information systems. An essential feature of network perceptrons
from the point of view of learning is differentiability of transfer functions; hence, we
introduced a special type of rough inclusions, called gaussian in Polkowski (2005b)
because of their form, by letting

�G.x; y; r/ iff e�j P
a2DIS.x;y/ wa j2 � r (10.119)

where wa 2 .0;C1/ is a weight associated with the attribute a for each attribute
a 2 A; cf. (10.23) for DIS. Computation by this perceptron is directed by the
gradient of the function

f .x; y/ D e�j P
a2DIS.x;y/ waj2 (10.120)

whose wa component is

@f

@wa
D f � .�2 �

X
wa/ (10.121)

It follows from the last equation that gradient search would go in direction of
minimizing the value of

P
a wa.

We denote the perceptron by the agent symbol ag; it is endowed with an
information system Iag D .Uag; Aag/. The input to ag is in the form of a thing x.

The rough mereological perceptron is endowed with a set of target concepts t D
g�G .T 2 Uag=IND.Aag/; rt /. The result of computation with a dedicated target t for
a training thing x is a granule g D g�G .x; r.res// such that ingr.g; t/.

During computation, weights are incremented by the learning rule
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wa  wa C� � @E
@wa

(10.122)

where� is the learning rate.
At a stage current of computing, where � D jrcurrent � r j, for a natural number

k, the value of �current which should be taken at the step current in order to achieve
the target in at most k steps should be taken as, see Polkowski (2005b)

�current ' �

2 � k � f 2 � .Pa wa/2
(10.123)

10.9.2 MAS Reasoning: Many–Agent Systems

Reasoning in artificial intelligence is often concerned with ‘complex cases’ like,
e.g., robotic soccer, in which performing successfully tasks requires participation
of a number of ‘agents’ bound to cooperate, and in which a task is performed
with a number of steps, see, e.g., Stone (2000); other areas where such approach
seems necessary concern assembling and design, see Amarel (1991), fusion of
knowledge, e.g., in robotics, fusion of information from sensors, see, e.g., Canny
(1988), Choset et al. (2005), or, Stone (2000), as well as in machine learning and
fusion of classifiers, see, e.g., Dietterich (2000).

Rough mereological approach to these problems was initiated with Polkowski
and Skowron (1998, 1999a,b, 2001); here, we propose a logically oriented formula-
tion.

Rough inclusions and granular intensional logics based on them can be applied
in describing workings of a collection of intelligent agents which are called here
granular agents.

A granular agent a will be represented as a tuple

.Ua; �a; La; propa; synta; aggra/

where

1. Ua is a collection of objects available to the agent a.
2. �a is a rough inclusion on objects in Ua.
3. La is a set of unary predicates in first–order open calculus, interpretable in Ua.
4. propa is the propagation function that describes how uncertainty expressed by

rough inclusions at agents connected to a propagates to a.
5. synta is the logic propagation functor which expresses how formulas of logics at

agents connected to the agent a are made into a formula at a.
6. aggra is the synthesis function which describes how objects at agents connected

to a are made into an object at a.
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We assume for simplicity that agents are arranged into a rooted tree; for each agent
a distinct from any leaf agent, we denote by Ba the children of a, understood as
agents connected to a and directly sending to a objects, logical formulas describing
them, and uncertainty coefficients like values of rough inclusions.

For b 2 Ba, the symbol xb will denote an object in Ub; similarly, �b will denote
a formula of Lb , and �b will be a rough inclusion at b with values rb . The same
convention will be obeyed by objects at a.

Postulates governing the working of the scheme are

MA1 If ingrb.x
0
b; xb/ for each b 2 Ba, then ingra.aggr.fx0

bg/; aggr.fxbg//.
This postulate does assure that ingredient relations are in agreement with
aggregate operator of forming complex objects: ingredients of composed
objects form an ingredient of a complex object. We can say that aggr ı
ingr D ingr ı aggr, i.e, the resulting diagram commutes.

MA2 If xb ˆ �b , then aggr.fxbg/ ˆ synt.f�bg/.
This postulate is about agreement between aggregation of objects and
their logical descriptions: descriptions of composed objects merge into a
description of the resulting complex object.

MA3 If �b.xb; yb; rb/ for b 2 Ba, then �a.aggr.fxbg/; aggr.fybg/; propfrbg/.
This postulate introduces the propagation function, which does express how
uncertainty at connected agents is propagated to the agent a. One may
observe the uniformity of prop, which in the setting of MA3 depends only
on values of rb’s; this is undoubtedly a simplifying assumption, but we want
to avoid unnecessary and obscuring the general view complications, which
of course can be multiplied at will.

MA4 For b 2 Ba, ingrb.xb; gmur .ub; rb// implies

ingra.aggr.fxbg/; g�a .aggr.fubg/; prop.frbg///:

Admitting MA4, we may also postulate that in case agents have at
their disposal variants of rough mereological granular logics, intensions
propagate according to the prop functor

MA5 If I_
�b
.gb/.�b/ � rb for each b 2 Ba, then

I_
�a
.aggr.fgbg//.synt.f�bg// � prop.frbg/:

A simple exemplary case of knowledge fusion was examined in Polkowski
(2008). We consider an agent a 2 Ag with two incoming connections from
agents b; c, i.e., Ba D fb; cg. Each agent is applying the rough inclusion
� D �IL, see (10.26), to an information system .Ua; Aa/, .Ub; Ab/,
.Uc; Ac/. Each agent is also applying the rough inclusion on sets of the
form (10.27) in evaluations related to extensions of formulae intensions.

We consider a simple fusion scheme in which information systems at b; c are
combined thing–wise to make the information system at a; thus, aggra.x; y/ D
.x; y/. Such case may happen, e.g., when an object is described with help of a
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camera image by some features and at the same time it is perceived and recognized
with range sensors like infrared or laser sensors and some localization means like
GPS.

Then: uncertainty propagation and granule propagation are described by the
Łukasiewicz t–norm L and extensions of logical intensions propagate according to
the product t–norm P .

10.9.3 Granular Logics: Reasoning in Information Systems

The idea of a granular rough mereological logic, see Polkowski (2004b) and
Polkowski and Semeniuk–Polkowska (2005), consists in measuring the meaning of
a unary predicate in the model which is a universe of an information system against
a granule defined by means of a rough inclusion. The result can be regarded as the
degree of truth (the logical value) of the predicate with respect to the given granule.
The obtained logics are intensional as they can be regarded as mappings from the
set of granules (possible worlds) to the set of logical values in the interval Œ0; 1�, the
value at a given granule regarded as the extension at that granule of the intension. A
discussion of intensional logics can be found, e.g., in Gallin (1975), Van Benthem
(1988), Hughes and Creswell (1996) and Fitting (2004).

For an information/decision system .U;A; d/, with a rough inclusion �,
e.g., (10.27), on subsets ofU and for a collection of unary predicatesP r , interpreted
in the universe U (meaning that for each predicate � 2 P r the meaning ŒŒ��� is a
subset of U ), we define the intensional logic GRM� by assigning to each predicate
� in P r its intension I�.�/ defined by its extension I_

� .g/ at each particular granule
g, as

I_
� .g/.�/ � r , �.g; ŒŒ���; r/ (10.124)

With respect to the rough inclusion (10.27) the formula (10.124) becomes

I_
�L
.g/.�/ � r , jg \ ŒŒ���jjgj � r (10.125)

A formula � interpreted in the universeU of a system .U;A; d/ is true at a granule
g with respect to a rough inclusion � if and only if I_

� .g/.�/ D 1 and � is true if and
only if it is true at each granule g. A rough inclusion � is regular when �.X; Y; 1/
holds if and only if X � Y . Hence, for a regular �, a formula � is true if and only if
for g � ŒŒ��� for each granule g.

A particularly important case of a formula is that of decision rules; clearly, for a
decision rule r W p) q in the descriptor logic, the rule r is true at a granule g with
respect to a regular rough inclusion � if and only if g \ ŒŒp�� � ŒŒq��.

Analysis of decision rules in the system .U;A; d/ can be given in a more general
setting of dependencies. For two sets C;D � A [ fd g of attributes, one says that
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D depends functionally on C when IND.C / � IND.D/, symbolically denoted
C 7! D. Functional dependence can be represented locally by means of functional
dependency rules of the form

�C .fva W a 2 C g/) �D.fwa W a 2 Dg/ (10.126)

where �C .fva W a 2 C g/ is the formula
V
a2C .a D va/, and ŒŒ�C �� � ŒŒ�D��.

We introduce a regular rough inclusion on sets �3 defined as

�3.X; Y; 1/, X � Y else �3.X; Y;
1

2
/, X \ Y ¤ ; else �3.X; Y; 0/ (10.127)

Then one proves that ˛ W �C ) �D is a functional dependency rule if and only
if ˛ is true in the logic induced by �3. A specialization of this statement holds
for decision rules. Further applications to modalities in decision systems and the
Perception Calculus in the sense of Zadeh (2004) can be found in Polkowski (2011).
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Chapter 11
Discrete Mereotopology

Antony Galton

11.1 From Mereology to Mereotopology

Mereology, as the theory of parts and wholes, leads to a set of five jointly exhaustive
and pairwise disjoint (JEPD) relations that may hold between any pair of entities X
and Y that come under its purview, namely

X is a proper part of Y PP.x; y/

X coincides with Y EQ.x; y/

X partially overlaps Y PO.x; y/

X contains Y as a proper part PPI.x; y/

X is disjoint from Y DR.x; y/

For the logical development, we first stipulate that the primitive relation of parthood
(P) is reflexive and transitive1:

P.x; x/ ; (A1)

P.x; y/ ^ P.y; z/! P.x; z/ : (A2)

1We adopt the usual convention in presenting first-order theories that free variables in formulae
presented as axioms or theorems are understood to be universally quantified, so that, e.g., P.x; y/^
P.y; z/ ! P.x; z/ is to be read as if it were written 8x8y8z.P.x; y/ ^ P.y; z/ ! P.x; z//.
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We then define overlap as possession of a common part:

O.x; y/ Ddef 9z.P.z; x/^ P.z; y// (D1)

and go on to define the five relations listed above as follows:

PP.x; y/ Ddef P.x; y/ ^ :P.y; x/ ; (D2)

EQ.x; y/ Ddef P.x; y/^ P.y; x/ ; (D3)

PO.x; y/ Ddef O.x; y/^ :P.x; y/ ^ :P.y; x/ ; (D4)

PPI.x; y/ Ddef PP.y; x/ ; (D5)

DR.x; y/ Ddef :O.x; y/ : (D6)

This system of relations is known in the Qualitative Spatial Reasoning (QSR)
community as RCC5, the five-element Region Connection Calculus.2

If the terms of the formal language are interpreted as referring to spatial entities,
which we here call regions, it is generally felt that mereology alone does not provide
sufficient expressive power to be useful for QSR. In addition to parthood and the
relations derived from it, we need also to be able to distinguish between, on the
one hand, internal and peripheral parts, and on the other, between contact and
separation. To express these, a primitive relation C (for contact, or connection) is
introduced, and stipulated to be reflexive and symmetric:

C.x; x/ ; (A3)

C.x; y/! C.y; x/ : (A4)

The minimal relationship between P and C is that anything connected to an entity
is automatically connected to anything that entity is part of:

P.x; y/! 8z.C.z; x/! C.z; y// : (A5)

Using P and C as primitives, we can now define a number of important additional
relations as follows:

• X is disconnected from Y:

DC.x; y/ Ddef :C.x; y/ : (D7)

2The Region Connection Calculus was introduced, though not under that name, in Randell et al.
(1992). The version there presented is RCC8, described below; explicit recognition of RCC5
in QSR came later. Strictly speaking, this set of mereological relations should only be called a
connection calculus if they are defined in terms of connection rather than, as here, in terms of
parthood.



11 Discrete Mereotopology 295

• X is externally connected to Y:

EC.x; y/ Ddef C.x; y/^ :O.x; y/ : (D8)

• X is a tangential part of Y:

TP.x; y/ Ddef P.x; y/ ^ 9z.C.x; z/^ :O.z; y// : (D9)

(i.e., X is a part of Y that is connected to something disjoint from Y).
• X is a non-tangential part of Y:

NTP.x; y/ Ddef P.x; y/ ^ 8z.C.x; z/! O.z; y// : (D10)

(i.e., X is a part of Y that is only connected to things that overlap Y).

Note that any part of a region must be either a tangential part or a non-tangential
part of it, but not both. In particular, a region is a non-tangential part of itself if and
only if it is not connected to any region disjoint from it and is therefore a union of
one or more connected components of the whole space.

The system of eight JEPD relations known as RCC8 comprises DC, EC, PO,
EQ, TPP (defined as the conjunction of PP and TP), NTPP (the conjunction of
PP and NTP), and the inverses of TPP and NTPP.

The logical language here is denoted LP;C, and comprises all first-order formulae
in which the non-logical language is restricted to the two binary predicates P and
C—all formulae containing the other RCC8 relations being reducible to formulae
containing just P and C, via the definitions given above. Systems of this kind,
which combine the mereological notion of parthood with the topological notion of
connection, are called mereotopologies.

Mereotopologies are normally interpreted as referring to regions which can be
indefinitely subdivided. This is expressed by positing the formula

9yPP.y; x/ (N1)

as an axiom. The domain of such an interpretation is usually taken to be some
collection of non-empty subsets of Rn for some positive integer n (typically either
2 or 3). In order to ensure infinite subdivisibility, only infinite subsets should be
considered as possible domain elements, but this still leaves open many different
possible such collections, for example

• All infinite subsets of Rn

• All non-empty open subsets of Rn

• All non-empty regular open3 subsets of Rn

3A regular open set is a set that is equal to the interior of its closure; a regular closed set is equal to
the closure of its interior.
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• All non-empty regular closed subsets of Rn (Gotts 1996)
• All open polygonal (polyhedral, etc.) subsets of Rn (Pratt and Lemon 1997; Pratt

and Schoop 1997; Pratt-Hartmann and Schoop 2002)

In these interpretations, it is usual to interpret the predicates P and C as standing for
the following relations:

• X is part of Y if and only if X � Y .
• X is connected to Y if and only if X \Y ¤ ;, i.e., the topological closures of X

and Y have at least one point in common.

The interpretation of parthood in terms of the subset relation explains why the
domain has to be restricted to non-empty sets: if the empty set were allowed, then
any pair of regions would overlap, since they would have the empty set as a common
part.

It should be noted that under any of these interpretations, parthood is necessarily
antisymmetric, satisfying the formula

P.x; y/ ^ P.y; x/! x D y ; (A6)

and thus extensional, meaning that two distinct entities cannot have exactly the same
parts:

8z.P.z; x/$ P.z; y//! x D y : (T1)

From now on we shall assume that P denotes an antisymmetric relation; a
consequence of this is that EQ.x; y/ becomes equivalent to x D y, meaning that
the symbol EQ can be dropped.

Connection, on the other hand, need not be extensional: that is, it does not
necessarily follow that two entities are identical if they are connected to exactly
the same things. In the first two models above, connection is not extensional; for
example, if the domain of discourse consists of all infinite subsets of Rn, an open
set and its closure are connected to exactly the same sets, yet they are not identical.
In the last three models listed above, connection is extensional, that is, they satisfy

8z.C.x; z/$ C.y; z//! x D y : (N2)

In such models, if X is connected to everything Y is connected to, then X is part
of Y , which means that the converse of (A5) holds. In this case, parthood can be
characterised exactly in terms of connection, as follows:

P.x; y/$ 8z.C.x; z/! C.y; z// : (N3)

It is easy to see that (N2) and (N3) together imply (A6) and hence (T1). If we have
(N3), we can use it to define P, leaving just the one primitive predicate C. In this
case the logical language can be reduced to LC .
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It should be noted that although individual terms in LP;C refer to regions,
by interpreting them as denoting subsets of R

n we are implicitly postulating a
universe of points, even though these cannot be referred to in the language. To
avoid this unsatisfactory situation, Stell (2000a) showed that the terms of RCC could
be interpreted as referring to elements of structures called Boolean Connection
Algebras (BCAs), which do not presuppose that regions are collections of points.
This notion was generalised by Li and Ying (2004) to Generalized Boolean
Connection Algebras, which as well as subsuming Stell’s BCAs can provide models
for the discrete versions of RCC which we turn to next.

11.2 Discrete Mereotopology and Adjacency Spaces

If we wish to interpret the mereotopological predicates over discrete domains, in
which entities are not indefinitely subdivisible, it is no longer possible to define
parthood in terms of connection. In a discrete domain, every entity decomposes into
atoms, which have no proper parts. We define

Atom.x/ Ddef :9yPP.y; x/ (D11)

Then it can be seen that (N1) is equivalent to :9xAtom.x/.
If A is an atom which is connected to its complement Ac , then anything

connected to A must either be A itself or overlap Ac , and hence in either case must
be connected toAc ; but on the other handA is obviously not part of its complement,4

so we have

8z.C.a; z/! C.b; z// ^ :P.a;b/

(where a and b denote A and Ac respectively), contradicting (N3).
For discrete mereotopology, then, both P and C are needed as primitive

predicates in the logical language. How should they be interpreted? The subsets
of Rn listed above are no longer appropriate, and an obvious substitute here would
be to use subsets of Zn, i.e., sets of points with integer coordinates. How should C
be interpreted in this case? Since overlap is a form of connection,5 we need only
concern ourselves with the interpretation of non-overlapping connection, i.e., EC.

An example is illustrated in Fig. 11.1, where the atomic regions are shown as unit
squares, which can be mapped in the obvious way to elements of Z2. The external

4At least, this is obvious so long as “part” and “complement” are understood in the usual sense;
however, Roy and Stell (2002) showed that by replacing the ordinary set-theoretical complement
operation by a weaker operation, the dual pseudo-complement, defined over a class of structures
called dual p-algebras, one obtains a model of discrete space in which (N3) holds.
5It follows from (A5) that 8x8y.O.x; y/ ! C.x; y//.
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a b

Fig. 11.1 External connection in discrete space

connection between the two differently shaded regions depends on the fact that the
squares labelled ‘a’ and ‘b’, one from each region, are adjacent to each other, and it
is this notion of adjacency which forms the basis for a general way of interpreting
the connection predicate in discrete mereotopologies. We do not confine ourselves
to subsets of Zn but rather to regions defined over a more general class which we
define as follows:

Definition. An adjacency space is a non-empty set U of entities called cells
together with a reflexive, symmetric relation 	 � U � U , called adjacency.

An adjacency space can be regarded as a graph; but this does not mean that the
theory of adjacency spaces is identical to graph theory. An important difference
emerges when we consider substructures. A graph is specified by a set V of vertices
and a set E of edges, where each edge joins an element of V to an element of V . A
subgraph is specified by a subset V 0 � V of the vertices and a subsetE 0 � E of the
edges, with the proviso that each edge in E 0 joins an element of V 0 to an element of
V 0. There is no requirement that an edge in E which happens to join an element of
V 0 to an element of V 0 must be in E 0. Thus there can be many different subgraphs
of .V;E/ all of which have the vertex-set V 0. In adjacency spaces, the adjacency
or otherwise of two cells is fixed by the space and is automatically inherited by the
substructures. Thus a substructure of an adjacency space can be specified by giving
its cells alone, without reference to adjacency.

These substructures, which may be thought of as aggregates of cells, are called
regions, and it is these entities that discrete mereotopology is primarily concerned
with, not the cells themselves. A cell might, indeed, be considered to be the
aggregate which is composed of precisely that cell and nothing else; but for
theoretical purposes it is convenient to specify a region in terms of the (non-empty)
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set of cells which make it up, and in that case a one-cell region is conceptually
distinct from its only cell, the former being, in fact, the singleton set of the latter.
Therefore an interpretation I of the logical language LP;C over an adjacency space
.U;	/ is specified as follows:

• Each individual term t of the logical language denotes a non-empty subset t I �
U .

• A formula P.t1; t2/ is interpreted to mean that t I1 � t I2 .
• A formula C.t1; t2/ is interpreted to mean that there are cells x 2 t I1 and y 2 t I2

such that x 	 y.

Thus two regions are regarded as connected so long as some cell in one is adjacent
to some cell in the other.6

The theory of Discrete Mereotopology (DM), as we shall understand it in this
paper, comprises all and only those formulae of the language LP;C which are
satisfied by every adjacency space under the scheme of interpretation just specified.
It is easy to see that DM includes all the formulae thus far introduced with labels
beginning with either A or T: the formulae (A1), (A2), (A6), and (T1) characterising
parthood, (A3) and (A4) characterising connection, and (A5) relating parthood and
connection. 7;8

DM does not include the converse of (A5), meaning that the definitional
reduction of P to C given by (N3) is not available here. The other important
non-theorem is (N1), which expresses the infinite subdivisibility of regions that is
characteristic of non-discrete (dense or continuous) models; instead, DM includes
the formula

8x9y.P.y; x/^ Atom.y// ; (A7)

which says that every region has an atomic region as part. The predicate Atom is
clearly satisfied by just the singleton subsets of the universe U ; and every subset of

6These ideas were presented, without explicit use of the term “adjacency space”, in Galton (1999).
The term “adjacency space” was used in Galton (2000).
7Of course, as written, not all of these are LP;C formulae; they become so when the predicates
other than P and C are expanded in accordance with their definitions, given by the formulae whose
labels begin with D.
8Formulae whose labels beginning with T logically follow from those with labels beginning with
A; thus the latter can be regarded as axioms and the former as theorems. However, the distinction
is somewhat arbitrary (since there are in principle many different ways of assigning “A” and
“T” labels) and only comes into its own when we wish to consider to what extent reasoning
about adjacency spaces can be accomplished purely by means of symbolic manipulation of LP;C

formulae, without reference to any interpretation. In that case it becomes of interest whether or not
there is a finitely-specifiable set of LP;C formulae whose logical consequences comprise all and
only the true formulae of discrete mereotopology—in short, whether this theory can be completely
axiomatised.
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U has at least one singleton subset; under the interpretation, these two sets count as
a region and an atomic part of that region.

It will be convenient to introduce a predicate AP to say that one region is an
atomic part of another; this is straightforwardly defined as follows:

AP.x; y/ Ddef Atom.x/ ^ P.x; y/ ; (D12)

enabling us to rewrite (A7) as 8x9yAP.y; x/.
The mereotopological relations of atoms are much simpler than those of general

regions. In particular, if A overlapsB , where A is an atom, then the common part of
A and B cannot be a proper part of A and must therefore be A itself. We thus have

Atom.x/! .O.x; y/! P.x; y//: (T2)

An important mereological principle, which forms part of General Extensional
Mereology, is the Strong Supplementation Principle (Simons 1987, p. 29), which
states that any region that is not part of a given region must have a part that does not
overlap that region:

:P.y; x/! 9z.P.z; y/^ :O.z; x// (A8)

In combination with (A7), this leads to a powerful extensionality principle for DM,
namely

8z.AP.z; x/$ AP.z; y///! x D y: (T3)

Whereas, in order to show that two regions are the same, (T1) requires us check that
they agree in all their parts, with (T3) it suffices to check that they agree in just their
atomic parts.

To see how this follows from (A8), suppose we have

8z.AP.z; x/$ AP.z; y//: (*)

We must show that x D y. Suppose not; then by (A6), either :P.x; y/ or :P.y; x/.
Without loss of generality we may assume the former. By (A8), this means there is
a region u such that

P.u; x/ ^ :O.u; y/ : (**)

By (A7), there is a region v such that AP.v;u/, and by transitivity therefore
AP.v; x/. By (�) this means that AP.v; y/. We now have P.v;u/ ^ P.v; y/, so
O.u; y/, which contradicts (��).

It is clear that the Strong Supplementation Principle is satisfied when regions
are interpreted as subsets of an adjacency space, so both (A8) and (T3) belong to
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DM. The upshot of this is that we can define a region uniquely by characterising its
atomic parts. We will use this in the following fashion: if a predicate � is defined by
a rule of the form

�.x/ Ddef 8z.Atom.z/! .P.z; x/$ .z; x///

then it follows that any two regions with the property � are identical.
The formulae (A1), (A2), (A6), and (A8) together constitute the axiomatic basis

for the system designated EM (for Extensional Mereology) in Varzi (1996). The
addition of (A7) yields Atomic Extensional Mereology AEM.

The study of discrete mereotopology can be pursued on two levels, which we may
loosely characterise as “set-theoretical” and “logical”. At the set-theoretical level,
the class of adjacency spaces are treated as mathematical objects in their own right,
independently of any particular logical language chosen for describing them. At the
logical level, on the other hand, one focusses on the particular first-order language
LP;C, which is the common language in which to express mereotopological theses,
regardless of whether discrete or continuous spaces are intended. The set-theoretical
level provides a metalanguage within which one can specify interpretations of the
logical level. While much of what is said at one level can be transposed easily to
the other, it is important to maintain a clear conceptual distinction between them.
This is supported here by a typographical distinction: formulae at the logical level
are always printed in a sanserif font.

Moving back and forth between the levels we can investigate what formulae of
LP;C are satisfied in adjacency spaces (these formulae constituting the theory of
DM), and conversely which properties of adjacency spaces can be expressed in the
language. We can then ask whether the theory of adjacency spaces, insofar as it can
be expressed in LP;C, is axiomatisable, i.e., whether there is a finitely specifiable
set of LP;C formulae from which all and only the true theorems of DM follow as
logical consequences.

In the remainder of this paper we present a few of the most important features of
DM, briefly discuss its relation to some other approaches, and describe an area in
which it is being applied.

11.3 Examples of Adjacency Spaces

The adjacency space in Fig. 11.1 is underdetermined, in that we did not specify how
the relation 	 was to be defined. It was assumed that the reader would naturally
understand that the cells labelled ‘a’ and ‘b’ were to count as adjacent. In fact there
are (at least) two different, and equally natural, ways of understanding adjacency in
Z
2. Under orthogonal adjacency, only cells which share an edge count as adjacent;

thus each cell is adjacent to four cells other than itself. We denote this relation 	4.
Orthodiagonal adjacency is where cells count as adjacent so long as they share at
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Fig. 11.2 Adjacency relations in regular planar tessellations

least one boundary point—either along an edge or at a corner; each cell is adjacent
to eight others, and hence we denote this relation	8. These two adjacency relations
are defined as follows:

• .x; y/ 	4 .x0; y0/ iff jx � x0j C jy � y0j 
 1.
• .x; y/ 	8 .x0; y0/ iff jx � x0j 
 1 and jy � y0j 
 1.

Both of these spaces are homogeneous in the sense that all cells “look the same”;
more formally, for any x; y 2 U there is a bijective adjacency-preserving function
from U to U which maps x onto y.

The adjacency spaces .Z2;	4/ and .Z2;	8/ have played a prominent part in
work on discrete spaces, mainly because they are the most natural spaces within
which to model digital pictures, as seen, for example, on a computer screen in which
the display is produced by assigning colour values to each element in a rectangular
array of pixels (see, e.g., Rosenfeld 1979; Kong and Rosenfeld 1989).

Other homogeneous adjacency spaces correspond to tessellations of triangles or
hexagons. In the triangular case, there are two possible adjacency relations:X 	3 Y
if trianglesX and Y share an edge, andX 	12 Y if they share at least one boundary
point. With the hexagonal lattice there is only one natural adjacency relation, 	6,
which holds between hexagons that share an edge. All these cases are illustrated in
Fig. 11.2.

Homogeneous adjacency spaces do not need to be infinite. Familiar examples of
finite spaces are provided by the five platonic solids. The faces of a dodecahedron,
for example, can be thought of as a 12-element adjacency space, where adjacency
is interpreted as edge-sharing between the pentagonal faces.

Beyond these examples, adjacency spaces do not have to be homogeneous. Non-
homogeneous tessellations include the triangulated irregular networks (TIN) used
in Geographical Information Science. An example is shown in Fig. 11.3a. As with
the homogeneous tessellation of squares, two kinds of adjacency can be defined
on a TIN: either adjacency along edges only, or adjacency at edges and vertices.
The advantage of a hexagonal tessellation is that this ambiguity does not arise,
and for this reason we will use such tessellations for our illustrative examples in
what follows—though for practical convenience, the hexagonal tessellation will be
represented in the form of an isomorphic “staggered squares” grid, as shown in
Fig. 11.3b.
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a b

Fig. 11.3 (a) A triangular irregular network (TIN). (b) A grid of staggered squares, isomorphic to
the regular hexagonal tessellation

11.4 Mereotopological Relations on Adjacency Spaces

Given the interpretation of the relations P and C over an adjacency space, the
interpretations of all the relations defined in terms of P and C, such as the RCC8
relations, become fixed. Following the standard convention in model theory, we
write .U;	/ ˆ RŒX; Y � to mean that the relation denoted by a predicateR (defined
in LP;C) holds between the elements X; Y 2 U . Thus for example we have, for
regionsX; Y :

• .U;	/ ˆ DCŒX; Y � iff there are no cells x 2 X and y 2 Y such that x 	 y.
• .U;	/ ˆ ECŒX; Y � iff X \ Y D ; and there are cells x 2 X and y 2 Y such

that x 	 y.
• .U;	/ ˆ TPŒX; Y � iff X � Y and there are cells x 2 X and y … Y such that
x 	 y.

• .U;	/ ˆ NTPŒX; Y � iff for all cells x 2 X , if x 	 y then y 2 Y .
• .U;	/ ˆ EQŒX; Y � iff X D Y .

Examples of all the RCC8 relations are illustrated in Fig. 11.4, using regions defined
on the “staggered squares” grid.

It should be noted that every region is a non-tangential part of U since the
consequent of the defining condition, y 2 Y , is always true when Y D U .

The set of subsets of U forms a Boolean algebra under the usual set-theoretic
operations of union, intersection, and complement, with U itself acting as the top
element (generally notated 1 or >) and ; as the bottom element (notated 0 or ?).
Since ; is not a region, the regions just fall short of being a Boolean algebra: they
form a quasi-Boolean algebra. In mereotopology, therefore, the Boolean operations
are appropriately restricted so that neither their range nor their domain contains the
empty set, as we show below.

The universe U can be characterised in LP;C as the region which every other
region is part of. This can be expressed by the predicate U, defined by

U.x/ Ddef 8yP.y; x/ (D13)
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Fig. 11.4 RCC8 relations in an adjacency space

That such a region exists is stated by the formula

9xU.x/; (A9)

which is generally accepted as an axiom in RCC, whether in a discrete or continuous
setting. By antisymmetry of P, it straightforwardly follows from this that there can
be at most one universal region; in terms of adjacency structures we have

.U;	/ ˆ UŒX� if and only if X D U:

We can therefore introduce a constant symbol U to denote the unique universal
region, defined contextually as follows:

�.U/ D def8x.U.x/! �.x// ; (D14)

where � stands for any open formula with one free variable.
Since not all pairs of regions have a Boolean product (intersection), we cannot

represent it by a function symbol in LP;C; instead we define a relational predicate
Prod, the intended meaning of Prod.x; y; z/ being that z is the intersection of x and
y, defined as follows:

Prod.x; y; z/ Ddef 8v.P.v; z/$ P.v; x/ ^ P.v; y// : (D15)

Similarly, the Boolean sum (union) is defined by

Sum.x; y; z/ Ddef 8v.O.v; z/$ O.v; x/_O.v; y// ; (D16)
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and the Boolean difference by

Diff.x; y; z/ Ddef 8v.P.v; z/$ P.v; x/ ^ :O.v; y// : (D17)

The existence of regions playing the role of z in these formulae is stated by the
following formulae, which also specify the conditions on x and y for such a z to
exist:

O.x; y/! 9zProd.x; y; z/ ; (A10)

9zSum.x; y; z/ ; (A11)

:P.x; y/! 9zDiff.x; y; z/ : (A12)

As with (D13), it follows from (D15), (D16), and (D17) that products, sums, and
differences, where they exist, are unique. Note that (A12), in conjunction with (A1),
logically implies (A8), meaning that the latter could be relegated to the status of
a theorem (with a ‘T’ label) rather than an axiom; however, we shall retain the
designation (A8) to avoid confusion.

The complement of a non-universal region can be defined as its difference from
U , i.e.,

Compl.x; y/ Ddef Diff.U; x; y/ :

Since we always have P.v;U/, this may be expanded as

Compl.x; y/ Ddef 8v.P.v; y/$ :O.v; x// : (D18)

It is easy to show that, for non-empty sets X; Y � U , .U;	/ ˆ ComplŒX; Y �
if and only if X D Y c , thus ensuring that the LP;C-definable predicate Compl
captures the set-theoretic relation of complementation insofar as it applies to regions
in adjacency spaces. It does not immediately follow from this, of course, that Compl
behaves like complementation in arbitrary models of DM, but that this is so is shown
by the following theorem:

Compl.x; y/$ :O.x; y/^ Sum.x; y;U/ ; (T4)

which says that one region is the complement of another if and only if they are dis-
joint regions whose sum is the universe. A corollary of this is that complementarity
is mutual:

Compl.x; y/! Compl.y; x/ (T5)

The proofs of these theorems are given in Appendix 1.
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With the addition of (A9), (A10), (A11), and (A12) to EM we obtain the system
of Closed Extensional Mereology designated CEM by Varzi (1996). Li and Ying
(2004) show that every model of CEM is isomorphic to a complete quasi-Boolean
algebra, and therefore that ACEM, the atomic variant of CEM with the additional
axiom (A7) is isomorphic to an atomic complete quasi-Boolean algebra,

In standard mereotopology, where there are no atomic regions, and parthood is
defined in terms of connection, the definition of these Boolean operations in LP;C

has proved somewhat problematic, it being difficult to demonstrate that the required
interrelationships hold when connection is taken into account. In particular, (D18)
does not suffice to captured the desired behaviour and needs to be supplemented by
an additional axiom, represented here by the formula

Compl.x; y/! 8z.C.z; y/$ :NTP.z; x// (T6)

In DM, however, it can be proved that (T6) follows from (D18) and the existing
axioms, as demonstrated in Appendix 2.

11.5 Quasi-topological Operators

The relation NTP picks out those subregions of a given region which are dis-
connected from the complement of the region: the neighbours of each cell in the
subregion are all in the region itself. The union of all the non-tangential parts of a
region thus consists of all the cells in the region whose neighbours are also all in the
region:

[
fX j .U;	/ ˆ NTPŒX;R�g D fx 2 U j 8y.x 	 y ! y 2 R/g

This set is called the (discrete) interior of regionR and is denoted intD.R/. So long
as it is non-empty, it is of course a region itself.

While intD , considered as an operator on sets of cells, is a total function, when
considered as an operator on regions it is only a partial function, since if intD.R/
is empty, R does not have an interior region. In the language LP;C, therefore, the
notion of interior is expressed by means of a relational predicate Int.x; y/, meaning
that y is an interior of x, defined by:

Int.x; y/ Ddef 8z.P.z; y/$ NTP.z; x// (D19)

Thus a region is an interior of R if and only if its parts are all and only the non-
tangential parts ofR. As discussed earlier, it suffices, in fact, to consider just atomic
parts, so we have

Int.x; y/$ 8z.Atom.z/! .P.z; y/$ NTP.z; x///: (D190)
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ClosureInterior

ba

Fig. 11.5 Discrete interiors and closures. In (a), a two-part region (all shading) and its discrete
interior (dark grey); in (b), a region (mid-grey) and its discrete closure (all shading)

It now follows that a region cannot have two distinct interiors, since if
Int.x; y1/ ^ Int.x; y2/ then from (D19) we have 8z.P.z; y1/$ P.z; y2// so in
particular P.y2; y1/ and P.y1; y2/, whence y1 D y2 by antisymmetry of P (A6).
The appropriateness of (D19) follows from the easily demonstrated fact that, if
Y ¤ ;, .U;	/ ˆ IntŒX; Y � if and only if Y D intD.X/. Thus Int does capture in
LP;C the relationship between a region and its discrete interior, so long as the latter
is non-empty.

Any connected component of U , and any union of such connected components
(including U itself), is its own interior, since it is a non-tangential part of itself. If a
region has no non-tangential parts, and hence no interior, we describe it as “thin”. In
Fig. 11.5a, the left-hand region has its interior shaded a darker grey; the right-hand
region is thin, since all of its cells have at least one neighbour outside the region.
Note that U . and any of its connected components, cannot be thin since it is its
own interior; in particular, therefore, a single cell is a thin region so long as it is
connected to at least one other cell, but if it is a connected component of U (and
thus an isolated cell, disconnected from the rest of the space), it is not thin.

We refer to the discrete interior in order to distinguish intD from the topological
interior operator int , which does not apply to adjacency spaces since they are
not defined as topologies. The two operators share a number of common features,
notably:

• int.D/.U / D U ;

• 8X.int.D/.X/ � X/ ;
• 8X8Y.X � Y ! int.D/.X/ � int.D/.Y // :

The most important difference between the discrete and topological interior opera-
tors is that whereas the latter is idempotent, i.e.,

• 8X.int.int.X// D int.X// ;
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this is not, in general true for the former, since, in an adjacency space, the only
regions for which intD.X/ D X are unions of connected components of the space.
In view of both the similarities and the differences, we call intD a quasi-topological
operator.

In topology, the closure of a set is defined as the complement of the interior of
its complement: cl.X/ D .int.Xc//c . The analogous operation in adjacency spaces
gives us another quasi-topological operator, the discrete closure,

clD.R/D.intD.R
c//c Dfx j 9y.x 	 y^y 2 R/gD

\
fX j .U;	/ ˆ NTPŒX;R�g:

Thus the discrete closure of a region R consists of all those cells which are adjacent
to an element of R; it is the intersection of all regions which R is a non-tangential
part of.

As with the interiors, the discrete closure shares some properties with the
topological closure, namely

• cl.D/.;/ D ; ;
• 8X.X � cl.D/.X// ;
• 8X8Y.X � Y ! cl.D/.X/ � cl.D/.Y // ;

but not:

• 8X.cl.cl.X// D cl.X// :

As with interiors, the only regions in adjacency space for which clD.X/ D X are
the unions of connected components of the space.

Analogously to discrete interior, we can define the discrete closure relation in
LP;C by

Cl.x; y/ Ddef 8z.P.y; z/$ NTP.x; z// ; (D20)

which says that y is the closure of x if and only if x is a non-tangential part of all
and only those regions y is part of.

Our decision to develop mereology with a universal element but no null element
leads to a certain asymmetry. In set-theoretical interpretations the asymmetry shows
up as the fact that the universal set is recognised as determining a region but the
empty set is not. A consequence of this is that, unlike the discrete interior, discrete
closure is a total function on regions: not every region has a discrete interior, but
every region has a discrete closure. This means that we can also define the closure
function cl by

�.cl.x// Ddef 8y.Cl.x; y/!�.y//; (D21)

where � stands for any open formula with one free variable. Figure 11.5b shows
a region (dark grey cells) and its discrete closure (the region plus the lighter grey
cells).
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Within LP;C, in order to characterise the relationship between discrete closure
and interior, we need to use the predicate Compl already defined in (D18). The
relationship between discrete interior and discrete closure is then expressed in LP;C

by the formula

Compl.x; y/ ^ Int.y; z/ ^Compl.z;w/! Cl.x;w/; (T7)

a proof of which is given in Appendix 3.
From now on, we shall use the words ‘closure’ and ‘interior’ on their own

to mean the discrete closure and interior; if we need to refer to the topological
operators, we shall do so explicitly. A useful way of characterising the closure and
interior in an adjacency space is to use the idea of the neighbourhood of a cell,
defined as follows:

N.x/ D fy 2 U j x 	 yg

Thus neighbourhoods are in fact the closures of atoms, and the closure of any region
R � U is the union of the neighbourhoods of its constituent cells:

clD.R/ D
[
fN.x/ j x 2 Rg:

The interior comprises those cells whose neighbourhoods are parts of the region:

intD.R/ D fx 2 U j N.x/ � Rg :

Useful operations result from combining closure and interior, in either order. If
a set X includes some thin spikelike parts, these will disappear when the interior
is taken, and will not be restored if closure is then applied. Thus clD.intD.X// is
essentially like X but with any thin parts removed (Fig. 11.6, left). On the other
hand, if the region has any thin holes or fissures, these will be filled in by the closure
operation and not be opened out again when interior is applied. Thus intD.clD.X//
is likeX but with any thin holes or fissures filled in (Fig. 11.6, right). Regions which
lack spikes or fissures, i.e., for which X D clD.intD.X// D intD.clD.X//, may be
called regular.

Referring back to the earlier discussion of the distinction between adjacency
spaces and graphs, it should be noted that Stell (2000b) has reformulated these
quasi-topological operators in terms of two kinds of complementation definable on
graphs. Recall that a subgraph is specified by giving both its vertices and its edges.
The negation :G of a subgraph G consists of all the vertices of U that are not in
G, and all the edges of U joining vertices in :G. The supplement 	G consists of
all the edges of U that are not in G, and all the vertices of V that are incident with
an edge in :G. Then the subgraphs :	G and 	:G correspond to intD.G/ and
clD.G/ respectively. It is worth noting that Stell defines a region in a graph to be
subgraphG such that ::G D G; thus a region, in this sense, includes all the edges
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Fig. 11.6 Left: A region (mid grey) with its interior (dark grey) and the closure of the interior
(heavy outline). Right: The same region, with its closure (all shading) and the interior of the closure
(heavy outline)

of U that join vertices of G to a vertices of G; it can therefore can be specified just
by giving its vertices, and thus corresponds to a region in adjacency space.

11.6 Measures of Size and Distance

From now on we assume that the universe is connected, meaning that every region
(other than the universe itself) is connected to its complement:

8X 
 U..U;	/ ˆ CŒX;Xc�/ :

This means that the universe consists of a single connected component, itself, and
is therefore the only region which is its own closure and interior (the empty set also
has this property, but it is not a region).9

We have already characterised a thin region as one with empty interior. More
generally we can define the thickness of a region as the number of successive interior
operations required to reduce the region to nothing. For a region R of thickness n
we have the sequence

R; intD.R/; intD.intD.R//; : : : ; intnD.R/ D ; :

Thus for X � U we define

Thickness.X/ Ddef

8
<

:

0 .if X D ;/
nC 1 .if X ¤ ; and Thickness.intD.X// D n/
1 .Otherwise/

9In standard treatments of mereotopology this is posited as an axiom: Compl.x; y/ ! C.x; y/.
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The thin regions are then those with thickness 1. The universe, U , since it is its own
interior, can never be reduced to nothing in this way, so its thickness is infinite—
even if it is finite in the sense of containing only finitely many cells.10 Regions
other than the universe can only have infinite thickness if the universe is infinite.
Thickness provides a measure of how ‘substantial’ a region is.

A region of thickness n is the union of a sequence of n � 1 shells surrounding a
central core of thickness 1. If Thickness.R/ D n, then the shells of region R are

R n intD.R/; intD.R/ n intD.intD.R//; : : : ; intn�2
D .R/ n intn�1

D .R/; intn�1
D .R/ ;

where the final term in the sequence is the core, whose interior is empty.
We can perform an analogous construction, starting from a region R and

repeatedly forming the closure, thus building up a sequence of regions:

R; clD.R/; clD.clD.R//; clD.clD.clD.R///; : : : :

If the universe is infinite, this process may go on for ever, depending on the starting
pointR, otherwise, given that the universe is connected, we will reach a point where
clnD.R/ D U . Give the complementarity of closure and interior, this occurs when
Thickness.Rc/ D n. We can think of the sequence of closures being built up by the
successive addition of outer shells,

clD.R/ n R; clD.clD.R// n clD.R/; : : : ; clnD.R/ n cln�1
D .R/; : : : :

The notion of distance is usually defined in terms of shortest paths; but as we
shall see, in adjacency spaces it can also be defined in terms of closures.

A path of length n from cell x to cell y is a sequence x0; x1; : : : ; xn such that
x0 D x, xn D y, and for i D 1; : : : ; n, xi�1 	 xi . We can prove that there is a path
of length n from x to y if and only if y 2 clnD.fxg/. We use induction on n:

Base case (n D 0). A path of length 0 from x to y consists of a single point x0
which must be equal to both x and y. Clearly this exists if and only if x D y.
Since cl0D.fxg/ D fxg this means that y 2 cl0D.fxg/ as required.
Induction step (from n�1 to n). Assume the result holds for n�1. If x0; x1; : : : ; xn
is a path of length n from x to y, then x0; x2; : : : ; xn�1 is a path of length n � 1
from x to xn�1. By hypothesis such a path exists if and only if xn�1 2 cln�1

D .fxg/.
Since xn�1 	 xn D y, this means that y 2 clD.cln�1

D .fxg// D clnD.fxg/, as
required.

10An alternative definition of thickness, which would allow the thickness of the universe to be finite,
would be to restrict the definition given in the text to non-U regions, and define Thickness.U / Ddef

maxX�U Thickness.X/C 1, it being understoond that this expression evaluates to 1 if there is no
upper bound to the thickness of non-universal regions.
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This gives us a natural measure of the distance between two cells:

d.x; y/ D min
n2N.y 2 clnD.fxg// :

From the above, this is the length of a shortest path from x to y, and it is easy to see
that it is a true metric, i.e.,

• d.x; y/ D 0 if and only if x D y,
• d.x; y/ D d.y; x/
• d.x; z/ 
 d.x; y/C d.y; z/ (triangle inequality).

Note that there will not, in general, be a unique shortest path between two cells. A
familiar example is the adjacency space .Z2;	4/. The points .m; n/ and .mC1; nC
1/ are linked by two minimal paths, of length 2, one going via .m; nC 1/ and the
other via .mC 1; n/; in general, between the points .m; n/ and .mCh; nCk/ there
are hCkCh minimal paths, of length hC k. This is the “Manhattan” or “city-block”
distance.

An obvious generalisation of distance to regions gives us the proximal distance
between two regions, defined as the smallest number of closure operations that can
be applied to X to produce a region that overlaps Y ; as before, this is equivalent to
the more familiar definition as the shortest distance between a cell in one region and
a cell in the other:

pd.X; Y / D min
n2N.clnD.X/\ Y ¤ ;/ D min

x 2 X

y 2 Y

d.x; y/:

Unfortunately proximal distance is not a true metric since (1) the proximal distance
between distinct but overlapping regions is zero, and (2) the triangle inequality does
not hold, i.e., we can have regions X; Y;Z such that pd.X;Z/ > pd.X; Y / C
pd.Y;Z/.

A more satisfactory measure of distance for regions is the Hausdorff distance,
defined as the greatest distance between any point in one of the regions and the
nearest point in the other:

hd.X; Y / D max

�
max
x2X min

y2Y d.x; y/;max
y2Y min

x2X d.x; y/
�
:

If maxx2X miny2Y d.x; y/ D n, then for any x 2 X; y 2 Y we have y 2
clnD.fxg/ � clnD.X/, so Y � clnD.X/, and likewise with X and Y reversed. Thus an
equivalent formulation in terms of closures is

hd.X; Y / D min fn 2 N j X � clnD.Y / ^ Y � clnD.X/g :

The Hausdorff distance between two regions in adjacency space is thus the smallest
n such that each region is within the nth closure of the other. Unlike proximal
distance, Hausdorff distance is a true metric.



11 Discrete Mereotopology 313

It should be noticed that while the Hausdorff distance between a region and its
closure is always 1, i.e., hd.X; clD.X// D 1, this is not necessarily the case for a
region and its interior. In fact

hd.X; intD.X// D 1 if and only if clD.intD.X// D X:

Such an X is called a regular closure set in Smyth and Webster (2007).

11.7 Relation to Mathematical Morphology

Mathematical Morphology (MM) comprises a set of mathematical tools for manip-
ulating images. Readers familiar with MM will recognise a clear similarity between
our discrete interior and closure operations and the erosion and dilation operators of
that theory. Here we make this relationship explicit. While the theory of MM may
be developed both for continuous and discrete images, for our purposes we will
consider only the discrete case: in this case we are working with Z

2. An image is
any subset of this set.

In Mathematical Morphology, there is no pre-defined adjacency relation. Instead,
erosion and dilation may be performed with respect to an arbitrary structuring ele-
ment which in effect determines which points are to count as adjacent. A structuring
element is itself an image, typically small. Given an image X and a structuring
element B , we define

• The dilation of X by B is the image

X ˚ B D fx C b j x 2 X; b 2 Bg:

• The erosion of X by B is the image

X � B D fy 2 Z
2 j 8b 2 B.y C b 2 X/g:

Addition here is coordinate-wise, i.e., treating points as vectors. The dilation of a
region by B expands B by replacing each of its points by a copy of B; the location
of the copy depends on where B itself is with respect to the origin. It is usual to
assume that the origin is one of the points of B , otherwise dilation will result in
a displacement of the image as well as an expansion. If the structuring element is
taken to be a 3 � 3 square centered on the origin, then the dilation of any image
will be exactly its closure with respect to the adjacency relation 	8. If instead we
take a cross-shaped structuring element consisting of the origin and the four points
orthogonally adjacent to it (like the leftmost image in Fig. 11.2), dilation then gives
closure with respect to the relation 	4.

Erosion removes the outer part of the image, retaining a point only if a copy of
the structuring element anchored on that point would lie entirely within the image.
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So long as the structuring element has central symmetry (i.e., B D �B), erosion
and dilation are related exactly as interior and closure. More generally we have

X ˚ B D .Xc � .�B//c ;

where �B D f�x j x 2 Bg.
MM makes much use of operations called opening and closing, defined as

follows:

Opening: X ı B D .X � B/˚ B ,
Closing: X � B D .X ˚B/� B .

These correspond to the DM operations clD.intD.X// and intD.clD.X// illustrated
in Fig. 11.6.

Mathematical Morphology may appear to be in some ways more general, and
in other ways less so, than Discrete Mereotopology, but both these appearances are
misleading.

The sense in which MM may appear to be more general than DM is that it
allows arbitrary structuring elements; but this generality could be recovered in
DM by defining a different adjacency relation on Z

2 for each possible structur-
ing element. For example, if the structuring element consists of just the points
f.0; 0/; .1; 0/; .0; 1/g, then the corresponding adjacency relation would relate any
point .x; y/ to .x; y/, .x C 1; y/, .x; y C 1/ and nothing else.

On the other hand, as usually presented in terms of structuring elements, MM
would appear to presuppose spaces which are homogeneous in the sense that they
allow a copy of the same structuring element to be located at each point in the
space. As we have seen, however, DM is equally happy in non-homogeneous spaces
where such arbitrary translation of structuring elements does not make sense; the
discrete closure and interior operations of DM work just as well in this setting as
with homogeneous spaces, but the most familiar forms of MM gain no purchase in
this context.

This is not, however, the full story, since a number of researchers have inves-
tigated forms of MM which allow variable structuring elements—see for example
Roerdink and Heijmans (1988) and Verly and Delanoy (1993). And it is certainly
true more generally that the study of MM is a much more mature research area than
that of DM, and as a result has been developed to a considerably greater degree of
mathematical sophistication and generality—see for example Bloch et al. (2007).

11.8 Relation to Digital Topology

Adjacency spaces are examples of a general class of mathematical structures called
closure spaces (Čech 1966). A closure space is a pair .U; cl/, where U is any set,
and cl is a function mapping each set X � U to a set cl.X/ � U such that
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Fig. 11.7 An adjacency space in the form of a hexagonal grid (left), and the topological space
obtained by the addition of bounding lines and points (right)

1. cl.;/ D ;,
2. X � cl.X/,
3. cl.X [ Y / D cl.X/ [ cl.Y /.

This notion generalises topological closure, which in addition to satisfying condi-
tions 1–3 also satisfies the idempotency rule

4. cl.cl.X// D cl.X/,

which as we have noted is not, in general, satisfied by sets in an adjacency space.
Although the discrete closure operation in an adjacency space is not a topological

closure (since it is not idempotent), one can define topological spaces associated
with any adjacency space. A trivial way of doing this is to specify the discrete
topology on U , that is, the topology under which cl.X/ D X for every X �
U . Much more interesting is to extend U by including in the universe not just
the original elements of U (conceived of as atomic regions) but also boundary
elements where these atomic regions adjoin one another, and boundaries of those,
etc, depending on the dimensionality one wishes to confer on the space. This is
illustrated in Fig. 11.7, where, on the left is shown part of an adjacency space in
the form of a regular hexagonal lattice, and on the right is shown a space which
includes, in addition to the hexagons of the original lattice, a set of line segments
representing the boundaries of the hexagons and a set of points representing the
ends of the line segments. This space can be made into a topology by specifying
that the closure of any set consists of the elements of that set together with all their
bounding elements. Thus the closure of one hexagonal tile consists of the hexagon
together with its six bounding lines and its six bounding points, and the closure
of a line element is the line together with its two bounding points. It is easy to
see that this closure operation satisfies the conditions (1)–(4) above, and therefore
defines a topological space. Such topological spaces, if finite, are called cellular
complexes, and these are investigated in the context of applications to image analysis
in Kovalevsky (1989).

The topological spaces obtained in this way from rectangular grids of the form
Z
n are called Khalimsky spaces (Khalimsky et al. 1990; Kong et al. 1991). See

also Kong and Rosenfeld (1991) for a discussion of the relationship between these
topological approaches and graph-based approaches such as DM.
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11.9 An Application

Discrete Mereotopology has been applied to the analysis of histological images
(Randell and Landini 2008; Randell et al. 2013). Real-world images invariably have
imperfections which means that when standard segmentation algorithms are applied
to them in order to extract information about the entities pictured, the resulting
structures are not always in conformity with theoretical models—e.g., one might
find cell nuclei overlapping the boundaries of their cytoplasm, or distinct tissue
types wrongly labelled. DM can be used to identify maximally parsimonious ways
of repairing such ill-formed images, using “conceptual neighbourhood diagrams”
(Freksa 1992) to identify sequences of operations that can transform an existing
inappropriate structure to one that is in conformity with expectation. This method
works at the level of individual image pixels, and can therefore harness the power of
mathematical morphology alongside DM; but by considering a coarser segmentation
of the image one can exploit the ability of DM to allow reasoning about arbitrary
adjacency spaces.

To illustrate, Fig. 11.8a shows a Haemotoxylin and Eosin stained section of
an odontogenic keratocyst lining. Image-processing techniques are used to extract
theoretical cell boundaries from this image, defining “virtual cells” or “v-cells” in
the epithelial compartment separating the background free space at the top of the
image from the connective tissue at the bottom. The segmentation into v-cells is
shown in Fig. 11.8b. Individual v-cells, as well as the whole block of connective
tissue and the background space, can be regarded as atomic regions of an adjacency
space. The v-cells adjacent to the connective tissue form what is called the basal
layer. If V is the region in the image consisting of the v-cells, and C is the region
corresponding to the connective tissue, then the basal layer B can be identified
as V \ clD.C /. By taking successive closures of the basal layer we can segment
the epithelium into layers as shown in Fig. 11.8c. This operation allows one to
derive a more meaningful measure of tissue thickness, for example, than crude
measures involving pixel counts or Euclidean distance. Such measures can provide
important diagnostic criteria for histopathology. By taking a single target cell within
the segmented image, one can similarly use the closure operation to generate nested
rings of v-cells, as shown in Fig. 11.8d, which can again provide useful information,
at the cellular level, on local tissue architecture.
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Computing, University of Leeds, also provided useful feedback on an earlier draft of this paper.

Appendix 1: Proof of (T4) and (T5)

The first theorem to be proved is
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Fig. 11.8 Application of discrete closure operation to a histological image (Images courtesy of
Prof. Gabriel Landini and Dr D. Randell). (a) Stained epithelium section. (b) Segmentation into
“virtual cells” (v-cells). (c) Layering of epithelial v-cells. (d) Nested shells of v-cells around a
target cell

8x8y.Compl.x; y/$ :O.x; y/^ Sum.x; y;U// (T4)

First, suppose Compl.x; y/, so since P.y; y/ we have :O.y; x/ by (D18) and
therefore

:O.x; y/: (1)

Let v be any region; if:O.v; x/, then P.v; y/ (since Comp.x; y/), so O.v; y/. Hence
O.v; x/_O.v; y/. Since v is arbitrary, we always have O.v;U/, and hence we have
O.v;U/$ O.v; x/_O.v; y/, i.e.,

Sum.x; y;U/ (2)

Conversely, suppose we have :O.x; y/^ Sum.x; y;U/.
Let P.u; y/, so that whenever P.w;u/ we have also P.w; y/. Therefore from

:O.x; y/, i.e. :9w.P.w; y/ ^ P.w; x//, we infer :9w.P.w;u/ ^ P.w; x//, i.e.,
:O.u; x/. Hence we have shown 8u.P.u; y/! :O.u; x//.

Now suppose :O.u; x/. We must show P.u; y/. Suppose not; then from
:P.u; y/, by (A8), there is a region w such that P.w;u/ ^ :O.w; y/. From
:O.w; y/, since Sum.x; y;U/ we have O.w; x/ (since O.w;U/ in any case).
From P.w;u/ and O.w; x/ it is an easy deduction that O.u; x/, contradicting our
assumption. Hence we have shown 8u.:O.u; x/! P.u; y//.

We now have 8u.P.u; y/$ :O.u; x//, i.e., Compl.x; y/. �
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The proof of (T5) is now straightforward:

Compl.x; y/, :O.x; y/^ Sum.x; y;U/, :O.y; x/ ^ Sum.y; x;U/

, Compl.y; x/:

Appendix 2: Proof of (T6)

The theorem to be proved is

8x8y.Compl.x; y/! 8z.C.z; y/$ :NTP.z; x/// (T6)

Assuming

Compl.a;b/; (1)

suppose, first, that C.c;b/. From (1), since P.b;b/, we have :O.b;a/, hence
we have C.c;b/ ^ :O.b;a/ and therefore :NTP.c;a/ by (D10). Hence we have
8z.C.z;b/! :NTP.z;a//.

Next, suppose we have :NTP.c;a/. Then from (D10), either we have

:P.c;a/ (2a)

or there is a region d such that

C.c;d/ ^ :O.d;a/: (2b)

In the former case, from (1) and (T5) we have Compl.b;a/, so (2a) implies O.c;b/,
which implies C.c;b/. In the latter case (2b), from (1) and :O.d;a/ we have
P.d;b/. Then from C.c;d/ and P.d;b/ we have C.c;b/ by (A5). Thus in either
case we have C.c;b/ and we have proved 8z.:NTP.z;a/! C.z;b//.

Combining the results and generalising give us (T6). �

Appendix 3: Proof of (T7): Relationship of Discrete Interior
and Closure

The theorem to be proved is

Compl.x; y/ ^ Int.y; z/^ Compl.z;w/! Cl.x;w/ (T7)
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Using the definitions (D19, D20, D18), this means that from

8x.P.x;b/$ :O.x;a// (1)

8x.P.x; c/$ NTP.x;b// (2)

8x.P.x;d/$ :O.x; c/// (3)

we must derive

8x.P.d; x/$ NTP.a; x// (4)

From (T5) we can rewrite (1) and (3) as

8x.P.x;a/$ :O.x;b// (5)

8x.P.x; c/$ :O.x;d// (6)

so from (2) and (6) we have

8x.:O.x;d/$ NTP.x;b// (7)

Then from (1) and (7) (since NTP.x;b/ implies P.x;b/) we have

8x.:O.x;d/! :O.x;a// (8)

Suppose :P.a;d/. Then by (A8) there must be a region e such that
P.e;a/ ^ :O.e;d/. By (8) this would imply P.e;a/ ^ :O.e;a/, a contradiction.
Therefore we have P.a;d/, and therefore

8x.P.d; x/! P.a; x// (9)

Suppose P.d;g/. and let f be any region connected to a, i.e., C.a; f/. Suppose
:O.f;d/. Then by (6) we have P.f; c/ and so by (2), NTP.f;b/. Therefore any region
connected to f must overlap b. Since we have C.a; f/ this means that O.a;b/. But
from (1) we know that :O.a;b/ and we have a contradiction. Therefore O.f;d/,
and therefore, since P.d;g/, we have O.f;g/.

Thus we have

8x.P.d; x/! 8y.C.a; y/! O.y; x/// (10)

Combining (9) and (10) (and using (D10)) we get

8x.P.d; x/! NTP.a; x// (11)

which is one half of (4).
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For the converse, let NTP.a;e/; we must show that P.d;e/. Assume on the
contrary that

:P.d;e/ (12)

By (A8), there is a region f such that P.f;d/ and :O.f;e/.
From P.f;d/ we have, by (3), :O.f; c/, and therefore

:P.f; c/ (13)

From :O.f;e/, we have, since NTP.a;e/,

:C.a; f/ (14)

Also from :O.f;e/, given NTP.a;e/, and therefore P.a;e/, we have :O.f;a/,
and therefore, by (1), P.f;b/.

We will show that in fact NTP.f;b/.
To this end we must show that anything connected to f overlaps b. Suppose

:O.z;b/. By (5) this implies P.z;a/, and therefore, from (14), (A4) and (A5)
:C.z; f/. Hence if C.z; f/ it follows that O.z;b/. Thus we have NTP.f;b/.

By (2) this gives P.f; c/, contradicting (13). Hence assumption (12) is false, and
we conclude, as required, that P.d;e/.

We have now shown that 8x.NTP.a; x/! P.d; x//, which, in combination
with (11), gives us (4). �
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Čech, E. (1966). Topological spaces. Chichester: Wiley. Revised edition by Zdeněk Frolík and
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Chapter 12
A Rôle for Mereology in Domain Science
and Engineering: To Every Mereology
There Corresponds a �–Expression

Dines Bjørner

In memory of Douglas T. Ross 1929–2007 1

12.1 Introduction

The term ‘mereology’ is accredited to the Polish mathematician, philosopher
and logician Stansław Leśniewski (1886–1939). In this contribution we shall be
concerned with only certain aspects of mereology, namely those that appear most
immediately relevant to domain science (a relatively new part of current computer
science). Our knowledge of ‘mereology’ has been through studying, amongst others,
Casati and Varzi (1999) and Lejewski (1983).

12.1.1 Computing Science Mereology

“Mereology (from the Greek �
�o& ‘part’) is the theory of part-hood relations: of
the relations of part to whole and the relations of part to part within a whole”.2 In this
contribution we restrict ‘parts’ to be those that, firstly, are spatially distinguishable,
then, secondly, while “being based” on such spatially distinguishable parts, are

1See Sect. 12.7.1.
2 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and Casati and Varzi
(1999)
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conceptually related. The relation: “being based”, shall be made clear in this
contribution.

Accordingly two parts, px and py , (of a same “whole”) are either “adjacent”, or
are “embedded within” one another as loosely indicated in Fig. 12.1.

‘Adjacent’ parts are direct parts of a same third part, pz, i.e., px and py are
“embedded within” pz; or one (px) or the other (py) or both (px and py) are
parts of a same third part, p0

z “embedded within” pz; etcetera; as loosely indicated
in Fig. 12.2 or one is “embedded within” the other—etc. as loosely indicated in
Fig. 12.2.

Parts, whether adjacent or embedded within one another, can share properties.
For adjacent parts this sharing seems, in the literature, to be diagrammatically
expressed by letting the part rectangles “intersect”. Usually properties are not spatial
hence ‘intersection’ seems confusing. We refer to Fig.12.3.

Instead of depicting parts sharing properties as in the [L]eft side of Fig. 12.3,
where dashed rounded edge rectangles stands for ‘sharing’, we shall (eventually)
show parts sharing properties as in the [R]ight side of Fig. 12.3 where �—�
connections connect those parts.
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Fig. 12.3 Two models, [L,R], of parts that share properties

12.1.2 From Domains via Requirements to Software

One reason for our interest in mereology is that we find that concept relevant to the
modelling of domains. A derived reason is that we find the modelling of domains
relevant to the development of software. Conventionally a first phase of software
development is that of requirements engineering. To us domain engineering is (also)
a prerequisite for requirements engineering (Bjørner 2008, 2010). Thus to properly
design Software we need to understand its or their Requirements; and to properly
prescribe Requirements one must understand its Domain. To argue correctness of
Software with respect to Requirements one must usually make assumptions about
the Domain: D;S ˆ R. Thus description of Domains become an indispensable part
of Software development.

12.1.3 Domains: Science and Engineering

Domain science is the study and knowledge of domains. Domain engineering is the
practice of “walking the bridge” from domain science to domain descriptions: to
create domain descriptions on the background of scientific knowledge of domains,
the specific domain “at hand”, or domains in general; and to study domain descrip-
tions with a view to broaden and deepen scientific results about domain descriptions.
This contribution is based on the engineering and study of many descriptions, of
air traffic, banking, commerce (the consumer/retailer/wholesaler/producer
supply chain), container lines, health care, logistics, pipelines, railway
systems, secure [IT] systems, stock exchanges, etcetera.

12.1.4 Contributions of This Contribution

A general contribution is that of providing elements of a domain science. Three
specific contributions are those of (i) giving a model that satisfies published formal,
axiomatic characterisations of mereology; (ii) showing that to every (such modelled)
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mereology there corresponds a CSP (Hoare 2004) program; and, related to (ii),
(iii) suggesting complementing syntactic and semantic theories of mereology.

12.1.5 Structure of This Contribution

We briefly overview the structure of this contribution. First, in Sect. 12.2, we loosely
characterise how we look at mereologies: “what they are to us !”. Then, in Sect. 12.3,
we give an abstract, model-oriented specification of a class of mereologies in the
form of composite parts and composite and atomic subparts and their possible
connections. The abstract model as well as the axiom system (Sect. 12.4) focuses
on the syntax of mereologies. Following that, in Sect. 12.4 we indicate how the
model of Sect. 12.3 satisfies the axiom system of that section. In preparation for
Sect. 12.6, Sect. 12.5 presents characterisations of attributes of parts, whether atomic
or composite. Finally Sect. 12.6 presents a semantic model of mereologies, one
of a wide variety of such possible models. This one emphasize the possibility of
considering parts and subparts as processes and hence a mereology as a system of
processes. Section 12.7 concludes with some remarks on what we have achieved.

12.2 Our Concept of Mereology

12.2.1 Informal Characterisation

Mereology, to us, is the study and knowledge about how physical and conceptual
parts relate and what it means for a part to be related to another part: being disjoint,
being adjacent, being neighbours, being contained properly within, being properly
overlapped with, etcetera. By physical parts we mean such spatial individuals which
can be pointed to. Examples: a road net (consisting of street segments and street
intersections); a street segment (between two intersections); a street intersection; a
road (of sequentially neighbouring street segments of the same name) a vehicle; and
a platoon (of sequentially neigbouring vehicles).

By a conceptual part we mean an abstraction with no physical extent, which is
either present or not. Examples: a bus timetable (not as a piece or booklet of paper,
or as an electronic device, but) as an image in the minds of potential bus passengers;
and routes of a pipeline, that is, neighbouring sequences of pipes, valves, pumps,
forks and joins, for example referred to in discourse: the gas flows through “such-
and-such” a route” . The tricky thing here is that a route may be thought of as being
both a concept or being a physical part—in which case one ought give them different
names: a planned route and an actual road, for example.

The mereological notion of subpart, that is: contained within can be illustrated
by examples: the intersections and street segments are subparts of the road net;
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Fig. 12.4 A schematic air traffic system

vehicles are subparts of a platoon; and pipes, valves, pumps, forks and joins are
subparts of pipelines. The mereological notion of adjacency can be illustrated by
examples. We consider the various controls of an air traffic system, cf. Fig. 12.4,
as well as its aircrafts as adjacent within the air traffic system; the pipes, valves,
forks, joins and pumps of a pipeline, cf. Fig. 12.9, as adjacent within the pipeline
system; two or more banks of a banking system, cf. Fig. 12.6, as being adjacent. The
mereo-topological notion of neighbouring can be illustrated by examples: Some
adjacent pipes of a pipeline are neighbouring (connected) to other pipes or valves
or pumps or forks or joins, etcetera; two immediately adjacent vehicles of a platoon
are neighbouring. The mereological notion of proper overlap can be illustrated
by examples some of which are of a general kind: two routes of a pipelines may
overlap; and two conceptual bus timetables may overlap with some, but not all bus
line entries being the same; and some of really reflect adjacency: two adjacent pipe
overlap in their connection, a wall between two rooms overlap each of these rooms
— that is, the rooms overlap each other “in the wall”.

12.2.2 Six Examples

We shall, in Sect. 12.3, present a model that is claimed to abstract essential
mereological properties of air traffic, buildings and their installations, machine
assemblies, financial service industry, the oil industry and oil pipelines, and railway
nets.

12.2.2.1 Air Traffic

Figure 12.4 shows nine adjacent (9) boxes and eighteen adjacent (18) lines. Boxes
and lines are parts. The line parts “neighbours” the box parts they “connect”.
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Individually boxes and lines represent adjacent parts of the composite air traffic
“whole”. The rounded corner boxes denote buildings. The sharp corner box
denote an aircraft. Lines denote radio telecommunication. The “overlap” between
neigbouring line and box parts are indicated by “connectors”. Connectors are shown
as small filled, narrow, either horisontal or vertical “filled” rectangle3 at both ends
of the double-headed-arrows lines, overlapping both the line arrows and the boxes.
The index ranges shown attached to, i.e., labelling each unit, shall indicate that there
are a multiple of the “single” (thus representative) box or line unit shown. These
index annotations are what makes the diagram of Fig. 12.4 schematic. Notice that the
‘box’ parts are fixed installations and that the double-headed arrows designate the
ether where radio waves may propagate. We could, for example, assume that each
such line is characterised by a combination of location and (possibly encrypted)
radio communication frequency. That would allow us to consider all lines for not
overlapping. And if they were overlapping, then that must have been a decision of
the air traffic system.

12.2.2.2 Buildings

Figure 12.5 shows a building plan—as a composite part.
The building consists of two buildings, A and H. The buildings A and H are

neighbours, but shares a common wall. Building A has rooms B, C, D and E,
Building H has rooms I, J and K; Rooms L and M are within K. Rooms F and
G are within C.

The thick lines labelled N, O, P, Q, R, S, and T models either electric cabling,
water supply, air conditioning, or some such “flow” of gases or liquids.

Connection ��o provides means of a connection between an environment, shown
by dashed lines, and B or J, i.e. “models”, for example, a door. Connections
� provides “access” between neighbouring rooms. Note that ‘neighbouring’ is
a transitive relation. Connection !�o allows electricity (or water, or oil) to be
conducted between an environment and a room. Connection ! allows electricity
(or water, or oil) to be conducted through a wall. Etcetera.

Thus “the whole” consists of A and B. Immediate subparts of A are B, C, D and
E. Immediate subparts of C are G and F. Etcetera.

12.2.2.3 Financial Service Industry

Figure 12.6 is rather rough-sketchy! It shows seven (7) larger boxes [6 of which
are shown by dashed lines], six [6] thin lined “distribution” boxes, and twelve (12)
double-arrowed lines. Boxes and lines are parts. (We do not described what is meant
by “distribution”.) Where double-arrowed lines touch upon (dashed) boxes we have

3There are 38 such rectangles in Fig. 12.4.
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connections. Six (6) of the boxes, the dashed line boxes, are composite parts, five
(5) of them consisting of a variable number of atomic parts; five (5) are here
shown as having three atomic parts each with bullets “between” them to designate
“variability”. Clients, not shown, access the outermost (and hence the “innermost”
boxes, but the latter is not shown) through connections, shown by bullets, �.

12.2.2.4 Machine Assemblies

Figure 12.7 shows a machine assembly. Square boxes show composite and atomic
parts. Black circles or ovals show connections. The full, i.e., the level 0, com-
posite part consists of four immediate parts and three internal and three external
connections. The Pump is an assembly of six (6) immediate parts, five (5)
internal connections and three (3) external connectors. Etcetera. Some connections
afford “transmission” of electrical power. Other connections convey torque. Two
connections convey input air, respectively output air.

12.2.2.5 Oil Industry

Figure 12.8 shows a composite part consisting of fourteen (14) composite parts,
left-to-right: one oil field, a crude oil pipeline system, two refineries and one, say,
gasoline distribution network, two seaports, an ocean (with oil and ethanol tankers
and their sea lanes), three (more) seaports, and three, say gasoline and ethanol
distribution networks.
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Between all of the neighbouring composite parts there are connections, and from
some of these composite parts there are connections (to an external environment).
The crude oil pipeline system composite part will be concretised next.

Figure 12.9 shows a pipeline system. It consists of 32 atomic parts: fifteen (15)
pipe units (shown as directed arrows and labelled p1–p15), four (4) input node units
(shown as small circles, ı, and labelled ini–in`), four (4) flow pump units (shown as
small circles, ı, and labelled fpa–fpd), five (5) valve units (shown as small circles,
ı, and labelled vx–vw), three (3) join units (shown as small circles, ı, and labelled
jb–jc), two (2) fork units (shown as small circles, ı, and labelled fb–fc), one (1)
combined join & fork unit (shown as small circles, ı, and labelled jafa), and four
(4) output node units (shown as small circles, ı, and labelled onp–ons).

In this example the routes through the pipeline system start with node units and
end with node units, alternates between node units and pipe units, and are connected
as shown by fully filled-out dark coloured disc connections. Input and output nodes
have input, respectively output connections, one each, and shown as lighter coloured
connections.
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and two lines; lines here
consist of linear rail units;
stations of all the kinds of
units shown in Fig. 12.10.
There are 66 connections and
four “dangling” connectors

12.2.2.6 Railway Nets

Figure 12.10 diagrams four rail units, each with two, three or four connectors shown
as narrow, somewhat “longish” rectangles. Multiple instances of these rail units
can be assembled (i.e., composed) by their connectors as shown on Fig. 12.11 into
proper rail nets.

Figure 12.11 diagrams an example of a proper rail net. It is assembled from the
kind of units shown in Fig. 12.10. In Fig. 12.11 consider just the four dashed boxes:
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The dashed boxes are assembly units. Two designate stations, two designate lines
(tracks) between stations. We refer to to the caption four line text of Fig. 12.10
for more “statistics”. We could have chosen to show, instead, for each of the four
“dangling’ connectors, a composition of a connection, a special “end block” rail unit
and a connector.

12.2.2.7 Discussion

We have brought these examples only to indicate the issues of a “whole” and atomic
and composite parts, adjacency, within, neighbour and overlap relations, and the
ideas of attributes and connections. We shall make the notion of ‘connection’ more
precise in the next section. WWW (2007–2010) gives URLs to a number of domain
models illustrating a great variety of mereologies.

12.3 An Abstract, Syntactic Model of Mereologies

We distinguish between atomic and composite parts. Atomic parts do not contain
separately distinguishable parts. Composite parts contain at least one separately
distinguishable part. It is the domain analyser who decides what constitutes “the
whole”, that is, how parts relate to one another, what constitutes parts, and whether
a part is atomic or composite. We refer to the proper parts of a composite part as
subparts.

12.3.1 Parts and Subparts

Figure 12.12 illustrates composite and atomic parts. The slanted sans serif
uppercase identifiers of Fig. 12.12 A1, A2, A3, A4, A5, A6 and C1, C2, C3
are meta-linguistic, that is. they stand for the parts they “decorate”; they are not
identifiers of “our system”.

12.3.1.1 The Model

The formal models of this contribution are expressed in the RAISE Specification
Language, RSL (George et al. 1992, 1995; Bjørner 2006).

1. The “whole” contains a set of parts.
2. A part is either an atomic part or a composite part.
3. One can observe whether a part is atomic or composite.
4. Atomic parts cannot be confused with composite parts.



334 D. Bjørner

Composite parts

Atomic parts

A3A2

A6
A5

A1

C3

C1

C2
A4

Fig. 12.12 Atomic and
composite parts

5. From a composite part one can observe one or more parts.

type
1. WD P-set
2. P D A j C
value
3. is_A: P! Bool, is_C: P! Bool
axiom
4. 8 a:A,c:C�a¤c, i.e., A\CDfkg ^ is_A(a)�	is_C(a)^is_C(c)�	is_A(c)
value
5. obs_Ps: C! P-set axiom 8 c:C � obs_Ps(c)¤fg

The type expression fkg notes the empty type.
Figure 12.12 and the expressions below illustrate the observer function obs_Ps:

• obs_Ps(C1) = fA2, A3, C3g,
• obs_Ps(C2) = fA4, A5g,
• obs_Ps(C3) = fA6g.
Please note that this example is meta-linguistic. We can define an auxiliary function.

6. From a composite part, c, we can extract all atomic and composite parts

a. Observable from c or
b. Extractable from parts observed from c.

value
6. xtr_Ps: C! P-set
6. xtr_Ps(c)�
6a. let psD obs_Ps(c) in
6b. ps [ [ fobs_Ps(c0)jc0:C � c0 2 psg end
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ps [[ f set-of-sets g expresses that the set ps is union’ed (the first[, left-to-right)
with the distributed union (the second [, left-to-right) of the set of sets.

12.3.2 ‘Within’ and ‘Adjacency’ Relations

12.3.2.1 ‘Within’

7. One part, p, is said to be immediately within, imm_within(p,p0), another part,

a. If p0 is a composite part
b. And p is observable in p0.

value

7. imm_within: P � P
�! Bool

7. imm_within(p,p0)�
7a. is_C(p0)
7b. ^ p 2 obs_Ps(p0)

12.3.2.2 ‘Transitive Within’

We can generalise the ‘immediate within’ property.

8. A part, p, is transitively within a part p0, within(p,p0),

a. Either if p, is immediately within p0
b. Or if there exists a (proper) composite part p00 of p0 such that within(p00,p).

value

8. within: P � P
�! Bool

8. within(p,p0) �
8a. imm_within(p,p0)
8b. _ 9 p00:C � p00 2 obs_Ps(p0) ^ within(p,p00)

12.3.2.3 ‘Adjacency’

9. Two parts, p,p0, are said to be immediately adjacent, imm_adjacent(p,p0)(c), to
one another, in a composite part c, such that p and p0 are distinct and observable
in c.

value

9. imm_adjacent: P � P! C
�! Bool,

9. imm_adjacent(p,p0)(c)� p¤p0 ^ fp,p0g�obs_Ps(c)
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12.3.2.4 Transitive ‘Adjacency’

We can generalise the immediate ‘adjacent’ property.

10. Two parts, p,p0, of a composite part, c, are adjacent(p, p0) in c

a. Either if imm_adjacent(p,p0)(c),
b. Or if there are two p00 and p000 of c such that

i. p00 and p000 are immediately adjacent parts of c and
ii. p is equal to p00 or p00 is properly within p and p0 is equal to p000 or p000 is

properly within p0

value

10. adjacent: P � P! C
�! Bool

10. adjacent(p,p0)(c)�
10a. imm_adjacent(p,p0)(c) _
10b. 9 p00,p000:P �

10(b)i. imm_adjacent(p00,p000)(c) ^
10(b)ii. ((pDp00)_within(p,p00)(c)) ^ ((p0Dp000)_within(p0,p000)(c))

12.3.3 Unique Identifications

Each physical part can always be uniquely distinguished for example by an
abstraction of its properties at a time of origin. In consequence we also endow
conceptual parts with unique identifications.

11. In order to refer to specific parts we endow all parts, whether atomic or
composite, with unique identifications.

12. We postulate functions which observe these unique identifications, whether as
parts in general or as atomic or composite parts in particular.

13. Such that any to parts which are distinct have unique identifications.

type
11. ˘

value
12. uid_˘ : P! ˘

axiom
13. 8 p,p0:P � p¤p0) uid_˘ (p)¤uid_˘ (p0)

Figure 12.13 illustrates the unique identifications of composite and atomic parts.
We exemplify the observer function obs_˘ in the expressions below and on

Fig. 12.13 on the facing page:
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ai6

Fig. 12.13 aij : atomic part
identifiers, cik : composite
part identifiers

• obs_˘ (C1) = ci1, obs_˘ (C2) = ci2, etcetera; and
• obs_˘ (A1) = ai1, obs_˘ (A2) = ai2, etcetera.

Please note that also this example is meta-linguistic.

14. We can define an auxiliary function which extracts all part identifiers of a
composite part and parts within it.

value
14. xtr_˘s: C!˘ -set
14. xtr_˘s(c)� fuid_˘ (c)g [ [ fuid_˘ (p)jp:P�p 2 xtr_˘s(c)g

12.3.4 Attributes

In Sect. 12.5 we shall explain the concept of properties of parts, or, as we shall refer
to them, attributes For now we just postulate that

15. Parts have sets of attributes, atr:ATR, (whatever they are!),
16. That we can observe attributes from parts, and hence
17. That two distinct parts may share attributes
18. For which we postulate a membership function 2.

type
15. ATR
value
16. atr_ATRs: P! ATR-set
17. share: P�P! Bool
17. share(p,p0)� p¤p0^9 atr:ATR�atr2 atr_ATRs(p)^atr2 atr_ATRs(p0)
18. 2: ATR � ATR-set! Bool
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Fig. 12.14 Connectors

12.3.5 Connections

In order to illustrate other than the within and adjacency part relations we
introduce the notions of connectors and, hence, connections. Figure 12.14 illustrates
connections between parts. A connector is, visually, a �—� line that connects two
distinct part boxes.

19. We may refer to the connectors by the two element sets of the unique identifiers
of the parts they connect.
For example:

� fci1; ci3g, � fai6; ci1g, � fai6; ai5g and
� fai2; ai3g, � fai3; ci1g, � fai1; ci1g.

20. From a part one can observe the unique identities of the other parts to which it
is connected.

type
19. K D fj k:˘ -set � card kD 2 jg
value
20. mereo_Ks: P! K-set

21. The set of all possible connectors of a part can be calculated.

value
21. xtr_Ks: P! K-set
21. xtr_Ks(p)� ffuid_˘ (p),�gj�:˘ �� 2 mereo_˘s(p)g

12.3.5.1 Connector Wellformedness

22. For a composite part, s:C,
23. All the observable connectors, ks,
24. Must have their two-sets of part identifiers identify parts of the system.
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value
22. wf_Ks: C! Bool
22. wf_Ks(c)�
23. let ksD xtr_Ks(c), �sD mereo_˘s(c) in
24. 8 f� 0,� 00g:˘ -set � f� 0,� 00g�ks)
24. 9 p0,p00:P � f� 0,� 00gDfuid_˘ (p0),uid_˘ (p00)g end

12.3.5.2 Connector and Attribute Sharing Axioms

25. We postulate the following axiom:

a. If two parts share attributes, then there is a connector between them; and
b. If there is a connector between two parts, then they share attributes.

26. The function xtr_Ks (Item 21 on the preceding page) can be extended to apply
to Wholes.

axiom
25. 8 w:W�

25. let psD xtr_Ps(w), ksD xtr_Ks(w) in
25a. 8 p,p0:P � p¤p0 ^ fp,p0g�ps ^ share(p,p0))
25a. fuid_˘ (p),uid_˘ (p0)g 2 ks ^
25b. 8 fuid,uid0g 2 ks)
25b. 9 p,p0:P � fp,p0g�ps ^ fuid,uid0gDfuid_˘ (p),uid_˘ (p0)g )
25b. share(p,p0) end
value
26. xtr_Ks: W! K-set
26. xtr_Ks(w)� [fxtr_Ks(p)jp:P�p 2 obs_Ps(p)g

In other words: modelling sharing by means of intersection of attributes or by
means of connectors is “equivalent”.

12.3.5.3 Sharing

27. When two distinct parts share attributes,
28. Then they are said to be sharing:

27. sharing: P � P! Bool
28. sharing(p,p0) � p¤p0^share(p,p0)
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12.3.6 Uniqueness of Parts

There is one property of the model of wholes: W, Item 1, and hence the model of
composite and atomic parts and their unique identifiers “spun off” from W (Item 2
[Page 333] to Item 25b [Page 339]). and that is that any two parts as revealed
in different, say adjacent parts are indeed unique, where we—simplifying—define
uniqueness sôlely by the uniqueness of their identifiers.

12.3.6.1 Uniqueness of Embedded and Adjacent Parts

29. By the definition of the obs_Ps function, as applied obs_Ps(c) to composite
parts, c:C, the atomic and composite subparts of c are all distinct and have
distinct identifiers (uiids: unique immediate identifiers).

value
29. uiids: C! Bool
29. uiids(c)�
29. 8 p,p0:P�p¤p0^fp,p0g�obs_Ps(c))cardfuid˘ (p),uid˘ (p0),uid˘ (c)gD3

30. We must now specify that that uniqueness is “propagated” to parts that are
proper parts of parts of a composite part (uids: unique identifiers).

30. uids: C! Bool
30. uids(c)�
30. 8 c0:C�c0 2 obs_Ps(c)) uiids(c0)
30. ^ let ps0Dxtr_Ps(c0),ps00Dxtr_Ps(c00) in
30. 8 c00:C�c00 2 ps0)uids(c00)
30. ^ 8 p0,p00:P�p0 2 ps0^p00 2 ps00)uid_˘ (p0)¤uid_˘ (p00) end

12.4 An Axiom System

Classical axiom systems for mereology focus on just one sort of “things”, namely
Parts. Leśniewski had in mind, when setting up his mereology to have it supplant
set theory. So parts could be composite and consisting of other, the sub-parts—some
of which would be atomic; just as sets could consist of elements which were sets—
some of which would be empty.
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12.4.1 Parts and Attributes

In our axiom system for mereology we shall avail ourselves of two sorts: Parts,
and A ttributes.4

• type P;A

A ttributes are associated with Parts. We do not say very much about attributes: We
think of attributes of parts to form possibly empty sets. So we postulate a primitive
predicate, 2, relating Parts and A ttributes.

• 2W A �P ! Bool.

12.4.2 The Axioms

The axiom system to be developed in this section is a variant of that in Casati and
Varzi (1999). We introduce the following relations between parts5:

part_of: P WP �P ! Bool
proper_part_of: PP WP �P ! Bool

overlap: O WP �P ! Bool
underlap: U WP �P ! Bool

over_crossing: OX WP �P ! Bool
under_crossing: UX WP �P ! Bool
proper_overlap: PO WP �P ! Bool

proper_underlap: PU WP �P ! Bool

Let P denote part-hood; px is part of py , is then expressed as P.px; py/.
Equation (12.1) Part px is part of itself (reflexivity). Equation (12.2) If a part px
is part py and, vice versa, part py is part of px , then px D py (antisymmetry).
Equation (12.3) if a part px is part of py and part py is part of pz, then px is part of
pz (transitivity).

8px WP � P.px; px/ (12.1)

8px; py WP � .P.px; py/ ^ P.py; px//)px D py (12.2)

8px; py; pz WP � .P.px; py/ ^ P.py; pz//)P.pz; pz/ (12.3)

4 Identifiers P and A stand for model-oriented types (parts and atomic parts), whereas identifiers
P and A stand for property-oriented types (parts and attributes).
5 Our notation now is not RSL but a conventional first-order predicate logic notation.
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Let PP denote proper part-hood. px is a proper part of py is then expressed as
PP.px; py/. PP can be defined in terms of P. PP.px; py/ holds if px is part of py ,
but py is not part of px .

PP.px; py/
4D P.px; py/ ^ :P.py; px/ (12.4)

Overlap, O, expresses a relation between parts. Two parts are said to overlap if
they have “something” in common. In classical mereology that ‘something’ is parts.
To us parts are spatial entities and these cannot “overlap”. Instead they can ‘share’
attributes.

O.px; py/
4D 9a W A � a 2 px ^ a 2 py (12.5)

Underlap, U, expresses a relation between parts. Two parts are said to underlap if
there exists a part pz of which px is a part and of which py is a part.

U.px; py/
4D 9pz WP � P.px; pz/ ^ P.py; pz/ (12.6)

Think of the underlap pz as an “umbrella” which both px and py are “under”.
Over-cross, OX, px and py are said to over-cross if px and py overlap and px

is not part of py .

OX.px; py/
4D O.px; py/ ^ :P.px; py/ (12.7)

Under-cross, UX, px and py are said to under cross if px and py underlap and py
is not part of px.

UX.px; py/
4D U.px; pz/ ^ :P.py; px/ (12.8)

Proper Overlap, PO, expresses a relation between parts. px and py are said to
properly overlap if px and py over-cross and if py and px over-cross.

PO.px; py/
4D OX.px; py/ ^OX.py; px/ (12.9)

Proper Underlap, PU, px and py are said to properly underlap if px and py under-
cross and px and py under-cross.

PU.px; py/
4D UX.px; py/ ^ UX.py; px/ (12.10)



12 Mereology in Domain Science & Engineering 343

12.4.3 Satisfaction

We shall sketch a proof that the model of the previous section, Sect. 12.3, satisfies—
is a model for—the axioms of this section. To that end we first define the notions of
interpretation, satisfiability, validity and model.

Interpretation: By an interpretation of a predicate we mean an assignment of
a truth value to the predicate where the assignment may entail an assignment of
values, in general, to the terms of the predicate.

Satisfiability: By the satisfiability of a predicate we mean that the predicate is
true for some interpretation.

Valid: By the validity of a predicate we mean that the predicate is true for all
interpretations.

Model: By a model of a predicate we mean an interpretation for which the
predicate holds.

12.4.3.1 A Proof Sketch

We assign

31. P as the meaning of P
32. ATR as the meaning of A ,
33. imm_within as the meaning of P,
34. within as the meaning of PP,
35. 2.of type:ATR
ATR�set!Bool/ as the meaning of 2.of type:A 
P!Bool/ and
36. sharing as the meaning of O.

With the above assignments one can prove that the other axiom-operators U,
PO, PU, OX and UX can be modelled by means of 2.of type:ATR
ATR�set!Bool/

imm_within, within and sharing.

12.5 An Analysis of Properties of Parts

So far we have not said much about “the nature” of parts other than composite parts
having one or more subparts and parts having attributes. In preparation also for the
next section, Sect. 12.6 we now take a closer look at the concept of ‘attributes’.
We consider three kinds of attributes: their unique identifications [uid_˘ ]—which
we have already considered; their connections, i.e., their mereology [mereo_P]—
which we also considered; and their “other” attributes which we shall refer to as
properties. [prop_P]
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12.5.1 Mereological Properties

12.5.1.1 An Example

Road nets, n:N, consists of a set of street intersections (hubs), h:H, uniquely
identified by hi’s (in HI), and a set of street segments (links), l:L, uniquely identified
by li’s (in LI). such that from a street segment one can observe a two element set
of street intersection identifiers, and from a street intersection one can observe
a set of street segment identifiers. Constraints between values of link and hub
identifiers must be satisfied. The two element set of street intersection identifiers
express that the street segment is connected to exactly two existing and distinct street
intersections, and the zero, one or more element set of street segment identifiers
express that the street intersection is connected to zero, one or more existing
and distinct street segments. An axiom expresses these constraints. We call the
hub identifiers of hubs and links, the link identifiers of links and hubs, and their
fulfilment of the axiom the connection mereology.

type
N, H, L, HI, LI

value
obs_Hs: N!H-set, obs_Ls: N!L-set
uid_HI: H!HI, uid_LI: L!LI
mereo_HIs: L!HI-set axiom 8 l:L�card mereo_HIs(l)D2
mereo_LIs: H!LI-set

axiom
8 n:N�

let hsDobs_Hs(n),lsDobs_Ls(n) in
8 h:H�h 2 hs)8 li:LI�li 2 mereo_LIs(h))9 l:L�uid_LI(l)Dli
^ 8 l:L�l 2 ls)9 h,h0:H�fh,h0g�hs^mereo_HIs(l)Dfuid_HI(h),uid_HI(h0)g
end �

12.5.1.2 Unique Identifier and Mereology Types

In general we allow for any embedded (within) part to be connected to any
other embedded part of a composite part or across adjacent composite parts.
Thus we must, in general, allow for a family of part types P1, P2, . . . , Pn,
for a corresponding family of part identifier types ˘1, ˘2, . . . , ˘n, and for
corresponding observer unique identification and mereology functions:

type
P D P1 j P2 j ::: j Pn
˘ D ˘1 j ˘2 j ::: j ˘n

value
uid_˘ j: Pj! ˘ j for 1
j
n
mereo_˘s: P!˘ -set
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Example: Our example relates to the abstract model of Sect. 12.3.

37. With each part we associate a unique identifier, � .
38. And with each part we associate a set, f�1; �2; : : : ; �ng; n 
 0 of zero, one ore

more other unique identifiers, different from � .
39. Thus with each part we can associate a set of zero, one or more connections,

viz.: f�; �j g for 0 
 j 
 n.

type
37. ˘
value
37. uid_˘ : P!˘

38. mereo_˘s: P! ˘ -set
axiom
38. 8 p:P�uid_˘ (p) 62mereo_˘s(p)
value
39. xtr_Ks: P! K-set
39. xtr_Ks(p)�
39. let (� ,�s)D(uid_˘ ,mereo_˘s)(p) in
39. ff� 0,� 00gj� 0,� 00:˘ �� 0D�^� 00 2�sg end �

12.5.2 Properties

By the properties of a part we mean such properties additional to those of unique
identification and mereology. Perhaps this is a cryptic characterisation. Parts,
whether atomic or composite, are there for a purpose. The unique identifications
and mereologies of parts are there to refer to and structure (i.e., relate) the parts. So
they are there to facilitate the purpose. The properties of parts help towards giving
these parts “their final meaning”. (We shall support his claim (“their final meaning”)
in Sect. 12.6.) Let us illustrate the concept of properties.

Examples: (i) Typical properties of street segments are: length, cartographic
location, surface material, surface condition, traffic state—whether open in one, the
other, both or closed in all directions. (ii) Typical properties of street intersections
are: design,6 location, surface material, surface condition, traffic state—open or
closed between any two pairs of in/out street segments. (iii) Typical properties of
road nets are: name, owner, public/private, free/tool road, area, etcetera. �
40. Parts are characterised (also) by a set of one or more distinctly named and not

necessarily distinctly typed property values.

6 For example, a simple ‘carrefour’, or a (circular) roundabout, or a free-way interchange, or a
cloverleaf, or a stack, or a clover-stack, or a turbine, or a roundabout, or a trumpet, or a directional,
or a full Y, or a hybrid interchange.
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a. Property names are further undefined tokens (i.e., simple quantities).
b. Property types are either sorts or are concrete types such as integers, reals,

truth values, enumerated simple tokens, or are structured (sets, Cartesians,
lists, maps) or are functional types.

c. From a part

i. One can observe its sets of property names
ii. And its set (i.e., enumerable map) of distinctly named and typed property

values.

d. Given an property name of a part one can observe the value of that part for
that property name.

e. For practical reasons we suggest property named property value observer
function—where we further take the liberty of using the property type name
in lieu of the property name.

type
40. PropsD PropNam !m PropVAL
40a. PropNam
40b. PropVAL
value
40(c)i. obs_Props: P! Props
40(c)ii. xtr_PropNams: P! PropNam-set
40(c)ii. xtr_PropNams(p)� dom obs_Props(p)

40d. xtr_PropVAL: P! PropNam
�! PropVAL

40d. xtr_PropVAL(p)(pn)� (obs_Props(p))(pn)
40d. pre: pn 2 xtr_PropNams(p)

Here we leave PropNames and PropVALues undefined.
Example:

type
NAME, OWNER, LEN, DESIGN, PP DD public j private, :::
L˙ , H˙ , L˝, H˝

value
obs_Props: N ! fj Œ 00name007!nm,00owner007!ow,00public/private007!pp,::: �

j nm:NAME, ow:OWNER, :::, pp:PP jg
obs_Props: L ! fj Œ 00length007!len,:::,00state007!l� ,00state space007!l!:L˝ �

j len:LEN,:::,l� :L˙ ,l!:L˝ jg
obs_Props: H ! fj Œ 00design007!des, :::,00state007!h� ,00state space007!h! �

j des:DESIGN,:::,h� :H˙ ,h!:H˝ jg
prop_NAME: N ! NAME
prop_OWNER: N ! OWNER
prop_LEN: L ! LEN
prop_L˙ : L ! L˙ , obs_L˝: L ! L˝
prop_DESIGN: H ! DESIGN
prop_H˙ : H ! H˙ , obs_H˝: H ! H˝
:::

We trust that the reader can decipher this example. �
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12.5.3 Attributes

There are (thus) three kinds of part attributes:

• unique identifier “observers” (uid_),
• mereology “observers (mereo_), and
• property “observers” (prop_. . . , obs_Props)

We refer to Sect. 12.3.4, and to Items 15–16.

type
15.0 ATRD ˘ � ˘ -set � Props
value
16.0 atr_ATR: P! ATR
axiom

8 p:P � let (� ,�s,props)D atr_ATR(p) in � 62 �s end

In preparation for redefining the share function of Item 17 we must first
introduce a modification to property values.

41. A property value, pv:PropVal, is
either a simple property value (as was hitherto assumed), or is a unique part

identifier.

type
40. PropsD PropNam !m PropVAL_or_˘
41. PropVAL_or_˘ :: mk_Simp:PropVAL j mk_˘ :˘

42. The idea a property name pn, of a part p0, designating a ˘ -valued property
value � is

a. That � refers to a part p0
b. One of whose property names must be pn
c. And whose corresponding property value must be a proper, i.e., simple

property value, v,
d. Which is then the property value in p0 for pn.

value
42. get_VAL: P � PropName!W! PropVAL
42. get_VAL(p,pn)(w)�
44. let pvD (obs_Props(p))(pn) in
42. case pv of
42. mk_Simp(v)! v,
42a. mk_˘ (�)!
42a. let p0:P�p0 2 xtr_Ps(w)^uid_˘ (p0)D� in
42c. (obs_Props(p0))(pn) end
42. end end
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42c. pre: pn 2 obs_PropNams(p)
42b. ^ pn 2 obs_PropNams(p0)
42c. ^ is_PropVAL((obs_Props(p0))(pn))

The three bottom lines above, Items 42b–42c, imply the general constraint now
formulated.

43. We now express a constraint on our modelling of attributes.

a. Let the attributes of a part p be .�; �s;props/.
b. If a property name pn in props has (associates to) a ˘ value, say � 0
c. Then � 0 must be in �s.
d. And there must exist another part, p0, distinct from p, with unique identifier
� 0, such that

e. It has some property named pn with a simple property value.

value
43. wf_ATR: ATR!W! Bool
43a. wf_ATR(� ,�s,props)(w)�
43a. � 62 �s ^
43b. 8 � 0:˘ � � 0 2 rng props)
43c. let pn:PropNam�props(pn)D� 0 in
43c. pi02 �s
43d. ^ 9 p0:P�p02 xtr_Ps(w)^uid_˘ (p0)D� 0)
43e. pn 2 obs_PropNams(obs_Props(p0))
43e. ^ 9 mk_SimpVAL(v):VAL�(obs_Props(p0))(pn)Dmk_SimpVAL(v) end

44. Two distinct parts share attributes

a. If the unique part identifier of one of the parts is in the mereology of the
other part, or

b. If a property value of one of the parts refers to a property of the other part.

value
44. share: P � P! Bool
44. share(p,p0) �
44. p¤ p0 ^
44. let (� ,�s,props)D atr_ATR(p),(� 0,�s0,props0) D atr_ATR(p0),
44. pnsD xtr_PropNams(p), pns0 D xtr_PropNams(p0) in
44a. � 2 �s0 _ � 0 2 �s _
44b. 9 pn:PropNam�pn 2 pns \ pns0)
44b. let vopD props(pn), vop0 D props0(pn) in
44b. case (vop,vop0) of
44b. (mk_˘ (� 00),mk_Simp(v))! � 00D� 0,
44b. (mk_Simp(v),mk_˘ (� 00))! �D� 00 ,
44b. ! false
44. end end end

Comment: v is a shared attribute.
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12.5.4 Discussion

We have now witnessed four kinds of observer function:

• The above three kinds of mereology and property ‘observers’ and the
• Part (and subpart) obs_ervers.

These observer functions are postulated. They cannot be defined. They “just exist”
by the force of our ability to observe and decide upon their values when applied by
us, the domain observers.

Parts are either composite or atomic. Analytic functions are postulated. They
help us decide whether a part is composite or atomic, and, from composite parts
their immediate subparts.

Both atomic and composite parts have all three kinds of attributes: unique
identification, mereology (connections), and properties. Analytic functions help us
observe, from a part, its unique identification, its mereology, and its properties.

Some attribute values may be static, that is, constant, others may be inert
dynamic, that is, can be changed. It is exactly the inert dynamic attributes which
are the basis for the next sections semantic model of parts as processes.

In the above model (of this and Sect. 12.3) we have not modelled distinctions
between static and dynamic properties. You may think, instead of such a model, that
an always temporal operator, �, being applied to appropriate predicates.

12.6 A Semantic CSP Model of Mereology

The model of Sect. 12.3 can be said to be an abstract model-oriented definition of the
syntax of mereology. Similarly the axiom system of Sect. 12.4 can be said to be an
abstract property-oriented definition of the syntax of mereology. With the analysis
of attributes of parts, Sect. 12.5, we have begun a semantic analysis of mereology.
We now bring that semantic analysis a step further.

12.6.1 A Semantic Model of a Class of Mereologies

We show that to every mereology there corresponds a program of cooperating
sequential processes CSP (Hoare 2004).

Some of the attributes of parts may be static, i.e., constants, others may be
dynamic, i.e., variable. The latter form the state of parts. Actions change part states.
Processes, P, Q, are sets of sequences of actions and sets of processes. Processes
may communicate values (of type M) and then do so via channels, ch. Schematic
process P and Q definitions
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type
Œ 1 � A, B, M

channel
Œ 2 � ch:M

value
Œ 3 � P: A! out ch process, Q: B! in ch process
Œ 4 � P(a)� ::: ; Q(b)� ::: ;
Œ 5 � ch!f(a); let vD ch? in
Œ 6 � ::: ; ::: ;
Œ 7 � P(g(a)) Q(h(v,b)) end

[1] A, B and M are sets of values. [3] P and Q are names of processes. [4] Process
P initially accepts arguments a of type A, may offer outputs, ch!f(a), of type M
on channel ch and otherwise continues “infinitely” [7] (hence type process in line
[3]). Similarly Q initially accepts arguments of type B, may accept input, ch? (of
type M) also on channel ch and otherwise continues “infinitely” [7]. [5] The output
offering, ch!f(a), of process P may be accepted, ch?, by Q. The “. . . ” accounts for
our saying “may”. We leave the d and h functions undefined.

12.6.1.1 Parts ' Processes

The model of mereology presented in Sect. 12.3 (Pages 333–340) focused on (i)
parts and (ii) connectors. To parts we associate CSP processes. Part processes
are indexed by the unique part identifiers. The connectors form the mereological
attributes of the model.

12.6.1.2 Connectors ' Channels

The CSP channels are indexed by the two-set (hence distinct) part identifier
connectors. From a whole we can extract (xtr_Ks, Item 26) all connectors. They
become indexes into an array of channels. Each of the connector channel index
identifiers indexes exactly two part processes. Let w:W be the whole under analysis.

value
w:W
ps:P-setD [fxtr_Ps(c)jc:C�c 2 wg [ faja:A�a 2 wg
ks:K-setD xtr_Ks(w)

type
K D ˘ -set axiom 8 k:K�card kD2
ChMapD ˘ !m K-set

value
cm:ChMapD Œ uid_˘ (p) 7!xtr_Ks(p)jp:P�p 2 ps �
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channel
chŒ kjk:K�k 2 ks � MSG

We leave channel messages. m:MSG, undefined.

12.6.1.3 Process Definitions

The whole, w:W, where WDP-set, is semantically seen as the distributed par-
allel composition of part processes one for each part, pi in w where w =
fp1,p2,. . . ,pmg.
value

system: W! process
system(w)� k fpart_process(uid_˘ (p))(p)jp:P�p 2 wg

A part process is either a composite (part) process or an atomic (part) process.

value
part_process:˘ ! P! process
part_process(�)(p)� assert: � D uid_˘ (p)

is_C(p)! composite_process(�)(p),
is_A(p)! atomic_process(�)(p)

A composite process, c, is the parallel composition of the core composite process,
MC , with the distributed parallel composition of part processes, one for each part
observed from c.

value
composite_process: �:˘ ! c:C! in,out fch(k)jk:K�k 2 cm(�)g process
composite_process(�)(c)� assert: � D uid_˘ (c)

MC (�)(c)(atr_ATR(c)) k
k fpart_process(uid_˘ (p))(p)jp:P�ps 2 obs_Ps(p)g

ATR and atr_ATR are defined in Items 15.0 and 16.0 (Page 347).
The core composite process, MC (of a composite part c), is an in[de]finite cyclic

process which evolves around the attributes, atr_ATR(c), of c. MC is based on a
postulated, i.e., an undefined attribute update action CF .

MC : �:˘ ! C! ATR! in,out fch(k)jk:K�k 2 cm(�)g process
MC (�)(c)(c_attrs)�MC (�)(c)(CF (�)(c)(c_attrs))

assert: � D uid_˘ (c) ^ atr_ATR(c)� c_attrs

CF potentially communicates with all those part processes (of the whole, w) with
which c, the part on which MC (�)(c)(atr_ATR(c)) is based, shares attribites, that
is, has connectors.
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CF : �:˘ ! c:C! ATR! in,out fchŒ em(i) �ji:KI�i 2 cm(�)g ATR

Atomic processes are just that: They evolve sôlely around a core atomic process
MA (a)(atr_ATR(a)).

atomic_process: �:˘ ! A! in,out fchŒ cm(k) �j:K�k 2 cm(�)g process
atomic_process(�)(a)�MA (a)(atr_ATR(a)) assert: � D uid_˘ (a)

The core atomic process, MA (�)(a)(atr_ATR(a)), is based on a postulated, i.e., an
undefined attribute update action AF .

MA : �:˘ ! A! ATR! in,out fchŒ cm(k) �jk:K�k 2 cm(�)g process
MA (�)(a)(a_attrs)�MA (�)(a)(AF (a)(a_attrs))

assert: � D uid_˘ (a) ^ atr_ATR(a)� a_attrs

AF potentially communicates with all those part processes (of the whole, w) with
which a, the part on which MA (�)(a)(atr_ATR(a))is based, shares attribites, that
is, has connectors.

AF : �:˘ ! A! ATR! in,out fchŒ em(k) �jk:K � k 2 cm(�)g ATR

The meaning processes MC and MA are generic. Their sôle purpose is to provide a
never ending recursion. “In-between” they “make use” of Composite, respectively
Atomic specific Functions here symbolised by CF , respectively AF .

Both CF and AF are expected to contain input/output clauses referencing
the channels of their signatures; these clauses enable the sharing of attributes. We
illustrate this “sharing” by the schematised function F standing for either CF or
AF .

The F action non-deterministically internal choice chooses between either
[1,2,3] accepting input from another part process, then optionally offering a reply to
that other process, and finally delivering an updated state; or [4,5] offering an output
to another part process, and then delivering an updated state; or [6] doing own work
resulting in an updated state.

value
F : p:P! ATR! in,out fchŒ em(k) �jk:K � k 2 cm(uid_˘ (p))gATR
F (p)(� ,�s,props)� assert: uid_˘ (p)D�

Œ 1 � debc flet avD chŒ em(f� ,jg) � ? in
Œ 2 � ::: ; Œ optional � chŒ em(f� ,jg) � ! in_reply(props)(av);
Œ 3 � (� ,�s,in_update_ATR(props)(j,av)) end j f� ,jg:K�f� ,jg 2 �sg
Œ 4 � de debc f ::: ; chŒ em(f� ,jg) � ! out_reply(props);
Œ 5 � (� ,�s,out_update_ATR(props)(j)) j f� ,jg:K�f� ,jg 2 �sg
Œ 6 � de (� ,�s,own_work(props))

assert: � D uid_˘ (p)

in_reply: Props!˘ � VAL! VAL
in_update_ATR: Props!˘ � VAL! Props
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out_reply: Props! VAL
out_update_ATR: Props!˘ ! Props
own_work: Props! Props

We leave VAL undefined.

12.6.2 Discussion

Parts, subparts and their relations, that is, mereology, reflect syntactic properties of
wholes. The interpretations of parts as processes and mereology as channels reflect
semantic properties of wholes. What we have shown in this section is that to every
mereology there corresponds a normal form CSP “program schema”.

12.7 Concluding Remarks

A first basic idea of this paper has been to to take axiom systems of mereology
and render them mathematical in the sense of showing that a mathematical model
satisfies the axiom system A second basic idea of this paper has then been to extend
this model-oriented treatment to not just covering syntactic aspects of mereology but
also to cover, albeit schematically, normative, schematic models of semantic aspects
of mereology.

12.7.1 Relation to Other Work

The present contribution has been conceived in the following model-oriented
context.

My first awareness of the concept of ‘mereology’ was from listening to many
presentations by Douglas T. Ross (1929–2007) at IFIP working group WG3.2
meetings over the years 1980–1999. In Douglas T. Ross and John E. Ward (1968)
reports on the 1958–1967 MIT project for computer-aided design (CAD) for
numerically controlled production.7 Pages 13–17 of Ross and Ward (1968) reflects
on issues bordering to and behind the concerns of mereology. Ross’ thinking is
clearly seen in the following text: “. . . our consideration of fundamentals begins
not with design or problem-solving or programming or even mathematics,
but with philosophy (in the old-fashioned meaning of the word) – we begin by
establishing a “world-view”. We have repeatedly emphasized that there is no

7Doug is said to have coined the term and the abbreviation CAD (Ross 1961).
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Douglas T. Ross 1927–2007.
Courtesy MIT Museum

way to bound or delimit the potential areas of application of our system, and
that we must be prepared to cope with any conceivable problem. Whether
the system will assist in any way in the solution of a given problem is quite
another matter, . . . , but in order to have a firm and uniform foundation,
we must have a uniform philosophical basis upon which to approach any
given problem. This “world-view” must provide a working framework and
methodology in terms of which any aspect of our awareness of the world
may be viewed. It must be capable of expressing the utmost in reality, giving
expression to unending layers of ever-finer and more concrete detail, but at
the same time abstract chimerical visions bordering on unreality must fall
within the same scheme. “Above all, the world-view itself must be concrete
and workable, for it will form the basis for all involvement of the computer
in the problem-solving process, as well as establishing a viewpoint for
approaching the unknown human component of the problem-solving team.”
Yes, indeed, the philosophical disciplines of ontology, epistemology and mereology,
amongst others, ought be standard curricula items in the computer science and
software engineering studies, or better: domain engineers cum software system
designers ought be imbued by the wisdom of those disciplines as was Doug. “. . . in
the summer of 1960 we coined the word plex to serve as a generic term
for these philosophical ruminations. “Plex” derives from the word plexus, “An
interwoven combination of parts in a structure”, (Webster). . . . The purpose
of a ‘modeling plex’ is to represent completely and in its entirety a “thing”,
whether it is concrete or abstract, physical or conceptual. A ‘modeling plex’
is a trinity with three primary aspects, all of which must be present. If any
one is missing a complete representation or modeling is impossible. The
three aspects of plex are data, structure, and algorithm. . . . ” which “. . .
is concerned with the behavioral characteristics of the plex model– the
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interpretive rules for making meaningful the data and structural aspects of
the plex, for assembling specific instances of the plex, and for interrelating
the plex with other plexes and operators on plexes. Specification of the
algorithmic aspect removes the ambiguity of meaning and interpretation
of the data structure and provides a complete representation of the thing
being modeled.” In the terminology of the current paper a plex is a part (whether
composite or atomic), the data are the properties (of that part), the structure is
the mereology (of that part) and the algorithm is the process (for that part). Thus
Ross was, perhaps, a first instigator (around 1960) of object-orientedness. A first,
“top of the iceberg” account of the mereology-ideas that Doug had then can be
found in the much later (1976) three page note (Ross 1976). Doug not only
‘invented’ CAD but was also the father of AED (Algol Extended for Design),
the Automatically Programmed Tool (APT) language, SADT (Structured Analysis
and Design Technique) and helped develop SADT into the IDEF0 method for the
Air Force’s Integrated Computer-Aided Manufacturing (ICAM) program’s IDEF
suite of analysis and design methods. Douglas T. Ross went on for many years
thereafter, to deepen and expand his ideas of relations between mereology and the
programming language concept of type at the IFIP WG2.3 working group meetings.
He did so in the, to some, enigmatic, but always fascinating style you find on Page 63
of Ross (1976).

In Henry S. Leonard and Henry Nelson Goodman (1940): A Calculus of
Individuals and Its Uses present the American Pragmatist version of Leśniewski’s
mereology. It is based on a single primitive: discrete. The idea the calculus of
individuals is, as in Leśniewski’s mereology, to avoid having to deal with the
empty sets while relying on explicit reference to classes (or parts). The treatment
of Leonard and Goodman (1940) is axiomatic.

R. Casati and A. Varzi (1999): Parts and Places: the structures of spatial rep-
resentation has been the major source for this paper’s understanding of mereology.
Although our motivation was not the spatial or topological mereology, Smith (1996),
and although the present paper does not utilize any of these concepts’ axiomatision
in Casati and Varzi (1999) and Smith (1996) it is best to say that it has benefitted
much from these publications. The treatments of these papers are axiomatic.

Domain descriptions, besides mereological notions, also depend, in their suc-
cessful form. on FCA: Formal Concept Analysis. Here a main inspiration has
been drawn, since the mid 1990s from B. Ganter and R. Wille’s Formal Concept
Analysis—Mathematical Foundations (Ganter and Wille 1999). The approach
takes as input a matrix specifying a set of objects and the properties thereof,
called attributes, and finds both all the “natural” clusters of attributes and all
the “natural” clusters of objects in the input data, where a “natural” object
cluster is the set of all objects that share a common subset of attributes,
and a “natural” property cluster is the set of all attributes shared by one of
the natural object clusters. Natural property clusters correspond one-for-one
with natural object clusters, and a concept is a pair containing both a natural
property cluster and its corresponding natural object cluster. The family of
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these concepts obeys the mathematical axioms defining a lattice, a Galois
connection). Thus the choice of adjacent and embedded (‘within’) parts and their
connections is determined after serious formal concept analysis. In Bjørner and Eir
(2008) we present a ‘concept analysis’ approach to domain description, where the
present paper presents the mereological approach.

The present paper is based on Bjørner (2009) of which it is an extensive revision
and extension.

12.7.2 What Has Been Achieved?

We have given a model-oriented specification of mereology. We have indicated
that the model satisfies a widely known axiom system for mereology. We have
suggested that (perhaps most) work on mereology amounts to syntactic studies.
So we have suggested one of a large number of possible, schematic semantics of
mereology. And we have shown that to every mereology there corresponds a set of
communicating sequential CSP processes.

12.7.3 Future Work

There are four kinds of ‘future works’: (i) studies that give us further insight into
the syntactic mereology operators: overlap, underlap, over-crossing,
under-crossing, proper overlap and proper underlap; (ii) studies
that explore further semantic models of mereology, we, for example, need to char-
acterise the class of CSP programs for which there corresponds a mereology; (iii)
refinements of the normative, schematics CSP (Sect. 12.6) models of mereology;
and (iv) an extensive editing and publication of Doug Ross’ surviving notes.
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Appendix: Formal Theories of Parthood

Achille C. Varzi

This Appendix gives a brief overview of the main formal theories of parthood,
or mereologies, to be found in the literature.1 The focus is on classical theories,
so the survey is not meant to be exhaustive. Moreover, it does not cover the
many philosophical issues relating to the endorsement of the theories themselves,
concerning which the reader is referred to the Selected Bibliography at the end
of the volume. In particular, we shall be working under the following simplifying
assumptions2:

— Absoluteness: Parthood is a two-place relation; it does not hold relative to time,
space, spacetime regions, sortals, worlds, or anything else.3

— Monism: There is a single relation of parthood that applies to every entity
independently of its ontological category.4

— Precision: Parthood is not a source of vagueness: there is always a fact of the
matter as to whether the parthood relation obtains between any given pair of
things.5

For definiteness, all theories will be formulated in a standard first-order language
with identity, supplied with a distinguished binary predicate constant, ‘P ’, to be
interpreted as the parthood relation. The underlying logic will be the classical
predicate calculus.

1The exposition follows Varzi (2014). For a thorough survey, see Simons (1987).
2The labels and formulations of these assumptions are from Sider (2007).
3For the view that parthood should be a three-place relation relativized to time, see e.g. Thomson
(1983). For the view that it should be a four-place relation, see Gilmore (2009).
4For misgivings about Absoluteness and related worries, see e.g. Mellor (2006) and McDaniel
(2009).
5For mereologies that allow for indeterminate or “fuzzy” parthood relations, see e.g. Smith (2005)
and Polkowski (2011).

C. Calosi and P. Graziani (eds.), Mereology and the Sciences, Synthese Library 371,
DOI 10.1007/978-3-319-05356-1, © Springer International Publishing Switzerland 2014

359



360 A.C. Varzi

Fig. 1 Basic patterns of mereological relations (shaded cells indicate parthood)

Core Principles

As a minimal requirement on ‘P ’, it is customary to assume that it stands for a
partial order—a reflexive, transitive, and antisymmetric relation6:

(P.1) Pxx Reflexivity
(P.2) .Pxy ^ Pyz/! Pxz Transitivity
(P.3) .Pxy ^ Pyx/! x D y Antisymmetry

Together, these three axioms are meant to fix the intended meaning of the
parthood predicate. They form the “core” of any standard mereological theory, and
the theory that comprises just them is called Ground Mereology, or M for short.7 A
number of additional mereological predicates may then be introduced by definition
(Fig. 1):

(1) EQxy Ddf Pxy ^ Pyx equality
(2) PPxy Ddf Pxy^ :x D y proper parthood8

(3) PExy Ddf Pyx ^ :x D y proper extension
(4) Oxy Ddf 9z.Pzx ^ Pzy) overlap
(5) Uxy Ddf 9z.Pxz ^ Pyz/ underlap

Fig. 1 Given (P.1)–(P.3), it follows immediately that EQ is an equivalence relation.
Moreover, PP and PE are irreflexive, asymmetric, and transitive whereas O and U
are reflexive and symmetric, but not transtive. Since the following is a also theorem
of M,

(6) Pxy$ .PPxy _ x D y/
‘PP’ could have been used as a primitive instead of ‘P ’. Similarly for ‘PE’.
Sometimes ‘P ’ is also defined in terms of ‘O’ via the biconditional

6Unless otherwise specified, all formulas are to be understood as universally closed.
7For a survey of the motivations that may lead to the development of non-standard mereologies in
which P is weaker than a partial order, see Varzi (2014: §2.1).
8In the literature, proper parthood is sometimes defined as asymmetric parthood: PPxy Ddf Pxy ^
:Pyx. Given Antisymmetry, this definition is equivalent to (2). Without Antisymmetry, however,
the two definitions would come apart. (Similarly for ‘PE’.) See Cotnoir (2010).
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Fig. 2 Three unsupplemented models (connecting lines going upwards indicate proper parthood)

(7) Pxy$ 8z.Ozx! Ozy/.

However, (7) is not provable in M and calls for stronger axioms (specifically, the
axioms of theory EM defined below). Since those stronger axioms reflect substantive
philosophical theses, ‘P ’ and ‘PP’ (or ‘PE’) are the best options to start with. Here
we stick to ‘P ’.

Decomposition Principles

M is standardly viewed as embodying the common core of any mereological
theory. Yet not every partial order qualifies as parthood, and establishing what
further requirements should be added to (P.1)–(P.3) is precisely the question a good
mereological theory is meant to answer.

One way to extend M is by means of decomposition principles, i.e., principles
concerning the part structure of a given whole. Here, one fundamental intuition is
that no whole can have a single proper part. There are several ways in which this
intuition can be captured, beginning with the following:

(P.4a/ PPxy! 9z.PPzy ^ :z D x/ (Weak) Company
(P.4b/ PPxy! 9z.PPzy ^ :Pzx/ Strong Company
(P.4) PPxy! 9z.PPzy ^ :Ozx/ (Weak) Supplementation9

(P.4a/ is the literal rendering of the idea in question, but it is too weak: it rules
out certain implausible finitary models (Fig. 2, left) but not, for example, models
with infinitely descending chains in which the additional parts do not leave any
mereological “remainder” (Fig. 2, center). (P.4b/ is stronger, but it still admits of
models in which a whole can be decomposed into several proper parts all of which
overlap one another (Fig. 2, right). In such cases it is unclear what would be left of
the whole upon the removal of any of its proper parts (along with all proper parts
thereof). It is only (P.4) that appears to capture the full spirit of the above-mentioned
intuition: every proper part must be “supplemented” by another part—a proper part
that is completely disjoint (i.e., does not overlap) the first. (P.4) entails both (P.4a/

9In the literature, this principle is sometimes formulated using ‘P ’ in place of ‘PP’ in the
consequent. In M the two formulations are equivalent.
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Fig. 3 A weakly supplemented model violating strong supplementation

and (P.4b/ and rules out each of the models in Fig. 2. The extension of M obtained
by adding this principle to (P.1)–(P.3) is called Minimal Mereology, or MM.10

There is another, stronger way of expressing the supplementation intuition.
It corresponds to the following axiom, which differs from (P.4) in the antecedent:

(P.5) :Pyx! 9z.Pzy ^ :Ozx/ Strong Supplementation

In M this principle entails (P.4). The converse, however, does not hold, as shown by
the model in Fig. 3. The stronger mereological theory obtained by adding (P.5) to
the three core principles of M is called Extensional Mereology, EM.

The extensional character of EM may not be manifest in (P.5) itself, but it
becomes clearer in view of the following theorem:

(8) 9zPPzx! .8z.PPzx! PPzy/! Pxy/

from which it follows that sameness of mereological composition is both necessary
and sufficient for identity:

(9) 9zPPzx! .x D y $ 8z.PPzx$ PPzy//.

Thus, EM is “extensional” precisely insofar as it rules out any model of the sort
depicted in Fig. 3, where distinct objects decompose into the same proper parts.

There is yet a further way of capturing the supplementation intuition. It corre-
sponds to the following axioms, which differs from (P.5) in the consequent:

(P.6) :Pyx! 9z8w.Pwz$ .Pwy ^ :Owx//. Complementation11

Informally, (P.6) states that whenever an object fails to include another among
its parts, there is something that amounts exactly to the difference or relative
complement between the first object and the second. Once again, it is easily checked
that in M this principle entails (P.5)—thus, a fortiori, (P.4)—whereas the converse
does not hold (Fig. 4). It should be noted, however, that (P.6) goes beyond the
original supplementation intuition. For while it guarantees that a whole cannot have
a single proper part, it also pronounces on the specific mereological makeup of
the supplementary part. In particular, it requires the relative complement to exist
regardless of its internal structure. If, for example, y is a wine glass and x the stem
of the glass, (P.6) entails the existence of something composed exactly of the base
and the bowl—a spatially disconnected entity. Whether there exist entities of this

10Strictly speaking, in MM (P.3) is redundant, as it follows from (P.4) along with (P.1) and (P.2).
For ease of reference, however, we shall continue to treat (P.3) as an axiom.
11In the literature, (P.6) is also known as the Remainder Principle.
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Fig. 4 A strongly supplemented model violating complementation

sort, and more generally whether the remainder between a whole and any one of
its proper parts adds up to a bona fide entity of its own, is really a question about
mereological composition, over and above the conditions on decomposition set by
(P.4) and (P.5).

Before turning to issues regarding composition, a different sort of decomposition
principles is worth mentioning. Let a mereological atom be any entity with no proper
parts:

(10) Ax Ddf :9yPPyx. atom

Obviously, all the theories considered so far are compatible with the existence of
such things. But one may want to demand more than mere compatibility, just as one
may want to preclude it. Thus, one may want to require that everything is ultimately
composed of atoms, or else that everything is made up of “atomless gunk”12

that divides forever into smaller and smaller parts. These two options are usually
formulated as follows:

(P.7) 9y.Ay ^ Pyx/ Atomicity
(P.8) 9yPPyx Atomlessness

These postulates are mutually inconsistent, but taken in isolation they can con-
sistently be added to any mereological theory mentioned so far to yield either an
atomistic variant or an atomless variant, respectively.

Atomistic mereologies admit significant semplifications in the axiomatics. For
example, Atomistic EM can be simplified by merging Strong Supplementation (P.5)
and Atomicity (P.7) into a single axiom:

(P.50) :Pxy! 9z.Az ^ Pzx ^ :Pzy/ Atomistic Supplementation

and the the extensionality thesis (9) can be put more perspicuously as follows:

(90) x D y $ 8z.Az! .Pzx$ Pzy//

This is especially significant if one considers that (P.7) does not quite say that
everything is made up of atoms; it merely says that everything has atomic
parts, which is consistent with the possibility of infinitely descending chains of
decomposition that never bottom out (Fig. 5). Whether stronger versions of (P.7)

12The phrase is from Lewis (1991: 20).
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Fig. 5 An infinitely
descending atomistic model

can be formulated that rule out such dubious patterns is, at the moment, a question
that has not been fully explored.13

Concerning atomless mereologies, one may similarly remark that (P.8) is by itself
rather weak. For one thing, the unsupplemented model in Fig. 2, middle, qualifies as
atomless. To the extent that such models run afoul of the intended notion of a gunky
world, this means that (P.8) calls for teories at least as strong as MM, in which case
the relevant axiomatization may again be simplified by merging (P.4) and (P.8) into
a single axiom:

(P.40) Pxy! 9z.PPzy ^ .Ozx! x D y// Atomless Supplementation

Moreover, infinite divisibility is loose talk. Given (P.8), gunk may have as few as
denumerably many parts; but can it have more? Is there an upper bound on the
cardinality on the number of pieces of gunk? Should it be allowed that for every
cardinal number there may be more than that many pieces of gunk? (P.8) is silent on
these questions, yet these are certainly aspects of atomless mereology that deserve
further scrutiny.

Composition Principles

The other main way of extending M is via composition principles, i.e. principles
governing the behavior of P in the bottom-up direction: from the parts to the wholes
that they compose. We have already seen that the Complementation axiom (P.6)
is, in a way, a principle of this sort. Another such principle would be the dual
of Atomlessness, to the effect that everything might be “worldless junk”14 that
composes forever into greater and greater wholes:

(P.9) 9yPPxy Ascent

Both (P.6) and (P.9) are consistent with any of the theories considered so far. They
are, however, fairly strong principles, which reflect specific views on the overall
mereological structure of the universe. More generally, it is customary to consider
ways of extending M by means of composition principles that specify the conditions
under which one or more things qualify as parts of a larger whole.15

13See Cotnoir (2013) for some work in this direction.
14The phrase is from Schaffer (2010: 64).
15This is a version of the so-called “Special Composition Question”. See van Inwagen (1990:
Chap. 2).
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Fig. 6 An a-sum that is not a
b- or c-sum, and a c-sum that
is not an a- or b-sum18

The most basic principles of this sort have the following form, to the effect
that for any pair of suitably related entities, i.e., any two entities satisfying a given
provision �, there is something of which both are part—an underlapper:

(P.10) �xy ! Uxz �-Bound

Such principles are quite weak. For example, regardless of how exactly � is
construed, (P.10) is trivially satisfied in any model that includes a universal entity of
which everything is part.

A stronger sort of requirement is that any pair of suitably related entities have
a minimal underlapper, something composed of their parts and nothing else. There
are at least three ways of formulating such a requirement, corresponding to three
different ways of characterizing the relevant notion of a minimal underlapper, also
known as a mereological sum of the two entities in question16:

(11a) Sazxy Ddf Pxz ^ Pyz ^ 8w..Pxw ^ Pyw/! Pzw/ a-sum17

(11b) Sbzxy Ddf Pxz ^ Pyz ^ 8w.Pwz! .Oxw _Oyw// b-sum
(11c) Sczxy Ddf 8w.Owz$ .Oxw _Oyw// c-sum

In M these three notions are pairwise distinct (Fig. 6), though they may coincide in
the presence of further axioms. For instance, given Strong Supplementation, (11b/

and (11c/ are equivalent (though stronger that (11a//, whereas in the presence of
Complementation all three notions coincide so long as there is a universal entity:
in that case, each sum of any two things is just the complement of the difference
between the complement of one minus the other. (Such is the strength of (P.6)—a
genuine cross between decomposition and composition principles.)

For each i 2 fa; b; cg, we can then extend M by adding a corresponding axiom as
follows, where again � specifies a suitable binary condition:

(P.11i) �xy! 9zSizxy �-Sumi

The non-equivalence of these axioms is immediately verified by taking � to be
satisfied by all pairs of objects and considering the models in Fig. 6. But the axioms
may also differ when � is more restrictive. For instance, with � expressing overlap,

16The first notion may be found in Eberle (1967) and Bostock (1979), the second in Tarski (1935)
and Lewis (1991), the third in Simons (1987) and Casati and Varzi (1999).
17Given Reflexivity and Transitivity, the definiens in (11a) is equivalent to 8w.Pzw $ .Pxw ^
Pyw//.
18The non-extensional model of Fig. 3 also depicts a case in which x and y have a c-sum, in
fact two c-sums (themselves), though no a- or b-sum. This runs contrary the intended meaning of
‘sum’, suggesting that (11c/ is best suited to theories at least as strong as EM. See Hovda (2009)
for discussion.
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Fig. 7 A model of �-suma

violating �-sumb and �-sumc

the model in Fig. 6, right, still satisfies (P.11c/, but not (P.11a/ or (P.11b/, whereas the
model in Fig. 7 satisfies (P.11a/, but not (P.11b/ or (P.11c/. In EM, however, (P.11b/

or (P.11c/ are equivalent, since the corresponding notions of sum coincide.
The intuitive force of each (P.11i/ is in fact best appreciated in the context of EM,

for in that case the relevant sums must be unique. If we introduce a corresponding
binary operator (using ‘š’ for the definite descriptor),

(12i) x Ci y Ddf šzFizxy i-sum

then is then easy to see that EM warrants all the “Boolean” properties one might
expect. For instance, as long as the arguments satisfy the relevant condition �,19

each operator is idempotent, commutative, and associative:

(13) x D x Ci x

(14) x Ci y D y Ci x

(15) x Ci .y Ci z/ D .x Ci y/Ci z

and well-behaved with respect to parthood:

(16) Px.x Ci y/

(17) Pxy! Px.y Ci z/
(18) P.x Ci y/z! Pxz
(19) Pxy$ x Ci y D y

Each (P.11i/ is still fairly weak, for it governs only finitary composition. We get
even stronger composition principles by requiring a minimal underlapper to exist
for any set of objects satisfying a given condition, including infinite sets (whose
sums—or fusions—cannot be generated by means of the binary operators defined
above). There is, of course, a technical obstacle to formulating such principles in
their full generality without resorting to explicit quantification over sets, since a
standard first-order language does not have the resources to specify all sets, but
only a denumerable number (in any given domain).20 However, one can achieve a
sufficient degree of generality by relying on axiom schemas where the relevant sets
are identified through open formulas. Thus, let ‘'’ be any formula in the language,

19If the condition is not satisfied, the sum may not exist, in which case the standard treatment of
descriptive terms implies that the corresponding instances of the theorems that follow are false. In
classical logic, (13)–(19) should therefore be taken to hold conditionally on the assumption that
the relevant variables range over �-related entities.
20To overcome this limitation, some early theories such as those of Tarski (1929) and Leonard and
Goodman (1940) resort to explicit quantification over sets. Others, such as Lewis (1991), resort to
the machinery of plural quantification.
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and let ‘ ’ expresses the condition in question. Infinitary variants of the three
notions of sum in (11a/–(11c/ can be defined as follows, respectively21:

(20a) Faz'w Ddf 8w.'w! Pwz/ ^ 8v.8w.'w! Pwv/! P zv/ a-fusion
(20b) Fbz'w Ddf 8w.'w! Pwz/ ^ 8v.Pvz! 9w.'w ^Owv// b-fusion
(20c) Fcz'w Ddf 8v.Ovz$ 9w.'w ^Owv// c-fusion

(‘Fiz'w’ may be read as ‘z is an i-fusion of the '-ers’.) For each such notion,
we may then introduce a corresponding principle of infinitary fusion through the
following axiom schema, which asserts the existence of an i-fusion .i 2 fa; b; cg/
for every non-empty set of objects satisfying  :

(P.12i) .9w'w ^ 8w.'w!  w//! 9zFiz'w  -Fusioni

It can be checked that each (P.12i/ includes the corresponding finitary principle
(P.11i/ as a special case, taking ‘'w’ to be the formula ‘w D x _ w D y’ and
‘ w’ the condition ‘.w D x ! �wy/ ^ .w D y ! �xw/’. Thus, again, these
principles are pairwise distinct in M, though it turns out that in the presence of
Strong Supplementation (P.12b/ and (P.12c/ are equivalent.

Finally, the strongest versions of all these composition principles are obtained
by asserting them as axiom schemas holding for every condition  , i.e., effectively,
by foregoing any reference to  altogether. Formally this amounts in each case
to dropping the second conjunct of the antecedent of (P.12i/, i.e., to asserting the
schema expressed by the relevant consequent for any non-empty set of objects
specifiable in the language:

(P.13i) 9w'w! 9zFiz'w Unrestricted Compositioni

Once again, the relative strength of these principles varies for each i 2 fa; b; cg.
In particular, it is noteworthy that adding (P.13b/ to MM would suffice to warrant
the equivalence of Weak and Strong Supplementation, (P.4) and (P.5), whereas
adding (P.13c/ would not (Fig. 4 would still count as a counteremodel). Given (P.5),
however, the two composition principles are equivalent, which means that the theory
obtained by adding every instance of (P.13b/ to MM22 is the same theory obtained
by adding every instance of (P.13c/ to EM. This theory is known in the literature
as General Extensional Mereology, or GEM. The same theory can be obtained by
extending MM with (P.13a/, provided the following axiom is also added23:

(P.14) .Faz'w ^ Pxz/! 9w.'w ^ Owx/ Filtration

21(20a/–(20c/ are to be read on the assumption that the variables ‘z’ and ‘v’ do not occur free in '.
Similar restrictions will apply below.
22Indeed, (P.2) and (P.4) would suffice.
23From Hovda (2009).
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Classical Mereology

GEM is a powerful theory, and it was meant to be so by its nominalistic forerunners,
who were thinking of mereology as a fundamental alternative to set theory.24 Indeed,
GEM has such a distinguished pedigree that it has earned the title of Classical
Mereology. It is also a decidable theory, whereas for example M, MM, EM, and
many extensions thereof are not.25 To see just how powerful GEM is, consider the
following operator, where ‘F ’ is any of the ‘Fi’s defined above (which GEM forces
to coincide):

(21) �x'x Ddf šzFz'x general fusion

In terms of this operator—the fusion of all '-ers—GEM can be further simplified,
for example by merging (P.5) and (P.13c/ into a single axiom schema:

(P.13) 9x'x ! 9z.z D �x'x/ Unique Unrestricted Fusion

and we can introduce the following definitions:

(22) x C y Ddf �z.Pzx _ Pzy/ sum26

(23) x � y Ddf �z.Pzx ^ Pzy/ product
(24) x � y Ddf �z.Pzx ^ :Ozy/ difference
(25) 	 x Ddf �z:Ozx complement
(26) U Ddf �zPzz universe

The full strength of GEM can then be appreciated by considering that its models
are closed under each of these notions, subject to the satisfiability of the relevant
conditions. More exactly: the condition ‘:OzU’ is unsatisfiable, so U cannot have
a complement. Likewise products are defined only for overlappers and differences
only for pairs that leave a remainder. In all other cases, however, (22)–(26) yield
perfectly well-behaved operators. Since such operators are the natural mereological
analogues of the familiar set-theoretic operators, with ‘�’ in place of set abstraction,
it follows that the parthood relation axiomatized by GEM has essentially the same
properties as the inclusion relation in standard set theory, modulo the absence of
a null entity corresponding to the empty set. Indeed, P is virtually isomorphic to
the inclusion relation restricted to the set of all non-empty subsets of a given set,
which is to say a complete Boolean algebra with the zero element removed. We say
‘virtually’ because, strictly speaking, this is only true of stronger versions of GEM
in which infinitary sums are defined using explicit quantification over sets.27 For
set-free formulations that, like those considered here, strictly adhere to a standard

24See the classical works of Lésniewski (1927–1931) and Leonard and Goodman (1940).
25For a comprehensive picture of decidability in mereology, see Tasi (2013b).
26In GEM, this definition is equivalent to (12i/, for each i 2 fa; b; cg.
27As such, the result goes back to Tarski (1935: n. 4).
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first-order language with a denumerable supply of open formulas, the isomorphism
does not quite hold. However, this is only a minor limitation, and we can still
characterize the exact algebraic strength of GEM as follows: any model of this
theory is isomorphic to a Boolean subalgebra of a complete Boolean algebra with
the zero element removed (a subalgebra that is not necessarily complete if Zermelo-
Frankel set theory with the axiom of Choice is consistent).28

In this connection, two further points are worth stressing. First, the existence
of a “null entity” which is part of everything—the analogue of the empty set—
is not in principle incompatible with GEM. However, it is easy to see that the
only models of GEM with such an entity are trivial one-element models, owing
to Weak Supplementation. It is for this reasons that the principles of Unrestricted
Composition in (P.13i/ are stated as conditionals warranting the existence of a fusion
for any given non-empty set of '-ers. Dropping such a proviso would have disastrous
effects, for then the existence of a null entity—the null entity—would be guaranteed
by taking ‘'w’ to be the condition ‘8xPwx’. The only way around the disaster would
be to revisit the non-basic vocabulary by carefully distinguishing trivial cases of
parthood and overlap (involving the ubiquitous null entity) and non-trivial, genuine
ones, as in

(27) GPxy Ddf Pxy ^ 9z:Pxz genuine parthood
(28) GOxy Ddf 9z.GPzx ^ GPzy/ genuine overlap

and by reformulating all non-core axioms accordingly.29 In this way, one can
actually arrive at a variant of GEM that inherits all the strength of a complete
Boolean algebra. Nonetheless, the philosophical import of such a theory would
remain dubious.

Second, note that GEM is fully committed to the existence of U, a “universal
entity” of which everything is part. This is not by itself a problem, barring any
philosophical concerns about the gerrymendered nature of such an entity. It is,
however, not without consequences. In particular, while GEM admits of models
in which everything is composed of atoms as well as “gunky” models in which
everything divides forever, the necessary existence of U deprives GEM of any
“junky” model in which everything composes forever. Thus, while GEM admits
of both atomistic and atomless extensions, adding the Ascent principle (P.9) would
immediately result in an inconsistent theory.

28See Pontow and Schubert (2006), Theorem 34, for details and proof.
29This strategy is not uncommon in the mathematically oriented literature; see again Pontow and
Schubert (2006) for a comprehensive treatment.
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Summary of GEM

For ease of reference, we conclude by summarizing the main axiomatizations of
GEM mentioned above, with some rewriting of bound variables and dropping all
redundancies30:

(I) .Pxy ^ Pyz/! Pxz Transitivity (P.2)
PPxy! 9z.PPzy ^ :Ozx/ Weak Supplementation (P.4)
9x'x ! 9zFaz'x Unrestricted Compositiona (P.13a)
.Faz'x ^ Pyz/! 9x.'x ^ Oxy/ Filtration (P.14)

(II) .Pxy ^ Pyz/! Pxz Transitivity (P.2)
PPxy! 9z.PPzy ^ :Ozx/ Weak Supplementation (P.4)
9x'x ! 9zFbz'x Unrestricted Compositionb (P.13b)

(III) Pxx Reflexivity (P.1)
.Pxy ^ Pyz/! Pxz Transitivity (P.2)
Pxy ^ Pyx/! x D y Antisymmetry (P.3)
:Pyx ! 9z.Pzy ^ :Ozx/ Strong Supplementation (P.5)
9x'x ! 9zFcz'x Unrestricted Compositionc (P.13c)

(IV) .Pxy ^ Pyz/! Pxz Transitivity (P.3)
9x'x ! 9z.z D �x'x/ Unique Unrestricted Fusion (P.13)

30See also Simons (1987) and Hovda (2009) for additional axiom sets. The elegant axiomatization
in (IV) is essentially due to Tarski (1929), though the axioms are explicitly given only in the 1956
English translation.
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pp. 174–382). Dordrecht: Kluwer.

Lewis, D. K. (1991). Parts of classes. Oxford: Blackwell.
McDaniel, K. (2009). Structure-making. Australasian Journal of Philosophy, 87, 251–274.
Mellor, D. H. (2006). Wholes and parts: The limits of composition. South African Journal of

Philosophy, 25, 138–145.
Moltmann, F. (1997). Parts and wholes in semantics. Oxford: Oxford University Press.
Niebergall, K.-G. (2011). Mereology. In L. Horsten & R. Pettigrew (Eds.), The continuum

companion to philosophical logic (pp. 271–298). New York: Continuum.
Polkowski, L. (2011). Approximate reasoning by parts. An introduction to rough mereology. Berlin:

Springer.
Polkowski, L., & Skowron, A. (1994). Rough mereology. In Z. W. Ras & M. Zemankova (Eds.),

Proceedings of the 8th international symposium on methodologies for intelligent systems (ISMIS
94), Charlotte (pp. 85–94). Berlin: Springer.

Pontow, C. (2004). A note on the axiomatics of theories in parthood. Data & Knowledge
Engineering, 50, 195–213.

Pontow, C. & Schubert, R. (2006). A mathematical analysis of theories of parthood. Data &
Knowledge Engineering, 59, 107–138.

Rescher, N. (1955). Axioms for the part relation. Philosophical Studies, 6, 8–11.
Schaffer, J. (2010). Monism: The priority of the whole. Philosophical Review, 119, 31–76.
Sider, T. (2007). Parthood. Philosophical Review, 116, 51–91.
Simons, P. (1987). Parts: A study in ontology. Oxford: Clarendon.
Simons, P. (1991a). Free part-whole theory. In K. Lambert (Ed.), Philosophical applications of free

logic (pp. 285–306). Oxford: Oxford University Press.
Simons, P. (1991b). Part/whole II: Mereology since 1900. In H. Burkhardt & B. Smith (Eds.),

Handbook of metaphysics and ontology (pp. 209–210). Munich: Philosophia.
Simons, P. (2003). The universe. Ratio, 16, 237–250.
Sällström, P. (Ed.). (1983–1986). Parts & wholes: An inventory of present thinking about parts and

wholes (Vol. 4). Stockholm: Forskningsrdsnmnden.
Smith, B. (1982). Annotated bibliography of writings on part-whole relations since Brentano. In B.

Smith (Ed.), Parts and moments. Studies in logic and formal ontology (pp. 481–552). Munich:
Philosophia.

Smith, N. J. J. (2005). A plea for things that are not quite all there. Journal of Philosophy, 102,
381–421.

Tarski, A. (1929). Les fondements de la géométrie des corps. Ksiega Pamiatkowa Pierwszkego
Polskiego Zjazdu Matematycznego. Suppl. to Annales de la Société Polonaise de Mathéma-
tique, 7, 29–33; Eng. trans. by Woodger, J. H. (1956). Foundations of the geometry of solids.
In A. Tarski (Ed.), Logics, semantics, metamathematics. Papers from 1923 to 1938 (pp. 24–29).
Oxford: Clarendon.

Tarski, A. (1935). Zur Grundlegung der Booleschen Algebra. I. Fundamenta Mathematicae, 24,
177–198; Eng. trans. by Woodger, J. H. (1956). On the foundations of the Boolean algebra, In



Selected Bibliography 373

A. Tarski (Ed.), Logics, semantics, metamathematics, papers from 1923 to 1938 (pp. 320–341).
Oxford: Clarendon.

Thomson, J. J. (1983). Parthood and identity across time. Journal of Philosophy, 80, 201–220.
Tsai H.-c. (2009). Decidability of mereological theories. Logic and Logical Philosophy, 18, 45–63.
Tsai H.-c. (2011). More on the decidability of mereological theories. Logic and Logical Philoso-

phy, 20, 251–265.
Tsai H.-c. (2013a). Decidability of general extensional mereology. Studia Logica, 101(3), 619–636.
Tsai H.-c. (2013b). A comprehensive picture of the decidability of mereological theories. Studia

Logica, 101(5), 987–1012.
Uzquiano, G. (2006) The price of universality. Philosophical Studies, 129, 137–169.
van Inwagen, P. (1990). Material beings. Ithaca: Cornell University Press.
Varzi, A.C. (2000). Mereological commitments. Dialectica, 54, 283–305.
Varzi, A.C. (2006). A note on transitivity of parthood. Applied Ontology, 1, 141–146.
Varzi, A.C. (2008). The extensionality of parthood and composition. The Philosophical Quarterly,

58, 108–133.
Varzi, A.C. (2009b) Universalism entails extensionalism. Analysis, 69(4), 599–604.
Varzi, A. C. (2014). Mereology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy

(Spring 2014 ed.). http://plato.stanford.edu/archives/spr2014/entries/mereology.
Whitehead, A. N. (1929). Process and reality: An essay in cosmology. New York: McMillian.
Winston, M., Chaffin, R., & Herrmann, D. (1987). A taxonomy of part-whole relations. Cognitive

Science, 11, 417–444.
Yi, B. U. (1999). Is mereology ontologically innocent? Philosophical Studies, 93, 141–160.

http://plato.stanford.edu/archives/spr2014/entries/mereology


Index

A
Accuracy, 192, 269, 270, 272–279
Act of assembling, 248
Adjacency space, 297–312, 314–316
Affordances, 162, 190, 199, 201, 203, 204,

209, 210
Allogeneic, 183, 184, 186
Anti-Symmetry, 24, 62, 63, 102, 106, 141, 147,

152–154, 156
Artifact, 29, 171, 217, 247–258
Ascent; 364, 369
A-theory of time, 6
Atom, 13, 16, 78, 150, 156, 168, 177, 192,

193, 196, 206, 207, 209, 249, 297,
299–301, 306, 363

Atomicity, 363
Atomic part, 214, 300, 301, 306, 307, 330,

331, 333, 340, 341, 363
Atomlessness, 363, 364
Autogeneic, 183

B
Betweenness relation, 245, 246, 264, 265
Bona-fide part, 257, 363
Boolean algebra, 101, 107, 233, 234, 303, 306,

368, 369
Boundary, 170, 178, 179, 183–185, 226, 229,

232, 233, 235, 236, 238–242, 244,
254–257, 259, 302, 315

B-theory of time, 6

C
C-boundary, 240–242
C-closure, 240
C-interior, 239–240

Class, 55, 94, 107, 109, 114–120, 123, 125,
130–134, 136–139, 142, 157, 164,
221–223, 237–240, 242, 243, 256,
257, 271, 278, 297, 298, 301, 314,
326, 349–353, 356

C-mereology, 205–210
Coincidence in time, 256, 257
Collective, 27, 177, 178, 181, 207, 218
Complement, 92, 94, 124, 149–153, 163,

189, 193, 199, 202, 209, 223, 232,
233, 253, 256, 297, 303, 305, 306,
308–311, 326, 362–365, 368

Complementation, 223, 305, 309, 362, 364,
365

Component, 2, 25, 26, 44, 59–61, 70–72, 75,
79, 82, 157, 165, 168, 174–184, 186,
192, 196, 197, 200, 206, 209, 219,
220, 238, 256, 280, 295, 307, 308,
310, 354

Composition, 2, 10, 12, 24, 27, 28, 47, 48, 50,
53–82, 95, 102, 178, 196, 199, 200,
205–207, 209, 227, 252, 333, 351,
361–367, 369, 370

Compound, 46, 78, 80, 177–179, 181, 182,
184, 193–195, 198–200, 203, 204,
208, 210

Connection, 87, 91, 95, 101, 102, 105, 106,
108–110, 115, 116, 121, 129, 141,
165, 172, 173, 183, 214, 219, 220,
223–227, 235, 239–242, 255–258,
282, 294–299, 306, 324, 326–328,
330–333, 338–339, 343–345, 356,
369

Connection ingredient, 219, 222, 224,
226–228, 231, 237, 239,
241, 282

Container, 172, 174–180, 182, 325

C. Calosi and P. Graziani (eds.), Mereology and the Sciences, Synthese Library 371,
DOI 10.1007/978-3-319-05356-1, © Springer International Publishing Switzerland 2014

375



376 Index

Containment, 162, 166, 168–171, 176–178,
184–186, 218, 227, 228, 259

Contains, 2, 9, 16, 41, 44, 58, 64, 72, 92, 94,
96, 106, 107, 109, 110, 113, 116,
161, 162, 165–180, 182–186, 194,
214, 218, 227, 228, 246, 254, 256,
264–266, 291, 295, 303, 311, 325,
326, 333, 352, 355

Context dependence, 192
Continuity, 2, 85–102, 178, 219, 259
Corner slice, 35–50
Coverage, 269, 270, 272–275, 277, 279

D
Decision algorithm, 170, 171, 220, 268, 269
Decision rule, 170, 268–270, 273, 279, 283,

284
Dent, 253, 254
Dependence, 12, 79, 82, 161, 162, 192, 197,

198, 201, 210, 218, 284
Design, 191–193, 213, 217, 219, 247–252,

255, 259, 281, 301, 305, 306, 325,
328, 330, 333, 345–347, 353–355

Dichotomy Paradox; 84
Difference, 24, 30, 67, 88, 128, 142, 143, 145,

173, 186, 199, 201, 204, 205, 208,
232, 241, 247, 250, 256, 298, 305,
307, 308, 362, 365, 368

Digital topology, 314–315
Discrete closure, 307–309, 314, 315, 317
Discrete interior, 306–309, 313, 318–320
Dualist substantivalism, 9, 29, 31, 33

E
Endurance, 12, 14, 35–40, 43, 44, 46, 47, 49
Entanglement, 72–75, 80, 82, 193, 195
Equidistance relation, 245
Extension, 2, 53, 63–65, 67, 70, 73, 76, 78,

79, 81, 82, 105, 112, 113, 116, 159,
169, 207, 211, 214, 222–224, 228,
249–251, 256, 258, 282, 283, 296,
300, 301, 306, 356, 360–363, 365,
367, 369

Extensionality of artifacts, 249, 250

F
Fiat part (vs. bonafide part), 181
Fills predicate, 253, 254
Fits predicate, 253
Formation (of robots), 265, 266

Function, 54, 96, 105, 111, 112, 119, 164,
170–173, 176, 179, 181–184, 186,
191, 206, 229, 259, 260, 268, 269,
280–282, 302, 306, 308, 314, 334,
336, 337, 340, 346, 347, 349, 352

Fundamentality, 53
Fuzzy equivalence, 112

G
General Extensional Mereology (GEM), 64,

81, 300, 367–370
General relativity, 2, 9–12
Genetic identity, 167, 170–173
Genuine Overlap; 369
Genuine Parthood; 369
Grain, 10, 31, 174–179, 181, 182, 199
Granular agent, 281
Granular logic, 282–284
Granular reflection, 270, 273–275
Granule of knowledge, 220, 268–279

H
Has-component, 165, 177, 178, 181
Has-fiat-part, 178, 181
Has-grain, 177, 178, 181
Hausdorff distance, 115, 312, 313
Histological image, 316, 317
Hole, 183, 253

I
Immaterial object, 168, 174–177, 180
Indeterminacy, 166–170
Individuals, 60, 74, 75, 101, 125, 166,

169–172, 181, 196, 200, 206, 207,
210, 218, 219, 221, 222, 297, 299,
316, 326, 328, 355

Information system, 213, 230–231, 255, 268,
280, 282–284

Ingredient, 9, 11, 199, 219, 221–224, 226–228,
231, 235–237, 239, 241, 244, 247,
248, 253, 256, 257, 282

J
Joins predicate, 253

L
Location, 7, 17–19, 21, 23, 24, 33, 35, 36,

44–46, 48, 144, 145, 158, 168, 169,
185, 187, 263, 275, 313, 328, 345



Index 377

Locational endurantism, 14, 16, 17, 22–27, 33
Lorentz contraction, 41

M
Many-slice constitution view (MSCV), 14–33
Material object, 1, 2, 5–14, 16–29, 31–33, 36,

39, 46, 96, 142, 143, 145, 146, 165,
168, 169, 174–176, 179, 180, 209

Mathematical morphology, 214, 313–314, 316
Mereological fallacy, 200, 210
Mereological structure, 2, 134–135, 138, 141,

214, 364
Mereological sum relation, 25, 63, 64, 68, 72,

73, 78, 79, 81, 102, 123–139, 141,
174, 184, 365

Mereological universalism, 185
Mereology rough, 220, 227
Mereoposet, 137–139
Metrical geometry, 2, 39, 41, 46, 85–102,

105–121, 136, 191–193, 219,
232–239, 244, 245, 261

Michalski index, 270, 274
Minkowski space-time, 39–46, 48, 49
Missing value, 275–277
Modalities of action, 203, 204
Mode of access, 197, 199, 200, 202, 204, 210
Momentary thing, 257
Monadic, 170, 196, 197
Monist substantivalism, 22, 23, 25
Motion, 2, 41, 42, 85–102, 196, 255, 263
MSCV. See Many-slice constitution view

(MSCV)
Multilocation, 5, 19, 20, 25–29
Multi-valued logic, 101, 102, 105–121

N
Natural kinds, 142–144, 146
Neuron (McCulloch-Pitts), 279, 280
Nihilism, 27, 69
Non-tangential, 109, 110, 226, 239, 253, 256,

295, 303, 306–308

O
Ontology, 9, 12, 35, 44, 46, 75, 78, 81, 88, 143,

163, 164, 169, 186, 207, 218, 221,
255, 354

Organicism, 72, 73
Origin, 108, 170–173, 176, 248, 313, 336
Overlap, 5, 10–19, 22, 25–27, 32, 37, 40,

62–64, 67, 68, 79, 93, 109, 116,

124, 126, 130, 149, 151, 155, 156,
169, 175, 177–179, 213, 221, 222,
224–225, 227, 233, 235, 237, 238,
258, 293–297, 300, 312, 316, 319,
320, 327, 328, 333, 341, 342, 356,
360, 361, 365, 368, 369

P
Part-for, 172, 181, 182
Parthood, 2, 12–14, 16–21, 23–25, 27, 30–33,

35, 36, 40, 53–82, 101, 102, 141,
158, 161–186, 213, 214, 248,
293–297, 299, 306, 359–370

Parts, 1, 5, 36, 53, 85, 105, 123, 141, 163, 189,
217, 293, 323

Path (in space-time), 9
Path constitution view (PCV), 11–16, 23–25,

30–33
Perceptron, 279, 280
Perdurance, 14, 35–38, 40, 44, 46, 49
Planning, 217, 219, 220, 255, 259–267
Plurality, 10, 12, 27, 28, 31, 32, 142
Point-free geometry, 105, 106, 110–115, 118
Potential field, 259–262
(Priority) Monism, 82
(Priority) Pluralism, 82
Product, 58–60, 67, 70, 80, 81, 111, 161, 200,

201, 210, 229, 237, 240, 247, 248,
252, 253, 270, 283, 304, 368

Proper extension, 360
Proper Part, 1, 62, 63, 65–69, 74, 75, 78, 124,

125, 138, 165, 178, 258, 293, 297,
300, 333, 340–342, 360–362

Proximal distance, 312

Q
Quantum Field Theory (QFT), 2, 3, 9, 11
Quantum state, 76, 77
Quasi-topological operator, 306–310

R
Realism, 50, 76, 172, 181, 182, 264
Reflexivity, 14, 18, 19, 24, 32, 62, 63, 65, 91,

102, 106, 112, 113, 123, 146, 148,
165, 245, 341, 360, 365, 370

Region, 2, 5, 36, 77, 86, 105, 136, 144, 168,
196, 231, 294, 359

Regions-as-pluralities multilocationism
(RPM), 25–33

Regular open/closed set, 233–235, 295



378 Index

Relational, 70, 71, 91, 145–148, 153, 157,
195–197, 204, 206, 210, 211, 266,
304, 306

Relationism, 6, 7
Relativity, 1, 2, 9–12, 35, 36, 39, 41–43, 46–48,

50, 200–203
Restricted composition, 2, 10, 12, 27, 28, 53,

64, 68, 69, 73, 74, 78, 81, 102, 207,
367, 369, 370

ROM model, 255
Rough inclusion, 227–231, 242, 245, 246, 261,

263, 268, 270, 271, 273, 275–278,
280–284

RPM. See Regions-as-pluralities
multilocationism (RPM)

S
Separative partial order, 133–134
Sets, 1, 7, 36, 55, 87, 106, 123, 142, 164, 189,

218, 293, 333
Shape, 6, 13, 17, 25, 29, 36, 41, 43, 46, 48, 71,

164, 166, 199, 209, 252–258, 263,
266, 313

Similarity, 112–114, 120, 143, 171, 208,
270–271, 277, 278, 313

S-Mereology, 205–210
Spatial part (s-part), 36, 37, 39
Special composition question, 68, 69, 72, 102,

364
Strong Company, 361
Strong Supplementation Principle (SSP),

63, 64, 66–68, 76–78, 133, 134,
136–139, 300

Subsets, 56, 60, 67, 90, 96, 106, 107, 113,
115, 119, 135, 145, 146, 148, 152,
154, 156, 157, 169, 197, 206–209,
222–223, 232, 283, 295–300, 303,
313, 355, 368

Super strong supplementation principle, 136
Supersubstantivalism, 5, 7–11
Supertask, 87–90, 95–97
Supremum relation, 126

T
Tangential ingredient, 226, 236–237, 239, 256
Temporal part (t-part), 1, 5, 6, 10, 12–14, 16,

17, 23, 27, 30–33, 36–41, 43–46,
48, 50, 158

Tensor product, 59, 60, 67, 70
Time-slice, 36, 41, 44, 46, 257
Topology, 101, 103, 169, 199, 219, 220,

224, 226, 232, 237, 238, 243, 308,
314–315

Transitivity, 18, 19, 62, 63, 65, 66, 102, 106,
112, 113, 123, 141, 146, 153, 162,
164, 165, 181, 182, 206, 207, 209,
230, 231, 245, 271, 300, 341, 360,
365, 370

t-slice, 36, 38–41, 44–46, 49, 256, 257

U
Universalism (unrestricted composition), 184,

185
Universe, 82, 101, 141, 154, 214, 223, 224,

237, 241, 248, 249, 251, 256, 271,
272, 277, 283, 297, 299, 303, 305,
310, 311, 315, 364, 368

V
Vagueness, 47, 48, 50, 69, 70, 166–170, 214,

359

W
Weak Company, 361
Weak supplementation principle (WSP), 63,

66, 67, 129–131, 134, 137
Whitehead, 2, 85–97, 101, 105–108, 110, 113,

116, 219, 220, 223
Whole-for, 182
Wholes, 53, 78, 79, 165, 179, 189–201,

203–211, 293, 339, 340, 353,
364

WSP. See Weak supplementation principle
(WSP)

X
Xenogeneic, 171, 181–183, 186

Z
Zeno’s Paradox, 87


	Preface and Acknowledgements
	Contents
	Notes on Contributors
	Parts, Wholes and Contemporary Sciences
	References

	List of Symbols
	Part I Physics
	Introduction to Part I: Mereology and Physics
	References
	Chapter 1: Building Enduring Objects Out of Spacetime
	1.1 Introduction
	1.2 From Substantivalism to Supersubstantivalism to Perdurantism
	1.3 First Compromise: The Path Constitution View
	1.3.1 Outlining the View
	1.3.2 Problems for the Path Constitution View

	1.4 Second Compromise: The Many-Slice Constitution View
	1.4.1 Outlining the View
	1.4.2 How MSCV Avoids the Problems Facing PCV
	1.4.3 A Problem for the Many-Slice Constitution View and the Path Constitution View

	1.5 Third Compromise: Regions-as-Pluralities Multilocationism
	1.6 Two Problems for All Three Compromises
	1.6.1 New Chalk
	1.6.2 Spatially Point-Like Enduring Objects

	1.7 Conclusion
	References

	Chapter 2: Relativistic Parts and Places: A Note on Corner Slices and Shrinking Chairs
	2.1 Introduction
	2.2 Enduring and Perduring Objetcs in Classical Spacetime
	2.3 Enduring and Perduring Objects in Special Relativistic (Minkowski) Spacetime
	2.4 Corner Slices and Shrinking Chairs
	References

	Chapter 3: Parthood and Composition in Quantum Mechanics
	3.1 Introduction
	3.2 Primers in Quantum Mechanics and Formal Theories of Parthood
	3.2.1 Quantum Mechanics of (Composite) Systems
	3.2.2 Mereologies

	3.3 The Mereology of Quantum Systems
	3.3.1 Quantum Models of Mereological Theories
	3.3.2 Objections
	3.3.2.1 No Individuals Objection
	3.3.2.2 Entangled Systems Are Not Composite Systems
	3.3.2.3 Quantum States Do Not Represent Properties
	3.3.2.4 Against Strong Supplementation
	3.3.2.5 Against Composition


	3.4 Conclusion
	References

	Chapter 4: Continuity of Motion in Whitehead's Geometrical Space
	4.1 Introduction
	4.2 Motion as a Supertask
	4.3 Whitehead-Gerla's Perspective
	4.4 Whitehead-Gerla Approach and the Supertask Problem
	References


	Part II Mathematics
	Introduction to Part II: Mereology and Mathematics
	References
	Chapter 5: Multi-valued Logic for a Point-Free Foundation of Geometry
	5.1 Introduction
	5.2 Inclusion Spaces
	5.3 Connection Structures
	5.4 Multi-valued Logic for an Inclusion-Based Point-Free Geometry
	5.5 Canonical Graded Inclusion Spaces, Connection and Points
	5.6 To Be Closed and To Be Small
	References

	Chapter 6: The Relations of Supremum and Mereological Sum in Partially Ordered Sets
	6.1 Basic Axioms and Definitions
	6.2 The Supremum Relation for Posets
	6.3 Definition and Basic Properties of Mereological Sum
	6.4 Basic Differences Between the Relations sup and sum
	6.5 Basic Properties of (Ssum), (Usum) and (Msum)
	6.6 The Inclusions (†) and (‡) in the Class POS+(Usum)
	6.7 The Inclusions (†) and (‡) in the Class POS+(Msum)
	6.8 Separative Partially Order Sets
	6.9 Mereological Structures
	6.10 Weakening and Replacing the Sum Existence Axiom
	6.11 Mereological Posets
	References

	Chapter 7: Natural Mereology and Classical Mereology
	7.1 Informal Presentation
	7.1.1 A Simplification: Sets as Natural Kinds
	7.1.2 Sets as Things
	7.1.3 Overview of the Formal Device

	7.2 Formalization
	7.2.1 Minimal Upper Bounds and Complements
	7.2.2 Complements
	7.2.3 Anti-symmetry
	7.2.4 Overview of the Construction
	7.2.5 From Classical Mereology to Itself
	7.2.6 Final Reflections
	7.2.7 Coda: Quick Response to Some Concerns About Sets

	References


	Part III Natural Sciences
	Introduction to Part III: Mereology and Natural Sciences
	References
	Chapter 8: Crisp Islands in Vague Seas: Cases of Determinate Parthood Relations in Biological Objects
	8.1 Introduction
	8.1.1 Vagueness and Indeterminacy of Biological Parthood

	8.2 Soft Criteria: Function, Origin and Genetic Identity
	8.3 Hard Criteria: Containers, Grains and Components
	8.3.1 Topological Descriptions of Material and Immaterial Objects
	8.3.2 Collections and Compounds

	8.4 Some Possible Axioms
	8.5 Discussion
	8.5.1 Relevant Inferences
	8.5.2 Trade Offs and Boundary Issues
	8.5.3 The Importance of the Components of a Compound
	8.5.4 Is the Inclusion Condition Empty?

	8.6 Conclusions
	References

	Chapter 9: Developing the Mereology of Chemistry
	9.1 Introduction
	9.2 From Chemical Practices to Mereology: A Methodological Choice
	9.2.1 Quantum Chemists at Work: Parts, Wholes, and the Environment
	9.2.2 Chemists at Work: Process, Instruments, and Time
	9.2.3 Chemical Analysis and the Relativity of Afforded Parts
	9.2.4 The Structure/Reactivity Discourse Within a Typical Chemical Investigation

	9.3 Connecting Mereological Work with Chemical Practices: A Discussion
	9.3.1 The S-Mereology and the C-Mereology
	9.3.2 The Case for S-Mereology
	9.3.3 The Case for the C-Mereology

	9.4 Concluding Remarks
	References


	Part IV Computer Sciences and Engineering
	Introduction to Part IV: Mereology, Computer Science and Engineering
	References
	Chapter 10: Mereology in Engineering and Computer Science
	10.1 Introduction
	10.2 Mereology
	10.2.1 Mereology of Leśniewski
	10.2.1.1 On the Notion of Part
	10.2.1.2 On the Notion of a Class
	10.2.1.3 Notions of Element, Subset
	10.2.1.4 The Universe of Things, Things Exterior, Complementation

	10.2.2 Mereology Based on Connection
	10.2.2.1 On the Connection Predicate
	10.2.2.2 Introducing Notions of a Part, an Ingredient, Overlapping Things and Things Exterior
	10.2.2.3 Notions Derived from C


	10.3 Rough Mereology
	10.3.1 Rough Inclusions
	10.3.1.1 Rough Inclusions from t–norms
	10.3.1.2 Rough Inclusions in Information Systems (Data Tables)
	10.3.1.3 Rough Inclusions on Sets and Measurable Sets


	10.4 Mereotopology and Mereogeometry
	10.4.1 A Topological Background
	10.4.1.1 Approximations: Interior and Closure of a Set
	10.4.1.2 Boundaries

	10.4.2 Regular Open and Regular Closed Sets
	10.4.3 An Application: The Model ROM for Connection
	10.4.3.1 Ingredient in ROM
	10.4.3.2 Overlap in ROM
	10.4.3.3 External Connectedness in ROM
	10.4.3.4 Tangential Ingredient in ROM

	10.4.4 Mereotopology in Part Mereology
	10.4.4.1 On Closures
	10.4.4.2 On Boundaries

	10.4.5 Connection Mereotopology
	10.4.5.1 On the Notion of C–interior
	10.4.5.2 On the Notion of C–Closure
	10.4.5.3 C–Boundaries and a Barry Smith's Proposal for Mereotopology

	10.4.6 Rough Mereotopology
	10.4.6.1 The Notion of an Open Set
	10.4.6.2 On Closures and Interiors
	10.4.6.3 On Boundaries

	10.4.7 Mereogeometry
	10.4.7.1 On the Notion of Betweenness in Tarski and Van Benthem Sense
	10.4.7.2 Example: The Case of Betweenness for Robots in 2D Space


	10.5 Mereology in Engineering: Artifacts, Design and Assembling
	10.5.1 On the Notion of an Artifact
	10.5.2 Design Artifacts
	10.5.3 Action of Things on Design Abstracta

	10.6 Mereology in Spatial Reasoning
	10.6.1 Properties of Artifacts: Mereological Theory of Shape and Orientation
	10.6.1.1 Qualitative Spatial Reasoning
	10.6.1.2 A Case of Spatial Analysis of Limiting Things
	10.6.1.3 A Digression on Time in Mereology
	10.6.1.4 RCC: Region Connection Calculus. ROM Revisited


	10.7 Mereology in Intelligent Planning and Navigation: The Case of Behavioral Robotics
	10.7.1 Planning with Emphasis on Behavioral Robotics
	10.7.2 Mereological Planning via Potential Fields
	10.7.3 Planning for Teams of Robots
	10.7.4 Mereological Approach to Robot Formations

	10.8 Mereology in Knowledge Granulation and Reasoning About Knowledge
	10.8.1 Representation of Knowledge: Information/Decision Systems
	10.8.2 Decision Rules
	10.8.3 Mereology as Similarity: Granulation of Knowledge
	10.8.4 The Idea of Granular Mereological Classifiers
	10.8.5 Classification by Granules of Training Things
	10.8.5.1 Procedure of the Test

	10.8.6 A Treatment of Missing Values
	10.8.7 Granular Rough Mereological Classifiers Using Residuals

	10.9 Mereology in Artificial Intelligence
	10.9.1 Cognitive Reasoning
	10.9.2 MAS Reasoning: Many–Agent Systems
	10.9.3 Granular Logics: Reasoning in Information Systems

	References

	Chapter 11: Discrete Mereotopology
	11.1 From Mereology to Mereotopology
	11.2 Discrete Mereotopology and Adjacency Spaces
	11.3 Examples of Adjacency Spaces
	11.4 Mereotopological Relations on Adjacency Spaces
	11.5 Quasi-topological Operators
	11.6 Measures of Size and Distance
	11.7 Relation to Mathematical Morphology
	11.8 Relation to Digital Topology
	11.9 An Application
	Appendix 1: Proof of (T4) and (T5)
	Appendix 2: Proof of (T6)
	Appendix 3: Proof of (T7): Relationship of Discrete Interior and Closure
	References

	Chapter 12: A Rôle for Mereology in Domain Science and Engineering: To Every Mereology There Corresponds a λ–Expression
	12.1 Introduction
	12.1.1 Computing Science Mereology
	12.1.2 From Domains via Requirements to Software
	12.1.3 Domains: Science and Engineering
	12.1.4 Contributions of This Contribution
	12.1.5 Structure of This Contribution

	12.2 Our Concept of Mereology
	12.2.1 Informal Characterisation
	12.2.2 Six Examples
	12.2.2.1 Air Traffic
	12.2.2.2 Buildings
	12.2.2.3 Financial Service Industry
	12.2.2.4 Machine Assemblies
	12.2.2.5 Oil Industry
	12.2.2.6 Railway Nets
	12.2.2.7 Discussion


	12.3 An Abstract, Syntactic Model of Mereologies
	12.3.1 Parts and Subparts
	12.3.1.1 The Model

	12.3.2 `Within' and `Adjacency' Relations
	12.3.2.1 `Within'
	12.3.2.2 `Transitive Within'
	12.3.2.3 `Adjacency'
	12.3.2.4 Transitive `Adjacency'

	12.3.3 Unique Identifications
	12.3.4 Attributes
	12.3.5 Connections
	12.3.5.1 Connector Wellformedness
	12.3.5.2 Connector and Attribute Sharing Axioms
	12.3.5.3 Sharing

	12.3.6 Uniqueness of Parts
	12.3.6.1 Uniqueness of Embedded and Adjacent Parts


	12.4 An Axiom System
	12.4.1 Parts and Attributes
	P The Part Sort
	A The Attribute Sort

	12.4.2 The Axioms
	P Part-hood
	PP Proper Part-hood
	O Overlap
	U Underlap
	OX Over-cross
	UX Under-cross
	PO Proper Overlap

	12.4.3 Satisfaction
	12.4.3.1 A Proof Sketch


	12.5 An Analysis of Properties of Parts
	12.5.1 Mereological Properties
	12.5.1.1 An Example
	12.5.1.2 Unique Identifier and Mereology Types

	12.5.2 Properties
	12.5.3 Attributes
	12.5.4 Discussion

	12.6 A Semantic CSP Model of Mereology
	12.6.1 A Semantic Model of a Class of Mereologies
	12.6.1.1 Parts  Processes
	12.6.1.2 Connectors  Channels
	12.6.1.3 Process Definitions

	12.6.2 Discussion

	12.7 Concluding Remarks
	12.7.1 Relation to Other Work
	12.7.2 What Has Been Achieved?
	12.7.3 Future Work

	References


	Appendix: Formal Theories of Parthood
	Core Principles
	Decomposition Principles
	Composition Principles
	Classical Mereology
	Summary of GEM

	Selected Bibliography
	Index

